Altiris Deployment Solution User's Reference

Version 300
Note:

Before using this information and the product it supports, read the information in "Notices".
Chapter 1. Introducing the ServerGuide Scripting Toolkit, Linux Edition for Altiris Deployment Solution

The ServerGuide Scripting Toolkit, Linux Edition for Altiris Deployment Solution (Linux Scripting Toolkit) enables you to tailor and build custom hardware deployment solutions. It provides hardware configuration and Linux operating system (OS) installation for IBM System x, BladeCenter, and iData-Plex hardware.

When integrated with the Altiris Deployment Solution, the Linux Scripting Toolkit simplifies the steps in creating and customizing jobs to deploy hardware configurations and Network Operating System (NOS) deployments. The Linux Scripting Toolkit supports the following types of deployment:

- Policy-based RAID configuration using PRAID
- Cloning of RAID configuration
- Configuration of System settings using the ASU (ASU)
- Configuration of Fibre Channel Host Bus Adapters (HBAs)
- Firmware updates using the UpdateXpress System Pack Installer (UXSPi)
- UpdateXpress System Pack installation integrated with automated deployment of a Network Operating System (NOS)
- IBM Systems Director Agent installation integrated with automated deployment of a NOS
- Automated deployment of the following Network Operating Systems (NOSs):
 - SUSE Linux Enterprise Server 9 32 bit SP4
 - SUSE Linux Enterprise Server 9 x64 SP4
 - SUSE Linux Enterprise Server 10 32 bit SP1/SP2/SP3/SP4
 - SUSE Linux Enterprise Server 10 x64 SP1/SP2/SP3/SP4
 - SUSE Linux Enterprise Server 11 32 bit Base/SP1
 - SUSE Linux Enterprise Server 11 x64 Base/SP1
 - Red Hat Enterprise Linux 4 AS/ES 32 bit U6/U7/U8
 - Red Hat Enterprise Linux 4 AS/ES x64 U6/U7/U8
 - Red Hat Enterprise Linux 6 32 bit U1
 - Red Hat Enterprise Linux 6 x64
 - VMware ESX Server 3.5 U4/U5
 - VMware ESX Server 4.0/4.0u1/4.0u2/4.1/4.1u1/4.1u2
- Automated post-installation deployment of the following NOSs:
 - Red Hat Enterprise Linux 4 AS/ES 32 bit U9
 - Red Hat Enterprise Linux 4 AS/ES x64 U9
- Automated deployment of the following NOSs in Native uEFI mode:
 - SUSE Linux Enterprise Server 11 SP1
 - Red Hat Enterprise Linux 6 x64
- Remote Supervisor Adapter II (RSA II) and BladeCenter Management Module and Advanced Management Module remote disk scenarios
- Integration with Altiris Deployment Solution
- Cloning of NOS images
- Installation of IBM Systems Director Agent integrated with scripted NOS deployment
- Post UXSP installation using the Altiris Agent
- Post IBM Systems Director Agent installation using the Altiris Agent
- Remote deployment via the Integrated Management Module (IMM).

The Toolkit provides sample jobs for Altiris Deployment Solution for hardware configuration and operating system deployment using Linux PE. The Linux Scripting Toolkit supports Altiris Deployment Solution 6.9 SP1-SP5, and the Hewlett-Packard Rapid Deployment Pack (RDP) 3.80, 3.81, 3.82, 3.83, 6.0, and 6.2.
Chapter 2. Installing the ServerGuide Scripting Toolkit, Linux Edition

This section describes the steps to install the Linux Scripting Toolkit. It includes information on the prerequisites, instructions for installation, and instructions for removal.

Prerequisites

The ServerGuide Scripting Toolkit, Linux Edition for Altiris Deployment Solution has three components:

1. The IBM Pre-boot environment
2. The IBM Scripting Toolkit Scripts and Utilities
3. The IBM Scripting Toolkit Altiris jobs within the Altiris Deployment Solution console

When you install or reinstall the ServerGuide Scripting Toolkit, Linux Edition for Altiris Deployment Solution, these components are updated as a group. After the update, the Altiris Deployment Solution jobs associated with the previous version of the ServerGuide Scripting Toolkit, Linux Edition for Altiris Deployment Solution will no longer work.

The Linux Scripting Toolkit requires the following components in order to install and create the IBM Linux x64 PE environment:

- Altiris Linux Automation Environment for Deployment Solution
 `BDCgp1_6.9.xxxx.frm`, where `xxxx` is the version number
- IBM Linux Pre-installation Environment boot files for x64
 `ibm_utl_boot_tools-xxx_anyos_x64-full.zip` where `xxx` is the version number.

The Linux Scripting Toolkit also requires that the target server on which the deployment is to be executed have at least 1 GB of memory.

Extracting the Linux Scripting Toolkit

This section describes the steps for extracting the Linux Scripting Toolkit zip file into the Altiris Deployment Server folder.

Procedure

1. Right-click the Linux Scripting Toolkit zip archive and select Extract All....
2. Extract the files to the Altiris Deployment Server directory. By default this directory is `C:\Program Files\Altiris\eXpress\Deployment Server`.
3. Verify that the Linux Scripting Toolkit is extracted. If the files extracted properly, they are located in `...\Altiris\eXpress\Deployment Server\sgdeploy\sgtklinux`.

Adding the Altiris Linux x64 Automation Environment

This section describes how to add the Altiris Linux Automation Environment for Linux x64, if it is not already installed.
Before you begin

Acquire the Linux Automation Environment file. You can acquire this file from the Altiris Deployment Solution or from the Hewlett-Packard Rapid Deployment Pack.

You can get the Altiris Deployment Solution file from http://www.altiris.com. The filename is BDCgpl_6.9.xxxx.frm where xxxx is the version number of the file.

The Hewlett-Packard Rapid Deployment Pack version is located on the DVD at: \ds\BDCgpl_6.9.xxxx.frm, where xxxx is the version number of the file.

Procedure

There are two ways to install the Altiris Linux x64 Automation Environment:
- Use the Altiris PXE Configuration Utility to install the pre-boot environment manually.
- Copy the file BDCgpl_6.9.xxxx.frm to ...\sgdeploy\sgtklinux\boot\, retaining the original filename. When the altiris_sgtklinux.cmd installation script runs, it will integrate the environment as part of the installation.

Adding the IBM Linux Pre-installation Environment for x64

If the Altiris Deployment Server is connected to the web and can reach http://www.ibm.com then the install process will automatically download the IBM Linux PE zip file.

Before you begin

This procedure requires access to the Internet. This topic describes the process for acquiring the files when the Altiris Deployment Server does not have Internet connectivity.

Procedure

1. Copy the file sgdeploy\sgtklinux\altiris\bin\win32\ibm_utl_bomc_3.00_windows_1386.exe from the Altiris Deployment Server to a system connected to the Internet.
2. Run the following command to acquire the pre-installation environment zip file and save it in C:\temp:

 \ibm_utl_bomc_3.00_windows_1386.exe --function=linuxtk -1 C:\temp

 The Bootable Media Creator tool acquires the pre-installation environment zip file ibm_utl_boot_tools-140_anyos_x86–64–full.zip and saves it in C:\temp on the workstation.
3. Copy C:\temp\ibm_utl_boot_tools-140_anyos_x86–64–full.zip to the Altiris Deployment Server at ..\sgdeploy\sgtklinux\boot\, preserving the original filename.

Adding System Enablement Packs

System Enablement Packs (SEPs) allow you to add support for hardware released after the current release of the ServerGuide Scripting Toolkit, Linux Edition for Altiris Deployment Solution. This section describes the process for adding SEPs to the Altiris Deployment Server.
Before you begin

If the Altiris Deployment Server is connected to the Web and can reach www.IBM.com, use the acquire_seps.cmd command to acquire System Enablement Packs (SEPs) as described here. If the Altiris Deployment Server does not have Internet connectivity, see "Adding a new supported system without Internet connectivity" for information on using a system other than the Altiris Deployment Server to acquire SEPs.

Procedure

1. Modify the default settings for acquiring SEPs as required by editing the file acquire_seps.ini and modifying the appropriate values. The default location of this file is C:\Program Files\Altiris\eXpress\Deployment Server\sgdeploy\sgtklinux\altiris\acquire_seps.ini. The following table describes the values you can modify.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TK_SEP_OS</td>
<td>A comma-separated list of operating systems for which to download SEPs. Valid values are: none, all. The default value is none.</td>
</tr>
<tr>
<td>TK_SEP_Arch</td>
<td>A comma-separated list of processor architectures for which to download SEPs. Valid values are: x86, x64, all.</td>
</tr>
<tr>
<td>TK_SEP_PKG_TGT</td>
<td>The target directory on the local system for storing SEPs.</td>
</tr>
<tr>
<td>TK_SEPTOOL_OptionalParams</td>
<td>Allows you to specify additional parameters to be used when downloading SEPs.</td>
</tr>
</tbody>
</table>

2. Open a command window and change to the directory containing the acquire_seps.cmd file. By default, this file is located at C:\Program Files\Altiris\eXpress\Deployment Server\sgdeploy\sgtklinux\altiris\acquire_seps.cmd.

3. Enter the acquire_seps.cmd command, followed by a comma-delimited list of machine types. acquire_seps.cmd 7979,4199 You can also acquire SEPs for all available machine types by specifying all instead of a machine type: acquire_seps.cmd all.

Adding a new supported system without Internet connectivity

System Enablement Packs (SEPs) allow you to add support for hardware released after the current release of the ServerGuide Scripting Toolkit, Linux Edition for Altiris Deployment Solution. This section describes the process for adding SEPs to the Altiris Deployment Server when the server does not have Internet connectivity.

Before you begin

If the Altiris Deployment Server is not connected to the Web, use the following procedure to acquire SEPs.

Procedure

1. Copy the file septool zip file (win_septool\xxx.zip, where xxx is the version number of the tool) from the Altiris Deployment Server to a system with
Internet connectivity. The default location for this file is C:\Program Files\Altiris\eXpress\Deployment Server\sgdeploy\sgtklinux\altiris\bin\win32.

2. On the system where you have copied the zip file, extract all of the files in the archive.

3. From the directory where you extracted the zip file, run the following command to acquire the SEP and save it in C:\temp:
 septoolxxx.exe acquire -l C:\temp -m machine_type -o none -a x64
 where xxx is the version of the septool and machine_type is the machine type of the system for which you want to download SEPs.

4. Copy the files from C:\temp and place them in the updates folder of the Linux Scripting Toolkit directory tree. The default location is C:\Program Files\Altiris\eXpress\Deployment Server\sgdeploy\updates\uxsp.

Integrating with Altiris Deployment Solution

This section describes the requirements and method for integrating the Linux Scripting Toolkit into your existing Altiris Deployment Solution console.

Prerequisites

Installation

To integrate the Linux Scripting Toolkit into the Altiris Deployment Solution console, follow these steps:

1. If you want to suppress prompts or suppress the display of user settings before installing the Scripting Toolkit into the Altiris Deployment Solution console, open the altiris_sgtklinux.ini file and modify the appropriate values shown in the table below.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| TK_Build_SuppressPrompts | Suppress interactive prompts which pause the process to enable the user settings to be read after they are displayed. Valid values are:
| | • Yes |
| | • No |
| | **Note:** Interactive prompts regarding required removal of jobs during upgrade or reinstall scenarios are always displayed. |
| TK_Build_DisplayBuildSettings | Display the user settings before installing the Toolkit into Altiris Deployment Solution. Valid values are:
| | • Yes |
| | • No |

2. Open a command window and change the current directory to the directory containing the altiris_sgtklinux.cmd file. The default file location is C:\Program Files\Altiris\eXpress\Deployment Server\sgdeploy\sgtklinux\altiris\altiris_sgtklinux.cmd.
3. At the command window enter the `altiris_sgtklinux.cmd` command. It will automatically process the Toolkit settings in the `altiris_sgtklinux.ini` file. This process can take between 5 and 15 minutes to complete depending on the server setup.

4. When the `altiris_sgtklinux.cmd` command completes, restart the server and all Altiris services to complete the integration.

Once the Toolkit is installed, there will be a new folder with the product name, version, and buildID under the Jobs frame in the Altiris Deployment Solution console. For example: **IBM Scripting Toolkit, Linux Edition 3.00**

Reinstalling the Linux Scripting Toolkit

This section describes the process for reinstalling the Linux Scripting Toolkit.

The ServerGuide Scripting Toolkit, Linux Edition for Altiris Deployment Solution has three components:
1. The IBM Pre-boot environment
2. The IBM Scripting Toolkit Scripts and Utilities
3. The IBM Scripting Toolkit Altiris jobs within the Altiris Deployment Solution console

When you install or reinstall the ServerGuide Scripting Toolkit, Linux Edition for Altiris Deployment Solution, these components are updated as a group. After the update, the Altiris Deployment Solution jobs associated with the previous version of the ServerGuide Scripting Toolkit, Linux Edition for Altiris Deployment Solution will no longer work.

To reinstall the Linux Scripting Toolkit, follow these steps:

1. **Follow the instructions from the "Installation" on page 6 section of "Integrating with Altiris Deployment Solution" on page 6.**

2. The installer displays the following message to indicate that a previous installation has been detected:

 The following installed items were detected:

 IBM Scripting Toolkit, Linux Edition 2.00

 This must be uninstalled before this process can continue. Please select an option below:

 1) Exit The Reinstaller.

 Select an above option:

 Follow the steps below for the appropriate removal method.

Manually removing the Linux Scripting Toolkit

To manually remove the Linux Scripting Toolkit, follow these steps:

1. Select option number 1 from the prompt to exit the installation process.
2. Remove all jobs associated with the IBM® Linux Toolkit image in the Altiris Deployment Solution console.
3. Open the PXE configuration utility from the Tools menu within the Altiris Deployment Solution Console.
4. Select the IBM Linux Toolkit image.
5. Make certain that the column labeled In Use By DS does not say Yes for that image. If it does, there are additional jobs associated with that image. Find and remove them.
6. Click the Delete button to remove the PXE image.
7. Click Save to save the changes.
8. Click OK to exit the PXE Configuration utility.

Automatically removing the Linux Scripting Toolkit

To automatically remove the Linux Scripting Toolkit, follow these steps:
1. Select option 2 from the prompt. You will receive the following prompt:

 **
 You have chosen to reinstall the following:
 IBM Scripting Toolkit, Linux Edition 2.00
 You may keep the jobs associated with the currently installed Scripting Toolkit, however, they will be moved to a folder labeled IBM Scripting Toolkit, Linux Edition (Archived w/ver. 2.00).
 **
 Would you like to keep those jobs?<Y/N>

2. Select Y to remove the current Linux PE image and move the current IBM ServerGuide Toolkit, Linux Edition jobs to a folder named IBM ServerGuide Toolkit, Linux Edition (Archive). Select N to remove all previously installed jobs, not including any user-created jobs.
Chapter 3. Adding and sharing content on the Linux Scripting Toolkit source server

This section describes how to add to the source server, and how to share content on your network with the source server.

You can add the following types of files to the source server:

UpdateXpress System Pack (UXSP) files
to the `sgdeploy/updates/uxsp/` directory.

Application files, such as the IBM Systems Director Agent
to the `sgdeploy/apps/` directory.

Operating system files
to the `sgdeploy/os/` directory.

The remaining topics in this section describe the process for adding these files, and for sharing them across the network.

Adding UpdateXpress System Packs

To add UpdateXpress System Packs (UXSPs) to the source tree, you must download them to the `sgdeploy/updates/uxsp` directory on the source server.

About this task

Follow this procedure to add UXSPs to the source server:

Procedure

1. Start the UpdateXpress System Pack Installer, `uxspi500.exe`. The default location is `C:\Program Files\Altiris\eXpress\Deployment Server\sgdeploy\updates\uxsp\uxspi500.exe`.

2. Use the UpdateXpress System Pack Installer to download the updates for the machine types and operating systems you need into the source tree. Download the files to `sgdeploy/updates/uxsp`.

 Note: Do not manually create directories under `sgdeploy/updates/uxsp/`. Doing so will prevent the UpdateXpress System Pack Installer from locating the update files.

3. Click **OK** if you are prompted to overwrite existing files.

What to do next

If the Altiris Deployment Server is not connected to the Internet, you can download the updates to an internet-connected machine and copy them to the `sgdeploy/updates/uxsp/` directory.

Adding Systems Director Agent files

To include the IBM Systems Director Agent in a deployment, you must first add the files to the Altiris Deployment Server by following this process.
Procedure
2. Unzip the files in a convenient location.
3. Start the Toolkit Configuration Utility, `tkconfig.exe`. The default location is `C:\Program Files\Altiris\eXpress\Deployment Server\sgdeploy\sgtklinux\tkconfig.exe`.
4. Select **Add Operating System Application Files** from the task list. The Operating System Application files wizard starts.
5. Select **IBM Director 6.x or IBM Director 6.x.x for Linux**.
6. Select **Core Services Agent (Level 1) or Common Agent (Level 2)**.
7. Browse to the location where you unzipped the Director Agent files and click **Next** to begin copying the files.
8. When the copy is complete, exit the wizard.

What to do next
You can now include installation of the IBM Systems Director Agent in your deployments.

Adding operating system installation files

To include operating system files in your deployment image, you must make the files accessible to the deployment server. You can share the location of the files with the server, or you can copy the files to the server by following these steps.

Before you begin
If the operating system files you want to use in your deployments are already in a location accessible to the deployment server, you do not have to add them to the deployment server itself.

Note: The Linux Scripting Toolkit supports only Service Pack 4 for SuSE Linux Enterprise Server (SLES) 9. In order to add Service Pack 4 to the source server, you must first add all 6 CDs of base SLES 9. After adding these files, you can add the service pack following the same procedure. You must select the same target directory you used for the base when adding the service pack.

About this task
If the operating system files are not already in a location accessible to the deployment server, add them to the server by following these steps.

Procedure
1. Start the Toolkit Configuration Utility, `tkconfig.exe`. The default location is `C:\Program Files\Altiris\eXpress\Deployment Server\sgdeploy\sgtklinux\tkconfig.exe`.
2. Select **Add Operating System Application Files** from the task list. The Operating System Application files wizard starts.
3. Select the operating system you want to add from the top panel.
4. Select the version of the operating system to import from the lower panel.
5. Select the location of the files.
6. Click Next to copy the files to the source server.
7. Repeat steps 3 on page 10 through 6 for each operating system you want to add.

Sharing operating system files on your network

The operating system files you are using for your deployments must be shared over the network to be accessible to the target server during deployment. Follow these steps to share the files.

About this task

In order to complete a deployment, the operating system files used for the deployment must be shared with the target system using one of the following protocols:
- FTP
- HTTP
- NFS

In order to share the files from the Altiris Deployment Server, you must configure the server to share the sgdeploy directory.

The operating system installation jobs provided by the Linux Scripting Toolkit use the FTP protocol. Follow the steps below to configure the an Altiris Deployment Server running Windows Internet Information Server (IIS) to share the sgdeploy directory.

Note: Please consult the IIS documentation for more options and security considerations.

Procedure

1. Start the Internet Information Services Manager.
2. Select Default FTP Site.
3. Right click and select New > Virtual Directory....
4. Set the alias name to sgdeploy.
5. Set the home directory to C:\Program Files\Altiris\Deployment Server\.
6. Allow Read access.
7. Start the FTP Site Service.

What to do next

You can now use the operating system files in the sgdeploy directory in your deployments.
Chapter 4. Quick start deployment scenarios

This section contains basic information on deployment scenarios to allow you to begin using the Linux Scripting Toolkit with Altiris Deployment Solution as quickly as possible.

The Linux Scripting Toolkit provides a collection of sample jobs for use by the Altiris Deployment solution. The following topics provide additional information on the most commonly used jobs. For more information on the sample jobs provided by the Scripting Toolkit, see “Sample job definitions” on page 28.

The Linux Scripting Toolkit for use with Altiris Deployment Solution provides two types of jobs:
- “Modular deployment tools”
- “Deployment solutions” on page 21

For more information on tailoring deployments to your needs, see Chapter 5, “Customizing deployment scenarios,” on page 23.

Validating the Altiris environment

After installing the Linux Scripting Toolkit for use with Altiris Deployment Solution, you should validate that the environment is operating properly. This topic describes the process for doing so, using the sample job provided.

Before you begin

About this task

When the installation steps are complete:

Procedure
1. Open the Altiris Deployment Solution console.
2. Run the job Linux Pre-Boot Test, located in the Pre-Boot OS Connectivity Test folder, in the IBM Scripting Toolkit, Linux Edition 3.00 folder. The job boots into the Linux PE x64 environment on the target server. Once connectivity is established, it performs a wait task.

Results

If the task is successful, you can then right-click on the computer icon and select Power Option > Shutdown. Execution of any subsequent job will use Wake on LAN to wake the system.

Modular deployment tools

The sample jobs provided in the Modular Deployment Tools folder are designed to be used individually to complete common deployment tasks. This section describes how and in what order to use the modular deployment tools.
The modular deployment tools provided by the Linux Scripting Toolkit are each designed to complete one step in the deployment process. The following sections will provide information on using the sample jobs for:

- Pre-installation hardware configuration
- Operating system installation
- Post-installation configuration

Pre-installation tasks

This section provides information on the tasks available before you install an operating system using the modular tools.

Before installing an operating system using the modular tools, you can perform the following tasks:

- Replicate system settings
- Configure RAID
- Replicate RAID
- Configure Fibre HBAs
- Update firmware using UpdateXpress System Packs
- Server disk analysis
- Server data disposal

The following sections describe how to perform these tasks using the modular tools.

Replicate system settings

Before installing an operating system, you can capture system settings from a compatible server to a file and deploy them to your new server using the sample jobs provided by the Linux Scripting Toolkit and the Advanced Settings Utility.

The Toolkit provides sample jobs to capture and deploy settings using ASU. These jobs are located in the IBM Scripting Toolkit, Linux Edition 3.00 > Modular Deployment Tools > Step 1 - Pre-installation Hardware Configuration > System Settings Replication folder.

Capture system settings

The **Capture System Settings** sample job captures the system settings of the server and stores them in a file named `ASU_Capture`. By default all captured System Settings are stored in `sgdeploy/sgtklinux/ini/asu/PlatformID` where `PlatformID` is the machine type of the captured system.

Deploy system settings

The **Deploy System Settings** sample job deploys the system settings from the `ASU_Capture.ini` file located in the specified directory.

You can customize the following variables for these jobs from the Altiris Console. The values shown are the defaults.

- `TK_ASU_File=sgdeploy/sgtklinux/ini/asu/${BIOS_Build_Level:0:2}/asu_capture`
- `TK_ASU_Mode=save`

RAID configuration

Before installing an operating system, you can configure RAID on the target server using the Linux Scripting Toolkit and the PRAID utility.
Linux Scripting Toolkit provides sample jobs to perform a number of RAID configurations. These jobs are located in the IBM Scripting Toolkit, Linux Edition 3.00 > Modular Deployment Tools > Step 1 - Pre-installation Hardware Configuration > RAID Configuration folder, and are named according to the RAID configuration they will create. For example, Configure RAID [RAID 0], and Configure RAID [RAID 1 + Hot Spare].

To perform RAID configuration using the modular tools:
1. Start the Altiris Deployment Solution console.
2. Navigate to the IBM Scripting Toolkit, Linux Edition 3.00 > Modular Deployment Tools > Step 1 - Pre-installation Hardware Configuration > RAID Configuration folder.
3. Run the appropriate job against the target system to create the RAID configuration you want.

RAID replication

If you have an existing RAID configuration that you want to replicate to other systems, you can use the sample jobs RAID Capture and RAID configuration to capture and deploy the settings to a new target server.

The sample jobs are located in the IBM Scripting Toolkit, Linux Edition 3.00 > Modular Deployment Tools > Step 1 - Pre-installation Hardware Configuration > RAID Replication folder in the Altiris Deployment Solution console.

To capture an existing RAID configuration, follow these steps:
1. Start the Altiris Deployment Solution console.
2. Navigate to the IBM Scripting Toolkit, Linux Edition 3.00 > Modular Deployment Tools > Step 1 - Pre-installation Hardware Configuration > RAID Replication folder.
3. Run the Capture RAID configuration job against the system whose RAID configuration you want to replicate.

You can customize the following variables for these jobs from the Altiris Deployment Solution console. The values shown are the defaults:

- **TK_pRAID_File**=sgdeploy/sgtklinux/ini/praid/Machine_Type/raid_capture.ini where *Machine_Type* is the machine type of the system being captured.
- **TK_pRAID_Flags**=

When you have captured the RAID configuration, you can deploy it using the Deploy RAID configuration job in the IBM Scripting Toolkit, Linux Edition 3.00 > Modular Deployment Tools > Step 1 - Pre-installation Hardware Configuration > RAID Replication folder.

Configure a Fibre HBA

You can use this pre-installation task to configure your Fibre Channel Host Bus Adapter (HBA) to boot from your Storage Area Network (SAN).

Before you begin

In order to boot from the SAN, it must be configured with a logical drive mapped to a Logical Unit Number (LUN). The HBA you are configuring must have permission to access the logical drive and the LUN.
About this task

Note that the default settings configure the first drive mapped to LUN 0 as a boot device (for QLogic Fibre HBAs only. For information on Emulex Fibre HBAs, see “Known problems and limitations” on page 85). To avoid errors, ensure that your SAN configuration includes at least one logical drive mapped to LUN 0.

Procedure

1. Start the .Altiris Deployment Solution console
2. Navigate to the IBM Scripting Toolkit, Linux Edition 3.00 > Modular Deployment Tools > Step 1 - Pre-installation Hardware Configuration > Fibre Configuration folder.
3. Run the Configure Fibre HBA for Boot job against the target system. You can customize the following variables for these jobs from the Altiris Deployment Solution console. The default values are shown.
 - TK_FIBRE_COUNT="1"
 - TK_FIBRE_1_HBA_ID="0"
 - TK_FIBRE_1_BOOT_DISABLE="No"
 - TK_FIBRE_1_BOOT_PRIM="0 0 0"
 - TK_FIBRE_1_BOOT_ALT1=""
 - TK_FIBRE_1_BOOT_ALT2=""
 - TK_FIBRE_1_BOOT_ALT3=""

Update Firmware

You can use the Update Firmware (UXSP) job to update all of the firmware on a target server from the IBM Preboot environment.

About this task

To update the firmware on a server using the Update Firmware (UXSP) job, follow these steps:

Procedure

1. Acquire UpdateXpress System Packs (UXSPs) for SUSE Linux Enterprise Server 10 for all of the systems to be updated.
2. Start the .Altiris Deployment Solution console
3. Navigate to the IBM Scripting Toolkit, Linux Edition 3.00 > Modular Deployment Tools > Step 1 - Pre-installation Hardware Configuration > Update Firmware (UXSP) folder.
4. Run the Update System Firmware job against the target system. You can customize the following variables for these jobs from the Altiris Deployment Solution console. The default values are shown.
 - TK_UXSP_UpdateXpressSystemPacks="/sgdeploy/updates/uxsp"
 - TK_UXSP_ApplyLatest="No"
 - TK_UXSP_UXSPUpdateFlags="update --unattended --firmware"

Server disk analysis

This sample job captures the disk information for all disks attached to a given server. You can use this job after performing RAID configuration to ensure that when you install a supported operating system, you install to disk /dev/sda on the target server.
Before you begin

You must perform RAID configuration before running this job, as the disk information collected during analysis is changed during RAID configuration.

About this task

To capture disk information, follow these steps:

Procedure

1. Start the Altiris Deployment Solution console.
2. Navigate to the IBM Scripting Toolkit, Linux Edition 3.00 > Modular Deployment Tools > Step 1 - Pre-installation Hardware Configuration > Server Disk Analysis folder.
3. Run the Capture Disk Data job against the target system. You can customize the following variables for these jobs from the Altiris Deployment Solution console. The default values are shown.
 - TK_DISK_File=/mnt/ds/Temp/$ID/disk_info.txt

Server data disposal

The Linux Scripting Toolkit provides sample jobs to destroy data from drives and optionally to delete or reset RAID configuration. These jobs are located in the IBM Scripting Toolkit, Linux Edition 3.00 > Modular Deployment Tools > Step 1 - Pre-installation Hardware Configuration > Server Data Disposal folder.

The following topics describe the process for using these sample jobs.

Server data disposal with RAID reset:

Use this job to remove data from the drives and reset the RAID configuration of the target system.

Procedure

1. Start the Altiris Deployment Solution console.
2. Navigate to the IBM Scripting Toolkit, Linux Edition 3.00 > Modular Deployment Tools > Step 1 - Pre-installation Hardware Configuration > Server Data Disposal folder.
3. Run the Server Data Disposal and Reset RAID job against the target system.
 You can customize the following variables for these jobs from the Altiris Deployment Solution console. The default values are shown.
 - TK_Wipe_Disk=1
 - TK_Wipe_Repeat_Number=00
 - TK_Wipe_Level=quick

Server data disposal without RAID reset:

Use this job to remove data from the drives without resetting the RAID configuration of the target system.

Procedure

1. Start the Altiris Deployment Solution console.
2. Navigate to the IBM Scripting Toolkit, Linux Edition 3.00 > Modular Deployment Tools > Step 1 - Pre-installation Hardware Configuration > Server Data Disposal folder.

3. Run the Server Data Disposal non-RAID job against the target system. You can customize the following variables for these jobs from the Altiris Deployment Solution console. The default values are shown.
 - TK_Wipe_Disk=1
 - TK_Wipe_Repeat_Number=00
 - TK_Wipe_Level=quick

Operating system installation

After you have configured RAID on the target server, you can use the jobs provided by the Linux Scripting Toolkit to install a supported operating system. This section describes that process.

The Linux Scripting Toolkit provides two types of jobs for deploying operating systems:

- Operating system cloning
- Scripted operating system installation

The following sections describe how to perform each type of installation.

Operating system cloning

The Linux Scripting Toolkit provides sample jobs to capture and deploy supported Linux operating systems.

Before you begin

In order to run the Capture Linux Image sample job, the Altiris agent must first be installed on the donor system. The scripted operating system installation jobs provided by the Linux Scripting Toolkit install the Altiris agent automatically. If you are cloning an operating system that was not installed using the Toolkit, you must install the Altiris agent manually.

About this task

To capture a supported operating system from one server and deploy it to another, follow these steps:

Procedure

1. Start the Altiris Deployment Solution console.
3. Open the Capture Linux Image job.
4. Select the Create Disk Image task and click Modify.
5. Change the path and filename for the captured image and click Finish to save your changes.
6. Open the Deploy Linux Image job.
7. Select the Distribute Disk Image task and click Modify.
8. Change the path and filename to match the ones you entered for the captured image and click Finish to save your changes.
9. Run the **Capture Linux Image** job against the donor server.
10. When the capture job is complete, run the **Deploy Linux Image** job against the target server.

Scripting operating system installation

If you do not want to deploy a clone of an existing operating system installation, the Linux Scripting Toolkit provides sample jobs to deploy each of the supported operating systems. Use the following procedure to install a supported operating system using the sample jobs provided:

Before you begin

Before you can install an operating system, the operating system installation files must be available to the source server. See “Adding operating system installation files” on page 10 for more information.

Procedure

1. Start the Altiris Deployment Solution console.
3. Select the job that corresponds to the operating system you want to install and run it against the target server.

Scripted operating system installation in uEFI

Linux Scripting Toolkit provides sample jobs to deploy supported operating systems in uEFI mode. This topic describes the process for performing these deployments.

Before you begin

Before you can install an operating system, the operating system installation files must be available to the source server. See “Adding operating system installation files” on page 10 for more information.

About this task

Use the following procedure to install a supported operating system in uEFI mode using these sample jobs:

- **Combined Deployment Solutions > Scripted Deployments:**
 - Configure RAID + Install RHEL 6 x64 in uEFI
 - Configure RAID + Install SLES 11 x64 in uEFI
- **Modular Deployment Tools > Scripted Operating System Installation:**
 - Install RHEL 6 x64 in uEFI
 - Install SLES 11 x64 in uEFI

Procedure

1. Start the Altiris Deployment Solution console.
3. Select the job that corresponds to the operating system you want to install and run it against the target server.
Note: Only SLES 11 x64 and RHEL x64 are supported for native uEFI installation. The `TK_DISTRO_CFG` job variable determines whether the installation is a native uEFI installation or a legacy installation. The Linux Scripting Toolkit provides two sample answer files for native uEFI installations:

- `sles11x64_efi.xml` for native uEFI installation of SLES 11 x64.
- `rhel6x64_efi.xml` for native uEFI installation of RHEL 6 x64.

If you want to customize other answer files for native uEFI installation, ensure that the file contains an entry for `/boot/efi`. This entry can be commented out, but must remain visible in the file.

Post installation tasks

When you have completed RAID configuration and operating system installation, you can perform post installation tasks. This section describes the methods for installing the IBM Systems Director Agent and applying UpdateXpress System Pack (UXSP) updates.

The Linux Scripting Toolkit provides sample jobs for installing the IBM Systems Director Agent and applying UpdateXpress System Pack updates to a target system on which RAID has been configured and a supported operating system installed. Please note that in order to complete these jobs, the Altiris agent must be installed on the target system. The Altiris agent is installed automatically by the operating system installation tasks provided by the Linux Scripting Toolkit. If the operating system on the target system was not installed using these jobs, you might have to install the Altiris agent manually. See "Operating system installation" on page 18 for more information on using the modular deployment tools to install operating systems.

The following sections describe the process for using the modular deployment tools to install the IBM Director Agent and apply UXSP updates to a target system.

Installing the IBM Systems Director Agent

After you have configured RAID and installed a supported operating system, use the Linux Scripting Toolkit to install the IBM Systems Director Agent.

Procedure

1. Ensure that the IBM Systems Director Agent source files have been added to the source tree on the source server. For more information, see "Adding Systems Director Agent files" on page 9.

2. Open the Altiris Deployment Solution console and navigate to the IBM Scripting Toolkit, Linux Edition 3.00 > Modular Deployment Tools > Step 3 - Post-Installation Configuration > Application Installation folder.

3. Run the IBM Director Agent for Linux install job against the target system.

Installing UpdateXpress System Pack updates

You can ensure that your target server has current firmware fixes by using the Linux Scripting Toolkit to install UpdateXpress System Pack (UXSP) updates.

Before you begin

Before you can install UXSPs, you must have added the latest updates for your target server machine type to the source server. See "Adding UpdateXpress System Packs" on page 9 for more information.
About this task

Follow these steps to apply UXSPs to your target system:

Procedure
1. Open the Altiris Deployment Solution console.
3. Run the Run UpdateXpress System Pack Installer job against the target server.

Deployment solutions

The sample jobs provided in the Combined Deployment Solutions folder are designed to consolidate multiple deployment elements in a single Altiris job. This section describes how to use these jobs to perform complete deployments.

The deployment solutions provided by the Linux Scripting Toolkit are designed to perform a combination of deployment steps in a single job. The following sections will provide information on using the sample jobs for:

- Image based deployment (image cloning)
- Scripted deployment

Image based deployment

The Linux Scripting Toolkit provides a set of tools to capture and deploy an existing system configuration, including RAID configuration, operating system, and installed applications and updates. These jobs require the Altiris agent to be installed on the donor system. The Altiris agent is installed automatically as part of the Scripting Toolkit operating system installation jobs. If the donor system operating system was not installed using the Scripting Toolkit, you might need to install the Altiris agent manually.

Follow these steps to capture and deploy a system configuration:
1. Open the Altiris Deployment Solution console and navigate to the IBM Scripting Toolkit, Linux Edition 3.00 > Combined Deployment Solutions > Image-based Deployment folder.
2. Run the Capture RAID Configuration and Linux Image job against the donor system.
3. When that job completes, run the Deploy RAID Configuration and Linux Image against the target system.

Scripted deployment

The scripted deployment sample jobs provided by the ServerGuide Scripting Toolkit are designed to integrate all of the steps in deploying a system configuration in a single Altiris job. To use a scripted deployment job to configure RAID, install an operating system, install the IBM Director Agent, and install UpdateXpress System Pack updates on the target system, follow these steps:

1. Ensure that the necessary operating system, Director Agent, and UXSP files are properly included in the source tree. See Chapter 3, “Adding and sharing content on the Linux Scripting Toolkit source server,” on page 9 for more information.
2. Open the Altiris Deployment Solution console and navigate to the **IBM Scripting Toolkit, Linux Edition 3.00 > Combined Deployment Solutions > Scripted Deployment** folder.

3. In this folder, select the job to deploy the operating system of your choice. Modify the following job variables:

 - **TK_DirAgent_DirectorAgent=dirlin**
 To install the IBM Systems Director Agent. Uncomment this variable and assign the folder under /sgdeploy/apps/ where the IBM Systems Director Agent files are located.

 - **TK_UXSP_UpdateXpressSystem Packs=uxsp**
 To install UpdateXpress System Pack updates.

 See [Chapter 5, “Customizing deployment scenarios,” on page 23](#) for more information on configuring job variables.

4. Run the job against the target server.
Chapter 5. Customizing deployment scenarios

This section provides information on customizing deployment scenarios.

You can customize your deployment scenarios in the following ways:

- Customize source server settings
- Add PRAID policy files
- Add ASU files
- Customize Fibre HBA boot configuration
- Customize your Linux installation
- Add installation of the IBM Systems Director Agent to your deployment
- Add installation of UpdateXpress System Packs to your deployment

Customizing sample jobs

This section provides information on customizing the sample Altiris jobs provided with the ServerGuide Scripting Toolkit, Linux Edition.

Each sample job provided within the Altiris Deployment Solution console that contains customizable settings begins with a task that sets all variables for the job. This task is labeled **Customize Job Variables**. The variables that you can modify are contained within a block that is similar to the following:

```
[User_Customizable_Variables]

Variables

[End_User_Customizable_Variables]
```

You cannot modify variables outside this block. When you modify a job, it is a good practice to create a copy of the job and modify the copy, rather than modifying the original job.

Table 1 provides a list of the variables in the sample Altiris jobs that you can customize. Note that all values for variables must be enclosed in quotation marks.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[PRAID Settings]</td>
<td></td>
</tr>
<tr>
<td>TK_pRAID_File</td>
<td>Specifies the PRAID policy file to be used for the job.</td>
</tr>
<tr>
<td></td>
<td>Default: Varies per job, see next section.</td>
</tr>
<tr>
<td>TK_pRAID_Flags</td>
<td>Specifies any additional flags to be passed to the PRAID utility.</td>
</tr>
<tr>
<td></td>
<td>Default: -r</td>
</tr>
<tr>
<td>[Fibre Settings]</td>
<td></td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| TK_FIBRE_COUNT | Specifies the number of HBA ports to configure.
Valid values are 1–n, where n is the number of HBA ports available.
This variable affects the use of the following variables:
• TK_FIBRE_N_HBA_ID
• TK_FIBRE_N_BOOT_DISABLE
• TK_FIBRE_N_BOOT_PRIM
• TK_FIBRE_N_BOOT_ALT1
• TK_FIBRE_N_BOOT_ALT2
• TK_FIBRE_N_BOOT_ALT3
Where N is the HBA number to be configured.
Note: You must complete one of each of these variables for every HBA port you configure. So if TK_FIBRE_COUNT=2, you must complete one set of these variables for the first port and one for the second. |
| TK_FIBRE_N_HBA_ID | Identifies the Qlogic HBA to be configured, where N is the HBA number to be configured.
Valid values are:
hba_instance
the instance number of an HBA port. Valid values are integers from 0 to n-1, where n is the number of HBAs in the system.
For example, to configure HBA instance 0:
TK_FIBRE_1_HBA_ID=0
hba_wwpn
the World Wide Port Name of an HBA port, in the format xx-xx-xx-xx-xx-xx-xx-xx or xxxxxxxxxxxxxxxx.
For example, to configure HBA:
90-87-AA-BB-65-34-BB-E0:
TK_FIBRE_1_HBA_ID=
90-87-AA-BB-65-34-BB-E0
Default: 0 |
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TK_FIBRE_N_BOOT_DISABLE</td>
<td>Disable the selected current boot device settings on the specified HBA port, where N is the HBA number to be configured. Valid values are</td>
</tr>
<tr>
<td>No</td>
<td>Does not clear or disable any boot settings.</td>
</tr>
<tr>
<td>All</td>
<td>Disables the primary and all alternate boot settings - Prim, Alt1, Alt2, and Alt3.</td>
</tr>
<tr>
<td>Prim</td>
<td>Disables only the primary boot setting.</td>
</tr>
<tr>
<td>Alt1</td>
<td>Disables the Alternative 1 boot setting.</td>
</tr>
<tr>
<td>Alt2</td>
<td>Disables the Alternative 2 boot setting.</td>
</tr>
<tr>
<td>Alt3</td>
<td>Disables the Alternative 3 boot setting. Default: No.</td>
</tr>
</tbody>
</table>

| **TK_FIBRE_N_BOOT_PRIM = target_wwnn target_wwpn lun_id** | Defines the primary boot target settings, where N is the HBA number to be configured, and: |
| - target_wwnn - is the World Wide Node Name of a device, in the format xx-xx-xx-xx-xx-xx-xx-xx or xxxxxxxxxxxxx. |
| - target_wwpn - is the World Wide Port Name of a device, in the format xx-xx-xx-xx-xx-xx-xx-xx or xxxxxxxxxxxxx. |
| - lun_id - is the Logical Unit Number of a device. Default: 0 0 0 |
Example:	
TK_FIBRE_1_BOOT_PRIM=	
BB-CC-AA-88-65-34-BB-F1	
BB-CC-AA-88-FF-34-BB-F1	

<p>| TK_FIBRE_N_BOOT_ALT1 = target_wwnn target_wwpn lun_id | Configures the operating system to use the indicated target as the first alternate boot device, where N is the HBA number to be configured, and |
| - target_wwnn - is the World Wide Node Name of a device, in the format xx-xx-xx-xx-xx-xx-xx-xx or xxxxxxxxxxxxx. |
| - target_wwpn - is the World Wide Port Name of a device, in the format xx-xx-xx-xx-xx-xx-xx-xx or xxxxxxxxxxxxx. |
| - lun_id - is the Logical Unit Number of a device. Default: blank. |
| Example: | |
| TK_FIBRE_1_BOOT_ALT1= | |
| BB-CC-AA-88-65-34-BB-FD | |
| BB-CC-AA-88-FF-40-BB-F1 | |</p>
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
</table>
| **TK_FIBRE_N_BOOT_ALT2 = target_wwnn target_wwpn lun_id** | Configures the operating system to use the indicated target as the second alternate boot device, where **N** is the HBA number to be configured, and
 • **target_wwnn** - is the World Wide Node Name of a device, in the format xx-xx-xx-xx-xx-xx-xx-xx or xxxxxxxxxxxxxx.
 • **target_wwpn** - is the World Wide Port Name of a device, in the format xx-xx-xx-xx-xx-xx-xx-xx or xxxxxxxxxxxxxx.
 • **lun_id** - is the Logical Unit Number of a device.
 Default: blank.
 Example:
 TK_FIBRE_1_BOOT_ALT2=
 BB-CC-AA-BB-65-34-BB-FD
 BB-CC-AA-BB-FF-40-BB-F1 5 |
| **TK_FIBRE_N_BOOT_ALT3 = target_wwnn target_wwpn lun_id** | Configures the operating system to use the indicated target as the third alternate boot device, where **N** is the HBA number to be configured, and
 • **target_wwnn** - is the World Wide Node Name of a device, in the format xx-xx-xx-xx-xx-xx-xx-xx or xxxxxxxxxxxxxx.
 • **target_wwpn** - is the World Wide Port Name of a device, in the format xx-xx-xx-xx-xx-xx-xx-xx or xxxxxxxxxxxxxx.
 • **lun_id** - is the Logical Unit Number of a device.
 Default: blank.
 Example:
 TK_FIBRE_1_BOOT_ALT3=
 BB-CC-AA-BB-65-34-BB-FD
 BB-CC-AA-BB-FF-40-BB-F1 5 |
| **[ASU Settings]** | |
| **TK_ASU_File** | Specifies the file to be used for a Capture System Settings or Deploy System Settings operation. If you are capturing system settings, they will be written to a file with this name. If you are deploying system settings, they will be read from this file.
 Default: `/sgdeploy/sgtklinux/ini/asu/$(BIOS_Build_Level0:2)/asu_capture` |
| **TK_ASU_Mode** | Specifies the ASU mode being used. This value is used with the `asu` command and the value of the `TK_ASU_File` variable to create a complete ASU command.
 Valid values are: save, replicate, and batch. |
| **TK_ASU_Flags** | Specifies additional flags for the current mode.
 The default value is `-group-bios`. |
<p>| [NOS Installation Settings] | |</p>
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TK_DISTRO_TYPE</td>
<td>Specifies the Linux distribution to be installed. Valid values are: RHEL, SLES, VMWARE</td>
</tr>
<tr>
<td>TK_DISTRO_VERSION</td>
<td>Specifies the version of the operating system indicated by TK_DISTRO_TYPE. Valid values correspond to the supported versions of the supported operating systems. Note: The version number must be a valid and supported version of the Linux distribution specified by TK_DISTRO_TYPE.</td>
</tr>
<tr>
<td>TK_DISTRO_PATH</td>
<td>Specifies the fully qualified URL for the location of the network share where the operating system files are located. Supported protocols are FTP, HTTP, and NFS. Default: ftp://$TK_Altiris_IP/sgdeploy/os/osfolder</td>
</tr>
<tr>
<td>TK_DISTRO_CFG</td>
<td>Specifies the unattended answer file to be used for the operating system installation. This file must be formatted as a kickstart or autoyast file, depending on the distribution being deployed. Default: ./sgdeploy/sgtklinux/altiris/answerfiles/answerfile</td>
</tr>
<tr>
<td>TK_DISTRO_KPARAM</td>
<td>Specifies additional kernel parameters to be used for the deployment, such as VNC parameters or a static IP address. Default: none</td>
</tr>
<tr>
<td>TK_DISTRO_NIC_PORT</td>
<td>Specifies a Network Interface Card (NIC) to be used for the installation, if the NIC is different than the one used for the pre-installation execution environment (PXE) boot. If no NIC is specified, the NIC used for PXE boot will be used for the installation, using the bootif method. Note: This variable is not valid for VMware ESX Server. To indicate the network device for VMware ESX Server, edit the network section of the VMware kickstart file.</td>
</tr>
</tbody>
</table>

[Director Agent Settings]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
</table>
| TK_DirAgent_DirectorAgent | Specifies the location of the IBM Director Agent application files on the source server. Valid values are:
• dirlin
• A user-supplied directory in the sgdeploy/apps directory
Default: dirlin |
Table 1. Customizable variables in Altiris sample jobs (continued)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
</table>
| TK_UXSP_UpdateXpressSystemPacks | Specifies the location of the UpdateXpress System Packs on the source server. Valid values are:
 - uxsp
 - a user-specified directory in the sgdeploy/updates directory
 Default: uxsp |

Sample job definitions

This section provides descriptions of the sample Altiris jobs provided by the Linux Scripting Toolkit, including a description of the variables that can be customized for each job.

All of the sample jobs except imaging jobs without RAID configuration and the Linux Pre-Boot test add logging information to the ToolkitProcess.log file.

Customizing Fibre HBA boot configuration

You can use Toolkit variables to customize the configuration of Fibre HBAs on the target system, allowing them to boot from SAN targets.

By default, the ServerGuide Scripting Toolkit will configure the first HBA on the system to boot from the first available SAN target (for QLogic Fibre HBAs only. For information Emulex Fibre HBAs, see “Known problems and limitations” on page 85). The BIOS configures the first disk drive that it finds that is also a LUN 0 as a boot device. The ServerGuide Scripting Toolkit uses the following variables to configure Fibre HBAs:

Note: Please note that while some examples are broken across multiple lines for formatting reasons, when using these settings, you must include all the information for each variable on a single line.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TK_FIBRE_COUNT</td>
<td>Specifies the number of HBA ports to configure. Valid values are 1–n, where n is the number of HBA ports available. This variable affects the use of the following variables: • TK_FIBRE_N_HBA_ID • TK_FIBRE_N_BOOT_DISABLE • TK_FIBRE_N_BOOT_PRIM • TK_FIBRE_N_BOOT_ALT1 • TK_FIBRE_N_BOOT_ALT2 • TK_FIBRE_N_BOOT_ALT3 Where N is the HBA number to be configured. Note: You must complete one of each of these variables for every HBA port you configure. So if TK_FIBRE_COUNT=2, you must complete one set of these variables for the first port and one for the second.</td>
</tr>
</tbody>
</table>
| TK_FIBRE_N_HBA_ID | Identifies the Qlogic HBA to be configured, where N is the HBA number to be configured. Valid values are:
 * **hba_instance**
 the instance number of an HBA port. Valid values are integers from 0 to n-1, where n is the number of HBAs in the system.
 For example, to configure HBA instance 0: TK_FIBRE_1_HBA_ID=0
 * **hbawwpn**
 the World Wide Port Name of an HBA port, in the format xx-xx-xx-xx-xx-xx-xx-xx or xxxxxxxxxxxxxxxxx.
 For example, to configure HBA: 90-87-AA-BB-65-34-BB-E0: TK_FIBRE_1_HBA_ID= 90-87-AA-BB-65-34-BB-E0 |
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TK_FIBRE_N_BOOT_DISABLE</td>
<td>Disable the selected current boot device settings on the specified HBA port, where N is the HBA number to be configured.</td>
</tr>
<tr>
<td></td>
<td>Valid values are</td>
</tr>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>Prim</td>
</tr>
<tr>
<td></td>
<td>Alt1</td>
</tr>
<tr>
<td></td>
<td>Alt2</td>
</tr>
<tr>
<td></td>
<td>Alt3</td>
</tr>
<tr>
<td></td>
<td>Default: No.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TK_FIBRE_N_BOOT_PRIM = target_wwnn target_wwpn lun_id</th>
<th>Defines the primary boot target settings, where N is the HBA number to be configured, and:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• target_wnnn - is the World Wide Node Name of a device, in the format xx-xx-xx-xx-xx-xx-xx-xx or xxxxxxxxxxxxxxxxxx.</td>
</tr>
<tr>
<td></td>
<td>• target_wwpn - is the World Wide Port Name of a device, in the format xx-xx-xx-xx-xx-xx-xx-xx or xxxxxxxxxxxxxxxxxx.</td>
</tr>
<tr>
<td></td>
<td>• lun_id - is the Logical Unit Number of a device.</td>
</tr>
<tr>
<td></td>
<td>Default: 0 0 0</td>
</tr>
<tr>
<td></td>
<td>Example: TK_FIBRE_1_BOOT_PRIM= BB-CC-AA-BB-65-34-BB-F1 BB-CC-AA-BB-FF-34-BB-F1 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TK_FIBRE_N_BOOT_ALT1 = target_wwnn target_wwpn lun_id</th>
<th>Configures the operating system to use the indicated target as the first alternate boot device, where N is the HBA number to be configured, and</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• target_wnnn - is the World Wide Node Name of a device, in the format xx-xx-xx-xx-xx-xx-xx-xx or xxxxxxxxxxxxxxxxxx.</td>
</tr>
<tr>
<td></td>
<td>• target_wwpn - is the World Wide Port Name of a device, in the format xx-xx-xx-xx-xx-xx-xx-xx or xxxxxxxxxxxxxxxxxx.</td>
</tr>
<tr>
<td></td>
<td>• lun_id - is the Logical Unit Number of a device.</td>
</tr>
<tr>
<td></td>
<td>Default: blank.</td>
</tr>
</tbody>
</table>
Table 2. Fibre HBA boot configuration variables (continued)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
</table>
| TK_FIBRE_N_BOOT__ALT2 = target__wwnn target__wwpn lun__id | Configures the operating system to use the indicated target as the second alternate boot device, where \(N \) is the HBA number to be configured, and
 - \(target__wwnn \)- is the World Wide Node Name of a device, in the format xx-xx-xx-xx-xx-xx-xx-xx or xxxxxxxxxxxxxxx.
 - \(target__wwpn \)-is the World Wide Port Name of a device, in the format xx-xx-xx-xx-xx-xx-xx-xx or xxxxxxxxxxxxxxx.
 - \(lun__id \)- is the Logical Unit Number of a device.
Default: blank.
Example:
TK_FIBRE_1_BOOT__ALT2=

| TK_FIBRE_N_BOOT__ALT3 = target__wwnn target__wwpn lun__id | Configures the operating system to use the indicated target as the third alternate boot device, where \(N \) is the HBA number to be configured, and
 - \(target__wwnn \)- is the World Wide Node Name of a device, in the format xx-xx-xx-xx-xx-xx-xx-xx or xxxxxxxxxxxxxxx.
 - \(target__wwpn \)-is the World Wide Port Name of a device, in the format xx-xx-xx-xx-xx-xx-xx-xx or xxxxxxxxxxxxxxx.
 - \(lun__id \)- is the Logical Unit Number of a device.
Default: blank.
Example:
TK_FIBRE_1_BOOT__ALT3=

Capture and Deploy RAID Configuration and Linux image

The ServerGuide Scripting Toolkit, Linux Edition provides sample Altiris jobs to perform operating system imaging tasks using Altiris. Imaging tasks include capturing a copy of an installed operating system and deploying that image to a target server. You might need to configure the target server before you deploy the image.

Note: The donor and target systems must be configured identically in order to deploy the captured RAID configuration and Linux image.

These jobs capture a RAID Configuration along with the OS image, so that you can use both to redeploy the image. In order to run the capture RAID configuration and Linux image sample job, you must first install the Altiris agent on the donor system. The Toolkit’s scripted OS install jobs automatically install the Altiris agent.

The capture sample job captures the RAID configuration of the server, and then captures an OS image from the target server and stores both on the Altiris server.
Each deployment sample job deploys the captured RAID configuration, and OS image to the target server. The sample job configures RAID, calls a reboot, and then performs the image deployment.

The following variables may be customized for these jobs within the Altiris Console:
- TK_pRAID_File="/sgdeploy/sgtklinux/ini/praid/$Machine_Type/raid_capture.ini"

Configure RAID + Install Linux OS

This sample job performs a RAID configuration, restarts the system, and then performs a scripted operating system installation. You must set up the operating system being deployed in the Linux Scripting Toolkit source tree on the Altiris server. See “Adding operating system installation files” on page 10 for details.

The following variables may be customized for this job within the .Altiris Deployment Solution Console. The values shown are the defaults:
- TK_pRAID_File="/sgdeploy/sgtklinux/ini/praid/default_raid.ini"
- TK_pRAID_Flags="-r"
- TK_Altiris_IP
- TK_DISTRO_TYPE
- TK_DISTRO_VERSION
- TK_DISTRO_PATH=ftp://$TK_Altiris_IP/sgdeploy/os/rhel5x64
- TK_DISTRO_CFG
- TK_DirAgent_DirectorAgent=dirlin
- TK_UXSP_UpdateXpressSystemPacks=uxsp
- TKDISTRO_KPARAM
- TKDISTRO_NIC_PORT="link"

Configuring RAID with a policy file

You can configure RAID controllers using standalone jobs that only configure the RAID controllers and then stop, and jobs integrated with scripted and image-based deployment. The jobs that specify a specific RAID level in them use a pre-configured policy file to create a RAID array of that type on the target machine. The other jobs either deploy a previously captured RAID configuration or create the default RAID configuration if no policy file is specified.

Follow these steps to use a user defined policy file:
1. Create the policy file in the sgdeploy/sgtklinux/ini/praid directory.
2. Copy a pre-existing Toolkit job with RAID configuration.
3. Modify the TK_pRAID_File variable in the copied job to point to your policy file. In this example: TK_pRAID_File="/sgdeploy/sgtklinux/ini/praid/UserPolicy1.ini"

Capture and deploy RAID configuration

The Linux Scripting Toolkit provides sample Altiris jobs to capture and deploy a RAID Configuration, allowing the RAID configuration of a single server to provide a configuration basis for any number of servers. The capture sample job captures the RAID configuration of the server and stores it in a file named RAID_Configuration.ini.
By default, all captured RAID configurations are stored in the following directory on the Deployment Server:

```
AltirisPath\sgdeploy\sgtklinux\ini\praid\machinetype
```

where:
- `AltirisPath` is the fully qualified path to the Altiris Deployment Solution directory, for example `C:\Program Files\Altiris\eXpress\Deployment Server`.
- `machinetype` is the machine type of the captured system.

The deployment sample job deploys the captured RAID configuration from RAID_Configuration.ini located in the above directory by default. You can customize the following variables for these jobs within the Altiris Console:

- `TK_pRAID_File=/sgdeploy/sgtklinux/ini/praid/machinetype/raid_capture.ini`
- `TK_pRAID_Flags="-r"`

Server data disposal

These sample jobs perform a server data disposal. The first performs a disposal and resets the RAID Configuration. The second performs only a server data disposal.

The following variables may be customized for these jobs within the Altiris Console:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>TK_Wipe_Level</td>
<td>- "quick" - performs a quick wipe of the disks.</td>
</tr>
<tr>
<td></td>
<td>- "dod" - performs a multipass wipe of the disks that conforms to DOD standards.</td>
</tr>
<tr>
<td>TK_Wipe_Repeat_Number</td>
<td><code>number</code> - indicates the number of passes to complete.</td>
</tr>
<tr>
<td>TK_Wipe_Disk</td>
<td><code>disk_number</code> - indicates the number of the disk to wipe. By default, "1" is the first disk in the system.</td>
</tr>
</tbody>
</table>

Note: Depending on the size of the drives involved and the wipe level, these jobs can take up to several hours to complete.

Linux and VMware unattended scripted installation

These sample jobs perform scripted installation of the supported Linux distributions. You must setup the distribution to be installed on the Altiris server before running these jobs. See “Adding operating system installation files” on page [10] for more information.

You can customize the following variables for these jobs:

- `TK_Altiris_IP`
- `TK_DISTRO_TYPE`
- `TK_DISTRO_VERSION`
- `TK_DISTRO_PATH`
- `TK_DISTRO_CFG`
- `TK_DirAgent_DirectorAgent`
Capture and deploy a Linux image

The Linux Scripting Toolkit provides sample jobs to perform OS imaging tasks using Altiris. Operating system imaging tasks include capturing a copy of an installed OS and deploying that image to a target server. You might need to perform RAID configuration on the target server before you can deploy the OS image to it. In order to run the Capture Linux Image sample job, the Altiris agent must first be installed on the donor system. The Toolkit's scripted OS install jobs automatically install the Altiris agent.

Note: The Capture Linux Image job is not supported for VMware ESX Server.

To modify the filename and location of the captured image, perform the following steps:
1. Double-Click on the Capture Linux Image job.
2. Select the Create Disk Image task and click Modify.
3. Change the path and filename for the captured image.
4. Click Finish to save.
6. Select the Distribute Disk Image task and click Modify.
7. Change the path and filename to the same values used above for the captured image.
8. Click Finish to save the changes.

Note:

- When you deploy a target server using the Image Install job, the image will include the Altiris Agent, because the donor server is required to have the Altiris Agent installed.
- Because the Linux imaging sample jobs use a sector-based imaging technique, the donor and target servers must have identical hardware.
- Altiris RapiDeploy, which is used for the cloning jobs, does not support cloning of multiple disks in a single pass. To work around this issue, you can place all of the Linux partitions on a single disk during installation by modifying the sample kickstart files to include the –ondisk parameter in the partition configuration part lines. Refer to the operating system documentation for additional information.
- To specify the disk to be cloned, you must add the -d parameter, specifying the disk number, to the command line options for the Capture Linux Image and Deploy Linux Image jobs. For example, to clone the operating system image on disk two, you would add: -d2 to the command line options for the job.
- If the capture or deploy fails, please refer the rdeploy log file for more information. By default, the log file location is $AltirisInstalledPath\RDeploy\Linux\x64\rdlog\ where $AltirisInstalledPath is the fully qualified path to the Altiris Deployment Solution directory. For example, C:\Program Files\Altiris\eXpress\Deployment Server\RDeploy\Linux\x64\rdlog\.
Linux Pre-Boot Test

This sample job performs a basic task to test connectivity between the target server and the Altiris Deployment Server. The job boots into the IBM Linux PE x64 environment on the target server.
Chapter 6. Supported hardware and software

This section lists the operating systems, adapters, and RAID controllers supported by the Linux Scripting Toolkit, as well as systems that support BIOS and firmware updates using the ASU.

The Linux Scripting Toolkit supports deployment of Linux operating systems on IBM System x® and BladeCenter® servers. In general, the Linux Scripting Toolkit provides support for ServerProven® IBM or third-party adapters in the following categories:

- Ethernet
- Fibre Channel
- IDE and IDE RAID
- SAS and SAS RAID
- SATA and SATA RAID
- SCSI and SCSI RAID, including Ultra-SCSI

This section contains the following information about specific hardware and software support for deployment scenarios:

- Supported operating system and server combinations
- RAID and Fibre channel HBA support by server
- Network device driver support by server
- Limitations of support for applicable servers

The most up-to-date support information is contained in the readme.htm file. You can download the latest version of readme.htm file from the ServerGuide Scripting Toolkit Web page. See IBM deployment resources on the World Wide Web for information.

Operating system support

This section details what operating system deployment/server combinations are supported by the Linux Scripting Toolkit.

You can use the Linux Scripting Toolkit to deploy supported Linux distributions to any IBM System x, BladeCenter, or iDataPlex server that supports that distribution. To determine what distribution/server combinations are supported, see ServerProven.

The Linux Scripting Toolkit supports these Linux distributions:

- SUSE Linux Enterprise Server 9 32 bit SP4
- SUSE Linux Enterprise Server 9 x64 SP4
- SUSE Linux Enterprise Server 10 32 bit SP1/SP2/SP3/SP4
- SUSE Linux Enterprise Server 10 x64 SP1/SP2/SP3/SP4
- SUSE Linux Enterprise Server 11 32 bit Base/SP1
- SUSE Linux Enterprise Server 11 x64 Base/SP1
- Red Hat Enterprise Linux 4 AS/ES 32 bit U6/U7/U8
- Red Hat Enterprise Linux 4 AS/ES x64 U6/U7/U8
RAID controller support

The following tables detail which RAID controller/server combinations are supported by the ServerGuide Scripting Toolkit, Linux Edition.

You can use the Linux Scripting Toolkit to configure any RAID controller supported by the IBM System x, BladeCenter, or iDataPlex server in which it is installed. For information on supported RAID controller/server combinations, see IBM ServerProven.

Fibre Channel HBA support

This section lists the Fibre Channel adapters supported by the Linux Scripting Toolkit.

The Linux Scripting Toolkit provides full support for the following adapters. For information on supported server/adapter combinations, please see IBM ServerProven.

IBM HBAs:
- 2 GB IBM SMB 2–Gbps Fibre Channel HBA (13N1873)
- 2 GB IBM HS20 Fibre Channel Expansion Card (13N2203)
- 2 GB DS4000® HBA (24P0960)
- 2 GB SFF Fibre Channel Expansion card (26K4841)
- 4 GB DS4000 PCI-X Single Port HBA (39M5894)
- 4 GB DS4000 FC PCI-X Dual Port HBA (39M5895)
- IBM HBA SAS controller (44W1853)
- 2 GB IBM HS20 Fibre Channel Expansion Card (48P7061)

Qlogic HBAs:
- 4 GB Standard Fibre Channel Expansion Card for IBM eServer™ BladeCenter (26R0884)
- 4 GB SFF Fibre Channel Expansion Card for IBM eServer BladeCenter (26R0890)
- 4 GB Single-Port PCIe HBA for IBM System x (39R6525)
- 4 GB Dual-Port PCIe HBA for IBM System x (39R6527)
- Ethernet and 4 GB Fibre Channel Expansion Card for IBM BladeCenter (39Y9306)
- iSCSI Single-port PCIe HBA for IBM System x (39Y6146)
- iSCSI Dual-port PCIe HBA for IBM System x (42C1770)
- 4 GB Fibre Channel Expansion Card for IBM BladeCenter (41Y8527)
- 8 GB Fibre Channel Singleport HBA (42D0501)
- 8 GB Fibre Channel Dualport HBA (42D0510)
- 8 GB Ethernet and Fibre Channel Expansion Card CFFh (44X1940)
- 8 GB Fibre Channel Expansion Card CIOv (44X1945)

Emulex HBAs:
- 4 GB Fibre Channel Single-port PCIe HBA for IBM System x (42C2069)
- 4 GB Fibre Channel Single-port PCIe HBA for IBM System x (42C2071)
- 8 GB Fibre Channel Single-Port Expansion Card (42D0485)
- 8 GB Fibre Channel Single/Dual-Port HBA (42D0494)
- 8GB Fibre Channel Dual-Port Expansion Card (42D0494)
- 8 GB Fibre Channel Dual-port Expansion Card (46M6140)

Note:
- Support of some Fibre Channel HBA cards, particularly the QLogic 39Y9306, by some models of BladeCenter chassis is subject to some limitations and can require the installation of additional supporting equipment. Please refer to the IBM Red Paper *Implementing the QLogic Intelligent Pass-thru module for IBM BladeCenter* at http://www.ibm.com/redbooks for additional compatibility information.

In addition, the Linux Scripting Toolkit supports the use of the following Brocade adapters as boot devices, but you must configure them using the Brocade utilities, as no configuration support is provided by the Linux Scripting Toolkit.

Brocade adapters:
- 10 GB 2-port Converged Network Adapter for IBM BladeCenter (81Y1650)
- 8 GB Single Port Fibre Channel Adapter (46M6049)
- 8 GB Dual Port Fibre Channel Adapter (46M6050)
- 4 GB Fibre Channel Single-port HBA for IBM System x (59Y1987)
- 4 GB Fibre Channel Dual-port HBA for IBM System x (59Y1993)

Advanced Settings Utility Support

This section lists the systems supported by the Advanced Settings Utility through the Linux Scripting Toolkit.

Table 3. ASU support by the Toolkit

<table>
<thead>
<tr>
<th>Model</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>System x3100 M4</td>
<td>2582</td>
</tr>
<tr>
<td>System x3200</td>
<td>4362, 4363</td>
</tr>
<tr>
<td>System x3200 M2</td>
<td>4367, 4368</td>
</tr>
<tr>
<td>System x3200 M3</td>
<td>7327, 7328</td>
</tr>
<tr>
<td>System x3250 M2</td>
<td>4190, 4191, 4194</td>
</tr>
<tr>
<td>System x3250 M3</td>
<td>4251, 4252, 4261</td>
</tr>
<tr>
<td>System x3250 M4</td>
<td>2583</td>
</tr>
<tr>
<td>System x3350</td>
<td>4192, 4193</td>
</tr>
<tr>
<td>System x3400</td>
<td>7973, 7974, 7975, 7976</td>
</tr>
<tr>
<td>System x3400 M2</td>
<td>7836, 7837</td>
</tr>
<tr>
<td>System x3400 M3</td>
<td>7378, 7379</td>
</tr>
</tbody>
</table>
Table 3. ASU support by the Toolkit (continued)

<table>
<thead>
<tr>
<th>System</th>
<th>Support Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>System x3500</td>
<td>7977</td>
</tr>
<tr>
<td>System x3500 M2</td>
<td>7839</td>
</tr>
<tr>
<td>System x3500 M3</td>
<td>7380</td>
</tr>
<tr>
<td>System x3550</td>
<td>1913, 7978</td>
</tr>
<tr>
<td>System x3550 M2</td>
<td>4198, 7946</td>
</tr>
<tr>
<td>System x3550 M3</td>
<td>4254, 7944</td>
</tr>
<tr>
<td>System x3620 M3</td>
<td>7376</td>
</tr>
<tr>
<td>System x3630 M3</td>
<td>7377</td>
</tr>
<tr>
<td>System x3650</td>
<td>1914, 7979</td>
</tr>
<tr>
<td>System x3650 M2</td>
<td>4199, 7947</td>
</tr>
<tr>
<td>System x3650 M3</td>
<td>4255, 5454, 7945</td>
</tr>
<tr>
<td>System x3655</td>
<td>7943</td>
</tr>
<tr>
<td>System x3690 X5</td>
<td>7148, 7149</td>
</tr>
<tr>
<td>System x3755</td>
<td>7163</td>
</tr>
<tr>
<td>System x3755 M3</td>
<td>7164</td>
</tr>
<tr>
<td>System x3800</td>
<td>8866</td>
</tr>
<tr>
<td>System x3850</td>
<td>7365, 8864</td>
</tr>
<tr>
<td>System x3850 M2</td>
<td>7141, 7144, 7233</td>
</tr>
<tr>
<td>System x3850 X5</td>
<td>7145</td>
</tr>
<tr>
<td>System x3950</td>
<td>7363, 7366, 8878</td>
</tr>
<tr>
<td>System x3950 M2</td>
<td>7141, 7144, 7234</td>
</tr>
<tr>
<td>System x3950 X5</td>
<td>7146</td>
</tr>
<tr>
<td>IBM BladeCenter HS12</td>
<td>1916, 8014, 8028</td>
</tr>
<tr>
<td>IBM BladeCenter HS20</td>
<td>1883, 8843</td>
</tr>
<tr>
<td>IBM BladeCenter HS21</td>
<td>1885, 8853</td>
</tr>
<tr>
<td>IBM BladeCenter HS21 XM</td>
<td>1915, 7995</td>
</tr>
<tr>
<td>IBM BladeCenter HS22</td>
<td>1911, 1936, 7809, 7870</td>
</tr>
<tr>
<td>IBM BladeCenter HS22V</td>
<td>1949, 7871</td>
</tr>
<tr>
<td>IBM BladeCenter HS23V</td>
<td>1929, 7875</td>
</tr>
<tr>
<td>IBM BladeCenterHX5</td>
<td>1909, 7872</td>
</tr>
<tr>
<td>AMD Opteron LS21 for IBM BladeCenter</td>
<td>7971</td>
</tr>
<tr>
<td>AMD Opteron LS22 for IBM BladeCenter</td>
<td>7901</td>
</tr>
<tr>
<td>AMD Opteron LS41 for IBM BladeCenter</td>
<td>7972</td>
</tr>
<tr>
<td>AMD Opteron LS42 for IBM BladeCenter</td>
<td>7902</td>
</tr>
<tr>
<td>IBM System x iDataplex dx360 M3</td>
<td>6391</td>
</tr>
<tr>
<td>IBM System x iDataplex dx360 M4</td>
<td>7918, 7919</td>
</tr>
</tbody>
</table>
Chapter 7. Linux Scripting Toolkit utilities and tools

This section contains information about the utilities that are included in the Linux Scripting Toolkit and the tools that are shipped with it. For each utility there is a description of parameters, along with examples.

For each included tool there is a brief description of the tool and instructions on using it with the Linux Scripting Toolkit, as well as pointers on where to get more information on the tool and its use.

altiris_sgtklinux.cmd

Purpose

This script builds the IBM-specific Linux Pre-installation Environment for Altiris Deployment Solution and integrates the Toolkit into Altiris Deployment Solution

Note:

1. This script must be executed from the directory in which it resides.
2. The Altiris Deployment Solution and Linux Scripting Toolkit must be installed in a path that does not contain parentheses.

Parameters

There are no parameters

Sample

Altiris_SGTKLinux

acquire_seps.cmd

This script acquires the System Enablement Packs (SEP) for the specified machine types given and copies the packs to a location where Linux Toolkit can utilize them during deployments.

Parameters

machine_type

specifies the machine type for which to acquire seps. You can specify multiple machine types by separating them with commas.

All

Acquires all available SEPs.

Sample

acquire_seps.cmd 7979
acquire_seps.cmd 7979,4199
acquire_seps.cmd all
Linux Scripting Toolkit utilities

This section contains information about the utilities that are included in the Linux Scripting Toolkit. For each utility there is a description of parameters, along with examples. These utilities are included in the Linux Scripting Toolkit directory structure. The default location is C:\Program Files\Altiris\eXpress\Deployment Server\sgdeploy\sgtklinux\tk\bin.

The command-line syntax examples in this documentation use the following conventions:

- Variables are shown in *italics*
- Required parameters are shown within <> brackets
- Optional parameters are shown within [] brackets
- Required or optional parameters from which you must make a unique choice are separated by a vertical bar (|) character

You must enter all parameters for a utility on a single command line, even when the information in this documentation is shown on multiple lines.

HWDETECT

HWDETECT is used to perform basic hardware detection functions that are typically obtained using SMBIOS and a PCI scan. This utility contains options that can be used to dump all of the hardware information to an output file, or it can be used to query hardware information and return values that set the `errorlevel` environment variable or the return code, for example `$?`.

HWDETECT has basic hardware scan functions, and more complex PCI device detection options. The basic hardware scan functions can only be used singularly. The PCI device detection functions may be used in combination with each other to produce a query based on multiple restrictions. You can only use the hwdetect utility basic hardware scan functions one at a time. The PCI-device detection functions can be combined or used more than once on the same command line.

Usage:
```
hwdetect [-s|-i|-p|--m=machinetype] -f=filename
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
</table>
| `-s` | Determines if the target server is an IBM System x, xSeries®, or BladeCenter server. The return values are:
 - 0 for an IBM system
 - 1 for a non-IBM system | `./hwdetect -s`
 `if [$? -eq 1]; then`
 ` echo "Perform non-IBM equipment specific steps here."`
 `else`
 ` echo "Perform IBM equipment specific steps here."`
 `fi` |
| `-i` | Dumps all available information about the system hardware to the screen in an ini file format. You can use the `-f` parameter to output this information to a file.
 A return code of zero indicates success. All other return codes indicate an error. | `./hwdetect -i` |
Parameter Description Example

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>-f=filename</td>
<td>Directs the output to the indicated file. This parameter can be used in conjunction with the -i or -p parameters. A return code of 254 indicates that hwdetect was unable to open the specified file.</td>
<td>.\hwdetect -i --f=hwdetect.out cat hwdetect.out</td>
</tr>
<tr>
<td>--m=machinetype</td>
<td>Compares the machine type of the current system to the specified machine type. Return codes: 0 indicates that the machine types do not match. 1 indicates a match</td>
<td>.\hwdetect --m=8676 if [$? = 8676]; then echo "It is an IBM system." else echo "It is not an IBM system."</td>
</tr>
</tbody>
</table>

You can also use **HWDTECT** to inventory PCI devices on the target system.

Usage:

```
hwdetect [--vid=vendor_id] [--did=device_id] [--svid=sub-vendor_id]
          [--sdid=sub-device_id] [--bn=bus_number] [--dn=device_number] [--add=number]
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>--vid=vendor_id</td>
<td>Searches for PCI devices with the indicated hexadecimal vendor ID.</td>
<td>.\hwdetect --vid=40 echo "Found $? matches..."</td>
</tr>
<tr>
<td>--did=device_id</td>
<td>Searches for PCI devices with the indicated hexadecimal device ID.</td>
<td>.\hwdetect --did=41 echo "Found $? matches..."</td>
</tr>
<tr>
<td>--svid=sub-vendor_id</td>
<td>Searches for PCI devices with the indicated hexadecimal sub-vendor ID.</td>
<td>.\hwdetect --svid=42 echo "Found $? matches..."</td>
</tr>
<tr>
<td>--sdid=sub-device_id</td>
<td>Searches for PCI devices with the indicated hexadecimal sub-device ID.</td>
<td>.\hwdetect --sdid=43 echo "Found $? matches..."</td>
</tr>
<tr>
<td>--bn=bus_number</td>
<td>Starts the search at the indicated decimal bus number.</td>
<td>.\hwdetect --bn=44 echo "Found $? matches..."</td>
</tr>
<tr>
<td>--dn=device_number</td>
<td>Starts the search at the indicated decimal device number.</td>
<td>.\hwdetect --dn=45 echo "Found $? matches..."</td>
</tr>
<tr>
<td>--add=number</td>
<td>Adds the specified decimal value to the return value before exiting.</td>
<td>.\hwdetect --vid=46 --add=1 echo "Found $? - 1 matches..."</td>
</tr>
</tbody>
</table>

Below is an example of the hwdetect.out file created by the -i flag:

```
[System]
Machine_Type=8674
Model_Number=42X
Serial_Number=7829506
Product_Name=eserver xSeries 330
BIOS_version=1.04
BIOS_Build_Level=EME112A
BIOS_DATE=06/28/2002
BIOS_Manufacturer=IBM
BIOS_Language=US
Number_Of_Enclosures=1
Enclosure_Type.0=23
Processor_Slots=2
Active_Processors=1
Processor_Family.0=17
Processor_Speed_MHz.0=1400
```
Processor_X64 = TRUE
Total_Enabled_Memory_Mb=256
ROM_Diagnostics_Build_Level=EME112A
ISMP_Build_Level=BR8T30A
RSA_Build_Level=GE834A
System_UUID = 8030E01060F010605090D0A020F0
Blade_Chassis_UUID = 0F020A0D0900F00F020AD0D0900F00F02
Blade_Slot = 02

[PCI]
Total_Number_Devices=10
Bus_Number.0=0
Device_Number.0=1
Function_Number.0=0
Class_Code.0=0000
Revision.0=0
Header_Type.0=0
Vendor_ID.0=5333
Device_ID.0=8A22
Subvendor_ID.0=1014
Subdevice_ID.0=01C5
Bus_Number.1=0
Device_Number.1=2
Function_Number.1=0
Class_Code.1=0000
Revision.1=0
Header_Type.1=0
Vendor_ID.1=8086
Device_ID.1=1229
Subvendor_ID.1=1014
Subdevice_ID.1=105C

Using the –p flag produces the same output with the exception that the section names are tacked onto the beginning of each keyword:

System_Machine_Type = 8674
System_Model_Number = 42X
System_Serial_Number = 78Z9506
...
PCI Bus_Number.0 = 0
PCI_Device_Number.0 = 1
...

Notes:
1. The BIOS_DATE value is listed in mm/dd/yyyy format.
2. The Enclosure_Type.0=23 is based on SMBIOS 2.3 spec. 23 = Main chassis.
3. There is an entry for Processor_Family and Processor_Speed_MHz for each microprocessor in the server.
4. The ROM_Diagnostics_Build_Level is empty for servers that do not support ROM diagnostics.
5. PCI devices are listed in the order they are scanned.
6. PCI devices are listed in the Value.n format, where Value is the variable name and n is the nth PCI device scanned.
7. The header_type field is not available for versions of hwdetect running on Windows 32 or 64-bit operating systems.
8. The vendor, device, subvendor, and subdevice values are in hexadecimal notation.
SAVESTAT.SH

The Savestat utility allows you to store and retrieve up to twenty values to persistent storage. The utility is designed to help you remember where you left off in an installation script even when a system reboot is required. This utility is designed to return values that set the `?` environment variable so that you can branch in a script (sh) file based on the result of the utility's execution.

Savestat uses the persistent storage capability of **ASU**. Therefore the following files must be available in order for the script to work:

- ASU package (ibm_utl_asu_asut69_linux_x86-64.tgz)
- savestat.sh script
- savestat.def

Usage

The savestat utility that comes with the ServerGuide Scripting Toolkit has the following command-line syntax:

```
SAVESTAT [/q] -set1=value [...-set2=value ... -set21=value]
SAVESTAT [/q] -getn
SAVESTAT [/q] -validate
SAVESTAT [/q] -signature
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>-setn=value</td>
<td>Saves an integer value, <code>value</code>, to the <code>n</code>th location in persistent-storage memory, where <code>n</code> is an integer from 1-21.</td>
<td>./savestat.sh -setn=value</td>
</tr>
<tr>
<td></td>
<td>Return codes:</td>
<td>Where:</td>
</tr>
<tr>
<td></td>
<td>• 0 if successful</td>
<td>• <code>n</code> is an integer from 1–21</td>
</tr>
<tr>
<td></td>
<td>• 1 if not successful</td>
<td>• <code>value</code> is an integer from 0–254</td>
</tr>
<tr>
<td>-getn</td>
<td>Retrieves a value currently set in the <code>n</code>th location in persistent-storage memory.</td>
<td>./savestat.sh -getn</td>
</tr>
<tr>
<td></td>
<td>Return codes:</td>
<td>Where <code>n</code> is the location of a previously-stored value.</td>
</tr>
<tr>
<td></td>
<td>• The value stored at the location specified by <code>n</code>, if successful.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 255 if not successful</td>
<td></td>
</tr>
<tr>
<td>-signature</td>
<td>Verifies that the persistent storage contains the <code>savestat</code> signature.</td>
<td>./savestat.sh -signature</td>
</tr>
<tr>
<td></td>
<td>Return codes:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 0 if storage contains the signature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1 if storage does not contain the signature</td>
<td></td>
</tr>
<tr>
<td>-validate</td>
<td>Verifies that the system is supported by <code>savestat</code>.</td>
<td>./savestat.sh -validate</td>
</tr>
<tr>
<td></td>
<td>Return codes:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 0 if the system is supported</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1 if the system is not supported</td>
<td></td>
</tr>
<tr>
<td>-q</td>
<td>Invokes the quiet mode, which suppresses prompting. This parameter is optional and can be used with any other <code>savestat</code> parameter.</td>
<td>./savestat.sh -q -set1=100</td>
</tr>
</tbody>
</table>
Note: The help for `savestat.sh` indicates that the `--reset` parameter is supported. `savestat.sh` does not currently support the `--reset` parameter. In order to reset all of the storage locations to zero, use the `savestat.sh --set` command as shown here:
```
savestat.sh --set1=0 --set2=0 --set3=0 --set4=0 --set5=0 --set6=0 --set7=0 --set8=0 --set9=0 --set10=0 --set11=0 --set12=0 --set13=0 --set14=0 --set15=0 --set16=0 --set17=0 --set18=0 --set19=0 --set20=0 --set21=0
```

Examples

The following examples illustrate `savestat` utility usage.

<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>./savestat.sh --set2=100</code></td>
<td>Stores the value 100 in the second persistent-storage memory location</td>
</tr>
<tr>
<td><code>./savestat.sh --get2</code></td>
<td>Retrieves the value of the second persistent-storage memory location and branches in the script file according to the value returned</td>
</tr>
<tr>
<td><code>if [$? =eq 100]; then</code></td>
<td>echo "The value 100 was found successfully."</td>
</tr>
<tr>
<td><code>else</code></td>
<td>echo "The value 100 was not found."</td>
</tr>
</tbody>
</table>
| `fi` | |}

PRAID

PRAID is a scriptable utility that offers a single user interface for both configuring and replicating all RAID controllers supported by the Linux Scripting Toolkit.

PRAID has three modes of operation:

- **Deploy mode** – for scripted configuration of RAID controllers.
- **Capture mode** – for replicating RAID controller settings.
- **Restore-defaults mode** – for resetting RAID controllers to factory-default settings only.

Deploy mode

Used in Deploy mode, PRAID offers the following features:

- Configures all RAID controllers in a server with a single call to the program.
- Automatically resets all RAID controllers to factory-default settings before configuring.
- Uses customizable logic to decide which configuration (policy) is applied to a server based on system hardware. The logic can involve:
 - Machine type of the server
 - Serial number of the server
 - Number of drives connected to the RAID controller
 - RAID controller type
 - Controller number (order) of the RAID controller
- Can be highly customized for specific RAID configurations, or generalized to handle many different RAID configurations.
- Provides a default or AUTO mode for automatically creating arrays and logical drives using default settings. This mode requires no knowledge of the number, size, or location of the drives connected to the RAID controllers.
• Automatically applies default values for any RAID configuration parameters that you do not supply. You supply only the parameters that you want to change.
• Default values for each configuration parameter are equivalent to the default settings of the ServeRAID Manager express configuration method, where applicable.
• Allows up to 50 policies for configuring RAID controllers to be specified in a single policies file.

Note:

When using PRAID in Deploy mode, the -r parameter is required.

To delete RAID configuration on all controllers, specify -r. To delete RAID configuration on a specific controller, specify -r# where # is the controller number.

For example, praid -f:policiy.ini -r -y.

Capture mode

Used in Capture mode, PRAID offers the following features:
• Captures the RAID configurations of all supported controllers to a text file, the policies file, with a common format.
• Captured RAID configurations can be immediately used with PRAID in deploy mode to easily replicate the RAID configuration to many servers.
• Allows customizable logic when saving the captured parameters to determine when each captured configuration should be deployed.
• Saves useful information about each captured configuration, including the system machine type, date, and time when the configuration was captured.
• Allows you to edit any RAID configurations that you capture before deploying them to other systems.

Restore-defaults mode

Used in Restore-defaults mode, PRAID offers the following features:
• Deletes all arrays and logical drives on all RAID controllers.
• Sets other RAID controller settings back to factory defaults.

Environment requirements

The PRAID utility supports the following RAID controllers:
• ServeRAID-6M
• ServeRAID-7t
• ServeRAID-8i
• ServeRAID-8k
• ServeRAID-8k-l
• ServeRAID-8s
• ServeRAID-10k
• ServeRAID-10M
• ServeRAID-B5015
• ServeRAID-BR9i
• ServeRAID-BR10i
ServeRAID-BR10ie
ServeRAID-BR10il
ServeRAID-M5014
ServeRAID-M5015
ServeRAID-M5025
ServeRAID-MR10i
ServeRAID-MR10il
ServeRAID-MR10is
ServeRAID-MR1015
ServeRAID-MR1015-R5
LSI SCSI (1020/1030)
LSI SAS (1064/1064E/1068/1078)

PRAID works by parsing the output of other RAID-configuration utilities. In order to accomplish this, the following utilities must be in the system search path:

<table>
<thead>
<tr>
<th>Adapter</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServeRAID 6M</td>
<td>IPSENSE</td>
</tr>
<tr>
<td>ServeRAID-7t, 8i, 8k, 8k-l, 8s</td>
<td>ARCCONF</td>
</tr>
<tr>
<td>LSI-SCSI 1020/1030, LSI-SAS 1064/1064E, LSI-SAS 1068, LSI-SAS 1078, ServeRAID BR9i, BR10i, BR10ie, BR10il</td>
<td>CFGGEN</td>
</tr>
<tr>
<td>MegaRAID SAS, ServeRAID-M5014, M5015, M5025, MR10i,, MR10ie,MR10il, MR10is, MR10k, MR10M, MR1015, MR1015-R5</td>
<td>MEGACLI</td>
</tr>
<tr>
<td>ServeRAID-B5015</td>
<td>BRCLI</td>
</tr>
</tbody>
</table>

Usage

Each of the modes supported by PRAID requires a specific syntax, but they all share some common parameters, described in Table 4.

Table 4. PRAID parameters common to multiple modes

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>-r:n</td>
<td>Restore-defaults mode</td>
<td>praid -r</td>
</tr>
<tr>
<td></td>
<td>Restores the RAID controller with the controller number specified by n to factory-default settings and then returns immediately. No RAID configuration is done if you use this parameter.</td>
<td>Restores all controllers to factory-default settings. praid -r:3</td>
</tr>
<tr>
<td></td>
<td>If no value is specified for the controller number, all RAID controllers are reset to factory-default settings.</td>
<td>Restores controller three to factory-default settings. No other controllers are affected. PRAID -f:policies.ini -r -v:5 -e1</td>
</tr>
<tr>
<td></td>
<td>Used alone, the parameter provides Restore-defaults mode. You must use this parameter in conjunction with Deploy mode parameters to reset controllers to the factory default settings before deploying a new configuration.</td>
<td>Configures the RAID controllers in the system using the policies file policies.ini, sets the verbose mode to maximum, and returns an error code if there were no matching policies for any controllers.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Usage</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td><code>-f:policy_file</code></td>
<td>Specifies the policy file. The policy file name. This parameter is required for capture mode, and for deploy mode unless the <code>-d</code> parameter is used. In deploy mode, this points to the policies that you would like PRAID to use when configuring the RAID controllers. You cannot use this parameter with the <code>-d</code> parameter. In capture mode, this points to the file where you would like the captured configurations to be written. If the file does not exist, PRAID will create it. If the file does exist, PRAID will append to the end of it. The <code>-f</code> parameter is valid in deploy and capture modes.</td>
<td><code>praid -f:myfile.ini</code></td>
</tr>
<tr>
<td><code>-y</code></td>
<td>Suppresses prompting. Suppresses the confirmation prompt. This parameter is optional. If you select the <code>-y</code> parameter, PRAID does not prompt you before resetting controllers to factory-default settings. PRAID always resets all controllers to factory-default settings before configuring them. If you do not supply this parameter, PRAID will pause to warn you before resetting the RAID controllers to factory-default settings. The <code>-y</code> parameter is valid in deploy and restore-defaults modes. This parameter is optional.</td>
<td><code>praid -f:myfile.ini -y</code></td>
</tr>
<tr>
<td><code>-e2</code></td>
<td>Error code 2 if no supported controllers found. Returns an error code of 2 if there were no supported RAID controllers found in the system. By default, PRAID does not return an error if no controllers are found in the system. This parameter is valid in all modes. This parameter is optional.</td>
<td><code>praid -c -f:myfile.ini -e2</code></td>
</tr>
</tbody>
</table>
Table 4. PRAID parameters common to multiple modes (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>-e3</td>
<td>Error code 3 if no supported drives found</td>
<td>praid -d -e3 Configures all RAID controllers with default settings and returns an error if one or more controllers has no drives attached.</td>
</tr>
<tr>
<td>-v:n</td>
<td>Verbose level</td>
<td>praid -d -v:5 Configures all RAID controllers with default settings, and sets the verbose level to maximum.</td>
</tr>
</tbody>
</table>

Deploy mode

The syntax for Deploy mode is:

```
praid.EXE -f:policies -r -d -p:path -e1 -e2 -e3 -v:n -y -b
```

The parameters unique to Deploy mode are described below.

Table 5. PRAID Deploy mode parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>-d</td>
<td>Configure with defaults</td>
<td>praid -d -r Configures all RAID controllers in the system using default settings.</td>
</tr>
<tr>
<td>-e1</td>
<td>Error if no policy found</td>
<td>praid -f:policy.ini -r -e1 Configures all RAID controllers using the policies file, policy.ini, and returns an error if no matching policy was found.</td>
</tr>
</tbody>
</table>
Capture mode

The syntax for Capture mode is:
```
PRAID.EXE -c[:p] -f:polices -e2 -e3 -v:n
```

The parameters unique to Capture mode are described below.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Usage</th>
<th>Usage examples</th>
</tr>
</thead>
</table>
| -c[:p] | Indicates capture mode. The :p portion is optional. If you do not include the optional portion, then :p will assume the default value: “t,d”.
| | You can use :p to provide a list of parameters describing the AppliesTo that should be created when capturing the parameters to a policy. See “AppliesTo.n” on page 55. | praid -c:m,t -f:myfile.ini
Captures the configuration of all RAID controllers to myfile.ini using the machine type of the server and the RAID controller type as the AppliesTo.1 entry. | praid -c:m,t -f:myfile.ini
Captures the configuration of all RAID controllers to myfile.ini using the machine type of the server and the RAID controller type as the AppliesTo.1 entry. |
| Capture mode | :p is a list containing any of the following:
• t – use the type of the RAID controller in the AppliesTo.1 entry for the policy.
• c – use the controller number (scan order relative to all other RAID controllers in the system) in the AppliesTo.1 entry for the policy.
• d – use the number of drives connected to the RAID controller in the AppliesTo.1 entry for the policy.
Note: You must specify the name of the policies file using the -f parameter when using the -c parameter.
The policy or policies created are appended to the end of the file if the file exists. If the file does not exist, a new file is created. If there are multiple RAID controllers in the system, their configurations are placed in the file in scan order. | praid -c:m,t -f:myfile.ini
Captures the configuration of all RAID controllers to myfile.ini using the machine type of the server and the RAID controller type as the AppliesTo.1 entry. | praid -c:m,t -f:myfile.ini
Captures the configuration of all RAID controllers to myfile.ini using the machine type of the server and the RAID controller type as the AppliesTo.1 entry. |

Restore-defaults mode

The syntax for Restore-defaults mode is:
```
PRAID.EXE -r:n -e2 -v:n -y
```

Usage examples

Deploy mode examples
```
PRAID -r -d -y
```

This example is useful for unattended scripted installations.
• Configures all RAID controllers in the system using default settings.
• Does not prompt before setting controllers to factory-default settings.
• Performs drive synchronization without prompting, when required.

PRAID -f:policies.ini -r -v:5 -e1

• Configures the RAID controllers in the system using the policies file: policies.ini.
• Sets the verbose mode to maximum.
• Returns an error code if there were no matching policies for one or more controllers.

Capture mode examples

PRAID -c -f:policies.ini

Captures the configuration of all RAID controllers into the file: policies.ini.

PRAID -c:m,t -f:policies.ini

• Captures the configuration of all RAID controllers into the file: policies.ini.
• Uses the system machine type and RAID controller type as the AppliesTo.1 entry in the policies file for each captured configuration.

Restore-defaults mode examples

PRAID -r -v:0 -y

• Restores all RAID controllers to factory-default settings.
• Operates in silent mode, no messages are printed to the screen.
• Does not prompt the user before restoring factory-default settings.

Return codes

• 0 - Success.
• 1 - Execution was successful, but the -e1 parameter was supplied and at least one controller was not configured because there was no matching policy.
• 2 - Execution was successful, but the -e2 parameter was supplied and no controllers were found in the system.
• 3 - Execution was successful, but the -e3 parameter was supplied and at least one controller was not configured because no drives were attached.
• 4 - Syntax error on the command line.
• 5 - Syntax error in the policies file or the policy file could not be opened.
• 6 - Reserved
• 7 - Error resetting a controller to the default settings.
• 8 - Error gathering information about a controller.
• 9 - Error in the policy file.
• 10 - Error during processing.
• 11 - Error during deployment.

Policies file

When used in configure mode, the policies file directs how PRAID configures the RAID controllers in a system using keywords and values that can be customized by the user. In capture mode, PRAID creates or appends to the end of a policies file the parameters that can configure other RAID controllers identically to the ones in the current system.

A policies file can be created using any of the following methods:
1. Run PRAID in capture mode to create a policies file from an already-configured RAID controller.

2. Use one of the example policies files provided with the ServerGuide Scripting Toolkit, and customize it to configure your RAID controllers.

3. Use an ASCII text editor to create a new policies file.

The policies file is an ASCII text file that is organized in INI-file format. Each INI-file section name indicates the start of a new policy for configuring RAID controllers.

The policies file must contain one or more uniquely-named sections using the format [Policy.name] where name is a unique user-assigned name that is used to identify the policy. name can be any combination of letters, numbers, underscores, periods, or dashes.

Some examples of legal section names are: [Policy.1], [Policy.mypolicy], and [Policy.My-RAID5-config]. Each section in the policies file represents a single policy for configuring RAID controllers. You can have up to 50 policies in a single policies file.

How PRAID selects a policy: Each section in the policies file represents a single policy for configuring the RAID controllers. In configure mode, each RAID controller is configured using a single policy, but a single policy can be used to configure multiple controllers. Each policy in a policies file contains one or more AppliesTo.n entries, where n is the number of the AppliesTo parameter within the policy. This entry is required in each section, so every section must contain at least an AppliesTo.1 entry. See [Policies file parameters] for a full description of the AppliesTo.n entry.

These entries are followed by a list of hardware parameters including machine type, number of drives connected to the RAID controller, and scan order, that are evaluated against the current system hardware. If all of the hardware parameters of an AppliesTo.n entry match the hardware being evaluated, this policy is used to configure the hardware. For each policy in the policies file, the AppliesTo.n entries for that policy are evaluated in order starting with AppliesTo.1. If none of the AppliesTo.n entries match the current hardware then the policy is not applied and the AppliesTo.n entries in the next policy are evaluated. This continues until either a match is found or no more policies exist in the file. If the end of the file is reached without a match then the controller is not configured. Because the policies are evaluated in order, you should place more specific policies at the beginning of the policies file.

Policies file parameters: This section describes the parameters used in the policies file. The Policy.name header and AppliesTo.1 entry are the only parameters required. All values are case-insensitive.

If you do not specify a value for any of the other parameters, they will be assigned their default value when applicable. If a parameter is not valid for a RAID controller, it will be ignored.

In addition to this reference, the ServerGuide Scripting Toolkit also provides two example policies files that you can modify for your own use.

- **RAID1-5.ini** Creates a RAID-1 array using the first two drives, and a RAID-5 array using the remaining drives. Valid for ServeRAID-6M and 8i.
RAID5HSP.ini Creates a single RAID-5 array with a single hot-spare drive using all available drives. Valid for ServeRAID-6M and 8i.

template.ini Provides a policies file template containing all parameters with details about each parameter.

syntax.txt Provides a syntax specification for the polices file.

Table 7. Policy file parameters

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Required?</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy.name</td>
<td>Yes</td>
<td>None</td>
<td>This header designates the start of a new policy. See “Policy.name on page 55 for additional information.</td>
</tr>
<tr>
<td>AppliesTo.n</td>
<td>Yes</td>
<td>None</td>
<td>Use this parameter to describe when the current policy should be chosen to configure the RAID controllers. See “AppliesTo.n” on page 55 for additional information.</td>
</tr>
<tr>
<td>ReadAhead</td>
<td>No</td>
<td>• ADAPTIVE (for ServeRAID 6M) • ON (for ServeRAID-7t 8i, 8k, and 8k-l)</td>
<td>Specifies the read ahead setting that should be applied to the RAID controller. See “ReadAhead” on page 56 for additional information.</td>
</tr>
<tr>
<td>RebuildRate</td>
<td>No</td>
<td>HIGH</td>
<td>Specifies the rebuild rate that should be applied to the RAID controller. See “RebuildRate” on page 57 for additional information.</td>
</tr>
<tr>
<td>StripeSize</td>
<td>No</td>
<td>• 8 (for ServeRAID 6M) • 64 (for ServeRAID-7t, 8i, 8k, 8k-l)</td>
<td>Specifies the stripe-unit size in KB that the controller should use for its arrays. See “StripeSize” on page 57 for additional information.</td>
</tr>
<tr>
<td>Array_Mode</td>
<td>No</td>
<td>AUTO</td>
<td>Defines the array-creation policy to use when selecting physical disk drives to include in an array. See “Array_Mode” on page 57 for additional information.</td>
</tr>
<tr>
<td>Array_Defaults</td>
<td>No</td>
<td>• 0%:1 for ServeRAID-8e-SATA and 8e-SAS, LSI-SCSI-RAID when at least 3 drives are available • 0%:1 for ServeRAID-6M, when one or more arrays has 4 or more physical drives • 0%:0 for all other cases</td>
<td>Defines the default values to use for the variance and number of hot-spare drives when AUTO is specified for Array_Mode. See “Array_Defaults” on page 58 for additional information.</td>
</tr>
</tbody>
</table>
Table 7. Policy file parameters (continued)

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Required?</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array.letter</td>
<td>No</td>
<td>None</td>
<td>Lets you specify exactly how many arrays are created and the exact physical drives that you would like in each array. See "Array.letter" on page 58 for additional information.</td>
</tr>
<tr>
<td>Hotspares</td>
<td>No</td>
<td>None</td>
<td>Defines a list of specific physical drives to designate as hot-spare drives. See "Hotspares" on page 59 for additional information.</td>
</tr>
<tr>
<td>Logical_Mode</td>
<td>No</td>
<td>AUTO</td>
<td>Defines the logical-drive creation policy to use when creating logical drives. See "Logical_Mode" on page 59 for additional information.</td>
</tr>
<tr>
<td>Logical_Defaults</td>
<td>No</td>
<td>FILL:AUTO:AUTO</td>
<td>Defines the default logical drive settings that should be used when creating logical drives. See "Logical_Defaults" on page 59 for additional information.</td>
</tr>
<tr>
<td>Logical.num</td>
<td>No</td>
<td>None</td>
<td>Lets you specify how many logical drives are created and the specific parameters for each logical drive. See "Logical.num" on page 60 for additional information.</td>
</tr>
</tbody>
</table>

Policy.name:

Description

This header designates the start of a new policy. You can specify name using any combination of letters, numbers, underscores, periods, or dashes. There is no maximum length for name, but the maximum length for a single line in the policies file is 256 characters. You can have up to 50 policies in a single policies file.

Examples

[Policy.RAID-5-Hotspare]

AppliesTo.n:

Description

Use this parameter to describe when the current policy should be chosen to configure the RAID controllers. You can define up to 20 AppliesTo.n entries per policy. You must have an AppliesTo.1 entry for each policy, and AppliesTo.n is the only required parameter of a policy.

AppliesTo.n includes a comma delimited list containing one or more of the following parameters:

- `m:mttype`, where `mttype` is the four digit machine type of an IBM eServer or xSeries server.
- `s:serial`, where `serial` is the serial number of an IBM eServer or xSeries server.
- `c:contn`, where `contn` is the controller number (scan order) of the RAID controller with respect to all other RAID controllers in the system.
The number assigned to a particular controller is dependent on the controller's physical PCI slot and the order in which your system scans its PCI slots.

- `ctype`, where `ctype` is the type of the controller. The type is not case sensitive, and must be one of the following descriptive names:
 - SERVERAID-6M
 - SERVERAID-7t
 - SERVERAID-8i
 - SERVERAID-8k
 - SERVERAID-8k-l
 - ServeRAID-8s
 - ServeRAID-10k
 - ServeRAID-10M
 - ServeRAID-B5015
 - ServeRAID-BR9i
 - ServeRAID-BR10il
 - ServeRAID-M5014
 - ServeRAID-M5015
 - ServeRAID-M5025
 - ServeRAID-MR10i
 - ServeRAID-MR10ie
 - ServeRAID-MR10il
 - ServeRAID-MR10is
 - ServeRAID-MR1015
 - ServeRAID-MR1015-R5
 - LSI SAS 1078 IR Controller
 - LSI-SCSI-RAID
 - LSI Integrated SAS-RAID Controller (1064/1064E/1068)

- `drives`, where `drives` is an integer value specifying the number of drives connected to the controller. Only drives in a Ready state after resetting the controller to factory-default settings are counted.

- `ALL`. Indicates that this policy should be used for all RAID controllers. This parameter is good to use if you declare a default policy that is not covered by any of the other policies.

Examples

Example using the `m,s,c,t, and d` parameters:

- `AppliesTo.1 = m:8865,t:ServeRAID-7t`
- `AppliesTo.2 = c:1,d:15,s:87R478U`

Example using the `ALL` parameter:

- `AppliesTo.1 = ALL`

ReadAhead:

Description

Specifies the read ahead setting that should be applied to the RAID controller. If this parameter is not applicable for a RAID controller, it is ignored. See [Supported](#).
settings for RAID controllers” on page 61 for the list of ReadAhead settings supported by PRAID for each RAID controller. Possible settings are:

- Adaptive
- On
- Off

Examples

ReadAhead = On

RebuildRate:

Description

Specifies the rebuild rate that should be applied to the RAID controller. If this parameter is not applicable for a RAID controller, then it will be ignored. See “Supported settings for RAID controllers” on page 61 for the list of RebuildRate settings supported by PRAID for each RAID controller.

- High
- Medium
- Low

Examples

RebuildRate = High

StripeSize:

Description

Specifies the stripe-unit size in KB that the controller should use for its arrays. If this parameter is not applicable for a RAID controller, then it will be ignored. See “Supported settings for RAID controllers” on page 61 for the list of StripeSize settings supported by PRAID for each RAID controller. Possible values are any stripe size supported by the controller.

Examples

StripeSize = 32

Array_Mode:

Description

Defines the array-creation policy to use when selecting physical disk drives to include in an array. Possible values are:

- **Auto**
 Creates arrays using drives that have the same size in MB. This is the default. Each set of drives with same size on will be combined into a single array. The maximum number of drives allowed per array is determined by the limits of the RAID controller. Only drives in a **Ready** state after resetting the controller to factory-default settings are used in arrays. Hot-spare drives are created based on the rules supplied with the **Array_Defaults** parameter.

 The **Array_Defaults** parameter allows you to modify the default behavior of the AUTO mode for arrays.

- **Custom**
 Allows you to specify the exact physical disk drives to use in the array. If you specify this value, you must also specify the **Array.letter** parameter.
with a list of drives for each array that you want to create. If you want hot-spare drives to be created, you must use the Hotspares parameter to list the hot-spare drives.

Examples

Array_mode = CUSTOM

Array_Defaults:

Description

Defines the default values to use for the variance and number of hot-spare drives when AUTO is specified for Array_Mode. This parameter is not valid if Array_Mode is set to CUSTOM.

The value of Array_Defaults is expressed in the format: variance:hotspares, where:

variance specifies the percentage variance to use when selecting drives to add to the array. This parameter is useful when you are using drives that may vary slightly in size. Variance is based on a percentage of the drive's size in MB. Valid values are:

- 0% - Only drives with equal size in MB will be combined into a single array.
- 5% - All drives within 5% size in MB will be combined into a single array.
- 10% - All drives within 10% size in MB will be combined into a single array.
- 100% - All drives, regardless of size in MB, will be combined into a single array.

and

hotspares is an integer that specifies the total number of hot-spare drives to create. The largest drives are chosen as hot-spare drives first. If not enough drives are available to create hot-spare drives, then PRAID will not create any hot-spare drives.

Examples

Array_Defaults = 5%:1

Array.letter:

Description

Lets you specify exactly how many arrays are created and the exact physical drives that you would like in each array. You can specify the physical drives using any of the following methods:

- The channel number and SCSI ID (for SCSI) or bus number and target ID (for SATA/SAS) of each drive. The channel number or bus number is always 1-based. The SCSI ID or target ID is always 0-based.
- A list of integer values indicating that the nth drive should be included in the array.
- The keyword ALL to indicate that all remaining drives attached to the controller that are not specified in previous arrays should be included in the current array.

The first array must be labeled Array.A. Additional arrays are labeled sequentially, Array.B, Array.C, and so on. The maximum number of arrays allowed per controller is determined by the limits of the specific RAID controller.
Examples

Example using channel number and SCSI ID:
Array.A = 1:1,1:2
Array.C = ALL

Example using integer values:
Array.A = 1,2,3
Array.B = ALL

Hotspares:
Description

Defines a list of specific physical drives to designate as hot-spare drives. You can specify the physical drives using any one of these methods:

• The channel number and SCSI ID (for SCSI) or bus number and target ID (for SATA/SAS) of each drive. The channel number or bus number is always 1-based. The SCSI ID or target ID is always 0-based.
• A list of integer values indicating that the nth drive should be included in the array.
• The keyword ALL to indicate that all remaining drives attached to the controller that are not specified in previous arrays should be included in the current array.

Examples

Example using channel number and SCSI ID:
Hotspares = 1:12,2:14

Example using integer value:
Hotspares = 12, 13

Logical_Mode:
Description

Defines the logical-drive creation policy to use when creating logical drives. Possible values are:

AUTO Indicates that defaults should be used for all parameters. Default parameters are:
• One logical drive is created on each array using all available space.
• The RAID level is set using the AUTO (default) scheme.
• Write-cache mode is set using the default value for the controller.

You can adjust these default values using the Logical_Defaults parameter.

CUSTOM Indicates that you want to specify all of the parameters for each logical drive that is created. If you specify CUSTOM, then you must specify the parameters for each logical drive using the Logical.num parameter.

Examples
Logical_Mode = CUSTOM

Logical_Defaults:
Description

Defines the default logical drive settings that should be used when creating logical drives. This parameter is only valid when AUTO is specified for Logical_Mode.

Values for this parameter are expressed in the format: size:raidlevel:writecmode, where:

Size specifies the size of each logical drive. One logical drive will be created on each array using the given size. Size can be in any of the following formats:
- A positive integer – specifies the size in MB.
- A percentage – specifies that a percentage of the total space should be used.
- FILL – indicates that all available space on the array should be used.

Raidlevel specifies the RAID level for the logical drive. See “Supported settings for RAID controllers” on page 61 for the list of RAID level settings supported by PRAID for each controller.

Writecmode is an optional parameter that specifies the write-cache mode for each logical drive. If the write-cache mode cannot be set for a specific configuration, then this parameter will be ignored. See “Supported settings for RAID controllers” on page 61 for the list of write_cache mode settings supported by PRAID for each RAID controller.

Valid values are:
- ON
- OFF
- AUTO uses the default write-cache mode for the controller. (Recommended for most users.) This is the default value if writecmode is not specified.

Examples

Logical_Defaults = 50%:5EE:AUTO

Logical.num:

Description

Lets you specify how many logical drives are created and the specific parameters for each logical drive. You can set the array letter where the logical drive is located, logical drive size, RAID level, and write-caching mode for each logical drive. The first logical drive must be labeled Logical.1. Additional logical drives are numbered Logical.2, Logical.3, and so on. You must specify at least one logical drive for each array. The maximum number of drives allowed per array and the maximum total number of logical drives allowed is determined by the specific RAID controller.

Values for this parameter are expressed in the format: array:size:raidlevel:writecmode where array specifies the array letter, and size, raidlevel, and writecmode are as described in “Logical_Defaults” on page 59.

Examples

Logical.1 = A:50%:0
Logical.2 = A:50%:5EE
Logical.3 = B:FILL:1:ON
Logical.4 = C:4096:AUTO:AUTO
Supported settings for RAID controllers: Table 8 lists the supported settings for each RAID controller when using PRAID.

In some cases, the list of supported settings when using PRAID might differ from the supported settings of the RAID controller. These known cases are indicated in the table.

Table 8. Supported settings for each RAID controller when using PRAID. Bold settings are defaults.

<table>
<thead>
<tr>
<th>Controller</th>
<th>Rebuild Rate</th>
<th>Read Ahead</th>
<th>Stripe Size</th>
<th>RAID Levels</th>
<th>Write-cache Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServeRAID-6m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HIGH</td>
<td>ADAPTIVE</td>
<td>8</td>
<td>0</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>MEDIUM</td>
<td></td>
<td>16</td>
<td>1</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>LOW</td>
<td></td>
<td>32</td>
<td>1E</td>
<td>AUTO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>64</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>ServeRAID-7t</td>
<td></td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5E</td>
<td>AUTO</td>
</tr>
<tr>
<td>ServeRAID-8i</td>
<td></td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>AUTO</td>
</tr>
<tr>
<td>ServeRAID-8k</td>
<td></td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1E</td>
<td>AUTO</td>
</tr>
<tr>
<td>ServeRAID-8k-l</td>
<td></td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>AUTO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VOLUME</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 7. Linux Scripting Toolkit utilities and tools 61
Table 8. Supported settings for each RAID controller when using PRAID (continued). Bold settings are defaults.

<table>
<thead>
<tr>
<th>Controller</th>
<th>Rebuild Rate</th>
<th>Read Ahead</th>
<th>Stripe Size</th>
<th>RAID Levels</th>
<th>Write-cache Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServeRAID-8s</td>
<td>[n/a]</td>
<td>[n/a]</td>
<td></td>
<td>0, 1, 1E, 10, 5, 50, 6, 60, VOLUME</td>
<td>[n/a]</td>
</tr>
<tr>
<td>LSI-SCSI-RAID (1020/1030)</td>
<td>[n/a]</td>
<td>[n/a]</td>
<td>8, 16, 32, 64</td>
<td>0, 1, 1E</td>
<td>[n/a]</td>
</tr>
<tr>
<td>LSI-SAS-RAID (1064/1064E/1068)</td>
<td>[n/a]</td>
<td>[n/a]</td>
<td>8, 16, 32, 64</td>
<td>0, 1, 1E</td>
<td>[n/a]</td>
</tr>
<tr>
<td>IBM SAS HBA</td>
<td>[n/a]</td>
<td>[n/a]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBM 3 Gb SAS HBA v2</td>
<td>[n/a]</td>
<td>[n/a]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ServeRAID BR10i</td>
<td>[n/a]</td>
<td>[n/a]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ServeRAID BR10il</td>
<td>[n/a]</td>
<td>[n/a]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ServeRAID-MR10i</td>
<td>[n/a]</td>
<td>[n/a]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ServeRAID-MR10e</td>
<td>[n/a]</td>
<td>[n/a]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ServeRAID-MR10is</td>
<td>[n/a]</td>
<td>[n/a]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ServeRAID-MR10i-R5</td>
<td>HIGH, MEDIUM, LOW</td>
<td>ADAPTIVE</td>
<td>8, 16, 32, 64</td>
<td>0, 1, 10, 5, 50, 6, 60</td>
<td>ON, OFF, AUTO</td>
</tr>
</tbody>
</table>
Table 8. Supported settings for each RAID controller when using PRAID (continued). Bold settings are defaults.

<table>
<thead>
<tr>
<th>Controller</th>
<th>Rebuild Rate</th>
<th>Read Ahead</th>
<th>Stripe Size</th>
<th>RAID Levels</th>
<th>Write-cache Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSI SAS 1078</td>
<td>[n/a]</td>
<td>[n/a]</td>
<td>[n/a]</td>
<td>• 0</td>
<td>[n/a]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• 1</td>
<td></td>
</tr>
<tr>
<td>LSI MegaRAID 8480</td>
<td>[n/a]</td>
<td>[n/a]</td>
<td>8</td>
<td>• 0</td>
<td>[n/a]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>• 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td>• 5</td>
<td></td>
</tr>
<tr>
<td>ServeRAID-M5014</td>
<td>HIGH</td>
<td>ADAPTIVE</td>
<td>8</td>
<td>• 0</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>MEDIUM</td>
<td>ON</td>
<td>16</td>
<td>• 1</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>LOW</td>
<td>OFF</td>
<td>32</td>
<td>• 5</td>
<td>AUTO</td>
</tr>
<tr>
<td>ServeRAID-M5015</td>
<td>HIGH</td>
<td>ON</td>
<td>8</td>
<td>• 0</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>MEDIUM</td>
<td>OFF</td>
<td>16</td>
<td>• 1</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>LOW</td>
<td></td>
<td>32</td>
<td>• 5</td>
<td>AUTO</td>
</tr>
<tr>
<td>ServeRAID-M5025</td>
<td>HIGH</td>
<td>ADAPTIVE</td>
<td>8</td>
<td>• 0</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>MEDIUM</td>
<td>ON</td>
<td>16</td>
<td>• 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LOW</td>
<td>OFF</td>
<td>32</td>
<td>• 5</td>
<td></td>
</tr>
<tr>
<td>ServeRAID-B5015</td>
<td>[n/a]</td>
<td>[n/a]</td>
<td>4</td>
<td>• 1</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>• 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>• AUTO</td>
<td></td>
</tr>
</tbody>
</table>

1. RAID levels 5E and 5EE support only one logical drive per array.
2. RAID level 1E is supported for the LSI 1030 only on the xSeries model 336.

Default RAID levels are described in “Default RAID levels.”

Default RAID levels: The default RAID level that is applied to a logical drive depends on the number of drives in the array and the controller type. These
default values are designed to match the default values of the express configuration method in ServeRAID Manager where applicable. The following table shows the default RAID values that PRAID will use when AUTO is specified for raidlevel.

Table 9. Default RAID levels

<table>
<thead>
<tr>
<th>Controller</th>
<th>Drives in Array</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5 or more</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServeRAID-6M</td>
<td>RAID 0</td>
<td>RAID 0</td>
<td>RAID 1</td>
<td>RAID 5</td>
<td>RAID 5+Hotspare</td>
<td>RAID 5+Hotspare</td>
</tr>
<tr>
<td>ServeRAID-7t</td>
<td>RAID 0</td>
<td>RAID 1</td>
<td>RAID 1</td>
<td>RAID 5</td>
<td>RAID 5+Hotspare</td>
<td>RAID 5+Hotspare</td>
</tr>
<tr>
<td>ServeRAID-8i</td>
<td>VOLUME</td>
<td>RAID 1</td>
<td>RAID 1</td>
<td>RAID 5</td>
<td>RAID 5+Hotspare</td>
<td>RAID 5+Hotspare</td>
</tr>
<tr>
<td>ServeRAID-8k</td>
<td>VOLUME</td>
<td>RAID 1</td>
<td>RAID 1</td>
<td>RAID 5</td>
<td>RAID 5+Hotspare</td>
<td>RAID 5+Hotspare</td>
</tr>
<tr>
<td>ServeRAID-8k-1</td>
<td>VOLUME</td>
<td>RAID 1</td>
<td>RAID 1</td>
<td>RAID 5+Hotspare</td>
<td>RAID 10</td>
<td>RAID 10+Hotspare</td>
</tr>
<tr>
<td>ServeRAID-8s</td>
<td>VOLUME</td>
<td>RAID 1</td>
<td>RAID 1</td>
<td>RAID 5</td>
<td>RAID 5+Hotspare</td>
<td>RAID 5+Hotspare</td>
</tr>
<tr>
<td>LSI-SCSI-RAID (1020/1030)</td>
<td>[n/a]</td>
<td>RAID 1</td>
<td>RAID 1</td>
<td>RAID 5</td>
<td>RAID 5+Hotspare</td>
<td>RAID 5+Hotspare</td>
</tr>
<tr>
<td>LSI-SAS-RAID (1064/1064E/1068)</td>
<td>[n/a]</td>
<td>RAID 1</td>
<td>RAID 1</td>
<td>RAID 5+Hotspare</td>
<td>RAID 1M+Hotspare</td>
<td>RAID 1M+Hotspare</td>
</tr>
<tr>
<td>ServeRAID BR10i</td>
<td>RAID 0</td>
<td>RAID 1</td>
<td>RAID 1</td>
<td>RAID 5</td>
<td>RAID 5+Hotspare</td>
<td>RAID 5+Hotspare</td>
</tr>
<tr>
<td>ServeRAID BR10il</td>
<td>RAID 0</td>
<td>RAID 1</td>
<td>RAID 1</td>
<td>RAID 5</td>
<td>RAID 5+Hotspare</td>
<td>RAID 5+Hotspare</td>
</tr>
<tr>
<td>ServeRAID-MR10i</td>
<td>RAID 0</td>
<td>RAID 1</td>
<td>RAID 1</td>
<td>RAID 5</td>
<td>RAID 5+Hotspare</td>
<td>RAID 5+Hotspare</td>
</tr>
<tr>
<td>ServeRAID-MR10ie</td>
<td>RAID 0</td>
<td>RAID 1</td>
<td>RAID 1</td>
<td>RAID 5</td>
<td>RAID 5+Hotspare</td>
<td>RAID 5+Hotspare</td>
</tr>
<tr>
<td>ServeRAID-MR10il</td>
<td>RAID 0</td>
<td>RAID 1</td>
<td>RAID 1</td>
<td>RAID 5</td>
<td>RAID 5+Hotspare</td>
<td>RAID 5+Hotspare</td>
</tr>
<tr>
<td>ServeRAID-MR10k</td>
<td>RAID 0</td>
<td>RAID 1</td>
<td>RAID 1</td>
<td>RAID 5</td>
<td>RAID 5+Hotspare</td>
<td>RAID 5+Hotspare</td>
</tr>
<tr>
<td>ServeRAID-MR10M</td>
<td>RAID 0</td>
<td>RAID 1</td>
<td>RAID 1</td>
<td>RAID 5</td>
<td>RAID 5+Hotspare</td>
<td>RAID 5+Hotspare</td>
</tr>
<tr>
<td>ServeRAID-MR1015</td>
<td>RAID 0</td>
<td>RAID 1</td>
<td>RAID 1</td>
<td>RAID 5</td>
<td>RAID 5+Hotspare</td>
<td>RAID 5+Hotspare</td>
</tr>
<tr>
<td>LSI-SAS-1078</td>
<td>[n/a]</td>
<td>RAID 1</td>
<td>2RAID 1+1Hotspare</td>
<td>2RAID 1+1Hotspare</td>
<td>2RAID 1+1Hotspare</td>
<td></td>
</tr>
<tr>
<td>LSI MegaRAID 8480</td>
<td>RAID 0</td>
<td>RAID 1</td>
<td>RAID 1</td>
<td>RAID 5</td>
<td>RAID 5+Hotspare</td>
<td>RAID 5+Hotspare</td>
</tr>
</tbody>
</table>

INVRAID

This program can be used to dump all of the RAID controller configuration information to an output file. INVRAID supports the following RAID controllers:

- ServeRAID-6M
- ServeRAID-7t
- ServeRAID-8i
- ServeRAID-8k
Environment requirements

INVRAID works by parsing the output of other RAID-configuration utilities. To accomplish this, the following utilities must be located in the system search path.

<table>
<thead>
<tr>
<th>Adapter</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServeRAID 6M</td>
<td>IPSEND</td>
</tr>
<tr>
<td>ServeRAID-7t, 8i, 8k, 8k-l, 8s</td>
<td>ARCCONF</td>
</tr>
<tr>
<td>LSI-SCSI 1020/1030, LSI-SAS 1064/1064E, LSI-SAS 1068, LSI-SAS 1078, ServeRAID BR9i, BR10i, BR10ie, BR10il</td>
<td>CFGGEN</td>
</tr>
<tr>
<td>MegaRAID SAS, ServeRAID-M5014, M5015, M5025, MR10i, MR10ie, MR10il, MR10is, MR10k, MR10M, MR1015, MR1015-R5</td>
<td>MEGACLI</td>
</tr>
<tr>
<td>ServeRAID-B5015</td>
<td>BRCLI</td>
</tr>
</tbody>
</table>

Usage

invraid [-I | -P] -f

Table 10. INVRAID parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-I</td>
<td>Displays information about all host adapters in the system in an INI-file format.</td>
</tr>
<tr>
<td>-P</td>
<td>Dumps information about all host adapters in a system in a keyword=value format.</td>
</tr>
<tr>
<td>-F :filename</td>
<td>Directs the output of invraid to the specified file.</td>
</tr>
</tbody>
</table>
Return values

Table 1 lists the values returned by INVRAID.

Table 11. Values returned by INVRAID

<table>
<thead>
<tr>
<th>Return Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Success</td>
</tr>
<tr>
<td>1</td>
<td>Syntax Error</td>
</tr>
<tr>
<td>2</td>
<td>Program Error</td>
</tr>
</tbody>
</table>

Examples

To dump the information about all RAID controllers in a system to a file in INI file format with the name myraid.ini, use the -I parameter as shown here:

```
invraid.exe -i -f:myraid.ini
```

Returns:

```
[System]
Machine Type = 7233
Serial Number = 23A0075
Total Number Of Controllers = 2

[RAIDController.1]
Model = LSI-SAS-1078-IR
BIOSVersion = 6.22.00.00
FirmwareVersion = 1.25.82.00
DriverVersion =
RebuildRate = HIGH
StripeSize =
ReadAhead = ADAPTIVE
PCI = 4:0:0:1000:0062:FFFF:FFFF

[RAIDController.1.Array]
Total Number Of Arrays = 1
ID.1 = A
Members.1 = 1,2

[RAIDController.1.Hotspares]
Total Number Of Hotspares = 0

[RAIDController.1.Logical]
Total Number Of Logicals = 1
Array.1 = A
Size.1 = 139236
Raid Level.1 = 1
WriteCache.1 = AUTO
State.1 = Okay (OKY)
Derived State.1 = GOOD

[RAIDController.1.Physical]
Total Number Of Physicals = 4
Channel.1 = 1
ID.1 = 0
Size.1 = 140013
Type.1 = SAS
Serial Number.1 = 3NM25QED0000980322JB
State.1 = Online (ONL)
Derived State.1 = GOOD
```
Channel.2 = 1
ID.2 = 1
Size.2 = 140013
Type.2 = SAS
Serial_Number.2 = 3NM223CV0000974732Y9
State.2 = Online (ONL)
Derived_State.2 = GOOD

Channel.3 = 1
ID.3 = 2
Size.3 = 140013
Type.3 = SAS
Serial_Number.3 = 3NM2000900009746H8BY
State.3 = Ready (RDY)
Derived_State.3 = GOOD

Channel.4 = 1
ID.4 = 3
Size.4 = 140013
Type.4 = SAS
Serial_Number.4 = 3NM23J1J00009746XNSB
State.4 = Ready (RDY)
Derived_State.4 = GOOD

[RAIDController.2]
Model = ServeRAID-MR10M
BIOSVersion = 2.02.00
FirmwareVersion = 1.40.12-0551
DriverVersion =
PCI = 30:0:0:1000:0060:1014:0379

[RAIDController.2.Array]
Total_Number_Of_Arrays = 0

[RAIDController.2.Hotspares]
Total_Number_Of_Hotspares = 0

[RAIDController.2.Logical]
Total_Number_Of_Logicals = 0

[RAIDController.2.Physical]
Total_Number_Of_Physicals = 0

Using the -p parameter returns the same information, but the section title from the properties file is shown for each value:
invraid -p -f:myfile.ini

Returns:
System_Machine_Type = 7233
System_Serial_Number = 23A0075
RAIDController.1.Model = LSI-SAS-1078-IR
RAIDController.1.BIOSVersion = 6.22.00.00
RAIDController.1.FirmwareVersion = 1.25.82.00
RAIDController.1.DriverVersion =
RAIDController.1.RebuildRate = HIGH
RAIDController.1.StripeSize =
RAIDController.1.ReadAhead = ADAPTIVE
RAIDController.1.PCI = 4:0:0:1000:0062:FFFF:FFFF

RAIDController.1.Array.ID.1 = A
RAIDController.1.Array.Members.1 = 1,2

RAIDController.1.Logical.Array.1 = A
RAIDController.1.Logical.Size.1 = 139236
VALRAID

VALRAID is a utility program that can be used to validate policy files against inventory files generated by the INVRAID utility.

VALRAID has two modes of operation:

• **Simulation mode** - simulates the effect a policy file would have on a controller.
• **Check mode** - determines whether the policy file matches the configuration represented in the inventory file.

Simulation mode

Used in simulation mode, VALRAID will simulate the effect that a policy file would have on a RAID configuration if it were applied using the PRAID utility. This capability can be used when creating PRAID policy files. The policy files can be tested without running PRAID on the target system.
Check mode

Used in check mode, VALRAID determines whether the policy file specified matches the RAID configuration represented in the inventory file. This capability can be used in OS deployment scripts to skip the RAID configuration step if the controller is already configured with the required RAID configuration and thus avoiding an extra reboot before installing the OS. VALRAID will set the return code = 20 to indicate that the policy file does not match the configuration represented by the inventory file.

Usage

The two modes of operation share most parameters, but the syntax is mode-specific.

The simulation mode syntax is:

```
```

The check mode syntax is:

```
valraid -c -ini:input_inventory_file -inp:input_policy_file -raid:inifiles
```

Table 12. VALRAID parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>-outi:output_inventory_file</td>
<td>Specifies the filename for the output inventory file. This is an inventory file representing the RAID configuration that would result from using the PRAID utility to apply <code>input_policy_file</code> to the system described in <code>input_inventory_file</code>. This option is valid only for simulation mode.</td>
<td>valraid -ini:myfile.inv -inp:policy.ini -outi:newfile.inv -outp:newpolicy.ini -raid:/inifiles</td>
</tr>
<tr>
<td>-outp:output_policy_file</td>
<td>Specifies the filename for the output policy file. This file can be applied to a target system using the PRAID utility. This option is valid only for simulation mode.</td>
<td>valraid -ini:myfile.inv -inp:policy.ini -outi:newfile.inv -outp:newpolicy.ini -raid:/inifiles</td>
</tr>
</tbody>
</table>
Table 12. VALRAID parameters (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>-raid:inifiles</td>
<td>Specifies the directory that contains the RAID ini files.</td>
<td>valraid-ini:myfile.inv-inp:policy.ini-outi:newfile.inv-outp:newpolicy.ini-raid:/inifiles</td>
</tr>
<tr>
<td>-c</td>
<td>Specifies check mode. Check mode compares the configuration from input_inventory_file to the configuration represented in input_policy_file. The default is simulation mode.</td>
<td>valraid -c-ini:myfile.inv-inp:policy.ini-raid:/inifiles</td>
</tr>
</tbody>
</table>

Return codes

VALRAID uses the following return codes:

- 0 – Success
- 1 – Error parsing input policy file
- 2 – Error parsing input inventory file
- 3 – Controller is not supported
- 4 – Raid level is not supported
- 5 – Stripesize is not supported
- 6 – Number of arrays not supported
- 7 – Number of drives in array not supported
- 8 – Number of logical volumes in array is not supported
- 9 – Not enough drives to create hotspare
- 10 – Not enough drives of the same size
- 11 – Error opening input policy file
- 12 – Error opening input inventory file
- 13 – Error opening output inventory file
- 14 – Error writing to output inventory file
- 15 – Error opening output policy file
- 16 – Error writing output policy file
- 17 – Partial drive sizing not supported
- 18 – Command line syntax error
- 19 – No policy match
- 20 – Controller not configured, does not match policy file

Tools included with the Linux Scripting Toolkit

The Linux Scripting Toolkit includes several additional tools to make the Toolkit more efficient. This section describes the additional tools provided by this release of the Linux Scripting Toolkit:

- [Advanced Settings Utility](#)
- [SCLI](#)
UpdateXpress System Pack Installer

Advanced Settings Utility

For convenience, the Linux Scripting Toolkit, includes the Advanced Settings Utility (ASU). You can use ASU to modify firmware settings from the command line on multiple operating-system platforms.

The Linux Scripting Toolkit uses a subset of the ASU function in order to capture and deploy firmware settings as part of your scripted deployments.

Usage

This section describes the ASU functions used by the Linux Scripting Toolkit.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>asu show all</td>
<td>Is used to display and capture BIOS settings. You can use redirection to store this output in a file as shown here: asu.exe show bios > bios_settings.ini</td>
</tr>
<tr>
<td>asu save filename</td>
<td>Is used to apply CMOS settings from a file. ASU looks for the filename specified by filename, and reads the contents. If the contents are valid CMOS settings, they are applied, one line at a time, to the server. This example applies the settings captured above: asu save bios_settings.ini</td>
</tr>
<tr>
<td>asu set IMM.HostIPAddress IP address</td>
<td>Sets the external IP address in the Integrated Management Module (IMM) to the specified address. This setting is part of the IMM group.</td>
</tr>
<tr>
<td>asu set IMM.LanOverUsb enabled</td>
<td>disabled --kcs</td>
</tr>
</tbody>
</table>

SCLI

You can use the SCLI utility to configure Fibre Host Bus Adapters (HBAs). A 32–bit version of this utility comes with the Linux Scripting Toolkit. You can download this utility from QLogic at http://www.qlogic.com.
Usage

Table 14. SCLI usage

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>scl1 -e (view</td>
<td>?)</td>
</tr>
</tbody>
</table>
| scl1 -e (hba_instance | hba_wwpn target_wwnn target_wwpn lun_id [prim | alt1 | alt2 | alt3]) | Configures the Operating System to boot from a particular target, where:
 - hba_instance: The HBA instance number of an HBA port.
 - hba_wwpn: The World Wide Port Name of an HBA port.
 - lun_id: The Logical Unit Number of a LUN.
 - prim: The primary boot port name.
 - altn: The name of the alternate boot port. You can specify up to three alternate boot ports. |
| scl1 -e (hba_instance | hba_wwpn) (view | ?) | Shows the current boot device information for the specified HBA port. | | |
| scl1 -e (hba_instance | hba_wwpn) (enable | 0 0 0) | Configures the operating system to boot from the first target found by the BIOS. The default LUN is 0. |
| scl1 -e (hba_instance | hba_wwpn) disable [prim | alt1 | alt2 | alt3] | Clears the selected boot device settings on the indicated HBA port. |
| scl1 -l (hba_instance | hba_wwpn) | Displays information about the LUNs attached to the specified HBA port. |

Examples

The following examples illustrate scl1 utility usage.

Note: Please note that while some of these examples are broken across multiple lines, when using SCLI, you must enter all of the parameters on a single line.

<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>scl1 -e view</td>
<td>Displays the current boot device information on all HBAs.</td>
</tr>
</tbody>
</table>
Example Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>scli -e E0-FF-EE-DE-CD-34-56-30</code></td>
<td>Configures HBA E0-FF-EE-DE-CD-34-56-30 to boot from the primary target.</td>
</tr>
</tbody>
</table>

septool210

For convenience, the Linux Scripting Toolkit includes the SEPTool. You can use SEPTool to acquire any additional System Enablement Packs (SEP)s.

Usage

This section describes the septool210 functions.

Table 15. septool functions in Linux Scripting Toolkit

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>septool210 acquire</td>
<td>downloads SEP's from the IBM web site.</td>
</tr>
</tbody>
</table>

UpdateXpress System Pack Installer

For convenience, the Linux Scripting Toolkit includes the UXSPI to help you acquire updates for inclusion in your deployment scenarios. The UpdateXpress System Pack Installer is located at: `...sgdeploy\updates\uxsp`.

The UpdateXpress System Pack Installer can perform these functions:

- Acquire firmware and driver updates for supported machine type/operating system combinations from a remote location, such as the IBM Support Web site.
- Inventory a system to be updated and compare the inventory to the list of available updates, then recommend and deploy a set of updates for the system.
- Create bootable media on CD-ROM, DVD, or USB key to use in applying firmware to supported systems.

For more information on running the UpdateXpress System Pack Installer, change directory to the UXSPI directory and run the UXSPI executable, `uxspi500` as shown below:

`uxspi500 -update -help`

Usage

The Linux Scripting Toolkit uses the UXSPI in the update mode to acquire and deploy device drivers and firmware as part of Linux Scripting Toolkit deployments. This section details the command-line options for the `uxspi500 -update` mode.
Table 16. UXSPi update mode options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-firmware</td>
<td>The firmware option forces UXSPi to install only firmware updates.</td>
</tr>
<tr>
<td>--drivers</td>
<td>The driver option forces UXSPi to install only driver updates.</td>
</tr>
<tr>
<td>-f update_ids, --force=update_ids</td>
<td>Specifies that UXSPi use the unattended ForcedInstallCommandLine field in the update XML rather than the unattendedInstallCommandLine field.</td>
</tr>
<tr>
<td>-s update_ids --select=update_ids</td>
<td>The select option deploys the specified set of updates to the target system even if the system version is newer than the version in the update package. Use this option to roll-back firmware and driver levels where necessary.</td>
</tr>
<tr>
<td>-l update_xml_path, --local=update_xml_path</td>
<td>Specifies the filename of a local UXSP XML file or the path to search for one.</td>
</tr>
<tr>
<td>-n, --new</td>
<td>Selects all updates that are newer than the current system versions or not currently installed on the system.</td>
</tr>
<tr>
<td>-e update_ids, --exclude=update_ids</td>
<td>Excludes the specified update IDs. You can provide multiple IDs in a comma-separated list.</td>
</tr>
<tr>
<td>-i update_ids, --include=update_ids</td>
<td>Includes the updates specified in the list of update IDs. You can provide multiple IDs in a comma-separated list.</td>
</tr>
<tr>
<td>--ignore-undected=update_ids</td>
<td>Specifies not to apply the indicated update IDs. You can provide multiple IDs in a comma-separated list.</td>
</tr>
<tr>
<td>-L, --latest</td>
<td>The default behavior of UXSPi is to apply the latest UXSPi update pack found in the UXSPi directory. This option forces UXSPi to install the latest updates whether they are from an update pack, are individual updates, or a combination of the two.</td>
</tr>
<tr>
<td>--remote=remote_address</td>
<td>Runs the update command on the remote server specified by remote_address.</td>
</tr>
<tr>
<td>--remote-user=remote_user</td>
<td>Specifies the remote user ID to use when connecting to a remote system specified with --remote.</td>
</tr>
<tr>
<td>--remote-password=password</td>
<td>Sets the password for the user ID specified by --remote-user.</td>
</tr>
<tr>
<td>--remote-dir=directory</td>
<td>Specifies the staging or working directory on the remote system.</td>
</tr>
<tr>
<td>--noinventory</td>
<td>Causes UXSPi to gather only the machine type and operating system information without performing an inventory of existing updates.</td>
</tr>
<tr>
<td>--nouxsp</td>
<td>Do not deploy UXSPs.</td>
</tr>
<tr>
<td>-r, --report</td>
<td>Displays a summary report of updates used in the compare step.</td>
</tr>
</tbody>
</table>
Examples

The following example can be used to specify an UpdateXpress System PackXML file named uxsp.xml located in the same directory as the UXSPi executable.

.\uxspi500 update -l uxsp.xml
Chapter 8. Incorporating the Scripting Toolkit with your existing process

To incorporate Scripting Toolkit procedures into an existing deployment process, use the HWDETECT utility to determine if the combined process is being executed on Scripting Toolkit supported hardware. You can then add appropriate branches in the batch files to use the existing process or the Scripting Toolkit process.

For example, you might use the -s option of HWDETECT to determine if the current system is an IBM server:

```
   hwdetect -s
   if errorlevel 1 goto NONIBM
   if errorlevel 0 goto IBM

   :NONIBM
   rem Perform non-IBM equipment specific processing here.

   :IBM
   rem Perform IBM eServer or xSeries equipment specific processing here.
```
Chapter 9. IBM ServerProven compatibility

The IBM ServerProven website provides valuable information on selected products for compatibility with IBM System x, BladeCenter, and xSeries servers. Check the following link for up to date compatibility with operating systems, configuration, and hardware options: http://www.ibm.com/servers/eserver/serverproven/compat/us/
Chapter 10. Hints and tips

This section contains information on known problems and limitations, best practices, and hints and tips for using the Linux Scripting Toolkit.

Performing Network OS installations using HTTP

To perform Network OS installations using HTTP, Linux Toolkit requires that you enable directory browsing on the web server. If this presents a security risk, you can provide the information needed to perform installations by adding and setting the following environment variables in the Altiris jobs:

- `TK_DISTRO_HTTP_KERNEL_PKG`
- `TK_DISTRO_HTTP_RELEASE_PKG`
- `TK_DISTRO_HTTP_ISOLINUX`
- `TK_DISTRO_HTTP_INITRD`
- `TK_DISTRO_HTTP_VMLINUX`

This example shows the values for these variables for a Red Hat Enterprise Linux 5, Update 4 x64 installation:

```
TK_DISTRO_HTTP_KERNEL_PKG=Server/kernel-2.6.18-160.el5.x86_64.rpm
TK_DISTRO_HTTP_RELEASE_PKG=Server/redhat-release-5Server-5.4.0.2.x86_64.rpm
TK_DISTRO_HTTP_ISOLINUX=isolinux/isolinux.cfg
TK_DISTRO_HTTP_INITRD=isolinux/initrd.img
TK_DISTRO_HTTP_VMLINUX=isolinux/vmlinuz
```

Improving PXE boot transfer speed

To speed up the TFTP transfer of the preboot environment, you can increase the packet size for the TFTP server of Altiris. Follow these steps to increase the package size:

1. Open the PXE configuration utility.
2. Click on the Multicast tab.
3. Change the packet size to 1420 (the default packet size is 768).

If the system is uEFI-based, see “Disable uEFI PXE to decrease network boot time” for more ways to increase performance.

Disable uEFI PXE to decrease network boot time

You can improve the network boot time for uEFI-based systems by performing the following steps:

1. Start the System
2. Press F1 to get the Menu Options.
3. Navigate to System Settings > Network > PXE Configuration
4. Select Port %MAC1%.
5. Select Enable PXE and press Enter.
7. Select Save Changes and press ESC.
8. Select Port %MAC2%.
9. Select Enable PXE and press Enter.
10. Select Legacy Support and press Enter.
11. Select **Save Changes** and press ESC.

Performing Clone/Deploy of SLES 11

To perform a clone of SUSE Linux Enterprise Server(SLES) 11 with Altiris, you must use Altiris. Deployment Solution 6.9 SP3. To deploy a cloned image of SLES11 from Altiris, please refer to Altiris Knowledgebase article 48984 to enable SLES11 support in Altiris.

After enablement, perform the following steps to perform a deployment of an SLES11 cloned image.

1. Navigate to the Deploy Linux TK job in the Altiris Console.
2. In the Distribute Disk Image Task of the Deploy Linux TK job, you will need to uncheck the option of **Automatically perform configuration task after completing this image task**.

 Note: If this action is not done, the network configuration will not be configured.

Using RapiDeploy with SLES 10 and VMware

RapiDeploy provides native imaging support for EXT2 and EXT3 file systems. By default, SuSE Linux Enterprise Server 10 uses the reiserfs file system when installing. In order to clone and redeploy a SLES 10 image using the Toolkit jobs, you must perform the original deployment using an EXT3 file system.

To change the file system prior to installation with the Toolkit, edit the sles10.xml AutoYast file provided by the Toolkit.

Replace the partitioning section of the AutoYast file:

```xml
<partitioning config:type="list">
  <drive>
    <initialize config:type="boolean">true</initialize>
    <use>all</use>
  </drive>
</partitioning>
```

with the following partitioning section:

```xml
<partitioning config:type="list">
  <drive>
    <initialize config:type="boolean">true</initialize>
    <use>all</use>
    <partitions config:type="list">
      <partition>
        <filesystem config:type="symbol">ext3</filesystem>
        <format config:type="boolean">true</format>
        <mount>/boot</mount>
        <size>100mb</size>
      </partition>
      <partition>
        <filesystem config:type="symbol">swap</filesystem>
        <format config:type="boolean">true</format>
        <mount>/swap</mount>
        <size>auto</size>
      </partition>
      <partition>
        <filesystem config:type="symbol">ext3</filesystem>
        <format config:type="boolean">true</format>
        <mount>/</mount>
      </partition>
    </partitions>
  </drive>
</partitioning>
```
Linux X server considerations

There are some special considerations for using Linux X server with a Remote Supervisor Adapter II (RSA II) port. If you are using this configuration, please be aware of the following items:

If the Remote Supervisor Adapter II-EXA is installed in a server that is running either the Red Hat Linux or SuSE Linux operating system, make sure that the Linux operating system is selected in the Remote Supervisor Adapter II settings in the server BIOS. Complete the following steps to set Linux as the operating system in the server BIOS:

1. Boot or reboot the server. Press F1 when prompted to enter the configuration menu.
2. Select Advanced Setup and then ASM Settings.
3. In the OS USB selection field, select Linux.
4. Select Save Values and Reboot ASM.

Note: If you run an automated X Windows system configuration utility, you must repeat these configuration changes.

Install the operating system in text mode. Set the color depth to 16-bit and the screen resolution to 1024 x 768.

If SuSE Linux or Red Hat Linux is already installed and configured to run in text mode, and will never use the X Window system, no additional configuration is required for the RSA II-EXA to function correctly.

The Remote Supervisor Adapter II-EXA requires USB mouse support from the operating system. If you install a supported Linux operating system on your server using a USB mouse, the installation process automatically establishes USB mouse support; no further action is required. If you install a supported Linux operating system using a PS/2 mouse, you must modify the Linux files after installation to add USB mouse support. Follow the instructions in this document to add USB mouse support.

The Remote Supervisor Adapter II-EXA requires a Video Electronics Standard Association (VESA) device driver. The VESA video device driver enables the remote control screen and the local screen to display the same information (clone mode).

When using power management, the video output might not return correctly from some power saving states. To correct this, use the xset command to disable DPMS as shown: xset -dpms

Special considerations for BladeCenter Blades and Linux X server configuration

After installing, do not change the monitor configuration or any other graphical settings. If you must change the graphics settings, type the following command to start the configuration utility: sax2 -m 0=fbdev.

When using power management, the video output might not return correctly from some power saving states. To correct this, use the xset command to disable DPMS as shown: xset -dpms

IPv6 compliance

Beginning in version 2.20, the Linux Scripting Toolkit provides support for locating operating system files on IPv6 network shares. In order to use operating system files located in a share on an IPv6 network, you must update the variable TK_DISTRO_PATH in the appropriate Altiris job.

Performing network based installations of SLES11 SP1 using static IPv6 addresses

When performing a network based installation of SLES11 SP1 in a static IPv6 environment, you must use either ipv6=1, which accepts both IPv4 and IPv6 addresses, or ipv6only=1, which accepts only IPv6 addresses, as a boot parameter.

For example, to configure static IPv6 addresses for an IPv6-only network, use these boot parameters:

ipv6only=1 netdevice=eth0 hostip=2000::2dae:2390/64

During the Perform installation stage of the deployment, the system will reboot. You might receive the error message: Download (curl) error ... /media.1/media following the reboot. To avoid this problem, follow these steps:
1. Navigate to another console that has a command prompt.
2. Configure the network by issuing this command:
 ifconfig eth0 inet6 add 2000::2dae:2390/64
3. Return to the console with the error.
4. Click Retry to continue the installation.

Enabling Linux Scripting Toolkit PXE images to work with other PXE images

The Linux Scripting Toolkit uses a customized pxelinux.0 file rather than the default file that comes with syslinux. If you already have a PXE server in your network and would like to use PXE images generated by the Linux Scripting Toolkit in conjunction with other PXE images, you must implement a PXE chain by following these steps:
1. Download syslinux 3.72 or higher from http://www.kernel.org/pub/linux/utils/boot/syslinux/
2. Copy the file core/pxelinux.0 from the syslinux directory structure to your tftproot directory.
3. Extract the file pxechain.com from a PXE image created using the Linux Scripting Toolkit. The pxechain.com file is located in /tftboot/lnxtoolkit/
For example, if you have created a PXE image called `PXE_test` using the Linux Scripting Toolkit, you can extract `pxechain.com` using the following command:

```
unzip /tftpboot/lnxtoolkit/PXE_test/tc.zip
```

4. Copy the `pxechain.com` file to your `tftproot` directory.

5. Copy `/tftpboot/lnxtoolkit/pxelinux.0` to your `tftproot` directory.

6. Create a subdirectory of your `tftproot` directory called `ibm`.

7. Copy the PXE files created by the Linux Scripting Toolkit into the `tftproot/ibm` directory.

8. Create a subdirectory of `tftproot` called `pxelinux.cfg`.

9. Create the file `tftproot/pxelinux.cfg/default`. This sample default file includes the PXE image created by the Linux Scripting Toolkit. You can add other existing PXE images as shown:

```
prompt 0
default ibmchain
timeout 100
label ibmchain
kernel pxechain.com
append ::ibm/pxelinux.0
label your_other_pxe
kernel pxechain.com
append ::your_other_pxe/pxelinux.0
```

When you have completed these steps, the `tftproot` file structure looks like this:

```
|-- ibm
|   |-- img2a
|   |-- img3a
|   |-- pxelinux.0 <- IBM's modified pxelinux.0
|   |-- pxelinux.cfg
|       `-- PXE_test <- The default file for Linux Scripting Toolkit created PXE Image
|   |-- tc.zip
|   `-- tcrootfs
|-- your_other_pxe
|   |-- vmlinux
|   `-- initrd.gz
|       |-- pxelinux.0 <- your_other_pxe's pxelinux.0
|           `-- pxelinux.cfg
|               `-- default <- your_other_pxe's default
|-- pxechain.com <- pxechain.com from tc.zip (Step 1)
|   |-- pxelinux.0 <- pxelinux.0 from syslinux 3.72 (or later)
|   `-- pxelinux.cfg
|       `-- default <- default file for pxechain.com
```

Known problems and limitations

This section provides information and alternative solutions for known problems and limitations of the Linux Scripting Toolkit.

Integration script `altiris_sgtklinux.cmd` fails with error code 16

When running the `altiris_sgtklinux.cmd` command, it fails with the following error:

```
[Altiris_PerformUpgradeSteps.cmd]
Running
"C:\Program Files (x86)\Altiris\xpress\Deployment Server\pxe\pxeconfig.exe"
-delete "IBM Linux Toolkit 1.00"
"C:\Program Files (x86)\Altiris\xpress\Deployment Server\pxe\pxeconfig.exe"
-delete "IBM Linux Toolkit 1.00" returned a non-zero error code
ReturnCode = 16
The Altiris_PerformUpgradeSteps.cmd script was aborted.
```
To correct this problem, restart the Windows operating system on which the Altiris Deployment Server and the PXE server are running.

Integration script altiris_sgtklinux.cmd fails with error code 10

When running the altiris_sgtklinux.cmd command, it fails with the following error:

```
[Altiris_CreatePXEImage.cmd]
Running
"E:\Program Files\Altiris\eXpress\Deployment Server\pxe\pxeconfig"
-create -linux "IBM Linux Toolkit 1.00" -x64 -defaultLinux -oem "ibm"
-save -notmanaged
  "C:\Program Files\Altiris\eXpress\Deployment Server\pxe\pxeconfig"
-create -linux "IBM Linux Toolkit 1.00" -x64 -defaultLinux -oem "ibm"
-save -notmanaged returned a non-zero error code
  ReturnCode = 10
  The Altiris_CreatePXEImage.cmd script was aborted.
```

This problem can occur when the Altiris Linux x64 Automation Environment is not properly installed by the altiris_sgtklinux.cmd script.

To correct this problem, manually install the Altiris Linux x64 Automation Environment (BDGpl_6.9.xxxx.frm) then try running the script again.

To manually install the Altiris Linux x64 Automation Environment:
1. Start the PXE Configuration Utility from the Altiris Console.
2. Select Boot > New....
3. Select the Linux radio button and click Add pre-boot".
4. Select the row Linux X64 from the table.
5. Enter the path to the BDCgpl_6.9.xxxx.frm file.
6. Click Next and follow the on-screen instructions.

Operating system installation halts after reboot when using LSI SAS RAID controller

Some combinations of LSI SAS RAID controllers and operating systems might experience a system halt after rebooting during operating system installation. The affected operating systems are:

- SLES 10
- SLES 11
- RHEL 5
- VMware 4

in combination with one of these RAID controllers:

- LSI-SAS-1078-IR
- LSI-SAS-(1064,1068)
- ServeRAID-BR10i
- ServeRAID-BR10ie

This problem occurs when the server has a drive that is not part of a RAID array and not configured as a hot spare. The problem is caused by the ordering of Linux mptsas devices.
For example, consider a system that has four drives with two configured in a RAID 1 array, one configured as a hot spare, and one outside the array. The BIOS sees the drive outside the array, /dev/sda, as HDD1. The RAID array, /dev/sdb, is treated as HDD0. The operating system installation puts the boot files on /dev/sda, the drive outside the array, but after the reboot, the installation looks to HDD0 for the boot files.

To work around this problem, use one of these options:
- Do not configure RAID.
- Change the RAID configuration so that all drives are included in a RAID array.
- Remove the drive outside the RAID array from the controller.
- Modify the boot order of the system to point to the drive outside the array instead of the array.

UpdateXpress System Pack Installer returns errors when supported hardware is not present

Deployment tasks that include installation of UpdateXpress System Packs (UXSPs) will return errors if hardware supported by the UXSPs is not present in the target system. These errors can be safely ignored.

Savestat will not save to location 9 on xSeries 226 with BIOS PME170CUS

On the xSeries 226 with BIOS Level PME170CUS, `savestat` cannot save a value to byte nine in persistent storage.

Unattended Linux installation requests network device

When performing unattended Linux operating system installs, the process might pause to ask which network device to use if there are multiple devices available. To avoid this problem, you can add a kernel parameter to specify the desired network device during the Workflow creation process.

In the OS install section of the workflow, a field is provided for optional kernel parameters.

The kernel parameter varies by operating system:
- For Red Hat and VMware: `ksdevice=eth`, where `eth` is the network device to use. For example eth0, eth1, and so on.
- For SUSE Linux: `netdevice=eth` where `eth` is the network device to use. For example eth0, eth1, and so on.

RAID configuration fails for ServeRAID-8E SATA

RAID configuration is not supported for the ServeRAID-8E SATA disk controller. Before you can install an operating system, you must create one or more simple volumes using the BIOS-based utility.

This limitation affects the following systems:
- System x3400, types 7973 and 7974
- System x3550, types 1913 and 7978
Unattended file not found during installation of SLES on uEFI systems

When using Linux Scripting Toolkit to install SLES on a uEFI based system, the installation task might be unable to find the answer file, causing the installation to attempt to continue in manual mode.

To resolve this issue, perform these steps:
1. Edit the workflow for your installation.
2. In the OS install section of the workflow, add brokenmodules=usb_storage to the optional kernel parameters.
3. Save the workflow.
4. Create bootable media from the workflow and perform the installation.
5. After the installation is complete, edit the file /etc/modules.d/blacklist, it is recommended that you make a copy of this file before editing it.
6. Remove the line blacklist usb_storage.

This limitation affects the following systems:
- System x3400 M2, types 7836 and 7837
- System x3500 M2, type 7839
- System x3550 M2, types 7946 and 4198
- System x3650 M2, types 7947 and 4199
- System x iDataplex dx360 M2 types 7321, 7323 and 6380
- BladeCenter HS22, types 7870 and 1936

Altiris Clone of Image Fails on SLES 11

Altiris RapiDeploy does not support the cloning of SLES 11 for capturing or deploying images, which causes this job to fail. To avoid this problem, use the -raw parameter for the Capture Linux Image and Deploy Linux Image jobs.

You must add -raw to the Additional Parameters line of both the Capture Linux Image and Deploy Linux Image jobs. When using this parameter, the operation will take significantly longer. You must also ensure that enough free space is available on the target location to save the images.

VMware 4 installations using Altiris fail

The computername variable used in VMware installations must contain only letters, digits, and hyphens. If any other characters are detected, the installation will halt.

By default, the Altiris console supplies the compname variable used by the console as the computername variable for VMware installations. Therefore to successfully install VMware using Altiris, you must ensure that the compname variable used by the Altiris console is allowable as the VMware computername variable.

ServeRAID BR10i adapter not supported on iDataPlex dx360 M2 with 12 Bay Storage Chassis (Machine type 7321)

The ServeRAID BR10i adapter is not supported on the iDataPlex dx360 M2 with 12 Bay Storage Chassis, machine type 7321.
RAID configuration fails for LSI SATA RAID

When performing RAID configuration to configure an LSI 1064/1064e SATA controller, you might receive error code 7 or 11. This error is caused when the cfggen utility is unable to remove or create a configuration on SATA drives larger than 250GB.

To avoid this problem, remove any logical volumes including RAID arrays on the adapters using the Ctrl+C menu on system POST prior to using Linux Scripting Toolkit.

Default Fibre Configurations not supported on Emulex Fibre HBAs

The Target WWNN, Target WWPN and LUN number on the Fibre HBA Toolkit variables need to be set to configure the Primary, Alternate 1, Alternate 2 and Alternate 3 boot device settings. The default settings will not work on Emulex Fibre HBA adapters.

All values are case sensitive. You must ensure that the configured values are identical to the adapter values with regard to case.

ASU configuration fails for Load Defaults

When performing ASU Configuration to load the system defaults, you might receive an error code of 45. This error is caused when the ASU utility is unable to load defaults for the ISCSI.InitiatorName setting. This limitation affects the following systems:

- System x3200 M3, types 7327 and 7328
- System x3250 M3, types 4251, 4252, and 4261
- System x3400 M2, types 7836 and 7837
- System x3500 M2, type 7839
- System x3550 M2, types 7946 and 4198
- System x3650 M2, types 7947 and 4199
- System x iDataplex dx360 M2 types 7321, 7323 and 6380
- BladeCenter HS22, types 7870 and 1936

To avoid this problem, create a new asu.ini file with these contents:

```
loaddefault uEFI
loaddefault SYSTEM_PROD_DATA
loaddefault BootOrder
loaddefault IMM
```

VMware ESX 4 installation requires a minimum of 4GB of memory

When performing an installation of VMware ESX 4, ensure that the target system has a minimum of 4 GB of memory.

PXE will not bind to port 4011 on a Windows 2008 server

When Altiris Deployment Server is installed on a Windows 2008 server, you might encounter this problem with PXE-E55 on the target system. Instructions for avoiding the problem are included in this Altiris knowledge base article.
RAID configuration fails for disks in JBOD

When performing RAID configuration for ServeRAID M-series controllers, any disks in state JBOD will not be used.

To avoid this problem, change the state of the disks from JBOD to unconfigured-good using the Ctrl+H menu during System POST prior to using the Linux Scripting Toolkit.

VMWARE ESX requires that NUMA system memory be balanced

VMWare installations may fail to load the VMkernel when Non-Uniform Memory Access (NUMA) is enabled and each processor does not have memory in its adjoining memory banks. For more information on this problem, see RETAIN tip [H1974](#).

VMware ESX Server 4.1 installation hangs at "Starting vmkernel initialization"

When installing VMware ESX Server 4.1 on a system with a MAX5 memory expansion module, the installation might hang on this screen. This issue can occur on the following systems:

- BladeCenter HX5, type 7872
- System x3690 X5, types 7148, 7149
- System x3850 X5, type 7145

To avoid this problem, add the kernel parameter `allowInterleaveNUMAnodes=TRUE` to the kickstart file and the Altiris job.

To update the kickstart file, follow these steps:

1. Navigate to `..sgdeploy\sgtklinux\altiris\answerfiles\` and make a copy of the existing `esx4.ks` kickstart file.
2. Edit `esx4.ks` to modify the line:
   ```
   bootloader --location=mbr
   ```
 to be:
   ```
   bootloader --location=mbr --append="allowInterleavedNUMAnodes=TRUE"
   ```

To modify the Altiris job, follow these steps:

1. In the Customize Job Variables task of the Altiris job, click Modify to edit the task.
2. Edit the line:
   ```
   #TK_DISTRO_KPARAM=
   ```
 by uncommenting it and adding the kernel parameter:
   ```
   allowInterleavedNUMAnodes=TRUE
   ```
 so that the line is now:
   ```
   TK_DISTRO_KPARAM="allowInterleavedNUMAnodes=TRUE"
   ```
3. Save your changes.

uEFI operating system installations not booting from hard drive

During native uEFI operating system installations, the target system might fail to boot from the hard drive after Linux Scripting Toolkit processes are complete. This
can occur if the target system does not automatically boot the efi file (bootx64.efi for RHEL6, or elilo.efi for SLES11) from the drive.

The solution to this problem is dependent on the operating system. Please consult the operating system information for instructions on adding a new boot option entry for the efi file.

For example, to correct this problem on most IBM systems, you can create a new boot entry for efi file and continue the installation using that option. Follow the steps below to create a new boot entry for the efi file:

1. Power on the system, and, press F1 to enter setup.
2. Select Boot Manager.
3. Select Add Boot Option.
4. Select the boot entry which includes string “*.efi”
5. Input the description as 0S_Insta11 and select Commit Changes.

Follow the steps below to continue the installation:
• Power on the system, and press F1 to enter setup.
• Select Boot Manager.
• Select Boot from File.
• Select the GUID Partition Tables (GPT) System Partition with the name 0S_Insta11.
• Select EFI.
• Select Boot.
• Select efi file.

Note: If the installation completes and the system does not boot to the operating system, go to the Start Options section of the setup menu and select the boot entry for the operating system.
Appendix A. Getting help and technical assistance

If you need help, service, or technical assistance or just want more information about IBM products, you will find a wide variety of sources available from IBM to assist you. This appendix contains information about where to go for additional information about IBM and IBM products, what to do if you experience a problem with your System x or IntelliStation® system, and whom to call for service, if it is necessary.

Before you call

Before you call, make sure that you have taken these steps to try to solve the problem yourself:

- Check all cables to make sure that they are connected.
- Check the power switches to make sure that the system is turned on.
- Use the troubleshooting information in your system documentation, and use the diagnostic tools that come with your system. Information about diagnostic tools is in the Hardware Maintenance Manual and Troubleshooting Guide on the IBM xSeries Documentation CD or in the IntelliStation Hardware Maintenance Manual at the IBM Support Web site.
- Go to the IBM Support Web site at http://www.ibm.com/pc/support/ to check for technical information, hints, tips, and new device drivers or to submit a request for information.

You can solve many problems without outside assistance by following the troubleshooting procedures that IBM provides in the online help or in the publications that are provided with your system and software. The information that comes with your system also describes the diagnostic tests that you can perform. Most xSeries and IntelliStation systems, operating systems, and programs come with information that contains troubleshooting procedures and explanations of error messages and error codes. If you suspect a software problem, see the information for the operating system or program.

Using the documentation

Information about your IBM System x or IntelliStation system and preinstalled software, if any, is available in the documentation that comes with your system. That documentation includes printed books, online books, readme files, and help files. See the troubleshooting information in your system documentation for instructions for using the diagnostic programs. The troubleshooting information or the diagnostic programs might tell you that you need additional or updated device drivers or other software. IBM maintains pages on the World Wide Web where you can get the latest technical information and download device drivers and updates. To access these pages, go to http://www.ibm.com/pc/support/ and follow the instructions. Also, you can order publications through the IBM Publications Ordering System at http://www.elink.ibmmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi.
Getting help and information from the World Wide Web

You can find service information for your IBM products, including supported options, at http://www.ibm.com/support.

Software service and support

Through IBM Support Line, you can get telephone assistance, for a fee, with usage, configuration, and software problems with xSeries servers, IntelliStation workstations, and appliances. For information about which products are supported by Support Line in your country or region, go to http://www.ibm.com/services/sl/products/.

Hardware service and support

You can receive hardware service through IBM Services or through your IBM reseller, if your reseller is authorized by IBM to provide warranty service. Go to http://www.ibm.com/planetwide/ for support telephone numbers, or in the U.S. and Canada, call 1-800-IBM-SERV (1-800-426-7378).

In the U.S. and Canada, hardware service and support is available 24 hours a day, 7 days a week. In the U.K., these services are available Monday through Friday, from 9 a.m. to 6 p.m.
Appendix B. Notices

This book contains the following notices designed to highlight key information:

• **Note:** These notices provide important tips, guidance, or advice.

• **Important:** These notices provide information or advice that might help you avoid inconvenient or difficult situations.

• **Attention:** These notices indicate possible damage to programs, devices, or data. An attention notice is placed just before the instruction or situation in which damage could occur.

Edition notice

© COPYRIGHT INTERNATIONAL BUSINESS MACHINES CORPORATION, 2011. All rights reserved.

U.S. Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States, other countries, or both:

- BladeCenter
- e-business logo
- eServer
- IBM
- IBM (logo)
- TotalStorage
- IntelliStation
- ServeRAID
- ServerGuide
- ServerProven
- xSeries
- System x

Intel and Pentium are trademarks of Intel Corporation in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

UNIX is a trademark of The Open Group in the United States, other countries, or both.

Other company, product, or service names might be trademarks or service marks of others.

Important notes

When referring to processor storage, real and virtual storage, or channel volume, KB stands for approximately 1000 bytes, MB stands for approximately 1 000 000 bytes, and GB stands for approximately 1 000 000 000 bytes.
When referring to hard disk drive capacity or communications volume, MB stands for 1,000,000 bytes, and GB stands for 1,000,000,000 bytes. Total user-accessible capacity might vary depending on operating environments.

IBM makes no representation or warranties regarding non-IBM products and services that are ServerProven, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. These products are offered and warranted solely by third parties.

IBM makes no representations or warranties with respect to non-IBM products. Support (if any) for the non-IBM products is provided by the third party, not IBM.

Some software can differ from its retail version (if available), and may not include user manuals or all program functionality.
Index

C
customizing deployment scenarios 23

D
deployment scenarios
 customizing 23
 quick start 13

N
notes, important 95

P
policy file parameter
 AppliesTo.n 55
 Array_Defaults 58
 Array_Mode 57
 Array.letter 58
 Hotspares 59
 Logical_Defaults 60
 Logical_Mode 59
 Logical.num 60
 policy:name 55
 ReadAhead 56
 RebuildRate 57
 StripeSize 57

Q
quick start 13

T
 toolkit utilities, using 41, 42, 70
 trademarks 95

U
 using, toolkit utilities 41, 42, 70