Note

Before using this information and the product it supports, be sure to read the information in “Notices” on page ix.

Third Edition (June 2001)

This edition applies to version 5, release 1, modification 0 of Backup, Recovery and Media Services (product number 5722-BR1) and to all subsequent releases and modifications until otherwise indicated in new editions. This edition applies only to reduced instruction set computer (RISC) systems.

This edition replaces SC41-5345-01. This edition applies only to reduced instruction set computer (RISC) systems.

© Copyright International Business Machines Corporation 1998, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
Contents

About Backup, Recovery, and Media Services for iSeries (SC41-5345-02) vii
Who should read this book vii
Prerequisite and related information vii
Operations Navigator viii
How to send your comments viii

Notices ix

Summary of Changes xi

Part 1. Getting Started with BRMS 1

Chapter 1. Introduction to Backup Recovery and Media Services for iSeries (BRMS) 3
BRMS Standard 3
BRMS Network Feature 3
BRMS Advanced Functions Feature 3
Overview of Standard BRMS Product Functionality 4
How BRMS Policies Work 5
Types of Policies 5
How BRMS Control Groups Work 6
How Policies and Control Groups Work Together 6
The BRMS Media Management Components 7
How the BRMS Functional Components Work Together 9

Chapter 2. Installing and Initializing BRMS 11
Hardware Considerations 11
Software Considerations 11
Installing Media and Storage Extensions (MSE) 11
Installing BRMS 12
After the Installation 12
Updating License Information 13
Removing BRMS From Your System 13

Chapter 3. Backing Up Your Entire System 15
Enrolling Media 15
Determining Media Classes 16
Enrolling Media into BRMS for use by a Stand-Alone Tape Device 17
Enrolling Media into BRMS for use by a Media Library 17
Performing the Backups 18
Backing Up System with *SYSTEM 18
Backing Up System Data with SYSGRP 18
Backing Up User Data with BKUGRP 19

Chapter 4. Recovering Your Entire System 21
An Overview of the Recovery Reports 21
Recovering Your Entire System Report (also called the Recovery Analysis Report) 21
Recovery Volume Summary Report 22
Display ASP Information Report 22
Printing the Recovery Reports 22
Using the Recovering Your Entire System Report 23
Step: Recover Licensed Internal Code 24
Step: Recover Operating System 24
Step: Recover the BRMS Product and Associated Libraries 25
Step: Recover BRMS Related Media Information 26
Step: Initialize BRMS Device and Media Library Information 27
Step: Recover User Profiles 28
Step: Recover BRMS Required System Libraries 29
Step: Recover configuration data 30
Step: Reset BRMS Device and Media Library Information 30
Step: Recover All Remaining System and User Data 31
Step: Recover IBM Product Libraries 31
Step: Recover User Libraries 32
Step: Recover Document Library Objects 33
Step: Recover Objects in Directories 34
Step: Recover Spooled Files for all ASPs 34
Step: Apply Journal Changes 35
Step: Recover Authorization Information 35
Step: Verify system information 35
Step: Special Recovery Processing — iSeries Integration for Windows Server 35
Step: Special Recovery Processing — IBM Content Manager onDemand for iSeries 37
Step: Special Recovery Processing — Cryptographic Access Provider for iSeries 37
Step: Apply PTFs 37
Step: Print Job Log 37
Step: Change QSECOFR User Profile Password 38
Step: Perform IPL 38
Recovery Tips 38

Part 2. Tailoring Your BRMS Operations 41

Chapter 5. Working with Devices in BRMS 43
Adding New Devices 43
Adding a New Device Automatically 43
Adding a New Device Manually 44
Changing an Existing Device 44
Chapter 12. Setting Up BRMS as a TSM Client

An Overview of the BRMS Application Client
How BRMS Networks Communicate
How to Set Up a BRMS Network
A Step-by-Step Guide to Setting Up Your BRMS Network
Changing the System Name
Joining Two BRMS Networks
Copying Control Groups Between Networked iSeries Servers
Verifying the BRMS Network
Network Security Considerations
Removing a System From a Network
Removing the Network Feature from a Previously Networked System

Chapter 13. Networking with BRMS

An Overview of BRMS Network Functionality
How Shared Media Inventory Synchronization Works
How BRMS Networks Communicate
How to Set Up a BRMS Network
A Step-by-Step Guide to Setting Up Your BRMS Network
Initializing Your BRMS Client
Changing the System Name
Steps at the TSM Server
Steps at the TSM Client

Chapter 14. Online Lotus Server Backups

How Lotus Server Online Backup Works
Initialize BRMS For Lotus Server Backups
Performing An Online Lotus Server Backup
Determine the device and media class to use
Add media to the media class scratch pool
Start the backup
View the Catalog of Lotus Server Saved Items
Planning for Disaster Recovery
Recovering a Single Lotus Server Database
Restrictions
Recommendations
Limitations
Lotus Server Backup Performance Tuning
For Domino servers
For QuickPlace servers
How to Copy BRMS Lotus Server Control Groups
Pre-processing and Post-processing *EXITs in Control Groups.

Chapter 15. Using Tape Automation with BRMS

Adjustments to BRMS When Using Tape Automation
Setting up Tape Automation with BRMS
Creating Tape Automation on Your System
Basic Setup of an Media Library with BRMS
Enrolling Tape Automation Media (volume) into BRMS
Save and Restore Tasks
Performing a Normal Save Operation
Save Storage and BRMS
Using the Save Licensed Program Command
Recovery Process Using Tape Automation
Recovering an Entire System (Starting with Licensed Internal Code)
Completing the Recovery
Tasks for Archiving
Archiving When Using Tape Automation
Using Dynamic Retrieval
Moving Volumes with BRMS

Chapter 16. Tape I/O From A Program

Using BRMS for Tape File Processing
Recovery
Using BRMS for Input Processing
Input/Output Processing with Multiple Devices
1. Create Tape File Objects
2. Compile The Program
3. Use OVRTAPF to Indicate Which Tape Drives to Use
4. Use SETMEDBRM to Involve BRMS in Managing the Tape
Call the Program
Results
Other Processing Techniques
Messages

Part 4. Appendixes

Appendix A. A Summary of BRMS Reports

ASP Information Report (QP1AASP, QP1AXS)
Backup Folder List Report (QP1AFL)
Backup Link List Report (QP1AFS)
Backup Object List Report (QP1AOB)
Backup Plan Report (QP1ABP)
Backup Policy Report (QP1ABX)
Backup Spooled File List Report (QP1ALQ)
Calendar Report (QP1ACA)
Centralized Media Audit Report (QP1ASYN)
Container Report (QP1ACN)
Container Class Report (QP1ACT)
Device Report (QP1ADV)
Library Backup Analysis Report (QP1ALA)
Link Information Report (QP1ADI)
Location Analysis Report (QP1A2SL)
Log Report (QP1ALG)
Media Report (QP1AMM)
Media Class Report (QP1AMT)
Media Expiration Report (QP1AEP)
Media Information Report (QP1AHS)
Media Library Report (QP1AMD)
Media Library Media Report (QP1A1MD)
Media Merge Report (QP1AEN)
Media Movement Report (QP1APVMS)
Media Policy Report (QP1AME)
About Backup, Recovery, and Media Services for iSeries (SC41-5345-02)

This book provides information on how to install and use the standard Backup, Recovery, and Media Services (BRMS) product. This information includes instruction on how to design and implement a comprehensive backup, recovery, and media management strategy for your company. Following is a list of the topics that are discussed in this book:

- An immediate backup of your entire system.
- Use BRMS recovery reports to assist you in recovering your entire system.
- Tailor a backup strategy that best suits the specific needs of your company.
- Perform recoveries of selected libraries and objects.
- Design an effective, automated media tracking system using BRMS.
- Perform daily and weekly maintenance tasks in BRMS.
- Secure your backup, recovery, and media operations.
- Establish BRMS as a client to TSM
- Create a network of BRMS systems.

This book provides step-by-step instruction on how to perform each of these tasks, and provides detailed examples whenever possible.

At V5R1, many functions of BRMS are now available through a plug-in to Operations Navigator. For more information on the functions that are available in Operations Navigator, go to the iSeries Information Center.

Who should read this book

This book is designed for system administrators and operators who work with BRMS on a regular basis, and for those responsible for designing backup, recovery, and media management strategies.

This book assumes familiarity with standard iSeries usage and terminology. It also assumes familiarity with the Backup and Recovery book.

Prerequisite and related information

Use the iSeries Information Center as your starting point for looking up iSeries and AS/400e technical information. You can access the Information Center two ways:

- From the following Web site:
 http://www.ibm.com/eserver/iseries/infocenter
- From CD-ROMs that ship with your Operating System/400 order:
 iSeries Information Center, SK3T-4091-00. This package also includes the PDF versions of iSeries manuals, iSeries Information Center: Supplemental Manuals, SK3T-4092-00, which replaces the Softcopy Library CD-ROM.

The iSeries Information Center contains advisors and important topics such as CL commands, system application programming interfaces (APIs), logical partitions,
clustering, Java, TCP/IP, Web serving, and secured networks. It also includes links to related IBM Redbooks and Internet links to other IBM Web sites such as the Technical Studio and the IBM home page.

With every new hardware order, you receive the following CD-ROM information:

- **iSeries 400 Installation and Service Library**, SK3T-4096-00. This CD-ROM contains PDF manuals needed for installation and system maintenance of an IBM iSeries 400 server.
- **iSeries 400 Setup and Operations CD-ROM**, SK3T-4098-00. This CD-ROM contains IBM iSeries Client Access Express for Windows and the EZ-Setup wizard. Client Access Express offers a powerful set of client and server capabilities for connecting PCs to iSeries servers. The EZ-Setup wizard automates many of the iSeries setup tasks.

Operations Navigator

IBM iSeries Operations Navigator is a powerful graphical interface for managing your iSeries and AS/400e servers. Operations Navigator functionality includes system navigation, configuration, planning capabilities, and online help to guide you through your tasks. Operations Navigator makes operation and administration of the server easier and more productive and is the only user interface to the new, advanced features of the OS/400 operating system. It also includes Management Central for managing multiple servers from a central server.

For more information on Operations Navigator, see the iSeries Information Center.

How to send your comments

Your feedback is important in helping to provide the most accurate and high-quality information. If you have any comments about this book or any other iSeries documentation, fill out the readers’ comment form at the back of this book.

- If you prefer to send comments by mail, use the readers’ comment form with the address that is printed on the back. If you are mailing a readers’ comment form from a country other than the United States, you can give the form to the local IBM branch office or IBM representative for postage-paid mailing.
- If you prefer to send comments by FAX, use either of the following numbers:
 - United States, Canada, and Puerto Rico: 1-800-937-3430
 - Other countries: 1-507-253-5192
- If you prefer to send comments electronically, use one of these e-mail addresses:
 - Comments on books: RCHCLERK@us.ibm.com
 - Comments on the iSeries Information Center: RCHINFOC@us.ibm.com

Be sure to include the following:

- The name of the book or iSeries Information Center topic.
- The publication number of a book.
- The page number or topic of a book to which your comment applies.
Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator
3605 Highway 52 N
Rochester, MN 55901-7829
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States, other countries, or both:

- Application System/400
- AS/400
- e (Stylized)
- IBM
- iSeries
- iSeries 400
- Operating System/400
- OS/400
- 400

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.
Summary of Changes

Following are brief summaries of the enhancements to Backup, Recovery, and Media Services (BRMS) for iSeries for V5R1, and the accompanying enhancements to this book.

Software Enhancements

New functions available in BRMS at V5R1 include the following:

- A new shipped backup control group named *SYSTEM can be used to backup all system and user data. This new backup control group uses a new ship media policy named SYSTEM which has a default retention of 90 days.
- ACTIVITY and RETENTION parameters were added to the STRBKUBRM command which allow you to override the weekly activity attributes of backup control group entries, and override the retention attributes of the media policies assigned to the backup control group. These attribute overrides are resolved at the time the command is run and do not change the stored attributes of the backup control group or media policy.
- The BRMS System Recovery Report (QP1ARCY) has been enhanced to improve readability. Some recovery actions that had previously included multiple tasks were moved into separate steps to minimize the likelihood of the actions being missed during recovery.
- The BRMS Console Monitor has been updated to support a pass phrase of up to 128-characters.
- BRMS has increased the support for traditional user ASPs from 16 to 32.
- The RSTAUTBRM command has been updated to enable restoration of the private on user ASPs 17–32 and Independent ASPs 33–99.
- Beginning with V5R1, BRMS is available as a plug-in to Operations Navigator. When the BRMS plug-in is installed, you will also see new functions integrated into the Operations Navigator hierarchy like a Backup System... on the system folder, and Restore... and Backup... functions on selected sub-folders and objects. The BRMS plug-in adds a new Backup Recovery and Media Services folder into the Operations Navigator hierarchy that provides a graphical view of BRMS backup policies (control groups), media, saved item history, and backup log.

For detailed information on the BRMS plug-in to Operations Navigator, see the iSeries Information Center.

Book Enhancements

The BRMS book has been updated at V5R1 to improve its effectiveness, readability, and technical accuracy. Changes include:

- References to the ADSTAR Distributed Storage Manager (ADSM) throughout the book were changed to Tivoli Storage Manager (TSM).
- Added "Chapter 14. Online Lotus Server Backups" on page 207 which describes how to perform online backups of Lotus servers using BRMS.
- Added "Chapter 15. Using Tape Automation with BRMS" on page 213 which includes useful information about how to use tape automation with BRMS.
- The syntax diagrams and descriptions of the BRMS control language (CL) commands now reside in the iSeries Information Center with the rest of the CL information..
Part 1. Getting Started with BRMS
Chapter 1. Introduction to Backup Recovery and Media Services for iSeries (BRMS)

The Backup Recovery and Media Services (BRMS) product provides separately priced, separately installed components. These components consist of a standard product and two additional features. You can find the latest information about BRMS on the internet at this location: http://www.iseries.ibm.com/service/brms.htm.

Note: If you have not purchased the BRMS product, you can install and use the standard product and the additional features without a license for a 70-day trial period. Contact your IBM representative if you want to purchase a license for BRMS.

The following is a summary description of the base product and the additional features.

BRMS Standard

The standard product provides you with the capability to implement a fully automated backup, recovery, and media management strategy for your iSeries system. Use BRMS with shared or stand-alone tape devices, automated tape libraries, Tivoli Storage Manager (TSM) servers (formerly known as ADSTAR Distributed Storage Manager (ADSM) servers), and an unlimited number of volumes. The standard BRMS product does not provide archive, dynamic retrieval, automated migration operations, or shared media support.

Many of the features in the BRMS standard product are available as part of a plug-in to Operations Navigator. For detailed information on the BRMS plug-in to Operations Navigator, see the iSeries Information Center.

BRMS Network Feature

The BRMS Network feature enables a BRMS system to interconnect via a network to other BRMS networked systems. A networked BRMS system can share the inventory and policies that are associated with media that is managed by a central BRMS system.

BRMS Advanced Functions Feature

The BRMS Advanced Functions feature provides hierarchical storage management (HSM) capability which includes archive, dynamic retrieval, and automatic auxiliary storage pool (ASP) migration. This book provides information on how to use the three primary functions (backup, recovery, and media management) of the standard BRMS product. It also includes information on how to use the Network feature. You can find information on the Advanced Functions components, such as archive, retrieve, and migration, in Hierarchical Storage Management. You can get a copy of Hierarchical Storage Management when you purchase the Advanced Functions feature.
Overview of Standard BRMS Product Functionality

Figure 1. The Standard BRMS Functions

The standard BRMS product assists you in defining and processing your backup, recovery, and media management operations. Through user-defined controls, BRMS works in conjunction with your iSeries system to manage your most critical and complex backups while simplifying day-to-day operational tasks. The standard BRMS product provides three basic functions.

- **Backup:** BRMS backup assists you in establishing a disciplined approach to designing and managing your backup operations. It helps you to define, process, monitor and report your backup activities. Use BRMS to back up all of the data on your iSeries system including objects in libraries, folders, directories, spooled files, security information, system configurations, and the operating system itself. To do this, you can use the default backup control groups, already set up in BRMS, or you can design your own backup operation to suit more specific needs.

- **Recovery:** BRMS recovery provides for the orderly retrieval of lost or damaged data. Its most important feature is a series of recovery reports that take you, step-by-step, through the recovery of your system. These reports not only contain restore instructions, but also indicate which tapes the system requires for the recovery. With BRMS, you can restore your entire system, or selected items such as control groups, libraries, objects, folders, auxiliary storage pools (ASPs), spooled files, or Integrated File System links.

- **Media Management:** BRMS media management tracks all of your tapes and save files. Media is tracked through all cycles from tape creation to expiration. The tracking process includes active use, storage location, and return to scratch pool availability. BRMS tracks your media until you remove it from the media inventory or until it is otherwise disabled due to usage threshold or poor quality rating. BRMS also records and updates changes to the media inventory.

Figure 2 on page 5 illustrates how BRMS processes backups and recoveries through the media management system. Policies, control groups, and devices link the backup and recovery processes.
Policies and control groups tell BRMS how and what to back up or recover. The media management system tells BRMS where to store the data and where to retrieve it.

How BRMS Policies Work

Policies define how BRMS operations are generally to be done, similar to the ways in which system values control how your iSeries operates. They establish actions and assumptions that are used during processing. They also provide a single point of control for administering broad changes in operating principles. Each policy provides a template for managing backup and media management strategies at high levels.

Types of Policies

The standard BRMS package provides the following policies:

- **The System Policy** is very similar to a set of system values. Unless other policies or controls are in place, system policy parameters determine the policy defaults for many of your BRMS operations.

- **The Backup Policy** specifies how to perform backups. You can define weekly backup activities, types of incremental backup, and the level at which you want to save media information. One backup policy governs all backup operations. You can define or change these operations at the control group level.

- **The Recovery Policy** defines how recovery operations are generally to be performed. One recovery policy governs all recovery operations. You can redefine or change recovery command values to allow for single or phased recoveries.

- **The Media Policies** govern the handling of media by media type. Media policies determine retention periods and instruct BRMS where to find the appropriate tapes to perform your backup. They also determine if backup operations will create and use save files. Unlike system, backup, and recovery policies, multiple media policies can exist.
• The **Move Policy** determines the movement of media from creation through expiration, and through various on and offsite storage locations. Multiple move policies can also exist.

How BRMS Control Groups Work

Control groups consist of groups of libraries, objects, folders, spooled files, and other types of data that share common characteristics or that you want grouped together for backup purposes. Whereas policies determine *how* data is processed, control groups determine, by their content, *which* data to process. They also specify what kind of backup you want BRMS to perform, such as full, incremental, or cumulative-incremental. In addition, control groups specify which days the data will be processed, and the order in which the processing occurs. Control groups usually refer to, and work with, related policies. You can set control group attributes to override policy decisions.

Though you cannot create control groups specifically for a recovery job, BRMS does efficiently recover data by control groups.

How Policies and Control Groups Work Together

The media, move, backup, and recovery policies are sometimes called function policies because they pertain to specific, core BRMS functional activities. The system policy is called a global policy because BRMS applies many of its values to the core functional activities.

Figure 3 illustrates the hierarchical relationship between policies and control groups.

As you can see, the system policy is global and encompasses the function policies and the control groups. Unless otherwise altered, the information contained in system policy parameters overrides information that is contained in function policy parameters. By the same token, function policy information, unless otherwise altered, overrides control group information.

However, because save and restore needs vary depending on customer needs, policies and control groups that share the same parameters and value can override one another. In this way, a function policy value can override a shared system
policy value, and a control group value can override a shared function or system policy value. The following examples illustrate override capability:

- The system policy uses a default media policy that is called FULL, which indicates that, among other things, media must be kept for 35 days. Suppose, however, that you want to retain media for a longer period. In this case, you could specify the name of a different media policy in the backup policy at the Media policies for full backups field. In this way, a function policy can override a system policy value.

- A system policy default value instructs BRMS not to send a message to sign off interactive users before a save operation begins. There may, however, be occasions when the contents of a particular control group require that users be off the system during save processing. In that case, you would change the value in the Sign off interactive users field on the Change Backup Control Group Attributes display from *NO to *YES. *YES, in this instance, means that users cannot access that control group during save processing. In this way, a control group value can override a policy value.

BRMS comes with several pre-defined values (called defaults) so that you can immediately begin carrying out your backup, recovery, and media management operations. You can change all or any of the default values at any time to better reflect the needs of your company.

BRMS also comes with pre-defined backup control groups that allow you to perform an immediate and comprehensive backup of your entire system. You can find more information on the default backup control groups in "Chapter 3. Backing Up Your Entire System” on page 15. You can find additional information on BRMS policies in “Part 2. Tailoring Your BRMS Operations” on page 41.

The BRMS Media Management Components

Use the BRMS Media Management to create an automated tracking system for all of your media activities. BRMS provides a variety of components with which you can track, protect, and store your media. Because BRMS Media Management is large and diverse, we have arranged its components into groups. Placing the media management components into groups gives you an easy understanding of the components available and the ways in which you can use them.
Components for Preparing Media
Use these components to prepare your media for backup or recovery processing. These components include media classes, and techniques for enrolling, initializing, and handling media.

Components for Storing Media
Use these components to define and track storage location and media retention information.

Components for Moving Media
Use these components to coordinate and track media movement from one storage location to another and to verify scheduled movement. These components include move policies, move commands, and move monitoring techniques.

Components for Tracking Media
Use these components to assist you in tracking media through various stages of your backup, recovery, and media management operations. These components include the BRMS media inventory database, and techniques for duplicating media and printing media labels.

You can design your media management operation to use all of these components, or to use only those desired for specific purposes. You may use some of these components frequently and some not at all. See "Chapter 6. Setting Up Your Media Management Operation" on page 51 for information and instruction on how to use the media management components.
How the BRMS Functional Components Work Together

Figure 5 illustrates the ways in which the backup and recovery policies and control groups work with the various media management components to provide comprehensive backup, recovery, and media management support.

Figure 5. How the BRMS functional components come together
Chapter 2. Installing and Initializing BRMS

This chapter provides information on how to install BRMS on your iSeries server. It also discusses the types of hardware that are compatible with BRMS, and the kind of software that you need to install prior to installing BRMS. In addition, this chapter provides a list of things for you to consider before and after installation to help ensure your effective use of BRMS.

This chapter does not describe how to install the BRMS plug-in to Operations Navigator. For that information, see the iSeries Information Center.

Before installing BRMS, carefully review the next section to ensure that you can meet BRMS hardware and software requirements.

Hardware Considerations

BRMS is compatible with all iSeries RISC system models. The following types of media and tape library devices are compatible with BRMS:

- All types of iSeries tape media.
- All iSeries stand-alone tape devices.
- All iSeries media libraries (MLBs).
- Use of save files.
- Use of ADSM servers.

BRMS does not support diskette, optical, unlabeled or non-standard label tape.

During installation, BRMS automatically registers and initializes the devices attached to your iSeries and creates corresponding device information entries. It is very important that you attach the devices that you plan to use before installing BRMS. If you add devices after the installation, you must run the initializing process again to register the new devices with BRMS. To do so, use the Initialize BRMS (INZBRM) command (*DATA).

Note: See "Chapter 5. Working with Devices in BRMS" on page 43 for more information on how to use BRMS to add or change devices and device information.

Software Considerations

You must install the Media and Storage Extensions (MSE) feature on your iSeries before you install BRMS. If MSE is not installed, BRMS cannot register the exit points and your saves will not complete.

Installing Media and Storage Extensions (MSE)

Take the following steps to install MSE on your machine:

1. Enter GO LICPGM from a command line.
2. At the Work with Licensed Programs display, select option 11 (Install Licensed Programs).
3. Select licensed program 5722SS1, option 18, Media and Storage Extensions (MSE), and press Enter.
4. Press Enter at the next display to confirm your selection.
5. At the Install Options display, type in the name of your installation device as requested. Press Enter to start the installation.
6. Review the job log to ensure that the installation completed successfully. Use the Display Job Log (DSPJOBLOG) command to review the job log.

You also need to ensure that the QSYS2 library is in your system library list. Use the Display System Values command (DSPSYSVAL QSYSLIBL) to check. If required, be sure to add the library to your system library list. You can use the Change System Library List (CHGSYSLIBL) command to do so.

Installing BRMS

To install BRMS on your iSeries, perform the following steps:

1. Enter GO LICPGM from a command line.
2. At the Work with Licensed Programs display, select option 11 (Install Licensed Programs).
3. Select Product 5722BR1, option *BASE, to install the standard Backup, Recovery, and Media Services for the iSeries product. Then press Enter.
4. Press Enter at the next display to confirm your selection.
5. At the Install Options display, type in the name of your installation device as requested. Then press Enter to start the installation.
6. Review the job log to ensure that the installation completed successfully. Use the Display Job Log (DSPJOBLOG) command to review the job log.
7. After you have successfully installed the *BASE BRMS product, you can install the additional features. To do so, repeat steps 1-6 for each feature. At step 3, take option 1 for the Network feature or option 2 for the Advanced Functions (HSM) feature.

During installation, BRMS performs the following tasks:

- Creates tape drive and media class entries that are based on the installed tape devices.
- Creates default BRMS objects.
- Creates the QBRM and QUSRBRM libraries, which contain all BRMS-related objects and information.
- Registers BRMS with the MSE feature of OS/400.

After the Installation

Do or consider the following after the successful installation of BRMS:

- Reload the latest cumulative program temporary fix (PTF) compact disk to ensure that all of the BRMS-related fixes are in place. If you recently ran the latest cumulative (CUM) PTF prior to installing BRMS, the IBM Operating System/400 Version 4 (OS/400) only runs BRMS-related PTFs.
- You may also want to load the latest Save and Restore Group PTFs. You can access the latest PTFs through the iSeries Internet home page at http://www.as400.ibm.com/service/brms/group.htm.
Verify that the Allow user domain objects in user libraries (QALWUSRDMN) system value is set to *ALL, which is the default shipped value. This value allows user domain objects in libraries. It also determines which libraries on the system may contain the user domain objects *USRSPC (user space), *USRIDX (user index), and *USRQ (user queue). If you do not set the system value to *ALL, you must add the QBMR and QUSRBRM libraries to the list of libraries that are shown on the QALWUSRDMN display. You can use the Work with System Values (WRKSYSVAL) command to verify the QALWUSRDMN system value.

Updating License Information

If you purchased BRMS, you need to update the BRMS license information to disable the automatic product locking function. If you do not, you cannot use most of the BRMS functions and functional components beyond the 70-day trial period. If you have the license keys, we recommend that you update the BRMS license information now. To do so, take the following steps:

1. Type the Work with Licensed Information (WRKLICINF) command at a command line and press Enter.
2. At the Work with License Information display, locate product 5722BR1, feature 5050.
3. Type a 1 in the Opt field next to 5722BR1 feature 5050, and press Enter. You see the prompt display for the Add License Key Information (ADDLICKEY) command.
4. Use the default value of *ANY in the Processor group field.
5. In the License key field, type in the 18-character license key that is provided with your BRMS license agreement.
6. In the Usage limit field, specify a value of *NOMAX.
7. Use the default value of *NO in both the Expiration date and Vendor data fields.
8. Press Enter. You see message CPC9E66 (1 license key information records added to the repository).
9. Repeat steps 2 through 8 for BRMS features 5101 and 5102 if your license agreement includes these features.

You should store the license key in a secure place in case you have to do an unexpected (and unlikely) scratch install of OS/400.

Removing BRMS From Your System

To remove BRMS from your system, take the following steps:

1. Enter GO LICPGM from a command line.
2. At the Work with Licensed Programs display, select option 12 (Delete licensed programs).
3. Type option 4 (Delete) next to the BRMS (5722BR1) products you want to remove and press Enter.
4. Press Enter again at the next display to confirm the products you want to remove, and to proceed with the licensed program removal.

You can remove the Advanced Function and Network features independently of the standard product if required. However, before you can remove the Network feature, you must first remove the system from the network. You can find instruction on how to remove systems from a network and how to remove the Network feature itself in "Chapter 13. Networking with BRMS" on page 191.
Deleting the BRMS product from your system will remove the QBRM and QUSRBRM libraries from your system. If you used BRMS to save objects to save files, BRMS would have also created one or more libraries named Q1ABRMSnn, where nn is the number of the auxiliary storage pool containing the library. Deleting the BRMS product does not remove these save file libraries. If you intend to remove BRMS permanently from your system, you can also remove these libraries. You can delete these library by using the following command:

```
WRKOBJ OBJ(*ALL/Q1ABRM*) OBJTYPE(*LIB)
```

then use option 4=Delete to remove the libraries.
Chapter 3. Backing Up Your Entire System

You can use BRMS to perform a variety of backups. You can, for example, use BRMS-configured defaults to perform a straight-forward backup of your entire system. Or you can use a variety of other BRMS tools and techniques to tailor a backup and recovery operation that suits the specific needs of your company. This chapter provides instruction on how to use BRMS-configured defaults to back up all of your system and BRMS data.

Many of the functions described in this chapter are available as part of a plug-in to Operations Navigator. For detailed information on the BRMS plug-in to Operations Navigator, see the iSeries Information Center.

BRMS generally processes backups by using control groups. You can also use commands to process backups. In this chapter, however, the focus is on performing backups with control groups. Control groups consist of groups of libraries, objects, folders, spooled files, and other types of data that share similar characteristics or that you want grouped together for a particular purpose. BRMS comes with three default backup control groups, *SYSGRP, *BKUGRP and *SYSTEM.

The *SYSGRP control group contains special values called *SAVSYS and *IBM, which save OS/400 and IBM licensed programs (primarily the Q-libraries). The *SAVSYS value saves the system security and configuration data. The *BKUGRP control group saves the system security and configuration data, and all user data including user libraries, folders, DLOs, and Integrated File System data. The *SYSTEM control group combines the entries of the *SYSGRP and *BKUGRP control groups to allow you to backup the entire system using a single control group. This chapter shows you how to use the *SYSGRP, *BKUGRP and *SYSTEM control groups to perform backups of your entire system.

It is intended that you perform these backups after installing BRMS. After these initial backups, you should backup your user and system data at the frequency that best meets your business requirements. Thus, you might schedule daily, weekly, and monthly backups. The information contained in this book can assist you in developing and implementing the backup and recovery strategy that best suits your business needs. "Chapter 7. Tailoring Your Backup on page 81" and "Chapter 8. Performing Selected Recoveries" on page 129, which provide information on backup and recovery planning, and which also provide instruction on how to tailor your backup and recovery operations, are likely to be particularly helpful when designing your backup and recovery strategy.

Before you can perform any backups, however, you need to enroll the media for BRMS to use. To do that, read the instructions below and enroll your media as applicable.

Enrolling Media

The process of enrolling media has two steps, each of which is discussed in this section:

1. Determining the media class by which BRMS identifies and tracks your media.
2. Enrolling the media volumes into BRMS.
Determining Media Classes

It is important to have sufficient volumes enrolled in the BRMS scratch pool before performing a save operation. A media scratch pool is a group of available (expired and unused) media that share the same media class. BRMS draws the media it uses for backup and recovery operations from this pool. You are likely to need at least four volumes to perform the backups that are discussed in this chapter. Use two to back up your system data with the *SYSGRP control group, and two to back up your non-system data with the *BKUGRP control group, or use all four to backup your entire system using the *SYSTEM control group. You may need more or fewer tapes depending on the capacity of your media and the size of your system.

BRMS groups each tape into a media class, which allows BRMS to track and protect the active data on your media by type. A media class refers to the grouping of media by similar characteristics, for example, tape density and tape capacity.

During installation, BRMS creates default device information based on the type of device attached to your system at that time. If more than one tape device is attached, BRMS takes as its default device the fastest and most automated device that is attached. BRMS bases the default media class on the default device type. For example, if you have a 6380 tape device attached to your system, the media class might be QICxxx. In this case, the class prefix (QIC) signifies a 1/4″ tape and the x’s indicate different densities.

To perform the backups that are discussed in this chapter, you must use two different media classes:
- To perform the *SYSTEM backup of the entire system or the *SYSGRP backup of the system data, specify SAVSYS (Save System) as the media class when enrolling the volumes that are used for this backup.
- To perform the *BKUGRP backup of non-system data, specify the default media class name that is assigned by BRMS during installation.

To get there, perform the following steps:
1. Type GO BRMSYSPCY at a command line.
2. At the System Policy menu, select option 1 (Display or Change system policy).
3. At the Change System Policy display, note the media class name that is specified in the Media class field.
4. Use this media class name when you enroll the media for the *BKUGRP backup.
Enrolling Media into BRMS for use by a Stand-Alone Tape Device

Use the following procedure to enroll media for use by the stand-alone tape device that is attached to your system:

1. Insert the pre-initialized volume into your tape device. If your volumes not initialized, see "Chapter 6. Setting Up Your Media Management Operation" on page 51 for instruction on how to do so before enrolling the volumes into BRMS.

2. Type WRKMEDBRM at a command line to get to the Work with Media display.

3. At the Work with Media display, type a 1 in the Option column and then type the name of your volume in the Volume Serial column. Press Enter. This takes you to the Add Media to BRM (ADDMEDBRM) display.

 Note: If you encounter a message saying Cannot allocate device TAPxx, then you need to vary on the device. You can do that by taking option 8 (Work with status) from the Work with Devices (WRKDEVBRM) display.

4. Type the name of the appropriate media class in the Media Class field and press Enter. Be sure to enroll four volumes in the SAVSYS media class for the *SYSTEM backup, or two volumes into the SAVSYS media class for the *SYSGRP backup, and two into the media class assigned by your system policy for the *BKUGRP backup.

5. You have now returned to the Add Media to BRM display. Press F9 to prompt the additional parameters. Then press Enter again to enroll the media.

6. Repeat steps 4 through 6 for each volume.

Enrolling Media into BRMS for use by a Media Library

Use the following procedure to enroll media for use by the media library that is attached to your system:

1. Ensure that four pre-initialized volumes are available in your tape library. If your volumes not initialized, see "Chapter 6. Setting Up Your Media Management Operation" on page 51 for instruction on how to do so before enrolling the volumes into BRMS.
2. Type WRKMLBBRM at a command line to get to the Work with Media Libraries display.

3. Type an 8 (Work with MLB media) next to the name of the media library device you want to work with and press Enter. This takes you to the Work with Media Library Media display.

4. At this display, press Enter three times to work with current inventory of the media library. Place a 1 (Add MLB media) next to the volume you want to enroll and press Enter. This takes you to the Add MLB media to BRM display.

 Note: If you encounter a message saying *Cannot allocate device TAPMLBxx*, then you need to vary on the device. You can do that by using the Work with Media Library Status (WRKMLBSTS) command.

5. At the Add MLB media to BRM display, type in the name of the appropriate media class. Be sure to enroll two volumes into the SAVSYS media class for the *SYSGRP backup, and two into the media class assigned by your system policy for the *BKUGRP backup. Then press Enter. This returns you to the Add Media Library Media to BRM display.

6. At the Add Media Library Media to BRM display, press Enter twice.

7. Repeat steps 5 through 7 for each volume.

 Note: When volumes are physically inserted into the tape library, they must already have a volume identifier assigned to the volume. This is a requirement of the media library, not BRMS.

Performing the Backups

Use the following procedures to perform a full save of your entire system.

Notes:

1. Processing time for each backup depends on the size of your system processor, device capability, and the amount of data that you want to save.

2. You cannot perform other activities during these backups because your system will be in a restricted state.

Backing Up System with *SYSTEM

1. Sign on to your system console workstation.

2. Make sure that the device you want to use to perform the backup is varied on. Take option 8 (Work with status) from the Work with Devices (WRKDEVBRM) command to check the status of your device.

3. Be sure that the media you use for this backup is enrolled in the SAVSYS media class.

4. To begin the backup, type STRBKUBRM CTLGRP(*SYSTEM) SBMJOB(*NO) at any command line and press Enter.

5. Once the *SYSTEM backup completes, review the job log to ensure that the save completed successfully. To display the job log, enter DSPJOBLOG at a command line, and then press F10 to see the details.

Backing Up System Data with *SYSGRP

1. Sign on to your system console workstation.

2. Make sure that the device you want to use to perform the backup is varied on. Take option 8 (Work with status) from the Work with Devices (WRKDEVBRM) command to check the status of your device.
3. Be sure that the media you use for this backup is enrolled in the SAVSYS media class.

4. To begin the backup, type STRBKUBRM CTLGRP(*SYSGRP) SBMJOB(*NO) at any command line and press Enter.

5. Once the *SYSGRP backup completes, review the job log to ensure that the save completed successfully. To display the job log, enter DSPJOBLOG at a command line, and then press F10 to see the details.

Backing Up User Data with *BKUGRP

1. Make sure that the device you want to use to perform the backup is varied on. Take option 8 (Work with configuration status) from the Work with Devices (WRKDEVBRM) command to check the status of your device.

2. Be sure that the media you use for this backup in the appropriate media class. Use the class name that is identified in the Media class field in the system policy.

3. End all subsystems to enable the *BKUGRP control group to save. You did not need to do this before the *SYSTEM or *SYSGRP save because BRMS performed this function for you. Before you end the subsystems, go to the Work with Subsystems display and write down the subsystem names that are listed there. After the *BKUGRP save, you will need to restart each subsystem by name. To get to the Work with Subsystems (WRKSBS) display, type WRKSBS from any command line.

4. To end all subsystems, type ENDSBS SBS(*ALL) OPTION(*IMMED) at a command line and press Enter. All subsystems end (except the subsystem that operates the system console workstation, usually called QCTL) when the System ended to restricted state message appears. You may need to refresh the display. To view the message, enter DSPMSG QSYSOPR at a command line.

 Note: A message from QSYSOPR that asserts System ending abnormally will not affect your backup, though you may want to investigate the problem for other reasons.

5. Once all of the subsystems have ended, you can perform the *BKUGRP backup. At any command line, type STRBKUBRM CTLGRP(*BKUGRP) SBMJOB(*NO) and press Enter.

6. Once the *BKUGRP backup completes, review the job log to ensure that the save completed successfully. To display the job log, enter DSPJOBLOG at a command line, then press F10 to see the details.

7. To restart your subsystems, type STRSBS (Start Subsystem) on a command line and press F4 to prompt the Start Subsystems display. Type the name of a subsystem in the Subsystem description field and press Enter. Do this for each of the subsystems.

Printing Your Recovery Reports

After completing your backups, BRMS can generate a series of comprehensive recovery reports for use in recovering your entire system. If BRMS is offline due to system failure or other disaster, the recovery reports provide instruction on how to perform the first few steps manually. For example, the recovery reports tell you where to locate the volumes necessary to restore your system. In addition, they identify the manual steps you must take to install the Licensed Internal Code and perform a restore of the operating system and the BRMS product. After completing the manual steps, you can use BRMS to assist you in recovering the remainder of your system.
Perform the following steps to print the recovery reports you will need to recover your system:

1. Type STRRCYBRM at any command line and press F4 to prompt the Start Recovery using BRM display.
2. Press Enter to get a complete list of fields.
3. Set the value in the Option field to *SYSTEM and the value in the Action field to *REPORT.
4. Press Enter to generate the spooled files from which to print the following reports:
 - QP1ARCY: Recovering Your Entire System (features the actual recovery steps)
 - QP1A2RCY: Recovery Volume Summary Report (tells you where to find the necessary volumes)
 - QP1AASP: Display ASP Information
5. Use the Work with Spooled Files (WRKSPLF) command to print the reports.

To use BRMS to perform a recovery, you must have a copy of these reports available. Each time you complete a backup, print a new series of recovery reports. Be sure to keep a copy of these reports with each set of tapes at all locations where media is stored.
Chapter 4. Recovering Your Entire System

After the completion of each save, BRMS can generate a series of up-to-date reports that guide you, in a step-by-step manner, through the process of recovering your entire system. You can also use these reports to guide you through the recovery of selected aspects of your system. In the case of total system failure, the reports guide you through the first manual steps of the recovery process. These initial, manual steps include recovery of the licensed internal code and the operating system. After completing the manual steps, you can use BRMS and these reports to help you restore the rest of your system.

While this chapter provides information on how to recover your entire system, there are a variety of other ways by which to recover data. For example, you can restore information by control group, object, library, and document library objects (DLOs). You can find information on how to perform selected recoveries in "Chapter 8. Performing Selected Recoveries" on page 129.

Because the success of your recovery depends in large part on the kind and quality of your backup operation, you should design your backup plan carefully. "Chapter 7. Tailoring Your Backup" on page 81, provides more information on how to plan and implement an effective, viable backup strategy for your system.

Many of the functions described in this chapter are available as part of a plug-in to Operations Navigator. For detailed information on the BRMS plug-in to Operations Navigator, see the iSeries Information Center.

An Overview of the Recovery Reports

Following are brief summaries of the main reports BRMS can generate after the completion of your saves:

Recovering Your Entire System Report (also called the Recovery Analysis Report)

The Recovering Your Entire System Report is the primary recovery report generated by BRMS and is also referred to as the Recovery Analysis Report. Use this report to guide you in a step-by-step manner through the restoration of your entire system. This report includes instruction on how to recover your Licensed Internal Code, your operating system, user libraries, spooled files, and other parts of your system. This report also identifies media volumes (by volume ID) you need for recovery.

Note: The name of this report becomes Recovery Analysis when you use it to guide you through selected recoveries rather than complete recoveries.

In addition to the following three required reports, there are other reports which assist or pertain to various aspects of the data recovery process. For more information on the additional reports, see "Appendix A. A Summary of BRMS Reports" on page 235.
Recovery Volume Summary Report

The Recovery Volume Summary Report is used in conjunction with the Recovering Your Entire System Report to identify the volumes necessary to perform your recovery. This report also identifies the locations where you can find the necessary media.

Display ASP Information Report

The Display ASP Information Report provide information which assists you in reconfiguring or verifying your ASP configuration.

Printing the Recovery Reports

To print the reports, perform the following steps:

1. Type STRRCYBRM at any command line and press F4 to prompt the Start Recovery using BRM display.

2. Press F9 to get a complete list of fields. Make sure that the value Option field is *SYSTEM, and that the value in the Action field is *REPORT.

3. Press Enter to generate the reports.

4. Print the reports from the output queue. If desired, you can use the Work with Spooled Files (WRKSPLF) command to view the reports prior to printing them. The reports generate three corresponding spooled files, from which you can print the reports:
 - QP1ARCY: Recovering Your Entire System
 - QP1A2RCY: Recovery Volume Summary Report
 - QP1AASP: Display ASP Information

These reports are very important to a successful recovery. To ensure that the tapes and reports you need are available at all times, it is critical that you perform the following steps:

- Print an updated series of reports after the completion of each save (or at least once per day).
• You should make duplicate copies of each backup volume and attach copies of the latest reports to them.
• Distribute copies of the tapes and reports to each iSeries location that participates in the saves.
• You should always store at least one copy of the tapes and reports at an offsite location.

Note: Though this chapter only mentions the Start Recovery using BRM (STRRCYBRM) command in terms of its report capability, this command performs several other important recovery functions. You can find more information about this command in **Chapter 8. Performing Selected Recoveries** on page 129.

Using the Recovering Your Entire System Report

The successful completion of nearly every step in the Recovering Your Entire System Report relies on information in the Backup and Recovery book. After you obtain a copy of the Backup and Recovery book, you can review and test the steps that are outlined in this section.

Attention: If you are recovering a system that included data saved from independent disk pools, then refer to BRMS Information APAR II12662 for additional guidance on how to configure and vary on the disk pools. The independent disk pools must be varied on to successfully recover the data saved from these storage pools.

This chapter shows you how to use the steps in the Recovering Your Entire System Report to recover your entire system in the event of a total system failure. **You should not base an actual recovery on the steps that are outlined in this chapter. For assistance during an actual recovery, you must use the recovery reports that are generated by your own system.** Those reports contain recovery information particular to your own system. BRMS uses a pre-configured template as the basis for its recovery procedures, but also notes any steps that are uniquely yours. Such steps can include restoring from save files or from TSM servers.

It is very important that the QUSRBRM and QUSRSYS libraries be saved on a regular basis.

• The QUSRBRM library contains control group information, location information, media information and other customized information.
• The QUSRSYS library contains important information about your media volumes if you are using a media library device.
• The QUSRBRM and QUSRSYS libraries need to be recovered from the most current saved level for your BRMS recovery to be successful.

If you are using a 3494 tape library that is attached to a local area network (LAN), you must vary on the LAN line description. Use the WRKCFGSTS *LIN command to vary on the LAN line description. If you attach your 3494 through an RS232 connection, you do not need to vary on the RS232 line description.

The Recovering Your Entire System Report presents the steps in the order required for recovery. To perform a system recovery, you begin with the first step at the top of the system recovery report and follow the flow down through the report to the last step at the bottom of the report.
The information in the sections that follow show accurate reflections of the instructions that appear for each step in the actual report. As you read through the recovery steps, be sure to read the information inside the step as well the text that may precede or follow it.

The following are a few general things to keep in mind as you review the steps:
- Use the Start time and Stop time fields to record the time it takes to test or perform the recovery step.
- The Saved item column indicates the name of the items you need to restore to perform the recovery step.
- The Control group column identifies the name of the control group that contains the saved item (if you saved the item in a control group).
- The Volume identifier column lists the name of the volume that contains the latest backup of the saved item that you need to recover. (The Volume Summary Report provides the name of the location where you can find the volume).
- The information in the remaining columns pertain to the backup of the saved item.

Step: Recover Licensed Internal Code

Before you can recover the operating system and user data, you must first recover the Licensed Internal Code. The Licensed Internal Code is the layer of iSeries architecture just above the hardware. To recover the Licensed Internal Code, follow the "Recovering the Licensed Internal Code" steps in the *Backup and Recovery* book.

If you are using a media library device, you will need to set the device to either standalone, automatic or manual mode in order to load the *SAVSYS saved item. See the device documentation on how to properly change the mode for your media library device.

<table>
<thead>
<tr>
<th>Saved Item</th>
<th>Type</th>
<th>Save Date</th>
<th>Save Time</th>
<th>Sequence</th>
<th>Omit</th>
<th>Control Group</th>
<th>Volume Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>*SAVSYS</td>
<td>*FULL 01</td>
<td>7/25/00</td>
<td>11:25:30</td>
<td>0</td>
<td></td>
<td>1 *SYSGRP</td>
<td>VOL003</td>
</tr>
</tbody>
</table>

STEP: Recover Licensed Internal Code

Start time _____ Stop time _____

Use the media shown below and the procedure for "Recovering the Licensed Internal Code" in the "Backup and Recovery" book.

- Use "Option 2" if you are recovering to a different system or if you are recovering to a system with user ASP(s) or if you are recovering to the same system with a different release.
- Use "Option 3" if you are recovering to the same release and same system or you are recovering a logical partition to another logical partition.

STEP: Recover Operating System

Next you must recover the operating system.
STEP: Recover operating system

Start time ______ Stop time ______

Use the media shown below and the procedure for "Restoring the Operating System using the Complete Restore Method", as detailed in the "Backup and Recovery" book.

<table>
<thead>
<tr>
<th>Saved Item</th>
<th>Type</th>
<th>ASP</th>
<th>Save Date</th>
<th>Save Time</th>
<th>Objects Omit</th>
<th>Sequence Number</th>
<th>Control Group</th>
<th>Volume Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>*SAVSYS</td>
<td>*FULL</td>
<td>01</td>
<td>7/25/00</td>
<td>11:25:30</td>
<td>0</td>
<td>1</td>
<td>*SYSGRP</td>
<td>VOL003</td>
</tr>
</tbody>
</table>

STEP: Recover the BRMS Product and Associated Libraries

To allow BRMS to aid you through the recovery process, you must now recover the BRMS product and associated libraries.

Automating Your Recovery with a Media Library Device

If you are using a media library device and auto-configuration was enabled, you can now use your media library device to automate your recovery. To perform automated BRMS recovery using a media library device, you must have performed your save with the media library device in random mode.

Note: If you are using a 3494 Media Library for recovery, you will need to use the CFGDEVMLB command to configure and set up the necessary communications.

Ensure the media volume containing the *SAVSYS saved item has been removed from the drive. Load all the tapes needed for the recovery into the media library. (This may include the volume containing the *SAVSYS saved item.) Set the media library device to random mode.

From a command line, use the WRKMLBSTS command to determine the status of the media library and its resources. Ensure the status of the media library is VARIED ON. Use Option 4=Allocate resource to set the current allocation of the resources to ALLOCATED.

When running the RSTLIB and RSTOBJ commands, ensure you specify the media library device name (e.g. TAPMLB01), the volume identifier of the media containing the saved items, and the sequence number of the position of the saved item on the media.

Make a note of the media library device name you are using for future reference as this will be needed throughout the recovery process.

Recovery with a Media Library Device without Using Random Mode

From a command line, use the WRKMLBSTS command to determine the status of the media library devices and their resources. Ensure the current allocation of the resources you are using is set to DEALLOCATED and the status of the devices you are using is VARIED ON. From the command line, enter WRKDEVD DEVD(resource-name) and then use Option 5=Display to view the attributes. Ensure the Category of device attribute is *TAP.

Make a note of the device name you are using for future reference as this will be needed throughout the recovery process.
STEP: Recover the BRMS/400 product and associated libraries

Start time ______ Stop time ______

The BRMS/400 product and associated libraries must be recovered before you can use the product to perform other recovery operations.

To prevent messages that are not related to the recovery from interrupting the recovery process, run the following command:

CHGMSGQ MSGQ(QSYSOPR) DLVRY(*NOTIFY) SEV(99)

Use the following command to see which tape devices are configured:

WRKCFGSTS CFGTYPE(+DEV) CFGD(+TAP)

Or use the following command to see which media library devices are configured:

WRKCFGSTS CFGTYPE(+DEV) CFGD(+TAPLB)

Run the following command for each of the libraries listed below specifying the saved-item, volume-identifier, and sequence-number listed:

RSTLIB SAVLIB(saved-item)
 VOL(volume-identifier) SEQNBR(sequence-number)
 DEV(device-name)

After recovering the saved items, run the following command to verify the BRMS/400 product is installed correctly and the BRMS/400 commands are available:

CHKPRDOPT PRDID(5722BR1)

<table>
<thead>
<tr>
<th>Saved Item</th>
<th>Type</th>
<th>ASP Date/Time</th>
<th>Save Date/Time</th>
<th>Objects</th>
<th>Omit</th>
<th>Sequence Number</th>
<th>Control Group</th>
<th>Volume Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUSRBRM</td>
<td>*FULL</td>
<td>7/25/00 11:35:30</td>
<td>7/25/00 11:35:30</td>
<td>181</td>
<td></td>
<td>56</td>
<td>*BKUGRP</td>
<td>VOL002</td>
</tr>
<tr>
<td>QBRM</td>
<td>*FULL</td>
<td>7/25/00 14:43:38</td>
<td>7/25/00 14:43:38</td>
<td>1,007</td>
<td></td>
<td>15</td>
<td>*SYSGRP</td>
<td>VOL003</td>
</tr>
<tr>
<td>QMSE</td>
<td>*FULL</td>
<td>7/25/00 14:43:38</td>
<td>7/25/00 14:43:38</td>
<td>7</td>
<td></td>
<td>52</td>
<td>*SYSGRP</td>
<td>VOL003</td>
</tr>
<tr>
<td>Q1ABRMSF01</td>
<td>*FULL</td>
<td>7/25/00 14:43:38</td>
<td>7/25/00 14:43:38</td>
<td>1</td>
<td></td>
<td>106</td>
<td>*SYSGRP</td>
<td>VOL003</td>
</tr>
<tr>
<td>Q1ABRMSF02</td>
<td>*FULL</td>
<td>7/25/00 14:43:38</td>
<td>7/25/00 14:43:38</td>
<td>1</td>
<td></td>
<td>107</td>
<td>*SYSGRP</td>
<td>VOL003</td>
</tr>
</tbody>
</table>

STEP: Recover BRMS Related Media Information

Now you need to recover the BRMS media information which contains updates to the BRMS database files that contain the latest media information about your last save. The media information in the QUSRBRM library assists BRMS in recovering the remainder of your data. When you perform this step, use the file sequence numbers to ensure that you restore the correct objects; there may be more than one QUSRBRM item on that tape. Using the sequence number also improves the performance of the restore.
STEP: Recover BRMS/400 related media information

You must recover this information for the BRMS/400 product to accurately guide you through the remaining recovery steps.

Run the following command for each of the libraries listed below specifying the saved-item, volume-identifier, and sequence-number listed:

```
RSTOBJ OBJ(*ALL) SAVLIB(saved-item)
   VOL(volume-identifier) SEQNBR(sequence-number)
   DEV(device-name)
```

<table>
<thead>
<tr>
<th>Saved Item</th>
<th>Type</th>
<th>ASP</th>
<th>Date</th>
<th>Time</th>
<th>Objects</th>
<th>Omit</th>
<th>Sequence Number</th>
<th>Control Group</th>
<th>Volume Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUSRBRM</td>
<td>+QBRM 01</td>
<td>7/25/00</td>
<td>15:58:26</td>
<td>11</td>
<td>108</td>
<td>+SYSGRP VOL003</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STEP: Initialize BRMS Device and Media Library Information

If you used values other than default values on the BRMS device and media library information displays, you should verify that your changes are still in effect. You can do this from the Work with Devices (WRKDEVBRM), Work with Media Libraries (WRKMLBBRM) and the Work with Device Descriptions (WRKDEVD) commands. Some of the values revert to the defaults when you use the INZBRM OPTION(*DEVICE) command.

Note: In some full system recovery scenarios, the WRKMLBBRM command will not run successfully because of dependencies on files saved in library QUSRSYS. If this occurs, you should defer using the WRKMLBBRM command until STEP: Reset BRMS Device and Media Library Information.

If you are using BRMS Functional Authority and you skip the INZBRM OPTION(*DEVICE) because of your particular recovery scenario, at a minimum you need to perform a INZBRM OPTION(*DATA) so BRMS can re-register its functions with Operating System/400. The BRMS Functional Authorities will not be fully operational until after completion of STEP: Recover Authorization Information.

STEP: Initialize BRMS/400 device and media library information

You must initialize the BRMS/400 device and media library information. Use the following command to clear and initialize the BRMS/400 device and media library information with the tape and media library devices currently configured on the system:

```
INZBRM OPTION(*DEVICE)
```

INZBRM OPTION(*DEVICE) resets some device information to the BRMS/400 supplied defaults. Review the BRMS/400 device information using the following command:

```
WRKDEVBRM
```

Update the BRMS/400 device information with any changes necessary to continue with your recovery.
STEP: Recover User Profiles

It is time to recover the user profiles. When you restore the user profiles, you restore all the attributes of the profile and the system builds a working table that holds the private authorities to objects. Later in the recovery process, you will restore the private authorities to the restored objects.

Note: BRMS is designed to minimize exposure of recovering data onto the wrong system. BRMS uses the default local location name and local network ID to retrieve recovery information from its database for the system being recovered. This presents a problem when the intention is to recover the system to a new system having a name that is different from the saved system name or if the system is configured for a new network ID. If your intention is to recover saved data to a system having a different name or network than the saved system, you must perform one of the following actions. Otherwise, you will not see any recovery information when using the STRRCYBRM command.

1. The simplest approach is to change the default local location name and/or the local network ID temporarily to the old system name and old network ID using the command:

   ```
   CHGNETA LCLLOCNAME(old-system-name) LCLNETID(old-network-id)
   ```

 This allows the STRRCYBRM command to be used with FROMSYS(*LCL) which retrieves the default local location name and local network ID from the network attributes. You will need to change the default local location name and local network ID back to the original values following the recovery. You will also need to perform a complete system backup to refresh the BRMS database with new save information using the new system name and network ID.

2. The second approach actually renames the system name attributes in the BRMS database to the new system name. This method can be used if the old system was part of a BRMS network.

 a. Type GO BRMSYSPCY and press Enter.
 b. Select Option 4, Change network group and press Enter.
 c. Select Option 4=Remove next to the old system name entry and press Enter.
 d. Specify *RENAME for the Remove media attribute on the Confirm Remove of Network Systems display and press Enter.
 e. Specify Option 1=Add and the new system name and network ID, then press Enter.

Before recovering the user profiles, review the implications of setting the Allow object differences parameter (ALWOBJDIF) to *ALL in the Backup and Recovery book. If there is no data on the system, you can use *ALL when performing a full system recovery. Specifying *ALL when recovering to a different system automatically links the restored information to the authorization lists associated with the object.

If you are restoring to the same system on which BRMS performed the backup, ensure the system resource management (SRM) parameter is set to *ALL. However, if you are restoring to a different system, you should set the parameter to *NONE.

If you are using a media library device in random mode to perform automated recovery, you may now select to recover all of your data. An easy way to do this is to use F16 to select all recovery items. After all items are restored, continue with **STEP: Recover Spooled Files for all ASPs**.
STEP: Recover user profiles

Start time ______ Stop time ______

You should restore a current version of your user profiles.

To do so, run the following command:

```
STRRCYBRM OPTION(*SYSTEM) ACTION(*RESTORE)
```

Press F9 (Recovery defaults) on the Select Recovery Items display.

Ensure the tape device name or media library device name that you are using is correct.

If recovering to a different system or recovering a logical partition to another logical partition, you must specify the following:

- *ALL on the Allow object differences (ALWOBJDIF) parameter
- *ALL on the Data base member option (MBROPT) parameter
- *NONE on the System resource management (SRM) parameter

Select the following saved item(s) on the "Select Recovery Items" display using the specified volume(s).

```
Saved Item   Type   Save Save Control Volume
---------- ---- ---- -------- ------- ------- ----- --------- ---------- ----------
*SAVSECDTA  *FULL 01 7/25/00 14:39:44 102 1 *SYSGRP VOL003
```

STEP: Recover BRMS Required System Libraries

You must recover three key libraries on the system because BRMS has dependencies on these libraries.

The QUSRSYS library is important to BRMS because it contains the tape exit registration information. The QSYS2 library contains the LAN code for the 3494 media library. You must recover the QGPL library prior to the QUSRSYS library because QGPL contains dependencies that QUSRSYS needs.

STEP: Recover BRMS/400 required system libraries

Start time ______ Stop time ______

You must restore specific system libraries before you can use BRMS/400 to perform other recovery steps.

If the "Select Recovery Items" display is not shown and you are performing a complete system restore, run the following command:

```
STRRCYBRM OPTION(*RESUME)
```

Otherwise, run the following command using media shown below:

```
STRRCYBRM OPTION(*SYSTEM) ACTION(*RESTORE)
```

Select the following saved item(s) on the "Select Recovery Items" display using the specified volume(s).

```
Saved Item   Type   Save Save Control Volume
---------- ---- ---- -------- ------- ------- ----- --------- ---------- ----------
QGPL        *FULL 01 7/25/00 10:06:15 443 39 *BKUGRP VOL002
QUSRSYS     *FULL 01 7/25/00 10:06:15 1,520 45 *BKUGRP VOL002
QSYS2       *FULL 01 7/25/00 14:43:38 115 99 *SYSGRP VOL003
```

The difference between the two STRRCYBRM options shown in this step (and of following steps) is that OPTION(*RESUME) shows only those saved items
remaining in the recovery. As each item is recovered by BRMS, it is removed from
the recovery candidate file. Thus, as you recover saved items with this option, the
number of saved items decreases from step to step. You can restart the procedure
by using the *RESUME option if you cancel or end the recovery.

The *SYSTEM option initializes the recovery candidate file with all items to be
recovered including any items previously recovered. As you recover saved items
with this option, the number of saved items remains constant from step to step
and you select the specific saved items to be recovered as defined in the step.

STEP: Recover configuration data

Now you will recover the saved configuration data.

If, after you restore the SRM database, the hardware configuration does not match,
review the section dealing with SRM database problems in the *Backup and Recovery*
book.

<table>
<thead>
<tr>
<th>Saved Item</th>
<th>Type</th>
<th>ASP</th>
<th>Save Date</th>
<th>Save Time</th>
<th>Objects</th>
<th>Sequence</th>
<th>Control Group</th>
<th>Volume Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>*SAVCFG</td>
<td>*FULL</td>
<td>01</td>
<td>7/25/00</td>
<td>14:43:21</td>
<td>82</td>
<td>2</td>
<td>*SYSGRP</td>
<td>VOL003</td>
</tr>
</tbody>
</table>

STEP: Reset BRMS Device and Media Library Information

If you are using a 3494 tape library that is attached to a local area network (LAN),
you must vary on the LAN line description. Use the WRKCFGSTS *LIN command
to vary on the LAN line description. If you attach your 3494 through an RS232
connection, you do not need to vary on the RS232 line description.

If you used values other than default values on the BRMS device and media
library information displays, you should verify that your changes are still in effect.
You can do this from the Work with Devices (WRKDEVBRM), Work with Media
Libraries (WRKMLBBRM) and the Work with Device Descriptions (WRKDEVD)
commands. Some of the values revert to the defaults when you use the INZBRM
OPTION(*DEVICE) command.
STEP: Reset BRMS/400 device and media library information

Start time _____ Stop time _____

You must reset the BRMS/400 device and media library information.

Use the following command to clear and initialize the BRMS/400 device and media library information with the tape and media library devices currently configured on the system:

```
INZBRM OPTION(*DEVICE)
```

INZBRM OPTION(*DEVICE) resets some device information to the BRMS/400 supplied defaults. Review the BRMS/400 device information using the following command:

```
WRKDEVBRM
```

If you have a media library device, use the following command:

```
WRKMLBBRM
```

Update the BRMS/400 device information with any changes necessary to continue with your recovery.

STEP: Recover All Remaining System and User Data

Using the *RESUME option of the STRRCYBRM command and then using F16 to select all recovery items helps you automate the recovery of all remaining saved data (except for the data stored on TSM servers).

STEP: Recover all remaining system and user data

Start time _____ Stop time _____

You may now select to recover all of the data on your system. To do so, run the following command:

```
STRRCYBRM OPTION(*RESUME)
```

Press F9 (Recovery defaults) on the Select Recovery Items display. Ensure the tape device name or media library device name that you are using is correct.

Press F16 to select all recovery items.

After the saved items are recovered, continue with the step following "STEP: Recover objects in directories".

Otherwise, continue with the following step.

STEP: Recover IBM Product Libraries

This example shows a short list of the IBM libraries you need to recover. Your list may be much longer. Your recovery report will list all of the IBM libraries that you need to restore.

You select the libraries to recover from the Select Recovery Items display, which you access from the STRRCYBRM display.
STEP: Recover IBM product libraries

Start time ______ Stop time ______

You should restore the current version of your IBM libraries.

If you are performing a complete system restore, run the following command to continue:

STRRCYBRM OPTION(*RESUME)

Otherwise, if you are on a command line, run the following command to retrieve the following list of saved items, then Press F16 to select to recover all the saved items using the specified volumes:

STRRCYBRM OPTION(*IBM) ACTION(*RESTORE)

Select the following saved item(s) on the "Select Recovery Items" display using the specified volume(s).

<table>
<thead>
<tr>
<th>Saved Item</th>
<th>Type</th>
<th>Save Date</th>
<th>Save Time</th>
<th>Objects Omit</th>
<th>Sequence</th>
<th>Control Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUSRDIRDB</td>
<td>*FULL</td>
<td>7/25/00</td>
<td>10:06:15</td>
<td>113</td>
<td>42</td>
<td>*BKUGRP VOL002</td>
</tr>
<tr>
<td>#COBLIB</td>
<td>*FULL</td>
<td>7/25/00</td>
<td>14:43:38</td>
<td>84</td>
<td>4</td>
<td>*SYSGRP VOL003</td>
</tr>
<tr>
<td>QADM</td>
<td>*FULL</td>
<td>7/25/00</td>
<td>14:43:38</td>
<td>175</td>
<td>5</td>
<td>*SYSGRP VOL003</td>
</tr>
<tr>
<td>QADMDISTP</td>
<td>*FULL</td>
<td>7/25/00</td>
<td>14:43:38</td>
<td>8</td>
<td>6</td>
<td>*SYSGRP VOL003</td>
</tr>
<tr>
<td>QANE</td>
<td>*FULL</td>
<td>7/25/00</td>
<td>14:43:38</td>
<td>10</td>
<td>7</td>
<td>*SYSGRP VOL003</td>
</tr>
</tbody>
</table>

Once at the Select Recovery Items display, you can select just the IBM libraries you need to restore. Or, you can press F16 to select and restore all of the libraries. Unless you are absolutely sure which IBM product libraries you need to omit, you should select all of the IBM product libraries.

STEP: Recover User Libraries

Depending on how you saved the libraries, you can choose STRRCYBRM OPTION (*ALLUSR) or STRRCYBRM OPTION(*CTLGRP) to restore them. The STRRCYBRM OPTION(*CTLGRP) command gives you more control and permits you to start concurrent restores. During complete recovery, BRMS restores both full and incremental saves.
STEP: Recover user libraries

Start time _____ Stop time _____

You should restore the current version of your user libraries.

If you ran STRRCYBRM OPTION(*RESUME) for a complete system restore, and you are on the "Select recovery items" display, select the following saved items to recover using the specified volume(s).

Otherwise, if you are on a command line, run the following command to retrieve the following list of saved items, then Press F16 to select to recover all the saved items using the specified volumes:

```
STRRCYBRM OPTION(*ALLUSR) ACTION(*RESTORE)
```

ATTENTION - If you have logical files whose based-on physical files are in a different library, you must restore all based-on physical files before you can restore the logical file.

ATTENTION - If you use journaling, the libraries containing the journals must be restored before restoring the journaled files.

<table>
<thead>
<tr>
<th>Saved Item</th>
<th>Type</th>
<th>ASP</th>
<th>Save Date</th>
<th>Save Time</th>
<th>Objects</th>
<th>Omit</th>
<th>Sequence Number</th>
<th>Control Group</th>
<th>Volume Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>$$$2BSYSCF</td>
<td>*FULL</td>
<td>01</td>
<td>7/25/00</td>
<td>10:06:15</td>
<td>4</td>
<td></td>
<td></td>
<td>+BKUGRP</td>
<td>VOL002</td>
</tr>
<tr>
<td>$PROD</td>
<td>*FULL</td>
<td>01</td>
<td>7/25/00</td>
<td>10:06:15</td>
<td>2</td>
<td>5</td>
<td></td>
<td>+BKUGRP</td>
<td>VOL002</td>
</tr>
<tr>
<td>$BLDBR1</td>
<td>*FULL</td>
<td>01</td>
<td>7/25/00</td>
<td>10:06:15</td>
<td>1,003</td>
<td>6</td>
<td></td>
<td>+BKUGRP</td>
<td>VOL002</td>
</tr>
<tr>
<td>$BLDKKA</td>
<td>*FULL</td>
<td>01</td>
<td>7/25/00</td>
<td>10:06:15</td>
<td>256</td>
<td>7</td>
<td></td>
<td>+BKUGRP</td>
<td>VOL002</td>
</tr>
<tr>
<td>$BLDSHIP</td>
<td>*FULL</td>
<td>01</td>
<td>7/25/00</td>
<td>10:06:15</td>
<td>113</td>
<td>8</td>
<td></td>
<td>+BKUGRP</td>
<td>VOL002</td>
</tr>
</tbody>
</table>

STEP: Recover Document Library Objects

This step recovers any saved document library objects.

STEP: Recover document library objects

Start time _____ Stop time _____

You should restore the current version of your documents, folders and mail.

Before you begin, use the "Backup and Recovery" book to determine if Document Library Objects need to be reclaimed.

To do so, run the following command:

```
RCLDLO DLO(*ALL)
```

If you ran STRRCYBRM OPTION(*RESUME) for a complete system restore, and you are on the "Select recovery items" display, select the following saved items to recover using the specified volume(s).

Otherwise, if you are on a command line, run the following command to retrieve the following list of saved items, then Press F16 to select to recover all the saved items using the specified volumes:

```
STRRCYBRM OPTION(*ALLDLO) ACTION(*RESTORE)
```

<table>
<thead>
<tr>
<th>Saved Item</th>
<th>Type</th>
<th>Save Date</th>
<th>Save Time</th>
<th>Objects</th>
<th>Omit</th>
<th>Sequence Number</th>
<th>Control Group</th>
<th>Volume Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>*ALLDLO</td>
<td>*FULL</td>
<td>7/25/00</td>
<td>11:36:05</td>
<td>119</td>
<td></td>
<td></td>
<td>+BKUGRP</td>
<td>VOL002</td>
</tr>
</tbody>
</table>
STEP: Recover Objects in Directories

This step recovers any saved directory objects.

```
STEP: Recover objects in directories

Start time _____ Stop time _____

You should restore the current version of your objects in directories.

If you ran STRRCYBRM OPTION(*RESUME) for a complete system restore, and you are on the "Select recovery items" display, select the following saved items to recover using the specified volume(s).

Otherwise, if you are on a command line, run the following command to retrieve the following list of saved items, then Press F16 to select to recover all the saved items using the specified volumes:

```
STRRCYBRM OPTION(*LNKLIST) ACTION(*RESTORE)
```

<table>
<thead>
<tr>
<th>Saved Item</th>
<th>Type</th>
<th>ASP</th>
<th>Save Save Time</th>
<th>Objects Omit</th>
<th>Sequence Number</th>
<th>Control Group</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>*LINK</td>
<td>*FULL</td>
<td>01</td>
<td>7/25/00 11:36:33</td>
<td>11,788</td>
<td>58</td>
<td>*BKUGRP</td>
<td>VOL002</td>
</tr>
</tbody>
</table>

**STEP: Recover Spooled Files for all ASPs**

To recover spooled files, you need to use the WRKSPFBRM command.

To save spooled files using BRMS, you must define the spooled files to be saved in a spooled file list, then add the list to a backup control group. You can find more information on how to create backup lists and control groups in "Tailoring Your Backup" on page 81.

```
STEP: Recover spooled files for all ASPs

Start time _____ Stop time _____

If spooled files were saved, restore your spooled files using the following command:

```
WRKSPFBRM
```

Press F16 to select all recovery items.

Otherwise, select the individual items you need to recover.

Use the media listed on the "Select Recovery Items" display.

STEP: Apply Journal Changes

To restore journal information and apply journal changes, use the APYJRNCHG command. The OS/400 operating system correctly establishes the receiver chains during the restore.

```
STEP: Apply journal changes

Start time _____ Stop time _____

To determine if you need to apply journal changes, refer to the section "Determining Whether You Need to Apply Journaled Changes" under chapter "Restoring Changed Objects and Applying Journaled Changes" as detailed in the "Backup and Recovery" book.
```
STEP: Recover Authorization Information

To restore authorities to the restored objects, use the RSTAUTBRM command.

```
STEP: Recover authorization information

Start time _____  Stop time _____

You should recover authorization information if user profiles were recovered in an earlier step.

To do so, run the following command:

RSTAUTBRM USRPRF(*ALL) USRASP(*NONE)

Attention - This operation can be a long running process.

Attention - Some authorities may not be restored if the system is not running in restricted state.
```

STEP: Verify system information

Retrieve the saved system information reports and compare to the current system information to verify the successful recovery of your system information. Change the system information as required.

```
STEP: Verify system information

Start time _____  Stop time _____

You should verify your system information.
If you ran either of the following commands after the save, additional reports were created that enable you to verify your system information:

STRRCYBRM PRTSYSINF(*YES)

STRMNTBRM PRTSYSINF(*YES)

If you are using distribution media to restore your system, then you should use these reports to re-create the system information as detailed in the "Backup and Recovery" book.
```

STEP: Special Recovery Processing — iSeries Integration for Windows Server

You will need to perform the following special recovery action if your system had iSeries Integration for Windows Server installed and the Integrated Netfinity Servers were VARIED OFF when the system was last saved.
STEP: Special Recovery Processing

Start time ______ Stop time ______

AS/400 Integration for Windows Server (5722-WSV)

If AS/400 Integration for Windows Server was installed when your system was saved and has been restored to the system, perform the following steps:

If the Integrated Netfinity Servers were VARIED OFF during the save, perform these recovery steps:

__ a. Add the links for each server description using the following command:

ADDNWSSTGLNWSSTG(network-server-storage-name)
NWSD(network-server-description-name)

__ b. Vary on your Integrated Netfinity Servers using the following command:

WRKCFGSTSCFGTYPE(*NWS)
Select option 1 to vary on each server.

You will need to perform the following special recovery action if your system had iSeries Integration for Windows Server installed and the Integrated Netfinity Servers were VARIED ON when the system was last saved.

If the Integrated Netfinity Servers were VARIED ON during the save, perform these recovery steps:

__ a. Vary off any Integrated Netfinity Servers that are varied on using the following command:

WRKCFGSTSCFGTYPE(*NWS)
Select option 2 to vary off each server.

__ b. Create any needed Network Storages using the following command:

CRTNWSSTGNWSSTG(storage-name)

__ c. Add the links for each server description using the following command:

ADDNWSSTGLNWSSTG(network-server-storage-name)
NWSD(network-server-description-name)

__ d. Vary on your Integrated Netfinity Servers using the following command:

WRKCFGSTSCFGTYPE(*NWS)
Select option 1 to vary on each server.

__ e. Restore AS/400 Integration for Windows Server data using the following command and the volumes listed in "STEP: Recover objects in directories":

RST OBJ('/QNTC')
STEP: Special Recovery Processing — IBM Content Manager onDemand for iSeries

You will need to perform the following special recovery step if your system had IBM Content Manager onDemand for iSeries installed when the system was last saved.

STEP: Special Recovery Processing

<table>
<thead>
<tr>
<th>Start time</th>
<th>Stop time</th>
</tr>
</thead>
<tbody>
<tr>
<td>______</td>
<td>______</td>
</tr>
</tbody>
</table>

EDMSuite OnDemand for AS/400 (5722-RD1)

If EDMSuite OnDemand for AS/400 software was installed when your system was saved and has been restored to the system, use the following commands to enable journaling:

- a. CALL QRDARS/QRLCSTRTJ PARM('RLC')
- b. CALL QRDARS/QRLCSTRJ PARM('RLR')
- c. CALL QRDARS/QRLCSTRJ PARM('RLO')

STEP: Special Recovery Processing — Cryptographic Access Provider for iSeries

You will need to perform the following special recovery step if your system had Cryptographic Access Provider for iSeries installed when the system was last saved.

STEP: Special Recovery Processing

<table>
<thead>
<tr>
<th>Start time</th>
<th>Stop time</th>
</tr>
</thead>
<tbody>
<tr>
<td>______</td>
<td>______</td>
</tr>
</tbody>
</table>

Cryptographic Access Provider for AS/400 - 40 bit (5722-AC1)
Cryptographic Access Provider for AS/400 - 56 bit (5722-AC2)
Cryptographic Access Provider for AS/400 - 128 bit (5722-AC3)

If any of the Cryptographic Access Provider software was installed when your system was saved, use option 11 on the GO LICPGM menu to reinstall the software.

STEP: Apply PTFs

This is a good point in the recovery process to apply any PTFs that had been applied since the last save of system data, or any PTFs not yet applied.

STEP: Apply PTFs

<table>
<thead>
<tr>
<th>Start time</th>
<th>Stop time</th>
</tr>
</thead>
<tbody>
<tr>
<td>______</td>
<td>______</td>
</tr>
</tbody>
</table>

Re-apply PTFs that were applied since your last save of system data.

STEP: Print Job Log

After completing the recovery of your entire system, use the job log to identify any items that BRMS did not successfully restore. Check the job log for all error messages, then correct the errors, and restore any missing objects from the media.

To print the job log, use the DSPJOBLOG command. BRMS sends a message (CPF3773) to tell you how many objects BRMS restored.
STEP: Print joblog

Start time _____ Stop time _____

You should print the joblog.
To do so, run the following command:

```plaintext
DSPJOBLOG JOB(*) OUTPUT(*PRINT)
```

Review the job logs or output from your recovery processing to ensure that all recovery steps completed successfully.

STEP: Change QSECOFR User Profile Password

Start time _____ Stop time _____

If you do not know the password for the restored QSECOFR user profile change the password before signing off using the following command:

```plaintext
CHGUSRPRF USRPRF(QSECOFR) PASSWORD (new-password)
```

STEP: Perform IPL

Your system recovery is complete. It’s is time to IPL the system. If you recovered the saved data to a system having a new system name and you used the CHGNETA command to change the default local location name back to the old name, then use the command again to change the default local location name in the network attributes back to the desired system name.

Start time _____ Stop time _____

Return system to normal mode and IPL using the following command:

```plaintext
PWRDWNSYS OPTION(*IMMED) RESTART(*YES)
```

Recovery Tips

When preparing for either a selected or a total recovery, keep the following tips in mind:

- If BRMS cancels or ends the recovery in error, you can restart the recovery by using the STRRCYBRM *RESUME command.
- You can use the OS/400 operating system to assist with selected restores. Before you do so, however, keep the following information in mind:
 - If you save with the option 21 (Save) you must restore with option 21 (Restore).
 - If you save with BRMS, you must restore with BRMS.
 - You cannot mix the two different types of saves and restores.
- After designing and implementing your backup operation, you should test your recovery procedures when using your own reports. Try to test your recovery reports on a non-critical system. If do not have one available, contact your IBM representative to set up a practice recovery at an IBM Business Continuity and Recovery Services "hotsite." You can use your own recovery reports at the worksite.
• To ensure that the recovery reports you need are up-to-date, print a new recovery report after each backup, or at least once per day.

• Always follow the steps in the Recovering Your Entire System report as they appear.

• Always keep copies of the reports in easily retrievable locations in case of disaster. Be sure to keep an updated copy of the recovery reports at all of the offsite locations that contain active media.
Part 2. Tailoring Your BRMS Operations
Chapter 5. Working with Devices in BRMS

This chapter provides information on how to add, change, remove, and review stand-alone and media library tape devices in BRMS. During installation, BRMS automatically registers and initializes the devices attached to your iSeries and creates corresponding device information entries. BRMS creates a default device based on the fastest and most automated device attached at that time (if more than one device is attached or registered. Otherwise BRMS uses the sole attachment as the default device). Unless you change it, BRMS sends all of your backup and recovery requests to the default device. In this chapter, you learn how to change or remove device information for existing devices, and also how to add new devices to the system.

BRMS works with all standard iSeries tape devices. IBM continually enhances BRMS to work with new and improved devices. BRMS does not support diskette, optical, unlabeled or non-standard label tape.

Adding New Devices

There are two ways you can register devices with BRMS. You can use the Initialize BRM (INZBRM) command to perform the registration and initialization tasks for you automatically. Or you can perform these tasks yourself using other BRMS commands.

Whenever you add a device, be it manually or through the INZBRM command, you must create new media classes to match. BRMS only creates media classes for you during the installation process. For information on how to create media classes, see [Chapter 6, Setting Up Your Media Management Operation on page 51].

Adding a New Device Automatically

Procedures for adding a new device are the same for both stand-alone devices and library devices. To add a new device to your iSeries, take the following steps:

1. Attach the device to your system.
2. Type INZBRM OPTION(*DATA) at a command line and press Enter. In addition to creating policy, control group, and other defaults, this command registers and creates new device information entries for the devices currently attached to your system. Device information entries include:
 - Device name (for example, TAP01 or TAPMLB01). This is the device that BRMS uses as the default device.
 - Device type (for example, a 3570 or a 6340).
 - Model type.
3. If your device is a stand-alone that is not shared with other systems, or if it is a media library, you must vary it on before using it. You can vary on both stand-alone and media library devices by taking option 8 (Work with status) from the Work with Devices (WRKDEVBRM) display. Alternatively, you can vary on a media library by using the Work with MLB Status (WRKMLBSTS) command. When sharing the device between multiple systems, BRMS varies it on and off for you, according to the jobs that are lined up in the work queue.

The INZBRM command initializes your device automatically.
Adding a New Device Manually

To manually add a device to BRMS, take the following steps:

1. Attach the device to your system. Ensure that the device is configured to the system, either by an I/O processor reset or by an IPL with autoconfiguration.
2. Type WRKCFGSTS at a command line. This takes you to the Work with Configuration Status display.
3. Type WRKDEVBRM at a command line and press Enter.
4. At the Work with Devices display, type a 1 (Add) in the Opt field.
5. Type the name of the device you want to add in the Device column.
6. Enter the device type (*TAP for stand-alones or *TAPMLB for tape libraries) in the Category column. Then press Enter.
7. At the Add Tape Devices display, fill out the additional parameters as needed. Press Enter to add the device entry to BRMS.
8. If your device is a stand-alone not shared with other systems, or if it is a media library, you must vary it on before using it to process jobs. You can vary on both stand-alone and media library devices by taking option 8 (Work with status) from the Work with Devices (WRKDEVBRM) display. Alternatively, you can use the Work with MLB Status (WRKMLBSTS) command. When sharing the device between multiple systems, BRMS varies it on and off for you, according to the jobs that are lined up in the work queue.

Note: If you added a media library to BRMS, use the Work with Media Libraries (WRKMLBBRM) command to release the library when it is ready for use.

Changing an Existing Device

There are slightly different options available when you want to change existing device information, depending on whether the device is a stand-alone or a tape library. This section provides information on how to change device information for both types of devices.

Changing Device Information for Stand-Alone Devices

To change device information for an existing stand-alone device, take the following steps:

1. Type WRKDEVBRM at a command line and press Enter.
2. At the Work with Devices display, locate the name of the device you want to work with and type a 2 (Change) in the Opt column. This takes you to the Change Tape Device display.
Change Tape Device

Tape device: TAP01
Device type/model: 6382/001

Type changes, press Enter.

Text Entry created by BRM configuration
Location *HOME Name, F4 for list

Use optimum block size +YES +NO, +YES
Next volume message +YES +YES, +NO
Tape mount delay +IMMED +IMMED, 1-999
Auto enroll media +SYSPCY +SYSPCY, +NO, +YES

Shared device +NO +YES, +NO
Shared device wait 30 Seconds

F3=Exit F4=Prompt F12=Cancel

3. Change the parameters as needed. Following are brief summaries of the key parameters on this display:

- The default value in the Use optimum block size field is +YES. If you want to use this default value, keep the following restrictions in mind:
 - OS/400 cannot duplicate tape if the output device uses a block size that is smaller than the blocks being read by the input device.
 - If you use the optimum block size, the system does not compress the data.

If these restrictions concern you, set the value to +NO. In that case, BRMS uses the default block size that is supported by your device. It is recommended, however, that you use the default value, +YES, whenever possible because the device performs better when writing larger blocks of data at once.

- The default value in the Auto enroll media field is +NO and is established in the system policy (+SYSPCY). If you want BRMS to automatically enroll media into the tape device you want to use, you can specify +YES at this display.

- The default value in the Shared device field is +NO. If you want to share a device between multiple systems, change this parameter to +YES, and keep the following information in mind:
 - BRMS manages device availability for shared devices. This means that BRMS varies off the device after use so that it is readily available for use by another system. BRMS varies on all of the devices it needs prior to a save operation. The Shared device wait field specifies how long BRMS should wait for a device to become available if it cannot locate any usable devices.
 - Device pooling happens when several iSeries servers share a single tape drive or set of tape drives. In this case, OS/400 or BRMS picks an eligible device from a pool of devices that supports the read and write densities you need. This permits several iSeries servers to access the pool at the same time for any eligible device. In this way, you do not have to wait for a specific device to become available or fail the operation due to a busy
device. If you are using a tape library, OS/400 manages device pooling for you. If you are using a stand-alone device, BRMS manages device pooling for you.

- In the *Allow densities* field you can indicate the density at which your device can read and write to media. BRMS separates densities into the read and write densities that are allowed by your device. This separation recognizes that some devices can read media to a device but cannot write to it and vice versa. Other devices can read and write the same densities. The ability to specify the densities that a device can read or write is particularly useful when using device pooling. For example, if you are backing up media with a density of 1600 BPI, you can use a 2400-A12 or a 9348-0001 for this operation. BRMS can do this because both devices can write to media at 1600 BPI. You can have multiple devices assigned to a location.

- After you have changed and reviewed these and other parameters as needed, press Enter to return to the Work with Devices display.

Changing the Device Name

You can also use the Work with Devices display to change the name of your device. To change the name of a stand-alone device, take the following steps:

1. At the Work with Devices display, type an 8 (Work with status) in the Opt field next to the device you want to rename. Press Enter.
2. At the Work with Configuration Status display, again type an 8 (Work with description) in front of the device you want to rename. Press Enter.
3. At the Work with Device Descriptions display, type a 9 (Rename) in front of the device you want to rename and press Enter.
4. Rename the device at the Rename Object (RNMOBJ) display.
5. Press Enter twice to return to the Work with Devices display.

To change the name of a media library device, take steps 1-5 from the Work with Media Library Status (WRKMLBSTS) command.

Changing Device Configuration Information

There are several types of device configuration information that you can change from the Work with Devices (WRKDEVBRM) display. To do so, type an 8 (Work with Devices) in front of the device you want to work with and press Enter. This takes you to the Work with Configuration Status (WRKCFGSTS) display. Alternatively, you can go directly to the Work with Configuration Status display by entering WRKCFGSTS from a command line. On the WRKCFGSTS command, you can change or review the following items:

- Vary on and vary off status (if your device is not shared).
- Device description information.
- Status of the jobs you want the device to process.
- Mode status.
- Recovery requests pertaining to the device.
- LAN adapters and APPN status (when applicable).

The WRKDEVBRM command is the primary command for working with device information for stand-alone devices. Use it to change and remove media information as needed.

Changing Device Information for Media Library Devices

BRMS supports all IBM media libraries (MLB) and has the capability to support third-party library devices. An MLB is an automated tape library. You can store a
large number of tapes in an MLB unit and access a specified tape or tapes for read
and write operations. BRMS determines which volumes reside in the MLB, and
when needed, issues the proper command to mount the volume.

Tape libraries enable BRMS to provide the following support:

- Perform save and restore operations automatically.
- Perform file retrieve automatically.
- Can migrate infrequently used data from DASD to less expensive storage media
 while maintaining the ability to access it automatically.
- Can archive massive amounts of data, such as in image or spooled archive
 applications.
- Provide hardware that new applications can use to manage offline storage.
- Manage scratch tapes and tape usage.

Using the WRKMLBBRM Command

While you can make some changes to media library information from the
WRKDEVB command, the Work with Media Libraries (WRKMLBBRM)
command provides more options at a greater level of detail. To get there, take the
following steps:

1. Type WRKMLBBRM at a command line and press Enter.

2. From this display, you can access a variety of MLB-related displays and
 perform the following tasks:
 - Change location, optimum block size, compaction, read and write densities,
 and other device-related information.
 - Change or review device description information, including renaming the
 device.
 - Hold and release a library for specified purposes.
 - Work with media library media, including adding, initializing, removing,
 mounting, and dismounting.
 - Display library status information.
 - Display media library media status information.

3. After completing your changes, press Enter to return to the Work with Media
 Libraries display.

Setting Up an MLB as a Shared Device

To set up an MLB as a shared device, take the following steps:

1. Type WRKMLBSTS at a command line and press Enter.

2. Type a 5 (Allocate unprotected) in front of the MLB you want to use as a
 shared device, and press Enter. A message appears at the bottom of the display
 that indicates that you changed the status of this device.
3. To remove an MLB from shared status, type a 6 (Deallocate resource) in front of the device you want to deallocate and press Enter. A message appears that indicates that you have changed the status of this device.

OS/400 determines how best to utilize the drives within the tape library. When finished with the volume, BRMS issues the corresponding command to remove the volume. For instance, when an output operation calls for a scratch volume mount, BRMS determines an eligible scratch volume and mounts the volume. After the operation completes, the MLB unloads the volume (if specified in the command), and returns the volume to its correct media inventory location.

Working with Third Party Media Libraries

BRMS can support some third party (non-IBM) media libraries. To add third-party media libraries to BRMS, take the following steps:

1. Attach the device to your system.
2. Type WRKCFGSTS at a command line. This takes you to the Work with Configuration Status display.
3. At this display find the name of the third-party device you want to add and note it.
4. Type WRKDEVBRM at a command line and press Enter.
5. At the Work with Devices display, type a 1 (Add) in the *Opt* field.
6. Type the name of the device you want to add in the *Device* column.
7. Enter the device type *USRMLB (for user-defined MLB) in the *Category* column. Then press Enter.
8. At the Add User Media Device display, type in the third-party commands responsible for the following activities:
 - Location (this must be the same location as the *USRMLB devices)
 - Text description
 - Mount or eject media
 - Insert and add media
 - Work with and display media
 - Work with and display status
 - Allocate and de-allocate media
 - Start and End media movement
 - Work with and display status

 The customer or media library manufacturer must provide commands and the program interface to BRMS and the MLB.
9. Fill out the additional parameters as needed.
10. Press Enter to add the device entry to BRMS.

Customers or manufacturers can use the following variables with each of the MLB commands. The tape exit supplies the values for these variables.

- DEVICE: the tape device name.
- VOLUME: the volume identifier.
- MLBNAME: the BRMS name of the third party MLB.

BRMS supplies the following messages for users of third-party media libraries. You can find them in message file Q1AMSGF in library QBRM.

If BRMS issues these messages as escape messages, then BRMS retries (BRM1990) or fails (BRM1991) the job as appropriate. Use the Work with Registration Information (WRKREGINF) command to add and register a program to an exit point.

Last Active Device

BRMS always continues any subsequent saves within a control group on the device that was last active. This allows you to completely fill all volumes and allows for better utilization of available devices.
Chapter 6. Setting Up Your Media Management Operation

Use the BRMS Media Management service to set up an automated system that tracks your media through its entire lifecycle from tape creation through expiration and return to scratch pool availability.

The BRMS media management service consists of a variety of components that can assist you in performing the following tasks:

- Preparing your media for use.
- Setting up storage locations for your media.
- Tracking the movement of your media to and from the storage locations.
- Tracking the enrollment, use, and expiration of your media.

Figure 6 illustrates the components that can assist you in these tasks.

For convenience and ease of use and understanding, the BRMS media management components have been grouped into the work sets that are shown in Figure 6. You can set up your media management system by following the structure of this chapter from preparation through tracking. Or you can select the components that are most useful for managing your specific operation. Though you do not have to use all of the components that are discussed in this chapter, your media does need to be properly prepared before you can use it for backup purposes.
You can access all of the components that BRMS provides through commands or through the Media Management menu. The sections that follow provide CL commands for each component that is discussed. To get to the Media Management menu, do the following:

1. Type GO BRMMED at a command line and press Enter. Alternatively, you can select option 1 (Media Management) from the main BRMS menu.

You can access all of the primary media management components through the Media Management menu or by using the commands that are associated with each component.

Many of the functions described in this chapter are also available as part of a plug-in to Operations Navigator. For detailed information on the BRMS plug-in to Operations Navigator, see the iSeries Information Center.

Preparing Your Media

This section provides information on the steps you need to take to prepare your media for BRMS to use in performing backups. Before BRMS can use media, it needs to be correctly classed by type, initialized, and enrolled into BRMS. You should also design a media inventory system that can assist you and BRMS in tracking the availability and use of your media. This section provides instruction on how you can perform all of these tasks.

Working with Media Classes

Media classes define the types of physical media that are enrolled in BRMS. The characteristics of a media class include tape density, capacity, label information, number of errors allowed, and shared status. During installation, BRMS automatically creates media classes that are based on the types of devices attached to your system. As you enroll media, BRMS assigns it to the appropriate media class. For example, if you have a 3490 tape device attached to your system, the media class might be CART3490E. In this case, the class prefix (CART) signifies a half-inch tape cartridge that is read by a 3490 device. BRMS creates media classes for all media types that are supported by your tape device.

Though BRMS does a thorough job of creating the media classes you need, there may be times when you want to create a unique media class. For example, whenever you add a new device type, you must create new media classes that are compatible with the tape device you are adding. For example, you may want to create a unique media class when you back up data that belongs to user X, Y, or Z. Or, you might create a new media class for use by developers.
To add a new media class, take the following steps:

1. Type WRKCLSRM from a command line. Press Enter.

2. At the Work with Media Classes display, type a 1 (Add) in the Opt column. In the Class column, type a unique name for the media class you want to create. For example, CART3490 or USERDOE. Press Enter.

 ![Add Media Class](image)

 Add Media Class

 Type choices, press Enter.

 Media class............ USERDOE
 Density................... *DENSITY
 Media capacity............ +DENSITY
 Unit of measure........... 1=KB, 2=MB, 3=GB
 Mark for label print...... +NONE
 Label size................ 1
 Label output queue....... +SYSPCY
 Library.................... Name,*LIBL
 Shared media.............. +YES
 Text.......................

 Add Media Class

 Type choices, press Enter.

 Media class............ USERDOE
 Density................... *DENSITY
 Media capacity............ +DENSITY
 Unit of measure........... 1=KB, 2=MB, 3=GB
 Mark for label print...... +NONE
 Label size................ 1
 Label output queue....... +SYSPCY
 Library.................... Name,*LIBL
 Shared media.............. +YES
 Text.......................

 F3=Exit F4=Prompt F12=Cancel

3. At the Add Media Class display, review and change the parameters as needed. Following are brief summaries of the key fields on this display:
 - The default Shared media value of *YES instructs BRMS to share media as applicable with all systems in a network. However, you need to change this value to *NO before performing a SAVSYS backup, even if your system is not in a network. This means that you need to use a separate, unshared media class to save your operating system and licensed internal code. Because only one system needs to use these tapes, overwriting by another system is acceptable. BRMS immediately registers volume activity on all systems in the network so you can easily track volume activity.
 - BRMS flags labels for printing at the Label output queue parameter. You can mark specific volumes for label printing by selecting option 11 on the Work with Media display. You can activate the label print request by selecting option 7 (Confirm Media Label Print) from the Media Management menu.
 - Make the class description in the Text field a meaningful one. This allows you to view and identify the media class entry at a glance when you get to the Work with Media Classes display.

4. Press Enter to save your changes and to return to the Work with Media Classes display.

Use the Work with Media Classes (WRKCLSRM) display any time you want to add, change or remove a media class. You can also access the Work with Media (WRKMEDBRM) display from the Work with Media Classes display to review volume information that is associated with media of a particular class. Use the Print Media Exceptions for BRM (PRTMEDBRM) display to review or print media usage statistics. BRMS bases these statistics on the characteristics you specify on the WRKCLSRM command.
Enrolling Media

This section provides information on how to enroll and initialize volumes under a variety of circumstances. You can find instruction on how to enroll individual volumes into BRMS for use by stand-alone and tape library devices in "Chapter 3. Backing Up Your Entire System."

Enrolling Multiple Volumes for Use by Stand-alone Devices

You can enroll multiple volumes into BRMS for use by a stand-alone device by using a single command. To do so, take the following steps:

1. Type ADDMEDBRM at a command line and press Enter.

```
Add Media to BRM (ADDMEDBRM)

Type choices, press Enter.

Volume identifier .......... VOL01 Character value
Media class ............... CART3490E CART3490E, FMT3480, FMT3570...
Number to add ............. 1 1-999
Initialize tape ............. *NO, +YES
Text ....................... *NONE

F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys
```

2. At the Add Media to BRM display, enter a unique six-character name into the Volume Identifier field. To add multiples, the last characters of the volumes that you specify must be numeric (for example, TAP01).

3. At the Media Class field, enter the media class name of the volume you want to enroll. To select from a list of available media classes, press F4.

4. Enter the total number of volumes you want to add in the Number to add field. Though the Number to add field is large enough to contain five digits, you can only enroll a maximum of 999 volumes at one time.

5. Press F10 to review and change additional parameters as needed.

6. Press Enter to enroll the volumes.

BRMS provides the capability to automatically enroll media detected by BRMS but not found in the media inventory. You can specify the use of this capability at the Auto enroll media parameter on the Change System Policy display. You can specify automatic enrollment for individual, stand-alone devices on the WRKDEVBRM command.

Enrolling Multiple Volumes for Use by Media Libraries

You can enroll multiple volumes into BRMS for use by media libraries by using a single command. To do so, take the following steps:

1. Type ADDMLMBRM at a command line and press Enter.

2. At the Add Media Library Media display, type the name of the media library into which you want to enroll the media in the Media Library field.

3. The default value for the Volume identifier field is *INSERT. Use this default value to instruct BRMS to add all of the tapes that are physically in the library to the appropriate media class.
4. Press Enter twice to prompt, review, and change the other parameters as necessary.

5. Press Enter to save and exit.

Enrolling Existing Volumes

If you want to add active volumes to the BRMS media inventory, use the default value of *NO at the Initialize Tape field on the ADDMEDBRM display. This allows you to add volume serial information and a future expiration date without initializing the volume. If you change the value to *YES, you risk deleting existing data.

Adding Media Contents to the History File from an Enrolled Volume

BRMS uses the volume information it saves in its media history files to recover data lost due to accident or disaster. You can review or change media history information from the Work with Media Information (WRKMEDIBRM) display. See "Working with the BRMS Media Inventory" on page 75 for more information on how to use the WRKMEDIBRM display.

BRMS records content information only for media that is already part of the BRMS media inventory.

To add additional information to the BRMS media inventory, use the Add Media Information (ADDMEDIBRM) command. Use the ADDMEDIBRM command to specify media content information in a way that does not require mounted media. For more information about the ADDMEDIBRM command, see the online help.

You can also use the Extract Media Information (EXTMEDIBRM) command to add media information to the media inventory. In this case, however, you are adding media information from an existing volume by extracting it from the actual tape content. This method limits the media information for this volume to what BRMS can extract from the tape. Because this method is more time-consuming, you should limit its use only to those backup volumes that were created prior to the installation of BRMS.

To use the Extract Media Information display, take the following steps:

1. Type EXTMEDIBRM at a command line and press Enter.

 Extract Media Information (EXTMEDIBRM)
 Type choices, press Enter.
 Device................. TAP01 Name
 Volume identifier....... *MOUNTED Character value, *MOUNTED
 File origin.............. *FILE *FILE,*SAVLIB,*SAVOBJ...
 End of tape option....... *UNLOAD *LEAVE,*REWIND,*UNLOAD

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys

2. The key parameters on this command are:
 - In the Device field, specify the name of the device on which the tape is mounted.
In the Volume ID field, you can enter a specific volume name, or you can use the default value of *MOUNTED. If you use *MOUNTED, BRMS attempts to add content information for the volume that is currently in the tape device. When a volume is part of a multi-volume set, BRMS adds content information for each of the volumes in the set. You must mount the media set in the same order in which BRMS performed the save. That is, the first volume of the set must be the volume that you initially mount on the specified tape device.

You must use the default value of *UNLOAD in the End of tape option field. BRMS prompts you to mount the subsequent volumes when needed and in set order.

Note: You cannot use the *MOUNTED value for a tape existing in a tape library device. Instead you need to enter the specific volume name.

3. Review and change the remaining parameter as needed.

4. Press Enter to issue the command.

Initializing Volumes

In BRMS you usually need to initialize a volume only once in its lifetime. BRMS keeps track of whether the volume has active data on it, and prevents you from overwriting the active data. In addition, it allows you to overwrite expired data. This single initialize concept means that volume error statistics can be kept for the life of the tape. BRMS associates these statistics with the volume ID. If you were to reinitialize a volume and give it a different volume serial, the statistics would be lost. Keeping lifetime statistics for volumes is effective media management. When the error rate for a particular volume is too high, remove the volume from service.

You can use either the ADDMEDBRM or the INZMEDBRM (Initialize Media using BRM) command to initialize your media. Using the ADDMEDBRM command allows you to initialize the media and also to add the initialized media to the BRMS media inventory at the same time. The ADDMEDBRM command also allows you to specify additional BRMS media management information such as location and media statistics, whereas the INZMEDBRM command only initializes media.

Note: Use the ADDMLMBRM command to initialize media for use by media libraries.

To initialize a volume from the ADDMEDBRM display, simply change the Initialize tape field from *NO to *YES and press Enter. Then type a valid device name into the Device field and press Enter (you can access the Device field by pressing F10, Additional Parameters).

Note: BRMS cannot initialize the volumes unless the tape device is varied on.

If you do not initialize volumes through the ADDMEDBRM display, use the BRMS INZMEDBRM command instead of the OS/400 INZTAP command. To use the INZMEDBRM command to initialize your media, take the following steps:

1. Ensure that your tape device is varied on.
2. Type INZMEDBRM at a command line and press Enter.
3. The key fields on this command are:
 - In the Device field, specify the name of the device that you want to use to initialize the tape, for example, TAP01.
In the New volume ID field, type in the name of the volume you want to initialize, for example, VOL02.

In the Media class field, indicate the media class you need to use for this volume, for example CART3490E.

To assure the protection of media on an iSeries that is using BRMS media, BRMS disables the CHECK(*NO) value on the INZTAP command. This affects users without *SAVSYS, *SERVICE, or *ALLOBJ authority. Users do not need any specific authority to use this parameter on the BRMS INZMEDBRM command.

4. Review and change the remaining parameters as needed.

5. Press Enter to apply your changes.

How Many Volumes to Initialize

It is important that you have sufficient volumes initialized in the scratch pool before performing a save operation. If, during a save operation, you require more volumes than are available in your media scratch pool, a potential exposure can occur. After using your last enrolled volume, OS/400 prompts you to insert the next volume into the media device. If you insert an unenrolled or uninitialized volume, OS/400 issues an inquiry message with an option to initialize that volume. If you do not take this option and instead take C (for cancel) then BRMS cannot complete the save. If you take the initialize option, OS/400 assigns an arbitrary volume ID that you cannot find in the BRMS media inventory. After the save completes, enroll this volume by using BRMS. Otherwise, BRMS cannot protect the data on this volume, and may overwrite it.

To support the single initialize concept, the tape file labels belonging to volumes show the date of *PERM. This assures that you cannot write over a tape on any iSeries without receiving a message. BRMS keeps track of whether the data on the tape has actually expired, and does not overwrite the data with other BRMS save operations.

Setting Up Your Media Inventory System

Before you begin using media for backups, you need to set up a media inventory from which BRMS can draw available media. There are primarily two ways to set up your media inventory: you can create sets of media and rotate the sets, or you can use a media pool.

This section provides information on the media set rotation method primarily because it is currently in use by some IBM customers. Because BRMS provides greater automation for tracking your media, it is recommended that you use the more flexible media pooling method.

Media Set Rotation

Media set rotation works by grouping and rotating sets of volumes by color or another identifying code. For example, if you want to rotate three sets of media, you might code the first one blue, the second red, and the third, green. You might use the blue set to back up your data one week, and the red set to back up the same data the next week. Then you might use the third (green) set to back up the same data during the third week. Once you create the coding method and the rotation time period, the set begins rotating. Media sets allow you to view the volume sequence, expiration dates, current storage location, current container, and last move dates for each volume in the set.

If you want to use the media rotation method, you need to create media classes that match your code. For example, if you use a code system with the colors red,
green, and blue as identifiers, you need to set up media classes to match. In this case, you need to set up a media class for each of the colors: red, blue, and green. You would then assign each color class to a different save period, for example, week 1 for red, week 2 for blue, and so on.

Before you implement the media set rotation method, however, consider the following limitations:

- BRMS may not need all of the media in each set, which can be both wasteful and expensive.
- Unused volumes can move from location to location, which wastes time, space, and often money.
- This method requires more operator intervention. Operators must ensure that BRMS uses the correct set for each backup in the cycle.
- It limits your ability to specify different media retention periods.

Media sets are active in the media inventory as long as they contain active data.

The Media Scratch Pool Method

In a media pool, all of the media share the same media class. To create a media pool, simply create a unique media class name for the pool (such as SMPOOL). Then add each volume you want to include in the scratch pool to this media class.

The benefits of using the media pooling method are:

- A group needs fewer volumes and so fewer are wasted.
- You need less operator intervention because the media pool contains fewer volumes to track.

BRMS includes all expired media in the media pool. A media mount request initiates the use of any available volumes, regardless of the volume serial number. BRMS tracks all media, including media currently in use and media available for use.

To change from the rotation to the pooling method, change the media class names. Then make sure that you enroll the volumes into the media class or classes that are allowed in the pool.

Setting Up the Next Volume Message Prompt

BRMS can send the operator a message to mount a volume when the device needs one. This message provides the operator with a list of available media in the required media class. BRMS calls this procedure *Next volume message*, and it comes ready to use with the standard BRMS product. You can find the *Next volume message* prompt on the add and change options on the WRKDEVBRM command.

During the backup process, BRMS checks all volumes that it uses for save operations to ensure that you enrolled them into the media inventory. If they are not, BRMS issues a message that informs the operator and continues the operation. However, if you try to use a mix of enrolled and unenrolled media to perform a save, then BRMS stops the operation. BRMS then sends an error message and waits for instruction to continue or cancel the job. BRMS cannot update the media information records with information on this save because the volumes are not enrolled in BRMS. Consequently, BRMS cannot protect the data against overwriting. BRMS does not automatically enroll the volume unless you change the *Auto enroll media* field in the system policy to *YES*. Good media management relies on specific enrollment of media volumes to the media inventory.
You can find the *Next volume message* prompt on the Change Tape Device display, which you can access from the Work with Devices display. If you do not want BRMS to send a message to insert the next volume, change the value in this field to *NO.*

Note: You can use the *Next volume message* prompt only with stand-alone devices, not media libraries. Media libraries automatically do this for you.

Storing Your Media

This section provides information on the steps you need to take to store your media. In it, you can find instruction on how to use and design the media policies that define the retention periods for your media. You can also find instruction on how to set up storage locations for your media. In addition, you can find information on a couple of other techniques you may want to use to store your media.

Media Policies

Media policies are essential for the successful implementation of BRMS. The media policy defines the type and length of media retention. It also defines the media class and move policy you want to use for the save. In this way, the media policy ties together many of the most important media management and save elements in BRMS.

The standard BRMS product provides these predefined media policies:

1. The FULL media policy instructs BRMS to retain media for 35 days. You can use this policy for full backups.
2. The INCR media policy instructs BRMS to retain media for 14 days. You can use this policy for incremental backups.
3. The SAVSYS media policy instructs BRMS to retain media that is used for system saves for 1725 days (five years).
4. The SYSTEM media policy instructs BRMS to retain media that is used for system saves for 90 days (3 months).
5. The SAVF media policy instructs BRMS to use save files instead of media and to retain the save files for 35 days.

You can use the BRMS-configured media policies, or you can create your own media policies to suit specific purposes. You can also use a combination of BRMS-configured policies and ones you create. Unless you change them, BRMS uses the default media policies when performing backups.

You can create, change, copy, display, or delete a media policy from the Work with Media Policies display. To get there, take the following steps:

1. Type `WRKPCYBRM *MED` at a command line and press Enter.
Specifying Retention Periods in the Media Policy

The primary purpose of a media policy is to specify retention periods for your media. A retention period consists of the length of time that BRMS protects media from rewrite before expiring and returning it to the scratch pool. BRMS protects media from rewrite through the end of the specified retention period.

There are multiple prompts on the media policy display that pertain specifically to retention:

- The Retention type field specifies the type of retention method you want to use. For example, BRMS can hold media until a specified date or for a specified number of days. BRMS can also hold media through different save versions or on a permanent basis.
• The Retain media field specifies the time period through which you want media protected from rewrite.

BRMS designed these elements to work together. For example, when you specify a value of 2 (days) in the Retention type field, you must specify an actual number of days in the Retain media field, for example, 25. BRMS expires the media after the date or number of days has passed, or the number of versions exceeded.

Overlapping Retention Periods: When defining retention periods, you should leave an overlap in the retention periods you assign to media. The length of time you enter should be long enough to assure that BRMS holds a copy until or beyond the next save. There should be no time gaps in the retention cycles.

Full and Incremental Retention Periods: Retention periods can be different for full (all object) and incremental (changed objects) backups. During a recovery, BRMS uses the latest full backup and any subsequent incremental backups to restore that control group or backup item to its most current status.

BRMS allows you to specify the type of incremental backup that you want to use. A cumulative (*CUMUL) type of incremental backup specifies a backup that includes all changed objects and new objects since the last full backup. An incremental (*INCR) backup type specifies that incremental backups include all changed objects and new objects since the last incremental or full backup. You can specify the type of incremental backup (*CUMUL or *INCR) in the backup policy. You also can specify the type individually in each backup control group.

Note: Although incremental backups can reduce your backup window, they can also increase your recovery time. Because BRMS first restores the entire library, then restores the changed objects, some objects may be restored multiple times.

It is important that the retention period for incremental backups be synchronized between each other as well as with full backups. This assures full system recovery in case of system failure. BRMS uses its media content information, and media inventory, to determine the most important information to recover. BRMS bases its recovery process on the media and media information that you keep.

Media Polices and Save Commands
Though created for BRMS, you can also use media policies with OS/400 save commands. For example, if you submit the SAVLIB command with a job name that is identical to a BRMS media policy name, then BRMS applies the values of that policy to the save information created from the save command.

Storage Locations
Storage locations define where media resides during its lifecycle. Common locations include computer room tape racks, fireproof vaults, and offsite storage locations. You are likely to store media at several locations during its lifecycle.

BRMS provides two default storage locations:
• *HOME is the default onsite storage location
• VAULT is the default offsite storage location

You should leave these default locations unchanged and create additional storage location entries as needed. In addition, you should store at least one copy of your backups offsite in case of fire, flood, or other site disaster.
The Uses of Storage Locations in BRMS

Generally speaking, BRMS refers to locations in two ways. First, BRMS uses a **home location** from which to draw and return available media. Then BRMS uses a **storage location** as a place where media is kept when not at home. Definitions of each are as follows:

Home location

The home location is where you store media available for backup use. The home location exists as a pool from which BRMS can draw and return media. After completing a move sequence, you should return media to the home location. After expiring media, you should return it to a home location. The physical location of your home location might be a computer room or an office or any location you define. If you use a single tape device, that can be your home location. However, if you use multiple tape libraries, you **must** create a unique home location name for each library. You can base these unique names on media class or another attribute.

Storage locations

Storage locations are where you keep media that contains active data. Typically, you would keep media that contains active data in a vault or other safe storage location for a specified period of time. You do this so that copies of your system and user data are available in case of accident or disaster. You may have numerous storage locations depending on your needs. You should have at least one safe offsite storage location, but you may want more. Or you might want a temporary storage location for certain tapes at certain points in their lifecycles.

There are several BRMS displays that refer to locations. Following are brief summaries of how BRMS uses location information.

The **system policy** sets the default **home location** for your media. If you are using a stand-alone device, the default name for your home location is *HOME. You can use this default name or create your own home location name. **If you are using a media library, you must rename the home location. You cannot use *HOME as a home location name for media that is stored in a media library. When establishing home location names for media libraries, consider using the same name as the device name.** The names must be unique. If you use *HOME as the location name for an MLB, BRMS will try to reinsert ejected tapes.

The **move policy** has different location parameters: a home location parameter and multiple storage location parameters that you specify. The primary purpose of the move policy is to establish the move pattern of media from one location to another. For example, during a typical save cycle, media moves from its home location to the location where BRMS performs the save, and then to a vault or other safe location. After the move sequence completes, BRMS expires the media and tracks its return to the home location for future use. You define the move sequence in the move policy. The default value in the home location field in the move policy refers to the home location that is defined in the system policy, which is *HOME. You can find information on how to use the move policies later in this chapter.

The default value in the **Storage location** field on the **media policy** is *ANY. This instructs BRMS to draw media for backups from any location at which media is available. Generally speaking, this is likely to be the scratch pool if you are using a stand-alone device. If you specify *ANY while using an MLB device, BRMS may try to mount a volume that is not in library. To avoid this, do not use the *ANY value with media library devices. In addition, you should review this parameter...
occasionally, especially if you permit media to expire in other than the home location. Otherwise, BRMS might request the mount of a tape that is not at the home site.

The default value in the Location field on the Work with Devices display is "HOME. This location name signifies the location of the device that is specified in the Tape device field (the Media library field if the device is an MLB). For example, the location name for a stand-alone device would typically be COMPROOM. The location name for a library device is likely to be the same as the name of the device (for example, TAPMLB01).

Note: If you want to use more than one tape device, you need to ensure that neither uses media that belongs to another system. You should also update the device description field for each device to make sure that the correct locations are specified. You can get to the device description display by entering Work with Device Descriptions (WRKDEVD) from a command line.

Using the Work with Storage Locations Display
Use the Work with Storage Locations (WRKLOCBRM) display to add, change, display, or remove storage locations (including home locations). To add a storage location, take the following steps:

1. Type WRKLOCBRM at a command line and press Enter.
2. Type a 1 (Add) in the Opt column and a location name in the Location column. Press Enter.

<table>
<thead>
<tr>
<th>Add Storage Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type choices, press Enter.</td>
</tr>
<tr>
<td>Storage location COMPROOM Name</td>
</tr>
<tr>
<td>Address line 1 Lab 3, parent location.</td>
</tr>
<tr>
<td>Address line 2</td>
</tr>
<tr>
<td>Address line 3</td>
</tr>
<tr>
<td>Address line 4</td>
</tr>
<tr>
<td>Address line 5</td>
</tr>
<tr>
<td>Contact name Jennie Doe</td>
</tr>
<tr>
<td>Contact telephone number</td>
</tr>
<tr>
<td>Retrieval time0 Hours</td>
</tr>
<tr>
<td>Allow volumes to expire *NO *YES, *NO</td>
</tr>
<tr>
<td>Media slotting *NO *YES, *NO</td>
</tr>
<tr>
<td>Text New storage location for user data.</td>
</tr>
</tbody>
</table>

F3=Exit F12=Cancel

3. Use the Address fields to describe the location you are creating. For example, Computer lab, Building XYZ.
4. Review and change the other parameters as needed, paying particular attention to the following fields:
 - Change the value in the Allow volumes to expire field to *NO for offsite locations. This instructs BRMS not to expire media at this location. Use the default value of *YES if you store the media nearby, for example, in a computer lab or a tape library.
 - The default value for the Media slotting field is *NO. If you want to use the media slotting technique, you need to change this value to *YES. You can find more information on this topic later in this chapter.
5. Press Enter to save your changes and exit.

Following is a list of sample location names you can use when creating a new location:

- **COMPROOM**: A tape rack in your computer room (if you do not store your media in a tape library).
- **TAPMLB01**: Media in a tape library.
- **TAPMLB02**: Media in another tape library.
- **VAULT**: Secure offsite storage.
- **DONOTUSE**: At this location you can store damaged tapes or tapes you no longer want available for use.

Containers and Container Classes

Container use is optional and adds an additional level of complexity to your storage management system. The container option specifies that you want to store media in physical containers at specified locations, and to use the containers to move the media.

A **container class** refers to the type of container used to store or move media, for example, a box or a bin. You must create container classes if you intend to use containers. You can base your class definition on the storage capacity of the container. For example, you might create a container class that is called CONT8MM20 to house 20 8mm tapes.

Creating a Container Class

Before you can add a container, you must create a container class. To get to the Work with Container Classes display, take the following steps:

1. Type **GO BRMCNR** at a command line and press Enter.
2. At the Container Management menu, select option 1 (Work with container classes). This takes you to the Work with Container Classes display.
3. Type a 1 (Add) in the **Opt** column and the name of the new container class in the **Class** column. Press Enter.

<table>
<thead>
<tr>
<th>Add Container Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type choices, press Enter.</td>
</tr>
<tr>
<td>Container class........ QICCASE Name</td>
</tr>
<tr>
<td>Container capacity..... 20 Number</td>
</tr>
<tr>
<td>Media classes.......... QIC120 Class, +ANY, F4 for list</td>
</tr>
<tr>
<td>Different expiration dates *NO +YES, +NO</td>
</tr>
<tr>
<td>Automatic unpack........ *NO +YES, +NO</td>
</tr>
<tr>
<td>Text QUARTER INCH TAPE CAPACITY</td>
</tr>
</tbody>
</table>

4. Review and change the parameters as needed, paying particular attention to the following fields:

- In the **Media class** field, specify the name of the media class that you want to store in the container. You can keep volumes with different media classes in the container, or you can keep volumes of only one media class in the container. You can also specify *ANY to indicate that the container can hold volumes of any media class in the container.
- The value in the **Different expiration dates** field specifies whether media held in the container can have different expiration dates. The default value for this parameter is *NO.
• The default value in the Automatically unpack field is *YES. *YES instructs BRMS to remove information about the association between media and container after the media expires. If you change the value to *NO, BRMS holds this association information in the media information inventory. In this case, the volumes remain assigned to the container, even though BRMS cannot use them because they have expired.

5. Press Enter to save your changes and exit.

Working with Containers
After creating the container class, you can use the Work with Containers display to add a container and to perform a number of container-related tasks. To get there, take the following steps:

1. Type WRKCNRBRM at a command line and press Enter.
2. From the Work with Containers (WRKCNRBRM) display you can perform the following tasks:
 • Add a new container.
 • Change an existing container.
 • Remove a container.
 • Move a container.
 • Unpack a container.
 • Work with the media that is associated with the container.

3. After completing your work at an associated container display, press Enter to save your changes and exit. This returns you to the main Work with Containers display.

Managing Container Movement
You must assign move policies to containers. Use the move policy display to specify container use and container movement. After creating a container, go to the move policy that you want to use for that container, and change the Use container parameter to *YES. To review or change a move policy, take the following steps:

1. Type WRKPCYBRM at a command line and press Enter. This takes you to the Work with Move Policy display.
2. Type a 1 (Change) in front of the policy you want to work with and press Enter.
3. To instruct BRMS to track container use and movement, change the value in the
Use container field to *YES.

4. Make any additional changes as needed.

5. Press Enter to save and exit.

All of the volumes in a container must have the same move policy. BRMS will not
process a request to hold volumes with different move policies in the same
container.

If you indicated *YES in the Verify moves field in the move policy, BRMS links the
volume to the container at verification time. For non-verified moves, the link
between volumes and container is automatic when you issue the Move Media
using BRM (MOVMEBRM) command. You can find more information on the
MOVMEBRM command later in this chapter.

When tracking media movement to containers, BRMS selects the next available
container. This container supports the appropriate media class. It also selects the
container with the ID that is next in ascending alphabetical sequence. Whenever
possible, BRMS uses the container that is already at the location from which the
media is moving.

For example, suppose that you have two containers that are members of the
QIC120 container class and contain 10 QIC120 format tapes. The container labels
are QICAA and QICAB. BRMS selects QICAA over QICAB if both are available.
However, assume that you have another container class that holds 20 QIC120
cartridges (QIC120BIG), and that a container (QICAC) in this class is available.
Even if the save uses 20 cartridges, BRMS still selects QICAA first even though
QICAC seems more appropriate.

Media Slotting

Use the media slotting technique when you want to file and track media by slot
number. You can use this technique at all of your storage locations, at selected
ones, or not at all. You can indicate media slotting use on the Add or Change
Storage Location displays.
The default value in the *Media slotting* field is *NO*. If you want BRMS to track volumes in a media slotting system, you must change the value in the *Media slotting* field to *YES*.

BRMS automatically updates the slot number at storage locations that use the media slotting technique. When BRMS moves media to that location, it assigns it a slot number. You must ensure that you move the volumes to the allocated slot.

BRMS automatically updates the slot numbers for containers that are processed through a move command. If you want to use the media slotting technique for volumes in a container, BRMS assigns the media in the container and the container itself the same slot number.

Note: A volume and a container take one slot each.

Moving Your Media

This section provides information on how you can use BRMS to track the movement of your media from one location to another. You can use move policies to create move patterns for selected media. You can then set move-related commands to issue the move patterns that you specify in the move policy. BRMS can also help you to verify that the move patterns took place as scheduled.

To view the move management options available in BRMS, take the following steps:

1. Type **GO BRMMEDMOV** at a command line and press Enter. This takes you to the Move Management menu.

 Move Management

 Select one of the following:

 1. Run media movement
 2. Verify media to be moved
 3. Print media movement report
 4. Work with move policies
 5. Work with calendars

 You can find information on each of these options in this section.

Move Policies

The move policy determines the sequence and duration of storage retention and movement for media and containers. Move policies also indicate how you want BRMS to verify media movement activities.

Use move policies to create move patterns for volumes that contain active media. Each move policy is tied to a media policy which, in its turn, is tied to a save item such as a library or control group. You can initiate the move pattern by using either the Move Media using BRM (**MOVMEDBRM**) or the Start Maintenance using BRM (**STRMNTBRM**) command. You can process both of these commands automatically by using a job scheduler.

BRMS comes with a default move policy called OFFSITE. The OFFSITE policy tracks the movement of media to the VAULT location, where it remains until expiration (*EXP*). You can change the OFFSITE move policy and can also create additional move policies to track a variety of move patterns.
To create, change or delete a move policy, take the following steps:

1. Type WRKPCYBRM at a command line and press Enter. This takes you to the Work with Move Policy display.

2. To create a move policy, type a 1 (Create) in the Opt field and a name for the new policy in the Policy field. Then press Enter.

3. This example creates a move policy that is called 0499PAY. This move policy governs the movement of your April, 1999, payroll information throughout its lifecycle.

4. To set up a move pattern for this volume, take the following steps:
 a. In the Seq field, specify the order in which you want BRMS to move the media to this location.
 b. In the Location field, indicate the name of the location to which you want BRMS to move the media.
 c. In the Duration field, indicate the length of time you want to store the media in that location. Possible values for this field include number of days, a specific date, *EXP (until expiration), *PERM (permanent), and file groups. You can find more information on file groups later in this section.

 The move pattern in this example instructs BRMS to track the movement of the 0499PAY media from the COMPROOM, where resides for 5 days, to the VAULT, where it remains until it expires. After the volume expires, you should return it to its home location.
d. After you design the move pattern, you need to attend to the remaining parameters on the move policy. Following are brief summaries of the key fields that remain on the Create Move Policy display:

- The *Home location parameter specifies the location where BRMS returns media after its move cycle completes. Typically, this is your onsite media inventory location. The default value for this parameter is *SYSPCY, which instructs BRMS to look at the system policy for the home location. The default home location in the system policy is *HOME, which you can change if needed.

In addition, you can now use a new value (*ORIGIN) that was created especially for the move process. *ORIGIN instructs BRMS to return expired volumes backup to the location at which the backup occurred. You can also press F4 to select from a list of different locations.

- In the *Verify moves field, specify whether you want BRMS to verify media movement activities or whether you want to perform this task yourself. The default value for this field is *YES, which means that you want to verify media movement yourself. BRMS supplies you with the Verify Media Movement display, which assists you in determining whether the move schedule created in the move policy completed successfully. You can access the Verify Media Moves display from the Move Management menu. *NO means that BRMS bypasses move verification and updates location information immediately. It is recommended that you use the default value (*YES), especially if you use media libraries.

- Use the *Calendar for working days parameter to specify which days you want to use to calculate the amount of time that media stays at each location.

- Use the *Calendar for move days parameter to specify the days of week that you can move media from one location to another.

e. After you review and change the remaining parameters as needed, press Enter to store the move policy with BRMS.

f. Then press Enter to apply your changes.

Note: If you specify APPEND(*YES) in your backup policy, be sure that the move policy keeps the tape onsite for a sufficient number of days.

Movement by File Groups

The previous example shows duration that is specified in days. Another method of utilizing move policies is by using file groups.

A file group consists of all of the volumes that belong to a control group. For example, suppose that BRMS processes a control group that is called MAINBKU on Monday and uses 10 tapes. The media policy associated with the control group contains a move policy that is called VERSION. This move policy uses file group version support. BRMS considers the 10 tapes a file group and moves them together as specified by the move policy VERSION. Each time you process the MAINBKU group, BRMS creates a new file group.

<table>
<thead>
<tr>
<th>Control Group</th>
<th>File Group Relative Number</th>
<th>Creation Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAINBKU</td>
<td>1</td>
<td>5/1/99 (newest)</td>
</tr>
<tr>
<td>MAINBKU</td>
<td>2</td>
<td>4/1/99</td>
</tr>
<tr>
<td>MAINBKU</td>
<td>3</td>
<td>3/1/99</td>
</tr>
<tr>
<td>MAINBKU</td>
<td>4</td>
<td>2/1/99</td>
</tr>
<tr>
<td>MAINBKU</td>
<td>5</td>
<td>1/1/99 (oldest)</td>
</tr>
</tbody>
</table>
As you can see, the lowest numbered file group corresponds to the most recent creation date. The highest numbered file group corresponds to oldest creation date.

BRMS cannot predict when a volume that exists as a file group will move next. File group movement depends on when BRMS creates the next file group, not on a specific date. For this reason, you cannot use file group movement with specific date, or days type of duration in the same move policy.

The following display shows a sample move policy that is called VERSION.

```
Display Move Policy

Move Policy ........: VERSION
Home location ......: TAPELIBR
Use container ......: *NO
Verify moves ......: *NO
Calendar for working days : *ALLDAYS
Calendar for move days . : *ALLDAYS
Text ..............: User created move policy using file groups

Seq Location Duration
10 REMOTE A +GRP 001
20 REMOTE B +GRP 002
30 REMOTE C +GRP 003

Press Enter to continue.
```

This move policy tracks the file group by file through a number of storage locations.

Movement by Control Group

You can also move media by control group. Control groups consist of groups of libraries, objects, folders, spooled files, and other types of data that share common characteristics. You can create move patterns for control groups in the move policy that is associated with the media policy for that control group. You can find more detailed information on control groups in Chapter 7, Tailoring Your Backup.

To use a move policy with a control group, take the following steps:

1. Create the move policy, including the move pattern, that you want to use with the control group.
2. Go to the Change Backup Control Group Attributes display that is associated with the control group you want to move. Note the name of the media policy you use in the control group.
3. Use the WRKPCYBRM *MED command to get to the Work with Media Policies display.
4. Type a 2 (Change) in front of the media policy that is associated with the control group you want to move and press Enter.
5. Put your cursor in the field next to the Move policy parameter. Press F4 for a list of available move policies.
6. Select the move policy you just created for the control group you want to move.
7. Press Enter to save your changes and to return to the Work with Media Policies display.

BRMS tracks the movement of the media on which it saved the control group through the move pattern you created in the move policy.
Working with the Move Management Calendars

Use calendars to define groups of days or dates to use in conjunction with the move pattern that is established in your move policy. There are two calendar parameters on the move policy display: the Calendar for working days and the Calendar for move days. Together, these calendars determine the days of week that you allow media to move.

You can add, change, remove, display, or copy a calendar from the Work with Calendars display. To get there, take the following steps:

1. Type GO BRMMEDMOV at a command line and press Enter.
2. Select option 5 (Work with Calendars).

Establishing a Calendar for Working Days: Working days might be Monday through Friday or any specific day designation you want to make. Suppose that, on a move policy, you indicate M-F as working days, and that you indicate 10 days as the duration period for the move. In this case, the media actually stays in that location for 14 days. That is because BRMS does not include the weekend days as working days.

Establishing a Calendar for Move Days: Once you establish the working days, you can then establish a calendar for move days. Move days are days on which you allow media to move. For example, suppose that the calendar for working days is Monday through Friday. A tape arrives in a location on Wednesday and will remain there for 9 days. You scheduled the tape to move to its next location on a Tuesday. However, if the move calendar allows for media movement only on Monday, Wednesday, and Friday, then BRMS indicates that the move happened on the second Wednesday. This process assumes that the Wednesday scheduled for media movement is not an exception day in a reference calendar. It also assumes that BRMS processes the STRMNTBRM command on that Wednesday. You can find more information on how to use the STRMNTBRM command in the following section.

Defining Exceptions to Another Calendar: You can use calendars to define exceptions to another calendar, which BRMS calls a reference calendar. For example, you could define a holiday calendar as a reference calendar to a working day calendar. The holiday calendar defines holidays on which media movement would not occur, even if the day of the week is a working day.

Specifying Calendar Dates: When you add a calendar, you can specify dates in the following manner:

- A specific date such as 12/25/99 (or 122599).
- A generic date such as 12/25 (or 1225).
- A special value such as *MON, *TUE, and so on.
For each date or day entry that you make, you must select whether to include or exclude this entry from a calendar. BRMS excludes entries unless you specifically include them. For instance, if you set up a calendar with entries *MON, *TUE, *WED, *THU, and *FRI, with each entry included (*INC), then any day is a candidate move day for this calendar. You would exclude Saturday and Sunday. Conversely, if you set up a calendar with entries *SAT and *SUN, specifying *EXC for these entries, you could exclude all of the other days of the week.

Note: Calendar names are user-defined, can be up to 10 characters in length, and must adhere to iSeries naming conventions.

Initiating Movement

There are several ways to initiate movement in BRMS. To process media movement automatically, and as specified in the move policy, use Move Media using BRM (MOVMEDBRM) command or Start Maintenance for BRM (STRMNTBRM) command. If you want to initiate the movement of an individual volume, take option 8 (Move) from the WRKMEDBRM display.

Initiating Movement with the MOVMEDBRM Command

The MOVMEDBRM command processes the move patterns that you set up in the move policy. You can place the MOVMEDBRM command on a job scheduler to process scheduled movement automatically, or you can process the command manually, on an individual or as needed basis. To process media movement by using the MOVMEDBRM command, take the following steps:

1. Type MOVMEDBRM at a command line and press Enter.

 Move Media using BRM (MOVMEDBRM)

 Type choices, press Enter.

 - **Move policy**: *PAYROLL, *ALL, OFFSITE, TEST
 - **From location**: *ALL Name, *ALL, *HOME
 - **Container**: *ALL Name, *ALL
 - **Media class**: *ALL Name, *ALL
 - **System name**: *ALL
 - **File group**: *ALL *ALL, *NONE, *BKUGRP, *ARCG...
 - **File group type**: *ALL *ALL, *NONE, *BKU, *ARC

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display F24=More keys

2. Indicate the move policy whose pattern you want to process through this command. If you do not know the name of the policy you want to process, press F4 to prompt a list of available move policies.

3. Review and change the other parameters as needed.

4. Press Enter to process the command.

Initiating Movement with the STRMNTBRM Command

Another way you can process media movement automatically is by using the Start Maintenance for BRM (STRMNTBRM) command. The STRMNTBRM command performs a variety of cleanup tasks that enable your operations to run more
efficiently. You should schedule this command to run daily after all of your backups have completed. If you change the Run media movement parameter on the STRMNTBRM command to *YES, the STRMNTBRM command processes the MOVMEDBRM command after it completes its cleanup tasks. By running the MOVMEDBRM command through the STRMNTBRM command you save yourself an extra scheduling task.

To process media movement through the STRMNTBRM command, take the following steps:

1. Type STRMNTBRM at a command line and press Enter.

 ![Start Maintenance for BRM (STRMNTBRM)](image)

 - Type choices, press Enter.
 - Expire media........... *YES +YES, +NO
 - Remove media information:
 - Media contents........ *EXP +EXP, +REUSE, +NONE
 - Object level detail..... +MEDCON 1-9999, +MEDCON
 - Remove migration information.. 180 1-9999, +NONE
 - Run media movement....... *NO +NO, +YES
 - Remove log entries:
 - Type............. *ALL +ALL, +NONE, +ARC, +BUK, +...
 - From date *BEGIN Date, +CURRENT, +BEGIN, nnnnn
 - To date 90 Date, +CURRENT, +END, nnnnn
 - Run cleanup operations . . . *YES +YES, +NO
 - Retrieve volume statistics . . *YES +YES, +NO
 - Audit system media +NETGRP + for more values
 - Change BRM journal receivers . . *YES +YES, +NO
 - Print expired media report . . *YES +YES, +NO
 - More...

 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

2. At the Run media movement parameter, change the value to *YES. This instructs BRMS to run the Move Media using BRM (MOVMEDBRM) command.
3. Review and change the other parameters as needed.
4. Press Enter to process the command.

For more information on how to use the STRMNTBRM command, see "Chapter 9 Daily Maintenance in BRMS" on page 159.

Verifying Movement

BRMS can verify media movement automatically, or you can verify it manually. You can specify the option you choose at the Verify Moves parameter on the Change Move Policy display:

- **Specifying *YES at this parameter means that you intend to verify the media movement yourself, using the BRMS Verify Media Moves display to assist you.**
- **Specifying *NO at this parameter means that BRMS bypasses the verification step. Since BRMS cannot actually see that the media is in the correct location, it instead assumes that the move took place and updates the location information accordingly.**

To get to the Verify Media Moves display, from which you can manually verify media movement, take the following steps:

1. Type VFYMOVBRM at a command line and press Enter.
Verify Media Moves

Type options, press Enter. Press F16 to verify all.
1=Verify 4=Cancel move 9=Verify and work with media

<table>
<thead>
<tr>
<th>Opt</th>
<th>Volume</th>
<th>Creation</th>
<th>Expiration</th>
<th>Move</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BRMST1</td>
<td>7/06/99</td>
<td>7/30/99</td>
<td>*HOME 7/14/94 CONTBLUE</td>
</tr>
<tr>
<td>2</td>
<td>T00003</td>
<td>7/06/99</td>
<td>7/30/99</td>
<td>*HOME 7/14/94 CONTGREEN</td>
</tr>
<tr>
<td>3</td>
<td>T00004</td>
<td>7/06/99</td>
<td>7/30/99</td>
<td>+HOME 7/14/94 CONTGREEN</td>
</tr>
<tr>
<td>4</td>
<td>T00005</td>
<td>7/06/99</td>
<td>7/08/99</td>
<td>+HOME 7/14/94 CONTGREEN</td>
</tr>
</tbody>
</table>

2. Type a 1 (verify) in front of the volume whose movement you want to verify and press Enter. This takes you to the next Verify Media Moves display.

Verify Media Moves RCHAS400

Type options, press Enter. Press F16 to verify all.
1=Verify 4=Cancel move 9=Verify and work with media

<table>
<thead>
<tr>
<th>Opt</th>
<th>Volume</th>
<th>Creation</th>
<th>Expiration</th>
<th>Move</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BRMST1</td>
<td>11/03/99</td>
<td>*VER 002</td>
<td>MLD02 10/21/98 +NONE</td>
</tr>
</tbody>
</table>

More...

F3=Exit F5=Refresh F12=Cancel F16=Verify all

3. Review the information on this display that pertains to the media whose movement you want to verify. If the location and move date information are correct, type a 1 (Verify) next to the volume.
4. Press Enter to process the verification information.
5. Press F3 to exit and save your changes.

You should verify media movement manually until you are certain that the move patterns are completing successfully.

Printing Movement-related Reports

Following are brief summaries of the movement-related reports you can run through BRMS. You can access these reports by entering the command name at a command line, or through the Move Management menu.

- **Option 1:** Run Media Movement (MOVMEDBRM) creates a Volume Movement Report that lists all media volumes currently eligible for movement. This report also displays the current move schedule for these volumes.
- **Option 3:** Print Media Movement (PRTMOVBRM) creates the Media Movement Report, which serves as a picking list for volumes to be moved from one storage location to another. PRTMOVBRM allows you to print the Media Movement Report based on a specified date range. You can also print the reports by verification status and storage location. The report shows all volumes that have moved, the “to” and “from” locations, the move policy for each volume, and the move date. Although this report is optional, it is recommended because it provides additional detail.
Tracking Your Media

BRMS provides several methods for tracking the status of your media. The most comprehensive of these is an online media inventory that manages and tracks volumes and volume information. You can also generate status reports based on the media inventory contents. Another way is to duplicate the volumes that contain your most critical saves and store them in a safe place. You can also track media by volume label.

Working with the BRMS Media Inventory

The Work with Media (WRKMEDBRM) display is the primary display for viewing and changing your up-to-date media inventory. From this display, you can view media class, move status, location, duplication status, and volume creation and expiration dates by volume. You can also use this display to add, change or remove media from the media inventory.

BRMS tracks all operations to tape, except Save Storage (SAVSTG). If BRMS uses a volume that is not in the BRMS media inventory, it logs the event, and the tape operation continues. BRMS does not record volume content information for those volumes not in the media inventory.

BRMS can track volume content at the user-specified level of detail. BRMS can track volume content at the library level, object level, or member level for any enrolled volume.

To get to the Work with Media display, take the following steps:
1. Type WRKMEDBRM at a command line and press Enter.
2. The WRKMEDBRM display shows the status of your media by volume ID and includes information such as upcoming move dates and current location information.

3. In this example, you want to see a more detailed view of volume DRB002. To do that, type a 5 (Display) in front of the volume you want to review and press Enter.
4. After completing your review, press Enter to return to the Work with Media display. From that display, you can review and change other volumes as needed.

Printing Media Status Reports

To print a report based on the information contained on the Work with Media display, take the following steps:

1. Type WRKMEDBRM at a command line and press F4 to prompt the display.
2. Change the *Output* parameter to *PRINT* and press Enter. This generates a comprehensive media inventory report.

Use the Print Media using BRM (PRTMEDBRM) command to print either of two inventory-related reports that contain information not found in the WRKMEDBRM report.

- The *Media Threshold* report identifies volumes that have equaled or exceeded the usage limits.
- The *Media Statistics* report contains all other volume statistics, such as the create and expiration dates of the current files on the volume. You can specify that the report show all of the volumes including exceptions, or just exceptions.

Duplicating Media

Use the Duplicate Media using BRM (DUPMEDBRM) command to copy the contents of a volume or set of volumes. You can copy a single volume, a list of volumes, or a media set.

Note: Currently DUPMEDBRM does not support the duplication of object level detail. The default value of *NO* is always used for the OBJDTL parameter.

Before you use the DUPMEDBRM command, however, keep the following information in mind:

- You must have two devices to use this command. If the devices are shared non-MLB devices, BRMS varies the devices on for you. If your device is not a shared device, you must vary it on.
The media or media set that you are copying must be members of the media inventory.

When you process the DUPMEDBRM command, BRMS does not automatically duplicate the media information to the duplicated volume. To remedy this situation, follow the steps in the Saving Media Information for Duplicate Volumes section of this chapter.

When supplying volume serial numbers to the DUPMEDBRM commands as values for the To volume identifier field, you must provide more expired volume serial numbers to receive output copies. This is in case of any length variations between physical volumes.

You cannot duplicate saved items saved to TSM servers using the DUPMEDBRM command. Duplication of TSM server media is managed by the TSM administrator using TSM operations.

Notes:
1. You must change the Mark volumes for duplication value in the appropriate media policy to *YES in order for DUPMEDBRM to process.
2. The tape devices do not have to support the same media classes. You specify the media policy in the DUPMEDBRM command.
3. To use DUPMEDBRM to copy a file group, the output media assumes the group number of the input media. An exception to this is a SETMEDBRM command that overrides the value for file group and type for the output volumes.

Copying Volumes with DUPMEDBRM
To use the DUPMEDBRM command, take the following steps:
1. Type DUPMEDBRM at a command line and press F4 to prompt the display.
2. At the Duplicate Media using BRMS (DUPMEDBRM) display, press F9 to prompt the remaining parameters.

3. The key parameters on this display are:
 - If you want to copy a single volume, type the name of that volume in the From volume identifier field. If you want to copy a list of volumes, type *LIST in this field.
• The From volume identifier parameter works in conjunction with the Input volume list parameter. If you want to copy a single volume, use the default value for this parameter (*VOL). This indicates the volume ID you named in the From volume identifier field. To copy a media set, type the name of any volume in the media set in the From volume identifier parameter and the value *SET in the Input volume list parameter.

Note: You must use this method when duplicating the volumes of a media set in a batch job. If you want to copy a list of volumes, use the + field to provide the additional fields in which to list the volumes you want BRMS to copy. An alternative method would be to type the name of any volume in the media set in the From volume identifier parameter, then press the Enter key. BRMS will find all other volumes in the set and list these in these in the Input volume list parameter.

• In the From device field, specify the name of the device from which BRMS will make the duplicate. This device contains the original volume.

• In the To device field, specify the name of the device that contains the volume that will receive the duplicated information.

• Review the other parameters carefully and change as needed.

• Press Enter to process the command.

Saving Media Information for Duplicate Volumes
Take the following steps to save media information for duplicate volumes:
1. Run the BRMS backup on the original volume and specify that you want to save the media information.
2. Create the duplicate volumes with the DUPMEDBRM command.
3. Run media movement by using the Move Media using BRM (MOVMEDBRM) command so that the two sets of volumes (original and duplicate) go to different locations.
4. Perform another save of the media information by using the Save Media Information using BRM (SAVMEDIBRM) command.
5. Move the volumes that SAVMEDIBRM command creates in the previous step to the same location as the duplicate volumes.
6. Create the recovery report by specifying the location of the duplicate volumes in the STRRCYBRM LOC(duplicate_volume_location).

External Label Printing
BRMS provides the following options for printing and customizing media labels.

How to Specify Label Printing
There are two ways to print external labels:
1. From the Work with Media Classes display (WRKCLSRM): At the Mark for label print field on the WRKCLSRM display, you can instruct BRMS to mark a volume for label printing when a write operation occurs (*WRITE). Or you can instruct BRMS to mark the volume for label printing when media movement occurs (*MOVE). You can specify any one of three label sizes in the media class.

Note: The Text field uses the current information in the media information for that volume. The text information in the field reflects the text information from the most recent control group that was processed to create media information for that volume.
2. *From the Work with Media display (WRKMEDBRM)*: To mark an individual volume for label printing, select option 11 (Mark for label print) on the Work with Media display.

Note: To create label output for all volumes that BRMS marks for label print, select option 7 (Confirm media label print) on the Media Management menu.

Customizing Label Printing

The source for the three printer files that BRMS uses to create the media labels exists on your system after you install BRMS. The QA1ASRC file in the QUSRBRM library contains the source. There are three members: QP1A1LP, QP1A2LP, and QP1A3LP. These three members can print 6lpi, 8lpi, and 9lpi, respectively.

To change the format of your printer labels, edit the source member that corresponds to the labels that you selected for the media. For example, you can edit with SEU (source entry utility), RLU (report layout utility), or PDM (programming development manager). First you must give the members the correct member type of printer file (PTRF). You can do this within PDM when you are working with members.

When changing the source, do not change the record name, any of the field names, or the order of each field. The print programs depend on these named items being present. You can change the position.

You must add QUSRBRM to your library list and then compile the printer file to the library QBRM. Be sure to specify level check (*NO) on the Create Printer File (CRTPRTF) command.

```
Volume serial . . . . . . : ZZ2003
Creation date . . . . . . : 3/08/99
Expiration date . . . . . . : 4/07/99
Location . . . . . . . . . : *HOME
Container . . . . . . . . . : *NONE
Text . . . . . . . . . . . . : Monthly general ledger summary
```

Your customized labels should now print successfully.

Note: OS/400 uses certain volume identifiers for special purposes. You should avoid using these volume identifiers in your volume labeling. Volume identifiers to avoid are:

- TAPXXX
- NLTXXX
- BLKXXX
- CLNXXX
- ERRXXX
- SLTXXX
- IMPXXX
Chapter 7. Tailoring Your Backup

In Chapter 3, you learned how to use BRMS-configured defaults to perform an immediate backup of your entire system. This chapter provides detailed information on how to use a variety of BRMS tools and techniques to design and implement a customized backup strategy for your company.

The kind of backup operation you implement has a significant impact on the quality and success of your recovery operations. Therefore, it is important that you plan your backup strategy well. This chapter begins with a section on things to consider when you design your backup strategy. You should also be familiar with the more comprehensive planning recommendations that are presented in the Backup and Recovery.

Many of the functions described in this chapter are available as part of a plug-in to Operations Navigator. For detailed information on the BRMS plug-in to Operations Navigator, see the iSeries Information Center.

Planning Considerations

There are several factors to keep in mind when planning your backup strategy. You need, for example, to have an accurate understanding of the user skill levels at your site. You must also be familiar with the kinds of physical resources that are available. The two most critical factors you need to consider, however, are data and timing: what to save, and when and how to save it. The following questions can assist you in designing an effective backup plan:

- How much data do I need to save on a daily basis? A weekly basis? Monthly?
- What kinds of data do I need to save at these times?
- Given the amount and kinds of data I need to save, what do my save windows look like? How much time do I have available each day and week to perform the necessary backups? At what times of the day and week are those save windows available?
- What kind of saves can I perform that will allow users to continue using the system while the saves process?
- What are my most critical applications, the ones that need to be operational as soon as possible during disaster recovery? How can we save our most critical data and applications in such a way as to be able to recover them quickly and easily?

Think about the questions above as you read through this chapter. Consider the different options available to you and the ways in which you can use them. For example, can you put some of your most critical data in a backup list, thereby effectively separating it from less critical data? When can you effectively use the save-while-active feature, which shortens your save window and allows users back on the system sooner? Does your company have the resources to perform parallel saves, which shorten your save window by processing large objects on multiple devices at the same time? You may want to write down your thoughts on these and other questions as you read through this chapter.
The BRMS System Policy

While the backup policy contains numerous instructions on how to perform your backups, the system policy also contains several values that bear directly on your backups. The system policy provides process information to BRMS at the highest level of the policy structure that is described in "Chapter 1. Introduction to Backup Recovery and Media Services for iSeries (BRMS)" on page 3. System policy values are particularly important because they establish the default values in several functional areas. Thus, unless you change them in another policy or in a control group, BRMS applies these values to your backup activities. Following is a list of the backup-related fields for which the system policy provides default values:

- Media policy type
- Devices
- Media location
- Media class
- Interactive user status.
- Presentation controls designating backup type (full or incremental) and first day of the week.

Understanding the System Policy

To review system policy parameters, take the following steps:

1. Type WRKPCYBRM *SYS at a command line and press Enter.
2. Select option 1 (Display or change system policy) from the System Policy menu.

Following are brief summaries of the key parameters on the system policy display. These are the parameters that you are most likely to change.

The default Media policy that is configured at installation time and used by the system policy is called FULL. The FULL media policy instructs BRMS to use full backups with a 35 day retention period. Another BRMS-configured option is INCR, which instructs BRMS to use incremental backups with a 14 day retention period. You can also use the Save System (SAVSYS) special value, which instructs BRMS to retain media for 1725 days (5 years) after a system save. You can change the
default media policy to another BRMS-configured policy or to one that you created. To do so, press F4 from the Media policy field and select from the available list.

The device name listed in the Devices field refers to the default device that is selected by BRMS at the time of installation. If you have more than one device attached to your system, BRMS uses the fastest and most automated one that is attached to your system. If you do not want to use the default device, you can select F4 from this prompt to select from a list of additional devices. The devices in this list include other devices that are attached to your system at time of installation, and any others you add after that.

The Home location for media field specifies the onsite home location for media that is managed by BRMS. *HOME is the default value for this prompt. BRMS also provides an offsite default location, called VAULT. To change the default value, place your cursor in the Home location for media field and press F4 to prompt a list of locations.

The Media class field specifies the default media class that is used by BRMS. BRMS uses media classes to describe different types of media. BRMS bases its definitions on characteristics such as tape density, capacity, label information, error allowance, and shared status. Be sure that the media class you use is compatible with the device in the same policy. If you do not want to use the BRMS default location, you can select from a list of locations by pressing F4 from this parameter.

The default value for the Sign off interactive users parameter is *NO. If you select *YES, BRMS sends warning messages at the following intervals:

- If the time left is 60 minutes, the message appears every 10 minutes.
- If the time left is 10 minutes, the message appears every 2 minutes.
- If the time left is 1 minute, the message appears as the minute begins.

However, there is no signal that indicates when users have signed back on the system. If this is a problem, you might want to consider stopping the subsystems. It is recommended that you keep the value set to *NO at this parameter.
Changing the Presentation Controls
In addition to the parameters on the system policy, you can find other system-related prompts on the additional displays available from the System Policy menu display. For example, you may want to change the first day of the week designation in the Change Presentation Controls display. To get there, select option 5 (Change presentation controls) from the System Policy menu.

```
Change Presentation Controls
RCHAS400

Type choices, press Enter.

Character representing   
full backup ............... F Character
incremental backup ........ I Character
general activity .......... * Character
First day of week .......... SUN SUN, MON, TUE...

F3=Exit  F5=Refresh  F12=Cancel
```

The default value for the First day of week parameter is SUN. You may want to change this value to MON, or to another value that better reflects the start of your work week.

The BRMS Backup Policy

The backup policy contains the most numerous and important instructions on how BRMS will perform your backups. The key parameters on this display provide BRMS with the following information:

- Type of backup (full or incremental).
- Days on which to perform full or incremental backups.
- Type of incremental backup (cumulative or noncumulative).
- Whether BRMS should save your access paths during save processing.
- Ability to append data to the end of existing files or begin a new volume as needed.

Changing the Backup Policy

Perform the following steps to get to the Backup Policy display:

1. Type GO WRKPCYBRM *BKU at a command line and press Enter.
2. Take option 1 (Display or change backup policy) from the Backup Policy menu.
As you can see, the backup policy shares several parameters with the system policy. You can override the shared prompts on an as-needed basis or to customize your backups as desired.

Following are brief descriptions of the parameters you are most likely to change:

The Default weekly activity value specifies the type of backup you want to perform each day of a seven-day week. For example, you might want BRMS to perform a full backup (F) on a Friday, and an incremental backup (I) on the other nights of the week. Or BRMS could perform a full backup every night. Leaving one of the days blank indicates that you do not want any backups performed on that day.

The Incremental type field allows you to specify the type of incremental backup you want BRMS to perform. To save all changes since the last full backup, specify *CUML in this field. To save changes since the last time BRMS performed an
incremental save, specify *INCR. CUML saves make recovery activities easier and shorter, while INCR saves can make your save windows shorter. IBM recommends that you keep the default ("*CUML") to provide better protection for important data.

The *Save journal files while saving changed objects* field specifies whether to save changes to objects that you entered in a journal. The default for this value is *NO, which indicates reliance on journaled receivers to retrieve changes during the recovery. IBM recommends that you change this default to *YES for ease of use, and to reduce the number of recovery steps. You should be aware, however, that using *YES increases your save time. If *YES is specified, all journaled objects are saved, not just journaled files.

The *Automatically backup media information* parameter specifies the level at which you want BRMS to save media information. BRMS uses the media information to assist in the restore process. The default level is *LIB. Other options are *OBJ and *NONE. To retain media information at the object level, you should indicate that preference at this field, and also at the *Retain Object Detail parameter (change value to *YES). The *Retain Object Detail parameter is on the Edit Control Group Entries display. If you do not specify *OBJ in the *Automatically backup media information field, and *YES in the *Retain object detail field, BRMS may not save the information at *OBJ level for that job.

Note: Retaining object level detail can considerably increase your disk space, and your save and restore times. Keep in mind that you can restore an individual object without object level information if you know the name of the object. You can search your save history for the library using the Work with Media Information (WRKMEDIBRM) command. Normally, the default value, *LIB, is satisfactory for most customers.

The *Save access paths* field allows you to save the access paths associated with your logical and physical files. The value in this field indicates whether to save the logical file access paths that are dependent on the physical files BRMS saves. BRMS saves access paths only if you also save all of the members on which the access paths are built. BRMS sends informational messages that indicate the number of logical access paths that were saved with each physical file. All physical files on which the access paths are built must be in the same library. This parameter does not save logical objects; it only controls the saving of the access paths.

The default value established for the *Save access paths* field in the backup policy is *YES. You can use the save access paths default that is established here for a backup control group. Or you can override the value at the Change Backup Control Group Attributes display. IBM recommends that you save the access paths, even when it time-consuming. If you do not, you run the risk of lost system availability if you need to recover the file or the system after a disaster. Saving the access paths increases the save time, but decreases your recovery time, thereby increasing system availability. See the *Backup and Recovery* book for more information on the restoration of saved paths.

Note: If BRMS performs both full and incremental saves, it restores the full saves first, then the incremental. If you do not save your access paths, they will likely be rebuilt twice, once during the restore from the full backup and then again during the restore of the incremental saves. Use the Edit Rebuild Access Path command (EDTRBDAP) to perform the rebuild right after the restoration of the full save has completed. You can then restore the incremental saves and use the EDTRBDAP command to change the sequence number.
The *Append to media* value specifies whether to add files on current media with active files or to begin a new volume. If you specify *YES, BRMS writes the files to the volume that immediately follows the last active file. This allows you to maximize media usage. However, if you want to separate data on separate tapes, you should specify *NO.*

When you select *YES at the* *Append to media* prompt, BRMS takes the following steps to select the volumes to append:

- When selecting volumes for media libraries, BRMS determines if the last volume that is used can also be used for the append operation. The media class is the determining factor. When selecting volumes for stand-alone drives, BRMS issues message BRM1472, which nominates suitable candidate volumes.
- BRMS selects an active volume with attributes that match those in the appropriate media policy. BRMS uses the following to check if the volume is available for appending:
 - Same media class
 - Same storage location
 - Same expiration date
 - Owned by the requesting system
 - Same move policy
 - Same secure attribute
- If BRMS cannot find a volume that meets the criteria above, it selects a volume with an earlier expiration date, starting with the earliest.
- If BRMS cannot select a volume with an earlier expiration date, it selects an expired volume from the system.
- If BRMS fails to find a volume up to this point, it will try to select an expired volume from another system.

While these are the parameters you are most likely to use, you should also be familiar with the other parameters and values on the backup policy display.

Note: In addition to the backup policy itself, you can also access the Work with items to omit from backup display from the Backup Policy menu. Because the items you are likely to omit are in control groups, you can find information on how to use this display in the following section.

Backup Control Groups

Control groups consist of groups of libraries, objects, folders, spooled files, and other types of data that share common characteristics. They also specify what kind of backup you want BRMS to perform, such as full, incremental, or cumulative-incremental. In addition, control groups specify the days on which the data will be processed, and the order in which the processing occurs. As such, control groups are the most important and useful element in the BRMS tailoring process.

Control groups can also provide flexibility in starting and stopping subsystems and holding job queues. Perhaps most importantly, control groups allow you to separate and save your most critical applications, which, in turn, allows you to more easily recover them. After you recover your most critical applications and data, you can recover the rest of your system. Your save strategy is likely to consist of multiple backup control groups. “Sample Backup Scenarios: Working with
Multiple Control Groups and Shared Devices” on page 118 provides specific information on how to design a backup strategy that uses multiple control groups.

The default control groups described in “Chapter 3. Backing Up Your Entire System” on page 13 do an excellent job of backing up your entire system. IBM recommends that you use these default backup groups, called *SYSTEM, or *SYSGRP and *BKUGRP, to perform your first backup and that, afterward, you leave them unchanged and use them on an as-needed basis. In addition, you can create some of your own control groups to better control related types of data.

Control groups often refer to, and work with, information contained in the function policies, for example, in the system and backup policies. Later in this section, you learn how to set control group attributes to override policy decisions.

Content of Control Groups

Consider grouping the following items together in a control group:

- All of the libraries that belong to a particular application.
- Selected objects, such as those that change on a regular basis (instead of using an *INCR save for the objects, which must identify the changed objects).
- Libraries that comprise a database network.
- Bytestream files that form part of the application data.
- Spooled files that you may need later (for example, invoices or payslips).
- Items with similar retention periods.
- Critical applications that you need to restore before others.
- Non-critical applications or libraries that you can restore at a later time.

A backup control group can contain just one item or a group of items. Figure 8 provides an overview of the items you can place in a control group:

![Figure 7. Items that can be saved in control groups](image)

88 Backup, Recovery, and Media Services for iSeries V5R1
A control group might contain one library or several; one special value or several; configuration and security data; or special operations such as *LOAD or *EXIT. In short, you can save any of the items that are listed in Figure 8 in a control group. Grouped items may be of the same type (all libraries or all special values), or they may be of different types (for example, libraries, special values, and special operations).

Use special operations and special values as backup items to call system functions. They direct BRMS to perform pre-defined actions or to assume pre-defined values in a field. You can also use a backup list as an entry in a control group. Backup lists are particularly useful for separating critical data and applications for easier recovery. They also make it easier to manage groups of data. You can find detailed information on designing backup lists in a later section of this chapter.

The following list provides a short description of the special operations and special values that can be used as Backup Item entries in control groups. Please refer to the online help information for more information about these items.

Special Operations

*EXIT Perform user command processing

*LOAD Begin a new tape

Special Values

*ALLDLO Saves all folders, documents, and mail in all ASPs

*DLOnn Saves all folders, documents, and mail in a specified ASP

*ALLUSR Save all user libraries

*ALLPROD Save all *PROD type libraries

*ALLTEST Save all *TEST type libraries

*ASPnn Save a specified ASP (library type objects only)

*IBM Save all IBM libraries

*LINK Save all objects not in /QSYS.LIB and /QDLS directories

*QHST Save history information

*SAVCAL Save calendar information

*SAVCFG Save configuration

*SAVSECDTA Save security data
SAVSYS

Save the operating system

Using the *SAVSYS Special Value

To use *SAVSYS in a control group, you must first set up a media class using the Add Media Class display. Specify a value of *NO in the Shared media field. You must then add this media class to a new media policy. You can then change the attributes of the control group to use the new media policy that does not allow shared volumes. You must enroll media by using this media class so that you can perform the *SAVSYS operation. These considerations are important for the single system environment as well as the networked environment.

Note: The *SAVSYS special value processes the SAVSYS command. You should check the parameters that are set in BRMS as well as the default parameters in the SAVSYS command to assure that you save the proper information.

Special Considerations for Using *SAVSYS as a Backup Item

When the *SAVSYS (Save System) special value is included in the backup items list of a backup control group, a copy of the QSYS library is saved in a format compatible with the installation process. It does not save objects from any other library. The *SAVSYS special value saves all object types that are shown on the Object types field (OBJTYPE parameter) in the Save Object (SAVOBJ) command. In addition, it saves security and configuration objects.

Note: You can perform a save of the operating system by processing the SAVSYSBRM command from the console. Refer to the online help for more information about the SAVSYSBRM command.

Restrictions

- You must perform a *SAVSYS backup interactively from the system console. You must exclude the user profile from signoff using the Work with Sign off Exceptions display (option 2 in the System Policy). BRMS will end all active subsystems before performing the system save function. Refer to ["Scheduling a Backup with *SAVSYS"] for a complete system save.
- You must have *SAVSYS special authority to perform a backup with *SAVSYS special value.
- Tapes created using this command that are used for installation should be initialized with a density that is supported by the current alternate IPL device. If this is not done, the current alternate IPL device has to be changed to a media device that supports the density of the created *SAVSYS tapes before installation begins during a recovery.
- You cannot use tapes created by using the *SAVSYS special value for automatic installation.
- A backup control group with the *SAVSYS special value must specify *NO in the Shared media field of the media class.

Scheduling a Backup with *SAVSYS

To schedule a backup control group that uses the special value *SAVSYS, use the Start Backup using BRM (STRBKUBRM) command. Specify a schedule time you want the backup to begin on the SCDTIME parameter, and specify *NO on the SBMJOB parameter. You should be aware that after submitting the STRBKUBRM from the console, the console will be unavailable until the backup has completed. It is also very important to ensure that messages being sent to the console do not interrupt the STRBKUBRM command that has been submitted. To prevent the interruption by messages to the console, specify the following Change Message
Queue (CHGMSGQ) command prior to submitting the STRBKUBRM command or in the backup control group that you are using:

CHGMSGQ MSGQ(QSYSOPR) DLVRY(*NOTIFY) SEV(99)

Ending and Starting Subsystems with *SAVSYS

Note: If you need to reply to messages on a nonprogrammable workstation, press Shift, System Attention, and Enter. You see the System Request display where you can select Option 6 (Display system operator messages).

If a backup control group contains a *SAVSYS special value or you issue the SAVSYSBRM command, you end all subsystems before the save commences. This ensures that no other activity can occur on the system during the save. The controlling subsystem is started after processing the last backup item in the backup control group. If you specify in your backup control group attributes that an IPL is to occur after the control group has finished processing, the controlling subsystem is not started as this is done as part of the IPL process.

Using Console Monitoring to Schedule an *SAVSYS

Use the console monitoring function in BRMS to enhance your ability to schedule a system save. Console monitoring allows you to put the system console in a monitored state. Refer to [Console Monitoring](#) for more information on this topic.

Contents of the Default Control Groups

This section shows the entries provided in the default control groups which BRMS provides for you. It is recommended that you do not modify the entries in these control groups should you need to tailor what is backed up. You should copy the default control group into a new control group which you would use to perform the customized backup.

Note: None of the default control groups back up spooled file data.

SYSTEM Default Control Group

The purpose of this control group is to back up your entire system. Using this control group to backup your system may increase your backup time (because you are backing up all system and user data), but it provides the simplest recovery scenario.
Display Backup Control Group Entries

Group: *

Default activity: *

Text: Backs up the entire system

<table>
<thead>
<tr>
<th>Seq</th>
<th>Backup</th>
<th>List</th>
<th>Activity</th>
<th>Object</th>
<th>Weekly</th>
<th>Retain</th>
<th>Save</th>
<th>SWA</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>*EXIT</td>
<td>*DFTACT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>*SAVSYS</td>
<td>*DFTACT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>*IBM</td>
<td>*DFTACT</td>
<td></td>
<td>*NO</td>
<td>*NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>*ALLUSR</td>
<td>*DFTACT</td>
<td></td>
<td>*ERR</td>
<td>*NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>*ALLDLO</td>
<td>*DFTACT</td>
<td></td>
<td>*NO</td>
<td>*NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>*LINK</td>
<td>*DFTACT</td>
<td></td>
<td>*YES</td>
<td>*NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>*EXIT</td>
<td>*DFTACT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SYSGRP Default Control Group

The purpose of this control group is to back up only the system data on the system. The system data backed up by this control group includes:

- Licenced Internal Code
- Operating System
- Configuration Data
- Security Data
- IBM supplied libraries

This control group is used in conjunction with the *BKUGRP to assure you have backed up your entire system. However, because the system data does not change often, this control group might be run less frequently than the *BKUGRP. You should always make sure you have backed up all system and user data to ensure complete recovery of the system in the event of a disaster. Schedule this control group to run periodically as determined by your backup strategy.

Display Backup Control Group Entries

Group: *

Default activity: *

Text: Backs up all system data

<table>
<thead>
<tr>
<th>Seq</th>
<th>Backup</th>
<th>List</th>
<th>Activity</th>
<th>Object</th>
<th>Weekly</th>
<th>Retain</th>
<th>Save</th>
<th>SWA</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>*EXIT</td>
<td>*DFTACT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>*SAVSYS</td>
<td>*DFTACT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>*IBM</td>
<td>*DFTACT</td>
<td></td>
<td>*NO</td>
<td>*NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>*EXIT</td>
<td>*DFTACT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Press Enter to continue.

F3=Exit F11=Display exits F12=Cancel
*BKUGRP Default Control Group

The purpose of this control group is to back up only the user data on the system. Backing up only the user data reduces the time it takes to backup your system. You would consider backing up only the user data if the system data does not change often. If neither your configuration nor security data changes frequently and you are running regular full system backups, you could consider removing the *SAVSECDTA and *SAVCFG special value entries. These entries are included in this control group because the data is considered user data which is apt to change frequently.

<table>
<thead>
<tr>
<th>Seq</th>
<th>Items</th>
<th>Type</th>
<th>Backup Activity</th>
<th>Retain</th>
<th>Save</th>
<th>SWA</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>*EXIT</td>
<td>*DFTACT</td>
<td>*DFTACT</td>
<td>+NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>*SAVSECDTA</td>
<td>*DFTACT</td>
<td>*DFTACT</td>
<td>+NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>*SAVCFG</td>
<td>+DFTACT</td>
<td>+DFTACT</td>
<td>+NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>*ALLUSR</td>
<td>+DFTACT</td>
<td>+DFTACT</td>
<td>+ERR</td>
<td>+NO</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>*ALLDO</td>
<td>+DFTACT</td>
<td>+DFTACT</td>
<td>+NO</td>
<td>+NO</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>*LINK</td>
<td>+DFTACT</td>
<td>+DFTACT</td>
<td>+YES</td>
<td>+NO</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>*EXIT</td>
<td>+DFTACT</td>
<td>+DFTACT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Press Enter to continue.

How to Work with Backup Control Groups

The BRMS backup control group feature consists of several displays that contain numerous parameters that you can use to create and edit control groups. This section describes the displays and parameters that you can use to set up a basic control group strategy.

- The **Work with Backup Control Groups** (WRKCTLGBRM) display is the central control group display. From this display, you can create, edit, change, delete, or display a control group. You can also select subsystems and job queues to process when a control group runs. In addition, you can place a control group on a job scheduler from this display.

- The **Edit Backup Control Group Entries** display shares the same parameters as the Create Backup Control Group Entries display. At this display, you can edit the values on an existing control group.

- The **Change Backup Control Group Attributes** display shares several parameters with the system and function policies. This display allows you to tailor each control group to meet the specific backup requirements of each save.

Creating a Control Group

In the example that follows, you learn how to create a SAMPLE control group that contains three libraries: LIBA, LIBB, and LIBC.

To create a control group, take the following steps:

1. Type WRKCTLGBRM at a command line and press Enter. This takes you to the Work with Backup Control Groups display.
2. To create a control group, type a 1 (Create) in the Opt column and a name for the control group in the Control Group field. In this case, the name of the control group is SAMPLE.

3. Press Enter. This takes you to the Create Backup Control Group Entries display.

4. At the Create Backup Control Group Entries display, type the name of the first library you want to save in the Backup Items field. Press Enter. Because BRMS numbers the save sequence for you, you need to enter the library or object name in the order in which you want them to process. However, you can change the order by specifying a sequence number in between the two entries. BRMS notifies you if the library does not exist. If you do not know the name of the library you want to save, use F19 to get to the Select Libraries display. Press Enter at the Select Libraries display to get a list of libraries.

 Note: You can still create a control group with a library that does not exist. Pressing Enter a second time overrides the Library does not exist warning message. Press F3 to exit and take option 1 to save at the Create Backup Control Group Entries display.

5. Following are brief summaries of the other key parameters on this display.
• The Weekly Activities field has seven single character fields available to designate the seven days of the week. You can use the default value for this field, which is *DFTACT, or you can set your own weekly activity schedule. *DFTACT specifies a full save (FFFFFFFF) on all seven days. You can also tailor a daily mix of full (F) and incremental saves (I) to better suit your business needs, for example: IIFFIIF.

• In the Retain Object Detail field, you can specify whether you want BRMS to save historical information about the control group item at the object level. In this example, we did not specify anything in the Retain Object Detail field, which subsequently resorts to the default *ERR (for error). Other values for this field are *YES, *NO, *OBJ, and *MBR. If you want to specify *OBJ at this prompt, you should also specify *OBJ at the Automatically backup media information parameter. BRMS establishes the default value for the Automatically backup media information field on the backup policy. You can change it at either the backup policy display or at the Change Backup Control Group Attributes display.

• The value in the Save-while-active field specifies whether users can change an object during save processing. More specifically, the Save-while-active (SWA) feature allows users to change an object after BRMS reaches a certain checkpoint during the save process. SWA performs the save on a transaction boundary. By using the SWA feature, you can decrease your save window. You can find more detailed information on how to use the Save-while-active feature later in this chapter.

6. Review and change the remaining parameters as needed.
7. When you have finished, press Enter to save your new control group.

Note: BRMS might group objects together, which could cause OS/400 to issue a save command. This will happen as long as the objects do not exceed the limits (for example, for library size) set by the OS/400 command. If this had happened in the preceding example, the system would have issued one SAVLIB command for all three of the libraries. This process is called bundling.

Editing a Control Group
Use the Edit Backup Control Group Entries option to revise any existing control group, including BRMS-configured control groups, and those you create. To get there from the Work with Backup Control Groups display, take the following steps:

1. Place a 2 (Edit entries) next to the control group you want to edit.
2. Press Enter.
At this display, you can delete a backup item from an existing control group by spacing over the sequence number of the entry that you want to delete. You can also change the weekly activity schedule, or any of the other values on this display as needed.

Changing Control Group Attributes
You can use the Change Backup Control Group Attributes option to tailor each control group to suit the specific needs of each job. To get there from the Work with Backup Control Groups display, take the following steps:

1. Place an 8 (Change attributes) next to the control group you want to change.
2. Press Enter.

All of the attributes on the Change Backup Control Group Attributes display default to values that BRMS establishes in the backup policy (*BKUPCY) except one. You can override any of the shared default values by changing the shared parameters on this display.
The *Parallel device resources* parameter on the Change Backup Control Group Attributes display is the only parameter that is not shared by the backup policy. Parallel device resource capability allows you to save data to multiple devices from the same job at the same time, thereby shortening your save window. To use the parallel device resource feature you need to have multiple tape devices attached to your system. You can find more detailed information on parallel processing in the Additional Options for Processing Control Groups section of this chapter.

Special Considerations When Saving Selected Libraries in a Control Group

The QUSRSYS library contains three important files that are used during a save operation:

- QATADEV contains a list of MLBs.
- QATAMID contains a list of volume identifiers that are used during a save operation.
- QATACGY contains a list of tape library device categories.

When planning to save the QUSRSYS library, you need to understand the end of volume implications when saving in a non-restricted state. For example, if the system is unable to save all of QUSRSYS on the current tape, BRMS requests that you mount another volume. When locked, the IBM Operating System/400 (OS/400) cannot ready and update the required QUSRSYS files. The save fails with a message identifier of CPA37A0.

To minimize the chance of spanning QUSRSYS across multiple volumes and to create a separate control group to save QUSRSYS. Save this control group before saving the *ALLUSR control groups. If you do not omit this library through the backup policy, BRMS saves it twice. These recommendations assume that you are performing the save in a restricted state and that the QUSRSYS library can fit on the mounted volume.

When performing saves using *ALLUSR, or *ALLPROD, ensure that you understand which Q libraries are saved and which are not saved. Refer to table Special Values table for the Save Library (SAVLIB) Command in the Saving Libraries section of the Backup and Recovery book to determine what libraries are considered user libraries. User libraries QGPL, QUSRSYS and QUSRBRM can never be saved to TSM servers.

Omitting Libraries from Backup: It is also important to understand the recovery implications for saving user data. For example, suppose that you plan to perform an *ALLUSR save in your control group. Before you perform this *ALLUSR save, you need to save libraries QGPL and QUSRSYS ahead of other libraries. When you set up your control group, be sure to define the libraries to omit in your backup policy. You may also want to omit libraries from control groups by using the *IBM, *SAVSYS, *ALLDLO, and ASPnn special values.

Take the following steps to get to the Work with Items to Omit from Backup display:

1. Type WRKPCYBRM *BKU at a command line and press Enter.
2. Take option 2 (Work with Items to Omit from Backup) from the Backup Policy menu.
3. **Review or change the following parameters on this display.**
 - In the *Opt* field, type a 1 (Add) to add the item to a list of items to omit.
 - In the *Type* field, specify the type of backup you want to perform, which in this case will be *ALLUSR*.
 - In the *Backup item* field, type the name of the item you want to omit, which in this case is a TEMP library.

4. **Press Enter to process the request.**

In this example, BRMS omits all libraries that begin with TEMP from the *ALLUSR* backups. To save data to save files, BRMS places the files in a library that is called Q1ABRMSFxx. The xx indicates the ASP number into which the library is placed. Typically, you would use the Save Save File with BRM (SAVSAVFBRM) command to save the save files, which can be quite large and time-consuming to save.

In addition to the special values *IBM, *ALLUSR, *SAVSYS, *ALLDLO, and *ASPnn, you can also specify *ALL in the *Type* field. *ALL instructs BRMS not to save a library when you specify a special or generic value in a control group or a SAVLIBBRM command. Other things to consider when using the Work with Items to Omit option are:
 - You cannot include the special values *ALLPROD and *ALLTEST in a list of items to omit. If you omit a library from an *ALLUSR group, then BRMS automatically omits it from an *ALLPROD group if it uses a PROD type. Similarly, BRMS also omits the library from an *ALLTEST group if it uses a TEST type.
 - The *SYSTEM backup control group ignores any *Items to omit from backup* that may be specified in the backup policy. If you need to omit libraries from your backup you need to use an alternate backup control group.
 - You can specify the *SECDATA, *USRASPAUT, and *CFG special values as items to omit with the *SAVSYS special value in the *Type* field.
 - You can specify the *USRASPAUT special value as an item to omit with the *SECDATA special value in the *Type* field.
 - If your backup device is an TSM server, you should omit the QUSRADSM library from an *ALLUSR backup.
 - You can omit up to a maximum of 300 items.
 - Be aware that if you omit a library from a control group, BRMS will omit that library from all control groups with the same name until you reenter it into the control group. For example, if you omit a library from the *ALLUSR control group, BRMS will omit that library from all saves of that control group, even from the *BKUGRP control group, until you reenter it. To avoid this situation, you may want to save the library in a different control group.
Note: If you perform a restore operation exclusive of BRMS (for example, with the OS/400 RSTLIB command), BRMS cannot recover the QGPL and QUSRSYS libraries. In this case, you must restore them separately.

Using the Subsystems to Process Display
You can specify subsystem information by control group from the Work with Backup Control Groups display. Use the Subsystems to Process display to add or remove subsystems that you want to start or end automatically before and after control group processing. In the following example, BRMS ends the subsystems at the start of one control group (SAMPLE) and restarts them after saving another control group (SAMPLE2).

To get to the Subsystems to process display, take the following steps:
1. On the Work with Backup Control Groups display, place a 9 (Subsystems to process) next to the control group you want to work with. Press Enter.

<table>
<thead>
<tr>
<th>Seq</th>
<th>Subsystem</th>
<th>Library</th>
<th>Option</th>
<th>Delay</th>
<th>Restart</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>QBATCH</td>
<td>*LIBL</td>
<td>*NONE</td>
<td>*YES</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>QCMN</td>
<td>*LIB3</td>
<td>*CNTRLD</td>
<td>300</td>
<td>*YES</td>
</tr>
</tbody>
</table>

2. Type a number that reflects the order in which you want the subsystem job processed in the Seq field.
3. Type the name of the subsystem you want to process in the Subsystem field.
4. Type the name of the library that contains the subsystem in the Library field.
5. Specify whether you want BRMS to automatically restart the subsystem after control group processing in the Restart field.

Note: If you do not specify an IPL, BRMS automatically restarts the subsystems after save processing completes. If you do specify an IPL, BRMS restarts subsystems after the IPL. You can specify an IPL on the Change Backup Control Group Attributes display.

6. Review and change the other parameters as needed.
7. Press Enter to save and return to the Work with Backup Control Groups display (if you press F3, you exit without saving).

To delete an entry from the Subsystems to Process display, position the cursor on the item you want to delete. Then space through the sequence number, and press Enter.

Before processing your subsystem requests, you need to ensure that the media policy for the control groups you want to process is appropriate for this request.

Notes:
1. You can run multiple control groups serially (one after another) when using the subsystems to process feature. The first control group ends the subsystems, and the last one restarts them.
If you specify *ALL as the subsystem to process, and also request a restart (*YES), BRMS restarts the controlling subsystem that is defined by system value QCTLSBS. To verify the system value, go to the Work with System Values (WRKSYSVAL) display.

Using the Job Queues to Process Display

Use the Job Queues to Process display to add or remove job queue items from a list of job queues. These are job queues you want to hold or release before and after control group processing. Take the following steps to get to the Job Queues to Process display:

1. Select F23 (More options) from the Work with Backup Control Groups display.
2. Place an option 10 (Job queues to process) next to the control group you want to work with and press Enter.

In this example, the *SAMPLE control group specifies one job queue to process.

<table>
<thead>
<tr>
<th>Job Queues to Process</th>
<th>RCHAS400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use: *BKU</td>
<td></td>
</tr>
<tr>
<td>Control group: SAMPLE</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Seq</th>
<th>Job queue</th>
<th>Library</th>
<th>Hold</th>
<th>Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>QBATCH</td>
<td>*LIBL</td>
<td>*YES</td>
<td>*YES</td>
</tr>
</tbody>
</table>

3. In the **Seq** field list the order in which you want BRMS to hold or release the job queues.
4. Type the job queue name in the **Job queue** field.
5. At the **Library** field, you can specify the library in which the job queue resides or use the default library, *LIBL.
6. Specify whether you want BRMS to hold or release the job. In this case, BRMS holds the QBATCH job queue during backups. BRMS automatically releases the job queue after the backup or IPL (if you specify IPL in the control group) completes.
7. Press Enter to save and return to the Work with Backup Control Groups display.

To delete a job queue, position the cursor on that entry, space through the sequence number, and press Enter. Press Enter again to return to the Work with Backup Control Groups display.

Creating Backup Lists in a Control Group

Backup lists consist of items that are grouped together for processing in a backup control group. The primary benefit of using a backup list is the flexibility it provides when restoring selected items during a recovery. It is also the only way you can save a spooled file. There are four types of backup lists you can create:

- Folder lists (*FLR)
- Object lists (*OBJ)
- Spooled file lists (*SPL)
• Integrated File System objects (*LNK)

You can create backup lists and add them to a control group by using the Edit Control Group Entries display.

Creating a Folder List
To create a folder list for an existing control group, take the following steps from the Work with Backup Control Groups display:

1. Place a 2 (Edit entries) next to the control group to which you want to add the list, and press Enter.
2. At the Edit Control Group Entries display, type a sequence number at the top of the Opt column and press F23. This takes you to the Work with Backup Lists display.

3. Type a 1 (Add) in the Opt column.
4. Type the name of the folder you want to create in the List name field.
5. Type *BKU in the Use column.
6. Name the list type, *FLR, in the Type column.
7. Then press Enter. This takes you to the Add Folder List display.

8. Following are brief summaries of the key parameters on this display:
 • In the Seq field, place a number that reflects the order in which you want to save the item.
 • In the Folder field, specify the name of the folder or subfolder that you want to save in the list. You can specify actual or generic folder names.
 • In the *INC/*EXC field, specify *INC to include the folder or subfolder during backup processing, or *EXC to exclude the folder or subfolder.
9. After changing the parameters as needed, press Enter twice to save and to return to the Work with Backup Lists display. You can now see the name of your folder list in list of backup items.

10. Press Enter again to return to the Edit Backup Control Group Entries display. Type the name of the list in the Backup items column, the list type in the List type column, and press Enter. BRMS saves the new list in the control group you specified, in this case, the SAMPLE control group.

11. Press Enter to return to the Work with Control Groups display.

Creating an Object List
To create an object list for an existing control group, take the following steps from the Work with Backup Control Groups display:

1. Place a 2 (Edit entries) next to the control group to which you want to add the list.

2. At the Edit Control Group Entries display, type a sequence number at the top of the Opt column and press F23. This takes you to the Work with Backup lists display.

3. At the Work with Backup Lists display, type in the name of the list you want to create, in this case, an object list called TESTOBJ.

4. Type a 1 (Add) in the Opt column.

5. Type the name of the object you want to create in the List name field.

6. Type *BKU in the Use column.

7. Name the list type, *OBJ, in the Type column.

8. Then press Enter. This takes you to the Add Object List display.

<table>
<thead>
<tr>
<th>Add Object List</th>
<th>RCHAS400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use</td>
<td>*BKU</td>
</tr>
<tr>
<td>List name</td>
<td>TESTOBJ</td>
</tr>
<tr>
<td>Text</td>
<td>Create object list.</td>
</tr>
</tbody>
</table>

9. Following are brief summaries of the key parameters on this display:
 • In the Seq field, place a number which reflects the order in which you want to save the item.
 • In the Library field, specify the name of the library that contains the objects you want to save in the list.
 • In the Object field type the name of the object you want to save in the list. The possible values include:
 – The actual name of the object.
 – A generic name.
 – *ALL.
– The **Type** field specifies the type of object you want to save in the list. You can use the name of any permitted system object type. Or you can use *ALL to indicate that all objects apply to the object type specified in the list you want to save.

– The **Member** field identifies the name of the database member you want to save in the object list. You cannot designate a member name if you use *ALL or generic as the object name. Otherwise, you can name specific member names, generic ones, or indicate *ALL to include all available members.

Note: If you specify OBJECT=*ALL, TYPE=*ALL, MEMBER=*ALL, BRMS runs a SAVLIB command rather than multiple SAVOBJ commands. However, BRMS does not group multiple libraries onto a single SAVLIB command. If you want to save entire libraries, you should name the library as a control group entry rather than as a list item.

10. After changing the parameters as needed, **press Enter twice** to save and to return to the Work with Backup Lists display. You can now see the name of your list in the list of backup items.

11. Press Enter again to return to the Edit Backup Control Group Entries display. Type the name of the list in the **Backup items** field, the name of the list type in the **List type** column and press Enter. BRMS saves the new list in the control group you specified, in this case, the SAMPLE control group.

12. Press Enter to return to the Work with Control Groups display.

Creating a Spooled File List

With a single spooled file list, you can add multiple output queues that you want to save by selecting multiple sequence numbers. When you add the output queues, you can select the type of spooled file names, job names, or user names that you want to save.

To create a spooled file list for an existing control group, take the following steps from the Work with Backup Control Groups display:

1. Place a 2 (Edit entries) next to the control group to which you want to add the list.

2. At the Edit Control Group Entries display, type a sequence number at the top of the **Opt** column and press F23. This takes you to the Work with Backup lists display.

3. At the Work with Backup Lists display, type in the name of the list you want to create, in this case, a spooled file list called SAVESPOOL.

4. Type a 1 (Add) in the **Opt** column.

5. Type the name of the spooled file you want to create in the **List name** field.

6. Type *BKU in the **Use** column.

7. Name the list type, *SPL, in the **Type** column.

8. Then press Enter. This takes you to the Add Spooled File List display.
9. Review and change the additional parameters on this display as needed.
10. **Press Enter twice** to save and to return to the Work with Backup Lists display.
 You can now see the name of your list in the list of backup items.
11. Press Enter again to return to the Edit Backup Control Group Entries display.
 Type the name of the list in the `Backup items` field, the name of the list type in the `List type` column and press Enter. BRMS saves the new list in the control group you specified, in this case, the `SAMPLE` control group.
12. Press Enter to return to the Work with Control Groups display.

Internally, BRMS saves the spooled files as a single folder, with multiple documents within that folder. During the restore, it reads the tape label for the folder and restores all of the documents. If your spooled file save spans multiple volumes, BRMS prompts you to read the label information before restoring the documents on subsequent tapes. To avoid possible confusion, you can save your spooled files on a separate tape by using the `*LOAD` exit in the control group. Or you can split your spooled file saves so that you use only one tape at a time. Either approach can make the recovery easier for you.

Note: BRMS does not support the incremental saves of spooled files. If you accidentally specify an incremental save for an `*SPL` list, BRMS saves all of the spooled files. BRMS does not automatically clear the output queue after the save. You must manage how you want BRMS to clear data from your output queues. You can use an `*EXIT` special value in your control group to do this. See ["Processing User Exits in a Control Group"](page 107) for more information. IBM recommends that you obtain a hardcopy of your output queue immediately after the save has completed for audit purposes. To print the output queue, use the Work with Output Queue (WRKOUTQ) command with the `OUTPUT(*PRINT)` option specified.

BRMS provides a spooled file list named QALLSPLF which you can use to save all spooled files on your system. If you want to save spooled files using this list, simply added the list to your current backup control group.
Note: To save spooled files, BRMS first retrieves the names of the spooled files using a system API which stores the spooled file names in a user space. User spaces are restricted to a limited size. If you have a lot of spooled files, the returned names may exceed the size of the user space. In this case, the backup of the spooled files will fail with a CPF34C4 exception. You can correct the problem by breaking up the current spooled file list entries into more granular entries.

Creating a Link List
To create a list of Integrated File System objects for an existing control group, take the following steps from the Work with Backup Control Groups display:

1. Place a 2 (Edit entries) next to the control group to which you want to add the list.
2. At the Edit Control Group Entries display, type a sequence number at the top of the Opt column and press F23. This takes you to the Work with Backup lists display.
3. At the Work with Backup Lists display, type in the name of the list you want to create, in this case, a link list called LNKLIST.
4. Type a 1 (Add) in the Opt column.
5. Type the name of the link list you want to create in the List name field.
6. Type *BKU in the Use column.
7. Name the list type, *LNK, in the Type column.
8. Then press Enter. This takes you to the Add Link List display.
Add Link List

Use: *BKU

Type choices, press Enter.

List name LNKLIST
Text Test link list.

F3=Exit F12=Cancel

9. At the Add Link List display, type in a short sentence describing the items in the list on the Text line and press Enter. This returns you to the Work with Backup Lists display, where the name of the new link list appears.

Work with Backup Lists

Position to Starting characters

Type options, press Enter.
1=Add 2=Change 3=Copy 4=Remove 5=Display 6=Print

Opt List Name Use Type Text
2 LNKLIST *BKU *LNK Test link list.
 SAVESPOOL *BKU *SPL Sample to save all spool files in QPRINT.

F3=Exit F5=Refresh F12=Cancel
List LNKLIST of type *LNK is added.

10. To list the Integrated File System objects you want to save, place a 2 (Change item) next to the new list and press Enter. This takes you to the Change Link List display.

Change Link List (CHGLNKLBRM)

Type choices, press Enter.

List > LNKLIST Character value
Usage type > *BKU
Objects:
 Name > '/*'
 Include or omit > *INCLUDE, +INCLUDE, +Omit
 + for more values +
 Directory subtree > *ALL, +ALL, +DIR, +NONE, +OBJ
Text Sample link list entry.

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys
11. Type the name of the object you want to save in the Name field. If you want to add more objects, type a + on the short line next to the + for more values field, and press Enter. This takes you to the Specify More Values for Parameter OBJ display. Type the names of the additional objects you want to add to the list.

12. In the Include or omit field, specify whether you want to include an item in the list or omit it from the save. You can also use a /* symbol in this field to instruct BRMS to save all available Integrated File System objects.

13. After completing your additions to the link list, press Enter to return to the Change Link List display. This display shows the changes you made to the link list.

14. Press Enter to return to the Work with Backup Lists display, and then again to return to the Edit Backup Control Entries display. BRMS saves the new link list in the control group you specified earlier, in this case, the SAMPLE control group.

Processing User Exits in a Control Group

A user exit (the *EXIT special value) is a user-defined CL command that permits automatic processing of predefined user routines. Users place an *EXIT special value inside a control group in the sequence order in which they want BRMS to process the request. Use the *EXIT value to send messages or to call applications.

To create a user exit command, take the following steps:

1. At the Create Backup Control Group Entries display, treat the *EXIT special value as a backup item and place it in the order in which you want BRMS to process it. Then press Enter. In this example, we use the *EXIT special value to call an application in between the processing of two libraries.

 Note: You can also place an *EXIT in an existing control group from the Edit Backup Control Group Entries display.
2. Place your cursor on the *EXIT special value and press F10. This takes you to the User Exit Maintenance display.

3. Type the command you want BRMS to process in the Command field. To call the STARTAPP application, type the CALL QGPL/STARTAPP command in the Command field.

4. Press Enter to return to the Create Backup Control Group Entries display. Then press F3 to exit the display and save the control group. BRMS calls STARTAPP application after the first backup item completes processing and before the second control group begins processing.

If the first entry in a control group is *EXIT, BRMS processes it before performing any pre-processing activities (such as ending subsystems or holding job queues). If the last entry in the control group is *EXIT, processes it before performing any post-processing activities (such as starting subsystems and releasing job queues). If the last entry in the control group is *EXIT, BRMS processes this exit after performing any post-processing activities (such as starting subsystems and releasing job queues).

Backing Up Your Control Group

Use the Start Backup using BRM (STRBKUBRM) command to backup your control group.

1. Type STRBKUBRM at a command line and press Enter. This takes you to the Start Backup using BRM display.

2. At the STRBKUBRM display, place your cursor in the Control group field and type in the name of the control group you want to process. If you do not know
the name of the control group, press F4 to prompt a list of control groups. Type in the name of the control group you want to save.

3. Review and change the other parameters on this command as needed, then press Enter to see the remaining parameters:
 - The text in the **Job description** field describes the job you want to submit. You can base the job description on the user profile or you can create your own description.
 - The value in the **Job queue name** field specifies the location of the job in the queue.

4. Press Enter to begin processing the backup.

After your backup completes, you should check the job log to make sure that it completed successfully. You can use the Backup Analysis display to review your save history. You can access the backup analysis displays from the Backup Planning menu. After you have designed your backup strategy, you can review the contents of your control groups at the Display Backup Plan display. You can also access this display from the Backup Planning menu.

How to Resume a Backup

If you canceled the backup of a control group, you can restart it using the STRBKURBM command. Type the name of the control group (for example, *MYLIBS) that contains the user profiles in the **Control group** field. Use the Display BRM Log Information (DSPLOGBRM) command to see which items were saved. If BRMS saved items 10, 20, and 30, but not items 40, 50, and 60, you can restart *MYLIBS by typing 40 in the **Starting sequence** field. Then BRMS can save the rest of the items in the control group.

Additional Options for Processing Control Groups

Using the Save-While-Active Feature

The save-while-active (SWA) feature allows users to resume activity after save processing reaches a certain point. OS/400 refers to this point as the synchronization checkpoint. By using the SWA feature, you can reduce application downtime and increase user access to selected data or applications.

To use the SWA feature with a save that does not use journaling or commitment control, you need to prevent user access until BRMS reaches the synchronization point. Once the system reaches the checkpoint, the system releases the exclusive locks on the library, and users can resume normal activity. Meanwhile, BRMS continues to save the data.

If you have large libraries with single member physical files, it may take less time to reach the checkpoint than it takes to save the data to tape. For example, suppose you have a library that contains single member physical files and that it takes an hour to save. During regular save processing, the system locks the library, which prevents user access to any file in that library until the save completes. By using the save-while-active feature, users can access library files after BRMS reaches the checkpoint. Suppose, in this example, that BRMS reaches the checkpoint in 20 minutes. In this example, the SWA feature increased your application availability by nearly 40 minutes. IBM cannot determine the exact time at which BRMS reaches the checkpoint. The exact time depends on the size of the library or application to which you are applying SWA. Under most circumstances, however, the time it takes to reach the checkpoint is notably shorter than the time it takes to save the entire library or application.
This section provides several examples of how you can apply SWA to your save strategy. However, this section does not cover every topic associated with SWA. Therefore, you should review Backing up your system topic in the iSeries Information Center for more information before implementing SWA.

Note: It is not recommended that you use *ALLUSR or *ALLPROD special values in a SWA operation.

Activating Save-while-active in BRMS

To activate the SWA feature, take the following steps:

1. Go to Edit Backup Control Group Entries display. In this example, we use the SWA feature while processing the LIBB and LINKLIST backup items.

```
Edit Backup Control Group Entries

Group...........: SAMPLE
Default activity . . . .: *BKUPCY
Text............: *NONE

Backup List Activity Object While Message
Seq Items Type SMTWTS Detail Active Queue
10 LIBA *DFTACT *ERR *NO
20 LIBB *DFTACT *YES *YES *LIB
30 LINKLIST *LNK *DFTACT *NO *YES *LIB

F3=Exit F5=Refresh F10=Change item
F11=Display exits F12=Cancel F24=More keys
```

2. To activate SWA, type *YES in the Save-while-active field. Additional values for this field are:

*LIB This value indicates that library objects can be saved while in use by another job. Because all of the library objects reach checkpoint together, BRMS saves them in a consistent state in relationship to each other. If you specify multiple libraries in the control group, BRMS performs the checkpoint processing individually for the objects within each specified library. For example, to save LIBA and LIBB, the system performs two separate SAVLIB commands and establishes two checkpoints.

Note: Physical files with members have the same save active date and time stamp. Libraries with thousands of objects may be too large for this option.

*SYNCLIB This value also specifies that objects in a library can be saved while in use by another job. However, in this case, all of the objects and all of the libraries reach a checkpoint together. BRMS saves them in a consistent state in relationship to one another. Before you use the *SYNCLIB value to save data to a save file, keep the following in mind:
- OS/400 restricts you to save single libraries to save files. BRMS adopts the same restriction.
- The control group must use the *LIB level synchronization instead of *SYNCLIB.
• If you specify a message queue in the SWA Message Queue field in the Edit Control Group Entries display, BRMS sends the synchronization message for every library.

• BRMS completes the save processing without any warning or error messages. BRMS does not warn you if it adopts *LIB level of synchronization.

Note: Different items (including libraries, backup lists, and special values) have different effects on save-while-active processing. See [“Using the Monitor Save While Active for BRM (MONSWABRM) Command”](#) for more information.

SYSDFN

This value also indicates that library objects can be saved while in use by another job. In this case, however, library objects can reach checkpoints at different times and may not exist in a consistent state in relationship to one another. You should not specify the *SYSDFN value if you plan to use the Monitor Save While Active for BRM (MONSWABRM) command. Nor should you use it to perform operations when a checkpoint has been reached. In these situations, the *SYSDFN values makes it more difficult to release the library.

If you specify a value other than *NO in the Save-while-active field, an entry appears next to it in the SWA Message Queue field. The default value for this field is *LIB, which instructs BRMS to use the message queue that matches the name of the library you want to save. You can also specify the name of the message queue that contains the checkpoint messages.

3. Press Enter to save. This returns you to the Work with Backup Control Groups display. BRMS uses the SWA feature as instructed during the next save of that control group.

Using the Monitor Save While Active for BRM (MONSWABRM) Command

The Monitor Save While Active for BRM command (MONSWABRM) monitors BRMS for system messages CPI3710 and CPI3712, which indicate that the synchronization checkpoint has been reached. You can process the MONSWABRM command through an *EXIT operation in your backup control group or by entering the MONSWABRM command from a command line. Use the MONSWABRM command inside an *EXIT for better control over the monitoring function. *EXIT entries that contain the MONSWABRM command must precede the control group entry for the item you want to monitor or the command fails.

To use the MONSWABRM command in an *EXIT, take the following steps:

1. Follow the steps listed in the Processing User Exits in a Control Group section of this chapter to create an *EXIT that contains the MONSWABRM command.

2. In the following example, we use the MONSWABRM command to monitor the SWA status of LIBB and LNKLIST. If the control group entry types differ, which in this case they do, then a MONSWABRM *EXIT must proceed each entry. Therefore, you need to create two separate exits containing the MONSWABRM command. Place each *EXIT before each control group entry you want the MONSWABRM command to monitor for synchronization.
3. Press Enter to return to the Work with Backup Control Groups display.
4. Press F3 to exit and save the control group.

If the control group entries are of the same type, you can use one *EXIT special value to monitor messages for all entries. If all of the entries are the same type (all libraries, for example, or lists of the same type), place the exit before the first entry.

Note: Though you can use the SWA feature with most special values (such as *ALLTEST and *ALLPROD), you should not use it with *ALLUSR. You cannot use the *SYNCLIB function with the SAVLIB LIB(*ALLUSR) or SAVLIB(*IBM) commands. The OS/400 operating system supports the *ALLUSR value only with the SAVCHGOBJ command.

To synchronize libraries by set rather than by entry, list the libraries in sequence without interruption by special operations such as *EXIT. In this example, LIBA monitors synchronization point messages for the first set, while LIBC monitors them for the second set.
You must ensure that the values for *Retention object detail, Weekly activity, and the *Save-while-active fields are the same for each library in each set. However, you can specify different weekly activity and object detail information for each set. If you use generic names for the libraries such as A*, B*, C*, and specify *SYNCLIB, BRMS groups all of the libraries together. Then BRMS performs a single save operation and you receive a single synchronization message. A single save command supports up to 300 libraries in a list. This is an OS/400 restriction. If you have more than 300 libraries, BRMS issues another save command to process the remaining libraries.

In this example, the SWA message queue value in the control group defaults to *LIB. The SWA message queue name specified in the control group entry must match the message queue name in the LIB parameter of the MONSWABRM command. The MONSWABRM automatically creates and deletes the message queue in library QUSRBRM. You cannot place it in a different queue. If you use a name other than the first library name, the MONSWABRM command cannot monitor for the SWA synchronization message. Instead, it continues to run for a default of one hour before it ends. In the meantime, your control group finishes processing without any benefit from the SWA message queue function.

Note: By default, the system issues the synchronization message after 3600 seconds (one hour). Therefore, if your libraries require over an hour to reach synchronization, you need to increase the SWA wait time in the MONSWABRM command.

To use the Monitor Save While Active (MONSWABRM) display to set up a SWA monitoring job, take the following steps:

1. Type MONSWABRM at a command line and press Enter.

 ![Monitor Save While Active (MONSWABRM)](image)

2. At the Monitor Save While Active display, change the following fields as required:
 - Use the *Saved library parameter to specify the library or message queue that you want to review for synchronization during the SWA process.
 - Use the *Command to run parameter to issue a command after the synchronization message arrives. In this example, we ran the Start Subsystem using BRM command (STRSBSBRM) after the libraries reached synchronization. BRMS can quiesce an application only prior to synchronization.

Chapter 7. Tailoring Your Backup 113
3. Review and change the other parameters as needed.
4. Press F3 to save and exit.

Note: By default, BRMS submits control group jobs and MONSWABRM jobs to the QBATCH subsystem. You must ensure that you have enough activity levels to perform all of your control group saves and all of the MONSWABRM commands. You can use another subsystem by specifying the job queue name or the job description name in the STRBKUBRM or the MONSWABRM commands.

Working with the Save-While-Active Message Queue

Instead of using the MONSWABRM command to monitor SWA activity, you can instruct the SWA message queue to send a message when the libraries reach synchronization. It is recommended that you use this approach rather than letting BRMS default to *LIB. This allows better control by monitoring a specific message queue rather than one created according to the name of the first library that BRMS saves. For example, if you want BRMS to save the first entry in the control group on certain days, the message queue would vary from day-to-day.

```
<table>
<thead>
<tr>
<th>Seq</th>
<th>Group</th>
<th>Default Weekly Activity</th>
<th>Weekly Retain Save SWA Activity Object While Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>LIBA</td>
<td>*DFTACT</td>
<td>+NO +SYNCLIB OPER01</td>
</tr>
<tr>
<td>20</td>
<td>LIBB</td>
<td>*DFTACT</td>
<td>+NO +SYNCLIB +LIB</td>
</tr>
<tr>
<td>30</td>
<td>LIBC</td>
<td>*DFTACT</td>
<td>+NO +SYNCLIB +LIB</td>
</tr>
<tr>
<td>40</td>
<td>LIBD</td>
<td>*DFTACT</td>
<td>+NO +SYNCLIB +LIB</td>
</tr>
</tbody>
</table>
```

In this example, the system uses the OPER01 message queue to log the following messages:

- 0 of 4 libraries processed. Started LIBA at 02/03/97 10:20:06.
- 1 of 4 libraries processed. Started LIBB at 02/03/97 10:20:07.
- 2 of 4 libraries processed. Started LIBC at 02/03/97 10:20:078.
- 3 of 4 libraries processed. Started LIBD at 02/03/97 10:20:09.

BRMS uses the first message queue (at LIBA) to monitor for the synchronization. Even if you specify different message queues for each of the other libraries, the SWA synchronization message still goes to message queue OPER01.

If you require synchronization messages to go to different message queues, you must separate the control group entries for libraries with values such as *EXIT or *LOAD. BRMS also separates the library groups if it detects a change of value in the Retain object detail, Weekly activity, and Save-while-active fields.

For more detailed information on the SWA feature, see *Backup and Recovery*.

Console Monitoring

Use the console monitor to perform an unattended save, process a SAVSYS save, or perform a function in a restricted state. Use the *SAVSYS value with the STRBKUBRM command when you want BRMS to save the operating system and
related libraries. You can also use the console monitor to monitor selected activities. You can temporarily suspend the monitoring function to enter OS/400 commands and then return the console to a monitored state.

Console monitoring allows users to submit the SAVSYS job to the job scheduler instead of doing it interactively. Previously, the SAVSYS, SAVSYSBRM, or STRBKUBRM with *SAVSYS command required interactive processing. Now you can use the Submit to batch parameter on the STRBKUBRM command to enter *CONSOLE as a value, thereby performing your saves in batch mode. Thus, you do not have to be nearby when the system save processes. However, you must issue this command from the system console because BRMS runs the job in subsystem QCTL. If you attempt to start the console monitor from your own workstation, BRMS sends a message indicating that you are Not in a correct environment to start the console monitor.

Once you start the console monitor, the console waits for a BRMS command to process. You can suspend the console to process commands. However, if you do so, you must return the console to monitoring status before BRMS can start the console monitor.

Starting the Console Monitor

To start the console monitor, take the following steps from your system console:

1. To get to the BRMS Console Monitor display, select option 20 (Start console monitor) from the BRMS main menu at the system console. You will get message BRM1947 — Not in correct environment to start console monitor. if you are not at the system console when you start this function.

2. This starts the console monitor. You need to take no further action at the console monitor at this time.

3. On the job scheduler, submit a job that performs the STRBKUBRM command. Following is an example of an STRBKUBRM job you can submit to the job scheduler.
4. Type the name of the control group you want the console monitor to process in the Control group field.
5. Ensure that the Schedule time is *IMMED.
6. Type *CONSOLE in the Submit to batch field.
7. Review and change the other parameters as needed.
8. Press Enter to process the request.

Interrupting the BRMS Console Monitor
To interrupt the BRMS Console Monitor from the system console, take the following steps:
1. Press F9 from the BRMS Console Monitor display.
2. At the prompt, type the correct pass phrase and press Enter.
3. A pop-up window appears. Type the OS/400 commands you want the system to process and press Enter. The BRMS Console Monitor is now interrupted.

If you interrupt the BRMS Console Monitor, BRMS queues any requests submitted through the console monitor. BRMS does not process the requests until you complete the command and return the system console to console monitoring status.

Monitoring the Console Monitor
BRMS logs the following messages to help you oversee the BRMS Console Monitor usage:
- BRM1948 = ‘BRMS Console monitoring is now started’ when you start the console monitoring.
- BRM1950 = ‘BRMS Console monitoring is inactive’ when you use the command line entry (F9).
- BRM1954 = ‘BRMS Console monitoring is now ending’ when you quit the console monitoring (F3).

Canceling the Console Monitor
To cancel the console monitor, take the following steps from your system console:
1. Take F3 (Exit) or F12 (Cancel) from the BRMS Console Monitor display. This takes you to the BRMS Console Monitor Exit display.
2. Type the correct pass phrase at the BRMS Console Monitor Exit display and press Enter to end BRMS Console Monitoring.

Performing Serial, Concurrent, and Parallel Backups
If you use a single tape device, all of your saves are serial saves. In a serial save, BRMS processes your saves sequentially, one at a time, one after another. If, however, you have multiple tape devices, BRMS can perform concurrent and parallel saves. Concurrent and parallel saves can considerably reduce your backup window and streamline your backup operations. Following are brief descriptions of each.

Concurrent Backups
If running concurrent backups, it is strongly suggested not to save media information with either backup. It is recommended you run the Save Media Information (SAVMEDIBRM) command after the concurrent backup control groups have completed.

In a concurrent save operation, you send multiple save jobs to multiple tapes devices to process at the same time (concurrently). For example, using a concurrent
backup strategy, you might send one library or group of libraries to one tape
device, and another set of libraries to a different tape device. Concurrent backup
support also allows multiple SAVDLO operations from the same auxiliary storage
pool (ASP). Anything that you can save concurrently, you can restore concurrently,
thereby reducing your down time after a system failure by recovering multiple
libraries or objects at the same time.

You set up the concurrent operation by specifying different device names inside
the individual control groups or save commands that you want BRMS to process
concurrently. You must try to evenly balance the contents of each job so that each
tape device completes at about the same time. This results in more efficient use of
your tape resources. If you want to use *INCR or *CUML saves, keep in mind that
processing time for each varies according to content size.

Parallel Backups

BRMS implements parallel support by utilizing two methods provided by the
OS/400. The first method, parallel save/restore support, spreads each object across
multiple resources. The second method, multiple-library parallel support, spreads
libraries across multiple resources, such that each library is backed up to a single
resource. Using these methods, BRMS will attempt to optimize performance and
balance resources. Items saved with the second method will have a sequential
restore behavior.

Notes:

1. Full backups of *ALLUSR, generic library names and other special values will
 be saved using only multiple-library parallel support.
2. See *Chapter 8, Performing Selected Recoveries* for information on how to
 perform recoveries using parallel support.

Parallel Support Restrictions

Before you set up a backup strategy using parallel support, review the following
restrictions:

- OS/400 cannot support parallel saves of DLO or Integrated File System objects
 at this time.
- BRMS does not support parallel backup of media information. See “Sample
 Backup Scenarios: Working with Multiple Control Groups and Shared Devices”
on page 118 for information on how to save media information when using
 parallel support.

When to Use Parallel and Concurrent Saves

Due to OS/400 restrictions, you can gain the greatest benefit by designing a
strategy that combines concurrent and parallel backup support. You should, if
possible, use concurrent backups to reduce backup windows when saving folders,
documents, spooled files, and Integrated File System data. Use parallel support
when you want to reduce your backup window for large libraries and large
objects. You can find more information on performing concurrent and parallel
backups in “Sample Backup Scenarios: Working with Multiple Control Groups and
Shared Devices” on page 118.

How to Set Up a Parallel Backup

To use parallel support to process an existing control group, take the following
steps:

1. At the Work with Backup Control Groups display, type option 8 (Change
 attributes) in front of the control group you want to work with, and press
 Enter. This takes you to the Change Backup Control Group Attributes display.
Change Backup Control Group Attributes

<table>
<thead>
<tr>
<th>Group</th>
<th>SAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type information, press Enter.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Media policy for:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Full backups</td>
<td>+BKUPCY</td>
</tr>
<tr>
<td>Incremental backups</td>
<td>+BKUPCY</td>
</tr>
<tr>
<td>Backup devices</td>
<td>+BKUPCY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parallel device resources:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum resources</td>
<td>2</td>
</tr>
<tr>
<td>Maximum resources</td>
<td>4</td>
</tr>
<tr>
<td>Sign off interactive users</td>
<td>+BKUPCY</td>
</tr>
<tr>
<td>Sign off limit</td>
<td>0-999 minutes, +BKUPCY</td>
</tr>
<tr>
<td>Default weekly activity</td>
<td>SMTWTSF(F/I), +BKUPCY</td>
</tr>
<tr>
<td>Incremental type</td>
<td>+BKUPCY</td>
</tr>
</tbody>
</table>

F3=Exit F4=Prompt F12=Cancel

2. At the *Parallel device resources* parameter, indicate the minimum and maximum number of device resources you want to allocate to the processing of this control group. In this example, we instructed BRMS to save the contents of the SAMPLE control group to a minimum of 2 devices and a maximum of 4 devices.

3. Press Enter to save and return to the Work with Backup Control Groups display.

You can find a more complex example involving the use of parallel and concurrent saves in "Sample Backup Scenarios: Working with Multiple Control Groups and Shared Devices".

Note: You can also specify a parallel save when using the following commands:
- Save Library using BRM (SAVLIBBRM)
- Save Object using BRM (SAVOBJBRM)
- Save Object List using BRM (SAVOBJLBRM)

Use a job scheduler to assist you in scheduling parallel saves. You can find more information on job scheduling in "Chapter 10. Scheduling Backup and Recovery Jobs" on page 165.

Sample Backup Scenarios: Working with Multiple Control Groups and Shared Devices

As you grow more familiar and comfortable with BRMS, you may decide to create additional control groups or to split larger control groups into smaller ones. This section provides information on the uses and benefits of a multiple control group operation in several different environments. Each scenario assumes a daily backup schedule.

Use multiple control groups to save applications or subsets of applications, and user libraries or subsets of user libraries. A backup strategy that uses multiple control groups can shorten your save window, and make the restore of selected data easier. In Scenario 1, you learn the benefits of using your own control groups.
rather than BRMS-configured ones such as *ALLUSR. In Scenario 2, you learn how to shorten your save window still further by processing multiple control groups through concurrent and parallel backups. In Scenario 3, you learn how process a network backup by using shared devices.

Scenario 1: Using Multiple Control Groups in a Serial Backup

In this example, suppose you have only one tape device available, TAP01, available for backup operations. You can use a tape library, such as a 3570 or a 3590 device. For the purposes of this example, however, you are using the device as a stand-alone. You must decide how to save two packaged business applications (one for payroll, the other for inventory), a few company-designed programs, and several user libraries.

In this situation, you could use either of the following strategies to back up your data:

- You could perform an *ALLUSR save on a weekly (*FULL) and daily (*INCR) basis
- You could create multiple control groups containing applications, libraries, or related subsets, again with weekly (*FULL) and daily (*INCR) backups.

Utilizing an *ALLUSR strategy saves all user libraries, but it does not allow specialized recoveries. An *ALLUSR save may also require that you rebuild access paths when restoring the libraries.

Splitting your application and user data into multiple control groups provides the following benefits:

- Makes recovery easier by allowing you to separate and prioritize critical applications for a speedier, more business-efficient recovery. For example, if you use certain applications only on specific days (such as payroll), you might not need to restore that application immediately after a failure on a non-payroll day. Conversely, if the system fails on a heavy payroll day, you want to get the payroll application back on the system as soon as possible. Similarly, some user-specific libraries may be less critical than others or than the day-to-day business applications. If you use the simple *ALLUSR approach, then selective or prioritized recovery is very difficult.

By splitting user libraries and business applications into separate control groups, you can prioritize the order in which BRMS restores your libraries and applications. In addition, a single control group has only one media policy, and one schedule for all the libraries and applications it contains. Multiple control groups, on the other hand, allow you to run different control groups on different days. And, because they use more than one media policy, multiple control groups allow for more flexible retention periods.

- Avoids access path rebuilds by grouping based-on physical files with their dependent logical files. In some instances, the system holds logical views of data in different libraries than their based-on physical files (this is called a Database Network). The system organizes library files alphabetically, by save time, which can cause a problem if the logical files appear earlier in the list than their counterpart physical files. This problem makes recovery much more difficult. If you use an *ALLUSR save, the system saves access paths for the logical files along with the physical files. However, you might need to perform lengthy access path rebuilds after a restore operation because the system cannot restore the based-on physical file.

To avoid lengthy rebuilds, design your backups so that you do not include database networks in an *ALLUSR or a generic* backup. Separate control groups
can save the based-on physical files before their dependent logical files. This way, BRMS can restore the objects in the correct sequence, thereby avoiding lengthy access path rebuilds. However, you need to make sure that you save the physical and logical files with the same underlying SAVxxx command. If you save the logical and physical files with different SAVxxx commands, BRMS cannot save the access paths, even if you specify ACCPTH(*YES).

You can also consider a compromise between these two strategies, especially if you have smaller systems with fewer libraries. Under these circumstances, you can use a combination of *ALLUSR and your own control groups. Use one or more control groups for specific libraries, and another control group containing the *ALLUSR libraries. If you choose this strategy, you need to omit the libraries in your own control groups. This way, you can restore the items in your control groups selectively, on an as-needed basis. You can save less critical libraries on a less frequent basis.

If you save multiple control groups to single device, BRMS processes them serially, one after another. Figure 8 on page 121 illustrates how you can design a number of control groups to run in sequence.
The manufacturing application (MANUFACT) consists of libraries MANUFLIB1 through MANUFLIB5, and DISTLIB1 through DISTLIB3. These libraries now exist in three separate control groups. You can find the logical files in library MD_LOGICAL. The logical files were built over physical files in libraries MANUFLIB3 and DISTLIB2. To avoid rebuilding the access paths for these logical files after restore, MANUFLIB3 and DISTLIB2 were omitted from the MANUFACT and DISTRIBUTION control groups. Instead, they were included with library MD_LOGICAL in a separate control group called DBNETWORK. The ADHOC control group contains a few user libraries and a few of the smaller applications. The FINANCE and PAYROLL control groups contain the more critical payroll and finance data.

Figure 8. Multiple Control Groups in a Serial Save
When you process multiple control groups serially, keep the following considerations in mind:

- *Saving Media Information:* BRMS usually saves media information at the end of each control group. However, if you are running the control groups serially, BRMS saves the media information files at the end of each control group. While this is not a problem, it can extend the runtime for the control groups. In addition, because BRMS saves the same media information in the last file in each control group, you really need only the last group of media information files. You may find it beneficial, then, not to save the media information at the end of each control group. Instead, you can save it separately by using the SAVMEDIBRM command. Whichever method you choose, you must save this information on a regular basis as BRMS uses it to restore your data. In Figure 9 BRMS processes the SAVMEDIBRM command in a separate job.

- *Appending to Media:* By default, BRMS uses an expired tape for each control group. Therefore, during serial operations, BRMS unloads the volume from the previous group and uses a new volume for each subsequent control group. However, you can add the later control groups to the end of the previous tape. To do that, specify ENDOPT(*LEAVE) and APPEND(*NO) on the Change Backup Control Group Attributes display for the first control group. Then specify ENDOPT(*LEAVE) and APPEND(*YES) for the second and subsequent control groups.

Scenario 2: Using Multiple Control Groups in Parallel and Concurrent Backups

In this example, assume that you are using the multiple control group backup strategy discussed in Scenario 1. In this case, however, you want use two tape devices for your backup operation, TAP01 and TAP02.

Figure 9 on page 123 shows how you can organize the control groups to run concurrently to two tape devices.
Suppose that the FINHST library in the FINANCE group contains 50 small objects and 4 very large objects. At this point, you want to save the FINANCE group to TAP01. Your main concern at this point is to balance the backup window for both tape drives. For example, the size of the objects in the FINHST library might force TAP01 to process longer than TAP02. Thus, the control group processing would not end concurrently. To remedy this, you can split the FINHST library into two control groups of approximately 25 small objects and 2 large objects each, as shown in Figure 10 on page 124. By doing so, you can better balance the save window for both devices.
Next suppose that the two FINHST libraries grow to contain 35 small and 3 large objects each. In this case, you need to change your backup strategy, and continually work to keep these jobs ending at the same time. Alternatively, however, you could return all of the FINHST objects to one control group and process it using a parallel backup. Figure 12 shows how BRMS can do this. The parallel backup support feature makes this job easier because it balances the work load for you, and sends the job to process at all available devices. By using the parallel support feature, you do not need to revise your backup strategy if libraries and objects grow, or if you add another tape drive to your system.

In this case, then, you can run the smaller jobs concurrently to TAP01 and TAP02, while using parallel support to process FINHST across both devices. Figure 11 on page 125 shows how BRMS can perform concurrently and parallel saves simultaneously.

Figure 10. Differently weighted control groups in a concurrent save
In this case, the FINHST control group runs first to both TAP01 and TAP02 groups in parallel. Then the FINANCE, PAYROLL, and ADHOC control groups run to TAP01, while the MANUFACT, DISTRIBUTION, and DBNETWORK control groups run concurrently to TAP02.

In addition, if you share tape devices with other systems, sometimes you may have more or less resources available, depending on availability. Parallel backup support makes the best use of available devices when you want to save a large library.

To process multiple control groups by using concurrent and parallel support, keep the following in mind:

- **Control job running time:** In an environment such as described here, the timing of some jobs might be dependent on the outcome of others. For example, to save the media information, you need to run SAVMEDIBRM at the end of control group processing. You do not want this command to run concurrent with the control groups. To achieve this, consider using an advanced job scheduler such as the IBM Job Scheduler for the OS/400 which allows you to define job dependencies.

Scenario 3: Performing a Backup Across a Network with Shared Devices

This example shows you how to use tape automation to perform backups across a network. IBM manufactures several automated tape libraries (ATLs) that you can...
attach to your iSeries to provide tape automation. An automated tape library is both a resource to iSeries and a device. A tape library contains one or more tape drives. ATL models available from IBM are:

- Magstar MP Tape Library (IBM 3570 B and C models)
- 9427 8mm Tape Library
- 3575 Tape Library Dataserver
- 3494 Tape Library Dataserver

You can share any of the IBM tape libraries across multiple iSeries servers. However, due to drive connectivity limitations, you cannot attach individual drives to more than two systems at once. ATLs with more than two drives (3575 and 3494) can attach to more than two systems. When OS/400 uses a tape library, it allocates a drive resource to the job. If a library has more than one drive, OS/400 selects one or more depending on the type of save operation (serial, concurrent or parallel). If a resource is unavailable, OS/400 queues the request until one becomes available or until the device timeout period elapses. You can find more information on how to use devices in Chapter 8 of this manual. You can find more information on ATLs in Automated Tape Library Planning and Management book (SC41-5309).

In this example, assume the use of a 3494 ATL with two 3590 B1A shared between two iSeries servers. You have connected the two tape drives to two iSeries servers, SYSTEMA and SYSTEMB. These two systems exist in a BRMS network, and share a common tape pool. When working with tape libraries, you should have the stand-alone device description varied off, and the library device varied on. The tape drives appear as resources under the library device. With a 3494, although each tape subsystem appears to OS/400 as a library device, all library devices can access the resources for that library type. The OS/400 command Work with Media Library Status (WRKMLBSTS) display illustrates this.

<table>
<thead>
<tr>
<th>Opt</th>
<th>Device/ Resource</th>
<th>Status</th>
<th>Allocation</th>
<th>Job name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TAPMLB01</td>
<td>VARIED ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>TAP01</td>
<td>OPERATIONAL</td>
<td>UNPROTECTED</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>TAP02</td>
<td>OPERATIONAL</td>
<td>UNPROTECTED</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>TAPMLB01</td>
<td>VARIED OFF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This example shows the preferred way to run, which is with one library device varied on and the other varied off. This way, both SYSTEMA and SYSTEMB can run jobs simultaneously. Both would be using library device TAPMLB01. Although only two tape resources (TAP01 and TAP02) are available, each system can run more than two jobs at the same time. The OS/400 resource manager queues requests for resources by allocating them as needed and as they become available. To use one of the resources specifically (as you might in a more complex library setup), you can change the allocation of the non-required resource to DEALLOCATED. This makes the resource unavailable to that system. You can also change the resource allocation manually by using the WRKMLBSTS display. However, if you want to change the allocation dynamically, type the VRYCFG command in an *EXIT command in your control group. For example, if we want OS/400 to select TAPMLB02 to save the PAYROLL application, we could create the following control group items:
Code the *EXIT at sequence number 10 as follows:

VRYCFG CFGOBJ(TAPMLB01) CFGTYPE(*MLBRSC) STATUS(*DEALLOCATE)
RSRCNAME(TAP02)

The *EXIT at sequence number 40 would change the status to *UNPROTECTED.

Note: You should not use *MEDCLS as the device for a save or restore operation with multiple tape library devices. Instead, you should specifically name the library devices for each save and restore.

Additional BRMS Save Commands

In addition to the control groups that process backups, BRMS provides a variety of commands that allow you to save particular groups of information while using BRMS. These save commands are sometimes similar to the OS/400 save commands. You should, however, use BRMS rather than OS/400 commands because BRMS saves the media content, and library and object detail information that is essential for recovery.

Following is a summary of the other BRMS save commands you can use:

SAVBRM

The Save BRMS command allows you to save BRMS libraries and Integrated File System objects.

SAVDLOBRM

The Save DLO using BRM command allows you to save documents in the document library (QDOC).

SAVFRLBRM

The Save Folder List command using BRM command allows you to save backup folder lists.

SAVLIBBRM

The Save Library using BRM command allows you to save a copy of one or more libraries.

SAVMEDIBRM

The Save Media Information using BRM command saves a copy of the information compiled by BRMS on each saved item.

SAVOBJBRM

The Save Object using BRM command saves a copy of one or more objects.

SAVOBJLBRM

The Save Object List using BRMS command saves backup object lists.

SAVSAVFBRM

The Save Save Files using BRM command saves save files that were created during BRMS processing to tape.
SAVSYSBRM

The Save System using BRM command allows you to save a copy of the operating system library in a format compatible with the installation process. It does not save objects from any other library.

When used to perform backup functions, these commands do not automatically save the recovery data or media information in the QUSRBRM library. After completing one of these commands, you need to save media information with the Save Media Information using BRM (SAVMEDIBRM) command.

Notes:

1. Do not use these commands with an *EXIT in a control group as the results may be unpredictable.

2. If you have processed any backups to save files, you must run the Save Save Files using BRM (SAVSAVFBRM) command with the appropriate control group. Run the SAVMEDIBRM command after the SAVSAVFBRM command and then print new recovery reports.
Chapter 8. Performing Selected Recoveries

In Chapter 4. Recovering Your Entire System you learned how to generate and use the Recovering Your Entire System report to recover your entire system. This chapter provides information on how to selectively restore single objects or groups of objects. With BRMS, you can selectively (that is, singly and on an as-needed basis) restore system information, libraries, control groups, Integrated File System objects, and other items. In case of disaster, a selective restore strategy allows you to recover critically needed applications and information prior to restoring the rest of your system.

There are several ways you can selectively recover items by using BRMS. The primary recovery command is the Start Recovery using BRM (STRRCYBRM) command. You can use other commands to facilitate the recovery of user profiles, objects, folders, and spooled files.

Many of the functions described in this chapter are available as part of a plug-in to Operations Navigator. For detailed information on the BRMS plug-in to Operations Navigator, see the iSeries Information Center.

Recovery Policy

Use the recovery policy to instruct BRMS on how to implement your recovery plan. For example, you can use the recovery policy to select the types of media and devices you want to use for the recovery. You can also use the recovery policy to instruct BRMS to restore objects and libraries in specific ways.

To get to the recovery policy display, take the following steps:

1. Type WRKPCYBRM *RCY at a command line. Press Enter.

2. Following are brief summaries of the key parameters on this display.
- In the **Recovery devices** field, specify the device or devices that you want to perform the recovery. You can specify a specific device name or *MEDCLS, which instructs BRMS to select any available device that matches the media class you plan to use.

Note: If you did not notify BRMS that you recently moved media from an offsite to an onsite location, the *MEDCLS device search may fail. For this reason, it is better to explicitly name the device you want BRMS to use for the recovery.

- In the **Parallel device resources** field, specify whether you want to perform parallel recoveries. In a parallel recovery, BRMS allocates multiple devices to process one large job. You need multiple devices (at least two) to use this option. BRMS can only perform parallel restores on information that was saved with the parallel process. You can find more information about parallel and concurrent (multiple jobs to multiple devices) recoveries later in this chapter.

- Use the **Database member option** field to specify which members of database files you want to restore to the database.

- In the **Allow object differences** field, you can instruct BRMS to allow differences between saved and restored objects.

- In the **Restore to library** field, indicate whether to restore library contents to a library different from the one in which they were saved. You should not leave this as *SAVLIB. Instead, either name a specific default library (for example, RESTORES) or use the system-provided QTEMP library. If you leave the value at *SAVLIB, you run the risk of overwriting a production library. To avoid this, you should change the default. If you want to restore the original library at a later time, you can override the name you specify here when you want to perform the recovery operation.

- In the **Auxiliary storage pool ID** field, indicate whether to restore libraries and objects to the same auxiliary storage pool (ASP) in which they originated.

3. After reviewing and changing the parameters as needed, press Enter to save and exit.

BRMS uses only one recovery policy to cover all of your recovery needs. You should only need to set recovery policy parameters once. However, it is possible to change recovery policy values on an item by item basis by using the Restore Command Defaults display. Later in this chapter, you learn how to access and use this display.
Working with the STRRCYBRM Command

The Start Recovery using BRM (STRRCYBRM) command performs two critical recovery functions:

- Generates the reports that guide your recovery.
- Initiates and processes the restore commands.

This chapter provides instruction on how to use the parameters on the STRRCYBRM command to recover selected saved items. You can use the STRRCYBRM command to selectively recover the following items:

- Control Groups
- Libraries
- Integrated File System data and other LINKLIST items

Understanding the STRRCYBRM Parameters

On the STRRCYBRM display, you can select the items you want to recover and the saves from which you want them restored. You can also select the system to which you would like the items restored. The STRRCYBRM command bases its restores on the save date and time entries in the media content information that best match your restore specifications. The STRRCYBRM command always restores from the most recent full save of the specified item that precedes the date and time parameters you specify.

To get to the Start Recovery using BRM display, take the following steps:
1. Type STRRCYBRM from a command line and press F4 to prompt the display. This takes you to the initial STRRCYBRM display.
2. Press F9 to prompt the remaining parameters.

Following are brief summaries of the key parameters on this display:

- At the **Option** parameter, you need to specify the kind of recovery you want BRMS to perform. The default value for this parameter is *SYSTEM, which instructs BRMS to recover your entire system. You can change this value to specify a number of saved items to recover, including product and user libraries, control groups, and Integrated File System data. Press F1 (Help) to prompt a list of the items you can recover from this parameter.

- At the **Action** parameter, you need to specify whether you want BRMS to generate recovery reports (*REPORT) or perform a restore (*RESTORE). The default value for this parameter is *REPORT, so when you want BRMS to perform a recovery, you need to change this value to *RESTORE.

- At the **Time period for recovery** parameters, specify a range of save dates and times between which BRMS should perform the restore. For example, when you select beginning and ending dates and times, you instruct BRMS to restore items that were saved only during those periods.

3. Become familiar with the remaining parameters on this command and change them as needed to suit the type of recovery you want to perform.

4. Press Enter to begin the recovery.
Recovering Control Groups with STRRCYBRM

While you cannot use the STRRCYBRM command to recover individual spooled files, document library objects (DLO), or folders, you can use it to recover the control group in which they were saved. To recover a control group with the STRRCYBRM command, take the following steps:

1. Type STRRCYBRM at a command line and press F4 to prompt the display.
2. Press F9 to prompt the remaining parameters.

3. Type *CTLGRP in the Option field.
4. Type *RESTORE in the Action field.
5. Change the Time period for recovery parameters as needed.
6. If you want to restore the control groups from a save file, change the Use save file value to *YES.
7. Scroll down to the second page of the display.
8. If you want to restore only one control group and know its name, type it into the Control group field. Or you can use the *SELECT value to select from a list of control groups. Since the *SELECT value is the default value for this parameter, simply press Enter once to prompt the list.

<table>
<thead>
<tr>
<th>Control</th>
<th>Group</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>*BKUGRP</td>
<td>Entry created by BRM configuration</td>
<td></td>
</tr>
<tr>
<td>*SYSGRP</td>
<td>Entry created by BRM configuration</td>
<td></td>
</tr>
<tr>
<td>1 PAYROLL</td>
<td>Pay schedule for week of 05/05/99.</td>
<td></td>
</tr>
<tr>
<td>2 INVENTORY</td>
<td>Warehouse content week of 05/05/99.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MYLIB</td>
<td>Library belonging to Jane Doe.</td>
</tr>
<tr>
<td></td>
<td>YOURLIB</td>
<td>Library belonging to John Smith</td>
</tr>
</tbody>
</table>

F3=Exit F9=Review backup plan F12=Cancel

9. Place a number in the Seq column next to the control groups you want to restore in the order in which you want BRMS to restore them.
10. Press Enter twice to get to the Select Recovery Items display.

<table>
<thead>
<tr>
<th>Saved</th>
<th>Item</th>
<th>Opt</th>
<th>Date</th>
<th>Time</th>
<th>Type</th>
<th>Serial</th>
<th>File Seq</th>
<th>Exp Date</th>
<th>Objects Saved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A/PAYABLE</td>
<td>1</td>
<td>5/27/99</td>
<td>16:51:56</td>
<td>FULL</td>
<td>172534</td>
<td>1</td>
<td>6/10/99</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>A/REC</td>
<td>1</td>
<td>5/27/99</td>
<td>13:20:26</td>
<td>FULL</td>
<td>172534</td>
<td>1</td>
<td>6/10/99</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>INV/DISKS</td>
<td>1</td>
<td>5/30/99</td>
<td>17:00:27</td>
<td>FULL</td>
<td>1727C0</td>
<td>1</td>
<td>6/10/99</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>INV/DRIVES</td>
<td>1</td>
<td>5/30/99</td>
<td>17:15:10</td>
<td>FULL</td>
<td>1727C0</td>
<td>1</td>
<td>6/10/99</td>
<td>1</td>
</tr>
</tbody>
</table>

F3=Exit F5=Refresh F9=Recovery defaults F12=Cancel F14=Submit to batch F16=Select all

11. A list of the items contained in the control groups you specified appears on this display. Type a 1 (Select) next to the items you want BRMS to recover and press Enter. Press F16 to instruct BRMS to restore all of the items on the display.
12. Press Enter to confirm your selections at the Confirm Recovery Items display. This returns you to the STRRCYBRM display.
13. Review and change the other parameters on the STRRCYBRM display as needed.
14. To override any recovery policy values for this (or any other) specific job, press F9 from this display. This takes you to the Restore Command Default display, which contains most of the parameters and values from the recovery policy display.
At this display, you can override recovery policy values to, for example, specify a particular device or type of restore (for example, a parallel restore). Change the parameters as needed and press Enter to return to the Select Recovery Items display.

15. After reviewing and changing the parameters as needed, press Enter to begin the restore. As STRRCYBRM processes your request, the Display Recovery Items display keeps you informed of status of the recovery.

When your recovery job completes, a message appears at the bottom of the Select Recovery Items display that indicates the status of your recovery.
Select Recovery Items

Type options, press Enter. Press F16 to select all.
1=Select 4=Remove 5=Display 7=Specify object

<table>
<thead>
<tr>
<th>Opt</th>
<th>Item</th>
<th>Date</th>
<th>Time</th>
<th>Type</th>
<th>Serial</th>
<th>File Seq</th>
<th>Exp</th>
<th>Objects</th>
<th>Date</th>
<th>Saved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INV/DISKS</td>
<td>5/30/99</td>
<td>17:00:27</td>
<td>FULL</td>
<td>1727C0</td>
<td>1</td>
<td>6/10/99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>INV/DRIVES</td>
<td>5/30/99</td>
<td>17:15:10</td>
<td>FULL</td>
<td>1727C0</td>
<td>1</td>
<td>6/10/99</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

16. After the recovery processing completes, check the job log to make sure that the job completed successfully.

Recovering Multiple Control Groups

You can restore multiple control groups with a single STRRCYBRM command by naming multiple control groups in the command. For example, issuing the command STRRCYBRM OPTION(*CTLGRP) ACTION(*RESTORE)

CTLGRP((PAYROLL 1) (MANUFACT 2) (FINANCE 3)) instructs BRMS to recover the PAYROLL control group first. BRMS next recovers the manufacturing and finance control groups.

If you prefer using the displays to create the command, you can set up the command specifications as follows:

1. Change the value in the Option field to *CTLGRP.
2. Change the value in the Action field to *RESTORE.

Backup, Recovery, and Media Services for iSeries V5R1
3. Scroll down to the second page of the display. At the “+ for more values” field at the Control group selection parameter, press + to add more than one control group to the command request.

4. Review and change the other parameters as needed, then press Enter to process the command.

Recovering Libraries with STRRCYBRM

To recover a library with the STRRCYBRM command, take the following steps:

1. Type *LIB at the Option parameter and *RESTORE at the Action parameter.

2. Type the name of the library you want BRMS to restore in the Library field. You can also recover a string of libraries by using a generic library name. For example, you can restore all libraries that begin with P by specifying P* at the Library parameter. After you have specified the library you want to restore, press Enter. This takes you to the Select Recovery Items display.
3. Select the items you want to recover and press Enter.

4. Press Enter at the Confirm Recovery Items display to confirm your selections.

5. If you want to override any of the recovery policy parameters for this specific job, press F9 to take you to the Restore Command Default display. If you do not want to change any recovery policy parameters, press Enter to begin processing the restore.

6. The Display Recovery Items display appears to inform you of the status of your restore.

7. When the recovery completes, a message appears at the bottom of the Select Recovery Items display. This message tells you the number of objects BRMS restored (for example, 1 object) and from which library (LIBA).

8. Check the job log to ensure that the restore completed successfully.

In addition to recovering selected individual libraries, you can use the STRRCYBRM command to restore all of your IBM libraries or all of your user libraries. To restore all of the *IBM or *ALLUSR libraries, specify *IBM or *ALLUSR at the Option parameter. Leave the Library field blank.

Recovery of Individual Integrated File System Objects

In Chapter 7, you learned how to save your Integrated File System data in a control group by using a linklist. The word link in the word linklist in this case refers to the connection between Integrated File System directories. You can use the STRRCYBRM command to restore an individual linklist, rather than the entire control group that contains the linklist. To do so, take the following steps:

1. At the STRRCYBRM display, type *LNKLIST in the Option field.
Start Recovery using BRM (STRRCYBRM)

Type choices, press Enter.

<table>
<thead>
<tr>
<th>Option</th>
<th>+LNKLIST</th>
<th>+SYSTEM, +SAVSY, +IBM...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
<td>+RESTORE</td>
<td>+REPORT, +RESTORE</td>
</tr>
</tbody>
</table>

Time period for recovery:

- **Start time and date:**
 - Beginning time: *AVAIL*
 - Beginning date: *BEGIN*
- **End time and date:**
 - Ending time: *AVAIL*
 - Ending date: *END*

Use save files:
- *NO,* NO, *YES*

Auxiliary storage pool:
- *SYSTEM Name,* SYSTEM, 1, 2, 3, 4...

Library:
- Name, generic*

List:
- *ALL Name,* ALL

The *LNKLIST* special value restores all of the Integrated File System objects that BRMS saved in the list between the start and end times you specify on this display.

2. Change the other parameters as needed.

3. Override recovery policy parameters if needed by pressing F9, which takes you to the Restore Command Defaults display. Or press Enter to process the recovery.

4. Check the job log to make sure that the job completed successfully.

Restoring Integrated File System Objects to /QLANSrv

Before you attempt to restore an object from /QLANSrv, ensure that you have the proper authority to work with the objects in a LAN server environment. If you do not have sufficient authority, the system sends a message (CPFA09C: Not authorized to object), which causes your command to fail.

Saving and restoring Integrated File System objects to and from LAN servers can be a bit tricky. Therefore, before restoring individual files or directories to /QLANSrv, review the section on Integrated File System data in [Chapter 7: Tailoring Your Backup](#) on page 81.

Before beginning the restore, you must also ensure that the Integrated PC server is either varied on or in a restricted state. You can restore Integrated File System objects to /QLANSRs by using either the WRKLNKBRM command or the WRKMEDIBRM command.

To get to the Work with Link Information (WRKLNKBRM) display, take the following steps:

1. Type WRKLNKBRM at a command line and press Enter.
2. Type a 9 (Work with directory information) in front of the directory you want to restore and press Enter. This takes you to the Work with Directory Information display.

3. The Work with Directory Information display lists the directory items that BRMS saved in the directory you selected. If you do not want to restore the entire directory, you can continue to drill down to the next level of information. To do this, type a 9 (Work with Objects) next to the directory objects you want to review and press Enter. This takes you to the Work with Objects display.

4. You can remove, display, or restore an Integrated File System object from this display. This example, however, generates the restore from the Work with Directory Information display.

5. This takes you to the Select Recovery Items display.
6. After confirming your selection, you can press Enter to process the command.

Restoring a Storage Space with BRMS

You can use either the Work with Link Information (WRKLNKBRM) or the Work with Media Information in BRM (WRKMEDIBRM) command to restore Integrated File System storage space. Before beginning the restore operation, vary off your Integrated PC server. This example uses the WRKLNKBRM command to restore two storage spaces, DRIVEK and DRIVEL, from the /QFPNWSSTG directory. To restore the storage space by using the WRKLNKBRM display, take the following steps:

1. Type WRKLNKBRM at a command line and press Enter.
2. Type a 9 (Work with directory information) in front of the directory you want to work with and press Enter. This takes you to the Work with objects display.
3. Type a 7 (Restore) in front of the objects you want to restore and press Enter.
4. Select the items you want to recover from the Select Recovery Items display and press Enter.

5. Confirm the items you want to recover at the Confirm Recovery Items display.

6. Type a 9 (Work with objects) in front of the items you want to restore and press Enter. The recovery process begins.

7. After the restore completes, you can vary on the Integrated PC server. This can take several minutes. Once you activate the Integrated PC server, check your LAN Server environment with the WRKLNK command. You should also try out a few options from the Network Server Administration (NWSADM) menu to ensure that everything is working correctly.

8. To verify that BRMS successfully completed the restore, use the Work with Network Server Storage Spaces (WRKNWSSTG) command.

```
<table>
<thead>
<tr>
<th>Opt</th>
<th>Name</th>
<th>Percent Used</th>
<th>Size</th>
<th>Drive Letter</th>
<th>TEXT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>Server</td>
<td>TEXT</td>
</tr>
<tr>
<td>0</td>
<td>DRIVEK</td>
<td>7</td>
<td>500</td>
<td>500 MB Server RCHPID /</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>DRIVEL</td>
<td>3</td>
<td>500</td>
<td>500 MB Server RCHPID /</td>
<td></td>
</tr>
</tbody>
</table>
```

9. Link the storage names with the appropriate drive letters by using the Add Server Storage Link (ADDNWSSTGL) command. You can also use option 10 from the Work with Network Storage Space (WRKNWSSTG) display to perform the same task.

A Final Note on Restoring IFS Data Through a LAN Server

In case of system failure, you need to recover the entire system, including the LAN server/400 environment. Use the steps in your latest copy of the Recovering Your Entire System report to assist you through the recovery. In addition, however, when you begin restoring the LAN server connection, keep the following information in mind:

- Keep the Integrated PC server in a varied-off state during the entire recovery.
- Restore Integrated File System information with the default *LNKLST in the *BKUGRP control group.
- After completing all of the recovery steps, vary the Integrated PC server back on with your first IPL after the recovery.
- Check the LAN Server/400 environment by trying out some options from the Network Server Administration menu. To get there, type GO NWSBRM from a command line.
- Use the ADDNWSSTGL command to link your storage spaces to drive letters.
- Vary the Integrated PC server on again.
- Use the WRKLNK command to check the status of data in the /QLANSrv directory.
- Use the WRKLNKBRRM command to restore the latest save of individual object data in /QLANSrv.
Recovering User Profiles

This example assumes that you saved your user profiles in a control group, for example, in the *SECDATA control group or in a control group created by you. To restore your user profiles, take the following steps:

1. Use the INZBRM *DEVICE command to clear device information. This also initializes the files for the devices currently attached to your system.
2. Type STRRCYBRM at a command line and press Enter.
3. Type *CTLGRP in the Option field.
4. Change the value in the Action field to *RESTORE.
5. Type the name of the control group that contains the user profiles into the Control group selection field.
6. Make sure that the value in the Library to omit field is *DELETE. Press Enter.
7. Select the items you want to restore at the Select Recovery Items display and press Enter.
8. Press Enter to confirm the items you want to restore at the Confirm Recovery Items display.
9. Press F9 (Recovery defaults) at the Select Recovery Items display.
10. At the Restore Command Defaults display, change the value in the Allow object differences field to *ALL. Then change the value in the System resource management field to *NONE.

<table>
<thead>
<tr>
<th>Restore Command Defaults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type information, press Enter.</td>
</tr>
<tr>
<td>Device *MEDCLS Name, *MEDCLS</td>
</tr>
<tr>
<td>Parallel device resources:</td>
</tr>
<tr>
<td>Minimum resources......... *SAV 1-32, *NONE, *AVAIL</td>
</tr>
<tr>
<td>Maximum resources......... 1-32, *AVAIL, *MIN</td>
</tr>
<tr>
<td>End of tape option *REWIND, *LEAVE, *UNLOAD</td>
</tr>
<tr>
<td>Option *ALL, *NEW, *OLD, *FREE</td>
</tr>
<tr>
<td>Data base member option *ALL +MATCH, *ALL, *NEW, *OLD</td>
</tr>
<tr>
<td>Allow object differences *ALL +NONE, *ALL, *AUTL...</td>
</tr>
<tr>
<td>Document name generation *SAME +SAME, *NEW</td>
</tr>
<tr>
<td>Restore to library *SAVLIB Name, *SAVLIB</td>
</tr>
<tr>
<td>Auxiliary storage pool *SAVASP Name, *SAVASP, 1-16...</td>
</tr>
<tr>
<td>System resource management *NONE +ALL, *NONE, *HDW, *TRA</td>
</tr>
</tbody>
</table>

F12=Cancel

11. Press Enter once to return to the Select Recovery Items display and again to process the restore.

You can use the OS/400 command Restore User Profiles (RSTUSRPRF) to restore individual user profiles.

Additional Restore Options in BRMS

This section provides information on how you can restore objects, folders, and spooled files by using other BRMS recovery commands.
Recovering Objects with Object Detail

Use the Work with Media Information (WRKMEDIBRM) command to restore individual objects for which BRMS saved object detail. To get there, take the following steps:

1. Type WRKMEDIBRM at a command line and press Enter.

 ![Work with Media Information](image)

 - Position to Date
 - Type options, press Enter:
 - 2=Change
 - 4=Remove
 - 5=Display
 - 6=Work with media
 - 7=Restore
 - 9=Work with saved objects

<table>
<thead>
<tr>
<th>Opt</th>
<th>Item</th>
<th>Date</th>
<th>Time</th>
<th>Type</th>
<th>Serial</th>
<th>Sequence</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>FULL</td>
<td>05/01/99</td>
<td>8:24:14</td>
<td>+QBRM</td>
<td>AN2</td>
<td></td>
<td>05/25/99</td>
</tr>
<tr>
<td>INCR</td>
<td>05/02/99</td>
<td>9:24:14</td>
<td>+FILE</td>
<td>PRG002</td>
<td>1</td>
<td>05/15/99</td>
<td></td>
</tr>
<tr>
<td>MYFILE</td>
<td>05/02/99</td>
<td>10:24:14</td>
<td>+FULL</td>
<td>SAM486</td>
<td>1</td>
<td>12/01/99</td>
<td></td>
</tr>
</tbody>
</table>

 F3=Exit F5=Refresh F11=Object detail F12=Cancel

2. Type a 9 (Work with Saved Objects) in front of the saved item from which you want BRMS to perform the restore. If object level detail does not exist for that item, BRMS sends a message stating that object level detail does not exist for that entry.

3. Press Enter. This takes you to the Work with Saved Items display.

 ![Work with Saved Objects](image)

<table>
<thead>
<tr>
<th>Opt</th>
<th>Library</th>
<th>Type</th>
<th>Save Date</th>
<th>Save Time</th>
<th>Volume ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>QA1ACN</td>
<td>+QBRM</td>
<td>05/01/99</td>
<td>8:24:14</td>
<td>AN2</td>
</tr>
<tr>
<td>7</td>
<td>QA1ADV</td>
<td>+QBRM</td>
<td>05/01/99</td>
<td>8:24:14</td>
<td>AN2</td>
</tr>
<tr>
<td>7</td>
<td>QA1AHS</td>
<td>+QBRM</td>
<td>05/01/99</td>
<td>8:24:14</td>
<td>AN2</td>
</tr>
<tr>
<td></td>
<td>QA1ALR</td>
<td>+QBRM</td>
<td>05/01/99</td>
<td>8:24:14</td>
<td>AN2</td>
</tr>
</tbody>
</table>

 F3=Exit F12=Cancel

4. Type a 7 (Restore object) in front of the object you want to restore and press Enter.
5. At the Select Recovery Items display, type a 1 (Select) in front of the objects you want to restore. To restore all of the objects that are listed on the display, press F16, which selects all of them for you.

6. Press Enter to confirm your selections at the Confirm Recovery Items display.

7. Press Enter to begin processing the restore. At the completion of the recovery, BRMS sends a message that tells you how many objects it restored.

8. Check the job log to ensure that the job completed successfully.

Recovering Objects without Object Detail

Even if you have not instructed BRMS to retain object detail, you can still restore individual or groups of objects. To do so, use the Work with Media Information (WRKMEDIBRM) command to restore the library that contains the object or objects that you want to restore. To get there, take the following steps:

1. Type WRKMEDIBRM at a command line and press Enter.

2. Type a 7 (Restore) next to the item that contains the object you want to restore. Press Enter.

3. This takes you to the Select Recovery Items display. At this display, type a 7 (Specify object) in front of the item that contains the item you want to restore. Press Enter. This takes you to the Restore Object (RSTOBJ) display.
4. At the Object parameter, type in the name of the object you want to restore.
5. Press Enter to process the restore.

Note: You can restore multiple objects from the Restore Objects display.

Recovering Individual Folders

You can restore folders that BRMS saved in documents by using the *ALLDLO special value on the STRRCSIYBRM command. However, you can only restore individual folders by using the Work with Saved Folders (WRKFLRBRM) command. However, you can restore individual folders only if BRMS saved them with the Retain Object Detail parameter set to *YES, *OBJ, or *MBR.

To restore an individual folder by using BRMS, take the following steps:

1. Type WRKFLRBRM at a command line and press Enter.

2. Following are brief summaries of the key parameters on this display:
 - At the Folder parameter, indicate the name of the folder or subfolder that you want BRMS to restore. The default for this field is *ALL. You can also specify
the name of an individual folder or a generic name, which indicates a range.
You can also prompt a list of saved folders to choose from by pressing F4.

- At the Select date parameter, specify a range of save dates from which BRMS should pull the folders that you want to restore. This instructs BRMS to restore items that were saved during a particular period.

3. Change the other parameters as necessary. Then press Enter to prompt a list of folders from which you can select the items you want to restore.

![Work with Saved Folders](image)

4. Type a 7 (Restore folders) in front of the folders you want to restore and press Enter. This takes you to the Select Recovery Items display.

![Select Recovery Items](image)

5. Type a 1 (Select) in front of the folders you want to restore and press Enter.

6. Press Enter to confirm the items you want to recover at the Confirm Recovery Items display.

7. Press Enter again to begin processing the command.

8. After the command completes, review the job log to make sure that your restore completed successfully.

Note: You can also use the Work with Saved Folders display to remove folder information from the media content information inventory. In addition, you can review folder detail from this display.
Recovering Spooled Files

You can use either the Work with Saved Spooled Files using BRM (WRKSPLFBRM) display or the WRKMEDIBRM command to restore spooled files. Though both commands work effectively, the WRKSPLFBRM command allows you a little more flexibility when you set up the restore.

To restore a spooled file by using the WRKSPLFBRM command, take the following steps:

1. Type WRKSPLFBRM at a command line and press F4.

<table>
<thead>
<tr>
<th>Work with Saved Spooled Files (WRKSPLFBRM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type choices, press Enter.</td>
</tr>
<tr>
<td>Output queue *ALL Name, *ALL</td>
</tr>
<tr>
<td>Library *ALL Name, *ALL</td>
</tr>
<tr>
<td>Auxiliary storage pool *ALL Name, *ALL, *SYSTEM, 1,2...</td>
</tr>
<tr>
<td>File *ALL Name, *ALL</td>
</tr>
<tr>
<td>Job name *ALL Name, *ALL</td>
</tr>
<tr>
<td>User *ALL Name, *ALL</td>
</tr>
<tr>
<td>User data *ALL Name, *ALL</td>
</tr>
<tr>
<td>Select dates:</td>
</tr>
<tr>
<td>From date *ALL Date, *CURRENT, *BEGIN, nnnn</td>
</tr>
<tr>
<td>To date *ALL Date, *CURRENT, *END, nnnn</td>
</tr>
<tr>
<td>Save status *ALL *NOERROR, *ERROR</td>
</tr>
<tr>
<td>Sequence option *DATE *DATE,*JOB,*FILE</td>
</tr>
<tr>
<td>From system *LCL</td>
</tr>
<tr>
<td>Output * * , *PRINT</td>
</tr>
</tbody>
</table>

2. Following are brief summaries of the key parameters on this display:

 - The Output queue has two elements, the Output queue field, and the Library field. In the Output queue field, specify the output queue that you want BRMS to display in the list. In the Library field, specify the name of the library that contains the spooled files that you want to review. The default value for each field is *ALL, though you can also indicate specific or generic names.

 - In the Auxiliary storage pool field, indicate the name of the ASP in which you placed the spooled files. The default value is *ALL, though you can also indicate specific or generic ASPs can be named.

 - In the File field, indicate the name of the printer file that contained the spooled file when BRMS saved it. You can use the default value of *ALL, or you can indicate a specific file name.

 - At the Job name parameter, specify the name of the job that created the spooled file you want to list. The default for this field is *ALL. You can also indicate the name of a specific job.

 - At the Select date fields, indicate a range of dates for the saved spooled files you want to review.

3. Change the other parameters as needed. Press Enter to prompt a list of spooled files from which to select the items you want to restore.
4. At the Work with Saved Spooled Files display, type a 7 (Restore spooled file) in front of the spooled file you want to restore and press Enter. This takes you to the Select Recovery Items display.

5. Type a 1 (Select) in front of the spooled file you want to restore. Press F16 to select all of the spooled files on the display.

6. Press Enter at the Confirm Recovery Items display to confirm the items you want to restore.

7. Press Enter to process the restore.

8. After the restore completes, review the job log to ensure that the job completed successfully.

Notes:
1. During the save and restore process, BRMS keeps the spooled file attributes, file name, user name, user data field, and in most cases, the job name. IBM Operating System/400 (OS/400) assigns a new job number, system date, and time of the restore operation. You cannot restore the original time and date. Once you have restored the output queue, you can use the WRKOUTQ OPTION(*PRINT) to spool the contents of the output queue. You may want to compare this report to the report you generated after the save.

2. Internally, BRMS saves the spooled files as a single folder, with multiple documents (spooled members) within that folder. During the restore, it reads the tape label for the folder, and restores all of the documents. If your spooled file save spans multiple tape volumes, BRMS prompts you to load the first tape to read the label information before restoring the documents on subsequent tapes. Therefore, you should plan to save your spooled files on a separate tape by using the *LOAD exit in the control group. Or you can split your spooled files saves so that BRMS uses one tape at a time. This approach can help you during the recovery of spooled files.
In addition to its restore capability, the Work with Saved Spooled Files display allows you to remove folder information from the media content information. You can also review save information, and work with the media that contains the saved spooled files from this display.

How to Perform Parallel and Concurrent Recoveries

You can recover data by using serial, concurrent, or parallel restore operations. If BRMS performed your saves as serial or concurrent backups, BRMS can restore them either serially or concurrently. On the other hand, however, you can perform parallel retrieves only if BRMS used a parallel operation to perform the save. Both concurrent and parallel restore operations require multiple tape drives.

Following are brief summaries of the characteristics of, and the differences between, serial, concurrent and parallel recoveries.

Serial Recovery

This straightforward recovery method is the simplest way to recover data that was saved by multiple control groups. In a serial recovery operation, BRMS issues one recovery job at a time to one tape drive. BRMS performs serial restores in a sequential manner, by restoring one tape and one control group after another. By default, BRMS considers every save and restore a serial operation unless otherwise specified by you.

Concurrent Recovery

In a concurrent recovery operation, you send multiple recovery jobs to multiple tape drives to process at the same time (concurrently). You, not BRMS, set up the concurrent recovery. To do this, try to evenly balance the size of the jobs so that they end at the same time. Concurrent recovery operations can reduce your down time after a system failure by allowing you to recover multiple libraries or objects at the same time.

Parallel Recovery

BRMS will restore a saved item sequentially. However, if the saved item was saved using parallel save/restore (spreading a single object), BRMS will use the number of resources you specify up to the number of resources used to save the item.

To perform a parallel restore of a saved item from fewer resources that were used for the save, a media library is recommended because of the additional media mounts that may be required.

Recovering Multiple Control Groups with Concurrent Support

To perform a concurrent recovery, you need to run multiple jobs by using the STRRCYBRM command. Each command specifies the one or more items you want BRMS to recover. You must try to evenly balance the contents of the jobs so that they complete at about the same time. If you are using a media library with multiple drives, then BRMS will send the jobs there, as long as you specify that device in the recovery policy.

To process a concurrent restore with two or more stand-alone devices, you need to change the device name from the STRRCYBRM display before you can process the command. To make this change, take the following steps:

1. Set up the parameters on the STRRCYBRM command as needed. Then press Enter to prompt the Select Recovery Items display.
2. From this display, press F9 (Recovery defaults) to change the device information. This takes you to the Restore Command Defaults display.

```plaintext
Restore Command Defaults

Type information, press Enter.

Device .............. TAP01 Name, *MEDCLS

TAP02

Parallel device resources:
Minimum resources. . . . . +SAV 1-32, +NONE, +AVAIL
Maximum resources. . . . . 1-32, +AVAIL, +MIN
End of tape option. . . . . +REWIND +REWIND, +LEAVE, +UNLOAD
Option . . . . . . . . . . . . . . +ALL +ALL, +NEW, +OLD, +FREE
Data base member option . . . +ALL +MATCH, +ALL, +NEW, +OLD
Allow object differences . . . +NONE +NONE, +ALL, +AUTL...
Document name generation . . +SAME +SAME, +NEW
Restore to library . . . . . . +SAVLIB Name, +SAVLIB
Auxiliary storage pool . . . . +SAVASP Name, +SAVASP, 1-16...
System resource management . +ALL +ALL, +NONE, +HDW, +TRA

F12=Cancel
```

3. To concurrently process multiple jobs on different stand-alone devices, you need to type the names of each of the devices you want to use in the Device fields. If a stand-alone you specify is unavailable, the job fails because there is no queuing on stand-alone devices.

4. Press Enter to twice process the command.

Performing Parallel Recoveries

Though you can find the parallel support parameters on the recovery policy display, you probably do not want to select the parallel option from this display. This is because the recovery policy sets the defaults for all of your recoveries, and you cannot perform all of your recoveries with parallel support. Therefore, the best way for you to use the parallel option is to take the following steps:

1. Set the Option field on the STRRCYBRM command to *CTLGRP.
2. Set the Action field to *RESTORE.
3. Indicate the control group you want BRMS to process with parallel support in the Control group field.
4. Press Enter to prompt the Select Recovery Items display.
5. Select the items you want BRMS to recover and press F9 to prompt the Restore Command Defaults display.

<table>
<thead>
<tr>
<th>Restore Command Defaults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type information, press Enter.</td>
</tr>
<tr>
<td>Device TAP02 Name, *MEDCLS</td>
</tr>
</tbody>
</table>

Parallel device resources:
- Minimum resources *SAV 1-32, *NONE, *AVAIL
- Maximum resources 1-32, *AVAIL, *MIN
- End of tape option *RENEW *RENEW, *LEAVE, *UNLOAD
- Option *ALL *ALL, *NEW, *OLD, *FREE
- Data base member option *ALL *ALL, *NEW, *OLD
- Allow object differences *NONE *NONE, *ALL, *AUTL...
- Document name generation *SAME *SAME, *NEW
- Restore to library *SAVLIB Name, *SAVLIB
- Auxiliary storage pool *SAVASP Name, *SAVASP, 1-16...
- System resource management *ALL *ALL, *NONE, *HDW, *TRA

F12=Cancel

6. Specify the devices you want to use in the Device fields.
7. Specify the maximum and minimum devices that you want to allocate to the parallel job at the Parallel device resources parameter. The recommended value for this parameter is *SAV. This value instructs BRMS to use the same number of resources for the parallel restore as it used to perform parallel save. You can specify *SAV at the Minimum resources parameter. In addition to *SAV, the possible values are:
 - **Minimum device resources** can be *AVAIL (use any available devices), or any number between 1 and 32.
 - **Maximum device resources** can be *MIN (the same value specified in the Minimum device resource field), *AVAIL, or any number between 1 and 32.
8. After you review and change the parameters as needed, press Enter twice to process the command.

How to Resume a Recovery

While rare, it is possible that your recovery might fail due to a faulty tape, a tape drive failure, or other error or accident. To resume a recovery that was stopped in progress, take the following steps:
1. Type STRRCYBRM at a command line and press F4 to prompt the display.
2. In the Option field, type *RESUME and press Enter to prompt the next parameter.
3. The From system field specifies the name of the system from which you want BRMS to perform the restore. If you have the Network feature installed on your iSeries, you can press F4 at this field to prompt a list of systems that are defined to BRMS. If you do not have the Network feature installed, use the default value for this field, *LCL, which instructs BRMS to use the system currently in use.
Start Recovery using BRM (STRRCYBRM)

Type choices, press Enter.

Option > *RESUME, *SYSTEM, *SAVSYS, *IBM...
From system *LCL

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

4. Press Enter to resume the recovery.

Note: While you can still press F9 to prompt the additional fields for this display, BRMS does not accept changes to the parameters during a resume.

Performing a Recovery without the Recovery Analysis Report

Though you should not try to restore your system without a recovery report to guide you, circumstances may arise that necessitate doing so. This section provides information that can assist you in performing a recovery without the reports. It also tells you how you might be able to generate a report in the event of disaster if you do not have one available. If you cannot locate a recovery report, OS/400 commands can help initiate the recovery process. You can use either BRMS or OS/400 commands to perform the restore.

Identifying the Tapes you Need

Identifying the tapes you need to make the recovery is more difficult without the reports. You can identify the data on your tapes by taking them to another iSeries and using the Display Tape (DSPTAP) command to review the contents of each tape. You can manually develop a recovery plan with the information shown on the DSPTAP command. At this point, you should consider making a list that prioritizes the items you want BRMS to restore.

Generating a Recovery Analysis Report after a Failure

If you can locate the tape containing the most up-to-date QUSRBRM data files, you can use this tape to generate a Recovering Your Entire System/Recovery Analysis report. BRMS saves the QUSRBRM recovery at the end of every save operation.

After you obtain the most up-to-date QUSRBRM tape, take the following steps to begin the restoration process:

1. Restore the licensed internal code, operating system, and the required BRMS libraries from your backup tapes. The BRMS libraries you need include QBRM, QUSRBRM, QMSE, and, if applicable, information from save files.

2. Run the RSTOBJ(*ALL) SAVLIB(QUSRBRM) MBROPT(*ALL) command with the most up-to-date tapes you can find. Or you can run this command from save files that contain the QUSRBRM recovery files. This is the last QUSRBRM library on the tape. It should contain 14 files.
3. Run the STRRCYBRM command to generate an up-to-date Recovery Analysis report.
4. Run the WRKMEDBRM OUTPUT(*PRINT) command to generate a list of media and their current status and location.
5. Use these reports to restore your system. You can only use the tapes that are listed on the reports to restore the licensed internal code, operating system data, and the BRMS libraries. If you used different tapes, then you need to restore these items again, this time with the tapes BRMS identifies.

Using the Recovery Planning and Activity Displays

BRMS provides a display that allows you to create a detailed list of the very specific steps your organization may need to take in case of disaster recovery. BRMS also provides a display on which to list the names of the people that are associated with the steps on the list. You must use these displays in conjunction with, rather than in place of, the recovery reports you print after each save.

Creating a Recovery Contact List

To get to the BRMS recovery planning and activity displays, take the following steps:

1. Type GO BRMRCYPLN at a command line and press Enter. This takes you to the Recovery Planning menu.

2. Select option 2 (Work with Recovery contacts) and press Enter.

3. To add a name to the list, type a 1 in the Opt column and the contact name in the Recovery contact field.
4. Then press Enter to access the remaining contact information.
5. In the Contact information field, the name of the contact you added appears. On the other fields, add additional relevant contact information such as office location, department name, phone number, and title.

6. Press Enter to add the name to the Recovery Contact list. Once you have completed the list, you can access it again at any time to add, change, remove or display contact names as needed.

Creating a Recovery Activities List

The BRMS recovery activity displays provide a point of reference when performing disaster recovery. The steps you list on the activity displays should be very specific, as in the following example.

Note: Before you can create a recovery activities list, BRMS requires that you create the contact list.

To get to the Work with Recovery Activities display, take the following steps:

1. Select option 3 (Work with recovery activities) from the Recovery Planning menu and a blank Work with Recovery Activities display appears.

2. To create a list, place a 1 in the Option field, followed by an activity name in the Activity field. This might be the abbreviation of a department name. Then press Enter to get to the Work with Recovery Activities display.
3. From the Work with Recovery Activities field, you can add, remove, or display activity-related information. You can also change recovery information. In this example, use this display to create a recovery activity list.

List all of the activities you want employees to perform. Then type a 1 (Add) in the Opt field next to the activity you want to work with and press Enter. This takes you to the Add Recovery Activity display.

4. At this display, you can provide contact detail information to match each activity.

Note: By placing your cursor and pressing Enter on any Recovery contact field on this display, you can select a name from the list of contact names you created earlier.

5. Press Enter to return to the Work with Recovery Activities display. Complete and add contact names to the list as required.

Creating recovery contact and activity lists can be time-consuming. Only you can best assess the relationship between the time it takes to create them and the value that is gained by your organization.

You can print copies of your recovery activity lists by using the menu options available on the Recovery Planning menu.
Additional BRMS Restore Commands

In addition to the commands discussed earlier in this chapter, BRMS provides other commands that can assist you in the recovery of various items. You should use these commands instead of the OS/400 restore commands because the BRMS commands log restore information.

<table>
<thead>
<tr>
<th>BRMS Commands</th>
<th>Command Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSTBRM</td>
<td>The Restore Object using BRM command restores a copy of one or more objects for use in the Integrated File System. The RSTBRM command functions similarly to the OS/400 RST command.</td>
</tr>
<tr>
<td>RSTDLOBRM</td>
<td>The Restore DLO using BRM command allows you to restore documents, folders, and distribution objects (mail) that BRMS saved by using the SAVDLOBRM command. The RSTDLOBRM command functions similarly to the OS/400 RSTDLO command.</td>
</tr>
<tr>
<td>RSTLIBBRM</td>
<td>The Restore Library using BRM command allows you to restore up to 50 libraries from BRMS media content information. You can use the RSTLIBBRM command to restore any library that BRMS saved with the Save Library using BRM (SAVLIBBRM) command. You can also use the RSTLIBBRM command to restore libraries that BRMS saved in a control group. The RSTLIBBRM command functions similarly to the OS/400 RSTLIB command.</td>
</tr>
<tr>
<td>RSTOBJBRM</td>
<td>The Restore Object using BRM command allows you to restore a copy of up to 50 objects from a specified library. You can use the RSTOBJBRM command to restore any object that you saved with the Save Object using BRM (SAVOBJBRM) command. You can also use the RSTOBJBRM command to restore objects that BRMS saved in a control group. The RSTOBJBRM command functions similarly to the OS/400 RSTOBJ command.</td>
</tr>
<tr>
<td>RSTAUTBRM</td>
<td>The Restore Authority using BRM (RSTAUTBRM) command re-establishes private authorities after BRMS restores the objects. This command also reestablishes the owner profiles, primary groups, and authorization list names for objects contained in user ASPs if DASD failures necessitate data recovery. The RSTAUTBRM command functions similarly to the OS/400 RSTAUT command.</td>
</tr>
</tbody>
</table>
Chapter 9. Daily Maintenance in BRMS

The BRMS maintenance function regularly and automatically cleans and updates media records. Regular removal of expired records from media and media content information files allows you to make more efficient use of your media. The centerpoint of the BRMS maintenance function is the Start Maintenance for BRM (STRMNTBRM) command, which processes the daily maintenance requirements that keep your system running effectively.

You can run maintenance as part of a backup using the BRMS plug-in to Operations Navigator. For detailed information on the BRMS plug-in to Operations Navigator, see the iSeries Information Center.

What the STRMNTBRM Command Does

The STRMNTBRM command provides assistance for a variety of housekeeping and maintenance tasks, and also produces useful reports that are based on your media information. IBM recommends that you run this command each day after the last save has completed. You can place this command on an automatic scheduler or in the last *EXIT entry in the last control group used to process your backup. Instructions to do this are provided later in this chapter. In either case, it is important that the STRMNTBRM command be run after the save of the BRMS media information. Failure to do so will result in an inaccurate recovery report.

The STRMNTBRM command works by processing existing commands, such as the STREXPBRM and WRKMEDBRM commands. It also performs unique tasks that are specified on the STRMNTBRM command.

<table>
<thead>
<tr>
<th>Start Maintenance for BRM (STRMNTBRM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type choices, press Enter.</td>
</tr>
<tr>
<td>Expire media</td>
</tr>
<tr>
<td>Remove media information:</td>
</tr>
<tr>
<td>Media contents</td>
</tr>
<tr>
<td>Object level detail</td>
</tr>
<tr>
<td>Remove migration information</td>
</tr>
<tr>
<td>Run media movement</td>
</tr>
<tr>
<td>Remove log entries:</td>
</tr>
<tr>
<td>Type</td>
</tr>
<tr>
<td>From date</td>
</tr>
<tr>
<td>To date</td>
</tr>
<tr>
<td>Run cleanup operations</td>
</tr>
<tr>
<td>Retrieve volume statistics</td>
</tr>
<tr>
<td>Audit system media</td>
</tr>
<tr>
<td>Change BRM journal receivers</td>
</tr>
<tr>
<td>Print expired media report</td>
</tr>
<tr>
<td>F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display</td>
</tr>
<tr>
<td>F24=More keys</td>
</tr>
</tbody>
</table>
Start Maintenance for BRM (STRMNTBRM)

Type choices, press Enter.

Print version report *EXPMED *EXPMED, *YES, *NO
Print media information *YES *YES, *NO
Print recovery reports *ALL *ALL, *NONE, *RCYANL...
+ for more values
Recovery locations *ALL Name, *ALL, *HOME
+ for more values

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

The STRMNTBRM command can perform the following tasks and prints the following reports when processed:

- Expires media.
- Removes history records for expired media.
- Produces a report that lists expired media.
- Determines which, if any, libraries did not save.
- Produces a report on recovery activities (contact information).
- Collects volume error statistics and updates volume error logs.
- Cleans up any temporary files that are left over from prior operations.
- Cleans or changes journal receivers as needed and attaches new ones. Deletes old journal receivers that are based on the information in Q1APRM data area. The default is to keep the information for five days.
- Performs media movement (if specified).
- Performs a media synchronization audit to ensure that the media files on all BRMS networked systems are at the same level.

The key reports run by the STRMNTBRM command are:

Backup Activity Report

This report identifies libraries and objects that were not saved. Use it to look for errors in your save operation and take action as appropriate.

Save Strategy Exceptions Report

Use this report to see which libraries, if any, were not saved, and to help you devise save strategies for them. If the report indicates that BRMS did not save a library already in a control group, you need to investigate why the error occurred.

Note: You can also run the WRKMEDIBRM SAVTYPE(*NONE) command to see a list of unsaved libraries.

BRMS Recovery Reports

The STRMNTBRM command can produce any number of the three essential recovery reports (Recovery Analysis, Volume Summary, and ASP Recovery). If desired, you can make this request from the Print recovery reports parameter.
Centralized Media Audit Report

The STRMNTBRM command produces this report for each system in a network. BRMS does not generate this report if you have a single-system environment. See "Chapter 13. Networking with BRMS" on page 191, for more information on this report.

The STRMNTBRM command generates these reports automatically. These reports show volumes that have equalled or exceeded the usage or read/write threshold limits that are set for the media class. Check these error thresholds and take appropriate action to replace volumes with errors.

Following is a summary of the commands that can be automatically processed by the STRMNTBRM command. You can also process these commands individually if desired.

- MOVMEDEBRM = Runs media movement.
- RMOVLOGEBRM = Removes BRMS log entries.
- RMVMEDIBRM = Removes media information from BRMS.
- STREXPBRM = Starts expiration for BRMS.
- STRRCCYBRM = Runs the Recovery Analysis/Recovering Your Entire System, Volume Summary and ASP analysis reports.
- WRKMEDBRM = Runs the Expired media report.
- WRKMEDIBRM = Generates a media information summary report.
- WRKRCYBRM = Runs Recovery activities report.

Because the STRMNTBRM command processes so many commands and reports, IBM strongly recommends that you review and select each of the parameters on the STRMNTBRM command very carefully. You can review complete descriptions of all of the parameters on the STRMNTBRM command by using the online help that is available for each parameter on the command.

To review the STRMNTBRM display, type STRMNTBRM at a command line and press F4 to prompt the display.

Scheduling the STRMNTBRM Command

You can process the STRMNTBRM command manually, or you can schedule it to run automatically at selected dates and times. You can process the STRMNTBRM command through either of the IBM job schedulers, or through other user-defined schedulers.

To schedule the STRMNTBRM command on the OS/400 job scheduler, take the following steps:

1. Enter the ADDJOBSCDE command from any command line. This retrieves the Add Job Schedule Entry (ADDJOBSCDE) display.
2. Type STRMNTBRM in the Command to run field of the ADDJOBSCDE display.
Add Job Schedule Entry (ADDJOBSCDE)

Type choices, press Enter.

Job name Name, +JOBD
Command to run > STRMNTBRM

Frequency +ONCE, +WEEKLY, +MONTHLY
Schedule date, or +CURRENT Date, +CURRENT, +MONTHSTR...
Schedule day +NONE +NONE, +ALL, +MON, +TUE...
+ for more values
Schedule time +CURRENT Time, +CURRENT

F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys

3. Then press F4 to prompt the STRMNTBRM display.

Start Maintenance for BRM (STRMNTBRM) RCHAS400

Type choices, press Enter.

Expire media *YES *YES, +NO
Remove media information:
 Media contents +EXP +EXP, +REUSE, +NONE
 Object level detail ... +MEDCON 1-9999, +MEDCON
Remove migration information 180 1-9999, +NONE
Run media movement +NO +NO, +YES
Remove log entries:
 Type +ALL +ALL, +NONE, +ARC, +BKI, +M...
 From date +BEGIN Date, +CURRENT, +BEGIN, nnnnn
 To date 90 Date, +CURRENT, +END, nnnnn
Run cleanup operations +YES +YES, +NO
Retrieve volume statistics ... +YES +YES, +NO
Audit system media +NETGRP
+ for more values
Change BRM journal receivers . . +YES +YES, +NO
Print expired media report . . +YES +YES, +NO

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

4. Review and change the remaining parameters as needed.
5. Press Enter to save and return to the Add Job Schedule Entries display.
6. At the ADDJOBSCDE display, indicate the job name, frequency, date, day, and time you want BRMS to process the STRMNTBRM command.
7. Press Enter to add the job to the scheduler.

Note: For additional information on using and setting up job schedulers with BRMS, review “Chapter 10. Scheduling Backup and Recovery Jobs.”
Processing the STRMNTBRM Command in a Backup Control Group

You can also set the STRMNTBRM command to run as the last step on the last backup control group of the day. You can do that by submitting a batch job that uses an *EXIT in the backup control group. To put the command in an exit, take the following steps:

1. Type WRKCTLGBRM at a command line and press Enter.
2. You can add an *EXIT to an existing control group, or you can create an entirely new control group. As appropriate, go to either the Create Backup Control Group Entries display (option 1), or to the Edit Backup Control Group Entries display (option 2).
3. Type *EXIT in the Backup items field as the last entry in the control group. Place your cursor on the word *EXIT and press F11 (Display exits).
4. Then press F10 (Change item). This takes you to the User Exit Maintenance display.

 User Exit Maintenance
 RCHAS400

 Type command, press Enter.

 Sequence number: 30
 Where used: *EXIT
 Weekly activity: SMTWTFS
 Command: STRMNTBRM

 F3=Exit F4=Prompt F12=Cancel

5. At this display, type STRMNTBRM in the Command field and press Enter. The STRMNTBRM command will now process at the end of this control group.

To ensure that the STRMNTBRM does not process until the control group has completed, you should hold the batch job queue for the duration of the control group processing. Use the Change Control Group Attributes display to hold the batch job queue.

Notification of Failure to Process STRMNTBRM

If the STRMNTBRM command fails to process, BRMS sends error messages to the following locations:

- The BRMS log.
- The message queue specified in the BRMS system policy.

If a processing error occurs, review the messages and take action as needed.
Chapter 10. Scheduling Backup and Recovery Jobs

You can run many of the functions that are performed by BRMS under the control of a job scheduler. For example, you can schedule daily backups to begin after nightly processing, and schedule the MOVMEDBRM or STRMNTBRM commands to run after the saves complete. You can also schedule jobs to run across networks. And, as discussed in "Chapter 7. Tailoring Your Backup" on page 81, you can also use the console monitor to schedule an unattended save.

While this chapter provides some information on the Job Scheduler for iSeries, it assumes primary use of the OS/400 job scheduler. For additional information about how to use the OS/400 job scheduler, refer to Work Management, SC41-5306-03. For additional information about how to use the Job Scheduler for iSeries, refer to Job Scheduler for OS/400, SC41-4324-00.

Many of the features in this chapter are available as part of a BRMS plug-in to Operations Navigator. For detailed information on the BRMS plug-in to Operations Navigator, see the iSeries Information Center.

Scheduling Backup and Recovery Jobs

To access the BRMS scheduling menu, select option 10 (Scheduling) from the main BRMS menu.

You can access the BRMS scheduling commands and tasks by using the menu options or by commands. This chapter emphasizes the use of commands.

Scheduling Control Group Backups

The Work with Control Groups (WRKCTLGBRM) display makes it easy to schedule backups by providing a direct interface to the OS/400 job scheduler. To schedule a control group backup, perform the following steps:

1. Type WRKCTLGBRM at a command line and press Enter.
2. At the Work with Control Groups display, place a 6 (Add to Schedule) in front of the control groups you want to schedule and press Enter. This takes you to the Add Job Schedule Entry (ADDJOBSCDE) display.

Add Job Schedule Entry (ADDJOBSCDE)

Type choices, press Enter.

Job name > QBRMBKUP Name, +JOB0
Command to run > STRBKUBRM CTLGRP(PAYTEST) SBMJOB(+NO)

Frequency > +WEEKLY +ONCE, +WEEKLY, +MONTHLY
Schedule date, or > +NONE Date, +CURRENT, +MONTHSTR...
Schedule day > +ALL +NONE, +ALL, +MON, +TUE...
+ for more values
Schedule time > '00:01' Time, +CURRENT

More...

F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys

Add Job Schedule Entry (ADDJOBSCDE)

Type choices, press Enter.

Additional Parameters

Text 'description' > 'Entry created for BRMS job.'

Bottom

F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys
The Command to run field identifies the command that processes the control group you added to the scheduler. In this case, BRMS uses the STRBKUBRM CTLGRP(PAYTEST) SBMJOB(*NO) command.

3. At the Scheduled time parameter, specify the time on the scheduled date that you want the job submitted.
4. Review or change the other parameters as needed.
5. Press Enter to apply your changes.

A Precaution on Submitting Control Groups to the Scheduler
You should be aware that if a delay causes a control group backup to run later than scheduled, the save may not take place as specified. The control group in this example will run nightly at 23:00.

```
<table>
<thead>
<tr>
<th>Seq</th>
<th>Item</th>
<th>List Type</th>
<th>Weekly Activity</th>
<th>Retain</th>
<th>Save</th>
<th>SMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>LIB1</td>
<td>F</td>
<td>*ERR</td>
<td>*NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>LIB2</td>
<td>FIIIIII</td>
<td>*ERR</td>
<td>*NO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Suppose that the job scheduler submits the control groups to the same job queue that is used by the month-end batch job. Should the month-end job overrun and not complete before midnight, BRMS could misread the weekly activity field as follows:

- **A full** rather than incremental LIB1.
- **Not** save LIB2.

In addition, when the scheduler submits the control group to run again at 23:00 Sunday night, BRMS may do another full save of LIB1.

Scheduling Backups of BRMS Save Commands
You can also schedule backups of individual libraries, objects, and document library objects (DLOs) through individual BRMS commands. To schedule individual items for backup, add any of the following commands to the Command to run parameter on the Add Job Schedule Entries display:

- Use the SAVLIBBRM command to schedule the save of a library.
- Use the SAVOBJBRM command to schedule the save of an object.
- Use the SAVDLOBRM command to schedule the save of a DLO.
- Use the SAVBRM command to schedule the save of an Integrated File System object.
Scheduling Selected Recovery Items

While you cannot run the Start Recovery using BRM (STRRCYBRM) *RESTORE command from the job scheduler, you can schedule selected recoveries. You can schedule selected recoveries in the same way that you schedule individual save items. You can also schedule the STRRCYBRM *REPORT command to generate reports.

To schedule selected recoveries, add any of the following commands to the Command to run parameter on the Add Job Schedule Entries display:

- Use the RSTLIBBRM command to restore selected user or system libraries.
- Use the RSTOBJBRM command to restore specify objects.
- Use the RSTDLOBRM command to restore documents and folders.
- Use the RSTBRM command to restore Integrated File System objects.

These commands can restore the latest copy of the selected items. You can schedule these commands to run in batch mode.

Working with Scheduled Jobs

To work with BRMS jobs that are already added to the scheduler, press F7 from the Work with Control Groups display. This will take you to the Work with BRM Schedule Job Entries display. You can also access the Work with BRM Schedule Job Entries by taking option 1 (Work with all BRM scheduled jobs) from the BRMS Scheduling display.

The Work with BRM Job Schedule Entries display allows you to change, hold, remove, work with, or release scheduled jobs. It is similar to the OS/400 Work with Job Schedule display, but provides fewer options. You can, however, add a new job to the schedule by pressing F6, which will take you to the Add Job Schedule Entry display. Also note that if you choose option 4 (Remove) a confirmation display does not appear and the selected entries are immediately removed.

To review or work with all scheduled jobs, take option 2 (Work with all scheduled jobs) from the BRMS Scheduling menu.
Keeping Job Log Information

You can also review scheduled jobs through the job log display. The OS/400 job scheduler has a function that allows you to work with the last submission details of scheduled jobs, which allows you to display the job log. The job log may contain useful information regarding BRMS scheduled jobs.

When submitting jobs using the job scheduler, use the default job description for the user profile (*USRPRF). In most cases, the job scheduler deletes the job log after the job has ended. This prevents you from viewing the job log for scheduled jobs that use the work with last submission option.

If you desire or require the job log information for scheduled jobs, specify a job description that contains LOG(4 00 *SECLVL). To specify this new job description, press F10 (Additional parameters) on the Add Job Schedule Entry (ADDJOBSCDE) display and type the job description at the JOBD keyword.

For scheduled jobs you plan to submit once (FRQ=*ONCE), you should also use the SAVE(*YES) keyword. This will ensure that submission details are available if you need to check at a later stage.

If you are using Job Scheduler for iSeries, change the job description to LOG(4 00 *SECLVL).

Changing the Job Scheduler

The Change Job Scheduler (CHGSCDBRM) command allows you to change the job scheduler that is used by BRMS to schedule the requested backups or recoveries. If you use the default (*SYSTEM) job scheduler (the OS/400 job scheduler), you can use the defaults that are provided on the Change Job Scheduler (CHGSCDBRM) display. On this display, you can specify whether to prompt the add, change or select command.

Several of the parameters require further definition:

- **Scheduler type**: The default value for scheduler type is *SYSTEM, which is the standard OS/400 job scheduler. If you want to specify the Job Scheduler for
iSeries, select the *IJJS special value that was created specifically for the Job Scheduler for iSeries. For any other scheduler, you need to specify the *USRDFN (User-defined) value.

- **Add job command:** Here you can change the command that is used to add a scheduled item to the job scheduler. BRMS uses the add command that you change to interface with the add function of the scheduler. To add a control group to the job scheduler from the Work with Backup Control Groups display, type a 6 (Add to schedule) in the Opt column. If you are using the *SYSTEM default values that are supplied with BRMS, you will see the ADDJOBSCDE command that is used by the OS/400 scheduler. If you are using Job Scheduler for iSeries, you will see the ADDJOBJS command. If you changed the add function at the Add a job command parameter, you can review it in the Add a job command field.

 Note: If you specified *NO at the Command prompt for add prompt, then you will remain at the Work with Backup Control Groups display. The job scheduler will process the job.

- **List jobs command:** Use this command to list jobs that are scheduled in the job scheduler. BRMS uses the list command that you change to interface with the list function of the scheduler. For example, if you are at the Scheduling menu and you want to list all jobs in the job scheduler, take menu option 2 (Work with all scheduled jobs). If you are using the default values that are supplied with BRMS, you see the WRKJOBSCDE command that is used by the OS/400 scheduler. If you are using Job Scheduler for iSeries, you will see the WRKJOBJS command. If you have changed the list function by using the List jobs command parameter, you will see the list command that you specified.

- **Select jobs command:** You can change the command that is used to select jobs from the job scheduler. BRMS uses the select command that you change to interface with the select function of the scheduler. For example, if you are at the Scheduling menu and you want to select all BRMS jobs in the job scheduler, take menu option 1 (Work with all BRM scheduled jobs). If you are using the default values that are supplied by BRMS, you will see the Work with BRM Job Schedule Entries display. If you change the select function by using the Select jobs command parameter, the display you specified will appear.

Some Notes on Substitution Variables

You can specify substitution variables in any of the command strings that are used on the CHGSCDBRM command parameters that are described above. The information_BRMS passes to the substitution variables depends on the BRMS function you are using. The variables are:

- **&JOBNAME** - BRMS assigns an identifier to every job: QBRMBKUP.
- **&REQUEST** - Submit the full BRMS command to the scheduler. Use the STRBKUBRM or STRARCBRM command with parameters (if applicable).
- **&APPL** - Always contains BRMS identifier that is assigned to every job. This can be used to assist a non-IBM scheduler locate jobs by an application code if they support this function.
- **&GROUP** - Control group name (if applicable).

Not all variables are applicable in each case. If the variable name is not relevant, place an asterisk (*) in the variable.
Note: Before you can use the &APPL variable, you need to set up the application in the OS/400 job scheduler. To do this, select option 4 (Job Controls) from the main OS/400 Job Scheduler menu. Then select option 6 (Work with Applications) display.

Change Job Scheduler (CHGSCDBRM)

Type choices, press Enter.

Scheduler type *USRDFN, *SYSTEM, *IJS, *USRDFN
Add a job command ‘ADDJOBOS JOB(&JOBNAME) APP(&APPL)
SCHED(*DAILY) TIME(2300) CMD(&REQUEST)’

Command prompt for add *YES, *NO, *YES
List jobs command ‘WRKJOBOS’

Command prompt for list...... *NO, *YES
Select jobs command ‘WRKJOBOS APP(&APPL)’

Command prompt for select *NO, *YES

Note: Although it is possible to use both the OS/400 job scheduler and a vendor scheduler for BRMS, IBM does not recommend it. You will find it easier to track and control scheduling activities when using only one scheduler.
Part 3. Advanced Topics in BRMS
Chapter 11. The Functional Usage Model and BRMS Security Considerations

As a BRMS administrator, you understand the importance of protecting user and system data from deletion, distortion, and theft. The BRMS Functional Usage Model allows you to customize user access to BRMS functions (backup, recovery, and media management) and to the different components of each function. For example, you can give one user authority to change a control group, and another the authority only to use and view it. You can also use the functional usage model to grant all users access to a particular function or functional component.

You need to access the BRMS functional usage model through the Operations Navigator interface. You can find instructions on how to use Operations Navigator with the functional usage model later in this chapter. If you do not have Operations Navigator installed on your machine, you can find some tips on how to secure your BRMS functions in the “Working with OS/400 Security Controls” section of this chapter.

BRMS also provides another security option, the SETUSRBRM command, that allows you to reset a user or group profile by job category (*OPERATOR or *ADMINISTRATOR). Use the Set User Usage for BRM (SETUSRBRM) command as a starting point for controlling access to BRMS functions, and use the Operations Navigator interface to tailor your security setup to better meet your requirements. You do not need to have Operations Navigator installed to use this command.

BRMS provides effective control over user access to BRMS functionality. Use OS/400 security options to prevent users from causing accidental or intentional damage to your files or system. However, because BRMS ships its databases with *PUBLIC *USE authority (which allows use but not change), irreparable damage is unlikely to occur.

Note: If you have the Advanced Functions feature installed, you can apply the functional usage model to the archive, retrieve, and migration components. For information on how to do so, see the Hierarchical Storage Management book for more information.

How the Functional Usage Model Works

Use the functional usage model when you want to customize user access to certain functions or when you want to grant all users the same access to a certain function. The functional usage model provides two levels of security for each BRMS function, functional component, and specific backup and media management item (such as a policy or control group):

ACCESS or NO ACCESS

In the functional usage model, a user either has access to a BRMS function or component, or does not have access to it. If a user has access to a function or component, that user can use and view it. If a user has no access to that function or component, then that user cannot use or view it. At this basic level of access, a user can process a specific item (such as a library or control group) in a backup operation, but does not have the ability to change it.
SPECIFIC CHANGE or NO CHANGE

Another level of access allows a user to change a specific function, component, or item. For example, to change a backup list, a user must have access to a specific backup list. Similarly, to change a media policy, a user must have access to a specific media policy. The functional usage model provides lists of existing items (control groups, backup lists, media and move policies, and so on) for which you can grant specific access.

With the functional usage model, you can give a user both types of access (so that the user can both use and change a particular function, component, or item). Or you can give a user just one type of access, for example, access to use, but not change, a particular function, component, or item.

The following section summarizes your security options.

Backup Function

In the backup area, the following usage levels are available:

Basic Backup Activities
This is the basic level of backup usage. Those with Basic Backup Activities access can use and view the backup policy, control groups, and lists. Use access also allows these users to process backups by using control groups (through the STRBKUBRM command) or by libraries, objects, or folders (SAVLIBBRM, SAVOBJBRM, or SAVFLRLBRM). A user without access to basic backup activities cannot see backup menu options or command parameter options.

Backup Policy
Users with access to the Backup Policy can change the backup policy, in addition to using and viewing it. Users without access to the backup policy cannot change it.

Backup Control Groups
Users with access to Backup Control Groups can change specific control groups, in addition to using and viewing them. You can find a list of all of your existing control groups under the backup control groups heading in Operations Navigator. You can grant a user access to any number of specific control groups. Users without access to the archive control groups cannot change them.

Backup Lists
Users with access to Backup Lists can change specific backup lists, in addition to using and viewing them. You can find a list of all of your existing backup lists under the backup lists heading in Operations Navigator. You can grant a user access to any number of specific backup lists. Users without access to a backup list cannot change it.

Recovery Function

In the recovery area, the following usage levels are available:

Basic Recovery Activities
This is the basic level of recovery usage. Users with Basic Recovery Activities access can use and view the recovery policy. In addition, they can also use the WRKMEDIBRM command to process basic recoveries, and the RSTOBJBRM and RSTLIBBRM commands to perform individual restores. Users without access to basic recovery activities cannot see recovery menu options or command parameter options.
Recovery Policy
Users with access to the Recovery Policy can change the recovery policy, in addition to using and viewing it. Users without access to the recovery policy cannot change it.

Media Management Components
In the area of media management, the following usage levels are available:

Basic Media Activities
This is the basic usage level for this function. Users with access to Basic Media Activities can perform basic media-related tasks such as using and adding media to BRMS. Users with this access can also use and view, but not change, media policies, and media classes. Users without access to basic media activities cannot see related menu options or command parameter options.

Advanced Media Activities
Users with access to the Advanced Media Activities can perform media tasks such as expiring, removing, and initializing media.

Media Policies
Users with access to the Media Policies can change specific media policies, in addition to using and viewing them. You can find a list of all of your existing media policies under the media policies heading in Operations Navigator. You can grant a user access to any number of media policies. Users without access to a media policy cannot change it.

Media Classes
Users with access to the Media Classes can change specific media classes, in addition to using and viewing them. You can find a list of all of your existing media classes under the media classes heading in Operations Navigator. You can grant a user access to any number of media classes. Users without access to a media class cannot change it.

Media Information
Users with Media Information access can change media information from the Work with Media Information (WRKMEDIBRM) displays.

Basic Movement Activities
Users with access to Basic Movement Activities can manually process or display MOVMEDBRM commands but cannot change them.

Move Verification
Users with access to move verification can perform move verification tasks.

Move Policies
Users with access to Move Policies can change specific move policies, in addition to using and viewing them. You can find a list of all of your existing move policies under the move policies heading in Operations Navigator. You can grant a user access to any number of move policies. Users without access to a move policy cannot change it.

System-Related Functions
In the system area, the following usage options are available:

Basic System Activities
Users with basic system-related activities can use and view device displays
and commands. They can also view and display ASP displays and commands. Users with this access level can also use and view the system policy.

Devices
Users with device access can change device-related information. Users without this access are unable to change device information.

Auxiliary Storage Pools
Users with access to ASP information can change information about BRMS ASP management.

Maintenance
Users with maintenance access can schedule and run maintenance operations.

System Policy
Users with access to the system policy can change system policy parameters.

Log
Any user can display log information, but only those with Log access can remove log entries.

Initialize BRM
Users with this access can use the INZBRM command.

Implementing the Functional Usage Model

Use the Operations Navigator interface to access the functional usage model feature. To get to a list of BRMS function and components, perform the following steps from your Operations Navigator window:

1. Highlight your system name and, from the File menu, select Application Administration. If you have Operations Navigator installed, but do not see the Application Administration feature, then you need to reinstall it.
2. When the Application Administration dialog appears, click the Host Applications tab.
3. From the Host Applications dialog select the Backup, Recovery, and Media Services for iSeries product.
4. Click the BRMS icon to expand the tree structure to see the different functions and components available.

Following is a summary of what you can see or do on the Host Applications display:

- In the **Function** column, you can see the names of the BRMS functions and functional components.
- If you highlight a box in the **Default Usage** column, you are granting all users access to that function or functional component. An X in a Default Usage box grants all users access to the function or component to the left of the box.
- If you type a checkmark in the **All Object Usage** column, you are indicating that a user or number of users have *ALLOBJ authority at the user level. The OS/400 operating system provides a special *ALLOBJ security value, which allows user access to all objects on the iSeries. A user with (*ALLOBJ) authority automatically has complete access to the BRMS functions and components that you mark. If you do not type a checkmark in this box, then BRMS ignores the users *ALLOBJ authority and requires customized access.
- To customize user access, click on the **Customize** button on the bottom right of the display. From the Customize display, you can select individual users by
name and tailor their access as needed. When you customize user access to any of the functions or functional components, an X appears in the Customize Access column on the Host Applications display.

Registering New BRMS Activities with the Functional Usage Model

Once you establish the Functional Usage Model for BRMS users, BRMS begins registering new activities with the OS/400 security system. Each time you create a new control group, list, media policy, media class, or move policy, BRMS adds it to the usage model. When this happens, BRMS records the name of the new item in the log. You can use the DSPLOGBRM *SEC command to review the log message. BRMS registers each of the new items with the default usage level that you specified in the system policy.

To get to the Change System Policy display, take the following steps:
1. Type GO BRMSYSPCY at a command line and press Enter.
2. Select option 1 (Display or change system policy).

3. The value in the Default usage field specifies whether to give default access to the specific BRMS object that you are creating, for example, a control group, backup list, or policy.
4. Press Enter to save your changes and exit.

Working with the SETUSRBRM Command

Use the SETUSRBRM command as a starting point to grant system operators and administrators access to BRMS functions and components. Then use the functional usage model to *customize* access by user or when you want to grant all users access to a certain function. BRMS bases these default operator and administrator categories on the kinds of activities that are usually performed by users in these roles.

To get to the Set User Usage for BRM (SETUSRBRM) display, take the following steps:
1. Type SETUSRBRM at a command line and press F4 to prompt the display.
2. In the User field, type in the name of an existing group or user profile or use the *DEFAULT value. *DEFAULT means that the default user has access to the functions associated with the job category that is specified in the Usage field.

3. In the Usage field, select either the *OPERATOR or the *ADMIN value. An *OPERATOR can access the following activities:
 - Basic backup activities
 - Basic media activities
 - Basic movement activities

 If you select the *ADMIN value, the user named in the User field has use and change access to all of the BRMS functions and functional components.

4. Press Enter to apply your changes.

Note: SETUSRBRM is a one time reset of access to functions. Information about user job categories (*OPERATOR or *ADMIN) is not kept.

Securing the Console Monitor

You can run saves that require a restricted state, such as *SAVSYS, from the system console in a secure, unattended mode.

Enter a password to suspend the console. Once suspended, the console is again fully available. To avoid this security exposure, create a new user profile (for example, CONSOLE) that uses QBRM as the current library. The new user profile calls the console monitor program (Q1ACCON) as its initial program, and uses the *SIGNOFF menu as its initial menu.
Create User Profile (CRTUSRPRF)

Type choices, press Enter.

<table>
<thead>
<tr>
<th>User profile</th>
<th>CONSOLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name User password</td>
<td>+NO, +YES</td>
</tr>
<tr>
<td>Set password to expired</td>
<td>+NO, +YES</td>
</tr>
<tr>
<td>Status</td>
<td>+ENABLED, +DISABLED</td>
</tr>
<tr>
<td>User class</td>
<td>+SECOFR, +USER, +SYSOPR, +PGMR...</td>
</tr>
<tr>
<td>Assistance level</td>
<td>+SYSVAL, +SYSVAL, +BASIC, +INTERMED...</td>
</tr>
<tr>
<td>Current library</td>
<td>QBRM Name, +CRTDFT</td>
</tr>
<tr>
<td>Initial program to call</td>
<td>Q1ACCON Name, +NONE</td>
</tr>
<tr>
<td>Library</td>
<td>QBRM Name, +LIBL, +CURLIB</td>
</tr>
<tr>
<td>Initial menu</td>
<td>+SIGNOFF Name, +SIGNOFF</td>
</tr>
<tr>
<td>Library</td>
<td>+LIBL Name, +LIBL, +CURLIB</td>
</tr>
<tr>
<td>Limit capabilities</td>
<td>+NO, +NO, +PARTIAL, +YES</td>
</tr>
<tr>
<td>Text 'descriptions'</td>
<td>BRMS/400 Console Monitor Profile</td>
</tr>
</tbody>
</table>

Start the console monitor by signing on with this new user profile. Use F9 to enter commands at this display only if you enter the CONSOLE profile password. Any attempt to end the console monitor results in a sign off.

Working with OS/400 Security Controls

To achieve increased security, combine OS/400 security controls with onsite security measures and the BRMS functional usage model. User management is responsible for the evaluation, selection, and implementation of security features, administrative procedures, and appropriate controls in application systems and communication environments.

OS/400 security features include the use of passwords, a security option to limit read/write access for files, libraries, and folders during normal operations. To better understand OS/400 security options, review the Security Reference manual.

To ensure that you are protecting your media, IBM recommends that you restrict access to the following BRMS-specific commands. Do this in addition to the other security measures that are discussed in this chapter.

- CHGMEDBRM
- CHGSCDBRM
- RMVMEDBRM
- ADDMEDIBRM
- RMVMEDBRM
- RSTARTBRM
- RSTxxxBRM
- INZMEDBRM

IBM also recommends that you restrict access to the following OS/400 commands:

- SAVSTG
- INZTAP

Use the Grant Object Authority (GRTOBJAUT) command to grant users access to these BRMS and OS/400 commands. Use the RMVOBJAUT (Remove Object Authority) command to remove user access from these commands.
Notes:
1. IBM also recommends that you restrict user access to the QBRM library to BRMS users.
2. IBM ships a default user profile that is called QBRMS as part of the basic OS/400 package. Do not delete this profile. This profile resolves security and authority issues between BRMS and OS/400 during a recovery, thereby restoring the BRMS profile in advance of other user profiles. For more information on QBRMS and network security, see "Chapter 13. Networking with BRMS" on page 191.

BRMS Media Security

BRMS monitors and protects media operations in the following ways:

- BRMS provides media protection against overwriting by checking the media inventory before using a tape. This ensures that the volume is available for use in the media scratch pool. If the volume is unavailable, BRMS rejects it, and sends a message that suggests an available volume.
- Media output to each function requires that the media be of the correct class. If it is not, BRMS rejects it, logs the attempted use, and sends a message suggesting an available volume.

Note: BRMS performs no media inventory checking if you use the OS/400 Save Storage (SAVSTG) command to back up your system. BRMS does not log this usage. Therefore, IBM recommends that you secure the SAVSTG command and that you use volumes that are not managed by BRMS for SAVSTG operations.

At the Secure media parameter on the media policy, you can specify whether to apply volume security to volumes in a selected media class. If your media policy specifies an TSM server, then you must also specify *ADSM at the Secure media prompt. If you specify *ADSM at the Secure media prompt, then you must also specify *ADSM at the media class and move policy prompts. You can find more information on TSM in "Chapter 12. Setting Up BRMS as an TSM Client."

Note: Only users with *ALLOBJ or *SAVSYS authority can read a secured volume. BRMS logs any unauthorized attempts, and denies read access. To use the secure option, you also need *ALLOBJ or *SAVSYS authority. You can secure media by changing the value in the Secure Media field on the media policy that you want to use for this backup to *YES.

To prevent the accidental initialization of media, set the INZMEDBRM command to CHECK(*YES). This way, BRMS will not initialize media that contains active files. You cannot use the OS/400 INZTAP command to initialize BRMS media unless you have the appropriate user authority.

You can use the Remove Media Volumes from BRM (RMVMEDBRM) command to secure the process of removing media and media information. You can also use the Remove Media Info from BRM (RMVMEDIBRM) command. BRMS processes commands that contain the 4=Remove option (for media or media information) through the RMVMEDBRM and RMVMEDIBRM commands. For example, BRMS uses the RMVMEDBRM command to process remove requests from the Work with Media (WRKMEDBRM) command. You can process any command that allows the removal of media information, such as WRKMEDIBRM, WRKSPFLFBRM, WRKOBJBRM, WRKLIBBRM, through the RMVMEDIBRM command.
Chapter 12. Setting Up BRMS as a TSM Client

The Tivoli Storage Manager (TSM), formerly the ADSTAR Distributed Storage Manager (ADSM), is IBM’s recommended solution for providing automated, centralized backup, recovery, and storage management for workstations and network servers. To find out more about TSM, visit the Tivoli Web site at http://www.tivoli.com/products/index/storage_mgr.

An Overview of the BRMS Application Client

You can use BRMS to save user data on distributed iSeries systems to any TSM server. You can do this by using a BRMS component that is called the BRMS Application Client, which is part of the standard BRMS product.

The BRMS Application Client has the look and feel of BRMS and iSeries. It is not a TSM Backup or Archive client. There is little difference in the way BRMS saves objects to TSM servers and the way it saves objects to media. A TSM server is just another device that BRMS uses for your save and restore operations.

The BRMS Application Client communicates with TSM servers through a special set of APIs that are referred to as the TSM Application Programming Interface for iSeries. A separate CD-ROM that comes with the standard BRMS product provides a copy of these APIs. If you cannot locate this media, you can download the information from the internet at: ftp://index.storsys.ibm.com/adsm/fixes/v3r1/as400api. To find information on how to install these APIs, follow the steps that are outlined in the as400.readme.cli41 file.

Benefits

The BRMS Application Client for TSM provides the following benefits for one or more systems at offsite locations:

- You can use BRMS policies to save non-system objects across a network for storage on any server in the TSM family.
- You can reduce the amount of media that is required at the offsite location, thereby increasing the level of backup automation.
- You can reduce the amount of time that is spent managing media.
- You can minimize device purchases on the offsite system.

Restrictions

Any user data that you can save to a save file, you can save to an TSM server by using the BRMS Application Client. Typically, this data is created by the user and is not required to restore OS/400 to a functional level. Therefore, security data, configuration data, and licensed programs are excluded from save operations to TSM servers.

Following is a list of additional restrictions that are placed on BRMS Application Client operations.

- You cannot save iSeries system data to a TSM server. You must store system data on local media so that it is available for system recovery.
- BRMS does not save *IBM type libraries to TSM servers.
BRMS does not save IBM-supplies libraries that are considered user data such as QGPL, QUSRBRM or QUSRSYS libraries to TSM servers.

You cannot schedule operations from a TSM server, though you can schedule operations by using BRMS.

BRMS uses its own media policies to manage the retention and expiration of data that is stored on the TSM server. TSM policies are not used for this purpose.

You cannot save BRMS media information on a TSM server. You must save this information to local media so that it is available for recovery.

Setting Up Your BRMS Client

To establish the connection between TSM and BRMS, take the following steps:

Steps at the TSM Server

Ask your TSM administrator to perform the following tasks:

- Register your system node name and assign it to a TSM domain that does not perform scheduled backups.
- Provide the management class name if that name is different from STANDARD.
- Provide the communications protocol that you will use to connect to the TSM server.
- Provide a name that indicates the communications category (for example, *APPC or *NET) you need to use.
- The TSM STANDARD management class may not provide the most efficient use of TSM server storage when used with the BRMS Application Client. You should consider using the following TSM administrative commands to create and enable a new TSM domain and TSM management class for BRMS use.

```
DEFINE DOMAIN AS400 DESCRIPTION="Domain for BRMS Application Clients" BACKRETENTION=365 ARCHRETENTION=0
DEFINE POLICYSET AS400 AS400 DESCRIPTION="Policy set for BRMS Application Clients"
DEFINE MGMTCLASS AS400 AS400 AS400 DESCRIPTION="Management class for BRMS Application Clients"
DEFINE COPYGROUP AS400 AS400 AS400 STANDARD Type=Backup DESTINATION=storage pool name VEREXISTS=1 VERDELETED=0 RETEXTRA=0 RETONLY=0
ASSIGN DEFMGMTCLASS AS400 AS400 AS400
ACTIVATE POLICYSET AS400 AS400
```

AS400 will be the management class name that is used by the BRMS Application Client.

Steps at the TSM Client

1. Install the TSM Application Program Interface (TSM APIs)

 If you have the TSM APIs on CD-ROM, use the following command:
 RSTLICPGM(5733197) DEV(device name)

 where device-name is the name of the device for the CD-ROM that contains the TSM APIs.
If you downloaded the APIs from the Internet, use the following command:

```
RSTLICPGM LICPGM(5733197) DEV(*SAVF) SAVF (library-name/save-file-name)
```

where the SAVF parameter specifies the library and the save file that contains the TSM APIs.

2. Install BRMS

You can find information on how to install BRMS in "Chapter 2: Installing and Initializing BRMS" on page 11.

3. Add a location for your TSM server

To get to the Work with Storage Locations display, type WRKLOCBRM at a command line and press Enter.

```
Work with Storage Locations

Position to ........ Starting characters
Type options, press Enter.
1=Add   2=Change   3=Copy   4=Remove   5=Display   6=Work with media
7=Work with containers

Opt  Location  Volumes  Containers  Text
1  TSMSERVER  +HOME  97  1  Entry created by BRM configuration
     VAULT  0  0  Entry created by BRM configuration
```

a. At the Work with Storage Locations (WRKLOCBRM) display, type a 1 (Add) in the Opt field.

b. Then type a name for your TSM server in the Location field and press Enter. This takes you to the Add Storage Location display.

```
Add Storage Location

Type choices, press Enter.

Storage location ............. TSMSERVER
Address line 1 ............ Computer room, parent location.
Address line 2 ............
Address line 3 ............
Address line 4 ............
Address line 5 ............
Contact name ............. Jennie Doe
Contact telephone number.
Retrieval time ........... .0 Hours
Allow volumes to expire .... *NO  *YES, *NO
Media slotting ............ *NO  *YES, *NO
Text ............... TSM server location
```

c. Use the address fields on this display to document the location of the TSM server. You can use the contact information fields to identify the TSM administrator and other important contacts.
d. Use the default values in the *Allow volumes to expire* and the *Media slotting* fields.
e. In the *Text* field, type a description for this TSM location.
f. Press Enter to save the location information.

4. **Create a media policy**

A media policy for TSM servers is important because BRMS, rather than TSM, manages the retention and expiration of data that is stored on TSM servers. Take the following steps to create a media policy for your TSM server:

a. At the Work with Media Policies display, type a 1 in the *Opt* column.
b. Type a policy name in the *Policy* column.
c. Press Enter to prompt the Create Media Policy display.

```
Create Media Policy

Type choices, press Enter.

Media policy ............. TSM Name
Retention type ............ 2 1=Date, 2=Days,
                        3=Versions, 4=Permanent
Retain media ............. 35 Date, Number
Move policy .............. *ADSM Name, *NONE, *ADSM, F4
Media class .............. *ADSM Name, *SYSPCY, *ADSM, F4
Storage location .......... TSMSERVER Name, *ANY, F4 for list
Save to save file .......... *NO *YES, *NO
ASP for save files ....... *SYSTEM Name, *SYSTEM, 1-32
Save file retention type .. 4 1=Date, 2=Days,
                        3=Permanent, 4=None
ASP storage limit ......... *SYS *SYS, 1-99
Secure media ............. *ADSM *YES, *NO, *ADSM
Text ..................... TSM media policy.

More....
```

d. In the *Media policy* field, specify the *ADSM* value. This name indicates that a TSM policy, rather than a BRMS policy, manages media movement.
e. Specify *ADSM* in the *Media policy* field. This indicates that BRMS media classes will not be associated with TSM devices.
f. Set the *Storage location* field to the value that you specified in Step 3.
g. Specify *ADSM* in the *Secure media* field. This indicates that a TSM policy, rather than a BRMS policy, secures your data.
h. In the Text field, type in a description for this TSM policy. Then page down to the next Create Media Policy display.

i. Use the default value of *NONE in the Required volumes field, and *NO for the Mark Volumes for Duplication field. The TSM policy, rather than the BRMS policy, manages these activities.

j. Press Enter to review the additional fields:

k. In the TSM management class field, specify the AS400 management class name provided by your TSM administrator. Use the default value of STANDARD if you did not receive a management class name from the administrator.

l. The TSM security parameter has two elements, TSM node and TSM password. Specify the node name and password that identifies this system to the TSM server. Use the *NONE value in the TSM password field only if the TSM server does not require authentication of client operations.

m. Press Enter to create the media policy.

5. Create a TSM device

You can create a TSM device at the Work with Devices (WRKDEVBRM) display. To get there, type WRKDEVBRM at a command line and press Enter. At the Work with Devices display, take the following steps:

a. Type a 1 in the Opt field.
b. Type a name in the Device field. Choose a name that is representative of your TSM server.

c. In the Category field, type in the name of the communications category you want to use. The values for this field are:
 • *APPC: This device will connect to the TSM server by using SNA protocol.
 • *NET: This device connects to the TSM server by using TCP/IP protocol.

 Note: BRMS presents a BRM1240 – Device TSM is not allowed. If the device description does not exist, then you need to create it. Use the WRKDEVD DEVD(*CMN) command to review the available device descriptions. If you cannot find one that describes the remote location of your TSM server, then you need to create this device by using the CRTDEVAPPC command.

d. Press Enter to get to the next display. The title of the next display that you see depends on which category you chose at the Work with Devices display. For example, if you chose *NET, you will see the Add Net Device display.
e. In the Text field, type in a description of the TSM device.

f. In the Location field, type in the name of the location you created in Step 3.

g. Use *LCL as the default name in the TSM file space field. Do not specify a unique file space name unless you clearly understand how TSM uses file spaces.

h. If you specified *NET device for the device category on the WRKDEV display, you must specify an Internet address and port for the TSM server. Enter the TCP/IP address and port information that your TSM administrator provided. Then press Enter to create the device.

6. Change existing control groups to TSM devices

You can easily change an existing control group which uses local devices to use TSM devices provided that the data specified in the control group meets the criteria for user data allowed to be saved on TSM servers. Take the following steps to change an existing control group:

a. Go to the Work with Backup Control Groups display.

b. Place an 8 (Change attributes) in the Opt field in front of the control group you want to change, and press Enter.

c. This takes you to the Change Control Group Attributes display.

<table>
<thead>
<tr>
<th>Change Backup Control Group Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group : SAMPLE</td>
</tr>
<tr>
<td>Type information, press Enter.</td>
</tr>
<tr>
<td>Media policy for:</td>
</tr>
<tr>
<td>Full backups TSM Name, F4 for list</td>
</tr>
<tr>
<td>Incremental backups TSM Name, F4 for list</td>
</tr>
<tr>
<td>Backup devices TSMSERVER Name, F4 for list</td>
</tr>
<tr>
<td>Parallel device resources:</td>
</tr>
<tr>
<td>Minimum resources *NONE 1-32, *NONE, *AVAIL</td>
</tr>
<tr>
<td>Maximum resources *AVAIL, *MIN</td>
</tr>
<tr>
<td>Sign off interactive users +BKUPCY</td>
</tr>
<tr>
<td>Sign off limit +BKUPCY 0-999 minutes, +BKUPCY</td>
</tr>
<tr>
<td>Default weekly activity +BKUPCY SMTWFS(F/I), +BKUPCY</td>
</tr>
<tr>
<td>Incremental type +BKUPCY +CML, +INCR, +BKUPCY</td>
</tr>
<tr>
<td>F3=Exit F4=Prompt F12=Cancel</td>
</tr>
</tbody>
</table>

d. Change the full and incremental media policy fields to reflect the name of the TSM media policy you created in Step 4. You can use F4 from the media policy fields to select from a list of media policies.

e. Change the Backup devices field to reflect the name of the TSM device you created in step 5. Press F4 from the Backup devices field to select from a list of devices. You can specify only one TSM device on this display.

f. Roll to the next page of this display and change the value Automatically backup media information field to *NONE. This prevents BRMS from storing the media information on the TSM server when the save of this control group completes. BRMS will need this information to print a recovery report that refers to TSM. For this reason, you need to issue a SAVMEDIBRM command after the save to the TSM server.

g. Press Enter when you have finished with the control group updates.
You are now ready to perform saves to a TSM server while using this control group. You can use the locations, media policies, and devices you just created with other backup or archive control groups.
Chapter 13. Networking with BRMS

This chapter provides information on how to create and manage a network of iSeries servers that use BRMS. Before you begin reading, however, do note that the Network feature is required to used this function.

An Overview of BRMS Network Functionality

By placing multiple iSeries systems in a BRMS network, you can share BRMS policies, media information, and storage locations across the network group. This allows you to manage backups across all of your iSeries systems in a consistent manner. It also optimizes media use.

Each iSeries system in a network group receives updates to the media inventory, regardless of which network member makes the change. For example, suppose you have a network of three iSeries systems (SYSTEM01, SYSTEM02, and SYSTEM03), and that you add a media volume (A001) on SYSTEM01. BRMS conveys information about this new volume to all of the systems in the network. BRMS shares the following information across the network:

- Media inventory
- Media classes
- Media policies
- Container inventory
- Container classes
- Move policies
- Storage locations
- Network groups
- Duplication references

How Shared Media Inventory Synchronization Works

Figure 12 on page 193 illustrates the process by which BRMS shares the media inventory across a BRMS network. In this example, assume that SYSTEM01, SYSTEM02, and SYSTEM03 exist in a BRMS network.
In Figure 12, the Q1ABRMNET subsystem starts on all of the iSeries systems that participate in the network. BRMS establishes this shared subsystem relationship when you set up the network. BRMS stores job and subsystem descriptions, and information on the job queue it used during network processing, in the QBRM library.

To update data across a network, BRMS performs the following steps:

- BRMS journals the files that contain the shared resource information. These files are QA1AMM for the media, and QA1A1RMT for the systems in the network group. When SYSTEM01 updates media, a policy, or any shared resources, an entry is logged in the QJ1ACM journal in the QUSRBRM library. BRMS captures both before images and after images in the journal receiver for any changes that relate to the media inventory on the networked systems. However, BRMS uses only the after images to update the shared media inventory.

- The Q1ABRMNET subsystem then begins an autostart job that is called QBRMNET. This job periodically monitors the QJ1ACM journal entries and performs the following tasks:
 - Adds one record to the QA1ANET file for each change on each system.
 - Adds records to the QA1A2NET file for each file and system change that is reflected in QA1ANET.
In this example, the network group consists of three systems. If you make updates to SYSTEM01, the Q1ACNET program creates two entries in the QA1ANET file. These entries instruct BRMS to send the updates to the remaining two systems.

- At regular intervals, the QBRMNET job in subsystem Q1ABRMNET checks to see if BRMS should transfer any activity to other systems in the network. You can change the interval value that BRMS uses to synchronize media information at the **Shared inventory delay** parameter in the system policy. You can set intervals between 30 and 9999 seconds.

 - When there is data in file QA1ANET, the QBRMNET job submits the QBRMSYNC job through the Q1ABRMNET job queue.

 BRMS uses QA1ANET as a key, and reads records from file QA1ANET. BRMS establishes a distributed data management (DDM) link with the remote system to update the corresponding file on the remote system.

 Before performing the update, BRMS compares the date and time stamp of the target record you want to update with the date and time stamp of the source record. BRMS does not perform the update if the source record has the older time stamp.

 - Once this update completes, QBRMSYNC deletes the record from QA1ANET file and continues with the next message. The QBRMSYNC job ends when the QA1ANET file is empty.

To see if your network is working properly, display the QA1ANET file. When the network is running properly, the number of records in QA1ANET file should be none or decreasing. If the QA1ANET file contains any records or does not show a decrease, there may be a problem with the network. In that case, check the QSYSOPR message queue on all of the networked systems. You also need to ensure that:

 - Subsystem Q1ABRMNET starts properly.
 - Job queue Q1ABRMNET releases properly.
 - You vary on the APPC controllers.
 - QBRMS user profile is not in a *DISABLED state.

Note: When performing network synchronization tasks, BRMS always attempts to go through the Q1ABRMNET subsystem first. This subsystem contains a default communications entry that uses the QBRM mode. You should not create your own subsystem descriptions for synchronizing the BRMS network.

How BRMS Networks Communicate

As with many communication products, BRMS uses the default local location name (LCLLOCNAME) rather than the system name (SYSNAME). In most cases, the iSeries servers have the same value specified in LCLLOCNAME as in SYSNAME. BRMS also uses the local network identifier LCLNETID. You can change these values at the Change Network Attribute (CHGNETA) display. You can review the values at the Display Network Attribute (DSPNETA) display. Other network attributes do not affect BRMS.

If you use Advanced Peer-to-Peer Networking (APPN) with auto configuration, communication between iSeries servers should be fairly simple. If Display Station Pass Through (STRPASTHR) works, and if you can use the SNA distribution services (SNADS) successfully, then your BRMS networking should also work.
In addition, with APPN, and auto configuration enabled, you do not need to manually recreate the APPC controller and APPC device descriptions if you decide to change your system name or your network identifier. You can simply vary off and delete the old controller and device descriptions, and allow APPN to automatically create the definitions for you.

If you use APPC communications, you need to create your own APPC controllers and devices. You must ensure that you specify correct remote system information when creating the controller description. For example, the Remote network identifier, Remote Control point, and Remote System Name values relate to the remote system. You must use the QBRM mode for the Mode parameter on the APPC device description. The default for this value is *NETATR, which might use the BLANK mode description.

If you use advanced program-to-program communications (APPC), you also need to change your APPC controller device descriptions if you change the name of your network or the local location name. You must do this because you cannot delete and allow the system to automatically create your definitions, as you can in APPN.

How to Set Up a BRMS Network

This section provides instruction on how to set up your network group. IBM delivers the BRMS Network feature with a predefined network group that is named *MEDINV. Currently there is no way in which you can create different network groups. You can only work with the one that is shipped. *MEDINV contains no entries for systems that participate in the network group. Setting up the BRMS network group is simple as long as you follow these steps.

Before you begin, be sure that you fully understand the implications of adding and removing systems to and from the BRMS network. Some of the planning issues you should consider are:

- Ensure that you have a full backup of the QUSRBRM library on all of the iSeries servers that you plan to put in the network group. The BRMS network setup changes some critical files in the QUSRBRM library. If the network fails, you need to restore the QUSRBRM libraries to their original state.
- Ensure that you have the latest BRMS PTFs installed on your systems. You should also install any dependent PTFs for the IBM Operating System/400 Version 4 (OS/400) and the Licensed Internal Code.
- Ensure that there is no current BRMS activity (for example, backup, recovery, or maintenance) on the systems that you plan to network.
- Ensure that your BRMS operation is error free, and that there are no outstanding issues with the normal operations. You also need to give some thought to volume names, media policies, containers, and classes. You cannot have duplicate volume names within a shared media inventory.

A Step-by-Step Guide to Setting Up Your BRMS Network

This example shows how to establish a BRMS network between two iSeries servers, SYSTEM01 and SYSTEM02. For best results, follow the steps in the order in which they appear, and complete each step before moving on to the next. Be sure that you perform all of the steps when setting up your network.

1. Save library QUSRBRM on SYSTEM01.
2. Save library QUSRBRM on SYSTEM02.
3. Ensure that the communications link on SYSTEM01 for SYSTEM02 is active.
4. Use WRKCFSGSTS command to determine status for line (*LIN), controller (*CTL), and device description (*DEV).

5. Designate SYSTEM01 to be your master system.

6. Ensure that there is no BRMS activity on either system.

7. On SYSTEM01, type WRKPCYBRM *SYS to get to the system policy menu. Once there, take the following steps:
 b. To add SYSTEM02 to the master system to create the network, type SYSTEM02 in the Remote location field. Then type the name of the remote network in the Remote Network ID column.

 ![Change Network Group](image)

 c. Press Enter. BRMS searches the network for the system name that you specified. Depending on the network configuration and the number of systems in the network, this can take a few minutes. When BRMS finds the system name (in our example, SYSTEM02), BRMS adds it to *MEDINV (the BRMS network group name). SYSTEM02 is still an inactive member of the network group and does not share its media files with other active systems in the network. To change the inactive status to active, media files must be copied to the system being added to the network group. The process to copy media files and media content information occurs in Step 10.

8. On SYSTEM02, use the Work with Media (WRKMEDBRM) command to see if any media information exists. If media information does not exist, go to step 9. Because BRMS is fully operational, media information exists on SYSTEM02. Perform the following steps to copy media information from one file to another:
 a. Use the CPYMEDIBRM OPTION(*TOFILE) (Copy Media Information to file) command to copy the contents of the media inventory file. You can copy the information to a temporary file (QA1AMED) or to a file name you create. BRMS creates this temporary file in your Current Library. You can also copy media information from the Copy media information parameter on the Copy Media Information display. Use the default value of *NO unless you plan to restore media information to a non-networked system.

 Notes:
 a. You do not have to perform step 8 if the system you want to add to the network does not contain media information.
 b. The CPYMEDIBRM command copies the files for the following: media class, locations, media policy, containers, container classes, move policies, move policy rules, media, and possibly history.
c. If you put the *FROMFILE value in the Type of copy field, BRMS changes the system name for media and history records to the new system name. The *TOFILE value copies the media and history records that are on the current system.

9. You can now synchronize SYSTEM01 with SYSTEM02. Enter the INZBRM OPTION(*NETSYS) FROMSYS(SYSTEM01) command from SYSTEM02. BRMS clears the media management files on the inactive system (SYSTEM02) during the copy process and replaces them with the network media management files. BRMS sends a message when it overwrites the SYSTEM02 files with files that come from SYSTEM01.

<table>
<thead>
<tr>
<th>Display Program Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job 047122/A960103D/QPADEV0001 started on 05/31/99 at 09:15:55 in subsystem:</td>
</tr>
<tr>
<td>Entries exist for Media. (R I C)</td>
</tr>
<tr>
<td>Entries exist for Media policy. (R I C)</td>
</tr>
<tr>
<td>Entries exist for Media class. (R I C)</td>
</tr>
<tr>
<td>Entries exist for Location. (R I C)</td>
</tr>
<tr>
<td>Entries exist for Move policy. (R I C)</td>
</tr>
</tbody>
</table>

Type reply, press Enter.
Reply . . .

F3=Exit F12=Cancel

BRMS copies the following media management files to the inactive system:
- QA1AMM: Media inventory
- QA1AMT: Media class attributes
- QA1ACN: Container status inventory
- QA1ACT: Container class
- QA1ASL: Storage locations
- QA1AMP: Move policies
- QA1A1MP: Move policy entries
- QA1AME: Media policy attributes
- QA1ARMT: Network group
- QA1A1RMT: Remote system name entries
- QA1ADXR: Media duplication reference

If you specify *LIB in the Receive media information field on the Change Network Group display, BRMS synchronizes media content information with the system you want to add. After BRMS copies the network media management files to the inactive system (SYSTEM02), the status of the inactive system changes to active. Then its media files become network media files.

On SYSTEM02, select the option to ignore all of the messages by replying with an "I." These messages indicate that you are about to overwrite files on SYSTEM02.
Note: You need to ensure that the QBRM and QUSR user profiles are not in a *DISABLED state. Communication entries in subsystem Q1ABRMNET use the QBRM user profile, and if it is disabled, you cannot establish a DDM connection.

After you add the new system to the network the Status for SYSTEM01 shows active status. Because this example uses only two systems, you can only see the status for system you are currently adding, in this case SYSTEM01. This display does not show an entry for the system you are on.

```
| Network group . . . . : *MEDINV Position to . . . . |
| Text . . . . . . . . : Centralized media network systems |
| Receive media info . . : *NONE, *LIB |
```

Type options, press Enter.

```
<table>
<thead>
<tr>
<th>Opt</th>
<th>System</th>
<th>Network ID</th>
<th>Media Info</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SYS01</td>
<td>APPN</td>
<td>*NONE</td>
<td>Active</td>
</tr>
</tbody>
</table>
```

In addition, the process of networking the two systems automatically starts a new subsystem that is called Q1ABRMNET. You can find a description of Q1ABRMNET in library QBRM. BRMS also adds an autostart job entry for this subsystem to the QSYSWRK library on both systems.

```
<table>
<thead>
<tr>
<th>Work with Subsystems SYSTEM01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type options, press Enter.</td>
</tr>
<tr>
<td>4=End subsystem 5=Display subsystem description</td>
</tr>
<tr>
<td>8=Work with subsystem jobs</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>Opt</th>
<th>Subsystem</th>
<th>Storage (K)</th>
<th>Total</th>
<th>Subsystem Pools</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QBATCH</td>
<td>0</td>
<td>1</td>
<td>2 3 4 5 6 7 8 9 10</td>
</tr>
<tr>
<td></td>
<td>QCMM</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>QCTL</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>QINTER</td>
<td>0</td>
<td>1</td>
<td>2 4</td>
</tr>
<tr>
<td></td>
<td>QSERVER</td>
<td>64000</td>
<td>1</td>
<td>2 5</td>
</tr>
<tr>
<td></td>
<td>QSNADS</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>QSPL</td>
<td>0</td>
<td>1</td>
<td>2 3</td>
</tr>
<tr>
<td></td>
<td>QSYSWRK</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Q1ABRMNET</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
```

10. On SYSTEM02, check the system value QDATE and make corrections as needed.
11. On SYSTEM01, check the system value QDATE and make corrections as needed.
12. Go to SYSTEM02. Now you can merge the media inventory data that BRMS saved prior to adding the system to the network under Step 9. Enter the following command on SYSTEM02: CPYMEDIBRM OPTION(*FROMFILE).

Note: You must perform this step if the old system contained BRMS media inventory.
BRMS ignores media information that is inconsistent with the new network level media information. BRMS adds all entries except duplicates to the network media inventory. If duplicate media contains active files, you must keep track of the information. If the media does not contain active files, you should re-initialize the tape with a new volume ID.

Note: When you copy the media inventory from the temporary file (QA1AMED or a file name you created), review the common classes for inconsistencies. For example, the media class SAVSYS on one system might use a media density of *QIC120, while the same media class on another system uses *FMT3490E. All media density now belongs to the network class SAVSYS.

13. Enter the WRKMEDBRM command on SYSTEM02. There you can see the media inventory for SYSTEM01 and SYSTEM02.

14. Enter the WRKMEDBRM command on SYSTEM01. There you can see the media inventory for SYSTEM02 and SYSTEM01.

Changing the System Name

You should change a system name very carefully. Many internal definitions can depend on the system name, including PC networking definitions and the system directory. Consult your network support personnel to resolve issues that relate to configuration objects.

Inherent in a system name change is a change in the default local location name, and hence, a change for BRMS. When this happens, BRMS does the following:

- Updates the network to remove the old system name and add the new system name.
- Transfers all of the media previously owned by the old system name to the new system name.

To change your system name, take the following steps:

1. Change the system name and IPL.

 Note: After you change the system name and IPL, you must change the BRMS network immediately. BRMS did not yet update the media files to reflect the name change. Thus, the old system name still owns the media volumes. In addition, the other systems in the network will continue to try to contact the old system because they are not yet aware of the name change. To avoid missing any information in the shared media inventory data, you must change the BRMS network immediately after the IPL.

2. Ensure that there is no BRMS activity occurs on the system between the IPL and adding your system name to the BRMS network. Also ensure that you have a copy of the latest save of the BRMS QUSRBRM library.

3. Enter GO BRMSYSPCY on the system for which you have just changed the name.

4. Select option 4 (Change network group) from the System Policy menu. On the top right corner of the display, you can see your new system name.
5. Select option 4 (Remove) to remove the old name. Press Enter to confirm the name you want to remove.

6. On the Confirm Remove of Network Systems display, specify *RENAME on the Remove media field so that BRMS can transfer ownership of the media inventory from the old system to the new one.

Migrating From a V4R4/V4R5 System to a V5R1 System

Take the following steps to migrate to a new system with a new name (these systems may or may not belong to a network):

1. On your V4R4/V4R5 system, save the QUSRBRM library.

2. On your V5R1 system, take the following steps:
 a. If BRMS (5722BR1) is already installed on the new system, then use Delete Licensed Program (DLTLICPGM) to remove it from the system.
 b. Restore the QUSRBRM library which you saved from the old system.
 c. Restore Licensed Program (RSTLICPGM) for BRMS (5722BR1). Also restore any of the additional BRMS features (Network and Advanced Functions) for which you have a license. This performs any file conversions that the QUSRBRM library may require. File conversions generally involve adding new fields to database files, or adding new files, or data areas. File conversions can only happen when you install a licensed program.
 d. Go to the Change Network Group display, and remove (option 4) the old system.
 e. On the Confirm Remove of Network Systems display, select the option to *RENAME the media. This renames and transfers all of your media information from the old system to the new system.
 f. Use the WRKMEDBRM command to check your media information.

How the Networked Systems Receive Media Information

Every iSeries system in a BRMS network group receives media inventory updates, regardless of which system makes the change. You can instruct BRMS to update the media content information. To do so, take the following steps:

1. Type WRKPCYBRM *SYS at a command line. Press Enter. This takes you to the System Policy menu.

2. Select option 4 (Change Network Group). This takes you to the Change Network Group display.
3. Change the value in the Receive media information field to *LIB. The default value for this field is *NONE, which indicates that BRMS can share only media information with this system. Thus, to review the contents of a volume belonging to another system on this system, BRMS must use DDM to retrieve the information. In this case, then, BRMS must have an active communications link to DDM.

 The system does not require DDM to retrieve this information if you use the *LIB option. To do so, select option 13 (Display contents) from the Work with Media display. Option 13 takes you to the Work with Media Information display. If a failure occurs, you can use synchronized media information to build a recovery report for the failed system. You can use this local database to recover objects that belong to another system.

4. Press Enter to apply your changes.

 You can change the Receive media information field at any time. The synchronization process may take longer if your network contains a large number of media information records. Therefore, you should not change the Receive media information field frequently.

 If you want to add a previously networked system that still contains media information, ensure that you do not move media files from the old system to an existing one. Specifically, do not run the INZBRM *NETSYS command on the existing system when you add the old system to the network. Instead, run the INZBRM *NETSYS command on the new system to the existing system by using the FROMSYS parameter.

 Note: If you share a 3494 tape library device with multiple iSeries servers in a BRMS network, you must use identical library names throughout the network systems.

 Once the network is operational, you should regularly verify that it is working properly. For more information about how to verify your network, see “Verifying the BRMS Network” on page 203.
Joining Two BRMS Networks

With careful planning and implementation, you can join two or more BRMS networks in a single network group. Figure 13 shows the wrong way to join the networks.

![Diagram](image)

```
add SYSTEM01
on SYSTEMA
```

Figure 13. The wrong way to join two BRMS networks

Figure 14 on page 202 shows the correct way to join two networks. In this example, the administrator set up a network between SYSTEM01 (NETWORK2) to SYSTEMA (NETWORK1). By using this approach, SYSTEM02 remains unknown to all of the systems in NETWORK1. The INZBRM OPTION(*NETSYS) command that you ran on SYSTEM01 erased its knowledge of SYSTEM02. To avoid this, you must split one of the networks before joining them so that all of the systems in the network have knowledge of each other.
Take the following steps to successfully join two BRMS networks:

1. Remove all of the entries on the Change Network Group display on SYSTEM01 for SYSTEM02, including its media information.
2. Remove all of the entries on the Change Network Group display on SYSTEM02 for SYSTEM01, including its media information.
3. Enter the CPYMEDIBRM OPTION(*TOFILE) CPYMEDI(*YES) command on SYSTEM01 and SYSTEM02 to save the media information for both systems.
4. Add SYSTEM01 on any system in NETWORK1 by using the Change Network Group option. In this example, you used SYSTEMA to add SYSTEM01.
5. On SYSTEM01, enter INZBRM OPTION(*NETSYS) FROMSYS(SYSTEMA) to overwrite the media information files on SYSTEM01 from SYSTEMA.
6. On SYSTEM01, you need to enter CPYMEDIBRM OPTION(*FROMFILE) command to append the media information on SYSTEM01. This synchronizes the SYSTEM01 media information on all other iSeries servers within the network. You will receive several messages when BRMS overwrites the files. Reply with an "I."
7. On SYSTEM01, you can use the WRKMEDBRM command to check the media information.
8. Repeat steps 4, 5, 6, and 7 for SYSTEM02 by substituting the name of SYSTEM01 with SYSTEM02 in the steps.

Copying Control Groups Between Networked iSeries Servers

With BRMS, you can specify whether to copy control groups on your own system or send the information to other systems in the BRMS network. *LCL is the default
value when you copy a control group, which means that BRMS copies the control group to another name on your local system. You can also specify a remote system name and the network identifier for the remote system. This copies the control group to the target system that you specified. BRMS uses DDM to copy the information across to the QA1ACM file. Though this is a useful option, you should keep the following limitations in mind:

- BRMS copies control group attributes across to the target system. These attributes revert to the system defaults. However, BRMS does not copy the subsystems and job queues as part of the control group if you issue the copy command from a V3R7 or newer BRMS system. This support is not available on releases prior to V3R7.

- Though you can copy entries in the control group across systems, you cannot copy backup lists. If the entry in the control group is a list, you must manually create the backup list on the target system for the control group to work successfully. Use the WRKLBRM command to create any missing backup lists.

- If your control group has data inappropriate for the new system (for example, an unknown library), BRMS does not issue a warning message at the time of the copy. If the target system does not support a backup item, you need to remove them. In such cases, you need to edit the control group to make the appropriate changes.

- BRMS does not copy the control group text across the system. You must manually add the text on the target system.

Because of these limitations, you should review the control group after the copy to ensure that BRMS copied it correctly. You may need to tailor the values to fit the operational requirements for that particular system.

Verifying the BRMS Network

Checking the communications link between systems (such as line and control descriptions) alone does not guarantee the synchronization of the media inventory between the systems. Similarly, a status of "active" does not mean that you can communicate with that system. It simply indicates that you ran the INZBRM(*NETSYS) command. For an effective way to check for media synchronization, take the following steps:

1. On one system in the BRMS network, create a dummy media class (for example, NETCHK, which stands for Network Checking). Because you will not use this media class for real backups, you can simply use the default values.
2. On each system (SYSTEMxx, where xx = name of the system), type: ADDMEDBRM VOL(SYSxx) MEDCLS(NETCHK)
3. Every morning, on each system in your BRMS network, use the job scheduler to run the CL command:

 RMVMEDBRM VOL(SYSxx) MEDCLS(NETCHK)
 Delay Job (DLYJOB) DLY(300)
 ADDMEDBRM VOL(SYSxx) MEDCLS(NETCHK).
4. After you submit the CL command, your media should have a creation date equal to the current date. This should be true on the system that will run the command. If not, it means that you did not submit the CL command, and should check the job log for error information. The other systems in the BRMS network should also have the current date as the creation date for this media. If not, it means that system did not process the update correctly.

Assuming that the current date is July 6, 1999, the WRKMEDBRM command for each system should display the following information:
Press F11 to view the owning system. Reviewing the following display, you might conclude that SYSTEM01 did not receive the SYSTEM04 media update.

<table>
<thead>
<tr>
<th>Volume</th>
<th>Creation</th>
<th>Expiration</th>
<th>Move</th>
<th>Media</th>
<th>Dup</th>
<th>Opt Serial</th>
<th>Expired</th>
<th>Date</th>
<th>Date</th>
<th>Location</th>
<th>Date</th>
<th>Class</th>
<th>Sts</th>
</tr>
</thead>
<tbody>
<tr>
<td>xxxxxx</td>
<td>xx/xx/xx</td>
<td>*NONE</td>
<td>xxxxxx</td>
<td>xx/xx/xx</td>
<td>xxxxxx</td>
<td>SYS01</td>
<td>*YES</td>
<td>07/06/99</td>
<td>*NONE</td>
<td>*HOME</td>
<td>*NONE</td>
<td>NETCHK</td>
<td></td>
</tr>
<tr>
<td>xxxxxx</td>
<td>xx/xx/xx</td>
<td>*NONE</td>
<td>xxxxxx</td>
<td>xx/xx/xx</td>
<td>xxxxxx</td>
<td>SYS02</td>
<td>*YES</td>
<td>07/06/99</td>
<td>*NONE</td>
<td>*HOME</td>
<td>*NONE</td>
<td>NETCHK</td>
<td></td>
</tr>
<tr>
<td>SYS03</td>
<td>*YES</td>
<td>07/06/99</td>
<td>*NONE</td>
<td>*HOME</td>
<td>*NONE</td>
<td>SYS03</td>
<td>*YES</td>
<td>07/06/99</td>
<td>*NONE</td>
<td>*HOME</td>
<td>*NONE</td>
<td>NETCHK</td>
<td></td>
</tr>
<tr>
<td>SYS04</td>
<td>*YES</td>
<td>07/06/99</td>
<td>*NONE</td>
<td>*HOME</td>
<td>*NONE</td>
<td>SYS04</td>
<td>*YES</td>
<td>07/06/99</td>
<td>*NONE</td>
<td>*HOME</td>
<td>*NONE</td>
<td>NETCHK</td>
<td></td>
</tr>
</tbody>
</table>

In this case, it could be that a communications problem occurred subsequent to July 4th.

Network Security Considerations

Check the value in the *Secure loc* field, which appears on the Display Configuration List display. If the value is *NO*, you are using a non-secured network. If the value is *YES*, you are using secured location network. For additional information on APPN security, see the iSeries Communications topic under Networking in the iSeries Information Center.
If you are using a non-secured network, you need to ensure that the QBRMS, QUSER, and QPGMR user profiles are enabled.

If you are using a secured APPN network, you need to configure the system you want to add as a secured location.

Removing a System From a Network

Take the following steps to remove an iSeries server from a network group:

1. At the Change Network Group display, type a 4 (Remove) next to the system you want to remove from the network. Press Enter.

2. At the Confirm Remove of Network Systems display, confirm the system or systems that you want to remove. Type *YES in the Remove media field to remove any media entries that were shared with other systems in the network.

 Note: Use this parameter carefully because it removes all media entries associated with that system, even if the system was never an active member of the network.

Alternatively you could opt to rename (*RENAME) the media used by the systems you want to remove. The media would then take the name of the system you are on. In the following example, an operator changes the names of media SYSTEM03 and SYSTEM04 to SYSTEM02, which is the system currently in use.

Change Network Group

<table>
<thead>
<tr>
<th>Opt</th>
<th>System</th>
<th>Network ID</th>
<th>Media Info</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>SYSTEM03</td>
<td>ITSCNET</td>
<td>*NONE</td>
<td>Active</td>
</tr>
<tr>
<td>4</td>
<td>SYSTEM04</td>
<td>ITSCNET</td>
<td>*NONE</td>
<td>Active</td>
</tr>
<tr>
<td></td>
<td>SYSTEM05</td>
<td>ITSCNET</td>
<td>*NONE</td>
<td>Active</td>
</tr>
</tbody>
</table>
Confirm Remove of Network Systems

Press Enter to confirm your choices for 4=Remove.
Press F12 to return to change your choices.
Remove media *RENAME *YES, *NO, *RENAME

<table>
<thead>
<tr>
<th>Opt</th>
<th>System</th>
<th>Network ID</th>
<th>Media Inf</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>SYSTEM01</td>
<td>ITSCNET</td>
<td>*NONE</td>
<td>Active</td>
</tr>
<tr>
<td>4</td>
<td>SYSTEM02</td>
<td>ITSCNET</td>
<td>*NONE</td>
<td>Active</td>
</tr>
</tbody>
</table>

3. Delete the system name that you are removing from the other systems that remain in the network from the Change Network Group display. Type an option 4 (Remove) next to the systems remaining in the network and press Enter. At the Confirm Remove of Network Systems display, select *YES at the Remove media field and press Enter. The system should now be completely free of the network.

Removing the Network Feature from a Previously Networked System

To remove the Network feature from a previously networked system, take the following steps:

1. Follow the steps in the previous section (Removing a System from a Network Group).

2. After you remove all of the systems and media from the network group, Enter the GO LICPGM command from a command line.

3. At the Work with Licensed Programs display, take option 12 (Delete licensed programs).

4. Type a 4 (Delete) in front of the BRMS Network feature (5722BR1) entry and press Enter.

5. Press Enter again to confirm your deletion and return to the Work with Licensed Programs display.
Chapter 14. Online Lotus Server Backups

BRMS supports an online backup of Lotus servers (ie., Domino and QuickPlace). Online backup implies that Lotus Server databases on the iSeries server can be saved while they are in use with no save while active synchronization points. This is true online backup support.

You can direct your online backups to a tape device, media library, save files, or a TSM server.

It is important that you do not replace your complete system backup with only Lotus Server online backups. Lotus Server online backups only backup the Lotus server databases. There are other important Lotus server data objects including libraries and files in the Lotus server IFS directories, and other non-Lotus server system data that should be backed up on some regular basis (ie. QUSRYSYS, QGPL, etc).

How Lotus Server Online Backup Works

Online backup of a Lotus servers consist of two files, the databases and the transaction logs which contain the changes to the databases while they were being backed up. These files must be bound together during the backup in order to properly restore the databases in the event of a recovery.

Lotus Server backups use a BRMS concept called a package to bind the backup of the databases to the associated transaction logs. When the online backup is run, the Lotus Server uses the PKGID parameter on the SAVBRM command to specify the package association between the databases and the transaction logs. At the time of backup, the Lotus Server also uses the RCYEXITPGM parameter to specify a Lotus Server exit program which BRMS calls whenever the package is recovered.

When a user requests BRMS to recover a Lotus Server database that was saved as a package, BRMS restores the entire package - the database files and the transaction logs. Then BRMS calls the Lotus Server exit program which in turn applies the transaction log changes to the restored databases.

Work with media information (WRKMEDIBRM) will hide all but the initial element in packages. The number of elements in the package is displayed immediately to the right of the Saved Items name on the Work with Media Information display. In the case of Lotus Server online backups, this value is 2. Recovery reports for online Lotus Server backups show both elements of a package for a saved item because the databases may be on a different volume than the transaction logs.

Initialize BRMS For Lotus Server Backups

BRMS will automatically configure the control groups and media policies you need to perform online backup of the Lotus Server databases. The Lotus Notes server databases backed up by these control groups are files that have extensions of .ns* and.nt*.

BRMS also creates a backup link list named QLTSEXCL which should be used to exclude the Lotus Server databases when performing your periodic full system backups. To use this link list, replace the *LINK backup item entry from control
group you use for the full system save with the QLTSEXCL link list entry. Your
Lotus Servers must be ended when performing these full system backups.

The following table list the BRMS objects which are automatically created for you
by BRMS. These objects along with your BRMS system and backup policies
determine whether your backup will be directed to a device, a save file, or a TSM
server. These BRMS objects will automatically be updated to included new Lotus
Servers when you run the STRMNTBRM or INZBRM *DATA commands.

<table>
<thead>
<tr>
<th>Name</th>
<th>Object type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QLTSSVR</td>
<td>Control group</td>
<td>Backs up all Lotus Servers on the system including both Domino and QuickPlace servers</td>
</tr>
<tr>
<td>QLTSDOMnn</td>
<td>Control group</td>
<td>Backs up all databases for Lotus Domino Server nn, where nn is 01-99</td>
</tr>
<tr>
<td>QLTSQPLnn</td>
<td>Control group</td>
<td>Backs up all databases for Lotus QuickPlace Server nn, where nn is 01-99</td>
</tr>
<tr>
<td>QLTSSVRnn</td>
<td>Media policy</td>
<td>Media policy specifying the media class and expiration to be used for Lotus Server backups</td>
</tr>
<tr>
<td>QLTSEXCL</td>
<td>Backup link list</td>
<td>Backup link list which includes all Integrated File System objects except the .ns* and .nt* files saved during an online backup of all Lotus Servers.</td>
</tr>
</tbody>
</table>

Performing An Online Lotus Server Backup

Attention: Backing up your Lotus Servers should not replace your regular complete system backups.

The Domino and QuickPlace Lotus Servers provide commands (SAVDOMBRM and SAVLQPBRM) which are used by BRMS to back up your Lotus servers while online.

BRMS initialization has created the required setup to enable you to perform online backups of Lotus Servers using the Lotus Server backup commands. A control group named QLTSSVR has been created for you that when used, will result in you backing up all the Lotus Server databases on your system.

The following steps must be performed before you can back up your Lotus servers.

Determine the device and media class to use

During the installation process, BRMS chooses a default device based on the fastest and most automated tape drive that is attached to your system. BRMS also creates media classes based upon the density/formats supported by the devices attached to your system.

Refer to “Determining Media Classes” on page 16 to determine the default device and media class configured by BRMS. Make a note of the device and media class names in the system policy.

Add media to the media class scratch pool

Adding media to a BRMS media class allows the use, tracking, and protection of active data on the media by BRMS. You should add media to the media class.
Once media is added to a media class of available media, BRMS will drive backup operations and use this media, asking you to load tapes as necessary.

It is important to have sufficient media enrolled in the media class before performing a save operation. To perform the backup discussed in this chapter, we recommend that you enroll at least three pieces of media. In determining the number of media to add, you need to consider the capacity of your media and the size of your Lotus server data.

To add media, refer to either “Enrolling Media into BRMS for use by a Stand-Alone Tape Device” on page 17 or “Enrolling Media into BRMS for use by a Media Library” on page 17. If you are unsure of what kind of device you have, a media library would be an enclosed unit holding multiple media cartridges that allows access to media cartridges using a robotic loader.

Start the backup

To start the online backup of your Lotus server, enter the following command after loading the media into the devices:

```
STRBKUBRM CTLGRP(QLTSSVR) SBMJOB(*NO)
```

Note: The control group (CTLGRP) QLTSSVR specified in the command is the name of the control group that was created for you by BRMS to backup all your Lotus Servers.

During the backup processing, you may encounter certain messages that require user intervention such as loading a tape. A message at the bottom of the screen may appear indicating that a message has been sent to the system operator for a reply. Pressing the F1 key allows you to see more information on how to handle the message.

The processing time of the backup will depend on system processor size, device capabilities, amount of data being saved, and activity associated with your Lotus Server.

After completion of the backup, review the job log to ensure that the backup completed successfully. To display the job log, enter the following command:

```
DSPJOBLOG
```

On the display, press function key F10 and page up to see the details of any messages logged during backup processing.

Note: BRMS catalogs the save information and will automatically back up this information at the end of the save processing for the Lotus Server data. This data is saved because it is necessary for BRMS to successfully recovery the data.

View the Catalog of Lotus Server Saved Items

To see the BRMS catalog of save history (ie. what has been saved), do the following:

- Type GO BRMS on a command line to go to the BRMS main menu.
- Choose 2=Backup to go to the backup menu.
- Choose 3=Display backup activity to work with backup activity.
Choose 3=Display backup history to review backup history.

Choose 7=Work with saved link information and hit ENTER twice to see the contents of your saved directories (links).

Choose 9=Work with directory information and hit ENTER on a particular directory to see the saved dates and times for that directory.

Choose 7=Restore to restore a directory saved at a specific data and time.

or

Choose 9=Work with saved objects and hit ENTER to work with the individual saved objects in the saved directory.

Note: The Work with Media Information (WRKMEDIBRM) command can also be used from any command line to get the same view. This command also supports many filtering options you can use to limit the amount of entries on the display.

Planning for Disaster Recovery

BRMS helps you plan for a complete recovery of your system by allowing you to print a complete disaster recovery plan which automatically includes any Lotus Server backups you performed.

You should use BRMS to backup the remainder of your system on a regular basis. Refer to "Chapter 3: Backing Up Your Entire System" on page 15, "Printing Your Recovery Reports" on page 19, and "Chapter 4. Recovering Your Entire System" on page 21.

Recovering a Single Lotus Server Database

Use the RSTBRM command to recover a specific Lotus Server database. For example, to restore a Lotus Server database called names from device TAP01, you would enter the following command:

```
RSTBRM DEV(TAP01) OBJ(\'/notes/data/names.nsf\')
```

Note: You do not need to specify the media identifier on RSTBRM because BRMS knows what media contains the most current version of the data and will ask a system operator if the media is not currently loaded in TAP01.

After the recovery completes, review the job log to ensure that the recovery was successful. To display the job log, enter the following command:

```
DSPJOBLOG
```

On the display, press F10 and page up to see the details of any messages that were logged during recovery processing.

Note: Multiple objects are associated with online backup of a Lotus Server database. Therefore, multiple messages are typical during recovery.

Restrictions

- A media policy retention type of VERSIONS is not supported.
• Restoring a saved Lotus server database across a BRMS network is supported only if the Receive media info attribute is set to *LIB. To review the value for the Receive media info attribute, use Option 4 - Change network group on the BRMSYSPCY menu.

Recommendations

• Do complete system backups routinely (once per week at the very least).
• Do not attempt to use the SAVDOMBRM or SAVLQPBRM commands outside of a control group. These commands should only be used with *EXIT entries within a BRMS control group.

Limitations

• No incremental support exists for Lotus Server online backup.
• Lotus Servers use subsystem descriptions. These subsystem descriptions must exist on the system prior to recovering the Lotus Servers.

Lotus Server Backup Performance Tuning

Backing up individual Lotus Server databases individually to devices does not perform well. Therefore, the Lotus Server databases are backed up in groups of 5 (default) databases per save operation. To improve performance, you can change this group value by updating an entry in the NOTES.ini file for the server using the following steps.

For Domino servers

• Type WRKDOMSVR on a command line
• Choose 13=Edit NOTES.INI on the server you wish to modify.
• Position to the following entry and modify as required.

 SAVDOMBRM_FILES_IN_GROUP=nnn

 where nnn is the number of databases to be grouped in one BRMS package.

For QuickPlace servers

• Type WRKLQPSVR on a command line
• Choose 13=Edit NOTES.INI on the server you wish to modify.
• Position to the following entry and modify as required.

 SAVLQPBRM_FILES_IN_GROUP=nnn

 where nnn is the number of databases to be grouped in one BRMS package.

As you increase the number of databases in a group, your Lotus Server is backed up more quickly. However, all databases in the group will be journaled during the backup with the changes backed up separately. Because all the databases in the group are journaled until all databases in the group are backed up, the time during which changes to the databases can occur is increased and the size of the changes backed up will increase. When the databases are recovered, the changes to the database that occurred during the backup will be re-applied. This process takes longer as the number of changes increases.

If your server is being backed up during heavy server usage, you will want to keep this group value relatively small (3 to 7), so that fewer changes occur to the database during backup operation. As a result, recovery of the database can occur in a reasonable amount of time.
If your server is being backed up during off hours when server use is low, you can set the group value higher (10 to 20 or even higher) to speed up the backup operation, while keeping the recovery time reasonable.

The maximum group value is 120.

How to Copy BRMS Lotus Server Control Groups

The control groups that are created by BRMS for online backup on Lotus Servers include one or more *EXIT entries which contain either a SAVDOMBRM or SAVLQPBDM command. The control group (CTLGRP) parameter on these commands needs to be changed if one of these control groups is copied to another control group. The value for the CTLGRP parameter must contain the same name as the control group it is contained in.

Failure to change the CTLGRP parameter will result in an exception when the control group is run.

Pre-processing and Post-processing *EXITs in Control Groups

If the first entry in a control group is an *EXIT, it is processed before any subsystem or job queue processing prior to starting the saves. This is referred to as the pre-processing exit.

If the last entry in a control group is an *EXIT, it is processed after any subsystem or job queue processing following the end of the saves. This is referred to as the post-processing exit.

Because SAVDOMBRM and SAVLQPBDM commands use *EXIT entries, the BRMS control groups supplied for Lotus server backups contain an empty pre-processing *EXIT and empty post-processing *EXIT to ensure that the Lotus server *EXITs occur in the correct order relative to any pre-processing and post-processing. You can change the pre-processing and post-processing *EXIT if you need to perform some operation around the Lotus Server backups.

Example of entries in the QLTSSVR control group:

```
10 *EXIT
20 *EXIT SAVDOMBRM SERVER(DOM1) CTLGRP(QLTSSVR)
30 *EXIT SAVLQPBDM SERVER(DOM2) CTLGRP(QLTSSVR)
40 *EXIT
```
Chapter 15. Using Tape Automation with BRMS

This chapter describes the methods that you can use with BRMS to use devices such as a 3494 Automated Tape Library Dataserver or a Magstar MP 3570 Tape Library. BRMS refers to this class of automated tape libraries as media libraries.

Adjustments to BRMS When Using Tape Automation

If you were using BRMS before installing a media library, you need to make a few adjustments. If you use BRMS to manage and control daily operations, you will not notice many changes when you begin to use a media library. Once the media library is set up and the media is appropriately enrolled, BRMS assumes control of the media library. You do not need to alter your BRMS control groups, scheduling, or reporting. As part of your initial setup, you may need to adjust the following:

- Locations
- Devices
- Move policies
- Media policies
- Control group attributes

You should review your backup and archive strategy, when using a media library. For example you may want to:

- Alter the size of backup groups
- Alter the frequency of backups
- Increase the size of archive groups
- Alter the frequency of archive operations
- Introduce dynamic recall

Setting up Tape Automation with BRMS

This topic describes some of the actions required in setting up a media library before you use it with BRMS. This section assumes that a media library is installed and operational. For full planning and installation of the media library, consult the publication shipped with the device.

Creating Tape Automation on Your System

BRMS requires that the device descriptions for the library and it’s device resources exist on the iSeries server. Refer to Automated Tape Library Planning and Management for information on how to create these device descriptions. After you set up the media library and vary it on, you use the INZBRM *DEVICE command to update BRMS with all the proper defaults for the new devices.

Basic Setup of an Media Library with BRMS

Before a media library can be used, you must add media to the library and enroll the volumes into BRMS. If the media library is empty, open the door and add all available media into empty cells rather than add only a small number at a time through the convenience I/O station. When closing the door, the media library checks each cell and records the volume ID of each media cartridge (volume). This information is kept in the media library manager database for the 3494 and in
OS/400 for the other media library devices. From the iSeries, you can view this information by using the Work with Media Library BRM (WRKMLBBRM) command. This command lists all media library devices on your system that are enrolled in BRMS. If you select option 8 (Work with MLB Media), the status of the volumes that are currently in the media library are displayed as shown below. The WRKMLMBRM command can also be used to go directly to this display. When setting up a media library for the first time, the Media Class is *NONE because the volume is not enrolled in BRMS.

```
Work with Media Library Media RCHAS400

Media library device . . . : MLB01
Position to ............. Starting characters

Type options, press Enter.
1=Add MLB media  2=Work with media  5=Initialize
6=Change category  7=Eject  8=Mount  9=Demount

---BRM Information---
Opt Volume Category Media Class Expired Status
BCD161 *SHARE400 CART3490E *YES Available
BCD164 *SHARE400 *NONE Available
BCD165 *SHARE400 CART3490E *YES Available
BCD166 *SHARE400 *NONE Available
BCD167 *SHARE400 *NONE Available
BCD168 *SHARE400 *NONE Available
BCD170 *INSERT *NONE Available
BCD173 *INSERT *NONE Available

More...
```

Other options from this display; including mount, demount, and eject; can be used to manipulate the volumes within a media library. BRMS communicates changes in its media inventory to be reflected in the media library media inventory. For example, when you change the shared media attribute of a media class, BRMS runs the CHGTAPCTG command to change the category of all volumes of that media class in the media library.

Enrolling Tape Automation Media (volume) into BRMS

From the Work with Media Libraries display (WRKMLMBRM) command, select option 11 (Add MLB media) against the media library device that is attached to your system. The ADDMLMBRM prompt display as shown below.

```
Add MLB Media using BRM (ADDMLMBRM)

Type choices, press Enter.

Media library device . . . . > MLB01 Name
Volume identifier . . . . . . > *INSERT Character value, *INSERT
+ for more values
Add volume to BRM . . . . . > *YES +NO, *YES
Initialize tape . . . . . . . > *NO, *YES
Media class . . . . . . . . > CART3490E CART3490E, QIC120...
Last moved date . . . . . > *NONE Date, +NONE
Move policy . . . . . . . . > *NONE, OFFSITE

```

You can enroll all newly-inserted volumes into the BRMS media inventory. If you use the default value for the VOL parameter (*INSERT) and change the Add volume to BRM field to *YES, all volumes that were previously in the *INSERT category (from the Work with MLB Media display) are enrolled into the BRMS media inventory and are available for use.
Save and Restore Tasks

When performing save or restore operations with a media library and BRMS, consider the following.

Performing a Normal Save Operation

Using a media library for either a control group save operation or a save operation with the SAVOBJBRM, SAVLIBBRM, SAVOBJLBRM, SAVSYSBRM, or the SAVMEDIBRM commands provides certain advantages. Specifically, the save operation and save media are easier to track than if you were to use OS/400 save commands and save to a media library. The save command or control group define the objects to be saved. The media policy specifies a media class that is defined with a drive which is found within a media library. BRMS supports the location as a media qualifier in both the media policy and the SETMEDBRM command. When coupled with *MEDCLS as a device identifier in a media policy, BRMS attempts to select a device that is at the same location as the media. An example of this would be a drive in the media library. Output operations to a device in a media library may require nonspecific (*MOUNTED) volumes when no volume is in the drive. If this occurs, BRMS refers to its inventory of available scratch media to select one that is in the media library. BRMS then requests a mount of that tape. An end option of *UNLOAD (the default for a backup control group) causes the volume to be returned to its cell when the control group has completed processing. If a BRMS save command is used, the end option default of *REWIND should be accepted. The control group attributes or backup policy may be changed to *REQUIRE. In either case, the volume remains in the drive after the save operation has completed.

Save Storage and BRMS

BRMS does not support the use of the Save Storage (SAVSTG) command. The SAVSTG command does not support tape automation. All operations must be done in Stand Alone mode or with a category mounted to the media library.

Using the Save Licensed Program Command

The SAVLICPGM command does not support tape automation. All operations must be done in Stand Alone mode or with a category mounted to the media library. BRMS does not support the SAVLICPGM command. For system recovery, the product libraries are saved under the *IBM grouping. You cannot restore these with the RSTLICPGM command. Consult your BRMS recovery report for further details.

Recovery Process Using Tape Automation

Using a media library is quite simple, whether the STRRCYBRM, RSTLIBBRM, RSTOBJBRM, or RSTDLOBRM commands are used, or if recovery is performed from the WRKMEDIBRM, WRKOBJBRM or WRKFLRBRM displays. As long as the required volume is in the media library, the restore operation is automatic, with no message being sent to the QSYSOPR message queue to load the volume. A message is sent to the BRMS log to notify the status of the restore operation. When the restore operation is complete, the last volume used remains in the tape drive unless otherwise specified. The end-of-tape option *UNLOAD returns the volume to its storage cell. If the required volume has been moved to another location, an inquiry message is sent to the QSYSOPR message queue. The message prompts the operator to insert the volume in the convenience I/O station or the high-capacity
I/O area. If the volume is off-site, the operator can cancel the restore operation from this message. Once the volume is in either the convenience or high-capacity I/O areas, the media library places it in a storage cell, and BRMS mounts it in the drive to complete the restore operation.

Recovering an Entire System (Starting with Licensed Internal Code)

Ensure that your media library device is in stand-alone mode before starting "STEP: Recover Licensed Internal Code" during BRMS System Recovery. See the documentation on your device to learn how to properly change the mode for your media library device.

Completing the Recovery

When the restricted state portion of the recovery is complete, tape automation can be used when the following conditions are met:

- The 3494 device and communication configurations are restored or re-created.
- The media library configuration data has been restored or re-created.

Tape automation requires a minimum level of system function to be recovered before an automatic volume mounting can occur. In general, automation can begin with "STEP: Recover User Profiles" on the BRMS System Recovery Report. It is recommended that you switch the media library to random mode during "STEP: Initialize BRMS/400 Device and Media Library Information" during BRMS System Recovery to automate the remainder of your system recovery.

Tasks for Archiving

When you use tape automation with BRMS, this opens more opportunities for archiving. Full tape automation allows archiving to be performed quickly and effortlessly while appearing seamless in its operation. The introduction of dynamic retrieval further enhances archiving potential.

Consult the *OS/400 Hierarchical Storage Management* book, for more information about archive, dynamic retrieval, and other storage management features of BRMS.

Archiving When Using Tape Automation

To provide the most acceptable recall performance, you must minimize the tape location and the load delays. You will probably keep a large portion of your archived data within the tape automation. This uses a large amount of capacity. When establishing a move policy, you should consider the following:

- How often will you access your data?
- How long will you need to have access to your data?

For example, you might access a monthly report only up until the time that the next month’s report is created. You might have other information that you need to access at all times yet access only occasionally. Your move policy will be based on the needs of your business. If you adjust the movement delay periods, this changes the population levels of the media library.

Using Dynamic Retrieval

To further improve your archive and retrieval performance, use the dynamic retrieval function within BRMS. This function allows on-demand retrieval of the file members that have been archived and now need to be accessed again.
To accomplish this, change your archive control group such that the archiving requested keeps the object descriptions. This is known as save with storage free. To do this, change the retain object description parameter on either the archive control-group options or the archive policy to *YES.

You must set up your BRMS retrieval policy with the appropriate retrieval modes (*VERIFY, *NOTIFY, *DELAY or *SBMJOB), preferred devices, restore options, and authorities. The OS/400 Hierarchical Storage Management book contains more information on these modes.

Moving Volumes with BRMS

When BRMS operations such as Add media or Confirm move required media to be moved to or from a media library, BRMS prompts operators as needed. It instructs them to place media into, or remove media from the media library and then uses CL commands to verify that the operation is successful.

For devices such as 3494 Media Library Dataserver, a move policy or manual move of media causes the library manager to eject the tape into the convenience I/O station or the high-capacity I/O area. Additional prompting and verification is done when media, ejected from one media library location, are inserted into another. When a volume is moved into the media library, the library manager shows that the volume is in *INSERT category.

If you move a volume to a media library when media movements are to be confirmed, BRMS attempts to change the category of volumes from *INSERT to *SHARE400 or *NOSHARE, as applicable to the media class. If at the time of the confirm move, the volume has not been placed in your media library, a message is logged in the BRMS log. These volumes must be changed to *SHARE400 before they can be used by BRMS.

If move verification is not enabled, BRMS attempts to change the category of volumes that move into a media library from *INSERT to *SHARE400 or *NOSHARE immediately. This can cause a problem, as common maintenance (STRMNTBRM command) is run at night after backups have completed, and volumes have not been moved offsite. In this case, it may be worthwhile to use the PRTMOVBRM command during the day before the move is to take place. Use the PRTMOVBRM command to ensure that you collect the volumes and insert them into the media library before the MOVMEDBRM is actually processed.
Chapter 16. Tape I/O From A Program

Typically, applications written in RPG or COBOL will perform data record input and output (I/O) to database files. However, in some applications these files may be so large, that you never store them on disk. You store them on tape, and process them sequentially by application programs, either for input or for output, but not both at once. On the iSeries, this is done using a tape file object.

Such applications have the same requirements for control and tracking of the media on which the operations are performed as do media used for normal save and restore operations. This chapter discusses how you can use these types of tape file I/O applications with BRMS.

The example in Figure 15 shows typical tape file processing from an application. It is a simple RPG program which writes the alphabet 100 times to a tape.

```
FTAPFIL O F 26 SEQ
F******************************************************************************
F* Program: TAPFIL
F* Purpose: This program will write the 26 letters of the alphabet to a file on tape through a tape file. The alphabet is written 100 times.
F*
F******************************************************************************
C DO 100 Loop 100 times
C EXCPTALPHA Write alphabet
C END End of loop
C*
C SETON LR End the program
O******************************************************************************
O* Exception output defining the alphabet to be written
O*
O******************************************************************************
OTAPFIL E ALPHA
0 24 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
0 26 'YZ'

Figure 15. Sample Program to Perform Tape File I/O

This application requires a tape file object to be created such that the program can address the tape drive. You create this with the CRTTAPF command as follows:
```
Once you create the tape file, you can process the program. However, for flexibility, you may have noticed that we have not specified a tape device name. So before you process the program TAPFIL, we need to perform an override of the tape file with the OVRTAPF command, as follows:

This associates the tape file name to the tape device. Notice that the volume ID field is not specified.

Next we can call the program, as follows:

CALL BRMTAPF/TAPFIL

The records are written to the tape.
Using BRMS for Tape File Processing

BRMS can play a part in the processing as described above such that the tape volume created is controlled and tracked just like any other BRMS enrolled tape volume.

To do this, you must perform two actions:
1. Use a tape volume that is enrolled in the BRMS media inventory,
2. Use the SETMEDBRM command before processing the program.

The first step is as simple as inserting a tape as is done for save purposes. The second step, using SETMEDBRM, allows you to specify media management parameters to be associated with the written tape. You can specify this command as follows:

```
The SETMEDBRM command for an output (write) operation, as in our example, allows you to set the following media characteristics:
  - Media class
  - Move policy
  - Volume security
  - Retention information
  - File group information
  - Associated Text

This command works a little like the OVRTAPF. You do not see any output. It registers the values you enter, and when an application writes to a tape file, these values are applied to the tape operation.

In this example, TFIL01 was the volume on the tape drive during the processing of the program.

The result is that a record is added to the media management information that is recorded with the tape volume, as follows:

Figure 18. SETMEDBRM Command Prompt Screen

The SETMEDBRM command for an output (write) operation, as in our example, allows you to set the following media characteristics:

- Media class
- Move policy
- Volume security
- Retention information
- File group information
- Associated Text

This command works a little like the OVRTAPF. You do not see any output. It registers the values you enter, and when an application writes to a tape file, these values are applied to the tape operation.

In this example, TFIL01 was the volume on the tape drive during the processing of the program.

The result is that a record is added to the media management information that is recorded with the tape volume, as follows:
WRKMEDIBRM also shows that some save operations have occurred, as follows:

**Figure 19. WRKMEDBRM Command Screen**

Use option 5 (Display) to see the following screen that presents a record of writing the data to the tape.

**Figure 20. WRKMEDIBRM Command Screen**
Due to the nature of the method used to get the data on the tape, option 7 to restore will not allow you to restore this object. Similarly, there are no saved objects to work with if you use option 9.

Recovery

As the file on the tape is never intended to be restored to the iSeries server, you never see the tape file record on a Recovery Analysis Report.

Using BRMS for Input Processing

We have just seen an example of how BRMS can keep information about media written using tape file output. Input processing is very similar, with the exception of the parameters on the SETMEDBRM command.

You can use the following program to read the records that were written by the first example:

---

**Display Media Information**

```
| Save command : SAVSPLF |
| Library : *SAVSPLF |
| Save date : 12/14/95 |
| Save time : 14:59:46 |
| Device(s) : TAP03 |
| Move policy : TAPEFILE |
| Expiration date : +VER 003 |
| Volume serial(s) : TFIL01 |

| File sequence : 1 |
| Number of objects saved: 0 |
| Number of objects not saved: 0 |
| Saved size : 0 |
| Label : TAPEFILEXMP |
| Error message : |
| Text : |
```

Press Enter to continue.  

More...

---

*Figure 21. Display Media Information from WRKMEDIBRM*

Due to the nature of the method used to get the data on the tape, option 7 to restore will not allow you to restore this object. Similarly, there are no saved objects to work with if you use option 9.
This example also requires a printer file object such that the records are printed. Use the CRTPRTF command.

The same processing would occur, namely:
1. Use the program above
2. Use the same tape file
3. Issue OVRTAPF to specify the device name as before
4. Issue SETMEDBRM as shown in Figure 23
5. Run the program when you specify:
   
   CALL BMRTAPF/TAPFIL2

---

**Figure 22. Program to Read Records from Tape and Print**

This example also requires a printer file object such that the records are printed. Use the CRTPRTF command.

The same processing would occur, namely:
1. Use the program above
2. Use the same tape file
3. Issue OVRTAPF to specify the device name as before
4. Issue SETMEDBRM as shown in Figure 23
5. Run the program when you specify:
   
   CALL BMRTAPF/TAPFIL2

---

**Figure 23. SETMEDBRM Command Prompt Screen for Program Input**
BRMS will look for an open of a tape file called TAPFIL, and will prompt the
operator to insert the tape volume corresponding to the most recent version of this
file. If this file were in ASCII format, we could specify that we do not want
OS/400 to convert the record to EBCDIC automatically. Specify *Allow conversion
Yes to do this.

Input/Output Processing with Multiple Devices

This example is an extension to the ones that were provided previously. These
examples had two programs that wrote, then read data to and from a tape. In this
example, we will use two tape drives. We will read the data from the tape already
written in the previous example, and write a new file on tape which includes the
original records and some new records.

The sequence of events is this:
1. Create Tape File objects
2. Compile the program (RPG in this example)
3. Use OVRTAPF to select devices
4. Issue SETMEDBRM to influence the choice of tapes used
5. Run the program

1. Create Tape File Objects

The name of the tape file itself is quite irrelevant to the processing of the files on
tape. It is the Tape Label field in the CRTTAPF command that is significant. As we
are updating a file on tape, both the input file (TAPFIL) and the output file
(TAPFIL2) have the same File Label (TAPEFILEXMP).

Create Tape File (CRTTAPF)

Type choices, press Enter.

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
<td>tapfil</td>
</tr>
<tr>
<td>Library</td>
<td>brmtapf</td>
</tr>
<tr>
<td>Tape device</td>
<td>*NONE</td>
</tr>
<tr>
<td>Volume identifier</td>
<td>*NONE</td>
</tr>
<tr>
<td>Tape reels specifications:</td>
<td></td>
</tr>
<tr>
<td>Label processing type</td>
<td>*SL</td>
</tr>
<tr>
<td>Number of reels</td>
<td>1</td>
</tr>
<tr>
<td>Sequence number</td>
<td>1</td>
</tr>
<tr>
<td>Tape label</td>
<td>tapefilexmp</td>
</tr>
<tr>
<td>Text 'description'</td>
<td>Tape File Example</td>
</tr>
</tbody>
</table>

Chapter 16. Tape I/O From A Program  225
2. Compile The Program

You need to compile the RPG program. The following code is a simple example to demonstrate the function.

```
FTAPFIL IF F 26 SEQ
FTAPFIL2 O F 26 SEQ
ITAPFIL AA
I 1 26 ALPHA
F***
F* Program: TAPFIL2
F* Purpose: This program will read the 26 letters of the
F* alphabet from a tap file (TAPFIL), then write them
F* with some other data to an output file TAPFIL2.
F*
F***
C DO 100 Loop 100 times
C READ TAPFIL 01Read alphabet
C EXCPTALPHA1 WRITE ALPHA
C END End of loop
Q***
C DO 10 Loop 10 times
C EXCPTALPHA2 Write new rcds
C END End of loop
C SETON LR End the program
Q***
Q* Exception output defining the alphabet to be written
Q*
Q***
OTAPFIL2 E ALPHA1
0 (ALPHA 26
OTAPFIL2 E ALPHA2
0 24 '123456789012345678901234'
0 26 '56'
```

3. Use OVRTAPF to Indicate Which Tape Drives to Use

After you identify two available tape drives, use the OVRTAPF command to associate each tape file with an available drive. You do not need to mount the tapes at this time.
Volume R00009 contains the alphabet that is written 100 times by the previous example. T00009 is an expired tape of the media class we want to use.
4. Use SETMEDBRM to Involve BRMS in Managing the Tape

You need to use the SETMEDBRM command only once to control the input from TAPFIL and output to TAPFIL2. For input, the File Label field, TAPEFILEXMP, is what controls which tape is selected. The Select Version field instructs BRMS to associate TAPEFILEXMP with the correct tape, in our case R00009.

For output, the fields Media Class, Move Policy, Secure Volume, and Retention all control the tape that is selected and its media management characteristics after the tape is written.
Call the Program

You can then call the RPG program. If the operator is aware of which volumes are to be used for input and output, they can be placed in the appropriate tape drives. Otherwise, BRMS will send a message to QSYSOPR with instructions on volumes to use.

Results

After you run the program, the BRMS media inventory is updated to reflect that volume T00009 is now in use with expiration characteristics as specified in the SETMEDBRM command. (The volume still shows as being in the *HOME location as media movement has not yet been run.)
Option 13, work with content, shows what is on the tape.

<table>
<thead>
<tr>
<th>Volume</th>
<th>Opt Serial</th>
<th>Creation Date</th>
<th>Expiration Date</th>
<th>Location</th>
<th>Move Date</th>
<th>Media Class</th>
<th>Dup</th>
<th>Sts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M00001</td>
<td>5/31/95</td>
<td>+PERM VAULT</td>
<td>7/06/95</td>
<td>QIC120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M00002</td>
<td>5/31/95</td>
<td>+PERM +HOME</td>
<td>+NONE</td>
<td>NOSHARE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M00003</td>
<td>5/31/95</td>
<td>+PERM +HOME</td>
<td>+NONE</td>
<td>NOSHARE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R00009</td>
<td>8/01/95</td>
<td>8/06/95</td>
<td>+HOME</td>
<td>+NONE</td>
<td>QIC525</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T00001</td>
<td>7/04/95</td>
<td>+NONE +HOME</td>
<td>+NONE</td>
<td>QIC120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T00002</td>
<td>7/04/95</td>
<td>7/04/95</td>
<td>+HOME</td>
<td>+NONE</td>
<td>QIC120</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T00003</td>
<td>7/04/95</td>
<td>+VER 002</td>
<td>+HOME</td>
<td>+NONE</td>
<td>QIC525</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>J3 T00009</td>
<td>8/01/95</td>
<td>8/31/95</td>
<td>+NONE</td>
<td>+NONE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F3=Exit  F5=Refresh  F11=Volume statistics  F12=Cancel  F23=More options
The save type column in the screen above shows *FILE, being direct tape file I/O, rather than a normal save, which would show *FULL, *INCR, or *CUM.

**Other Processing Techniques**

Issue the SETMEDBRM command before *any* command that performs tape I/O in addition to the example above in a program. You can use it with CPYTOTAP and CPYFRMTAP, as well as any native SAVLIB, SAVOBJ, RSTDLO, RSTUSRPRF commands. However, as you will note, SETMEDBRM will only record for media management purposes the status of the tape. You will not be able to use the BRMS functions (such as WRKMEDIBRM) to restore from this tape. It is always better to use the BRMS commands for save and restore operations for this reason.
Messages

No messages are written to the BRMS log when the tape is either written to or read in this manner.
Part 4. Appendixes
Appendix A. A Summary of BRMS Reports

Following is a list of all the reports that are available in BRMS. This list provides the title of each report, the command or commands that you can use to generate the report, and the associated printer file. The list includes source information (QUSRBRM/QA1ASRC) for printer files for the three Print Label reports, which you can change as necessary.

The following pages summarize each report itemized in the list. To see the actual layout of these reports, go to the Reports menu (GO BRMRPT), from which you can process any of these reports. The parenthesized name (QP1Axxxx) in the section titles are the names of the printer files which contain the final reports.

ASP Information Report (QP1AASP, QP1AXS)

The ASP Information report provides a summary of all auxiliary storage pools (ASPs) that are set up and various statistical information detail about the ASP’s on your system. This report is printed as a result of running the command WRKASPBRM OUTPUT(*PRINT)

The ASP Information report is also produced as part of the maintenance (STRMNTBRM) activity or by running the STRRCYBRM command. In these cases, the printer file is named QP1AASP.

Backup Folder List Report (QP1AFL)

The Backup Folder List report lists all the folders in a backup list. This report is printed as a result of running the command WRKLBRM TYPE(*BKU) OUTPUT(*PRINT).

Backup Link List Report (QP1AFS)

The Backup Link List report lists all the directories in a backup list. Print the report by running the command WRKLBRM TYPE(*BKU) OUTPUT(*PRINT) or by selecting Option 6 (Print) on the Work with Lists display for an integrated file system list.

Backup Object List Report (QP1AOB)

The Backup Object List report lists all the objects in a backup list. This report is printed as a result of running the command WRKLBRM TYPE(*BKU) OUTPUT(*PRINT).

Backup Plan Report (QP1ABP)

The Backup Plan report lists all control groups and the entries that make up each control group. Run the report by selecting Option 3 (Print backup plan) on the Backup Planning menu (BRMBKUPLN) or use the DSPBKUBRM OUTPUT(*PRINT) command.
**Backup Policy Report (QP1ABX)**

The Backup Policy report lists the attributes defined for the Backup Policy. Print the report by running the command `WRKPCYBRM TYPE(*BKU) OUTPUT(*PRINT)`. Also included in this report are the attributes defined for the following:

- Libraries to Omit from Backups

**Backup Spooled File List Report (QP1ALQ)**

Running the `WRKLBRM TYPE(*BKU) OUTPUT(*PRINT)` produces the Backup Spooled File List report. This report lists all the spooled files in any list of spooled files that you have set up. This report lists each list item, the sequence number, and the selection criteria.

**Calendar Report (QP1ACA)**

Run the `WRKCALBRM OUTPUT(*PRINT)` command to produce the Calendar report. Calendars are user-defined grouping of days. You can define the working days of a year for a company, the days of the week that media movement is allowed, or exception days such as a holiday where normal activity does not take place. The Calendar Report lists all calendars that you have set up in BRMS, any reference calendars that you are using and the dates that you have set up for the calendar.

*Note:* Calendar names can be up to 10 characters in length and adhere to iSeries naming conventions.

**Centralized Media Audit Report (QP1ASYN)**

The Centralized Media Audit report is produced when you process the `STRMNTBRM` command and the system is in a BRMS network (the Network Feature is installed and configured). The report is not produced when you are in a single system environment. You should understand why you find errors and what updates BRMS has made to correct them.

The report indicates both the from system and the to system that you are auditing. The report will indicate for each volume whether the volume was found on the network system and if so was either system updated with information from the other system.

The following should be noted about this report:

- Volumes that are found in error or that were updated are listed by volume. Volumes that had neither condition are not listed.
- *Total volumes checked* is the number of volumes across all systems in the BRMS network.
- *Volumes in error* is the number of volumes that the audit has found to be in error. Volume entries that are found to be different between systems can cause errors. An example of a difference is a volume that is shown to exist on one system but not on another.
- *Volumes updated* is the number of BRMS volumes which have been changed as a result of the audit. For instance, volume entries can have a different internal time stamp. These volumes will be changed with the most recent update that is applied to the older entries.
Note: If you cannot reconcile the information that is provided in the report, contact level 2 IBM support.

**Container Report (QP1ACN)**

Running the WRKCNRBRM OUTPUT(*PRINT) command or selecting option 6 from the BRMPRTINV menu produces the Container report. Select entries that are based on the following:

- Class
- Status
- Location

The following should be noted about this report:

- *OPEN indicates that the container status is open which allows you to add volumes to the container.
- *CLOSED indicates that the container is closed and no further volumes can be added.
- Expiration date indicates the oldest expiration date of any media volume in the container. A container can contain volumes that have the same expiration date or different expiration dates. The expiration date depends on the value in the Different expiration date parameter for the container class specified in Work with Container Classes display.
- Date indicates the expiration date in system date format.
- *NONE indicates that you did not assign an expiration date to the container.
- *PERM indicates that you assigned the container to a permanent retention.

**Container Class Report (QP1ACT)**

The Container Class report lists all container classes that are specified to BRMS. This report is produced as a result of running the command WRKCLSLBRM TYPE(*CNR) OUTPUT(*PRINT). Choosing option 7 from the BRMPRTINV menu can also print the report.

The following should be noted about this report:

- **Allow mixed dates** field can contain either *NO or *YES. *NO specifies that the container can contain only media volumes that have the same expiration dates. The container expiration date is the same as the expiration date of the media volumes in the container. *YES indicates that a container in this class can contain media volumes that have different expiration dates. The container assumes the expiration date of the media volume that expires last among all the volumes in the container.
- The **Unpack** field indicates whether or not this container class is automatically unpacked when volumes in the container expire or expired volumes must be manually unpacked.

If a container is automatically unpacked when media expires in the container, the association between the expired media volume serial and the container is removed. You can use the media and assign the media to another container. Likewise, you can assign the container to other volumes.

If the volume is not automatically unpacked, the relationship between expired volumes and the container that the volumes are in is left intact in the media library. The volumes are still assigned to the container, even though the volumes are expired. They will remain assigned until you manually remove them from the container.
• **Capacity** is measured in the number of media volumes that this container class can hold.
• The **Media class** field indicates the name of the media class that can be stored in this container class. You can have from one to four media classes assigned to a container class.

### Device Report (QP1ADV)

The Device report provides a basic list of all tape devices defined to BRMS. This report is produced as a result of running the WRKDEVBRM OUTPUT(*PRINT) command. Choose the interactive version of the command to view additional detail. The **Transfer rate per second** field shows the rate which the media device transfers data to and from the storage media. *DEVTYPE indicates that you use the default transfer rate of the selected device.

### Library Backup Analysis Report (QP1ALA)

The Library Backup Analysis report shows an analysis of libraries that you have backed up as well as those that you did not back up. The size of the library and the number of objects is listed for each library. This report is produced using the ANZLIBBBRM command. However, you must have first run the RTVDSKINF command. The RTVDSKINF command creates a file that ANZLIBBBRM uses to analyze your libraries.

The following should be noted about this report:

- The capacity and transfer rate values are determined from the **Media class** and **Device name** that are specified in the system policy.
- The **Estimated volumes** column represents an approximation of the number of volumes that are required to back up a specified library.
- The **Estimated minutes** column specifies an approximation of the number of minutes that are required to back up a specified library.
- The **Control group** column specifies the control group of which the library is a member.

### Link Information Report (QP1ADI)

The Link Information report is produced using the WRKLNKBRM OUTPUT(*PRINT) command. This report summarizes all directories, objects, and object types that have been saved and have media content available in BRMS. The report starts at the highest level of the path and continues through each extension of the path.

The following should be noted about this report:

1. In this example the file system root directory "/" is the first information detailed on the report.
2. Information about each saved directory is included such as save list, date and time of save and so on. Obtain this information plus additional detail by using the Option 5 (Display) on the Work with Directory Information.
3. After the root directory information is reported, each extension of the pattern is reported. For instance, the path /QLANSrv follows the "/" root directory.
**Location Analysis Report (QP1A2SL)**

The Location Analysis report shows a list of all locations that are specified to BRMS, together with details of the current and maximum volumes and containers at each location. This report is produced as part of running the STRMNTBRM command.

**Log Report (QP1ALG)**

The BRMS Log report shows activities that are processed through BRMS commands. This report is produced as part of running the DSPLOGBRM OUTPUT(*PRINT) command. Additional parameters on the DSPLOGBRM command allow you to filter the type and number of entries returned in the report.

You can base your filters on the following:

- **Date** Select to and from dates
- **Severity** Select lowest severity code for messages to be printed
- **Type**
  - *ALL selects all activities
  - *ARC selects only archive activities.
  - *BKU selects only backup activities.
  - *MED selects only media activities.
  - *MGR selects only migration activities.
  - *RCY selects only recovery activities.
  - *MAINT selects only maintenance activities.
  - *RTV selects only retrieve activities.
  - *SEC selects only security log activities

**Media Report (QP1AMM)**

The Media report by Volume Serial is the result of running the maintenance command (STRMNTBRM) or the WRKMEDBRM OUTPUT(*PRINT) SORT (*VOL) command. Choosing options 1, 2, 3, or 4 from the BRMPRTINV menu can also produce the report, depending on selection criteria or sequence required.

The purpose of the report is to summarize status and location information for selected or all volumes in the media library.

The following should be noted about this report:

- You can create this report in volume, with creation or expiration date sequence by using the WRKMEDBRM command.
- The WRKMEDBRM command provides multiple parameters to select volumes to include in the report. The selection criteria for the report are listed first, including the creation and expiration date ranges.
- The **Volume list** field indicates whether all volumes in the inventory are included (*NO) or whether specific volumes requested in a list (*YES) are printed.
- Note that some volumes can have dates earlier than the current date but have not expired. This could be because you have not run the STRMNTBRM command recently or because these volumes cannot expire in a remote location.
A summary shows the number of active, expired and the total number of volumes in the inventory.

The System ID field shows the system which wrote the first file to the tape. Do not use a tape for active files from more than one system.

**Media Class Report (QP1AMT)**

The Media Class report shows basic information for each media class that is defined to BRMS. You produce the report by running the command WRKCLSLBRM TYPE(*MED) OUTPUT(*PRINT) or by choosing option 5 from the BRMPRTINV menu. Choosing the interactive version of the command can display additional information.

The following should be noted about this report:

- **Label print** shows when labels will be printed. This can be:
  - *NONE* - labels are not printed
  - *MOVE* - labels are printed when the MOVMEDBRM command processes media volumes that belong to this media class.
  - *WRITE* - labels are printed for any tape that belongs to this media class any time a write operation occurs.

- **Label size** indicates the size of the tape labels.

**Media Expiration Report (QP1AEP)**

Running the maintenance command (STRMNTBRM) or specifically expiring media (STREXPBRM command) produces the Media Expiration report. This report shows the media that has expired as a result of that particular run. This report also indicates the total number of volumes in the inventory which are expired.

Note: If the ACTFILCNT parameter is 0, and you specify *REPORT in the ACTION parameter, BRMS produces a report and expires media with 0 active files. If the ACTFILCNT parameter is greater than 0, only a report is produced.

The following should be noted about this report:

- The System field indicates the system name which wrote the first file to the tape.
- The User field indicates the user who owned the job that wrote the first file to the tape.
- The Total expired count field indicates the total number of volumes in the inventory which are expired.
- The Use count field indicates the number of times the volume has been used.

**Media Information Report (QP1AHS)**

The Media Information report shows a history of what has been backed up by BRMS. This report is printed as a result of processing the WRKMEDIBRM OUTPUT(*PRINT) command or as part of the STRMNTBRM maintenance job.

The following should be noted about this report:

- The Expiration date field indicates when the item will expire. For instance, an expiration date of 5/15/95 indicates that the save item will expire no sooner than 12:01 A.M. on 5/16/95.
• The Objects saved field indicates the total number of objects that are saved as a result of this save operation.
• The Not saved field indicates the number of objects that you were not able to save. You cannot save objects that are locked at the time the save operation takes place.
• The Type save field indicates the type of save that was specified for this save item. For instance:
  *INCR indicates that the save was an incremental (save changed objects),
  *CUML indicates that the save was an incremental save (cumulative save changed objects),
  *FULL indicates that the save was of the entire library,
  *RCY indicates that BRMS was saved when processing a control group,
  *ARC indicates that the media information was the result of an archive operation.

You can sequence the report using the following:
• Save Date
• Library Name
• Volume Serial Number

Media Library Report (QP1AMD)

The Media Library report lists the MLB devices that are defined to BRMS. This report is produced as a result of running the WRKMLBBRM OUTPUT(*PRINT) command.

The following should be noted about this report:
• The Library field indicates the name of the MLB.
• The Status field indicates the status of the Media Library. Released indicates that the media library can be used in media operations. Held indicates that the media library device cannot be used in media operations.
• The Location field indicates the location of the MLB. There is a one to one correspondence between location and device name. You cannot assign another device the same location as the MLB.

Media Library Media Report (QP1A1MD)

The Media Library Media report lists the volumes that are resident in the MLB. Running the WRKMLMBRM OUTPUT(*PRINT) produces this the report. You may choose to display all media in the MLB, only those volumes that are registered in BRMS or both.

The following should be noted about this report:
• The Category field indicates the category of the volume in the MLB.
• *SHARE400 indicates that an iSeries can only use the media.
• *NOSHARE indicates that the media has a value of *YES in the Shared media parameter in its associated media class.
• *INSERT indicates that the media is in the "insert" mode in the MLB. You must change the media to another category before you can use it in MLB operations.
• *EJECT indicates that the media is in the "eject" mode in the MLB.
• *IPL indicates that you can use the media for an alternate IPL.
• *NL indicates that you can use the media as a non-labeled tape.
• *CNV indicates that the media is convenience station media.
• *SYSGEN indicates that the media is *SYSTGEN media
• Category-name indicates that the media is in a user-defined category.

---

**Media Merge Report (QP1AEN)**

The Media Merge report lists the volumes that are merged together as a result of running the Copy Media Information using BRM (CPYMEDIBRM) command. All media entries that are not duplicates will be added to the network media inventory on the system that you are adding. You will receive messages when there are differences that need to be resolved.

---

**Media Movement Report (QP1APVMS)**

The PRTMOVBRM command produces the Media Movement report. The Media Movement report shows all volumes that are scheduled to move from one location to another location. The report page breaks for each from/to combination. The MOVMEDBRM command actually performs the media movement.

The following should be noted about this report:

• The *To slot* field indicates where the volume is placed at the "to location".
• A Move policy of *NONE implies that these volumes were moved manually. Use Option 8 (Move) on the Work with Media display to accomplish this.
• The *Container slot* field indicates where the container is placed in the "to location".
• A *From slot* field indicates where the volume was placed at the "from location".
• An Expiration date of *VERnnn indicates that this volume is using version control.

Check the Media Movement report for every movement of media or containers. You can use it as a control document when moving media by an outside agency.

---

**Media Policy Report (QP1AME)**

The Media Policy report lists all the media policies defined to BRMS and the associated attributes defined for each policy. Print the report by running the command WRKPCYBRM TYPE(*MED) OUTPUT(*PRINT).

---

**Media Volume Statistics Report (QP1AVU)**

The Media Volume Statistics report is produced when you run the command PRTMEDBRM TYPE(*STATISTICS). You can use it periodically to check the usage of your media and identify if any volumes are being used excessively when compared to others.

The following should be noted about this report:

• The "*" to the right of the Expiration date field indicates that the volume has expired.
• The Uses field shows the number of times to which a media volume has been read from or written. When the volume exceeds the Usage threshold value for
media in its media class, you should take it out of service and replace it with a newer volume. You can review the Usage threshold value in the Work with Media Classes display.

The following fields are the sizes of the disk files that were written to or read from tape. You should use these as an approximation as they do not reflect any data compression or compaction that may have been performed.

- The Bytes read indicates the number of bytes that are read from the volume since its creation date.
- The Bytes written field indicates the number of bytes that are currently written on the media volume.
- The Current bytes written field indicates the number of bytes that are currently written on the media volume.
- The Maximum bytes on volume field indicates the maximum number of bytes that you have written to this tape.

**Media Volume Threshold Report (QP1AVOL)**

Use the PRMTMEDBRM TYPE(*THRESHOLD) command to produce the Media Volume Threshold report. The Media Volume Threshold report compares actual volume threshold information against standard threshold information to alert you to any potential errors in your media. Each media class is evaluated separately with summary statistics at the end of each report. You have the option of printing only exceptions, or all volumes with exceptions.

The following should be noted about this report:

- Read, write and usage error thresholds are numbers that you should obtain from media manufacturers. The thresholds will vary widely between media classes.
- BRMS also keeps the last cleaning date (as specified to BRMS by option 12 on the Work with Media BRM display) and the number of uses since the volume was cleaned.
- The "*" to the right of the Expiration date field indicates that the volume has expired.
- The Exception detail field indicates the type of (if any) exception which has occurred. These are listed below the listed volumes for the media class. Possible values are:
  - *1 - No media class found for volume.
  - *2 - Media has exceeded use count.
  - *3 - Read error threshold has been exceeded.
  - *4 - Write error has been exceeded.
  - *5 - Volume has exceeded clean usage threshold.
  - *6 - Reorder point has been reached for this class.

**Move Policy Report (QP1AMP)**

The command WRKPCYBRM (*MOV) produces the Move Policy report. This report shows the move sequences and associated values for each move policy defined to BRMS.
Recovery Activities Report (QP1ARW)

The Recovery Activities report is printed as part of the maintenance run (STRMNTBRM) if you select *YES and the *RCYANL choice for the PRTRCYRPT parameter. The report can also be printed using the WRKRCYBRM OUTPUT(*PRINT) command. Activities may range from a full system recovery, including actions to take for implementing a full mobile recovery service, to those activities necessary to recover a failed application.

The following should be noted about this report:

- **Sequence** is a number between 1 and 999. This report is used to sequence the activities on the report, but need not be a unique number.
- **Activity** is a brief description of the recovery activity to perform.
- **Text** describes the activity. You should make this as meaningful as possible.
- These fields describe the people who may need to be contacted in order to perform the activity. You can display up to five contacts.
- **Recovery information** is a free format area of text to describe in detail the activity to be performed.

Recovery Analysis Report (QP1ARCY)

Use the Recovery Analysis report to restore all or parts of the software on your system. Run either the STRRCYBRM or STRMNTBRM commands to produce this report. The report is broken into multiple steps, with instructions and associated media volumes where applicable for each step. Chapter 4 of this book covers each of the areas in more detail.

Notes:

1. When doing an *SAVSYS, the number of objects will show as 0 since the licensed internal code is not comprised of OS/400 objects.
2. If recovering to a different system you should specify *ALL in the **Allow object differences** field and *NONE in the **System resource management** field.

Recovery Policy Report (QP1ARX)

The Recovery Policy report lists the attributes defined for the Recovery Policy. Print the report by running the command WRKPCYBRM TYPE(*RCY) OUTPUT(*PRINT).

Recovery Volume Summary Report (QP1A2RCY)

The Recovery Volume Summary report is produced as part of the maintenance (STRMNTBRM) activity or by running the STRRCYBRM command. The report provides a list of all tape volumes that are required to complete a full system recovery to the latest backup point. The report also lists all duplicate volumes for the volumes that are required for recovery. Use this report in conjunction with the Recovery Analysis report to locate all tapes or duplicate tapes that are required for recovery. Slot information is included (where used) to allow easy retrieval of the tapes.

The following should be noted about this report:

- The total number of volumes that are required for a complete system recovery is shown as a final summary.
Save Files Report (QP1ASF)

The BRM Save Files report lists all save files in the BRMS media content information. This report shows all libraries which have been saved to save files and have not yet had media content information deleted. The report is produced as a result of running the WRKSAVFBRM OUTPUT(*PRINT) command.

The following should be noted about this report:
- The name of the Save file is based on a date/time stamp. These save files were created when BRMS performed save or archive activity with a media policy which specified to save to a save file. Save files created outside BRMS (CRTSAVF) are not listed.
- The last 2 digits of the Save file library name reflect the ASP in which the save file was created.

Save Strategy Exceptions Report (QP1ALE)

The Save Strategy Exceptions report lists libraries that have not been saved by a BRMS control group. You can run the Media Information report by using the WRKMEDIBRM SAVTYPE(*NONE) OUTPUT(*PRINT) command which scans the media information for libraries that have not been backed up. The library name, description of the library (if any), and the total number of libraries are listed in the Save Strategy Exceptions report.

If a control group exists which includes special values such as *ALLUSR, a new user library is still listed in this report if it has not previously been saved. Once it has been saved, it will not appear on the Saved Strategies Exceptions report.

You can also use the STRMNTBRM command and specify *ALL or *SAVEXCP for the PRTRCYRPT parameter to produce the Save Strategy Exceptions report.

Saved Folders Report (QP1AFD)

The Saved Folders report lists all folders and subfolders which have been saved by BRMS. The WRKFLRBRM OUTPUT(*PRINT) command produces this report. You can sequence the report in Save date or Folder name order.

You can select folders to appear in the report that is based on all the fields that are shown below in the report except Volumes.

Saved Objects Report (QP1AOD)

Running the WRKOBJBRM OUTPUT(*PRINT) command produces the Saved Objects report. This report lists all objects that are saved by BRMS with Retain object detail *YES, *OBJ, or *MBR. You can sequence the report by Save date, Object name, or Library.

Saved Spooled Files by Date Report (QP1AOQ)

Running the WRKSPLFBRM OUTPUT(*PRINT) command produces the Saved Spooled Files by Date report. This report lists all saved spooled files that are saved by BRMS. You can also sequence the report by Job or File name.
Storage Location Report (QP1ASL)

The Storage Location report is produced as a result of processing the WRKLOCBRM OUTPUT(*PRINT). The report displays all the storage locations that you have set up for your system and the current contents and maximums that you have set up.

The following should be noted about this report:

- The *Retrieval time in hours* field indicates how long it takes to move media from this location to the home location.
- The *Threshold number* fields for both containers and volumes indicate the current thresholds at this location. The threshold is the number of volumes or containers, that if equaled or exceeded, causes BRMS to issue a warning that the storage location’s threshold is being approached.
- *Allow expire* indicates whether volumes are allowed to expire in this location. Volumes should always be allowed to expire at the home location.

System Policy Report (QP1ASP)

The System Policy report lists the attributes defined for the System Policy. Print the report by running the command WRKPCYBRM TYPE(*SYS) OUTPUT(*PRINT). Also included in this report are the attributes defined for the following:

- Signoff Exceptions
- Subsystems to Check before IPL
- Presentation Controls
- Notification Controls
- IPL Controls

Version Control Report (QP1AVER)

The Version Control report is produced as a result of processing the STRMNTBRM command. The report displays those volumes under version control for each control group.

The following should be noted about this report:

- The *Seq* field indicates the version of the save for the control group. The most recent is shown as 1.
- The *Retain* field indicates the number of versions that will be kept for the control group.
- The *Type* field indicates the type of data that was saved. Valid values are
  - *LSTF - full save of object list*
  - *LSTI - incremental save of object list*
  - *LSTC - cumulative incremental save of object list*
  - *FULL - full save*
  - *INCR - incremental save*
  - *CUML - cumulative incremental save*
  - *QBRM - recovery data*
  - *ARCH - archive data*
Volume Movement Report (QP1AVMS)

Running the MOVMEDBRM command produces the Volume Movement report. The Volume Movement report shows all volumes that were moved or not moved from one location to another location. The report shows the current location, when the volume moved to the current location, the date and location of the next move, and the current move policy controlling the volume movement.

If there are errors that are associated with a volume, an error code will be associated with that volume. The possible error codes are:

1. Error *1 No move policy or no move rules were found. Volume will move to default home location.
2. Error *2 Unable to assign a container for indicated volume.
3. Error *3 Location reached maximum number of volumes. Move operation bypassed.
4. Error *4 Location reached maximum number of containers. Move operation bypassed.
5. Error *5 Volume movement for this move policy was prevented by move calendar schedule.
6. Error *6 Reference calendar refers to a calendar previously defined.
7. Error *7 Volume marked for duplication.
Appendix B. Programs and APIs

The following programs and APIs are provided for the user who wants to perform various utility functions while using BRMS. Each program and API are described in general and followed by detailed field descriptions and sizes.

Tape Information Exit Program

Parameters:

Required Parameter Group:

<table>
<thead>
<tr>
<th>Offset</th>
<th>Type</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Binary(4)</td>
<td>Length of operational information</td>
</tr>
<tr>
<td>4</td>
<td>Char(1)</td>
<td>Volume operation</td>
</tr>
<tr>
<td>5</td>
<td>Char(17)</td>
<td>Volume label</td>
</tr>
<tr>
<td>22</td>
<td>Char(10)</td>
<td>Device name</td>
</tr>
<tr>
<td>32</td>
<td>Char(4)</td>
<td>Device type</td>
</tr>
<tr>
<td>36</td>
<td>Char(80)</td>
<td>Volume VOL1 label</td>
</tr>
<tr>
<td>116</td>
<td>Char(80)</td>
<td>Volume HDR1 label</td>
</tr>
<tr>
<td>196</td>
<td>Char(80)</td>
<td>Volume HDR2 label</td>
</tr>
<tr>
<td>276</td>
<td>Char(24)</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

The exit program is called each time that a file is written to a tape. The exit program must be registered to the exit point described above. For example, if a SAVLIB command saved 10 libraries to a tape, the exit would be called 10 times, passing information about each tape file resulting from the save of the libraries. To use this exit point, the customer must develop an exit program and register it to the exit point name and exit point format name shown above. After registration, BRMS will call the program and pass the information described by the parameters.

© Copyright IBM Corp. 1998, 2001
**Tape Information Exit Program**

*Note:* Volume header and end of volume formats can be found in the IBM standard tape labels documentation. The exit point is used when access to a tape begins.

### Field Descriptions

**Device name.** The name of the device on which the volume is loaded.

**Device type.** The type of tape device.

**Length of operational information.** The length of the data in the structure.

**Volume HDR1.** The header from the standard label.

**Volume HDR2.** The second header from the standard label volume.

**Volume label.** The volume label identifier of the volume.

**Volume operation.** The type of operation being performed on the volume. The values are:

- **O** Output
  - An output operation is performed on the volume.

- **I** Input
  - An input operation is performed on the volume.

**Volume VOL1.** The standard tape label volume information.

---

**Tape Movement Exit Program**

**Parameters:**

**Required Parameter Group:**

1. **Operational information**
   - **Input**
   - **Char(*)**

Exit Point Name: QIBM_A1A_TAPE_MOVE
Exit Point Format Name: MEDM0100

The exit program is called each time a BRMS registered volume is moved. It will supply the location the volume is moving to and the previous location where the volume came from. To use this exit point the customer will have to develop an exit program and register it to the exit point name and exit point format name listed above. After registration, BRMS will call the program and pass the information described by the parameters.

### Required Parameter Group

**Operation information**

- **INPUT; Char(*)**

Information about the tape movement operation at the time the exit program is called.

### Format of Operational Information

The following table shows the format of the operational information. For a description of each field, see ["Field Descriptions" on page 251](#).
Field Descriptions

**Container ID.** The identifier of the container if you are using containers to move media. A special value *NONE is returned if you are not using containers.

**Expiration date.** The date that the volume expires. The format of the date that is returned is job date format. The values are:

*NONE
There is no expiration date. The volume is expired.

*VER EXP
The volume is under version control and has expired.

*VER nnn
The volume is under version control.

*PERM
The volume has a permanent retention date.

**From slot.** The slot from which the volume came.

**Length of operational information.** The length of the data in the structure.

**Media class.** The media class of the volume that is being moved. A special value *NONE is returned if a media class is not found.

**Move policy.** The move policy associated with the volume that you are moving. A special value *NONE is returned if you are not using a move policy.

**Move verification pending.** Indicates whether BRMS marked the volume for movement and based on the move policy specified above, whether the move must be verified before it can actually occur. The values are:

0 Verification not in effect
Verification of moves is not in effect and the volume has been moved when this exit point is reached. The current location is the location to which the volume was moved.

1 Verification in effect
The volume has not moved yet, verification of moves is in effect and the location shows the current location of the volume. The next location shows where BRMS intends to move the volume.
Tape Movement Exit Program

Move date/time. The date that the volume is to move. The format of the date that is returned is job date format.
The values are:

*NONE
There is no move date. The volume does not move.

*VER EXP
The volume is under version control and has expired.

*VER nnn
The volume is under version control.

To slot. The slot in the location to which the volume is being moved.

Volume ID. The volume ID of the volume that is being moved.

Current location. The location to which the volume is moving. A special value *NONE is returned if the volume
does not have a current location.

Previous location. The location from which the volume is being moved. A special value *NONE is returned if the
volume does not have a previous location.

Volume next location. The location to which the volume will be moved after this move. A special value *NONE is
returned if the volume does not have a next location.

BRMS Object Retrieval Exit Program

Parameters:

Required Parameter Group:

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Input/Output</th>
<th>Char(*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Object description information</td>
<td>Input</td>
<td>Char(*)</td>
</tr>
<tr>
<td>2</td>
<td>Media information</td>
<td>Input</td>
<td>Char(*)</td>
</tr>
<tr>
<td>3</td>
<td>Control value information</td>
<td>Output</td>
<td>Char(*)</td>
</tr>
</tbody>
</table>

Exit Point Name: QIBM_A1A_RETR_INF
Exit Point Format Name: RTVIO100

The BRMS Object Retrieval Exit Program provides the capability of retrieving objects saved using *FREE by BRMS. The exit program, if registered to the exit point, will only be called when the retrieve confirmation within BRMS is *VERIFY.

The user exit program is called each time a suspended object is accessed by an OS/400 operation and BRMS has determined that an archive version of the object is to be restored to the system to satisfy the OS/400 request. This exit will give the user exit program a chance to influence the decision to restore the object as well as provide a custom interface tailored to individual needs.

When the user exit program is given control, it makes the decision as to what continued action should be taken for the suspended object. The exit program returns the appropriate control value information to BRMS indicating either to follow the normal retrieval rules defined to BRMS, to recall immediately, to delay restore to a later time, to submit the restore to batch, or to cancel the restore of the object.
Required Parameter Group

Object description information
INPUT; Char(*)
Information about the object that BRMS intends to restore from storage extension. For details, see "Format of Object Description Information".

Media information
INPUT; Char(*)
Information about the media or media set needed to restore the object. Media information may include either tape volume information or save file information. For details, see "Format of Media Information" on page 254.

Control value information
OUTPUT; Char(*)
Information about the exit program request of action to be taken by BRMS. For details, see "Format of Control Value Information" on page 255.

Format of Object Description Information
The following table shows the format of the object description information. For a description of each field, see "Field Descriptions".

<table>
<thead>
<tr>
<th>Offset</th>
<th>Type</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Bin(4)</td>
<td>Length of object description information</td>
</tr>
<tr>
<td>4</td>
<td>Bin(4)</td>
<td>Length of media information</td>
</tr>
<tr>
<td>8</td>
<td>Bin(4)</td>
<td>Length of control value information</td>
</tr>
<tr>
<td>12</td>
<td>Char(10)</td>
<td>Object name</td>
</tr>
<tr>
<td>22</td>
<td>Char(10)</td>
<td>Object library</td>
</tr>
<tr>
<td>32</td>
<td>Char(10)</td>
<td>Member name</td>
</tr>
<tr>
<td>42</td>
<td>Char(10)</td>
<td>Object owner</td>
</tr>
<tr>
<td>52</td>
<td>Char(7)</td>
<td>Saved date</td>
</tr>
<tr>
<td>59</td>
<td>Char(6)</td>
<td>Saved time</td>
</tr>
<tr>
<td>65</td>
<td>Char(6)</td>
<td>Saved release</td>
</tr>
<tr>
<td>71</td>
<td>Char(10)</td>
<td>Media class</td>
</tr>
<tr>
<td>81</td>
<td>Char(4)</td>
<td>File sequence</td>
</tr>
<tr>
<td>85</td>
<td>Bin(4)</td>
<td>Member size</td>
</tr>
<tr>
<td>89</td>
<td>Bin(4)</td>
<td>Member size multiplier</td>
</tr>
<tr>
<td>93</td>
<td>Char(2)</td>
<td>Auxiliary storage pool</td>
</tr>
<tr>
<td>95</td>
<td>Char(50)</td>
<td>Member text</td>
</tr>
</tbody>
</table>

Field Descriptions

Length of object description information. The length, in bytes, of the object description information.

Length of media information. The length, in bytes, of the media information.

Length of control value information. The length, in bytes, of the control value information.
BRMS Object Retrieval Exit Program

Object name. The name of the object.

Object library. The name of the library that contained the object.

Member name. The name of the member associated with the object.

File sequence. The tape file sequence number assigned when the object was saved on a tape. The field contains zeros if the object was saved to a save file.

Object owner. The owner of that the object that you are retrieving.

Saved date. The date that the object was saved expressed in cyymmdd (century, year, month, day) format.

Saved time. The time that the object was saved expressed in hhmm (hour, minute) format.

Saved release. The release of OS/400 under which the object was saved.

Media class. The media class of the volume that contains the saved objects.

File sequence. The tape file sequence number assigned when the object was saved on a tape. The field contains zeros if the object was saved to a save file.

Member size. The size of the member in units of size multiplier. The member size is equal to or smaller than the member size multiplied by the number size multiplier.

Member size multiplier. The value to multiply the member size by to get the true size. The value is 1 if the member is smaller than 1 000 000 000, and 1024 if it is larger.

Auxiliary storage pool (ASP). The auxiliary storage pool ID.

Member text. Text that describes the object to be recalled.

Format of Media Information

The following table shows the format of the media information. For a description of each field, see "Field Descriptions".

<table>
<thead>
<tr>
<th>Offset</th>
<th>Type</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec</td>
<td>Hex</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>Bin(4) Number of volumes</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>Char(6) Volume ID</td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>Char(10) Volume location</td>
</tr>
<tr>
<td>24</td>
<td>-</td>
<td>Char(6) Volume retrieval time</td>
</tr>
</tbody>
</table>

Note: The Volume ID, Volume location and Volume retrieval time fields in the previous table are repeated based on the number specified in the Number of volumes field.

Field Descriptions

Number of volumes. The number of volumes required for the object retrieval.

Volume ID. The volume ID or IDs of the volumes required for the object retrieval.

Volume location. The location or locations of the volumes required for the object retrieval.

Volume retrieval time. The length of time in hours to return the volume from an off site storage location to the home location. Volume retrieval time is expressed in hhhhhmm (hours, minutes) format.
Format of Control Value Information

The following table shows the format of the control value information. For a description of each field, see "Field Descriptions".

<table>
<thead>
<tr>
<th>Dec</th>
<th>Offset</th>
<th>Type</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Char(1)</td>
<td>Return information</td>
</tr>
</tbody>
</table>

Field Descriptions

Return information. The return information for the object that is to be recalled. The values are:

0  *VERIFY

Process the recall as if the exit program were not called.

1  *NOTIFY

Process the recall immediately and notify the user about the recall.

2  *DELAY

Mark the object/member to be restored later.

3  *SBMJOB

Submit the restore to batch.

4  *NONE

Do not recall the object.

BRMS Retrieve Media Information (Q1ARTVMED) API

Parameters:

Required Parameter Group:

1  Receiver variable  Output  Char(*)
2  Length of receiver  Input  Binary(4)
3  Format name         Input  Char(8)
4  Control value information  Input  Char(26)
5  Error code          I/O   Char(*)

The BRMS retrieve media information API lets you retrieve BRMS media information for a specific volume or select an expired volume.

Required Parameter Group

Receiver variable

OUTPUT; Char(*)

The receiver variable that is to receive the information requested. You can specify the size of the area to be smaller than the format requested as long as you specify the length of the receiver variable correctly. As a result the API returns only the data the area can hold.

Length of receiver variable

INPUT; Binary(4)
Retrieve Media Information API

The length of the receiver variable. This length must be at least 6 bytes. If this value is larger than the actual receiver variable, unpredictable results may occur.

Format name

INPUT; Char(8)

MEDV0100 is the only format name available.

Control value information

INPUT; Char(*)

Information needed by the API to select a media volume is supplied in this structure. For more information see "Format of Control Value Information" section.

Error code

INPUT/OUTPUT; Char(*)

The structure in which to return error information. For the format of the structure, see "Error Code Parameter" in the System Programmers Interface Reference.

Format of the Generated Information

The following table shows the format of the MEDV0100. The MEDV0100 format includes the information about the requested media volume. For a description of each field, see "Field Descriptions on page 257.

<table>
<thead>
<tr>
<th>Dec</th>
<th>Offset</th>
<th>Type</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Char(6)</td>
<td>Volume serial</td>
</tr>
<tr>
<td>6</td>
<td>06</td>
<td>Char(4)</td>
<td>Secure volume</td>
</tr>
<tr>
<td>10</td>
<td>0A</td>
<td>Char(10)</td>
<td>Media group type</td>
</tr>
<tr>
<td>20</td>
<td>14</td>
<td>Char(13)</td>
<td>Media group identification</td>
</tr>
<tr>
<td>33</td>
<td>21</td>
<td>Char(10)</td>
<td>Media class</td>
</tr>
<tr>
<td>43</td>
<td>2B</td>
<td>Char(10)</td>
<td>Location</td>
</tr>
<tr>
<td>53</td>
<td>35</td>
<td>Char(7)</td>
<td>Move date</td>
</tr>
<tr>
<td>60</td>
<td>3C</td>
<td>Char(10)</td>
<td>Move policy</td>
</tr>
<tr>
<td>70</td>
<td>46</td>
<td>Char(7)</td>
<td>Expiration date</td>
</tr>
<tr>
<td>77</td>
<td>4D</td>
<td>Char(1)</td>
<td>Volume expired indicator</td>
</tr>
<tr>
<td>78</td>
<td>4E</td>
<td>Char(7)</td>
<td>Creation date</td>
</tr>
<tr>
<td>85</td>
<td>55</td>
<td>Char(4)</td>
<td>Volume sequence</td>
</tr>
<tr>
<td>89</td>
<td>59</td>
<td>Char(6)</td>
<td>Beginning volume</td>
</tr>
<tr>
<td>95</td>
<td>5F</td>
<td>Char(50)</td>
<td>Volume description</td>
</tr>
<tr>
<td>145</td>
<td>91</td>
<td>Char(8)</td>
<td>Registered system</td>
</tr>
<tr>
<td>153</td>
<td>99</td>
<td>Char(8)</td>
<td>System using volume</td>
</tr>
<tr>
<td>161</td>
<td>A1</td>
<td>Char(10)</td>
<td>Job name</td>
</tr>
<tr>
<td>171</td>
<td>AB</td>
<td>Char(6)</td>
<td>Job number</td>
</tr>
<tr>
<td>177</td>
<td>B1</td>
<td>Char(10)</td>
<td>User</td>
</tr>
<tr>
<td>187</td>
<td>BB</td>
<td>Char(10)</td>
<td>Next location</td>
</tr>
<tr>
<td>197</td>
<td>C5</td>
<td>Char(7)</td>
<td>Next move date</td>
</tr>
<tr>
<td>204</td>
<td>CC</td>
<td>Char(10)</td>
<td>Container ID</td>
</tr>
<tr>
<td>214</td>
<td>D6</td>
<td>Char(6)</td>
<td>Slot number</td>
</tr>
<tr>
<td>220</td>
<td>DC</td>
<td>Char(10)</td>
<td>Previous location</td>
</tr>
<tr>
<td>230</td>
<td>E6</td>
<td>Char(1)</td>
<td>Move verification pending</td>
</tr>
</tbody>
</table>
Field Descriptions

Beginning volume. The first volume of a multi-volume set.

Container ID. The container ID of the container in which the volume is stored, if you are using containers.

Creation date. The date that the most current data was written on the media.

Expiration date. The date that the media expires and can be used as scratch media.

Job name. The name of the job that created the media.

Job number. The number of the job that created the media.

Location. The location where the media is currently stored.

Media group type. A grouping factor assigned by BRMS to handle *GRPnnn moves.

Media group identification. A sub-grouping to bundle like volumes in the same group.

Media class. The media class assigned to the volume.

Move date. The date that the media is scheduled to move.

Move verification pending. Indicates whether BRMS marked the volume for movement and based on the move policy specified below, whether the move must be verified before it can actually occur. The values are:

0 Verification not in effect
   Verification of moves is not in effect and the volume has been moved when this exit point is reached. The current location is the location to which the volume was moved.

1 Verification in effect
   The volume has not moved yet, verification of moves is in effect and the location shows the current location of the volume. The next location shows where BRMS intends to move the volume.

Move policy. The name of the move policy associated with the volume.

Next location. The next location to which the media will move.

Next move date. The date on which the media is scheduled to move next.

Previous location. The location the media moved from to arrive at its current location.

Registered system. The system whose License Manager was used to register the media.

Secure volume. Whether the media requires special authority for read access.

Slot number. The slot number assigned to the media.

System using volume. The system name of the system that last wrote data on the tape.

User. The identification of the user who is assigned to the volume.

Volume expired indicator. Indicates whether or not the volume is expired. The values are:

Y Expired
   The volume is expired.

N Active
   The volume is active.

Volume serial. The volume serial of the media.

Volume sequence. The sequence number of the volume in a media set.
Retrieve Media Information API

Volume description. A text description of the volume.

Format of Control Value Information

The following table shows the format of the control value information. For a description of each field, see "Field Descriptions".

<table>
<thead>
<tr>
<th>Offset</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec</td>
<td>Hex</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>06</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
</tr>
</tbody>
</table>

Field Descriptions

Volume serial. The volume serial ID for the media volume to be retrieved. The values are:

ID     volume-serial-ID
A six character media volume serial.

*EXP    Expired
A special value used to request that a scratch volume be located.

*ACT    Active
A special value used to request that an active volume with space available for write operations be located.

Media class. A media class name that will be used to locate an expired media volume. This value is needed only when the volume serial of *EXP is specified. The values are:

*ANY    Any media class that is specified can be used to locate an expired volume.
media-class
Specify the media class that is to be used to locate an expired volume.

Location. A location name that will be used to locate an expired media volume. This value is needed only when a volume serial of *EXP is specified. The values are:

*ANY    Any location that is specified can be used to locate an expired volume.
location-name
Specify the location that is to be used to locate an expired volume.

Error Messages

BRM1147 E Volume not found.
BRM1480 E No media of class &1; available.
CPF24B4 E Severe error while addressing parameter list.
CPF3CF1 E Error code parameter not valid.
CPF3C19 E Error occurred with receiver variable specified.
CPF3C21 E Format name &1; is not valid.
CPF3C24 E Length of receiver variable is not valid.
BRMS Select Device (Q1ASLTDEV) API

Parameters:

Required Parameter Group:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiver variable</td>
<td>Output</td>
<td>The receiver variable that is to receive the information requested. You can specify the size of the area to be smaller than the format requested as long as you specify the length of the receiver variable correctly. As a result, the API returns only the data the area can hold.</td>
</tr>
<tr>
<td>Length of receiver variable</td>
<td>Input</td>
<td>The length of the receiver variable. The length must be at least 6 bytes. If this value is larger than the actual receiver variable, unpredictable results may occur.</td>
</tr>
<tr>
<td>Format name</td>
<td>Input</td>
<td>DEV00100 is the only format name available.</td>
</tr>
<tr>
<td>Control value information</td>
<td>Input</td>
<td>Information needed by the API to select a device is supplied in this structure. For more information see &quot;Format of Control Value Information&quot; section.</td>
</tr>
<tr>
<td>Error code</td>
<td>I/O</td>
<td>The structure in which to return error information. For the format of the structure, see &quot;Error Code Parameter&quot; in the System Programmers Interface Reference.</td>
</tr>
</tbody>
</table>

The BRMS select device API lets you select a device to allocate or deallocate, or to select search values such as location and media class to locate and allocate an available device for BRMS media input or output operations.

Required Parameter Group

Receiver variable

OUTPUT; Char(*)

The receiver variable that is to receive the information requested. You can specify the size of the area to be smaller than the format requested as long as you specify the length of the receiver variable correctly. As a result, the API returns only the data the area can hold.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable. The length must be at least 6 bytes. If this value is larger than the actual receiver variable, unpredictable results may occur.

Format name

INPUT; Char(8)

DEV00100 is the only format name available.

Control value information

INPUT; Char(*)

Information needed by the API to select a device is supplied in this structure. For more information see "Format of Control Value Information" section.

Error code

INPUT/OUTPUT; Char(*)

The structure in which to return error information. For the format of the structure, see "Error Code Parameter" in the System Programmers Interface Reference.

Format of Generated Information

The following table shows the format of the generated information. The DEV00100 format includes the information about the requested media volume. For a description of each field, see "Field Descriptions" on page 260.
BRMS Select Device (Q1ASLTDEV) API

<table>
<thead>
<tr>
<th>Offset</th>
<th>Type</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec</td>
<td>Hex</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>Char(10) Device name</td>
</tr>
<tr>
<td>10</td>
<td>0A</td>
<td>Char(10) Location</td>
</tr>
<tr>
<td>20</td>
<td>14</td>
<td>Char(10) Media class</td>
</tr>
</tbody>
</table>

Field Descriptions

Device name. The name of the selected device.

Location. The location of the selected device.

Media class. The name of the media class used to select the device that supports the required density.

Format of Control Value Information

The following table shows the format of the control value information. For a description of each field, see "Field Descriptions".

<table>
<thead>
<tr>
<th>Offset</th>
<th>Type</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec</td>
<td>Hex</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>Char(10) Device name</td>
</tr>
<tr>
<td>10</td>
<td>0A</td>
<td>Char(10) Media class</td>
</tr>
<tr>
<td>20</td>
<td>14</td>
<td>Char(10) Location</td>
</tr>
<tr>
<td>30</td>
<td>1E</td>
<td>Char(10) Device action</td>
</tr>
<tr>
<td>40</td>
<td>28</td>
<td>Char(7) Operation</td>
</tr>
</tbody>
</table>

Field Descriptions

Device name. The name of a valid tape device. A special value of *MEDCLS will instruct the API to locate an available tape device from the BRMS device information.

Location. A location name that will be used to locate an expired media volume. This value is needed only when a device special value of *MEDCLS is specified. The values are:

*ANY
Any location can be used to locate an expired volume.

location-name
Specify the name of the location used to locate an expired volume.

Media class. A media class name that will be used to locate an expired media volume. This value is needed only when a device special value of *MEDCLS is specified.

Device action. Specifies the device action that you want to used for the device. The values are:

*ALCDEV
The device is allocated.

*DLCDEV
The device is not allocated. This choice is not valid for device *MEDCLS.

Note: BRMS shared device support is implied in device selection since *ALCDEV will vary on a shared device and *DLCDEV will vary it off.

Operation. Specifies the type of device operation. Since input and output densities for a particular device may be different, the type of device operation will be used to ensure that the device selected for the specified media class is compatible with the operation being requested. The values are:
The operation is an input operation.

The operation is an output operation.

**Error Messages**

- BRM1877 E Devices with density &3; are not available
- BRM1883 E Devices with density &3; are not available
- CPF1002 E Cannot allocate device
- CPF24B4 E Severe error while addressing parameter list.
- CPF3CF1 E Error code parameter not valid.
- CPF3C19 E Error occurred with receiver variable specified.
- CPF3C21 E Format name &1; is not valid.
- CPF3C24 E Length of receiver variable is not valid.
BRMS Select Device (Q1ASLTDEV) API
Index

Special Characters
*BKUGRP control group 15, 93
*EXIT special value 107
*LNKLIST 139
*SAVSYS special value 90
*SYSGRP control group 15, 92
*SYSTEM control group 15, 91
*USRMLB 48

A
access paths 86
Add Media Information Using BRMS (ADDMEDIBRM) command 55
Add Media Library Media to BRMS (ADDMLMBRM) command 56
Add Media to BRMS (ADDMEDBRM) command 17, 56
adding
devices 43
automatically 43
manually 44
media contents to the history file from an enrolled volume 55
ADDLICKEY (Add License Key Information) command 13
ADDMEDBRM (Add Media to BRMS) command 17, 56
ADDMEDIBRM (Add Media Information Using BRMS) command 55
ADDMMLMBRM 54
ADDMMLMBRM (Add Media Library Media to BRMS) command 56
advanced functions feature
hierarchical storage management (HSM) 3
HSM (hierarchical storage management) 3
removing 13
uninstalling 13
and policies 6
APIs 184
appending to media 87
application program interfaces (APIs) 184
BRMS Object Retrieval Exit Program 252
BRMS Select Device (Q1ASLTDEV) 259
Retrieve Media Information 255
Tape Information Exit Program 249
Tape Movement Exit Program 250
Apply Journal Changes (APYJRNCCHG) command 34
applying
program temporary fixes (PTFs) 37

B
backing up
access paths 86
target groups 108
targets 108
full system
with the *SYSTEM control group 18
journalized objects 86
libraries 97
Lotus servers 207
media information 86
object level detail 86
resuming 109
retaining object level detail 86
spooled files 34
system data
with the *SYSGRP control group 18
user data
with the *BKUGRP control group 19
with the *SYSGRP control group 18
with the *SYSTEM control group 18
with the *BKUGRP control group 19
backup
restrictions for *SAVSYS 90
Backup, Recovery, and Media Services (BRMS) advanced functions feature 3
removing 13
uninstalling 13
changing presentation controls 84
customizing the look 84
functional authority 27
functional usage model 175
hardware requirements 11
installation instructions 12
introduction 3
libraries
QGPL 29
QSYS2 29
QUSRRBRM 23
QUSRSYS 23, 29
recovering 25, 29
Backup, Recovery, and Media Services (BRMS) (continued)
migrating from V4R4/V4R5 to V5R1 199
network feature 3
overview 3
recovery 25
removing from your system 13
security 175
software requirements 11
standard product 3
backup function 4
media management function 4
overview 4
recovery function 4
tape I/O from a program 219
uninstalling 13
updating license information 13
using in a network 191
Backup Folder List Report 235
backup history
adding media contents to
from an enrolled volume 55
Backup Link List Report 235
backup lists
creating
folder 101
link 105
object 102
spooled file 103
definition 100
folder lists 101
link lists 105
object lists 102
QALLSPLF spooled file list 104
security 176
spooled file lists 103
types 100
Backup Object List Report 235
Backup Plan Report 235
backup policy
changing 84
definition 5
key parameters 84
Backup Policy Report 236
Backup Recovery and Media Services (BRMS) 4
backup scenarios 118
performing a backup across a network with shared devices 125
using multiple control groups in a serial backup 119
using multiple control groups in parallel and concurrent backups 122
Backup Spooled File List Report 236
backups
concurrent 116
when to use 117
customizing 81
default weekly activity 85

© Copyright IBM Corp. 1998, 2001

263
backups (continued)

ending subsystems with *SAVSYS 91

entire system 15

full retention 61

full system 15, 18

incremental retention 61

specifying type 85

types 61

Lotus server online 207

media information 78

parallel 117

multiple-library parallel 117

parallel save/restore 117

restrictions 117

setting up 117

when to use 117

performing 18

planning 81

resuming 109

retention

full backups 61

incremental backups 61

scenarios 118

performing a backup across a network with shared devices 125

using multiple control groups in a serial backup 119

using multiple control groups in parallel and concurrent backups 122

scheduling 90, 115, 165

serial 116

special considerations for *SAVSYS 90

starting subsystems with *SAVSYS 91

strategy 81

system data with the *SYSGRP control group 18

tailoring 81

types of 61

unattended 114

user data with the *BKUGRP control group 19

block size 45

BRMS 3, 4

BRMS Application Client for TSM 183

C

Calendar Report 236

calendars, move management defining exceptions 71

establishing 71

exceptions 71

for move days 71

for working days 71

names 72

reference calendar 71

specifying dates 71

Centralized Media Audit Report 236

Change Job Scheduler (CHGSCDBRM) command 169

Change User Profile (CHGUSRPRF) command 38

changing control group attributes 96

groups 95

device configuration 46

device information 44

auto enroll media 45

configuration 46

density 46

media libraries 46

name 46

optimum block size 45

shared device 45

standalone devices 44

job scheduler 169

substitution variables 170

optimum block size 45

QSECOFR password 38

system name 198

CHGSCDBRM (Change Job Scheduler) command 169

CHGUSRPRF (Change User Profile) command 38

Commands 11 (continued)

DSPJOBLOG (Display Job Log) 12, 19, 37

DSPSYSVAL (Display System Values) 12

Duplicate Media using BRMS (DUPMEDBRM) 76

DUPMEDBRM (Duplicate Media using BRMS) 76

End Subsystems (ENDSBS) 19

ENDSBS (End Subsystems) 19

EXTMEDIBRM (Extract Media Information Using BRMS) 55

Extract Media Information Using BRMS (EXTMEDIBRM) 55

Initialize BRMS (INZBRM) 11, 27

Initialize Media Using BRMS (INZMEDBRM) 56

Initialize Media Using BRMS (INZMEDBRM ) 56

INZBRM (Initialize BRMS) 11, 27

INZMEDBRM (Initialize Media Using BRMS) 56

Monitor Save While Active for BRMS (MONSWSBRM) 111

MONSWSBRM (Monitor Save While Active for BRMS) 111

Move Media Using BRMS (MOVMEDBRM) 66, 72

MOVMEDBRM (Move Media Using BRMS) 66, 72

Restore Authority using BRMS (RSTAUTBRM) 157

Restore Authority Using BRMS (RSTAUTBRM) 35

Restore DLO using BRMS (RSTDLOBRM) 157

Restore Library using BRMS (RSTLIBBRM) 157

Restore Object using BRMS (RSTOBJBRM) 157

Restore Object using BRMS (RSTOBJBRM) 157

RSTOBJBRM (Restore Object using BRMS) command 157

RSTDLOBRM (Restore DLO using BRMS) 157

RSTLIBBRM (Restore Library using BRMS) 157

RSTOBJBRM (Restore Library using BRMS) 157

RSTOBJBRM (Restore Object using BRMS) 157

SAVBRM (Save BRMS) 127

SAVDLOBRM (Save DLO using BRMS) 127

SAVLIBBRM (Save Library using BRMS) 127
Configure Device Media Library (CFGDEVMLB) command 25
console monitor 91, 114
canceling 116
interrupting 116
messages 116
monitoring 116
securing 180
starting 115
Container Class Report 237
container classes 64
creating 64
Work with Containers display 64
Container Report 237
containers adding 65
changing 65
classes 64
creating 64
managing 65
move policies 65
moving 65
removing 65
tracking in BRMS 66
unpacking 65
control groups *BKUGRP 15, 93
*SYSGRP 15, 92
*SYSTEM 15, 91
additional options for processing 109
advantages 87
backing up 108
backups using 15
changing 93, 95
changing attributes of 96
contents 87, 88
contents of default control groups 91
copying between networked systems 202
copying Lotus server 212
creating 93
creating backup lists in 100
default 15, 88
*BKUGRP 93
*SYSGRP 92
*SYSTEM 91
contents of 91
definition 6, 15, 87
defining 93, 95
definition of 96
decompressing automatically 99
deleted entries 89
file groups 69
holding job queues 100
how they work 6
moving media by 70
performing maintenance as part of 163
post-processing exits in 212
pre-processing exits in 212
recovering 131
with STRRCYBRM 133
recovering multiple 136
concurrently 150
releasing job queues 100
saving selected libraries 97
scheduling 90
control groups (continued)
scheduling backups of 165
restrictions 167
security 176
special considerations 97
special operations 89
exit programs 89
tape loading 89
special values
*ALLDDLO 89
*ALLPROD 89
*ALLTEST 89
*ALLUSR 89
*ASPMn 89
*DLOm 89
*IBM 89
*LINK 89
*QHST 89
*SAVCAL 89
*SAVSECDTA 89
*SAVSYS 90
spooled file lists in 34
starting subsystems automatically 99
user exits in 107
using the save-while-active feature 109
using with a move policy 70
working with 93
copying volumes 77
CPYMEDIBRM 195
creating
backup lists in a control group 100
container classes 64
copying volumes 77
device pooling 45
Device Report 238
density 46
DEVICE (DEVICE) command 70
directories
saving 146
saving with object detail 146
functional authority 27
functional usage model 175
media management usage levels 177
(continued)
backup, recovery, and media services for iSeries V5R1
E
End Subsystems (ENDSBS) command 19
ENDSBS (End Subsystems) command 19
enrolling media 54
automatically 54
existing 55
multiple volumes
for media libraries 54
for stand-alone devices 54
EXTMEDIBRM (Extract Media Information Using BRMS) command 55
Extract Media Information Using BRMS (EXTMEDIBRM) command 55
F
file groups 69
folders
recovering 146
saving with object detail 146
functional authority 27
functional usage model 175
backup, recovery, and media services for iSeries V5R1
media management usage levels 177
(continued)
backup, recovery, and media services for iSeries V5R1
G
hierarchical storage management 3
HSM 3
I
IBM Content Manager onDemand for iSeries, recovering 37
IBM product libraries, recovering 31
independent disk pools 23
initial program load (IPL) performing 38
Initialize BRMS (INZBRM) command 27
Initialize Media Using BRMS (INZMEDBRM) command 56
Initialize Media Using BRMS (INZMEDBRM) command 56
initializing
BRMS 11
BRMS for online backups 207
device information 27
devices 43
Initialize BRMS (INZBRM) command 27
media library information 27
volumes 56
for use by media libraries 56
how many 57
installing
BRMS 11
hardware requirements 11
instructions 12
software requirements 11
Integrated File System
recovering objects 131
with STRRCYBRM 138
restoring objects to /QLANSrv 139
INZBRM 43
INZBRM (Initialize BRMS) command 27
INZMEDBRM (Initialize Media Using BRMS) command 56
IPL 38
iSeries Integration for Windows Server, recovering 35

J
job log, printing 37
job queues holding 100
releasing 100
job scheduler changing 169
substitution variables 170
journal changes applying 34
recovering 34

L
labels
customizing 79
external 78
media 78
printing 78
LAN servers
restoring IFS objects to 139
last active device 49
libraries
IBM product 31
omitting from a backup 97
QGPL 29
QSYS2 29
QUSRSYS 29, 97
recovering 29, 131
IBM product 31
user 32
with STRRCYBRM 137
special considerations when saving 97
user 32
Library Backup Analysis Report 238
license, BRMS 13
Licensed Internal Code, recovering 24
Link Information Report 238
Location Analysis Report 239
Log Report 239
Lotus server online backups 207

M
maintenance 159 (continued)
Backup Activity Report 160
Centralized Media Audit Report 161
messages 163
reports
Backup Activity Report 160
BRMS Recovery Reports 160
Centralized Media Audit Report 161
Save Strategy Exceptions Report 160
Tape Volume Report 161
Volume Statistics Report 161
Volume Threshold Report 161
running as an *EXIT 163
media (continued)
creating 61
defaults 61
home location 62
how BRMS uses 62
media policy 62
move policy 62
system policy 62
uses of 62
Work with Storage Locations (WRKLOCBRM) display 63
storing 8, 59
tape I/O from a program 219
tracking 8, 75
verifying movement 73
Media and Storage Extensions, installing 11
media class
adding 53
creating 53
definition 16, 52
description 53
determining 16
security 177
working with 52
Media Class Report 240
Media Expiration Report 240
Media Information Report 240
media inventory 75
media libraries
adjustments to BRMS when using 213
advantages 47
archiving 216
automating recovery with 25
basic setup 213
changing device information 46
Configure Device Media Library (CFGDEVMLB) command 25
creating on your system 213
definition 46
determining status 25
enrolling media in 214
enrolling multiple volumes 54
how BRMS uses 46
initializing volumes for 56
model 3494
attaching through an RS232 connection 30
configuring communications 25
varying on LAN line description 23
varying on the LAN line description 30
moving volumes 217
non-IBM 48
performing a normal save operation 215
recovering an entire system 216
recovery process 215
recovery without using random mode 25
releasing 44
resetting information 30
save and restore tasks 215
saving licensed programs 215
saving storage 215

Index 267
Media libraries (continued)
setting up 213
sharing 47
storage locations 62
third party 48
user-defined 48
varying on 43, 44
varying on LAN line description 23
Work with Media Libraries Using BRMS (WRKMLBBRM) command 47
Work with Media Library Status (WRKMLBSTS) 47
Work with Media Library Status (WRKMLBSTS) command 25
Media Library Media Report 241
Media Library Report 241
media management
components of 7, 51
determining media classes 16
enrolling media 15
media inventory
setting up 57
media pools 58
benefits 58
media scratch pools 58
benefits 58
media set rotation 57
limitations of 58
moving media 8
preparing media 8
rotating media sets 57
scratch pools 58
security 177
setting up 51
storing media 8
tracking media 8
usage levels 177
Media Merge Report 242
Media Movement Report 242
media policy
changing 59
copying 59
creating 59
definition 5, 59
deleting 59
displaying 59
FULL 7, 59
INCR 59
predefined 59
retention
definition 60
full backups 61
incremental backups 61
overlapping 61
SAVF 59
SAVSYS 59
security 177
storage locations 62
storing media 59
SYSTEM 59
using with OS/400 save commands 61
Work with Media Policies display 59
Media Policy Report 242
Media Report 239
Media Volume Statistics Report 242
Media Volume Threshold Report 243
messages
BRM1948 116
BRM1950 116
BRM1954 116
BRM1990 48
BRM1991 48
console monitor 116
CPF5773 37
maintenance 163
media libraries 48
message file QIAMSCGF 48
replying to on nonprogrammable workstation 91
save-while-active 114
migrating
from V4R4/V4R5 to V5R1 199
Monitor Save While Active for BRMS (MONSWABRM) command 111
MONSWABRM (Monitor Save While Active for BRMS) command 111
mounting volumes 58
Move Media Using BRMS (MOVMEDBRM) command 66, 72
move patterns 67
scheduling 71
move policy
and media policies 67
calendars 71
defining exceptions 71
exceptions 71
for move days 71
for working days 71
names 72
specifying dates 71
changing 68
containers 65
creating 68
default 67
definition 5, 67
deleting 68
move management calendars 71
move patterns 71
OFFSITE 67
security 177
storage locations 62
using with a control group 70
Move Policy Report 243
move reports
Print Media Movement 74
printing 74
Run Media Movement 74
moving 73
initiating 72
media 67
security 177
with media libraries 217
verifying media moves 73
MOVMEDBRM (Move Media Using BRMS) command 66, 72
Multiple Control Groups in a Serial Backup
appending to media 122
saving media information 122

N
network feature 3
networking 191
changing a system name 198
copying control groups 202
how networks communicate 193
joining two BRMS networks 201
receiving media information 199
removing a system from a network 205
removing network feature 206
security considerations 204
setting up 194
sharing media inventory 191
synchronizing media inventory 191
verifying the network 203
next volume message prompt, setting up 58

O
object level detail 86
objects in directories, recovering 34
omitting libraries from a backup 97
online backups
adding media 208
choosing the device 208
choosing the media class 208
copying Lotus server control groups 212
enrolling media 208
how they work 207
initializing BRMS for 207
limitations 211
Lotus server 207
performance tuning 211
Domino servers 211
QuickPlace servers 211
performing 208
planning for disaster recovery 210
recommendations 211
restrictions 210
starting 209
viewing saved items 209
operating system, recovering 24
Operations Navigator
implementing the functional usage model 178
optimum block size 45

P
parallel backups 117
restrictions 117
setting up 117
when to use 117
parallel recoveries 150
performing 151
policies
and control groups 6
backup 5, 84
how they work 5
media 5, 59, 62
move 5, 62
recovery 5, 129
Q
QALLSPLF spooled file list 104
QALWUSRDMN system value 13
QATAGCY file 97
QATADEV file 97
QATAMID file 97
QGPL library 29
QP1A2RCY spooled file 20, 22
QP1AASP spooled file 20, 22
QP1ARCY spooled file 20, 22
QSYS2 library 29
QUSRBRM library 23, 26
  generating a Recovering Your Entire System report from 153
QUSRPSYS library 23, 29
QATAGCY file 97
QATADEV file 97
QATAMID file 97
R
recovering 21
  authority 35
  authorization information 35
  automating your recovery 25
  BRMS libraries 25
  BRMS product 25
  configuration data 30
  control groups
    multiple 136
    with STRRCRYBRM 133
  creating a recovery activities list 155
  creating a recovery contact list 154
  Cryptographic Access Provider for iSeries 37
  directory objects 34
  Display ASP Information Report 22
  DLOs (document library objects) 33
  document library objects (DLOs) 33
  entire system 21
    including LAN Server environment 142
recovery 21 (continued)
  entire system 21 (continued)
    using a media library 216
    folders 146
  generating a Recovering Your Entire System report from the QUSRBRM data files 153
  IBM Content Manager onDemand for iSeries 37
  IBM product libraries 31
  IFS objects
    with STRRCRYBRM 138
  independent disk pools 23
  integrated file system objects
    with STRRCRYBRM 138
  iSeries Integration for Windows Server 35
  journal changes 34
  libraries
    with STRRCRYBRM 137
  Licensed Internal Code 24
  Lotus server databases 210
  media information 26
    multiple control groups 136
  multiple control groups concurrently 150
  objects in directories 34
  objects with object detail 144
  objects without object detail 145
  operating system 24
  printing recovery reports 22
  Recovering Your Entire System 21
  recovery reports 21
  Recovery Volume Summary Report 22
  remaining system data 31
  remaining user data 31
  restarting a recovery 38
  resuming a recovery 152
  scheduling 165
  selected items 129
  spooled files 34, 148
  Start Recovery using BRMS (STRRCRYBRM) 22
  Start Recovery using BRMS (STRRCRYBRM) command 23
  storage spaces 141
  STRRCRYBRM (Start Recovery using BRMS) 22
  system libraries 29
  testing 38
    recovery reports 39
    restarting a recovery 38
    using OS/400 38
    to a different system 28
    allowing object differences 28
    to a system in a different network 28
    to the same system 28
  user libraries 32
  user profiles 28, 143
  using OS/400 to assist 38
  with the recovery policy 129
  without the Recovery Analysis Report 153
  identifying the tapes you need 153
Recovering Your Entire System report
  generating from the QUSRBRM data files 153
Recovering Your Entire System Report 21
  control group 24
  restoring from save files 23
  restoring from Tivoli Storage Manager (TSM) servers 23
  saved time 24
  start time 24
  using 23, 24
  volume identifier 24
  recovery activities list 155
  Recovery Activities Report 244
  Recovery Analysis Report 21, 244
  recovery contact list 154
  recovery policy definition 5
  Recovery Policy Report 244
  recovery reports
    and system maintenance 160
    Display ASP Information 20, 22
    overview 21
    printing 19, 22
  Recovering Your Entire System 20, 21
  Recovering Your Entire System Report using 23
  Recovery Analysis Report 21
  Recovery Volume Summary Report 20, 22
  testing 38
  Recovery Volume Summary Report 22, 244
  reference calendar 71
  removing BRMS 13
  reports
    ASP Information Report 235
    Backup Activity Report 160
    Backup Folder List 235
    Backup Link List 235
    Backup Object List 235
    Backup Plan 235
    Backup Policy 236
    Backup Spooled File List 236
    Calendar 236
    Centralized Media Audit 236
    Centralized Media Audit Report 161
    Container 237
    Container Class 237
    Device 238
    Display ASP Information 22
    Library Backup Analysis 238
    Link Information 238
    Location Analysis 239
    Log 239
    Media 239
    Media Class 240
    Media Expiration 240
    Media Information 240
    Media Library 241
    Media Library Media 241
    Media Merge 242
    Media Movement 242
    Media Policy 242
    Media Volume Statistics 242
S

SAVBRM (Save BRMS) command 127
SAVDLOBRM (Save DLO using BRMS) command 127
SAVDOMBRM 211
Save BRMS (SAVBRRM) command 127
Save DLO using BRMS (SAVDLOBRM) command 127
Save Files Report 245
Save Folder List using BRMS (SAVFLLBRM) command 127
Save Library using BRMS (SAVLIBBRM) command 127
Save Media Information using BRMS (SAVMEBRM) command 127
Save Object List using BRMS (SAVOBJBRM) command 127
Save Strategy Exceptions Report 245
Save System using BRMS (SAVSYBRM) command 128
save-while-active feature 109
activating 110
advantages 109
message queue 114
messages 114
monitoring for synchronization
checkpoints 111
using *ALLUSR special value with 110
using *ALLUSR special value
with 110
using without commitment
control 109
using without journaling 109
Saved Folders Report 245
Saved Objects Report 245
Saved Spooled Files by Date Report 245
SAVFLLBRM (Save Folder List using BRMS) command 127
SAVLIBBRM (Save Library using BRMS) command 127
SAVLPQBRM 211
SAVMEBRM (Save Media Information using BRMS) command 127
SAVOBJBRM (Save Object using BRMS) command 127
SAVOBJLBVM (Save Object using BRMS) command 127
SAVSAYFBRM (Save Save File with BRMS) command 98
SAVSAYFBRM (Save Save File with BRMS) command 127
SAVSYBRM (Save System using BRMS) command 128
scheduling 90
backups 165
with *SAVSYS in them 90
BRMS save command backups 167
changing the job scheduler 169
substitution variables 170

scheduling (continued)
control group backups 165
restrictions 167
maintenance 161
recoveries 165, 168
scheduling an *SAVSYS with console monitoring 91
selected recoveries 168
viewing scheduled jobs 169
working with scheduled jobs 168
security

console monitor 180
functional usage model 175
backup function 176
how it works 175
in a network 204
media 182
recommendations 181
working with OS/400 security controls 181
recommendations 181
serial backups 116
serial recoveries 150
Set User Usage for BRMS (SETUSRBRM) command 175
setting up

BRMS network 194
media inventory system 57
media management 51
next volume message prompt 58
SETUSRBRM (Set User Usage for BRMS) command 175
sharing devices 45
signing off interactive users 7
special operations 89
exit programs 89
tape loading 89
special values 89
*ALLDLO 89
*ALLDLO 89
*ALLUSR 89
*ALLUSR 89
*ASP* 89
*DLO** 89
*EXIT 107
*IBM 89
*LINK 89
*QHST 89
*SACAL 89
*SACAL 89
*SACFG 89
*SACFG 89
*SASECDTA 89
*SASECDTA 89
*SASYS 90
authority needed 90
restrictions 90
special considerations 90
using 90
spooled files
backing up 103
creating spooled file lists 103
list 34
QALLSPLF spooled file list 104
QP1A2RCY 20, 22
QP1AAP 20, 22
QP1ARCY 20, 22
recovering 34, 148
saving 34

270  Backup, Recovery, and Media Services for iSeries V5R1
spooled files (continued)  
Work with Spooled Files (WRKSPFLF) command 20  
Work with Spooled Files Using BRMS (WRKSPFLFBRM) command 34  
SRM database 30  
standard product 3  
backup function 4  
media management function 4  
overview 4  
recovery function 4  
Start Backup using BRMS (STRBKUBRM) command 19  
Start Backup Using BRMS (STRBKUBRM) command 18, 19  
Start Maintenance for BRMS (STRMNTBRM) command 72, 159  
Start Recovery using BRMS (STRRCYBRM) command 131  
parameters 131  
what it does 131  
Start Recovery using BRMS (STRRCYBRM) command 22, 23  
Start Recovery Using BRMS (STRRCYBRM) command 20, 28  
Storage Location Report 246  
storage locations  
creating 61  
home location 62  
how BRMS uses 62  
media libraries 62  
media policy 62  
move policy 62  
system policy 62  
uses of 62  
Work with Storage Locations (WRKLOCBRM) display 63  
storage locations, media 61  
STRBKUBRM (Start Backup using BRMS) command 19  
STRBKUBRM (Start Backup Using BRMS) command 18, 19  
STRMNTBRM (Start Maintenance for BRMS) command 72, 159  
STRRCYBRM (Start Recovery using BRMS) command 131  
STRRCYBRM (Start Recovery using BRMS) command 22, 23  
STRRCYBRM (Start Recovery Using BRMS) command 20, 28  
substitution variables 170  
subsystems  
ending 19  
with *SAVSYS 91  
ending automatically 99  
starting  
with *SAVSYS 91  
starting automatically 99  
working with 19  
SWA feature 109  
system information, verify 35  
system policy  
customizing backups 82  
default value 7  
defaults 82  
definition 5  
key parameters 82  
system policy (continued)  
overriding 7, 85  
security 178  
storage locations 62  
understanding 82  
System Policy Report 246  
system recovery 21  
system resource management (SRM) database 28, 30  
system values 13  
QALWUSRDMN (Allow user domain objects in user libraries) 13  
tape automation 213  
tape input/output 219  
input processing 223  
messages 232  
processing techniques 231  
tape file processing 221  
with multiple devices 225  
calling the program 229  
compiling the program 226  
creating tape file objects 225  
indicating which drives to use 226  
managing the media 228  
results 229  
tape library 25  
third party media libraries 48  
Tivoli Storage Manager (TSM) 23  
adding a location 185  
benefits 183  
Create a media policy 186  
duplicating items saved to overview 183  
restrictions 183  
setting up 184  
TSM (ADSM) Server 184  
TSM Client 184  
TSM application program interfaces (APIs) 184  
TSM 23  
uninstalling BRMS 13  
updating  
license information 13  
user exits  
definition 107  
in control groups 107  
in Lotus server backups 212  
post—processing activities 108  
processing 107  
user libraries, recovering 32  
user profiles  
allowing object differences 28  
QSECOFR changing 38  
recovering 28, 143  
V  
varying on  
device 43  
varying on (continued)  
media library 43  
verifying system information 35  
Version Control Report 246  
Volume Movement Report 247  
W  
Work with Configuration Status (WRKCFGSTS) command 43  
Work with Containers Using BRMS (WRKCNRBRM) command 65  
Work with Device Descriptions (WRKDEV) command 27  
Work with Devices using BRMS (WRKDEVBRM) command 27  
Work with Link Information (WRKLNKB) command 141  
Work with Media Classes Using BRMS (WRKCLCBRM) command 53  
Work with Media Information Using BRMS (WRKMEDIBRM) command 55  
Work with Media Libraries using BRMS (WRKMLBBRM) command 27, 30  
Work with Media Libraries Using BRMS (WRKMLBBRM) command 47  
Work with Media Library Status (WRKMLBS) command 25, 47  
Work with Media using BRMS (WRKMEDBRM) command 17  
Work with Spooled Files (WRKSPFLF) command 20  
Work with Spooled Files Using BRMS (WRKSPFLFBRM) command 34  
Work with Storage Locations (WRKLOCBRM) command 63  
Work with Storage Locations Using BRMS (WRKLOCBRM) command 63  
Work with Storage Locations (WRKLOCBRM) command 63  
Work with Subsystems (WRKSB) command 19  
Work with System Values (WRKSYSVAL) 13  
working with devices 43  
WRKCFGSTS (Work with Configuration Status) command 43  
WRKCLSRM 53  
WRKCLSM (Work with Media Classes Using BRMS) command 53  
WRKCNRBRM (Work with Containers Using BRMS) command 65  
WRKDEVB (Work with Devices using BRMS) command 27  
WRKDEV (Work with Device Descriptions) command 27  
WRKICINF (Work with License Information) command 13  
WRKLNK (Work with Link Information) command 141  
WRKLOCBRM (Work with Storage Locations Using BRMS) command 63  
WRKMEDBRM (Work with Media Libraries Using BRMS) command 17  
WRKMEDIBRM (Work with Media Information Using BRMS) command 55  
WRKMLBBRM (Work with Media Libraries using BRMS) command 27, 30
WRKMLBBRM (Work with Media Libraries Using BRMS) command  47
WRKMLBSTS (Work with Media Library Status) command  25, 47
WRKSBS (Work with Subsystems)  19
WRKSPLF (Work with Spooled Files) command  20
WRKSPLFBRM (Work with Spooled Files Using BRMS) command  34
WRKSYSVAL (Work with System Values)  13
Readers’ Comments — We’d Like to Hear from You

iSeries
Backup, Recovery, and Media Services for iSeries
Version 5

Publication No. SC41-5345-02

Overall, how satisfied are you with the information in this book?

<table>
<thead>
<tr>
<th></th>
<th>Very Satisfied</th>
<th>Satisfied</th>
<th>Neutral</th>
<th>Dissatisfied</th>
<th>Very Dissatisfied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall satisfaction</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

How satisfied are you that the information in this book is:

<table>
<thead>
<tr>
<th></th>
<th>Very Satisfied</th>
<th>Satisfied</th>
<th>Neutral</th>
<th>Dissatisfied</th>
<th>Very Dissatisfied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accurate</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Complete</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Easy to find</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Easy to understand</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Well organized</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Applicable to your tasks</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? □ Yes □ No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without incurring any obligation to you.

Name

Address

Company or Organization

Phone No.