Table of Contents

Preface
Philosophy .. vii
Contacting the CIMS Lab .. viii
About This Guide .. viii
Conventions .. ix
Related Publications .. ix

1 • Installing CIMS Capacity Planner
Installation Overview .. 1-4
 Installation Sources .. 1-4
 About Installing the Most Current Release 1-5
Installing CIMS Capacity Planner 1-6
 Step 1: Install the Files from the CIMS Product Tape, Product CD, or Web Site 1-6
 Step 2: Enter the CIMS Lab Password 1-12
 Step 3: Make Modifications for the SMS-managed DASD and the
 DASM Subsystem (If Required) 1-12
 Step 4: Allocate and Initialize the Data Sets (DUTLINIT) 1-13
 Step 5: Set Global Parameters (If Required) 1-14
 Step 6: Enable the Use of the ISPF/PDF Interface 1-16
 Step 7: Customize the CPPR ISPF/PDF Data Sets 1-16
 Step 8: Enter Information in the ISPF/PDF Setup Panel 1-17
 Step 9: Enable the Use of the ISPF/PDF GDDM Graphics Interface (If Required) ... 1-17
 ISPF/PDF Specific Subsystem Initialization Instructions 1-18
Converting the ONLINE File from BSAM to PDSE (5.x to 6.0 Upgrades Only) 1-18
About Installing CIMS Capacity Planner Subsystems 1-20
 Allocating and Initializing the ONLINE and INDEX Data Sets 1-20
 Naming Conventions for Customized Data Set Members 1-22
Installing the Workload Subsystem 1-23
 Step 1: Allocate and Initialize the Data Sets 1-23
 Step 2: Register the SMF System IDs in the Data Center 1-23
 Step 3: Set the Local Parameters (If Required) 1-23
 Step 4: Specify Additional Record Types (If Required) 1-28
 Step 5: Run the Workload Data Reduction 1-29
 Step 6: Run the Workload Reports 1-29
 MVS 5.x Goal Mode Support 1-30
The DASM Subsystem .. 1-31
 Step 1: Allocate and Initialize the Data Sets (DASMINIT) 1-31
 Step 2: Create the 8sidDSNX Member 1-31
Table of Contents

Upgrading CIMS Capacity Planner (Same Version) ... 1-70

The Network Subsystem .. 1-64

- Step 6: Run the Network Reports ... 1-69
- Step 5: Run the Network Data Reduction .. 1-69
- Step 4: Customize Network PARMLIB Members .. 1-67
- Step 3: Register the VTAM APPLIDs .. 1-64
- Step 2: Register the VTAM Connect Names ... 1-64
- Step 1: Allocate and Initialize the ONLINE and INDEX Data Sets 1-64

The IMS Subsystem .. 1-49

- Step 6: Run the IMS Reports .. 1-54
- Step 5: Run the IMS Data Reduction .. 1-54
- Step 4: Create the IMS PARMLIB Members ... 1-52
- Step 3: Customize the IMS JCL .. 1-51
- Step 2: Register the IMS Regions ... 1-49
- Step 1: Allocate and Initialize the ONLINE and INDEX Data Sets 1-49

The DB2 Subsystem ... 1-55

- Step 7: Run the DB2 Reports .. 1-59
- Step 6: Run the DB2 Data Reduction ... 1-59
- Step 5: Create the DB2 PARMLIB Member ... 1-58
- Step 4: Customize the DB2 JCL .. 1-56
- Step 3: Register the DB2 Connect Names ... 1-55
- Step 2: Register the DB2 Systems .. 1-55
- Step 1: Allocate and Initialize the ONLINE and INDEX Data Sets 1-55

The Model 204 Subsystem .. 1-60

- Step 5: Run the Model 204 Reports ... 1-63
- Step 4: Run the Model 204 Data Reduction ... 1-63
- Step 3: Customize Model 204 PARMLIB Members .. 1-61
- Step 2: Customize the Model 204 JCL ... 1-60
- Step 1: Allocate and Initialize the ONLINE and INDEX Data Sets 1-60

The IDMS Subsystem ... 1-42

- Step 6: Run the IDMS Reports .. 1-48
- Step 5: Run the IDMS Data Reduction .. 1-48
- Step 4: Create the IDMS PARMLIB Members ... 1-46
- Step 3: Customize the IDMS JCL ... 1-44
- Step 2: Register the IDMS CVs .. 1-42
- Step 1: Allocate and Initialize the ONLINE and INDEX Data Sets 1-42

The CICS Subsystem ... 1-34

- Step 6: Run the CICS Reports ... 1-41
- Step 5: Run the CICS Data Reduction ... 1-41
- Step 4: Create the CICS PARMLIB Members ... 1-39
- Step 3: Customize the CICS JCL ... 1-37
- Step 2: Register the CICS Regions .. 1-34
- Step 1: Allocate and Initialize the ONLINE and INDEX Data Sets 1-34

The DASD Subsystem ... 1-33

- Step 5: Run the DASM Subsystem ... 1-33
- Step 4: Create the DASM PARMLIB Member .. 1-32
- Step 3: Customize the Model 204 JCL ... 1-31
- Step 2: Register the DASD CVs ... 1-31
- Step 1: Allocate and Initialize the ONLINE and INDEX Data Sets 1-31
2 • Installation Checklist
CIMS Capacity Planner Installation Checklist ... 2-2
CIMS Capacity Planner Base System Traditional Checklist 2-3
CIMS Capacity Planner Base System Web Install Checklist 2-4
CIMS Capacity Planner Workload Subsystem Installation Checklist 2-6
CIMS Capacity Planner DASM Subsystem Installation Checklist 2-8
CIMS Capacity Planner CICS Subsystem Installation Checklist 2-10
CIMS Capacity Planner IDMS Subsystem Installation Checklist 2-13
CIMS Capacity Planner IMS Subsystem Installation Checklist 2-16
CIMS Capacity Planner Network Subsystem Installation Checklist 2-19
CIMS Capacity Planner DB2 Subsystem Installation Checklist 2-22
CIMS Capacity Planner Model 204 Subsystem Installation Checklist 2-25
CIMS Capacity Planner Presentation Graphics Interface Installation Checklist ... 2-27

A • Control Library JCL Examples
$INDEX ... A-3
D204INIT .. A-16
D204PROD .. A-17
D204REPT .. A-18
DASMCOLW .. A-19
DASMINIT .. A-21
DCICINIT ... A-22
DCICNROL .. A-23
DCICCPROD .. A-24
DCICREPT .. A-26
DCICSMF .. A-27
DCICCTMON .. A-29
DDB2INIT .. A-32
DDB2NRL1 .. A-33
DDB2NRL2 .. A-34
DDB2PROD .. A-35
DDB2REPT .. A-36
DIDMInit ... A-37
DIDML102 .. A-38
DIDMNROL .. A-39
DIDMPL12 .. A-40
DIDMPROD .. A-41
DIDMPSMF .. A-42
DIDMREPT .. A-43
DIMISINIT .. A-45
DIMSNROL .. A-46
DIMSPROD .. A-47
DIMSRREPT .. A-51
DNEXIT .. A-52
DNETNROL .. A-53
DNETPROD .. A-54
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNETREPT</td>
<td>A-55</td>
</tr>
<tr>
<td>DUTLINIT</td>
<td>A-56</td>
</tr>
<tr>
<td>DWKLINIT</td>
<td>A-57</td>
</tr>
<tr>
<td>DWKLNROL</td>
<td>A-58</td>
</tr>
<tr>
<td>DWKLPROD</td>
<td>A-59</td>
</tr>
<tr>
<td>DWKLREPT</td>
<td>A-61</td>
</tr>
</tbody>
</table>

Index
Preface

As companies continue to integrate computer technology into their business operations, it becomes increasingly important to properly administer the IT function, particularly with respect to performance and cost. And the best way to control costs is to plan for them.

CIMS is a comprehensive, flexible software solution that consolidates a wide variety of data for multiple operating systems into a single file that may be accessed from either the mainframe or a workstation. Simply put, CIMS is an essential component of an effective management system.

The CIMS Capacity Planner is made up of several computer utilization and performance reporting subsystems. This product generates reports and graphs that deliver information necessary to evaluate the operation of a data center whose primary operating system is IBM OS/390.

Philosophy

CIMS is focused on meeting the financial, resource and capacity planner reporting requirements of Information Services Departments. CIMS has evolved with corporate IT management requirements. Focused commitment to client service and support sets CIMS apart from competing products. Our goal is to provide the best chargeback, resource reporting and capacity planning software in the world at the lowest possible cost to our customers.

The CIMS Lab strongly believes in and executes the concept of continuous product improvement. Customers have access to CIMS product development personnel to ensure that customer feedback and other critical issues are incorporated into the next release of the product.
Preface

Contacting the CIMS Lab

You can contact us with any questions or problems you have. Please use one of the methods below to contact us.

For product assistance or information, contact:
USA & Canada, toll free (800) 283-4267
International (916) 783-8525
FAX (916) 783-2090
World Wide Web www.cimslab.com

Our Mailing Address is:
CIMS Lab, Inc.
3013 Douglas Blvd., Suite 120
Roseville, CA 95661-3842

About This Guide

This guide provides the installation procedures for CIMS Capacity Planner. The following table describes the chapters in this guide.

This guide assumes that the appropriate CIMS Capacity Planner components have been installed at your site.

<table>
<thead>
<tr>
<th>Ch. No.</th>
<th>Chapter Name</th>
<th>Content Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Installing CIMS Capacity Planner</td>
<td>Provides detailed installation instructions for the CIMS Capacity Planner.</td>
</tr>
<tr>
<td>2</td>
<td>Installation Checklist</td>
<td>Provides a checklist to be used during the CIMS Capacity Planner installation procedure.</td>
</tr>
<tr>
<td>A</td>
<td>Control Library JCL Examples</td>
<td>Provides examples of Control Library JCL.</td>
</tr>
</tbody>
</table>

Index
Conventions

Some or all of the following conventions appear in this guide:

<table>
<thead>
<tr>
<th>Symbol or Type Style</th>
<th>Represents</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bold</td>
<td>a new term</td>
<td>...called a source object.</td>
</tr>
<tr>
<td>Italic</td>
<td>words that are emphasized</td>
<td>...the entry after the current entry...</td>
</tr>
<tr>
<td>Italic</td>
<td>the titles of other documents</td>
<td>CIMS Capacity Planner User Guide</td>
</tr>
<tr>
<td>Italic</td>
<td>syntax variables</td>
<td>COPY filename</td>
</tr>
<tr>
<td>Monospace</td>
<td>directories, file names, command names, computer code</td>
<td>&HIGHLVL.SRCLIB</td>
</tr>
<tr>
<td>Monospace</td>
<td>computer screen text, system responses, command line commands</td>
<td>Copy file? Y/N</td>
</tr>
<tr>
<td>Monospace bold</td>
<td>what a user types</td>
<td>...enter RUN APP.EXE in the Application field</td>
</tr>
<tr>
<td>< ></td>
<td>the name of a key on the keyboard</td>
<td>Press <Enter>.</td>
</tr>
<tr>
<td>››</td>
<td>choosing a command from a cascading menu</td>
<td>File › Import › Object</td>
</tr>
</tbody>
</table>

Related Publications

As you use this guide, you might find it helpful to have these additional books available for reference:

- CIMS Capacity Planner User Guide
- CIMS Capacity Planner Reference Guide
Installing CIMS Capacity Planner

Installation Overview ... 1-4
Installation Sources ... 1-4
About Installing the Most Current Release 1-5

Installing CIMS Capacity Planner ... 1-6
Step 1: Install the Files from the CIMS Product Tape, Product CD, or Web Site 1-6
Step 2: Enter the CIMS Lab Password ... 1-12
Step 3: Make Modifications for the SMS-managed DASD and the DASM Subsystem (If Required) 1-12
Step 4: Allocate and Initialize the Data Sets (DUTLINIT) 1-13
Step 5: Set Global Parameters (If Required) 1-14
Step 6: Enable the Use of the ISPF/PDF Interface 1-16
Step 7: Customize the CPPR ISPF/PDF Data Sets 1-16
Step 8: Enter Information in the ISPF/PDF Setup Panel 1-17
Step 9: Enable the Use of the ISPF/PDF GDDM Graphics Interface (If Required) 1-17
ISPF/PDF Specific Subsystem Initialization Instructions 1-18
Converting the ONLINE File from BSAM to PDSE (5.x to 6.0 Upgrades Only) 1-18

About Installing CIMS Capacity Planner Subsystems 1-20
Allocating and Initializing the ONLINE and INDEX Data Sets 1-20
Naming Conventions for Customized Data Set Members 1-22

Installing the Workload Subsystem ... 1-23
Step 1: Allocate and Initialize the Data Sets 1-23
Step 2: Register the SMF System IDs in the Data Center 1-23
Step 3: Set the Local Parameters (If Required) 1-23
Step 4: Specify Additional Record Types (If Required) 1-28
Step 5: Run the Workload Data Reduction 1-29
Step 6: Run the Workload Reports ... 1-29
MVS 5.x Goal Mode Support ... 1-30

The DASM Subsystem ... 1-31
Installing CIMS Capacity Planner

Step 1: Allocate and Initialize the Data Sets (DASMINIT) .. 1-31
Step 2: Create the &sidDSNX Member ... 1-31
Step 3: Edit the DASDPOOL PARMLIB Member ... 1-32
Step 4: Run the DASM Subsystem ... 1-33

The CICS Subsystem ... 1-34
Step 1: Allocate and Initialize the ONLINE and INDEX Data Sets 1-34
Step 2: Register the CICS Regions ... 1-34
Step 3: Customize the CICS JCL .. 1-37
Step 4: Create the CICS PARMLIB Members ... 1-39
Step 5: Run the CICS Data Reduction .. 1-41
Step 6: Run the CICS Reports .. 1-41

The IDMS Subsystem ... 1-42
Step 1: Allocate and Initialize the ONLINE and INDEX Data Sets 1-42
Step 2: Register the IDMS CVs ... 1-42
Step 3: Customize the IDMS JCL .. 1-44
Step 4: Create the IDMS PARMLIB Members ... 1-46
Step 5: Run the IDMS Data Reduction .. 1-48
Step 6: Run the IDMS Reports .. 1-48

The IMS Subsystem ... 1-49
Step 1: Allocate and Initialize the ONLINE and INDEX Data Sets 1-49
Step 2: Register the IMS Regions ... 1-49
Step 3: Customize the IMS JCL .. 1-51
Step 4: Create the IMS PARMLIB Members ... 1-52
Step 5: Run the IMS Data Reduction .. 1-54
Step 6: Run the IMS Reports .. 1-54

The DB2 Subsystem ... 1-55
Step 1: Allocate and Initialize the ONLINE and INDEX Data Sets 1-55
Step 2: Register the DB2 Systems ... 1-55
Step 3: Register the DB2 Connect Names .. 1-56
Step 4: Customize the DB2 JCL .. 1-57
Step 5: Create the DB2 PARMLIB Member ... 1-58
Step 6: Run the DB2 Data Reduction .. 1-59
Step 7: Run the DB2 Reports .. 1-59

The Model 204 Subsystem .. 1-60
Step 1: Allocate and Initialize the ONLINE and INDEX Data Sets 1-60
Step 2: Customize the Model 204 JCL .. 1-60
Step 3: Customize Model 204 PARMLIB Members .. 1-61
Step 4: Run the Model 204 Data Reduction .. 1-63
Step 5: Run the Model 204 Reports ... 1-63
The Network Subsystem ...1-64
Step 1: Allocate and Initialize the ONLINE and INDEX Data Sets1-64
Step 2: Register the VTAM APPLIDs ..1-64
Step 3: Customize the Network JCL ...1-66
Step 4: Customize Network PARMLIB Members1-67
Step 5: Run the Network Data Reduction ..1-69
Step 6: Run the Network Reports ..1-69

Upgrading CIMS Capacity Planner (Same Version)1-70
Installation Overview

The instructions in the Installing CIMS Capacity Planner section of this chapter are applicable if you are installing CIMS Capacity Planner for the first time or are upgrading to version 6.0 from an earlier version (5.1, 5.2, or 5.3).

If you are upgrading from version 5.x to version 6.0, note that the format of the ONLINE file has changed from BSAM to PDSE. CIMS Capacity Planner 6.0 includes new conversion utilities (see page 1-18) and current BSAM utilities that have been modified to support PDSE. Once the ONLINE file has been converted to PDSE, the procedures for data reduction and reporting are the same as those in the 5.x versions.

If you are upgrading from one genlevel release of CIMS Capacity Planner 6.0 to a new genlevel of 6.0, follow the instructions in Upgrading CIMS Capacity Planner (Same Version) on page 1-70.

Note • Each release of CIMS Capacity Planner is assigned a genlevel that specifies the product release date. A genlevel is assigned to new versions of CIMS Capacity Planner as well as to releases of the same version. To ensure that you always have access to the current CIMS Capacity Planner genlevel, CIMS Lab recommends that you install from the CIMS Lab Web site.

Installation Sources

You can install CIMS Capacity Planner from the following sources:

■ CIMS Lab Web site (http://www.cimslab.com)
■ CIMS Product CD
■ CIMS Product Tape

If you install from the product tape, the installation files are provided on the tape.

If you install from the CIMS Product CD or from the CIMS Lab Web site, the installation files are provided in the self-extracting cimscppr_<genlevel>.exe file. This file is located:

■ On the CIMS Product CD—in the CIMSCPPR folder.
■ On the CIMS Lab Web—on the Downloads » CIMS Capacity Planner page under CIMS Capacity Planner Product Downloads.

The cimscppr_<genlevel>.exe file contains a readme file. This readme file contains the same instructions as provided in Installing CIMS Capacity Planner on page 1-6. However, the readme file does not contain the instructions for installing the CIMS Capacity Planner subsystems. Installation instructions for these subsystems begin on page 1-23.
About Installing the Most Current Release

If you do not install or upgrade CIMS Capacity Planner in a timely manner after receiving the product, a new genlevel may be available from CIMS Lab. You can determine whether you have the latest CIMS Capacity Planner build by locating the latest genlevel release on the CIMS Lab Web site.

To locate the latest genlevel:

Go to the CIMS Lab Web site (http://www.cimslab.com). On the Downloads ▶ CIMS Capacity Planner page, look for the most current genlevel release under CIMS Capacity Planner Product Downloads.

You need to enter your CIMS Capacity Planner password to access the download page. Select the Save my key check box so that you won’t have to re-enter the key each time you access this page. If you have CIMS Capacity Planner installed, you can determine your current password from the CIMSNUMS member in the CPPR.CNTL library. If you do not have your password, contact CIMS Lab technical support (see page viii).

To determine the genlevel of your existing installation:

If you have CIMS Capacity Planner installed, edit the CIMSLEVL JCL member in CPPR.CNTL and submit it. The output in the CIMSPRNT DD will show the genlevel similar to the following:

```
V6.00                 The CIMS Capacity Planner
```

Program CPPRLEVL

CIMS Capacity Planner Version and Date: V6.00 2005/04/29

To determine whether any product updates are available:

Note that although you might have the correct genlevel installed, product updates that were added after the genlevel was created might be available. Go to the Downloads ▶ CIMS Capacity Planner page and look for updates listed under CIMS Capacity Planner Product Updates that have a date after the genlevel date. For more information about product updates, see Applying Product Updates on page 1-70.
Installing CIMS Capacity Planner

The instructions in this chapter are applicable if you are performing a new install of CIMS Capacity Planner or are upgrading to version 6.0 from an earlier version (5.1, 5.2, or 5.3).

If you are upgrading from one genlevel release of CIMS Capacity Planner 6.0 to a new genlevel of 6.0, follow the instructions in Upgrading CIMS Capacity Planner (Same Version) on page 1-70.

Step 1: Install the Files from the CIMS Product Tape, Product CD, or Web Site

The following sections provide the steps required to install the CIMS Capacity Planner files from the CIMS Product Tape or the CIMS Product CD or CIMS Lab Web Site.

When you have completed the applicable steps, continue to Step 2: Enter the CIMS Lab Password on page 1-12.

To Install from the CIMS Product Tape

CIMS Data Collector for Mainframe Systems and CIMS Capacity Planner are delivered on the same tape. CIMS Capacity Planner begins with data set 20 as shown in the following table.

<table>
<thead>
<tr>
<th>Data Set</th>
<th>DSNAME</th>
<th>Description</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>CPPR.INSTALL</td>
<td>Installation JCL</td>
<td>IEBGENER</td>
</tr>
<tr>
<td>21</td>
<td>CPPR.OBJECT</td>
<td>CIMS Capacity Planner object modules</td>
<td>IEBCOPY</td>
</tr>
<tr>
<td>22</td>
<td>CPPR.LOADLIB</td>
<td>CIMS Capacity Planner load modules</td>
<td>IEBCOPY</td>
</tr>
<tr>
<td>23</td>
<td>CPPR SOURCE</td>
<td>Source of tables</td>
<td>IEBCOPY</td>
</tr>
<tr>
<td>24</td>
<td>CPPR.PARMLIB</td>
<td>CIMS Capacity Planner parameters</td>
<td>IEBCOPY</td>
</tr>
<tr>
<td>25</td>
<td>CPPR.ICUFORMS</td>
<td>Format members for GDDM</td>
<td>IEBCOPY</td>
</tr>
<tr>
<td>26</td>
<td>CPPR.ICUDATA</td>
<td>Data members for GDDM</td>
<td>IEBCOPY</td>
</tr>
<tr>
<td>27</td>
<td>CPPR.CNTL</td>
<td>Sample JCL</td>
<td>IEBCOPY</td>
</tr>
<tr>
<td>28</td>
<td>CPPR.CPPRCLIB</td>
<td>ISPF/PDF CLIST library</td>
<td>IEBCOPY</td>
</tr>
<tr>
<td>29</td>
<td>CPPR.CPPRMLIB</td>
<td>ISPF/PDF message library</td>
<td>IEBCOPY</td>
</tr>
<tr>
<td>30</td>
<td>CPPR.CPPRPRLIB</td>
<td>ISPF/PDF panel library</td>
<td>IEBCOPY</td>
</tr>
<tr>
<td>31</td>
<td>CPPR.CPPRSLIB</td>
<td>ISPF/PDF skeleton library</td>
<td>IEBCOPY</td>
</tr>
<tr>
<td>32</td>
<td>CPPR.CPPRTLIB</td>
<td>ISPF/PDF tutorial library</td>
<td>IEBCOPY</td>
</tr>
<tr>
<td>33</td>
<td>CPPR.SCHEDLIB</td>
<td>Task schedule members</td>
<td>IEBCOPY</td>
</tr>
</tbody>
</table>
Installing CIMS Capacity Planner

Use the following JCL to copy the DSN=CPPR.INSTALL data set from the tape to an OS/390 library for modification. This data set is JCL that can be used to download the remaining information from the tape.

Replace the JOB statement and the &PREFIX in SYSUT2 to the statement and high-level qualifier, respectively, that are valid for your installation and then submit the job for execution.

Once you have copied CPPR.INSTALL to disk, follow these steps:

1. Use a text editor to replace the character string &PREFIX in all the JCL statements to the high-level qualifier for your CIMS Capacity Planner installation.

2. Substitute the Volume Serial Number of the volume on which you want to install the CIMS Capacity Planner data sets for the character string &VOL in all the JCL statements, and change the &UNIT parameter as required for the direct access storage device (DASD) unit name.

 When selecting a volume on which to install the data sets, consider that the libraries occupy slightly fewer than thirty cylinders of space on a 3390.

3. Add a JOB statement to the beginning of the job and submit the job for execution.

Excel Macro Support

The graphs generated by CIMS Capacity Planner can be viewed in a Microsoft Excel spreadsheet on a PC. A self-extracting executable file has been included in CPPR.CPPRTOOL. Use a binary transfer to send this file to a PC where it can be executed. Additional details can be found in the readme file that is included in CPPRTOOL.
Installing CIMS Capacity Planner

To Install from the CIMS Product CD or the CIMS Lab Web Site

Download the self-extracting file cimscppr_<genleveldate>.exe to extract files shown in the following table and then follow the steps on page 1-9. The file cimscppr_<genleveldate>.exe is located:

- On the CIMS Product CD—in the CIMSCPPR folder.
- On the CIMS Lab Web—on the Downloads » CIMS Capacity Planner page under CIMS Capacity Planner Product Downloads.

There are a total of fourteen files included in the executable. These files require approximately 28 MB of space. The .SEQ files are TSO transmitted sequential data sets.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNTL_<genleveldate>.SEQ</td>
<td>Sample JCL</td>
</tr>
<tr>
<td>CPPRLIB_<genleveldate>.SEQ</td>
<td>Combination of the ISPF/PDF CLIST, CPPRMLIB, CPPRPLIB, CPPRSLIB, CPPRCTLIB, and PARMLIB data sets</td>
</tr>
<tr>
<td>DISTLIB_<genleveldate>.SEQ</td>
<td>Combination of the CPPRCLIB, GENERIC, SASLIB, SCHEDLIB, SOURCE, SPECTRUM, and TANDEM files</td>
</tr>
<tr>
<td>ICUDATA_<genleveldate>.SEQ</td>
<td>GDDM data members</td>
</tr>
<tr>
<td>ICUFORMS_<genleveldate>.SEQ</td>
<td>GDDM format members</td>
</tr>
<tr>
<td>LINKJCL_<genleveldate>.SEQ</td>
<td>JCL and control members to build CIMS Capacity Planner load modules</td>
</tr>
<tr>
<td>OBJECT_<genleveldate>.SEQ</td>
<td>Object library containing modules that must be linked</td>
</tr>
<tr>
<td>README_<genleveldate>.TXT</td>
<td>Installation instructions.</td>
</tr>
<tr>
<td>ALLOC_<genleveldate>.JCL</td>
<td>A sample JCL member that allocates all the temporary install and permanent product libraries.</td>
</tr>
<tr>
<td>INSTJOBA_<genleveldate>.JCL</td>
<td>A sample JCL member that restores the data sets from the sequential files.</td>
</tr>
<tr>
<td>INSTJOBB_<genleveldate>.JCL</td>
<td>A sample JCL member that splits the combined PDS files, DISTLIB, into the permanent PDS files.</td>
</tr>
<tr>
<td>CPPRTOOL_<genleveldate>.EXE</td>
<td>CIMS Capacity Planner tools for the PC. Self-extracting executable that contains the Excel macro, Unpacker, and documentation. Execute this file and then follow the directions in the readme file that is included.</td>
</tr>
<tr>
<td>FtpCpprFiles.wsf</td>
<td>A Windows Script file that automates the loading of the .seq files to the mainframe.</td>
</tr>
<tr>
<td>FtpInstallFiles.bat</td>
<td>A Windows batch file that invokes the FtpCpprFiles.wsf script.</td>
</tr>
</tbody>
</table>
Installing CIMS Capacity Planner

1 Transfer the following files to a PDS on OS/390. Use the names INSTJOBA, INSTJOBB and ALLOC respectively.
 - INSTJOBA_<genleveldate>.JCL
 - INSTJOBB_<genleveldate>.JCL
 - ALLOC_<genleveldate>.JCL

Perform an ASCII transfer for the files:
 - Convert the data from ASCII to EBCDIC
 - Append CRLF (carriage return/line feed) sequences

The target data set should have the following data set attributes:

<table>
<thead>
<tr>
<th>Space Units:</th>
<th>BLKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLKS:</td>
<td>5 (primary), 2 (secondary)</td>
</tr>
<tr>
<td>DIRBLKS:</td>
<td>1</td>
</tr>
<tr>
<td>RECFM:</td>
<td>FB</td>
</tr>
<tr>
<td>LRECL:</td>
<td>80</td>
</tr>
<tr>
<td>BLKSIZE:</td>
<td>6160</td>
</tr>
<tr>
<td>DSORG:</td>
<td>PO</td>
</tr>
</tbody>
</table>

2 Modify the ALLOC JCL on OS/390.

This JCL will allocate the temporary sequential data sets (to be used in Step 4 on page 1-10) and also the product libraries. Edit the JCL and change the following to meet your installation requirements:

Edit the Jobcard

<table>
<thead>
<tr>
<th>&PREFIX</th>
<th>The high-level qualifier for your CIMS Capacity Planner installation</th>
</tr>
</thead>
<tbody>
<tr>
<td>&UNIT</td>
<td>The disk unit name for your site</td>
</tr>
<tr>
<td>&VOL</td>
<td>The volume for the CIMS data sets to reside on</td>
</tr>
<tr>
<td>&DELETE</td>
<td>LT to delete the sequential data sets</td>
</tr>
<tr>
<td></td>
<td>LE to bypass allocation of data sets</td>
</tr>
<tr>
<td>&ALLOC</td>
<td>LT to allocate the CIMS OS/390 install data sets</td>
</tr>
<tr>
<td></td>
<td>LE to bypass allocation of data sets</td>
</tr>
</tbody>
</table>

Note • Set &DELETE to LE and &ALLOC to LT the first time you run the ALLOC JCL.
3 Submit the **ALLOC JCL**.

The job should complete with a return code zero. Investigate any non-zero return code.

4 Transfer the files to sequential data sets on OS/390 as shown in the following table.

<table>
<thead>
<tr>
<th>Extracted Zip File</th>
<th>OS/390 Name Data Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNTL_<genleveldate>.SEQ</td>
<td>PREFIX.CNTL.SEQ</td>
</tr>
<tr>
<td>CPPRLIB_<genleveldate>.SEQ</td>
<td>PREFIX.CPPRLIB.SEQ</td>
</tr>
<tr>
<td>DISTLIB_<genleveldate>.SEQ</td>
<td>PREFIX.DISTLIB.SEQ</td>
</tr>
<tr>
<td>ICUFORMS_<genleveldate>.SEQ</td>
<td>PREFIX.ICUFORMS.SEQ</td>
</tr>
<tr>
<td>ICUDATA_<genleveldate>.SEQ</td>
<td>PREFIX.ICUDATA.SEQ</td>
</tr>
<tr>
<td>LINKJCL_<genleveldate>.SEQ</td>
<td>PREFIX.LINKJCL.SEQ</td>
</tr>
<tr>
<td>OBJECT_<genleveldate>.SEQ</td>
<td>PREFIX.OBJECT.SEQ</td>
</tr>
</tbody>
</table>

Where **PREFIX** = high-level data set qualifier for your CIMS Capacity Planner installation.

Perform a binary transfer for the files:

- DO NOT convert the data from ASCII to EBCDIC
- DO NOT append CRLF (carriage return/line feed) sequences

The target data sets were built in **Step 3**.

There is a Windows Script file and batch file that you can use to transfer the files. From the command prompt, execute the script `FtpInstallFiles.bat`. There are four parameters for this batch script. You will be prompted to enter any parameters that you do not include. The output from the transfer process is written in the command window and also to the file `FtpCpprFiles_Report.txt`.

The format for executing the `FtpInstallFiles.bat` script is:

```
FtpInstallFiles server|IP address hlq userid password
```

Where:

- **server|IP address** = the mainframe server name or IP address
- **hlq** = the hlq from **Step 2** on page 1-9.
- **userid** = the mainframe user ID used for FTP sign on
- **password** = the password for the user ID
5 Modify the **INSTJOBA** JCL on OS/390.

This JCL will restore the TSO Transmitted sequential data sets to partitioned data sets (PDS).

Edit the JCL and change the following to meet your installation requirements:

<table>
<thead>
<tr>
<th>Edit the Jobcard</th>
</tr>
</thead>
<tbody>
<tr>
<td>&USER</td>
</tr>
<tr>
<td>&PREFIX</td>
</tr>
</tbody>
</table>

6 Submit the **INSTJOBA** JCL.

The job should complete with a return code zero. Investigate any non-zero return code.

7 Modify the **INSTJOBB** JCL on OS/390.

This JCL will build additional PDS files. Two of the TSO Transmitted sequential data sets contain the members from several PDS files. This job will separate these combined files into the appropriate PDS.

Edit the JCL and change the following to meet your installation requirements:

<table>
<thead>
<tr>
<th>Edit the Jobcard</th>
</tr>
</thead>
<tbody>
<tr>
<td>&PREFIX</td>
</tr>
</tbody>
</table>

8 Submit the **INSTJOBB** JCL.

The job should complete with a return code zero. Investigate any non-zero return code.

9 Modify the **INSTDELE** JCL in CPPR.CNTL.

This JCL will delete the temporary libraries used during the Web install.

Edit the JCL and change the following to meet your installation requirements:

<table>
<thead>
<tr>
<th>Edit the Jobcard</th>
</tr>
</thead>
<tbody>
<tr>
<td>&PREFIX</td>
</tr>
</tbody>
</table>

10 Submit the **INSTDELE** JCL.

The job should complete with a return code zero. Investigate any non-zero return code.
Installing CIMS Capacity Planner

11 Customize the Link procedure.

The executable load modules must be built using the linkage editor. The
&PREFIX.V600.LINKJCL library contains all the JCL needed to build the executable
modules. The LINKPROC member is a procedure that is called by the two JCLs, INSTJOB1
and INSTJOB2. Edit LINKPROC and update the &PREFIX to match the high-level qualifier
used for your CIMS Capacity Planner installation.

12 Modify the INSTJOB1 JCL on OS/390 in DSN=&PREFIX.V600.LINKJCL.

This JCL will build half of the executable load modules.

Edit the JCL and change the following to meet your installation requirements:

<table>
<thead>
<tr>
<th>Edit the Jobcard</th>
</tr>
</thead>
<tbody>
<tr>
<td>JCLLIB ORDER (...) must point to &PREFIX.V600.LINKJCL</td>
</tr>
</tbody>
</table>

13 Submit the INSTJOB1 JCL.

The job should complete with a return code zero. Investigate any non-zero return
code.

14 Modify the INSTJOB2 JCL on OS/390 in DSN=&PREFIX.V600.LINKJCL.

This JCL will build the remaining executable load modules.

Edit the JCL and change the following to meet your installation requirements:

<table>
<thead>
<tr>
<th>Edit the Jobcard</th>
</tr>
</thead>
<tbody>
<tr>
<td>JCLLIB ORDER (...) must point to &PREFIX.V600.LINKJCL</td>
</tr>
</tbody>
</table>

15 Submit the INSTJOB2 JCL.

The job should complete with a return code zero. Investigate any non-zero return
code.

Step 2: Enter the CIMS Lab Password

CIMS Capacity Planner requires that you enter a password in the CIMSNUM member in
CPPR.CNTL. If you do not have your password, contact CIMS Lab technical support (see
page viii).

Step 3: Make Modifications for the SMS-managed DASD and the
DASM Subsystem (If Required)

Most organizations use DCOLLECT to provide input to the DASM subsystem. In the rare
case where DCOLLECT is not being used to build DASM tables, the LOADLIB must be
APF-authorized.
Step 4: Allocate and Initialize the Data Sets (DUTLINIT)

This section describes the CPPR.CPPRERT, CPPR.HGDLIB, and CPPR.LNGVLIB data sets and provides the steps required to customize and run the DUTLINIT JCL member that allocates and initializes these data sets. The DUTLINIT member is in CPPR.CNTL.

Element Registration Table Data Set (CPPRERT)

CIMS Capacity Planner uses control data contained in an Element Registration Table to keep track of the various tables contained in the Performance Database (see ONLINE Data Set on page 1-20 for a description of this database). Prior to performing any data reduction or reporting, each CPU, SMF System ID (SID), and major subsystem region must be registered in the CPPRERT data set. The various SMF SIDs are added to the data set by running the Enroll program (SSA1NR0L). CIMS Capacity Planner does not process data for unregistered systems.

The normal space allocation for the CPPRERT data set is 2 tracks of 3390 with a secondary allocation of 1 track.

Harvard Graphics Interface Data Set (HGDLIB)

HGDLIB is a PDS used to store the graphics data to be downloaded to the PC-based Presentation Graphics system (Harvard Graphics).

Customize the DUTLINIT Member

To customize DUTLINIT:

1. Change &PREFIX to the high-level qualifier for your CIMS Capacity Planner installation.
2. Change &VOLUME to the VOLSER chosen to hold the Workload files.
3. Change the UNIT=SYSDA as necessary.
4. Replace the JOB statement with a one that is valid for your installation and submit the job for execution.

To view the DUTLINIT JCL, see DUTLINIT on page A-56.
Step 5: Set Global Parameters (If Required)

CIMS Capacity Planner is distributed with the GLOBAL member in CPPR.PARMLIB. You can edit and save this member to reflect the local options for your installation.

The parameters that can be specified in this member are:

- **TITLE**

 The TITLE parameter specifies the title that will appear at the top of all CIMS Capacity Planner system reports. The format of this parameter is:

 \[\text{TITLE} = \text{Any combination of up to 60 characters, including blanks.}\]

 The default is:

 \[\text{TITLE} = \text{XYZ CORPORATE DATA CENTER}\]

- **PRIME SHIFT FIRST HOUR**

 This parameter specifies the beginning of the prime shift for reporting purposes. The format of this parameter is:

 \[\text{PRIME SHIFT FIRST HOUR} = hh, \text{ where } hh \text{ is the hour that the prime shift begins based upon a 24 hour clock.}\]

 The default is:

 \[\text{PRIME SHIFT FIRST HOUR} = 7\]

- **LATE SHIFT FIRST HOUR**

 This parameter specifies the beginning of the late shift for reporting purposes. The format of this parameter is:

 \[\text{LATE SHIFT FIRST HOUR} = hh, \text{ where } hh \text{ is the hour that the prime shift begins based upon a 24 hour clock.}\]

 The default is:

 \[\text{LATE SHIFT FIRST HOUR} = 17\]

- **LOCAL HOLIDAYS=EXCLUDE**

 This parameter specifies that the holidays set in the HOLIDAYS member of the CPPR.PARMLIB data set are excluded from processing that uses the global parameters. By default, this parameter is commented and local holidays are not excluded. If you want to exclude local holidays, uncomment this parameter.
WEEKS TO KEEP ONLINE

The WEEKS TO KEEP ONLINE parameter specifies to the Archive program how many weeks of data to keep in the Performance Database (see ONLINE Data Set on page 1-20 for a description of this database). When the Archive program is executed, it off-loads all the tables earlier than the specified number of weeks into the HISTORY file. The format of this parameter is:

WEEKS TO KEEP ONLINE=nn, where nn is the number of weeks.

The default is:
WEEKS TO KEEP ONLINE=4

SUPPRESS WTO MESSAGES=YES

Certain modules write informational messages to the operator console so that the messages appear in the JCL listings. By default, this parameter is commented and WTO messages are not suppressed. If you want to suppress WTO messages, uncomment this parameter.

HGDLIB YEAR EXPANSION=YES

The PC graphing capability in CIMS Capacity Planner generates files for graphing software. The files generated might contain a year. This parameter specifies that a full four-digit year should be placed in these files.

By default, this parameter is commented and a two-digit year is written to these files. If you want to use a four-digit year, uncomment this parameter.

NO HGDLIB SKIPS=YES

The PC graphing capability generates files for graphing software using an x- and y-axis. By default, this parameter is commented and every other label is skipped when more than 13 rows of data exist. If you do not want to skip labels, uncomment this parameter.

NO HGDLIB NULLS=YES

The PC graphing capability generates files for graphing software. Occurrences of 00 and .00 can be controlled by this parameter.

By default, this parameter is commented and all 00 and .00 are replaced with NULLS (blanks). To prevent this conversion, uncomment this parameter.

TRANSLATE COMMAS TO SEMICOLONS=NO

This parameter applies only when GEOGRAPHIC LOCATION=EUROPE and a PC graphing file is created. The comma used to separate fields is automatically converted to a semicolon for geographic locations in Europe. By default, this parameter is commented and commas are translated to semicolons. If you do not want this conversion to take place, uncomment this parameter.
Step 6: Enable the Use of the ISPF/PDF Interface

The ISPF/PDF interface simplifies the task of invoking many of the reporting facilities of CIMS Capacity Planner. To use the ISPF interface, concatenate `CPPR.CPPRCLIB` with the other CLIST libraries. You can do this dynamically through a separate CLIST (see the ALOCCPPR member in `CPPR.CPPRCLIB` for an example), or you can add the `&PREFIX.CPPR.CPPRCLIB` to the SYSPROC concatenation in your TSO LOGON procedure. The LIBDEF facility is used to dynamically concatenate the Panel libraries, the Tutorial libraries, the Skeleton libraries, and the Message libraries to the standard ISPF/PDF libraries.

Step 7: Customize the CPPR ISPF/PDF Data Sets

You must customize the CIMS Capacity Planner ISPF/PDF data sets to conform to the standards of the installation.

CPPRCLIB

Change the `&PREFIX` in the `CPPR` member to the high-level qualifier for your CIMS Capacity Planner installation.

CPPRPLIB

If your site has its own standards regarding the layout of ISPF/PDF panels, you can modify the panels.

CPPRMLIB

If your site has its own standards regarding the layout of ISPF/PDF messages, you can change the distributed message formats.

Note • If your site does not allow the allocation of a permanent data set to an esoteric unit name of `SYSDA`. In this situation, the following `CPPR.CPPRMLIB` members need to be modified: DCAFSTAT, DCAFST81, DCAFSUMM, DCAFSSU80, DCAFSSU81, DCAFACL, DCAFTRND, DCAFUTIL, DCAFVT01, DCAFVT02, DCAFVT03, DCAFVT04, DCAFVT05, DCAFVT0C and DCAFXCPT. In each of these members, change `SYSDA` to an acceptable esoteric unit name.
Step 8: Enter Information in the ISPF/PDF Setup Panel

The first time you enter the CIMS Capacity Planner ISPF/PDF interface, the Setup Panel (option 0) is displayed. At this time you must enter the data set information as required, along with printer information and a legitimate job card. The first panel lets you enter the data set names for LOADLIB, CPPRERT, HGDLIB, LNGVLIB, and SCHEDLIB. These data sets have already been allocated and built in Step 1: Install the Files from the CIMS Product Tape, Product CD, or Web Site on page 1-6.

The second panel lets you specify Graphical Data Display Manager (GDDM) libraries along with the Prime Shift definition for the local installation. If your installation does not use GDDM, you can enter (NONE) in place of the GDDM data set names.

All of these values are saved in your ISPF profile when you log off from your TSO session.

Step 9: Enable the Use of the ISPF/PDF GDDM Graphics Interface (If Required)

An ISPF/PDF interface to GDDM lets you view several different graphs related to the Workload and the other Subsystems online using data from the Performance Database (see ONLINE Data Set on page 1-20 for a description of this database).

Preparing to Use the Graphics Interface

To use the Graphics Interface, you must have the following:

- **Appropriate Graphics Terminal Access.** You must have access to a graphics terminal that supports the “Write Structured Field” feature in order to view the graphs.

- **GDDM Software License.** The installation must be licensed to use GDDM and GDDM/PGF from IBM. The CIMS Capacity Planner communicates directly with GDDM through the ICU interface, which is an integral part of GDDM/PGF as of version 2.1.1.

- **Library Access Through TSO.** The GDDM load modules must be accessible through the user’s TSO LOGON PROC. In addition, the GDDM symbol library must be available through the user’s TSO LOGON PROC.

- **Sufficient Storage Allocation.** The region size for the TSO session must be of sufficient size to accommodate the CIMS Capacity Planner tables. A SIZE(5000) should be sufficient, depending on the local environment.

- **Specified Library Names.** You must use the setup panel (option O) the first time through to specify the data set names for the CPPR.ICUFORMS and CPPR.ICUDATA data sets used by the GDDM facility. The data set names are recorded in the user’s ISPF Profile, so they need not be re-specified unless they change.
Installing CIMS Capacity Planner: Converting the ONLINE File from BSAM to PDSE (5.x to 6.0 Upgrades Only)

ISPF/PDF Specific Subsystem Initialization Instructions

You should not use the remainder of the ISPF/PDF options at this time because the Performance Database for each of the subsystems has not yet been allocated. (See ONLINE Data Set on page 1-20 for a description of the Performance Database).

Converting the ONLINE File from BSAM to PDSE (5.x to 6.0 Upgrades Only)

To convert to CIMS Capacity Planner 6.0 from version 5.x, you must use the SSA1CNVT utility to convert the Performance Databases in the ONLINE file from BSAM to PDSE. The following example JCL converts the WKLD Performance Database from a BSAM format to a PDSE format. The JCL is distributed in member DUTLCNVT in the CNTL library.

```
//SSACPPR  JOB (...),'SSA',CLASS=A,MSGCLASS=X
/*JOBPARM S=*
//* THIS JOB CONVERTS A BSAM PDB TO ITS PDSE EQUIVALENT
//* IT MUST BE USED FOR EACH PERFORMANCE DATABASE BEFORE
//* MOVING TO VERSION 6.00 OF CPPR
/*
//* THE EXAMPLE SHOWN IS FOR THE WORKLOAD PDB
/*
//* THE EXAMPLE REUSES THE INDEX.WKLD DATASET
/*
//* AFTER THE CONVERSION IS SUCCESSFUL, IT IS A GOOD IDEA TO RENAME
//* THE PDSE VERSION OF THE ONLINE FILE SO PRODUCTION JCL CHANGES
//* ARE NOT REQUIRED
/*
/*
//************************************************************
//* ALLOCATE THE WKLD PDSE DATASET
//************************************************************
//ST0 EXEC PGM=IEFBR14
//DD01 DD DSN=&PREFIX.CPPR.Vnnn.PDSE.ONLINE.WKLD,
//Disp=(,CATLG),
//DSNTYPE=LIBRARY,
//Space=(CYL,(90,30,1000)),UNIT=SYSDA,VOL=SER=&VOLUME
//************************************************************
//* CONVERT THE WKLD PDSE DATABASE
//************************************************************
//ST1 EXEC PGM=SSA1LOAD,REGION=OM
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,Disp=SHR
```
Installing CIMS Capacity Planner

Converting the ONLINE File from BSAM to PDSE (5.x to 6.0 Upgrades Only)

Converting a PDSE Performance Database Back to BSAM

For CIMS Capacity Planner version 6.0 and later, you can use the SSA1UNLD utility to unload a PDSE Performance Database to a flat file. This flat file may be used to load a BSAM Performance Database if you want to use a 5.x version of CIMS Capacity Planner.

The following JCL unloads the PDSE Performance Database to a flat file. The JCL is distributed in the CNTL library under member name DUTLUNLD.

```plaintext
//SSACPPR JOB (...),'SSA',CLASS=A,MSGCLASS=X /*JOBPARM S=* //ST1 EXEC PGM=SSA1UNLD,REGION=0M /* THIS JOB UNLOADS A PDSE PDB TO A FLAT FILE /* IF THE USER EVER NEEDS TO REVERT TO A PREVIOUS RELEASE OF CPPR //STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR //CPPRPARM DD DSN=&PREFIX.CPPR.Vnnn.PARMLIB,DISP=SHR //SYSNAP DD SYSOUT=* //SYSUDUMP DD SYSOUT=* //PDSEUNLD DD DISP=(,CATLG),UNIT=SYSDA,SPACE=(CYL,(1000,100)),DSN=&PREFIX.CPPR.Vnnn.UNLOAD //INDEX DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.INDEX.WKLD //ONLINE DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.ONLINE.WKLD //CPPRERT DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.CPPRERT //CIMSPASS DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.CNTL(CIMSNUM)```

About Installing CIMS Capacity Planner Subsystems

This section provides installation steps and information that is applicable to all CIMS Capacity Planner subsystems. Subsystem-specific installation steps begin with Installing the Workload Subsystem on page 1-23.

Allocating and Initializing the ONLINE and INDEX Data Sets

The first step in installing a CIMS Capacity Planner subsystem is to allocate and initialize the ONLINE and INDEX data sets. The CPPR.CNTL data set contains JCL members that perform this step.

This section describes the ONLINE and INDEX data sets and provides the steps required to customize and run the initialization JCL.

ONLINE Data Set

The ONLINE data set contains the Performance Database, which consists of the historical data collected by the subsystem data collection program in the form of tables. Although logically there could be a single ONLINE data set, most users keep a number of individual ONLINE/INDEX data set pairs (i.e., one set for each subsystem) to optimize the data reduction process.

During data reduction, tables that are being modified are moved to the SYSUT3 data set prior to being changed. All changes, including the addition of new tables, are made in the SYSUT3 data set. When the data reduction process has concluded, the tables that have been updated or added are migrated back to the ONLINE data set. This approach has the following advantages:

- The ONLINE data set is available to reporting programs during data reduction because the original (pre-data reduction) form of each table is preserved until the SYSUT3 tables are migrated back to the ONLINE data set.

- If the data reduction program terminates abnormally, none of the tables in the ONLINE data set need to be refreshed. The exception is if the migration to the ONLINE data set was in process when the ABEND occurred.

- The integrity of the ONLINE data set is only in question during a relatively short period of time during the migration of the tables that have been updated or added. Once the migration process has completed successfully, the entire ONLINE data set reflects the updated state.
The space requirements for the ONLINE data set vary from one data center to another. The following are the estimated space requirements for each month of data.

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Space Requirements Per Month</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload</td>
<td>45 cylinders of 3390 for each system being measured&lt;br&gt;5 cylinders of 3390 for each Batch Window to be analyzed</td>
</tr>
<tr>
<td>DASM</td>
<td>5 cylinders of 3390 for each 100 DASD Volumes in the DASD farm</td>
</tr>
<tr>
<td>CICS</td>
<td>90 cylinders of 3390 per region</td>
</tr>
<tr>
<td>IDMS</td>
<td>90 cylinders of 3390 per CV</td>
</tr>
<tr>
<td>IMS</td>
<td>90 cylinders of 3390 per system</td>
</tr>
<tr>
<td>DB2</td>
<td>90 cylinders of 3390 per connect name</td>
</tr>
<tr>
<td>Model 204</td>
<td>90 cylinders of 3390 per system</td>
</tr>
<tr>
<td>Network</td>
<td>90 cylinders of 3390 VTAM APPLID</td>
</tr>
</tbody>
</table>

**INDEX Data Set**

An index is provided to eliminate the need to search through the Performance Database during report preparation. The normal allocation for the INDEX data set is 2 tracks of 3390 with a secondary allocation of 1 track.

**Customizing the Initialization Members**

The following table shows each subsystem and the correlating JCL member used for allocating and initializing the ONLINE and INDEX data sets. This table also provides the section in *Appendix A, Control Library JCL Examples* in which you can view the JCL.

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Allocation &amp; Initialization JCL Member</th>
<th>JCL Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload</td>
<td>CNTL.DWKLINIT</td>
<td>DWKLINIT on page A-57</td>
</tr>
<tr>
<td>DASM</td>
<td>CNTL.DASMINIT</td>
<td>DASMINIT on page A-21</td>
</tr>
<tr>
<td>CICS</td>
<td>CNTL.DCICINIT</td>
<td>DCICINIT on page A-22</td>
</tr>
<tr>
<td>IDMS</td>
<td>CNTL.DIDMINIT</td>
<td>DIDMINIT on page A-37</td>
</tr>
<tr>
<td>IMS</td>
<td>CNTL.DIMSINIT</td>
<td>DIMSINIT on page A-45</td>
</tr>
<tr>
<td>DB2</td>
<td>CNTL.DDB2INIT</td>
<td>DDB2INIT on page A-32</td>
</tr>
<tr>
<td>Model 204</td>
<td>CNTL.D204INIT</td>
<td>D204INIT on page A-16</td>
</tr>
<tr>
<td>Network</td>
<td>CNTL.DNETINIT</td>
<td>DNETINIT on page A-52</td>
</tr>
</tbody>
</table>
To customize the member:

1. Change &PREFIX to the high-level qualifier for your CIMS Capacity Planner installation.
2. Change &VOLUME to the VOLSER of the device you have chosen to hold the ONLINE data set and its INDEX.
3. Change the UNIT=SYSDA parameter as appropriate.
4. Adjust the SPACE allocation parameters as required.
5. Replace the JOB statement with a one that is valid for your installation and submit the job for execution.

Naming Conventions for Customized Data Set Members

CIMS Lab provides many sample data set members that you can copy and customize for your site. If the name of the new member contains the SMF SID, the following rules apply:

- If the SMF SID begins with a numeric character, you need to substitute an alphabetic character for the first character as follows:

  - 0=A, 1=B, 2=C, 3=D, 4=E, 5=F, 6=G, 7=H, 8=I, 9=J

  This substitution ensures that the member has a valid member name.

- If the SMF SID is less than four characters, you must use a # character as a padding character so that the SMF SID in the member name is exactly four characters long.

For example, if the SMF SID is 123, and you are copying the sample CPPROSNX member, which requires that you replace CPPR with the SMF SID, the new member name would be B23#DSNX.

The SMF SIDs are specified in SYS1.PARMLIB in member SMFPRMxx, where xx is either 00 or the operand supplied in the IPL parameter SYSP=xx.
Installing the Workload Subsystem

Installing the CIMS Capacity Planner Workload subsystem consists of allocating and initializing the required disk space, enrolling the various SMF systems, customizing JCL, creating a local parameter member in CPPR.PARMLIB, and running the data reduction and reporting jobs.

Each of the required steps is described in the following sections.

Step 1: Allocate and Initialize the Data Sets

See Allocating and Initializing the ONLINE and INDEX Data Sets on page 1-20.

Step 2: Register the SMF System IDs in the Data Center

After the ONLINE data sets have been allocated, you must register each SMF SID for which SMF/RMF data should be processed. This is a straightforward procedure and requires only that you run the Enroll program (SSA1NROL). You can register a maximum of five SMF SIDs in a single execution. If you must register more than five SMF SIDs, then multiple executions of SSA1NROL are required.

Customize the DWKLNROL Member

The CPPR.CNTL data set contains the DWKLNROL member that executes the SSA1NROL program. To customize DWKLNROL:

1. Change &PREFIX to the high-level qualifier for your CIMS Capacity Planner installation.

2. Modify the list of SMF SIDs specified by the SELECTED SYSTEM= parameter to include all SIDs that apply (up to a maximum of five).

3. Replace the JOB statement with a one that is valid for your installation and submit the job for execution.

To view the DWKLNROL JCL, see DWKLNROL on page A-58.

Step 3: Set the Local Parameters (If Required)

There are a number of parameters that control the execution of CIMS Capacity Planner from the data reduction through the reporting phases.

Parameters can be provided in the following ways:

- Through the GLOBAL member in CPPR.PARMLIB (see Step 5: Set Global Parameters (If Required) on page 1-14).

In this manner, the parameter applies to all executions of any programs in the CIMS Capacity Planner system that include a CPPRPARM DD statement.
Installing CIMS Capacity Planner

Installing the Workload Subsystem

Through SYSIN input to the job step being executed.

Parameters supplied via SYSIN apply only to a single execution of the program, whether or not the CPPRPARM DD statement is included. Parameters provided through SYSIN override the corresponding GLOBAL parameters.

Through a local member in CPPR.PARMLIB.

Local members are associated with a single SMF SID. The local member supplies the same parameters as the GLOBAL member, but only when processing the specific system specified by the SMF SID. The SMF SIDs are specified in the SYS1.PARMLIB data set in member SMFPRMxx, where xx is either 00 or the operand supplied in the IPL parameter SYSP=xx.

Parameters specified in a local member override parameters specified in the GLOBAL member so that parameters common to all systems can be specified in the GLOBAL member while parameters specific to any individual system can be specified in the local member.

Local parameters override SYSIN parameters and GLOBAL parameters. Therefore, parameters specified in local member cannot be overridden.

You can use the sample CPPR member in CPPR.PARMLIB as a template to create your own local member(s). The following sections provide the steps required to create a customized local member.

Creating the Local Member

1. Copy and rename the sample CPPR member (i.e., PARMLIB(CPPR) to PARMLIB(&sid) where &sid is the SMF SID of the system being processed. If the SMF SID begins with a numeric character or is less than four digits, use the naming convention specified in Naming Conventions for Customized Data Set Members on page 1-22.

   If you are reporting on more than a single SMF SID, multiple local members are required, one for each unique SMF SID.

2. After copying the CPPR member, customize the parameters (see Parameters and Default Values in the Local Member on page 1-25).
Parameters and Default Values in the Local Member

The parameters that can be specified in the CIMS Capacity Planner local member are:

- **BATCHPGN**

  The **BATCHPGN** parameter specifies the System Resource Manager (SRM) performance groups under which the Batch Workload is processed. The format of this parameter is:

  \[ \text{BATCHPGN} = nn,nn... \]  
  \text{(up to 16 performance group numbers [PGNs] separated by commas)}

  The default is:  
  **BATCHPGN=1**

- **BATCHTAG**

  The **BATCHTAG** parameter specifies the label that is to be associated with the Batch elements in the Summary Report and the Ratio Graphs. This label may contain a maximum of eight characters. The format of this parameter is:

  \[ \text{BATCHTAG} = \text{label} \]

  The default is:  
  **BATCHTAG=BATCH**

- **TSOPGN**

  The **TSOPGN** parameter specifies the SRM performance groups under which TSO is run. The format of this parameter is:

  \[ \text{TSOPGN} = nn,nn,nn... \]  
  \text{(up to 16 PGNs separated by commas)}

  The default is:  
  **TSOPGN=2**

- **TSOTAG**

  The **TSOTAG** parameter specifies the label that is to be associated with the TSO elements in the Summary Reports and Ratio Graphs. The label can contain a maximum of eight characters. The format of this parameter is:

  **TSOTAG=TSO**
Installing CIMS Capacity Planner

Installing the Workload Subsystem

- **ONLINEPGN**

  The `ONLINEPGN` parameter specifies the SRM performance groups under which *online* tasks are run. The format of this parameter is:

  `ONLINEPGN=nn,nn,nn...` *(up to 16 PGNs separated by commas)*

  The default is:

  `ONLINEPGN=21`

- **ONLINETAG**

  The `ONLINETAG` parameter specifies the label that is to be associated with the *online* elements in the Summary Reports and Ratio Graphs. The label can contain a maximum of eight characters. The format of this parameter is:

  `ONLINETAG=label`

  The default is:

  `ONLINETAG=ONLINE`

- **DATABASEPGN**

  The `DATABASEPGN` parameter is used to specify the SRM performance groups under which database tasks are run. The format of this parameter is:

  `DATABASEPGN=nn,nn,nn...` *(up to 16 PGNs separated by commas)*

  The default is:

  `DATABASEPGN=31,32`

- **DATABASETAG**

  The `DATABASETAG` parameter specifies the label that is to be associated with the Database elements in the Summary Reports and Ratio Graphs. The label can contain a maximum of eight characters. The format of this parameter is:

  `DATABASETAG=label`

  The default is:

  `DATABASETAG=DATABASE`

- **NETWORKPGN**

  The `NETWORKPGN` parameter specifies the SRM performance groups under which Network tasks such as VTAM are run. The format of this parameter is:

  `NETWORKPGN=nn,nn,nn...` *(up to 16 PGNs separated by commas)*

  The default is:

  `NETWORKPGN=51`
■ NETWORKTAG

The NETWORKTAG parameter specifies the label that is to be associated with the Network elements in the Summary Reports and Ratio Graphs. The label can contain a maximum of eight characters. The format of this parameter is:

```
NETWORKTAG=label
```

The default is:

```
NETWORKTAG=NETWORK
```

■ O/STAG

The O/STAG parameter specifies the label that is to be associated with the Operating System elements in the Summary Reports and Ratio Graphs. The label can contain a maximum of eight characters. The format of this parameter is:

```
O/STAG=label
```

The default is:

```
OSTAG=O/S
```

■ STCTAG

The STCTAG parameter specifies the label that is to be associated with the Started Task elements in the Summary Reports and Ratio Graphs. The label can be of up to a maximum of eight characters. The format of this parameter is:

```
STCTAG=label
```

The default is:

```
STCTAG=STC
```

**Specifying Performance Group Numbers**

The types of work being run under each of the performance groups can be determined by viewing the IEAICSxx member in SYS1.PARMLIB. The PGNs of each type of work (BATCH, TSO, etc.) should be entered in place of the sample parameter values.

**WARNING** • Do not enter any given PGN under more than one PGN classification. For example, a PGN should not be specified as both a BATCHPGN and an ONLINENPGN. The parameters become effective at the time they are saved to CPPR.PARMLIB.

**Specifying Performance Group Labels**

The performance group labels are used as constants by several reporting programs. If the values supplied from the sample local member CPPR are sufficient, no changes are necessary. If you choose to change the labels, replace the sample names with the names that you select (labels are limited to a maximum length of eight characters). The labels become effective at the time they are “saved” to the CPPR.PARMLIB data set. The labels can be changed at any time with no affect upon the data contained in the Performance Database.
**Step 4: Specify Additional Record Types (If Required)**

In general, CIMS Capacity Planner requires no more system data than you would collect on a regular basis (RMF records, SMF records, CICS Monitor Facility records, IMS Logs, etc.). If additional record types are needed, you can specify addition record types using the members discussed in the following sections.

**Collecting SMF Records**

The collection of SMF records is controlled by `SYS1.PARMLIB` member `SMFPRMxx`, where `xx` is either 00 or the operand supplied in the IPL parameter `SYSP=xx`. The CIMS Capacity Planner system requires the following SMF record types:

- Type 00 (IPL Record)
- Type 06 (JESx Printer Record)
- Type 14 (QSAM Input Data Set CLOSE Record)
- Type 15 (QSAM Output Data Set CLOSE Record)
- Type 17 (DADSM DELETE Record)
- Type 18 (DADSM RENAME Record)
- Type 21 (Tape Error Statistics by Volume Record)
- Type 30 (JOB/Step Statistics Record - Interval Accounting records are highly desirable)
- Type 32 (TSO/E Command Statistics Record)
- Type 64 (VSAM CLOSE Statistics)

**Collecting RMF Records**

The collection of RMF records is controlled by `SYS1.PARMLIB` member `ERBRMFxx`. The CIMS Capacity Planner system requires the following RMF Record Types:

- Type 70 (CPU Utilization Record)
- Type 71 (Paging Activity Record)
- Type 72 (Workload Record)
- Type 73 (Channel Activity Record)
- Type 74 (Device Activity Record)
- Type 75 (Page/Swap Data Set Activity Record)
- Type 77 (ENQ Conflict Record)
Unloading SMF Clusters

Although most sites already have procedures in place to unload their SMF clusters, a sample procedure is included in the SMFDUMP member in CPPR.JCL.CNTL.

You should examine the JCL provided in SMFDUMP for a suggested method to include the workload data reduction phase into the normal SMF cluster unload procedure.

The first step of the procedure unloads the SMF cluster into a work data set. The second step copies the SMF data from the work file to a generation data group as is the normal procedure. The third step executes the CIMS Capacity Planner workload data reduction program using the SMF data contained in the work file as input. The fourth step deallocates the work file.

Step 5: Run the Workload Data Reduction

To run the Workload data reduction, edit the DWKLPROD member in CPPR.CNTL as follows:

1. Change &PREFIX to the high-level qualifier for your CIMS Capacity Planner installation.
2. Change the DSN in the SYSUT1 DD statement to refer to the SMF data to be processed.
3. Change the UNIT=SYSDA parameter, if required.
4. If you are using TMON/OS/390 data in place of RMF, the following statements must be included in the SYSIN parameters:
   
   RMF RECORDS=EXCLUDE
   SMFILE=TMVS

5. If you are using input from the VM Monitor, you must include the following SYSIN parameter:
   
   SMFILE=VMON

6. Replace the JOB statement with a one that is valid for your installation and submit the job for execution.

To view the DWKLPROD JCL, see DWKLPROD on page A-59.

Step 6: Run the Workload Reports

To run workload reports, edit the DWKLREPT member in CPPR.CNTL as follows:

1. Change &PREFIX to the high-level qualifier for your CIMS Capacity Planner installation.
2. Modify the BEGIN DATE and END DATE.
3. Substitute meaningful DSNAME= and VOLSER= arguments under the DSNAME DETAIL REPORT=YES parameter, or change the three lines related to the DSNAME DETAIL REPORT to comments by inserting an asterisk (*) in the first character in each statement.
4 If you are not running ESA, comment out or delete the parameters referring to the ESA Reports.

5 Replace the JOB statement with a one that is valid for your installation and submit the job for execution.

To view the DWKLREPT JCL, see DWKLREPT on page A-61.

**MVS 5.x Goal Mode Support**

If you are running MVS 5.x in Goal Mode, several changes to the installation instructions are necessary. These changes are:

- MVS 5.x Goal Mode does not use the IEAICSxx or IEAIPSxx members of SYS1.PARMLIB. Rather an entirely new set of files have been devised primarily to provide support for the parallel sysplex. These files are collectively known as the Coupling Data Sets. The Workload Manager uses the WLM Couple Data Set to associate Service Class names with specific performance goals. This process is best described in the IBM manual entitled MVS/ESA SP V5 Planning: Workload Management, and you should refer to that manual for more information.

- PGNs are no longer supported in MVS 5.x Goal Mode. They have been functionally replaced by Service Class Names. Levels of service from the RMF type 72 record (workload) now refer to Service Class Names rather than PGNs. It is therefore necessary to accommodate this change with an entirely new approach to categorizing workloads. At the same time an attempt has been made to ensure backward compatibility with past history by creating a structure that handles both cases.

- The local member in CPPR.PARMLIB still contains an association between PGNs and workload categories. In the case of MVS 5.x Goal Mode, however, these PGNs are artificial numbers that represent Service Class Names. A new PARMLIB member (&sid.SVCL) is used to associate the new Service Class Names and the old PGNs. A sample CPPRSVCL member is in CPPR.PARMLIB.

- If you do not know the Service Class Names for your installation, refer to the DWKLSVCL member in CPPR.CNTL, which allows you to produce an ad hoc report from a historical SMF file containing MVS 5.x Goal Mode record type 72 showing all active Service Class Names.

- Entries in the ad hoc report can show the same Service Class Name multiple times in any given time period. This is because MVS 5.x Goal Mode does not require that Control and Reporting Service Class Names be unique. That is, the same Service Class Name can be used both for reporting and control purposes. CIMS Capacity Planner handles this by storing the Control Service Class Name information in one table and the Reporting Service Class Name information in another table. Reports can be produced from either table.

- Once the Service Class Names are identified and classified in the &sid.SVCL member and the local member in CPPR.PARMLIB, the SMF SID can be registered and the data reduction process begun.
The DASM Subsystem

Installing the CIMS Capacity Planner DASM Subsystem consists of allocating and initializing the required disk space, customizing JCL, customizing two CPPR.PARMLIB members, and running the data reduction and reporting jobs.

Each of the required steps is described in the following sections.

Step 1: Allocate and Initialize the Data Sets (DASMINIT)

See Allocating and Initializing the ONLINE and INDEX Data Sets on page 1-20.

Step 2: Create the &sidDSNX Member

The Data Set Name-to-Owner Correspondence data is specified through a CPPR.PARMLIB member named &sidDSNX, where &sid is the SMF SID of the system being reported on. More than one &sidDSNX member can be specified if more than one SMF SID is used. You can find the value of the SMF SID by browsing the appropriate SMFPRMxx in SYS1.PARMLIB.

Use the sample CPPRDSNX member in CPPR.PARMLIB to create the &sidDSNX member or members. The CPPRDSNX member contains the following:

1. LEVEL_1       /* 1ST LEVEL NAMES TO SKIP
   PROD,TEST,P,T
2. LEVEL_2       /* 2ND LEVEL NAMES TO SKIP
   VSAM,VSAMIO*
3. LEVEL_3       /* 3RD LEVEL NAMES TO SKIP
   UNDEFINED
4. LEVEL_4       /* 4TH LEVEL NAMES TO SKIP
   UNDEFINED
5. LEVEL_5       /* 5TH LEVEL NAMES TO SKIP
   UNDEFINED
6. LEVEL_6       /* 6TH LEVEL NAMES TO SKIP
   UNDEFINED

A wildcard feature is available when you are using the &sidDSNX member. The VSAMIO* entry under LEVEL_2 causes all second level qualifiers beginning with VSAMIO to be skipped.

To specify the Name-to-Owner Correspondence parameters, enter your site's qualifiers at each of the appropriate levels.

Multiple qualifiers must be separated by commas. If all the entries at any level do not fit into a single line, continue onto additional lines as required by placing a comma followed by two blanks after the last entry on the line to be continued. There is no practical limit on the number of qualifiers that can be specified.
Installing CIMS Capacity Planner

The DASM Subsystem

Naming Convention for the &sidDSNX PARMLIB Member

If the SMF SID begins with a numeric character or is less than four digits, you must follow the naming conventions specified in Naming Conventions for Customized Data Set Members on page 1-22.

Step 3: Edit the DASDPOOL PARMLIB Member

The DASDPOOL member in CPPR.PARMLIB is used to define the makeup of the various DASD Pools within the data center. To define the makeup of your DASD Pools, determine the titles of the Pools and the volumes that fall into each pool. Any given volume should be associated with only a single pool. CIMS Capacity Planner supports up to six pools, which are normally specified as five unique pools and OTHER.

The DASDPOOL member contains the following:

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* YOU MAY CHANGE THE LABEL, BUT MAKE SURE COLUMN 1 IS A NUMBER FROM 1 - 6 *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
1. SYSTEM /* THESE ARE THE SYSTEM VOL SERIAL NUMBERS MVS*,PAG*,PGE*,SPL*,SYS*
2. TSO /* THESE ARE THE TSO VOL SERIAL NUMBERS TSO*
3. PRODUCTION /* THESE ARE THE PRODUCTION PACKS PRD*,SCR*,SPA*
4. TEST /* THESE ARE THE TEST VOLUMES TST*
5. DATABASE /* THESE ARE THE DATA BASE PACKS IDMS*
6. OTHER /* EVERYTHING ELSE GOES HERE *

In specifying the pool titles, be careful to preserve the numbers and the periods in positions 1 and 2 of the parameter specification lines. Each pool name can be up to twelve characters long.

A wildcard character is supported to reduce the number of volumes that must be specified. For example, TSO* would include all volumes with volume serial numbers beginning with TSO (TSOxxx).

If all the volume serial numbers do not fit on a single line, continue onto additional lines as required by placing a comma and at least two blanks after the last entry on the line to be continued. There is no limit to the number of volumes that can be specified.

Your DASDPOOL parameters become effective at the time you save the member in CPPR.PARMLIB.
Step 4: Run the DASM Subsystem

To run the DASM subsystem, edit the DASMCOLW member in CPPR.CNTL as follows:

1. Change &PREFIX to the high-level qualifier for your CIMS Capacity Planner installation.

2. Change the UNIT=SYSDA parameter as necessary.

3. Change the Volume Ignore list as necessary.

4. Change the DSN Include/Exclude list as necessary.

5. Replace the JOB statement with a one that is valid for your installation and submit the job for execution.

To view the DASMCOLW JCL, see DASMCOLW on page A-19.
The CICS Subsystem

Installing the CIMS Capacity Planner CICS subsystem consists of allocating and initializing the required disk space, enrolling the various CICS regions, customizing JCL, customizing three `CPPR.PARMLIB` members, and running the data reduction and reporting jobs.

Each of the required steps is described in the following sections.

Step 1: Allocate and Initialize the ONLINE and INDEX Data Sets

See *Allocating and Initializing the ONLINE and INDEX Data Sets* on page 1-20.

Step 2: Register the CICS Regions

Prior to collecting any CICS data, you must register each CICS system for which you want to collect data. CIMS Capacity Planner does not process data for unregistered CICS systems.

Register CICS regions in the `CPPRERT` (Element Registration Table) data set by running the `SSA1REGC` program. This program specifies via the `SELECTED SYSTEM=` parameter each of the eligible SMF SIDs for systems that can execute each specific CICS system. The CICS system identifier SMF SID is specified via the `CICSNAME=` parameter containing the name of the CICS APPLID. You can register only one CICS region in a single execution of the `SSA1REGC` program.

For example, if you have four systems in your data center that run five separate CICS regions, your configuration might look like this:

- **CICSPROD**—runs on SYS1
- **CICSTEST**—runs on SYS2
- **CICSPAYR**—runs on SYS3
- **CICSACCT**—runs on SYS4
- **CICSEMAL**—runs on SYS4

The registration procedure would appear as follows:

```
//JOB JOB
//STEP1 EXEC PGM=SSA1REGC,REGION=1024K
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR
//SYSUT3 DD DISP=(,DELETE),SPACE=(TRK,(1,1)),UNIT=SYSDA
//SYSPRINT DD SYSOUT=*
//SYSIN DD * SELECTED SYSTEM=SYS1
// DD CICSNAME=CICSPROD
```

The registration procedure would appear as follows:

```
//JOB JOB
//STEP1 EXEC PGM=SSA1REGC,REGION=1024K
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR
//SYSUT3 DD DISP=(,DELETE),SPACE=(TRK,(1,1)),UNIT=SYSDA
//SYSPRINT DD SYSOUT=*
//SYSIN DD * SELECTED SYSTEM=SYS1
// DD CICSNAME=CICSPROD
```

Register the CICS PROD System
Register the CICSTEST System

```
//JOB JOB
//STEP1 EXEC PGM=SSA1REGC,REGION=1024K
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR
//SYSUT3 DD DISP=(,DELETE),SPACE=(TRK,(1,1)),UNIT=SYSDA
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
SELECTED SYSTEM=SYS2
CICSNAME=CICSTEST
```

Register the CICSPAYR System

```
//JOB JOB
//STEP1 EXEC PGM=SSA1REGC,REGION=1024K
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR
//SYSUT3 DD DISP=(,DELETE),SPACE=(TRK,(1,1)),UNIT=SYSDA
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
SELECTED SYSTEM=SYS3
CICSNAME=CICSPAYR
```

Register the CICSACCT System

```
//JOB JOB
//STEP1 EXEC PGM=SSA1REGC,REGION=1024K
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR
//SYSUT3 DD DISP=(,DELETE),SPACE=(TRK,(1,1)),UNIT=SYSDA
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
SELECTED SYSTEM=SYS4
CICSNAME=CICSACCT
```

Register the CICSEMAL System

```
//JOB JOB
//STEP1 EXEC PGM=SSA1REGC,REGION=1024K
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR
//SYSUT3 DD DISP=(,DELETE),SPACE=(TRK,(1,1)),UNIT=SYSDA
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
SELECTED SYSTEM=SYS4
CICSNAME=CICSEMAL
```
For the Landmark Monitor, the CICS system name that uniquely identifies a specific CICS system is limited to four characters. Thus, if the VTAM APPLID for the system is greater than four characters, the TMON system name must be different than the VTAM APPLID. To accommodate this situation, you can register the VTAM APPLID as the primary name and register the TMON system name as an ALIASNAME. Then the CICS system in question can be referred to by either name. For example, using the systems above as a point of reference, in order to register the TMON system named EMAL as an ALIASNAME for the CICS system named CICSEMAL, you would run the following job:

```plaintext
//SSACICN JOB (...),'SSA',CLASS=A,MSGCLASS=X
//STEP1 EXEC PGM=SSA1REGC,REGION=1024K
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR
//SYSUT3 DD DISP=(,DELETE),SPACE=(TRK,(1,1)),UNIT=SYSDA
//SYSPRINT DD SYSOUT=*
//SY SIN DD
SELECTED SYSTEM=SYS4
CICSNAME=CICSEMAL
ALIASNAME=EMAL
```

### Customize the DCICNROL Member

The CPPR.CNTL data set contains the DCICNROL member that executes the SSA1REGC program. To customize DCICNROL:

1. Enter the VTAM APPLID in the CICSNAME= parameter.

2. Using the SELECTED SYSTEM= parameter, enter all the SMF System IDs under which the CICS System can operate, separated by commas. If the CICS System operates only on the system upon which the DCICNROL JOB is to be run, then enter an * for the SELECTED SYSTEM.

3. Change &PREFIX to the high-level qualifier for your CIMS Capacity Planner installation.

4. Delete the second step or add steps as required.

5. Replace the JOB statement with a one that is valid for your installation and submit the job for execution.

To view the DCICNROL JCL, see DCICNROL on page A-23.
Step 3: Customize the CICS JCL

The CPPR.CNTL data set contains the following JCL members that you can use to run the CICS subsystem. The JCL that is required depends upon the type of CICS data being used and its source.

DCICPROD

If you are using CICS 110 SMF records from the CMF (CICS Management Facility) Journal, edit the JCL in the DCICPROD member as follows:

1. Change &PREFIX to the high-level qualifier for your CIMS Capacity Planner installation.
2. In ST0, substitute the proper data set name for SYSUT1.
3. Adjust the space allocations in the SYSUT2, SYSUT3, SORTWKnn, and SORTOUT DD statements as required.
4. Change the SELECTED SYSTEM= parameter to the required CICS system name (SMF SID) if the data being reduced is not from the system on which this job will be executed.
5. Change the UNIT=SYSDA parameters, if required.
6. Replace the JOB statement with one that is valid for your installation and submit the job for execution.

To view the DCICPROD JCL, see DCICPROD on page A-24.

DCICSMF

If you process CICS 110 SMF records written to the SMF Cluster (this includes Candle CICS/OMEGAMON), edit the JCL in the DCICSMF member as follows:

1. Change &PREFIX to the high-level qualifier for your CIMS Capacity Planner installation.
2. In ST0, substitute the proper data set name for SYSUT1.
3. Adjust the space allocations in the SYSUT2, SYSUT3, SORTWKnn, and SORTOUT DD statements as required.
4. Change the SELECTED SYSTEM= parameter to the required CICS system name if the data being reduced is not from the system on which this job will be executed.
5. Change the UNIT=SYSDA parameters if required.
6. You can choose to eliminate the first two steps of the job (ST0 and SORT). However, if the first two steps are eliminated, processing time might increase.
7. Replace the JOB statement with one that is valid for your installation and submit the job for execution.

To view the DCICSMF JCL, see DCICSMF on page A-27.
DCICTMON

If you process Landmark TMON CICS log records, edit the JCL in the DCICTMON member as follows:

1. Change &PREFIX to the high-level qualifier for your CIMS Capacity Planner installation.
2. In ST1001, substitute the proper data set name for SYSUT1 and provide the TMON load library in the STEPLIB.
3. Change the SELECTED SYSTEM= parameter to the required CICS system name if the data being reduced is not from the system on which this job will be executed.
4. Change the UNIT=SYSDA parameters if required.
5. Replace the JOB statement with one that is valid for your installation and submit the job for execution.

To view the DCICTMON JCL, see DCICTMON on page A-29.

DCICREPT

Regardless of the source of your input to the CICS data reduction module, the CICS reports are produced by a common set of modules under the control of a single report driver. You can edit the report request job in the DCICREPT member as follows:

1. Change &PREFIX to the high-level qualifier for your CIMS Capacity Planner installation.
2. Change the SELECTED SYSTEM= parameter to the required CICS system name if the data being reduced is not from the system on which this job will be executed.
3. Change CICSNAME to the region for which reports are to be produced.
4. Replace the JOB statement with one that is valid for your installation and submit the job for execution.

To view the DCICREPT JCL, see DCICREPT on page A-26.
Step 4: Create the CICS PARMLIB Members

You need to create the following members in `CPPR.PARMLIB` to provide data related to Summaries by Organization, Summaries by Application, and Summaries by Response Time Thresholds. CIMS Lab provides sample members that you can use to create these members.

Note that the names of these members must contain the SMF SID (represented by `&sid`). The `&sid` must be four characters long and it must begin with an alphabetic character as specified in Naming Conventions for Customized Data Set Members on page 1-22.

The SMF SIDs are specified in `SYS1.PARMLIB` in member `SMFPRMxx`, where `xx` is either `00` or the operand supplied in the IPL parameter `SYSP=xx`.

`&sidCICO—Transaction Codes for Organizations`

The `&sidCICO` member is used by the `SSA1CICE` program to create the E2 graph as documented in Chapter 3 of the CIMS Capacity Planner User Guide.

Use the sample `CPPRCICO` member in `CPPR.PARMLIB` to create the `&sidCICO` member. The `CPPRCICO` member contains the following:

1. WHOLESALE      /* 1ST TRANSACTION ORGANIZATION
   TOS*
2. RETAIL         /* 2ND TRANSACTION ORGANIZATION
   NMON
3. FINANCE        /* 3RD TRANSACTION ORGANIZATION
   ADS*
4. ACCOUNTING     /* 4TH TRANSACTION ORGANIZATION
   CS*
5. OPERATIONS     /* 5TH TRANSACTION ORGANIZATION
   TAP*
6. OTHER          /* 6TH TRANSACTION ORGANIZATION

Edit the new `&sidCICO` member as follows:

1. Change the organization names in the member to reflect the names of your major CICS User Organizations. Generally, it is convenient to specify up to five major User Organizations and leave the last one for all others.

2. Replace the sample transaction types with the transaction types used by each organization. If more than one organization uses any given transaction type, specify the transaction type under the organization under which you want it summarized. Separate each transaction type by a comma.

   A wildcard capability is provided to reduce the number of transaction codes that must be entered. For example, if you enter `ACT*`, any transaction codes beginning with the characters "ACT" (ACTGL001, ACTGL002, ACTFA005, etc.) is selected.

   You must separate multiple transaction types by commas. If all the entries at any level do not fit into a single line, continue onto additional lines, as required, by placing a comma followed by two blanks after the last entry on the line to be continued. There is no practical limit on the number of transactions that can be specified.
&sidCICT—Transaction Codes for Applications

The &sidCICT member is used by the SSAICICE program to create the E3 graph as documented in Chapter 3 of the CIMS Capacity Planner User Guide.

Use the sample CPPRCICT member in CPPR.PARMLIB to create the &sidCICT member. The CPPRCICT member contains the following:

1. TOSS             /* 1ST TRANSACTION CLASSIFICATION
   TOS*
2. CICS             /* 2ND TRANSACTION CLASSIFICATION
   NMON,CS*
3. IDMS             /* 3RD TRANSACTION CLASSIFICATION
   ADS*
4. ACCOUNTING       /* 4TH TRANSACTION CLASSIFICATION
   ACT*
5. MISCELLANEOUS    /* 5TH TRANSACTION CLASSIFICATION
   MSC*
6. OTHER            /* 6TH TRANSACTION CLASSIFICATION
   *

Edit the new &sidCICT member as follows:

1 Change the application names in the member to reflect the names of your major CICS applications. Generally, it is convenient to specify up to five major applications and leave the last one for all others.

2 Replace the sample transaction types with the transaction types used by each application. Separate each transaction type by a comma.

   A wildcard capability is provided to reduce the number of transaction codes that must be entered. For example, if you enter ACT*, any transaction codes beginning with the characters "ACT" (ACTGL001, ACTGL002, ACTFA005, etc.) is selected.

   You must separate multiple transaction types by commas. If all the entries at any level do not fit into a single line, continue onto additional lines, as required, by placing a comma followed by two blanks after the last entry on the line to be continued. There is no practical limit on the number of transactions that can be specified.
8sidCICR–Response Time Thresholds

The &sidCICR member is used by the SSA1CICW data reduction program, the SSA1CICR report program, and the SSA1CICE program to process response time thresholds.

Use the sample CPPRCICR member in CPPR.PARMLIB to create the &sidCICR member. You need not customize the new &sidCICR member if the response time thresholds are suitable for your installation. The CPPRCICR member contains the following:

1. `<.5_SEC       /* 1ST RESPONSE CLASSIFICATION  
   .50
2. `.5-1_SEC      /* 2ND RESPONSE CLASSIFICATION  
   1.00
3. `1-2_SEC       /* 3RD RESPONSE CLASSIFICATION  
   2.00
4. `2-4_SEC       /* 4TH RESPONSE CLASSIFICATION  
   4.00
5. `4-6_SEC       /* 5TH RESPONSE CLASSIFICATION  
   6.00
6. `>6_SEC        /* 6TH RESPONSE CLASSIFICATION  
   100

Edit the new &sidCICR member as follows:

1. Change the Heading Data (the lines beginning with numbers 1 through 6) as appropriate preserving the numeral and the following period. The maximum heading length for any given threshold is eight characters.

2. Enter the response time thresholds for each category in seconds in the format indicated in the member threshold parameters.

Step 5: Run the CICS Data Reduction

Run the CICS data reduction job using the JCL that was customized according to the steps in DCICPROD on page 1-37 through DCICTMON on page 1-38.

Step 6: Run the CICS Reports

Run the CICS reports job using the JCL that was customized according to the steps in DCICREPT on page 1-38.
Installing the CIMS Capacity Planner IDMS subsystem consists of allocating and initializing the required disk space, enrolling the various IDMS regions, customizing JCL, customizing three CPPR.PARMLIB members, and running the data reduction and reporting jobs.

Each of the required steps is described in the following sections.

**Step 1: Allocate and Initialize the ONLINE and INDEX Data Sets**

See *Allocating and Initializing the ONLINE and INDEX Data Sets* on page 1-20.

**Step 2: Register the IDMS CVs**

Prior to collecting any IDMS data, you must register each IDMS CV for which you want to collect data. CIMS Capacity Planner does not process data for unregistered IDMS CVs.

Register IDMS CVs in the CPPRERT (Element Registration Table) data set by running the SSA1REGD program. This program specifies via the SELECTED SYSTEM= parameter each of the eligible SMF SIDs for systems that can execute each specific IDMS CV. The IDMS CV identifier is specified via a IDMSNAME= parameter containing the name of the IDMS CV. You can register only one IDMS CV in a single execution of the SSA1REGD program.

For example, if you have four systems in your data center that run five separate IDMS CVs, your configuration might look like this:

- **IDMSCV1**—runs on SYS1
- **IDMSCV2**—runs on SYS2
- **IDMSCV3**—runs on SYS3
- **IDMSCV4**—runs on SYS4
- **IDMSCV5**—runs on SYS4

The registration procedure would appear as follows:

```
//JOB JOB
//STEP1 EXEC PGM=SSA1REGD,REGION=1024K
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR
//SYSUT3 DD DISP=(,DELETE),SPACE=(TRK,(1,1)),UNIT=SYSDA
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
SELECTED SYSTEM=SYS1
IDMSNAME=IDMSCV1
```

Register the IDMSCV1 System
Register the IDMSCV2 System

//JOB JOB
//STEP1 EXEC PGM=SSA1REGD,REGION=1024K
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR
//SYSUT3 DD DISP=(,DELETE),SPACE=(TRK,(1,1)),UNIT=SYSDA
//SYSPRINT DD SYSOUT=* 
//SYSIN DD *
SELECTED SYSTEM=SYS2
IDMSNAME=IDMSCV2

Register the IDMSCV3 System

//JOB JOB
//STEP1 EXEC PGM=SSA1REGD,REGION=1024K
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR
//SYSUT3 DD DISP=(,DELETE),SPACE=(TRK,(1,1)),UNIT=SYSDA
//SYSPRINT DD SYSOUT=* 
//SYSIN DD *
SELECTED SYSTEM=SYS3
IDMSNAME=IDMSCV3

Register the IDMSCV4 System

//JOB JOB
//STEP1 EXEC PGM=SSA1REGD,REGION=1024K
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR
//SYSUT3 DD DISP=(,DELETE),SPACE=(TRK,(1,1)),UNIT=SYSDA
//SYSPRINT DD SYSOUT=* 
//SYSIN DD *
SELECTED SYSTEM=SYS4
IDMSNAME=IDMSCV4

Register the IDMSCV5 System

//JOB JOB
//STEP1 EXEC PGM=SSA1REGD,REGION=1024K
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR
//SYSUT3 DD DISP=(,DELETE),SPACE=(TRK,(1,1)),UNIT=SYSDA
//SYSPRINT DD SYSOUT=* 
//SYSIN DD *
SELECTED SYSTEM=SYS4
IDMSNAME=IDMSCV5
Customize the DIDMNROL Member

The **CPPR.CNTL** data set contains the **DIDMNROL** member that executes the **SSA1REGD** program. To customize **DIDMNROL**, repeat the following procedure for each **IDMS CV** for which data is to be collected:

1. Enter the **IDMS CV** in the **IDMSNAME=** parameter.

2. In the **Selected System=** parameter, enter all the **SMF SIDS** under which the **IDMS CV** can operate, separated by commas. If the **IDMS CV** operates only on the system upon which the **DIDMNROL** job is run, then enter an * for the selected system.

3. Change **&PREFIX** to the high-level qualifier for your **CIMS Capacity Planner** installation.

4. Delete the second step or add steps as required.

5. Replace the **JOB** statement with a one that is valid for your installation and submit the job for execution.

To view the **DIDMNROL** JCL, see **DIDMNROL** on page A-39.

Step 3: Customize the IDMS JCL

The **CPPR.CNTL** data set contains the following JCL members that you can use to run the **IDMS subsystem**. The JCL that is required depends upon the type of **IDMS data** being used and its source.

**DIDMPROD**

If you process the **IDMS system log** using **Type 06 records** with subtype **X:\'1C\'** (prior to release 10.2) or subtype **230 records from IDMS release 10.2**, edit the JCL in the **DIDMPROD** member as follows:

1. Change **&PREFIX** to the high-level qualifier for your **CIMS Capacity Planner** installation.

2. In **ST1**, substitute the proper data set name for **SYSUT1**.

3. Adjust the space allocations in the **SYSUT3 DD** statement as required.

4. Change the **SELECTED SYSTEM=** parameter to the required **SMF system name** if the data being reduced is not from the system on which this job will be executed.

5. Change the **IDMSNAME=** operand.

6. Change the **UNIT=SYSDA** parameters if required.

7. Replace the **JOB** statement with one that is valid for your installation and submit the job for execution.

To view the **DIDMPROD** JCL, see **DIDMPROD** on page A-41.
**DIDMPSMF**

If you process IDMS to the SMF Cluster (Release 10.2), edit the JCL in the DIDMPSMF member as shown in DIDMPSMF on page 1-44.

To view the DIDMPSMF JCL, see DIDMPSMF on page A-42.

**DIDMPL12**

If you process IDMS PERFMON data to the IDMS Log (Release 12), edit the JCL in the DIDMPL12 member as shown in DIDMPSMF on page 1-44.

To view the DIDMPL12 JCL, see DIDMPL12 on page A-40.

**DIDML102**

If the Integrated Performance Monitor is not installed with release 10.2, Task Wide statistics records (subtype 02) can be processed instead of subtype 230 records. If this is the case, edit the DIDML102 member as follows:

1. Change &PREFIX to the high-level qualifier for your CIMS Capacity Planner installation.
2. In ST1, substitute the proper data set name in SYSUT1.
3. Change the SELECTED SYSTEM= parameter to the required SMF system name if the data being reduced is not from the system on which this job will be executed.
4. Change the IDMSNAME= operand.
5. Substitute the correct IDMSNAME= parameter.
6. Change the UNIT=SYSDA parameters if required.
7. Replace the JOB statement with one that is valid for your installation and submit the job for execution.

To view the DIDML102 JCL, see DIDML102 on page A-38.

**DIDMREPT**

Regardless of the source of your input to the IDMS data reduction module, the IDMS reports are produced by a common set of modules under the control of a single report driver. You can edit the report request job in the DIDMREPT member as follows:

1. Change &PREFIX to the high-level qualifier for your CIMS Capacity Planner installation.
2. Change the SELECTED SYSTEM= parameter to the required SMF system name if the data being reported upon not from the system on which this JOB will be executed.
3. Replace the JOB statement with one that is valid for your installation and submit the job for execution.

To view the DIDMREPT JCL, see DIDMREPT on page A-43.
Installing CIMS Capacity Planner

The IDMS Subsystem

Step 4: Create the IDMS PARMLIB Members

You need to create the following members in CPPR.PARMLIB to provide data related to Summaries by Organization, Summaries by Application, and Summaries by Response Time Thresholds. CIMS Lab provides sample members that you can use to create these members.

Note that the names of these members must contain the SMF SID (represented by &sid). The &sid must be four characters long and it must begin with an alphabetic character as specified in Naming Conventions for Customized Data Set Members on page 1-22.

The SMF SIDs are specified in SYS1.PARMLIB in member SMFPRMxx, where xx is either 00 or the operand supplied in the IPL parameter SYSP=xx.

&sidIDMO—Transaction Codes for Organizations

The &sidIDMO member is used by the SSA1IDME program to create the E6 graph as documented in Chapter 4 of the CIMS Capacity Planner User Guide.

Use the sample CPPRIDMO member in CPPR.PARMLIB to create the &sidIDMO member. The CPPRIDMO member contains the following:

1. WHOLESALE      /* 1ST TRANSACTION ORGANIZATION
   TOS*
2. RETAIL         /* 2ND TRANSACTION ORGANIZATION
   NMON
3. FINANCE        /* 3RD TRANSACTION ORGANIZATION
   ADS*
4. ACCOUNTING     /* 4TH TRANSACTION ORGANIZATION
   CS*
5. OPERATIONS     /* 5TH TRANSACTION ORGANIZATION
   TAP*
6. OTHER          /* 6TH TRANSACTION ORGANIZATION
   *

Edit the new &sidIDMO member as follows:

1. Change the organization names in the member to reflect the names of your major IDMS user organizations. Generally, it is convenient to specify up to five major user organizations and leave the last one for all others. An organization name is limited to eight alphanumeric characters.

2. Replace the sample transaction types with the transaction types used by each organization. If more than one organization uses any given transaction type, specify the transaction type under the organization in which you want it summarized. Separate each transaction type by a comma.

   A wildcard capability is provided to reduce the number of transaction codes that you must enter. For example, if you enter ACT*, any transaction code beginning with the characters "ACT" (ACTGL001, ACTGL002, ACTFA005, etc.) is selected.

   You must separate multiple transaction types by commas. If all the entries at any level do not fit into a single line, continue onto additional lines, as required, by placing a comma followed by two blanks after the last entry on the line to be continued. There is no practical limit on the number of transactions types that can be specified.
Installing CIMS Capacity Planner

The IDMS Subsystem

The &sidIDMT member is used by the SSAIDME program to create the E7 graph as documented in Chapter 4 of the CIMS Capacity Planner User Guide.

Use the sample CPPRIDMT member in CPPR.PARMLIB to create the &sidIDMT member. The CPPRIDMT member contains the following:

1. TOSS             /* 1ST TRANSACTION CLASSIFICATION
   TOS*
2. CICS             /* 2ND TRANSACTION CLASSIFICATION
   NMON,CS*
3. IDMS             /* 3RD TRANSACTION CLASSIFICATION
   ADS*
4. ACCOUNTING       /* 4TH TRANSACTION CLASSIFICATION
   ACT*
5. MISCELLANEOUS    /* 5TH TRANSACTION CLASSIFICATION
   MSC*
6. OTHER            /* 6TH TRANSACTION CLASSIFICATION
   *

Edit the new &sidIDMT member as follows:

1. Change the application names in the member to reflect the names of your major IDMS applications. Generally, it is convenient to specify up to five major applications and leave the last one for all others.

2. Replace the sample transaction types with the transaction types used by each application. Separate each transaction type by a comma.

   A wildcard capability is provided to reduce the number of transaction codes that you must enter. For example, if you enter ACT*, any transaction code beginning with the characters "ACT" (ACTGL001, ACTGL002, ACTFA005, etc.) is selected.

   You must separate multiple transaction types by commas. If all the entries at any level do not fit into a single line, continue onto additional lines, as required, by placing a comma followed by two blanks after the last entry on the line to be continued. There is no practical limit on the number of transaction types that can be specified.
&sidIDMR—Response Time Thresholds

The &sidIDMR member is used by the SSA1IDME graphing program and by the report invoked by IDMS PERFORMANCE REPORT=YES in the SSAIDMR program.

Use the sample CPPRIDMR member in CPPR.PARMLIB to create the &sidIDMR member. You need not customize the new &sidIDMR member if the response time thresholds are suitable for your installation. The CPPRIDMR member contains the following:

1. <_.5_SEC /* 1ST RESPONSE CLASSIFICATION
   .50
2. .5-1_SEC /* 2ND RESPONSE CLASSIFICATION
   1.00
3. 1-2_SEC /* 3RD RESPONSE CLASSIFICATION
   2.00
4. 2-4_SEC /* 4TH RESPONSE CLASSIFICATION
   4.00
5. 4-6_SEC /* 5TH RESPONSE CLASSIFICATION
   6.00
6. >_6_SEC /* 6TH RESPONSE CLASSIFICATION
   100

Edit the new &sidIDMR member as follows:

1 Change the Heading Data (the lines beginning with numbers 1 through 6), as appropriate, preserving the numeral and the following period. The maximum heading length for any given threshold is eight characters.

2 Enter the response time thresholds for each category in seconds in the format indicated in the member threshold parameters.

Step 5: Run the IDMS Data Reduction

Run the IDMS data reduction job using the JCL that was customized according to the steps in DIDMPROD on page 1-44 through DIDML102 on page 1-45.

Step 6: Run the IDMS Reports

Run the IDMS reports job using the JCL that was customized according to the steps in DIDMREPT on page 1-45.
The IMS Subsystem

Installing the CIMS Capacity Planner IMS subsystem consists of allocating and initializing the required disk space, enrolling the various IMS regions, customizing JCL, customizing three CPPR.PARMLIB members, and running the data reduction and reporting jobs.

Each of the required steps is described in the following sections.

Step 1: Allocate and Initialize the ONLINE and INDEX Data Sets

See Allocating and Initializing the ONLINE and INDEX Data Sets on page 1-20.

Step 2: Register the IMS Regions

Prior to collecting any IMS data, you must register each IMS system for which you want to collect data. CIMS Capacity Planner does not process data for unregistered IMS systems.

Register IMS regions in the CPPRERT (Element Registration Table) by running the SSA1REGI program. This program specifies via the SELECTED SYSTEM= parameter each of the eligible SMF SIDS for systems that can execute each specific IMS system. The IMS system identifier is specified via a IMS SYSTEM= parameter containing name of the SID for the IMS system being measured. You can register only one IMS region in a single execution of the SSA1REGI program.

For example, if you have four systems in your data center that run five separate IMS regions, your configuration might look like this:

- IMS1—runs on SYS1
- IMS2—runs on SYS2
- IMS3—runs on SYS3
- IMS4—runs on SYS4
- IMS5—runs on SYS4

The registration procedure would appear as follows:

Register the IMS1 System

```plaintext
//JOB JOB
//STEP1 EXEC PGM=SSA1REGI,REGION=1024K
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR
//SYSUT3 DD DISP=(,DELETE),SPACE=(TRK,(1,1)),UNIT=SYSDA
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
SELECTED SYSTEM=SYS1
IMS SYSTEM=IMS1
```
Register the IMS2 System

```
JOB JOB
//STEP1 EXEC PGM=SSA1REGI,REGION=1024K
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR
//SYSUT3 DD DISP=(,DELETE),SPACE=(TRK,(1,1)),UNIT=SYSDA
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
SELECTED SYSTEM=SYS2
IMS SYSTEM=IMS2
```

Register the IMS3 System

```
JOB JOB
//STEP1 EXEC PGM=SSA1REGI,REGION=1024K
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR
//SYSUT3 DD DISP=(,DELETE),SPACE=(TRK,(1,1)),UNIT=SYSDA
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
SELECTED SYSTEM=SYS3
IMS SYSTEM=IMS3
```

Register the IMS4 System

```
JOB JOB
//STEP1 EXEC PGM=SSA1REGI,REGION=1024K
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR
//SYSUT3 DD DISP=(,DELETE),SPACE=(TRK,(1,1)),UNIT=SYSDA
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
SELECTED SYSTEM=SYS4
IMS SYSTEM=IMS4
```

Register the IMS5 System

```
JOB JOB
//STEP1 EXEC PGM=SSA1REGI,REGION=1024K
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR
//SYSUT3 DD DISP=(,DELETE),SPACE=(TRK,(1,1)),UNIT=SYSDA
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
SELECTED SYSTEM=SYS4
IMS SYSTEM=IMS5
```
Customize the DIMSNROL Member

The CPPR.CNTL data set contains the DIMSNROL member that executes the SSA1REGI program. To customize DIMSNROL, repeat the following procedure for each IMS region for which data is to be collected:

1. Enter the IMS SID in the IMS SYSTEM= parameter.
2. In the Selected System= parameter, enter all the SMF SIDs under which the IMS system can operate, separated by commas. If the IMS system operates only on the system upon which the DIMSNROL job is run, then enter an * for the selected system.
3. Change &PREFIX to the high-level qualifier for your CIMS Capacity Planner installation.
4. Delete the second step or add steps as required.
5. Replace the JOB statement with one that is valid for your installation and submit the job for execution.

To view the DIMSNROL JCL, see DIMSNROL on page A-46.

Step 3: Customize the IMS JCL

The CPPR.CNTL data set contains the following sample JCL members that you can customize to run the IMS subsystem.

DIMSPROD

If you process the IMS system log, edit the JCL in the DIMSPROD member as follows:

1. Change &PREFIX to the high-level qualifier for your CIMS Capacity Planner installation.
2. In ST01, substitute the proper data set name for the SMF data set in SYSUT1.
3. In ST02, substitute the proper data set name for the IMS log data set in SYSUT1.
4. In ST01 and ST02, adjust the space allocations in the SYSUT2 DD statements as required.
5. Change the SELECTED SYSTEM= parameter to the required SMF system name if the data being reduced is not from the system on which this job will be executed.
6. Change the UNIT=SYSDA parameters as required.
7. Enter the correct region names for the IMS CONTROL=, DBRC REGION=, DLI REGION=, DSNMSTR REGION=, and DSNDBM1 REGION= parameters.
8. Replace the JOB statement with one that is valid for your installation and submit the job for execution.

To view the DIMSPROD JCL, see DIMSPROD on page A-47.
DIMSREPT

Regardless of the source of your input to the IMS data reduction module, the IMS reports are produced by a common set of modules under the control of a single report driver. You can edit the report request job in the DIMSREPT member as follows:

1. Change &PREFIX to the high-level qualifier for your CIMS Capacity Planner installation.
2. Change the SELECTED SYSTEM= parameter to the required SMF system name if the data being reported upon is not from the system on which this job will be executed.
3. Replace the JOB statement with one that is valid for your installation and submit the job for execution.

To view the DIMSREPT JCL, see DIMSREPT on page A-51.

Step 4: Create the IMS PARMLIB Members

You need to create the following members in CPPR.PARMLIB to provide data related to Summaries by Organization, Summaries by Application, and Summaries by Response Time Thresholds. CIMS Lab provides sample members that you can use to create these members.

Note that the names of these members must contain the SMF SID (represented by &sid). The &sid must be four characters long and it must begin with an alphabetic character as specified in Naming Conventions for Customized Data Set Members on page 1-22.

The SMF SIDs are specified in SYS1.PARMLIB in member SMFPRMxx, where xx is either 00 or the operand supplied in the IPL parameter SYSP=xx.

&sidIMSO—Transaction Codes for Organizations

The &sidIMSO member is used by the SSA1IMSE program to create the 9B graph as documented in Chapter 6 of the CIMS Capacity Planner User Guide.

Use the sample CPPRIMSO member in CPPR.PARMLIB to create the &sidIMSO member. The CPPRIMSO member contains the following:

1. WHOLESALE /* 1ST TRANSACTION ORGANIZATION
   TOS*
2. RETAIL /* 2ND TRANSACTION ORGANIZATION
   NMON
3. FINANCE /* 3RD TRANSACTION ORGANIZATION
   ADS*
4. ACCOUNTING /* 4TH TRANSACTION ORGANIZATION
   CS*
5. OPERATIONS /* 5TH TRANSACTION ORGANIZATION
   TAP*
6. OTHER /* 6TH TRANSACTION ORGANIZATION
   *
Edit the &sidIMSO member as follows:

1. Change the organization names in the member to reflect the names of your major IMS user organizations. Generally, it is convenient to specify up to five major user organizations and leave the last one for all others. An organization name is limited to eight alphanumeric characters.

2. Replace the sample transaction types with the transaction types used by each organization. If more than one organization uses any given transaction type, specify the transaction type under the organization in which you want it summarized. Separate each transaction type by a comma.

   A wildcard capability is provided to reduce the number of transaction codes that you must enter. For example, if you enter ACT*, any transaction code beginning with the characters "ACT" (ACTGL001, ACTGL002, ACTFA005, etc.) is selected.

   You must separate multiple transaction types by commas. If all the entries at any level do not fit into a single line, continue onto additional lines, as required, by placing a comma followed by two blanks after the last entry on the line to be continued. There is no practical limit on the number of transactions types that can be specified.

&sidIMST—Transaction Codes for Applications

The &sidIMST member is used by the SSA1IMSE program to create the 9C graph as documented in Chapter 6 of the CIMS Capacity Planner User Guide.

Use the sample CPPRIMST member in CPPR.PARMLIB to create the &sidIMST member. The CPPRIMST member contains the following:

1. TOSS /* 1ST TRANSACTION CLASSIFICATION
TOS*
2. CICS /* 2ND TRANSACTION CLASSIFICATION
   NMON,CS*
3. IDMS /* 3RD TRANSACTION CLASSIFICATION
   ADS*
4. ACCOUNTING /* 4TH TRANSACTION CLASSIFICATION
   ACT*
5. MISCELLANEOUS /* 5TH TRANSACTION CLASSIFICATION
   MSC*
6. OTHER /* 6TH TRANSACTION CLASSIFICATION
   *

Edit the new &sidIMST member as follows:

1. Change the application names in the member to reflect the names of your major IMS applications. Generally, it is convenient to specify up to five major applications and leave the last one for all others.

2. Replace the sample transaction types with the transaction types used by each application. Separate each transaction type by a comma.

   A wildcard capability is provided to reduce the number of transaction codes that you must enter. For example, if you enter ACT*, any transaction code beginning with the characters "ACT" (ACTGL001, ACTGL002, ACTFA005, etc.) is selected.
You must separate multiple transaction types by commas. If all the entries at any level do not fit into a single line, continue onto additional lines, as required, by placing a comma followed by two blanks after the last entry on the line to be continued. There is no practical limit on the number of transaction types that can be specified.

**&sidIMSR—Response Time Thresholds**

The &sidIMSR member is used by the SSA1IMSE graphing program and by the report invoked by **IMS PERFORMANCE REPORT=**YES in the SSA1IMSR program.

The &sidIDMR member

Use the sample **CPPRIMSR** member in **CPPR.PARMLIB** to create the &sidIMSR member. You need not customize the new &sidIMSR member if the response time thresholds are suitable for your installation. The CPPRIMSR member contains the following:

1. `<_.5_SEC /* 1ST RESPONSE CLASSIFICATION
   .50
2. `.5-1_SEC /* 2ND RESPONSE CLASSIFICATION
   1.00
3. `1-2_SEC /* 3RD RESPONSE CLASSIFICATION
   2.00
4. `2-4_SEC /* 4TH RESPONSE CLASSIFICATION
   4.00
5. `4-6_SEC /* 5TH RESPONSE CLASSIFICATION
   6.00
6. `>6_SEC /* 6TH RESPONSE CLASSIFICATION
   100

Edit the new &sidIMSR member as follows:

1. Change the Heading Data (the lines beginning with numbers 1 through 6), as appropriate, preserving the numeral and the following period. The maximum heading length for any given threshold is eight characters.

2. Enter the response time thresholds for each category in seconds in the format indicated in the member threshold parameters.

**Step 5: Run the IMS Data Reduction**

Run the IMS data reduction job using the JCL that was customized according to the steps in **DIMSPROD** on page 1-51.

**Step 6: Run the IMS Reports**

Run the IMS reports job using the JCL that was customized according to the steps in **DIMSREPT** on page 1-52.
Installing the CIMS Capacity Planner DB2 subsystem consists of allocating and initializing the required disk space, enrolling the various DB2 regions, customizing JCL, customizing three `CPPR.PARMLIB` members, and running the data reduction and reporting jobs.

Each of the required steps is described in the following sections:

**Step 1: Allocate and Initialize the ONLINE and INDEX Data Sets**

See *Allocating and Initializing the ONLINE and INDEX Data Sets* on page 1-20.

**Step 2: Register the DB2 Systems**

Prior to collecting any DB2 data, you must register each DB2 system for which you want to collect data. CIMS Capacity Planner does not process data for unregistered DB2 systems.

Register DB2 systems in the `CPPRERT` (Element Registration Table) by running the `SSA1REGR` program. This program specifies via the `SELECTED SYSTEM=` parameter each of the eligible SMF SIDs for systems that can execute each specific DB2 system. The DB2 system name is specified via a `DB2 SUBSYSTEM NAME=` parameter containing the name of the SID for the DB2 system being measured. You can register only one DB2 system in a single execution of the `SSA1REGR` program.

For example, if you have two systems that run DB2 in your data center, your configuration might look like this:

- **DB2P**—runs on **SYS1**
- **DB2T**—runs on **SYS2**

The registration procedure would appear as follows:

```
Register the DB2P System
//JOB JOB
//STEP1 EXEC PGM=SSA1REGR,REGION=1024K
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR
//SYSUT3 DD DISP=(,DELETE),SPACE=(TRK,(1,1)),UNIT=SYSDA
//SYSPRINT DD SYSOUT=*
//SYSIN DD * SELECTED SYSTEM=SYS1
DB2 SUBSYSTEM NAME=DB2P
```
Register the DB2T System

```
//JOB JOB
//STEP1 EXEC PGM=SSA1REGR,REGION=1024K
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR
//SYSUT3 DD DISP=(,DELETE),SPACE=(TRK,(1,1)),UNIT=SYSDA
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
SELECTED SYSTEM=SYS2
DB2 SUBSYSTEM NAME=DB2T
```

Customize the DDB2NRL1 Member

The **CPPR.CNTL** data set contains the **DDB2NRL1** member that executes the **SSA1REGR** program. To customize **DDB2NRL1**, repeat the following procedure for each DB2 region for which data is to be collected:

1. Enter the DB2 system name in the **DB2 SUBSYSTEM NAME=** parameter.
2. In the **Selected System=** parameter, enter all the SMF SIDs under which the DB2 system can operate, separated by commas. If the DB2 system operates only on the system upon which the **DDB2NROL** job is run, then enter an ***** for the selected system.
3. Change **&PREFIX** to the high-level qualifier for your CIMS Capacity Planner installation.
4. Delete the second step or add steps, as required.
5. Replace the **JOB** statement with one that is valid for your installation and submit the job for execution.

To view the **DDB2NRL1** JCL, see **DDB2NRL1** on page A-33.

Step 3: Register the DB2 Connect Names

Register each of the DB2 connect names in the data center in the **CPPRERT** (Element Registration Table) by running the **SSA1REGB** program. Data for any unregistered DB2 connectors can be reported by specifying **DB2NAME=** **OTHER**. This can be useful when processing data for test regions, for example. You can register only one DB2 connect names in a single execution of the **SSA1REGB** program.

**Note** • It is important that you do not register **** **OTHER** as a DB2 connect name.

For example, if you have two systems in the data center and you have three separate DB2 connectors, your configuration might look like this:

- **CICSPROD**—runs on **SYS1**
- **CICSTEST**—runs on **SYS2**
- **CICSPAYR**—runs on **SYS2**
Installing CIMS Capacity Planner

The DB2 Subsystem

Customize the DDB2NRL2 Member

The CPPR.CNTL data set contains the DDB2NRL2 member that executes the SSA1REGB program. To customize DDB2NRL2, repeat the following procedure for each DB2 connect name:

1. Enter the DB2 connect name in the DB2NAME= parameter.
2. Change &PREFIX to the high-level qualifier for your CIMS Capacity Planner installation.
3. Delete the second step or add steps, as required.
4. Replace the JOB statement with one that is valid for your installation and submit the job for execution.

To view the DDB2NRL2 JCL, see DDB2NRL2 on page A-34.

Step 4: Customize the DB2 JCL

The CPPR.CNTL data set contains the following sample JCL members that you can customize to run the DB2 subsystem.

DDB2PROD

Edit the JCL in the DDB2PROD member as follows:

1. Change &PREFIX to the high-level qualifier for your CIMS Capacity Planner installation.
2. In ST1, substitute the proper data set name for the SMF data set in SYSUT1.
3. Change the SELECTED SYSTEM= parameter to the required SMF system name.
4. Change the UNIT=SYSDA parameters as required.
5. Enter the correct DB2 SUBSYSTEM NAME= parameter.
6. Replace the JOB statement with one that is valid for your installation and submit the job for execution.

To view the DDB2PROD JCL, see DDB2PROD on page A-35.
Installing CIMS Capacity Planner

The DB2 Subsystem

DDB2REPT

Regardless of the source of your input to the DB2 data reduction module, the DB2 reports are produced by a common set of modules under the control of a single report driver. You can edit the report request job in the DDB2REPT member as follows:

1. Change &PREFIX to the high-level qualifier for your CIMS Capacity Planner installation.
2. Change the SELECTED SYSTEM= parameter to the required SMF system name.
3. Replace the JOB statement with one that is valid for your installation and submit the job for execution.

To view the DDB2REPT JCL, see DDB2REPT on page A-36.

Step 5: Create the DB2 PARMLIB Member

You need to create the following member in CPPR.PARMLIB to provide data related to Response Time Thresholds. CIMS Lab provides a sample member that you can use to create this member.

Note that the name of the member must contain the SMF SID (represented by &sid). The &sid must be four characters long and it must begin with an alphabetic character as specified in Naming Conventions for Customized Data Set Members on page 1-22.

The SMF SIDs are specified in SYS1.PARMLIB in member SMFPRMxx, where xx is either 00 or the operand supplied in the IPL parameter SYSP=xx.

&sidDB2R—Response Time Thresholds

The &sidDB2R member is used by the report invoked by DB2 CONNECTION:PLAN PERFORMANCE REPORT=YES and DB2 CONNECTION:AUTH-ID PERFORMANCE REPORT=YES in the SSA1DB2R program.

Create a new CPPR.PARMLIB member named &sidDB2R by copying the member CPPRDB2R. You need not customize the new &sidDB2R member if the response time thresholds are suitable for your installation.

The CPPRIMSR member contains the following:

1. <_.5_SEC /* 1ST RESPONSE CLASSIFICATION .50
2. .5-1_SEC /* 2ND RESPONSE CLASSIFICATION 1.00
3. 1-2_SEC /* 3RD RESPONSE CLASSIFICATION 2.00
4. 2-4_SEC /* 4TH RESPONSE CLASSIFICATION 4.00
5. 4-6_SEC /* 5TH RESPONSE CLASSIFICATION 6.00
6. >_6_SEC /* 6TH RESPONSE CLASSIFICATION 100
Edit the new &sidDB2R member as follows:

1. Change the Heading Data (the lines beginning with numbers 1 through 6), as appropriate, preserving the numeral and the following period. The maximum heading length for any given threshold is eight characters.

2. Enter the response time thresholds for each category in seconds in the format indicated in the member threshold parameters.

Step 6: Run the DB2 Data Reduction

Run the DB2 data reduction job using the JCL that was customized according to the steps in DDB2PROD on page 1-57.

Step 7: Run the DB2 Reports

Run the DB2 reports job using the JCL that was customized according to the steps in DDB2REPT on page 1-58.
The Model 204 Subsystem

Installing the CIMS Capacity Planner Model 204 Subsystem consists of allocating and initializing the required disk space, customizing JCL, customizing three CPPR.PARMLIB members, and running the data reduction and reporting jobs.

Each of the required steps is described in the following sections.

**Note** • Unlike other CIMS Capacity Planner subsystems, Model 204 does not require an element registration step.

**Step 1: Allocate and Initialize the ONLINE and INDEX Data Sets**

See Allocating and Initializing the ONLINE and INDEX Data Sets on page 1-20.

**Step 2: Customize the Model 204 JCL**

The CPPR.CNTL data set contains the following sample JCL members that you can customize to run the Model 204 subsystem.

**D204PROD**

Edit the JCL in the D204PROD member as follows:

1. Change &PREFIX to the high-level qualifier for your CIMS Capacity Planner installation.
2. Substitute the proper data set name for the M204 input data set in SYSUT1.
3. Change the SELECTED SYSTEM= parameter to the required SMF system name.
4. Change the UNIT=SYSDA parameters, if required.
5. Uncomment the SMFILE= parameter that describes the source of the M204 Journal data that is being processed by the data reduction program.
6. Replace the JOB statement with one that is valid for your installation and submit the job for execution.

To view the D204PROD JCL, see D204PROD on page A-17.
Installing CIMS Capacity Planner

The Model 204 Subsystem

D204REPT

Regardless of the source of your input to the M204 data reduction module, the M204 reports are produced by a common set of modules under the control of a single report driver. You can edit the report request job in the D204REPT member as follows:

1. Change &PREFIX to the high-level qualifier for your CIMS Capacity Planner installation.

2. Change the SELECTED SYSTEM= parameter to the required SMF System name.

3. Replace the JOB statement with one that is valid for your installation and submit the job for execution.

To view the D204REPT JCL, see D204REPT on page A-18.

Step 3: Customize Model 204 PARMLIB Members

You need to create the following members in CPPR.PARMLIB to provide data related to Summaries by Organization, Summaries by Application, and Summaries by Response Time Thresholds CIMS Lab provides sample members that you can use to create these members.

Note that the names of these members must contain the SMF SID (represented by &sid). The &sid must be four characters long and it must begin with an alphabetic character as specified in Naming Conventions for Customized Data Set Members on page 1-22.

The SMF SIDs are specified in SYS1.PARMLIB in member SMFPRMxx, where xx is either 00 or the operand supplied in the IPL parameter SYSP=xx.

&s2id204O—USERIDs for Organizations

The &sid204 member is used by the SSAIM20E program to create the MB graph as documented in Chapter 10 of the CIMS Capacity Planner User Guide.

Use the sample CPPR2040 member in CPPR.PARMLIB to create the &sid204 member. The CPPR2040 member contains the following:

1. WHOLESALE      /* 1ST TRANSACTION ORGANIZATION
   TOS*
2. RETAIL         /* 2ND TRANSACTION ORGANIZATION
   NMON
3. FINANCE        /* 3RD TRANSACTION ORGANIZATION
   ADS*
4. ACCOUNTING     /* 4TH TRANSACTION ORGANIZATION
   CS*
5. OPERATIONS     /* 5TH TRANSACTION ORGANIZATION
   TAP*
6. OTHER          /* 6TH TRANSACTION ORGANIZATION
   *
Edit the &sid2040 member as follows:

1 Change the organization names in the member to reflect the names of your major M204 user organizations. Generally, it is convenient to specify up to five major user organizations and leave the last one for all others. An organization name is limited to eight alphanumeric characters.

2 Replace the sample transaction types with the transaction types used by each organization. If more than one organization uses any given transaction type, specify the transaction type under the organization in which you want it summarized. Separate each transaction type by a comma.

A wildcard capability is provided to reduce the number of USERIDs that you must enter. For example, if you enter ACT*, any USERID beginning with the characters "ACT" (ACTGL001, ACTGL002, ACTFA005, etc.) is selected.

You must separate multiple transaction types by commas. If all the entries at any level do not fit into a single line, continue onto additional lines, as required, by placing a comma followed by two blanks after the last entry on the line to be continued. There is no practical limit on the number of transactions types that can be specified.

**&sid2040T—USERIDS for Applications**

The &sid2040T member is used by the SSAIM20E program to create the MC graph as documented in Chapter 10 of the *CIMS Capacity Planner User Guide*.

Use the sample CPPR204T member in CPPR.PARMLIB to create the &sid2040T member. The CPPR204T member contains the following:

1. TOSS /* 1ST TRANSACTION CLASSIFICATION
   TOS*
2. CICS /* 2ND TRANSACTION CLASSIFICATION
   NMON,CS*
3. IDMS /* 3RD TRANSACTION CLASSIFICATION
   ADS*
4. ACCOUNTING /* 4TH TRANSACTION CLASSIFICATION
   ACT*
5. MISCELLANEOUS /* 5TH TRANSACTION CLASSIFICATION
   MSC*
6. OTHER /* 6TH TRANSACTION CLASSIFICATION
   *

Edit the new &sid2040T member as follows:

1 Change the application names in the member to reflect the names of your major M204 applications. Generally, it is convenient to specify up to five major applications and leave the last one for all others.

2 Replace the sample transaction types with the transaction types used by each application. Separate each transaction type by a comma.

A wildcard capability is provided to reduce the number of USERIDs that you must enter. For example, if you enter ACT*, any USERID beginning with the characters "ACT" (ACTGL001, ACTGL002, ACTFA005, etc.) is selected.
You must separate multiple transaction types by commas. If all the entries at any level do not fit into a single line, continue onto additional lines, as required, by placing a comma followed by two blanks after the last entry on the line to be continued. There is no practical limit on the number of transaction types that can be specified.

&sid204R—Response Time Thresholds

The &sid204R member is used by the SSAIM20E graphing program and by the report invoked by M204 PERFORMANCE REPORT= YES in the SSAIM20R program.

Use the sample CPPR204R member in CPPR.PARMLIB to create the &sid204R member. You need not customize the new &sid204R member if the response time thresholds are suitable for your installation. The CPPR204R member contains the following:

1. <.5_SEC /* 1ST RESPONSE CLASSIFICATION
   .50
2. .5-1_SEC /* 2ND RESPONSE CLASSIFICATION
   1.00
3. 1-2_SEC /* 3RD RESPONSE CLASSIFICATION
   2.00
4. 2-4_SEC /* 4TH RESPONSE CLASSIFICATION
   4.00
5. 4-6_SEC /* 5TH RESPONSE CLASSIFICATION
   6.00
6. >6_SEC /* 6TH RESPONSE CLASSIFICATION
   100

Edit the &sid204R member as follows:

1. Change the Heading Data (the lines beginning with numbers 1 through 6), as appropriate, preserving the numeral and the following period. The maximum heading length for any given threshold is eight characters.

2. Enter the response time thresholds for each category in seconds in the format indicated in the member threshold parameters.

Step 4: Run the Model 204 Data Reduction

Run the Model 204 data reduction job using the JCL that was customized according to the steps in D204PROD on page 1-60.

Step 5: Run the Model 204 Reports

Run the Model 204 reports job using the JCL that was customized according to the steps in D204REPT on page 1-61.
The Network Subsystem

Installing the CIMS Capacity Planner Network Subsystem consists of allocating and initializing the required disk space, enrolling the various Network regions, customizing JCL, customizing three `CPPR.PARMLIB` members, and running the data reduction and reporting jobs.

Each of the required steps is described in the following sections.

Step 1: Allocate and Initialize the ONLINE and INDEX Data Sets

See *Allocating and Initializing the ONLINE and INDEX Data Sets* on page 1-20.

Step 2: Register the VTAM APPLIDs

Prior to collecting any Network data, you must register each VTAM APPLID for which you want to collect data. CIMS Capacity Planner does not process data for unregistered VTAM APPLIDs.

Register VTAM APPLIDs in the `CPPRERT` (Element Registration Table) by running the `SSA1REGN` program. This program specifies via the `SELECTED SYSTEM=` parameter each of the eligible SMF SIDs for systems that can execute each specific VTAM APPLID. The VTAM APPLID is specified via a `VTAMNAME=` parameter containing the name of the VTAM APPLID being measured. You can register only one VTAM APPLID in a single execution of the `SSA1REGN` program.

For example, if you have four Systems that run five separate VTAM APPLIDs in your data center, your configuration might look like this:

- **CICSPROD**—runs on SYS1
- **CICSTEST**—runs on SYS2
- **CICSPAYR**—runs on SYS3
- **CICSACCT**—runs on SYS4
- **CICSEMAL**—runs on SYS4

The registration procedure would appear as follows:

```
//JOB JOB
//STEP1 EXEC PGM=SSA1REGN,REGION=1024K
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR
//SYST3 DD DISP=(,DELETE),SPACE=(TRK,(1,1)),UNIT=SYSDA
//SYSPRINT DD SYSOUT=*
//SYSSIN DD *
SELECTED SYSTEM=SYS1
VTAMNAME=CICSPROD
```
Register the CICSTEST System

```
//JOB JOB
//STEP1 EXEC PGM=SSA1REGN,REGION=1024K
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR
//SYSUT3 DD DISP=(DELETE),SPACE=(TRK,(1,1)),UNIT=SYSDA
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
SELECTED SYSTEM=SYS2
VTAMNAME=CICSTEST
```

Register the CICSPAYR System

```
//JOB JOB
//STEP1 EXEC PGM=SSA1REGN,REGION=1024K
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR
//SYSUT3 DD DISP=(DELETE),SPACE=(TRK,(1,1)),UNIT=SYSDA
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
SELECTED SYSTEM=SYS3
VTAMNAME=CICSPAYR
```

Register the CICSACCT System

```
//JOB JOB
//STEP1 EXEC PGM=SSA1REGN,REGION=1024K
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR
//SYSUT3 DD DISP=(DELETE),SPACE=(TRK,(1,1)),UNIT=SYSDA
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
SELECTED SYSTEM=SYS4
VTAMNAME=CICSACCT
```

Register the CICSEMAL System

```
//JOB JOB
//STEP1 EXEC PGM=SSA1REGN,REGION=1024K
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR
//SYSUT3 DD DISP=(DELETE),SPACE=(TRK,(1,1)),UNIT=SYSDA
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
SELECTED SYSTEM=SYS4
VTAMNAME=CICSEMAL
```
Customize the DNETNROL Member

The CPPR.CNTL data set contains the DNETNROL member that executes the SSA1REGN program. To customize DNETNROL, repeat the following procedure for each VTAM APPLID for which data is to be collected:

1. Enter the VTAM APPLID in the VTAMNAME= parameter.
2. In the Selected System= parameter, enter all the SMF SIDS under which the VTAM APPLID can operate, separated by commas. If the VTAM APPLID operates only on the system upon which the DNETNROL job is run, then enter an * for the selected system.
3. Change &PREFIX to the high-level qualifier of your CIMS Capacity Planner installation.
4. Delete the second step or add steps, as required.
5. Replace the JOB statement with one that is valid for your installation and submit the job for execution.

To view the DNETNROL JCL, see DNETNROL on page A-53.

Step 3: Customize the Network JCL

The CPPR.CNTL data set contains the following sample JCL members that you can customize to run the Network subsystem.

DNETPROD

The DNETPROD member is used as a model to customize the Network data reduction job that is used regardless of the source of the records being input to the Network subsystem data reduction.

To edit the DNETPROD member:

1. Change &PREFIX to the high-level qualifier for your CIMS Capacity Planner installation.
2. Adjust the space allocation in the SYSUT3 DD statement, as required. The space allocated to the SYSUT3 data set should be at least as much as the allocation for the ONLINE data set.
3. Change the SELECTED SYSTEM= parameter to the required SMF system name if the data being reduced is not from the system on which this JOB will be executed.
4. Change the UNIT=SYSDA parameters, if required.
5. If you choose to limit the data reduction to a single APPLID, specify the APPLID via the VTAMNAME= parameter. If no APPLID is specified via the VTAMNAME parameter, all registered VTAM APPLIDs are processed.
6. If you are processing records from the NETSPY log, Netview (any Netview record source), or the Network Performance Monitor - NPM (any NPM record source); comment out the FILTER=39 statement by inserting an asterisk (*) in column 1.
7 Uncomment the **SMFILE** parameter that describes your source of input to the Network data reduction program by removing the * from the first column of the statement.

8 Replace the **JOB** statement with one that is valid for your installation and submit the job for execution.

To view the **DNETPROD** JCL, see **DNETPROD** on page A-54.

### **DNETREPT**

Regardless of the source of your input to the Network data reduction module, the Network reports are produced by a common set of modules under the control of a single report driver. You can edit the report request job in the **DNETREPT** member as follows:

1 Change **&PREFIX** to the high-level qualifier for your CIMS Capacity Planner installation.

2 Change the **SELECTED SYSTEM** parameter to the required SMF system name.

3 Customize the **NETWORK TERMINAL NAME** and the **EXCLUDE** parameters according to the instructions in the Chapter 5 of the **CIMS Capacity Planner User Guide** or delete them entirely.

4 Replace the **JOB** statement with one that is valid for your installation and submit the job for execution.

To view the **DNETREPT** JCL, see **DNETREPT** on page A-55.

### Step 4: Customize Network PARMLIB Members

You need to create the following members in **CPPR.PARMLIB** to provide data related to Summaries by Logical Line Groups, Summaries by VTAM APPLIDs, and Response Time Thresholds CIMS Lab provides sample members that you can use to create these members.

Note that the names of these members must contain the SMF SID (represented by **&sid**). The &sid must be four characters long and it must begin with an alphabetic character as specified in **Naming Conventions for Customized Data Set Members** on page 1-22.

The SMF SIDs are specified in **SYS1.PARMLIB** in member **SMFPRMxx**, where xx is either 00 or the operand supplied in the IPL parameter SYSP=xx.
Installing CIMS Capacity Planner

The Network Subsystem

&sidNETL—Logical Line Groups

Using the sample CPPRNETL member to create the &sidNETL member. The CPPRNETL member contains the following:

1. PRINTERS /* 1ST LINE GROUP
   P*
2. NETM_A /* 2ND LINE GROUP
   NMMFA*
3. NETM_B /* 3RD LINE GROUP
   NMMFB*
4. NETM_C /* 4TH LINE GROUP
   NMMFC*
5. NOGALES /* 5TH LINE GROUP
   T02NM*
6. SINGAPORE /* 6TH LINE GROUP
   T03*,T03X*

Edit the new &sidNETL member as follows:

1. Change the line group names in the model to reflect the names of your major logical line groups. Although you can change the names of the logical line groups, the numbers from 1 to 6 and the periods immediately following must be preserved. Each name can be up to eight characters long.

2. Replace the sample line name prefixes with the line name prefixes for each line group. Separate each Line Name Prefix By a comma, as shown in the member.

   You must separate multiple line name prefixes by commas. If all the entries at any level do not fit on a single line, continue onto additional lines, as required, by placing a comma followed by two blanks after the last entry on the line to be continued. There is no practical limit on the number of line name prefixes that can be specified.

&sidNETN—Network VTAM APPLIDs

Using the sample CPPRNETN member to create the &sidNETN member. The CPPRNETN member contains the following:

1. CICSXNET /* 1ST VTAM APPLID
   CICSXNET,A01CICS
2. CICSPROD /* 2ND VTAM APPLID
   CICSPROD,A02CICS
3. TSO /* 3RD VTAM APPLID
   TSO,A01TSO
4. CICSPAYR /* 4TH VTAM APPLID
   CICSPAYR,A03CICS
5. NETM /* 5TH VTAM APPLID
   NETM,A01NETM
6. CICSTEST /* 6TH VTAM APPLID
   CICSTEST,A04CICS,A05CICS
Edit the &sidNETN member as follows:

1. Change the summary names in the sample member to the names under which the activity related to the various APPLIDs are to be summarized (up to six).

2. Replace the sample APPLIDS with the APPLIDS for each summary name. Separate each APPLID by a comma, as shown in the member.

You must separate multiple APPLIDS by commas. If all the entries at any level do not fit on a single line, continue onto additional lines as required by placing a comma followed by two blanks after the last entry on the line to be continued. There is no practical limit on the number of APPLIDS that can be specified.

&sidNETR—Response Time Thresholds

The &sidNETR member is used by the SSAINETE graphing program and by the report invoked by NETWORK PERFORMANCE REPORT=YES in the SSAINETR program.

Use the sample CPPRNETR member in CPPR.PARMLIB to create the &sidNETR member. You need not customize the new &sidNETR member if the response time thresholds are suitable for your installation. The CPPRNETR member contains the following:

1. <.5_SEC /* 1ST RESPONSE CLASSIFICATION
   .50
2. .5-1_SEC /* 2ND RESPONSE CLASSIFICATION
   1.00
3. 1-2_SEC /* 3RD RESPONSE CLASSIFICATION
   2.00
4. 2-4_SEC /* 4TH RESPONSE CLASSIFICATION
   4.00
5. 4-6_SEC /* 5TH RESPONSE CLASSIFICATION
   6.00
6. >_6_SEC /* 6TH RESPONSE CLASSIFICATION
   100

Edit the new &sidNETR member as follows:

1. Change the Heading Data (the lines beginning with numbers 1 through 6), as appropriate, preserving the numeral and the following period. The maximum heading length for any given threshold is eight characters.

2. Enter the response time thresholds for each category in seconds in the format indicated in the member threshold parameters.

Step 5: Run the Network Data Reduction

Run the Network data reduction job using the JCL that was customized according to the steps in DNETPROD on page 1-66.

Step 6: Run the Network Reports

Run the Network reports job using the JCL that was customized according to the steps in DNETREPT on page 1-67.
Upgrading CIMS Capacity Planner (Same Version)

**Note** • If you are upgrading to CIMS Capacity Planner 6.0 from an earlier version (5.1, 5.2, or 5.3), this section is not applicable. You cannot perform the maintenance updates described in this section across versions.

If you are upgrading from one genlevel of CIMS Capacity Planner 6.0 to a new genlevel of 6.0, download the self-extracting file `cpprupdt_<genleveldate>.exe`. This file is located:

- On the CIMS Product CD—in the CIMSCP handle.
- On the CIMS Lab Web—on the Downloads ➤ CIMS Capacity Planner page under CIMS Capacity Planner Product Updates.

The `cpprupdt_<genleveldate>.exe` file is referred to as a *maintenance update* and upgrades your current genlevel to the latest genlevel of the same version. The latest genlevel contains all updates that have been made to the product since the initial genlevel was released.

The `cpprupdt_<genleveldate>.exe` file contains a readme file with upgrade instructions.

**Note** • Maintenance updates are not available on the CIMS Product Tape.

**Applying Product Updates**

The Downloads ➤ CIMS Capacity Planner page also contains *product updates* that CIMS Lab has made between genlevel builds. These updates, which are located under CIMS Capacity Planner Product Updates, have been added since the genlevel build was created.

Product updates are those .exe files that do not include `cpprupdt_` in the file name (file names that contain `cpprupdt_` represent maintenance updates).

You should download and apply all the updates that are appropriate and that have dates *later* than the installed CIMS Capacity Planner genlevel date. Each genlevel includes the updates that precede it.

**Note** • You cannot apply product updates across versions.
Installation Checklist

CIMS Capacity Planner Installation Checklist ........................................ 2-2
CIMS Capacity Planner Base System Traditional Checklist .......................... 2-3
CIMS Capacity Planner Base System Web Install Checklist .......................... 2-4
CIMS Capacity Planner Workload Subsystem Installation Checklist ............... 2-6
CIMS Capacity Planner DASM Subsystem Installation Checklist .................... 2-8
CIMS Capacity Planner CICS Subsystem Installation Checklist ...................... 2-10
CIMS Capacity Planner IDMS Subsystem Installation Checklist .................... 2-13
CIMS Capacity Planner IMS Subsystem Installation Checklist ...................... 2-16
CIMS Capacity Planner Network Subsystem Installation Checklist ................. 2-19
CIMS Capacity Planner DB2 Subsystem Installation Checklist ...................... 2-22
CIMS Capacity Planner Model 204 Subsystem Installation Checklist ............... 2-25
CIMS Capacity Planner Presentation Graphics Interface Installation Checklist .... 2-27
CIMS Capacity Planner Installation Checklist

The CIMS Capacity Planner Installation Checklist is intended to simplify the installation process. A checklist is provided for each individual CIMS Capacity Planner subsystem. You need only refer to the checklists for the subsystems that you intend to use. The information required to complete the checklists is contained in Chapter 1, Installing CIMS Capacity Planner and by your site-specific Data Center.

If you are already a CIMS Capacity Planner user and are upgrading to the most current version of CIMS Capacity Planner, CIMS Lab suggests that you install the entire set of CIMS Capacity Planner libraries into a set of test PDSs and verify that all of the programs work within your existing environment before placing the current version into production. New releases of CIMS Capacity Planner are downward compatible with earlier versions. That is, it should not be necessary to convert any of your CIMS Capacity Planner data sets (ONLINE, INDEX, CPPRERT, HGDLIB, and PARMLIB) to use the new version of CIMS Capacity Planner. However, you need to convert all of your version 5.x ONLINE and INDEX data sets from BSAM to PDSE to upgrade to version 6.0. Version 6.0 contains conversion utilities for this purpose.

As always, the CNTL library distributed on the CIMS Capacity Planner tape contains model JCL for all of the subsystems and facilities provided with the CIMS Capacity Planner system. We advise that you browse through the CPPR.CNTL member named $$INDEX to see which new reports and features are available with this version of CIMS Capacity Planner.

The ISPF/PDF libraries on the distribution tape also reflect the most recent online facilities available through CIMS Capacity Planner. All four ISPF/PDF libraries (CPPRCLIB, CPPRMLIB, CPPRPLIB, and CPPRSLIB) must be used as a set in concert with the new LOAD library since they have certain version inter-dependencies. Note that an ISPF/PDF Tutorial is now distributed as a separate file (CPPRTLIB).

The distributed PARMLIB contains model members for each individual subsystem. Browse the library to see if any new members have been added which may apply to your environment. If you have any questions, problems or concerns with the format or contents of the installation tape, please contact CIMS Lab for further information.
CIMS Capacity Planner Base System Traditional Checklist

This is the step-by-step checklist for installing the Base System using a cartridge.

**To install the Base System from a cartridge**

1. Select a **DASD** Volume to hold the CIMS Capacity Planner system: ____________

2. Select a Data Set Name Prefix for CIMS Capacity Planner: ________________

3. Select a Generic Unit Name as necessary: SYSDA=________

4. Note the SMF SID of your system(s): ________________
   
   (SYS1.PARMLIB member SMFPRMxx)

5. Using **IEBGENER**, copy the first file of the CIMS Capacity Planner distribution tape to a **CNTL PDS** named: ________________

6. Edit the Member you just created—CPPR.INSTALL(INST01):  
   - Change &PREFIX to your data set name prefix ____________
   - Change &VOLUME to your selected VOLSER ______________
   - Change SYSDA as necessary to ______________
   - Add a legitimate **JOBCARD**
   - Submit the job for execution
   - Verify that all of the libraries loaded correctly
   - If your **DASD** farm is SMS-managed, make the **LOADLIB** APF-Authorized

7. Set up the CIMS Capacity Planner **ISPF** Interface
   - Add the distributed **CPPR.CPPRCLIB** to the **SYSPROC** concatenation of your **TSO LOGON PROC**.
   - Edit the distributed **CPPR.CPPRCLIB** as follows:
     - Change &PREFIX in the member **CPPR** to your prefix.

8. Allocate and initialize the Base Subsystem data sets. Edit the distributed **CPPR.CNTL** library member **DUTLINIT** as follows:
   - Change &PREFIX to your prefix ________________
   - Change &VOLUME to your VOLSER ________________
   - Change SYSDA as necessary to ________________
   - Add a legitimate **JOBCARD**
   - Submit the JOB for execution
   - Verify that the job ran correctly
CIMS Capacity Planner Base System Web Install Checklist

This is the step-by-step checklist for installing the Base System using the Web install.

To install the Base System form the Web install

1. Select a DASD Volume to hold the CIMS Capacity Planner system:______________
2. Select a Data Set Name Prefix for CIMS Capacity Planner:____________________
3. Select a Generic Unit Name as necessary: SYSDA=____________
4. Note the SMF SID of your system(s):___________________
   (SYS1.PARMLIB member SMFPRMxx)
5. Connect to the CIMS Lab, Inc. Web site and download the self-extracting executable, cimscppr.exe.
7. Review the readme.txt file for the latest and most current installation instructions.
8. Transfer JCL files to the mainframe: alloc.jcl, instjoba.jcl and instjobb.
9. Execute alloc.jcl on the mainframe to allocate files.
10. Transfer sequential files from the PC to the mainframe. See readme.txt for details.
11. Modify and submit instjoba.jcl on the mainframe.
12. Modify and submit instjobb.jcl on the mainframe.
13. Customize the linkage-editor procedure. Edit the distributed LINKJCL library member LINKPROC as follows:
   • Change &PREFIX to your data set name prefix ______________
14. Edit the distributed LINKJCL library members INSTJOB1 and INSTJOB2 as follows:
   • Add a legitimate JOBCARD
   • Change JCLLIB statement to LINKJCL DSN ________________
   • Submit the INSTJOB1 job for execution
   • Verify that all of the modules link correctly, RC=0
   • Submit the INSTJOB2 job for execution
   • Verify that all of the modules link correctly, RC=0
15 Set up the CIMS Capacity Planner ISPF Interface

- Add the distributed CPPR.CPPRCLIB to the SYSPROC concatenation of your TSO LOGON PROC.
- Edit the distributed CPPR.CPPRCLIB as follows:
  - Change &PREFIX in the member CPPR to your prefix.

16 Allocate and initialize the Base Subsystem data sets. Edit the distributed CPPR.CNTL library member DUTLINIT as follows:

- Change &PREFIX to your prefix _________________
- Change &VOLUME to your VOLSER _________________
- Change SYSDA as necessary to _________________
- Add a legitimate JOBCARD
- Submit the JOB for execution
- Verify that the job ran correctly
CIMS Capacity Planner Workload Subsystem Installation Checklist

This is the step-by-step checklist for installing the CIMS Capacity Planner Workload Subsystem.

To install the CIMS Capacity Planner Workload Subsystem

1. Select a Volume to hold the Workload Files:
   - ONLINE:______________________
   - INDEX:______________________

2. Allocate and initialize the Workload Subsystem data sets. Edit the distributed CPPR.CNTL library member DWKLINIT as follows:
   - Change &PREFIX to your prefix ___________________
   - Change &VOLUME to your VOLSER ________________
   - Change SYSDA as necessary to _________________
   - Add a legitimate JOBCARD
   - Submit the JOB for execution
   - Verify that the JOB ran correctly

3. Register the systems in the Data Center. Edit the CPPR.CNTL member DWKLNRDL as follows:
   - Change &PREFIX to your prefix ___________________
   - Add your SMF SID(s) to the SELECTED SYSTEM=_________________________
   - Add a legitimate JOBCARD
   - Submit the JOB for execution
   - Verify that the JOB ran correctly

4. Examine SYS1.PARMLIB(IEAICSxx) to determine PGNs for:
   - ONLINE: __________________________________________
   - DATABASE: __________________________________________
   - NETWORK: __________________________________________
   - TSO: ________________________________________________
   - BATCH: ____________________________________________
Note • If you are running MVS 5.1 in Goal Mode, it will be necessary to associate Service Class Names with pseudo-PGNs. For details, refer to MVS 5.x Goal Mode Support on page 1-30.

5 Edit the CPPR.PARMLIB member named GLOBAL as follows:
   • Enter your Company's name in the TITLE parameter
   • Change the PRIME SHIFT FIRST HOUR as appropriate
   • Change the LATE SHIFT FIRST HOUR as appropriate
   • Re-save the GLOBAL member

6 Create and tailor a LOCAL member of CPPR.PARMLIB as follows
   • Copy CPPR.PARMLIB(CPPR) to a new member with the name of your SMF SID. Refer to Step 3: Set the Local Parameters (If Required) on page 1-23.
   • Edit the member to add the PGNs related to each of the applicable categories based upon the data gathered in Step 4 above.
   • Save your newly created LOCAL member.

7 Tailor the Workload JCL for your installation

   Edit the CPPR.CNTL library member DWKLPROD as follows:
   • Change &PREFIX to your prefix _________________________
   • Change SYSDA as necessary to _________________________
   • Change the SYSUT1 DD statement to point to your SMF data
   • If you are using TMON/MVS and wish to use the TMON files in place of RMF, you must include the following statements in the Job stream which processes the SMF data:
     RMF RECORDS=EXCLUDE
     SMFILE=TMVS
   • Add a legitimate JOBCARD
   • Submit the JOB
   • Save the updated CPPRPROD member
   • Verify that job ran correctly
CIMS Capacity Planner DASM Subsystem Installation Checklist

This is the Installation Checklist for the DASM Reporting Subsystem.

To install the DASM Reporting Subsystem

1. Define your DASD Storage Pools. Edit CPPR.PARMLIB(DASDPOOL) to define your storage pools.
   - Select six pools of DASD by category
   - Name the pools
     1. __________________________
     2. __________________________
     3. __________________________
     4. __________________________
     5. __________________________
     6. __________________________
   - Select the Volumes which belong to each pool
     1. __________________________________________________
     2. __________________________________________________
     3. __________________________________________________
     4. __________________________________________________
     5. __________________________________________________
     6. __________________________________________________

2. Tailor the &sidDSNX PARMLIB member.
   Copy CPPR.PARMLIB(CPPRDSNX) to a member with the name of your SMF SID plus the characters DSNX as discussed in Step 2: Create the &sidDSNX Member on page 1-31. This member is used by the data reduction module of the DASM Subsystem to parse the data set names in the DASD Farm. Refer to Chapter 2 of the CIMS Capacity Planner User Guide for more information. Edit the newly created member as follows:
   - Add an entry for all high level qualifiers which are to be skipped when determining the owner of a data set.
   - Add an entry for all 2nd level qualifiers that are to be skipped when determining the owner of a data set if the first level qualifier is matched.
   - Add an entry for all 3rd level qualifiers that are to be skipped when determining the owner of a data set if the previous qualifiers are matched.
Installation Checklist

CIMS Capacity Planner DASM Subsystem Installation Checklist

- Add an entry for all 4th level qualifiers that are to be skipped when determining the owner of a data set if the previous qualifiers are matched.
- Add an entry for all 5th level qualifiers that are to be skipped when determining the owner of a data set if the previous qualifiers are matched.
- Add an entry for all 6th level qualifiers that are to be skipped when determining the owner of a data set if the previous qualifiers are matched.

Save the newly created member into the CPPR.PARMLIB

3 Allocate and initialize the DASM Subsystem data sets. Edit the distributed CPPR.CNTL library member DASMINIT as follows:

- Change &PREFIX to your prefix ________________
- Change &VOLUME to your VOLSER ________________
- Change SYSDA as necessary to ________________
- Add a legitimate JOBCARD
- Submit the JOB for execution
- Verify that the job ran correctly

4 Tailor the DASM JCL. Edit the CPPR.CNTL member DASMCMIT as follows:

- Change &PREFIX to your prefix ________________
- Change SYSDA as necessary to ________________
- Change the Volume Ignore list as required
- Change the DSN Ignore/Include list as required
- Add a legitimate JOBCARD
- Submit the job for execution
- Re-save the edited JCL
- Verify that the job ran correctly

5 If your DASD farm is SMS-managed, and you wish to use the ISPF/PDF Interface for online reports:

- Make sure the CIMS Capacity Planner LOADLIB is APF-Authorized
- Modify the IKJTSO00 member of SYS1.PARMLIB to include the SSA1DASM program
CIMS Capacity Planner CICS Subsystem Installation Checklist

This is the installation checklist for the CICS data reduction and reporting subsystem.

**To install the CICS data reduction and reporting subsystem**

1. Allocate and Initialize the CIMS Capacity Planner CICS data sets.

   If you have elected to use a common set of **ONLINE** and **INDEX** data sets for the Workload and the CICS Subsystems, then you should skip to Step 2 to register the CICS regions.

   - Select a Volume to hold the CICS files
     
     **ONLINE:**__________________
     
     **INDEX:** _________________
   
   - Edit the distributed CPPR.CNTL member named DCICINIT.
     
     Change **&VOLUME** to your **VOLSER** ________________
     
     Change **&PREFIX** to your prefix ________________
     
     Change **SYSDA** as necessary to ________________
     
     Change the **SPACE** parameters if required
     
     Add a legitimate **JOBCARD**
     
     Submit the job for execution
     
     Verify that the job ran correctly

2. Register the CICS regions.

   Edit the CPPR.CNTL library member named DCICNROL to construct the element registration job. Refer to Step 2: Register the CICS Regions on page 1-34 for CICS element registration information.

   - Change **&PREFIX** to your prefix ________________
   
   - Change **SYSDA** as necessary to ________________
   
   - Specify your **SMF IDs** using **SELECTED SYSTEM=**_______________
   
   - Specify the **CICS system** using **CICSNAME=**_______________
   
   - Set up a separate step for each **CICS region** you wish to track
   
   - Add a legitimate **JOBCARD**
   
   - Submit the job for execution
   
   - Verify that the job ran correctly
3 Tailor the CICS members in CPPR.PARMLIB.

All CICS related members begin with the SMF SID followed by the characters CIC followed by a one character function identifier.

- Copy the member named CPPRCICO to a member &sidCICO. If your SMF System begins with a numeric character or is less than four characters long, refer to Naming Conventions for Customized Data Set Members on page 1-22 for instructions on specifying the member name.

- Edit the newly created member to specify the transaction codes for each separate organization up to six.

- Copy the member named CPPRCICR to a member named &sidCICR and edit it to specify your CICS response time thresholds. If your SMF System begins with a numeric character or is less than four characters long, refer to Naming Conventions for Customized Data Set Members on page 1-22 for instructions on specifying the member name.

- Copy the member named CPPRCICT to a member named &sidCICT and edit it to specify the CICS transaction codes for each CICS application up to six. If your SMF System begins with a numeric character or is less than four characters long, refer to Naming Conventions for Customized Data Set Members on page 1-22 for instructions on specifying the member name.

4 Tailor the CICS Workload JCL.

The CICS model JCL member may be determined by reviewing Step 3: Customize the CICS JCL on page 1-37 or by browsing the CPPR.CNTL member named $$INDEX. After the member containing the model JCL has been determined, tailor it as follows:

- Change &PREFIX to your prefix ________________
- Change SYSDA as required to ________________
- Change SYSUT1 to point to your input
- Change the SELECTED SYSTEM= to ________________
- Change CICSNAME as required to ________________
- Add a legitimate JOB Carrd
- Submit the job for execution
- Verify that the job ran correctly
5 Tailor the **CICS Report JCL**

The model JCL for running the CICS reports is contained in the CPPR.CNTL library member named DCICREPT.

- Change &PREFIX to your prefix ____________________
- Change the SELECTED SYSTEM= to ____________________
- Change the CICSNAME= to ____________________
- Add a legitimate JOBCARD
- Submit the job for execution
- Verify that the job ran correctly
- Print the reports
CIMS Capacity Planner IDMS Subsystem Installation Checklist

This is the installation checklist for the IDMS data reduction and reporting subsystem.

To install the IDMS data reduction and reporting subsystem

1. Allocate and Initialize the CIMS Capacity Planner IDMS data sets.
   
   If you have elected to use a common set of ONLINE and INDEX data sets for the Workload and the IDMS Subsystems, then you should skip to the IDMS element registration Step 2 below.
   
   - Select a Volume to hold the IDMS files
     
     ONLINE: ________________
     
     INDEX: ________________
   
   - Edit the distributed CPPR.CNTL member named DIDMINIT
     
     Change &VOLUME to your VOLSER ________________
     
     Change &PREFIX to your prefix ________________
     
     Change SYSDA as necessary to ________________
     
     Change the SPACE parameters if required
     
     Add a legitimate JOBCARD
     
     Submit the job for execution
     
     Verify that the job ran correctly

2. Register the IDMS regions.
   
   Edit the CPPR.CNTL library member named IDMNROL to construct the element registration job. Refer to Step 2: Register the IDMS CVs on page 1-42 for IDMS element registration information.
   
   - Change &PREFIX to your prefix ________________
   
   - Change SYSDA as necessary to ________________
   
   - Specify your SMF IDs using SELECTED SYSTEM=______________
   
   - Specify the IDMS system using IDMSNAME=______________
   
   - Set up a separate step for each IDMS region you wish to track
   
   - Add a legitimate JOBCARD
   
   - Submit the job for execution
   
   - Verify that the job ran correctly
3 Tailor the IDMS members in CPPR.PARMLIB.

All IDMS related members begin with the SMF SID followed by the characters IDM followed by a one character function identifier.

- Copy the member named CPPRIDMO to a member &sidIDMO. If your SMF System begins with a numeric character or is less than four characters long, refer to Naming Conventions for Customized Data Set Members on page 1-22 for instructions on specifying the member name.

- Edit the newly created member to specify the transaction codes for each separate organization up to six.

- Copy the member named CPPRIDMR to a member named &sidIDMR and edit it to specify your IDMS response time thresholds. If your SMF System begins with a numeric character or is less than four characters long, refer to Naming Conventions for Customized Data Set Members on page 1-22 for instructions on specifying the member name.

- Copy the member named CPPRIDMT to a member named &sidIDMT and edit it to specify the IDMS transaction codes for each IDMS application up to six. If your SMF System begins with a numeric character or is less than four characters long, refer to Naming Conventions for Customized Data Set Members on page 1-22 for instructions on specifying the member name.

4 Tailor the IDMS Workload JCL.

The IDMS model JCL member may be determined by reviewing Step 3: Customize the IDMS JCL on page 1-44 or by browsing the CPPR.CNTL member named $$INDEX. After the member containing the model JCL has been determined, tailor it as follows:

- Change &PREFIX to your prefix __________________
- Change SYSDA as required to __________________
- Change SYSUT1 to point to your input
- Change SELECTED SYSTEM= to __________________
- Change IDMSNAME as required to __________
- Add a legitimate JOBCARD
- Submit the job for execution
- Verify that the job ran correctly
5 Tailor the IDMS Report JCL.

The model JCL for running the IDMS reports is contained in the CPPR.CNTL library member named DIDMREPT.

- Change &PREFIX to your prefix ________________
- Change the SELECTED SYSTEM= to ________________
- Change the IDMSNAME= to ________________
- Add a legitimate JOBCARD
- Submit the job for execution
- Verify that the job ran correctly
- Print the reports
CIMS Capacity Planner IMS Subsystem Installation Checklist

This is the installation checklist for the IMS data reduction and reporting subsystem.

**To install the IMS data reduction and reporting subsystem**

1. Allocate and Initialize the CIMS Capacity Planner IMS data sets.

   If you have elected to use a common set of ONLINE and INDEX data sets for the Workload and the IMS Subsystems, then you should skip to the IMS element registration Step 2 below).

   - Select a Volume to hold the IMS files
     
     ONLINE: __________________
     INDEX: __________________

   - Edit the distributed CPPR.CNTL member named DIMSINIT
     
     Change &VOLUME to your VOLSER _________________
     Change &PREFIX to your prefix _________________
     Change SYSDA as necessary to _________________
     Change the SPACE parameters if required
     Add a legitimate JOBCARD
     Submit the job for execution
     Verify that the job ran correctly

2. Register the IMS regions.

   Edit the CPPR.CNTL library member named DIMSNROL to construct the element registration job. Refer to Step 2: Register the IMS Regions on page 1-49 for IMS element registration information.

   - Change &PREFIX to your prefix _________________
   - Change SYSDA as necessary to _________________
   - Specify your SMF IDs using SELECTED SYSTEM=____________
   - Specify the IMS system using IMS SYSTEM= _______________
   - Set up a separate step for each IMS region you wish to track
   - Add a legitimate JOBCARD
   - Submit the job for execution
   - Verify that the job ran correctly
3 Tailor the IMS members in CPPR.PARMLIB.

All IMS related members begin with the SMF SID followed by the characters IMS followed by a one character function identifier.

- Copy the member named CPPRIMSO to a member &sidIMSO. If your SMF System begins with a numeric character or is less than four characters long, refer to Naming Conventions for Customized Data Set Members on page 1-22 for instructions on specifying the member name.

- Edit the newly created member to specify the transaction codes for each separate organization up to six.

- Copy the member named CPPRIMSR to a member named &sidIMSR and edit it to specify your IMS response time thresholds. If your SMF System begins with a numeric character or is less than four characters long, refer to Naming Conventions for Customized Data Set Members on page 1-22 for instructions on specifying the member name.

- Copy the member named CPPRIMST to a member named &sidIMST and edit it to specify the IMS transaction codes for each IMS application up to six. If your SMF System begins with a numeric character or is less than four characters long, refer to Naming Conventions for Customized Data Set Members on page 1-22 for instructions on specifying the member name.

4 Tailor the IMS Workload JCL

The IMS model JCL member to be used may be determined by reviewing Step 3: Customize the IMS JCL on page 1-51 or by browsing the CPPR.CNTL member named $$INDEX. After the Member containing the model JCL has been determined, tailor it as follows:

- Change &PREFIX to your prefix ________________
- Change SYSDA as required to ________________
- Change SYSUT1 in ST01 to point to your SMF TYPE 30 input file
- Change SYSUT1 in ST02 to point to your IMS log input file
- Change SELECTED_SYSTEM= to ________________
- Change IMS_SYSTEM= to ________________
- Change the SYSIN parameters to correspond to the region names for your IMS system. If you are not running DB2 with IMS, comment out the DSNMSTR and DSNDBM1 parameters in ST03. Otherwise, enter the respective Region Names.
- Add a legitimate JOBCARD
- Submit the job for execution
- Verify that the job ran correctly
5 Tailor the IMS Report JCL.

The model JCL for running the IMS reports is contained in the CPPR.CNTL library member named DIMSREPT.

- Change &PREFIX to your prefix ________________
- Change the SELECTED SYSTEM to ________________
- Change the IMS SYSTEM to ________________
- Add a legitimate JOB CARD
- Submit the job for execution
- Verify that the job ran correctly
- Print the reports
CIMS Capacity Planner Network Subsystem Installation Checklist

This is the installation checklist for the CPPR Network data reduction and reporting subsystem.

To install the CPPR Network data reduction and reporting subsystem

1 Allocate and Initialize the CIMS Capacity Planner Network data sets.

   If you have elected to use a common set of ONLINE and INDEX data sets for the Workload and the Network Subsystems, then you should skip to the Network element registration Step 2 below.

   • Select a Volume to hold the Network files
     ONLINE: ____________________
     INDEX: ____________________

   • Edit the distributed CPPR.CNTL member named DNETINIT
     Change &VOLUME to your VOLSER ______________
     Change &PREFIX to your prefix _________________
     Change SYSDA as necessary to _________________
     Change the SPACE parameters if required
     Add a legitimate JOBCARD
     Submit the job for execution
     Verify that the job ran correctly

2 Register the Network regions.

   Edit the CPPR.CNTL library member named DNETNROL to construct the element registration job. Refer to Step 2: Register the VTAM APPLIDs on page 1-64 for Network (VTAM) element registration information.

   • Change &PREFIX to your prefix _________________
   • Change SYSDA as necessary to _________________
   • Specify your SMF IDs using SELECTED SYSTEM=______________
   • Specify the VTAM APPLIDs using the VTAMNAME=___________
   • Set up a separate step for each VTAM APPLID region you wish to track
   • Add a legitimate JOBCARD
   • Submit the job for execution and verify that the job ran correctly
3 Tailor the Network members in CPPR.PARMLIB.

All Network related members begin with the SMF SID followed by the characters NET followed by a one character function identifier.

- Copy the member named CPPRNETL to a member &sidNETL. If your SMF System begins with a numeric character or is less than four characters long, refer to Naming Conventions for Customized Data Set Members on page 1-22 for instructions on specifying the member name.
- Edit the newly created member to specify the names of your line groups (up to six) and the line name prefixes associated with each line group.
- Copy the member named CPPRNETR to a member named &sidNETR and edit it to specify your Network response time thresholds. If your SMF System begins with a numeric character or is less than four characters long, refer to Naming Conventions for Customized Data Set Members on page 1-22 for instructions on specifying the member name.
- Copy the member named CPPRNETN to a member named &sidNETN and edit it to specify the summary names under which the activity related to the various APPLIDs are to be summarized. Also, specify the APPLID that are to be summarized under each summary name. If your SMF System begins with a numeric character or is less than four characters long, refer to Naming Conventions for Customized Data Set Members on page 1-22 for instructions on specifying the member name.

4 Tailor the Network Workload JCL.

The Network model JCL member may be determined by reviewing Step 3: Customize the Network JCL on page 1-66 or by browsing the CPPR.CNTL member named $$INDEX. After the member containing the model JCL has been determined, tailor it as follows:

- Change &PREFIX to your prefix ________________
- Change SYSDA as required to ________________
- Change SYSUT1 to point to your input
- Change the SELECTED SYSTEM= to ________________
- Change VTAMNAME= as required to ________________
- Add a legitimate JOBCARD
- Submit the job for execution
- Verify that the job ran correctly
5 Tailor the Network Report JCL.

The model JCL for running the Network reports is contained in the CPPR.CNTL library member named DNETREPT.

- Change &PREFIX to your prefix __________________
- Change the SELECTED_SYSTEM= to _________________
- Change the VTAMNAME= to _________________
- Add a legitimate JOBCARD
- Submit the job for execution
- Verify that the job ran correctly
- Print the reports
CIMS Capacity Planner DB2 Subsystem Installation Checklist

This is the installation checklist for the DB2 data reduction and reporting subsystem.

**To install the DB2 data reduction and reporting subsystem**

1. Allocate and Initialize the CIMS Capacity Planner DB2 data sets

   If you have elected to use a common set of **ONLINE** and **INDEX** data sets for the Workload and the DB2 Subsystems, then you should skip to the DB2 element registration Step 2 below).

   - Select a Volume to hold the DB2 files
     
     **ONLINE:** ____________________
     **INDEX:** ____________________

   - Edit the distributed CPPR.CNTL member named DDB2INIT
     
     Change **&VOLUME** to your **VOLSER** _________________
     Change **&PREFIX** to your prefix _________________
     Change **SYSDA** as necessary to _________________
     Change the **SPACE** parameters if required
     Add a legitimate **JOBCARD**
     Submit the job for execution
     Verify that the job ran correctly

2. Register the DB2 regions.

   Edit the CPPR.CNTL library member named DDB2NRL1 to construct the element registration job. Refer to Step 2: Register the DB2 Systems on page 1-55 for DB2 element registration information.

   - Change **&PREFIX** to your prefix _________________
   - Change **SYSDA** as necessary to _________________
   - Specify your **SMF IDs** using **SELECTED SYSTEM=_______________**
   - Specify the DB2 system using **DB2 SUBSYSTEM=_______________**
   - Set up a separate step for each DB2 region you wish to track
   - Add a legitimate **JOBCARD**
   - Submit the job for execution
   - Verify that the job ran correctly
3 Register the DB2 Connect Names.

Edit the CPPR.CNTL library member named DDB2NRL2 to construct the connect name registration job. Refer to Step 3: Register the DB2 Connect Names on page 1-56 for DB2 connect name registration information.

- Change &PREFIX to your prefix ______________
- Change SYSDA as necessary to ______________
- Specify your SMF IDs using SELECTED SYSTEM=____________
- Specify the DB2 system using DB2NAME=____________
- Set up a separate step for each DB2 Name you wish to track
- Add a legitimate JOBCARD
- Submit the job for execution
- Verify that the job ran correctly

4 Tailor the DB2 members in CPPR.PARMLIB

All DB2 related members begin with the SMF SID followed by the characters DB2 followed by a one character function identifier.

- Copy the member named CPPRDB2R to a member named &sidDB2R and edit it to specify your DB2 response time thresholds. If your SMF System begins with a numeric character or is less than four characters long, refer to Naming Conventions for Customized Data Set Members on page 1-22 for instructions on specifying the member name.

5 Tailor the DB2 Workload JCL

The DB2 model JCL member contained in CPPR.CNTL is named DDB2PROD. Tailor the model JCL as follows:

- Change &PREFIX to your prefix ______________
- Change SYSDA as required to ______________
- Change SYSUT1 to point to your input
- Change the SELECTED SYSTEM= to ______________
- Change the DB2 SUBSYSTEM NAME to ______________
- Add a legitimate JOBCARD
- Submit the job for execution
- Verify that the job ran correctly
6 Tailor the DB2 Report JCL

The model JCL for running the DB2 reports is contained in the CPPR.CNTL library member named DDB2REPT.

- Change &PREFIX to your prefix __________________
- Change the SELECTED SYSTEM= to __________________
- Change the DB2 SUBSYSTEM NAME to ________________
- Change the BEGIN DATE to ________________
- Change the END DATE to ________________
- Add a legitimate JOBCARD
- Submit the job for execution
- Verify that the job ran correctly
- Print the reports
CIMS Capacity Planner Model 204 Subsystem
Installation Checklist

This is the installation checklist for the Model 204 data reduction and reporting subsystem.

To install the Model 204 data reduction and reporting subsystem

1 Allocate and Initialize the CIMS Capacity Planner M204 data sets.

   If you have elected to use a common set of ONLINE and INDEX data sets for the Workload and the M204 Subsystems, then you should skip to Tailoring the M204 PARMLIB members. See Step 3 below.

   • Select a Volume to hold the M204 files
     ONLINE:__________________
     INDEX:__________________
   • Edit the distributed CPPR.CNTL member named D204INIT
     Change &VOLUME to your VOLSER _______________
     Change &PREFIX to your prefix ________________
     Change SYSDA as necessary to ________________
     Change the SPACE parameters if required
     Add a legitimate JOB CARD
     Submit the job for execution
     Verify that the job ran correctly

2 Register the M204 regions.

   No element registration is required for the Model 204 subsystem.

3 Tailor the M204 members in CPPR.PARMLIB.

   All M204 related members begin with the SMF SID followed by the characters 204 followed by a one character function identifier.

   • Copy the member named CPPR2040 to a member &sid2040. If your SMF System begins with a numeric character or is less than four characters long, refer to Naming Conventions for Customized Data Set Members on page 1-22 for instructions on specifying the member name.

   • Edit the newly created member to specify the transaction codes for each separate organization up to six.


**Installation Checklist**

* CIMS Capacity Planner Model 204 Subsystem Installation Checklist

- Copy the member named CPPR204R to a member named &sid204R and edit it to specify your M204 response time thresholds. If your SMF System begins with a numeric character or is less than four characters long, refer to *Naming Conventions for Customized Data Set Members* on page 1-22 for instructions on specifying the member name.

- Copy the member named CPPR204T to a member named &sid204T and edit it to specify the M204 transaction codes for each M204 application up to six. If your SMF System begins with a numeric character or is less than four characters long, refer to *Naming Conventions for Customized Data Set Members* on page 1-22 for instructions on specifying the member name.

4 Tailor the M204 Workload JCL

The M204 model JCL is contained in member D204PROD of the CPPR.CNTL library. Tailor the JCL as follows:

- Change &PREFIX to your prefix _________________
- Change SYSDA as required to _________________
- Change SYSUT1 to point to your input
- Change SELECTED SYSTEM= to _________________
- Add a legitimate JOBCARD
- Submit the job for execution
- Verify that the job ran correctly

5 Tailor the M204 Report JCL

The model JCL for running the M204 reports is contained in the CPPR.CNTL library member named D204REPT.

- Change &PREFIX to your prefix _________________
- Change the SELECTED SYSTEM= to _________________
- Add a legitimate JOBCARD
- Submit the job for execution
- Verify that the job ran correctly
- Print the reports
CIMS Capacity Planner Presentation Graphics Interface Installation Checklist

There are many different Presentation Graphics products available for the PC, as well as the IBM host-based product GDDM. CIMS Capacity Planner provides data point members in delimited ASCII format (.CSV) which may be used as input to one or more of the following:

- MS/DOS Harvard Graphics Release 2.3 from Software Publishing
- MS/DOS Harvard Graphics Release 3 from Software Publishing
- Harvard Graphics for Windows from Software Publishing
- EXCEL from Microsoft
- Power Point from Microsoft
- Lotus Freelance
- GDDM on the MVS Host

Each data point member represents the data for a specific graph. In general, a data point member is imported into a predefined template to create the graph itself. Graph templates are available for many of the products listed above.

The data point members reside in the HGDLIB and may be processed on the MVS Host with GDDM using the ISPF/PDF interface; they may be downloaded to the PC individually; or they may be packed into a sequential file (see the description of the CIMS Capacity Planner Utility named SSA1HGDF in the Utilities section of this manual) which is then downloaded and unpacked on the PC with a CIMS Capacity Planner UNPACKER Utility.
Control Library JCL Examples

$INDEX .................................................. A-3
D204INIT .............................................. A-16
D204PROD ............................................. A-17
D204REPT ............................................. A-18
DASMCOLW .......................................... A-19
DASMINIT ............................................. A-21
DCICINIT ............................................. A-22
DCICNROL ........................................... A-23
DCICPROD ........................................... A-24
DCICREPT ........................................... A-26
DCICSMF ............................................. A-27
DCICTMON ........................................... A-29
DDB2INIT ............................................. A-32
DDB2NRL1 ............................................. A-33
DDB2NRL2 ............................................. A-34
DDB2PROD ............................................ A-35
DDB2REPT ............................................ A-36
DIDMINIT ............................................. A-37
DIDML102 ............................................. A-38
DIDMNROL ............................................ A-39
DIDMPL12 ............................................. A-40
DIDMPROD ............................................ A-41
DIDMPSMF ............................................. A-42
<table>
<thead>
<tr>
<th>Control Library JCL Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIDMREPT ...................................................... A-43</td>
</tr>
<tr>
<td>DIMSINIT ...................................................... A-45</td>
</tr>
<tr>
<td>DIMSNROL ...................................................... A-46</td>
</tr>
<tr>
<td>DIMSREPT ...................................................... A-47</td>
</tr>
<tr>
<td>DNETINIT ...................................................... A-52</td>
</tr>
<tr>
<td>DNETNROL ...................................................... A-53</td>
</tr>
<tr>
<td>DNETPROD ...................................................... A-54</td>
</tr>
<tr>
<td>DNETREPT ...................................................... A-55</td>
</tr>
<tr>
<td>DUTLINIT ...................................................... A-56</td>
</tr>
<tr>
<td>DWKLINIT ...................................................... A-57</td>
</tr>
<tr>
<td>DWKLNROL ...................................................... A-58</td>
</tr>
<tr>
<td>DWKLPFOD ...................................................... A-59</td>
</tr>
<tr>
<td>DWKLREPT ...................................................... A-61</td>
</tr>
</tbody>
</table>
THIS IS AN INDEX TO THE DISTRIBUTION JCL LIBRARY

**********************************************************************
*                  CPPR INITIALIZATION AND ELEMENT REGISTRATION MEMBERS  *
**********************************************************************
DUTLINIT THIS MEMBER IS USED TO ALLOCATE AND INITIALIZE THE PRIMARY
CPPR FILES, INCLUDING THE PERFORMANCE DATABASE, THE ELEMENT
REGISTRATION FILE, THE TRENDS GRAPH DATA POINT LIBRARY
AND THE ONLINE PERFORMANCE DATABASE INDEX

DNLKLNROL THIS MEMBER IS USED TO REGISTER ALL OF THE CPUS IN THE
DATA CENTER

DCICNROL THIS MEMBER Registers THE CICS ADDRESS SPACES BY VTAM APPLID

DIDMNROL THIS MEMBER Registers THE IDMS ADDRESS SPACES BY VTAM APPLID

DIMSROL THIS MEMBER Registers THE IMS ADDRESS SPACES BY VTAM APPLID

DNETNROL THIS MEMBER Registers THE VTAM ADDRESS SPACES BY VTAM APPLID

DDB2NRL1 THIS MEMBER Registers THE DB2 SUBSYSTEMS BY SUBSYSTEM NAME

DDB2NRL2 THIS MEMBER Registers THE DB2 CALLING REGIONS BY CONNECT NAME

REFRESH THIS MEMBER IS USED TO TURN THE TRIAL FLAGS BACK ON IN CASE
THE TRIAL NEEDS TO BE EXTENDED OR A NEW SUBSYSTEM IS
BEING EXAMINED

**********************************************************************
*                  RESOURCE UTILIZATION REPORTS (ACCOUNTING SUBSYSTEM)  *
**********************************************************************
DACTPCSW THIS MEMBER IS USED TO BUILD THE RESOURCE UTILIZATION
TABLES IN THE ACCOUNTING DATABASE

DACTPCSR THIS MEMBER IS USED TO BUILD THE RESOURCE UTILIZATION
REPORTS FROM THE TABLES IN THE ACCOUNTING DATABASE

**********************************************************************
*                  DIRECT ACCESS SPACE MANAGEMENT MEMBERS            *
**********************************************************************
DASMPROD THIS MEMBER IS USED TO SCAN THE DASD FARM AND BUILD THE
DASM VOLUME AND DEVICE OCCUPANCY REPORTS

DASMCMIT THIS MEMBER IS USED TO SCAN THE DASD FARM AND BUILD THE
DASM VOLUME AND DEVICE OCCUPANCY REPORTS AND TO COMMIT
THE TABLES TO THE ONLINE PERFORMANCE DATABASE (SAVE THEM)

DASMVTOC THIS MEMBER MAPS A SPECIFIC VTOC

DASMVTO1 THIS MEMBER MAPS A SET OF DSNAMES ON A SET OF VOLUMES

DASMVTO2 THIS MEMBER MAPS A SPECIFIC VOLUME

DASMVTO3 THIS MEMBER SHOWS FREE SPACE ON A SET OF VOLUMES
**Control Library JCL Examples**

---

**INDEX**

- **DASMVTO4** THIS MEMBER SHOWS DETAILED VOLUME SUMMARIES 00570000
- **DASMVTO5** THIS MEMBER SHOWS QUICK VOLUME SUMMARIES 00580000
- **DASMCOLOW** THIS MEMBER IS USED TO BUILD THE DASM REPORTS AND TO COMMIT THE TABLES TO THE ONLINE PERFORMANCE DATABASE (SAVE THEM) Using DCOLLECT AS INPUT 00610000
- **DASMHIST** THIS MEMBER IS USED TO BUILD THE DASM REPORTS FROM THE COMMITTED TABLES IN THE ONLINE PERFORMANCE DATABASE 00650000
- **DASMPIE** THIS MEMBER IS USED TO CREATE THE MEMBERS IN HGDLIB WHICH MAY BE USED TO CREATE A PIE CHART OF DASM SPACE UTILIZATION 00680000

- **DASMTRND** THIS MEMBER IS USED TO CREATE THE MEMBERS IN HGDLIB WHICH MAY BE USED TO CREATE TRENDS GRAPHS FOR THE GROUPS (DASDPOOL) REPRESENTING DASD SPACE AVAILABLE VS. DASD SPACE ALLOCATED 00720000
- **DASMMGRT** THIS MEMBER IS USED TO CREATE THE HGDLIB MEMBERS FOR MONTHLY ORGANIZATIONAL GRAPHS BASED ON PARMLIB(&SID.DASF) SHOWING SPACE ALLOCATED, SPACE WASTED & UNREFERENCED SPACE 00760000
- **DASMWGRT** THIS MEMBER IS USED TO CREATE THE HGDLIB MEMBERS FOR WEEKLY ORGANIZATIONAL GRAPHS BASED ON PARMLIB(&SID.DASF) SHOWING SPACE ALLOCATED, SPACE WASTED & UNREFERENCED SPACE 00800000

- **DASMOWNR** THIS MEMBER IS USED TO CREATE THE HGDLIB MEMBERS FOR ORGANIZATIONAL BAR GRAPHS BASED ON PARMLIB(&SID.DASF) SHOWING SPACE ALLOCATED, SPACE WASTED & UNREFERENCED SPACE 00830000

---

**MAGNETIC TAPE VOLUME AND DRIVE MEMBERS**

**DTAPINIT** THIS MEMBER ALLOCATES AND INITIALIZES THE TAPE DATA BASE 00900000
**DTAPPROM** THIS MEMBER IS USED TO BUILD THE TAPE VOLUME TABLES 00920000
**DTAPADHC** THIS MEMBER IS USED TO CREATE A SELECTIVE AD HOC REPORT FOR THE ORIGINAL TAPE MANAGEMENT CONTROL FILE INPUT 00940000

**DTAPURPT** THIS MEMBER IS USED TO BUILD THE TAPE DRIVE REPORTS FROM THE COMMITTED TABLES IN THE ONLINE PERFORMANCE DATABASE 00970000
**DTAPVRPT** THIS MEMBER IS USED TO BUILD THE TAPE VOLUME REPORTS FROM THE COMMITTED TABLES IN THE ONLINE PERFORMANCE DATABASE 01000000

**DTAPTRND** THIS MEMBER IS USED TO BUILD THE REPORT WHICH COMPARES PERIOD A TO PERIOD B FOR TAPE VOLUME ACTIVITY 01030000

- **DTAPOGRF** THIS MEMBER IS USED TO CREATE THE MEMBERS IN HGDLIB WHICH MAY BE USED TO CREATE OWNER GRAPHS FOR TAPE VOLUMES 01050000
- **DTAPUGRF** THIS MEMBER IS USED TO CREATE THE MEMBERS IN HGDLIB WHICH MAY BE USED TO CREATE TRENDS GRAPHS FOR TAPE DRIVE ACTIVITY 01090000
- **DTAPVGRF** THIS MEMBER IS USED TO CREATE THE MEMBERS IN HGDLIB WHICH MAY BE USED TO CREATE TRENDS GRAPHS FOR TAPE VOLUME ACTIVITY 01120000

---

CIMS Capacity Planner Installation and Getting Started Guide
**INDEX**

* CPPR WORKLOAD SYSTEM DATA REDUCTION MEMBER  
  **********************************************************************  
  DWKLPROD  THIS IS A MODEL FOR THE DATA REDUCTION STEP FOR THE WORKLOAD  
  ANALYSIS PORTION OF THE CPPR SYSTEM  
  **********************************************************************  
* CPPR WORKLOAD SYSTEM REPORTS  
  **********************************************************************  
  DWKLEPT  THIS MEMBER PRODUCES ALL OF THE REPORTS FOR THE WORKLOAD  
  ANALYSIS PORTION OF THE CPPR SYSTEM  
  **********************************************************************  
* CPPR TRENDS ANALYSIS GRAPH PRODUCING MEMBERS  
  **********************************************************************  
  DWKLTRS  THIS MEMBER PRODUCES THE WORKLOAD PIE CHART DATA POINT  
  LIBRARY MEMBER (&SID.108)  
  DWKLTGR  THIS MEMBER PRODUCES THE WORKLOAD BAR CHART DATA POINT  
  LIBRARY MEMBERS FOR CPU USAGE BY PGN GROUP (&SID.X09-X0B)  
  DWKLTGRK  THIS MEMBER PRODUCES THE WORKLOAD TASK SCHEDULE CONFORMANCE  
  DATA POINT LIBRARY MEMBERS (&SID.236-237)  
  DWKLDGRV  THIS MEMBER PRODUCES THE TASK AVAILABILITY DATA POINT  
  LIBRARY MEMBER (&SID.235) FOR A SPECIFIC TASK  
  DWKLHGRV  THIS MEMBER PRODUCES THE SYSTEM AVAILABILITY DATA POINT  
  LIBRARY MEMBER (&SID.135) FOR A SET OF TASKS  
  DWKHLGRQ  THIS MEMBER PRODUCES THE CHANNEL BUSY DATA POINT LIBRARY  
  MEMBERS FOR HOURLY GRAPHS (&SID.1X5-&SID.1X8)  
  DWKLDGRQ  THIS MEMBER PRODUCES THE CHANNEL BUSY DATA POINT LIBRARY  
  MEMBERS FOR DAILY GRAPHS (&SID.2X5-&SID.2X8)  
  DWKLBGRQ  THIS MEMBER PRODUCES THE CHANNEL BUSY DATA POINT LIBRARY  
  MEMBERS FOR WEEKLY GRAPHS (&SID.3X5, WHERE XX IS CHPID)  
  DWKLMGRQ  THIS MEMBER PRODUCES THE CHANNEL BUSY DATA POINT LIBRARY  
  MEMBERS FOR MONTHLY GRAPHS (&SID.4X5, WHERE XX IS CHPID)  
  DWKHLGRJ  THIS MEMBER PRODUCES THE PR/SM GRAPH DATA POINT LIBRARY  
  MEMBERS FOR HOURLY GRAPHS (&SID.1X5-&SID.1X8)  
  DWKLDGRJ  THIS MEMBER PRODUCES THE PR/SM GRAPH DATA POINT LIBRARY  
  MEMBERS FOR DAILY GRAPHS (&SID.2X5-&SID.2X8)  
  DWKLBGRR  THIS MEMBER PRODUCES THE PGN SU GRAPH DATA POINT LIBRARY  
  MEMBERS FOR HOURLY GRAPHS (&SID.11A-&SID.11F AND &SID.10C)  
  DWKLDGRR  THIS MEMBER PRODUCES THE PGN SU GRAPH DATA POINT LIBRARY  
  MEMBERS FOR DAILY GRAPHS (&SID.21A-&SID.21F AND &SID.20C)
Control Library JCL Examples

INDEX

DWKLWGRR  THIS MEMBER PRODUCES THE PGN SU GRAPH DATA POINT LIBRARY MEMBERS FOR WEEKLY GRAPHS (&SID.31A-&SID.31F AND &SID.30C)  01750000
DWKLMGRR  THIS MEMBER PRODUCES THE PGN SU GRAPH DATA POINT LIBRARY MEMBERS FOR MONTHLY GRAPHS (&SID.41A-&SID.41F AND &SID.40C)  01790000
DWKLHGRF  THIS MEMBER PRODUCES THE TRENDS GRAPH DATA POINT LIBRARY MEMBERS FOR HOURLY GRAPHS  01800000
DWKLDFRF  THIS MEMBER PRODUCES THE TRENDS GRAPH DATA POINT LIBRARY MEMBERS FOR DAILY GRAPHS  01840000
DWKLWGRF  THIS MEMBER PRODUCES THE TRENDS GRAPH DATA POINT LIBRARY MEMBERS FOR WEEKLY GRAPHS  01870000
DWKLDFRF  THIS MEMBER PRODUCES THE TRENDS GRAPH DATA POINT LIBRARY MEMBERS FOR MONTHLY GRAPHS  01880000
DWKLDFRF  THIS MEMBER PRODUCES THE TRENDS GRAPH DATA POINT LIBRARY MEMBERS FOR DAILY GRAPHS FOR THE SURFACE CHART  01890000
DWKLWGRF  THIS MEMBER PRODUCES THE TRENDS GRAPH DATA POINT LIBRARY MEMBERS FOR WEEKLY GRAPHS FOR THE SURFACE CHART  01900000
DWKLDFRF  THIS MEMBER PRODUCES THE TRENDS GRAPH DATA POINT LIBRARY MEMBERS FOR MONTHLY GRAPHS FOR THE SURFACE CHART  01910000
DWKLDFRX  THIS MEMBER PRODUCES THE TRENDS GRAPH DATA POINT LIBRARY MEMBERS FOR HOURLY GRAPHS FOR ESA STORAGE REPORTS  02020000
DWKLDFRX  THIS MEMBER PRODUCES THE TRENDS GRAPH DATA POINT LIBRARY MEMBERS FOR DAILY GRAPHS FOR ESA STORAGE REPORTS  02030000
DWKLDFRX  THIS MEMBER PRODUCES THE TRENDS GRAPH DATA POINT LIBRARY MEMBERS FOR WEEKLY GRAPHS FOR ESA STORAGE REPORTS  02050000
DWKLDFRX  THIS MEMBER PRODUCES THE TRENDS GRAPH DATA POINT LIBRARY MEMBERS FOR MONTHLY GRAPHS FOR ESA STORAGE REPORTS  02060000
DWKLDFRX  THIS MEMBER PRODUCES THE TRENDS GRAPH DATA POINT LIBRARY MEMBERS FOR DAILY GRAPHS FOR THE SURFACE CHART  02070000
DWKLDFRX  THIS MEMBER PRODUCES THE TRENDS GRAPH DATA POINT LIBRARY MEMBERS FOR WEEKLY GRAPHS FOR THE SURFACE CHART  02080000
DWKLDFRX  THIS MEMBER PRODUCES THE TRENDS GRAPH DATA POINT LIBRARY MEMBERS FOR MONTHLY GRAPHS FOR THE SURFACE CHART  02090000
DWKLDFRX  THIS MEMBER PRODUCES THE TRENDS GRAPH DATA POINT LIBRARY MEMBERS FOR DAILY GRAPHS FOR ESA STORAGE REPORTS  02110000
DWKLDFRX  THIS MEMBER PRODUCES THE TRENDS GRAPH DATA POINT LIBRARY MEMBERS FOR WEEKLY GRAPHS FOR ESA STORAGE REPORTS  02120000
DWKLDFRX  THIS MEMBER PRODUCES THE TRENDS GRAPH DATA POINT LIBRARY MEMBERS FOR MONTHLY GRAPHS FOR ESA STORAGE REPORTS  02130000
DWKLTRND  THIS MEMBER PRODUCES THE TRENDS ANALYSIS SUMMARY REPORT  02140000
DWKLTRND  THIS MEMBER PRODUCES THE TRENDS ANALYSIS SUMMARY REPORT  02150000

**********************************************************************  02160000
*         CPPR BASE SYSTEM UTILITIES                                 *  02170000
**********************************************************************  02180000
DUTLARCH  THIS MEMBER ARCHIVES THE ONLINE PERFORMANCE DATABASE. IT DOES NOT UNLOAD SUMMARY TABLES.  02190000
DUTLHGDH  THIS MEMBER MAY BE USED TO FORMAT AND PRINT A SELECTED SET OF HGDLIB MEMBERS.  02200000
DUTLHGDH  THIS MEMBER MAY BE USED TO FORMAT AND PRINT A SELECTED SET OF HGDLIB MEMBERS.  02210000
DUTLHGDH  THIS MEMBER MAY BE USED TO CREATE A LARGE FLAT FILE COMPOSED OF HGDLIB MEMBERS, SUITABLE FOR DOWNLOADING WITH IND$FILE.  02220000
DUTLHGDH  THIS MEMBER MAY BE USED TO MERGE 2 HGDLIB MEMBERS AND TO CREATE A 3RD MEMBER FROM THE FIRST 2.  02230000
DUTLHGDH  THIS MEMBER MAY BE USED TO CONVERT PDS MEMBERS FROM FIXED FORMAT TO VARIABLE FORMAT, ELIMINATING TRAILING BLANKS AND DROPPING ENTIRELY BLANK LINES. ALTERNATIVELY, IT MAY  02240000

CIMS Capacity Planner Installation and Getting Started Guide
BE USED TO CREATE A LARGE FLAT FILE WHICH MAY BE DOWNLOADED
TO A PC IN A SINGLE GULP (ALSO VARIABLE BLOCKED) 02340000
02350000
02360000
DUTLRORG  THIS MEMBER MAY BE USED TO COMPRESS THE GAS OUT OF THE
PERFORMANCE DATABASE AND, IF DESIRED, TO CHANGE THE BLOCK
SIZE OF THE PERFORMANCE DATABASE. 02361062
02362062
02363062
02364062
DUTLINDX  THIS MEMBER MAY BE USED TO INDEX THE ONLINE PERFORMANCE
DATABASE. 02370000
02380000
02390000
DUTLSUMM  THIS MEMBER PRODUCES SUMMARY TABLES IN THE ONLINE PERFORMANCE
DATABASE. IT SHOULD BE RUN EVERY MONDAY MORNING. 02400000
02410000
02420000
DUTLVALD  THIS MEMBER PRODUCES A LISTING OF ALL OF THE TABLES
IN THE PERFORMANCE DATABASE. 02430000
02440000
02450000
02460000
02470000
02480000
DUTLTDMS  THIS MEMBER PRODUCES A LISTING OF THE STATISTICS FOR ALL OF
THE TABLES FOR A SPECIFIED SID IN THE PERFORMANCE DATABASE. 02490000
02500000
02510000
DUTLDCFP  THIS MEMBER PRODUCES A FORMATTED LISTING OF THE CONTENTS
OF THE CPPRERT FILE 02520000
02530000
02540000
DUTLLOAD  THIS MEMBER MAY BE USED TO LOAD A COMPOSITE DATABASE
FROM A SET OF PDB POOLS, OR FROM ARCHIVED HISTORY. 02550000
02560000
02570000
DUTLDELT  THIS MEMBER MAY BE USED TO DELETE A SPECIFIC TABLE
FROM THE PERFORMANCE DATABASE. 02580000
02590000
02600000
DUTLTLBX  THIS MEMBER MAY BE USED TO FORMAT AND UNLOAD A SET OF TABLES
FROM THE PERFORMANCE DATABASE FOR CUSTOM PROCESSING. 02610000
02620000
02630000
**********************************************************************
*   CPPR CICS SUBSYSTEM DATA REDUCTION MEMBERS                      *
*                                                                     *
**********************************************************************
DCICPROD  THIS MEMBER IS A MODEL FOR THE DATA REDUCTION STEP FOR A CICS
ADDRESS SPACE WHICH SENDS THE CMF TYPE 110 RECORDS TO A JOURNAL FOR LATER PROCESSING 02640000
02650000
02660000
02670000
DCICSFM  THIS MEMBER IS A MODEL FOR THE DATA REDUCTION STEP FOR A CICS
ADDRESS SPACE WHICH SENDS THE CMF TYPE 110 RECORDS TO THE SMF MANX/MANY CLUSTERS 02680000
02690000
02700000
02710000
DCICTMON  THIS MEMBER IS A MODEL FOR THE DATA REDUCTION STEP FOR A CICS
ADDRESS SPACE WHICH UTILIZES THE LANDMARK MONITOR. 02720000
02730000
02740000
02750000
DCICTPRE  THIS MEMBER IS A MODEL FOR THE DATA REDUCTION STEP FOR A CICS
ADDRESS SPACE WHICH USES THE LANDMARK MONITOR AND PROCESSES TMON SUMMARIZED HISTORY DATA, RELEASE 8 OR LATER 02760000
02770000
02780000
DCICTFAS  THIS IS A FAST PATH VERSION OF DCICTMON, BUT THE INPUT MUST BE TMON UNSUMMARIZED HISTORY DATA, RELEASE 8 OR LATER (DUMP TAPE) 02790000
02800000
02810000
DCICCOMON  THIS MEMBER IS A MODEL FOR THE DATA REDUCTION STEP FOR A CICS
ADDRESS SPACE WHICH UTILIZES THE OMEGAMON/CICS MONITOR. 02820000
02830000
02840000
DCICJARS  THIS MEMBER IS A MODEL FOR THE DATA REDUCTION STEP FOR A CICS
ADDRESS SPACE WHICH UTILIZES THE JARS/CICS PROGRAM. 02850000
02860000
02870000
DCICCMR  THIS MEMBER IS A MODEL FOR THE DATA REDUCTION STEP FOR A CICS 02880000
ADDRESS SPACE WHICH UTILIZES THE CICS MANAGER FROM BOOLE AND BABBAGE

**********************************************************************
*          CPPR CICS SUBSYSTEM REPORT PRODUCING MEMBER             *
**********************************************************************
DCICREPT  THIS MEMBER PRODUCES ALL OF THE REPORTS FOR THE CICS SUBSYSTEM
DCICTRPT  THIS MEMBER PRODUCES THE TRENDS REPORT FOR CICS SUBSYSTEM
DCICADHC  THIS MEMBER PRODUCES THE AD HOC REPORT FOR CICS SUBSYSTEM

**********************************************************************
*          CPPR CICS SUBSYSTEM GRAPH PRODUCING MEMBERS             *
**********************************************************************
DCICHGRF  THIS MEMBER PRODUCES A SET OF HOURLY (70-78) GRAPH MEMBERS WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE SURFACE GRAPHS
DCICDGRF  THIS MEMBER PRODUCES A SET OF DAILY (70-78) GRAPH MEMBERS WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE SURFACE GRAPHS
DCICDGRE  THIS MEMBER PRODUCES A SET OF DAILY (E1-E4) GRAPH MEMBERS WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE SURFACE GRAPHS
DCICWGRF  THIS MEMBER PRODUCES A SET OF WEEKLY (70-78) GRAPH MEMBERS WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE SURFACE GRAPHS
DCICWGRE  THIS MEMBER PRODUCES A SET OF WEEKLY (E1-E4) GRAPH MEMBERS WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE SURFACE GRAPHS
DCICMGRF  THIS MEMBER PRODUCES A SET OF MONTHLY (70-78) GRAPH MEMBERS WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE SURFACE GRAPHS
DCICMGRE  THIS MEMBER PRODUCES A SET OF MONTHLY (E1-E4) GRAPH MEMBERS WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE SURFACE GRAPHS

**********************************************************************
*          CPPR CICS SUBSYSTEM UTILITY SAMPLES                     *
**********************************************************************
DCICSNAP  THIS MEMBER IS USED TO SNAPSHOT A SPECIFIC CICS TRANSACTION

**********************************************************************
*          CPPR IDMS SUBSYSTEM DATA REDUCTION MEMBERS              *
**********************************************************************
DIDMPROD  THIS MEMBER IS A MODEL FOR THE DATA REDUCTION FOR AN IDMS ADDRESS SPACE (EITHER R10 OR R10.2)
DIDMPSMF  THIS MEMBER IS A MODEL FOR THE DATA REDUCTION FOR AN IDMS ADDRESS SPACE FOR RELEASE 10.2 WHERE INPUT IS FROM SMF
DIDML102  THIS MEMBER IS A MODEL FOR THE DATA REDUCTION FOR AN IDMS ADDRESS SPACE FOR RELEASE 10.2 WHERE INPUT IS FROM SUBTYPE 02

**********************************************************************
*          CPPR IDMS SUBSYSTEM REPORT PRODUCING MEMBER              *
**********************************************************************
DIDMREPT  THIS MEMBER PRODUCES ALL OF THE REPORTS FOR THE IDMS SUBSYSTEM
03480000
03490000
03500000
DIDMTRPT  THIS MEMBER PRODUCES THE TRENDS REPORT FOR THE IDMS SUBSYSTEM
03510000
03520000
03530000

**********************************************************************
*       CPPR IDMS SUBSYSTEM GRAPH PRODUCING MEMBERS                  *
**********************************************************************
DIDMHGRF  THIS MEMBER PRODUCES A SET OF HOURLY (80-89) GRAPH MEMBERS
          WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE SURFACE GRAPHS
03540000
03550000
03560000
03570000
03580000
03590000

DIDMDGRF  THIS MEMBER PRODUCES A SET OF DAILY (80-89) GRAPH MEMBERS
          WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE SURFACE GRAPHS
03570000
03580000
03590000
03600000
03610000
03620000

DIDMDGRE  THIS MEMBER PRODUCES A SET OF DAILY (E5-E8) GRAPH MEMBERS
          WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE SURFACE GRAPHS
03610000
03620000
03630000
03640000
03650000

DIDMWGRF  THIS MEMBER PRODUCES A SET OF WEEKLY (80-89) GRAPH MEMBERS
          WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE SURFACE GRAPHS
03640000
03650000
03660000
03670000
03680000

DIDMWGRE  THIS MEMBER PRODUCES A SET OF WEEKLY (E5-E8) GRAPH MEMBERS
          WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE SURFACE GRAPHS
03670000
03680000
03690000
03700000
03710000

DIDMMGRF  THIS MEMBER PRODUCES A SET OF MONTHLY (80-89) GRAPH MEMBERS
          WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE SURFACE GRAPHS
03710000
03720000
03730000
03740000

DIDMMGRE  THIS MEMBER PRODUCES A SET OF MONTHLY (E5-E8) GRAPH MEMBERS
          WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE SURFACE GRAPHS
03740000
03750000
03760000
03770000

**********************************************************************
*       CPPR NETWORK SUBSYSTEM DATA REDUCTION MEMBER                 *
**********************************************************************
DNETPROD  THIS MEMBER IS A MODEL FOR THE DATA REDUCTION FOR A NETWORK ADDRESS SPACE
03780000
03790000
03800000
03810000
03820000
03830000

DNETNPMW  THIS MEMBER IS A MODEL FOR THE DATA REDUCTION FOR A NETWORK ADDRESS SPACE, FOR PHYSICAL CONFIGURATION DATA (NPM TYPE 2B)
03840000
03850000
03860000
03870000
03880000
03890000

**********************************************************************
*       CPPR NETWORK SUBSYSTEM REPORT PRODUCING MEMBER               *
**********************************************************************
DNETREPT  THIS MEMBER PRODUCES ALL OF THE REPORTS FOR THE NETWORK SUBSYSTEM
03900000
03910000
03920000

DNETNPMC  THIS MEMBER PRODUCES ALL OF THE REPORTS FOR THE NETWORK SUBSYSTEM FOR CLUSTER CONTROLLER REPORTS
03930000
03940000
03950000

DNETNPML  THIS MEMBER PRODUCES ALL OF THE REPORTS FOR THE NETWORK SUBSYSTEM FOR PHYSICAL LINE CONFIGURATION REPORTS
03960000
03970000
03980000

DNETNPMN  THIS MEMBER PRODUCES ALL OF THE REPORTS FOR THE NETWORK SUBSYSTEM FOR PHYSICAL NCP CONFIGURATION REPORTS
03990000
04000000
04010000

DNETTPPT  THIS MEMBER PRODUCES THE TRENDS REPORT FOR THE NETWORK SUBSYSTEM
04020000
04030000
04040000
04050000

**********************************************************************
*       CPPR NETWORK SUBSYSTEM GRAPH PRODUCING MEMBERS               *
**********************************************************************
### Control Library JCL Examples

#### $INDEX

<table>
<thead>
<tr>
<th>Member</th>
<th>Description</th>
<th>Start Line</th>
<th>End Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNETHGRF</td>
<td>This member produces a set of hourly (NO-NA) graph members which may be downloaded to a PC to produce surface graphs</td>
<td>04070000</td>
<td>04070000</td>
</tr>
<tr>
<td>DNETHGRE</td>
<td>This member produces a set of hourly (NE-NR) graph members which may be downloaded to a PC to produce surface graphs</td>
<td>04100000</td>
<td>04100000</td>
</tr>
<tr>
<td>DNETHGRL</td>
<td>This member produces a set of hourly (NT-NV) graph members which may be downloaded to a PC to produce surface graphs</td>
<td>04130000</td>
<td>04130000</td>
</tr>
<tr>
<td>DNETHGRN</td>
<td>This member produces a set of hourly (NI-NJ) graph members which may be downloaded to a PC to produce surface graphs</td>
<td>04160000</td>
<td>04160000</td>
</tr>
<tr>
<td>DNETDGRF</td>
<td>This member produces a set of daily (NO-NA) graph members which may be downloaded to a PC to produce surface graphs</td>
<td>04200000</td>
<td>04200000</td>
</tr>
<tr>
<td>DNETDGRE</td>
<td>This member produces a set of daily (NE-NR) graph members which may be downloaded to a PC to produce surface graphs</td>
<td>04220000</td>
<td>04220000</td>
</tr>
<tr>
<td>DNETWGRF</td>
<td>This member produces a set of weekly (NO-NA) graph members which may be downloaded to a PC to produce surface graphs</td>
<td>04260000</td>
<td>04260000</td>
</tr>
<tr>
<td>DNETWGRE</td>
<td>This member produces a set of weekly (NE-NR) graph members which may be downloaded to a PC to produce surface graphs</td>
<td>04280000</td>
<td>04280000</td>
</tr>
<tr>
<td>DNETMGRF</td>
<td>This member produces a set of monthly (NO-NA) graph members which may be downloaded to a PC to produce surface graphs</td>
<td>04310000</td>
<td>04310000</td>
</tr>
<tr>
<td>DNETMGRE</td>
<td>This member produces a set of monthly (NE-NR) graph members which may be downloaded to a PC to produce surface graphs</td>
<td>04340000</td>
<td>04340000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Member</th>
<th>Description</th>
<th>Start Line</th>
<th>End Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>DWKLDSN</td>
<td>This member produces the selected dsname report</td>
<td>04380000</td>
<td>04380000</td>
</tr>
<tr>
<td>DWKLUID</td>
<td>This member produces the selected TSO userid report</td>
<td>04400000</td>
<td>04400000</td>
</tr>
<tr>
<td>DWKLJOB</td>
<td>This member produces the selected batch job report</td>
<td>04420000</td>
<td>04420000</td>
</tr>
<tr>
<td>WHATIF</td>
<td>This member will be used to perform what if processing when the feature is released</td>
<td>04440000</td>
<td>04440000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Member</th>
<th>Description</th>
<th>Start Line</th>
<th>End Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIMSPROD</td>
<td>This member is a model for the data reduction step for an IMS address space</td>
<td>04500000</td>
<td>04500000</td>
</tr>
<tr>
<td>DIMFPROD</td>
<td>This member is a model for the data reduction step for an IMS address space which uses BOOL and BABBAGE'S IMF</td>
<td>04510000</td>
<td>04510000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Member</th>
<th>Description</th>
<th>Start Line</th>
<th>End Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIMSREPT</td>
<td>This member produces all of the reports for the IMS subsystem</td>
<td>04600000</td>
<td>04600000</td>
</tr>
<tr>
<td>DIMSREPOF</td>
<td>This member produces an IMS transaction profile report</td>
<td>04610000</td>
<td>04610000</td>
</tr>
</tbody>
</table>
FOR ALL TRANSACTIONS IN THE //INCLUDE LIST 04660000
04670000
04680000
04690000
04700000
04710000
04720000
04730000
04740000
04750000
04760000
04770000
04780000
04790000
04800000
04810000
04820000
04830000
04840000
04850000
04860000
04870000
04880000
04890000
04900000
04910000
04920000
04930000
04940000
04950000
04960000
04970000
04980000
04990000
05000000
05010000
05020000
05030000
05040000
05050000
05060000
05070000
05080000
05090000
05100000
05110000
05120000
05130000
05140000
05150000
05160000
05170000
05180000
05190000
05200000
05210000
05220000
05230000
05240000

*          CPPR IMS SUBSYSTEM GRAPH PRODUCING MEMBERS  * 04700000
********************************************************************** 04710000
*         CPPR IMS SUBSYSTEM GRAPH PRODUCING MEMBERS                 * 04720000
********************************************************************** 04730000
DIMSHGRE THIS MEMBER PRODUCES A SET OF HOURLY (9A-9D) GRAPH MEMBERS 04740000
WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE SURFACE GRAPHS 04750000
DIMSHGRF THIS MEMBER PRODUCES A SET OF HOURLY (90-96) GRAPH MEMBERS 04760000
WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE SURFACE GRAPHS 04770000
DIMSDGRE THIS MEMBER PRODUCES A SET OF DAILY (9A-9D) GRAPH MEMBERS 04780000
WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE SURFACE GRAPHS 04790000
DIMSDGRF THIS MEMBER PRODUCES A SET OF DAILY (90-98) GRAPH MEMBERS 04800000
WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE SURFACE GRAPHS 04810000
DIMSWGRE THIS MEMBER PRODUCES A SET OF WEEKLY (9A-9D) GRAPH MEMBERS 04820000
WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE SURFACE GRAPHS 04830000
DIMSWGRF THIS MEMBER PRODUCES A SET OF WEEKLY (90-98) GRAPH MEMBERS 04840000
WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE SURFACE GRAPHS 04850000
DIMSMGRE THIS MEMBER PRODUCES A SET OF MONTHLY (9A-9D) GRAPH MEMBERS 04860000
WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE SURFACE GRAPHS 04870000
DIMSMGRF THIS MEMBER PRODUCES A SET OF MONTHLY (90-98) GRAPH MEMBERS 04880000
WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE SURFACE GRAPHS 04890000

********************************************************************** 04900000
*         CPPR IMS SUBSYSTEM REPORT PRODUCING MEMBER                     * 04910000
********************************************************************** 04920000
DDB2PROD THIS MEMBER IS A MODEL FOR THE DATA REDUCTION STEP FOR A DB2 04930000
ADDRESS SPACE WHICH SENDS THE SMF TYPE 100 & 101 RECORDS TO A 04940000
CLUSTER FOR LATER PROCESSING 04950000

********************************************************************** 04960000
*         CPPR IMS SUBSYSTEM GRAPH PRODUCING MEMBERS                 * 04970000
********************************************************************** 04980000
DDB2HGRF THIS MEMBER PRODUCES A SET OF HOURLY (BA-BE) GRAPH MEMBERS 04990000
WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE SURFACE GRAPHS 05000000
DDB2HGRE THIS MEMBER PRODUCES A SET OF HOURLY (B0-B4) GRAPH MEMBERS 05010000
WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE SURFACE GRAPHS 05020000
DDB2DGRF THIS MEMBER PRODUCES A SET OF DAILY (BA-BE) GRAPH MEMBERS 05030000
WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE SURFACE GRAPHS 05040000
DDB2DGRE THIS MEMBER PRODUCES A SET OF DAILY (B0-B4) GRAPH MEMBERS 05050000
WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE SURFACE GRAPHS 05060000
DDB2TRND THIS MEMBER PRODUCES THE TRENDS ANALYSIS REPORTS FOR THE DB2 05070000
SUBSYSTEM 05080000
DDB2REPT THIS MEMBER PRODUCES ALL OF THE REPORTS FOR THE DB2 05090000
SUBSYSTEM 05100000

********************************************************************** 05110000
*         CPPR DB2 SUBSYSTEM REPORT PRODUCING MEMBER                     * 05120000
********************************************************************** 05130000
DDB2HGRF THIS MEMBER PRODUCES A SET OF HOURLY (BA-BE) GRAPH MEMBERS 05140000
WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE SURFACE GRAPHS 05150000
DDB2HGRE THIS MEMBER PRODUCES A SET OF HOURLY (B0-B4) GRAPH MEMBERS 05160000
WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE SURFACE GRAPHS 05170000
DDB2DGRF THIS MEMBER PRODUCES A SET OF DAILY (BA-BE) GRAPH MEMBERS 05180000
WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE SURFACE GRAPHS 05190000
DDB2DGRE THIS MEMBER PRODUCES A SET OF DAILY (B0-B4) GRAPH MEMBERS 05200000
WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE SURFACE GRAPHS 05210000
DDB2DGRE THIS MEMBER PRODUCES A SET OF DAILY (B0-B4) GRAPH MEMBERS 05220000
DDB2DGRE THIS MEMBER PRODUCES A SET OF DAILY (B0-B4) GRAPH MEMBERS 05230000
DDB2DGRE THIS MEMBER PRODUCES A SET OF DAILY (B0-B4) GRAPH MEMBERS 05240000
$INDEX

05250000

DDB2WGRF THIS MEMBER PRODUCES A SET OF WEEKLY (BA-BE) GRAPH MEMBERS WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE GRAPHS

05260000

DDB2WGRE THIS MEMBER PRODUCES A SET OF WEEKLY (BO-B4) GRAPH MEMBERS WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE GRAPHS

05270000

DDB2MGRF THIS MEMBER PRODUCES A SET OF MONTHLY (BA-BE) GRAPH MEMBERS WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE GRAPHS

05280000

DDB2MGRE THIS MEMBER PRODUCES A SET OF MONTHLY (BO-B4) GRAPH MEMBERS WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE GRAPHS

05290000

DDB2WGRF  THIS MEMBER PRODUCES A SET OF WEEKLY (BA-BE) GRAPH MEMBERS WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE GRAPHS

05300000

DDB2WGRE  THIS MEMBER PRODUCES A SET OF WEEKLY (BO-B4) GRAPH MEMBERS WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE GRAPHS

05310000

DDB2MGRF  THIS MEMBER PRODUCES A SET OF MONTHLY (BA-BE) GRAPH MEMBERS WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE GRAPHS

05320000

DDB2MGRE  THIS MEMBER PRODUCES A SET OF MONTHLY (BO-B4) GRAPH MEMBERS WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE GRAPHS

05330000

DDB2WGRF  THIS MEMBER PRODUCES A SET OF WEEKLY (BA-BE) GRAPH MEMBERS WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE GRAPHS

05340000

DDB2WGRE  THIS MEMBER PRODUCES A SET OF WEEKLY (BO-B4) GRAPH MEMBERS WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE GRAPHS

05350000

DDB2MGRE  THIS MEMBER PRODUCES A SET OF WEEKLY (BA-BE) GRAPH MEMBERS WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE GRAPHS

05360000

DDB2MGRF  THIS MEMBER PRODUCES A SET OF WEEKLY (BO-B4) GRAPH MEMBERS WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE GRAPHS

05370000

05380000

05390000

05400000

05410000

05420000

05430000

05440000

05450000

05460000

05470000

05480000

05490000

05500000

05510000

05520000

05530000

05540000

05550000

05560000

05570000

05580000

05590000

05600000

05610000

05620000

05630000

05640000

05650000

05660000

05670000

05680000

05690000

05700000

05710000

05720000

05730000

05740000

05750000

05760000

05770000

05780000

05790000

05800000

05810000

05820000

05830000
Control Library JCL Examples

$INDEX

**********************************************************************
*             CPPR GENERIC SUBSYSTEM DATA REDUCTION MEMBERS          *
**********************************************************************
DGENWKL1D THIS MEMBER IS A MODEL FOR THE DATA REDUCTION STEP FOR A
USER DEFINED INPUT RECORD WHICH PRODUCES A USER DEFINED CPPR
TABLE PLUS AN OPTIONAL AD HOC REPORT
DGENCM27 THIS MEMBER SHOWS HOW TO PROCESS TYPE 240 RECORDS FROM
CMF (BOOLE AND BABBAGE), SPECIFICALLY SUBTYPE 27 CACHE
CONTROL RECORDS
DGENCM29 THIS MEMBER SHOWS HOW TO PROCESS TYPE 240 RECORDS FROM
CMF (BOOLE AND BABBAGE), SPECIFICALLY SUBTYPE 29 COMMON
STORAGE ACTIVITY RECORDS
DGENC110 THIS MEMBER IS A MODEL FOR THE DATA REDUCTION STEP FOR A
CICS (CMF) 110 RECORD WHICH PRODUCES A USER DEFINED CPPR
TABLE PLUS AN OPTIONAL AD HOC REPORT
DGENR200 THIS MEMBER IS A MODEL FOR THE DATA REDUCTION STEP FOR AN
SMF TYPE 200 RECORD (TSO/MDM SYSTEM RECORD), PRODUCING A
USER DEFINED CPPR TABLE PLUS OPTIONAL AD HOC REPORT ON
TSO USERID PERFORMANCE STATISTICS
DGENR425 THIS MEMBER IS A MODEL FOR THE DATA REDUCTION STEP FOR AN
SMF TYPE 42:5 RECORD WHICH PRODUCES A USER DEFINED CPPR
TABLE PLUS AN OPTIONAL AD HOC REPORT ON STORAGE CLASS
PERFORMANCE STATISTICS
DGENWK01 THIS MEMBER IS A MODEL FOR THE DATA REDUCTION STEP FOR A
FIXED LENGTH RECORD WHICH PRODUCES A USER DEFINED CPPR
TABLE PLUS AN OPTIONAL AD HOC REPORT
DGENSAM1 THIS MEMBER IS A MODEL FOR A SET OF JOBS WHICH PROCESS AN
RMF TYPE 70 (CPU ACTIVITY) RECORD AND PRODUCE REPORTS AND
GRAPHS SHOWING CPU HIGH % BUSY, LOW % BUSY AND AVG % BUSY
DGENSAM2 THIS MEMBER IS A MODEL FOR A SET OF JOBS WHICH PROCESS AN
RMF TYPE 70 (CPU ACTIVITY) RECORD AND PRODUCE REPORTS AND
GRAPHS SHOWING CPU HIGH % BUSY, LOW % BUSY AND AVG % BUSY
FOR A PR/SM PROCESSOR
DGENRM71 THIS MEMBER IS A MODEL FOR A SET OF JOBS WHICH PROCESS AN
RMF TYPE 71 (PAGING) RECORD AND PRODUCE REPORTS AND
GRAPHS SHOWING PAGES IN, PAGES OUT AND RECLAIMS
DGENADAB THIS MEMBER IS A MODEL FOR A SET OF JOBS WHICH PROCESS AN
ADABAS COMMAND LOG RECORD AND PRODUCE REPORTS AND GRAPHS
SHOWING I/O COUNTS, DURATIONS AND COMMAND FREQUENCIES

**********************************************************************
*             CPPR GENERIC SUBSYSTEM REPORT PRODUCING MEMBERS        *
**********************************************************************
DGENREPT THIS MEMBER PRODUCES ALL OF THE REPORTS FOR THE GENERIC
SUBSYSTEM
DGENRP01 THIS MEMBER PRODUCES ALL OF THE REPORTS FOR THE GENERIC
SUBSYSTEM FOR THE USER TABLES BUILT BY DGENWK01

CIMS Capacity Planner Installation and Getting Started Guide
DGENR426  THIS MEMBER IS A MODEL FOR JOB TO PROCESS AN SMF TYPE 42:6
RECORD PRODUCING AN AD-HOC REPORT OF DATASET PERFORMANCE
STATISTICS BY JOBNNAME, STORAGE CLASS, VOLSER, AND DSN

**********************************************************************
*       CPPR GENERIC SUBSYSTEM GRAPH PRODUCING MEMBERS             *
**********************************************************************
DGENHGRF  THIS MEMBER PRODUCES A SET OF HOURLY (GO) GRAPH MEMBERS
WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE GRAPHS
DGENHGO1  THIS MEMBER PRODUCES A SET OF DAILY (G0) GRAPH MEMBERS
FROM THE USER TABLES BUILT BY DGENWK01
DGENHGRE  THIS MEMBER PRODUCES A SET OF HOURLY (HO) GRAPH MEMBERS
WHICH MAY BE DOWN LOADED TO A PC TO PRODUCE GRAPHS
DGENHDEO1 THIS MEMBER PRODUCES A SET OF DAILY (HO) GRAPH MEMBERS
FROM THE USER TABLES BUILT BY DGENWK01

**********************************************************************
*       SAMPLE GDDM BATCH MEMBERS                                  *
**********************************************************************
GDDMBAT   THIS MEMBER IS USED TO PRODUCE A GDDM GRAPH IN BATCH FROM
A HGDLIB MEMBER AND SEND IT TO THE PRINTER
GDDMBATC  THIS MEMBER IS USED TO PRODUCE GDDM GRAPHS IN BATCH FOR
ALL SUPPORTED GDDM CHARTS FOR THE CICS SUBSYSTEM
GDDMBATD  THIS MEMBER IS USED TO PRODUCE GDDM GRAPHS IN BATCH FOR
ALL SUPPORTED GDDM CHARTS FOR THE IDMS SUBSYSTEM
GDDMBATI  THIS MEMBER IS USED TO PRODUCE GDDM GRAPHS IN BATCH FOR
ALL SUPPORTED GDDM CHARTS FOR THE IMS SUBSYSTEM
GDDMBATM  THIS MEMBER IS USED TO PRODUCE GDDM GRAPHS IN BATCH FOR
ALL SUPPORTED GDDM CHARTS FOR THE M204 SUBSYSTEM
GDDMBATN  THIS MEMBER IS USED TO PRODUCE GDDM GRAPHS IN BATCH FOR
ALL SUPPORTED GDDM CHARTS FOR THE NETWORK SUBSYSTEM
GDDMBATW  THIS MEMBER IS USED TO PRODUCE GDDM GRAPHS IN BATCH FOR
ALL SUPPORTED GDDM CHARTS FOR THE WORKLOAD SUBSYSTEM

**********************************************************************
*       SAMPLE UTILITY AND PARMLIB MEMBERS                         *
**********************************************************************
JOBCARD   THIS MEMBER SHOULD BE REPLACED WITH A LEGITIMATE JOBCARD
ERBRMFSA  THIS IS A MODEL FOR RMF
IEAICSSA  THIS IS A MODEL FOR AN ICS MEMBER IN SYS1.PARMLIB
IEAIPSSA  THIS IS A MODEL FOR AN IPS MEMBER IN SYS1.PARMLIB
SMFDUMP   THIS IS A SAMPLE SET OF JCL TO DUMP THE SMF CLUSTERS
SMFPRMN   THIS IS A SAMPLE SMFPRMXX MEMBER FOR SYS1.PARMLIB
**Control Library JCL Examples**

`$INDEX`

<table>
<thead>
<tr>
<th>Control Library JCL Examples</th>
</tr>
</thead>
</table>

* CPPR SYSTEM PERMANENT FLAG ENABLING MEMBERS * 06880000

********************************************************************************

**PERMACCT**

THIS MEMBER EXECUTES THE PROGRAM TO PERMANENTLY ENABLE THE
FLAGS FOR THE ACCOUNTING SUBSYSTEM ONCE THAT SUBSYSTEM
HAS BEEN PURCHASED

06900000

**PERMBASE**

THIS MEMBER EXECUTES THE PROGRAM TO PERMANENTLY ENABLE THE
FLAGS FOR THE WORKLOAD ANALYSIS SUBSYSTEM REPORTS
ONCE THAT SUBSYSTEM HAS BEEN PURCHASED

06930000

**PERMCICS**

THIS MEMBER EXECUTES THE PROGRAM TO PERMANENTLY ENABLE THE
FLAGS FOR THE CICS SUBSYSTEM REPORTS
ONCE THAT SUBSYSTEM HAS BEEN PURCHASED

06940000

**PERMDASM**

THIS MEMBER EXECUTES THE PROGRAM TO PERMANENTLY ENABLE THE
FLAGS FOR THE DIRECT ACCESS SPACE MGT SUBSYSTEM REPORTS
ONCE THAT SUBSYSTEM HAS BEEN PURCHASED

07000000

**PERMDB2**

THIS MEMBER EXECUTES THE PROGRAM TO PERMANENTLY ENABLE THE
FLAGS FOR THE DB2 SUBSYSTEM REPORTS
ONCE THAT SUBSYSTEM HAS BEEN PURCHASED

07060000

**PERMGEN**

THIS MEMBER EXECUTES THE PROGRAM TO PERMANENTLY ENABLE THE
FLAGS FOR THE GENERIC SUBSYSTEM ONCE THAT SUBSYSTEM
HAS BEEN PURCHASED

07100000

**PERMIDMS**

THIS MEMBER EXECUTES THE PROGRAM TO PERMANENTLY ENABLE THE
FLAGS FOR THE IDMS SUBSYSTEM REPORTS
ONCE THAT SUBSYSTEM HAS BEEN PURCHASED

07140000

**PERMIMS**

THIS MEMBER EXECUTES THE PROGRAM TO PERMANENTLY ENABLE THE
FLAGS FOR THE IMS SUBSYSTEM REPORTS
ONCE THAT SUBSYSTEM HAS BEEN PURCHASED

07180000

**PERMM204**

THIS MEMBER EXECUTES THE PROGRAM TO PERMANENTLY ENABLE THE
FLAGS FOR THE MODEL 204 SUBSYSTEM REPORTS
ONCE THAT SUBSYSTEM HAS BEEN PURCHASED

07230000

**PERMNETW**

THIS MEMBER EXECUTES THE PROGRAM TO PERMANENTLY ENABLE THE
FLAGS FOR THE NETWORK SUBSYSTEM REPORTS
ONCE THAT SUBSYSTEM HAS BEEN PURCHASED

07270000

********************************************************************************

**CPPR SYSTEM LEASE FLAG ENABLING MEMBERS**

Lease system replaced with a CIMS Lab, Inc. password.
The following members no longer used. For password related problems please contact technical support.

07310000

**LEASACCT**

LEASAS41     LEASAS41     LEASBASE    LEASCICS    LEASDASM    LEASDB2    LEASGEN      LEASLNGV    LEASM204    LEASNETW    LEASTAPE    LEASUNIX   LEASWKLD

07390000

07400000

07410000

07790000
D204INIT

//SSAINIT JOB (...), 'SSA', CLASS=A, MSGCLASS=X
/*JOBPARM S=* 
//*******************************************************************************
/* ALLOCATE THE M204 PRODUCTION DATASETS 
//*******************************************************************************
//ST0 EXEC PGM=IEFBR14
//DD01 DD DSN=&PREFIX.CPPR.V600.ONLINE.M204,DISP=(,CATLG), 
   // DSNTYPE=LIBRARY,DSORG=PO, 
   // SPACE=(CYL,(90,30)),UNIT=SYSDA,VOL=SER=&VOLUME 
//DD02 DD DSN=&PREFIX.CPPR.V600.INDEX.M204,DISP=(,CATLG), 
   // DCB=(RECFM=FB,LRECL=18,BLKSIZ=15462), 
   // SPACE=(TRK,(2,1)),UNIT=SYSDA,VOL=SER=&VOLUME 
//*******************************************************************************
/* INITIALIZE THE M204 PERFORMANCE DATABASE 
//*******************************************************************************
//ST1 EXEC PGM=SSA1LOAD
//STEPLIB DD DSN=&PREFIX.CPPR.V600.LOADLIB,DISP=SHR 
//CPPRPARM DD DSN=&PREFIX.CPPR.V600.PARMLIB,DISP=SHR 
//SYSPRINT DD SYSOUT=* 
//SYSIN DD DUMMY 
//SYSUT1 DD DUMMY 
//ONLINE DD DSN=&PREFIX.CPPR.V600.ONLINE.M204,DISP=SHR 
//INDEX DD DSN=&PREFIX.CPPR.V600.INDEX.M204,DISP=SHR 
//CIMSPASS DD DSN=&PREFIX.CPPR.V600.CNTL(CIMSNUM),DISP=SHR
//SSAD204  JOB (...),'SSA',CLASS=A,MSGCLASS=X  00010002
//STA      EXEC PGM=SSA1M20W,REGION=5000K,TIME=60  00020000
//STEPLIB  DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR  00030000
//SYSUT1   DD DISP=OLD,DSN=CCAJRNL  00031000
//SYSLIB   DD DISP=OLD,DSN=CCAJRNL  00032000
//SYSUT3   DD UNIT=SYSDA,SPACE=(CYL,(30,30))  00033000
//ONLINE   DD DSN=&PREFIX.CPPR.Vnnn.ONLINE.M204,DISP=SHR  00040000
//INDEX    DD DSN=&PREFIX.CPPR.Vnnn.INDEX.M204,DISP=SHR  00050000
//CPPRERT  DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR  00060000
//CPPRPARM DD DSN=&PREFIX.CPPR.Vnnn.PARMLIB,DISP=SHR  00070000
//SYSPRINT DD SYSOUT=*  00090000
//SYSSMSGS DD SYSOUT=*  00091000
//SYSSNAP  DD SYSOUT=*  00100000
//SYSSUDUMP DD SYSOUT=*  00110000
//SYSSIN DD *  00200000
SELECTED SYSTEM=*  00330000
* THE FOLLOWING STATEMENT DESCRIBES THE FORMAT OF THE INPUT. PICK ONE  00331000
*SMFILE=JRN   /* CCA JOURNAL INPUT  00332000
*SMFILE=SMFA /* SMF RECORDS FROM THE ACTIVE CLUSTER  00340000
*SMFILE=SMFL /* SMF RECORDS FROM A LIVE CLUSTER  00341000
*SMFILE=SMFH /* SMF RECORDS FROM HISTORY  00342000
DUMP SMF STATISTICS=YES  00343000
* FOR SMF RECORDS, THE RECORD NUMBER FOR PERFORMANCE RECORDS IS NEEDED  00360000
* PLEASE UNCOMMENT AND MODIFY THE FOLLOWING:  00361000
*FILTER=254  00370000
D204REPT

//SSAD204 JOB (...),'SSA',CLASS=A,MSGCLASS=X
//*JOBPARM S=* 00010001
//ST1 EXEC PGM=SSAIM2OR,REGION=5000K,TIME=60 00020000
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR 00040000
//SYSNAP DD SYSOUT=* 00050000
//SYSUDUMP DD SYSOUT=* 00060000
//INDEX DD DSN=&PREFIX.CPPR.Vnnn.INDEX.M204,DISP=SHR 00070000
//ONLINE DD DSN=&PREFIX.CPPR.Vnnn.ONLINE.M204,DISP=SHR 00080000
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR 00090000
//CIMSPASS DD DSN=&PREFIX.CPPR.Vnnn.CNTL(CIMSNUM),DISP=SHR 00091002
//CPPRPARM DD DSN=&PREFIX.CPPR.Vnnn.PARMLIB,DISP=SHR 00100000
//SYSPRINT DD SYSOUT=* 00110000
//SYSMSGS DD SYSOUT=* 00111001
//SYSIN DD * 00120000
SELECTED SYSTEM=* 00130000
M204 EXCEPTION ANALYSIS=YES 00151000
M204 PERFORMANCE REPORT=YES 00152000
M204 TRANSACTION STATISTICS REPORT=YES 00153000
M204 TERMINAL STATISTICS REPORT=YES 00154000
M204 SUMMARY REPORT=YES 00155000
M204 TRANSACTION RESPONSE GRAPH=YES 00156000
M204 TERMINAL RESPONSE GRAPH=YES 00157000
M204 TRANSACTION ACTIVITY GRAPH=YES 00158000
M204 TERMINAL ACTIVITY GRAPH=YES 00159000
M204 CPU ACTIVITY GRAPH=YES 00170000
M204 I/O ACTIVITY GRAPH=YES 00180000
M204 LINEAR LIST=YES 00190000
M204 USERID=XXXX 00191000
M204 USERID PROFILE=YES 00192000
PRIME SHIFT FIRST HOUR=7 00200000
LATE SHIFT FIRST HOUR=19 00210000
Control Library JCL Examples

DASMCOLW

//SSADASM JOB (...),'SSA',CLASS=A,MSGCLASS=X
/*this step produces the Dcollect input to the data reduction step (scan)*/
/*end of Dcollect command*/
//*[this step processes Dcollect input to produce DASM tables and optionally to produce an ad hoc report]
//*[the following dataset was passed from the 1st step. optionally a permanent dataset can be used]
//*[if you want to include a specific set of volumes in the scan, use:]
//*[if you want to exclude a specific set of volumes from the scan, use:]
//*[in this case, don't exclude any volumes from the process]
*/ IGNORE UNDESIRED HIGH LEVEL QUALIFIERS
//*[~~~~~~~~~~~~~~~~~~~~~~~~~] 00250000
/* $IG 00260000
//DSNLIST DD * 00270000
SYS* 00280000
/* 00290000
//SYSIN DD * 00300000
DSNAME SELECTION=EXCLUDE 00310000
DASD MAPPING REPORT=YES 00320000
OWNER ALLOCATION THRESHOLD=45 /* ONLY PRINT OWNERS WITH ALLOCATIONS 00330000
* GREATER THAN 45 MEGABYTES 00340000
DEVICE TYPE REPORT=YES 00350000
VOLUME ALLOCATION REPORT=YES 00360000
* IF YOU DONT WANT TO STORE THE TABLES, COMMENT OUT THE FOLLOWING: 00370000
COMMIT 00380000
* IF YOU WANT AN AD HOC REPORT FOR A DATASET, UNCOMMENT THE FOLLOWING: 00390000
*DSNAME=&PREFIX.CPPR* 00400000
* IF YOU WANT TO SEE UNUSED SPACE BY VSAM ALSO, UNCOMMENT THE 00410002
* FOLLOWING STATEMENT. BE AWARE THAT THE PROCESS WILL BE MUCH 00420002
* LONGER (@10X) AS THE CATALOG MUST BE ACCESSED FOR EACH VSAM ENTRY 00430002
*DASM VSAM STATISTICS=YES 00440002
DASMINIT

//SSAINIT JOB (...),'SSA',CLASS=A,MSGCLASS=X
/*JOBPARM S=* 
*******************************************************************************
/* ALLOCATE THE DASM PRODUCTION DATASETS 
*******************************************************************************
//ST0 EXEC PGM=IEFBR14
//DD01 DD DSN=&PREFIX.CPPR.V600.ONLINE.DASM,DISP=(,CATLG).
  // DSNTYPE=LIBRARY,DSORG=PO,
  // SPACE=(CYL,(50,30)),UNIT=SYSDA,VOL=SER=&VOLUME
//DD02 DD DSN=&PREFIX.CPPR.V600.INDEX.DASM,DISP=(,CATLG).
  // DCB=(RECFM=FB,LRECL=18,BLKSIZE=15462), 
  // SPACE=(TRK,(2,1)),UNIT=SYSDA,VOL=SER=&VOLUME
*******************************************************************************
/* INITIALIZE THE DASM PERFORMANCE DATABASE 
*******************************************************************************
//ST1 EXEC PGM=SSA1LOAD
//STEPLIB DD DSN=&PREFIX.CPPR.V600.LOADLIB,DISP=SHR
//CPPRPARM DD DSN=&PREFIX.CPPR.V600.PARMLIB,DISP=SHR
//SYSPRINT DD SYSOUT=* 
//SYSIN DD DUMMY 
//SYSUT1 DD DUMMY 
//ONLINE DD DSN=&PREFIX.CPPR.V600.ONLINE.DASM,DISP=SHR 
//INDEX DD DSN=&PREFIX.CPPR.V600.INDEX.DASM,DISP=SHR 
//CIMSPASS DD DSN=&PREFIX.CPPR.V600.CNTL(CIMSNUM),DISP=SHR
DCICINIT

//SSAINIT JOB (...), 'SSA', CLASS=A, MSGCLASS=X
/*/JOBPARM S=* /************************************************************
// ALLOCATE THE CICS PRODUCTION DATASETS
************************************************************
//ST0 EXEC PGM=IEFBR14
//DD01 DD DSN=&PREFIX.CPPR.V600.ONLINE.CICS,DISP=(,CATLG),
//       DSNTYPE=LIBRARY,DSORG=P0,
//       SPACE=(CYL,(90,30)),UNIT=SYSDA,VOL=SER=&VOLUME
//DD02 DD DSN=&PREFIX.CPPR.V600.INDEX.CICS,DISP=(,CATLG),
//       DCB=(RECFM=FB,LRECL=18,BLKSIZE=15462),
//       SPACE=(TRK,(2,1)),UNIT=SYSDA,VOL=SER=&VOLUME
************************************************************
// INITIALIZE THE CICS PERFORMANCE DATABASE
************************************************************
//ST1 EXEC PGM=SSAILOAD
//STEP1IB DD DSN=&PREFIX.CPPR.V600.LOADLIB,DISP=SHR
//CPPRPRAM DD DSN=&PREFIX.CPPR.V600.PARMLIB,DISP=SHR
//SYSIN DD DUMMY
//SYSUT1 DD DUMMY
//ONLINE DD DSN=&PREFIX.CPPR.V600.ONLINE.CICS,DISP=SHR
//INDEX DD DSN=&PREFIX.CPPR.V600.INDEX.CICS,DISP=SHR
//CIMSPASS DD DSN=&PREFIX.CPPR.V600.CNTL(CIMSNUM),DISP=SHR
DCICNROL

//SSAREGC JOB (...),'SSA',CLASS=A,MSGCLASS=X 00010000
/*JOBPARM S=* 00020000
//ST1 EXEC PGM=SSA1REGC,REGION=0M 00030003
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR 00040001
//CPPRPARM DD DSN=&PREFIX.CPPR.Vnnn.PARMLIB,DISP=SHR 00041002
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR 00050001
//CIMSPASS DD DSN=&PREFIX.CPPR.Vnnn.CNTL(CIMSNUM).DISP=SHR 00051004
//SYSUT3 DD SPACE=(CYL,(5,2)).UNIT=SYSDA,DISP=(.PASS) 00060000
//SYSPRINT DD SYSOUT=* 00070000
//SYSNAP DD SYSOUT=* 00080000
//SYSIN DD * 00090000
SELECTED SYSTEM=* 00100000
CICSNAME=CICSPROD 00110000
//ST2 EXEC PGM=SSA1REGC,REGION=0M 00120003
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR 00130001
//CPPRPARM DD DSN=&PREFIX.CPPR.Vnnn.PARMLIB,DISP=SHR 00131002
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR 00140001
//CIMSPASS DD DSN=&PREFIX.CPPR.Vnnn.CNTL(CIMSNUM).DISP=SHR 00141004
//SYSUT3 DD SPACE=(CYL,(5,2)).UNIT=SYSDA,DISP=(.PASS) 00150000
//SYSPRINT DD SYSOUT=* 00160000
//SYSNAP DD SYSOUT=* 00170000
//SYSIN DD * 00180000
SELECTED SYSTEM=* 00190000
CICSNAME=CICSTEST 00200000
Control Library JCL Examples

DCICPROD

//SSADCIC  JOB (...),’SSA’,CLASS=A,MSGCLASS=X 00010000
/*JOBPARM S=* 00020000
/* * * * * THIS STEP IS ONLY NECESSARY IF THE INPUT COMES FROM A JOURNAL 00021003
/ST0 EXEC PGM=SSAILMPP 00030000
/STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR 00040001
//CPPRPPARM DD DSN=&PREFIX.CPPR.Vnnn.PARMLIB,DISP=SHR 00041007
//CPPRERT DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.CPPRERT 00042008
//CIMSPASS DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.CNTL(CIMSNUM) 00043012
//SYSPRINT DD SYSOUT=* 00050000
//SYSMSGS DD SYSOUT=* 00051004
//SYSUT1 DD DISP=SHR,DSN=&PREFIX.CICS161.DFHJ998 00060000
// DD DISP=SHR,DSN=&PREFIX.CICS161.DFHJ99A 00070000
//SYSUT2 DD DISP=(,PASS),SPACE=(CYL,(10,10)),UNIT=SYSDA,DSN=&SORTIN 00080000
//SYSNAP DD SYSOUT=* 00090000
//SYSUDUMP DD SYSOUT=* 00100000
//SYSIN DD * 00110000
SELECTED SYSTEM=* 00120000
SMFILE=110J 00130000
//SORT EXEC PGM=SORT,REGION=0M 00140000
//SYSOUT DD SYSOUT=* 00150000
//SORTIN DD (OLD,DELETE),DSN=&SORTIN 00160000
//SORTOUT DD (,PASS),SPACE=(CYL,(10,10)),UNIT=SYSDA,DSN=&SRTOUT 00170000
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(3)) 00180000
//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(3)) 00190000
//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(3)) 00200000
//SYSIN DD * 00210000
SOX FIELDS=(11,04,CH,A,07,04,CH,A) 00220000
END 00230000
//ST1 EXEC PGM=SSA1CICW,REGION=OM 00240000
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR 00250000
//SYSNAP DD SYSOUT=* 00260000
//SYSUDUMP DD SYSOUT=* 00270000
//SYSUT1 DD DISP=(OLD,PASS),DSN=&SRTOUT 00280000
//INDEX DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.INDEX.CICS 00290000
//ONLINE DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.ONLINE.CICS 00300001
//CPPRERT DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.CPPRERT 00310000
//CIMSPASS DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.CNTL(CIMSNUM) 00311012
//CPPRPPARM DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.PARMLIB 00320000
//SYSUT3 DD SPACE=(CYL,(10,8)),UNIT=SYSDA,DISP=(,PASS) 00330000
//SYSPRINT DD SYSOUT=* 00340000
//SYSMSGS DD SYSOUT=* 00341000
//SYSIN DD * 00350000
SELECTED SYSTEM=* 00360000
DUMP SMF STATISTICS=YES 00360109
***************************************************************************** 00361000
* IF YOU ARE USING THE ACCOUNTING SUBSYSTEM TO PRODUCE ACCOUNTING 00362005
* RECORDS, THE FOLLOWING KEY PHRASE MAY BE USED: 00363005
*ACCOUNTING=CICS TRANSACTION 00364005
* THE OUTPUT WILL BE DIRECTED TO SYSUT10 00365005
* * * * * * * * * * * * 00365110
* THE DEFAULT ACCOUNTING KEY FIELD (USERID) IS THE TRANSACTION NAME. 00365210
* IF YOU WISH THE USERID FIELD TO CONTAIN THE USERID, PLEASE SPECIFY 00365310
*PRIMARY ACCOUNT KEY=USERID 00365410
* IF YOU WISH THE USERID FIELD TO CONTAIN THE TERMINAL, PLEASE SPECIFY 00365510
*PRIMARY ACCOUNT KEY=TERMINAL NAME 00365610
***************************************************************************** 00365710
* IF YOU WISH THE RECORDS TO BE PROCESSED BY THE CIMS CHARGEBACK
* SYSTEM, PLEASE SPECIFY:
*CIMS ACCOUNTING FORMAT=YES
DCICREPT

//SSAREPT JOB (...), 'SSA', CLASS=A, MSGCLASS=X
//*JOBPARM S=*  00010000
//ST1 EXEC PGM=SSAICICR, REGION=OM  00020000
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB, DISP=SHR  00030001
//*SYSNAP DD SYSOUT=*  00040000
//*SYSUDUMP DD SYSOUT=*  00050000
//*INDEX DD DSN=&PREFIX.CPPR.Vnnn.INDEX.CICS, DISP=SHR  00060000
//*ONLINE DD DSN=&PREFIX.CPPR.Vnnn.ONLINE.CICS, DISP=SHR  00070000
//*CPPRPASS DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT, DISP=SHR  00080000
//*CPPRPARM DD DSN=&PREFIX.CPPR.Vnnn.PARMLIB, DISP=SHR  00090000
//*SYSPRINT DD SYSOUT=*  00100000
//*SYSMSGS DD SYSOUT=*  00110000
//SYSIN DD *  00120000
SECTED SYSTEM=*  00130000
CICSNAME=CICSPROD  00140000
CICS SUMMARY REPORT=YES  00150000
CICS EXCEPTION ANALYSIS=YES  00160000
CICS SYSTEM OVERVIEW=YES  00170000
CICS PERFORMANCE REPORT=YES  00180000
CICS TRANSACTION STATISTICS REPORT=YES  00190000
CICS TRANSACTION ACTIVITY LIST=YES  00200000
CICS TRANSACTION RESPONSE GRAPH=YES  00210000
CICS TRANSACTION ACTIVITY GRAPH=YES  00220000
CICS CPU ACTIVITY GRAPH=YES  00230000
CICS I/O ACTIVITY GRAPH=YES  00240000
CICS TERMINAL STATISTICS REPORT=YES  00250000
CICS TERMINAL ACTIVITY LIST=YES  00260000
CICS TERMINAL RESPONSE GRAPH=YES  00270000
CICS TERMINAL ACTIVITY GRAPH=YES  00280000
* * THE TRANSACTION NAME BELOW ONLY REFERS TO THE PROFILE REPORT * *
CICS TRANSACTION NAME=CSSN  00290000
CICS TRANSACTION PROFILE=YES  00300000
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* ASCENDING SORT COLUMN=3  00310000
* OR  00320000
* DESCENDING SORT COLUMN=3  00330000
* * * WHERE THE COLUMN NUMBER REFERS TO THE COLUMN IN THE REPORT  00340000
* * * COUNTING FROM THE LEFT, BEGINNING WITH 1  00350000
*  00360000
* FOR A SORTED LIST, ONLY THE TOP 50 ELEMENTS ARE SHOWN. TO INCREASE  00370000
* OR DECREASE THIS SIZE (UP TO A MAXIMUM OF 255), USE:  00380000
* SORT LIST SIZE=TOP100  00390000
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
PRIME SHIFT FIRST HOUR=7  00400000
LATE SHIFT FIRST HOUR=19  00410000
** IF YOU WANT TO PROCESS MULTIPLE CICS REGIONS INTO A SINGLE  00420000
** SUPER REGIONAL REPORT, USE THE //INCNAMES DD STATEMENT BELOW  00430000
** AND REMOVE THE CICSNAME STATEMENT IN THE SYSIN.  00440000
** //INCNAMES DD *  00450000
*CICSPROD  00460000
*CICSTEST  00470000
** IF YOU ONLY WANT THE REPORTS TO REFLECT ACTIVITY FOR A GIVEN  00480000
** SUBSET OF TRANSACTIONS, USE THE //EXCLUDE OR //INCLUDE FUNCTION.  00490000
DCICSMF

//SSADCIC JOB (...),'SSA',CLASS=A,MSGCLASS=X 00010000
/*JOBPARM S=* 00020000
******************************************************************************
/* THIS STEP EXTRACTS THE C110 CICS DATA INTO A CMF2 * 00040014
/* RECORD, SUITABLE FOR PROCESSING BY THE CHARGEBACK SYSTEM * 00050014
******************************************************************************
//ST1001 EXEC PGM=SSAICMFX,REGION=OM 00060000
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR 00070000
//SYSNAP DD SYSOUT=* 00080000
//SYSUDUMP DD SYSOUT=* 00090000
******************************************************************************
/* THE FOLLOWING LIBRARY CONTAINS THE DICTIONARY RECORDS * 00100014
******************************************************************************
//CMF2DCTN DD DISP=SHR, DSN=&PREFIX.CPPR.CMFX.CMF2DCTN 00110014
******************************************************************************
/* THE FOLLOWING FILE CONTAINS THE C110 INPUT RECORDS * 00120014
******************************************************************************
//SYSUT1 DD DISP=SHR, DSN=SMF.INPUT.FILE 00130014
******************************************************************************
/* THE FOLLOWING FILE CONTAINS THE CMF2 OUTPUT RECORDS * 00140014
******************************************************************************
//SYSUT2 DD DISP=(,CATLG),UNIT=SYSDA,SPACE=(CYL,(10,10),RLSE), 00150014
// DCB=(LRECL=200,BLKSIZE=27800,RECFM=FB), 00160014
// DSN=&PREFIX.CPPR.C110XTR1.SYSUT2 00170014
//SYSUT3 DD SPACE=(CYL,(10,8)),UNIT=SYSDA,DISP=(,PASS) 00180014
//SYSPRINT DD SYSOUT=* 00190014
//SYSMSGS DD SYSOUT=* 00200014
//SYSIN DD *,DCB=BLKSIZE=80 00210014
SORT FIELDS=(057,08,CH,A,009,04,PD,A,045,04,CH,A,005,04,BI,A) 00220014
/* 00230014
******************************************************************************
/* THE NEXT STEP REDUCES THE CMF2 RECORDS INTO THE CPPR PDB * 00240014
******************************************************************************
//ST3001 EXEC PGM=SSA1CICW,REGION=OM 00250014
//
Control Library JCL Examples

DCICSMF

//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR 00580014
//SYSNAP DD SYSOUT=* 00590014
//SYSUDUMP DD SYSOUT=* 00600014
//ONLINE DD DISP=SHR, 00610014
  DSN=&PREFIX.CPPR.Vnnn.ONLINE.CICS 00620014
//INDEX DD DISP=SHR, 00630014
  DSN=&PREFIX.CPPR.Vnnn.INDEX.CICS 00640014
//CPPRPARM DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.PARMLIB 00650014
//CPPRERT DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.CPPRERT 00660014
//SYSUT3 DD SPACE=(CYL,(10,8)),UNIT=SYSDA,DISP=(,PASS) 00670014
//SYSUT1 DD DISP=SHR,DSN=*.ST2001.SORTOUT 00680014
//SYSPRINT DD SYSOUT=* 00690014
//SYSMSGS DD SYSOUT=* 00700014
//SYSIN DD * 00710014
SELECTED SYSTEM=PROD 00720014
SMFILE=CMF2 00730014
DUMP SMF STATISTICS=YES 00740014
NO SMF SID=YES 00750014
* The following presumes Local time is 6 hours west of GMT 00760014
GMT OFFSET=W,6 00770014
DCICTMON

/*JOBPARM S=* 00021012
//SSATMON JOB (...),'SSA',CLASS=A,MSGCLASS=X 00010000
/* 00020000

****** Extracts the TMON CICS data into a CIMS CMF2 record, suitable for processing by CIMS CPPR and CIMS OS/390.

//ST1001 EXEC PGM=SSA1TMNX,REGION=OM 00025012
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR 00025112
// DD DISP=SHR,DSN=TMON.VENDOR.TCELOAD 00027012
//SYSNAP DD SYSOUT=* 00027112
//SYSUDUMP DD SYSOUT=* 00028012
//CPPRERT DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.CPPRERT 00029812
//CIMSPASS DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.CNTL(CIMSNUM) 00029912
//CPPRPARM DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.PARMLIB 00030012

****** The following file contains the TMON input file

//SYSUT1 DD DISP=SHR,DSN=&PREFIX.MONITOR.DAILY.DUMP(0) 00030112

****** The following file contains the output in CIMS CMF2 format

//SYSUT2 DD DSN=&PREFIX.CMF2.SYSA.SORTED, 00030212
//            DCB=(LRECL=200,BLKSIZE=27800,RECFM=FB), 00030312
//            SPACE=(CYL,(50,10),RLSE),UNIT=SYSDA,DISP=(,PASS) 00030412

//SYSPRINT DD SYSOUT=* 00030512
//SYSMSGS DD SYSOUT=* 00030612
//SYSPRINT DD SYSOUT=* 00030712

****** The next step sorts the output by time within transaction and name within applid

//ST2001 EXEC PGM=SORT,REGION=OM 00030812
//SYSDUT DD SYSDUT=* 00030912
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(50),,CONTIG) 00031012
//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(50),,CONTIG) 00031112
//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(50),,CONTIG) 00031212
//SORTWK04 DD UNIT=SYSDA,SPACE=(CYL,(50),,CONTIG) 00031312

//SORTIN DD DISP=SHR,DSN=*.ST1001.SYSUT2 00031412
//SORTOUT DD DSN=&PREFIX.CMF2.SYSA.SORTED, 00031512
//            DCB=(LRECL=200,BLKSIZE=27800,RECFM=FB), 00033112
//            SPACE=(CYL,(50,10),RLSE),UNIT=SYSDA,DISP=(,PASS) 00033212

Control Library JCL Examples

DCICTMON

/*

//SYNIN DD *,DCB=BLKSIZE=80
SORT FIELDS=(057,08,CH,A,009,04,P0,A,045,04,CH,A,005,04,BI,A)
/*
/* THE NEXT STEP REDUCES THE CMF2 RECORDS INTO THE CPPR PDB */

//ST3001 EXEC PGM=SSA1CICW,REGION=0M
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR
//SYSNAP DD SYSOUT=* 01063012
//SYSDUMP DD SYSOUT=* 01064012
//SYSUT1 DD DISP=SHR,DSN=*.ST2001.SORTOUT 01065112
/*
//INDEX DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.INDEX.CICS
//ONLINE DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.ONLINE.CICS
//CPPRERT DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.CPPRERT
//CMSPASS DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.CNTL(CIMSNUM)
//CPPRPARM DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.PARMLIB
/*
//SYSUT3 DD SPACE=(CYL,(100,50)),UNIT=SYSDA,DISP=(,PASS)
//SSASPILL DD SPACE=(CYL,(100,50)),UNIT=SYSDA,DISP=(,PASS)
//SYSPRINT DD SYSOUT=* 01069512
//SYSMSGS DD SYSOUT=* 01069612
//SYIN DD *
SELECTED SYSTEM=SYSA
CICS LINEAR LIST=YES
SMFILE=CMF2
DUMP SMF STATISTICS=YES
FORCE CICS INPUT=YES
NO SMF SID=YES
** ** ** ** ** IF YOU WISH TO SELECT A SPECIFIC REGION. SPECIFY:
*CICSNAME=CICSPROD
** ** ** ** ** OTHERWISE, ALL REGISTERED REGIONS WILL BE PROCESSED.
** ** ** ** ** THE CICS TRANSACTION ID IS THE DEFAULT KEY TO THE TABLE
** ** IF YOU PREFER TO USE THE USERID OR THE PROGRAM NAME, SPECIFY:
* PRIMARY ELEMENT KEY=USERID /* USERID IS THE KEY */
* PRIMARY ELEMENT KEY=PROGRAM /* PROGRAM NAME IS THE KEY */
******************************************************************************
** IF YOU ARE USING THE ACCOUNTING SUBSYSTEM TO PRODUCE ACCOUNTING RECORDS, THE FOLLOWING KEY PHRASE MAY BE USED:
** ACCOUNTING=CICS TRANSACTION
** THE OUTPUT WILL BE DIRECTED TO SYSUT10
** ** ** ** ** ** ** ** **
** THE DEFAULT ACCOUNTING KEY FIELD (USERID) IS THE TRANSACTION NAME.
** IF YOU WISH THE USERID FIELD TO CONTAIN THE USERID, PLEASE SPECIFY
** PRIMARY ACCOUNT KEY=USERID
** IF YOU WISH THE USERID FIELD TO CONTAIN THE TERMINAL, PLEASE SPECIFY
** PRIMARY ACCOUNT KEY=TERMINAL NAME
**
**
******************************************************************************
** THE NEXT STEP PRINTS A SUMMARY REPORT FOR CICSC2P */
******************************************************************************
//ST4001 EXEC PGM=SSA1CICR,REGION=0M
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR
//SYSNAP DD SYSOUT=*
//SYSUDUMP DD SYSOUT=* 01230012
//ONLINE DD DISP=(SHR,PASS),DSN=*.ST3001.SYSUT3 01240012
//CPPRERT DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.CPPRERT 01261013
//CIMSPASS DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.CNTL(CIMSNUM) 01262013
//CPPRPARM DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.PARMLIB 01263013
//SYSPRINT DD SYSOUT=* 01270012
//SYMSMSGS DD SYSOUT=* 01280012
//SYSIN DD * 01290012
SELECTED SYSTEM=SYSA 01300012
CICS LINEAR LIST=YES 01310012
CICSNAME=CICSC2P 01320012
/* 01380013
*/ 01440013
/** 01440013
Control Library JCL Examples

DDB2NRL1

```
/SSAREGR JOB (...),'SSA',CLASS=A,MSGCLASS=X
/*JOBPARM S=* 00010000
//ST1 EXEC PGM=SSA1REGR,REGION=OM 00020000
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR 00030000
//CPPRPARM DD DSN=&PREFIX.CPPR.Vnnn.PARMLIB,DISP=SHR 00040000
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR 00050000
//CIMSPASS DD DSN=&PREFIX.CPPR.Vnnn.CNTL(CIMSNUM),DISP=SHR 00051000
//SYSUT3 DD SPACE=(CYL,(5,2)),UNIT=SYSDA,DISP=(,PASS) 00060000
//SYSPRINT DD SYSOUT=* 00070000
//SYSNAP DD SYSOUT=* 00080000
//SYSIN DD * 00090000
SELECTED SYSTEM=* 00100000
DB2 SUBSYSTEM NAME=DB2P 00110000
//ST2 EXEC PGM=SSA1REGR,REGION=OM 00120000
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR 00130000
//CPPRPARM DD DSN=&PREFIX.CPPR.Vnnn.PARMLIB,DISP=SHR 00131000
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR 00140000
//CIMSPASS DD DSN=&PREFIX.CPPR.Vnnn.CNTL(CIMSNUM),DISP=SHR 00141000
//SYSUT3 DD SPACE=(CYL,(5,2)),UNIT=SYSDA,DISP=(,PASS) 00150000
//SYSPRINT DD SYSOUT=* 00160000
//SYSNAP DD SYSOUT=* 00170000
//SYSIN DD * 00180000
SELECTED SYSTEM=* 00181000
DB2 SUBSYSTEM NAME=DB2T 00190000
```
DDB2NRL2

//SSAREGB JOB (...),"SSA",CLASS=A,MSGCLASS=X 00010000
//JOBPARM S=* 00020000
//ST1 EXEC PGM=SSAIREGB,REGION=OM 00030000
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR 00040000
//CPPRPARM DD DSN=&PREFIX.CPPR.Vnnn.PARMLIB,DISP=SHR 00041000
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR 00050000
//CIMSPASS DD DSN=&PREFIX.CPPR.Vnnn.CNTL(CIMSNUM),DISP=SHR 00051000
//SYSUT3 DD SPACE=(CYL,(5,2)),UNIT=SYSDA,DISP=(,PASS) 00060000
//SYSPRINT DD SYSOUT=* 00070000
//SYSNAP DD SYSOUT=* 00080000
//SYSIN DD * 00090000
SELECTED SYSTEM=* 00100000
DB2NAME=CICSPROD 00110000
//ST2 EXEC PGM=SSAIREGB,REGION=OM 00120002
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR 00130000
//CPPRPARM DD DSN=&PREFIX.CPPR.Vnnn.PARMLIB,DISP=SHR 00131000
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR 00140000
//CIMSPASS DD DSN=&PREFIX.CPPR.Vnnn.CNTL(CIMSNUM),DISP=SHR 00141000
//SYSUT3 DD SPACE=(CYL,(5,2)),UNIT=SYSDA,DISP=(,PASS) 00150000
//SYSPRINT DD SYSOUT=* 00160000
//SYSNAP DD SYSOUT=* 00170000
//SYSIN DD * 00180000
SELECTED SYSTEM=* 00190000
DB2NAME=CICSTEST 00200000
//SSADDB2 JOB (...),'SSA',CLASS=A,MSGCLASS=X
/*JOBPARM S=*                        00010000
//ST1 EXEC PGM=SSA1DB2W,REGION=OM    00020000
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR 00030000
//SYSNAP DD SYSOUT=*                00040000
//SYSUDUMP DD SYSOUT=*              00050000
//SYSOUT DD SYSOUT=*               00060000
//SYSLIB DD DD DSN=OLD,DSN=SMF.DUMP 00070000
//INDEX DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.INDEX,DB2 00080000
//ONLINE DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.ONLINE,DB2 00090000
//CPPRERT DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.CPPRERT 00100000
//CIMSPASS DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.CNTL(CIMSNUM) 00101007
//CPPRPARM DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.PARMLIB 00110000
//SYSUT3 DD SPACE=(CYL,(10,8)),UNIT=SYSDA,DISP=(,PASS) 00120000
//SSASPILL DD SPACE=(CYL,(100,50)),UNIT=SYSDA,DISP=(,PASS) 00130000
//SPPRINT DD SYSOUT=*              00140000
//SYMSGLS DD SYSOUT=*              00150000
//SYSSIN DD                00160000
SELECTED SYSTEM=*                          00170000
DUMP SMF STATISTICS=YES                    00180000
* * * * * * * IF GMT IS NOT THE SAME AS LOCAL: 00190003
GTM OFFSET=W,8 /* LOCAL TIME IS 8 HOURS WEST OF GMT */ 00200003
* * * * * * * * * * * * * * * * * * * * * * * 00640005
* IF YOU ARE USING THE ACCOUNTING SUBSYSTEM TO PRODUCE ACCOUNTING 00650004
* RECORDS, THE FOLLOWING KEY PHRASE MAY BE USED:                   00660004
ACCOUNTING=DB2 TRANSACTION 00670004
* * * * * * * * * * * * 00671005
* THE OUTPUT WILL BE DIRECTED TO SYSUT10 00680004
* * * * * * * * * * * 00681005
* IF YOU WISH THE USERID FIELD TO CONTAIN THE PLANNAME, PLEASE SPECIFY 00690005
*PRIMARY ACCOUNT KEY=PLAN NAME 00700005
* * * * * * * * * * * * 00710005
* IF YOU WISH THE RECORDS TO BE PROCESSED BY THE CIMS CHARGEBACK 00720005
* SYSTEM, PLEASE SPECIFY: 00730005
*CIMS ACCOUNTING FORMAT=YES 00740005
//SSADB2R  JOB (...),'SSA',CLASS=A,MSGCLASS=X  00010000
*/JOBPARM  S=*  00020000
//ST1 EXEC PGM=SSAIDB2R,REGION=OM  00030002
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR  00040000
//SYSNAP DD SYSOUT=*  00050000
//SYSUDUMP DD SYSOUT=*  00060000
//INDEX DD DSN=&PREFIX.CPPR.Vnnn.INDEX.DB2,DISP=SHR  00070000
//ONLINE DD DSN=&PREFIX.CPPR.Vnnn.ONLINE.DB2,DISP=SHR  00080000
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR  00090000
//CIMSPASS DD DSN=&PREFIX.CPPR.Vnnn.CNTL(CIMSNUM),DISP=SHR  00091004
//CPPPPARM DD DSN=&PREFIX.CPPR.Vnnn.PARMLIB,DISP=SHR  00100000
//SYSPRINT DD SYSOUT=*  00110000
//SYSSMSGS DD SYSOUT=*  00111001
//SYSIN DD *  00120000
SELECTED SYSTEM=*  00130000
BEGIN DATE=01/25/2005  00140003
END DATE=01/25/2005  00150003
*  00160000
DB2 SYSTEM WIDE SUMMARY REPORT=YES  00170000
DB2 SUBSYSTEM NAME=DB2P  00180000
*  00190000
DB2NAME=**OTHER  00200000
DB2 CONNECTION:PLAN SUMMARY REPORT=YES  00210000
DB2 CONNECTION:PLAN PERFORMANCE REPORT=YES  00220000
DB2 CONNECTION:PLAN STATISTICS REPORT=YES  00230000
DB2 CONNECTION:PLAN COMMIT ACTIVITY GRAPH=YES  00240000
DB2 CONNECTION:PLAN THREAD TRANSIT TIME GRAPH=YES  00250000
DB2 CONNECTION:PLAN SQL ACTIVITY GRAPH=YES  00260000
DB2 CONNECTION:PLAN EXCEPTION ANALYSIS=YES  00270000
DB2 PLAN PROFILE=YES  00280000
DB2 PLAN NAME=RTPPU001  00290000
*  00300000
DB2NAME=**OTHER  00310000
DB2 CONNECTION:AUTH-ID SUMMARY REPORT=YES  00320000
DB2 CONNECTION:AUTH-ID PERFORMANCE REPORT=YES  00330000
DB2 CONNECTION:AUTH-ID STATISTICS REPORT=YES  00340000
DB2 CONNECTION:AUTH-ID COMMIT ACTIVITY GRAPH=YES  00350000
DB2 CONNECTION:AUTH-ID THREAD TRANSIT TIME GRAPH=YES  00360000
DB2 CONNECTION:AUTH-ID SQL ACTIVITY GRAPH=YES  00370000
DB2 CONNECTION:AUTH-ID EXCEPTION ANALYSIS=YES  00380000
DB2 AUTH-ID PROFILE=YES  00390000
DB2 AUTH-ID NAME=DPA6  00400000
*  00410000
//SSAINIT JOB (...),'SSA',CLASS=A,MSGCLASS=X
/*JOBPARM S=* 

******************************************************************************
/* ALLOCATE THE IDMS PRODUCTION DATASETS 
******************************************************************************
//ST0 EXEC PGM=IEFBR14
//DD01 DD DSN=&PREFIX.CPPR.V600.ONLINE.IDMS,DISP=(,CATLG).
     // DSNTYPE=LIBRARY,DSORG=PO,
     // SPACE=(CYL,(90,30)),UNIT=SYSDA,VOL=SER=&VOLUME
//DD02 DD DSN=&PREFIX.CPPR.V600.INDEX.IDMS,DISP=(,CATLG).
     // DCB=(RECFM=FB,LRECL=18,BLKSIZE=15462),
     // SPACE=(TRK,(2,1)),UNIT=SYSDA,VOL=SER=&VOLUME 
******************************************************************************
/* INITIALIZE THE IDMS PERFORMANCE DATABASE 
******************************************************************************
//ST1 EXEC PGM=SSA1LOAD
//STEPLIB DD DSN=&PREFIX.CPPR.V600.LOADLIB,DISP=SHR
//CPPRPARM DD DSN=&PREFIX.CPPR.V600.PARMLIB,DISP=SHR
//SYSPRINT DD SYSOUT=* 
//SYSIN DD DUMMY
//SYST1 DD DUMMY
//ONLINE DD DSN=&PREFIX.CPPR.V600.ONLINE.IDMS,DISP=SHR
//INDEX DD DSN=&PREFIX.CPPR.V600.INDEX.IDMS,DISP=SHR
//CIMSPASS DD DSN=&PREFIX.CPPR.V600.CNTL(CIMSNUM),DISP=SHR
Control Library JCL Examples

DIDML102

//SSADIDM JOB (...),'SSA',CLASS=A,MSGCLASS=X 00010000
//JOBPARM S=* 00020000
//ST1 EXEC PGM=SSA1IDMW,REGION=5000K,TIME=60 00030001
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR 00040000
//SYSNAP DD SYSOUT=* 00050000
//SYSUDUMP DD SYSOUT=* 00060000
//SYSUT1 DD DISP=SHR,DSN=IDMS.R102.LOG 00070000
//INDEX DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.INDEX.IDMS 00080000
//ONLINE DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.ONLINE.IDMS 00090000
//CPPRERT DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.CPPRERT 00100000
//CIMSPASS DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.CNTL(CIMSNUM) 00101003
//CPPPARM DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.PARMLIB 00110000
//SYSUT3 DD SPACE=(CYL,(10,8)),UNIT=SYSDA,DISP=(,PASS) 00120000
//SYSPRINT DD SYSOUT=* 00130000
//SYSMSGS DD SYSOUT=* 00131002
//SYSIN DD * 00140000
SELECTED SYSTEM=* 00150000
IDMSNAME=IDMSCV0 00160000
SMFILE=L102 00170000
DIDMNROL

//SSAREGD JOB (...)..'SSA'.CLASS=A.MSGCLASS=X
/*JOBPARM S=* */
//ST1 EXEC PGM=SSA1REGD,REGION=1024K
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR
//CPPRPARM DD DSN=&PREFIX.CPPR.Vnnn.PARMLIB,DISP=SHR
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR
//CIMSPASS DD DSN=&PREFIX.CPPR.Vnnn.CNTL(CIMSNUM),DISP=SHR
//SYSUT3 DD SPACE=(CYL,(5,2)),UNIT=SYSDA,DISP=(,PASS)
//SYSPRINT DD SYSOUT=* 
//SYSNAP DD SYSOUT=* 
//SYSIN DD * 
SELECTED SYSTEM=* 

* THE IDMSNAME CAN BE ANY NAME UP TO 8 BYTES LONG THAT THE USER CHOOSES 
* TO ASSOCIATE WITH THE IDMS REGION. 
IDMSNAME=IDMSCV0 

* THE ALIASNAME STATEMENT ASSOCIATES AN EXTERNAL CV# WITH THE NAME 
* SPECIFIED BY THE IDMSNAME PARAMETER. THE ALIAS NAME IS A REQUIRED 
* PARAMETER ONLY IF YOU ARE PROCESSING SMF DATA. IT CONSISTS OF 
ALIASNAME=CV#00016 

* THE CHARACTERS CV# FOLLOWED BY A FIVE DIGIT NUMBER CONTAINING 
* THE DECIMAL EQUIVALENT OF THE RIGHTMOST BYTE OF THE TWO-BYTE EXTERNAL 
* CV NUMBER (DISPLACEMENT X'16-17' FROM THE BEGINNING OF THE RECORD). 

ALIASNAME=CV #00016 

//ST1 EXEC PGM=SSA1REGD,REGION=1024K
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR
//CPPRPARM DD DSN=&PREFIX.CPPR.Vnnn.PARMLIB,DISP=SHR
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR
//CIMSPASS DD DSN=&PREFIX.CPPR.Vnnn.CNTL(CIMSNUM),DISP=SHR
//SYSUT3 DD SPACE=(CYL,(5,2)),UNIT=SYSDA,DISP=(,PASS)
//SYSPRINT DD SYSOUT=* 
//SYSNAP DD SYSOUT=* 
//SYSIN DD * 
SELECTED SYSTEM=* 

* THE IDMSNAME CAN BE ANY NAME UP TO 8 BYTES LONG THAT THE USER CHOOSES 
* TO ASSOCIATE WITH THE IDMS REGION. 
IDMSNAME=IDMSCV0 

* THE ALIASNAME STATEMENT ASSOCIATES AN EXTERNAL CV# WITH THE NAME 
* SPECIFIED BY THE IDMSNAME PARAMETER. THE ALIAS NAME IS A REQUIRED 
* PARAMETER ONLY IF YOU ARE PROCESSING SMF DATA. IT CONSISTS OF 
ALIASNAME=CV#00016 

* THE CHARACTERS CV# FOLLOWED BY A FIVE DIGIT NUMBER CONTAINING 
* THE DECIMAL EQUIVALENT OF THE RIGHTMOST BYTE OF THE TWO-BYTE EXTERNAL 
* CV NUMBER (DISPLACEMENT X'16-17' FROM THE BEGINNING OF THE RECORD). 

ALIASNAME=CV #00016 

//ST1 EXEC PGM=SSA1REGD,REGION=1024K
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR
//CPPRPARM DD DSN=&PREFIX.CPPR.Vnnn.PARMLIB,DISP=SHR
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR
//CIMSPASS DD DSN=&PREFIX.CPPR.Vnnn.CNTL(CIMSNUM),DISP=SHR
//SYSUT3 DD SPACE=(CYL,(5,2)),UNIT=SYSDA,DISP=(,PASS)
//SYSPRINT DD SYSOUT=* 
//SYSNAP DD SYSOUT=* 
//SYSIN DD * 
SELECTED SYSTEM=* 

* THE IDMSNAME CAN BE ANY NAME UP TO 8 BYTES LONG THAT THE USER CHOOSES 
* TO ASSOCIATE WITH THE IDMS REGION. 
IDMSNAME=IDMSCV0 

* THE ALIASNAME STATEMENT ASSOCIATES AN EXTERNAL CV# WITH THE NAME 
* SPECIFIED BY THE IDMSNAME PARAMETER. THE ALIAS NAME IS A REQUIRED 
* PARAMETER ONLY IF YOU ARE PROCESSING SMF DATA. IT CONSISTS OF 
ALIASNAME=CV#00016 

* THE CHARACTERS CV# FOLLOWED BY A FIVE DIGIT NUMBER CONTAINING 
* THE DECIMAL EQUIVALENT OF THE RIGHTMOST BYTE OF THE TWO-BYTE EXTERNAL 
* CV NUMBER (DISPLACEMENT X'16-17' FROM THE BEGINNING OF THE RECORD). 

ALIASNAME=CV #00016
DIDMPL12

//SSADIDM JOB (...),'SSA',CLASS=A,MSGCLASS=X 00010000
//JOBPARM S=* 00020000
//ST1 EXEC PGM=SSA1IDMW,REGION=5000K,TIME=60 00030000
//STPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR 00040000
//SYSNAP DD SYSOUT=* 00050000
//SYSUDUMP DD SYSOUT=* 00060000
//SYSUTI DD DISP=SHR,DSN=IDMS.R102.LOG 00070000
//INDEX DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.INDEX.IDMS 00080000
//ONLINE DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.ONLINE.IDMS 00090000
//CIMSPASS DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.CNTL(CIMSNUM) 00100000
//CPPRPARM DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.PARMLIB 00110000
//SYSUT3 DD SPACE=(CYL,(10,8)),UNIT=SYSDA,DISP=(,PASS) 00120000
//SYSPRINT DD SYSOUT=* 00130000
//SYSMSGS DD SYSOUT=* 00131000
//SYSIN DD * 00132000
* PROCESS PERFMON RECORDS FROM THE R12 DCLOG 00132100
* IDMSNAME MUST BE SPECIFIED 00132200
SELECTED SYSTEM=* 00133000
IDMSNAME=IDMSCV0 00134000
SMFILE=PL12 00135000
Control Library JCL Examples

DIDMPROD

//SSADIDM JOB (...), 'SSA', CLASS=A, MSGCLASS=X
/*JOBPARM S=* */
//STI EXEC PGM=SSA1IDM, REGION=5000K, TIME=60
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB, DISP=SHR
//SYSNAP DD SYSOUT=* 
//SYSUDUMP DD SYSOUT=* 
//SYSUT1 DD DISP=SHR, DSN=IDMS.LOG
//INDEX DD DISP=SHR, DSN=&PREFIX.CPPR.Vnnn.INDEX.IDMS 
//ONLINE DD DISP=SHR, DSN=&PREFIX.CPPR.Vnnn.ONLINE.IDMS 
//CPPRERT DD DISP=SHR, DSN=&PREFIX.CPPR.Vnnn.CPPRERT
//CIMSPASS DD DISP=SHR, DSN=&PREFIX.CPPR.Vnnn.CNTL(CIMSNUM)
//CPPRPARM DD DISP=SHR, DSN=&PREFIX.CPPR.Vnnn.PARMLIB
//SYSUT3 DD SPACE=(CYL,(10,8)), UNIT=SYSDA, DISP=(,PASS) 
//SYSPRINT DD SYSOUT=* 
//SYSMSGS DD SYSOUT=* 
//SYSIN DD * 

SELECTED SYSTEM=* 
* IF YOU WANT TO REDUCE DATA FOR A SPECIFIC CV, SPECIFY THE 
* REGISTERED NAME IN THE FOLLOWING PARAMETER. OTHERWISE OMIT IT.
IDMSNAME=IDMSCV0 
* THE FOLLOWING PARAMETER IS USED TO IDENTIFY THE INTERNAL CV#:
FILTER=016 
* IF YOU WANT TO PROCESS ALL CVS ON A TAPE, SPECIFY:
FILTER=00,00 
* AND REGISTER THE INTERNAL CV NUMBERS AS ALIASNAMES IN THE DIDMNROL 
* MEMBER OF THIS_CNTL_LIBRARY (SEE THE EXAMPLE) 
* 
* IF YOU WANT TO USE THE ACCOUNTING SUBSYSTEM, ADD SYSUT10 DD AND 
* ACCOUNTING=IDMS TRANSACTION 
* ACCOUNTING=IDMS TRANSACTION 
* THE DEFAULT ACCOUNTING KEY FIELD (USERID) IS THE TRANSACTION NAME. 
* IF YOU WISH THE USERID FIELD TO CONTAIN THE USERID, PLEASE SPECIFY
PRIMARY ACCOUNT KEY=USERID 
* IF YOU WISH THE USERID FIELD TO CONTAIN THE TERMINAL, PLEASE SPECIFY
PRIMARY ACCOUNT KEY=TERMINAL NAME 
* IF YOU WANT THE RECORDS TO BE PROCESSED BY THE CIMS CHARGEBACK 
** SYSTEM. PLEASE SPECIFY: 
*CIMS ACCOUNTING FORMAT=YES 
****************************************************************
DIDMPSMF

//SSADIDM  JOB (...),'SSA',CLASS=A,MSGCLASS=X                           00010000
//JOBPARM S=*                                                                 00010000
//ST1 EXEC PGM=SSA1IDMW,REGION=5000K,TIME=60                                      00030001
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR                             00040000
//SYSNAP DD SYSOUT=*                                                            00050000
//SYSUDUMP DD SYSOUT=*                                                          00060000
//SYSUT1 DD DISP=SHR,DSN=SMF.ARCHIVE.FILE                                        00070000
//INDEX DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.INDEX.IDMS                           00080000
//ONLINE DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.ONLINE.IDMS                         00090000
//CPPRERT DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.CPPRERT                            00100000
//CIMSPASS DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.CNTL(CIMSNUM)                     00110005
//CPPRPARM DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.PARMLIB                           00110000
//SYSUT3 DD SPACE=(CYL,(10,8)),UNIT=SYSDA,DISP=(,PASS)                         00120000
//SYSPRINT DD SYSOUT=*                                                          00130000
//SYSMSGS DD SYSOUT=*                                                          00131003
//SYSIN DD *                                                                   00140000

SELECTED SYSTEM=*                                                            00150000
IDMSNAME=IDMSCV0                                                              00160000
SMFILE=SMFH                                                                   00170000

***************  +----THIS IS THE SMF RECORD NUMBER FOR IDMS          00171000
*                                                            00172000
*                                                             00173000
*                                                             00174004
*                                                             00175000
SMF USER RECORD NUMBER=240,06                                               00180000

* IF YOU WANT TO USE OTHER THAN THE TRANSACTION ID AS THE KEY:        00190002
*PRIMAR ELEMENT KEY=PROGRAM /* TO USE PROGRAM NAME */            00200002
*PRIMAR ELEMENT KEY=USERID /* TO USE USERID AS KEY */            00210002
DIDMREPT

//SSAREPT JOB (...) , 'SSA' , CLASS=A , MSGCLASS=X
/*JOBPARM S=* 00010000
//ST1 EXEC PGM=SSA1IDMR , REGION=5000K , TIME=60
//STELIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR 00030003
//SYSSNAP DD SYSOUT=* 00040001
//SYSSDUMP DD SYSOUT=* 00050000
//INDEX DD DSN=&PREFIX.CPPR.Vnnn.INDEX.IDMS,DISP=SHR 00060000
//ONLINE DD DSN=&PREFIX.CPPR.Vnnn.ONLINE.IDMS,DISP=SHR 00070001
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR 00080001
//CPPRPARM DD DSN=&PREFIX.CPPR.Vnnn.PARMLIB,DISP=SHR 00090001
//SYSPRT DD SYSOUT=* 00100001
//SYSSMSGS DD SYSOUT=* 00110000
//SYSSIN DD * 00120004
SELECTED SYSTEM=* 00130000
IDMSNAME=IDMSCV0 00140000
PRIME SHIFT FIRST HOUR=7 00150000
LATE SHIFT FIRST HOUR=19 00160006
* 00170006
* * * * * * * * * 00180006
* 00190006
* 00200006
IDMS SUMMARY REPORT=YES 00210002
IDMS EXCEPTION ANALYSIS=YES 00220002
IDMS PERFORMANCE REPORT=YES 00230000
IDMS TRANSACTION STATISTICS REPORT=YES 00240000
IDMS TERMINAL STATISTICS REPORT=YES 00250000
IDMS TRANSACTION RESPONSE GRAPH=YES 00260000
IDMS TRANSACTION ACTIVITY GRAPH=YES 00270000
IDMS TERMINAL ACTIVITY GRAPH=YES 00280000
* 00290006
* * * TRANSACTION PROFILE 00300006
* 00310006
IDMS TRANSACTION PROFILE=YES 00320006
IDMS TRANSACTION NAME=SOMETING 00330006
* 00340006
* * * PRIMITIVE GRAPHS 00350006
* 00360006
IDMS CPU ACTIVITY GRAPH=YES 00370000
IDMS I/O ACTIVITY GRAPH=YES 00380000
IDMS D/B ACTIVITY GRAPH=YES 00390005
* 00400006
* * * ELEMENT LISTS 00410006
* 00420006
IDMS TRANSACTION ACTIVITY LIST=YES 00430006
IDMS TERMINAL ACTIVITY LIST=YES 00440006
* 00450006
* * * * * * * * * 00460006
* * * IF YOU WANT TO SORT EITHER THE TRANSACTION ACTIVITY LIST OR 00470006
* * * THE TERMINAL ACTIVITY LIST, USE THE FOLLOWING STATEMENT: 00480006
*ASCENDING SORT COLUMN=3 00490006
* OR 00500006
*DESCENDING SORT COLUMN=3 00510006
* * * WHERE THE COLUMN NUMBER REFERS TO THE COLUMN IN THE REPORT 00520006
* * * COUNTING FROM THE LEFT, BEGINNING WITH 1 00530006
* 00540007
* FOR A SORTED LIST, ONLY THE TOP 50 ELEMENTS ARE SHOWN. TO INCREASE 00550007
* OR DECREASE THIS SIZE (UP TO A MAXIMUM OF 255), USE:
*SORT LIST SIZE=TOP100
* * * * * * * * *
DIMINIT

//SSAINIT JOB (...),'SSA',CLASS=A,MSGCLASS=X
/*JOBPARM S=* */
*******************************************************************************
/* ALLOCATE THE IMS PRODUCTION DATASETS */
*******************************************************************************
//ST0 EXEC PGM=IEFBR14
//DD01 DD DSN=&PREFIX.CPPR.V600.ONLINE.IMS,DISP=(,CATLG),
     DSNTYPE=LIBRARY,DSORG=PO,
     SPACE=(CYL,(90,30)),UNIT=SYSDA,VOL=SER=&VOLUME
//DD02 DD DSN=&PREFIX.CPPR.V600.INDEX.IMS,DISP=(,CATLG),
     DCB=(RECFM=FB,LRECL=18,BLKSIZE=15462),
     SPACE=(TRK,(2,1)),UNIT=SYSDA,VOL=SER=&VOLUME
*******************************************************************************
/* INITIALIZE THE IDMS PERFORMANCE DATABASE */
*******************************************************************************
//ST1 EXEC PGM=SSA1LOAD
//STEPLIB DD DSN=&PREFIX.CPPR.V600.LOADLIB,DISP=SHR
//CPPRPARM DD DSN=&PREFIX.CPPR.V600.PARMLIB,DISP=SHR
//SYSPRINT DD SYSOUT=* 
//SYSIN DD DUMMY
//SYSUT1 DD DUMMY
//ONLINE DD DSN=&PREFIX.CPPR.V600.ONLINE.IMS,DISP=SHR
//INDEX DD DSN=&PREFIX.CPPR.V600.INDEX.IMS,DISP=SHR
//CIMSPASS DD DSN=&PREFIX.CPPR.V600.CNTL(CIMSNUM),DISP=SHR
DIMSNROL

//SSAREGI  JOB (...),'SSA',CLASS=A,MSGCLASS=X     00010000
/*JOBPARM  S=*                                           00020000
//ST1 EXEC PGM=SSAREGI,REGION=1024K                     00030000
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR    00040001
//CPPRPARM DD DSN=&PREFIX.CPPR.Vnnn.PARMLIB,DISP=SHR  00041002
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR   00050001
//CIMSPASS DD DSN=&PREFIX.CPPR.Vnnn.CNTL(CIMSNUM),DISP=SHR  00051003
//SYSUT3 DD SPACE=(CYL,(5,2)),UNIT=SYSDA,DISP=(,PASS)  00060000
//SYSPRINT DD SYSOUT=*                                  00070000
//SYSNAP  DD SYSOUT=*                                   00080000
//SYSIN  DD *                                          00090000
SELECTED SYSTEM=*                                      00100000
IMS SYSTEM=IMSA                                        00110000
//ST2 EXEC PGM=SSAREGI,REGION=1024K                     00120000
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR    00130001
//CPPRPARM DD DSN=&PREFIX.CPPR.Vnnn.PARMLIB,DISP=SHR  00131002
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR   00140001
//CIMSPASS DD DSN=&PREFIX.CPPR.Vnnn.CNTL(CIMSNUM),DISP=SHR  00141003
//SYSUT3 DD SPACE=(CYL,(5,2)),UNIT=SYSDA,DISP=(,PASS)  00150000
//SYSPRINT DD SYSOUT=*                                  00160000
//SYSNAP  DD SYSOUT=*                                   00170000
//SYSIN  DD *                                          00180000
SELECTED SYSTEM=*                                      00190000
IMS SYSTEM=IMST                                        00200000
DIMSPROD

//SSACPPR  JOB (...)..'SSA',CLASS=A,MSGCLASS=X  00010014
//JOBPARM  S=*  00020014
//ST01  EXEC PGM=SSAIWKLD,REGION=5000K,TIME=60  00030014
//ST01 LIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR  00040014
//SYSSAP DD SYOUT=*  00050014
//SYSSDUMP DD SYOUT=*  00060014
//SYSSUT1 DD DISP=SHR,DSN=SMF.INPUT.FILE  00070014
//SYSSMAN0 DD DISP=SHR,DSN=SYS1.MAN0  00080014
//SYSSMAN1 DD DISP=SHR,DSN=SYS1.MAN1  00090014
//SYSSMAN2 DD DISP=SHR,DSN=SYS1.MAN2  00100014
//SYSSMAN3 DD DISP=SHR,DSN=SYS1.MAN3  00110014
//ONLINE  DD DUMMY  00120014
//CPPRERT DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.CPPRERT  00130014
//CIMSPASS DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.CNTL(CIMSNUM)  00131014
//CPPRPARM DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.PARMLIB  00140014
//*****************************************************************  00150014
//*        THE FOLLOWING PASSES SMF TYPE 30 RECORDS TO ST03  00160014
//*****************************************************************  00170014
//SYSUT2 DD SPACE=(CYL,(100,50)),UNIT=SYSDA,DISP=(,PASS)  00180014
//SYSUT3 DD SPACE=(TRK,(1,1)),UNIT=SYSDA,DISP=(,PASS)  00190014
//SYSPRINT DD SYSOUT=*  00200014
//SYSMSGS DD SYSOUT=*  00201014
//SYSIN DD *  00202014
SELECTED SYSTEM=INCLUDE(5)  00203014
* * * DONT PUT ANYTHING INTO THE ONLINE PERFORMANCE DATABASE  00204014
SCANONLY  00205014
* * * PASS SMF TYPE 30 RECORDS INTO THE SYSUT2 FILE * * *  00206014
SYSUT2=YES  00207014
FILTER=30  00208014
//*****************************************************************  00209014
//* PREPROCESSES THE IMS LOG RECORDS  00209117
//*****************************************************************  00210014
//* USE STEPS ST0261A AND ST0261B FOR IMS 6.1  00230014
//* USE STEPS ST0251A AND ST0251B FOR IMS 5.1  00250014
//* USE STEP ST02 FOR IMF  00270017
//*****************************************************************  00271114
//* STEPS ST0261A AND ST0261B  00271214
//* CIMSLP61 TO PREPROCESS THE IMS LOG FOR BOTH THE CIMS CHARGEBACK  00271314
//* AND THE CAPACITY PLANNER SYSTEMS IN A SINGLE PASS OF  00271514
//* THE IMS LOG DATASET. IMS RELEASE 6.1  00271614
//*****************************************************************  00271714
//* IF CHARGEBACK IS NOT BEING USED, THEN THIS STEP MAY BE OMITTED.  00271814
//*****************************************************************  00271914
//STO261A EXEC PGM=IEFBR14  00272014
//DELETE1 DD DSN=&PREFIX.CIMS.CIMSIMS1,DISP=(MOD,DELETE),  00272114
//SPACE=(1,1)  00272219
//DELETE7 DD DSN=&PREFIX.CIMS.CIMSIMS7,DISP=(MOD,DELETE),  00272319
//SPACE=(1,1)  00272419
//ST0261B EXEC PGM=CIMSLP61,REGION=OM,TIME=60  00272519
//ST0261B EXEC PGM=CIMSLP61,REGION=OM,TIME=60  00272614
//ST0261B EXEC PGM=CIMSLP61,REGION=OM,TIME=60  00272714
/*----------------------------------------------------------------     00279514
/*     THE FOLLOWING DD STATEMENTS ARE NECESSARY ONLY IF THE          00279614
/*     IF THE CIMS CHARGEBACK LOG PROCESSING IS BEING PERFORMED.       00279714
/*----------------------------------------------------------------     00279814
CIMSPRINT DD  SYSOUT=*                                                 00279914
CIMSIMS1 DD  DSN=&PREFIX.CIMSIMS.CIMSIMS1,DISP=(,CATLG,DELETE),       00280014
   DCB=(LRECL=200,DSORG=PS,RECFM=VB,BUFNO=40),                       00280114
   SPACE=(CYL,(25,25))                                               00280214
CIMSIMS7 DD  DSN=&PREFIX.CIMSIMS.CIMSIMS7,DISP=(,CATLG,DELETE),       00280314
   DCB=(LRECL=27994,BLKSIZE=27998,DSORG=PS,RECFM=VB,                00280414
      BUFNO=40),SPACE=(CYL,(50,50))                                  00280514
CIMSPASS DD  DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.CNTL(CIMSNUM)             00280616
/*----------------------------------------------------------------     00280814
/*     END OF SAMPLE JCL FOR CIMSLP51 IMS LOG PREPROCESSOR       *     00280914
//*****************************************************************     00281014
//*****************************************************************     00282017
//*                                                                     00283017
//* STEP ST02 FOR IMF                                                   00284117
//****************************************************************      00284917
ST02     EXEC PGM=IMFCOPY5,REGION=2000K                               00285217
STEPLIB  DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR                    00285317
SYSUT1   DD DSN=IMS.LOGTAPE,DISP=(OLD,KEEP)                           00285417
SYSUT2   DD DSN=&&IMSLOG,DISP=(,PASS),UNIT=SYSDA,                     00285517
   DCB=(DSORG=PS,BLKSIZE=19069,RECFM=VB),                           00285617
   SPACE=(CYL,(10,10))                                              00285717
CIMSPASS DD  DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.CNTL(CIMSNUM)             00285817
SYSUDUMP DD  SYSOUT=*                                                 00286017
/*----------------------------------------------------------------     00286117
//*                                                                     00286217
//*  THE FOUR-CHARACTER IMS SYSTEM ID MUST BE SUBSTITUTED FOR IIII      00286317
//*                                                                     00286417
//*                                                                     00286517
//*                                                                     00286617
IMS SYSTEM=III                                                        00286717
/*                                                                     00286817
**************************************************************************
//*     THIS STEP SORTS THE SELECTED IMS DATA - ALL IMS RELEASES        00286914
**************************************************************************
//*     EXEC PGM=SORT,REGION=4096K,TIME=10                            00287014
//SORT     EXEC  PGM=SORT,REGION=4096K,TIME=10                       00287114
//SYSOUT   DD  SYSOUT=*                                                 00287214
//SORTIN   DD  DSN=&&IMSLOG,DISP=(OLD,DELETE)                           00287314
//SORTOUT  DD  DSN=&&LOGSRT,UNIT=3380,DISP=(,PASS),                     00287414
//   SPACE=(CYL,(10,3)),                                             00287514
//   DCB=(DSORG=PS,BLKSIZE=19069,RECFM=VB)                           00287614
//SORTWK01 DD  UNIT=SYSDA,SPACE=(CYL,(10,3))                           00287714
//SORTWK02 DD  UNIT=SYSDA,SPACE=(CYL,(10,3))                           00287814
//SORTWK03 DD  UNIT=SYSDA,SPACE=(CYL,(10,3))                           00287914
SYSIN    DD  *                                                        00288014
SORT FIELDS=(5,4,PD,A,9,4,PD,A),SIZE=E60000                            00288114
END                                                                00288214
**************************************************************************
//*     THIS STEP PERFORMS THE DATA REDUCTION - ALL IMS RELEASES        00288314
**************************************************************************
//ST03     EXEC PGM=SSA1IMSW,REGION=5000K,TIME=60                       00288414
//STEPLIB  DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR                    00288514
//SYSNAP   DD SYSOUT=*                                                  00288614
//SYSUDUMP DD SYSOUT=*                                                  00288714
//ABNLIGNR DD DUMMY                                                     00288814
//*[------------------------------------------------------------------
DIMSPROD

//*-------------------------------------------------- 00289214
//*        THE FOLLOWING INPUT COMES FROM THE SMF TYPE 30 RECORDS 00289314
//*-------------------------------------------------- 00289414
//SYSUT1 DD DISP=(OLD,DELETE),DSN=*.ST01.SYSUT2 00289514
//*-------------------------------------------------- 00290014
//*        THE FOLLOWING INPUT COMES FROM THE IMS LOGTAPE 00300014
//*-------------------------------------------------- 00310014
//SYSUT2 DD DISP=(OLD,DELETE),DSN=&LOGSRT 00320014
//INDEX DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.INDEX.IMS 00330014
//ONLINE DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.ONLINE.IMS 00340014
//CPPRERT DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.CPPRERT 00350014
//CIMSPASS DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.CNTL(CIMSNUM) 00351016
//CPPRPARM DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.PARMLIB 00360014
//SYSUT3 DD SPACE=(CYL,(10,8)),UNIT=SYSDA,DISP=(,PASS) 00370014
//SYSPRINT DD SYSOUT=* 00380014
//SYMSGD DD SYSOUT=* 00390014
//SYSIN DD  * 00400014
SELECTED SYSTEM=* 00410014
IMS SYSTEM=IIII 00420014
IMS CONTROL=IMSCTL 00430014
DBRC REGION=IMSDBRC 00440014
DLI REGION=IMSDLI 00450014
DSNMSTR REGION=DB2MSTR 00460014
DSNDBM1 REGION=DB2DBM1 00470014
IMS DUMP=YES 00480014
** ** NOTE ** ** IF YOU WANT THE TERMINAL RESPONSE DISTRIBUTION TABLE 00490014
** ** TO BE BUILT, MAKE SURE YOU HAVE AN IMSR MEMBER IN PARMLIB 00500014
** 00510014
** IF YOU WANT AN AD HOC REPORT FOR SPECIFIC TRANSACTIONS AND/OR 00520014
** TERMINALS, UNCOMMENT ANY OF THE FOLLOWING FOUR STATEMENTS: 00530014
*IMS TERMINAL NAME=FPP73N /* SET == FOR ALL TERMINALS 00540014
*IMS TRANSACTION NAME=COLFTAD /* SET == FOR ALL TRANSACTIONS 00550014
*BEGIN TIME=05.00 /* DEFAULTS TO 00.00 00560014
*END TIME=06.15 /* DEFAULTS TO 24.00 00570014
**DIMSREPT**

```jcl
//SSAREPT JOB (...)濟'SSA'.CLASS=A.MSGCLASS=X
/*JOBPARM S=* */
//STI EXEC PGM=SSA1IMSR,REGION=5000K,TIME=60
//STELIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR
//SYSNAP DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//INDEX DD DSN=&PREFIX.CPPR.Vnnn.INDEX.IMS,DISP=SHR
//ONLINE DD DSN=&PREFIX.CPPR.Vnnn.ONLINE.IMS,DISP=SHR
//CIMSPASS DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR
//CPPRPARM DD DSN=&PREFIX.CPPR.Vnnn.PARMLIB,DISP=SHR
//SYSSPRINT DD SYSOUT=*
//SYSSMSGS DD SYSOUT=*
//SYSSIN DD *
SELECTED SYSTEM=*
IMS SYSTEM=IMSA
IMS CONTROL=IMSCtrl
DBRC REGION=IMSDBRC
DLI REGION=IMSDLI
DSNMSTR REGION=DB2MSTR
DSNDBM1 REGION=DB2DBM1
IMS SUMMARY REPORT=YES
IMS PERFORMANCE REPORT=YES
IMS TRANSACTION STATISTICS REPORT=YES
IMS TERMINAL STATISTICS REPORT=YES
IMS TERMINAL RESPONSE DISTRIBUTION REPORT=YES /* NEW NEW NEW */
IMS TRANSACTION ACTIVITY REPORT=YES
IMS TRANSACTION RESPONSE GRAPH=YES
IMS TERMINAL ACTIVITY GRAPH=YES
IMS CPU ACTIVITY GRAPH=YES
IMS I/O ACTIVITY GRAPH=YES
IMS TRANSACTION PROFILE=YES
SELECTED DAY=ALL DAYS
//**
//* IN ADDITION TO THE NORMAL CPPR INCLUDE/EXCLUDE FUNCTIONS, *
//* BMP TRANSACTIONS MAY BE INCLUDED OR EXCLUDED BY ENTERING *
//* $$BMP$$ IN THE INCLUDE/EXCLUDE LIST.
 Deze linea conceptionne le redacteur de texte naturellement.
DNETINIT

//SSAINIT JOB (...),'SSA',CLASS=A,MSGCLASS=X
//*JOBPARM S=*
//**
//* ALLOCATE THE NETWORK PRODUCTION DATASETS
//**
//ST0 EXEC PGM=IEFBR14
//DD01 DD DSN=&PREFIX.CPPR.V600.ONLINE.VTAM,DISP=(,CATLG),
 // DSNTYPE=LIBRARY,DSORG=PO,
 // SPACE=(CYL,(90,30)),UNIT=SYSDA,VOL=SER=&VOLUME
//DD02 DD DSN=&PREFIX.CPPR.V600.INDEX.VTAM,DISP=(,CATLG),
 // DCB=(RECFM=FB,LRECL=18,BLKSIZE=15462),
 // SPACE=(TRK,(2,1)),UNIT=SYSDA,VOL=SER=&VOLUME
//**
//* INITIALIZE THE NETWORK PERFORMANCE DATABASE
//**
//ST1 EXEC PGM=SSA1LOAD
//STEPLIB DD DSN=&PREFIX.CPPR.V600.LOADLIB,DISP=SHR
//CPPRPARM DD DSN=&PREFIX.CPPR.V600.PARMLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSSIN DD DUMMY
//SYSSUT1 DD DUMMY
//ONLINE DD DSN=&PREFIX.CPPR.V600.ONLINE.VTAM,DISP=SHR
//INDEX DD DSN=&PREFIX.CPPR.V600.INDEX.VTAM,DISP=SHR
//CIMSPASS DD DSN=&PREFIX.CPPR.V600.CNTL(CIMSNUM),DISP=SHR
Control Library JCL Examples

DNENRROL

//SSAREGN JOB (...),'SSA',CLASS=A,MSGCLASS=X 00010002
/*JOBPARM S=* 00020000
//ST1 EXEC PGM=SSA1REGN,REGION=OM 00030005
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR 00040003
//CPPRPARM DD DSN=&PREFIX.CPPR.Vnnn.PARMLIB,DISP=SHR 00041004
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR 00050003
//CIMSPASS DD DSN=&PREFIX.CPPR.Vnnn.CNTL(CIMSNUM),DISP=SHR 00051006
//SYSUT3 DD SPACE=(CYL,(5,2)),UNIT=SYSDA,DISP=(,PASS) 00060000
//SYSPRINT DD SYSOUT=* 00070000
//SYSNAP DD SYSOUT=* 00080000
//SYSIN DD * 00090000
SELECTED SYSTEM=* 00100000
VTAMNAME=CICSPROD 00110001
//ST2 EXEC PGM=SSA1REGN,REGION=OM 00120005
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR 00130003
//CPPRPARM DD DSN=&PREFIX.CPPR.Vnnn.PARMLIB,DISP=SHR 00131004
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR 00140003
//CIMSPASS DD DSN=&PREFIX.CPPR.Vnnn.CNTL(CIMSNUM),DISP=SHR 00141006
//SYSUT3 DD SPACE=(CYL,(5,2)),UNIT=SYSDA,DISP=(,PASS) 00150000
//SYSPRINT DD SYSOUT=* 00160000
//SYSNAP DD SYSOUT=* 00170000
//SYSIN DD * 00180000
SELECTED SYSTEM=* 00190000
VTAMNAME=CICSTEST 00200001
DNETPROD

```
//SSADNET JOB (...) ,'SSA',CLASS=A,MMSGCLASS=X 00010001
//JOBPARM S=* 00020000
//ST1 EXEC PGM=SSAINETW,REGION=OM 00030007
//STELIB DD DSN=PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR 00040002
//SYSNAP DD SYSOUT=* 00050000
//SYSUDUMP DD SYSOUT=* 00060000
//SYSUTI DD DISP=SHR,DSN=NETWORK.LOG 00070001
//INDEX DD DISP=SHR,DSN=PREFIX.CPPR.Vnnn.INDEX.VTAM 00080002
//ONLINE DD DISP=SHR,DSN=PREFIX.CPPR.Vnnn.ONLINE.VTAM 00090002
//CPPRERT DD DISP=SHR,DSN=PREFIX.CPPR.Vnnn.CPPRERT 00100002
//CIMSPASS DD DISP=SHR,DSN=PREFIX.CPPR.Vnnn.CNTL(CIMSNUM) 00101002
//CPPRPARM DD DISP=SHR,DSN=PREFIX.CPPR.Vnnn.PARMLIB 00110002
//SYSUT3 DD SPACE=(CYL,(10,8)),UNIT=SYSDA,DISP=(,PASS) 00120000
//SSASPILL DD SPACE=(CYL,(100,50)),UNIT=SYSDA,DISP=(,PASS) 00121003
//SYSPRINT DD SYSOUT=* 00130000
//SYSMSGS DD SYSOUT=* 00131006
//SYSPRINT DD * 00140000
SELECTED SYSTEM=* 00150000
******* YOU MUST SPECIFY THE VTAM APPLID OR RESOURCE NAME ******* 00151000
******* IF YOU WANT TO PROCESS A SPECIFIC APPLID ******* 00152003
******* OTHERWISE, ALL REGISTERED VTAM APPLIDS ARE PROCESSED **** 00153003
VTAMNAME=CICSPROD 00160001
DUMP SMF STATISTICS=YES 00170004
******* THE FOLLOWING STATEMENT SPECIFIES THE SMF RECORD TYPE *** 00180004
******* IT IS NOT NEEDED FOR NETSPY LOG, NETVIEW OR NPM RECORDS** 00181005
FILTER=39 00190004
******* THE FOLLOWING STATEMENT DEFINES THE INPUT FORMAT ******** 00191004
* * * * * NETSPY INPUT FORMATS 00192004
*SMFILE=NSPY /* NETSPY FROM THE LOG (THIS IS THE DEFAULT) 00200005
*SMFILE=NSPH /* NETSPY FROM SMF HISTORY (ALSO USE FILTER) 00210004
*SMFILE=NSPA /* NETSPY FROM SMF ACTIVE (ALSO USE FILTER) 00220004
*SMFILE=NSPL /* NETSPY FROM SMF LIVE (ALSO USE FILTER) 00230004
* * * * * NETMASTER INPUT FORMATS 00240004
*SMFILE=NMMA /* NETMASTER FROM SMF HISTORY (ALSO USE FILTER) 00260004
*SMFILE=NMMA /* NETMASTER FROM SMF ACTIVE (ALSO USE FILTER) 00270004
*SMFILE=NMML /* NETMASTER FROM SMF LIVE (ALSO USE FILTER) 00280004
* * * * * NETVIEW INPUT FORMATS 00290004
*SMFILE=NVUH /* NETVIEW FROM SMF HISTORY 00300004
*SMFILE=NVUA /* NETVIEW FROM SMF ACTIVE 00310004
*SMFILE=NVUL /* NETVIEW FROM SMF LIVE 00320004
* * * * * NPM INPUT FORMATS 00330004
*SMFILE=NPMV /* NPM FROM VSAM LOG 00340005
*SMFILE=NPMH /* NPM FROM SMF HISTORY 00350005
*SMFILE=NPMLOG /* NPM FROM SMF LIVE 00360005
```
DNETREPT

//SSANETR JOB (...),'#SSA'.CLASS=A,MSGCLASS=X 00010001
/*JOBPARM S=* 00020000
//ST1 EXEC PGM=SSA1NETR,REGION=OM 00030007
//STEP1 LIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR 00040002
//SYSNAP DD SYSOUT=* 00050000
//SYSUDUMP DD SYSOUT=* 00060000
//INDEX DD DSN=&PREFIX.CPPR.Vnnn.INDEX.VTAM,DISP=SHR 00070002
//ONLINE DD DSN=&PREFIX.CPPR.Vnnn.ONLINE.VTAM,DISP=SHR 00080002
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR 00090002
//CPPRPARM DD DSN=&PREFIX.CPPR.Vnnn.PARMLIB,DISP=SHR 00100002
//SYSPRT DD SYSOUT=* 00110000
//SYSSG5 DD SYSOUT=* 00120005
//SYSIN DD * 00130000
SELECTED SYSTEM=* 00140000
VTAMNAME=CICSPROD 00150001
SELECTED DAY=WEEKDAYS 00160001
BEGIN DATE=*-7 00170008
END DATE=*-5 00180008
NETWORK SUMMARY REPORT=YES 00190003
NETWORK PERFORMANCE REPORT=YES 00200008
NETWORK TERMINAL STATISTICS REPORT=YES 00210008
NETWORK EXCEPTION ANALYSIS=YES 00220003
NETWORK TERMINAL ACTIVITY LIST=YES 00230006
*
* IF YOU WANT TO SORT THE ACTIVITY LIST BASED ON COLUMN, USE: 00240009
*DESCENDING SORT COLUMN=02 00250009
* OR 00260009
*ASCENDING SORT COLUMN=02 00270009
* 00280009
* FOR A SORTED LIST, ONLY THE TOP 50 ELEMENTS ARE SHOWN. TO INCREASE 00290009
* OR DECREASE THIS SIZE (UP TO A MAXIMUM OF 255), USE: 00300009
*SORT LIST SIZE=TOP100 00310009
NETWORK TRANSACTION RESPONSE GRAPH=YES 00320009
NETWORK TERMINAL ACTIVITY GRAPH=YES 00330008
NETWORK TRANSACTION ACTIVITY GRAPH=YES 00340008
NETWORK INBOUND TRAFFIC GRAPH=YES 00350008
NETWORK OUTBOUND ACTIVITY GRAPH=YES 00360008
NETWORK OUTBOUND TRAFFIC GRAPH=YES 00370001
NETWORK TOTAL TRAFFIC GRAPH=YES 00380001
NETWORK TERMINAL PROFILE=YES 00390001
NETWORK TERMINAL NAME=TO3SPO18 00400001
PRIME SHIFT FIRST HOUR=7 00410001
LATE SHIFT FIRST HOUR=19 00420001
//EXCLUDE DD * 00430001
TO14* 00440001
00450001
//DULTINIT JOB (...), 'SSA', CLASS=A, MSGCLASS=X
//JOBPARM S=*
//***/
/* ALLOCATE THE CPPR SYSTEM FILES */
//***/
//ST1 EXEC PGM=IEFBRI4
//CPPRERT DD DSN=&PREFIX.CPPR.V600.CPPRERT, DISP=(,CATLG),
// DCB=(RECFM=U, BLKSIZE=19069),
// SPACE=(TRK,(2,1)), UNIT=SYSDA, VOL=SER=&VOLUME
//HGDLIB DD DSN=&PREFIX.CPPR.V600.HGDLIB, DISP=(,CATLG),
// DCB=(LRECL=80, BLKSIZE=4240, RECFM=FB),
// SPACE=(TRK,(25,23,150)), UNIT=SYSDA, VOL=SER=&VOLUME
//LNGVLIB DD DSN=&PREFIX.CPPR.V600.LNGVLIB, DISP=(,CATLG),
// DCB=(LRECL=132, BLKSIZE=13200, RECFM=FB),
// SPACE=(TRK,(45,15,250)), UNIT=SYSDA, VOL=SER=&VOLUME
//XFRLIB DD DSN=&PREFIX.CPPR.V600.XFRLIB, DISP=(,CATLG),
// DCB=(LRECL=4092, BLKSIZE=4096, RECFM=VB),
// SPACE=(TRK,(40,10,50)), UNIT=SYSDA, VOL=SER=&VOLUME
//***/
/* INITIALIZE THE ELEMENT REGISTRATION TABLE FILE */
//***/
//ST2 EXEC PGM=IEBGENER
//STEPLIB DD DSN=&PREFIX.CPPR.V600.LOADLIB, DISP=SHR
//CPPRPARM DD DSN=&PREFIX.CPPR.V600.PARMLIB, DISP=SHR
//CIMSPPASS DD DSN=&PREFIX.CPPR.V600.CNTL(CIMSNUM), DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT1 DD DUMMY
//SYSUT2 DD DSN=&PREFIX.CPPR.V600.CPPRERT, DISP=SHR
//SSAINIT JOB (...),'SSA',CLASS=A,MSGCLASS=X
/*JOBPARM S=*/
**
/* ALLOCATE THE WORKLOAD PRODUCTION DATASETS
**
//ST0 EXEC PGM=IEFBR14
/DD01 DD DSN=PREFIX.CPPR.V600.ONLINE.WKLD,DISP=(,CATLG),
 DSNTYPE=LIBRARY,DSORG=PO,
 SPACE=(CYL,(90,30)),UNIT=SYSDA,VOL=SER-&VOLUME
/DD02 DD DSN=PREFIX.CPPR.V600.INDEX.WKLD,DISP=(,CATLG),
 DCB=(RECFM=FB,LRECL=18,BLKSIZE=15462),
 SPACE=(TRK,(2,1)),UNIT=SYSDA,VOL=SER-&VOLUME
**
/* INITIALIZE THE WORKLOAD PERFORMANCE DATABASE
**
//ST1 EXEC PGM=SSA1LOAD
//STEPLIB DD DSN=PREFIX.CPPR.V600.LOADLIB,DISP=SHR
//CPPRPARM DD DSN=PREFIX.CPPR.V600.PARMLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSSIN DD DUMMY
//SYSSUT1 DD DUMMY
//ONLINE DD DSN=PREFIX.CPPR.V600.ONLINE.WKLD,DISP=SHR
//INDEX DD DSN=PREFIX.CPPR.V600.INDEX.WKLD,DISP=SHR
//CIMSPASS DD DSN=PREFIX.CPPR.V600.CNTL(CIMSNUM),DISP=SHR
Control Library JCL Examples

DWKLNROL

//SSANROL JOB (...),'SSA',CLASS=A,MSGCLASS=X
//JOBPARM S=* 00010000
//ST1 EXEC PGM=SSAINROL,REGION=OM 00020000
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR 00030005
//CPPRPARM DD DSN=&PREFIX.CPPR.Vnnn.PARMLIB,DISP=SHR 00040002
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR 00041004
//CIMSPASS DD DSN=&PREFIX.CPPR.Vnnn.CNTL(CIMSNUM),DISP=SHR 00050002
//SYSUT3 DD SPACE=(CYL,(5,2)),UNIT=SYSDA,DISP=(,PASS) 00051006
//SYSPRINT DD SYSOUT=* 00060000
//SYSMSGS DD SYSOUT=* 00070000
//SYSNAP DD SYSOUT=* 00071003
//SYSIN DD * 00080000
//SYSIN DD * 00090000
SELECTED SYSTEM=*,IPO2,IPO3 00100000
DWKLPROD

//SSACPPR JOB (...),"SSA",CLASS=A,MSGCLASS=X 00010000
/*JOBPARM S=* 00020000
//ST1 EXEC PGM=SSAILKLD,REGION=OM 00030013
//STEPLIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR 00040003
//SYSNAP DD SYSOUT=* 00050000
//SYSUDUMP DD SYSOUT=* 00060000
//***
//* IF YOU WISH TO EXTRACT A SET OF 200-BYTE RECORDS THAT CAN *
//* BE PROCESSED BY THE CICS DATA REDUCTION MODULE (SSA1CICW) *
//* UNCOMMENT THE NEXT 2 DD STATEMENTS: *
//* THE FOLLOWING LIBRARY CONTAINS THE DICTIONARY RECORDS *
//CMF2DICT DD DISP=SHR,DSN=&PREFIX.CPPR.CMFX.CMF2DICT 00063015
//***
//* THE FOLLOWING FILE CONTAINS THE CMF2 OUTPUT RECORDS *
//CMF2OUT DD DISP=(.,CATLG),UNIT=SYSDA,SPACE=(CYL,(10,10)),
//* DCB=(LRECL=200,BLKSIZE=27800,RECFM=FB),
*** DSN=&PREFIX.CPPR.C110XTR1.CMF2OUT 00069115

//***
//* THE FOLLOWING FILE CONTAINS THE SMF RECORDS TO BE PROCESSED *
//SYSUT1 DD DISP=SHR,DSN=SMF.INPUT.FILE 00070000
//SYSMAN0 DD DISP=SHR,DSN=SYS1.MAN0 00080000
//SYSMAN1 DD DISP=SHR,DSN=SYS1.MAN1 00090000
//SYSMAN2 DD DISP=SHR,DSN=SYS1.MAN2 00100000
//SYSMAN3 DD DISP=SHR,DSN=SYS1.MAN3 00110000
//INDEX DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.INDEX.WKLD 00120003
//ONLINE DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.ONLINE.WKLD 00130003
//CPPRERT DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.CPPRERT 00140003
//CIMSPASS DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.CNTL(CIMSNUM) 00141014
//CPPRPARM DD DISP=SHR,DSN=&PREFIX.CPPR.Vnnn.PARMLIB 00150003
//SYSUT3 DD SPACE=(CYL,(100,50)),UNIT=SYSDA,DISP=(,PASS) 00160000
//SYSPRINT DD SYSOUT=* 00170000
//SYSMSGS DD SYSOUT=* 00180008
//SYSIN DD * 00190000
SELECTED SYSTEM=INCLUDE(5) 00200000
REPORT LANGUAGE=ENGLISH 00210000
DUMP SMF STATISTICS=YES 00220004
**
* FOR JOB SCHEDULING SYSTEMS, THE JES READER TIME MAY NOT BE RELEVANT 00230005
* IN CALCULATING BATCH THROUGHPUT TIMES. USE THE JOB INIT TIME WITH 00250005
* THE FOLLOWING KEY PHRASE: 00260005
* ELAPSED TIME FROM JOB INIT=YES 00270005
**
* YOU MAY WISH TO USE THE PROGRAM NAME INSTEAD OF THE JOBNAME AS THE 00290005
* KEY TO THE JOBNAME:CPU CORRELATION TABLE. IF SO, SPECIFY: 00300005
* PRIMARY ELEMENT KEY=PROGRAM 00310005
**
* IF YOU ARE USING TMON/MVS FROM LANDMARK SYSTEMS INSTEAD OF RMF, YOU 00330006
* MAY USE THE FOLLOWING STATEMENTS: 00340006
RMF RECORDS=EXCLUDE / IF RMF IS STILL TURNED ON */ 00350006
SMFILE=TMVS / USE TMON/MVS RECORD TYPES IC,IV,IO,WK,SY,PS*/ 00360006
**
* IF YOU ARE USING INPUT FROM THE VM MONITOR, YOU MUST 00380007
* USE THE FOLLOWING STATEMENT: 00390007
SMFILE=VMON / USE VM MONITOR RECORD PERFORM, USER, DASTAP*/ 00400007
** 00410009
* IF YOU ARE USING THE ACCOUNTING SUBSYSTEM TO PRODUCE ACCOUNTING 00420009
* RECORDS, THE FOLLOWING KEY PHRASES MAY BE USED: 00430009
ACCOUNTING=BATCH / BATCH JOB ACCOUNTING */ 00440009
ACCOUNTING=STX / STARTED TASK ACCOUNTING */ 00450009
ACCOUNTING=TSO / TSO USER ACCOUNTING */ 00460009
ACCOUNTING=JES WRITER / JES PRINTER ACCOUNTING */ 00470009
ACCOUNTING=JES CONNECT / JES LINE ACCOUNTING */ 00480009
* IF YOU WISH THE RECORDS TO BE PROCESSED BY THE CIMS CHARGEBACK 00490009
* SYSTEM PRIOR TO R10.1(M1.0), PLEASE SPECIFY: 00500009
*CIMS ACCOUNTING FORMAT=YES 00510009
* IF YOU HAVE CIMS RELEASE 10.1 MODIFICATION LEVEL 1.0, SPECIFY: 00520009
*CIMS ACCOUNTING FORMAT=T30 00530009
** 00540006
* IT MAY BECOME NECESSARY TO OVERRIDE THE DUPLICATE CHECKING 00550006
* MECHANISM IN SSA1WKLD. IF SO, PLEASE UNCOMMENT THE FOLLOWING: 00560006
*BYPASS DUPLICATE CHECKS=YES 00570006
** 00580006
* A NEW TABLE, TABLE 065, IS BEING BUILT FOR THE SHIFT TURNOVER 00590006
* ACCOUNTING REPORT (SEE DACTSHAQ). IF YOU WANT STARTED TASK 00600006
* TAPE MOUNTS AND CPU TIME EXCLUDED FROM THE TABLE, UNCOMMENT: 00610006
*EXCLUDE STC FROM TABLE 65=YES 00620006
DWKLRPT

```jcl
//SSAREPT JOB (...) ,'SSA',CLASS=A,MSGCLASS=X 00010000
/*JOBPARM S=* 00020000
//STI EXEC PGM=SSAIRPT,REGION=OM 00030013
//STELIB DD DSN=&PREFIX.CPPR.Vnnn.LOADLIB,DISP=SHR 00040005
//SYSNAP DD SYSOUT=* 00050000
//SYSDUMP DD SYSOUT=* 00060000
//INDEX DD DSN=&PREFIX.CPPR.Vnnn.INDEX.WKLD,DISP=SHR 00070005
//ONLINE DD DSN=&PREFIX.CPPR.Vnnn.ONLINE.WKLD,DISP=SHR 00080005
//CPPRERT DD DSN=&PREFIX.CPPR.Vnnn.CPPRERT,DISP=SHR 00090005
//CPPRPARM DD DSN=&PREFIX.CPPR.Vnnn.PARMLIB,DISP=SHR 00100005
//SYSPRINT DD SYSOUT=* 00110000
//SYSMSGS DD SYSSOUT=* 00120009
//SYSSIN DD * 00130000
BEGIN DATE=01/01/2005 00140014
END DATE=01/31/2005 00150014
PRIME SHIFT FIRST HOUR=7 00160000
LATE SHIFT FIRST HOUR=19 00170000
SELECTED SYSTEM=* 00180000
* SPECIAL GOAL MODE REPORTS 00190012
SERVICE CLASS S/U STATISTICS REPORT=YES 00200012
REPORT SERVICE CLASS S/U STATISTICS REPORT=YES 00210012
* 00220015
JOBNAME: CPU LINEAR LIST=YES 00230007
DASD LINEAR LIST=YES 00240016
* FOR THE ABOVE REPORT, PLEASE SEE ALSO THE MEMBER NAMED DASMDASR 00250016
PRINTER LINEAR LIST=YES 00260016
* 00270015
JOB STATISTICS REPORT=YES 00280016
PROGRAM STATISTICS REPORT=YES 00290016
PRINTER STATISTICS REPORT=YES 00300016
TSO USER STATISTICS REPORT=YES 00310016
TSO COMMAND STATISTICS REPORT=YES 00320016
PGN SERVICE UNIT STATISTICS REPORT=YES 00330016
* NOTE: THE ABOVE STATEMENT ALSO PRODUCES THE PGN S/U ACTIVITY LIST 00340016
* 00350015
CPU ACTIVITY GRAPH=YES 00360015
PAGING ACTIVITY GRAPH=YES 00370000
TSO ACTIVITY GRAPH=YES 00380000
DASD ACTIVITY GRAPH=YES 00390000
DASD DEVICE BUSY GRAPH=YES 00400000
DASD I/O SERVICE TIME GRAPH=YES 00410000
DASD QUEUE DELAY GRAPH=YES 00420000
CHANNEL ACTIVITY GRAPH=YES 00430000
CPU RATIO GRAPH=YES 00440015
PAGING RATIO GRAPH=YES 00450015
* 00460015
BATCH PERFORMANCE REPORT=YES 00470000
* IF NO JOBCLASS= IS SPECIFIED, ALL CLASSES WILL BE REPORTED 00480016
JOBCLASS=A 00490016
* FOR THE BATCH PERFORMANCE REPORT, IF YOU WISH TO HAVE THE TOTALS 00500016
* LINE IN NUMERIC FORM RATHER THAN PERCENTAGES 00510016
* PLEASE UNCOMMENT THE FOLLOWING STATEMENT: 00520016
*BATCH TOTALS=NUMERIC 00530016
* 00540016
TSO PERFORMANCE REPORT=YES 00550016
```
* 00560015
DASD DETAIL REPORT= YES 00570000
* 00580015
PROCESSOR EXCEPTION ANALYSIS= YES 00590002
DASD EXCEPTION ANALYSIS= YES 00600002
CHANNEL EXCEPTION ANALYSIS= YES 00610002
* 00620006
********** THE FOLLOWING COMMANDS PRODUCE DASM REPORTS ************ 00630006
* 00640006
*** PRODUCE THE DSNAME-BY-VOLUME REPORT (10 BUSIEST PLUS MVSDLB) 00650006
* 00660006
VOLUME ACTIVITY REPORT= YES 00670000
VOLUME SELECTION CRITERIA= TOP10 00680000
SELECTED VOLUME= MVSDLB 00690000
* 00700006
*** PRODUCE THE DSNAME-BY-DATA CENTER REPORT 00710006
* 00720006
DSNAME ACTIVITY REPORT= YES 00730000
* 00740006
*** PRODUCE THE DSNAME-BY-SELECTION CRITERIA REPORT 00750006
* 00760006
DSNAME DETAIL REPORT= YES 00770006
DSNAME= SYS2.CPPR* 00780006
VOLSER= SYS83* 00790006
* 00800006
******** THE FOLLOWING REPORTS ARE FOR ESA SYSTEMS ****************** 00810004
* 00820006
CENTRAL TO EXPANDED STORAGE ACTIVITY GRAPH= YES 00830004
EXPANDED TO CENTRAL STORAGE ACTIVITY GRAPH= YES 00840004
EXPANDED TO AUXILIARY STORAGE ACTIVITY GRAPH= YES 00850004
CENTRAL TO AUXILIARY STORAGE ACTIVITY GRAPH= YES 00860004
AUXILIARY TO CENTRAL STORAGE ACTIVITY GRAPH= YES 00870004
* 00880015
/**/ */ * IF YOU WISH TO LIMIT THE DASD DEVICES LISTED IN THE SUMMARY 00890015
/**/ */ * REPORT OR IN THE DASD LINEAR LIST, SPECIFY THE VOLSERS OF 00900015
/**/ */ * THOSE VOLUMES YOU WISH INCLUDED/EXCLUDED IN AN INCLUDE/EXCLUDE 00910015
/**/ */ * STREAM. FOR EXAMPLE, TO EXCLUDE ALL VOLUMES BEGINNING MVS: 00920015
**/*EXCLUDE DD * 00930015
MVS 00940015
Index

Symbols
- &sid204O - Transaction Codes for Organizations 1-61
- &sid204R - Response Time Thresholds 1-63
- &sid204T - Transaction Codes for Applications 1-62
- &sidCICO - Transaction Codes for Organizations 1-39
- &sidCICR - Response Time Thresholds 1-41
- &sidCICT - Transaction Codes for Applications 1-40
- &sidDBZ2R - Response Time Thresholds 1-58
- &sidDSNX - Data Set Name-to-Owner Correspondence 1-31
- &sidIDMO - Transaction Codes for Organizations 1-46
- &sidIDMR - Response Time Thresholds 1-48
- &sidIDMT - Transaction Codes for Applications 1-47
- &sidIMSO - Transaction Codes for Organizations 1-52
- &sidIMSR - Response Time Thresholds 1-54
- &sidIMST - Transaction Codes for Applications 1-53
- &sidNETL - Logical Line Groups 1-68
- &sidNETN - Network VTAM APPLIDs 1-68
- &sidNETR - Response Time Thresholds 1-69

B
- BATCHPGN parameter 1-25
- BATCHTAG parameter 1-25
- BSAM to PDSE conversion 1-18

C
- CICS subsystem
 - CICS regions, registering 1-34 to 1-36
e - data reduction, running 1-41
 - disk space, allocating and initializing 1-20 to 1-22
 - installing 1-34 to 1-41
 - JCL, customizing
 - DCICNROL 1-36
 - DCICPROD model job 1-37
 - DCICREPT model job 1-38
 - DCICSMF model job 1-37
 - DCICTMON model job 1-38
 - ONLINE and INDEX data sets, allocating and initializing 1-20 to 1-22
 - PARMLIB members, creating 1-39 to 1-41
 - reports, running 1-41
 - collecting
 - RMF Records 1-28
 - SMF Records 1-28
- contacting CIMS Lab viii
- converting BSAM Performance Database to PDSE 1-18
- CPPR ISPF/PDF libraries 1-16
- CPPRCLIB 1-16
- CPPRERT 1-13
- CPPRMLIB 1-16
- CPPRPPLIB 1-16

A
- allocating data sets
 - LNGVLIB, CPPRERT, and HGDLIB 1-13
 - ONLINE and INDEX 1-20 to 1-22
- storage 1-17
D
D204PROD 1-60
D204REPT 1-61
DASDPOOL 1-32
DASM subsystem
 and SMS-managed DASD 1-12
 DASDPOOL member, editing 1-32
 data reduction, running 1-33
 disk space, allocating and initializing 1-20 to 1-22
 installing 1-31 to 1-33
 ONLINE and INDEX data sets, allocating and initializing 1-20 to 1-22
DASMCMIT 1-33

data sets
 LNGVLIB, CPPRERT, and HGDLIB 1-13
 naming conventions for 1-22
 ONLINE and INDEX 1-20 to 1-22
DATABASEPGN parameter 1-26
DATABASETAG parameter 1-26
DB2 subsystem
 data reduction, running 1-59
 DB2 connect names, registering 1-56 to 1-57
 DB2 systems, registering 1-55 to 1-56
 disk space, allocating and initializing 1-20 to 1-22
 installing 1-55 to 1-59
JCL, customizing
 DDB2NRL1 1-56
 DDB2NRL2 1-57
 DDB2PROD model job 1-57
 DDB2REPT model job 1-58
ONLINE and INDEX data sets, allocating and initializing 1-20 to 1-22
PARMLIB members, creating 1-58 to 1-59
 reports, running 1-59
DCICNROL 1-36
DCICPROD 1-37
DCICREPT 1-38
DCICSMF 1-37
DCICTMON 1-38
DDB2NRL1 1-56
DDB2NRL2 1-57
DDB2PROD 1-57
DDB2REPT 1-58
DIDML102 1-45
DIDMNROR 1-44
DIDMPROD 1-44
DIDMPSMSM 1-45
DIDMRREPT 1-45
DIDMSMF 1-45
DIMSNROL 1-51
DIMSPROD 1-51
DIMSREPT 1-52
DNENROR 1-66
DNETPROD 1-66
DNKREPT 1-67
DUITLINIT 1-13
DUSKLNROL 1-23
DUSKLPROD 1-29
DUSKLRREPT 1-29

ej
Element Registration Table (CPPRERT) data set 1-13

G
GDDM software license 1-17
GLOBAL member, parameters 1-14 to 1-15
graphics interface, using 1-17

H
Harvard Graphics Interface Data Set (HGDLIB) 1-13
HGDLIB YEAR EXPANSION parameter 1-15

I
IDMS subsystem
 data reduction, running 1-48
 disk space, allocating and initializing 1-20 to 1-22
 IDMS CVS, registering 1-42 to 1-44
 installing 1-42 to 1-48
JCL, customizing
 DIDML102 model job 1-45
 DIDMNOR 1-44
 DIDMPIL12 model job 1-45
 DIDMPROD model job 1-44
 DIDMRREPT model job 1-45
 ONLINE and INDEX data sets, allocating and initializing 1-20 to 1-22
 PARMLIB members, creating 1-46 to 1-48
 reports, running 1-48
Index

IMS subsystem
 data reduction, running 1-54
 disk space, allocating and initializing 1-20 to 1-22
 IMS regions, registering 1-49 to 1-51
 installing 1-49 to 1-54
 JCL, customizing
 DIMSNROL 1-51
 DIMSPROD model job 1-51
 DIMSREPT model job 1-52
 ONLINE and INDEX data sets, allocating and initializing 1-20 to 1-22
 PARMLIB members, creating 1-52 to 1-54
 reports, running 1-54
 installation environment, tailoring 1-28
 installing
 CICS subsystem 1-34 to 1-41
 CIMS Capacity Planner 1-6 to 1-20
 DASM subsystem 1-31 to 1-33
 DB2 subsystem 1-55 to 1-59
 IDMS subsystem 1-42 to 1-48
 IMS subsystem 1-49 to 1-54
 Model 204 subsystem 1-60 to 1-63
 Network subsystem 1-64 to 1-69
 Workload subsystem 1-23 to 1-30
 ISPF/PDF
 GDDM Graphics Interface 1-17
 initializing specific subsystems 1-18
 interface 1-16
 Setup Panel 1-17

J

JCL
 D204PROD model job 1-60
 D204REPT model job 1-61
 DASDPOOL model job 1-32
 DASMCMIT model job 1-33
 DCICNROL model job 1-36
 DCICPROD model job 1-37
 DCICREPT model job 1-38
 DCICSMF model job 1-37, 1-38
 DCICTMON model job 1-38
 DDB2NRL1 model job 1-56
 DDB2NRL2 model job 1-57
 DDB2PROD model job 1-57
 DDB2REPT model job 1-58
 DIDML102 model job 1-45
 DIDMNROL model job 1-44
 DIDMPL12 model job 1-45
 DIDMPROD model job 1-44
 DIDMPSMF model job 1-45
 DIDMREPT model job 1-45
 DIMSNROL model job 1-51
 DIMSPROD model job 1-51
 DIMSREPT model job 1-52
 DNETNROL model job 1-66
 DNETPROD model job 1-66
 DNETREPT model job 1-67
 DUTILINIT model job 1-13
 DWKLNROL model job 1-23
 DWKLPROD model job 1-29
 DWKLDREPT model job 1-29

L

LATE SHIFT FIRST HOUR parameter 1-14
LOCAL HOLIDAYS parameter 1-14
local member
 about 1-23
 creating 1-24
 parameters 1-25 to 1-27

M

Model 204 subsystem
 data reduction, running 1-63
 disk space, allocating and initializing 1-20 to 1-22
 installing 1-60 to 1-63
 JCL, customizing
 D204PROD model job 1-60
 D204REPT model job 1-61
 ONLINE and INDEX data sets, allocating and initializing 1-20 to 1-22
 PARMLIB members, creating 1-61 to 1-63
 reports, running 1-63
 MVS 5.x Goal Mode Support 1-30

N

Network subsystem
 data reduction, running 1-69
 disk space, allocating and initializing 1-20 to 1-22
 installing 1-64 to 1-69
 JCL, customizing
 DNETNROL 1-66
 DNETPROD model job 1-66
 DNETREPT model job 1-67
ONLINE and INDEX data sets, allocating and initializing 1-20 to 1-22
PARMLIB members, creating 1-67 to 1-69 reports, running 1-69
VTAM APPLIDs, registering 1-64 to 1-66
NETWORKPGN parameter 1-26
NETWORKTAG parameter 1-27
NO HGDLIB NULLS parameter 1-15
NO HGDLIB SKIPS parameter 1-15

O
O/STAG parameter 1-27
ONLINEPGN parameter 1-26
ONLINETAG parameter 1-26

P
parameters
BATCHPGN 1-25
BATCHTAG 1-25
DATABASEPGN 1-26
DATABASETAG 1-26
HGDLIB YEAR EXPANSION 1-15
LATE SHIFT FIRST HOUR 1-14
LOCAL HOLIDAYS 1-14
NETWORKPGN 1-26
NETWORKTAG 1-27
NO HGDLIB NULLS 1-15
NO HGDLIB SKIPS 1-15
O/STAG 1-27
ONLINEPGN 1-26
ONLINETAG 1-26
PRIME SHIFT FIRST HOUR 1-14
STCTAG 1-27
SUPPRESS WTO MESSAGES 1-15
TITLE 1-14
TRANSLATE COMMAS TO SEMICOLONS 1-15
TSOPGN 1-25
TSOTAG 1-25
WEEKS TO KEEP ONLINE 1-15
PDSE, converting to from BSAM 1-18
performance group
labels, specifying 1-27
numbers, specifying 1-27
PRIME SHIFT FIRST HOUR parameter 1-14

R
registering
CICS regions 1-34 to 1-36
DB2 connect names 1-56 to 1-57
DB2 systems 1-55 to 1-56
IDMS CVs, 1-42 to 1-44
IMS regions 1-49 to 1-51
SMF System IDs 1-23
VTAM APPLIDs 1-64 to 1-66
RMF records, collecting 1-28

S
SMF
clusters, unloading 1-29
records, collecting 1-28
System IDs, registering in the data center 1-23
SMS-managed DASD, and the DASM Subsystem 1-12
STCTAG parameter 1-27
storage allocation 1-17
SUPPRESS WTO MESSAGES parameter 1-15

T
technical support, contacting the CIMS Lab viii
Terminal Feature Requirements 1-17
TITLE parameter 1-14
TRANSLATE COMMAS TO SEMICOLONS parameter 1-15
TSOPGN parameter 1-25
TSOTAG parameter 1-25

W
WEEKS TO KEEP ONLINE parameter 1-15
Workload subsystem
additional record types, specifying 1-28
data reduction, running 1-29
disk space, allocating and initializing 1-20 to 1-22
DWKLNROL model job, customizing 1-23
installing 1-23 to 1-30
local parameters, setting 1-23 to 1-27
ONLINE and INDEX data sets, allocating and initializing 1-20 to 1-22
reports, running 1-29
SMF System IDs, registering 1-23