Contents

Preface ... ix
Who should read this book ix
Publications ix
 IBM Tivoli Directory Server library ix
 Related publications x
 Accessing publications online x
Accessibility x
Contacting software support x
Conventions used in this book x i
 Typeface conventions xi
 Operating system differences................ x i

Part 1. Directory overview 1

Chapter 1. Defining a directory 3
 Directory clients and servers 3
 Directory security 4

Chapter 2. The IBM Tivoli Directory
 Server 5

Chapter 3. Distinguished names (DNs) 7
 Distinguished name syntax 7
 DN escaping rules 8
 Enhanced DN processing 9

Part 2. Server Administration 11

Chapter 4. Directory administration
daemon .. 13
 Starting the directory administration daemon . 13
 Stopping the directory administration daemon. 13

Chapter 5. Configuration only mode 15
 Minimum requirements for configuration only mode 15
 How to start in configuration only mode 15
 Using Web Administration: 15
 Using the command line: 15
 How to verify that the server is running in
 configuration only mode 16
 Using Web Administration: 16
 Using the command line: 16

Chapter 6. Web Administration Tool
 graphical user interface (GUI) 17
 Starting the Web Administration Tool. 17
 Logging in to the console. 17
 Logging on to the console as the console
 administrator 18
 Logging on to the console as the server
 administrator 18
 Logging on to the console as a member of the
 administrative group or as an LDAP user 18

Chapter 7. Setting up the console 21
 Managing the console 21
 Changing the console administrator login 21
 Changing the console administration password 21
 Adding, modifying, and removing servers in the
 console 21
 Managing console properties 22

Chapter 8. Basic server administration
tasks ... 23
 Logging on to the Web Administration Tool 23
 Changing an administrator distinguished name and
 password 23
 Using Web Administration: 23
 Using the command line: 24
 Starting and stopping the server 24
 Using Web Administration: 24
 Using the command line or Windows Services
 icon: .. 25
 Checking server status 25
 Using Web Administration: 25
 Using the command line: 30
 Managing server connections 34
 Using Web Administration: 34
 Using the command line: 35
 Managing connection properties 36
 Using Web Administration: 36
 Using the command line: 38
 Creating an administrative group 39
 Enabling and disabling the administrative group 40
 Adding members to the administrative group ... 41
 Modifying an administrative group member ... 42
 Removing a member from the administrative
 group ... 43
 Managing unique attributes 43
 Creating a unique attributes group 44
 Removing an attribute from the list of unique
 attributes 45

Chapter 9. Setting server properties 47
 Changing server ports and enabling language tags ... 47
 Using Web Administration: 47
 Using the command line: 48
 Setting Performance 49
 Using Web Administration: 49
 Using the command line: 50
 Setting Searches 50
 Using Web Administration: 51
 Using the command line: 52
 Extended controls for search 53

© Copyright IBM Corp. 2003
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creating a realm administrator</td>
<td>249</td>
</tr>
<tr>
<td>Creating the realm administration group</td>
<td>249</td>
</tr>
<tr>
<td>Creating the administrator entry</td>
<td>250</td>
</tr>
<tr>
<td>Adding the administrator to the administration group</td>
<td>250</td>
</tr>
<tr>
<td>Creating a template</td>
<td>250</td>
</tr>
<tr>
<td>Adding the template to a realm</td>
<td>252</td>
</tr>
<tr>
<td>Creating groups</td>
<td>252</td>
</tr>
<tr>
<td>Adding a user to the realm</td>
<td>253</td>
</tr>
<tr>
<td>Managing realms</td>
<td>253</td>
</tr>
<tr>
<td>Adding a realm</td>
<td>253</td>
</tr>
<tr>
<td>Editing a realm</td>
<td>253</td>
</tr>
<tr>
<td>Removing a realm</td>
<td>254</td>
</tr>
<tr>
<td>Editing ACLs on the realm</td>
<td>254</td>
</tr>
<tr>
<td>Managing templates</td>
<td>254</td>
</tr>
<tr>
<td>Adding a user template</td>
<td>254</td>
</tr>
<tr>
<td>Editing a template</td>
<td>254</td>
</tr>
<tr>
<td>Removing a template</td>
<td>256</td>
</tr>
<tr>
<td>Editing ACLs on the template</td>
<td>256</td>
</tr>
<tr>
<td>Managing users</td>
<td>257</td>
</tr>
<tr>
<td>Adding users</td>
<td>257</td>
</tr>
<tr>
<td>Finding users within the realm</td>
<td>257</td>
</tr>
<tr>
<td>Editing a user’s information</td>
<td>257</td>
</tr>
<tr>
<td>Copying a user</td>
<td>258</td>
</tr>
<tr>
<td>Removing a user</td>
<td>258</td>
</tr>
<tr>
<td>Managing groups</td>
<td>258</td>
</tr>
<tr>
<td>Adding groups</td>
<td>258</td>
</tr>
<tr>
<td>Finding groups within the realm</td>
<td>258</td>
</tr>
<tr>
<td>Editing a group’s information</td>
<td>259</td>
</tr>
<tr>
<td>Copying a group</td>
<td>259</td>
</tr>
<tr>
<td>Removing a group</td>
<td>259</td>
</tr>
<tr>
<td>File permissions</td>
<td>321</td>
</tr>
<tr>
<td>Kerberos</td>
<td>321</td>
</tr>
<tr>
<td>Kerberos service name change</td>
<td>321</td>
</tr>
<tr>
<td>Error opening slapd.cat on Windows</td>
<td>322</td>
</tr>
<tr>
<td>Web Administration</td>
<td>322</td>
</tr>
<tr>
<td>Corruption of data entered in the Web</td>
<td>322</td>
</tr>
<tr>
<td>Administration Tool</td>
<td>322</td>
</tr>
<tr>
<td>Additional login panels fail</td>
<td>323</td>
</tr>
<tr>
<td>The ldapmodify command puts Web Admin into inconsistent state</td>
<td>323</td>
</tr>
<tr>
<td>Difficulties encountered using the Web</td>
<td>323</td>
</tr>
<tr>
<td>Administration GUI console on the Windows</td>
<td>325</td>
</tr>
<tr>
<td>2003 platform</td>
<td>324</td>
</tr>
<tr>
<td>Websphere Application Server - Express on AIX</td>
<td>324</td>
</tr>
<tr>
<td>Web Administration Tool loses connections on HP-UX</td>
<td>325</td>
</tr>
<tr>
<td>Web Administration tabs, table headers, and static list boxes are displayed in incorrect language</td>
<td>325</td>
</tr>
<tr>
<td>HTML special characters are not displayed correctly</td>
<td>326</td>
</tr>
<tr>
<td>Web Administration requires IBM JDK on a Domino™ server</td>
<td>326</td>
</tr>
<tr>
<td>Debugging</td>
<td>327</td>
</tr>
<tr>
<td>Debug output for configuration</td>
<td>327</td>
</tr>
<tr>
<td>ibmslapd command parameters</td>
<td>328</td>
</tr>
<tr>
<td>Server debug mode</td>
<td>329</td>
</tr>
<tr>
<td>Replication command line interface error</td>
<td>330</td>
</tr>
<tr>
<td>(Windows platforms only)</td>
<td>330</td>
</tr>
<tr>
<td>Appendix B. IBM UUID</td>
<td>331</td>
</tr>
<tr>
<td>Appendix C. Error codes</td>
<td>333</td>
</tr>
<tr>
<td>Appendix D. Object Identifiers (OIDs) and attributes in the root DSE</td>
<td>339</td>
</tr>
<tr>
<td>Attributes in the root DSE</td>
<td>339</td>
</tr>
<tr>
<td>OIDs for supported and enabled capabilities</td>
<td>341</td>
</tr>
<tr>
<td>OIDs for ACI mechanisms</td>
<td>342</td>
</tr>
<tr>
<td>OIDs for extended operations</td>
<td>343</td>
</tr>
<tr>
<td>OIDs for controls</td>
<td>344</td>
</tr>
<tr>
<td>Appendix E. LDAP data interchange format (LDIF)</td>
<td>345</td>
</tr>
<tr>
<td>LDIF example</td>
<td>345</td>
</tr>
<tr>
<td>Version 1 LDIF support</td>
<td>346</td>
</tr>
<tr>
<td>Version 1 LDIF examples</td>
<td>346</td>
</tr>
<tr>
<td>IANA character sets supported by platform</td>
<td>347</td>
</tr>
<tr>
<td>Appendix F. IPv6 support</td>
<td>351</td>
</tr>
<tr>
<td>Appendix G. IBM Tivoli Directory Server 5.2 required attribute definitions</td>
<td>353</td>
</tr>
<tr>
<td>Appendix H. IBM Tivoli Directory Server 5.2 configuration schema</td>
<td>389</td>
</tr>
</tbody>
</table>
Preface

This document contains the information that you need to administer the IBM® Tivoli® Directory Server.

Who should read this book

This book is intended for system administrators.

Publications

Read the descriptions of the IBM Tivoli Directory Server library to determine which publications you might find helpful. After you determine the publications you need, refer to the instructions for accessing publications online.

IBM Tivoli Directory Server library

The publications in the IBM Tivoli Directory Server library are:

IBM Tivoli Directory Server Version 5.2 Readme Addendum
Go to the [Tivoli Software Library](http://www.ibm.com/software/tivoli) Web site to access the Readme Addendum for IBM Tivoli Directory Server 5.2, which contains important information that was not included in the Readme files. See “Accessing publications online” on page x for information about accessing online publications.

IBM Tivoli Directory Server Version 5.2 Client Readme
Contains last-minute information about the client.

IBM Tivoli Directory Server Version 5.2 Server Readme
Contains last-minute information about the server.

IBM Tivoli Directory Server Version 5.2 Web Administration Tool Readme
Contains last-minute information about the Web Administration Tool. This Readme is available from the main panel of the Web Administration Tool.

IBM Tivoli Directory Server Version 5.2 Installation and Configuration Guide
Contains complete information for installing the IBM Tivoli Directory Server client, server, and Web Administration Tool. Includes information about migrating from a previous version of IBM Tivoli Directory Server or SecureWay® Directory.

IBM Tivoli Directory Server Version 5.2 Tuning Guide
Contains information about tuning your server for better performance.

IBM Tivoli Directory Server Version 5.2 Administration Guide
Contains instructions for performing administrator tasks through the Web Administration Tool or the command line.

IBM Tivoli Directory Server Version 5.2 Plug-in Reference
Contains information about writing server plug-ins.

IBM Tivoli Directory Server Version 5.2 C-Client SDK Programming Reference
Contains information about writing LDAP client applications.
Related publications

Information related to the IBM Tivoli Directory Server is available in the following publications:

- The Tivoli Software Library provides a variety of Tivoli publications such as white papers, datasheets, demonstrations, redbooks, and announcement letters. The Tivoli Software Library is available on the Web at: http://www.ibm.com/software/tivoli/library/
- The Tivoli Software Glossary includes definitions for many of the technical terms related to Tivoli software. The Tivoli Software Glossary is available, in English only, from the Glossary link on the left side of the Tivoli Software Library Web page http://www.ibm.com/software/tivoli/library/

Accessing publications online

The publications for this product are available online in Portable Document Format (PDF) or Hypertext Markup Language (HTML) format, or both in the Tivoli software library: http://www.ibm.com/software/tivoli/library.

To locate product publications in the library, click the Product manuals link on the left side of the Library page. Then, locate and click the name of the product on the Tivoli software information center page.

Information is organized by product and includes READMEs, installation guides, user’s guides, administrator’s guides, and developer’s references.

Note: To ensure proper printing of PDF publications, select the Fit to page check box in the Adobe Acrobat Print window (which is available when you click File → Print).

Accessibility

Accessibility features help a user who has a physical disability, such as restricted mobility or limited vision, to use software products successfully. With this product, you can use assistive technologies to hear and navigate the interface. After installation you also can use the keyboard instead of the mouse to operate all features of the graphical user interface.

Contacting software support

Before contacting IBM Tivoli Software support with a problem, refer to IBM System Management and Tivoli software Web site at:

If you need additional help, contact software support by using the methods described in the IBM Software Support Guide at the following Web site:

http://techsupport.services.ibm.com/guides/handbook.html

The guide provides the following information:
- Registration and eligibility requirements for receiving support
- Telephone numbers and e-mail addresses, depending on the country in which you are located
- A list of information you should gather before contacting customer support

Conventions used in this book

This reference uses several conventions for special terms and actions and for operating system-dependent commands and paths.

Typeface conventions

The following typeface conventions are used in this reference:

Bold
Lowercase commands or mixed case commands that are difficult to distinguish from surrounding text, keywords, parameters, options, names of Java classes, and objects are in **bold**.

Italic
Titles of publications, and special words or phrases that are emphasized are in *italic*.

<Italic>
Variables are set off with < > and are in <italic>.

Monospace
Code examples, command lines, screen output, file and directory names that are difficult to distinguish from surrounding text, system messages, text that the user must type, and values for arguments or command options are in monospace.

Operating system differences

This book uses the UNIX® convention for specifying environment variables and for directory notation. When using the Windows® command line, replace $variable with %variable% for environment variables and replace each forward slash (/) with a backslash (\) in directory paths. If you are using the bash shell on a Windows system, you can use the UNIX conventions.
Part 1. Directory overview
Chapter 1. Defining a directory

A directory is a collection of information about objects arranged in a hierarchical structure. It is a specialized database that enables users or applications to find resources that have the characteristics needed for a particular task.

If the name of an object is known, its characteristics can be retrieved. If the name of a particular individual object is not known, the directory can be searched for a list of objects that meet a certain requirement. Directories can usually be searched by specific criteria, not just by a predefined set of categories.

A directory is a specialized database that has characteristics that set it apart from general purpose relational databases. A characteristic of a directory is that it is accessed (read or searched) much more often than it is updated (written). Because directories must be able to support high volumes of read requests, they are typically optimized for read access. Because directories are not intended to provide as many functions as general-purpose databases, they can be optimized to economically provide more applications with rapid access to directory data in large distributed environments.

A directory can be centralized or distributed. If a directory is centralized, there is one directory server (or a server cluster) at one location that provides access to the directory. If the directory is distributed, more than one server, usually geographically dispersed, provides access to the directory.

When a directory is distributed, the information stored in the directory can be partitioned or replicated. When information is partitioned, each directory server stores a unique and non-overlapping subset of the information. That is, each directory entry is stored by one and only one server. The technique to partition the directory is to use LDAP referrals. LDAP referrals allow the users to refer Lightweight Directory Access Protocol (LDAP) requests to either the same or different name spaces stored in a different (or same) server. When information is replicated, the same directory entry is stored by more than one server. In a distributed directory, some information may be partitioned, and some information may be replicated.

Directory clients and servers

Directories are usually accessed using the client-server model of communication. The client and server processes might or might not be on the same machine. A server is capable of serving many clients. An application that wants to read or write information in a directory does not access the directory directly. Instead, it calls a function or application programming interface (API) that causes a message to be sent to another process. This second process accesses the information in the directory on behalf of the requesting application. The results of the read or write actions are then returned to the requesting application.

An API defines the programming interface that a particular programming language uses to access a service. The format and contents of the messages exchanged between client and server must adhere to an agreed upon protocol. LDAP defines a message protocol used by directory clients and directory servers. There is also an associated LDAP API for the C language and ways to access the directory from a Java application using the Java Naming and Directory Interface (JNDI).
Directory security

A directory should support the basic capabilities needed to implement a security policy. The directory might not directly provide the underlying security capabilities, but it might be integrated with a trusted network security service that provides the basic security services. First, a method is needed to authenticate users. Authentication verifies that users are who they say they are. A user name and password is a basic authentication scheme. After users are authenticated, it must be determined if they have the authorization or permission to perform the requested operation on the specific object.

Authorization is often based on access control lists (ACLs). An ACL is a list of authorizations that may be attached to objects and attributes in the directory. An ACL identifies what type of access each user or a group of users is allowed or denied. In order to make ACLs shorter and more manageable, users with the same access rights are often put into groups.
Chapter 2. The IBM Tivoli Directory Server

The IBM Tivoli Directory implements the Internet Engineering Task Force (IETF) LDAP V3 specifications. It also includes enhancements added by IBM in functional and performance areas. This version uses IBM DB2® as the backing store to provide per LDAP operation transaction integrity, high performance operations, and on-line backup and restore capability. The IBM Tivoli Directory Server interoperates with the IETF LDAP V3 based clients. Major features include:

- A Graphical User Interface (GUI) that can be used to administer and configure the IBM Directory – The administration and configuration functions enable the administrator to:
 - Perform the initial setup of the directory
 - Change configuration parameters and options
 - Manage the daily operations of the directory, such as adding or editing objects, for example, object classes, attributes, and entries.

- A dynamically extensible directory schema – This means that administrators can define new attributes and object classes to enhance the directory schema. Changes can be made to the directory schema, too, which are subject to consistency checks. Users may dynamically modify the schema content without restarting the directory server. Because the schema itself is part of the directory, schema update operations are done through standard LDAP APIs. The major functions provided by the LDAPv3 dynamic extensible schema are:
 - Queriable schema information through LDAP APIs
 - Dynamic schema changes through LDAP APIs
 - Server Root DSE

- UTF-8 (Universal Character Set Transformation Format) – An IBM Tivoli Directory Server supports data in multiple languages, and allows users to store, retrieve and manage information in a native language code page.

- Simple Authentication and Security Layer (SASL) – This support provides for additional authentication mechanisms. The Secure Sockets Layer (SSL) provides encryption of data and authentication using X.509v3 public-key certificates. A server may be configured to run with or without SSL support.

- Replication – Replication is supported, which makes additional read-only copies of the directory available, improving performance and reliability of the directory service. Replication topologies also support forwarding and gateway servers.

- Referrals – Support for LDAP referrals, allowing directories to be distributed across multiple LDAP servers where a single server may contain only a subset of the whole directory data.

- Access control model – A powerful, easy-to-manage access control model is supported through ACLs.

- Change log
- Password policy
- Security audit logging
- Dynamic configuration changes using LDAP APIs
Chapter 3. Distinguished names (DNs)

Every entry in the directory has a distinguished name (DN). The DN is the name that uniquely identifies an entry in the directory. A DN is made up of attribute=value pairs, separated by commas, for example:

- cn=Ben Gray,ou=editing,o=New York Times,c=US
- cn=Lucille White,ou=editing,o=New York Times,c=US
- cn=Tom Brown,ou=reporting,o=New York Times,c=US

Any of the attributes defined in the directory schema may be used to make up a DN. The order of the component attribute value pairs is important. The DN contains one component for each level of the directory hierarchy from the root down to the level where the entry resides. LDAP DNs begin with the most specific attribute (usually some sort of name), and continue with progressively broader attributes, often ending with a country attribute. The first component of the DN is referred to as the Relative Distinguished Name (RDN). It identifies an entry distinctly from any other entries that have the same parent. In the examples above, the RDN "cn=Ben Gray" separates the first entry from the second entry, (with RDN "cn=Lucille White"). These two example DNs are otherwise equivalent. The attribute:value pair making up the RDN for an entry must also be present in the entry. (This is not true of the other components of the DN.)

Distinguished name syntax

The Distinguished Name (DN) syntax supported by this server is based on RFC 2253. The Backus-Naur Form (BNF) syntax is defined as follows:

```
<name> ::= <name-component> ( <spaced-separator> )
        | <name-component> <spaced-separator> <name>

<spaced-separator> ::= <optional-space> <separator> <optional-space>
<separator> ::= "," | ";"
<optional-space> ::= ( <CR> ) *( " " )

<name-component> ::= <attribute>
                   | <attribute> <optional-space> "+" <optional-space> <name-component>

<attribute> ::= <string>
               | <key> <optional-space> "+" <optional-space> <string>

?key> ::= 1*( <keychar> ) | "OID." <oid> | "oid." <oid>
<keychar> ::= letters, numbers, and space

<oid> ::= <digitstring> | <digitstring> "." <oid>
<digitstring> ::= 1*<digit>
<digit> ::= digits 0-9

<string> ::= *( <stringchar> | <pair> )
            | ";" *( <stringchar> | <special> | <pair> ) ";"  "#" <hex>

<special> ::= "=" | "=" | <CR> | "+" | "+" | ";"
```

© Copyright IBM Corp. 2003
A semicolon (;) character can be used to separate RDNs in a distinguished name, although the comma (,) character is the typical notation.

White-space characters (spaces) might be present on either side of the comma or semicolon. The white-space characters are ignored, and the semicolon is replaced with a comma.

In addition, space (ASCII 32) characters may be present either before or after a '+' or '='. These space characters are ignored when parsing.

A value may be surrounded by double quotation ('"' ASCII 34) characters, which are not part of the value. Inside the quoted value, the following characters can occur without being interpreted as escape characters:

- A space or '#' character occurring at the beginning of the string
- A space character occurring at the end of the string
- One of the characters '"', '"=', '"+', '"\', '"<', '">' or '"'

Alternatively, a single character to be escaped may be prefixed by a backslash ('\' ASCII 92). This method can be used to escape any of the characters listed previously and the double quotation marks ('"' ASCII 34) character.

This notation is designed to be convenient for common forms of names. The following example is a distinguished name written using this notation. First is a name containing three components. The first of the components is a multivalued RDN. A multivalued RDN contains more than one attribute:value pair and can be used to distinctly identify a specific entry in cases where a simple CN value might be ambiguous:

```
OU=Sales+CN=J. Smith,O=Widget Inc.,C=US
```

DN escaping rules

A DN can contain special characters. These characters are , (comma), = (equals), + (plus), < (less than), > (greater than), # (number sign), ; (semicolon), \ (backslash), and "" (quotation marks).

To escape these special characters or other characters in an attribute value in a DN string, use any of the following methods:

- If a character to be escaped is one of special characters, precede it by a backslash ('\' ASCII 92). This example shows a method of escaping a comma in an organization name:
  ```
  CN=L. Eagle,O=Sue\, Grabbit and Runn,C=GB
  ```

 This is the preferred method.

- Otherwise replace the character to be escaped by a backslash and two hex digits, which form a single byte in the code of the character. The code of the character must be in UTF-8 code set.
  ```
  CN=L. Eagle,O=Sue\2C Grabbit and Runn,C=GB
  ```
Surround the entire attribute value by "" (quotation marks) (ASCII 34) that are not part of the value. Between the quotation character pair, all characters are taken as is, except for the \ (backslash). The \ (backslash) can be used to escape a backslash (ASCII 92) or quotation marks (ASCII 34), any of the special characters previously mentioned, or hex pairs as in method 2. For example, to escape the quotation marks in cn=xyz"qrs"abc, it becomes cn=xyz\"qrs\"abc or to escape a \:
"you need to escape a single backslash this way \\
"

Another example, "\Zoo" is illegal, because 'Z' cannot be escaped in this context.

On the server end, when a DN is received in this form, the server reformats the DN using escape mechanisms number 1 and 2 for internal processing.

Enhanced DN processing

A composite RDN of a DN may consist of multiple components connected by the ‘+’ operators. The server enhances the support for searches on entries that have such a DN. A composite RDN can be specified in any order as the base for a search operation.

ldapsearch cn=mike+ou=austin,o=ibm,c=us

The server accepts DN normalization extended operations. DN normalization extended operations normalize DNs using the server schema. This extended operation might be useful for applications that use DNs. See the IBM Tivoli Directory Server Version 5.2 C-client Programming Reference for more information.
Part 2. Server Administration
Chapter 4. Directory administration daemon

The directory administration daemon (ibmdiradm) enables remote management of the IBM Tivoli Directory Server. It must be installed on the machine where the IBM Tivoli Directory Server is installed and must be running continuously. The directory administration daemon accepts requests by way of LDAP extended operations and supports starting, stopping, restarting, and status monitoring of the IBM Tivoli Directory Server. By default, the IBM Directory administration daemon listens on two ports, port 3538 for non-SSL connections and port 3539 for SSL connections, if SSL communication is enabled.

To start the directory administration daemon, run the program ibmdiradm from any command prompt. See “Starting the directory administration daemon”

Note: If you enable SSL communication, the directory administration daemon must be stopped and restarted for SSL to take effect. See “Using Web Administration:” on page 71.

Starting the directory administration daemon

Note: By default, the administration daemon is running when you install the IBM Tivoli Directory Server.

To start the administration daemon do either of the following:
• For UNIX-based and Windows-based systems issue the command:
 ibmdiradm
• For Windows-based systems, use Control Panel ->Services, select IBM Directory Admin Daemon, click Start.

Stopping the directory administration daemon

To stop the administration daemon use one of the following methods:
• If you have already configured a directory administration DN and password, you can use the ibmdirctl command to stop the administration daemon. This command is not platform specific. See “ibmdirctl” on page 306 for additional information.
 Issue the command:
 ibmdirctl -D <adminDN> -w <adminPW> admstop
• For UNIX-based systems issue the commands:
 ps -ef | grep ibmdiradm
 kill -p <pid obtained by previous command>
• For Windows-based systems, use Control Panel ->Services, select IBM Directory Admin Daemon, click Stop.
Chapter 5. Configuration only mode

The IBM Tivoli Directory Server supports LDAP access to the server’s configuration settings. An administrator can use LDAP protocol to query and update the configuration for the server. This feature enables remote administration. In order for this access to be more robust and reliable, the server does not depend on successful initialization of the database backends. It is possible to start the server in configuration only mode with only the cn=configuration suffix active. In other words, as long as the configuration backend is available, the server starts and accepts LDAP requests. Configuration only mode gives an administrator remote access to the server even when errors are encountered during startup.

The following features are supported in configuration only mode:

- Access to the configuration file and log files.
- Auditing
- Event notification
- Kerberos
- SASL
- SSL

The following features are not supported in configuration only mode:

- Access to the database
- Changelog
- Password policy
- Replication
- Schema changes
- Transactions

Minimum requirements for configuration only mode

- The configuration file must be in the correct LDIF format and the server must be able to locate and read the file.
- The server must be able to read and load the schema according to the configuration file.
- The server must be able to load the configuration plug-in.

How to start in configuration only mode

Any failure during server startup causes the server to start in configuration only mode.

Using Web Administration:

Check the Configuration only mode when starting the server through the Web Administration Tool.

Using the command line:

Specify -a or -A on server startup.

ibmslapd -a
or
ibmdirctl -h <hostname> -D <adminDN> -w <adminpw>-p <portnumber>
start -- -a

Note: The -n and -N options prevent the server from starting, if the server is unable to start with the database backends (not in configuration only mode). See “ibmdirctl” on page 306 for more information about these ibmslapd options.

How to verify that the server is running in configuration only mode

To determine if the server is running in configuration only mode, use one of the following methods.

Using Web Administration:
If the server has started in configuration only mode the || icon located between the stop and start icons is highlighted.

Using the command line:
Issue a search of the root DSE for the attribute ibm-slapdisconfigurationmode. If set to true, the server is running in configuration only mode.
ldapsearch -s base -b "*" objectclass== ibm-slapdisconfigurationmode
Chapter 6. Web Administration Tool graphical user interface (GUI)

The IBM Tivoli Directory Server Version 5.2 Web Administration Tool is installed on an application server, such as the embedded version of IBM WebSphere® Application Server - Express (WAS) included with the IBM Tivoli Directory Server, and administered through a console. Servers that have been added to the console can be managed through the Web Administration Tool without having to have the tool installed on each server.

The preferred method of administering the server is by using the Web Administration Tool.

Before you can start using the Web Administration Tool for the server you want to manage, ensure that you have completed the following tasks during the configuration of that server:

- You must have set the adminDN and password to be able to start a given server.
- You must have configured a database to be able to start a given server in a state other than configuration only mode.
- You must have the administration daemon running to be able to start, stop, or restart a given server remotely.

See the IBM Tivoli Directory Server Version 5.2 Installation and Configuration Guide and Chapter 4, “Directory administration daemon”, on page 13 for information on these tasks.

Note: If you have other application servers running, ensure that the application server where the Web Administration Tool is installed is not running on the same port as the other application servers.

Starting the Web Administration Tool

To start the Web Administration Tool, you must start the application server in which it was installed.

For the embedded version of IBM WebSphere Application Server - Express go to the directory where you installed the IBM Tivoli Directory Server and issue the command:

For UNIX-based platforms

```bash
<IDSinstalldir>/ldap/appsrv/bin/startServer.sh server1
```

Note: For Solaris this is `opt/ibmldapc/appsrv/bin/startServer.sh server1`

For Windows-based platforms

```bash
<IDSinstalldir>\ldap\appsrv\bin\startServer.bat server1
```

Logging in to the console

Open a Web browser and type the following address: http://localhost:9080/IDSWebApp/IDSjsp/Login.jsp. The IBM Tivoli Directory Server Web Administration login page panel is displayed.
Note: localhost is a host name or an IP address, if you are logged on to a browser that is not on the same machine where the Web Administration Tool is installed.

Logging on to the console as the console administrator
To log on as the console administrator:
1. At the IBM Tivoli Directory Server Web Administration login page log in as Console Admin, the default selection in the LDAP Hostname field.
2. In the Username field type: superadmin.
3. In the Password field type: secret.
4. Click Login.

The IBM Tivoli Directory Server Web Administration Tool console is displayed.

Logging on to the console as the server administrator
To log on as the server administrator:
• At the IBM Tivoli Directory Server Web Administration login page select the LDAP host name or IP address for your machine from the drop-down menu.
• Enter the admin DN and the password for that server (you set these up during the server configuration process).
• Click Login.

The IBM Tivoli Directory Server Web Administration Tool console is displayed with various server management tasks. The server management tasks vary depending upon the capabilities of the server.

Note: The Web Administration Tool does not support logging on to a given server using replication supplier credentials.

Logging on to the console as a member of the administrative group or as an LDAP user
To log on as a member of the administrative group (see "Creating an administrative group" on page 39) or an LDAP user:
• At the IBM Tivoli Directory Server Web Administration login page select the LDAP host name or IP address for your machine from the drop-down menu.
• Enter the your username (in the form of a DN) and password for that server.
• Click Login.

The IBM Tivoli Directory Server Web Administration Tool console is displayed with various server management tasks. The server management tasks vary depending upon your authority or the capabilities of the server or both.

Note: The Web Administration Tool does not support logging on to a given server using replication supplier credentials.

Console layout
The IBM Tivoli Directory Server Web Administration Tool console consists of five areas:

Banner area
The banner area located at the top of the panel contains the application name, IBM Tivoli Directory Server Web Administration Tool, and the IBM Logo.
Navigation area

The navigation area, located on the left side of the panel, displays expandable categories for various console or server tasks. The tasks available vary depending on your authority or the capabilities of the server you are logging onto or both.

Work area

The work area displays the tasks associated with the selected task in the navigation area. For example, if **Managing server security** is selected in the navigation area, the work area displays the Server Security page and the tabs containing tasks related to setting up server security.

Server status area

Note: If you are logged on as the console administrator, this area displays "Console administrator" and provides an icon link to the table of contents for task helps.

The server status area, located at the top of the work area, indicates the status and the name of the server being administered. It also has two icon links, one to the Start/Stop/Restart procedure and the other to general help information. When you select a task from the navigation area, the name of the selected task, a link to the error log files, and a link to the task help are also displayed.

Task status area

The task status area, located beneath the work area, displays the status of the current task.

Logging off the console

To log off of the console, click **Logout** in the navigation area.

The Logout successful panel displays the message:

If you have been accidentally logged out then you will need to re-login by clicking here.

Click the word **here** in this message to return to the IBM Tivoli Directory Server Web Administration Login Page.
Chapter 7. Setting up the console

After you have started the application server, you need to set up the console that is going to manage your directory servers. From the IBM Tivoli Directory Server Web Administration login page, log in as the console administrator and perform the following tasks:

Managing the console

At the IBM Tivoli Directory Server Web Administration Tool console:

Changing the console administrator login

To change superadmin to a different administrator ID:
1. Expand Console administration in the navigation area.
2. Click Change console administrator login.
3. Enter the new administrator ID.

Note: Only one administrator ID is allowed. The superadmin ID is replaced by the new ID that you specified.
4. Enter the current administrator password. The password, secret, is the same for the new administrator ID, until you change it.

Changing the console administration password

To change the administrator password, secret, to another password:
1. Expand Console administration in the navigation area.
2. Click Change console administrator password.
3. Enter the current password.
4. Enter the new password.
5. Enter the new password again to confirm that there are no typographical errors.
6. Click OK.

Adding, modifying, and removing servers in the console

Use the following procedures to add, edit, or delete servers in the console:

Adding a server to the console

To add a server to the console:
1. Expand Console administration in the navigation area.
2. Click Manage console servers. A table for listing of server host names and port numbers is displayed.
3. Click Add.
4. Enter the host name address or the IP address of the server. For example servername.austin.ibm.com
5. Specify the port numbers or accept the defaults.
6. Specify if the server is SSL enabled. Ensure that you complete step 5 on page 22 under Managing console properties.

© Copyright IBM Corp. 2003
7. Click OK to apply the changes or click Cancel to exit the panel without making any changes.

Modifying a server in the console
To change the port number or SSL enablement of a server:
1. Expand Console administration in the navigation area.
2. Click Manage console servers. A listing of server host names and port numbers is displayed.
3. Select the radio button next to the server you want to modify.
4. Click Edit.
5. You can change the port numbers.
6. You can change whether the server is SSL enabled. Ensure that you complete step 6 under Managing console properties, if you are enabling SSL.
7. Click OK to apply the changes or click Cancel to exit the panel without making any changes.

Removing a server from the console
To remove a server from the console:
1. Expand Console administration in the navigation area.
2. Click Manage console servers. A listing of server host names and port numbers is displayed.
3. Select the radio button next to the server you want to remove.
4. Click Delete.
5. Click OK to delete the server or click Cancel to exit the panel without making any changes.

Managing console properties
To change the settings for the console properties:
1. Expand Console administration in the navigation area.
2. Click Manage console properties.
3. Click Component management - to specify the components that are enabled for all servers in the console. By default all the components are enabled.

 Note: You might not see a management component or some of its tasks, even if it is enabled, if you do not have the correct authority on the server or the server does not have the needed capabilities, or both.

4. Click Session properties - to set the time out limit for the console session. The default setting is 60 minutes.

 Note: A session might be valid for three to five minutes more than what you have set. This is because the invalidations are performed by a background thread in the application server that acts on a timer interval. This timer interval extends the session time out duration.

5. Click SSL key database - to set up the console so that it can communicate with other LDAP servers using the Secure Sockets Layer (SSL), if necessary. Set the key database path and file name, the key password, the trusted database path and file name, the trusted password in the appropriate fields. The supported file type is jks. See “Using gsk7ikm” on page 79 and “Secure Sockets Layer” on page 73 for information about key databases and SSL.

When you have finished setting up the console, click Logout to exit.
Chapter 8. Basic server administration tasks

Note: Unless stated otherwise the following tasks can be performed by either the directory administrator or a member of the administrative group.

- “Logging on to the Web Administration Tool”
- “Changing an administrator distinguished name and password”
- “Starting and stopping the server” on page 24
- “Checking server status” on page 25
- “Managing server connections” on page 34
- “Managing connection properties” on page 36
- “Creating an administrative group” on page 39
- “Managing unique attributes” on page 43

Logging on to the Web Administration Tool

To log on as the directory administrator or as a member of the administrative group:

- At the IBM Tivoli Directory Server Web Administration login page select the LDAP host name or IP address for your server from the drop-down menu.
- Enter an administration DN and password for that server.
- Click Login.

Changing an administrator distinguished name and password

This task can be performed by the directory administrator only.

The administrator name and password is usually set during the server installation and configuration process. However, you can change an administrator name and an administrator password by using either the Web Administration Tool or the command line.

Using Web Administration:

Click User properties in the navigation area of the Web Administration Tool. Two selections are displayed:

Change administrator login

Specify a new Administrator DN in the field and enter the current password. Click OK or click Cancel to return to the Welcome panel without making any changes.

Note: This selection is available only if you are logged in as the directory administrator. It is not available if you are logged in as a user or an administrative group member.

Change password

To change the password for the currently logged-in DN, type your current password in the Current password field. Then type your new password in the New password field and type it again in the Confirm new password field and click OK. Click Cancel to return to the Welcome panel without making any changes.
Using the command line:

You can use either the `ldapcfg` command or the `ldapxcfg` utility from the command line.

Using the `ldapcfg` command:

```bash
ldapcfg -u <admindn> -p <adminPW>
```

To use the `ldapxcfg` utility type `ldapxcfg` on a command line. When the IBM Tivoli Directory Server Configuration Tool panel is displayed select **Administrator DN/password** and follow the directions. See the *IBM Tivoli Directory Server Version 5.2 Installation and Configuration Guide* for additional information on using the `ldapxcfg` utility.

See [Chapter 3, “Distinguished names (DNs)”, on page 7](#) for more information about distinguished names.

Starting and stopping the server

You can use either of the following methods to start or stop the server.

Using Web Administration:

Note: The administration daemon (`ibmdiradm`) must be running.

The current status of the server, either started, stopped, or started in configuration mode, is indicated by the icons in the upper left-hand corner of the server status area. The current status is also described in the first sentence of the work area, for example

The Directory Server is currently running

1. If you have not done so already, click **Server Administration** in the Web Administration navigation area and then click **Start/Stop/Rerstart Server** in the expanded list.

2. The message area displays the current state of the server (stopped, running, or running in configuration only mode). Depending on the state of the server, running or stopped, buttons are enabled for you to change the state of the server.

<table>
<thead>
<tr>
<th>Server status</th>
<th>Buttons available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stopped</td>
<td>Start, Close</td>
</tr>
<tr>
<td>Running</td>
<td>Stop, Restart, Close</td>
</tr>
<tr>
<td>Running in configuration only mode</td>
<td>Stop, Restart, Close</td>
</tr>
</tbody>
</table>

- If the server is running, click **Stop** to stop the server or **Restart** to stop and then start the server.
- If the server is stopped, click **Start** to start the server.
- Click **Close** to return to the Introduction panel.

3. A message is displayed when the server successfully starts or stops.

If you need to perform server configuration maintenance, select the **Start / Restart in configuration only mode** check box. In this mode only the system administrator can bind to the server. All other connections are refused until the server is restarted.
with DB2 backends enabled (the **Start / Restart in configuration only mode** check box deselected). See Chapter 5, “Configuration only mode”, on page 15 for additional information.

Note: Configuration maintenance can be done while the server is running.

Using the command line or Windows Services icon:

Use the following command to start and stop the server:

Note: The administration daemon (*ibmdiradm*) must be running.

```
ibmdirctl [-h <hostname>] [-D <adminDN>] [-w <password>] [-p <portnumber>]
start|stop|restart|status -- [ibmslapd options]
```

See “`ibmdirctl`” on page 306 for additional information.

For Windows systems use the previous command or:

1. From the desktop, double-click the **My Computer** icon.
2. Double-click the **Control Panel** icon.
3. Double-click the **Services** icon.
4. To start the server select **IBM Tivoli Directory V5.2** and click **Start**.
5. To stop the server select **IBM Tivoli Directory V5.2** and click **Stop**.

Checking server status

You can check the status of the server by searching for the object classes under `cn=monitor`. To do this, use one of the following methods:

Using Web Administration:

Expand the Server administration category in the navigation area. Click **View server status**. This panel has nine tabs. At the bottom of this panel you can click **Refresh** to update the status displayed on the tab you are currently viewing or you can click **Close** to return to the IBM Tivoli Directory Server Welcome panel. If the directory server is running, the following information is displayed:

General

Click the **General** tab to display the following information:

- **Hostname**
 - The host name of the LDAP server.

- **Server status**
 - The server is either **Running**, **Stopped**, or **Running configuration only mode**. You can determine the server status at any time by the three icons displayed in the left side corner of the server status area.

- **Start time**
 - The time the server was started. The start time is in the format: `year-month-day hour:minutes:seconds GMT`

- **Current time**
 - The current time on the server. The current time is in the format: `year-month-day hour:minutes:seconds GMT`

- **Total threads**
 - The number of worker threads being used by the server.
Total threads blocked on write
The number of threads sending data back to the client.

Total threads blocked on read
The number of threads reading data from the client.

Number of connections
The number of currently active connections.

Total connections
The total number of connections since the server was started.

Total number of SSL connections
The total number of SSL connections since the server was started.

Total number of TLS connections
The total number of TLS connections since the server was started.

Number of entries sent
The number of entries sent by the server since the server was started.

Percentage of entry cache used
The percentage of entry cache currently used. This value is not displayed in configuration only mode.

Percentage of search filter cache used
The percentage of search filter cache currently used. This value is not displayed in configuration only mode.

ACL cache
A Boolean value indicating that the ACL cache is active (TRUE) or inactive (FALSE). This value is not displayed in configuration only mode.

Maximum ACL cache size
The maximum number of entries allowed in the ACL cache. This value is not displayed in configuration only mode.

Bypass alias dereferencing
The server runtime value that indicates if alias processing can be bypassed. It displays true, if no alias object exists in the directory, and false, if at least one alias object exists in the directory.

Operation counts
Click **Operation counts** to display the following information:

Number of operations requested
The number of initiated requests since the server was started.

Number of operations completed
The number of completed requests since the server was started.

Number of search operations requested
The number of initiated searches since the server was started.

Number of search operations completed
The number of completed searches since the server was started.

Number of bind operations requested
The number of bind requests since the server was started.

Number of bind operations completed
The number of completed bind requests since the server was started.

Number of unbind operations requested
The number of unbind requests since the server was started.
Number of unbind operations completed
The number of completed unbind requests since the server was started.

Number of add operations requested
The number of add requests since the server was started.

Number of add operations completed
The number of completed add requests since the server was started.

Number of delete operations requested
The number of unbind requests since the server was started.

Number of delete operations completed
The number of completed unbind requests since the server was started.

Number of modify RDN operations requested
The number of modify RDN requests since the server was started.

Number of modify RDN operations completed
The number of completed modify RDN requests since the server was started.

Number of modify operations requested
The number of modify requests since the server was started.

Number of modify operations completed
The number of completed modify requests since the server was started.

Number of compare operations requested
The number of compare requests since the server was started.

Number of compare operations completed
The number of completed compare requests since the server was started.

Number of abandon operations requested
The number of abandon requests since the server was started.

Number of abandon operations completed
The number of completed abandon requests since the server was started.

Number of extended operations requested
The number of extended requests since the server was started.

Number of extended operations completed
The number of completed extended requests since the server was started.

Number of unknown operations requested
The number of unknown requests since the server was started.

Number of unknown operations completed
The number of completed unknown requests since the server was started.

Work queue
Click Work queue to display the following:

Number of worker threads available
The number of worker threads available for work.

Depth of the work queue
The current size of the work queue.

Largest size of the work queue
The largest size that the work queue has ever reached.

Number of connections closed by automatic connection cleaner
The number of idle connections closed by the automatic connection cleaner.
Number of times the automatic connection cleaner has run
The number of times the automatic connection cleaner has run.

Emergency thread currently active
The indicator of whether the emergency thread is running.

Number of times the emergency thread has been activated
The number of times the emergency thread has been activated.

Last time the emergency thread was activated
The last time the emergency thread was activated.

View worker status
Click View worker status to display information about the worker threads that are currently active. This information is useful when the server is not performing as expected or performing poorly. Performing this search suspends all server activity until it is completed. A warning to that effect is displayed and explains that the time to complete this operation depends on the number of connections and active worker threads. Click Yes to display the information.

Directory cached attributes
Click Directory cached attributes to display the following information. The first three status items are displayed in a table format.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Number of cache hits</th>
<th>Cache size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Attribute
The name of the attribute.

Number of cache hits
The number of times the attribute filter has been used after it was cached.

Cache size
The amount of memory used by the attribute.

Cached attribute total size (in kilobytes)
The amount of memory being used by the cache.

Note: This number includes additional memory used to manage the cache, that is not charged against the individual attributes. Consequently, this total is larger than the total of the individual attribute memory usage.

Cached attribute configured size
The maximum amount of memory in bytes assigned to this cache. See “Adding attributes to and removing attributes from the attribute cache” on page 67 for instructions.

Directory cache candidates
This is a list in table format of the 10 most frequently used noncached attributes. If the frequency of the usage of these attributes is excessive, you might want to add them to the attribute cache.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Number of hits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Directory cache candidates table (continued)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Number of hits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Attribute
The name of the attribute.

Number of hits
The number of times the attribute filter has been used.

Changelog cached attributes
Click **Changelog cached** attributes to display the following information. The first three status items are displayed in a table format.

Table 4. Changelog cached attributes table

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Number of cache hits</th>
<th>Cache size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Attribute
The name of the attribute.

Number of cache hits
The number of times the attribute filter has been used after it was cached.

Cache size
The amount of memory used by the attribute.

Cached attribute total size (in kilobytes)
The amount of memory being used by the cache.

Note: This number includes additional memory used to manage the cache, that is not charged against the individual attributes. Consequently this total is larger than the total of the individual attribute memory usage.

Cached attribute configured size
The amount of memory assigned to this cache. See “Adding attributes to and removing attributes from the attribute cache” on page 67 for instructions.

Changelog cache candidates
This is a list in table format of the 10 most frequently used noncached attributes. If the frequency of the usage of these attributes is excessive, you might want to add them to the attribute cache.

Table 5. Changelog cache candidates table

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Number of hits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Attribute
The name of the attribute.

Number of hits
The number of times the attribute filter has been used.
Trace and logs
Click Trace and logs to view the following information:

Trace enabled
The current trace value for the server. TRUE, if collecting trace data, FALSE, if not collecting trace data. See “ldaptrace” on page 313 for information about enabling and starting the trace function.

Trace message level
The current ldap_debug value for the server. The value is in hexadecimal form, for example,
0x0=0
0xffff=65535

trace message log
The name of the file that contains the trace output.

Note: If the value is stderr, the output is displayed in the command window where the LDAP server was started. If the server was not started from the command line, no data is displayed.

Number of messages added to server logs
The number of error messages recorded since the server started.

Number of messages added to CLI error log
The number of DB2 error messages recorded since the server started.

Number of messages added to audit log
The number of messages recorded by the audit log since the server started.

Number of error messages added to audit log
The number of failed operation messages recorded by the audit log.

Using the command line:
To determine server status using the command line use the ldapsearch command for the bases cn=monitor and cn=worker,cn=monitor.

```
cn=monitor
ldapsearch -h <servername> -p<portnumber> -b cn=monitor -s base objectclass=*
```

This command returns the following information:

```
cn=monitor
version=IBM Tivoli Directory (SSL), Version 5.2
```

totalconnections
The total number of connections since the server was started.

total_ssl_connections
The total number of SSL connections since the server was started.

total_tls_connections
The total number of TLS connections since the server was started.

currentconnections
The number of active connections.

maxconnections
The maximum number of active connections allowed.

writewaiters
The number of threads sending data back to the client.
readwaiters
The number of threads reading data from the client.

opsinitiated
The number of requests since the server was started.

livethreads
The number of worker threads being used by the server.

opscompleted
The number of completed requests since the server was started.

entriessent
The number of entries sent by the server since the server was started.

searchesrequested
The number of requested searches since the server was started.

searchescompleted
The number of completed searches since the server was started.

bindsrequested
The number of bind operations requested since the server was started.

bindscompleted
The number of bind operations completed since the server was started.

unbindsrequested
The number of unbind operations requested since the server was started.

unbindscompleted
The number of unbind operations completed since the server was started.

addsrequested
The number of add operations requested since the server was started.

addscompleted
The number of add operations completed since the server was started.

deletesrequested
The number of delete operations requested since the server was started.

deletescompleted
The number of delete operations completed since the server was started.

modrdnsrequested
The number of modify RDN operations requested since the server was started.

modrdnscompleted
The number of modify RDN operations completed since the server was started.

modifiesrequested
The number of modify operations requested since the server was started.

modifiescompleted
The number of modify operations completed since the server was started.

comparesrequested
The number of compare operations requested since the server was started.

comparescompleted
The number of compare operations completed since the server was started.
abandonsrequested
The number of abandon operations requested since the server was started.

abandonscompleted
The number of abandon operations completed since the server was started.

extopsrequested
The number of extended operations requested since the server was started.

extopscompleted
The number of extended operations completed since the server was started.

unknownopsrequested
The number of unknown operations requested since the server was started.

unknownopscompleted
The number of unknown operations completed since the server was started.

slaperrorlog_messages
The number of server error messages recorded since the server was started or since a reset was performed.

slapdcliersors_messages
The number of DB2 error messages recorded since the server was started or since a reset was performed.

auditlog_messages
The number of audit messages recorded since the server was started or since a reset was performed.

auditlog_failedop_messages
The number of failed operation messages recorded since the server was started or since a reset was performed.

filter_cache_size
The maximum number of filters allowed in the cache.

filter_cache_current
The number of filters currently in the cache.

filter_cache_hit
The number of filters found in the cache.

filter_cache_miss
The number of filters not found in the cache.

filter_cache_bypass_limit
Search filters that return more entries than this limit are not cached.

entry_cache_size
The maximum number of entries allowed in the cache.

entry_cache_current
The number of entries currently in the cache.

entry_cache_hit
The number of entries found in the cache.

entry_cache_miss
The number of entries not found in the cache.
acl_cache
A Boolean value indicating that the ACL cache is active (TRUE) or inactive (FALSE).

acl_cache_size
The maximum number of entries in the ACL cache.

cached_attribute_total_size
The amount of memory used by the directory attribute cache.

cached_attribute_configured_size
The amount of memory assigned to the directory attribute cache.

currenttime
The current time on the server. The current time is in the format:
year-month-day hour:minutes:seconds GMT

starttime
The time the server was started. The start time is in the format:
year-month-day hour:minutes:seconds GMT

trace_enabled
The current trace value for the server. TRUE, if collecting trace data,
FALSE, if not collecting trace data. See "ldaptrace" on page 313 for
information about enabling and starting the trace function.

trace_message_level
The current ldap_debug value for the server. The value is in hexadecimal
form, for example:
0x0=0
0xffff=65535

trace_message_log
The current LDAP_DEBUG_FILE environment variable setting for the
server.

en_currentregs
The current number of client registrations for event notification.

en_notificationssent
The total number of event notifications sent to clients since the server was
started.

bypass_deref_aliases
The server runtime value that indicates if alias processing can be bypassed.
It displays true, if no alias object exists in the directory, and false, if at least
one alias object exists in the directory.

available_workers
The number of worker threads available for work.

current_workqueue_size
The current depth of the work queue.

largest_workqueue_size
The largest size that the work queue has ever reached.

idle_connections_closed
The number of idle connections closed by the Automatic Connection
Cleaner.

auto_connection_cleaner_run
The number of times that the Automatic Connection Cleaner has run.
emergency_thread_running
 The indicator of whether the emergency thread is running.

totaltimes_emergency_thread_run
 The number of times the emergency thread has been activated.

lasttime_emergency_thread_run
 The last time the emergency thread was activated.

cn=workers,cn=monitor
For worker thread information ensure that auditing is enabled and issue the following command:

```
ldapsearch -D <adminDN> -w <adminpw> -b cn=workers,cn=monitor -s base objectclass=* 
```

This command gives the following type of information for each active worker:

cn=workers,cn=monitor
cn=workers
objectclass=container

cn=thread2640,cn=workers,cn=monitor
thread The number of the worker thread. For example 2640.

ldapversion
 The LDAP version level, either V1 or V2.

binddn
 The DN used to bind to the server.

clientip
 The IP address of the client.

clientport
 The port used by the client.

connectionid
 The number identifying the connection.

received
 The date and time that the work request was received.

workrequest
 The type of work request received and additional information about the request. For example, if the request was a search, the following information is also provided:

```
base=cn=workers,cn=monitor
scope=baseObject
derefAliases=neverDerefAliases
typesOnly=false
filter=(objectclass=*)
attributes=all
```

Managing server connections

You can use one of the following methods to check the connection status of the server.
Using Web Administration:

Expand the Server administration category in the navigation area. Click Manage server connections. A table containing the following information for each connection is displayed:

DN
Specifies the DNs of a client connection to the server.

IP address
Specifies the IP address of the client that has a connection to the server.

Start time
Specifies the date and time when the connection was made.

Status
Specifies whether the connection is active or idle. A connection is considered active if it has any operations in progress.

Ops initiated
Specifies the number of operations requested since the connection was established.

Ops completed
Specifies the number of operations that have been completed for each connection.

Type
Specify whether the connection is secured by SSL or TLS. Otherwise the field is blank.

Notes:

1. This table displays up to 20 connections at a time.

You can specify to have this table displayed by either DN or IP address by expanding the drop-down menu at the top of the panel and making a selection. The default selection is by DN. Similarly you can also specify whether to display the table in ascending or descending order.

Click **Refresh** to update the current connection information.

If you are logged on as the administrator or as a member of the administration group, you have additional selections to disconnect server connections available on the panel. This ability to disconnect server connections enables you to stop denial of service attacks and to control server access. You can disconnect a connection by expanding the drop-down menus and selecting a DN, an IP address or both and clicking **Disconnect**. Depending on your selections the following actions occur:

Table 6. Disconnection rules

<table>
<thead>
<tr>
<th>DN chosen</th>
<th>IP address chosen</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><DNvalue></td>
<td>None</td>
<td>All connections bound with the specified DN are disconnected.</td>
</tr>
<tr>
<td>None</td>
<td><IPvalue></td>
<td>All connections over the specified IP address are disconnected.</td>
</tr>
<tr>
<td><DNvalue></td>
<td><IPvalue></td>
<td>All connections bound as the specified DN and over the specified IP address are disconnected.</td>
</tr>
</tbody>
</table>
Table 6. Disconnection rules (continued)

| None | None | This is not a valid condition. You must specify a DN or an IP address or both. |

The default value for each of the drop-down menus is **None**.

To disconnect all server connections except for the one making this request click **Disconnect all**. A confirmation warning is displayed. Click **OK** to proceed with the disconnect action or click **Cancel** to end the action and return to the **Manage server connections** panel.

Using the command line:

To view server connections, issue the command:
```
ldapsearch -D<adminDN> -w<adminPW> -h<servername> -p<portnumber>
-b cn=connections,cn=monitor -s base objectclass=*
```

This command returns information in the following format:
```
connection=1487 : 127.0.0.1 : 2002-10-05 19:17:01 GMT : 1 : 1 : CN=ADMIN : :
```

Note: If appropriate, an SSL or a TLS indicator is added on each connection.

To end server connections issue, one of the following commands:
```
# To disconnect a specific DN:
ldapexop -D<adminDN> -w<adminPW> -op unbind -dn cn=john

# To disconnect a specific IP address:
ldapexop -op unbind -ip 9.182.173.43

#To disconnect a specific DN over a specific IP address:
ldapexop -op unbind -D cn=john -ip 9.182.173.43

#To disconnect all connections:
ldapexop -D<adminDN> -w<adminPW> -op unbind -all
```

See "ldapexop" on page 271 for more information on ending connections.

Managing connection properties

The ability to manage connection properties enables you to prevent clients from locking up the server by closing connections of clients that:
- Send data slowly, send partial data or send no data.
- Do not read data results or read results slowly.
- Do not unbind.
- Bind anonymously.

It also ensures that an administrator always has access to the server in the cases that the backend is kept busy with long running tasks.

Using Web Administration:

Note: These selections are displayed only if you are logged in as the administrator or a member of the administration group on a server that supports this feature.
Expand the Server administration category in the navigation area. Click Manage connection properties.

1. Select the General tab.

2. The Allow anonymous connections check box is already selected for you so that anonymous binds are allowed. This is the default setting. You can click the check box to deselect the Allow anonymous connections feature. This action causes the server to unbind all anonymous connections.

 Note: Disallowing anonymous binds might cause some applications to fail.

3. Set the threshold number to initiate the cleanup of anonymous connections. You can specify a number between 0 and 65535 in the Cleanup threshold for anonymous connections field.

 Note: The actual maximum number is limited by the number of files permitted per process. On UNIX systems you can use the `ulimit -a` command to determine the limits. On Windows systems this is a fixed number.

 The default setting is 0. When this number of anonymous connections is exceeded, connections are cleaned up based on the idle timeout limit that you set in the Idle time out field.

4. Set the threshold number to initiate the cleanup of authenticated connections. You can specify a number between 0 and 65535 in the Cleanup threshold for authenticated connections field.

 Note: The actual maximum number is limited by the number of files permitted per process. On UNIX systems you can use the `ulimit -a` command to determine the limits. On Windows systems this is a fixed number.

 The default setting is 1100. When this number of authenticated connections is exceeded, connections are cleaned up based on the idle timeout limit that you set in the Idle time out field.

5. Set the threshold number to initiate the cleanup of all connections. You can specify a number between 0 and 65535 in the Cleanup threshold for all connections field.

 Note: The actual maximum number is limited by the number of files permitted per process. On UNIX systems you can use the `ulimit -a` command to determine the limits. On Windows systems this is a fixed number.

 The default setting is 1200. When this total number of connections is exceeded, connections are cleaned up based on the idle timeout limit that you set in the Idle time out field.

6. Set the number of seconds that a connection can be idle before it is closed by a cleanup process. You can specify a number between 0 and 65535 in the Idle timeout limit field.

 Note: The actual maximum number is limited by the number of files permitted per process. On UNIX systems you can use the `ulimit -a` command to determine the limits. On Windows systems this is a fixed number.

 The default setting is 300. When a cleanup process is initiated, any connections, subject to the process, that exceed the limit are closed.
7. Set the number of seconds between write attempts that will be allowed. You can specify a number between 0 and 65535 in the Result timeout limit field. The default setting is 120. Any connections that exceed this limit are ended.

Note: This applies to Windows systems only. A connection that exceeds 30 seconds is automatically dropped by the operating system. Therefore this Result timeout limit setting is overridden by the operating system after 30 seconds.

8. Select the Emergency thread tab.

9. The Enable emergency thread check box is already selected for you so that the emergency thread can be activated. This is the default setting. You can click the check box to deselect the Enable emergency thread feature. This action prevents the emergency thread from being activated.

10. Set the number limit for work requests that activate the emergency thread. Specify a number between 0 and 65535 in the Pending request threshold field to set the limit of work requests that can be in the queue before activating the emergency thread. The default is 50. When the specified limit is exceeded, the emergency thread is activated.

11. Set the number of minutes that can elapse since the last work item was removed from the queue. If there are work items in the queue and this time limit is exceeded, the emergency thread is activated. You can specify a number between 0 and 240 in the Time threshold field. The default setting is 5.

12. Select from the drop-down menu, the criterion to be used to activate the emergency thread. You can select:

- **Size only** - The emergency thread is activated only when the queue exceeds the specified amount of pending work items.
- **Time only** - The emergency thread is activated only when the time limit between removed work items exceeds the specified amount.
- **Size or time** - The emergency thread is activated when either the queue size or time threshold exceeds the specified amounts.
- **Size and Time** - The emergency thread is activated when both the queue size and the time threshold exceed the specified amounts.

Size and Time is the default setting.

13. When you are finished, click Apply to save your changes without exiting, or click OK to apply your changes and exit, or click Cancel to exit this panel without making any changes.

Using the command line:

To perform the same operations using the command line, issue the following command:

```
ldapmodify -D <adminDN> -w<adminPW> -i<filename>
```

where `<filename>` contains:

```
dn: cn=Connection Management,cn=Front End, cn=Configuration
cn: Connection Management
changetype: modify
replace: ibm-slapdAllowAnon
ibm-slapdAllowAnon: TRUE
-
replace: ibm-slapdAnonReapingThreshold
ibm-slapdAnonReapingThreshold: 0
-
replace: ibm-slapdBoundReapingThreshold
ibm-slapdBoundReapingThreshold: 1100
```
replace: ibm-slapdAllReapingThreshold
ibm-slapdAllReapingThreshold: 1200

replace: ibm-slapdIdleTimeOut
ibm-slapdIdleTimeOut: 300

replace: ibm-slapdWriteTimeout
ibm-slapdWriteTimeout: 120

replace: ibm-slapdEThreadEnable
ibm-slapdEThreadEnable: TRUE

replace: ibm-slapdESizeThreshold
ibm-slapdESizeThreshold: 50

replace: ibm-slapdETimeThreshold
ibm-slapdETimeThreshold: 5

#ibm-slapdEThreadActivate can be set to S for size only, T for
time only, SOT for size or time, and SAT for size and time.
replace: ibm-slapdEThreadActivate
ibm-slapdEThreadActivate: {S | T | SOT | SAT}

To update the settings dynamically, issue the following ldapexop command:
ldapexop -D cn=root -w root -op readconfig -scope entire

The ldapexop command updates only those attributes that are dynamic. For other
changes to take effect you must stop and restart the server. See
“Dynamically-changed attributes” on page 414 for a list of the attributes that can be
updated dynamically.

Creating an administrative group

An administrative group provides the ability to provide 24 hour administrative
capabilities without having to share a single ID and password among the
administrators. Members of the administrative group have their own unique IDs
and passwords. The administrative group member DNs must not match each other
and they must also not match the IBM Tivoli Directory Server administrator’s DN.
Conversely, the IBM Tivoli Directory Server administrator DN must not match the
DN of any administrative group member. This rule also applies to the Kerberos or
Digest-MD5 IDs of the IBM Tivoli Directory Server administrator and the
administrative group members. These DNs must not match any of the IBM Tivoli
Directory Server’s replication supplier DNs. This also means that IBM Tivoli
Directory Server’s replication supplier DNs must not match any of the
administrative group member DNs or the IBM Tivoli Directory Server
administrator DN.

Note: The IBM Tivoli Directory Server’s replication supplier DNs can match each
other.

The members of the administrative group have all the capabilities of the directory
administrator with the following exceptions:

• Only the IBM Tivoli Directory Server administrator has the ability to add or
 remove members from the administrative group. In addition only the IBM Tivoli
 Directory Server administrator can modify the DN, password, Kerberos ID, or
 Digest-MD5 ID of any administrative group member. However, a member of the
 administrative group can modify his own password, but cannot modify his own
DN, Kerberos ID, or Digest-MD5 ID. An administrative group member cannot see the password of any other administrative group member or the IBM Tivoli Directory Server administrator.

- Only the IBM Tivoli Directory Server administrator has the ability to add or remove the cn=Keberos,cn=Configuration and the cn=Digest,cn=Configuration entries in the configuration backend. Administrative group members can modify all the attributes in these entries except for the directory administrator’s Keberos ID and Digest-MD5 ID.
- Only the IBM Tivoli Directory Server administrator has the ability to modify or update any of the audit log settings. Members of the administrative group are able only to view the audit log and the audit log settings.
- Only the IBM Tivoli Directory Server administrator has the ability to clear the audit log.

Enabling and disabling the administrative group

You must be the IBM Tivoli Directory Server administrator to perform this operation.

Note: In this task and the Manage administrative group tasks that follow, the operation buttons are disabled for members of the administrative group. Members of the administrative group can only view the Administrative group members table on the Manage administrative group panel.

Using Web Administration:
Expand the Server administration category in the navigation area. Click Manage administrative group.
1. To enable or disable the administrative group, click the check box next to Enable administrative group. If the box is checked, the administrative group is enabled.
2. Click OK.

Note: If you disable the administrative group, any member who is logged in can continue administrative operations until that member is required to rebind. To stop any additional operations by already bound administrative group members, perform an unbind operation. See “Managing server connections” on page 34 for more information.

Using the command line:
To perform the same operations using the command line, issue the following command:

```
ldapmodify -D <adminDN> -w<adminPW> -i<filename>
```

where `<filename>` contains:

- `dn: cn=Configuration`
- `cn: Configuration`
- `changetype: modify`
- `replace: ibm-slapdAdminGroupEnabled`
 #specify TRUE to enable or FALSE to disable the administrative group
 #TRUE has been preselected for you.
- `ibm-slapdAdminGroupEnabled: TRUE`
- `objectclass: top`
- `objectclass: ibm-slapdConfigEntry`
- `objectclass: ibm-slapdTop`

To update the settings dynamically, issue the following `ldapexop` command:
Adding members to the administrative group

You must be the IBM Tivoli Directory Server administrator to perform this operation.

Using Web Administration:
To add a member to the administrative group, on the Manage administrative group panel, click Add.

On the Add administrative group member panel:
1. Enter the member’s administrator DN (this must be a valid DN syntax).
2. Enter the member’s password.
3. Enter the member’s password again to confirm it.
4. Optionally, enter the member’s Kerberos ID. The Kerberos ID must be in either ibm-kn or ibm-KerberosName format. The values are case insensitive, for example, ibm-kn=root@TEST.AUSTIN.IBM.COM is equivalent to ibm-kn=ROOT@TEST.AUSTIN.IBM.COM.

Note: This field is only available for the AIX® and Windows NT® and Windows 2000 platforms. It is displayed only, if the kerberos supported capabilities OID (1.3.18.0.2.32.30) is found on the server.
5. Optionally, enter the member’s Digest-MD5 user name.
6. Click OK.

Note: The Digest-MD5 user name is case sensitive.
Repeat this procedure for each member you want to add to the administrative group.

The member administrator DN, Digest-MD5 username, if specified, and Kerberos ID, if specified, are displayed in the Administrative group members list box.

Note: Kerberos support is only available for the AIX and Windows NT, Windows 2000, and Windows 2003 platforms. The Kerberos ID column in the is displayed in the Administrative group members list box only, if the kerberos supported capabilities OID (1.3.18.0.2.32.30) is found on the server.

Using the command line:
To perform the same operations using the command line, issue the following command:

```
ldapadd -D <adminDN> -w<adminPW> -i<filename>
```

where <filename> contains:

dn: cn=AdminGroup, cn=Configuration
 cn: AdminGroup
 objectclass: top
 objectclass: container

dn: cn=admin1, cn=AdminGroup, cn=Configuration
 cn: admin1
 ibm-slapdAdminDN: <memberDN>
 ibm-slapdAdminPW: <password>
#ibm-slapdKrbAdminDN and ibm-slapdDigestAdminUser are optional attributes.
 ibm-slapdKrbAdminDN: <KerberosID>
```
ibm-slapdDigestAdminUser: <DigestID>
objectclass: top
objectclass: ibm-slapdConfigEntry
objectclass: ibm-slapdAdminGroupMember

Note: If you already have a member created in the administrative group, omit the first entry.

To update the settings dynamically, issue the following `ldapexop` command:

`ldapexop -D cn=root -w root -op readconfig -scope subtree cn=AdminGroup,cn=Configuration`

Modifying an administrative group member

You must be the IBM Tivoli Directory Server administrator to perform this operation.

Using Web Administration:
To modify an administrative group member’s information, on the Manage administrative group panel:
1. Select the member whose information you want to modify.
2. Click Edit.
3. Enter the member’s administrator DN (this must be a valid DN syntax).
4. Change the member’s password.
5. Enter the member’s password again to confirm it.
6. Enter or change the member’s Kerberos ID. The Kerberos ID must be in either ibm-kn or ibm-KerberosName format. The values are case insensitive, for example, ibm-kn=root@TEST.AUSTIN.IBM.COM is equivalent to ibm-kn=ROOT@TEST.AUSTIN.IBM.COM.

Note: This field is only available for the AIX and Windows NT and Windows 2000 platforms. It is displayed only, if the kerberos supported capabilities OID(1.3.18.0.2.32.30) is found on the server.
7. Enter or change the member’s Digest-MD5 user name. The Digest-MD5 user name is case sensitive.
8. Click OK.

Note: If you are member of the administrative group, you can change your password using the User properties->Change password panel.
Repeat this procedure for each member you want to modify in the administrative group.

Using the command line:
To perform the same operations using the command line, issue the following command:

`ldapmodify -D <adminDN> -w<adminPW> -i<filename>`

where `<filename>` contains:

```
dn: cn=admin1, cn=AdminGroup, cn=Configuration
cn: admin1
changetype: modify
replace: ibm-slapdAdminDN
ibm-slapdAdminDN: cn=<memberDN>
```

```
replace: ibm-slapdAdminPW
ibm-slapdAdminPW: <password>
```

42 IBM Tivoli Directory Server: IBM Tivoli Directory Server Administration Guide
To update the settings dynamically, issue the following `ldapexop` command:

```
ldapexop -D cn=root -w root -op readconfig -scope subtree
 cn=AdminGroup,cn=Configuration
```

**Removing a member from the administrative group**

You must be the IBM Tivoli Directory Server administrator to perform this operation.

**Using Server Administration:**

To remove a member of the administrative group, on the Manage administrative group panel:

1. Select the member you want to remove.
2. Click Delete.
3. You are prompted to confirm the removal.
4. Click OK to delete the member or Cancel to return to the Manage administrative group panel without making any changes.

Repeat this procedure for each member you want to remove from the administrative group.

**Using the command line:**

To perform the same operations using the command line, issue the following command:

```
ldapdelete -D <adminDN> -w<adminPW> -i<filename>
```

where `<filename>` contains:

#list additional DNs here, one per line

dn: cn=admin1, cn=AdminGroup, cn=Configuration

To remove multiple members, list the DNs. Each DN must be on a separate line.

To update the settings dynamically, issue the following `ldapexop` command:

```
ldapexop -D cn=root -w root -op readconfig -scope subtree
 cn=AdminGroup,cn=Configuration
```

**Managing unique attributes**

The Unique Attributes feature ensures that specified attributes always have unique values within a directory. These attributes can be specified in two entries only, `cn=uniqueattribute,cn=localhost` and `cn=uniqueattribute,cn=IBMpolicies`. The values for a unique attribute are stored on the server where the attribute has been designated as unique. Search results for unique attributes are unique for that server’s database only. Search results that include results from referrals might not be unique.

**Note:** Binary attributes, operational attributes, configuration attributes, and the objectclass attribute cannot be designated as unique.
Creating a unique attributes group

**Note:** On a per attribute basis, language tags are mutually exclusive with unique attributes. If you designate a particular attribute as being a unique attribute, it cannot have language tags associated with it.

**Using Web Administration:**
Expand the Server administration category in the navigation area. Click Manage unique attributes.

1. Select the attribute that you want to add as a unique attribute from the Available attributes menu. The available attributes listed are those that can be designated as unique. For example, sn.

   **Note:** An attribute remains in the list of available attributes until it has been placed in both the cn=localhost and the cn=IBMpolicies containers.

2. Click either Add to cn=localhost or Add to cn=IBMpolicies. The difference between these two containers is that cn=IBMpolicies entries are replicated and cn=localhost entries are not. The attribute is displayed in the appropriate list box. You can list the same attribute in both containers.

   **Note:** If an entry is created under both cn=localhost and cn=IBMpolicies, the resultant union of these two entries is the consolidation of their unique attributes list. For example, if the attributes cn and employeeNumber are designated as unique in cn=localhost and the attributes cn and telephoneNumber are designated as unique on cn=IBMpolicies, the server treats the attributes cn, employeeNumber, and telephoneNumber as unique attributes.

3. Repeat this process for each attribute you want to add as a unique attribute.

4. Click OK to save your changes or click Cancel to exit this panel without making any changes.

**Using the command line:**
To designate that an attribute must have unique values, issue the following command:

```
ldapmodify -D <adminDN> -w<adminPW> -i<filename>
```

where `<filename>` contains:

```
dn: cn=uniqueattributes,cn=localhost
changetype: add
cn: uniqueattributes
ibm-UniqueAttributeTypes: sn
objectclass: top
objectclass: ibm-UniqueAttributeTypes
```

To add additional attributes, issue the command:

```
ldapmodify -D <adminDN> -w<adminPW> -i<filename>
```

where `<filename>` contains:

```
dn: cn=uniqueattributes,cn=localhost
cn: uniqueattributes
changetype: modify
add: ibm-UniqueAttributeTypes
ibm-UniqueAttributeTypes: AIXAdminUserId
```

```
- add: ibm-UniqueAttributeTypes
 ibm-UniqueAttributeTypes: adminGroupNames
```

IBM Tivoli Directory Server: IBM Tivoli Directory Server Administration Guide
When adding or modifying a unique attribute entry, if establishing a unique constraint for any of the listed unique attribute types results in errors, the entry is not added or created in the directory. The problem must be resolved and the command to add or modify must be reissued before the entry can be created or modified. For example, while adding a unique attribute entry to the directory, if establishing a unique constraint on a table for one of the listed unique attribute types failed (that is, because of having duplicate values in the database), a unique attribute entry is not added to the directory. An error DSA is unwilling to perform is issued.

**Note:** If an entry is created under both cn=localhost and cn=IBMpolicies, the resultant union of these two entries is the consolidation of their unique attributes list. For example, if the attributes cn and employeeNumber are designated as unique in cn=localhost and the attributes cn and telephoneNumber are designated as unique on cn=IBMpolicies, the server treats the attributes cn, employeeNumber, and telephoneNumber as unique attributes.

When an application tries to add an entry to the directory with a value for the attribute that duplicates an existing directory entry, an error with result code 20 (LDAP: error code 20 - Attribute or Value Exists) from the LDAP server is issued.

When the server starts, it checks the list of unique attributes and determines if the DB2 constraints exist for each of them. If the constraint does not exist for an attribute because it was removed by the bulkload utility or because it was removed manually by the user, it is removed from the unique attributes list and an error message is logged in the error log, ibmslapd.log. For example, if the attribute cn is designated as unique in cn=uniqueattributes,cn=localhost and there is no DB2 constraint for it the following message is logged:

```plaintext
Values for the attribute CN are not unique.
The attribute CN was removed from the unique attribute entry: CN=UNIQUEATTRIBUTES,CN=LOCALHOST
```

**Removing an attribute from the list of unique attributes**

To remove an attribute from the list of unique attributes, use either of the following methods.

**Note:** If a unique attribute exists in both cn=uniqueattribute,cn=localhost and cn=uniqueattribute,cn=IBMpolicies and it is removed from only one entry, the server continues to treat that attribute as a unique attribute. The attribute become nonunique when it has been removed from both entries.

**Using Web Administration:**
Expand the Server administration category in the navigation area. Click **Manage unique attributes**.

1. Select the attribute that you want to remove from the unique attributes list by clicking the attribute in the appropriate list box. For example AIXAdminUserId from the previous task.
2. Click **Remove**.
3. Repeat this process for each attribute you want to remove from the list.
4. Click **OK** to save your changes or click **Cancel** to exit this panel without making any changes.
Note: If you remove the last unique attribute from the cn=localhost or the cn=IBMpolicies list boxes, the container entry for that list box, cn=uniqueattribute,cn=localhost or cn=uniqueattribute,cn=IBMpolicies is automatically deleted.

Using the command line:
To remove an attribute from the list of unique attributes using the command line, issue the following command:

```
ldapmodify -D <adminDN> -w<adminPW> -i<filename>
```

where `<filename>` contains:

- `dn: cn=uniqueattributes,cn=localhost`
- `cn: uniqueattributes`
- `changetype: modify`
- `cn: uniqueattributes`
- `ibm-UniqueAttributeTypes: AIXAdminUserId`

To remove all of the unique attributes stored in, for example, cn=localhost issue the command:

```
ldapdelete -D <adminDN> -w<adminPW> "cn=uniqueattributes,cn=localhost"
```

By deleting “cn=uniqueattributes” entry from the directory, the unique constraints enforced on the unique attributes are dropped to allow nonunique values for the attributes again.
Chapter 9. Setting server properties

You can set the following properties for your server:

- "Changing server ports and enabling language tags"
- "Setting Searches" on page 50
- "Enabling and disabling transaction support" on page 57
- "Enabling and disabling event notification" on page 58
- "Adding and removing suffixes" on page 60
- "Creating and removing referrals" on page 62
- "Adding attributes to and removing attributes from the attribute cache" on page 67

While the Web Administration Tool is the preferred method, updates to the server configuration file can be made using LDAP utilities. The LDAP modify requests can be generated by:

- A C-application using the C-client provided with the IBM Tivoli Directory Server
- A Java application using JNDI
- Any other interface that generates a standard V3 LDAP.

Examples that are provided use the `ldapmodify` command line utility.

The `ldapmodify` command can be run either in interactive mode or with input specified in a file. For most examples in this guide, the file contents to be used with the `ldapmodify` command are supplied. The general form of the command to use with these files is:

`ldapmodify -D <adminDN> -w <password> -i <filename>`

To update the server configuration settings dynamically, you need to issue the following `ldapexop` commands. This command updates all configuration settings that are dynamic:

`ldapexop -D cn=root -w root -op readconfig -scope entire`

This command updates a single setting.

`ldapexop -D cn=root -w root -op readconfig -scope single <entry DN> <attribute>`

The `ldapexop` command updates only those attributes that are dynamic. For other changes to take effect you must stop and restart the server. See "Dynamically-changed attributes" on page 414 for a list of the attributes that can be updated dynamically. See Chapter 20, "Command line utilities", on page 263 for more information about the `ldapmodify` and `ldapexop` commands.

**Note:** Only the administrator and members of the administrative group are allowed to update the server configuration settings.

### Changing server ports and enabling language tags

**Note:** Remember, if you change the port setting for the server, you must also change the port settings for the server in the console. See "Managing the console" on page 21.
Using Web Administration:

Click the Manage server properties tab in the Web Administration navigation area to display the Manage server properties panel. This panel is displayed with the General tab preselected. The General panel has two read-only information fields, which display the host name of the server and the version level of the IBM Tivoli Directory Server that is installed on the machine.

This panel also has three modifiable required fields, Unsecure port (default value is 389), Secure port (default value 636) that display the respective current port numbers and a check box to enable and disable language tag support. If you want to change the port settings or enable language tags or both.

**Note:** The well-known ports are those from 0 through 1023. The registered ports are those from 1024 through 49151. The dynamic or private ports are those from 49152 through 65535.

1. Click Unsecure port and enter a number ranging from 49152 through 65535. For this example 399.
2. Click Secure port and enter a number ranging from 49152 through 65535. For this example 699.
3. Click the Enable language tag support check box to enable support for language tags. The default setting is disabled. See “Language tags” on page 200 for more information.
4. When you are finished, click Apply to save your changes without exiting, or click OK to apply your changes and exit, or click Cancel to exit this panel without making any changes.

If you have changed a port number, you must stop the server for changes to take effect. See “Starting and stopping the server” on page 24. After stopping the server you must also stop and start the administration daemon locally to resynchronize the ports. See Chapter 4, “Directory administration daemon”, on page 13. Restart the server.

Using the command line:

To determine whether the language tag feature is enabled, issue a root DSE search specifying the attribute “ibm-enabledCapabilities”.

```
ldapsearch -b "" -s base objectclass=* ibm-enabledCapabilities
```

If the OID "1.3.6.1.4.1.4203.1.5.4" is returned, the feature is enabled.

If the language tag support is not enabled, any LDAP operation that associate a language tag with an attribute is rejected with the error message: unrecognized attribute

To assign the ports that are not the default ports and to enable language tags using the command line, issue the following command:

```
ldapmodify -D <adminDN> -w <password> -i <filename>
```

where <filename> contains:

```
dn: cn=configuration
changetype: modify
replace: ibm-slapdPort
ibm-slapdPort: 399
```

```replace: ibm-slapdSecurePort
```
You must stop the server for changes to take effect. See “Starting and stopping the server” on page 24. After stopping the server you must also stop and start the administration daemon locally to resynchronize the ports. See Chapter 4, “Directory administration daemon”, on page 13.

You can change the search limits and connections settings to enhance performance.

Using Web Administration:

Expand the Manage server properties category in the navigation area of the Web Administration Tool, select the Performance tab.

1. Specify the Number of database connections. This sets the number of DB2 connections used by the server. The minimum number you must specify is 5. The default setting is 15. If your LDAP server receives a high volume of client requests or clients are receiving “connection refused” errors, you might see better results by increasing the setting of the number of connections made to DB2 by the server. The maximum number of connections is determined by the setting on your DB2 database. While there are no longer any server limitations upon the number of connections you specify, each connection does consume resources. Consult the IBM Tivoli Directory Server Version 5.2 Tuning Guide for the latest tuning recommendations for your system.

2. Specify the Number of database connections for replication. This sets the number of DB2 connections used by the server for replication. The minimum number you must specify is 1. The default setting is 4. Consult the IBM Tivoli Directory Server Version 5.2 Tuning Guide for the latest tuning recommendations for your system.

Note: The total number of connections specified for database connections and database connections for replication cannot exceed the number of connections set in your DB2 database.

3. Select Cache ACL information to use the following ACL cache settings. This option must be selected in order for the other cache setting options on this panel to take effect.

4. Specify the Maximum number of elements in ACL cache. The default is 25,000.

5. Specify the Maximum number of elements in entry cache. The default is 25,000.
6. Specify the **Maximum number of elements in search filter cache**. The default is 25,000. The search filter cache consists of actual queries on the requested attribute filters and resulting entry identifiers that matched. On an update operation, all filter cache entries are invalidated.

7. Specify the **Maximum number of elements from a single search added to search filter cache**. If you select **Elements**, you must enter a number. The default is 100. Otherwise, select **Unlimited**. Search entries that match more entries than the number specified here are not added to the search filter cache.

8. When you are finished, click **Apply** to save your changes without exiting, or click **OK** to apply your changes and exit, or click **Cancel** to exit this panel without making any changes.

9. If you are setting the number of database connections, you must restart the server for the changes to take effect. If you were modifying only the settings, the server does not need to be restarted.

**Using the command line:**

To perform the same operations using the command line, issue the following command:

```
ldapmodify -D <adminDN> -w<adminPW> -i<filename>
```

where `<filename>` contains:

```diff
dn: cn=Directory,cn=RDBM Backends,cn=IBM Directory,cn=Schemas,cn=Configuration
changetype: modify
replace: ibm-slapdDbConnections
ibm-slapdDbConnections: 15
 -
replace: ibm-slapdRep1DbConns
ibm-slapdRep1DbConns: 4

dn: cn=Front End, cn=Configuration
changetype: modify
replace: ibm-slapdACLCache
ibm-slapdACLCache: TRUE
 -
replace: ibm-slapdACLCacheSize
ibm-slapdACLCacheSize: 25000
 -
replace: ibm-slapdEntryCacheSize
ibm-slapdEntryCacheSize: 25000
 -
replace: ibm-slapdFilterCacheSize
ibm-slapdFilterCacheSize: 25000
 -
replace: ibm-slapdFilterCacheBypassLimit
ibm-slapdFilterCacheBypassLimit: 100
```

To update the settings dynamically, issue the following `ldapexop` command:

```
ldapexop -D cn=root -w root -op readconfig -scope entire
```

The `ldapexop` command updates only those attributes that are dynamic. For other changes to take effect you must stop and restart the server. See "Dynamically-changed attributes" on page 414 for a list of the attributes that can be updated dynamically.

**Setting Searches**

You can set search parameters to control users' search capabilities, such as paged and sorted searching.
Paged results allow you to manage the amount of data returned from a search request. You can request a subset of entries (a page) instead of receiving all the results at once. Subsequent search requests display the next page of results until the operation is canceled or the last result is returned. Sorted search allows a client to receive search results sorted by a list of criterion, where each criteria represents a sort key. This selection moves the responsibility of sorting from the client application to the server, where it might be done more efficiently.

A directory entry with objectclass of ‘alias’ or ‘aliasObject’ contains an attribute ‘aliasedObjectName’ that is used to reference another entry in the directory. Only search requests can specify if aliases are dereferenced. Dereferencing means to trace the alias back to the original entry. The IBM Tivoli Directory Server response time for searches with the alias dereferencing option set to always or search might be significantly longer than that of searches with dereferencing option set to never, if alias entries exist in the directory.

The server side dereference option can be set to never, find, search, or always. This option value is combined with the deference option value specified in a search request by a logical AND operation. The resulting value is used as the dereference option in the search operation.

Using Web Administration:

Expand the Manage server properties category in the navigation area of the Web Administration Tool, select the Search settings tab.

1. Set the Search size limit. Click either the Entries or the Unlimited radio button. If you select Entries, you need to specify in the field the maximum number of entries a search returns. The default setting is 500. If more entries fit the search criteria, they are not returned. This limit does not apply to the administrator.

2. Set the Search time limit. Click either the Seconds or the Unlimited radio button. If you select Entries, you need to specify in the field the maximum amount of time the server spends processing the request. The default setting is 900. This limit does not apply to the administrator.

3. To restrict search sorting capabilities to administrators, select the Only allow administrators to sort searches checkbox.

4. To restrict search paging capabilities to administrators, select the Only allow administrators to page searches checkbox.

5. To set the level of alias dereferencing, expand the drop-down menu for Alias dereferencing and select one of the following. The default setting is always.

   - never  Aliases are never dereferenced
   - find   Aliases are dereferenced when finding the starting point for the search, but not when searching under that starting entry.
   - search Aliases are dereferenced when searching the entries beneath the starting point of the search, but not when finding the starting entry.
   - always Aliases are always dereferenced, both when finding the starting point for the search, and also when searching the entries beneath the starting entry. Always is the default setting.

Note: This option is available only if your server supports dereferencing aliases.
6. Specify in seconds the time to wait (idle time out) for paged searches. Paged searches require an open connection between the LDAP server and the DB2 database where the LDAP data is stored. The idle time out administrative limit is designed to age out DB2 database connections held open for paged results search requests.

7. Specify the maximum number of concurrent paged searches allowed by the server at any given time. The default setting is 3.

8. Specify the maximum number of attributes used for sorting in sorted searches. The default setting is 3.

9. When you are finished, click Apply to save your changes without exiting, or click OK to apply your changes and exit, or click Cancel to exit this panel without making any changes.

See “Extended controls for search” on page 53 for additional information about searches.

Using the command line:

To perform the same operations using the command line, issue the following command:

```
ldapmodify -D <adminDN> -w<adminPW> -i<filename>
```

where <filename> contains:

```ldif
dn: cn=Configuration
changetype: modify
replace: ibm-slapdTimeLimit
ibm-slapdTimeLimit: 900
-
replace : ibm-slapdDerefAliases
ibm-slapdDerefAliases: {never|find|search|always}
-
replace: ibm-slapdSizeLimit
ibm-slapdSizeLimit: 500
```

dn: cn=Directory,cn=RDBM Backends,cn=IBM Directory,cn=Schemas,cn=Configuration
changetype: modify
replace: ibm-slapdPagedResAllowNonAdmin
ibm-slapdPagedResAllowNonAdmin: false
-
replace: ibm-slapdPagedResLmt
ibm-slapdPagedResLmt: 3
-
replace: ibm-slapdSortKeyLimit
ibm-slapdSortKeyLimit: 3
-
replace:
ibm-slapdSortSrchAllowNonAdmin: false

dn: cn=Front End, cn=Configuration
changetype: modify
replace: ibm-slapdIdleTimeOut
ibm-slapdIdleTimeOut: 300
```

To update the settings dynamically, issue the following ldapexop command:

```
ldapexop -D cn=root -w root -op readconfig -scope entire
```

See “ldapsearch” on page 290 for information on how to perform searches using the command line.
Extended controls for search

The search function searches for a filter match on only the first 240 bytes of an attribute if indexing is enabled for that attribute. Additionally, if sort is specified on a search request, the server sorts the entries found by the search using only the first 240 bytes. Any end user or client application needs to take into consideration that a match for a search filter that exists in a value after the first 240 bytes might not be returned to the client depending on whether indexing is enabled for that table.

Note: This restriction is specific to the IBM Tivoli Directory Server. IBM LDAP servers on other platforms, including z/OS™ and OS/400® might have different restrictions. Consult the documentation for each platform to determine restrictions.

The administrator can tell if indexing has been enabled for an attribute by looking at the attribute definition in the Web Administration Tool, (Schema management -> Manage attributes -> <attributename> -> Edit ->IBM extensions) or by looking at the attribute definition returned by a search of cn=schema. When viewing an attribute definition in the Web Administration Tool, the IBM extensions tab displays the following:

Indexing rules
- Equality
- Ordering
- Approximate
- Substring
- Reverse

The appropriate indexing rules are checked for the attribute. If the ldapsearch utility is used, the ibmattributetypes value contains the keywords: APPROX, EQUALITY, ORDERING, SUBSTR or REVERSE. For example, the ‘cn’ attribute has the following indexes defined:

attributetypes=(2.5.4.3 NAME ('cn' 'commonName') DESC 'This is the X.500 commonName attribute, which contains a name of an object. If the object corresponds to a person, it is typically the persons full name.' SUP 2.5.4.41 EQUALITY 2.5.13.2 ORDERING 2.5.13.3 SUBSTR 2.5.13.4)
ibmattributetypes=(2.5.4.3 DBNAME ('cn' 'cn') ACCESS-CLASS NORMAL LENGTH 256 EQUALITY ORDERING SUBSTR APPROX)

See "Indexing rules" on page 122.

Sorted search control

Sorted Search Results provides sort capabilities for LDAP clients that have limited or no sort functionality. Sorted Search Results allows an LDAP client to receive search results sorted based on a list of criteria, where each criteria represents a sort key. The sort criteria includes attribute types, matching rules, and descending order. The server uses this criteria to sort search results before returning them. This moves the responsibility of sorting from the client application to the server, where it might be done much more efficiently. For example, a client application might want to sort the list of employees at the company’s Grand Cayman site by surname, common name, and telephone number. Instead of building the search list twice so it can be sorted (once at the server and then again at the client after all the results are returned), the search list is built only once, and then sorted, before returning the results to the client application.

The server sorts search entries based on attributes and by default allows a maximum of three sort keys (attribute names) per search operation. To change the
value of this administrative limit, change the following line, \texttt{ibm-slapdSortKeyLimit: 3}, in the ibmslapd.conf file. See "Setting Searches" on page 50 for information on how to do this. If the line does not exist, add it to set the new maximum (if the line does not exist, the server is using the default value).

By default the server honors requests from nonadministrator binds, including those binding anonymously. Because sorting search results before returning them uses more server resources than simply returning them, you might want to configure the server to honor only requests from users binding with administrator authority. To honor sorted search requests submitted using only administrator bind, change the following line, \texttt{ibm-slapdSortSrchAllowNonAdmin: true} to \texttt{ibm-slapdSortSrchAllowNonAdmin: false}, in the ibmslapd.conf file. See "Setting Searches" on page 50. If the line does not exist, add it with a value of false to allow only administrator binds. See "Adding search attributes example" on page 56.

The LDAP server returns all referrals to the client at the end of a search request. It is up to the application using the client services to decide whether to set the criticality of the sorted search request, and to handle a lack of support of those controls on referral servers as appropriate based on the application. Additionally, the LDAP server does not ensure that the referral server supports the sorted search control. Multiple lists could be returned to the client application, some not sorted. It is the client application’s decision as to how to best present this information to the end user. Possible solutions include: combine all referral results before presenting to the end user; show multiple lists and the corresponding referral server host name; take no extra steps and show all results to the end user as they are returned from the server. The client application must turn off referrals to get one truly sorted list, otherwise when chasing referrals with sorted search controls specified, unpredictable results might occur.

It is important to note when taking advantage of the server sorted search results that:

- The server takes advantage of the underlying DB2 database to perform sorting of search results. This means that there might be different sorted search results based on the data code page for the database (especially if your database code page is UTF-8).
- Matching rules specified for a sort key attribute are ignored by the server. At this time, matching rules are not supported by the server.
- There is no support for multi-server sorting (referrals). The server cannot guarantee that referred servers support sorted search results.

More information about the server side sorted search control can be found in RFC 2891. The control OID for sorted search results is 1.2.840.113556.1.4.473, and is included in the Root DSE information as a supported control.

Simple paged results
Simple Paged Results provides paging capabilities for LDAP clients that want to receive just a subset of search results (a page) instead of the entire list. The next page of entries is returned to the client application for each subsequent paged results search request submitted by the client until the operation is canceled or the last result is returned. The server ignores a simple paged results request if the page size is greater than or equal to the sizeLimit value for the server because the request can be satisfied in a single operation.
Because paging of search results holds server resources throughout the life of the simple paged results request, there are several new administrative limits employed to ensure that server resources cannot be abused, or misused, through the use of simple paged results search requests.

ibm-slapdPagedResAllowNonAdmin
By default, the server honors requests from non-administrator binds, including those binding anonymously. If you want the server to honor simple paged results search requests only from users binding with administrator authority, you need to change the following line,

```
ibm-slapdPagedResAllowNonAdmin: true
```

to

```
ibm-slapdPagedResAllowNonAdmin: false
```

in the ibmslapd.conf file. See “Setting Searches” on page 50. If the line does not exist, add it with a value of false to allow only Administrator bind. See “Adding search attributes example” on page 56.

ibm-slapdPagedResLmt
By default, the server allows a maximum of three outstanding simple paged results operations at any given time. To ensure the fastest response for subsequent simple paged results request, the server holds a database connection open throughout the life of the search request until the user cancels the simple paged results request, or the last result is returned to the client application. This administrative limit is designed to ensure that other operations being handled by the server are not denied service because all database connections are in use by outstanding simple paged results search requests. For consistent results, set the `ibm-slapdPagedResLmt` value lower than the maximum number of database connections for your server. To change the value of this administrative limit, change the following line,

```
ibm-slapdPagedResLmt: 3
```

in the ibmslapd.conf file. See “Setting Searches” on page 50. If the line does not exist add it to set the new maximum (if the line does not exist, the server is using the default value). See “Adding search attributes example” on page 56.

ibm-slapdPagedSizeLmt
By default, the server returns a maximum of 50 search results for a single page. If you would like to set a different page size maximum, you can change the following line, `ibm-slapdPagedSizeLmt: 50`, in the ibmslapd.conf file.

Note: `ibm-slapdPagedSizeLmt` is supported on IBM Directory Servers versions 4.1 and 5.1. The IBM Tivoli Directory Server version 5.2 does not support `ibm-slapdPagedSizeLmt`.

ibm-slapdIdleTimeOut
The idle time out administrative limit is designed to age out DB2 database connections held open for simple paged results search requests. The default idle time for a simple paged results request is 500 seconds. For example, if a client application were to pause for 510 seconds between pages, the server would age out the request in order to free the database connection for use by other server operations. The server returns the appropriate error to the client application for the next simple paged results request submitted, at which point the client application needs to restart the simple paged results request. The idle timer for each simple paged results request is restarted after every page returned to the client application. The server checks for aged out simple paged results request every 5 seconds, so if you set the value of `ibm-slapdIdleTimeOut` value lower than 5 seconds, you still have to wait 5 seconds for the simple paged results requests to be
The LDAP server returns all referrals to the client at the end of a search request, the same as a search without any controls. That means that if the server has 10 pages of results returned, all the referrals are returned on the 10th page, not at the end of each page. When chasing referrals, the client application needs to send in an initial paged results request, with the cookie set to null, to each of the referral servers. It is up to the application using the client services to decide whether or not to set the criticality as to the support of paged results, and to handle a lack of support of this control on referral servers as appropriate based on the application. Additionally, the LDAP server does not ensure that the referral server supports paged results controls. Multiple lists could be returned to the client application, some not paged. It is at the client application’s decision as to how to best present this information to the end user. Possible solutions include: combine all referral results before presenting to the end user; show multiple lists and the corresponding referral server host name; take no extra steps and show all results to the end user as they are returned from the server. The client application must turn off referrals to get one truly paged list, otherwise when chasing referrals with the paged results search control specified, unpredictable results might occur.

More information about the server side simple paged results control can be found in RFC 2686. The control OID for simple paged results is 1.2.840.113556.1.4.319, and is included in the Root DSE information as a supported control.

Adding search attributes example

```
ldapmodify -D <adminDN> -w<adminPW> -i<filename>
```

where `<filename>` contains:
```
dn: cn=Directory,cn=RDBM Backends,cn=IBM Directory,cn=Schemas,cn=Configuration
 changetype: add
 add: ibm-slapdSortSrchAllowNonAdmin
 ibm-slapdSortSrchAllowNonAdmin: TRUE
 -
 add: ibm-slapdSortKeyLimit
 ibm-slapdSortKeyLimit: 3
 -
 add: ibm-slapdPagedResAllowNonAdmin
 ibm-slapdPagedResAllowNonAdmin: TRUE
 -
 add: ibm-slapdPagedResLmt
 ibm-slapdPagedResLmt: 3
 -
 add: ibm-slapdPagedSizeLmt
 ibm-slapdPagedSizeLmt: 50
 -
 add: ibm-slapIdleTimeOut
 ibm-slapIdleTimeOut: 300
```

To update the settings dynamically, issue the following `ldapexop` command:
```
ldapexop -D cn=root -w root -op readconfig -scope entire
```
Enabling and disabling transaction support

Transaction processing enables an application to group a set of entry updates together in one operation. Normally each individual LDAP operation is treated as a separate transaction with the database. Grouping operations together is useful when one operation is dependent on another operation because if one of the operations fails, the entire transaction fails. Transaction settings determine the limits on the transaction activity allowed on the server.

Enabling transaction support

To enable transaction support use one of the following procedures.

Using Web Administration:
Expand the Manage server properties category in the navigation area of the Web Administration Tool, select the Transactions tab.

1. Select the Enable transaction processing check box to enable transaction processing. If Enable transaction processing is disabled, all other options on this panel, such as Maximum number of operations per transaction and Pending time limit, are ignored by the server.
2. Set the Maximum number of transactions. Click either the Transactions or the Unlimited radio button. If you select Transactions, you need to specify in the field the maximum number of transactions. The maximum number of transactions is 2,147,483,647. The default setting is 20 transactions.
3. Set the Maximum number of operations per transaction. Click either the Operations or the Unlimited radio button. If you select Operations, you need to specify in the field the maximum number of operations allowed for each transaction. The maximum number of operations is 2,147,483,647. The smaller the number, the better the performance. The default is 5 operations.
4. Set the Pending time limit. This selection sets the maximum timeout value of a pending transaction in seconds. Click either the Seconds or the Unlimited radio button. If you select Seconds, you need to specify in the field the maximum number of seconds allowed for each transaction. The maximum number of seconds is 2,147,483,647. Transactions left uncompleted for longer than this time are cancelled (rolled back). The default is 300 seconds.
5. When you are finished, click Apply to save your changes without exiting, or click OK to apply your changes and exit, or click Cancel to exit this panel without making any changes.
6. If you have enabled transaction support, you must restart the server for the changes to take effect. If you were modifying only the settings, the server does not need to be restarted.

Using the command line:
To perform the same operations using the command line, issue the following command:

```
ldapmodify -D <adminDN> -w<adminPW> -i<filename>
```

where <filename> contains:

dn: cn=Transaction,cn=Configuration
changetype: modify
replace: ibm-slapdTransactionEnable
ibm-slapdTransactionEnable: TRUE
-
replace: ibm-slapdMaxNumOfTransactions
ibm-slapdMaxNumOfTransactions: 20
-
replace: ibm-slapdMaxOpPerTransaction
ibm-slapdMaxOpPerTransaction: 5
-
replace: ibm-slapdMaxTimeLimitOfTransactions
ibm-slapdMaxTimeLimitOfTransactions: 300

To update the settings dynamically, issue the following `ldapexop` command:
`ldapexop -D cn=root -w root -op readconfig -scope entire`

The `ldapexop` command updates only those attributes that are dynamic. For other changes to take effect you must stop and restart the server. See “Dynamically-changed attributes” on page 414 for a list of the attributes that can be updated dynamically.

Disabling transaction support

To disable transaction processing, use one of the following procedures.

Using Web Administration:
Expand the Manage server properties category in the navigation area of the Web Administration Tool, select the Transactions tab.
1. Deselect the Enable transaction processing check box to enable transaction processing.
2. When you are finished, click Apply to save your changes without exiting, or click OK to apply your changes and exit, or click Cancel to exit this panel without making any changes.
3. You must restart the server for the changes to take effect.

Using the command line:
To perform the same operations using the command line, issue the following command:
`ldapmodify -D <adminDN> -w<adminPW> -i<filename>

where <filename> contains:
`dn: cn=Transaction,cn=Configuration
changetype: modify
replace: ibm-slapdTransactionEnable
ibm-slapdTransactionEnable: False`

You must restart the server for the changes to take effect.

See the IBM Tivoli Directory Server Version 5.2 C-Client SDK Programming Reference for more information about transaction support.

Enabling and disabling event notification

The event notification function allows a server to notify a registered client that an entry in the directory tree has been changed, added, or deleted. This notification is in the form of an unsolicited message.

When an event occurs, the server sends a message to the client as an LDAP v3 unsolicited notification. The messageID is 0 and the message is in the form of an extended operation response. The responseName field is set to the registration OID. The response field contains the unique registration ID and a timestamp for when the event occurred. The time field is in UTC time format.
Note: When a transaction occurs, the event notifications for the transaction steps cannot be sent until the entire transaction is completed.

Enabling event notification

To enable event notification, use one of the following procedures.

Using Web Administration:
Expand the **Manage server properties** category in the navigation area of the Web Administration Tool, select the **Event notification** tab.

1. Select the **Enable event notification** check box to enable event notification. If **Enable event notification** is disabled, the server ignores all other options on this panel.

2. Set the **Maximum registrations per connection**. Click either the **Registrations** or the **Unlimited** radio button. If you select **Registrations**, you need to specify in the field the maximum number of registrations allowed for each connection. The maximum number of transactions is 2,147,483,647. The default setting is 100 registrations.

3. Set the **Maximum registrations total**. This selection sets how many registrations the server can have at any one time. Click either the **Registrations** or the **Unlimited** radio button. If you select **Registrations**, you need to specify in the field the maximum number of registrations allowed for each connection. The maximum number of transactions is 2,147,483,647. The default number of registrations is **Unlimited**.

4. When you are finished, click **Apply** to save your changes without exiting, or click **OK** to apply your changes and exit, or click **Cancel** to exit this panel without making any changes.

5. If you have enabled event notification, you must restart the server for the changes to take effect. If you were modifying only the settings, the server does not need to be restarted.

Using the command line:
To perform the same operations using the command line, issue the following command:

```
ldapmodify -D <adminDN> -w<adminPW> -i<filename>
```

where `<filename>` contains:
```
dn: cn=Event Notification,cn=Configuration
changetype: modify
replace: ibm-slapdEnableEventNotification
ibm-slapdEnableEventNotification: TRUE
-
replace: ibm-slapdMaxEventsPerConnection
ibm-slapdMaxEventsPerConnection: 100
-
replace: ibm-slapdMaxEventsTotal
ibm-slapdMaxEventsTotal: 0
```

If you have enabled event notification, you must restart the server for the changes to take effect. If you were modifying only the settings, the server does not need to be restarted.

To update the settings dynamically, issue the following **ldapexop** command:

```
ldapexop -D cn=root -w root -op readconfig -scope entire
```
The `ldapexop` command updates only those attributes that are dynamic. For other changes to take effect you must stop and restart the server. See "Dynamically-changed attributes” on page 414 for a list of the attributes that can be updated dynamically.

Disabling event notification

To disable event notification, use one of the following procedures.

Using Web Administration:
Expand the **Manage server properties** category in the navigation area of the Web Administration Tool, select the **Event notification** tab.

1. Deselect the **Enable event notification** check box to enable transaction processing.
2. When you are finished, click **Apply** to save your changes without exiting, or click **OK** to apply your changes and exit, or click **Cancel** to exit this panel without making any changes.
3. You must restart the server for the changes to take effect.

Using the command line:
To perform the same operations using the command line, issue the following command:

```
ldapmodify -D <adminDN> -w<adminPW> -i<filename>
```

where `<filename>` contains:

- `dn: cn=Event Notification,cn=Configuration`
- `changetype: modify`
- `replace: ibm-slapdEnableEventNotification`
- `ibm-slapdEnableEventNotification: FALSE`

You must restart the server for the changes to take effect.

See the *IBM Tivoli Directory Server Version 5.2 C-Client SDK Programming Reference* for more information about event notification.

Adding and removing suffixes

A suffix is a DN that identifies the top entry in a locally held directory hierarchy. Because of the relative naming scheme used in LDAP, this DN is also the suffix of every other entry within that directory hierarchy. A directory server can have multiple suffixes, each identifying a locally held directory hierarchy, for example, `o=ibm,c=us`.

Note: The specific entry that matches the suffix must be added to the directory.

Entries to be added to the directory must have a suffix that matches the DN value, such as `ou=Marketing,o=ibm,c=us`. If a query contains a suffix that does not match any suffix configured for the local database, the query is referred to the LDAP server that is identified by the default referral. If no LDAP default referral is specified, the result returned indicates that the object does not exist.

Creating or adding suffixes

To create or add a suffix, use one of the following methods.
Using Web Administration:

Note: Defined suffixes such as cn=localhost, cn=pwdpolicy, and cn=ibmpolicies cannot be added or removed. Consequently, they are not displayed in the panel.

Expand the Manage server properties category in the navigation area of the Web Administration Tool, select the Suffixes tab.

1. Enter the Suffix DN, for example, c=Italy. The maximum is 1000 characters for a suffix.
2. Click Add.
3. Repeat this process for as many suffixes as you want to add.
4. When you are finished, click Apply to save your changes without exiting, or click OK to apply your changes and exit, or click Cancel to exit this panel without making any changes.

Using the command line:

To add suffixes using the command line, issue the following command:

```
ldapmodify -D <adminDN> -w<adminPW> -i<filename>
```

where <filename> contains:

```
DN: cn=Directory, cn=RDBM Backends, cn=IBM Directory, cn=Schemas, cn=Configuration
changetype: modify
add: ibm-slapdSuffix
ibm-slapdSuffix: <suffixname>
ibm-slapdSuffix: <suffix2>
ibm-slapdSuffix: <suffix3>
```

To update the settings dynamically, issue the following ldapexop command:

```
ldapexop -D cn=root -w root -op readconfig -scope single "cn=Directory, cn=RDBM Backends,cn=IBM Directory,cn=Schemas,cn=Configuration" ibm-slapdSuffix
```

Removing a suffix

To remove a suffix use, one of the following methods.

Using Web Administration:

Note: Defined suffixes such as cn=localhost, cn=pwdpolicy, and cn=ibmpolicies cannot be added or removed. Consequently, they are not displayed in the panel.

Expand the Manage server properties category in the navigation area of the Web Administration Tool, select the Suffixes tab.

1. From the Current suffix DNs list box, select the suffixes you want to remove.
2. Click Remove.
3. When you are finished, click Apply to save your changes without exiting, or click OK to apply your changes and exit, or click Cancel to exit this panel without making any changes.

Using the command line:

Note: The removal of system defined suffixes such as cn=localhost, cn=pwdpolicy, and cn=ibmpolicies is not supported.
To perform the same operations using the command line, issue the following command:

```
ldapmodify -D <adminDN> -w<adminPW> -i<filename>
```

where `<filename>` contains:

```
DN: cn=Directory, cn=RDBM Backends, cn=IBM Directory, cn=Schemas, cn=Configuration
changetype: modify
delete: ibm-slapdSuffix
ibm-slapdSuffix: <suffixname>
ibm-slapdSuffix: <suffix2>
ibm-slapdSuffix: <suffix3>
```

You must restart the server for the change to take effect.

To update the settings dynamically, issue the following `ldapexop` command:

```
ldapexop -D cn=root -w root -op readconfig -scope single "cn=Directory,
cn=RDBM Backends,cn=IBM Directory,cn=Schemas,cn=Configuration" ibm-slapdSuffix
```

Note: You can also use the configuration utilities, `ldapcfg`, `ldapucfg`, and `ldapxcfg` to add and remove suffixes. See the *IBM Tivoli Directory Server Version 5.2 Installation and Configuration Guide* for more information about these utilities.

Creating and removing referrals

Referrals provide a way for servers to refer clients to additional directory servers. A referral specifies the URL of an alternate LDAP server. This alternate server handles any requests for objects that are not found within any of the subtrees of the current LDAP server. With referrals you can:

- Distribute namespace information among multiple servers
- Provide knowledge of where data is located within a set of interrelated servers
- Route client requests to the appropriate server

Some of the advantages of using referrals are the ability to:

- Distribute processing overhead, providing primitive load balancing
- Distribute administration of data along organizational boundaries
- Provide potential for widespread interconnection, beyond an organization’s own boundaries

Note: On the Linux, Solaris, and HP-UX platforms, if a client hangs while chasing referrals, ensure that the environment variable LDAP_LOCK_REC has been set in your system environment. No specific value is required.

```
set LDAP_LOCK_REC=anyvalue
```

Creating referrals

Using the Web Administration utility is the recommended method to create and remove referrals.

Using Web Administration:

Expand the Manage server properties category in the navigation area of the Web Administration Tool, select the Referrals tab.

1. Enter a referral URL beginning with the initial value `ldap://`. The maximum length is 32700 characters.
2. Click Add.
3. Repeat this process for as many referrals as you want to add.
4. You can select a referral and change its position in the referral list by clicking Move up or Move down. Each click moves the selected referral one position in the list. You can do multiple clicks, until the selected referral is in the position you want. This is the order that the referrals are saved in the configuration file.

5. When you are finished, click Apply to save your changes without exiting, or click OK to apply your changes and exit, or click Cancel to exit this panel without making any changes.

You must restart the server for the changes to take effect.

Using the command line:
Define a default referral to reference a directory on another server. The default referral can be used to point to:
- The immediate parent of this server (in a hierarchy)
- A "more knowledgeable" server, such as the uppermost server in the hierarchy
- A "more knowledgeable" server that possibly serves a disjoint portion of the namespace

Note: The default referral LDAP URL does not include the DN portion. It includes only the ldap:// identifier and the hostname:port.

For example:

```
ldapadd -D <adminDN> -w <adminpw> -i <filename>
```

where `<filename>` contains:
```
# referral
dn: cn=Referral, cn=Configuration
cn: Referral
ibm-slapdReferral: ldap://<additional hostname:port>
ibm-slapdReferral: ldap://<additional hostname:port>
objectclass: ibm-slapdReferral
objectclass: top
objectclass: ibm-slapdConfigEntry
```

Removing referrals
To remove a referral, use one of the following methods.

Using Web Administration:
Expand the Manage server properties category in the navigation area of the Web Administration Tool, select the Referrals tab.

1. From the Current referrals section, select the referral you want to remove.
2. Click Remove.
3. A confirmation panel is displayed. Click OK to remove the referral or click Cancel to return to the previous panel without making any changes.
4. Repeat this process for as many referrals as you want to remove.
5. When you are finished, click Apply to save your changes without exiting, or click OK to apply your changes and exit, or click Cancel to exit this panel without making any changes.

You must restart the server for the changes to take effect.

Using the command line:
To delete a single default referral, for example, austin.ibm.com:389, issue the command:

```
ldapmodify -D <adminDN> -w <adminpw> -i <filename>
```
where <filename> contains:

dn: cn=referral, cn= configuration
changeType: modify
delete: ibm-slapdReferral

To delete all default referrals:
ldapdelete -D <adminDN> -w <adminPW> "cn=referral,cn=configuration"

Setting up referrals to other LDAP directories

This section describes how to use the referral object class and the ref attribute to construct entries in an LDAP directory containing references to other LDAP directories. This section also describes how to associate multiple servers using referrals and provides an example.

Using the referral object class and the ref attribute

The referral object class and the ref attribute are used to facilitate distributed name resolution or to search across multiple servers. The ref attribute appears in an entry named in the referencing server. The value of the ref attribute points to an entry maintained in the referenced server.

Creating entries: Following is an example configuration that illustrates the use of the ref attribute.

```
Server A
  dn: o=ABC, c=US
  ref: ldap://hostB/o=ABC, c=US
  objectClass: referral

Server B
  dn: o=ABC, c=US
  ref: LDAP://hostD/o=XYZ, c=US
  objectClass: referral

Server C
  dn: o=ABC, c=US
  ref: LDAP://hostD/o=XYZ, c=US
  objectClass: referral
```

Figure 1. Example of using the referral attribute

In the example, Server A holds references to two entries: o=ABC, c=US and o=XYZ, c=US. For the o=ABC, c=US entry, Server A holds a reference to Server B and for the o=XYZ, c=US entry, Server A holds a reference to Server C.

One setup of referrals is to structure the servers into a hierarchy based on the subtrees they manage. Then, provide “forward” referrals from servers that hold higher (closer to the root of the hierarchy) information and set the default referral to point back to its parent server.

Associating servers with referrals: To associate servers through referrals:
- Use referral objects to point to other servers for subordinate references.
- Define the default referral to point somewhere else, typically to the parent server.
Note: Referral objects can be seen from command line LDAP utilities by specifying the -M option.

Pointing to other servers: Use referral objects to point to the other servers for subordinate references, that is, portions of the namespace below this server that it does not service directly.

Referral objects, like other objects, go in the backend (DB2). Referral objects consist of:

- **dn:** Specifies the distinguished name. It is the portion of the namespace served by the referenced server.

- **objectclass:** Specifies the value of the objectclass "referral".

- **ref:** Specifies the LDAP Web address of the server. This Web address consists of the ldap:// identifier, the hostname:port, and a DN. The identifier can be either a host name string or a TCP/IP address. The DN requires a slash (\/) before it to delimit it from the hostname:port, and should match the DN of the referral object. The DN specified in the value of the referral attribute should match the DN of the referral object. Typically, it is an entry in a naming context at or below the naming context held by the referencing server.

```
dn: o=IBM,c=US
objectclass: referral
ref: ldap://9.130.25.51:389/o=IBM,c=US
```

Binding with a distributed namespace

When performing searches, the same DN that was used to bind or log in to the original server is used to bind to the referred-to server, unless the IBM Directory application is designed to modify the bind DN and credentials. The correct access must be set up for the same DN to be able to bind to both servers for chasing the referrals. See "Logging on to the Web Administration Tool" on page 23 for additional information.

An example of distributing the namespace through referrals

Following are the steps involved in distributing the namespace using referrals.

1. Plan your namespace hierarchy.
 - country - US
 - company - IBM, Lotus
 - organizationalUnit - IBM Austin, IBM Endicott, IBM Raleigh, IBM HQ

2. Set up multiple servers, each containing portions of the namespace.
Server descriptions:

Server A
A server used to locate other servers in the U.S. With no other knowledge, clients can come here first to locate information for anyone in the U.S.

Server B
A hub for all data pertaining to IBM in the U.S. Holds all HQ information directly. Holds all knowledge (referrals) of where other IBM data is located.

Server C
Holds all IBM Austin information.

Server D
Holds all IBM Endicott information.

Server E
Holds all Lotus® information.

3. Set up referral objects to point to the descendants in other servers.

Figure 3. Server A database (LDIF input)

Servers can also define a default referral, which is used to point to a "more knowledgeable" server for anything that is not underneath them in the namespace.

Note: The default referral LDAP Web address does not include the DN portion.

Following is an arrangement of the same five servers, showing the referral objects in the database as well as the default referrals that are used for superior references.
Adding attributes to and removing attributes from the attribute cache

The attribute cache has the advantage of being able to resolve filters in memory rather than in the database. It also has the advantage on not being flushed like the filter cache each time an LDAP add, delete, modify, or modrdn operation is performed.

In deciding which attributes you want to store in memory, you need to consider:
- The amount of memory available to the server
• The size of the directory
• The types of search filters the application typically uses

Typically you want to put a limited number of attributes into the attribute cache because of memory constraints. To help determine which attributes you want to cache, view the Directory cache candidate list and Changelog cache candidate list for the 10 most frequently used attribute search filters by your applications. See "Checking server status" on page 25 for more information.

Setting up and adding attributes to the attribute cache

To set up and add attributes to the attribute cache, use one of the following methods.

Using Web Administration:
Expand the Manage server properties category in the navigation area of the Web Administration Tool, select the Attribute cache tab.
1. You can change the amount of memory in bytes available to the directory cache. The default is 16384000 kilobytes (16 KB).
2. You can change the amount of memory in bytes available to the changelog cache. The default is 16384000 kilobytes (16 KB).

Note: This selection is disabled if a changelog has not been configured.
3. Select the attribute that you want to add as a unique attribute from the Available attributes menu. Only those attributes that can be designated as unique are displayed in this menu. For example, sn.

Note: An attribute remains in the list of available attributes until it has been placed in both the cn=directory and the cn=changelog containers.
4. Click either Add to cn=directory or Add to cn=changelog. The attribute is displayed in the appropriate list box. You can list the same attribute in both containers.

Note: Add to cn=changelog is disabled if a changelog has not been configured.
5. Repeat this process for each attribute you want to add to the attribute cache.
6. When you are finished, click Apply to save your changes without exiting, or click OK to apply your changes and exit, or click Cancel to exit this panel without making any changes.

Using the command line:
To create the directory and changelog attribute caches with the same attributes, issue the following command:

```
ldapmodify -D <adminDN> -w<adminPW> -i<filename>
```

where <filename> contains:

```
dn: cn=Directory, cn=RDBM Backends, cn=IBM Directory, cn=Schemas, cn=Configuration
changetype: modify
add: ibm-slapdCachedAttribute
ibm-slapdCachedAttribute: sn
-
add: ibm-slapdCachedAttribute
ibm-slapdCachedAttribute: cn
-
add: ibm-slapdcachedattributesize
ibm-slapdcachedattributesize: 16384000
```

```
dn: CN=CHANGE LOG, cn=RDBM Backends, cn=IBM Directory, cn=Schemas, cn=Configuration
```
Removing attributes from the attribute cache

To remove an attribute from the attribute cache, perform either of the following tasks.

Using Web Administration

1. Select the attribute that you want to remove from the attributes cache by clicking the attribute in the appropriate list box. For example AIXAdminGroupId from the previous task.
2. Click **Remove**.
3. Repeat this process for each attribute you want to remove from the list.
4. When you are finished, click **Apply** to save your changes without exiting, or click **OK** to apply your changes and exit, or click **Cancel** to exit this panel without making any changes.

Using the command line:

To perform the same operations using the command line, issue the following command:

```
ldapmodify -D <adminDN> -w<adminPW> -i<filename>
```

where `<filename>` contains:

```
DN: cn=Directory, cn=RDBM Backends, cn=IBM Directory, cn=Schemas, cn=Configuration
changetype: modify
delete: ibm-slapdCachedAttribute
ibm-slapdCachedAttribute: sn

DN: cn=Changelog, cn=RDBM Backends, cn=IBM Directory, cn=Schemas, cn=Configuration
changetype: modify
delete: ibm-slapdCachedAttribute
ibm-slapdCachedAttribute: sn
```
Chapter 10. Securing the directory

This section describes the steps necessary for keeping the data in your directory secure.

Configuring security settings

The IBM Tivoli Directory Server has the ability to protect LDAP access by encrypting data with either Secure Sockets Layer (SSL) security or Transaction Layer Security (TLS) or both. When using SSL or TLS to secure LDAP communications with the IBM Directory, both server authentication and client authentication are supported. To use SSL or TLS you must have GSKit installed on your system. See “Secure Sockets Layer” on page 73, “Transaction Layer Security” on page 73, and “Using gsk7ikm” on page 79 for more information.

Using Web Administration:

Expand the Manage security properties category in the navigation area of the Web Administration Tool, select the Settings tab.

1. Enable the type of security connections, select one of the following radio buttons:

 - **None**: Enables the server to receive only unsecure communications from the client. The default port is 389.
 - **SSL**: Enables the server to receive either secure (default port 636) or unsecure (default port 389) communications from the client. The default port is 636.
 - **SSL only**: Enables the server to receive only secure communications from the client. This is the most secure way to configure your server. The default port is 636.
 - **TLS**: Enables the server to receive secure and unsecure communications from the client over the default port, 389. For secure communications the client must start the TLS extended operation. See “Transaction Layer Security” on page 73 for more information.
 - **SSL and TLS**: Enables the server to receive secure and unsecure communications from the client over the default port, 389. For secure communications on the default port, the client must start the TLS extended operation. The server also receives secure communications over the SSL port, 636. See “Transaction Layer Security” on page 73 for more information.

2. Select the authentication method.

 Notes:

 a. The TLS and the SSL and TLS options are only available if your server supports TLS.

 b. TLS and SSL do not interoperate. Sending a start TLS request over the secure port results in an operations error.
Note: You must distribute the server certificate to each client. For server and client authentication you also must add the certificate for each client to the server’s key database.

Select the radio button for either:

Server authentication

For server authentication the IBM Tivoli Directory Server supplies the client with the IBM Tivoli Directory Server’s X.509 certificate during the initial SSL handshake. If the client validates the server’s certificate, then a secure, encrypted communication channel is established between the IBM Tivoli Directory Server and the client application.

For server authentication to work, the IBM Tivoli Directory Server must have a private key and associated server certificate in the server’s key database file.

Server and client authentication

This type of authentication provides for two-way authentication between the LDAP client and the LDAP server. With client authentication, the LDAP client must have a digital certificate (based on the X.509 standard). This digital certificate is used to authenticate the LDAP client to the IBM Tivoli Directory Server. See “Client authentication” on page 77.

3. Specify the secure port number to use. The default port is 636.

4. When you are finished, click Apply to save your changes without exiting, or click OK to apply your changes and exit, or click Cancel to exit this panel without making any changes.

5. You must stop and restart both the IBM Tivoli Directory Server and the administration daemon for the changes to take effect.
 a. Stop the server.
 b. Stop the administration daemon using one of the following methods.
 • Issue the command:
 ibmdirictl -D <adminDN> -w <adminPW> admstop
 • For UNIX-based systems issue the commands:
 ps -ef | grep ibmdiradm
 kill -p <pid obtained by previous command>
 • For Windows-based systems, use Control Panel ->Services, select IBM Directory Admin Daemon, click Stop.
 c. Start the administration daemon.
 • For UNIX-based systems issue the command:
 ibmdiradm
 • For Windows-based systems, use Control Panel ->Services, select IBM Directory Admin Daemon, click Start.
 d. Start the server.

Using the command line:

To use the command line to configure SSL communications, issue the command:
ldapmodify -D <adminDN> -w <adminPW> -i <filename>

where <filename> contains:
dn: cn=SSL,cn=Configuration
changetype: modify
replace: ibm-slapdSslAuth
ibm-slapdSslAuth: {serverAuth | serverClientAuth}
- replace: ibm-slapdSecurity
 ibm-slapdSecurity: {none | SSL | SSLOnly | TLS | SSLTLS}

You must restart the server and the administration daemon for the changes to take effect.

Transaction Layer Security

Transport Layer Security (TLS) is a protocol that ensures privacy and data integrity in communications between the client and server.

TLS is composed of two layers:

The TLS Record Protocol
Provides connection security with data encryption methods such as the Data Encryption Standard (DES) or RC4 without encryption. The keys for this symmetric encryption are generated uniquely for each connection and are based on a secret negotiated by the TLS Handshake Protocol. The Record Protocol can also be used without encryption.

The TLS Handshake Protocol
Enables the server and client to authenticate each other and to negotiate an encryption algorithm and cryptographic keys before data is exchanged.

TLS is invoked by using the -Y option from the client utilities.

Note: TLS and SSL are not interoperable. Issuing a start TLS request (the -Y option) over an SSL port causes an operations error.

Secure Sockets Layer

The IBM Tivoli Directory Server has the ability to protect LDAP access by encrypting data with Secure Sockets Layer (SSL) security. When using SSL to secure LDAP communications with the IBM Directory, both server authentication and client authentication are supported.

With server authentication, the IBM Tivoli Directory Server must have a digital certificate (based on the X.509 standard). This digital certificate is used to authenticate the IBM Tivoli Directory Server to the client application (such as the Directory Management Tool or `ldapsearch`) or an application built from the application development package, for LDAP access over SSL.

For server authentication the IBM Tivoli Directory Server supplies the client with the IBM Tivoli Directory Server's X.509 certificate during the initial SSL handshake. If the client validates the server's certificate, then a secure, encrypted communication channel is established between the IBM Tivoli Directory Server and the client application.

For server authentication to work, the IBM Tivoli Directory Server must have a private key and associated server certificate in the server's key database file.

Client authentication provides for two-way authentication between the LDAP client and the LDAP server.

With client authentication, the LDAP client must have a digital certificate (based on the X.509 standard). This digital certificate is used to authenticate the LDAP client to the IBM Tivoli Directory Server. See “Client authentication” on page 77.
To conduct commercial business on the Internet, you might use a widely known Certification Authority (CA), such as VeriSign, to get a high assurance server certificate.

Securing your server with SSL
The following high-level steps are required to enable SSL support for IBM Directory for server authentication. These steps assume you have already installed and configured the IBM Tivoli Directory Server:

1. Install the IBM Directory GSKit package if it is not installed. See the *IBM Tivoli Directory Server Version 5.2 Installation and Configuration Guide* for information on installing the GSKit package.

2. Generate the IBM Tivoli Directory Server private key and server certificate using the `gsk7ikm` utility (installed with GSKit). The server’s certificate can be signed by a commercial CA, such as VeriSign, or it can be self-signed with the `gsk7ikm` tool. The CA’s public certificate (or the self-signed certificate) must also be distributed to the client application’s key database file.

3. Store the server’s key database file and associated password stash file on the server. The default path for the key database, `<ldap\etc>` directory, is a typical location.

4. Access the Web-based LDAP administrative interface to configure the LDAP server. See “Using Web Administration:” on page 71 for the procedures.

If you also want to have secure communications between a master IBM Tivoli Directory Server and one or more replica servers, you must complete the following additional steps:

1. Configure the replica directory server.

 Note: Follow the steps shown above for the master, except perform them for each replica. When configuring a replica for SSL, the replica is like the master with respect to its role when using SSL. The master is an LDAP client (using SSL) when communicating with a replica.

2. Configure the master directory server:

 a. Add the replica’s signed server certificate to the master directory server’s key database file, as a trusted root. In this situation, the master directory is actually an LDAP client. If using self-signed certificates, you must extract all the self-signed certificates from each replica IBM Tivoli Directory Server, add them to the master’s key database, and ensure they are marked as trusted-roots. Essentially, you are configuring the master as an SSL client of the replica server.

 b. Configure the master IBM Tivoli Directory Server to be aware of the replica server. Be sure to set the replicaPort attribute to use the port that the replica IBM Tivoli Directory Server uses for SSL communication.

3. Restart both the master server and each replica server.

 Note: Only one key database is permitted per ldap server.

Setting Server authentication: For server authentication, you can modify the `ibmslapd.conf` file under the `cn=SSL, cn=Configuration` entry. To use the Web Administration Tool, see “Using Web Administration:” on page 71.

To use the command line:

```
ldapmodify -D <adminDN> -w <adminPW> -i <filename>
```

where `<filename>` contains:
You must restart the server and the administration daemon for the changes to take effect.

Server certificate from an external Certificate Authority (CA)

In order to provide a secure connection between IBM Directory and its clients, the server must have an X.509 certificate and a private key.

The steps required to generate a private key, obtain the required server certificate from an external CA, and prepare them for use by the IBM Directory are outlined in the following:

1. Logon as administrator or root.
2. Change to the directory where you want to create the key database file and where your private key and certificate will be stored.
3. Run `gsk7ikm` to create a new key database file. You can use any valid value for the key database file name that you want. Whatever file name you use, you need to provide it when configuring the LDAP server to use SSL. Consider providing a full path name. The `gsk7ikm` utility is used to generate a private-public key pair and a certificate request. See "Using gsk7ikm" on page 79 for additional information.

Note: By default, the new KDB created by GSKit is not readable by the server. You must change the owner to `ldap`.

```
chown ldap:ldap <mykeyring>.*
```

See "Kerberos" on page 321 for a more detailed explanation.

4. If VeriSign is your external CA, obtain a certificate from VeriSign, as follows:
 a. Access the following VeriSign Web site:
      ```
      http://digitalid.verisign.com/server_ids.html
      ```
 b. Click on **IBM internet connection servers**.
 c. After reviewing the information at this site, click on **Begin**.
 d. Provide the required information and follow the steps required to request your server certificate. VeriSign is the primary Certification Authority supported for obtaining externally generated, high-assurance server certificates.

5. If you have another CA that you want to use, follow the directions for that CA to submit the contents of the certificate request file to them.

When you receive the resulting certificate from the CA:

1. Logon using your server identity.
2. Change to the directory where you created the key database file.
3. Place the signed certificate from the CA into a file in this directory. The file is used in the next step.
4. From the same directory, run `gsk7ikm` to receive the certificate into your key database file.
5. Access the LDAP server’s Web administrative interface, and configure the various SSL parameters, including the file specification for the key database file. See "Using Web Administration:" on page 71.
6. If you have more than one certificate in the key database file, the certificate you want to use for IBM Directory must be the default.

7. Start the IBM Directory.

Note: If you instruct `gsk7ikm` to save the password in a password stash file, it is not necessary to change or set the password in the `ibmslapd.conf` file.

Using a self-signed server certificate

If you are using the IBM Directory in an intranet environment, use `gsk7ikm` to create your own server certificates. You can also use `gsk7ikm` to test IBM Directory with SSL without purchasing a VeriSign high-assurance server certificate. These types of certificates are known as self-signed certificates.

Follow these steps to create a key database file using self-signed certificates.

1. On each server:
 a. Change to the directory where you want to create the key database file and where your private key and certificate is to be stored.
 b. Create a new key database file and the self-sign certificate request that is to be used as your CA certificate.
 - Use the largest key size available.
 - Use a secure server certificate, not a low-assurance certificate.
 c. Obtain the certificate request file. The certificate is put into the key database file automatically by the `gsk7ikm` tool.

2. If you are using an application created for the client, do the following on each client machine:
 a. Place the CA certificate request file in an accessible location on the client machine.
 b. Receive the CA certificate request file into the client’s key database.
 c. Mark the received certificate as a trusted root.

See “Using gsk7ikm” on page 79 for additional information.

Notes:

1. You must always receive the CA certificate into the server’s key database file and mark it as a trusted root before receiving the server certificate into the server’s key database file.

2. Whenever you use `gsk7ikm` to manage the IBM Tivoli Directory Server’s key database file, remember to change to the directory in which the key database file exists.

3. Each IBM Tivoli Directory Server must have its own private key and certificate. Sharing the private key and certificate across multiple IBM Tivoli Directory Servers increases security risks. By using different certificates and private keys for each server, security exposure is minimized if a key database file for one of the servers is compromised.

Setting up your LDAP client to access IBM Directory

The following steps are required to create a key database file for an LDAP client that contains one or more self-signed server certificates that are marked as trusted by the client. The process can also be used to import CA certificates from other sources, such as VeriSign, into the client’s key database file for use as trusted roots. A trusted root is simply an X.509 certificate signed by a trusted entity (for example VeriSign, or the creator of a self-signed server certificate), imported into the client’s key database file, and marked as trusted.

1. Copy the server’s certificate file (cert.arm) to your client workstation.
2. Run gsk7ikm to create a new client key database file or to access an existing one. For a new client key database, choose a file name associated with the client for ease of management. For example, if the LDAP client runs on Fred’s machine, you might choose to name the file FRED.KDB.

3. If adding a server’s certificate to the existing client key database:
 a. Click Key database file and select Open.
 b. Enter the path and name of the existing key database file then click OK.
 c. Enter the password.
 d. Ensure signer certificates is chosen. Click Add.
 e. Enter the name and location of the server’s certificate file.
 f. Enter a label for the server certificate entry in the client’s key database file, for example, Corporate Directory Server, and then click OK.

4. If creating the new Client key database:
 a. Click Key database file and select New.
 b. Enter the name and location for the new Client Key DataBase file, and then click OK.
 c. Enter the password.
 d. After the new client key database is created, repeat the previous steps for adding the server’s certificate to the existing key database file.

5. Exit gsk7ikm.

 See "Using gsk7ikm” on page 79 for additional information.

When the LDAP client creates a secure SSL connection with the server, it uses the server’s self-signed certificate to verify that it is connecting to the proper server.

Repeat the preceding steps for each IBM Tivoli Directory Server that the LDAP client needs to connect to in a secure fashion.

Migrate the key ring file to key database file
To migrate the old key ring file that was created from MKKF utility:
1. Start gsk7ikm.
2. Click Key database file and select Open.
3. Enter the path and filename of your key ring file and then click OK.
4. Enter the password of your key ring file. If the key ring file is created without a password, you must use the old MKKF to assign a password for it.
5. After the old key ring file is opened, click Key database file and select Save as.
6. Ensure the key database type is set to CMS key database file. Fill out the name and location of the key database file, and then click OK.

Client authentication
Client authentication provides for two-way authentication between the LDAP client and the LDAP server.

With client authentication, the LDAP client must have a digital certificate (based on the X.509 standard). This digital certificate is used to authenticate the LDAP client to the IBM Tivoli Directory Server.

The Simple Authentication and Security Layer (SASL) can be used to add authentication support to connection protocols. A protocol includes a command for identifying and authenticating a user to a server. It can optionally negotiate a security layer for subsequent protocol interactions.
After a server receives the authentication command or any client response, it may issue a challenge or indicate failure or completion. If a client receives a challenge it may issue a response or end the exchange, depending on the profile of the protocol.

During the authentication protocol exchange, the SASL mechanism performs authentication, transmits an authorization identity (known as userid) from the client to the server, and negotiates the use of a mechanism-specific security layer.

When the LDAP server receives an LDAP bind request from a client, it processes the request in the following order:

1. The server parses the LDAP bind request and retrieves the following information:
 - The DN that the client is attempting to authenticate as.
 - The method of authentication used.
 - Any credentials, such as a password included in the request.
 - If the method of authentication is SASL, the server also retrieves the name of the SASL mechanism used from the LDAP bind request.

2. The server normalizes the DN retrieved from the request.

3. The server retrieves any LDAP control included with the LDAP bind request.

4. If the method of authentication is SASL, the server determines whether or not the SASL mechanism (specified in the request) is supported. If the SASL mechanism is not supported by the server, the server sends an error return code to the client and ends the bind process.

5. If the SASL mechanism is supported (=EXTERNAL) and the SSL authentication type is server and client authentication, the server verifies that the client’s certificate is valid, issued by a known CA, and that none of the certificates on the client’s certificate chain are invalid or revoked. If the client DN and password, as specified in the **ldap_sasl_bind**, are NULL, then the DN contained within the client’s x.509v3 certificate is used as the authenticated identity on subsequent LDAP operations. Otherwise, the client is authenticated anonymously (if DN and password are NULL), or the client is authenticated based on the bind information provided by the client.

6. If the method of authentication is Simple, the server checks to see if the DN is an empty string or if there are no credentials.

7. If the DN is an empty string, or if the DN or no credentials are specified, the server assumes that the client is binding anonymously and returns a good result to the client. The DN and authentication method for the connection are left as NULL and LDAP_AUTH_NONE respectively.

8. If the client has not bound beforehand, and does not present a certificate during the bind operation, the connection is refused.

Setting client authentication: For client authentication, you can modify the ibmslapd.conf file under the cn=SSL, cn=Configuration entry. To use the Web Administration Tool, see "Using Web Administration:" on page 71.

To use the command line:

```
ldapmodify -D <adminDN> -w <adminPW> -i <filename>
```

where `<filename>` contains:
You must restart the server and the administration daemon for the changes to take effect.

Using gsk7ikm

The following key-management program, *gsk7ikm*, is provided with the IBM Global Security Kit (GSKit). It is a user-friendly GUI for managing key files, implemented as a Java applet.

Note: On the AIX operating systems, if you are prompted to set JAVA_HOME, you can set it to either the system-installed Java or the Java version included with the IBM Tivoli Directory Server. If you use the IBM Tivoli Directory Server version, you also need to set the LIBPATH environment variable as follows:

```bash
export LIBPATH=/usr/ldap/java/bin:/usr/ldap/java/bin/classic:$LIBPATH
```

Use *gsk7ikm* to create public-private key pairs and certificate requests, receive certificate requests into a key database file, and manage keys in a key database file.

The tasks you can perform with *gsk7ikm* include:

- Creating a key pair and requesting a certificate from a certificate authority
- Receiving a certificate into a key database file
- Managing keys and certificates
 - Changing a key database password
 - Showing information about a key
 - Deleting a key
 - Making a key the default key in the key database
 - Creating a key pair and certificate request for self-signing
 - Exporting a key
 - Importing a key into a key database
 - Designating a key as a trusted root
 - Removing trusted root key designation
 - Requesting a certificate for an existing key
- Migrating a keyring file to the key database format

Creating a key pair and requesting a certificate from a Certificate Authority

If your client application is connecting to an LDAP server that requires client and server authentication, then you need to create a public-private key pair and a certificate.

If your client application is connecting to an LDAP server that requires only server authentication, it is not necessary to create a public-private key pair and a certificate. It is sufficient to have a certificate in your client key database file that is marked as a trusted root. If the Certification Authority (CA) that issued the server’s certificate is not already defined in your client key database, you need to request the CA’s certificate from the CA, receive it into your key database, and mark it as trusted. See “Designating a key as a trusted root” on page 85.
Your client uses its private key to sign messages sent to servers. The server sends its public key to clients so that they can encrypt messages to the server, which the server decrypts with its private key.

To send its public key to a server, the client needs a certificate. The certificate contains the client’s public key, the Distinguished Name associated with the client’s certificate, the serial number of the certificate, and the expiration date of the certificate. A certificate is issued by a CA, which verifies the identity of the client.

The basic steps to create a certificate that is signed by a CA are:
1. Create a certificate request using `gsk7ikm`.
2. Submit the certificate request to the CA. This can be done using e-mail or an online submission from the CA’s Web page.
3. Receive the response from the CA to an accessible location on the file system of your server.
4. **Receive the certificate into your key database file**

Note: If you are obtaining a signed client certificate from a CA that is not in the default list of trusted CAs, you need to obtain the CA’s certificate, receive it into your key database and mark it as trusted. This must be done before receiving your signed client certificate into the key database file.

To create a public-private key pair and request a certificate:
1. Start the `gsk7ikm` Java utility by typing:
   ```
gsk7ikm
   ```
2. Select **Key database file**.
3. Select **New** (or **Open** if the key database already exists).
4. Specify key database file name and location. Click **OK**.

 Note: A key database is a file that the client or server uses to store one or more key pairs and certificates.

5. When prompted, supply a password for the key database file. Click **OK**.
6. Select **Create**.
7. Select **New certificate request**.
8. Supply user-assigned label for key pair. The label identifies the key pair and certificate in the key database file.
9. If you are requesting a low-assurance client certificate, enter the common name. This must be unique and the full name of the user.
10. If you are requesting a high-assurance secure server certificate, then:
 - Enter the X.500 common name of the server. Usually this is the TCP/IP fully qualified host name, for example, www.ibm.com. For a VeriSign server certificate, it must be the fully qualified host name.
 - Enter the organization name. This is the name of your organization. For a VeriSign secure server certificate, if you already have an account with VeriSign, the name in this field must match the name on that account.
 - Enter the organizational unit name. This is an optional field.
 - Enter the locality/city where the server is located. This is an optional field.
 - Enter a three-character abbreviation of the state/province where the server is located.
 - Enter the postal code appropriate for the server’s location.
 - Enter the two-character country code where the server is located.
11. Click OK.
12. A message identifying the name and location of the certificate request file is displayed. Click OK.
13. Send the certificate request to the CA.
 If this is a request for a VeriSign low assurance certificate or secure server certificate, you must e-mail the certificate request to VeriSign.
 You can mail the low assurance certificate request to VeriSign immediately. A secure server certificate request requires more documentation. To find out what VeriSign requires for a secure server certificate request, go to the following URL: http://www.verisign.com/ibm.
14. When you receive the certificate from the CA, use gsk7ikm to receive it into the key database where you stored the key pair. See "Receiving a certificate into a key database".

Note: Change the key database password frequently. If you specify an expiration date, you need to keep track of when you need to change the password. If the password expires before you change it, the key database is not usable until the password is changed.

Receiving a certificate into a key database
After receiving a response from your CA, you need to receive the certificate into a key database.

To receive a certificate into a key database:
1. Type gsk7ikm to start the Java utility.
2. Select Key database file.
3. Select Open.
4. Specify the key database file name and location. Click OK.
5. When prompted, supply a password for the key database file. Click OK.
6. Select Create.
7. Select Personal certificates in the middle window.
8. Click Receive.
9. Enter the name and location of the certificate file that contains the signed certificate, as received from the CA. Click OK.

Changing a key database password
To change a key database password:
1. Type gsk7ikm to start the Java utility.
2. Select Key database file.
3. Select Open.
4. Specify the key database file name and location. Click OK.
5. When prompted, supply the password for the key database file. Click OK.
7. Select Change password.
8. Enter <New password>.
10. Select and set an optional password expiration time.
11. Select Stash the password to a file? if you want the password to be encrypted and stored on disk.
12. Click OK.
13. A message is displayed with the file name and location of the stash password file. Click OK.

Note: The password is important because it protects the private key. The private key is the only key that can sign documents or decrypt messages encrypted with the public key.

Showing information about a key
To show information about a key, such as its name, size or whether it is a trusted root:
1. Type gsk7ikm to start the Java utility.
2. Select Key database file.
3. Select Open.
4. Specify a key database file name and location. Click OK.
5. When prompted, supply the password for the key database file. Click OK.
6. To see information about keys designated as Personal certificates:
 • Select Personal certificates at the top of the Key database content window.
 • Select a certificate.
 • Click View/Edit to display information about the selected key.
 • Click OK to return to the list of Personal Certificates.
7. To see information about keys that are designated as Signer Certificates:
 • Select Signer certificates at the top of the Key database content window.
 • Select a certificate.
 • Click View/Edit to display information about the selected key.
 • Click OK to return to the list of Signer Certificates.

Deleting a Key
To delete a key:
1. Type gsk7ikm to start the Java utility.
2. Select Key database file.
3. Select Open.
4. Specify key a database file name and location. Click OK.
5. When prompted, supply the password for the key database file. Click OK.
6. Select the type of key you want to delete at the top of the Key database content window (Personal certificates, Signer certificates, or Personal certificate requests).
7. Select a certificate.
8. Click Delete.
9. Click Yes to confirm.

Making a key the default key in the key ring
The default key must be the private key that the server uses for its secure communications.

To make a key the default key in the key ring:
1. Type gsk7ikm to start the Java utility.
2. Select Key database file.
3. Select Open.
4. Specify a key database file name and location. Click OK.
5. When prompted, supply the password for the key database file. Click OK.
6. Select **Personal certificates** at the top of the **Key database content** window.
7. Select the desired certificate.
8. Click **View/Edit**.
9. Select the **Set the certificates as the default** box. Click **OK**.

Creating a key pair and certificate request for self-signing
By definition, a secure server must have a public-private key pair and a certificate.

The server uses its private key to sign messages to clients. The server sends its public key to clients so they can encrypt messages to the server, which the server decrypts with its private key.

The server needs a certificate to send its public key to clients. The certificate contains the server’s public key, the distinguished name associated with the server’s certificate, the serial number of the certificate, and the expiration date of the certificate. A certificate is issued by a CA, who verifies the identity of the server.

You can request one of the following certificates:
- A low assurance certificate from VeriSign, best for non-commercial purposes, such as a beta test of your secure environment
- A server certificate to do commercial business on the Internet from VeriSign or some other CA
- A self-signed server certificate if you plan to act as your own CA for a private Web network

For information about using a CA such as VeriSign to sign the server certificate, see “Creating a key pair and requesting a certificate from a Certificate Authority” on page 79.

The basic steps to creating a self-signed certificate are:
1. Type gsk7ikm to start the Java utility.
2. Select **Key database file**.
3. Select **New**, or **Open** if the key database already exists.
4. Specify a key database file name and location. Click **OK**.

Note: A key database is a file that the client or server uses to store one or more key pairs and certificates.

5. When prompted, supply the password for the key database file. Click **OK**.
6. Click **New self-signed**.
7. Supply the following:
 - User-assigned label for the key pair. The label identifies the key pair and certificate in the key database file.
 - The desired certificate Version.
 - The desired Key Size.
 - The X.500 common name of the server. Usually this is the TCP/IP fully qualified host name, for example, www.ibm.com.
 - The organization name. This is the name of your organization.
 - The organizational unit name. This is an optional field.
 - The locality/city where the server is located. This is an optional field.
8. Click OK.

Exporting a key
If you need to transfer a key pair or certificate to another computer, you can export the key pair from its key database to a file. On the other computer, you can import the key pair into a key ring.

To export a key from a key database:
1. Type gsk71km to start the Java utility.
2. Select [Key database file].
3. Select Open.
4. Specify a key database file name and location. Click OK.
5. When prompted, supply the password for the key database file. Click OK.
7. Select the desired certificate.
8. Click Export/Import.
9. For Action type, select Export key.
10. Select the Key file type:
 - PKCS12 file
 - CMS Key database file
 - Keyring file (as used by mkkf)
 - SSLight key database class
11. Specify a file name.
12. Specify the location.
13. Click OK.
14. Enter the required password for the file. Click OK.

Importing a key
To import a key into a key ring:
1. Type gsk71km to start the Java utility.
2. Select [Key database file].
3. Select Open.
4. Specify the key database file name and location. Click OK.
5. When prompted, supply the password for the key database file. Click OK.
7. Select the desired certificate.
8. Click Export/Import.
9. For Action type, select Import key.
10. Select the desired Key file type.
11. Enter the file name and location.
12. Click OK.
13. Enter the required password for the source file. Click OK.
Designating a key as a trusted root
A trusted root key is the public key and associated distinguished name of a CA. The following trusted roots are automatically defined in each new key database:

- Integrion Certification Authority Root
- IBM World Registry™ Certification Authority
- Thawte Personal Premium CA
- Thawte Personal Freemail CA
- Thawte Personal Basic CA
- Thawte Premium Server CA
- VeriSign Test CA Root Certificate
- RSA Secure Server Certification Authority
- VeriSign Class 1 Public Primary Certification Authority
- VeriSign Class 2 Public Primary Certification Authority
- VeriSign Class 3 Public Primary Certification Authority
- VeriSign Class 4 Public Primary Certification Authority

Note: Each of these trusted roots are initially set to be trusted roots by default.

To designate a key as a trusted root:
1. Type gsk7ikm to start the Java utility.
2. Select Key database file.
3. Select Open.
4. Specify a key database file name and location. Click OK.
5. When prompted, supply the password for the key database file. Click OK.
6. Select Signer certificates at the top of the Key database content window.
7. Select the desired certificate.
8. Click View/Edit.
9. Check the Set the certificate as a trusted root box, and click OK.
10. Select Key database file and then select Close.

Removing a key as a trusted root
A trusted root key is the public key and associated distinguished name of a CA. The following trusted roots are automatically defined in each new key database:

- Integrion Certification Authority Root
- IBM World Registry Certification Authority
- Thawte Personal Premium CA
- Thawte Personal Freemail CA
- Thawte Personal Basic CA
- Thawte Premium Server CA
- VeriSign Test CA Root Certificate
- RSA Secure Server Certification Authority
- VeriSign Class 1 Public Primary Certification Authority
- VeriSign Class 2 Public Primary Certification Authority
- VeriSign Class 3 Public Primary Certification Authority
- VeriSign Class 4 Public Primary Certification Authority

Note: Each of these trusted roots are initially set to be trusted roots by default.
To remove the trusted root status of a key:
1. Type gsk7ikm to start the Java utility.
2. Select **Key database file**.
3. Select **Open**.
4. Specify the key database file name and location. Click **OK**.
5. When prompted, supply the password for the key database file. Click **OK**.
6. Select **Signer certificates** at the top of the **Key database content** window.
7. Select the desired certificate.
8. Click **View/Edit**.
9. Clear the **Set the certificate as a trusted root** box. Click **OK**.
10. Select **Key database file** and then select **Close**.

Requesting a certificate for an existing key
To create a certificate request for an existing key:
1. Type gsk7ikm to start the Java utility.
2. Select **Key database file**.
3. Select **Open**.
4. Specify the key database file name and location. Click **OK**.
5. When prompted, supply the password for the key database file. Click **OK**.
6. Select **Personal Certificates** at the top of the **Key database content** window.
7. Select the desired certificate.
8. Click **Export/Import**.
9. For **Action type**, select **Export key**.
10. Select the desired Data type:
 - **Base 64-encoded ASCII data**
 - **Binary DER data**
 - **SSLight Key Database Class**
11. Enter the certificate file name and location.
12. Click **OK**.
13. Select **Key database file** and then select **Close**.
Send the certificate request to the CA.

If this is a request for a VeriSign low assurance certificate or secure server certificate, you must e-mail the certificate request to VeriSign.

You can mail the low assurance certificate request to VeriSign immediately. A secure server certificate request requires more documentation. To find out what VeriSign requires for a secure server certificate request, go to the following URL: http://www.verisign.com/ibm

Migrating a key ring file to the key database format
The gsk7ikm program can be used to migrate an existing key ring file, as created with mkkf, to the format used by gsk7ikm.

To migrate a key ring file:
1. Type gsk7ikm to start the Java utility.
2. Select **Key database file**.
3. Select **Open**.
4. Specify the key database file name and location. Click OK.
5. When prompted, supply the password for the key ring file. Click OK.
7. Select Save as...
8. Select CMS key database file as the Key database type.
9. Specify a file name.
10. Specify location.
11. Click OK.

Setting the key database

To set the key database, use one of the following procedures.

Using Web Administration:

Expand the Manage security properties category in the navigation area of the Web Administration Tool, select the Key database tab.

1. Specify the Key label. This administrator-defined key label indicates what part of the key database to use.
2. Specify the Key database path and file name. This is the fully qualified file specification of the key database file. If a password stash file is defined, it is assumed to have the same file specification, with an extension of .sth.
3. Specify the Key password. If a password stash file is not being used, the password for the key database file must be specified here. Then specify the password again in the Confirm password field.
4. When you are finished, click Apply to save your changes without exiting, or click OK to apply your changes and exit, or click Cancel to exit this panel without making any changes.

Note: In order for the server to use this file, it must be readable by the user ID ldap. See “File permissions” on page 321.

Using the command line:

To use the command line to set the key database for SSL and TLS, issue the command:

```
ldapmodify -D <adminDN> -w <adminPW> -i <filename>
```

where `<filename>` contains:

- `dn: cn=SSL,cn=Configuration`
- `changetype: modify`
- `replace: ibm-slapdSSLKeyDatabase`
- `ibm-slapdSSLKeyDatabase: <databasename>`
- `replace: ibm-slapdSSLKeyDatabasePW`
- `ibm-slapdSSLKeyDatabasePW: <password>`
- `replace: ibm-slapdSslKeyRingFile`
- `ibm-slapdSslKeyRingFile: <filename>`
- `replace: ibm-slapdSslKeyRingFilePW`
- `ibm-slapdSslKeyRingFilePW: <password>`

You must restart the server and the administration daemon for the changes to take effect.
Setting the level of encryption

By default the SSL and TLS versions of IBM Tivoli Directory Server uses the following list of ciphers when performing cipher negotiation with the client (during the SSL or TLS handshake).

Note: Although the password policy feature is not available in configuration only mode, you can change your level of password encryption in configuration only mode.

Using Web Administration:

Expand the Server administration category in the navigation area in the Web Administration Tool.

1. Click Manage security properties.
2. Click Encryption.
3. Select the method of encryption that you want to use based on the clients accessing the server. If you select multiple encryption methods, the highest level of encryption is used by default, however clients using the selected lower encryption levels still have access to the server.

Note: The IBM Tivoli Directory Server Version 5.2 supports the Advanced Encryption Standard (AES) level of encryption. For information on AES, see the NIST Web page at http://csrc.nist.gov/encryption/aes/.

<table>
<thead>
<tr>
<th>Encryption level</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triple DES encryption with a 168-bit key and a SHA-1 MAC</td>
<td>ibm-slapdSslCipherSpec: TripleDES-168</td>
</tr>
<tr>
<td>DES encryption with a 56-bit key and a SHA-1 MAC</td>
<td>ibm-slapdSslCipherSpec: DES-56</td>
</tr>
<tr>
<td>RC4 encryption with a 128-bit key and a SHA-1 MAC</td>
<td>ibm-slapdSslCipherSpec: RC4-128-SHA</td>
</tr>
<tr>
<td>RC4 encryption with a 128-bit key and a MD5 MAC</td>
<td>ibm-slapdSslCipherSpec: RC4-128-MD5</td>
</tr>
<tr>
<td>RC2 encryption with a 40-bit key and a MD5 MAC</td>
<td>ibm-slapdSslCipherSpec: RC2-40-MD5</td>
</tr>
<tr>
<td>RC4 encryption with a 40-bit key and a MD5 MAC</td>
<td>ibm-slapdSslCipherSpec: RC4-40-MD5</td>
</tr>
<tr>
<td>AES 128-bit encryption</td>
<td>ibm-slapdSslCipherSpec: AES-128</td>
</tr>
<tr>
<td>AES 256-bit encryption</td>
<td>ibm-slapdSslCipherSpec: AES</td>
</tr>
</tbody>
</table>

The selected ciphers are stored in the configuration file using the ibm-slapdSslCipherSpec keyword and the attribute defined from the preceding table. For example, to use only Triple DES, select **Triple DES encryption with a 168-bit key and an SHA-1 MAC**. The attribute ibm-slapdSslCipherSpec: TripleDES-168 is added to the ibmslapd.conf file. In this case, only clients that also support Triple DES are able to establish an SSL connection with the server.

You can select multiple ciphers.

4. If your server supports the Federal Information Processing Standards (FIPS) mode enablement feature, under the heading "Implementation" a preselected **Use FIPS certified implementation** check box is displayed. This enables the...
server to use the encryption algorithms from the ICC FIPS-certified library. If you
deselect this check box the encryption algorithms from a non-FIPS certified
library are used.

5. When you are finished, click Apply to save your changes without exiting, or
click OK to apply your changes and exit, or click Cancel to exit this panel
without making any changes.

Using the command line:

To use the command line to set the SSL level of encryption (in this example to
Triple DES encryption with a 168-bit key and an SHA-1 MAC) issue the command:

```
ldapmodify -D <adminDN> -w <adminPW> -i <filename>
```

where <filename> contains:

- `dn: cn=SSL,cn=Configuration`
- `changetype: modify`
- `replace: ibm-slapdSslCipherSpec`
- `ibm-slapdSslCipherSpec: TripleDES-168`

See Table 7 on page 88 for other encryption values.

To add more than one level of encryption, your <filename> might contain:

```
    dn: cn=SSL,cn=Configuration
    changetype: modify
    replace: ibm-slapdSslCipherSpec
    ibm-slapdSslCipherSpec: RC2-40-MD5
    ibm-slapdSslCipherSpec: AES
    ibm-slapdSslCipherSpec: RC4-128-MD5
    ibm-slapdSslCipherSpec: RC4-128-SHA
    ibm-slapdSslCipherSpec: TripleDES-168
    ibm-slapdSslCipherSpec: DES-56
    ibm-slapdSslCipherSpec: RC4-40-MD5
```

To use the command line to turn off FIPS mode, issue the command:

```
ldapmodify -D <adminDN> -w <adminPW> -i <filename>
```

where <filename> contains:

- `dn: cn=SSL,cn=Configuration`
- `changetype: modify`
- `replace: ibm-slapdSslFIPSModeEnabled`
- `ibm-slapdSslFIPSModeEnabled: false`

You must restart the server and the administration daemon for the changes to take
effect.

Password encryption

IBM Directory allows you to prevent unauthorized access to user passwords. User
passwords may be encoded and stored in the directory, which prevents clear
passwords from being accessed by any users including the system administrators.

The administrator may configure the server to encode userPassword attribute
values in either a one-way encoding format or a two-way encoding format.

One-way encoding formats:

- SHA-1
- crypt
After the server is configured, any new passwords (for new users) or modified passwords (for existing users) are encoded before they are stored in the directory database. The encoded passwords are tagged with the encoding algorithm name so that passwords encoded in different formats can coexist in the directory. When the encoding configuration is changed, existing encoded passwords remain unchanged and continue to work.

For applications that require retrieval of clear passwords, such as middle-tier authentication agents, the directory administrator needs to configure the server to perform either a two-way encoding or no encryption on user passwords. In this instance, the clear passwords stored in the directory are protected by the directory ACL mechanism.

Two-way encoding format:

- imask

A two-way masking option, imask, is provided to allow values of the userPassword attribute to be encoded in the directory and retrieved as part of an entry in the original clear format. Some applications such as middle-tier authentication servers require passwords to be retrieved in clear text format, however, corporate security policies might prohibit storing clear passwords in a secondary permanent storage. This option satisfies both requirements.

A simple bind will succeed if the password provided in the bind request matches any of the multiple values of the userPassword attribute.

When you configure the server using Web Administration, you can select one of the following four encryption options:

None No encryption. Passwords are stored in the clear text format.

crypt Passwords are encoded by the UNIX crypt encoding algorithm before they are stored in the directory.

SHA-1 Passwords are encoded by the SHA-1 encoding algorithm before they are stored in the directory.

imask Passwords are encoded by the imask algorithm before they are stored in the directory and are retrieved as part of an entry in the original clear format.

The default option is imask. A change is registered in a password encryption directive of the server configuration file:

```
ibm-SlapdPwEncryption: imask
```

The server configuration file is located in:

```
<installation path>/etc/ibmslapd.conf
```

In addition to userPassword, values of the secretKey attribute are always “imask” encoded in the directory. Unlike userPassword, this encoding is enforced for values of secretKey. No other option is provided. The secretKey attribute is an IBM defined schema. Applications may use this attribute to store sensitive data that need to be always encoded in the directory and to retrieve the data in clear text format using the directory access control.
Consult the *Installation and Configuration Guide* for additional information about the configuration file.

To change the type of encryption using the command line, for example to crypt, issue the following command:

```
ldapmodify -D <adminDN> -w <adminPW> -f <filename>
```

where `<filename>` contains:

```
dn: cn=configuration
changetype: modify
replace: ibm-slapdPWEncryption
ibm-slapdPWEncryption: crypt
```

To update the settings dynamically, issue the following ldapexop command:

```
ldapexop -D <adminDN> -w <adminPW> -op readconfig -scope single "cn=configuration" ibm-slapdPWEncryption
```

Notes:

1. When imask is used as the server password encryption method, only the first 46 characters of a password entered are effective. Any characters after the 46th character will be ignored and considered as matched. Similarly, if the UNIX crypt method is used, only the first 8 characters will be effective. Also since the value of SecretKey is encrypted in the database using the imask encryption, the SecretKey values which are longer than 46 characters will not be maintained.

2. A one-way encoded password can be used for password matching but it cannot be decrypted. During user login, the login password is encoded and compared with the stored version for matching verification.

Setting password policy

Password policy is a set of rules that controls how passwords are used and administered in the IBM Directory. These rules are made to ensure that users change their passwords periodically, and that the passwords meet the organization’s syntactic password requirements. These rules also can restrict the reuse of old passwords and ensure that users are locked out after a defined number of failed attempts.

For additional information about passwords see [“Password Guidelines” on page 93](#).

All users except the directory administrator and the members of the administrative group are forced to comply with this password policy. The passwords for the administrator and members of the administrative group never expire and the accounts are never locked. The directory administrator and members of the administrative group have sufficient access control privileges to modify users’ passwords and the password policy.

Using Web Administration:

Expand the Manage security properties category in the navigation area of the Web Administration Tool, select the Password policy tab. This panel display an noneditable Password attribute field that contains the name of the attribute that password policy is using.

1. Select the type of password encryption from the drop-down list:
 - None
 - imask
 - crypt
• sha

See “Password encryption” on page 89 for additional information.

2. Select the **Password policy enabled** check box to enable password policy.

 Note: If Password policy is not enabled, none of the other functions on this or the other password panels are available until the check box is enabled. By default password policy is disabled.

3. Select the **User can change password** check box to specify whether the user can change the password.

4. Select the **User must change password after reset** check box to specify whether the user must change the password after logging on with a reset password.

5. Select the **User must send password when changing** check box to specify whether the user, after the initial log on, needs to specify the password again before being able to change the password.

6. Set the password expiration limit. Click the **Password Never Expires** radio button to specify that the password does not have to be changed at a specific time interval or click the **Days** radio button and specify the time interval, in days, when the password needs to be reset.

7. Specify whether the system issues a password expiration warning, before the password expires. If you click the **Never warn** radio button, the user is not warned before the previous password expires. The user cannot access the directory until the administrator has created a new password. If you click the **Days before expiration** radio button and specify a number of days (n), the user receives a warning prompt to change the password each time the user logs on, starting n days before the password expires. The user can still access the directory until the password expires.

8. Specify the number of times, if any, that the user can log on after the password has expired. This selection enables the user to access the directory with an expired password.

9. When you are finished, click **Apply** to save your changes without exiting, or click **OK** to apply your changes and exit, or click **Cancel** to exit this panel without making any changes.

Using the command line:

To perform the same operations using the command line, issue the following command:

```
ldapmodify -D <adminDN> -w<adminPW> -i<filename>
```

where `<filename>` contains:

dn: cn=pwpolicy
changetype: modify
replace: ibm-pwpolicy
ibm-pwpolicy: {TRUE|FALSE}
#select TRUE to enable, FALSE to disable

- replace:pwdallowuserchange
pwdallowuserchange: {TRUE|FALSE}
#select TRUE to enable, FALSE to disable

- replace:pwdmustchange
pwdmustchange: {TRUE|FALSE}
#select TRUE to enable, FALSE to disable

- replace:pwdmaxage
pwdmaxage: 5
You must restart the server for the changes to take effect.

Password Guidelines

The following section provides details of the supported values of the IBM Tivoli Directory Server (IDS) password attribute for user entries in the IBM Tivoli Directory Server, as well as the accounts used to administer the LDAP environment. It also provides guidelines of what characters to avoid to reduce confusion when attempting to run the Directory Server command line tools and C-API interfaces.

The Directory Server has two types of user accounts:

- Administration accounts (LDAP Administrator (cn=root), members of the Administrator Group, or the LDAP DB2 user) that are stored in the /etc/ibmslapd.conf file.

- User entries (iNetOrgPerson) that have a password attribute used with Directory Server C and Java (JNDI) APIs. These are the interfaces that applications, such as Policy Director and WebSphere use. While the Directory Server supports a wide variety of values for password entries, you need to review the application documentation to confirm what guidelines or restrictions apply.

Details of the supported password values using the IBM Tivoli Directory Server 5.2 release follow.

Passwords for user entries (InetOrgPerson)

Using the 5.2 release, the following characters are supported for the userPassword attribute field to be stored in the Directory Server using the C and java APIs. Applications, such as Policy Director, WebSphere, and so on, that are using the Directory Server might have additional restrictions on password values. For details, review the product documentation for these specific products.

- All upper and lower case English alpha and numeric characters.
- All other ASCII English characters are supported.
- Double-byte characters are supported for languages specified in the IBM Tivoli Directory Server Version 5.2 Release Notes documentation.
- Passwords are case sensitive. (For example, if the password = TeSt, using a password of TEST or test fails. Only the exact case, TeSt, works.)

LDAP ibmslapd.conf users:

Using the 5.2 release, the following characters are supported for passwords of users that are in the <LDAP_DIR>/etc/ibmslapd.conf file.

- All uppercase and lowercase English alpha and numeric characters are supported.
- All other ASCII single-byte characters are supported.
- Passwords are case sensitive. (For example, if the password = TeSt, using a password of TEST or test fails. Only the exact case, TeSt, works.)

Notes:

1. The Users in the ibmslapd.conf file can include the following:
 - LDAP Administrator (cn=root)
• Members of the Administrator Group
• Master ID for Replication (cn=MASTER)
• LDAP DB2 users for LDAP DB entry and change log databases (LDAPDB2)

2. Double-byte characters in the administrator passwords are not supported.

Using the IDS Web Administration Tool to modify password attributes:
Using the Web Administration Tool in the 5.2 release, the following characters are supported for adding or modifying the password attribute field:
• All uppercase and lowercase English alpha and numeric characters are supported.
• All other ASCII single-byte characters are supported.
• Passwords are case sensitive. (For example, if the password = TeSt, using a password of TEST or test fails. Only the exact case, TeSt, works.)

Notes:
1. Double-byte characters are not supported for the administrator password.
2. Double-byte characters are supported for the user password.

Special characters
Avoid using the following characters because the operating shell might interpret these “special” characters:
` ` \
" |

For example, using the 5.2 Web Administration Tool to assign a user password attribute to the value:
"\"test\"

requires the following password from the command line to be used:
-w"\"test\"

Here is an example search:
ldapsearch -b " " -sbase -Dcn=newEntry,o=ibm,c=us -w"\"test\"" objectclass=*

Note: This password works in the Web Administration Tool’s Java application using the original password without the escape character. In the previous example, the Web Administration Tool bind password is the same as the one that was entered when assigning the password in the Web Administration Tool:
"\"test\"

Setting password lockout

To set the conditions that lock a password, use one of the following procedures.

Note: If password policy is not enabled on the server, the password lockout functions do not take effect.
Using Web Administration:

Expand the Manage server properties category in the navigation area of the Web Administration Tool, select the Password lockout tab.

Note: If password policy is not enabled on the server, the functions on this panel do not take effect.

1. Specify the number of seconds, minutes, hours or days that must expire before a password can be changed.
2. Specify whether incorrect logins lockout the password.
 - Select the Passwords are never locked out radio button if you want to allow unlimited log in attempts. This selection disables the password lockout function.
 - Select the Attempts radio button and specify the number of log in attempts that are allowed before locking out the password. This selection enables the password lockout function.
3. Specify the duration of the lockout. Select the Lockouts never expires radio button to specify that the system administrator must reset the password or select the Seconds radio button and specify the number of seconds before the lockout expires and log in attempts can resume.
4. Specify the expiration time for an incorrect login. Click the Incorrect logins only cleared with correct password radio button to specify that incorrect logins are cleared only by a successful login or click the Seconds radio button and specify the number of seconds before an unsuccessful login attempt is cleared from memory.

Note: This option works only if the password is not locked out.

5. When you are finished, click Apply to save your changes without exiting, or click OK to apply your changes and exit, or click Cancel to exit this panel without making any changes.

Using the command line:

To perform the same operations using the command line, issue the following command:

```
ldapmodify -D <adminDN> -w<adminPW> -i<filename>
```

where <filename> contains:

```

dn: cn=pwpolicy
changetype: modify
replace: pwdlockout
pwdlockout: {TRUE|FALSE}
#select TRUE to enable, FALSE to disable
- replace:pwariffailure
  pwdfailure: 3
- replace:pwdlockoutduration
  pdflockoutduration: 15
- replace:pwarifailurecountinterval
  pdffailurecountinterval: 30
- replace:pwarifailureloginlimit
  pdfgraceperiod: 7
- replace:pwarifailureloginlimit
  pdfgraceperiod: 2
```
Setting password validation

To set the requirements and limitations for validating a password, use one of the following procedures.

Using Web Administration:

Expand the **Manage server properties** category in the navigation area of the Web Administration Tool, select the **Password validation** tab.

Note: If password policy is not enabled on the server, the functions on this panel do not take effect.

1. Set the number of passwords that must be used before a password can be reused. Enter a number from 0 to 30. If you enter zero, a password may be reused without restriction.
2. From the drop-down menu, select whether the password is checked for the syntax defined in the following entry fields. You can select:
 - **Do not check syntax**

 No syntax checking is performed.
 - **Check syntax (except encrypted)**

 The syntax checking is performed on all unencrypted passwords.
 - **Check syntax**

 The syntax checking is performed on all passwords.
3. Specify a number value to set the minimum length of the password. If the value is set to zero, no syntax checking is performed.
 - Specify a number value to set the minimum number of alphabetic characters required for the password.
 - Specify a number value to set the minimum number of numeric and special characters required for the password.
 Note: The sum of the minimum number of alphabetic, numeric, and special characters must be equal to or less than the number specified as the minimum length of the password.
4. Specify the maximum number of characters that can be repeated in the password. This option limits the number of times a specific character can appear in the password. If the value is set to zero, the number of repeated characters is not checked.
5. Specify the minimum number of characters that must be different from the previous password and the number of previous passwords specified in the **Minimum number of passwords before reuse** field. If the value is set to zero, the number of different characters is not checked.
6. When you are finished, click **Apply** to save your changes without exiting, or click **OK** to apply your changes and exit, or click **Cancel** to exit this panel without making any changes.

Using the command line:

To perform the same operations using the command line, issue the following command:

`ldapmodify -D <adminDN> -w<adminPW> -i<filename>`

where `<filename>` contains:
Setting Kerberos

The IBM Tivoli Directory server supports Kerberos Version 1.3 servers, such as the IBM Network Authentication Service, for AIX servers and AIX 64-bit clients. Use the version of Kerberos included with your operating system for AIX 32-bit clients, Windows NT and Windows 2000 clients.

Note: You must have a Kerberos client installed to use Kerberos authentication.

Under Network Authentication Service, a client (generally either a user or a service) sends a request for a ticket to the Key Distribution Center (KDC). The KDC creates a ticket-granting ticket (TGT) for the client, encrypts it using the client’s password as the key, and sends the encrypted TGT back to the client. The client then attempts to decrypt the TGT, using its password. If the decryption is successful, the client retains the decrypted TGT, indicating proof of the client’s identity.

The TGT, which expires at a specified time, permits the client to obtain additional tickets that give permission for specific services. The requesting and granting of these additional tickets does not require user intervention.

Network Authentication Service negotiates authenticated, optionally encrypted communications between two points on the network. It can enable applications to provide a layer of security that is not dependent on which side of a firewall either client is on. Because of this, Network Authentication Service can play a vital role in the security of your network.

You need to create an LDAP server servicename in the key distribution center (KDC) using the principal name ldap/<hostname>.<mylocation>.<mycompany>.com.

Note: An environment variable "LDAP_KRB_SERVICE_NAME" is used to determine the case of the LDAP Kerberos service name. If the variable is set to 'LDAP' then the uppercase LDAP Kerberos service name is used. If the variable is not set, then the lowercase ldap is used. This environment
variable is used by both the LDAP client and the server. By default this variable is not set. See “Kerberos” on page 321 for more detailed information.

Network Authentication Service provides the following components:

Key distribution center

The KDC is a trusted server that has access to the private keys of all the principals in a realm. The KDC is composed of two parts: the Authentication Server (AS) and the Ticket Granting Server (TGS). The AS handles initial client authentication by issuing a TGT. The TGS issues service tickets that can be used by the client to authenticate to a service.

Administration server

The administration server provides administrative access to the Network Authentication Service database. This database contains the principals, keys, policies, and other administrative information for the realm. The administration server allows adding, modifying, deleting, and viewing principals and policies.

Password change service

The password change service allows users to change their passwords. The password change service is provided by the administration server.

Client programs

Client programs are provided to manipulate credentials (tickets), manipulate keytab files, change passwords, and perform other basic Network Authentication Service operations.

Application programming interfaces (APIs)

Libraries and header files are provided to allow the development of secure distributed applications. The APIs provided are described in the Application Development Reference.

Using Web Administration:

Under **Server administration** expand the **Manage security properties** category in the navigation area of the Web Administration Tool. If your server supports Kerberos, that is, it has the kerberos supported capabilities OID 1.3.18.0.2.32.30, select the **Kerberos** tab. If your server does not support Kerberos, this tab is not displayed.

1. Select the **Enable Kerberos authentication** check box to enable Kerberos authentication.

 Note: You must have a Kerberos client installed to use Kerberos authentication.

2. Select the **Map Kerberos IDs to LDAP DNs** check box to enable the directory administrator to use the existing set of ACL data with the Kerberos authentication method. See “Identity mapping for Kerberos” on page 99 for more information.

3. Enter the Kerberos realm using the format `hostname.domainName`, for example, `TEST.AUSTIN.IBM.COM`. This format is case insensitive.

4. Enter the path and file name of the Kerberos keytab file. This file contains the private key of the LDAP server, as associated with its kerberos account. This file, and the SSL key database file, should be protected.

5. If you are logged in as the directory administrator, enter the Alternate administrator ID using the format `ibm-kn=value@realm` or
ibm-KerberosName=value@realm for example, ibm-kn=root@TEST.AUSTIN.IBM.COM. This field cannot be edited by members of the administrative group.

Note: This ID must be a valid ID in your Kerberos realm. This ID value is case insensitive.

6. When you are finished, click **Apply** to save your changes without exiting, or click **OK** to apply your changes and exit, or click **Cancel** to exit this panel without making any changes.

Using the command line:

To create a Kerberos entry, issue the following command:

```
ldapmodify -D <adminDN> -w<adminPW> -f<filename>
```

Where `<filename>` contains:

- `dn: cn=Kerberos, cn=Configuration`
- `cn: Kerberos`
- `ibm-slapdKrbAdminDN: ibm-kn=admin@MYREALM.AUSTIN.IBM.COM`
- `ibm-slapdKrbEnable: true`
- `ibm-slapdKrbIdentityMap: true`
- `ibm-slapdKrbKeyTab: /keytabs/mykeytab.keytab`
- `ibm-slapdKrbRealm: MYREALM.AUSTIN.IBM.COM`
- `objectclass: ibm-slapdKerberos`
- `objectclass: ibm-slapdconfigEntry`
- `objectclass: top`

To modify a Kerberos entry, for example to change the keytab file, issue the following command:

```
ldapmodify -D <adminDN> -w<adminPW> -f<filename>
```

Where `<filename>` contains:

- `dn: cn=Kerberos, cn=Configuration`
- `changetype: modify`
- `replace: ibm-slapdKrbKeyTab`
- `ibm-slapdKrbKeyTab: /keytabs/mynewkeytab.keytab`

Using Kerberos

Before you can use the command line for Kerberos authentication, you need to do a Kerberos initialization. Issue the following command:

```
kinit <kerberos_principlename>@<realm_name>
```

To use Kerberos authentication you must specify the `-m` option with the GSSAPI parameter on the ldapadd and ldapsearch commands. For example:

```
ldapsearch -V 3 -m GSSAPI -b "cn=us" objectclass=*`
members of access groups or access IDs. You can also use the Kerberos Identity Mapping feature to grant access rights for this DN to an entry already in the directory.

For example, if there is an entry in the directory for Reginald Bender:

dn: cn=Reginald Bender, ou=internal users, o=ibm.com, c=US
objectclass: top
objectclass: person
objectclass: organizationalperson
cn: Reginald Bender
sn: Bender
aclentry: access-id:CN=THIS:critical:rwsc
aclentry: group:CN=ANYBODY:normal:rsc
userpassword: cL1eNt

The access rights for this entry allow anyone binding with the DN "cn=Reginald Bender, ou=internal users, o=ibm.com, c=US" to view critical data such as the password, but no one else.

If Reginald Bender used Kerberos to bind to the server, his DN could be something like IBM-KN=rbender@SW.REALM_1. If identity mapping is not enabled on the server, he is not allowed to view his own entry's password.

If identity mapping is enabled, he can view the password if this entry were changed to include:

dn: cn=Reginald Bender, ou=internal users, o=ibm.com, c=US...
objectclass: ibm-securityidentities
altsecurityidentities: Kerberos:rbender@SW.REALM_1

When Reginald Bender binds to the directory server, the server first searches the whole directory to determine if the directory is a KDC (Key Distribution Center) account registry. If it is not, the server searches the directory for any entry containing an altsecurityidentities attribute with a value matching the Kerberos user principal and realm. In this example, rbender is the user principal and SW.REALM_1 is the realm. This is the default for the Kerberos identity mapping. The bind fails if more than one entry has an attribute with this value. The mapping must be one-to-one. If the mapping is successful, Reginald Bender has all of the access rights for "cn=Reginald Bender, ou=internal users, o=ibm.com, c=US", including any access groups that has this as a member.

The IBM Tivoli Directory Server can be used to contain Kerberos account information (krbRealmName-V2 = <realm_name> and krbPrincipalName = <princ_name>@<realm_name>) to serve as the backing store for a KDC.

The server with Kerberos identity mapping enabled first searches the directory for entries with objectclass krbRealm-V2 and krbRealmName-V2 =<realm_name>, such as:

dn: krbRealmName-V2=SW.REALM_1, o=ibm.com, c=US
objectclass: krbRealm-V2
krbRealmName-V2: SW.REALM_1

If no entries are found, the server uses the default Kerberos identity mapping described previously. If more than one entry is found, the bind fails.

However, if the directory contains the single entry:
The server searches each subtree listed as a value of krbPrincSubtree for an entry with an attribute krbPrincipalName.

In this release, for identity mapping to work for Reginald Bender, you need to add two attributes to the "cn=Reginald Bender, ou=internal users, o=ibm.com, c=US" entry:

objectclass: extensibleObject
krbPrincipalName: rbender@SW.REALM_1

Depending on whether the directory is a KDC account registry, the final entry is:

dn: cn=Reginald Bender, ou=internal users, o=ibm.com, c=US...
objectclass: ibm-securityidentities
altsecurityidentities: Kerberos:rbender@SW.REALM_1...

or for a KDC account registry:

dn: cn=Reginald Bender, ou=internal users, o=ibm.com, c=US ...
objectclass: extensibleObject
krbPrincipalName: rbender@SW.REALM_1

In either case, the client is mapped to "cn=Reginald Bender, ou=internal users, o=ibm.com, c=US".

If a DN is not mapped because no entry is found, the mapping fails but the bind is still successful. However, if more than one DN is mapped, the bind fails.

Identity mapping enables the existing ACLs to work with Kerberos authentication. A client using Kerberos with a mapped identity has two distinct identities, both of which are evaluated in granting access.

Identity mapping has some costs. The internal searches at bind time impact performance and identity mapping requires additional setup to add the appropriate attributes to the entries to be mapped.

In this release, if default identity mapping is used, the administrator (either Kerberos or LDAP) must make sure that the data in the KDC and the data in the LDAP server are synchronized. If the data is not synchronized, incorrect results might be returned because of incorrect ACL evaluation.

Note: The object class, such as KrbPrincipal and the attributes such as KrbPrincSubtree, KrbAliasedObjectName, and KrbHintAliases are used to define a IBM Directory as a Kerberos KDC. See the Kerberos documentation for more information.

Certificate revocation verification

If you have selected to use server and client authentication in your SSL settings, you might want to configure your server to check for revoked or expired certificates.

When a client sends an authenticated request to a server, the server reads the certificate and sends a query to an LDAP server with a list that contains revoked
certificates. If the client certificate is not found in the list, communications between the client and server are allowed over SSL. If the certificate is found, communications are not allowed.

To configure SSL certificate revocation verification use one of the following methods:

**Using Web Administration:**
Under **Server administration**, expand the **Manage security properties** category in the navigation area of the Web Administration Tool, select the **Certificate revocation** tab.

1. Enter the name of the server that contains certificates that have been revoked. This server is designated by the certificate granting authority (CA) that you use, for example VeriSign. The format of the host name is `hostName.domainName`, for example, myserver.ibm.com.
2. Enter the port used to communicate with the server, for example 389.
3. Enter the DN used to bind to the verifying server, for example `cn=root`. This is optional if the verifying server allows anonymous searches for certificate revocation lists (CRLs).
4. Enter the password associated with the bind DN. This is required if you specified a DN.
5. Type the bind password again to confirm that there are no typographical errors.
6. When you are finished, click **Apply** to save your changes without exiting, or click **OK** to apply your changes and exit, or click **Cancel** to exit this panel without making any changes.

**Note:** Expired certificates are not included in the list because the expiration date is contained in the certificate itself.

**Using the command line:**
To use the command line to configure for SSL certificate revocation verification, issue the command:

```
ldapmodify -D <adminDN> -w <adminPW> -i <filename>
```

where `<filename>` contains:
```
dn: cn=CRL,cn=SSL,cn=Configuration
changetype: modify
replace: ibm-slapdCrlHost
ibm-slapdCrlHost: <newhostname>
-
replace: ibm-slapdCrlPassword
ibm-slapdCrlPassword: <password>
-
replace: ibm-slapdCrlPort
ibm-slapdCrlPort: <portnumber>
-
replace: ibm-slapdCrlUser
ibm-slapdCrlUser: <username>
```

You must restart the server and the administration daemon for the changes to take effect.
Configuring the DIGEST-MD5 mechanism

DIGEST-MD5 is a SASL authentication mechanism. When a client uses Digest-MD5, the password is not transmitted in clear text and the protocol prevents replay attacks.

To configure the DIGEST-MD5 mechanism use one of the following methods.

Using Web Administration:

Under Server administration, expand the Manage security properties category in the navigation area of the Web Administration Tool, select the DIGEST-MD5 tab.

Note: This tab is displayed only if DIGEST-MD5 is supported on your server.

1. Under Server realm, you can use the preselected Default setting, which is the fully qualified host name of the server, or you can click Realm and type the name of the realm that you want to configure the server as.

   Note: If the ibm-slapdDigestRealm attribute in the configuration entry is set, the server uses that value instead of the default for the realm. In this case, the Realm button is preselected and the realm value is displayed in the field.
   This realm name is used by the client to determine which user name and password to use.

When using replication, you want to have all the servers configured with the same realm.

2. Under Username attribute, you can use the preselected Default setting, which is uid, or you can click Attribute and type the name of the attribute that you want the server to use to uniquely identify the user entry during DIGEST-MD5 SASL binds.

   Note: If the ibm-slapdDigestAttr attribute in the configuration entry is set, the server uses that value instead of the default for the Username attribute. In this case, the Attribute button is preselected and the attribute value is displayed in the field.

3. IF you are logged in as the directory administrator, under Administrator username, type the administrator username. This field cannot be edited by members of the administrative group. If the username specified on a DIGEST-MD5 SASL bind matches this string, the user is has the administrator.

   Note: The administrator username is case sensitive.

4. When you are finished, click Apply to save your changes without exiting, or click OK to apply your changes and exit, or click Cancel to exit this panel without making any changes.

Using the command line:

To create the cn=Digest,cn=configuration entry, enter the command:

```
ldapadd -D <adminDN> -w <adminpw> -i <filename>
```

where <filename> contains:

dn: cn=Digest,cn=configuration
cn: Digest
ibm-slapdDigestRealm: <realm name>
ibm-slapdDigestAttr: <uuid>

ibm-slapdDigestAdminUser: <Adminuser>
objectclass:top
objectclass: ibm-slapdConfigEntry
objectclass: ibm-slapdDigest

To change the settings for DIGEST-MD5, issue the following command:

```
ldapmodify -D <adminDN> -w <adminpw> -i <filename>
```

where `<filename>` contains:

dn: cn=Digest,cn=configuration
changetype: modify
replace: ibm-slapdDigestRealm
ibm-slapdDigestRealm: <newrealmname>
-
replace: ibm-slapdDigestAttr
ibm-slapdDigestAttr: <newattribute>
-
replace: ibm-slapdDigestAdminUser
ibm-slapdDigestAdminUser: <newAdminuser>
Chapter 11. Managing the IBM Directory schema

A schema is a set of rules that governs the way that data can be stored in the directory. The schema defines the type of entries allowed, their attribute structure, and the syntax of the attributes.

**Note:** The schema information shipped with the server, such as object class descriptions and syntax, is in English. It is not translated.

Data is stored in the directory using directory entries. A entry consists of an object class, which is required, and its attributes. Attributes can be either required or optional. The object class specifies the kind of information that the entry describes and defines the set of attributes it contains. Each attribute has one or more associated values. See Chapter 14, “Working with directory entries”, on page 199 for additional information about entries.

The schema for the IBM Directory Version 5.2 is predefined, however, you can modify the schema, if you have additional requirements.

The IBM Tivoli Directory Server Version 5.2 includes dynamic schema support. The schema is published as part of the directory information, and is available in the Subschema entry (DN="cn=schema"). You can query the schema using the ldap_search() API and modify it using ldap_modify(). See the IBM Directory Client SDK Programming Reference for more information about these APIs.

The schema has more configuration information than that included in the LDAP Version 3 Request For Comments (RFCs) or standard specifications. For example, for a given attribute, you can state which indexes must be maintained. This additional configuration information is maintained in the subschema entry as appropriate. An additional object class is defined for the subschema entry IBMSubschema, which has "MAY" attributes that hold the extended schema information.

IBM Tivoli Directory Server requires that the schema defined for a naming context be stored in a special directory entry, "cn=schema". The entry contains all of the schema defined for the server. To retrieve schema information, you can perform an ldap_search by using the following:

DN: "cn=schema", search scope: base, filter: objectclass=Subschema
or objectclass=*  

The schema provides values for the following attribute types:

- objectClasses (See [“Working with object classes” on page 107](#))
- attributeTypes (See [“Working with attributes” on page 113](#))
- IBMAttributeTypes (See [“The IBMAttributeTypes attribute type” on page 119](#))
- matching rules (See [“Matching rules” on page 120](#))
- ldap syntaxes (See [“Attribute syntax” on page 123](#))

The syntax of these schema definitions is based on the LDAP Version 3 RFCs.

A sample schema entry might contain:
As shown in the preceding example, it is not required that all of the attribute values of a given attribute type be provided in a single production.

The schema information can be modified through the ldap_modify API. Consult the Client SDK Programming Reference for additional information. With the DN "cn=schema" you can add, delete, or replace an attribute type or an object class. To delete a schema entity, provide the oid in parenthesis (oid). You also can provide a full description. You can add or replace a schema entry with the LDAP Version 3 definition or with the IBM attribute extension definition or with both definitions.
Common schema support

The IBM Directory supports standard directory schema as defined in the following:

- The Internet Engineering Task Force (IETF) LDAP Version 3 RFCs, such as RFC 2252 and 2256.
- The Directory Enabled Network (DEN)
- The Common Information Model (CIM) from the Desktop Management Task Force (DMTF)
- The Lightweight Internet Person Schema (LIPS) from the Network Application Consortium

This version of LDAP includes the LDAP Version 3 defined schema in the default schema configuration. It also includes the DEN schema definitions.

IBM also provides a set of extended common schema definitions that other IBM products share when they exploit the LDAP directory. They include:

- Objects for white page applications such as eperson, group, country, organization, organization unit and role, locality, state, and so forth
- Objects for other subsystems such as accounts, services and access points, authorization, authentication, security policy, and so forth.

Object identifier (OID)

An object identifier (OID) is a string, of decimal numbers, that uniquely identifies an object. These objects are typically an object class or an attribute. These numbers can be obtained from the IANA (Internet Assigned Number Authority). The IANA Website is located at: http://www.iana.org/iana/.

If you do not have an OID, you can specify the object class or attribute name appended with -oid. For example, if you create the attribute tempID, you can specify the OID as tempID-oid.

Working with object classes

An object class specifies a set of attributes used to describe an object. For example, if you created the object class tempEmployee, it could contain attributes associated with a temporary employee such as, idNumber, dateOfHire, or assignmentLength. You can add custom object classes to suit the needs of your organization. The IBM Tivoli Directory Server schema provides some basic types of object classes, including:

- Groups
- Locations
- Organizations
- People

Note: Object classes that are specific to the IBM Tivoli Directory Server have the prefix ‘ibm-‘.

Defining object classes

Object classes are defined by the characteristics of type, inheritance, and attributes.

Object class type

An object class can be one of three types:
Structural:
Every entry must belong to one and only one structural object class, which defines the base contents of the entry. This object class represents a real world object. Because all entries must belong to a structural object class, this is the most common type of object class.

Abstract:
This type is used as a superclass or template for other (structural) object classes. It defines a set of attributes that are common to a set of structural object classes. These object classes, if defined as subclasses of the abstract class, inherit the defined attributes. The attributes do not need to be defined for each of the subordinate object classes.

Auxiliary:
This type indicates additional attributes that can be associated with an entry belonging to a particular structural object class. Although an entry can belong to only a single structural object class, it may belong to multiple auxiliary object classes.

Object Class Inheritance
This version of the IBM Tivoli Directory Server supports object inheritance for object class and attribute definitions. A new object class can be defined with parent classes (multiple inheritance) and the additional or changed attributes.

Each entry is assigned to a single structural object class. All object classes inherit from the abstract object class top. They can also inherit from other object classes. The object class structure determines the list of required and allowed attributes for a particular entry. Object class inheritance depends on the sequence of object class definitions. An object class can only inherit from object classes that precede it. For example, the object class structure for a person entry might be defined in the LDIF file as:

objectClass: top
objectClass: person
objectClass: organizationalPerson

In this structure, the organizationalPerson inherits from the person and the top object classes, while person object class only inherits from the top object class. Therefore, when you assign the organizationalPerson object class to an entry, it automatically inherits the required and allowed attributes from the superior object class. In this case, the person object class.

Schema update operations are checked against the schema class hierarchy for consistency before being processed and committed.

Attributes
Every object class includes a number of required attributes and optional attributes. Required attributes are the attributes that must be present in entries using the object class. Optional attributes are the attributes that may be present in entries using the object class.

Viewing object classes
You can view the object classes in the schema using either the Web Administration Tool, the preferred method or using the command line.

Using Web Administration:
Expand Schema management in the navigation area and click Manage object classes.
A read-only panel is displayed that enables you to view the object classes in the schema and their characteristics. The object classes are displayed in alphabetical order. You can move one page backwards or forward by clicking Previous or Next. The field next to these buttons identifies the page that you are on.

You can also use the drop-down menu of this field to skip to a specific page. The first object class listed on the page is displayed with the page number to help you locate the object class you want to view. For example, if you were looking for the object class person, you expand the drop-down menu and scroll down until you see Page 14 of 16 nsliserver and Page 15 of 16 printerLPR. Because person is alphabetically between nsliserver and printerLPR, you select Page 14 and click Go.

You can also display the object classes sorted by type. From the drop-down menu that displays Objectclass, select Type and click Sort. The object classes are sorted alphabetically within their type, Abstract, Auxiliary, or Structural. Similarly you can reverse the list order by selecting Descending and clicking Sort.

After you have located the object class that you want, you can view its type, inheritance, required attributes, and optional attributes. Expand the drop-down menus for inheritance, required attributes, and optional attributes to see the full listings for each characteristic.

You can choose the object class operations you want to perform from the right-hand tool bar, such as:
• Add
• Edit
• Copy
• Delete

When you are finished click Close to return to the IBM Tivoli Directory Server Welcome panel.

**Using the command line:**
To view the object classes contained in the schema issue the command:
ldapsearch -b cn=schema -s base objectclass=*

### Adding an object class

**Using Web Administration:**
If you have not done so already, expand Schema management in the navigation area, then click Manage object classes. To create a new object class:

1. Click Add.

   **Note:** You can also access this panel by expanding Schema management in the navigation area, and then clicking Add an object class.

2. At the General properties tab:
   • Enter the **Object class name**. This is a required field, and is descriptive of the function of the object class. For example, tempEmployee for an object class used to track temporary employees.
   • Enter a **Description** of the object class, for example, The object class used for temporary employees.
   • **Enter the OID for the object class.** This is a required field. See “Object identifier (OID)” on page 107. If you do not have an OID, you can use the
Object class name appended with -oid. For example, if the object class name is tempEmployee, then the OID is tempEmployee-oid. You can change the value of this field.

- Select one or more Superior object classes from the menu. This selection determines the object class or classes from which other attributes are inherited. Typically the Superior object classes is top, however, it can be another object class, or used in conjunction with other object classes. For example, a superior object classes for tempEmployee might be top and ePerson.
- Select an Object class type. See “Object class type” on page 107 for additional information about object class types.
- Click the Attributes tab to specify the required and the optional attributes for the object class and view the inherited attributes, or click OK to add the new object class or click Cancel to return to Manage object classes without making any changes.

3. At the Attributes tab:
- Select an attribute from the alphabetical list of Available attributes and click Add to required to make the attribute required or click Add to optional to make the attribute optional for the object class. The attribute is displayed in the appropriate list of selected attributes.
- Repeat this process for all the attributes you want to select.
- You can move an attribute from one list to another or delete the attribute from the selected lists by selecting it and clicking the appropriate Move to or Remove button.
- You can view the lists of required and optional inherited attributes. Inherited attributes are based on the Superior object classes selected on the General tab. You cannot change the inherited attributes. However, if you change the Superior object classes on the General tab, a different set of inherited attributes is displayed.

4. Click OK to add the new object class or click Cancel to return to Manage object classes without making any changes.

Note: If you clicked OK on the General tab without adding any attributes, you can add attributes by editing the new object class.

Using the command line:
To add an object class using the command line, issue the following command:

```bash
ldapmodify -D <adminDN> -w <adminPW> -i <filename>
```

where <filename> contains:

- dn: cn=Schema
- changetype: modify
- add: objectclasses
- objectclasses: ( <myobjectClass-oid> NAME '<myObjectClass>' DESC '<An object class I defined for my LDAP application>' SUP '<objectclassinheritance>' <objectclasstype> MUST (<attribute1> $ <attribute2>) MAY (<attribute1> $ <attribute2>) )

Editing an object class
Not all schema changes are allowed. See “Disallowed schema changes” on page 123 for change restrictions.

Using Web Administration:
If you have not done so already, expand Schema management in the navigation area, then click Manage object classes. To edit an object class:
1. Click the radio button next to the object class that you want to edit.
2. Click Edit.
3. Select a tab:
   - Use the General tab to:
     - Modify the Description.
     - Change the Superior object classes. Select one or more superior object classes from the menu. This determines the object class or classes from which other attributes are inherited. Typically the superior object class is top, however, it can be another object class, or used in conjunction with other object classes. For example, a superior object classes for tempEmployee might be top and ePerson.
     - Change the Object class type. Select an object class type. See "Object class type" on page 107 for additional information about object class types.
     - Click the Attributes tab to change the required and the optional attributes for the object class and view the inherited attributes, or click OK to apply your changes or click Cancel to return to Manage object classes without making any changes.
   - Use the Attributes tab to:
     Select an attribute from the alphabetical list of Available attributes and click Add to required to make the attribute required or click Add to optional to make the attribute optional for the object class. The attribute is displayed in the appropriate list of selected attributes.
     Repeat this process for all the attributes you want to select.
     You can move an attribute from one list to another or delete the attribute from the selected lists by selecting it and clicking the appropriate Move to or Delete button.
     You can view the lists of required and optional inherited attributes. Inherited attributes are based on the superior object classes selected on the General tab. You cannot change the inherited attributes. However, if you change the Superior object classes on the General tab, a different set of inherited attributes is displayed.
4. Click OK to apply the changes or click Cancel to return to Manage object classes without making any changes.

Using the command line:
View the object classes contained in the schema issue the command:
ldapsearch -b cn=schema -s base objectclass=* objectclasses

To edit an object class using the command line, issue the following command:
ldapmodify -D <adminDN> -w <adminPW> -i <filename>

where <filename> contains:

dn: cn=schema
changetype: modify
replace: objectclasses
objectclasses: ( <myobjectClass-oid> NAME '<myObjectClass>' DESC '<An object class I defined for my LDAP application>' SUP '<newsuperiorobjectclassobject>'
  <newobjectclascategory> MUST (<attribute1> $ <attribute2>)
  MAY (<attribute1> $ <attribute2>) )
Copying an object class

**Using Web Administration:**
If you have not done so already, expand Schema management in the navigation area, then click Manage object classes. To copy an object class:
1. Click the radio button next to the object class that you want to copy.
2. Click Copy.
3. Select a tab:
   - Use the General tab to:
     - Type the new object class name. For example, you might copy tempPerson as tempPersonCOPY.
     - Modify the Description.
     - Type the new OID. If you do not have a new OID for the object class you have copied you might use the existing OID with the word COPY appended to it. For example, you might take the <tempPerson-oid> and copy it as <tempPerson-oid>COPY.
     - Change the Superior object classes. Select one or more superior object classes from the menu. This determines the object class or classes from which other attributes are inherited. Typically the superior object class is top, however, it can be another object class, or used in conjunction with other object classes. For example, a superior object classes for tempEmployeeCOPY might be top and ePerson.
     - Change the Object class type. Select an object class type. See "Object class type" on page 107 for additional information about object class types.
   - Use the Attributes tab to:
     Select an attribute from the alphabetical list of Available attributes and click Add to required to make the attribute required or click Add to optional to make the attribute optional for the object class. The attribute is displayed in the appropriate list of selected attributes.
     Repeat this process for all the attributes you want to select.
     You can move an attribute from one list to another or delete the attribute from the selected lists by selecting it and clicking the appropriate Move to or Delete button.
     You can view the lists of required and optional inherited attributes. Inherited attributes are based on the superior object classes selected on the General tab. You cannot change the inherited attributes. However, if you change the Superior object classes on the General tab, a different set of inherited attributes is displayed.
   - Click OK to apply the changes or click Cancel to return to Manage object classes without making any changes.

4. Click OK to apply the changes or click Cancel to return to Manage object classes without making any changes.

**Using the command line:**
View the object classes contained in the schema issue the command:
ldapsearch -b cn=schema -s base objectclass=* objectclasses

Select the object class that you want to copy. Use an editor to change the appropriate information and save the changes to <filename>. The issue the following command:
ldapmodify -D <adminDN>-w <adminPW>-i <filename>

where <filename> contains:

dn: cn=schema
changetype: modify
replace: objectclasses
objectclasses: { <mynewobjectClass-oid> NAME '<mynewObjectClass'
    DESC '<A new object class I copied for my LDAP application>'
    SUP '<superiorclassobject>'<objectclasstype>
    MUST (<attribute1> $ <attribute2>)
    MAY (>attribute1> $ <attribute2> $ <attribute3>) }

Deleting an object class

Not all schema changes are allowed. See "Disallowed schema changes" on page 125 for change restrictions.

Using Web Administration:
If you have not done so already, expand Schema management in the navigation area, then click Manage object classes. To delete an object class:
1. Click the radio button next to the object class that you want to delete.
2. Click Delete.
3. You are prompted to confirm deletion of the object class. Click OK to delete the object class or click Cancel to return to Manage object classes without making any changes.

Using the command line:
View the object classes contained in the schema issue the command:
ldapsearch -b cn=schema -s base objectclass=* objectclasses

Select the object class you want to delete and issue the following command:
ldapmodify -D <adminDN>-w <adminPW>-i <filename>

where <filename> contains:

dn: cn=schema
changetype: modify
delete: objectclasses
objectclasses: { <myobjectClass-oid> NAME '<myObjectClass'
    DESC '<An object class I defined for my LDAP application>'
    SUP '<objectclassinheritance>'<objectclasstype>
    MUST (<attribute1> $ <attribute2>)
    MAY (>attribute1> $ <attribute2>) }

Working with attributes

Each directory entry has a set of attributes associated with it through it's object class. While the object class describes the type of information that an entry contains, the actual data is contained in attributes. An attribute is represented by one or more name-value-pairs that hold specific data element such as a name, an address, or a telephone number. The IBM Tivoli Directory Server represents data as name-value-pairs, a descriptive attribute, such as commonName (cn), and a specific piece of information, such as John Doe.

For example, the entry for John Doe might contain several attribute name-value-pairs.

dn: uid=jdoe, ou=people, ou=mycompany, c=us,
objectClass: top
objectClass: person
While the standard attributes are already defined in the schema file, you can create, edit, copy, or delete attributes to suit the needs of your organization.

**Viewing attributes**

You can view the attributes in the schema using either the Web Administration Tool, the preferred method or using the command line.

**Using Web Administration:**

Expand **Schema management** in the navigation area and click **Manage attributes**. A read-only panel is displayed that enables you to view the attributes in the schema and their characteristics. The attributes are displayed in alphabetical order. You can move one page backwards or forward by clicking Previous or Next. The field next to these buttons identifies the page that you are on. You can also use the drop-down menu of this field to skip to a specific page. The first object class listed on the page is displayed with the page number to help you locate the object class you want to view. For example, if you were looking for the attribute `authenticationUserID`, you expand the drop-down menu and scroll down until you see **Page 3 of 62 applSystemHint** and **Page 4 of 62 authorityRevocationList**. Because `authenticationUserID` is alphabetically between `applSystemHint` and `authorityRevocationList`, you select Page 3 and click **Go**.

You can also display the attributes sorted by syntax. Select **Syntax** and click **Sort**. The attributes are sorted alphabetically within their syntax. See “Attribute syntax” on page 123 for a listing or the types of syntax. Similarly you can reverse the list order by selecting **Descending** and clicking **Sort**.

After you have located the attribute that you want, you can view its syntax, whether it is multi-valued, and the object classes that contain it. Expand the drop-down menu for object classes to see the list of object classes for the attribute.

When you are finished click **Close** to return to the IBM Tivoli Directory Server Welcome panel.

**Using the command line:**

To view the attributes contained in the schema issue the command:

```
ldapsearch -b cn=schema -s base objectclass=* attributeTypes IBMAttributeTypes
```

**Adding an attribute**

Use either of the following methods to create a new attribute. The Web Administration Tool is the preferred method.

**Using Web Administration:**

If you have not done so already, expand **Schema management** in the navigation area, then click **Manage attributes**. To create a new attribute:

1. Click **Add**.

   **Note:** You can also access this panel by expanding **Schema management** in the navigation area, then click **Add an attribute**.

2. Enter the **Attribute name**, for example, `tempId`. This is a required field and must begin with an alphabetical character.
3. Enter a **Description** of the attribute, for example, **The ID number assigned to a temporary employee**.

4. Enter the **OID** for the attribute. This is a required field. See **Object identifier (OID)” on page 107**. If you do not have an OID, you can use the attribute name appended with -oid. For example, if the attribute name is **tempID**, then the default OID is **tempID-oid**. You can change the value of this field.

5. Select a **Superior attribute** from the drop-down list. The superior attribute determines the attribute from which properties are inherited.

6. Select a **Syntax** from the drop-down list. See **“Attribute syntax” on page 123** for additional information about syntax.

7. Enter an **Attribute length** that specifies the maximum length of this attribute. The length is expressed as the number of bytes.

8. Select the **Allow multiple values** checkbox to enable the attribute to have multiple values. See the glossary entry for additional information about multiple values.

9. Select a matching rule from the each of the drop-down menus for equality, ordering, and substring matching rules. See the **“Matching rules” on page 120** for a complete listing of matching rules.

10. Click the **IBM extensions** tab to specify additional extensions for the attribute, or click **OK** to add the new attribute or click **Cancel** to return to **Manage attributes** without making any changes.

11. At the **IBM extensions** tab:
   - Modify the **DB2 table name**. The server generates the DB2 table name if this field is left blank. If you enter a DB2 table name, you must also enter a DB2 column name.
   - Modify the **DB2 column name**. The server generates the DB2 column name if this field is left blank. If you enter a DB2 column name, you must also enter a DB2 table name.
   - Set the **Security class** by selecting normal, sensitive, or critical from the drop-down list. See the Security class section under 220 for information about security classes.
   - Set the **Indexing rules** by selecting one or more indexing rules. See **“Indexing rules” on page 122** for additional information about indexing rules.

**Note:** At a minimum, it is recommended that you specify Equality indexing on any attributes that are to be used in search filters.

12. Click **OK** to add the new attribute or click **Cancel** to return to **Manage attributes** without making any changes.

**Note:** If you clicked OK on the General tab without adding any extensions, you can add extensions by the editing the new attribute.

**Using the command line:**
The following example adds an attribute type definition for an attribute called “myAttribute”, with Directory String syntax (see **“Attribute syntax” on page 123** and Case Ignore Equality matching (see **“Matching rules” on page 120**). The IBM-specific part of the definition says that the attribute data is stored in a column named "myAttrColumn" in a table called "myAttrTable". If these names were not specified, both the column and table name would have defaulted to "myAttribute". The attribute is assigned to the "normal" access class, and values have a maximum length of 200 bytes.

```
ldapmodify -D <admindn> -w <adminpw> -i myschema.ldif
```
where the `myschema.ldif` file contains:

```ldif
dn: cn=schema
changetype: modify
add: attributetypes
attributetypes: (myAttribute-oid NAME ('myAttribute')
 DESC 'An attribute I defined for my LDAP application'
 EQUALITY 2.5.13.2 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
 USAGE userApplications)
- add: ibmattributetypes
 ibmattributetypes: (myAttribute-oid DBNAME ('myAttrTable' 'myAttrColumn')
 ACCESS-CLASS normal LENGTH 200)
```

See "ldapmodify, ldapadd" on page 280 for more information about this command.

### Editing an attribute

Not all schema changes are allowed. See "Disallowed schema changes" on page 125 for change restrictions.

Any part of a definition can be changed before you have added entries that use the attribute. Use either of the following methods to edit an attribute. The Web Administration Tool is the preferred method.

#### Using Web Administration:

If you have not done so already, expand **Schema management** in the navigation area, then click **Manage attributes**. To edit an attribute:

1. Click the radio button next to the attribute that you want to edit.
2. Click **Edit**.
3. Select a tab:
   - Use the **General** tab to:
     - Select a tab, either:
       - **General** to:
         - Modify the **Description**
         - Change the **Syntax**
         - Set the **Attribute length**
         - Change the **Multiple value** settings
         - Select a **Matching rule**
         - Change the **Superior attribute**
       - Click the **IBM extensions** tab to edit the extensions for the attribute, or click **OK** to apply your changes or click **Cancel** to return to **Manage attributes** without making any changes.
       - **IBM extensions** (if you are connected to an IBM Tivoli Directory Server) to:
         - Change the **Security class**.

   **Note:** You cannot change the security class of attributes that have a security classification of system or restricted.

   - **Change the **Indexing rules**.
     - Click **OK** to apply your changes or click **Cancel** to return to **Manage attributes** without making any changes.

4. Click **OK** to apply the changes or click **Cancel** to return to **Manage attributes** without making any changes.
Using the command line:
This example adds indexing to the attribute, so that searching on it is faster. Use the ldapmodify command and the LDIF file to change the definition:

```
ldapmodify -D <admindn> -w <adminpw> -i myschemachange.ldif
```

Where the `myschemachange.ldif` file contains:

```
dn: cn=schema
changetype: modify
replace: attributetypes
attributetypes: (myAttribute-oid NAME ('myAttribute') DESC 'An attribute I defined for my LDAP application' EQUALITY 2.5.13.2 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 USAGE userApplications)
```

```
replace: ibmattributetypes
ibmattributetypes: (myAttribute-oid DBNAME ('myAttrTable' 'myAttrColumn') ACCESS-CLASS normal LENGTH 200 EQUALITY SUBSTR)
```

**Note:** Both portions of the definition (`attributetypes` and `ibmattributetypes`) must be included in the replace operation, even though only the `ibmattributetypes` section is changing. The only change is adding "EQUALITY SUBSTR" to the end of the definition to request indexes for equality and substring matching.

See "ldapmodify, ldapadd" on page 280 for more information about this command.

Copying an attribute
Use either of the following methods to copy an attribute. The Web Administration Tool is the preferred method.

**Using Web Administration:**
If you have not done so already, expand Schema management in the navigation area, then click Manage attributes. To copy an attribute:

1. Click the radio button next to the attribute that you want to copy.
2. Click Copy.
3. Modify the Attribute name. The default name is the copied attribute name appended with the word COPY. For example `tempID` is copied as `tempIDCOPY`.
4. Modify a Description of the attribute, for example, The ID number assigned to a temporary employee.
5. Modify the OID. The default OID is the copied attribute OID appended with the word COPYOID. For example `tempID-oid` is copied as `tempID-oidCOPYOID`.
6. Select a Superior attribute from the drop-down list. The superior attribute determines the attribute from which properties are inherited.
7. Select a Syntax from the drop-down list. See "Attribute syntax" on page 123 for additional information about syntax.
8. Enter a Attribute length that specifies the maximum length of this attribute. The length is expressed as the number of bytes.
9. Select the Allow multiple values checkbox to enable the attribute to have multiple values. See the glossary entry for additional information about multiple values.
10. Select a matching rule from the each of the drop-down menus for equality, ordering, and substring matching rules. See the "Matching rules" on page 120 for a complete listing of matching rules.
11. Click the **IBM extensions** tab to modify additional extensions for the attribute, or click **OK** to apply your changes or click **Cancel** to return to **Manage attributes** without making any changes.

12. At the **IBM extensions** tab:
   - Modify the **DB2 table name**. The server generates the DB2 table name if this field is left blank. If you enter a DB2 table name, you must also enter a DB2 column name.
   - Modify the **DB2 column name**. The server generates the DB2 column name if this field is left blank. If you enter a DB2 column name, you must also enter a DB2 table name.
   - Modify the **Security class** by selecting **normal**, **sensitive**, or **critical** from the drop-down list.

   **Note:** You cannot change the security class of attributes that have a security classification of system or restricted.

   - Modify the **Indexing rules** by selecting one or more indexing rules. See “Indexing rules” on page 122 for additional information about indexing rules.

   **Note:** At a minimum, it is recommended that you specify Equal indexing on any attributes that are to be used in search filters.

13. Click **OK** to apply your changes or click **Cancel** to return to **Manage attributes** without making any changes.

   **Note:** If you clicked **OK** on the **General** tab without adding any extensions, you can add or modify extensions by editing the new attribute.

**Using the command line:**
View the attributes contained in the schema issue the command:

```
ldapsearch -b cn=schema -s base objectclass=* attributeTypes IBMAttributeTypes
```

Select the attribute that you want to copy. Use an editor to change the appropriate information and save the changes to `<filename>`. Then issue the following command:

```
ldapmodify -D `<adminDN>` -w `<adminPW>` -i `<filename>`
```

where `<filename>` contains:

```
dn: cn=schema
changetype: modify
add: attributetypes:
 attributetypes: (`<mynewAttribute-oid` NAME `'<mynewAttribute>' DESC `'<A new attribute I copied for my LDAP application>' EQUALITY 2.5.13.2
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 USAGE userApplications`)

 add: ibmattributetypes
 ibmattributetypes: (myAttribute-oid DBNAME ('myAttrTable' 'myAttrColumn')
 ACCESS-CLASS normal LENGTH 200)
```

**Deleting an attribute**

Not all schema changes are allowed. See “Disallowed schema changes” on page 125 for change restrictions.

Use either of the following methods to delete an attribute. The Web Administration Tool is the preferred method.
Using Web Administration:
If you have not done so already, expand Schema management in the navigation area, then click Manage attributes. To delete an attribute:
1. Click the radio button next to the attribute that you want to delete.
2. Click Delete.
3. You are prompted to confirm deletion of the attribute. Click OK to delete the attribute or click Cancel to return to Manage attributes without making any changes.

Using the command line:
```
ldapmodify -D <admindn> -w<adminpw> -i myschemadelete.ldif
```

Where the myschemadelete.ldif file includes:
```
dn: cn=schema
changetype: modify
delete: attributetypes
attributetypes: (myAttribute-oid NAME ('myAttribute') DESC 'An attribute I defined for my LDAP application' EQUALITY 2.5.13.2 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 USAGE userApplications)
```
```
delete: ibmattributetypes
ibmattributetypes: (myAttribute-oid DBNAME ('myAttrTable' 'myAttrColumn') ACCESS-CLASS normal LENGTH 200 EQUALITY SUBSTR)
```

See "ldapmodify, ldapadd" on page 280 for more information about this command.

The IBMAttributeTypes attribute type

The IBMAttributeTypes attribute can be used to define schema information not covered by the LDAP Version 3 standard for attributes. Values of IBMAttributeTypes must comply with the following grammar:
```
IBMAttributeTypesDescription = "(" whsp
numericoid whsp
["DBNAME" qdescrs] ; at most 2 names (table, column)
["ACCESS-CLASS" whsp IBMAccessClass whsp]
["LENGTH" wlen whsp] ; maximum length of attribute
["EQUALITY" [IBMwlen] whsp] ; create index for matching rule
["ORDERING" [IBMwlen] whsp] ; create index for matching rule
["APPROX" [IBMwlen] whsp] ; create index for matching rule
["SUBSTR" [IBMwlen] whsp] ; create index for matching rule
["REVERSE" [IBMwlen] whsp] ; reverse index for substring
whsp ")"
```
```
IBMAccessClass = "NORMAL" / ; this is the default
"SENSITIVE" /
"CRITICAL" /
"RESTRICTED" /
"SYSTEM" /
```
```
IBMwlen = whsp len
```

Numericoid

Used to correlate the value in attributetypes with the value in IBMAttributeTypes.

DBNAME

You can provide 2 names at the most, if indeed 2 names are given. The first is the table name used for this attribute. The second is the column name used for the fully normalized value of the attribute in the table. If you provide only one name, it is used as the table name as well as the
column name. If you do not provide any DBNAMEs, then the short attribute name is used (from the attributetypes).

**ACCESS-CLASS**
Attributes requiring similar permissions for access are grouped together in classes. Attributes are mapped to their attribute classes in the directory schema file. These classes are discreet; access to one class does not imply access to another class. Permissions are set with regard to the attribute access class as a whole. The permissions set on a particular attribute class apply to all attributes within that access class unless individual attribute access permissions are specified.

IBM defines five attribute classes that are used in evaluation of access to user attributes: **normal**, **sensitive**, **critical**, **system**, and **restricted**. As examples, the attribute **commonName** belongs to the normal class, and the attribute **userPassword** belongs to the critical class. User defined attributes belong to the normal access class unless otherwise specified. See “Rights” on page 215 for more information.

If ACCESS-CLASS is omitted, it defaults to normal.

**LENGTH**
The maximum length of this attribute. The length is expressed as the number of bytes. IBM Directory Version 5.2 has a provision for specifying the length of an attribute. In the attributetypes value, the string:

```
(attr-oid ... SYNTAX syntax-oid{len} ...)
```

can be used to indicate that the attributetype with oid attr-oid has a maximum length.

**EQUALITY, ORDERING, APPROX, SUBSTR, REVERSE**
If any of these attributes are used, an index is created for the corresponding matching rule. The optional length specifies the width of the indexed column. For many syntaxes, you can share a single index to implement multiple matching rules. The IBM Tivoli Directory Server takes advantage of this. It assigns a length when one is not provided by the user. SLAPD can also use a shorter length than what the user requested when it makes sense to do so. For example, when the length of the index exceeds the maximum length of the attribute, the index length is ignored.

**Matching rules**
A matching rule provides guidelines for string comparison during a search operation. These rules are divided into three categories:

- Equality
- Ordering
- Substring

<table>
<thead>
<tr>
<th>Table 8.</th>
<th>Equality matching rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matching Rule</td>
<td>OID</td>
</tr>
<tr>
<td>caseExactIA5Match</td>
<td>1.3.6.1.4.1.1466.109.114.1</td>
</tr>
<tr>
<td>caseExactMatch</td>
<td>2.5.13.5</td>
</tr>
<tr>
<td>caseIgnoreIA5Match</td>
<td>1.3.6.1.4.1.1466.109.114.2</td>
</tr>
<tr>
<td>caseIgnoreMatch</td>
<td>2.5.13.2</td>
</tr>
</tbody>
</table>
Table 8. (continued)

<table>
<thead>
<tr>
<th>Matching Rule</th>
<th>OID</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>distinguishedNameMatch</td>
<td>2.5.13.1</td>
<td>DN - distinguished name</td>
</tr>
<tr>
<td>generalizedTimeMatch</td>
<td>2.5.13.27</td>
<td>Generalized Time syntax</td>
</tr>
<tr>
<td>ibm-entryUuidMatch</td>
<td>1.3.18.0.2.22.2</td>
<td>Directory String syntax</td>
</tr>
<tr>
<td>integerFirstComponentMatch</td>
<td>2.5.13.29</td>
<td>Integer syntax - integral number</td>
</tr>
<tr>
<td>integerMatch</td>
<td>2.5.13.14</td>
<td>Integer syntax - integral number</td>
</tr>
<tr>
<td>objectIdentifierFirstComponentMatch</td>
<td>2.5.13.30</td>
<td>String for containing OIDs. The OID is a string containing digits (0-9) and decimal points (.)</td>
</tr>
<tr>
<td>objectIdentifierMatch</td>
<td>2.5.13.0</td>
<td>String for containing OIDs. The OID is a string containing digits (0-9) and decimal points (.)</td>
</tr>
<tr>
<td>octetStringMatch</td>
<td>2.5.13.17</td>
<td>Directory String syntax</td>
</tr>
<tr>
<td>telephoneNumberMatch</td>
<td>2.5.13.20</td>
<td>Telephone Number syntax</td>
</tr>
<tr>
<td>uTCTimeMatch</td>
<td>2.5.13.25</td>
<td>UTC Time syntax</td>
</tr>
</tbody>
</table>

Table 9.

<table>
<thead>
<tr>
<th>Matching rule</th>
<th>OID</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>caseExactOrderingMatch</td>
<td>2.5.13.6</td>
<td>Directory String syntax</td>
</tr>
<tr>
<td>caseIgnoreOrderingMatch</td>
<td>2.5.13.3</td>
<td>Directory String syntax</td>
</tr>
<tr>
<td>distinguishedNameOrderingMatch</td>
<td>1.3.18.0.2.4.405</td>
<td>DN - distinguished name</td>
</tr>
<tr>
<td>generalizedTimeOrderingMatch</td>
<td>2.5.13.28</td>
<td>Generalized Time syntax</td>
</tr>
</tbody>
</table>

Table 10.

<table>
<thead>
<tr>
<th>Matching rule</th>
<th>OID</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>caseExactSubstringsMatch</td>
<td>2.5.13.7</td>
<td>Directory String syntax</td>
</tr>
<tr>
<td>caseIgnoreSubstringsMatch</td>
<td>2.5.13.4</td>
<td>Directory String syntax</td>
</tr>
<tr>
<td>telephoneNumberSubstringsMatch</td>
<td>2.5.13.21</td>
<td>Telephone Number syntax</td>
</tr>
</tbody>
</table>

Note: UTC-Time is time string format defined by ASN.1 standards. See ISO 8601 and X680. Use this syntax for storing time values in UTC-Time format. See “Generalized and UTC time” on page 133.
Indexing rules

Index rules attached to attributes make it possible to retrieve information faster. If only the attribute is given, no indexes are maintained. IBM Directory provides the following indexing rules:

- Equality
- Ordering
- Approximate
- Substring
- Reverse

Indexing rules specifications for attributes:

Specifying an indexing rule for an attribute controls the creation and maintenance of special indexes on the attribute values. This greatly improves the response time to searches with filters which include those attributes. The five possible types of indexing rules are related to the operations applied in the search filter.

Equality

Applies to the following search operations:

- equalityMatch ‘=’

For example:
"cn = John Doe"

Ordering

Applies to the following search operation:

- greaterOrEqual ‘>=’
- lessOrEqual ‘<=’

For example:
"sn >= Doe"

Approximate

Applies to the following search operation:

- approxMatch ‘~’

For example:
"sn ~= doe"

Substring

Applies to the search operation using the substring syntax:

- substring ‘*’

For example:
"sn = McC*
"cn = J*Doe"

Reverse

Applies to the following search operation:

- ‘*’ substring

For example:
"sn = *baugh"

At a minimum, it is recommended that you specify equal indexing on any attributes that are to be used in search filters.
Attribute syntax

You can display syntax either alphabetically or by OID. Select Syntax or OID and click Sort. Similarly you can reverse the list order by selecting Descending and clicking Sort.

Table 11.

<table>
<thead>
<tr>
<th>Syntax</th>
<th>OID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute Type Description syntax</td>
<td>1.3.6.1.4.1.1466.115.121.1.3</td>
</tr>
<tr>
<td>Binary - octet string</td>
<td>1.3.6.1.4.1.1466.115.121.1.5</td>
</tr>
<tr>
<td>Boolean - TRUE/FALSE</td>
<td>1.3.6.1.4.1.1466.115.121.1.7</td>
</tr>
<tr>
<td>Directory String syntax</td>
<td>1.3.6.1.4.1.1466.115.121.1.15</td>
</tr>
<tr>
<td>DIT Content Rule Description syntax</td>
<td>1.3.6.1.4.1.1466.115.121.1.16</td>
</tr>
<tr>
<td>DITStructure Rule Description syntax</td>
<td>1.3.6.1.4.1.1466.115.121.1.17</td>
</tr>
<tr>
<td>DN - distinguished name</td>
<td>1.3.6.1.4.1.1466.115.121.1.12</td>
</tr>
<tr>
<td>Generalized Time syntax</td>
<td>1.3.6.1.4.1.1466.115.121.1.24</td>
</tr>
<tr>
<td>IA5 String syntax</td>
<td>1.3.6.1.4.1.1466.115.121.1.26</td>
</tr>
<tr>
<td>IBM Attribute Type Description</td>
<td>1.3.18.0.2.8.1</td>
</tr>
<tr>
<td>Integer syntax - integral number</td>
<td>1.3.6.1.4.1.1466.115.121.1.27</td>
</tr>
<tr>
<td>LDAP Syntax Description syntax</td>
<td>1.3.6.1.4.1.1466.115.121.1.54</td>
</tr>
<tr>
<td>Matching Rule Description</td>
<td>1.3.6.1.4.1.1466.115.121.1.30</td>
</tr>
<tr>
<td>Matching Rule Use Description</td>
<td>1.3.6.1.4.1.1466.115.121.1.31</td>
</tr>
<tr>
<td>Name Form Description</td>
<td>1.3.6.1.4.1.1466.115.121.1.35</td>
</tr>
<tr>
<td>Object Class Description syntax</td>
<td>1.3.6.1.4.1.1466.115.121.1.37</td>
</tr>
<tr>
<td>String for containing OIDs. The OID is a string containing digits (0-9) and decimal points (.). See “Object identifier (OID)” on page 107</td>
<td>1.3.6.1.4.1.1466.115.121.1.38</td>
</tr>
<tr>
<td>Telephone Number syntax</td>
<td>1.3.6.1.4.1.1466.115.121.1.50</td>
</tr>
<tr>
<td>UTC Time syntax. UTC-Time is time string format defined by ASN.1 standards. See ISO 8601 and X680. Use this syntax for storing time values in UTC-Time format. See “Generalized and UTC time” on page 133</td>
<td>1.3.6.1.4.1.1466.115.121.1.53</td>
</tr>
</tbody>
</table>

The subschema entries

There is one subschema entry per server. All entries in the directory have an implied subschemaSubentry attribute type. The value of the subschemaSubentry attribute type is the DN of the subschema entry that corresponds to the entry. All entries under the same server share the same subschema entry, and their subschemaSubentry attribute type has the same value. The subschema entry has the hardcoded DN ‘cn=schema’.

The subschema entry belongs to the object classes ‘top’, ‘subschema’, and ‘IBMSubschema’. The ‘IBMsubschema’ object class has no MUST attributes and one MAY attribute type (‘IBMattributeTypes’).
The IBMsubschema object class

The IBMsubschema object class is used only in the subschema entry as follows:

\[
\text{<objectClass-oid-TBD> NAME 'IBMsubschema' AUXILIARY MAY IBMattributeTypes }
\]

Schema queries

The ldap_search() API can be used to query the subschema entry, as shown in the following example:

DN : "cn=schema"
search scope : base
filter : objectclass= subschema or objectclass=""

This example retrieves the full schema. To retrieve all of the values of selected attribute types, use the attrs parameter in ldap_search. You cannot retrieve only a specific value of a specific attribute type.

See the IBM Directory Version 5.2: Client SDK Programming Reference for more information about the ldap_search API.

Dynamic schema

To perform a dynamic schema change, use the ldap_modify API with a DN of "cn=schema". It is permissible to add, delete, or replace only one schema entity (for example, an attribute type or an object class) at a time.

To delete a schema entity, provide the oid in parentheses:

\[
( \text{oid} )
\]

You can also provide a full description. In either case, the matching rule used to find the schema entity to delete is objectIdentifierFirstComponentMatch.

To add or replace a schema entity, you MUST provide a LDAP Version 3 definition and you MAY provide the IBM definition. In all cases, you must provide only the definition or definitions of the schema entity that you want to affect.

For example, to delete the attribute type ‘cn’ (its OID is 2.5.4.3), use ldap_modify() with:

```c
LDAPMod attr;
LDAPMod *attrs[] = { &attr, NULL };
char *vals[] = { "(2.5.4.3)", NULL };
attr.mod_op = LDAP_MOD_DELETE;
attr.mod_type = "attributeTypes";
attr.mod_values = vals;
ldap_modify_s(ldap_session_handle, "cn=schema", attrs);
```

To add a new attribute type bar with OID 20.20.20 that has a NAME of length 20 chars:

```c
char *vals1[] = { "(20.20.20 NAME 'bar' SUP NAME)", NULL };
char *vals2[] = { "(20.20.20 LENGTH 20)", NULL };
LDAPMod attr1;
LDAPMod attr2;
LDAPMod *attrs[] = { &attr1, &attr2, NULL };
attr1.mod_op = LDAP_MOD_ADD;
attr1.mod_type = "attributeTypes";
attr1.mod_values = vals1;
attr2.mod_op = LDAP_MOD_ADD;
```
attr2.mod_type = "IBMattributeTypes";
attr2.mod_values = vals2;
ldap_modify_s(ldap_session_handle, "cn=schema", attrs);

Note: You cannot change the ACCESS-CLASS type to or from "system" or "restricted".
See "Working with attributes" on page 113 for examples using the Web Administration Tool and the ldapmodify command.

See the IBM Directory Version 5.2: Client SDK Programming Reference for more information about the ldap_modify API.

Access controls
Dynamic schema changes can be performed only by a replication supplier or the administrator DN.

Replication
When a dynamic schema change is performed, it is replicated just like any other ldap_modify operation.

Disallowed schema changes
Not all schema changes are allowed. Change restrictions include the following:
• Any change to the schema must leave the schema in a consistent state.
• An attribute type that is a supertype of another attribute type may not be deleted. An attribute type that is a "MAY" or a "MUST" attribute type of an object class may not be deleted.
• An object class that is a superclass of another may not be deleted.
• Attribute types or object classes that refer to nonexisting entities (for example, syntaxes or object classes) cannot be added.
• Attribute types or object classes cannot be modified in such a way that they end up referring to nonexisting entities (for example, syntaxes or object classes).

Changes to the schema that affect the operation of the server are not allowed. The following schema definitions are required by the directory server. They must not be changed.

Object classes
The following object class definitions must not be modified:
• accessGroup
• accessRole
• alias
• referral
• replicaObject
• top

Attributes
The following attribute definitions must not be modified:

Operational attributes
There are several attributes that have special meaning to the directory server, known as operational attributes. These are attributes that are maintained by the
server, and either reflect information the server manages about an entry, or affect server operation. These attributes have special characteristics:

- The attributes are not returned by a search operation unless they are specifically requested (by name) in the search request.
- These attributes cannot be deleted.
- The attributes are not part of any object class. The server controls what entries have the attributes.

The following lists of operational attributes are supported by the IBM Tivoli Directory Server:
- aclEntry
- aclPropagate
- aclSource
- aliasedObjectName, aliasedentryName
- createTimestamp
- creatorsName
- entryOwner
- hasSubordinates
- ibm-allGroups
- ibm-allMembers
- ibm-capabilitiesSubentry
- ibm-effectiveAcl
- ibm-entryChecksum
- ibm-entryChecksumOp
- ibm-entryUuid
- ibm-filterAclEntry
- ibm-filterAclInherit
- ibm-replicationChangeLDIF
- ibm-replicationIsQuiesced
- ibm-replicationLastActivationTime
- ibm-replicationLastChangeId
- ibm-replicationLastFinishTime
- ibm-replicationLastGlobalChangeId
- ibm-replicationLastResult
- ibm-replicationLastResultAdditional
- ibm-replicationNextTime
- ibm-replicationPendingChangeCount
- ibm-replicationPendingChanges
- ibm-replicationState
- ibm-replicationThisServerIsMaster
- modifiersName
- modifyTimestamp
- ownerPropagate
- ownerSource
- pwdAccountLockedTime
- pwdChangedTime
• pwdExpirationWarned
• pwdFailureTime
• pwdGraceUseTime
• pwdHistory
• pwdReset
• subschemaSubentry
• subtreeSpecification

See Appendix G, “IBM Tivoli Directory Server 5.2 required attribute definitions”, on page 353 for more information about these attributes.

**Restricted attributes**
The following lists of restricted attributes are supported by the IBMTivoli Directory Server:

- aclEntry
- aclPropagate
- entryOwner
- ibm-filterAclEntry
- ibm-filterAclInherit
- ownerPropagate

**Root DSE attributes**
The following attributes relate to the root DSE and must not be modified:

- altServer
- ibm-effectiveReplicationModel
- ibm-enabledCapabilities
- ibm-serverId
- ibm-supportedCapabilities
- ibm-supportedReplicationModels
- namingContexts

See Appendix G, “IBM Tivoli Directory Server 5.2 required attribute definitions”, on page 353 for more information about these attributes.

**Schema definition attributes**
The following attributes are related to Schema definitions and must not be modified:

- attributeTypes
- ditContentRules
- ditStructureRules
- IBMAttributeTypes
- ldapSyntaxes
- matchingRules
- matchingRuleUse
- nameForms
- objectClasses
- supportedExtension
- supportedLDAPVersion
- supportedSASLMechanisms
See Appendix G, “IBM Tivoli Directory Server 5.2 required attribute definitions”, on page 353 for more information about these attributes.

**Configuration attributes**
The following are attributes that affect the configuration of the server. While the values can be modified, the definitions of these attributes must not be changed for the server to operate correctly:

- ibm-audit
- ibm-auditAdd
- ibm-auditBind
- ibm-auditDelete
- ibm-auditExtOpEvent
- ibm-auditFailedOpOnly
- ibm-auditLog
- ibm-auditModify
- ibm-auditModifyDN
- ibm-auditSearch
- ibm-auditUnbind
- ibm-slapdAclCache
- ibm-slapdAclCacheSize
- ibm-slapdAdminDN
- ibm-slapdAdminPW
- ibm-slapdAuthIntegration
- ibm-slapdCLIErrors
- ibm-slapdB2CP
- ibm-slapDBAliases
- ibm-slapdDbConnections
- ibm-slapdDbInstance
- ibm-slapdDbLocation
- ibm-slapdDbName
- ibm-slapdDbUserID
- ibm-slapdDbUserPW
- ibm-slapdDerefAliases
- ibm-slapdDN
- ibm-slapdsupportedCapabilities
- ibm-slapdEnableEventNotification
- ibm-slapdEntryCacheSize
- ibm-slapdErrorLog
- ibm-slapdFilterCacheBypassLimit
- ibm-slapdFilterCacheSize
- ibm-slapdIdleTimeOut
- ibm-slapdIncludeSchema
- ibm-slapdIpAddress
- ibm-slapdKrbAdminDN
- ibm-slapdKrbEnable
- ibm-slapdKrbIdentityMap
• ibm-slapdKrbKeyTab
• ibm-slapdKrbRealm
• ibm-slapdLdapCrlHost
• ibm-slapdLdapCrlPassword
• ibm-slapdLdapCrlPort
• ibm-slapdLdapCrlUser
• ibm-slapdMasterDN
• ibm-slapdMasterPW
• ibm-slapdMasterReferral
• ibm-slapdMaxEventsPerConnection
• ibm-slapdMaxEventsTotal
• ibm-slapdMaxNumOfTransactions
• ibm-slapdMaxOpPerTransaction
• ibm-slapdMaxTimeLimitOfTransactions
• ibm-slapdMigrationInfo
• ibm-slapdPagedResAllowNonAdmin
• ibm-slapdPagedResLmt
• ibm-slapdPageSizeLmt
• ibm-slapdPlugin
• ibm-slapdPort
• ibm-sladsldPwEncryption
• ibm-slapdReadOnly
• ibm-slapdReferral
• ibm-slapdSchemaAdditions
• ibm-slapdSchemaCheck
• ibm-slapdSecurePort
• ibm-slapdSecurity
• ibm-slapdSetenv
• ibm-slapdSizeLimit
• ibm-slapdSortKeyLimit
• ibm-slapdSortSrchAllowNonAdmin
• ibm-slapdSslAuth
• ibm-slapdSslCertificate
• ibm-slapdSslCipherSpec
• ibm-slapdSslCipherSpecs
• ibm-slapdSslKeyDatabase
• ibm-slapdSslKeyDatabasePW
• ibm-slapdSslKeyRingFile
• ibm-slapdSslKeyRingFilePW
• ibm-slapdSuffix
• ibm-slapdSupportedWebAdmVersion
• ibm-slapdSysLogLevel
• ibm-slapdTimeLimit
• ibm-slapdTraceEnabled
• ibm-slapdTraceMessageLevel
- ibm-slapdTraceMessageLog
- ibm-slapdTransactionEnable
- ibm-slapdUseProcessIdPW
- ibm-slapdVersion
- replicaBindDN
- replicaBindMethod
- replicaCredentials, replicaBindCredentials
- replicaHost
- replicaPort
- replicaUpdateTimeInterval
- replicaUseSSL

See Appendix G, “IBM Tivoli Directory Server 5.2 required attribute definitions”, on page 353 or Configuration attributes for more information about these attributes.

**User application attributes**
Additionally, there are several user application attributes that must not have their definitions modified:
- businessCategory
- cn, commonName
- changeNumber
- changes
- changeTime
- changeType
- deleteOldRdn
- description
- dn, distinguishedName
- member
- name
- newSuperior
- o, organizationName, organization
- objectClass
- ou, organizationalUnit, organizationalUnitName
- owner
- ref
- seeAlso
- targetDN

See Appendix G, “IBM Tivoli Directory Server 5.2 required attribute definitions”, on page 353 for more information about these attributes.

**Syntaxes**
No syntaxes are allowed to be modified.

**Matching rules**
No matching rules are allowed to be modified.
Schema checking

When the server is initialized, the schema files are read and checked for consistency and correctness. If the checks fail, the server fails to initialize and issues an error message. During any dynamic schema change, the resulting schema is also checked for consistency and correctness. If the checks fail, an error is returned and the change fails. Some checks are part of the grammar (for example, an attribute type can have at most one supertype, or an object class can have any number of superclasses).

The following items are checked for attribute types:

- Two different attribute types cannot have the same name or OID.
- The inheritance hierarchy of attribute types does not have cycles.
- The supertype of an attribute type must also be defined, although its definition might be displayed later, or in a separate file.
- If an attribute type is a subtype of another, they both have the same USAGE.
- All attribute types have a syntax either directly defined or inherited.
- Only operational attributes can be marked as NO-USER-MODIFICATION.

The following items are checked for object classes:

- Two different object classes cannot have the same name or OID.
- The inheritance hierarchy of object classes does not have cycles.
- The superclasses of an object class must also be defined, although its definition might appear later or in a separate file.
- The "MUST" and "MAY" attribute types of an object class must also be defined, although its definition might appear later or in a separate file.
- Every structural object class is a direct or indirect subclass of top.
- If an abstract object class has superclasses, the superclasses must also be abstract.

Checking an entry against the schema

When an entry is added or modified through an LDAP operation, the entry is checked against the schema. By default, all checks listed in this section are performed. However, you can selectively disable some of them by providing an ibm-slapdSchemaCheck value to the ibmslapd.conf configuration directive. See the IBM Tivoli Directory Server Version 5.2 Installation and Configuration Guide for information about schema configuration attributes.

To comply with the schema an entry is checked for the following conditions:

**With respect to object classes:**

- Must have at least one value of attribute type "objectClass".
- Can have any number of auxiliary object classes including zero. This is not a check, but a clarification. There are no options to disable this.
- Can have any number of abstract object classes, but only as a result of class inheritance. This means that for every abstract object class that the entry has, it also has a structural or auxiliary object class that inherits directly or indirectly from that abstract object class.
- Must have at least one structural object class.
- Must have exactly one immediate or base structural object class. This means that of all the structural object classes provided with the entry, they all must be superclasses of exactly one of them. The most derived
object class is called the "immediate" or "base structural" object class of the entry, or simply the "structural" object class of the entry.

- Cannot change its immediate structural object class (on ldap_modify).
- For each object class provided with the entry, the set of all of its direct and indirect superclasses is calculated; if any of those superclasses is not provided with the entry, then it is automatically added.

The validity of the attribute types for an entry is determined as follows:

- The set of MUST attribute types for the entry is calculated as the union of the sets of MUST attribute types of all of its object classes, including the implied inherited object classes. If the set of MUST attribute types for the entry is not a subset of the set of attribute types contained by the entry, the entry is rejected.
- The set of MAY attribute types for the entry is calculated as the union of the sets of MAY attribute types of all of its object classes, including the implied inherited object classes. If the set of attribute types contained by the entry is not a subset of the union of the sets of MUST and MAY attribute types for the entry, the entry is rejected.
- If any of the attribute types defined for the entry are marked as NO-USER-MODIFICATION, the entry is rejected.

The validity of the attribute type values for an entry is determined as follows:

- For every attribute type contained by the entry, if the attribute type is single-valued and the entry has more than one value, the entry is rejected.
- For every attribute value of every attribute type contained by the entry, if its syntax does not comply with the syntax checking routine for the syntax of that attribute, the entry is rejected.
- For every attribute value of every attribute type contained by the entry, if its length is greater than the maximum length assigned to that attribute type, the entry is rejected.

The validity of the DN is checked as follows:

- The syntax is checked for compliance with the BNF for DistinguishedNames. If it does not comply, the entry is rejected.
- It is verified that the RDN is made up with only attribute types that are valid for that entry.
- It is verified that the values of attribute types used in the RDN appear in the entry.

**DEN schema support**

The Directory-Enabled Network (DEN) specification defines a standard schema form that stores and describes the relationships among objects that represent users, applications, network elements, and networking services.

To support DEN, the IBM Tivoli Directory Server provides the following features:

- Subclassing (class inheritance). Class definitions can be created from existing definitions through subclassing. The new class definition inherits the properties from the parent class definition. The SUP option in the object class definition is used to specify the parent (or superior) object classes.
- LDAP syntaxes required by DEN, which include the following:
  - Boolean
  - DN
iPlanet compatibility

The parser used by the IBM Tivoli Directory Server allows the attribute values of schema attribute types (objectClasses and attributeTypes) to be specified using the grammar of iPlanet. For example, descrs and numeric-oids can be specified with surrounding single quotation marks (as if they were qdescrs). However, the schema information is always made available through ldap_search. As soon as a single dynamic change (using ldap_modify) is performed on an attribute value in a file, the whole file is replaced by one where all attribute values follow the IBM Directory Version 5.2 specifications. Because the parser used on the files and on ldap_modify requests is the same, an ldap_modify that uses the iPlanet grammar for attribute values is also handled correctly.

When a query is made on the subschema entry of an iPlanet server, the resulting entry can have more than one value for a given OID. For example, if a certain attribute type has two names (such as ‘cn’ and ‘commonName’), then the description of that attribute type is provided twice, once for each name. The IBM Tivoli Directory Server can parse a schema where the description of a single attribute type or object class appears multiple times with the same description (except for NAME and DESCR). However, when the IBM Tivoli Directory Server publishes the schema it provides a single description of such an attribute type with all of the names listed (the short name comes first). For example, here is how iPlanet describes the common name attribute:

```
(2.5.4.3 NAME 'cn'
 DESC 'Standard Attribute'
 SYNTAX '1.3.6.1.4.1.1466.115.121.1.15')
```

```
(2.5.4.3 NAME 'commonName'
 DESC 'Standard Attribute, alias for cn'
 SYNTAX '1.3.6.1.4.1.1466.115.121.1.15')
```

This is how the IBM Tivoli Directory Server describes it:
```
(2.5.4.3 NAME ('cn' 'commonName') SUP name)
```

The IBM Tivoli Directory Server supports subtypes. If you do not want ‘cn’ to be a subtype of name (which deviates from the standard), you can declare the following:

```
(2.5.4.3 NAME ('cn' 'commonName')
 DESC 'Standard Attribute'
 SYNTAX '1.3.6.1.4.1.1466.115.121.1.15')
```

The first name (‘cn’) is taken as the preferred or short name and all other names after ‘cn’ as alternate names. From this point on, the strings ‘2.3.4.3’, ‘cn’ and ‘commonName’ (as well as their case-insensitive equivalents) can be used interchangeably within the schema or for entries added to the directory.

Generalized and UTC time

There are different notations used to designate date and time-related information. For example, the fourth day of February in the year 1999 can be written as:
as well as many other notations.

IBM Tivoli Directory Server standardizes the timestamp representation by requiring the LDAP servers to support two syntaxes:

- The Generalized Time syntax, which takes the form:
  \[ YYYYMMDDHHMMSS[.\[,fraction\\)[[(+|-)HHMM]\]Z] \]

  There are 4 digits for the year, 2 digits each for the month, day, hour, minute, and second, and an optional fraction of a second. Without any further additions, a date and time is assumed to be in a local time zone. To indicate that a time is measured in Coordinated Universal Time, append a capital letter Z to a time or a local time differential. For example:
  "19991106210627.3"

  which in local time is 6 minutes, 27.3 seconds after 9 p.m. on 6 November 1999.
  "19991106210627.32"

  which is the coordinated universal time.
  "19991106210627.3-0500"

  which is local time as in the first example, with a 5 hour difference in relation to the coordinated universal time.

  If you designate an optional fraction of a second, a period or a comma is required. For local time differential, a '+' or a '-' must precede the hour-minute value

- The Universal time syntax, which takes the form:
  \[ YYYYMMDDHHMMSS\[\[.(\[\,\,\,\text{fraction}\]\)])[(\(+|-\)HHMM]\)Z] \]

  There are 2 digits each for the year, month, day, hour, minute, and optional second fields. As in GeneralizedTime, an optional time differential can be specified. For example, if local time is a.m. on 2 January 1999 and the coordinated universal time is 12 noon on 2 January 1999, the value of UTCTime is either:
  "9901021200Z"
  or
  "9901020700-0500"

  If the local time is a.m. on 2 January 2001 and the coordinated universal time is 12 noon on 2 January 2001, the value of UTCTime is either:
  "0101021200Z"
  or
  "0101020700-0500"

  UTCTime allows only 2 digits for the year value, therefore the usage is not recommended.

  The supported matching rules are generalizedTimeMatch for equality and generalizedTimeOrderingMatch for inequality. Substring search is not allowed. For example, the following filters are valid:
The following filters are not valid:

generalized-timestamp-attribute=1999*
utc-timestamp-attribute=>991006
generalized-timestamp-attribute==

utc-timestamp-attribute>=991006
utc-timestamp-attribute==1010
Chapter 12. Replication

Replication is a technique used by directory servers to improve performance and reliability. The replication process keeps the data in multiple directories synchronized.

Replication provides two main benefits:
- Redundancy of information - replicas back up the content of their supplier servers.
- Faster searches - search requests can be spread among several different servers, all having the same content, instead of a single server. This improves the response time for the request completion.

Replication topology

Replication topology is managed in a new way in the IBM Tivoli Directory Server Version 5.2. Some terminology used in describing replication:

Cascading replication
A replication topology in which there are multiple tiers of servers. A peer/master server replicates to a set of read-only (forwarding) servers which in turn replicate to other servers. Such a topology off-loads replication work from the master servers.

Consumer server
A server which receives changes through replication from another (supplier) server.

Credentials
Identify the method and required information that the supplier uses in binding to the consumer. For simple binds, this includes the DN and password. The credentials are stored in an entry the DN of which is specified in the replica agreement.

Forwarding server
A read-only server that replicates all changes sent to it. This contrasts to a peer/master server in that it is read only and it can have no peers.

Gateway server
A server that forwards all replication traffic from the local replication site where it resides to other Gateway servers in the replicating network. Also receives replication traffic from other Gateway servers within the replication network, which it forwards to all servers on its local replication site.

Gateway servers must be masters (writable).

Master server
A server which is writable (can be updated) for a given subtree.

Nested subtree
A subtree within a replicated subtree of the directory.

Peer server
The term used for a master server when there are multiple masters for a
given subtree. A peer server does not replicate changes sent to it from another peer server; it only replicates changes that are originally made on it.

**Replica group**
The first entry created under a replication context has objectclass ibm-replicaGroup and represents a collection of servers participating in replication. It provides a convenient location to set ACL’s to protect the replication topology information. The administration tools currently support one replica group under each replication context, named ibm-replicagroup=default.

**Replica subentry**
Below a replica group entry, one or more entries with objectclass ibm-replicaSubentry may be created; one for each server participating in replication as a supplier. The replica subentry identifies the role the server plays in replication: master or read-only. A read-only server might, in turn, have replication agreements to support cascading replication.

**Replicated subtree**
A portion of the DIT that is replicated from one server to another. Under this design, a given subtree can be replicated to some servers and not to others. A subtree can be writable on a given server, while other subtrees may be read-only.

**Replicating network**
A network that contains connected replication sites.

**Replication agreement**
Information contained in the directory that defines the ‘connection’ or ‘replication path’ between two servers. One server is called the supplier (the one that sends the changes) and the other is the consumer (the one that receives the changes). The agreement contains all the information needed for making a connection from the supplier to the consumer and scheduling replication.

**Replication context**
Identifies the root of a replicated subtree. The ibm-replicationContext auxiliary object class may be added to an entry to mark it as the root of a replicated area. The configuration information related to replication is maintained in a set of entries created below a replication context.

**Replication site**
A Gateway server and any master, peer or replica servers configured to replicate together.

**Schedule**
Replication can be scheduled to occur at particular times, with changes on the supplier accumulated and sent in a batch. The replica agreement contains the DN for the entry that supplies the schedule.

**Supplier server**
A server which sends changes to another (consumer) server.

Specific entries in the directory are identified as the roots of replicated subtrees, by adding the ibm-replicationContext objectclass to them. Each subtree is replicated independently. The subtree continues down through the directory information tree (DIT) until reaching the leaf entries or other replicated subtrees. Entries are added below the root of the replicated subtree to contain the replication configuration information. These entries are one or more replica group entries, under which are
created replica subentries. Associated with each replica subentry are replication agreements that identify the servers that are supplied (replicated to) by each server, as well as defining the credentials and schedule information.

Through replication, a change made to one directory is propagated to one or more additional directories. In effect, a change to one directory shows up on multiple different directories. The IBM Directory supports an expanded master-slave replication model. Replication topologies are expanded to include:

- Replication of subtrees of the Directory Information Tree (DIT) to specific servers
- A multi-tier topology referred to as cascading replication
- Assignment of server role (master or replica) by subtree.
- Multiple master servers, referred to as peer to peer replication.
- Gateway replication across networks.

The advantage of replicating by subtrees is that a replica does not need to replicate the entire directory. It can be a replica of a part, or subtree, of the directory.

The expanded model changes the concept of master and replica. These terms no longer apply to servers, but rather to the roles that a server has regarding a particular replicated subtree. A server can act as a master for some subtrees and as a replica for others. The term, master, is used for a server that accepts client updates for a replicated subtree. The term, replica, is used for a server that only accepts updates from other servers designated as a supplier for the replicated subtree.

There are four types of directories as defined by function: master/peer, gateway, forwarding (cascading), and replica (read-only).

<table>
<thead>
<tr>
<th>Table 12. Server roles</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Master/peer</strong></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td><strong>Notes:</strong></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

| Forwarding (Cascading) | A forwarding or cascading server is a replica server that replicates all changes sent to it. This contrasts to a master/peer server in that a master/peer server only replicates changes that are made by clients connected to that server. A cascading server can relieve the replication workload from the master servers in a network which contains many widely dispersed replicas. |

Chapter 12. Replication 139
Table 12. Server roles (continued)

| Gateway | Gateway replication uses Gateway servers to collect and distribute replication information effectively across a replicating network. The primary benefit of Gateway replication is the reduction of network traffic. |
| Replica (read-only) | An additional server that contains a copy of directory information. The replicas are copies of the master (or the subtree that it is a replica of). The replica provides a backup of the replicated subtree. |

You can request updates on a replica server, but the update is actually forwarded to the master server by returning a referral to the client. If the update is successful, the master server then sends the update to the replicas. Until the master has completed replication of the update, the change is not reflected on the replica server where it was originally requested. If the replication fails, it is repeated even if the master is restarted. Changes are replicated in the order in which they are made on the master.

If you are no longer using a replica, you must remove the replica agreement from the supplier. Leaving the definition causes the server to queue up all updates and use unnecessary directory space. Also, the supplier continues trying to contact the missing consumer to retry sending the data.

Replication agreements

A replication agreement is an entry in the directory with the object class `ibm-replicationAgreement` created beneath a replica subentry to define replication from the server represented by the subentry to another server. These objects are similar to the replicaObject entries used by prior versions of the Directory Server. The replication agreement consists of the following items:

- A user friendly name, used as the naming attribute for the agreement.
- An LDAP URL specifying the server, port number, and whether SSL should be used.
- The consumer server id, if known -- ‘unknown’ for a server whose server id is not known (as in a server running a previous release).
- The DN of an object containing the credentials used by the supplier to bind to the consumer.
- An optional DN pointer to an object containing the schedule information for replication. If the attribute is not present, changes are replicated immediately.

The user friendly name might be the consumer server name or some other descriptive string.

To aid in enforcing the accuracy of the data, when the supplier binds to the consumer, it retrieves the server ID from the root DSE and compares it to the value in the agreement. A warning is logged if the server IDs do not match.

The consumer server id is used by the administrative GUI to traverse the topology. Given the consumer’s server ID, the GUI can find the corresponding subentry and its agreements.

Because the replication agreement can be replicated, a DN to a credentials object is used. This allows the credentials to be stored in a nonreplicated area of the directory. Replicating the credentials objects (from which ‘clear text’ credentials must be obtainable) represents a potential security exposure. The `cn=localhost` suffix is an appropriate default location for creating credentials objects. Use of a
separate object also makes it easier to support various authentication methods; new object classes can be created rather than trying to make sense of numerous optional attributes.

Object classes are defined for each of the supported authentication methods:
- Simple bind
- SASL EXTERNAL mechanism with SSL
- Kerberos authentication

You can designate that part of a replicated subtree not be replicated by adding the ibm-replicationContext auxiliary class to the root of the subtree, without defining any replica subentries.

Note: The Web Administration Tool also refers to agreements as ‘queues’ when referring to the set of changes that are waiting to be replicated under a given agreement.

The following are sections are examples of setting up replication using the command line utilities and an LDIF file. The scenarios are of increasing complexity:
- One master and one replica
- One master, one forwarder, and one replica
- Two peer/masters, two forwarders, and four replicas.

Creating a master-replica topology

To define a basic master-replica topology, you must:
1. Create a master server and define what it contains. Select the subtree that you want to be replicated and specify the server as the master.
2. Create credentials to be used by the supplier.
3. Create a replica server.
4. Export data to the replica.

Using Web Administration:

Note:

If the entry that you trying to add is not a suffix in the server, before you can use the Add subtree function, you must ensure that its ACLs defined as follows:

For non-filtered ACLs:

- ownersource: <same as the entry DN>
- ownerpropagate: TRUE
- aclsource: <same as the entry DN>
- aclpropagate: TRUE

For filtered ACLs:

- ibm-filteraclinherit: FALSE

To satisfy the ACL requirements, if the entry is not a suffix in the server, edit the ACL for that entry in the Manage entries panel. Select the entry and click Edit ACL. If you want to add Non-filtered ACLs, select that tab and
add an entry `cn=this` with the role `access-id` for both ACLs and owners. Ensure that Propagate ACLs and Propagate owner are checked. If you want to add Filtered ACLs select that tab and add an entry `cn=this` with the role `access-id` for both ACLs and owners. Ensure that Accumulate filtered ACLs is unchecked and that Propagate owner is checked. See “Working with ACLs” on page 220 for more detailed information.

Creating a master server (replicated subtree)

**Note:** The server must be running to perform this task.

This task designates an entry as the root of an independently replicated subtree and creates a `ibm-replicasubentry` representing this server as the single master for the subtree. To create a replicated subtree, you must designate the subtree that you want the server to replicate.

**Note:** On the Linux, Solaris, and HP-UX platforms, if a referral fails because the server being referred to is not running, ensure that the environment variable LDAP_LOCK_REC has been set in your system environment. No specific value is required.

```
set LDAP_LOCK_REC=anyvalue
```

Expand the Replication management category in the navigation area and click Manage topology.

1. Click Add subtree.
2. Enter the DN of the subtree that you want to replicate or click Browse to expand the entries to select the entry that is to be the root of the subtree.
3. The master server referral URL is displayed in the form of an LDAP URL, for example:

```
ldap://<myservername>.<mylocation>.<mycompany>.com
```

**Note:** The master server referral URL is optional. It is used only:
- If server contains (or will contain) any read-only subtrees.
- To define a referral URL that is returned for updates to any read-only subtree on the server.

4. Click OK.
5. The new server is displayed on the Manage topology panel under the heading Replicated subtrees.

Creating credentials

Expand the Replication management category in the navigation area of the Web Administration Tool and click Manage credentials

1. Select the location that you want to use to store the credentials from the list of subtrees. The Web Administration Tool allows you to define credentials in three locations:
   - `cn=replication,cn=localhost`, which keeps the credentials only on the current server.
   - `cn=replication,cn=localhost`, which keeps the credentials only on the current server.

**Note:** In most replication cases, locating credentials in `cn=replication,cn=localhost` is preferred because it provides greater security than replicated credentials located on the subtree. However, there are certain situations in which credentials located on `cn=replication,cn=localhost` are not available.
If you are trying to add a replica under a server, for example serverA and you are connected to a different server with the Web Administration Tool, serverB, the Select credentials field does not display the option cn=replication,cn=localhost. This is because you cannot read the information or update any information under cn=localhost of the serverA when you are connected to serverB.

The cn=replication,cn=localhost is only available when the server under which you are trying to add a replica is the same server that you are connected to with the Web Administration Tool.

- cn=replication,cn=IBMpolicies, which is available even when the server under which you are trying to add a replica is not the same server that you are connected to with the Web Administration Tool. Credentials placed under this location are replicate to the servers.

Note: The location cn=replication,cn=IBMpolicies is only available, if the IBMpolicies support OID, 1.3.18.0.2.32.18, is present under the ibm-supportedcapabilities of the root DSE.

- Within the replicated subtree, in which case the credentials are replicated with the rest of the subtree. Credentials placed in the replicated subtree are created beneath the ibm-replicagroup=default entry for that subtree.

Note: If no subtrees are displayed, go to "Creating a master server (replicated subtree)" on page 142 for instructions about creating the subtree that you want to replicate.

2. Click Add.
3. Enter the name for the credentials you are creating, for example, mycreds, cn= is prefilled in the field for you.
4. Select the type of authentication method you want to use and click Next.
   - If you selected simple bind authentication:
     a. Enter the DN that the server uses to bind to the replica, for example, cn=any
     b. Enter the password uses when it binds to the replica, for example, secret.
     c. Enter the password again to confirm that there are no typographical errors.
     d. If you want, enter a brief description of the credentials.
     e. Click Finish.

Note: You might want to record the credential’s bind DN and password for future reference. You will need this password when you create the replica agreement.

- If you selected Kerberos authentication:
  a. Enter your Kerberos bind DN.
  b. Enter the bind password.
  c. Reenter the bind password to confirm it.
  d. If you want, enter a brief description of the credentials. No other information is necessary. See “Setting Kerberos” on page 97 for additional information.
  e. Click Finish.

By default, the supplier uses its own service principal to bind with the consumer. For example, if the supplier is named master.our.org.com and the
realm is SOME.REALM, the DN is ibm-Kn=ldap/master.our.org.com@SOME.REALM. The realm value is case insensitive. If there is more than one supplier, you must specify the principal and password to be used by all of the suppliers.

On the server where you created the credentials:
   a. Expand Directory management and click on Manage entries.
   b. Select the subtree where you stored the credentials, for example cn=localhost and click Expand.
   c. Select cn=replication and click Expand.
   d. Select the kerberos credentials (ibm-replicationCredentialsKerberos) and click Edit attributes.
   e. Click the Other attributes tab.
   f. Enter the replicaBindDN, for example, ibm-kn=myprincipal@SOME.REALM.
   g. Enter the replicaCredentials. This is the KDC password used for myprincipal.

Note: This principal and password should be the same as the ones you use to run kinit from the command line.

On the replica
   a. Click Manage replication properties in the navigation area.
   b. Select a supplier from the Supplier information drop-down menu or enter the name of the replicated subtree for which you want to configure supplier credentials.
   c. Click Edit.
   d. Enter the replication bindDN. In this example, ibm-kn=myprincipal@SOME.REALM.
   e. Enter and confirm the Replication bind password. This is the KDC password used for myprincipal.

   • If you selected SSL with certificate authentication you do not need to provide any additional information, if you are using the server’s certificate. If you choose to use a certificate other than the server’s:
     a. Enter the key file name.
     b. Enter the key file password.
     c. Reenter the key file password to confirm it.
     d. Enter the key label.
     e. If you want, enter a brief description.
     f. Click Finish.

See “Secure Sockets Layer” on page 73 for additional information.

Creating a replica server

Note: The server must be running to perform this task.

Expand the Replication management category in the navigation area and click Manage topology.
1. Select the subtree that you want to replicate and click Show topology.
2. Click the arrow next to the Replication topology selection to expand the list of supplier servers.
3. Select the supplier server and click **Add replica**.

On the **Server** tab of the **Add replica** window:

- Enter the host name and port number for the replica you are creating. The default port is 389 for non-SSL and 636 for SSL. These are required fields.
- Select whether to enable SSL communications.
- Enter the replica name or leave this field blank to use the host name.
- Enter the replica ID. If the server on which you are creating the replica is running, click **Get replica ID** to automatically prefill this field. This is a required field, if the server you are adding is going to be a peer or forwarding server. It is recommended for all IBM Tivoli Directory Server Version 5.2 replica servers.
- Enter a description of the replica server.

On the **Additional** tab:

1. Specify the credentials that the replica uses to communicate with the master.

   **Note:** The Web Administration Tool allows you to define credentials in two places:
   - **cn=replication,cn=localhost**, which keeps the credentials only on the server that uses them
   - **cn=replication,cn=IBMpolicies**, which is available even when the server under which you are trying to add a replica is not the same server that you are connected to with the Web Administration Tool. Credentials placed under this location are replicate to the servers.

   **Note:** The location **cn=replication,cn=IBMpolicies** is only available, if the IBMpolicies support OID, 1.3.18.0.2.32.18, is present under the ibm-supportedcapabilities of the root DSE.

   - Within the replicated subtree, in which case the credentials are replicated with the rest of the subtree. Credentials placed in the replicated subtree are created beneath the **ibm-replicagroup=default** entry for that subtree.

   Placing credentials in **cn=replication,cn=localhost** is considered more secure.

   a. Click **Select**.
   b. Select the location for the credentials you want to use. Preferably this is **cn=replication,cn=localhost**.
   c. Click **Show credentials**.
   d. Expand the list of credentials and select the one you want to use.
   e. Click **OK**.

   See “Creating credentials” on page 142 for additional information on agreement credentials.

2. Specify a replication schedule from the drop-down list or click **Add** to create one. See “Creating replication schedules” on page 174.

3. From the list of supplier capabilities, you can deselect any capabilities that you do not want replicated to the consumer.

   If your network has a mix of servers at different releases, capabilities are available on later releases that are not available on earlier releases. Some capabilities, like filter ACLs and password policy, make use of operational attributes that are replicated with other changes. In most cases, if these features are used, you want all servers to support them. If all of the servers do not
support the capability, you do not want to use it. For example, you would not want different ACLs in effect on each server. However, there might be cases where you might want to use a capability on the servers that support it, and not have changes related to the capability replicated to servers that do not support the capability. In such cases, you can use the capabilities list to mark certain capabilities to not be replicated.

4. Click **OK** to create the replica.

5. A message is displayed noting that additional actions must be taken. Click **OK**.

**Note:** If you are adding more servers as additional replicas or are creating a complex topology, do not proceed with “Copying data to the replica” or “Adding the supplier information to the replica” until you have finished defining the topology on the master server. If you create the *masterfile.ldif* after you have completed the topology, it contains the directory entries of the master server and a complete copy of the topology agreements. When you load this file on each of the servers, each server then has the same information.

### Copying data to the replica

After creating the replica, you must now export the topology from the master to the replica. This is a manual procedure.

On the master server create an LDIF file for the data. To copy all the data contained on the master server, issue the command:

```
db2ldif -o <masterfile.ldif>
```

If you want to copy just the data from a single subtree the command is:

```
db2ldif -o <masterfile.ldif> -s <subtreeDN>
```

**Note:** The four operational attributes, `createTimestamp`, `creatorsName`, `modifiersName`, and `modifyTimestamp` are exported to the LDIF file unless the `-j` option is specified.

On the machine where you are creating the replica:

1. Ensure that the suffixes used by the master are defined in the `ibmslapd.conf` file.
2. Stop the replica server.
3. Copy the `<masterfile.ldif>` to the replica and issue the command:

```
ldif2db -r no -i <masterfile.ldif>
```

The replication agreements, schedules, credentials (if stored in the replicated subtree) and entry data are loaded on the replica.

4. Start the server.

### Adding the supplier information to the replica

You need to change the replica’s configuration to identify who is authorized to replicate changes to it, and add a referral to a master.

On the machine where you are creating the replica:

1. Expand **Replication management** in the navigation area and click **Manage replication properties**.
2. Click **Add**.
3. Select a supplier from the **Replicated subtree** drop-down menu or enter the name of the replicated subtree for which you want to configure supplier credentials. If you are editing supplier credentials, this field is not editable.

4. Enter the replication bindDN. In this example, cn=any.

   **Note:** You can use either of these two options, depending on your situation.
   - Set the replication bind DN (and password) and a default referral for all subtrees replicated to a server using the ‘default credentials and referral’. This might be used when all subtrees are replicated from the same supplier.
   - Set the replication bind DN and password independently for each replicated subtree by adding supplier information for each subtree. This might be used when each subtree has a different supplier (that is, a different master server for each subtree).

5. Depending on the type of credential, enter and confirm the credential password. (You previously recorded this for future use.)
   - **Simple Bind** - Specify the DN and password
   - **Kerberos** - If the credentials on the supplier do not identify the principal and password, that is, the server’s own service principal is to be used, then the bind DN is ibm-kn=ldap/<yourservername@yourrealm>. If the credentials has a principal name such as <myprincipal@myrealm>, use that as the DN. In either case a password is not needed.
   - **SSL w/ EXTERNAL bind** - Specify the subject DN for the certificate and no password

   See “Creating credentials” on page 142

6. Click **OK**.

7. You must restart the replica for the changes to take effect.

   See “Modifying replication properties” on page 173 for additional information.

The replica is in a suspended state and no replication is occurring. After you have finished setting up your replication topology, you must click **Manage queues**, select the replica and click **Suspend/resume** to start replication. See “Managing queues” on page 175 for more detailed information. The replica now receives updates from the master.

**Using the command line:**

This scenarios assume that you are creating new replicated subtrees.

**Note:**

dn: o=ibm,c=us
objectclass: organization
objectclass: ibm-replicationContext

is the subtree you want to create. If this entry already exists, then modify it to add **objclass=ibm-replicationContext** instead of adding the entire entry.

To create a replica for a subtree, you need to create a replica agreement between the master and the replica, see “Replication agreements” on page 140. This agreement needs to be loaded on both the master and the replica.

The relationship between the two servers is that the master is a supplier to the replica and the replica is a consumer of the master.
To create the master (master) and replica (replica1) for the subtree o=ibm,c=us:

1. At the machine where the master is located, create a file to contain the agreement information, for example, `myreplicainfofile`, where `myreplicainfofile` contains:

   **Note:** Replace all occurrences of `<master-uuid>` in the following files with the value of the `ibm-slapdServerId` attribute from the master server’s `cn=Configuration` entry. This value is generated by the server the first time it is started. You can find it either by performing an `ldapsearch` of the `cn=Configuration` entry or using the `grep` command on the `ibmslapd.conf` file, if you have a UNIX-based system. Similarly, all occurrences of the `<replica1-uuid>` must be replaced with the value of the `ibm-slapdServerId` attribute from the replica server’s `cn=Configuration` entry.

   ```
 ###Replication Context - needs to be on all suppliers and consumers
 dn: cn=replication,cn=localhost
 objectclass: container

 dn: o=ibm,c=us
 objectclass: organization
 objectclass: ibm-replicationContext

 ###Copy the following to servers at v5.1 or later.
 ###Replica Group
 dn: ibm-replicaGroup=default, o=IBM, c=US
 objectclass: top
 objectclass: ibm-replicaGroup
 ibm-replicaGroup: default

 ###Bind Credentials/method to replica server - replication agreement points to this.
 dn: cn=replica1 BindCredentials,cn=replication,cn=localhost
 objectclass: ibm-replicationCredentialsSimple
 cn: replica1 BindCredentials
 replicaBindDN: cn=master
 replicaCredentials: master
 description: Bindmethod of master to replica1

 ###Replica SubEntry
 dn: ibm-replicaServerId=<master-uuid>,ibm-replicaGroup=default, o=IBM, c=US
 objectclass: top
 objectclass: ibm-replicaSubentry
 ibm-replicaServerId: <master-uuid>
 ibm-replicationServerIsMaster: true
 cn: master
 description: master server

 ###Replication Agreement to Replica Server
 dn: cn=replica1,ibm-replicaServerId=<master-uuid>,
 ibm-replicaGroup=default, o=IBM, c=US
 objectclass: top
 objectclass: ibm-replicationAgreement
 cn: replica1
 ibm-replicaConsumerId: <replica1-uuid>
 ibm-replicaUrl: ldap://<replicahostname>:replicaport
 ibm-replicaCredentialsDN: cn=replica1 BindCredentials,cn=replication,cn=localhost
 description: replica server number one
   ```

2. Stop the master, if it is not already stopped.

3. Issue the command:
ldif2db -r no -i <myreplicainfofile>

4. Issue the command:
   db2ldif -o <masterfile.ldif>

   See “db2ldif utility” on page 304 for more information.

5. Copy <masterfile.ldif> to the machine where replica1 is located.

6. Stop the replica if it is running.

7. You must configure replica1 to be a replica server. Use an editor to add the following entry to the ibmslapd.conf file on replica1:
   
   dn: cn=Master Server, cn=configuration
   objectclass: ibm-slapdReplication
   cn: Master Server
   ibm-slapdMasterDN: <cn=masterbndn>
   ibm-slapdMasterPW: <masterbnpw>
   ibm-slapdMasterReferral: ldap://<masterhostname>:<masterport>/

8. Save the ibmslapd.conf file.

9. Issue the following command:
   ldif2db -r no -i <masterfile.ldif>

10. Start master and replica1.

Note: If you are copying a subtree to a v4.1 or earlier server, you must not copy the ibm-replicagroup=default subtree and you must remove the ibm-replicationcontext auxiliary class, because neither of these are supported by the 4.1 schema.

---

Creating a master-forwarder-replica topology

To define a master-forwarder-replica topology, you must:

1. Created a master server and a replica server. See “Creating a master-replica topology” on page 141

2. Create a new replica server for the original replica.

3. Copy data to the replicas. See “Copying data to the replica” on page 146

Using Web Administration:

If you have set up a replication topology (see “Creating a master server (replicated subtree)” on page 142) with a master (server1) and a replica (server2), you can change the role of server2 to that of a forwarding server. To do this you need to create a new replica (server3) under server2.

1. Connect Web Administration to the master (server1)

2. Expand the Replication management category in the navigation area and click Manage topology.

3. Select the subtree that you want to replicate and click Show topology.

4. Click the arrow next to the Replication topology selection to expand the list of supplier servers.

5. Click the arrow next to the server1 selection to expand the list of servers.

6. Select server2 and click Add replica.

7. On the Server tab of the Add replica window:
   • Enter the host name and port number for the replica (server3) you are creating. The default port is 389 for non-SSL and 636 for SSL. These are required fields.
Select whether to enable SSL communications.

Enter the replica name or leave this field blank to use the host name.

Enter the replica ID. If the server on which you are creating the replica is running, click Get replica ID to automatically prefill this field. This is a required field, if the server you are adding is going to be a peer or forwarding server. It is recommended for all IBM Tivoli Directory Server Version 5.2 replica servers.

Enter a description of the replica server.

On the Additional tab:

a. Specify the credentials that the replica uses to communicate with the master.

   Note: The Web Administration Tool allows you to define credentials in two places:
   - \texttt{cn=replication,cn=localhost}, which keeps the credentials only on the server that uses them.
   - Within the replicated subtree, in which case the credentials are replicated with the rest of the subtree.

   Placing credentials in \texttt{cn=replication,cn=localhost} is considered more secure. Credentials placed in the replicated subtree are created beneath the \texttt{ibm-replicagroup=default} entry for that subtree.

   1) Click Select.
   2) Select the location for the credentials you want to use. Preferably this is \texttt{cn=replication,cn=localhost}.
   3) Click Show credentials.
   4) Expand the list of credentials and select the one you want to use.
   5) Click OK.

   See ["Creating credentials" on page 142](#) for additional information on agreement credentials.

b. Specify a replication schedule from the drop-down list or click Add to create one. See ["Creating replication schedules" on page 174](#).

c. From the list of supplier capabilities, you can deselect any capabilities that you do not want replicated to the consumer.

   If your network has a mix of servers at different releases, capabilities are available on later releases that are not available on earlier releases. Some capabilities, like filter ACLs and password policy, make use of operational attributes that are replicated with other changes. In most cases, if these features are used, you want all servers to support them. If all of the servers do not support the capability, you do not want to use it. For example, you would not want different ACLs in effect on each server. However, there might be cases where you might want to use a capability on the servers that support it, and not have changes related to the capability replicated to servers that do not support the capability. In such cases, you can use the capabilities list to mark certain capabilities to not be replicated.

d. Click OK to create the replica.

8. Copy data from server2 to the new replica server3. See ["Copying data to the replica" on page 146](#) for information on how to do that.

9. Add the supplier agreement to server3 that makes server2 a supplier to server3 and server3 a consumer to server2. See ["Adding the supplier information to the replica" on page 146](#) for information on how to do this.
The server roles are represented by icons in the Web Administration Tool. Your topology in now:

- server1 (master)
  - server2 (forwarder)
  - server3 (replica)

**Using the command line:**

This scenarios assume that you are creating new replicated subtrees.

**Note:**

```plaintext
dn: o=ibm,c=us
objectclass: organization
objectclass: ibm-replicationContext
```

is the subtree you want to create. If this entry already exists, then modify it to add `objectclass=ibm-replicationContext` instead of adding the entire entry.

This procedure is similar to the one for a single master and replica, except that the entire topology must be added to each of the servers and the content of the agreement information file is more complex. The file now includes information for the forwarding server and supplier-consumer information.

The supplier-consumer relationship for this scenario is:

- The master is a supplier to the forwarder.
- The forwarder has two roles:
  1. A consumer of the master
  2. A supplier to the replica
- The replica is a consumer of the forwarder.

To create the master (master), a forwarder (forwarder1), and replica (replica1) for the subtree `o=ibm,c=us`:

1. At the machine where the master server is located, create a file to contain the agreement information, for example `myreplicainfofile` where `myreplicainfofile` contains:

   **Note:** Replace all occurrences of `<master-uuid>` in the following files with the value of the `ibm-slapdServerId` attribute from the master server’s `cn=Configuration` entry. This value is generated by the server the first time it is started. You can find it either by performing an `ldapsearch` of the `cn=Configuration` entry or using the `grep` command on the `ibmslapd.conf` file, if you have a UNIX-based system. Similarly, all occurrences of the `<forwarder1-uuid>` and the `<replica1-uuid>` must be replaced with the value of the `ibm-slapdServerId` attribute from the respective server’s `cn=Configuration` entry.

```plaintext
dn: cn=replication,cn=localhost
objectclass: container

dn: o=ibm,c=us
objectclass: organization
objectclass: ibm-replicationContext

dn: ibm-replicaGroup=default, o=ibm,c=us
objectclass: top
objectclass: ibm-replicaGroup
ibm-replicaGroup: default
```
2. Stop the master. If it is not already stopped.
3. Issue the command:
   `ldif2db -r no -i <myreplicainfofile>
   
4. Issue the command:
   `db2ldif -o <masterfile.ldif>

   See "db2ldif utility" on page 304 for more information.
5. Copy `<masterfile.ldif>` to the machine where `forwarder1` is located.
6. Stop `forwarder1` if it is running.
7. You must configure forwarder1 to be a forwarding server. Use an editor to add the following entry to the ibmslapd.conf file on forwarder1:

    dn: cn=Master Server, cn=configuration
    objectclass: ibm-slapdReplication
    cn: Master Server
    ibm-slapdMasterDN: <cn=masterbnddn>
    ibm-slapdMasterPW: <masterbndpw>
    ibm-slapdMasterReferral: ldap://masterhostname:masterport/
    #Referral can also be added to replicaContext, which would be checked first for a valid server.

8. Save the ibmslapd.conf file.
9. Copy <masterfile.ldif> to the machine where replica1 is located.
10. Stop replica1 if it is running.
11. You must configure replica1 to be a replica server. Use an editor to add the following entry to the ibmslapd.conf file on replica1:

    dn: cn=Master Server, cn=configuration
    objectclass: ibm-slapdReplication
    cn: Master Server
    ibm-slapdMasterDN: <cn=forw1bnddn>
    ibm-slapdMasterPW: <forw1bnpw>
    ibm-slapdMasterReferral: ldap://forw1hostname:forw1port/

12. Save the ibmslapd.conf file.
13. At the machines where forwarder1 and replica1 are located, issue the following command:

    ldif2db -r no -i <masterfile.ldif>

14. Start master, forwarder1 and replica1.

**Overview for creating a complex replication topology**

Use this high level overview as a guide for setting up a complex replication topology.

1. Start or place all of the potential peer masters and replicas-to-be in Configuration only mode.
2. Start the ‘first’ master and configure it as a master for the context.
3. Load the data for the subtree to be replicated on the ‘first’ master, if the data is not already loaded.
4. Select the subtree to be replicated.
5. Add all of the potential peer masters as replicas of the ‘first’ master.
6. Add all of the other replicas.
7. Move the other peer masters to promote them.
8. Add replica agreements for the replicas to each of the peer masters.

    **Note:** If the credentials are to be created in cn=replication,cn=localhost, the credentials must be created on each server after they are restarted. Replication by the peers fails until the credential objects are created.

9. Add replica agreements for the other masters to each of the peer masters. The ‘first’ master already has that information.
10. Quiesce the replicated subtree.
11. Use Queue management to skip all for each queue.
12. Export the data for the replicated subtree from the ‘first’ master.
13. Unquiesce the subtree.
14. Import the data for the replicated subtree on to each replica and peer master.
15. Manage the replication properties on each replica and peer master to set the credentials to be used by suppliers.
16. Restart the replicas and peer masters as soon as each is ready.

Setting up a complex topology with peer replication

Peer replication is a replication topology in which multiple servers are masters. However, unlike a multi-master environment, no conflict resolution is done among peer servers. LDAP servers accept the updates provided by peer servers, and update their own copies of the data. No consideration is given for the order the updates are received, or whether multiple updates conflict.

To add additional masters (peers), you first add the server as a read-only replica of the existing masters (see “Creating a replica server” on page 144), initialize the directory data, and then promote the server to be a master (see “Moving or promoting a server” on page 170).

Initially, the ibm-replicagroup object created by this process inherits the ACL of the root entry for the replicated subtree. These ACLs might be inappropriate for controlling access to the replication information in the directory.

For the Add subtree operation to be successful, the entry DN which you are adding must have correct ACLs, if it is not a suffix in the server.

For Non-filtered ACLs:
- ownersource : <the entry DN>
- ownerpropagate : TRUE
- aclsource : <the entry DN>
- aclpropagate : TRUE

Filtered ACLs:
- ownersource : <the entry DN>
- ownerpropagate : TRUE
- ibm-filteraclinherit : FALSE
- ibm-filteraclentry : <any value>

Use the Edit ACLs function of the Web Administration Tool to set ACLs for the replication information associated with the newly created replicated subtree (see “Editing access control lists” on page 172).

The replica is in a suspended state and no replication is occurring. After you have finished setting up your replication topology, you must click Manage queues, select the replica and click Suspend/resume to start replication. See “Managing queues” on page 175 for more detailed information. The replica now receives updates from the master.

Use peer replication only in environments where the update vectors are well known. Updates to particular objects within the directory must be done only by one peer server. This is intended to prevent the scenario of one server deleting an object, followed by another server modifying the object. This scenario creates the possibility of a peer server receiving a delete command followed by a modify command; which creates a conflict.
To define a peer-forwarder-replica topology, consisting of two peer-master servers, two forwarding servers, and four replicas you must:

1. Created a master server and a replica server. See “Creating a master-replica topology” on page 141.
2. Create two additional replica servers for the master server. See “Creating a replica server” on page 144.
3. Create two replicas under each of the two newly created replica servers.
4. Promote the original replica to a master.

**Note:** The server that you want to promote to a master must be a leaf replica with no subordinate replicas.

5. Copy the data from the master to the new master and replicas. See “Copying data to the replica” on page 146.

**Using Web Administration:**

Using the forwarding topology created in “Using Web Administration:” on page 149 you can promote a server to be a peer. In this example you are going to promote the replica (server3) to be a peer to the master server (server1).

1. Connect Web Administration to the master (server1).
2. Expand the Replication management category in the navigation area and click Manage topology.
3. Select the subtree that you want to replicate and click Show topology.
4. Click the arrow next to the Replication topology selection to expand the list of servers.
5. Click the arrow next to the server1 selection to expand the list of servers.
6. Click the arrow next to the server2 selection to expand the list of servers.
7. Click server1 and click Add replica. Create server4. See “Creating a replica server” on page 144. Follow the same procedure to create server5. The server roles are represented by icons in the Web Administration Tool. Your topology in now:
   * server1 (master)
     - server2 (forwarder)
       - server3 (replica)
     - server4 (replica)
     - server5 (replica)

8. Click server2 and click Add replica to create server6.
9. Click server4 and click Add replica to create server7. Follow the same procedure to create server8. Your topology is now:
   * server1 (master)
     - server2 (forwarder)
       - server3 (replica)
       - server6 (replica)
     - server4 (forwarder)
       - server7 (replica)
       - server8 (replica)
     - server5 (replica)

10. Select server5 and click Move.
Note: The server you want to move must be a leaf replica with no subordinate replicas.

11. Select **Replication topology** to promote the replica to a master. Click **Move**.

12. The **Create additional supplier agreements panel** is displayed. Peer replication requires each master to be a supplier and consumer to each of the other masters in the topology and to each of the first level replicas, server2 and server4. Server5 already is a consumer of server1, it now needs to become a supplier to server1, server2, and server4. Ensure that the supplier agreement boxes are checked for:

<table>
<thead>
<tr>
<th>Supplier</th>
<th>Consumer</th>
</tr>
</thead>
<tbody>
<tr>
<td>server5</td>
<td>server1</td>
</tr>
<tr>
<td>server5</td>
<td>server2</td>
</tr>
<tr>
<td>server5</td>
<td>server4</td>
</tr>
</tbody>
</table>

Click **Continue**.

Note: In some cases the Select credentials panel will pop up asking for a credential which is located in a place other than cn=replication,cn=localhost. In such situations you must provide a credential object which is located in a place other than cn=replication,cn=localhost. Select the credentials the subtree is going to use from the existing sets of credentials or create new credentials. See “Creating credentials” on page 142.

13. Click **OK**. Your topology is now:

- server1 (master)
  - server2 (forwarder)
  - server3 (replica)
  - server6 (replica)
  - server4 (forwarder)
  - server7 (replica)
  - server8 (replica)
  - server5 (master)
- server5 (master)
  - server1 (master)
  - server2 (forwarder)
  - server4 (forwarder)

14. Copy data from server1 to all the servers. See “Copying data to the replica” on page 146 for information on how to do that.

**Using the command line:**

This scenarios assume that you are creating new replicated subtrees.

Note:

dn: o=ibm,c=us
objectclass: organization
objectclass: ibm-replicationContext
is the subtree you want to create. If this entry already exists, then modify it to add `objclass=ibm-replicationContext` instead of adding the entire entry.

In this example the topology is more complex. It includes two peer-masters (peer1 and peer2), two forwarders (forwarder1 and forwarder2) and four replicas (replica1, replica2, replica3, and replica4). The relationship among the servers is as follows:

- peer1 and peer2 are peer-master servers. That means that while they receive updates from each other, they only replicate entries received from clients. While both masters have the same entry content, only the server that has received the client request replicates the entry. Both masters are suppliers and consumers to each other and suppliers to the forwarding servers.
- forwarder1 and forwarder 2 have two roles. They are both consumers of peer1 and peer2 and suppliers to their respective replicas. They do not perform any client updates. They pass replicated updates to their consumers. In this scenario
  - forwarder1 is a supplier to replica1 and replica2
  - forwarder2 is a supplier to replica3 and replica4

  There is no interaction between forwarder1 and forwarder2.
- replica 1 and replica 2 are consumers of forwarder1 and replica3 and replica4 are consumers of forwarder2.

To create the peer-masters (peer1 and peer2), the forwarders (forwarder1 and forwarder2), and the replicas (replica1, replica2, replica3, and replica4)

```
Peer1<--------->Peer2
 | |
 X X
 ↓ ↓
Forwarder1 Forwarder2
 | |
 / /
Replica1 Replica2 Replica3 Replica4
```

for the subtree `o=ibm,c=us`:

1. Stop servers peer1 and peer2.
2. You must configure peer1 and peer2 to be peer servers. Use an editor to add the following entry to the `ibmslapd.conf` files on peer1 and peer2:

   ```
 dn: cn=Master Server, cn=configuration
 objectclass: ibm-slapdReplication
 cn: Master Server
 ibm-slapdMasterDN: cn=master
 ibm-slapdMasterPW: master
   ```

   Note: It is critical that these entries be exactly the same on both servers because this example uses a credentials object that is shared on all the servers.
3. Save the `ibmslapd.conf` files.
4. At the machine where the master server, peer1, is located, create a file to contain the agreement information, for example `mycredentialsfile` where `mycredentialsfile` contains:

   ```
 dn: cn=replication,cn=localhost
 objectclass: container
   ```

   ```
 dn: cn=simple,cn=replication,cn=localhost
 objectclass: ibm-replicationCredentialsSimple
   ```

   cn: simple
   replicaBindDN: cn=master
   replicaCredentials: master
description: Bindmethod for topology

5. Issue the command:
   ldif2db -r no -i <mycredentialsfile>

6. Copy <mycredentialsfile> to the machines where peer2, forwarder1, and
   forwarder2 are located and issue the command:
   ldif2db -r no -i <mycredentialsfile>

   on each machine.

7. At the machine where peer1 is located create a file <mytopologyfile> where
   <mytopologyfile> includes:

   Note: Replace all occurrences of <master-uuid> in the following files with the
   value of the ibm-slapdServerId attribute from the master server's
   cn=Configuration entry. This value is generated by the server the first
time it is started. You can find it either by performing an ldapsearch of
the cn=Configuration entry or using the grep command on the
ibmslapd.conf file, if you have a UNIX-based system. Similarly, all
occurrences of the <peerx-uuid>, <forwarderx-uuid> and the
<replicax-uuid> (where x represents a number) must be replaced with
the value of the ibm-slapdServerId attribute from the respective
server's cn=Configuration entry.

dn: o=ibm,c=us
  o: ibm
  objectclass: top
  objectclass: organization
  objectclass: ibm-replicationContext

dn: ibm-replicaGroup=default, o=ibm,c=us
  objectclass: top
  objectclass: ibm-replicaGroup
  ibm-replicaGroup: default

  dn: ibm-replicaServerId=<peer1-uuid>,ibm-replicaGroup=default,o=ibm,c=us
      objectclass: top
      objectclass: ibm-replicaSubentry
      ibm-replicaServerId: <peer1-uuid>
      ibm-replicationServerIsMaster: true
      cn: peer1
      description: peer1 server

  dn: ibm-replicaServerId=<peer2-uuid>,ibm-replicaGroup=default,o=ibm,c=us
      objectclass: top
      objectclass: ibm-replicaSubentry
      ibm-replicaServerId: <peer2-uuid>
      ibm-replicationServerIsMaster: true
      cn: peer2
      description: peer2 server

  dn: ibm-replicaServerId=<forwarder1-uuid>,
      ibm-replicaGroup=default,o=ibm,c=us
      objectclass: top
      objectclass: ibm-replicaSubentry
      ibm-replicaServerId: <forwarder1-uuid>
      ibm-replicationServerIsMaster: false
      cn: forwarder1
      description: forwarder server number one

  dn: ibm-replicaServerId=<forwarder2-uuid>,
      ibm-replicaGroup=default,o=ibm,c=us
Chapter 12. Replication

objectclass: top
objectclass: ibm-replicaSubentry
ibm-replicaServerId: <forwarder2-uuid>
ibm-replicationServerIsMaster: false
cn: forwarder2
description: forwarder server number two

#peer1 to peer2 agreement
dn: cn=peer2,ibm-replicaServerId=<peer1-uuid>,
   ibm-replicaGroup=default,o=ibm,c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: peer2
ibm-replicaConsumerId: <peer2-uuid>
ibm-replicaUrl: ldap://<peer2hostname>:<peer2port>
ibm-replicaCredentialsDN: cn=simple,cn=replication,cn=localhost
description: peer2 server

#peer1 to forwarder1 agreement
dn: cn=forwarder1,ibm-replicaServerId=<peer1-uid>
   ibm-replicaGroup=default,o=ibm,c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: forwarder1
ibm-replicaConsumerId: <forwarder1-uid>
ibm-replicaUrl: ldap://<forwarder1hostname>:<forwarder1port>
ibm-replicaCredentialsDN: cn=simple,cn=replication,cn=localhost
description: forwarder server one

#peer1 to forwarder2 agreement
dn: cn=forwarder2,ibm-replicaServerId=<peer1-uid>
   ibm-replicaGroup=default,o=ibm,c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: forwarder2
ibm-replicaConsumerId: <forwarder2-uid>
ibm-replicaUrl: ldap://<forwarder2hostname>:<forwarder2port>
ibm-replicaCredentialsDN: cn=simple,cn=replication,cn=localhost
description: forwarder server two

#peer2 to peer1 agreement
dn: cn=peer1,ibm-replicaServerId=<peer2-uid>,
   ibm-replicaGroup=default,o=ibm,c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: peer1
ibm-replicaConsumerId: <peer1-uid>
ibm-replicaUrl: ldap://<peer1hostname>:<peer1port>
ibm-replicaCredentialsDN: cn=simple,cn=replication,cn=localhost
description: peer server one

#peer2 to forwarder1 agreement
dn: cn=forwarder1,ibm-replicaServerId=<peer2-uid>
   ibm-replicaGroup=default,o=ibm,c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: forwarder1
ibm-replicaConsumerId: forwarder1-uid
ibm-replicaUrl: ldap://<forwarder1hostname>:<forwarder1port>
ibm-replicaCredentialsDN: cn=simple,cn=replication,cn=localhost
description: forwarder server one

#peer2 to forwarder2 agreement
dn: cn=forwarder2,ibm-replicaServerId=<peer2-uid>,
   ibm-replicaGroup=default,o=ibm,c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: forwarder2
ibm-replicaConsumerId: <forwarder2-uuid>
ibm-replicaUrl: ldap://$<forwarder2hostname>:forwarder2port>
ibm-replicaCredentialsDN: cn=simple, cn=replication, cn=localhost
description: forwarder server two

#forwarder1 to replica1 agreement
dn: cn=replica1, ibm-replicaServerId=<forwarder1-uuid>,
    ibm-replicaGroup=default, o=ibm, c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: replica1
ibm-replicaConsumerId: <replica1-uuid>
ibm-replicaUrl: ldap://<replica1hostname>:replica1port>
ibm-replicaCredentialsDN: cn=simple, cn=replication, cn=localhost
description: replica server number one

#forwarder1 to replica2 agreement
dn: cn=replica2, ibm-replicaServerId=<forwarder1-uuid>,
    ibm-replicaGroup=default, o=ibm, c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: replica2
ibm-replicaConsumerId: <replica2-uuid>
ibm-replicaUrl: ldap://<replica2hostname>:replica2port>
ibm-replicaCredentialsDN: cn=simple, cn=replication, cn=localhost
description: replica server number two

#forwarder2 to replica3 agreement
dn: cn=replica3, ibm-replicaServerId=<forwarder2-uuid>,
    ibm-replicaGroup=default, o=ibm, c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: replica3
ibm-replicaConsumerId: <replica3-uuid>
ibm-replicaUrl: ldap://<replica3hostname>:replica3port>
ibm-replicaCredentialsDN: cn=simple, cn=replication, cn=localhost
description: replica server number three

#forwarder2 to replica4 agreement
dn: cn=replica4, ibm-replicaServerId=<forwarder2-uuid>,
    ibm-replicaGroup=default, o=ibm, c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: replica4
ibm-replicaConsumerId: <replica4-uuid>
ibm-replicaUrl: ldap://<replica4hostname>:replica4port>
ibm-replicaCredentialsDN: cn=simple, cn=replication, cn=localhost
description: replica server number four

8. To load this topology, issue the command:
   ldif2db -r no -i <mytopologyfile>

   where -r no prevents replication of the set of entries.

9. At this point you might want to load additional data for your subtree.

10. When you have finished loading the data, to be able to export the topology to
     populate the other servers, issue the command:
    db2ldif -s"o=ibm,c=us" -o <mymasterfile.ldif>

    See "db2ldif utility" on page 304 for more information.

11. Copy <masterfile.ldif> to the machine where peer2 is located.

12. At the machine where peer2 is located, issue the following command:
    ldif2db -r no -i <masterfile.ldif>
13. Ensure that forwarder1 and forwarder2 are stopped.

14. You must configure forwarder1 and forwarder2 to be forwarding servers. Use an editor to add the following entry to the `ibmslapd.conf` files on forwarder1 and forwarder2:

   ```
 dn: cn=Master Server, cn=configuration
 objectclass: ibm-slapdReplication
 cn: Master Server
 ibm-slapdMasterDN: cn=master
 ibm-slapdMasterPW: master
 ibm-slapdMasterReferral: ldap://peer1hostname:peer1port/
   ```

   **Note:** This ensures that all updates from the clients are referred to peer1.

15. Copy `<masterfile.ldif>` to the machines where forwarder1 and forwarder2 are located.

16. At each of these machines, issue the following command:

   ```
 ldif2db -r no -i <masterfile.ldif>
   ```

17. Ensure that replica1, replica2, replica3, and replica4 are stopped.

18. You must configure replica1, replica2, replica3, and replica4 to be replica servers. Use an editor to add the following entry to the `ibmslapd.conf` files on each of the replicas:

   ```
 dn: cn=Master Server, cn=configuration
 objectclass: ibm-slapdReplication
 cn: Master Server
 ibm-slapdMasterDN: cn=master
 ibm-slapdMasterPW: master
 ibm-slapdMasterReferral: ldap://peer1hostname:peer1port/
   ```

19. Save the `ibmslapd.conf` files.

20. Copy `<masterfile.ldif>` to the machines where replica1, replica2, replica3, and replica4 are located.

21. At each of these machines, issue the following command:

   ```
 ldif2db -r no -i <masterfile.ldif>
   ```

22. Start peer1, peer2, forwarder1, forwarder2, replica1, replica2, replica3, and replica4.

---

**Setting up a gateway topology**

**Note:** A gateway server must be an IBM Tivoli Directory Server version 5.2 server or an IBM Directory Server version 5.1 server with a fix pack that supports gateway replication.

Gateway replication uses Gateway servers to collect and distribute replication information effectively across a replicating network. The primary benefit of Gateway replication is the reduction of network traffic.

Gateway servers must be masters (writable). The following figure illustrates how Gateway replication works:
The replicating network in Figure 5 contains four replication sites, each containing a Gateway server. A Gateway server:
- Collects replication updates from the peer/master servers in the replication site where it resides and sends the updates to all the other Gateway servers within the replicating network.
- Collects replication updates from other Gateway servers in the replication network and sends those updates to the peers/masters and replicas in the replication site where it resides.

Gateway servers use server ids and consumer ids to determine which updates are sent to other Gateway servers in the replicating network and which updates are sent to local servers within the replication site.

To set up Gateway replication, you must create at least two Gateway servers. The creation of a Gateway server establishes a replication site. You must then create replication agreements between the Gateway and any masters/peers and replicas you want to include in that Gateway’s replication site.

Gateway servers must be masters (writable). If you attempt to add the Gateway object class, ibm-replicaGateway to a subentry that is not a master, an error message is returned.

There are two methods for creating a Gateway server. You can:
- Create a new Gateway server
- Convert an existing peer server to a Gateway server

**Note:** It is very important that you assign only one gateway server per replication site.

**Using Web Administration:**

To set up gateway using the complex topology with peer replication from the previous scenario:
• Convert an existing peer server (peer1) to a Gateway server to create replication site1.
• Create a new gateway server for replication site 2 and agreements with peer1.
• Create the topology for replication site 2 (not illustrated in this example).
• Copy the data from the master to the all the machines in the topology.
  1. Connect Web Administration to the master (server1).
  2. Expand the Replication management category in the navigation area and click Manage topology.
  3. Select the subtree that you want to replicate and click Show topology.
  4. Click the arrow next to the Replication topology selection to expand the list of servers.
  5. To convert an existing server to a gateway server, select server1 or its peer server5. For this example use server1.
  6. Click Edit server.
  7. Verify that Server is a master is checked then select Server is a gateway.
  8. Click OK.

  Note: If the server you want to use as a gateway is not already a master, it must be a leaf replica with no subordinate replicas that you can first promote to be a master and then designate it as a gateway.
  9. To create a new gateway server, select server1 and click Add replica.
  10. Create the new replica, server9. See “Creating a replica server” on page 144.
  11. Select server9 and click Move.
  12. Select Replication topology to promote the replica to a master. Click Move.
  13. The Create additional supplier agreements panel is displayed. Ensure that the supplier agreement boxes are checked for server1 only.

  Table 14.

<table>
<thead>
<tr>
<th>Supplier</th>
<th>Consumer</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔ server9</td>
<td>server1</td>
</tr>
<tr>
<td>server9</td>
<td>server2</td>
</tr>
<tr>
<td>server9</td>
<td>server4</td>
</tr>
<tr>
<td>server9</td>
<td>server5</td>
</tr>
</tbody>
</table>

  Click Continue.

  Note: In some cases the Select credentials panel will pop up asking for a credential which is located in a place other than cn=replication,cn=localhost. In such situations you must provide a credential object which is located in a place other than cn=replication,cn=localhost. Select the credentials the subtree is going to use form the existing sets of credentials or create new credentials. See “Creating credentials” on page 142.

  14. Click OK. The server roles are represented by icons in the Web Administration Tool. Your topology is now:

  • server1 (master-gateway for replication site1)
    - server2 (forwarder)
      - server3 (replica)
      - server6 (replica)
- server4 (forwarder)
  - server7 (replica)
  - server8 (replica)
- server5 (master)
- server9 (master-gateway for replication site 2)
  - server5 (master)
- server1 (master)
- server2 (forwarder)
- server4 (forwarder)
  - server9 (master-gateway)
    - server1 (master-gateway)

15. Add replica servers to server9 to create the topology for replication site 2.
16. Repeat this process to create additional replication sites. Remember to create only one gateway server per replication site.
17. When you have finished creating the topology, copy the data from server1 to the all the servers in all the replication sites. See “Copying data to the replica” on page 146 for information on how to do that.

**Using the command line:**

In this scenario you are creating a new replicated subtree with the same topology that was used for the peer-to-peer example.

**Note:**

dn: o=ibm,c=us
objectclass: organization
objectclass: ibm-replicationContext

is the subtree you want to create. If this entry already exists, then modify it to add `objclass=ibm-replicationContext` instead of adding the entire entry.

In this example you are going to change the previous two peer, two forwarder, and four replica scenario to:
* Change the role of peer1 to a gateway server for its topology (replication site1).
* Create a new gateway server, gate2, for replication site2.

**Note:** Replication site2 has its own topology with gate2 as its gateway server. That replication topology is not being illustrated in this example. You can use the topology for replication site1 as a model. However, all the topology does need to be included for all replication sites in your actual topology setup.

1. Stop the servers gate2, peer1 and peer2.
2. You must configure gate2, peer1 and peer2 to be peer servers. Use an editor to add the following entry to the `ibmslapd.conf` files on peer1 and peer2:
dn: cn=Master Server, cn=configuration
objectclass: ibm-slapdReplication
    cn: Master Server
    ibm-slapdMasterDN: cn=master
    ibm-slapdMasterPW: master

Note: It is critical that these entries be exactly the same on all servers because this example uses a credentials object that is shared on all the servers.

3. Save the ibmslapd.conf files.

4. At the machine where the master server, peer1, is located, create a file to contain the agreement information, for example mycredentialsfile where mycredentialsfile contains:
   
dn: cn=replication,cn=localhost
    objectclass: container

dn: cn=simple,cn=replication,cn=localhost
    objectclass: ibm-replicationCredentialsSimple
    cn: simple
    replicaBindDN: cn=master
    replicaCredentials: master
    description: Bindmethod for topology

5. Issue the command:
   ldif2db -r no -i <mycredentialsfile>

6. Copy <mycredentialsfile> to the machines where gate2, peer2, forwarder1, and forwarder2 are located and issue the command:
   ldif2db -r no -i <mycredentialsfile>
on each machine.

7. At the machine where peer1 is located create a file <mytopologyfile> where mytopologyfile includes:

   Note: Replace all occurrences of <peer1-uuid> in the following files with the value of the ibm-slapdServerld attribute from the master server’s cn=Configuration entry. This value is generated by the server the first time it is started. You can find it either by performing an ldapsearch of the cn=Configuration entry or using the grep command on the ibmslapd.conf file, if you have a UNIX-based system. Similarly, all occurrences of the <peerx-uuid>, <forwarderx-uuid>, <replicax-uuid> and the <gate2-uuid> (where x represents a number) must be replaced with the value of the ibm-slapdServerld attribute from the respective server’s cn=Configuration entry.

   The changes made to the code example from the previous peer topology command line example are in bold.

   dn: o=ibm,c=us
   o: ibm
   objectclass: top
   objectclass: organization
   objectclass: ibm-replicationContext

   dn: ibm-replicaGroup=default, o=ibm,c=us
   objectclass: top
   objectclass: ibm-replicaGroup
   ibm-replicaGroup: default

   #Make peer1 a gateway server for site 1
   dn: ibm-replicaServerld=<peer1-uuid>,ibm-replicaGroup=default,o=ibm,c=us
objectClass: top
objectClass: ibm-replicaSubentry
objectClass: ibm-replicaGateway
ibm-replicaServerId: <peer1-uuid>
ibm-replicationServerIsMaster: true
cn: peer1
description: gateway server from replication site 1 to replication site 2

#Add gate2 as a gateway server for site 2
dn: ibm-replicaServerId=<gate2-uuid>,ibm-replicaGroup=default,o=ibm,c=us
objectClass: top
objectClass: ibm-replicaSubentry
objectClass: ibm-replicaGateway
ibm-replicaServerId: <gate2-uuid>
ibm-replicationServerIsMaster: true
cn: gate2
description: gateway server from replication site 2 to replication site 1

dn: ibm-replicaServerId=<peer2-uuid>,ibm-replicaGroup=default,o=ibm,c=us
objectClass: top
objectClass: ibm-replicaSubentry
ibm-replicaServerId: <gate2-uuid>
ibm-replicationServerIsMaster: false
cn: peer2
description: peer2 server

dn: ibm-replicaServerId=<forwarder1-uuid>,
    ibm-replicaGroup=default,o=ibm,c=us
objectClass: top
objectClass: ibm-replicaSubentry
ibm-replicaServerId: <forwarder1-uuid>
ibm-replicationServerIsMaster: false
cn: forwarder1
description: forwarder server number one

dn: ibm-replicaServerId=<forwarder2-uuid>,
    ibm-replicaGroup=default,o=ibm,c=us
objectClass: top
objectClass: ibm-replicaSubentry
ibm-replicaServerId: <forwarder2-uuid>
ibm-replicationServerIsMaster: false
cn: forwarder2
description: forwarder server number two

#peer1 to gate2 agreement
dn: cn=gate2,ibm-replicaServerId=<peer1-uuid>,
    ibm-replicaGroup=default,o=ibm,c=us
objectClass: top
objectClass: ibm-replicationAgreement
cn: gate2
ibm-replicaConsumerId: <gate2-uuid>
ibm-replicaUrl: ldap://<gate2hostname>:<gate2port>
ibm-replicaCredentialsDN: cn=simple,cn=replication,cn=localhost
description: supplier agreement from replication site1 to replication site2

#gate2 to peer1 agreement
dn: cn=gate1,ibm-replicaServerId=<gate2-uuid>,
    ibm-replicaGroup=default,o=ibm,c=us
objectClass: top
objectClass: ibm-replicationAgreement
cn: peer1
ibm-replicaConsumerId: <peer1-uuid>
ibm-replicaUrl: ldap://<peer1hostname>:<peer1port>
ibm-replicaCredentialsDN: cn=simple,cn=replication,cn=localhost
description: supplier agreement from replication site2 to replication site 1

#peer1 to peer2 agreement
ibm-replicaGroup=default,o=ibm,c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: replica1
ibm-replicaConsumerId: <replica1-uuid>
ibm-replicaUrl: ldap://<replica1hostname>:<replica1port>
ibm-replicaCredentialsDN: cn=simple,cn=replication,cn=localhost
description: replica server number one

#forwarder1 to replica2 agreement
dn: cn=replica2,ibm-replicaServerId=<forwarder1-uuid>,
     ibm-replicaGroup=default,o=ibm,c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: replica2
ibm-replicaConsumerId: <replica2-uuid>
ibm-replicaUrl: ldap://<replica2hostname>:<replica2port>
ibm-replicaCredentialsDN: cn=simple,cn=replication,cn=localhost
description: replica server number two

#forwarder2 to replica3 agreement
dn: cn=replica3,ibm-replicaServerId=<forwarder2-uuid>,
     ibm-replicaGroup=default,o=ibm,c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: replica3
ibm-replicaConsumerId: <replica3-uuid>
ibm-replicaUrl: ldap://<replica3hostname>:<replica3port>
ibm-replicaCredentialsDN: cn=simple,cn=replication,cn=localhost
description: replica server number three

#forwarder2 to replica4 agreement
dn: cn=replica4,ibm-replicaServerId=<forwarder2-uuid>,
     ibm-replicaGroup=default,o=ibm,c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: replica4
ibm-replicaConsumerId: <replica4-uuid>
ibm-replicaUrl: ldap://<replica4hostname>:<replica4port>
ibm-replicaCredentialsDN: cn=simple,cn=replication,cn=localhost
description: replica server number four

8. To load this topology, issue the command:
   ldif2db -r no -i <mytopologyfile>
   
   where -r no prevents replication of the set of entries.

9. At this point you might want to load additional data for your subtree.

10. When you have finished loading the data, to be able to export the topology to
    populate the other servers, issue the command:
    db2ldif -s"o=ibm,c=us" -o <mymasterfile.ldif>

    See "db2ldif utility" on page 304 for more information.

11. Copy <masterfile.ldif> to the machine where gate2 is located.

12. At the machine where gate2 is located, issue the following command:
    ldif2db -r no -i <masterfile.ldif>

13. Copy <masterfile.ldif> to the machine where peer2 is located.

14. At the machine where peer2 is located, issue the following command:
    ldif2db -r no -i <masterfile.ldif>

15. Ensure that forwarder1 and forwarder2 are stopped.
16. You must configure forwarder1 and forwarder2 to be forwarding servers. Use an editor to add the following entry to the `ibmslapd.conf` files on forwarder1 and forwarder2:

```
dn: cn=Master Server, cn=configuration
objectclass: ibm-slapdReplication
cn: Master Server
ibm-slapdMasterDN: cn=master
ibm-slapdMasterPW: master
ibm-slapdMasterReferral: ldap://peer1hostname:peer1port/
```

**Note:** This ensures that all updates from the clients are referred to peer1.

17. Copy `<masterfile.ldif>` to the machines where forwarder1 and forwarder2 are located.

18. At each of these machines, issue the following command:

```
ldif2db -r no -i <masterfile.ldif>
```

19. Ensure that replica1, replica2, replica3, and replica4 are stopped.

20. You must configure replica1, replica2, replica3, and replica4 to be replica servers. Use an editor to add the following entry to the `ibmslapd.conf` files on each of the replicas:

```
dn: cn=Master Server, cn=configuration
objectclass: ibm-slapdReplication
cn: Master Server
ibm-slapdMasterDN: cn=master
ibm-slapdMasterPW: master
ibm-slapdMasterReferral: ldap://peer1hostname:peer1port/
```

21. Save the `ibmslapd.conf` files.

22. Copy `<masterfile.ldif>` to the machines where replica1, replica2, replica3, and replica4 are located.

23. At each of these machines, issue the following command:

```
ldif2db -r no -i <masterfile.ldif>
```

24. Start gate2, peer1, peer2, forwarder1, forwarder2, replica1, replica2, replica3, and replica4.

---

**Web Administration tasks for managing replication**

Use the Web Administration Tool to perform the following tasks.

**Managing topologies**

Topologies are specific to the replicated subtrees.

**Viewing the topology**

**Note:** The server must be running to perform this task.

Expand the **Replication management** category in the navigation area and click **Manage topology**.

1. Select the subtree that you want to view and click **Show topology**.

The topology is displayed in the Replication topology list. Expand the topologies by clicking the blue triangles. From this list you can:

- Add a replica.
- Edit information on an existing replica.
- Change to a different supplier server for the replica or promote the replica to a master server.
• Delete a replica.

Adding a replica
See “Creating a replica server” on page 144

Editing an agreement
You can change the following information for the replica:

On the Server tab you can only change
• Hostname
• Port
• Enable SSL
• Description

On the Additional tab you can change:
• Credentials - see “Creating credentials” on page 142
• Replication schedules - see “Creating replication schedules” on page 174
• Change the capabilities replicated to the consumer replica. From the list of supplier capabilities, you can deselect any capabilities that you do not want replicated to the consumer.
• When you are finished, click OK.

Editing a server

Note: A gateway server must be an IBM Tivoli Directory Server version 5.2 server or an IBM Directory Server version 5.1 server with a fix pack that supports gateway replication.

You can designate whether a master server is to have the role of a gateway server in the replication site.

To designate a master as a gateway server:
1. Select the Server is a gateway check box.
2. Click OK.

To remove the role of a gateway server from a master server.
1. Deselect the Server is a gateway check box.
2. Click OK.

To promote the replica to the consumer.
1. Select the server that you want and click Move.
2. Select the server that you want to move the replica to, or select Replication topology to promote the replica to a master. Click Move.
3. In some cases the Select credentials panel will pop up asking for a credential which is located in a place other than cn=replication,cn=localhost. In such situations you must provide a credential object which is located in a place other than cn=replication,cn=localhost. Select the credentials the subtree is going to use from the existing sets of credentials or create new credentials. See “Creating credentials” on page 142
4. The Create additional supplier agreements is displayed. Select the supplier agreements appropriate for the role of the server. For example, if a replica
server is being promoted to be a peer server, you must select to create supplier agreements with all the other servers and their first-level replicas. These agreements enable the promoted server to act as a supplier to the other servers and their replicas. Existing supplier agreements from the other servers to the newly promoted server are still in effect and do not need to be recreated.

5. Click OK.

The change in the topology tree reflects the moving of the server.

See "Setting up a complex topology with peer replication" on page 154 for more information.

Demoting a master

To change the role of a server from a master to a replica do the following:

1. Connect the Web Administration Tool to the server that you want to demote.
2. Click Manage topology.
3. Select the subtree and click Show topology.
4. Delete all the agreements for the server you want to demote.
5. Select the server you are demoting and click Move.
6. Select the server under which you are going to place the demoted server and click Move.
7. Just as you would for a new replica, create new supplier agreements between the demoted server and its supplier. See "Creating a replica server" on page 144 for instructions.

Replicating a subtree

Note: The server must be running to perform this task.

Expand the Replication management category in the navigation area and click Manage topology.

- Click Add subtree.
- Enter the DN of the subtree that you want to replicate or click Browse to expand the entries to select the entry that is to be the root of the subtree.
- Enter the master server referral URL. This must be in the form of an LDAP URL, for example:
  
  ldap://<myservername>.<mylocation>.<mycompany>.com

- Click OK.
- The new server is displayed on the Manage topology panel under the heading Replicated subtrees.

Note: On the Linux, Solaris, and HP-UX platforms, if a referral fails, ensure that the environment variable LDAP_LOCK_REC has been set in your system environment. No specific value is required.

    set LDAP_LOCK_REC=anyvalue

Editing a subtree

Use this option to change the URL of the master server that this subtree and its replicas send updates to. You need do this if you change the port number or host name of the master server, change the master to a different server

1. Select the subtree you want to edit.
2. Click Edit subtree.
3. Enter the master server referral URL. This must be in the form of an LDAP URL, for example:

ldap://<mynewservername>.<mylocation>.<mycompany>.com

Depending on the role being played by the server on this subtree (whether it is a master, replica or forwarding), different labels and buttons appear on the panel.

- When the subtree’s role is replica, a label indicating that the server acts as a replica or forwarder is displayed along with the button **Make server a master**. If this button is clicked then the server which the Web Administration Tool is connected to becomes a master.

- When the subtree is configured for replication only by adding the auxiliary class (no default group and subentry present), then the label **This subtree is not replicated** is displayed along with the button **Replicate subtree**. If this button is clicked, the default group and the subentry is added so that the server with which the Web Administration Tool is connected to becomes a master.

- If no subentries for the master servers are found, the label **No master server is defined for this subtree** is displayed along with the button titled **Make server a master**. If this button is clicked, the missing subentry is added so that the server with which the Web Administration Tool is connected to becomes a master.

### Removing a subtree

1. Select the subtree you want to remove
2. Click **Delete subtree**.
3. When asked to confirm the deletion, click **OK**.

The subtree is removed from the **Replicated subtree** list.

**Note:** This operation succeeds only if the ibm-replicaGroup=default is entry is empty.

### Quiescing the subtree

This function is useful when you want to perform maintenance on or make changes to the topology. It minimizes the number of updates that can be made to the server. A quiesced server does not accept client requests. It accepts requests only from an administrator using the Server Administration control.

This function is Boolean.

1. Click **Quiesce/Unquiesce** to quiesce the subtree.
2. When asked to confirm the action, click **OK**.
3. Click **Quiesce/Unquiesce** to unquiesce the subtree.
4. When asked to confirm the action, click **OK**.

### Editing access control lists

Replication information (replica subentries, replication agreements, schedules, possibly credentials) are stored under a special object, **ibm-replicagroup=default**.

The ibm-replicagroup object is located immediately beneath the root entry of the replicated subtree. By default, this subtree inherits ACL from the root entry of the replicated subtree. This ACL might not be appropriate for controlling access to replication information.

**Required authorities:**

- **Control replication** - You must have write access to the ibm-replicagroup=default object (or be the owner/administrator).
- Cascading control replication - You must have write access to the ibm-replicagroup=default object (or be the owner/administrator).
- Control queue - You must have write access to the replication agreement.

To view ACL properties using the Web Administration Tool utility and to work with ACLs, see "Working with ACLs" on page 220.


Modifying replication properties

Expand the Replication management category in the navigation area and click Manage replication properties.

On this panel you can:
- Change the maximum number of pending changes to return from replication status queries. The default is 200.
- Add, edit, or delete supplier information.

Adding supplier information

1. Click Add.
2. Select a supplier from the drop-down menu or enter the name of the replicated subtree that you want to add as a supplier.
3. Enter the replication bind DN for the credentials.

Note: You can use either of these two options, depending on your situation.
- Set the replication bind DN (and password) and a default referral for all subtrees replicated to a server using the ‘default credentials and referral’. This might be used when all subtrees are replicated from the same supplier.
- Set the replication bind DN and password independently for each replicated subtree by adding supplier information for each subtree. This might be used when each subtree has a different supplier (that is, a different master server for each subtree).

4. Depending on the type of credential, enter and confirm the credential password. (You previously recorded this for future use.)
   - Simple Bind - specify the DN and password
   - Kerberos - specify a pseudo DN of the form ‘ibm-kn=LDAP-service-name@realm’ without a password
   - SSL w/ EXTERNAL bind - specify the subject DN for the certificate and no password

See “Creating credentials” on page 142.
5. Click OK.

The subtree of the supplier is added to the Supplier information list.

Editing supplier information

1. Select the supplier subtree that you want to edit.
2. Click Edit.
3. If you are editing Default credentials and referral, which is used to create the cn=Master Server entry under cn=configuration, enter the URL of the server
from which the client wants to receive replica updates in the Default supplier’s LDAP URL field. This needs to be a valid LDAP URL (ldap://). Otherwise, skip to step 4.

4. Enter the replication bind DN for the new credentials you want to use.
5. Enter and confirm the credential password.
6. Click OK.

Removing supplier information
1. Select the supplier subtree that you want to remove.
2. Click Delete.
3. When asked to confirm the deletion, click OK.

The subtree is removed from the Supplier information list.

Creating replication schedules
You can optionally define replication schedules to schedule replication for particular times, or to not replicate during certain times. If you do not use a schedule, the server schedules replication whenever a change is made. This is equivalent to specifying a schedule with immediate replication starting at 12:00 AM on all days.

Expand the Replication management category in the navigation area and click Manage schedules.

On the Weekly schedule tab, select the subtree for which you want to create the schedule and click Show schedules. If any schedules exist, they are displayed in the Weekly schedules box. To create or add a new schedule:
1. Click Add.
2. Enter a name for the schedule. For example schedule1.
3. For each day, Sunday through Saturday, the daily schedule is specified as None. This means that no replication update events are scheduled. The last replication event, if any, is still in effect. Because this is a new replica, there are no prior replication events, therefore, the schedule defaults to immediate replication.
4. You can select a day and click Add a daily schedule to create a daily replication schedule for it. If you create a daily schedule it becomes the default schedule for each day of the week. You can:
   • Keep the daily schedule as the default for each day or select a specific day and change the schedule back to none. Remember that the last replication event that occurred is still in effect for a day that has no replication events scheduled.
   • Modify the daily schedule by selecting a day and clicking Edit a daily schedule. Remember changes to a daily schedule affect all days using that schedule, not just the day you selected.
   • Create a different daily schedule by selecting a day and clicking Add a daily schedule. After you have created this schedule it is added to the Daily schedule drop-down menu. You must select this schedule for each day that you want the schedule to be used.

See “Creating a daily schedule” on page 175 for more information on setting up daily schedules.
5. When you are finished, click OK.
Creating a daily schedule

Expand the **Replication management** category in the navigation area and click **Manage schedules**.

On the **Daily schedule** tab, select the subtree for which you want to create the schedule and click **Show schedules**. If any schedules exist, they are displayed in the **Daily schedules** box. To create or add a new schedule:

1. Click **Add**.
2. Enter a name for the schedule. For example **monday1**.
3. Select the time zone setting, either UTC or local.
4. Select a replication type from the drop-down menu:
   - **Immediate**: Performs any pending entry updates since the last replication event and then updates entries continuously until the next scheduled update event is reached.
   - **Once**: Performs all pending updates prior to the starting time. Any updates made after the start time wait until the next scheduled replication event.
5. Select a start time for the replication event.
6. Click **Add**. The replication event type and time are displayed.
7. Add or remove events to complete your schedule. The list of events is refreshed in chronological order.
8. When you are finished, click **OK**.

For example:

<table>
<thead>
<tr>
<th>Replication type</th>
<th>Start time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immediate</td>
<td>12:00 AM</td>
</tr>
<tr>
<td>Once</td>
<td>10:00 AM</td>
</tr>
<tr>
<td>Once</td>
<td>2:00 PM</td>
</tr>
<tr>
<td>Immediate</td>
<td>4:00 PM</td>
</tr>
<tr>
<td>Once</td>
<td>8:00 PM</td>
</tr>
</tbody>
</table>

In this schedule, the first replication event occurs at midnight and updates any pending changes prior to that time. Replication updates continue to be made as they occur until 10:00 AM. Updates made between 10:00 AM and 2:00 PM wait until 2:00 PM to be replicated. Any updates made between 2:00 PM and 4:00 PM wait the replication event scheduled at 4:00 PM, afterwards replication updates continue until the next scheduled replication event at 8:00 PM. Any updates made after 8:00 PM wait until the next scheduled replication event.

**Note**: If replication events are scheduled too closely together, a replication event might be missed if the updates from the previous event are still in progress when the next event is scheduled.

Managing queues

This task allows you to monitor status of replication for each replication agreement (queue) used by this server.

Expand the **Replication management** category in the navigation area and click **Manage queues**.
Select the replica for which you want to manage the queue.

- Depending on the status of the replica, you can click **Suspend/resume** to stop or start replication.
- Click **Force replication** to replicate all the pending changes regardless of when the next replication is scheduled.
- Click **Queue details**, for more complete information about the replica’s queue. You can also manage the queue from this selection.
- Click **Refresh** to update the queues and clear server messages.

**Queue details**

If you clicked **Queue details**, three tabs are displayed:

- Status
- Last attempted details
- Pending changes

The **Status** tab displays the replica name, its subtree, its status, and a record of replication times. From this panel you can suspend or resume replication by clicking **Resume**. Click **Refresh** to update the queue information.

The **Last attempted details** tab gives information about the last update attempt. If an entry is not able to be loaded press **Skip blocking entry** to continue replication with the next pending entry. Click **Refresh** to update the queue information.

The **Pending changes** tab shows all the pending changes to the replica. If replication is blocked you can delete all the pending changes by clicking **Skip all**. Click **Refresh** to update the list of pending changes to reflect any new update or updates that have been processed.

**Note:** If you choose to skip blocking changes, you must ensure that the consumer server is eventually updated. See “ldapdiff” on page 307 for more information.

---

**Command line tasks for managing replication**

**Specifying a supplier DN and password for a subtree**

You can specify a supplier DN and PW for a particular subtree. To do this the following information is needed on the replica and master.

To create a replica for a subtree, you need to create a replica agreement between the master and the replica, see “Replication agreements” on page 140. This agreement needs to be loaded on both the master and the replica. The relationship between the two servers is that the master is a supplier to the replica and the replica is a consumer of the master.

1. At the machine where the master is located, create a file to contain the agreement information, for example, *mysupplierinfofile*, where *mysupplierinfofile* contains:

   #Replication data on the master:

   ```
 dn: o=IBM,c=US
 objectclass: organization

 dn: ou=Test,o=IBM,c=US
 objectclass: organizationalUnit
 objectclass: ibm-replicationContext
   ```

---

176   IBM Tivoli Directory Server: IBM Tivoli Directory Server Administration Guide
entryowner: access-id:CN=this

dn: ibm-replicaGroup=default, ou=Test,o=IBM,c=US
objectclass: top
objectclass: ibm-replicaGroup
ibm-replicaGroup: default

dn: cn=replic1 BindCredentials, cn=localhost
objectclass: ibm-replicationCredentialsSimple
cn: replic1 BindCredentials
replicaBindDN: cn=s1
replicaCredentials: s1
description: Bindmethod of master to replical

dn: ibm-replicaServerId=<master-uuid>,ibm-replicaGroup=default, ou=Test,o=IBM,c=US
#master uuid is whatever the server ID is set to in your ibmslapd.conf
#on the master.
objectclass: top
objectclass: ibm-replicaSubentry
ibm-replicaServerId: <master-uuid>
ibm-replicationServerIsMaster: true
cn: master
description: master server

dn: cn=replic1,ibm-replicaServerId=<master-uuid>,ibm-replicaGroup=default, ou=Test,o=IBM,c=US
objectclass: top
objectclass: ibm-replicationAgreement
cn: replical
ibm-replicaConsumerId: <replic1-uuid>
#<replic1-uuid> is whatever the server ID is set to in your ibmslapd.conf file.
ibm-replicaUrl: ldap://<replicalhostname>:<replicalport>
ibm-replicaCredentialsDN: cn=replic1 BindCredentials, cn=localhost
description: replica server number one

2. Stop the master, if it is not already stopped.
3. Issue the command:
   ldif2db -r no -i <mysupplierinfofile>
4. Issue the command:
   db2ldif -o <masterfile.ldif>

See "db2ldif utility" on page 304 for more information.
5. Copy <masterfile.ldif> to the machine where replical is located.
6. Stop the replica if it is running.
7. You must configure replical to be a replica server. Use an editor to add the following entry to the ibmslapd.conf file on replical:

dn: cn=Master Server, cn=configuration
cn: Master Server
ibm-slapdMasterDN: cn=master
ibm-slapdMasterPW: <masterserverpassword>
ibm-slapdMasterReferral: ldap://<masterhostname:masterport>
objectclass: ibm-slapdReplication

dn: cn=Supplier s1, cn=configuration
cn: Supplier s1
ibm-slapdMasterDN: cn=s1
ibm-slapdMasterPW: s1

Chapter 12. Replication 177
8. Save the `ibmslapd.conf` file.
9. Issue the following command:
   ```
 ldif2db -r no -i <masterfile.ldif>
   ```
10. Start master and replica1.

**Viewing replication configuration information**

A great deal of information related to replication activity is available using searches. To see the replication topology information related to a particular replicated subtree, you can do a one-level search with the base set to the DN of the subtree and the filter set as (objectclass=ibm-replicaGroup) to find the subentry that is the base of the topology information. If this replication context was created through the web admin interface, the name of the entry will be `ibm-replicaGroup=default`.

```
ldapsearch -D <adminDN> -w <adminPW> -b <suffixentryDN> (objectclass=*)
```

The objects returned will include the replica group itself, plus the following:

- An object with objectclass=ibm-replicaSubentry for each server that replicates data within this context. Replica subentries contain a server id attribute and an indication of the role the server plays (ibm-replicationServerIsMaster).
- For each replica subentry, there is a replication agreement object for each consumer server that receives replication updates from the server described by the replica subentry. Each replication agreement contains the following information:
  - `ibm-replicaConsumerId`: The server id of the consumer server.
  - `ibm-replicaURL`: The LDAP URL of the consumer server.
  - `ibm-replicaCredentialsDN`: The DN of the entry containing the credentials used to bind to the consumer.

Agreements may also contain the following:

- `ibm-replicaScheduleDN`: The DN of a schedule entry that determines when replication updates are sent to this consumer. If no schedule is specified, replication defaults to "immediate" mode.
- `ibm-replicationOnHold`: A boolean indicating that replication to this consumer is suspended (or not).
- `ibm-replicationExcludedCapability`: The values of this attribute list OIDs of features that the consumer does not support. Operations related to these capabilities are then excluded from the updates sent to this consumer.

**Monitoring Replication Status**

In addition, there are many operational attributes that provide replication status information when explicitly requested on a search. One of these attributes is associated with the entry that is the base of the replicated subtree, that is, the entry that the `ibm-replicationContext` objectclass was added to. If you do a base search of that entry, and request that the `ibm-replicationIsQuiesced` attribute is returned. This attribute is a boolean that indicates if the subtree has been quiesced. If the subtree is quiesced, no client updates are allowed (only updates from replication suppliers are accepted). There is an extended operation that can be used to quiesce a subtree, see `ldapexop` on page 271.
The remainder of the status-related operational attributes are all associated with a replication agreement object. These attributes are only returned when explicitly requested on the search. The attributes available are:

- **ibm-replicationLastActivationTime**: The time that the last replication session started between this supplier and consumer.
- **ibm-replicationLastFinishTime**: The time that the last replication session finished between this supplier and consumer.
- **ibm-replicationLastChangeId**: The change ID of the last update sent to this consumer.
- **ibm-replicationLastGlobalChangeId**: The change ID of the last update to a global entry sent to this consumer. Global entries are things like cn=schema or cn=pwdpolicy that apply to the entire contents of a DIT.
- **ibm-replicationState**: The current state of replication with this consumer. Possible values are:
  - **Active**: Actively sending updates to consumer (possibly retrying due to errors).
  - **Ready**: In immediate replication mode, ready to send updates as they occur.
  - **Waiting**: Waiting for next scheduled replication time.
  - **Binding**: In the process of binding to the consumer.
  - **Connecting**: In the process of connecting to the consumer.
  - **OnHold**: This replication agreement has been suspended or “held”.
- **ibm-replicationLastResult**: The results of the last attempted update to this consumer, in the form:
  
  \[
  \langle \text{time stamp} \rangle \langle \text{change id} \rangle \langle \text{result code} \rangle \langle \text{operation} \rangle \langle \text{entry DN} \rangle
  \]

- **ibm-replicationLastResultAdditional**: Any additional error information returned from the consumer for the last update.
- **ibm-replicationPendingChangeCount**: The number of updates queued to be replicated to this consumer.
- **ibm-replicationPendingChanges**: Each value of this attribute gives information about one of the pending changes in the form:
  
  \[
  \langle \text{change id} \rangle \langle \text{operation} \rangle \langle \text{entry DN} \rangle
  \]

  Requesting this attribute might return many values. Check the change count before requesting this attribute.
- **ibm-replicationChangeLDIF**: Gives the full details of the last failing update in LDIF.

### Creating gateway servers

**Creating a new Gateway server**

**Note:** After creating a Gateway server, you must create new replication agreements to reflect the new topology. See the “Replication agreements” on page 140 for more information.

Create a new replica context, replica group and replica subentry in the DIT. The replica subentry must contain the ibm-replicaSubentry object class and
ibm-replicaGateway auxiliary object class. The ibm-replicaSubentry object class and ibm-replicaGateway auxiliary object class are **bold** in the following example:

```plaintext
dn: o=sandbox
objectclass: top
objectclass: organization
objectclass: ibm-replicationContext

dn: ibm-replicagroup=default,o=sandbox
objectclass: top
objectclass: ibm-replicaGroup
ibm-replicagrupoup: default

dn: ibm-replicaServerId=<serverid>,ibm-replicagroup=default,o=sandbox
objectclass: top
objectclass: ibm-replicaSubentry
objectclass: ibm-replicaGateway
ibm-replicaServerId: <serverid>
ibm-replicationServerIsMaster: TRUE
cn: <servername>
```

Where `<servername>` is the name of the server, and where `<serverid>` is a 37 character string assigned the first time a server is started. The server id can be found by typing the following at a command prompt:

```
ldapsearch -b "" -s base objectclass=*
```

**Converting an existing peer server to a Gateway server**

**Note:** After creating a Gateway server, you must cancel unnecessary replication agreements and create new ones to reflect the new topology. See the IBM Directory Server 5.1 Administration Guide for more information about replication agreements.

Before converting a peer server to a Gateway server, make sure the subtree is quiesced and there are no pending changes. The following example shows a replica subentry that is NOT configured as a Gateway server.

```plaintext
dn: o=sandbox
objectclass: top
objectclass: organization
objectclass: ibm-replicationContext

dn: ibm-replicagroup=default,o=sandbox
objectclass: top
objectclass: ibm-replicaGroup
ibm-replicagrupoup: default

dn: ibm-replicaServerId=<serverid>,ibm-replicagroup=default,o=sandbox
objectclass: top
objectclass: ibm-replicaSubentry
ibm-replicaServerId: <serverid>
ibm-replicationServerIsMaster: TRUE
cn: <servername>
```

To convert this peer to a gateway, add the ibm-replicaGateway auxiliary object class to the desired replica subentry in the DIT. The ibm-replicaGateway auxiliary object class is **bold** in the following example.

```plaintext
dn: ibm-replicaServerId=<serverid>,ibm-replicagroup=default,o=sandbox
changetype: modify
add: objectclass
objectclass: ibm-replicaGateway
```

180 IBM Tivoli Directory Server: IBM Tivoli Directory Server Administration Guide
Where `<servername>` is the name of the server, and where `<serverid>` is a 37 character string assigned the first time a server is started. The server id can be found by typing the following at a command prompt:

```
ldapsearch -b "" -s base objectclass=*
```
Chapter 13. Logging Utilities

The IBM Tivoli Directory Server Version 5.2 provides several logging utilities that can be viewed either through the Web Administration Tool or the system command line.

Notes:
1. In the Web Administration Tool the Logfiles field in the task title bar accesses the Web Administration console log files. The IBM Tivoli Directory Server log files are accessible by using the procedures specified in the following sections.
2. On Windows-based systems, if a path begins with the drive letter and a colon, it is assumed to be the full path. A path without the drive letter, starts in the installation tree. As examples: c:\tmp\mylog is a full path, while \tmp\mylog is interpreted as c:\program files\ibm\ldap\tmp\mylog.

Only the administrator or members of the administrative group can view or access log information.

Modifying error logging

The error log, ibmslapd.log, is enabled by default, to modify the error log settings:

1. Expand Server administration in the navigation area, click Logs, click Modify error log settings.

2. Enter the path and file name for the error log. Ensure that the path is valid. If the file does not exist, it is created. The error log can also be directed to something other than a file, for example, a line printer.

Note: If you specify a file that is not an acceptable file name (for example, invalid syntax or if the server does not have the rights to create and/or modify the file), the attempt fails with the following error: LDAP Server is unwilling to perform the operation.

3. Select either Low, Medium, or High for the level of error logging.
   - Low logs the least amount of error information, for example,
     Mar 29 11:03:23 2002 IBM Directory, Version 5.2
     slapd started.
   - Medium logs a medium amount of error information, for example,
     Mar 29 11:07:51 2002 Configuration read securePort 636.
     Mar 29 11:07:51 2002 Plugin of type PREOPERATION is successfully loaded from libDSP.dll.
     Mar 29 11:07:51 2002 Plugin of type DATABASE is successfully loaded from C:\Program Files\IBM\LDAP\bin\libback-rdbm.dll.
     Mar 29 11:08:12 2002 IBM Directory, Version 5.2
     slapd started.
   - High logs the most amount of error information, for example
     Mar 29 11:04:05 2002 Configuration read securePort 636.
     Mar 29 11:04:05 2002 Configuration read cipher specifications mask to be 12288.
     Mar 29 11:04:05 2002 Plugin of type PREOPERATION is successfully loaded from libDSP.dll.
     Mar 29 11:04:05 2002 Plugin of type DATABASE is successfully loaded from C:\Program Files\IBM\LDAP\bin\libback-rdbm.dll
4. Click OK to apply your changes or click Cancel to return to the IBM Tivoli Directory Server Web Administration Welcome panel without making any changes.

5. Click OK to return to the IBM Tivoli Directory Server Web Administration Welcome panel.

Using the command line:

Issue the command:

```
ldapmodify -D <adminDN> <-w >adminPW> -i <filename>
```

where `<filename>` contains:

dn: cn=Configuration
changetype: modify
replace: ibm-slapdErrorLog
ibm-slapdErrorLog: `<newpathname>`

```
replace: ibm-slapdSysLogLevel
ibm-slapdSysLogLevel: {l | m | h}
```

To update the settings dynamically, issue the following `ldapexop` command:

```
ldapexop -D cn=root -w root -op readconfig -scope entire
```

The `ldapexop` command updates only those attributes that are dynamic. For other changes to take effect you must stop and restart the server. See “Dynamically-changed attributes” on page 414 for a list of the attributes that can be updated dynamically.

Viewing the error log

Use the following procedures to view the error log.

Using Web Administration:

1. Expand Logs in the navigation area, then click View error log.
2. The panel displays the first page of the error log and the navigation arrows at the bottom of the panel enable you to go to the Next page or to the Previous page. From the menu, you can select a specific page, for example Page 6 of 16, and click Go to display that page of the error log.

   You can:
   - Click Refresh to update the entries in the log.
   - Click Clear log to delete all entries in the administration daemon error log.
   - Click Close to return to the IBM Tivoli Directory Server Web Administration Welcome panel.

Using the command line:

To view the error log issue the following command:

```
mORE /var/ldap/ibmslapd.log
```

where `var/ldap/ibmslapd.log` is your error log.
Note: `var/ldap/ibmslapd.log` is the default error log for UNIX systems and 
`installpath\var\ibmslapd.log` is the default error log for Windows systems.

To view and clear the error log dynamically:
```
ldapexop -D cn=root -w root -op readlog -log slapd -lines all
ldapexop -D cn=root -w root -op clearlog -log slapd
```

Audit Logging

Audit logging is used to improve the security of the directory server. A default audit plug-in is provided with the server. Depending on the audit configuration parameters, this plug-in might log an audit entry in the default or specified audit log for each LDAP operation the server processed. The system administrator can use the activities stored in the audit log to check for suspicious patterns of activity in an attempt to detect security violations. If security is violated, the audit log can be used to determine how and when the problem occurred and perhaps the amount of damage done. This information is very useful, both for recovery from the violation and, possibly, in the development of better security measures to prevent future problems. You can also write your own audit plug-ins to either replace, or add more processing to, the default audit plug-in.

By default the audit log is disabled.

Note: Members of the administrative group can view the audit log and settings but not modify them. Only the root administrator is enabled to access, change or clear the audit log files.

Enabling the audit log and modifying audit log settings

To enable audit logging:

1. Expand Logs in the navigation area, click Modify audit log settings.
2. Select Enable audit logging to use the audit log utility.
3. Select the Audit version you want to use. Version 1 maintains previous audit logging capabilities for any applications that parse the audit log. Version 2 enables you to log extended operations, however, you might need to modify existing applications that parse the audit log.
4. Select to either log Only failed attempts of the selected operations or to log All attempts of the selected operations.
5. Enter the Path and file name for the audit log. The audit log can also be directed to something other than a file, for example, a line printer.
6. Select the operations you wish to log. Consult the field help for additional information about the various operations you can log.
   - Bind - records connections to the server
   - Unbind - records disconnections from the server
   - Search - records LDAP search operations performed by any client
   - Add - records additions to LDAP
   - Modify - records modifications to LDAP
   - Delete - records deletions from LDAP
   - Modify RDN - records modifications made to RDNs
   - Event notification - records event notifications
   - Extended operations- records extended operations performed against the server
Note: If you have selected audit version 1, selecting Extended operations does not activate this function. You must select audit version 2 for the auditing of extended operations to work.

7. Click OK to apply your changes or click Cancel to return to the IBM Tivoli Directory Server Web Administration Welcome panel without making any changes.

Using the command line:

Issue the command:

```bash
ldapmodify -D <adminDN> -w <adminPW> -i <filename>
```

where `<filename>` contains:

dn: cn=audit, cn=localhost
```bash
changetype: modify
replace: ibm-audit
ibm-audit: true
```

- replace: ibm-auditadd
  ibm-auditadd: {TRUE|FALSE}
  #select TRUE to enable, FALSE to disable
- replace: ibm-auditbind
  ibm-auditbind: {TRUE|FALSE}
  #select TRUE to enable, FALSE to disable
- replace: ibm-auditdelete
  ibm-auditdelete: {TRUE|FALSE}
- replace: ibm-auditextopevent
  ibm-auditextopevent: {TRUE|FALSE}
  #select TRUE to enable, FALSE to disable
- replace: ibm-auditfailedoponly
  ibm-auditfailedoponly: {TRUE|FALSE}
  #select TRUE to enable, FALSE to disable
- replace: ibm-auditlog
  ibm-auditlog: <newpathname>
- replace: ibm-auditmodify
  ibm-auditmodify: {TRUE|FALSE}
  #select TRUE to enable, FALSE to disable
- replace: ibm-auditmodifydn
  ibm-auditmodifydn: {TRUE|FALSE}
  #select TRUE to enable, FALSE to disable
- replace: ibm-auditsearch
  ibm-auditsearch: {TRUE|FALSE}
  #select TRUE to enable, FALSE to disable
- replace: ibm-auditunbind
  ibm-auditunbind: {TRUE|FALSE}
  #select TRUE to enable, FALSE to disable
- replace: ibm-auditversion
  ibm-auditversion: {1|2}
  #select 2, if you are enabling audit for extended operations
- replace: ibm-auditExtOp
  ibm-auditExtOp: {TRUE|FALSE}
  #select TRUE to enable, FALSE to disable
**Note:** If you are using audit logging in **Configuration only mode**, the DN specified is dn: cn=audit, cn=configuration. Any changes made to this DN are overwritten with the dn: cn=audit, cn=localhost values when the server is started in normal mode.

**Disabling the audit log**

To disable audit logging:

**Using Web Administration:**

1. Expand **Logs** in the navigation area, click **Modify audit log settings**.
2. Deselect **Enable audit logging**.
3. Click **OK** to apply your changes or click **Cancel** to return to the IBM Tivoli Directory Server Web Administration Welcome panel without making any changes.

**Using the command line:**

Issue the command:

```
ldapmodify -D <adminDN> -w <adminPW> -i <filename>
```

where `<filename>` contains:

- `dn: cn=audit, cn=localhost`
- `changetype: modify`
- `replace: ibm-audit`
- `ibm-audit: false`

**Note:** If you are using audit logging in **Configuration only mode**, the DN specified is dn: cn=audit, cn=configuration. Any changes made to this DN are overwritten with the dn: cn=audit, cn=localhost values when the server is started in normal mode.

**Viewing the audit log**

The audit log displays log entries chronologically. Each non-message entry contains a general information header followed by operation-specific data. For example,

```
2000-03-23-16:01:01.345-06:00--V3 Bind--bindDN: cn=root--client:9.1.2.3:12345--
ConnectionID:12--received:2000-03-23-16:01:01.330-06:00--success
name: cn=root
authenticationChoice: simple
```

If the audit version is version 2 the header contains "AuditV2--".

```
AuditV2--2003-07-22-09:39:54.421-06:00ST--V3 Bind--bindDN: cn=root--client: 127.0.0.1:8196--connectionID: 3--received: 2003-07-22-09:39:54.421-06:00ST--Success
```

The header is in the following format:

**Timestamp** "--"

The local time the entry is logged, that is, the time the request was processed. The timestamp is in the format YYYY-MM-DD-HH:MM:SS.mmm=(or-)HH:MM. The =(or=)HH:MM is UTC offset. mmm is milliseconds.

**Version number+[SSL]+[unauthenticated or anonymous] Operation "--"

Shows the LDAP request that was received and processed. Version number is either V2 or V3. SSL displays only when SSL was used for the connection. unauthenticated or anonymous displays to indicate whether
the request was from an unauthenticated or anonymous client. Neither unauthenticated or anonymous display if the request is from an authenticated client.

**bindDN:**
Shows the bind DN. For V3 unauthenticated or anonymous requests, this field is `<CN=NULLDN>`.

**client:Client IP address:Port number "--"**
Shows the client IP address and port number.

**ConnectionID: xxxx "--"**
Is used to group all the entries received in the same connection, meaning between the bind and unbind, together.

**received: Timestamp 2 "--"**
Is the local time when the request was received, or to be more specific, the beginning time when the request was processed. Its format is the same as Timestamp 1.

**Result or Status string**
Shows the result or status of the LDAP operation. For the result string, the textual form of the LDAP resultCode is logged, for example, success or operationsError, instead of 0 or 1.

Operation-specific data follows the header and displays operation-specific data, for example,

- **Bind operations**
  - name: Y249bWFuYWdlcg0K
  - authenticationChoice: simple

- **Add operations**
  - entry: cn=Jim Brown, ou=sales,o=ibm_us,c=us
  - attributes: objectclass, cn, sn, telephonenumber

- **Delete operations**
  - entry: cn=Jim Brown, ou=sales,o=ibm_us,c=us

- **Modify operations**
  - object: cn=Jim Brown, ou=sales,o=ibm_us,c=us
  - add: mail
dle: telephonenumber

Use the following procedures to view the audit log:

**Using Web Administration:**
To view the audit log:

1. Expand **Logs** in the navigation area, click **View audit log**.
2. The panel displays the first page of the audit log and the navigation arrows at the bottom of the panel enable you to go to the **Next** page or to the **Previous** page. From the menu, you can select a specific page, for example Page 6 of 16, and click **Go** to display that page of the audit log.

You can:

- Click **Refresh** to update the entries in the log.
- Click **Clear log** to delete all entries in the audit log.
- Click **Close** to return to the IBM Tivoli Directory Server Web Administration **Welcome** panel.
Using the command line:
To view the error log issue the following command:
more /var/ldap/audit.log

where /var/ldap/audit.log is your error log.

Note: /var/ldap/audit.log is the default audit log for UNIX systems and installpath\var\audit.log is the default audit log for Windows systems.

To view and clear the audit log dynamically:
ldapexop -D cn=root -w root -op readlog -log audit -lines all
ldapexop -D cn=root -w root -op clearlog -log audit

DB2 error logging

Modifying DB2 error log settings
1. Expand Logs in the navigation area, click Modify DB2 log settings.
2. Enter the path and file name for the error log. Typically this is the db2cli.log file located in the /var/ldap directory. Ensure that the path is valid. If the file does not exist, it is created.

Note: var/ldap/db2cli.log is the default DB2 error log for UNIX systems and installpath\var\db2cli.log is the default DB2 error log for Windows systems.
3. Click OK to apply your changes or click Cancel to return to the IBM Tivoli Directory Server Web Administration Welcome panel without making any changes.
4. Click OK to return to the IBM Tivoli Directory Server Web Administration Welcome panel.

Using the command line:
Issue the command:
ldapmodify -D <adminDN> -w <adminPW> -i <filename>

where <filename> contains:
dn: cn=Directory, cn=RDBM Backends, cn=IBM Directory, cn=Schemas, cn=Configuration
changetype: modify
replace: ibm-slapdCLIErrors
ibm-slapdCLIErrors: <newpathname>

To update the settings dynamically, issue the following ldapexop command:
ldapexop -D cn=root -w root -op readconfig -scope single
"cn=Directory,cn=RDBM Backends,cn=IBM Directory,cn=Schemas,cn=Configuration"
ibm-slapdCLIErrors

The ldapexop command updates only those attributes that are dynamic. For other changes to take effect you must stop and restart the server. See “Dynamically-changed attributes” on page 414 for a list of the attributes that can be updated dynamically.

Viewing the DB2 error log

Use the following procedures to view the DB2 error log.
Using Web Administration:
1. Expand Logs in the navigation area, then click View DB2 log.
2. The panel displays the first page of the DB2 log and the navigation arrows at the bottom of the panel enable you to go to the Next page or to the Previous page. From the menu, you can select a specific page, for example Page 6 of 16, and click Go to display that page of the DB2 log.

You can:
- Click Refresh to update the entries in the log.
- Click Clear log to delete all entries in the DB2 error log.
- Click Close to return to the IBM Tivoli Directory Server Web Administration Welcome panel.

Using the command line:
To view the DB2 error log issue the following command:

```bash
more /var/ldap/db2cli.log
```

where var/ldap/db2cli.log is your DB2 error log.

Note: var/ldap/db2cli.log is the default DB2 error log for UNIX systems and installpath\var\db2cli.log is the default DB2 error log for Windows systems.

To view and clear the DB2 error log dynamically:

```bash
ldapexop -D cn=root -w root -op readlog -log cli -lines all
ldapexop -D cn=root -w root -op clearlog -log cli
```

bulkload error logging

Modifying bulkload error log settings
1. Expand Logs in the navigation area, click Modify bulkload log settings.
2. Enter the path and file name for the error log. Typically this is the bulkload.log file located in the var/ldap directory. Ensure that the file exists on the ldap server and that the path is valid.

Note: var/ldap/bulkload.log is the default bulkload error log for UNIX systems and installpath\var\bulkload.log is the default bulkload error log for Windows systems.

3. Click OK to apply your changes or click Cancel to return to the IBM Tivoli Directory Server Web Administration Welcome panel without making any changes.
4. If you click OK, a message is displayed to remind you that you need to restart the server. Click OK to return to the IBM Tivoli Directory Server Web Administration Welcome panel.

Using the command line:
Issue the command:

```bash
ldapmodify -D <adminDN> -w <adminPW> -i <filename>
```

where <filename> contains:
- dn: cn=Directory, cn=RDBM Backends, cn=IBM Directory, cn=Schemas, cn=Configuration
- changetype: modify
- replace: ibm-slapdBulkloadErrors
- ibm-slapdBulkloadErrors: <newpathname>
To update the settings dynamically, issue the following `ldapexop` command:

```bash
ldapexop -D cn=root -w root -op readconfig -scope single
 "cn=Directory,cn=RDDBM Backends,cn=IBM Directory,cn=Schemas,cn=Configuration"
 ibm-slapdBulkloadErrors
```

The `ldapexop` command updates only those attributes that are dynamic. For other changes to take effect you must stop and restart the server. See “Dynamically-changed attributes” on page 414 for a list of the attributes that can be updated dynamically.

### Viewing the bulkload error log

Use the following procedures to view the bulkload error log.

**Using Web Administration:**
1. Expand **Logs** in the navigation area, then click **View bulkload log**.
2. The panel displays the first page of the bulkload log and the navigation arrows at the bottom of the panel enable you to go to the **Next** page or to the **Previous** page. From the menu, you can select a specific page, for example Page 6 of 16, and click **Go** to display that page of the bulkload log.
   
   You can:
   - Click **Refresh** to update the entries in the log.
   - Click **Clear log** to delete all entries in the bulkload log.
   - Click **Close** to return to the IBM Tivoli Directory Server Web Administration **Welcome** panel.

**Using the command line:**
To view the bulkload error log issue the following command:

```
more /var/ldap/bulkload.log
```

where `/var/ldap/bulkload.log` is your bulkload error log.

**Note:** `/var/ldap/bulkload.log` is the default error log for UNIX systems and `installpath\var\bulkload.log` is the default bulkload error log for Windows systems.

To view and clear the bulkload error log dynamically:

```bash
ldapexop -D cn=root -w root -op readlog -log bulkload -lines all
ldapexop -D cn=root -w root -op clearlog -log bulkload
```

### Administration daemon error logging

**Modifying administration daemon error log settings**
1. Expand **Logs** in the navigation area, click **Modify admin daemon log settings**.
2. Enter the path and file name for the administration daemon error log. Typically this is the `ibmdiradm.log` file located in the `var/ldap/` directory. Ensure that the file exists on the ldap server and that the path is valid.
   
   **Note:** `var/ldap/ibmdiradm.log` is the default administration daemon error log for UNIX systems and `installpath\var\ibmdiradm.log` is the default administration daemon error log for Windows systems.

3. Click **OK** to apply your changes or click **Cancel** to return to the IBM Tivoli Directory Server Web Administration Welcome panel without making any changes.
4. If you click OK, a message is displayed to remind you that you need to restart the server. Click OK to return to the IBM Tivoli Directory Server Web Administration Welcome panel.

5. You must stop the server for changes to take effect. See “Starting and stopping the server” on page 24. After stopping the server you must also stop and start the administration daemon locally to resynchronize the ports.

   • For UNIX systems:
     `ibmdirctl -D <AdminDN> -w <Adminpw> admstop`
     `ibmdiradm`

   • For Windows systems:
     a. Through the Control Panel, open the Services window.
     b. Click Directory Admin Daemon.
     c. Click Action -> Stop.

   Restart the server.

**Using the command line:**

Issue the command:

```bash
ldapmodify -D <adminDN> -w>adminPW -i <filename>
```

where `<filename>` contains:

```plaintext
dn: cn=Admin, cn=Configuration
changetype: modify
replace: ibm-slapdErrorLog
ibm-slapdErrorLog: <newpathname>
```

You must stop the server for changes to take effect. After stopping the server you must also stop and start the administration daemon locally to resynchronize the ports. Start the server.

```bash
ibmdirctl -D <AdminDN> -w <AdminPW> -p 389 stop
ibmdirctl -D <AdminDN> -w <AdminPW> admstop
ibmdirctl -D <AdminDN> -w <AdminPW> start
```

**Viewing the administration daemon error log**

Use the following procedures to view the administration daemon error log.

**Using Web Administration:**

1. Expand Logs in the navigation area, then click View admin daemon log.

2. The panel displays the first page of the administration daemon log and the navigation arrows at the bottom of the panel enable you to go to the Next page or to the Previous page. From the menu, you can select a specific page, for example Page 6 of 16, and click Go to display that page of the administration daemon log.

   You can:
   - Click Refresh to update the entries in the log.
   - Click Clear log to delete all entries in the administration daemon log.
   - Click Close to return to the IBM Tivoli Directory Server Web Administration Welcome panel.
Using the command line:
To view the administration daemon error log issue the following command:

```
more /var/ldap/ibmdiradm.log
```

where `var/ldap/ibmdiradm.log` is your Web Administration error log.

**Note:** `var/ldap/ibmdiradm.log` is the default Web Administration error log for UNIX systems and `installpath\var\ibmdiradm.log` is the default Web Administration error log for Windows systems.

To view and clear the Web Administration error log dynamically:

```
ldapexop -D >adminDN> -w >adminPW> -op readlog -log ibmdiradm -lines all
ldapexop -D >adminDN> -w >adminPW> -op clearlog -log ibmdiradm
```

---

**Administration daemon audit logging**

**Note:** Members of the administrative group can view the administration daemon audit log and settings but not modify them. Only the root administrator is enabled to access, change or clear the administration daemon audit log files.

**Enabling the administration daemon audit log and modifying administration audit log settings**

1. Expand **Logs** in the navigation area, click **Modify admin daemon audit log settings**.
2. Select **Enable admin daemon audit logging** to use the audit log utility with the administration daemon.
   
   **Note:** The default setting is enabled. You only need to select the check box, if you have previously disabled the administration daemon audit log.
3. Enter the path and file name for the administration daemon audit log. Typically this is the `adminAudit.log` file located in the `var/ldap/` directory. Ensure that the file exists on the ldap server and that the path is valid.
   
   **Note:** `var/ldap/adminAudit.log` is the default administration daemon audit log for UNIX systems and `installpath\var\adminAudit.log` is the default administration daemon audit log for Windows systems.
4. Click **OK** to apply your changes or click **Cancel** to return to the IBM Tivoli Directory Server Web Administration Welcome panel without making any changes.
5. If you click **OK**, a message is displayed to remind you that you need to restart the server. Click **OK** to return to the IBM Tivoli Directory Server Web Administration **Welcome** panel.
6. **You must stop the server for changes to take effect.** See “Starting and stopping the server” on page 24. After stopping the server you must also stop and start the administration daemon locally to resynchronize the ports.
   
   **For UNIX systems:**
   ```
 ibmdirctl -D <AdminDN> -w <Adminpw> admstop
 ibmdiradm
   ```
   
   **For Windows systems:**
   a. Through the Control Panel, open the Services window.
   b. Click **Directory Admin Daemon**.
c. Click Action -> Stop.
d. Click Directory Admin Daemon.
e. Click Action -> Start.

Restart the server.

**Using the command line:**
Issue the command:

```
ldapmodify -D <adminDN> -w <adminPW> -i <filename>
```

where `<filename>` contains:

```
dn: cn=Admin Audit, cn=Configuration
changetype: modify
replace: ibm-audit
ibm-audit: true
```

```
replace: ibm-auditLog
ibm-auditLog: <newpathname>
```

You must stop the server for changes to take effect. After stopping the server you
must also stop and start the administration daemon locally to resynchronize the
ports. Restart the server.

```
ibmdirctl -D <AdminDN> -w <adminPW> -p 389 stop
```

```
ibmdirctl -D <AdminDN> -w <adminPW> admstop
```

```
ibmdiradm
```

```
ibmdirctl -D <AdminDN> -w <adminPW> start
```

**Disabling the administration daemon audit log**
To disable audit logging:

**Using Web Administration:**
1. Expand Logs in the navigation area, click Modify admin daemon audit log
   settings.
2. Deselect Enable admin daemon audit logging.
3. Click OK to apply your changes or click Cancel to return to the IBM Tivoli
   Directory Server Web Administration Welcome panel without making any
   changes.

**Using the command line:**
Issue the command:

```
ldapmodify -D <adminDN> -w <adminPW> -i <filename>
```

where `<filename>` contains:

```
 cn=Admin Audit, cn=Configuration
changetype: modify
replace: ibm-audit
ibm-audit: false
```

**Note:** If you are using administration daemon audit logging in **Configuration only**
mode, the DN specified is `dn: cn=audit, cn=configuration`. Any changes
made to this DN are overwritten with the `dn: cn=audit, cn=localhost`
values when the server is started in normal mode.
Viewing the administration daemon audit log

Use the following procedures to view the administration daemon audit log.

**Using Web Administration:**
1. Expand **Logs** in the navigation area, then click **View admin daemon audit log**.
2. The panel displays the first page of the administration daemon audit log and the navigation arrows at the bottom of the panel enable you to go to the **Next** page or to the **Previous** page. From the menu, you can select a specific page, for example Page 6 of 16, and click **Go** to display that page of the administration daemon audit log.
   
   You can:
   
   • Click **Refresh** to update the entries in the log.
   • Click **Clear log** to delete all entries in the administration daemon audit log.
   • Click **Close** to return to the IBM Tivoli Directory Server Web Administration **Welcome** panel.

**Using the command line:**
To view the administration daemon audit log issue the following command:

```
more /var/ldap/adminAudit.log
```

where `var/ldap/adminAudit.log` is your administration daemon log.

**Note:** `var/ldap/adminAudit.log` is the default administration daemon log for UNIX systems and `installpath\var\adminAudit.log` is the default administration daemon log for Windows systems.

To view and clear the administration daemon log dynamically:

```
ldapexop -D <adminDN> -w <adminPW> -op readlog -log adminAudit -lines all
ldapexop -D <adminDN> -w <adminPW> -op clearlog -log adminAudit
```
Part 3. Directory Management
Chapter 14. Working with directory entries

Expand the **Directory management** category in the navigation area of the Web Administration Tool. All the directory entry tasks that you want to perform can be accessed by selecting **Manage entries**. Two short cuts have been added to the navigation area for the specific tasks of adding an entry and finding (searching for) entries.

You can perform the following operations with directory entries:

- Browse the directory tree
- Add or create an entry
- Add or delete an auxiliary object class to an entry
- Edit the attributes of an entry
- Copy an entry
- Edit ACLs
- Search for entries

### Browsing the tree

If you have not done so already, expand the **Directory management** category in the navigation area, then click **Manage entries**. You can expand the various subtrees and select the entry that you want to work on. You can choose the operation you want to perform from the right-side tool bar.

### Adding an entry

If you have not done so already, expand the **Directory management** category in the navigation area.

1. Click **Add an entry**.
2. Select one **Structural object class** from the list box.
3. Click **Next**.
4. Select any **Auxiliary object classes** you wish to use from the Available box and click **Add**. Repeat this process for each auxiliary object class you want to add. You can also delete an auxiliary object class from the Selected box by selecting it and clicking **Remove**.
5. Click **Next**.
6. In the **Relative DN** field, enter the relative distinguished name (RDN) of the entry that you are adding, for example, cn=John Doe.
7. In the **Parent DN** field, enter the distinguished name of the tree entry you selected, for example, ou=Austin, o=IBM. You can also click **Browse** to select the Parent DN from the list. You can also expand the selection to view other choices lower in the subtree. Specify the your choice and click **Select** to specify the Parent DN that you want. The **Parent DN** defaults to the entry selected in the tree.

**Note:** If you started this task from the **Manage entries** panel, this field is prefilled for you. You selected the **Parent DN** before clicking **Add** to start the add entry process.

8. At the **Required attributes** tab enter the values for the required attributes.
9. If you want to add more than one value for a particular attribute, click **Multiple values** and then add the values one at a time. Click **OK** when you have finished adding the multiple values. The values are added to a menu displayed below the attribute.

10. If your server has language tags enabled, you can click **Language tag value** to add or remove language tag descriptors. See "Language tags" for more information.

11. Click **Other attributes**.

12. At the **Other attributes** tab enter the values as appropriate for the other attributes. See “Binary attributes” on page 205 for information on adding binary values.

13. If you want to add more than one value for a particular attribute, click **Multiple values** and then add the values one at a time. Click **OK** when you have finished adding the multiple values. The values are added to a menu displayed below the attribute.

14. If your server has language tags enabled, you can click **Language tag value** to add or remove language tag descriptors. See "Language tags" for more information.

15. Click **OK** to create the entry.

16. Click the **ACL** button to modify the access control list for this entry. See “Working with ACLs” on page 220 for information on ACLs.

17. After completing at least the required fields, click **Add** to add the new entry or click **Cancel** to return to **Browse tree** without making changes to the directory.

---

**Language tags**

**Note:** For language tags to work correctly, your database must be configured as a UTF-8 database.

The term, language tags, defines a mechanism that enables the directory to associate natural language codes with values held in a directory and enables clients to query the directory for values that meet certain natural language requirements. The language tag is a component of an attribute description. The language tag is a string with the prefix `lang-`, a primary subtag of alphabetic characters and, optionally, subsequent subtags connected by a hyphen (`-`). The subsequent subtags can be any combination of alphanumeric characters, only the primary subtag needs to be alphabetic. The subtags can be any length, the only limitation is that the total length of the tag cannot exceed 240 characters. Language tags are case insensitive; en-us and en-US and EN-US are identical. Language tags are not allowed in components of DN or RDN. Only one language tag per attribute description is allowed.

**Note:** On a per attribute basis, language tags are mutually exclusive with unique attributes. If you have designated a particular attribute as being a unique attribute, it cannot have language tags associated with it.

If language tags are included when data is added to a directory, they can be used with search operations to selectively retrieve attribute values in specific languages. If a language tag is provided in an attribute description within the requested attribute list of a search, then only attribute values in a directory entry which have the same language tag as that provided are to be returned. Thus for a search like:

```
ldapsearch -b "o=ibm,c=us" (objectclass=organization) description;lang=en
```
the server returns values of an attribute "description;lang-en", but does not return values of an attribute "description" or "description;lang-fr".

If a request is made specifying an attribute without providing a language code, then all attribute values regardless of their language code are returned.

The attribute type and the language tag are separated with a semicolon (;) character.

**Note:** RFC2252 allows the semicolon character to be used in the "NAME" part of an AttributeType. However, because this character is being used to separate the AttributeType from the language tag, its usage in the "NAME" part of an AttributeType is no longer permitted as specified in draft-ietf-ldapbis-models-07.txt.

For example, if the client requests a "description" attribute, and a matching entry contains:

```
objectclass: top
objectclass: organization
o: Software GmbH
description: software
description;lang-en: software products
description;lang-de: Softwareprodukte
postalAddress: Berlin 8001 Germany
postalAddress;lang-de: Berlin 8001 Deutschland
```

the server returns:

```
description: software
description;lang-en: software products
description;lang-de: Softwareprodukte
```

If the search requests a "description;lang-de" attribute, then the server returns:

```
description;lang-de: Softwareprodukte
```

This allows for directories that contain multi-lingual data, that can support clients that operate in various languages. If implemented correctly, the German client sees only the data entered for the lang-de attribute, and the French client sees only the data entered for the lang-fr attribute.

To determine whether the language tag feature is enabled, issue a root DSE search specifying the attribute "ibm-enabledCapabilities".

```
ldapsearch -b "" -s base objectclass** ibm-enabledCapabilities
```

If the OID "1.3.6.1.4.1.4203.1.5.4" is returned, the feature is enabled.

If the language tag support is not enabled, any LDAP operation that associate a language tag with an attribute is rejected with the error message:

```
unrecognized attribute
```

### Creating an entry containing attributes with language tags

Use either of the following methods to create an entry containing attributes with language tags:

**Using Web Administration:**

From either the Manage entries -> Edit attributes path or the Add an entry -> Select structural object class -> Select auxiliary object class -> Enter the attributes path:
1. Select the attribute for which you want to create the language tag.
2. Click the Language tag value button to access the Language tag values panel.
3. In the Language tag field, enter the name of the tag you are creating. Remember the tag must begin with the suffix lang-.
4. Enter the value for the tag in the Value field.
5. Click Add. The language tag and its value are displayed in the menu list.
6. You can create additional language tags or modify existing language tags for the attribute by repeating steps 3, 4, and 5. After you have created the language tags that you want, click OK.
7. You can expand the Display with language tag menu and select a language tag. Click Change view and the attribute values that you have entered for that language tag are displayed. Any values that you add or edit in this view apply to the selected language tag only.
8. When you have finished, click OK.

Using the command line:
To add an entry with a language tag associated with the cn attribute, issue the command:

```bash
ldapadd -D <adminDN> -w <adminPW> -i <filename>
```

where `<filename>` contains:
```

dn: cn=Mark Anthony, o=IBM, c=US
 objectclass: person
 cn: Mark Anthony
 cn;lang-spanish: Mark Antonio
 sn: Anthony
```

Modifying an entry containing attributes with language tags: To modify an entry containing attributes with language tags, issue the command:

```bash
ldapmodify -D <adminDN> -w <adminPW> -i <filename>
```

where `<filename>` contains:
```

dn: cn=Mark Anthony, o=IBM, c=US
 changetype: modify
 add: sn;lang-spanish
 sn:lang-spanish: Antonio
 replace: cn;spanish
 cn;spanish: Marco Antonio
 delete: cn;spanish
```

This command adds the attribute description-value pair "sn;lang-spanish=Antonio" to the entry. It replaces the value of "cn;spanish", and deletes "cn;spanish" and its value.

**Note:** Replacing and deleting the values of "cn;spanish" does not affect the attribute description-value pair "cn=Mark Anthony".

Searching for entries containing attributes with language tags
Issuing the command,

```bash
ldapsearch -b "o=ibm,c=us" "cn=Mark Anthony" sn
```

return the following results:
cn=Mark Anthony, o=IBM, c=US
sn=Anthony
sn;lang-spanish=Antonio

**Note:** All versions of “sn” are displayed in the output.

Issuing the command,

```
ldapsearch -b "o=ibm,c=us" "cn=Mark Anthony" sn;lang-spanish
```

returns the following results.

```
cn=Mark Anthony, o=IBM, c=US
sn;lang-spanish=Antonio
```

**Note:** Only "sn;lang-spanish" is displayed in the output.

Issuing the command,

```
ldapsearch -b "o=ibm,c=us" "sn;lang-spanish=Antonio"
```

returns the entire entry:

```
cn=Mark Anthony, o=IBM, c=US
objectclass=person
objectclass=top
cn=Mark Anthony
sn=Anthony
sn;lang-spanish=Antonio
```

**Removing a language tag descriptor from an entry**

Use either of the following methods to remove a language tag descriptor from an entry:

**Using Web Administration:**

From either the **Manage entries -> Edit attributes** path or the **Add an entry -> Select structural object class -> Select auxiliary object class -> Enter the attributes** path:

1. Select the attribute from which you want to remove the language tag.
2. Click the **Language tag value** button to access the Language tag values panel.
3. In the **Language tag** field, click the language tag you want to remove.
4. Click **Remove**. The language tag and its values is removed from the menu list.
5. Repeat steps 3 and 4 for each language tag you want to remove.
6. When you have finished, click **OK**.

**Using the command line:**

Issue the command:

```
ldapmodify -D <adminDN> -w <adminPW> -i <filename>
```

where `<filename>` contains:

```
dn: cn=Mark Anthony, o=IBM, c=US
changetype: modify
delete: sn;lang-spanish: Antonio
```

This removes the attribute sn;lang-spanish that has the value “Antonio” from the entry.

If you want to delete the entire entry see “Deleting an entry” on page 204.
Deleting an entry

**Note:** When you are logged into the console, the Web Administration Tool does not permit you to delete the entry that you are logged on as. For example, if you logged on as user cn=John Doe,ou=mylocale,o=mycompany,c=mycountry, and you try to delete the entry, cn=John Doe from that tree, you receive an error message. You must log on as some other user to delete the John Doe entry.

If you have not done so already, expand the **Directory management** category in the navigation area, then click **Manage entries**. You can expand the various subtrees and select the subtree, the suffix, or the entry that you want to work on. Click **Delete** from the right-side tool bar.

- You are requested to confirm the deletion. Click **OK**.
- The entry is deleted from the entry and you are returned to the list of entries.

Modifying an entry

If you have not done so already, expand the **Directory management** category in the navigation area, then click **Manage entries**. You can expand the various subtrees and select the entry that you want to work on. Click **Edit attributes** from the right-side tool bar.

1. At the **Required attributes** tab enter the values for the required attributes. See “Binary attributes” on page 205 for information on adding binary values.
2. If you want to add more than one value for a particular attribute, click **Multiple values** and then add the values one at a time. Click **OK** when you have finished adding the multiple values. The values are added to a menu displayed below the attribute.
3. If your server has language tags enabled, you can click **Language tag value** to add or remove language tag descriptors. See “Language tags” on page 200 for more information.
4. Click **Other attributes**.
5. At the **Other attributes** tab enter the values as appropriate for the other attributes.
6. If you want to add more than one value for a particular attribute, click **Multiple values** and then add the values one at a time. Click **OK** when you have finished adding the multiple values. The values are added to a menu displayed below the attribute.
7. If your server has language tags enabled, you can click **Language tag value** to add or remove language tag descriptors. See “Language tags” on page 200 for more information.
8. Click **Memberships**.
9. If you have created any groups, at the **Memberships** tab:
   - Select a group from **Available groups** and click **Add** to make the entry a member of the selected **Static group membership**.
   - Select a group from **Static group memberships** and click **Remove** to remove the entry from the selected group.
10. If the entry is a group entry, a **Members** tab is available. The **Members** tab displays the members of the selected group. You can add and remove members from the group.
    - To add a member to the group:
a. Click either Multiple values by the Member attribute field on the Required attributes tab, or click Members by the Member attribute field on the Members tab.
b. In the Member field, enter the DN of the entry you want to add.
c. Click Add.
d. Click OK.

* To remove a member from the group:
  a. Either click Multiple values by the Members attribute field on either the Required attributes or the Other attributes tabs, or at the Members tab, click Members.
  b. Select the entry you want to remove.
  c. Click Remove.
  d. Click OK.

* To refresh the Current members list, click Update on the Members tab.

11. Click OK to modify the entry.

---

### Binary attributes

If an attribute requires binary data, a Binary data button is displayed next to the attribute field. If the attribute has no data the field is blank. Because binary attributes cannot be displayed, if an attribute contains binary data, the field displays Binary data 1. If the attribute contains multiple values, the field displays a drop-down list.

Click the Binary data button to work with binary attributes.

You can import, export or delete binary data.

To add binary data to the attribute:

1. Click the Binary data button.
2. Click Import.
3. You can either enter the path name for the file you want or click Browse to locate and select the binary file.
4. Click Submit file. A File uploaded message is displayed.
5. Click Close. Binary data 1 is now displayed under Binary data entries.
6. Repeat the import process for as many binary files as you want to add. The subsequent entries are listed as Binary data 2, Binary data 3, and so on.
7. When you are finished adding binary data, click OK.

To export binary data:

1. Click the Binary data button.
2. Click Export.
3. Click on the link Binary data to download.
4. Follow the directions of your wizard to either display the binary file or to save it to a new location.
5. Click Close.
6. Repeat the import process for as many binary files as you want to export.
7. When you are finished exporting data, click OK.

To delete binary data:
1. Click the **Binary data** button.
2. Check the binary data file you want to delete. Multiple files can be selected.
3. Click **Delete**.
4. When you are prompted to confirm the deletion, click **OK**. The binary data marked for deletion are removed from the list.
5. When you are finished deleting data, click **OK**.

**Note:** Binary attributes are not searchable.

### Copying an entry

This function is useful if you are creating similar entries. The copy inherits all the attributes of the original. You need to make some modifications to name the new entry.

If you have not done so already, expand the **Directory management** category in the navigation area, then click **Manage entries**. You can expand the various subtrees and select the entry, such as John Doe, that you want to work on. Click **Copy** from the right-side tool bar.

- Change the RDN entry in the DN field. For example change `cn=John Doe` to `cn=Jim Smith`.
- On the required attributes tab, change the `cn` entry to the new RDN. In this example Jim Smith.
- Change the other required attributes as appropriate. In this example change the `sn` attribute from Doe to Smith.
- When you have finished making the necessary changes click **OK** to create the new entry.
- The new entry Jim Smith is added to the bottom of the entry list.

**Note:** This procedure copies only the attributes of the entry. The group memberships of the original entry are not copied to the new entry. Use the Edit attributes function to add memberships.

### Editing access control lists

To view ACL properties using the Web Administration Tool utility and to work with ACLs, see “Working with ACLs” on page 220.


### Adding an auxiliary object class

Use the **Add auxiliary class** button on the toolbar to add an auxiliary object class to an existing entry in the directory tree. An auxiliary object class provides additional attributes to the entry to which it is added.

If you have not done so already, expand the **Directory management** category in the navigation area, then click **Manage entries**. You can expand the various subtrees and select the entry, such as John Doe, that you want to work on. Click **Add auxiliary class** from the right-side tool bar.
1. Select any **Auxiliary object classes** you wish to use from the Available box and click **Add**. Repeat this process for each auxiliary object class you want to add. You can also delete an auxiliary object class from the Selected box by selecting it and clicking **Remove**.

2. At the **Required attributes** tab enter the values for the required attributes.

3. If you want to add more than one value for a particular attribute, click **Multiple values** and then add the values one at a time. Click **OK** when you have finished adding the multiple values. The values are added to a menu displayed below the attribute.

4. If your server has language tags enabled, you can click **Language tag value** to add or remove language tag descriptors. See “Language tags” on page 200 for more information.

5. Click **Other attributes**.

6. At the **Other attributes** tab enter the values as appropriate for the other attributes.

7. If you want to add more than one value for a particular attribute, click **Multiple values** and then add the values one at a time. Click **OK** when you have finished adding the multiple values. The values are added to a menu displayed below the attribute.

8. If your server has language tags enabled, you can click **Language tag value** to add or remove language tag descriptors. See “Language tags” on page 200 for more information.

9. Click **Memberships**.

10. If you have created any groups, at the **Memberships** tab:
   - Select a group from **Available groups** and click **Add** to make the entry a member of the selected **Static group membership**.
   - Select a group from **Static group memberships** and click **Remove** to remove the entry from the selected group.

11. Click **OK** to modify the entry.

---

**Deleting an auxiliary class**

Although you can delete an auxiliary class during the add auxiliary class procedure, it is easier to use the delete auxiliary class function if you are going to delete a single auxiliary class from an entry. However, it might be more convenient to use the add auxiliary class procedure if you are going to delete multiple auxiliary classes from and entry.

1. If you have not done so already, expand the **Directory management** category in the navigation area, then click **Manage entries**. You can expand the various subtrees and select the entry, such as John Doe, that you want to work on. Click **Delete auxiliary class** from the right-side tool bar.

2. From the list of auxiliary classes select the one you want to delete and press **OK**.

3. You are asked to confirm the deletion, click **OK**.

4. The auxiliary class is deleted from the entry and you are returned to the list of entries.

Repeat these steps for each auxiliary class that you want to delete.
Changing group membership

If you have not done so already, expand the Directory management category in the navigation area.

1. Click Manage entries.
2. Select a user from the directory tree and click the Edit attributes icon on the toolbar.
3. Click the Memberships tab.
4. To modify the memberships for the user. The Change memberships panel displays the Available groups to which the user can be added, as well as the entry’s Static Group Memberships.
   • Select a group from Available groups and click Add to make the entry a member of the selected group.
   • Select a group from Static Group Memberships and click Remove to remove the entry from the selected group.
5. Click OK to save your changes or click Cancel to return to the previous panel without saving your changes.

Searching the directory entries

There are three options for searching the directory tree:

- A Simple search using a predefined set of search criteria
- An Advanced search using a user-defined set of search criteria
- A Manual search

The search options are accessible by expanding the Directory management category in the navigation area, click Find entries. Select one of the following tabs:

Note: Binary entries, for example passwords, are not searchable.

Search filters

Select on of the following types of searches:

**Simple search**
A simple search uses a default search criteria:

- Base DN is All suffixes
- Search scope is Subtree
- Search size is Unlimited
- Time limit is Unlimited
- Alias dereferencing is never
- Chase referrals is deselected (off)

To perform a simple search:

1. On the Search filter tab, click Simple search.
2. Select an object classes from the drop-down list.
3. If your server has language tags enabled, you can specify a language tag. See “Language tags” on page 200 for more information.
4. Select a specific attribute for the selected entry type. If you select to search on a specific attribute, select an attribute from the drop-down list and enter the attribute value in the Is equal to box. If you do not specify an attribute, the search returns all the directory entries of the selected entry type.
Advanced search

An advanced search enables you to specify search constraints and enable search filters. Use the Simple search to use default search criteria.

- To perform an advanced search:
  1. On the Search filter tab, click Advanced search.
  2. Select an Attribute from the drop-down list.
  3. If your server has language tags enabled, you can specify a language tag. See "Language tags" on page 200 for more information.
  4. Select a Comparison operator
     - = The attribute is equal to the value.
     - ! The attribute is not equal to the value.
     - < The attribute is less than or equal to the value.
     - > The attribute is greater than or equal to the value.
     - ~ The attribute approximately equal to the value.
  5. Enter the Value for comparison.
  6. Use the search operator buttons for complex queries.
     - If you already added at least one search filter, specify the additional criteria and click AND. The AND command returns entries that match both sets of search criteria.
     - If you already added at least one search filter, specify the additional criteria and click OR. The OR command returns entries that match either set of search criteria.
  7. Click Add to add the search filter criteria to the advanced search.
  8. Click the check box to select each filter that you want to use in the search.
  9. Change any of the default settings on the Options tab. See "Options".
  10. Click OK to begin the search.
  11. After viewing the search results click OK to return to the Find entries panel.

Note: To remove the search filters:
- Click the check box to select each filter that you want to remove.
- Click Delete to remove the search filter criteria from the advanced search.
- Click Reset to clear all search filters.

Manual search

Use this method to create a search filter. For example to search on surnames enter sn=* in the field. If you are searching on multiple attributes, you must use search filter syntax. For example to search for the surnames of a particular department you enter:

\((&\text{sn}=*)\text{dept}=<\text{departmentname}>))

Options

At the Options tab:
- Search base - Select suffix from the drop-down list to search only within that suffix.

Note: If you started this task from the Manage entries panel, this field is prefilled for you. You selected the Parent DN before clicking Add to start the add entry process.

You can also select All suffixes to search the entire tree.
- **Search scope**
  - Select **Object** to search only within the selected object.
  - Select **Single level** to search only within the immediate children of the selected object.
  - Select **Subtree** to search all descendants of the selected entry.
- **Search size limit** - Enter the maximum number of entries to search or select **Unlimited**.
- **Search time limit** - Enter the maximum number of seconds for the search or select **Unlimited**.
- Select a type of **Alias dereferencing** from the drop-down list.
  - **Never** - If the selected entry is an alias, it is not dereferenced for the search, that is, the search ignores the reference to the alias.
  - **Find** - If the selected entry is an alias, the search dereferences the alias and search from the location of the alias.
  - **Search** - The selected entry is not dereferenced, but any entries found in the search are dereferenced.
  - **Always** - All aliases encountered in the search are dereferenced.
- Select the **Chase referrals** check box to follow referrals to another server if a referral is returned in the search. When a referral directs the search to another server, the connection to the server uses the current credentials. If you are logged in as Anonymous you might need to log in to the server using an authenticated DN.

If an entry is found on the referred server, the **Search results** panel shows only the DN of the entry. Other columns such as object class, modified timestamp and so forth are not shown. You are not able to perform such operations as **Edit Acls**, **Delete**, **Add auxiliary** or **Delete auxiliary** on the referral entry.

See "Logging on to the Web Administration Tool" on page 23 for information about logging in. See "Creating and removing referrals" on page 62 for more information about referrals.

See "Setting Searches" on page 50 for additional information about searches.
Chapter 15. Access control lists

The following sections describe Access control lists (ACLs) and how to manage them.

Overview

Access control lists (ACLs) provide a means to protect information stored in a LDAP directory. Administrators use ACLs to restrict access to different portions of the directory, or specific directory entries. LDAP directory entries are related to each other by a hierarchical tree structure. Each directory entry (or object) contains the distinguished name of the object as well as a set of attributes and their corresponding values.

The access control model defines two sets of attributes:

- The entryOwner information
- The Access Control Information (ACI)

In conformance with the LDAP model, the ACI information and the entryOwner information is represented as attribute-value pairs. The LDIF syntax can be used to administer these values.

EntryOwner information

The entryOwner information controls which subjects can define the ACIs. An entry Owner also acquires full access rights to the target object. The attributes that define entry ownership are:

- entryOwner - Explicitly defines an entry owner.
- ownerPropagate - Specifies whether the permission set is propagated to the subtree descendant entries.

The entry owners have complete permissions to perform any operation on the object regardless of the aclEntry. Additionally, the entry owners are the only ones who are permitted to administer the aclEntries for that object. EntryOwner is an access control subject, it can be defined as individuals, groups or roles.

Note: The directory administrator and administration group members are the entryOwners for all objects in the directory by default, and this entryOwnership can not be removed from any object.

Access control information

The ACI specifically defines a subject’s permission to perform a given operation against certain LDAP objects.

Non-filtered ACLs

This type of ACL applies explicitly to the directory entry that contains them, but may be propagated to none or all of its descendant entries. The default behavior of the non-filtered ACL is to propagate. The attributes that define non-filtered ACLs are:

- aclEntry - Defines a permission set.
- aclPropagate - Specifies whether the permission set is propagated to the subtree descendant entries.
Filtered ACLs
Filter-based ACLs differ in that they employ a filter-based comparison, using a specified object filter, to match target objects with the effective access that applies to them.

Although they perform the same function, the behavior of the two types of ACLs is significantly different. Filter-based ACLs do not propagate in the same way that non-filter-based ACLs currently do. By nature, they inherently propagate to any comparison matched objects in the associated subtree. For this reason, the aclPropagate attribute, which is used to stop propagation of non-filter ACLs, does not apply to the new filter-based ACLs.

The default behavior of filter-based ACLs to accumulate from the lowest containing entry, upward along the ancestor entry chain, to the highest containing entry in the DIT. The effective access is calculated as the union of the access rights granted, or denied, by the constituent ancestor entries. There is an exception to this behavior. For compatibility with the subtree replication feature, and to allow greater administrative control, a ceiling attribute is used as a means to stop accumulation at the entry in which it is contained.

A separate set of access control attributes are used specifically for filter-based ACL support, rather than merging filter-based characteristics into the existing non-filter based ACLs. The attributes are:
- `ibm-filterAclEntry
- `ibm-filterAclInherit

The `ibm-filterAclEntry attribute has the same format as aclEntry, with the addition of an object filter component. The associated ceiling attribute is `ibm-filterAclInherit. By default it is set to true. When set to false, it terminates the accumulation.

The access control attribute syntax

Each of these attributes can be managed using LDIF notation. The syntax for the new filter-based ACL attributes are modified versions of the current non-filter-based ACL attributes. The following defines the syntax for the ACI and entryOwner attributes using baccus naur form (BNF).

```
<aclEntry> ::= <subject> ["::" <rights>]

 aclPropagate ::= "true" | "false"
 ibm-filterAclEntry ::= <subject> :: "object filter" ["::" <rights>]
 ibm-filterAclInherit ::= "true" | "false"
 entryOwner ::= <subject>
 ownerPropagate ::= "true" | "false"
 subject ::= <subjectDnType> '::' <subjectDn> |
 pseudoDn
 subjectDnType ::= "role" | "group" | "access-id"
 subjectDn ::= <DN>
 DN ::= distinguished name as described in RFC 2251, section 4.1.3.
 pseudoDn ::= "group::cn=anybody" | "group::cn=authenticated" |
 "access-id::cn=this"
```
Subject

A subject (the entity requesting access to operate on an object) consists of the combination of a DN (Distinguished Name) type and a DN. The valid DN types are: access Id, Group and Role.

The DN identifies a particular access-id, role or group. For example, a subject might be "access-id: cn=personA, o=IBM or group: cn=deptXYZ, o=IBM".

Because the field delimiter is the colon ( : ), a DN containing colons must be surrounded by double-quotation marks ( "" ). If a DN already contains characters with double-quotation marks, these characters must be escaped with a backslash ( \ ).

All directory groups can be used in access control.

Note: Any group of AccessGroup, GroupOfNames, GroupofUniqueNames, or groupOfURLs structural objectclasses or the ibm-dynamicGroup, ibm-staticGroup auxiliary objectclasses can be used for access control.

Another DN type used within the access control model is role. While roles and groups are similar in implementation, conceptually they are different. When a user is assigned to a role, there is an implicit expectation that the necessary authority has already been set up to perform the job associated with that role. With group membership, there is no built in assumption about what permissions are gained (or denied) by being a member of that group.
Roles are similar to groups in that they are represented in the directory by an object. Additionally, roles contain a group of DNs. Roles that are used in access control must have an objectclass of **AccessRole**.

**Pseudo DNs**

Pseudo DNs are used in access control definition and evaluation. The LDAP/DB2 directory contains several pseudo DNs (for example, “group:cn=Anybody” and “access-id:cn=this”), which are used to refer to large numbers of DNs that share a common characteristic, in relation to either the operation being performed or the object on which the operation is being performed.

Three pseudo DNs are supported by LDAP version 3:

**access-id: cn=this**

When specified as part of an ACL, this DN refers to the bindDN, which matches the DN on which the operation is performed. For example, if an operation is performed on the object "cn=personA, ou=IBM, c=US" and the bindDn is "cn=personA, ou=IBM, c=US", the permissions granted are a combination of those given to "cn=this" and those given to "cn=personA, ou=IBM, c=US".

**group: cn=anybody**

When specified as part of an ACL, this DN refers to all users, even those that are unauthenticated. Users cannot be removed from this group, and this group cannot be removed from the database.

**group: cn=Authenticated**

This DN refers to any DN that has been authenticated by the directory. The method of authentication is not considered.

**Note:** "cn=Authenticated" refers to a DN that has been authenticated anywhere on the server, regardless of where the object representing the DN is located. It should be used with caution, however. For example, under one suffix, "cn=Secret" could be a node called "cn=Confidential Material" which has an aclentry of "group:cn=Authenticated:normal:rsc". Under another suffix, "cn=Common" could be the node "cn=Public Material". If these two trees are located on the same server, a bind to "cn=Public Material" would be considered authenticated, and would get permission to the normal class on the "cn= Confidential Material" object.

**Examples of pseudo DNs**

Some examples of pseudo DNs:

**Example 1**

Consider the following ACL for object: cn=personA, c=US AclEntry:

- access-id: cn = this:critical:rwsc
- AclEntry: group: cn=Anybody: normal:rsc
- AclEntry: group: cn=Authenticated: sensitive:rcs

**Table 16.**

<table>
<thead>
<tr>
<th>User Binding as</th>
<th>Would receive</th>
</tr>
</thead>
<tbody>
<tr>
<td>cn=personB, c=US</td>
<td>normal:rsc:sensitive:rsc</td>
</tr>
<tr>
<td>NULL (unauth.)</td>
<td>normal:rsc</td>
</tr>
</tbody>
</table>
In this example, personA receives permissions granted to the "cn=this" ID, and permissions given to both the "cn=Anybody" and "cn=Authenticated" pseudo DN groups.

Example 2
Consider the following ACL for object: cn=personA, c=US AclEntry:
  access-id:cn=personA, c=US: object:ad
  AclEntry: access-id: cn = this:critical:rwsc
  AclEntry: group: cn=Anybody: normal:rsc
  AclEntry: group: cn=Authenticated: sensitive:rcs

For an operation performed on cn=personA, c=US:

<table>
<thead>
<tr>
<th>User Binding as</th>
<th>Would receive</th>
</tr>
</thead>
<tbody>
<tr>
<td>cn=personA, c=US</td>
<td>object:ad:critical:rwsc</td>
</tr>
<tr>
<td>cn=personB, c=US</td>
<td>normal:rsc:sensitive:rsc</td>
</tr>
<tr>
<td>NULL (unauth.)</td>
<td>normal:rsc</td>
</tr>
</tbody>
</table>

In this example, personA receives permissions granted to the "cn=this" ID, and those given to the DN itself "cn=personA, c=US". Note that the group permissions are not given because there is a more specific aclentry ("access-id:cn=personA, c=US") for the bind DN ("cn=personA, c=US").

Object filter
This parameter applies to filtered ACLs only. The string search filter as defined in RFC 2254, is used as the object filter format. Because the target object is already known, the string is not used to perform an actual search. Instead, a filter-based compare on the target object in question is performed to determine if a given set of ibm-filterAclEntry values apply to it.

Rights
Access rights can apply to an entire object or to attributes of the object. The LDAP access rights are discreet. One right does not imply another right. The rights may be combined together to provide the desired rights list following a set of rules discussed later. Rights can be of an unspecified value, which indicates that no access rights are granted to the subject on the target object. The rights consist of three parts:

Action:
Defined values are grant or deny. If this field is not present, the default is set to grant.

Permission:
There are six basic operations that may be performed on a directory object. From these operations, the base set of ACI permissions are taken. These are: add an entry, delete an entry, read an attribute value, write an attribute value, search for an attribute, and compare an attribute value.

The possible attribute permissions are: read (r), write (w), search (s), and compare (c). Additionally, object permissions apply to the entry as a whole. These permissions are add child entries (a) and delete this entry (d).

The following table summarizes the permissions needed to perform each of the LDAP operations.
Table 18.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Permission Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ldapadd</td>
<td>add (on parent)</td>
</tr>
<tr>
<td>ldapdelete</td>
<td>delete (on object)</td>
</tr>
<tr>
<td>ldapmodify</td>
<td>write (on attributes being modified)</td>
</tr>
<tr>
<td>ldapsearch</td>
<td>• search, read (on attributes in RDN)</td>
</tr>
<tr>
<td></td>
<td>• search (on attributes specified in the search filter)</td>
</tr>
<tr>
<td></td>
<td>• search (on attributes returned with just names)</td>
</tr>
<tr>
<td></td>
<td>• search, read (on attributes returned with values)</td>
</tr>
<tr>
<td>ldapmodrdn</td>
<td>write (on RDN attributes)</td>
</tr>
<tr>
<td>ldapcompare</td>
<td>compare (on compared attribute)</td>
</tr>
</tbody>
</table>

**Note:** For search operations, the subject is required to have search (s) access to all the attributes in the search filter or no entries are returned. For returned entries from a search, the subject is required to have search (s) and read (r) access to all the attributes in the RDN of the returned entries or these entries are not returned.

**Access Target:**

These permissions can be applied to the entire object (add child entry, delete entry), to an individual attribute within the entry, or can be applied to groups of attributes (Attribute Access Classes) as described in the following.

Attributes requiring similar permissions for access are grouped together in classes. Attributes are mapped to their attribute classes in the directory schema file. These classes are discrete; access to one class does not imply access to another class. Permissions are set with regard to the attribute access class as a whole. The permissions set on a particular attribute class apply to all attributes within that access class unless individual attribute access permissions are specified.

IBM defines five attribute classes that are used in evaluation of access to user attributes: **normal**, **sensitive**, **critical**, **system**, and **restricted**. As examples, the attribute **commonName** belongs to the normal class, and the attribute **userPassword** belongs to the critical class. User defined attributes belong to the normal access class unless otherwise specified.

The system class attributes that apply to access control are:

- aclSource
- ibm-effectiveAcl
- ownerSource

These are attributes maintained by the LDAP server and are read-only to the directory users and administrators. **OwnerSource** and **aclSource** are described in the **Propagation** section.

The restricted class attributes that define access control are:

- aclEntry
- aclPropagate
- entryOwner
- ibm-filterAclEntry
- ibm-filterAclInherit
- ownerPropagate

By default all users have read access to the restricted attributes but only entryOwners can create, modify, and delete these attributes.

## Propagation

Entries on which an aclEntry has been placed are considered to have an explicit aclEntry. Similarly, if the entryOwner has been set on a particular entry, that entry has an explicit owner. The two are not intertwined, an entry with an explicit owner may or may not have an explicit aclEntry, and an entry with an explicit aclEntry might have an explicit owner. If either of these values is not explicitly present on an entry, the missing value is inherited from an ancestor node in the directory tree.

Each explicit aclEntry or entryOwner applies to the entry on which it is set. Additionally, the value might apply to all descendants that do not have an explicitly set value. These values are considered propagated; their values propagate through the directory tree. Propagation of a particular value continues until another propagating value is reached.

**Note:** Filter-based ACLs do not propagate in the same way that non-filter-based ACLs do. They propagate to any comparison matched objects in the associated subtree. See “Filtered ACLs” on page 212 for more information on the differences.

AclEntry and entryOwner can be set to apply to just a particular entry with the propagation value set to “false”, or an entry and its subtree with the propagation value set to “true”. Although both aclEntry and entryOwner can propagate, their propagation is not linked in anyway.

The aclEntry and entryOwner attributes allow multiple values within the same entry, however, the propagation attributes aclPropagate and ownerPropagate, can only have a single value within the same entry.

The system attributes aclSource and ownerSource contain the DN of the effective node from which the aclEntry or entryOwner are evaluated, respectively. If no such node exists, the value default is assigned.

An object’s effective access control definitions can be derived by the following logic:

- If there is a set of explicit access control attributes at the object, then that is the object’s access control definition.
- If there is no explicitly defined access control attributes, then traverse the directory tree upwards until an ancestor node is reached with a set of propagating access control attributes.
- If no such ancestor node is found, the default access described in “Access evaluation” on page 218 is granted to the subject.
**Access evaluation**

Access for a particular operation is granted or denied based on the subject’s bind DN for that operation on the target object. Processing stops as soon as access can be determined.

The checks for access are done by first finding the effective `entryOwnership` and `ACI` definition, checking for entry ownership, and then by evaluating the object’s ACI values.

Filter-based ACLs accumulate from the lowest containing entry, upward along the ancestor entry chain, to the highest containing entry in the DIT. The effective access is calculated as the union of the access rights granted, or denied, by the constituent ancestor entries. The existing set of specificity and combinatory rules are used to evaluate effective access for filter based ACLs.

Filter-based and non-filter-based attributes are mutually exclusive within a single containing directory entry. Placing both types of attributes into the same entry is not allowed, and is a constraint violation. Operations associated with the creation of, or updates to, a directory entry fail if this condition is detected.

When calculating effective access, the first ACL type to be detected in the ancestor chain of the target object entry sets the mode of calculation. In filter-based mode, non-filter-based ACLs are ignored in effective access calculation. Likewise, in non-filter-based mode, filter-based ACLs are ignored in effective access calculation.

To limit the accumulation of filter-based ACLs in the calculation of effective access, an `ibm-filterAclInherit` attribute set to a value of "false" may be placed in any entry between the highest and lowest occurrence of `ibm-filterAclEntry` in a given subtree. This causes the subset of `ibm-filterAclEntry` attributes above it in the target object’s ancestor chain to be ignored.

To exclude the accumulation of filter-based ACLs in the calculation of effective access, an `ibm-filterAclInherit` attribute set to a value of "false" may be placed in any entry below the lowest occurrence of `ibm-filterAclEntry` in a given subtree. This causes all `ibm-filterAclEntry` attributes above it in the target object’s ancestor chain to be ignored. The resulting access resolves to the default filter ACL value.

By default, the directory administrator, administration group members, and the master server (or peer server for replication) get full access rights to all objects in the directory except write access to system attributes. Other `entryOwners` get full access rights to the objects under their ownership except write access to system attributes. By default all users have read access rights to normal, system, and restricted attributes. If the requesting subject has `entryOwnership`, access is determined by the above default settings and access processing stops.

If the requesting subject is not an entryOwner, then the ACI values for the object entries are checked. The access rights as defined in the ACIs for the target object are calculated by the specificity and combinatory rules.

**Specificity rule**

The most specific aclEntry definitions are the ones used in the evaluation of permissions granted/denied to a user. The levels of specificity are:

- Access-id is more specific than group or role. Groups and roles are on the same level.
• Within the same `dnType` level, individual attribute level permissions are more specific than attribute class level permissions.
• Within the same attribute or attribute class level, `deny` is more specific than `grant`.

**Combinatory rule**
Permissions granted to subjects of equal specificity are combined. If the access cannot be determined within the same specificity level, the access definitions of lesser specific level are used. If the access is not determined after all defined ACIs are applied, the access is denied.

**Note:** After a matching access-id level aclEntry is found in access evaluation, the group level aclEntries are not included in access calculation. The exception is that if the matching access-id level aclEntries are all defined under cn=this, then all matching group level aclEntries are also combined in the evaluation.

In other words, within the object entry, if a defined ACI entry contains an access-id subject DN that matches the bind DN, then the permissions are first evaluated based on that aclEntry. Under the same subject DN, if matching attribute level permissions are defined, they supersede any permissions defined under the attribute classes. Under the same attribute or attribute class level definition, if conflicting permissions are present, denied permissions override granted permissions.

**Note:** A defined null value permission prevents the inclusion of less specific permission definitions.

If access still can not be determined and all found matching aclEntries are defined under "cn=this", then group membership is evaluated. If a user belongs to more than one groups, the user receives the combined permissions from these groups. Additionally, the user automatically belongs to the cn=Anybody group and possibly the cn=Authenticated group if the user did an authenticated bind. If permissions are defined for those groups, the user receives the specified permissions.

**Note:** Group and Role membership is determined at bind time and last until either another bind takes place, or until an unbind request is received. Nested groups and roles, that is a group or role defined as a member of another group or role, are not resolved in membership determination nor in access evaluation.

For example, assume attribute1 is in the sensitive attribute class, and user cn=Person A, o=IBM belongs to both group1 and group2 with the following aclEntries defined:
1. aclEntry: access-id: cn=Person A, o=IBM: at.attributel:grant:rsc:sensitive:deny:rsc
2. aclEntry: group: cn=group1,o=IBM:critical:deny:rwsc
3. aclEntry: group: cn=group2,o=IBM:critical:grant:r:normal:grant:rsc

This user gets:
• Access of 'rsc' to attribute1, (from 1. Attribute level definition supersedes attribute class level definition).
• No access to other sensitive class attributes in the target object, (from 1).
• No other rights are granted (2 and 3 are NOT included in access evaluation).
For another example, with the following aclEntries:
1. aclEntry: access-id: cn=this: sensitive
2. aclEntry: group: cn=group1,o=IBM:sensitive:grant:rsc:normal:grant:rsc

The user has:
• no access to sensitive class attributes, (from 1. Null value defined under access-id prevents the inclusion of permissions to sensitive class attributes from group1).
• and access of ‘rsc’ to normal class attributes (from 2).

Working with ACLs

The following sections describe various task that you can perform to manage ACLs.

Using the Web Administration Tool utility to manage ACLs

To view ACL properties using the Web Administration Tool utility and to work with ACLs.
1. Select a directory entry. For example, cn=John Doe,ou=Advertising,o=ibm,c=US.
2. Click Edit ACL. The Edit Acl panel is displayed with the Effective ACLs tab preselected.

This panel has five tabs:
• Effective ACLs
• Effective owners
• Non-filtered ACLs
• Filtered ACLs
• Owners

The Effective ACLs and Effective owners tabs contain read-only information about the ACLs.

Effective ACLs

Effective ACLs are the explicit and inherited ACLs of the selected entry. You can view the access rights for a specific effective ACL by selecting it and clicking the View button. The View access rights panel opens.

Viewing access rights:
• The Rights section displays the addition and deletion rights of the subject.
  – Add child grants or denies the subject the right to add a directory entry beneath the selected entry.
  – Delete entry grants or denies the subject the right to delete the selected entry. In the previous example, it grants or denies cn=Marketing Group the ability to delete cn=John Doe.
• The Security class section defines permissions for security classes. Attributes are grouped into security classes:
  – Normal - Normal attributes require the least security, for example, the attribute commonName.
  – Sensitive - Sensitive attributes require a moderate amount of security, for example, homePhone.
  – Critical - Critical attributes require the most security, for example, the attribute userpassword.
– **System** - System attributes are read only attributes that are maintained by the server.
– **Restricted** - Restricted attributes are used to define access control.

Each security class has permissions associated with it.
– **Read** - the subject can read attributes.
– **Write** - the subject can modify the attributes.

**Note:** System class is not writable.
– **Search** - the subject can search attributes.
– **Compare** - the subject can compare attributes.

Click **OK** to return to the Effective ACLs tab.

Click **Cancel** to return to the Edit ACL panel.

**Effective owners**
Effective owners are the explicit and inherited owners of the selected entry.

**Non-filtered ACLs**

You can add new non-filtered ACLs to an entry, or edit existing non-filtered ACLs.

Non-filtered ACLs can be propagated. This means that access control information defined for one entry can be applied to all of its subordinate entries. The ACL source is the source of current ACL for the selected entry. If the entry does not have an ACL, it inherits an ACL from parent objects based on the ACL settings of the parent objects.

Enter the following information on the **Non-filtered** ACLs tab:

- **Propagate ACLs** - Select the Propagate check box to allow descendants without an explicitly defined ACL to inherit from this entry. If the check box is selected, the descendent inherits ACLs from this entry and if the ACL is explicitly defined for the child entry, then the acl which was inherited from parent is replaced with the new ACL that was added. If the check box is not selected, descendant entries without an explicitly defined ACL will inherit ACLs from a parent of this entry that has this option enabled.
- **DN (Distinguished Name)** - Enter the (DN) Distinguished name of the entity requesting access to perform operations on the selected entry, for example, cn=Marketing Group.
- **Type** - Enter the Type of DN. For example, select access-id if the DN is a user.

**Adding and editing access rights:** Click the either the Add button to add the DN in the DN (Distinguished Name) field to the ACL list or the Edit button to modify the ACLs of an existing DN.

The Add access rights and Edit access rights panels allow you to set the access rights for a new or existing Access Control List (ACLs). The **Type** field defaults to the type you selected on the Edit ACL panel. If you are adding an ACL, all other fields default to blank. If you are editing an ACL, the fields contain the values set last time the ACL was modified.

You can:
- Change the ACL type
- Set addition and deletion rights
• Set permissions for security classes

To set access rights:

1. Select the **Type** of entry for the ACL. For example, select access-id if the DN is a user.

2. The **Rights** section displays the addition and deletion rights of the subject.
   - **Add child** grants or denies the subject the right to add a directory entry beneath the selected entry.
   - **Delete entry** grants or denies the subject the right to delete the selected entry.

3. The **Security class** section defines permissions for attribute classes. Attributes are grouped into security classes:
   - **Normal** - Normal attributes require the least security, for example, the attribute commonName.
   - **Sensitive** - Sensitive attributes require a moderate amount of security, for example, homePhone.
   - **Critical** - Critical attributes require the most security, for example, the attribute userpassword.
   - **System** - System attributes are read only attributes that are maintained by the server.
   - ** Restricted** - Restricted attributes are used to define access control.

Each security class has permissions associated with it.

- **Read** - the subject can read attributes.
- **Write** - the subject can modify the attributes.

  **Note:** System class is not writable.

- **Search** - the subject can search attributes.
- **Compare** - the subject can compare attributes.

Additionally, you may specify permissions based on the attribute instead of the security class to which the attribute belongs. The attribute section is listed below the **Critical security class**.

- Select an attribute from the **Define an attribute** drop-down list.
- Click **Define**. The attribute is displayed with a permissions table.
- Specify whether to grant or deny each of the four security class permissions associated with the attribute.
- You can repeat this procedure for multiple attributes.
- To remove an attribute, simply select the attribute and click **Delete**.
- When you are finished click **OK**.

**Removing ACLs:** You can remove ACLs in either of two ways:

- Select the radio button next to the ACL you want to delete. Click **Remove**.
- Click **Remove all** to delete all DNs from the list.

**Filtered ACLs**

You can add new filtered ACLs to an entry, or edit existing filtered ACLs.

Filter-based ACLs employ a filter-based comparison, using a specified object filter, to match target objects with the effective access that applies to them.
The default behavior of filter-based ACLs to accumulate from the lowest containing entry, upward along the ancestor entry chain, to the highest containing entry in the DIT. The effective access is calculated as the union of the access rights granted, or denied, by the constituent ancestor entries. There is an exception to this behavior. For compatibility with the subtree replication feature, and to allow greater administrative control, a ceiling attribute is used as a means to stop accumulation at the entry in which it is contained.

Enter the following information on the Filtered ACLs tab:

- **Accumulate filtered ACLs** -
  - Select the **Not specified** radio button to remove the ibm-filterACLInherit attribute from the selected entry.
  - Select the **True** radio button to allow the ACLs for the selected entry to accumulate from that entry, upward along the ancestor entry chain, to the highest filter ACL containing entry in the DIT.
  - Select the **False** radio button to stop the accumulation of filter ACLs at the selected entry.

- **DN (Distinguished Name)** - Enter the (DN) **Distinguished name** of the entity requesting access to perform operations on the selected entry, for example, cn=Marketing Group.
- **Type** - Enter the Type of DN. For example, select access-id if the DN is a user.

**Adding and editing access rights:** Click the either the **Add** button to add the DN in the DN (Distinguished Name) field to the ACL list or the Edit button to modify the ACLs of an existing DN.

The **Add access rights** and **Edit access rights** panels allow you to set the access rights for a new or existing Access Control List (ACLs). The Type field defaults to the type you selected on the Edit ACL panel. If you are adding an ACL, all other fields default to blank. If you are editing an ACL, the fields contain the values set last time the ACL was modified.

You can:

- Change the ACL type
- Set addition and deletion rights
- Set the object filter for filtered ACLs
- Set permissions for security classes

To set access rights:

1. Select the **Type** of entry for the ACL. For example, select access-id if the DN is a user.
2. The **Rights** section displays the addition and deletion rights of the subject.
   - **Add child** grants or denies the subject the right to add a directory entry beneath the selected entry.
   - **Delete entry** grants or denies the subject the right to delete the selected entry.
3. Set the object filter for a filter based comparison. In the **Object filter** field, enter the desired object filter for the selected ACL. Click the **Edit filter** button for assistance in composing the search filter string. The current filtered ACL propagates to any descendant object in the associated subtree that matches the filter in this field.
4. The **Security class** section defines permissions for attribute classes. Attributes are grouped into security classes:

- **Normal** - Normal attributes require the least security, for example, the attribute commonName.
- **Sensitive** - Sensitive attributes require a moderate amount of security, for example homePhone.
- **Critical** - Critical attributes require the most security, for example, the attribute userpassword.
- **System** - System attributes are read only attributes that are maintained by the server.
- **Restricted** - Restricted attributes are used to define access control.

Each security class has permissions associated with it:

- **Read** - the subject can read attributes.
- **Write** - the subject can modify the attributes.

**Note:** System class is not writable.

- **Search** - the subject can search attributes.
- **Compare** - the subject can compare attributes.

Additionally, you may specify permissions based on the attribute instead of the security class to which the attribute belongs. The attribute section is listed below the **Critical security class**.

- Select an attribute from the **Define an attribute** drop-down list.
- Click **Define**. The attribute is displayed with a permissions table.
- Specify whether to grant or deny each of the four security class permissions associated with the attribute.
- You can repeat this procedure for multiple attributes.
- To remove an attribute, simply select the attribute and click **Delete**.
- When you are finished click **OK**.

**Removing ACLs:** You can remove ACLs in either of two ways:

- Select the radio button next to the ACL you want to delete. Click **Remove**.
- Click **Remove all** to delete all DNs from the list.

**Owners**

Entry owners have complete permissions to perform any operation on an object. Entry owners can be explicit or propagated (inherited).

Enter the following information on the **Owners** tab:

- Select the **Propagate owners** check box to allow descendants without an explicitly defined owner to inherit from this entry. If the check box is not selected, descendant entries without an explicitly defined owner will inherit owner from a parent of this entry that has this option enabled.
- **DN (Distinguished Name)** - Enter the (DN) **Distinguished name** of the entity requesting access to perform operations on the selected entry, for example, `cn=Marketing Group`.
- **Type** - Enter the **Type** of DN. For example, select access-id if the DN is a user.

**Adding an owner:** Click **Add** to add the DN in the **DN (Distinguished Name)** field to the list.
Removing an owner: You can remove an owner in either of two ways:

- Select the radio button next to the owner's DN that you want to delete. Click Remove.
- Click Remove all to delete all owner DNs from the list.

Using the command line utilities to manage ACLs

The following sections describe how to use the LDIF utilities to manage ACLs

Defining the ACIs and entry owners

The following two examples show an administrative subdomain being established. The first example shows a single user being assigned as the entryOwner for the entire domain. The second example shows a group assigned as the entryOwner.

```
entryOwner: access-id:cn=Person A,o=IBM
ownerPropagate: true
```

```
entryOwner: group:cn=System Owners, o=IBM
ownerPropagate: true
```

The next example shows how an access id "cn=Person 1, o=IBM" is being given permissions to read, search, and compare attribute1. The permission applies to any node in the entire subtree, at or below the node containing this ACI, that matches the "(objectclass=groupOfNames)" comparison filter. The accumulation of matching ibm-filteraclentry attributes in any ancestor nodes has been terminated at this entry by setting the ibm-filterAclInherit attribute to "false".

```
ibm-filterAclEntry: access-id:cn=Person 1,o=IBM:(objectclass=groupOfNames):at.attribute1:grant:rsc
ibm-filterAclInherit: false
```

The next example shows how a group "cn=Dept XYZ, o=IBM" is being given permissions to read, search and compare attribute1. The permission applies to the entire subtree below the node containing this ACI.

```
ac1Entry: group:cn=Dept XYZ,o=IBM:at.attribute1:grant:rsc
ac1Propagate: true
```

The next example shows how a role "cn=System Admins,o=IBM" is being given permissions to add objects below this node, and read, search and compare attribute2 and the critical attribute class. The permission applies only to the node containing this ACI.

```
ac1Entry: role:cn=System Admins,o=IBM:object:grant:a:at.attribute2:grant:rsc:critical:grant:rsc
ac1Propagate: false
```

Modifying the ACI and entry owner values

Modify-replace

Modify-replace works the same way as all other attributes. If the attribute value does not exist, create the value. If the attribute value exists, replace the value.

Given the following ACIs for an entry:

```
ac1Entry: group:cn=Dept ABC,o=IBM:normal:grant:rsc
ac1Propagate: true
```

perform the following change:
Modify-add

During an ldapmodify-add, if the ACI or entryOwner does not exist, the ACI or entryOwner with the specific values is created. If the ACI or entryOwner exists, then add the specified values to the given ACI or entryOwner. For example, given the ACI:

```
aclEntry: group:cn=Dept XYZ,o=IBM:normal:grant:rsc
```

with a modification:
```
dn: cn=some entry
changetype: modify
add: aclEntry
aclEntry: group:cn=Dept ABC,o=IBM:at.attribute1:grant:rsc
```

would yield an multi-valued aclEntry of:
```
aclEntry: group:cn=Dept XYZ,o=IBM:normal:grant:rsc
aclEntry: group:cn=Dept ABC,o=IBM:at.attribute1:grant:rsc
```

For example, given the ACI:
```
ibm-filterAclEntry: group:cn=Dept XYZ,o=IBM:(cn=Manager XYZ):normal:grant:rsc
```

with a modification:
```
dn: cn=some entry
changetype: modify
add: ibm-filterAclEntry
ibm-filterAclEntry: group:cn=Dept ABC,o=IBM:(cn=Manager XYZ):normal:grant:rsc
```

would yield an multi-valued ibm-filterAclEntry of:
```
ibm-filterAclEntry: group:cn=Dept XYZ,o=IBM:(cn=Manager XYZ):normal:grant:rsc
ibm-filterAclEntry: group:cn=Dept ABC,o=IBM:(cn=Manager XYZ):normal:grant:rsc
```
would yield an multi-valued aclEntry of:

Ibm-filterAclEntry: group:cn=Dept XYZ,o=IBM:(cn=Manager XYZ):normal :grant:rsc
ibm-filterAclEntry: group:cn=Dept ABC,o=IBM:(cn=Manager ABC):at.attribute1 :grant:rsc

The permissions under the same attribute or attribute class are considered as the basic building blocks and the actions are considered as the qualifiers. If the same permission value is being added more than once, only one value is stored. If the same permission value is being added more than once with different action values, the last action value is used. If the resulting permission field is empty (""), this permission value is set to null and the action value is set to grant.

For example, given the following ACI:

| aclEntry: group:cn=Dept XYZ,O=IBM:object:grant:ad |
| aclEntry: group:cn=Dept XYZ,o=IBM:object:grant:rwsc |

with a modification:

| dn: cn=some entry |
| changetype: modify |
| add: aclEntry |
| aclEntry: group:cn=Dept XYZ,o=IBM:normal:deny:r:critical:deny::sensitive :grant:r |

yields an aclEntry of:

| aclEntry: group:cn=Dept XYZ,O=IBM:grant:sc:grant::sensitive:grant:r |

For example, given the following ACI:

| Ibm-filterAclEntry: group:cn=Dept XYZ,O=IBM:(cn=Manager XYZ):normal :grant:rsc |

with a modification:

| dn: cn=some entry |
| changetype: modify |
| add: ibm-filterAclEntry |
| ibm-filterAclEntry: group:cn=Dept XYZ,o=IBM:(cn=Manager XYZ):normal :deny:r:critical:deny::sensitive:grant:r |

yields an aclEntry of:

| ibm-filterAclEntry: group:cn=Dept XYZ,O=IBM:(cn=Manager XYZ):normal :grant:sc:grant::sensitive:grant:r |

Modify-delete

To delete a particular ACI value, use the regular ldapmodify-delete syntax.

Given an ACI of:

| aclEntry: group:cn=Dept XYZ,O=IBM:object:grant:ad |
| aclEntry: group:cn=Dept XYZ,o=IBM:normal:grant:rwsc |
| dn: cn = some entry |
Given an ACI of:
ibm-filterAclEntry: group:cn=Dept XYZ,o=IBM:(cn=Manager XYZ):object 
:grant:ad
ibm-filterAclEntry: group:cn=Dept XYZ,o=IBM:(cn=Manager XYZ):normal 
:grant:rwsc
dn: cn = some entry
changetype: modify
delte: ibm-filterAclEntry
ibm-filterAclEntry: group:cn=Dept XYZ,o=IBM:(cn=Manager XYZ):object 
:grant:ad

Deleting an ACI or entryOwner value that does not exist results in an unchanged ACI or entryOwner and a return code specifying that the attribute value does not exist.

Deleting the ACI/entry owner values
With the ldapmodify-delete operation, the entryOwner can be deleted by specifying

```
dn: cn = some entry
changetype: modify
delte: entryOwner
```

In this case, the entry would then have no explicit entryOwner. The ownerPropagate is also removed automatically. This entry would inherit its entryOwner from the ancestor node in the directory tree following the propagation rule.

The same can be done to delete aclEntry completely:

```
dn: cn = some entry
changetype: modify
delte: aclEntry
```

Deleting the last ACI or entryOwner value from an entry is not the same as deleting the ACI or entryOwner. It is possible for an entry to contain an ACI or entryOwner with no values. In this case, nothing is returned to the client when querying the ACI or entryOwner and the setting propagates to the descendant nodes until it is overridden. To prevent dangling entries that nobody can access, the directory administrator always has full access to an entry even if the entry has a null ACI or entryOwner value.

Retrieving the ACI/entry owner values
The effective ACI or entryOwner values can be retrieved by simply specifying the desired ACL or entryOwner attributes in a search, for example,

```
ldapsearch -b "cn=object A, o=ibm" -s base "objectclass=*"
```

aclentry aclpropagate aclsource entryowner ownerpropagate ownersource ibm-filterAclEntry ibm-filterAclInherit ibm-effectiveAcl
returns all ACL or entryOwner information that is used in access evaluation on object A. Note that the returned values might not look exactly the same as they are first defined. The values are the equivalent of the original form.

Searching on the ibm-filterAclEntry attribute alone only returns the values specific to the containing entry.

A read-only operational attribute, ibm-effectiveAcl, is used to show the accumulated effective access. A search request for ibm-effectiveAcl returns the effective access that applies to the target object based on: non-filter ACLs, or filter ACLs, depending on how they have been distributed in the DIT.

Because filter-based ACLs might come from several ancestor sources, a search on the aclSource attribute produces a list of the associated sources.

---

**Subtree replication considerations**

For non-filter-based access to be included in subtree replication, any aclEntry attributes must reside at the associated ibm-replicationContext entry. Because effective access cannot be propagated from an ancestor entry above a replicated subtree, the aclPropagate attribute must be set to a value of true.

For filter-based access to be included in subtree replication, any ibm-filterAclEntry attributes must reside at, or below, the associated ibm-replicationContext entry. Because effective access cannot be accumulated from an ancestor entry above a replicated subtree, the ibm-filterAclInherit attribute must be set to a value of false, and reside at the associated ibm-replicationContext entry.
Chapter 16. Groups and roles

Groups

A group is a list, a collection of names. A groups can be used in aclentry, ibm-fliterAclEntry, and entryowner attributes to control access or in application-specific uses such as a mailing list; see Chapter 15, “Access control lists”, on page 211. Groups can be defined as either static, dynamic, or nested.

Static groups

A static group defines each member individually using the structural objectclass groupOfNames, groupOfUniqueNames, accessGroup, or accessRole; or the auxiliary objectclass ibm-staticgroup. These objectclasses require the attribute member (or uniqueMember in the case of groupOfUniqueNames). A static group using these structural objectclasses must have at least one member; it cannot be empty. A static group may also be defined using the auxiliary objectclass: ibm-staticGroup, which does not require the member attribute, and therefore may be empty.

A typical group entry is:

DN: cn=Dev.Staff,ou=Austin,c=US
objectclass: accessGroup
cn: Dev.Staff
member: cn=John Doe,o=IBM,c=US
member: cn=Jane Smith,o=IBM,c=US
member: cn=James Smith,o=IBM,c=US

Each group object contains a multivalued attribute consisting of member DN.

Upon deletion of an access group, the access group is also deleted from all ACLs to which it has been applied.

Dynamic groups

A dynamic group defines its members differently than a static group. Instead of listing them individually, the dynamic group defines its members using an LDAP search. The dynamic group uses the structural objectclass groupOfURLs (or auxiliary objectclass ibm-dynamicGroup) and the attribute, memberURL to define the search using a simplified LDAP URL syntax.

ldap://[/base DN of search] /? /? /scope of search]

Note: As the example illustrates, the host name must not be present in the syntax. The remaining parameters are just like normal ldap URL syntax. Each parameter field must be separated by a ?, even if no parameter is specified. Normally, a list of attributes to return would be included between the base DN and scope of the search. This parameter is also not used by the server when determining dynamic membership, and so may be omitted, however, the separator ? must still be present.

where:

base DN of search
Is the point from which the search begins in the directory. It can be the suffix or root of the directory such as ou=Austin. This parameter is required.
scope of search
Specifies the extent of the search. The default scope is base.

- **base**: Returns information only about the base DN specified in the URL.
- **one**: Returns information about entries one level below the base DN specified in the URL. It does not include the base entry.
- **sub**: Returns information about entries at all levels below and includes the base DN.

searchfilter
Is the filter that you want to apply to the entries within the scope of the search. See "the ldapsearch filter option" on page 295 for information about the syntax of the searchfilter. The default is `objectclass=*`.

The search for dynamic members is always internal to the server, so unlike a full ldap URL, a host name and port number is never specified, and the protocol is always `ldap` (never `ldaps`). The `memberURL` attribute may contain any kind of URL, but the server only uses `memberURLs` beginning with `ldap://` to determine dynamic membership.

Examples
A single entry in which the scope defaults to base and the filter defaults to `objectclass=*`:
```
ldap:///cn=John Doe, cn=Employees, o=Acme, c=US
```

All entries that are 1-level below `cn=Employees`, and the filter defaults to `objectclass=*`:
```
ldap:///cn=Employees, o=Acme, c=US??one
```

All entries that are under `o=Acme` with the `objectclass=person`:
```
ldap:///o=Acme, c=US??sub?objectclass=person
```

Depending on the object classes you use to define user entries, those entries might not contain attributes which are appropriate for determining group membership. You can use the auxiliary object class, `ibm-dynamicMember`, to extend your user entries to include the `ibm-group` attribute. This attribute allows you to add arbitrary values to your user entries to serve as targets for the filters of your dynamic groups. For example:

The members of this dynamic group are entries directly under the `cn=users,ou=Austin` entry that have an `ibm-group` attribute of `GROUP1`:

```
dn: cn=GROUP1,ou=Austin
objectclass: groupOfURLs
cn: GROUP1
memberURL: ldap:///cn=users,ou=Austin??one?{ibm-group=GROUP1}
```

Here is an example member of `cn=GROUP1,ou=Austin`:

```
dn: cn=Group 1 member, cn=users, ou=austin
objectclass: person
objectclass: ibm-dynamicMember
sn: member
userpassword: memberpassword
ibm-group: GROUP1
```
### Nested groups

The nesting of groups enables the creation of hierarchical relationships that can be used to define inherited group membership. A nested group is defined as a child group entry whose DN is referenced by an attribute contained within a parent group entry. A parent group is created by extending one of the structural group object classes (`groupOfNames`, `groupOfUniqueNames`, `accessGroup`, `accessRole`, or `groupOfURLs`) with the addition of the `ibm-nestedGroup` auxiliary object class. After nested group extension, zero or more `ibm-memberGroup` attributes may be added, with their values set to the DNs of nested child groups. For example:

```plaintext
dn: cn=Group 2, cn=Groups, o=IBM, c=US
objectclass: groupOfNames
objectclass: ibm-nestedGroup
objectclass: top
cn: Group 2
description: Group composed of static, and nested members.
member: cn=Person 2.1, cn=Dept 2, cn=Employees, o=IBM, c=US
member: cn=Person 2.2, cn=Dept 2, cn=Employees, o=IBM, c=US
ibm-memberGroup: cn=Group 8, cn=Nested Static, cn=Groups, o=IBM, c=US
```

The introduction of cycles into the nested group hierarchy is not allowed. If it is determined that a nested group operation results in a cyclical reference, either directly or through inheritance, it is considered a constraint violation and therefore, the update to the entry fails.

### Hybrid groups

Any of the structural group object classes mentioned can be extended such that group membership is described by a combination of static, dynamic, and nested member types. For example:

```plaintext
dn: cn=Group 10, cn=Groups, o=IBM, c=US
objectclass: groupOfURLs
objectclass: ibm-nestedGroup
objectclass: ibm-staticGroup
objectclass: top
cn: Group 10
description: Group composed of static, dynamic, and nested members.
memberURL: ldap:///cn=Austin, cn=Employees, o=IBM, c=US??one?objectClass=person
ibm-memberGroup: cn=Group 9, cn=Nested Dynamic, cn=Groups, o=IBM, c=US
member: cn=Person 10.1, cn=Dept 2, cn=Employees, o=IBM, c=US
member: cn=Person 10.2, cn=Dept 2, cn=Employees, o=IBM, c=US
```

### Determining group membership

Two operational attributes can be used to query aggregate group membership. For a given group entry, the `ibm-allMembers` operational attribute enumerates the aggregate set of group membership, including static, dynamic, and nested members, as described by the nested group hierarchy. For a given user entry, the `ibm-allGroups` operational attribute enumerates the aggregate set of groups, including ancestor groups, to which that user has membership.

A requester may only receive a subset of the total data requested, depending on how the ACLs have been set on the data. Anyone can request the `ibm-allMembers` and `ibm-allGroups` operational attributes, but the data set returned only contains data for the LDAP entries and attributes that the requester has access rights to. The user requesting the `ibm-allMembers` or `ibm-allGroups` attribute must have access to the `member` or `uniquemember` attribute values for the group and nested groups in order to see static members, and must be able to perform the searches specified in the `memberURL` attribute values in order to see dynamic members. For examples:
For this example, \texttt{m1} and \texttt{m2} are in the member attribute of \texttt{g2}. The ACL for \texttt{g2} allows \texttt{user1} to read the member attribute, but \texttt{user2} does not have access to the member attribute. The entry LDIF for the \texttt{g2} entry is as follows:

\begin{verbatim}
dn: cn=g2, cn=groups, o=ibm, c=us
cn: g2
member: cn=m1, cn=users, o=ibm, c=us
member: cn=m2, cn=users, o=ibm, c=us
acclentry: access-id: cn=user1, cn=users, o=ibm, c=us: normal: rsc
acclentry: access-id: cn=user2, cn=users, o=ibm, c=us: normal: rsc: at. member: deny: rsc
\end{verbatim}

The \texttt{g4} entry uses the default aclentry, which allows both \texttt{user1} and \texttt{user2} to read its member attribute. The LDIF for the \texttt{g4} entry is as follows:

\begin{verbatim}
dn: cn=g4, cn=groups, o=ibm, c=us
cn: g4
member: cn=m5, cn=users, o=ibm, c=us
\end{verbatim}

The \texttt{g5} entry is a dynamic group, which gets its two members from the memberURL attribute. The LDIF for the \texttt{g5} entry is as follows:

\begin{verbatim}
dn: cn=g5, cn=groups, o=ibm, c=us
objectclass: container
objectclass: ibm-dynamicGroup
cn: g5
memberURL: ldap://cn=users, o=ibm, c=us?sub?(|(cn=m3)(cn=m4))
\end{verbatim}

The entries \texttt{m3} and \texttt{m4} are members of group \texttt{g5} because they match the memberURL. The ACL for the \texttt{m3} entry allows both \texttt{user1} and \texttt{user2} to search for it. The ACL for the \texttt{m4} entries doesn’t allow \texttt{user2} to search for it. The LDIF for \texttt{m4} is as follows:

\begin{verbatim}
dn: cn=m4, cn=users, o=ibm, c=us
objectclass: person
cn: m4
\end{verbatim}
sn: four
aclentry: access-id:cn=user1,cn=users,o=ibm,c=us:正常:rs
aclentry: access-id:cn=user2,cn=users,o=ibm,c=us

Example 1:
User 1 does a search to get all the members of group g1. User 1 has access to all members, so they are all returned.

```
ldapsearch -D cn=user1,cn=users,o=ibm,c=us -w user1pwd -s base -b cn=g1, cn=groups,o=ibm,c=us objectclass=* ibm-allmembers
cn=g1,cn=groups,o=ibm,c=us
ibm-allmembers: CN=M1,CN=USERS,O=IBM,C=US
ibm-allmembers: CN=M2,CN=USERS,O=IBM,C=US
ibm-allmembers: CN=M3,CN=USERS,O=IBM,C=US
ibm-allmembers: CN=M4,CN=USERS,O=IBM,C=US
ibm-allmembers: CN=M5,CN=USERS,O=IBM,C=US
```

Example 2:
User 2 does a search to get all the members of group g1. User 2 does not have access to members m1 or m2 because they do not have access to the member attribute for group g2. User 2 has access to the member attribute for g4 and therefore has access to member m5. User 2 can perform the search in the group g5 memberURL for entry m3, so that member are listed, but cannot perform the search for m4.

```
ldapsearch -D cn=user2,cn=users,o=ibm,c=us -w user2pwd -s base -b cn=g1, cn=groups,o=ibm,c=us objectclass=* ibm-allmembers
cn=g1,cn=groups,o=ibm,c=us
ibm-allmembers: CN=M3,CN=USERS,O=IBM,C=US
ibm-allmembers: CN=M5,CN=USERS,O=IBM,C=US
```

Example 3:
User 2 does a search to see if m3 is a member of group g1. User 2 has access to do this search, so the search shows that m3 is a member of group g1.

```
ldapsearch -D cn=user2,cn=users,o=ibm,c=us -w user2pwd -s base -b cn=m3, cn=users,o=ibm,c=us objectclass=* ibm-allgroups
cn=m3,cn=users,o=ibm,c=us
ibm-allgroups: CN=G1,CN=GROUPS,O=IBM,C=US
```

Example 4:
User 2 does a search to see if m1 is a member of group g1. User 2 does not have access to the member attribute, so the search does not show that m1 is a member of group g1.

```
ldapsearch -D cn=user2,cn=users,o=ibm,c=us -w user2pwd -s base -b cn=m1, cn=users,o=ibm,c=us objectclass=* ibm-allgroups
cn=m1,cn=users,o=ibm,c=us
```

**Group object classes**

**ibm-dynamicGroup**
This auxiliary class allows the optional memberURL attribute. Use it with a structural class such as groupOfNames to create a hybrid group with both static and dynamic members.
ibm-dynamicMember
This auxiliary class allows the optional ibm-group attribute. Use it as a filter attribute for dynamic groups.

ibm-nestedGroup
This auxiliary class allows the optional ibm-memberGroup attribute. Use it with a structural class such as groupOfNames to enable sub-groups to be nested within the parent group.

ibm-staticGroup
This auxiliary class allows the optional member attribute. Use it with a structural class such as groupOfURLs to create a hybrid group with both static and dynamic members.

Note: The ibm-staticGroup is the only class for which member is optional, all other classes taking member require at least 1 member.

Group attribute types

ibm-allGroups
Shows all groups to which an entry belongs. An entry can be a member directly by the member, uniqueMember, or memberURL attributes, or indirectly by the ibm-memberGroup attribute. This Read-only operational attribute is not allowed in a search filter.

ibm-allMembers
Shows all members of a group. An entry can be a member directly by the member, uniqueMember, or memberURL attributes, or indirectly by the ibm-memberGroup attribute. This Read-only operational attribute is not allowed in a search filter.

ibm-group
Is an attribute taken by the auxiliary class ibm-dynamicMember. Use it to define arbitrary values to control membership of the entry in dynamic groups. For example, add the value "Bowling Team" to include the entry in any memberURL that has the filter "ibm-group=Bowling Team".

ibm-memberGroup
Is an attribute taken by the auxiliary class ibm-nestedGroup. It identifies sub-groups of a parent group entry. Members of all such sub-groups are considered members of the parent group when processing ACLs or the ibm-allMembers and ibm-allGroups operational attributes. The sub-group entries themselves are not members. Nested membership is recursive.

Roles
Role-based authorization is a conceptual complement to the group-based authorization, and is useful in some cases. As a member of a role, you have the authority to do what is needed for the role in order to accomplish a job. Unlike a group, a role comes with an implicit set of permissions. There is not a built-in assumption about what permissions are gained (or lost) by being a member of a group.

Roles are similar to groups in that they are represented in the directory by an object. Additionally, roles contain a group of DNs. Roles which are to be used in access control must have an objectclass of ‘AccessRole’. The ‘Accessrole’ objectclass is a subclass of the ‘GroupOfNames’ objectclass.
For example, if there are a collection of DNs such as ‘sys admin’, your first reaction may be to think of them as the ‘sys admin group’ (since groups and users are the most familiar types of privilege attributes). However, since there are a set of permissions that you would expect to receive as a member of ‘sys admin’ the collection of DNs may be more accurately defined as the ‘sys admin role’.
Chapter 17. Managing search limit groups

In the IBM Tivoli Directory Server, in order to prevent a user’s search requests from consuming too many resources and consequently impairing the server’s performance, search limits are imposed on these requests for any given server. The administrator sets these search limits on the size and duration of searches, when configuring the server. See “Setting Searches” on page 50 for more information.

Only the administrator and members of the administrative group are exempted from these search limits that apply to all other users. However, depending upon your needs, you can create search limit groups that can have more flexible search limits than the general user. The individual members or groups contained in the search limit group are granted the search limitations specified in the search limit group.

When a user initiates a search, the search request limitations are first checked. If a user is a member of a search limit group, the limitations are compared. If the search limit group limitations are higher than those of the search request, the search request limitations are used. If the search request limitations are higher than those of the search limit group, the search limit group limitations are used. If no search limit group entries are found, the same comparison is made against the server search limitations. If no server search limitations have been set, the comparison is made against the default server setting. The limitations used are always the lowest settings in the comparison.

If a user belongs to multiple search limit groups, the user is granted up to the highest level of search capability. For example, the user belongs to search group 1 that grants search limits of search size 2000 entries and search time of 4000 seconds and to search group 2 that grants search limits of search size unlimited entries and a search time of 3000 seconds. The user has the search limitations of search size unlimited and search time of 4000 seconds.

Search limit groups can be stored under either localhost or IBMpolicies. Search limit groups under IBMpolicies are replicated, those under localhost are not. You can store the same search limit group under both localhost and IBMpolicies. If the search limit group is not stored under one of these DNs, the server ignores the search limit part of the group and treats it as a normal group.

When a user initiates a search, the search limit group entries under localhost are checked first. If no entries are found for the user, the search limit group entries under IBMpolicies are then searched. If entries are found under localhost, the search limit group entries under IBMpolicies are not checked. The search limit group entries under localhost have priority over those under IBMpolicies.

Creating a search limit group

To create a search limit group, you must create a group entry using either the Web Administration Tool or the command line.

Using Web Administration:

If you have not done so already, expand the Directory management category in the navigation area.
1. Click **Add an entry** or click **Manage entries** and select the location (cn=ibmPolicies or cn=localhost) and click Add.

2. Select one of the group object classes from **Structural object class** menu.
   - accessGroup
   - accessRole
   - AIXaccessGroup
   - eNTGroup
   - groupofNames
   - groupofUniqueNames
   - groupofURLs
   - ibm-nestedGroup
   - ibm-proxyGroup
   - ibm-staticGroup
   - ibm-dynamicGroup

3. Click **Next**.

4. Select **ibm-searchLimits** auxiliary object class you want to use from the **Available** menu and click **Add**. Repeat this process for each additional auxiliary object class you want to add. You can also delete an auxiliary object class from the **Selected** menu by selecting it and clicking **Remove**.

5. Click **Next**.

6. In the **Relative DN** field, enter the relative distinguished name (RDN) of the group that you are adding, for example, cn=Search Group1.

7. In the **Parent DN** field, enter the distinguished name of the tree entry you are selecting, for example, cn=localhost. You can also click **Browse** to select the Parent DN from the list. Select your choice and click **Select** to specify the Parent DN that you want. The Parent DN defaults to the entry selected in the tree.

   **Note:** If you started this task from the Manage entries panel, this field is prefilled for you. You selected the Parent DN before clicking Add to start the add entry process.

8. At the **Required attributes** tab enter the values for the required attributes.
   - **cn** is the relative DN you specified earlier.
   - In the the **ibm-searchSizeLimit** field specify the number of entries that define the size of the search. This number can range between 0 and 2,147,483,647. A setting of 0 is the same as Unlimited.
   - In the the **ibm-searchTimeLimit** field specify the number of seconds that define the duration of the search. This number can range between 0 and 2,147,483,647. A setting of 0 is the same as Unlimited.
   - Depending on the object class you selected, you might see a **Member** or **uniqueMember** field. These are the members of the group you are creating. The entry is in the form of a DN, for example, cn=Bob Garcia,ou=austin,o=ibm,c=us.

9. If you want to add more than one value for a particular attribute, click **Multiple values** and then add the values one at a time. Click **OK** when you have finished adding the multiple values. The values are added to an expandable menu displayed at the attribute.

10. If your server has language tags enabled, you can click **Language tag value** to add or remove language tag descriptors. See [Language tags](#) for more information.
11. Click Other attributes.

12. At the Other attributes tab enter the values as appropriate for the attributes. See “Binary attributes” on page 205 for information on adding binary values.

13. If you want to add more than one value for a particular attribute, click Multiple values and then add the values one at a time. Click OK when you have finished adding the multiple values. The values are added to an expandable menu displayed at the attribute.

14. If your server has language tags enabled, you can click Language tag value to add or remove language tag descriptors. See “Language tags” on page 200 for more information.

15. Click Finish to create the entry.

Using the command line:

To perform the same operations using the command line, issue the following command:

```
ldapmodify -a -D <adminDN> -w<adminPW> -i<filename>
```

where `<filename>` contains:

```
Dn: cn=Search1, cn=localhostn
Cn: Search1
member: cn=user1,o=ibm
member: cn=user2,o=ibm
ibm-searchTimeLimit: 4000
ibm-searchSizeLimit: 2000
objectclass: top
objectclass: ibm-searchLimits
objectclass: groupofNames
```

Modifying a search limit group

You can modify a search limit group, such as changing the size or time limits of the search, or adding or deleting members of the group by using either the Web Administration Tool or the command line.

Using Web Administration:

To modify a search limit group, see “Modifying an entry” on page 204.

Using the command line:

To modify the search limit group using the command line, issue the following command:

```
ldapmodify -D <adminDN> -w<adminPW> -i<filename>
```

where `<filename>` contains:

```
dn: cn=Search1, cn=localhostn
changetype: modify
replace: ibm-searchTimeLimit
ibm-searchTimeLimit: 3000
-
replace: ibm-searchSizeLimit
ibm-searchSizeLimit: 0
add: member
member: cn=Bob Garcia,ou=austin,o=ibm,c=us
```
Copying a search limit group

Copying a search limit group is useful if you want to have the same search limit group under both localhost and IBMpolicies. It is also useful if you want to create a new group that has similar information to an existing group, but has minor differences.

**Using Server Administration:**
To copy a search limit group, see "Copying an entry" on page 206.

**Using the command line:**
To view the search groups contained in localhost, issue the command:
```
ldapsearch -b cn=localhost objectclass=ibm-searchLimits
```
Select the search limit group that you want to copy. Use an editor to change the appropriate information and save the changes to `<filename>`. Then issue the following command:
```
ldapmodify -a -D `<adminDN>` -w `<adminPW>` -i `<filename>`
```
where `<filename>` contains:
```
Dn: cn=NewSearch1, cn=localhost
Cn: NewSearch1
member: cn=user1,o=ibm
member: cn=user2,o=ibm
ibm-searchTimeLimit: 4000
ibm-searchSizeLimit: 2000
objectclass: top
objectclass: ibm-searchLimits
objectclass: groupofNames
```

Removing a search limit group

To remove a search limit group you can use either the Web Administration Tool or the command line.

**Using Web Administration:**
To remove a search limit group, see "Deleting an entry" on page 204.

**Using the command line:**
To remove a search limit group using the command line, issue the following command:
```
ldapdelete -D `<adminDN>` -w `<adminPW>` -i `<filename>`
```
where `<filename>` contains:
```
#list additional DNs here, one per line
`cn=Search1, cn=localhost`
```
To remove multiple search limit groups, list the DNs. Each DN must be on a separate line.
Chapter 18. Managing a proxy authorization group

The proxy authorization is a special form of authentication. By using this proxy authorization mechanism, a client application can bind to the directory with its own identity but is allowed to perform operations on behalf of another user to access the target directory. A set of trusted applications or users can access the Directory Server on behalf of multiple users.

The members in the proxy authorization group can assume any authenticated identities except for the administrator or members of the administrative group.

The proxy authorization group can be stored under either localhost or IBMpolicies. A proxy authorization group under IBMpolicies is replicated, a proxy authorization group under localhost is not. You can store the proxy authorization group under both localhost and IBMpolicies. If the proxy group is not stored under one of theses DNs, the server ignores the proxy part of the group and treats it as a normal group.

As an example, a client application, client1, can bind to the Directory Server with a high level of access permissions. UserA with limited permissions sends a request to the client application. If the client is a member of the proxy authorization group, instead of passing the request to the Directory Server as client1, it can pass the request as UserA using the more limited level of permissions. What this means is that instead of performing the request as client1, the application server can access only that information or perform only those actions that UserA is able to access or perform. It performs the request on behalf of or as a proxy for UserA.

Note: The attribute member must have its value in the form of a DN. Otherwise an Invalid DN syntax message is returned. A group DN is not permitted to be a member of the proxy authorization group.

Administrators and administrative group members are not permitted to be members of the proxy authorization group.

The audit log records both the bind DN and the proxy DN for each action performed using proxy authorization.

Creating a proxy authorization group

To create a proxy authorization group, you must create a group entry using either the Web Administration Tool or the command line.

Using Web Administration:

If you have not done so already, expand the Directory management category in the navigation area.

1. Click Add an entry or click Manage entries and select the location (cn=ibmPolicies or cn=localhost) and click Add.
2. Select the groupof Names object classes from Structural object class menu.
3. Click Next.
4. Select ibm-proxyGroup auxiliary object class from the Available menu and click Add. Repeat this process for each additional auxiliary object class you
want to add. You can also delete an auxiliary object class from the **Selected** menu by selecting it and clicking **Remove**.

5. Click **Next**.

6. In the **Relative DN** field, enter `cn=proxyGroup`.

7. In the **Parent DN** field, enter the distinguished name of the tree entry you are selecting, for example, `cn=localhost`. You can also click **Browse** to select the Parent DN from the list. Select your choice and click **Select** to specify the Parent DN that you want. The **Parent DN** defaults to the entry selected in the tree.

**Note:** If you started this task from the **Manage entries** panel, this field is prefilled for you. You selected the **Parent DN** before clicking **Add** to start the add entry process.

8. At the **Required attributes** tab enter the values for the required attributes.
   - **cn** is `proxyGroup`.
   - **Member** is in the form of a DN, for example, `cn=Bob Garcia,ou=austin,o=ibm,c=us`.

   See “**Binary attributes**” on page 205 for information on adding binary values.

9. If you want to add more than one value for a particular attribute, click **Multiple values** and then add the values one at a time.

   **Note:** Do not create multiple values for `cn` value. The proxy authorization group must have the well known name, `proxyGroup`.

   Click **OK** when you have finished adding the multiple values. The values are added to an expandable menu displayed at the attribute.

10. If your server has language tags enabled, you can click **Language tag value** to add or remove language tag descriptors. See “**Language tags**” on page 200 for more information.

11. Click **Other attributes**.

12. At the **Other attributes** tab enter the values as appropriate for the attributes. See “**Binary attributes**” on page 205 for information on adding binary values.

13. If you want to add more than one value for a particular attribute, click **Multiple values** and then add the values one at a time. Click **OK** when you have finished adding the multiple values. The values are added to an expandable menu displayed at the attribute.

14. If your server has language tags enabled, you can click **Language tag value** to add or remove language tag descriptors. See “**Language tags**” on page 200 for more information.

15. Click **Finish** to create the entry.

**Using the command line:**

To create the proxy authentication group with an initial member, issue the following command:

```
ldapadd -D <adminDN> -w<adminPW> -i<filename>
```

where `<filename>` contains:

- `dn: cn=proxyGroup,cn=localhost`
- `cn: proxyGroup`
- `member: cn=client1, ou=austin, o=ibm, c=us`
To add an additional member, issue the command:

```
ldapmodify -D <adminDN> -w<adminPW> -i<filename>
```

where `<filename>` contains:
```
dn: cn=proxyGroup,cn=localhost
 cn: proxyGroup
 changetype: modify
 add: member
 member: cn=client2, ou=austin, o=ibm, c=us
```

### Modifying a proxy authorization group

#### Using Server Administration:
To modify the proxy authorization group such as adding or deleting members of the group, see "Modifying an entry" on page 204.

#### Using the command line:
To modify the proxy authorization group using the command line, issue the following command:

```
ldapmodify -D <adminDN> -w<adminPW> -i<filename>
```

where `<filename>` contains:
```
dn: cn=proxyGroup,cn=IBMpolicies
 changetype: modify
 delete: member
 member: cn=client1, ou=austin, o=ibm, c=us
 -
 add: member
 member: cn=client2, ou=austin, o=ibm, c=us
 -
 add: member
 member: cn=client3, ou=austin, o=ibm, c=us
```

### Copying a proxy authorization group

#### Using Server Administration:
Copying a proxy authorization group is useful if you want to have the same proxy authorization group under both localhost and IBMpolicies.

To copy a proxy authorization group, see "Copying an entry" on page 206.

#### Using the command line:
To view the proxy authorization group contained in localhost, issue the command:

```
ldapsearch -D <adminDN> -w <adminPW> -b cn=localhost objectclass=ibm-proxyGroup
```

Select the proxy authorization group. Use an editor to change the appropriate information and save the changes to `<filename>`. The issue the following command:

```
ldapmodify -a -D <adminDN> -w <adminPW> -i <filename>
```

where `<filename>` contains:
Removing the proxy authorization group

To remove a member from the proxy authorization group use either of the following methods.

Using Web Administration:

To remove a proxy authorization group, see “Deleting an entry” on page 204.

Using the command line:

To remove the proxy authorization group issue the command:

```
ldapdelete -D <adminDN> -w <adminpw> -s "cn=ProxyGroup,cn=IBMpolicies"
```

Although the proxy authorization group can be managed by the Web Administration Tool, proxy authorization is not recognized by any of the other Web Administration Tool functions. The proxy authorization function is utilized by including the Proxy Authorization Control with your LDAP operations or using the LDAP commands with the -y option. For example:

```
ldapsearch -D "cn=client1,ou=austin,o=ibm,c=us" -w <client1password> -y "cn=userA,o=ibm,c=us" -b "o=ibm,c=us" -s sub ou=austin
```

Based on the above ldapsearch specification, client1 can read from the target directories whatever userA has permission to read.
Part 4. User-related tasks
Chapter 19. Realms, templates, users, and groups

A realm is a collection of users and the groups to which they belong. For example a company, a bowling team, or a club could all be realms.

Realms are defined by creating entries of object class "ibm-realm" anywhere in a user naming context (not under cn=localhost, cn=schema or cn=configuration). The ibm-realm object defines the realm’s name (cn), a group of realm administrators (ibm-realmAdminGroup), a user-template object (ibm-realmUserTemplate) specifying the object classes and attributes for users in the realm, and the location of container entries under which user and group entries are stored (ibm-realmUserContainer and ibm-realmGroupContainer). The directory administrator and members of the administrative group are responsible for managing user-templates, realms and realm administrator groups. After a realm is created, members of that realm’s administrator group (realm administrators) are responsible for managing the users and groups within that realm.

Creating a realm

Expand the Realms and templates category in the navigation area of the Web Administration Tool.

1. Click Add realm.
   - Enter the name for the realm. For example realm1.
   - Enter the Parent DN that identifies the location of the realm. This entry is in the form of a suffix, for example o=ibm,c=us. You can also click Browse to select the location of the subtree that you want.
2. Click Next to continue.
3. Review the information. At this point you haven’t actually created the realm, so User template and User search filter can be ignored.
4. Click Finish to create the realm.

Creating a realm administrator

To create a realm administrator, you must first create an administration group for the realm.

Creating the realm administration group

Expand the Directory management category in the navigation area of the Web Administration Tool.

1. Click Manage entries.
2. Expand the tree and select the realm you just created, cn=realm1,o=ibm,c=us.
3. Click Edit ACL.
4. Click the Owners tab.
5. Ensure that Propagate owner is checked.
6. Enter the DN for the realm, cn=realm1,o=ibm,c=us.
7. Change the Type to group.
8. Click Add.
9. Click OK.
Creating the administrator entry

If you do not already have a user entry for the administrator, you must create one.

Expand the Directory management category in the navigation area of the Web Administration Tool.

1. Click Manage entries.
2. Expand the tree to the location where you want the administrator entry to reside.

Note: Locating the administrator entry outside of the realm avoids giving the administrator the ability to accidentally delete him or herself. In this example the location might be o=ibm,c=us.

3. Click Add.
4. Select the Structural object class, for example inetOrgPerson.
5. Click Next.
6. Select any auxiliary object class you want to add.
7. Click Next.
8. Enter the required attributes for the entry. For example,
   - RDN cn=John Doe
   - DN o=ibm,c=us
   - cn John Doe
   - sn Doe
9. On the Other attributes tab ensure that you have assigned a user password.
10. When you are done, click Finish.

Adding the administrator to the administration group.

Expand the Directory management category in the navigation area of the Web Administration Tool.

1. Click Manage entries.
2. Expand the tree and select the realm you just created, cn=realm1,o=ibm,c=us.
3. Click Edit attributes.
4. Click the Members tab.
5. Click Members.
6. In the Members field enter the DN of the administrator, in this example cn=John Doe,o=ibm,c=us.
7. Click Add. The DN is displayed in the Members list.
8. Click OK.
9. Click Update. The DN is displayed in the Current members list.
10. Click OK.

You have created an administrator that can manage entries within the realm.

Creating a template

After you have created a realm, your next step is to create a user template. A template helps you to organize the information you want to enter. Expand the Realms and templates category in the navigation area of the Web Administration Tool.

1. Click Add user template.
• Enter the name for the template, for example, \texttt{template1}.
• Enter the location where the template is going to reside. For replication purposes, locate the template in the subtree of the realm that is going to use this template. For example, the realm created in the previous operations \texttt{cn=\text{realm1},o=ibm,c=us}. You can also click \texttt{Browse} to select a different subtree for the location of the template.

2. Click \texttt{Next}. You can click \texttt{Finish} to create an empty template. You can later add information to the template, see \texttt{“Editing a template” on page 256}.

3. If you clicked \texttt{Next}, choose the structural object class for the template, for example \texttt{inetOrgPerson}. You can also add any auxiliary object classes that you want.

4. Click \texttt{Next}.

5. A \texttt{Required} tab has been created on the template. You can modify the information contained on this tab.
   a. Select \texttt{Required} in the tab menu and click \texttt{Edit}. The Edit tab panel is displayed. You see the name of the tab \texttt{Required} and the selected attributes that are required by the object class, \texttt{inetOrgPerson}:
   - \*sn - surname
   - \*cn - common name

   \textbf{Note:} The \* denotes required information.
   b. If you want to add additional information to this tab, select the attribute from the \texttt{Attributes} menu. For example, select \texttt{departmentNumber} and click \texttt{Add}. Select \texttt{employeeNumber} and click \texttt{Add}. Select \texttt{title} and click \texttt{Add}. The \texttt{Selected attributes} menu now reads:
   - title
   - employeeNumber
   - departmentNumber
   - \*sn
   - \*cn

   c. You can rearrange the way that these fields appear on the template by highlighting the selected attribute and clicking \texttt{Move up} or \texttt{Move down}. This changes the position of the attribute by one position. Repeat this procedure until you have the attributes arranged in the order you want them. For example,
   - \*sn
   - \*cn
   - title
   - employeeNumber
   - departmentNumber

d. You can also modify each selected attribute.
   1) Highlight the attribute in the \texttt{Selected attributes} box and click \texttt{Edit}.
   2) You can change the display name of the field used on the template. For example, if you want \texttt{departmentNumber} to be displayed as \texttt{Department number} enter that into the \texttt{Display name} field.
   3) You can also supply a default value to prefill the attribute field in the template. For example, if most of the users that are going to be entered are members of Department 789, you can enter 789 as the default value. The field on the template is prefilled with 789. The value can be changed when you add the actual user information.
4) Click OK.

e. Click OK.

6. To create another tab category for additional information, click Add.
   • Enter the name for the new tab. For example, Address information.
   • For this tab, select the attributes from the Attributes menu. For example, select homePostalAddress and click Add. Select postOfficeBox and click Add. Select telephoneNumber and click Add. Select homePhone and click Add. Select facsimileTelephoneNumber and click Add. The Selected attributes menu reads:
     – homePostalAddress
     – postOfficeBox
     – telephoneNumber
     – homePhone
     – facsimileTelephoneNumber
   • You can rearrange the way that these fields appear on the template by highlighting the selected attribute and clicking Move up or Move down. This changes the position of the attribute by one position. Repeat this procedure until you have the attributes arranged in the order you want them. For example,
     – homePostalAddress
     – postOfficeBox
     – telephoneNumber
     – facsimileTelephoneNumber
     – homePhone
   • Click OK.

7. Repeat this process for as many tabs as you want to create. When you are finished click Finish to create the template.

Adding the template to a realm

After you have created a realm and a template, you need to add the template to the realm. Expand the Realms and templates category in the navigation area of the Web Administration Tool.

1. Click Manage realms.

2. Select the realm you want to add the template to, in this example, cn=realm1,o=ibm,c=us and click Edit.

3. Scroll down to User template and expand the drop-down menu.

4. Select the template, in this example, cn=template1,cn=realm1,o=ibm,c=us.

5. Click OK.

6. Click Close.

Creating groups

Expand the Users and groups category in the navigation area of the Web Administration Tool.

1. Click Add group.

2. Enter the name of the group that you want to create. For example group1.

3. Select the realm that you want to add the user to from the drop-down menu. In this case realm1.
4. Click Finish to create the group. If you already have users in the realm you can click Next and select users to add to group1. Then click Finish.

See “Groups” on page 231 for additional information.

**Adding a user to the realm**

Expand the Users and groups category in the navigation area of the Web Administration Tool.

1. Click Add user.
2. Select the realm that you want to add the user to from the drop-down menu. In this case realm1.
3. Click Next. The template that you just created, template1, is displayed. Fill in the required fields, denoted by an asterisk (*) and any of the other fields on the tabs. If you have already created groups within the realm, you can also add the user to one or more groups.
4. When you are done, click Finish.

**Managing realms**

After you have set up and populated your initial realm, you can add more realms or modify existing realms.

Expand the Realms and templates category in the navigation area and click Manage realms. A list of existing realms is displayed. From this panel you can add a realm, edit a realm, remove a realm or edit the access control list (acls) of the realm.

**Adding a realm**

Expand the Realms and templates category in the navigation area of the Web Administration Tool.

1. Click Add realm.
   - Enter the name for the realm. For example realm2.
   - If you have preexisting realms, for example realm1, you can select a realm to have its settings copied to the realm you are creating.
   - Enter the Parent DN that identifies the location of the realm. This entry is in the form of a suffix, for example o=ibm,c=us. You can also click Browse to select the location of the subtree that you want.
2. Click Next to continue or click Finish.
3. If you clicked Next, review the information.
4. Select a User template from the drop-down menu. If you copied the settings from a preexisting realm, its template is prefilled in this field.
5. Enter a User search filter.
6. Click Finish to create the realm.

**Editing a realm**

Expand the Realms and templates category in the navigation area of the Web Administration Tool.

- Click Manage realms.
- Select the realm that you want to edit from the list of realms.
- Click Edit.
You can use the **Browse** buttons to change the
- Administrator group
- Group container
- User container
- You can select a different template from the drop-down menu.
- Click **Edit** to modify the **User search filter**.

- Click **OK** when you are finished.

## Removing a realm

Expand the **Realms and templates** category in the navigation area of the Web Administration Tool.

1. Click **Manage realms**.
2. Select the realm you want to remove.
3. Click **Delete**.
4. When prompted to confirm the deletion, click **OK**.
5. The realm is removed from the list of realms.

## Editing ACLs on the realm

To view ACL properties using the Web Administration Tool utility and to work with ACLs, see “Working with ACLs” on page 220.


## Managing templates

After you have created your initial template, you can add more templates or modify existing templates.

Expand the **Realms and templates** category in the navigation area and click **Manage user templates**. A list of existing templates is displayed. From this panel you can add a template, edit a template, remove a template or edit the access control list (ACLs) of the template.

## Adding a user template

Expand the **Realms and templates** category in the navigation area of the Web Administration Tool.

1. Click **Add user template** or click **Manage user templates** and click **Add**.
   - Enter the name for the new template. For example **template2**.
   - If you have preexisting templates, for example **template1**, you can select a template to have its settings copied to the template you are creating.
   - Enter the Parent DN that identifies the location of the template. This entry is in the form of a DN, for example `cn=realm1,o=ibm,c=us`. You can also click **Browse** to select the location of the subtree that you want.
2. Click **Next**. You can click **Finish** to create an empty template. You can later add information to the template see “Editing a template” on page 256.
3. If you clicked **Next**, choose the structural object class for the template, for example **inetOrgPerson**. You can also add any auxiliary object classes that you want.
4. Click **Next**.
5. From the **Naming attribute** drop-down menu, select the attribute that is used for the RDN of each entry in a realm that uses the template. This naming attribute, for example `employeeNumber`, must have a value that is unique to each member in the realm that uses this template. The value of this naming attribute is the display name for the user entry in the user lists for user and group tasks. For example, if the `employeeNumber` is the naming attribute and `1234abc` is entered, the entry appears as `1234abc` in the appropriate user lists.

6. A **Required** tab has been created on the template. You can modify the information contained on this tab.

   a. Select **Required** in the tab menu and click **Edit**. The Edit tab panel is displayed. You see the name of the tab **Required** and the selected attributes that are required by the object class, `inetOrgPerson`:
      - *sn - surname
      - *cn - common name

      **Note:** The * denotes required information.

   b. If you want to add additional information to this tab, select the attribute from the **Attributes** menu. For example, select `departmentNumber` and click **Add**. Select `employeeNumber` and click **Add**. Select `title` and click **Add**. The **Selected attributes** menu now reads:
      - title
      - `employeeNumber`
      - `departmentNumber`
      - *sn
      - *cn

   c. You can rearrange the way that these fields appear on the template by highlighting the selected attribute and clicking **Move up** or **Move down**. This changes the position of the attribute by one position. Repeat this procedure until you have the attributes arranged in the order you want them. For example,
      - *sn
      - *cn
      - title
      - `employeeNumber`
      - `departmentNumber`

   d. You can also modify each selected attribute.
      1) Highlight the attribute in the **Selected attributes** box and click **Edit**.
      2) You can change the display name of the field used on the template. For example, if you want `departmentNumber` to be displayed as `Department number`, enter that into the **Display name** field.
      3) You can also supply a default value to prefill the attribute field in the template. For example, if most of the users that are going to be entered are members of Department 789, you can enter 789 as the default value. The field on the template is prefilled with 789. The value can be changed when you add the actual user information.
      4) Click **OK**.

e. Click **OK**.

7. To create another tab category for additional, click **Add**.
   - Enter the name for the new tab. For example, Address information.
To this tab, select the attribute from the Attributes menu. For example, select homePostalAddress and click Add. Select postOfficeBox and click Add. Select telephoneNumber and click Add. Select homePhone and click Add. Select facsimileTelephoneNumber and click Add. The Selected attributes menu reads:
- homePostalAddress
- postOfficeBox
- telephoneNumber
- homePhone
- facsimileTelephoneNumber

You can rearrange the way that these fields appear on the template by highlighting the selected attribute and clicking Move up or Move down. This changes the position of the attribute by one position. Repeat this procedure until you have the attributes arranged in the order you want them. For example,
- homePostalAddress
- postOfficeBox
- telephoneNumber
- facsimileTelephoneNumber
- homePhone

Click OK.

8. Repeat this process for as many tabs as you want to create. When you are finished click Finish to create the template.

Editing a template

Expand the Realms and templates category in the navigation area of the Web Administration Tool.
- Click Manage user templates.
- Select the realm that you want to edit from the list of realms.
- Click Edit.
- If you have preexisting templates, for example template1, you can select a template to have its settings copied to the template you are editing.
- Click Next.
  - You can use the drop-down menu to change the structural object class of the template
  - You can add or remove auxiliary object classes.
- Click Next.
- You can modify the tabs and attributes contained in the template. See page 255 for information on how to modify the tabs.
- When you are done, click Finish.

Removing a template

Expand the Realms and templates category in the navigation area of the Web Administration Tool.
1. Click Manage user templates.
2. Select the template that you want to remove.
3. Click Delete.
4. When prompted to confirm the deletion, click OK.
5. The template is removed from the list of templates.

**Editing ACLs on the template**

Expand the **Realms and template** category in the navigation area of the Web Administration Tool.
1. Click **Manage user templates**.
2. Select the template for which you want to edit the ACLs.
3. Click **Edit ACL**.

To view ACL properties using the Web Administration Tool utility and to work with ACLs, see “Working with ACLs” on page 220.

See [Chapter 15, “Access control lists”, on page 211](#) for additional information.

---

**Managing users**

After you have set up your realms and templates, you can populate them with users.

**Adding users**

Expand the **Users and groups** category in the navigation area of the Web Administration Tool.
1. Click **Add user** or click **Managing users** and click **Add**.
2. Select the realm that you want to add the user to from the drop-down menu.
3. Click **Next**. The template that is associated with that realm, is displayed. Fill in the required fields, denoted by an asterisk (*) and any of the other fields on the tabs. If you have already created groups within the realm, you can also add the user to one or more groups.
4. When you are done, click **Finish**.

**Finding users within the realm**

Expand the **Users and groups** category in the navigation area of the Web Administration Tool.
1. Click **Find user** or click **Manage users** and click **Find**.
2. Select the realm that you want to search to from the **Select realm** field.
3. Enter the search string in the **Naming attribute** field. Wildcards are supported, for example if you entered *smith*, the result is all entries that have the naming attribute of smith.
4. You can perform the following operations on a selected user:
   - **Edit** - See “Editing a user’s information”
   - **Copy** - See “Copying a user” on page 258
   - **Delete** - See “Removing a user” on page 258
5. When you are done, click **OK**.

**Editing a user’s information**

Expand the **Users and groups** category in the navigation area of the Web Administration Tool.
1. Click **Manage users**.
2. Select a realm from the drop-down menu. Click **View users**, if the users are not already displayed in the **Users** box.
3. Select the user you want to edit and click **Edit**.
4. Modify the information on the tabs, modify group membership.
5. When you are done click, **OK**.

### Copying a user

If you need to create a number of users that have mostly identical information, you can create the additional users by copying the initial user and modifying the information.

Expand the **Users and groups** category in the navigation area of the Web Administration Tool.

1. Click **Manage users**.
2. Select a realm from the drop-down menu. Click **View users**, if the users are not already displayed in the **Users** box.
3. Select the user you want to copy and click **Copy**.
4. Modify the appropriate information for the new user, for example the required information that identifies a specific user, such as sn or cn. Information that is common to both users need not be changed.
5. When you are done click, **OK**.

### Removing a user

Expand the **Users and groups** category in the navigation area of the Web Administration Tool.

1. Click **Manage users**.
2. Select a realm from the drop-down menu. Click **View users**, if the users are not already displayed in the **Users** box.
3. Select the user you want to remove and click **Delete**.
4. When prompted to confirm the deletion, click **OK**.
5. The user is removed from the list of users.

### Managing groups

After you have set up your realms and templates, you can create groups.

#### Adding groups

Expand the **Users and groups** category in the navigation area of the Web Administration Tool.

1. Click **Add group** or click **Manage groups** and click **Add**.
2. Enter the name of the group that you want to create.
3. Select the realm that you want to add the user to from the drop-down menu.
4. Click **Finish** to create the group. If you already have users in the realm you can click **Next** and select users to add to the group. Then click **Finish**.

See “**Groups**” on page 231 for additional information.

#### Finding groups within the realm

Expand the **Users and groups** category in the navigation area of the Web Administration Tool.

1. Click **Find group** or click **Manage groups** and click **Find**.
2. Select the realm that you want to search to from the **Select realm** field.
3. Enter the search string in the **Naming attribute** field. Wildcards are supported, for example if you entered *club, the result is all groups that have the naming attribute of club, for example, book club, chess club, garden club and so forth.

4. You can perform the following operations on a selected group:
   - **Edit** - See “Editing a group’s information”
   - **Copy** - See “Copying a group”
   - **Delete** - See “Removing a group”

5. When you are done, click **Close**.

### Editing a group’s information

Expand the **Users and groups** category in the navigation area of the Web Administration Tool.

1. Click **Manage groups**.
2. Select a realm from the drop-down menu. Click **View groups**, if the groups are not already displayed in the **Groups** box.
3. Select the group you want to edit and click **Edit**.
4. You can click **Filter** to limit the number of **Available users**. For example entering *smith in the Last name field, limits the available users to those whose name ends in smith such as Ann Smith, Bob Smith, Joe Goldsmith, and so forth.
5. You can add or remove users from the group.
6. When you are done click, **OK**.

### Copying a group

If you need to create a number of groups that have mostly the same members, you can create the additional groups by copying the initial group and modifying the information.

Expand the **Users and groups** category in the navigation area of the Web Administration Tool.

1. Click **Manage groups**.
2. Select a realm from the drop-down menu. Click **View groups**, if the groups are not already displayed in the **Groups** box.
3. Select the group you want to copy and click **Copy**.
4. Change the group name in the **Group name** field. The new group has the same members as the original group.
5. You can modify the group members.
6. When you are done click, **OK**. The new group is created and contains the same members as the original group with any addition or removal modifications you made during the copy procedure.

### Removing a group

Expand the **Users and groups** category in the navigation area of the Web Administration Tool.

1. Click **Manage groups**.
2. Select a realm from the drop-down menu. Click **View groups**, if the groups are not already displayed in the **Groups** box.
3. Select the group you want to remove and click **Delete**.
4. When prompted to confirm the deletion, click **OK**.
5. The group is removed from the list of groups.
Part 5. Command line utilities

Use these utilities as an alternative method of administering your IBM Tivoli Directory Server.
Chapter 20. Command line utilities

This section describes the utilities that can be run from a command prompt.

Client Utilities
- “ldapchangepwd” on page 264
- “ldapdelete” on page 267
- “ldapexop” on page 271
- “ldapmodify, ldapadd” on page 280
- “ldapmodrdn” on page 286
- “ldapsearch” on page 290

Server Utilities
- “bulkload utility” on page 300
- “dbback” on page 303
- “dbrestore” on page 304
- “db2ldif utility” on page 304
- “ibmdiradm” on page 305
- “ibmdirctl” on page 306
- “ldapdiff” on page 307
- “ldaptrace” on page 313
- “ldif utility” on page 317
- “ldif2db utility” on page 317
- “runstats” on page 318

The client utilities all use the ldap_sasl_bind API. When bind is invoked, several results can be returned. Following are bind results using various combinations of user IDs and passwords.

- If specifying the admin DN, the password must be correctly specified or the bind is not successful.
- If a null DN is specified, or a 0 length DN is specified, you receive unauthenticated access unless you are using an external bind (SASL) such as Kerberos.
- If a DN is specified, and is non-null, a password must also be specified or an error is returned.
- If a DN and password are specified but do not fall under any suffix in the directory, a referral is returned.
- If a DN and password are specified and are correct, the user is bound with that identity.
- If a DN and password are specified but the DN does not exist, unauthenticated access is given.
- If a DN and password are specified and the DN exists but the object does not have user password, an error message is returned.
Client utilities

This section provides a description of the client utilities. They are also documented in "Chapter 2. Ldap Utilities" in the IBM Tivoli Directory Server Version 5.2: Client SDK Programming Reference.

Idapchangepwd

The LDAP modify password tool.

Synopsis

ldapchangepwd -D binddn -w passwd | ? -n newpassword | ?
[-C charset] [-d debuglevel] [-G realm] [-l ldaphost]
[-k keyfile] [-m mechanism] [-M] [-N certificatename]
[-O maxhops] [-p ldaphost] [-P keyfilepw] [-R]

Description

Sends modify password requests to an LDAP server.

Options

-C charset

Specifies that the DNs supplied as input to the ldapdelete utility are represented in a local character set, as specified by charset. Use -C charset to override the default, where strings must be supplied in UTF-8. See "IANA character sets supported by platform" on page 347 for the specific charset values that are supported for each operating system platform. Note that the supported values for charset are the same values supported for the charset tag that is optionally defined in Version 1 LDIF files.

-d debuglevel

Set the LDAP debugging level to debuglevel. See "Server debug mode" on page 329 for information about debug levels.

-D binddn

Use binddn to bind to the LDAP directory. binddn is a string-represented DN. When used with -m DIGEST-MD5, it specifies the authorization ID. It can be either a DN or an authzId string that starts with "u:" or "dn:"

-G realm

Specify the name of the realm. When used with the -m DIGEST-MD5, the value is passed to the server during the bind.

-h ldaphost

Specify an alternate host on which the ldap server is running.

-K keyfile

Specify the name of the SSL or TLS key database file with default extension of kdb. If the key database file is not in the current directory, specify the fully-qualified key database filename. If a key database filename is not specified, this utility will first look for the presence of the SSL_KEYRING environment variable with an associated filename. If the SSL_KEYRING environment variable is not defined, the default keyring file will be used, if present.

A default keyring file that is, ldapkey.kdb, and the associated password stash file that is, ldapkey.sth, are installed in the /lib directory under LDAPHOME, where LDAPHOME is the path to the installed LDAP support. LDAPHOME varies by operating system platform:

- AIX operating systems - /usr/ldap
HP-UX operating systems - /usr/IBMldap
Linux operating systems - /usr/ldap
Solaris operating systems - /opt/IBMldapc
Windows operating systems - c:\Program Files\IBM\LDAP

Note: This is the default install location. The actual LDAPHOME is determined during installation.

See IBM Directory C-Client SDK Programming Reference for more information about default key database files, and default Certificate Authorities.

If a keyring database file cannot be located, a "hard-coded" set of default trusted certificate authority roots is used. The key database file typically contains one or more certificates of certificate authorities (CAs) that are trusted by the client. These types of X.509 certificates are also known as trusted roots. For more information on managing an SSL or TLS key database, see "Using gsk7ikm" on page 79. Also see the "SSL, TLS notes" on page 266 and "Secure Sockets Layer" on page 73 for more information about SSL and certificates.

This parameter effectively enables the -Z switch.

-m mechanism
Use mechanism to specify the SASL mechanism to be used to bind to the server. The ldap_sasl_bind_s() API will be used. The -m parameter is ignored if -V 2 is set. If -m is not specified, simple authentication is used.

-M Manage referral objects as regular entries.

-n newpassword 1 ?
Specifies the new password. Use the ? to generate a password prompt. Using this prompt prevents your password from being visible through the ps command.

-N certificate
Specify the label associated with the client certificate in the key database file. If the LDAP server is configured to perform server authentication only, a client certificate is not required. If the LDAP server is configured to perform client and server Authentication, a client certificate might be required. certificate is not required if a default certificate/private key pair has been designated as the default. Similarly, certificate is not required if there is a single certificate/private key pair in the designated key database file. This parameter is ignored if neither -Z nor -K is specified.

-O maxhops
Specify maxhops to set the maximum number of hops that the client library takes when chasing referrals. The default hopcount is 10.

-p ldapport
Specify an alternate TCP port where the ldap server is listening. The default LDAP port is 389. If -p is not specified and -Z is specified, the default LDAP SSL port 636 is used.

-P keyfilepw
Specify the key database password. This password is required to access the encrypted information in the key database file, which may include one or more private keys. If a password stash file is associated with the key
database file, the password is obtained from the password stash file, and the -P parameter is not required. This parameter is ignored if neither -Z nor -K is specified.

-R Specifies that referrals are not to be automatically followed.

-U username
Specifies the username. This is required with -m DIGEST-MD5 and ignored when any other mechanism is used. The value username depends on what attribute the server is configured to use. It might be a uid or any other value that is used to locate the entry.

-v Use verbose mode, with many diagnostics written to standard output.

-V version
Specifies the LDAP version to be used by ldapchangepwd when it binds to the LDAP server. By default, an LDAP V3 connection is established. To explicitly select LDAP V3, specify -V 3. Specify -V 2 to run as an LDAP V2 application. An application, like ldapchangepwd, selects LDAP V3 as the preferred protocol by using ldap_init instead of ldap_open.

-w passwd |?
Use passwd as the password for authentication. Use the ? to generate a password prompt. Using this prompt prevents your password from being visible through the ps command.

-y proxydn
Specifies the DN to be used for proxied authorization.

-Y Use a secure TLS connection to communicate with the LDAP server. The -Y option is only supported when IBM’s GSKit, is installed.

-Z Use a secure SSL connection to communicate with the LDAP server. The -Z option is only supported when the SSL component entry, as provided by IBM's GSKit, is installed.

-? Displays the syntax help for ldapchangepwd.

Examples
The following command,
ldapchangepwd -D cn=John Doe -w a1b2c3d4 -n wxyz9876
changes the password for the entry named with commonName "John Doe" from a1b2c3d4 to wxyz9876

SSL, TLS notes
To use the SSL or TLS-related functions associated with this utility, the SSL or TLS libraries and tools must be installed. The SSL or TLS libraries and tools are provided with IBM’s Global Security Kit (GSKit), which includes security software developed by RSA Security Inc.

Note: For information regarding the use of 128-bit and triple DES encryption by LDAP applications, including the LDAP sample programs, see "LDAP_SSL" in the IBM Directory C-Client SDK Programming Reference. This section describes the steps required to build the sample programs and your applications so they can use SSL with the strongest encryption algorithms available.

See the makefile associated with the sample programs for more information on linking an LDAP application so that it has access to 128-bit and triple-DES encryption algorithms.
The content of a client’s key database file is managed with the gsk7ikm utility. For more information on this Java utility, see “Using gsk7ikm” on page 79. The gsk7ikm utility is used to define the set of trusted certification authorities (CAs) that are to be trusted by the client. By obtaining certificates from trusted CAs, storing them in the key database file, and marking them as ‘trusted’, you can establish a trust relationship with LDAP servers that use ‘trusted’ certificates issued by one of the trusted CAs. The gsk7ikm utility can also be used to obtain a client certificate, so that client and server authentication can be performed.

If the LDAP servers accessed by the client use server authentication only, it is sufficient to define one or more trusted root certificates in the key database file. With server authentication, the client can be assured that the target LDAP server has been issued a certificate by one of the trusted CAs. In addition, all LDAP transactions that flow over the SSL or TLS connection with the server are encrypted including the LDAP credentials that are supplied on the ldap_bind or ldap_simple_bind_s. For example, if the LDAP server is using a high-assurance VeriSign certificate, you should obtain a CA certificate from VeriSign, import it into your key database file, and mark it as trusted. If the LDAP server is using a self-signed server certificate, the administrator of the LDAP server can supply you with a copy of the server’s certificate request file. Import the certificate request file into your key database file and mark it as trusted.

If the LDAP servers accessed by the client use client and server authentication, it is necessary to:

• Define one or more trusted root certificates in the key database file. This allows the client to be assured that the target LDAP server has been issued a certificate by one of the trusted CAs. In addition, all LDAP transactions that flow over the SSL or TLS connection with the server are encrypted, including the LDAP credentials that are supplied on the ldap_bind or ldap_simple_bind_s.

• Create a key pair using gsk7ikm and request a client certificate from a CA. After receiving the signed certificate from the CA, store the certificate in the client key database file.

Diagnostics
Exit status is 0 if no errors occur. Errors result in a non-zero exit status and a diagnostic message being written to standard error.

See also
ldapadd, ldapdelete, ldapexop, ldapmodify, ldapmodrdn, ldapsearch

ldapdelete
The LDAP delete-entry tool

Synopsis
ldapdelete [-c] [-C charset] [-d debuglevel][[-D binddn] [-f file]
[-G realm] [-h ldaphost] [-i file] [-k] [-K keyfile] [-m mechanism]
[-M] [-n] [-N certificatename] [-0 maxops] [-p ldapport]
[-w passwd | ?] [-y proxydn][>-Y] [-z] [dn]...

Description
ldapdelete is a command-line interface to the ldap_delete library call.

ldapdelete opens a connection to an LDAP server, binds, and deletes one or more entries. If one or more Distinguished Name (DN) arguments are provided, entries
with those DNs are deleted. Each DN is a string-represented DN. If no DN arguments are provided, a list of DNs is read from standard input, or from file if the -i flag is used.

To display syntax help for `ldapdelete`, type:

```
ldapdelete -?
```

**Options**

- **-c**  
  Continuous operation mode. Errors are reported, but `ldapdelete` continues with modifications. Otherwise the default action is to exit after reporting an error.

- **-C charset**  
  Specifies that the DNs supplied as input to the `ldapdelete` utility are represented in a local character set, as specified by charset. Use `-C charset` to override the default, where strings must be supplied in UTF-8. See “IANA character sets supported by platform” on page 347 for the specific charset values that are supported for each operating system platform. Note that the supported values for charset are the same values supported for the charset tag that is optionally defined in Version 1 LDIF files.

- **-d debuglevel**  
  Set the LDAP debugging level to debuglevel. See “Server debug mode” on page 329 for information about debug levels.

- **-D binddn**  
  Use `binddn` to bind to the LDAP directory. `binddn` is a string-represented DN. When used with `-m DIGEST-MD5`, it specifies the authorization ID. It can be either a DN or an authzId string that starts with "u:" or "dn:"

- **-f file**  
  Read a series of lines from file, performing one LDAP delete for each line in the file. Each line in the file should contain a single distinguished name.

- **-G realm**  
  Specify the name of the realm. When used with the `-m DIGEST-MD5`, the value is passed to the server during the bind.

- **-h ldaphost**  
  Specify an alternate host on which the ldap server is running.

- **-i file**  
  Read a series of lines from file, performing one LDAP delete for each line in the file. Each line in the file should contain a single distinguished name.

- **-k**  
  Specifies to use server administration control.

- **-K keyfile**  
  Specify the name of the SSL or TLS key database file with default extension of `kdb`. If the key database file is not in the current directory, specify the fully-qualified key database filename. If a key database filename is not specified, this utility will first look for the presence of the SSL_KEYRING environment variable with an associated filename. If the SSL_KEYRING environment variable is not defined, the default keyring file will be used, if present.

  A default keyring file that is, ldapkey.kdb, and the associated password stash file that is, ldapkey.sth, are installed in the `/lib` directory under LDAPHOME, where LDAPHOME is the path to the installed LDAP support. LDAPHOME varies by operating system platform:
- AIX operating systems - /usr/ldap
- HP-UX operating systems - /usr/IBMldap
- Linux operating systems - /usr/ldap
- Solaris operating systems - /opt/IBMldapc
- Windows operating systems - c:\Program Files\IBM\LDAP

**Note:** This is the default install location. The actual LDAPHOME is determined during installation.

See *IBM Directory C-Client SDK Programming Reference* for more information about default key database files, and default Certificate Authorities.

If a key ring database file cannot be located, a "hard-coded" set of default trusted certificate authority roots is used. The key database file typically contains one or more certificates of certificate authorities (CAs) that are trusted by the client. These types of X.509 certificates are also known as trusted roots. For more information on managing an SSL or TLS key database, see "Using gsk7ikm" on page 79. Also see the "SSL, TLS notes" on page 270 and "Secure Sockets Layer" on page 73 for more information about SSL and certificates.

This parameter effectively enables the -Z switch.

- **-m mechanism**
  
  Use **mechanism** to specify the SASL mechanism to be used to bind to the server. The ldap_sasl_bind_s() API will be used. The -m parameter is ignored if -V 2 is set. If -m is not specified, simple authentication is used.

- **-M**
  
  Manage referral objects as regular entries.

- **-n**
  
  Show what would be done, but don’t actually modify entries. Useful for debugging in conjunction with -v.

- **-N certificateName**
  
  Specify the label associated with the client certificate in the key database file. If the LDAP server is configured to perform server authentication only, a client certificate is not required. If the LDAP server is configured to perform client and server Authentication, a client certificate might be required. certificateName is not required if a default certificate/private key pair has been designated as the default. Similarly, certificateName is not required if there is a single certificate/private key pair in the designated key database file. This parameter is ignored if neither -Z nor -K is specified.

- **-O maxhops**
  
  Specify **maxhops** to set the maximum number of hops that the client library takes when chasing referrals. The default hopcount is 10.

- **-p ldapport**
  
  Specify an alternate TCP port where the ldap server is listening. The default LDAP port is 389. If -p is not specified and -Z is specified, the default LDAP SSL port 636 is used.

- **-P keyfilepw**
  
  Specify the key database password. This password is required to access the encrypted information in the key database file, which may include one or more private keys. If a password stash file is associated with the key
database file, the password is obtained from the password stash file, and the -P parameter is not required. This parameter is ignored if neither -Z nor -K is specified.

-R Specifies that referrals are not to be automatically followed.

-s Use this option to delete the subtree rooted at the specified entry.

-U username

  Specifies the username. This is required with -m DIGEST-MD5 and ignored when any other mechanism is used. The value username depends on what attribute the server is configured to use. It might be a uid or any other value that is used to locate the entry.

-v Use verbose mode, with many diagnostics written to standard output.

-V Specifies the LDAP version to be used by ldapdelete when it binds to the LDAP server. By default, an LDAP V3 connection is established. To explicitly select LDAP V3, specify -V 3. Specify -V 2 to run as an LDAP V2 application. An application, like ldapdelete, selects LDAP V3 as the preferred protocol by using ldap_init instead of ldap_open.

-w passwd | ?

  Use passwd as the password for authentication. Use the ? to generate a password prompt. Using this prompt prevents your password from being visible through the ps command.

-y proxydn

  Specifies the DN to be used for proxied authorization.

-Y Use a secure TLS connection to communicate with the LDAP server. The -Y option is only supported when IBM’s GSKit, is installed.

-Z Use a secure SSL connection to communicate with the LDAP server. The -Z option is only supported when the SSL component entry, as provided by IBM’s GSKit, is installed.

-dn Specifies one or more DN arguments. Each DN should be a string-represented DN.

Examples

The following command,

1dapdelete "cn=Delete Me, o=University of Life, c=US"

attempts to delete the entry named with commonName "Delete Me" directly below the University of Life organizational entry. It might be necessary to supply a binddn and passwd for deletion to be allowed (see the -D and -w options).

Notes

If no DN arguments are provided, the ldapdelete command waits to read a list of DNs from standard input. To break out of the wait, use Ctrl+C or Ctrl+D.

SSL, TLS notes

To use the SSL or TLS -related functions associated with this utility, the SSL or TLS libraries and tools must be installed. The SSL or TLS libraries and tools are provided with IBM’s Global Security Kit (GSKit), which includes security software developed by RSA Security Inc.

Note: For information regarding the use of 128-bit and triple DES encryption by LDAP applications, including the LDAP sample programs, see “LDAP_SSL” in the IBM Directory C-Client SDK Programming Reference. This section describes the steps required to build the sample programs and your
applications so they can use SSL with the strongest encryption algorithms available.
See the makefile associated with the sample programs for more information on linking an LDAP application so that it has access to 128-bit and triple-DES encryption algorithms.

The content of a client’s key database file is managed with the gsk7ikm utility. For more information on this Java utility, see “Using gsk7ikm” on page 79 The gsk7ikm utility is used to define the set of trusted certification authorities (CAs) that are to be trusted by the client. By obtaining certificates from trusted CAs, storing them in the key database file, and marking them as ‘trusted’, you can establish a trust relationship with LDAP servers that use ‘trusted’ certificates issued by one of the trusted CAs. The gsk7ikm utility can also be used to obtain a client certificate, so that client and server authentication can be performed.

If the LDAP servers accessed by the client use server authentication only, it is sufficient to define one or more trusted root certificates in the key database file. With server authentication, the client can be assured that the target LDAP server has been issued a certificate by one of the trusted CAs. In addition, all LDAP transactions that flow over the SSL or TLS connection with the server are encrypted including the LDAP credentials that are supplied on the ldap_bind or ldap_simple_bind_s. For example, if the LDAP server is using a high-assurance VeriSign certificate, you should obtain a CA certificate from VeriSign, import it into your key database file, and mark it as trusted. If the LDAP server is using a self-signed server certificate, the administrator of the LDAP server can supply you with a copy of the server’s certificate request file. Import the certificate request file into your key database file and mark it as trusted.

If the LDAP servers accessed by the client use client and server authentication, it is necessary to:

- Define one or more trusted root certificates in the key database file. This allows the client to be assured that the target LDAP server has been issued a certificate by one of the trusted CAs. In addition, all LDAP transactions that flow over the SSL or TLS connection with the server are encrypted, including the LDAP credentials that are supplied on the ldap_bind or ldap_simple_bind_s.
- Create a key pair using gsk7ikm and request a client certificate from a CA. After receiving the signed certificate from the CA, store the certificate in the client key database file.

Diagnostics
Exit status is 0 if no errors occur. Errors result in a non-zero exit status and a diagnostic message being written to standard error.

See also
ldapadd, ldapchangePWD, ldapexop, ldapmodify, ldapmodrdn, ldapsearch

ldapexop
The LDAP extended operation tool

Synopsis
Description
The ldapexop utility is a command-line interface that provides the capability to bind to a directory and issue a single extended operation along with any data that makes up the extended operation value.

The ldapexop utility supports the standard host, port, SSL, TLS, and authentication options used by all of the LDAP client utilities. In addition, a set of options is defined to specify the operation to be performed, and the arguments for each extended operation.

To display syntax help for ldapexop, type:
ldapexop -?

or
ldapexop -help

Options
The options for the ldapexop command are divided into two categories:
1. General options that specify how to connect to the directory server. These options must be specified before operation specific options.
2. Extended operation option that identifies the extended operation to be performed.

General options: These options specify the methods of connecting to the server and must be specified before the -op option.
-C charset
Specifies that the DNs supplied as input to the ldapexop utility are represented in a local character set, as specified by charset. Use -C charset to override the default, where strings must be supplied in UTF-8. See “IANA character sets supported by platform” on page 347 for the specific charset values that are supported for each operating system platform. Note that the supported values for charset are the same values supported for the charset tag that is optionally defined in Version 1 LDIF files.
-d debuglevel
Set the LDAP debugging level to debuglevel. See “Server debug mode” on page 329 for information about debug levels.
-D binddn
Use binddn to bind to the LDAP directory. binddn is a string-represented DN. When used with -m DIGEST-MD5, it specifies the authorization ID. It can be either a DN or an authzId string that starts with "u:" or "dn:"
-e Displays the ldap library version information and then exits.
-G realm
Specify the name of the realm. When used with the -m DIGEST-MD5, the value is passed to the server during the bind.
-h ldaphost
Specify an alternate host on which the ldap server is running.
-help Displays the usage
-K keyfile
Specify the name of the SSL or TLS key database file with default extension of kdb. If the key database file is not in the current directory, specify the fully-qualified key database filename. If a key database
filename is not specified, this utility will first look for the presence of the
SSL_KEYRING environment variable with an associated filename. If the
SSL_KEYRING environment variable is not defined, the default keyring file
will be used, if present.

A default keyring file that is, ldapkey.kdb, and the associated password
stash file that is, ldapkey.sth, are installed in the /lib directory under
LDAPHOME, where LDAPHOME is the path to the installed LDAP
support. LDAPHOME varies by operating system platform:

- AIX operating systems - /usr/ldap
- HP-UX operating systems - /usr/IBMldap
- Linux operating systems - /usr/ldap
- Solaris operating systems - /opt/IBMldapc
- Windows operating systems - c:\Program Files\IBM\LDAP

Note: This is the default install location. The actual LDAPHOME is
determined during installation.

See IBM Directory C-Client SDK Programming Reference for more information
about default key database files, and default Certificate Authorities.

If a keyring database file cannot be located, a "hard-coded" set of default
trusted certificate authority roots is used. The key database file typically
contains one or more certificates of certificate authorities (CAs) that are
trusted by the client. These types of X.509 certificates are also known as
trusted roots. For more information on managing an SSL or TLS key
database, see "Using gsk7ikm" on page 79. Also see the "SSL, TLS notes"
on page 278 and "Secure Sockets Layer" on page 73 for more information
about SSL and certificates.

This parameter effectively enables the -Z switch.

-m mechanism
Use mechanism to specify the SASL mechanism to be used to bind to the
server. The ldap_sasl_bind_s() API will be used. The -m parameter is
ignored if -V 2 is set. If -m is not specified, simple authentication is used.

-N certificatename
Specify the label associated with the client certificate in the key database
file. If the LDAP server is configured to perform server authentication only,
a client certificate is not required. If the LDAP server is configured to
perform client and server Authentication, a client certificate might be
required. certificatename is not required if a default certificate/private key
pair has been designated as the default. Similarly, certificatename is not
required if there is a single certificate/private key pair in the designated
key database file. This parameter is ignored if neither -Z nor -K is
specified.

-p ldapport
Specify an alternate TCP port where the ldap server is listening. The
default LDAP port is 389. If -p is not specified and -Z is specified, the
default LDAP SSL port 636 is used.

-P keyfilepw
Specify the key database password. This password is required to access the
encrypted information in the key database file, which may include one or
more private keys. If a password stash file is associated with the key
database file, the password is obtained from the password stash file, and
the \texttt{-P} parameter is not required. This parameter is ignored if neither \texttt{-Z}
nor \texttt{-K} is specified.

\texttt{-?} Displays the usage.

\texttt{-U username}

\begin{itemize}
\item Specifies the username. This is required with \texttt{-m DIGEST-MD5} and ignored
\item when any other mechanism is used. The value \texttt{username} depends on what
\item attribute the server is configured to use. It might be a uid or any other
\item value that is used to locate the entry.
\end{itemize}

\texttt{-v} Use verbose mode, with many diagnostics written to standard output.

\texttt{-w passwd | ?}

\begin{itemize}
\item Use \texttt{passwd} as the password for authentication. Use the \texttt{?} to generate a
\item password prompt. Using this prompt prevents your password from being
\item visible through the \texttt{ps} command.
\end{itemize}

\texttt{-Y} Use a secure TLS connection to communicate with the LDAP server. The \texttt{-Y}
\begin{itemize}
\item option is only supported when IBM’s GSKit, is installed.
\end{itemize}

\texttt{-Z} Use a secure SSL connection to communicate with the LDAP server. The \texttt{-Z}
\begin{itemize}
\item option is only supported when the SSL component entry, as provided by
\item IBM’s GSKit, is installed.
\end{itemize}

\textbf{Extended operations option:} The \texttt{-op} extended-op option identifies the extended
\begin{itemize}
\item operation to be performed. The extended operation can be one of the following
\item values:
\end{itemize}

\begin{itemize}
\item \texttt{cascdrepl \_action\langle actionvalue\rangle \_rc\langle contextDN\rangle [options]}: cascading control
\item replication extended operation. The requested action is applied to the specified
\item server and also passed along to all replicas of the given subtree. If any of these
\item are forwarding replicas, they pass the extended operation along to their replicas.
\item The operation cascades over the entire replication topology.
\item \texttt{-action \{quiesce \_ unquiesce \_ replnow \_ wait\}}
\item This is a required attribute that specifies the action to be performed.
\item \texttt{quiesce}
\item No further updates are allowed, except by replication.
\item \texttt{unquiesce}
\item Resume normal operation, client updates are accepted.
\item \texttt{replnow}
\item Replicate all queued changes to all replica servers as soon as
\item possible, regardless of schedule.
\item \texttt{wait}
\item Wait for all updates to be replicated to all replicas.
\item \texttt{-rc contextDN}
\item This is a required attribute that specifies the root of the subtree.
\item \texttt{options}
\item \texttt{-timeout secs}
\item This is an optional attribute that if present, specifies the timeout
\item period in seconds. If not present, or 0, the operation waits
\item indefinitely.
\end{itemize}

\textbf{Example:}

\begin{verbatim}
ldapexop -op cascrepl -action -quiesce -rc "o=acme, c=us" -timeout 60
\end{verbatim}
- clearlog -log<logname>: clear log file extended operation
  -log {audit | bulkload | cli | slapd | ibmdiradm | adminDaemon | debug}
  This is a required attribute that specifies the log file to be cleared.

Example:
ldapexop -op clearlog -log audit

- controlqueue -skip<skipvalue> -ra<agreementDN>: control queue extended operation
  -skip {all | change-id}
  This is a required attribute.
  - all indicates to skip all pending changes for this agreement.
  - change-id identifies the single change to be skipped. If the server is
    not currently replicating this change, the request fails.

  -ra agreementDN
  This is a required attribute that specifies the DN of the replication
  agreement.

Examples:
ldapexop -op controlqueue -skip all -ra "cn=server3,
  ibm-replicaSubentry=master1-id,ibm-replicaGroup=default,
  o=acme,c=us"
ldapexop -op controlqueue -skip 2185 -ra "cn=server3,
  ibm-replicaSubentry=master1-id,ibm-replicaGroup=default,
  o=acme,c=us"

- controlrepl -action<actionvalue> -rc<contextDN> | -ra<agreementDN>: control
  replication extended operation
  -action {suspend | resume | replnow}
  This is a required attribute that specifies the action to be performed.

  -rc contextDN | -ra agreementDN
  The -rc contextDN is the DN of the replication context. The action is
  performed for all agreements for this context. The -ra agreementDN is the
  DN of the replication agreement. The action is performed for the
  specified replication agreement.

Example:
ldapexop -op controlrepl -action suspend -ra "cn=server3,
  ibm-replicaSubentry=master1-id,ibm-replicaGroup=default,
  o=acme,c=us"

- getattributes -attrType<type> -matches bool <value>
  -attrType {operational | language_tag | attribute_cache | unique |
    configuration}
  This is a required attribute that specifies type of attribute being
  requested.

  -matchess bool {true | false}
  Specifies whether the list of attributes returned matches the attribute
  type specified by the -attrType< option.

Example:
ldapexop -op getattributes -attrType unique -matches bool true

Returns a list of all attributes that have been designated as unique attributes.
ldapexop -op getattributes -attrType unique -matches bool false

Returns a list of all attributes that have been not been designated as unique attributes.

- **getlogsize -log<logname>**: request log file size extended operation
  
  ```
 -log {audit | bulkload | cli | slapd | ibmdiradm | adminDaemon | debug}
  ```
  
  This is a required attribute that specifies the log file to be queried. The size of the log file, in lines, is written to standard output.

  **Example**:
  
  ```
 ldapexop -op getlogsize -log slapd
 2000 lines
  ```

- **getusertype**: request user type extended operation
  
  This extended operation returns the user type based on the bound DN.

  **Example**:
  
  ```
 ldapexop -D<AdminDN> -w<Adminpw> -op getusertype
  ```

  returns:

  User : root_administrator
  Role(s) : server_config_administrator directory_administrator

  See “User type and user roles for extended operations” on page 279 for more information.

- **quiesce -rc<contextDN>[options]**: quiesce or unquiesce subtree extended operation
  
  ```
 -rc contextDN
  ```
  
  This is a required attribute that specifies the DN of the replication context (subtree) to be quiesced or unquiesced.

  **options**

  ```
 -end
  ```
  
  This is an optional attribute that if present, specifies to unquiesce the subtree. If not specified the default is to quiesce the subtree.

  **Examples**:
  
  ```
 ldapexop -op quiesce -rc "o=acme,c=us"
  ```

  ```
 ldapexop -op quiesce -end -rc "o=ibm,c=us"
  ```

- **readconfig -scope<scopevalue>**: reread configuration file extended operation
  
  ```
 -scope {entire | single<entry DN><attribute> | entry <entry DN> | subtree <entry DN>}
  ```
  
  This is a required attribute.

  - **entire** indicates to reread the entire configuration file.
  - **single entry DN><attribute>** means to read the single entry and attribute specified.
  - **entry entry DN>** means to read the entry specified.
  - **subtree entry DN>** means to read the entry and the entire subtree under it.

  **Examples**:
  
  ```
 ldapexop -op readconfig -scope entire
  ```

  ```
 ldapexop -op readconfig -scope single "cn=configuration" ibm-slapdAdminPW
  ```
- **readlog -log <logname> -lines <value>:** request lines from log file extended operation
- **-log audit | bulkload | cli | slapd | ibmdiradm | debug**
  This is a required attribute that specifies the log file to be queried.
- **-lines {<first><last> | all}**
  This is a required attribute that specifies either the first and last lines to be read from the file or all lines. Lines are numbered starting at 0. The specified lines are written to standard output.

**Examples:**
```
ldapexop -op readlog -log audit -lines 10 20
ldapexop -op readlog -log slapd -lines all
```
- **unbind {-dn<specificDN> | -ip<sourceIP> | -dn<specificDN> -ip<sourceIP> | all}:** disconnect connections based on DN, IP, DN/IP or disconnect all connections. All connections without any operations and all connections with operations on the work queue are ended immediately. If a worker is currently working on a connection, it is ended as soon as the worker completes that one operation.
  - **-dn<specificDN>**
    Issues a request to end a connection by DN only. This request results in the purging of all the connections bound on the specified DN.
  - **-ip<sourceIP>**
    Issues a request to end a connection by IP only. This request results in the purging of all the connections from the specified IP source.
  - **-dn<specificDN> -ip<sourceIP>**
    Issues a request to end a connection determined by a DN/IP pair. This request results in the purging of all the connections bound on the specified DN and from the specified IP source.
  - **-all**
    Issues a request to end all the connections. This request results in the purging of all the connections except the connection from where this request originated. This attribute cannot be used with the -D or -IP: attributes

**Examples:**
```
ldapexop -op unbind -dn cn=john
ldapexop -op unbind -ip 9.182.173.43
ldapexop -op unbind -dn cn=john -ip 9.182.173.43
ldapexop -op unbind -all
```
- **uniqueattr -a <attributeType>:** identify all nonunique values for a particular attribute.
  - **-a <attribute>**
    Specify the attribute for which all conflicting values are listed.
Note: Duplicate values for binary, operational, configuration attributes, and the objectclass attribute are not displayed. These attributes are not supported extended operations for unique attributes.

Example:
ldapexop -op uniqueattr -a "uid"

The following line is added to the configuration file under the 'cn=Directory,cn=RDBM Backends,cn=IBM Directory,cn=sv
Schema,cn=Configuration' entry for this extended operation
ibm-slapdPlugin:extendedop /bin/libback-rdbm.dll initUniqueAttr

Notes
If no DN arguments are provided, the ldapexop command waits to read a list of DNs from standard input. To break out of the wait, use Ctrl+C or Ctrl+D.

SSL, TLS notes
To use the SSL or TLS-related functions associated with this utility, the SSL or TLS libraries and tools must be installed. The SSL or TLS libraries and tools are provided with IBM's Global Security Kit (GSKit), which includes security software developed by RSA Security Inc.

Note: For information regarding the use of 128-bit and triple DES encryption by LDAP applications, including the LDAP sample programs, see "LDAP_SSL" in the IBM Directory C-Client SDK Programming Reference. This section describes the steps required to build the sample programs and your applications so they can use SSL or TLS with the strongest encryption algorithms available.

See the makefile associated with the sample programs for more information on linking an LDAP application so that it has access to 128-bit and triple-DES encryption algorithms.

The content of a client's key database file is managed with the gsk7ikm utility. For more information on this Java utility, see "Using gsk7ikm" on page 79. The gsk7ikm utility is used to define the set of trusted certification authorities (CAs) that are to be trusted by the client. By obtaining certificates from trusted CAs, storing them in the key database file, and marking them as 'trusted', you can establish a trust relationship with LDAP servers that use 'trusted' certificates issued by one of the trusted CAs. The gsk7ikm utility can also be used to obtain a client certificate, so that client and server authentication can be performed.

If the LDAP servers accessed by the client use server authentication only, it is sufficient to define one or more trusted root certificates in the key database file. With server authentication, the client can be assured that the target LDAP server has been issued a certificate by one of the trusted CAs. In addition, all LDAP transactions that flow over the SSL or TLS connection with the server are encrypted including the LDAP credentials that are supplied on the ldap_bind or ldap_simple_bind_s. For example, if the LDAP server is using a high-assurance VeriSign certificate, you should obtain a CA certificate from VeriSign, import it into your key database file, and mark it as trusted. If the LDAP server is using a self-signed server certificate, the administrator of the LDAP server can supply you with a copy of the server's certificate request file. Import the certificate request file into your key database file and mark it as trusted.

If the LDAP servers accessed by the client use client and server authentication, it is necessary to:
• Define one or more trusted root certificates in the key database file. This allows the client to be assured that the target LDAP server has been issued a certificate by one of the trusted CAs. In addition, all LDAP transactions that flow over the SSL or TLS connection with the server are encrypted, including the LDAP credentials that are supplied on the ldap_bind or ldap_simple_bind_s.

• Create a key pair using gsk7ikm and request a client certificate from a CA. After receiving the signed certificate from the CA, store the certificate in the client key database file.

Diagnostics
Exit status is 0 if no errors occur. Errors result in a non-zero exit status and a diagnostic message being written to standard error.

User type and user roles for extended operations
The following are the users and their roles for extended operations.

Root administrator: An administrative user whose simple and External with SSL or TLS bind credentials are stored under the cn=Configuration entry. This user’s Kerberos bind credentials (optional) are stored under the cn=Kerberos,cn=Configuration entry. This user’s Digest-MD5 bind credentials (optional) are stored under the cn=Digest,cn=Configuration entry. In addition, this type of user can bind to the Admin Daemon.

Roles:
Server configuration administrator
This user has unrestricted access to all information in the configuration backend and can start/stop the server. The user can issue dynamic configuration updates.

Directory administrator
This user has unrestricted access to directory data outside the configuration backend (schema, and RDBM backends). This user can search for one or two attributes in the configuration backend. This user may not have any authority to the operating specific backends (OS/400 system projection backend, z/OS RACF® SDBM).

Administrative group member: An administrative user whose simple, External with SSL or TLS, Kerberos (optional), and Digest-MD5 (optional) credentials are stored under an entry in the subtree cn=Admingroup,cn=Configuration. In addition, this type of user can bind to the Admin Daemon.

Roles:
Server configuration group member
This user has access to all configuration information except the administrator and admin group credentials. This user has the ability to start and stop the server. The user does not have the ability to add or remove members from the administrative group. The user is not be able to modify the DN, password, Kerberos ID, or Digest-MD5 ID of any administrative group member entry under cn=AdminGroup,cn=Configuration. If the user is an Administrative Group Member the user is able to modify his own password, but is not able to modify his own DN, Kerberos ID, or Digest-MD5 ID. This user is also not able to see the password of any other administrative group member or the IBM Tivoli Directory Server administrator. In addition, this user is not able to add, delete, or modify the audit log setting (the entire cn=Audit,cn=Configuration entry) or clear the audit log. The user is not
able to add or delete the cn=Kerberos,cn=Configuration or
cn=Digest,cn=Configuration entries, but is able to search all attributes
under these entries. The user is able to modify all attributes under these
entries except the Kerberos and Digest-MD5 root administrator bind
attributes. These users are not able to search or modify the
ibm-slapdAdminDN, ibm-slapdAdminGroupEnabled or
ibm-slapdAdminPW attributes under the cn=Configuration entry. The user
can issue dynamic configuration updates.

Directory administrator
This user has unrestricted access to directory data outside the configuration
backend (schema, and RDBM backends). This user can search for one or
two attributes in the configuration backend. This user may not have any
authority to the operating specific backends (OS/400 system projection
backend, z/OS RACF SDBM).

LDAP user type: A regular LDAP user whose credentials are stored in the DIT of
the LDAP Server. The user’s simple and external with SSL or TLS bind DN is the
DN of an entry in the DIT. The user’s password is stored in the userpassword
attribute of this entry.

Roles:
LDAP User Role
A user having almost no access to the configuration backend. This user can
search for one or two attributes in the configuration backend. The user’s
access to directory data (schema, and RDBM backends) is controlled by
ACLs.

See also
ldapadd, ldapchangepw, ldapdelete, ldapmodify, ldapmodrdn, ldapsearch

Idapmodify, ldapadd
The LDAP modify-entry and LDAP add-entry tools

Synopsis

```
ldapmodify [-a] [-b] [-c] [-C charset] [-d debuglevel][-D binddn][-g]
```

```
ldapadd [-a] [-b] [-c] [-C charset] [-d debuglevel][-D binddn][-g]
```

Description
Idapmodify is a command-line interface to the ldap_modify and ldap_add library
calls. ldapadd is implemented as a renamed version of ldapmodify. When invoked
as ldapadd, the -a (add new entry) flag is turned on automatically.

Idapmodify opens a connection to an LDAP server, and binds to the server. You
can use ldapmodify to modify or add entries. The entry information is read from
standard input or from file through the use of the -i option.

To display syntax help for ldapmodify or ldapadd, type
ldapmodify -?

ldapadd -?
or
ldapadd -?

Options

-a Add new entries. The default action for ldapmodify is to modify existing entries. If invoked as ldapadd, this flag is always set.

-b Assume that any values that start with a `/' are binary values and that the actual value is in a file whose path is specified in place of the valuer.

-c Continuous operation mode. Errors are reported, but ldapmodify continues with modifications. Otherwise the default action is to exit after reporting an error.

-C charset
Specifies that strings supplied as input to the ldapmodify and ldapadd utilities are represented in a local character set as specified by charset, and must be converted to UTF-8. When the ldapmodify and ldapadd records are received from standard input, the specified charset value is used to convert the attribute values that are designated as strings that is, the attribute types are followed by a single colon. If the records are received from an LDIF file that contains a charset tag, the charset tag in the LDIF file overrides the charset value specified on the command-line. See “IANA character sets supported by platform” on page 347 for the specific charset values that are supported for each operating system platform. Note that the supported values for charset are the same values supported for the charset tag that is optionally defined in Version 1 LDIF files.

-d debuglevel
Set the LDAP debugging level to debuglevel. See “Server debug mode” on page 329 for information about debug levels.

-D binddn
Use binddn to bind to the LDAP directory. binddn is a string-represented DN. When used with -m DIGEST-MD5, it specifies the authorization ID. It can be either a DN or an authzId string that starts with "u:" or "dn:"

Note: -D binddn -w passwd does not call bind functions on superuser DNs.

-g Specifies not to strip the trailing spaces on attribute values.

-G realm
Specify the name of the realm. When used with the -m DIGEST-MD5, the value is passed to the server during the bind.

-h ldaphost
Specify an alternate host on which the ldap server is running.

-i file Read the entry modification information from an LDIF file instead of from standard input. If an LDIF file is not specified, you must use standard input to specify the update records in LDIF format.

-k Specifies to use server administration control.

-K keyfile
Specify the name of the SSL or TLS key database file with default extension of kdb. If the key database file is not in the current directory, specify the fully-qualified key database filename. If a key database filename is not specified, this utility will first look for the presence of the
SSL_KEYRING environment variable with an associated filename. If the
SSL_KEYRING environment variable is not defined, the default keyring file
will be used, if present.

A default keyring file that is, ldapkey.kdb, and the associated password
stash file that is, ldapkey.sth, are installed in the /lib directory under
LDAPHOME, where LDAPHOME is the path to the installed LDAP
support. LDAPHOME varies by operating system platform:

- AIX, Linux operating systems- /usr/ldap
- HP-UX operating systems- /usr/IBMldap
- Solaris operating systems - /opt/IBMldap
- Windows operating systems - c:\Program Files\IBM\LDAP

Note: This is the default install location. The actual LDAPHOME is
determined during installation.

See the IBM Directory C-Client SDK Programming Reference for more
information about default key database files, and default Certificate
Authorities.

If a keyring database file cannot be located, a "hard-coded" set of default
trusted certificate authority roots is used. The key database file typically
contains one or more certificates of certificate authorities (CAs) that are
trusted by the client. These types of X.509 certificates are also known as
trusted roots. For more information on managing an SSL or TLS key
database, see "Using gsk7ikm" on page 79. Also see the "SSL, TLS notes"
on page 285 and "Secure Sockets Layer" on page 73 for more information
about SSL and certificates.

This parameter effectively enables the -Z switch.

-m mechanism
Use mechanism to specify the SASL mechanism to be used to bind to the
server. The ldap_sasl_bind_s() API is used. The -m parameter is ignored if
-V 2 is set. If -m is not specified, simple authentication is used.

-M Manage referral objects as regular entries.

-N certificatename
Specify the label associated with the client certificate in the key database
file. If the LDAP server is configured to perform server authentication only,
a client certificate is not required. If the LDAP server is configured to
perform client and server Authentication, a client certificate might be
required. certificatename is not required if a default certificate/private key
pair has been designated as the default. Similarly, certificatename is not
required if there is a single certificate/private key pair in the designated
key database file. This parameter is ignored if neither -Z nor -K is
specified.

-O maxhops
Specify maxhops to set the maximum number of hops that the client
library takes when chasing referrals. The default hopcount is 10.

-p ldapport
Specify an alternate TCP port where the ldap server is listening. The
default LDAP port is 389. If -p is not specified and -Z is specified, the
default LDAP SSL port 636 is used.
-P keyfilepw
   Specify the key database password. This password is required to access the encrypted information in the key database file, which might include one or more private keys. If a password stash file is associated with the key database file, the password is obtained from the password stash file, and the -P parameter is not required. This parameter is ignored if neither -Z nor -K is specified.

-r  Replace existing values by default.
-R  Specifies that referrals are not to be automatically followed.
-U username
   Specifies the username. This is required with -m DIGEST-MD5 and ignored when any other mechanism is used. The value username depends on what attribute the server is configured to use. It might be a uid or any other value that is used to locate the entry.

-v  Use verbose mode, with many diagnostics written to standard output.
-V  Specifies the LDAP version to be used by ldapmodify when it binds to the LDAP server. By default, an LDAP V3 connection is established. To explicitly select LDAP V3, specify -V 3. Specify -V 2 to run as an LDAP V2 application. An application, like ldapmodify, selects LDAP V3 as the preferred protocol by using ldap_init instead of ldap_open.

-w passwd |?
   Use passwd as the password for authentication. Use the ? to generate a password prompt. Using this prompt prevents your password from being visible through the ps command.

-y proxydn
   Specifies the DN to be used for proxied authorization.

-Y  Use a secure TLS connection to communicate with the LDAP server. The -Y option is only supported when IBM’s GSKit, is installed.

-Z  Use a secure SSL connection to communicate with the LDAP server. The -Z option is only supported when the SSL component entry, as provided by IBM’s GSKit, is installed.

**Input format**
The contents of file (or standard input if no -i flag is given on the command line) should conform to the LDIF format.

**Alternative input format**
An alternative input format is supported for compatibility with older versions of ldapmodify. This format consists of one or more entries separated by blank lines, where each entry looks like the following:

Distinguished Name (DN)
attr=value

[attr=value ...]

where attr is the name of the attribute and value is the value.

By default, values are added. If the -r command line flag is given, the default is to replace existing values with the new one. It is permissible for a given attribute to
appear more than once, for example, to add more than one value for an attribute. Also note that you can use a trailing `'\n'` to continue values across lines and preserve new lines in the value itself.

attr should be preceded by a `-` to remove a value. The `=` and value should be omitted to remove an entire attribute.

attr should be preceded by a `+` to add a value in the presence of the `-r` flag.

Examples
Assuming that the file `/tmp/entrymods` exists and has the following contents:

```plaintext
dn: cn=Modify Me, o=University of Higher Learning, c=US

changetype: modify
replace: mail

mail: modme@student.of.life.edu

- add: title
title: Grand Poobah

- add: jpegPhoto
jpegPhoto: /tmp/modme.jpeg

- delete: description
```

the command:

```
ldapmodify -b -r -i /tmp/entrymods
```

will replace the contents of the Modify Me entry’s mail attribute with the value `modme@student.of.life.edu`, add a title of Grand Poobah, and the contents of the file `/tmp/modme.jpeg` as a jpegPhoto, and completely remove the description attribute. These same modifications can be performed using the older `ldapmodify` input format:

```plaintext
cn=Modify Me, o=University of Higher Learning, c=US

mail=modme@student.of.life.edu
+title=Grand Poobah
+jpegPhoto=/tmp/modme.jpeg
-description
```

and the command:

```
ldapmodify -b -r -i /tmp/entrymods
```

Assuming that the file `/tmp/newentry` exists and has the following contents:
dn: cn=John Doe, o=University of Higher Learning, c=US
objectClass: person
cn: John Doe
cn: Johnny
sn: Doe
title: the world's most famous mythical person
mail: johndoe@student.of.life.edu
uid: jdoe

the command:
ldapadd -i /tmp/entrymods

adds a new entry for John Doe, using the values from the file /tmp/newentry.

Assuming that the file /tmp/newentry exists and has the contents:

dn: cn=John Doe, o=University of Higher Learning, c=US
changetype: delete

the command:
ldapmodify -i /tmp/entrymods

removes John Doe's entry.

Notes
If entry information is not supplied from file through the use of the -i option, the
ldapmodify command will wait to read entries from standard input. To break out
of the wait, use Ctrl+C or Ctrl+D.

SSL, TLS notes
To use the SSL or TLS-related functions associated with this utility, the SSL or TLS
libraries and tools must be installed. The SSL or TLS libraries and tools are
provided with IBM's Global Security Kit (GSKit), which includes security software
developed by RSA Security Inc.

Note: For information regarding the use of 128-bit and triple DES encryption by
LDAP applications, including the LDAP sample programs, see "LDAP_SSL"
in the IBM Directory C-Client SDK Programming Reference. This section
describes the steps required to build the sample programs and your
applications so they can use SSL or TLS with the strongest encryption
algorithms available.
See the makefile associated with the sample programs for more information on
linking an LDAP application so that it has access to 128-bit and triple-DES
encryption algorithms.

The content of a client's key database file is managed with the gsk7ikm utility. For
more information on this Java utility, see "Using gsk7ikm" on page 79. The
gsk7ikm utility is used to define the set of trusted certification authorities (CAs)
that are to be trusted by the client. By obtaining certificates from trusted CAs,
storing them in the key database file, and marking them as 'trusted', you can
establish a trust relationship with LDAP servers that use ‘trusted’ certificates issued by one of the trusted CAs. The gsk7ikm utility can also be used to obtain a client certificate, so that client and server authentication can be performed.

If the LDAP servers accessed by the client use server authentication only, it is sufficient to define one or more trusted root certificates in the key database file. With server authentication, the client can be assured that the target LDAP server has been issued a certificate by one of the trusted CAs. In addition, all LDAP transactions that flow over the SSL or TLS connection with the server are encrypted including the LDAP credentials that are supplied on the ldap_bind or ldap_simple_bind_s. For example, if the LDAP server is using a high-assurance VeriSign certificate, you should obtain a CA certificate from VeriSign, import it into your key database file, and mark it as trusted. If the LDAP server is using a self-signed server certificate, the administrator of the LDAP server can supply you with a copy of the server’s certificate request file. Import the certificate request file into your key database file and mark it as trusted.

If the LDAP servers accessed by the client use client and server authentication, it is necessary to:

- Define one or more trusted root certificates in the key database file. This allows the client to be assured that the target LDAP server has been issued a certificate by one of the trusted CAs. In addition, all LDAP transactions that flow over the SSL or TLS connection with the server are encrypted, including the LDAP credentials that are supplied on the ldap_bind or ldap_simple_bind_s.
- Create a key pair using gsk7ikm and request a client certificate from a CA. After receiving the signed certificate from the CA, store the certificate in the client key database file.

**Diagnostics**
Exit status is 0 if no errors occur. Errors result in a non-zero exit status and a diagnostic message being written to standard error.

**See also**
ldapchangepwd, ldapdelete, ldapexop, ldapmodrdn, ldapsearch

**ldapmodrdn**
The LDAP modify-entry RDN tool

**Synopsis**

```bash
ldapmodrdn [-c] [-C charset] [-d debuglevel][[-D binddn]
[-G realm] [-h ldaphost] [-i file] [-k] [-K keyfile]
[-m mechanism] [-M] [-n] [-N certificatename] [-0 hopcount]
[-w passwd | ?] [-y proxydn] [-Y] [-Z] [dn newrdn | [-i file]]
```

**Description**

`ldapmodrdn` is a command-line interface to the ldap_modrdn library call.

`ldapmodrdn` opens a connection to an LDAP server, binds, and modifies the RDN of entries. The entry information is read from standard input, from file through the use of the `-f` option, or from the command-line pair `dn` and `rdn`.

See LDAP Distinguished Names for information about RDNs (Relative Distinguished Names) and DNs (Distinguished Names).

To display syntax help for `ldapmodrdn`, type:
ldapmodrdn -?

Options

- **c**  
  Continuous operation mode. Errors are reported, but *ldapmodrdn* continues with modifications. Otherwise the default action is to exit after reporting an error.

- **C charset**  
  Specifies that the strings supplied as input to the *ldapmodrdn* utility are represented in a local character set, as specified by charset. Use `-C charset` to override the default, where strings must be supplied in UTF-8. See "IANA character sets supported by platform" on page 347 for the specific charset values that are supported for each operating system platform. Note that the supported values for charset are the same values supported for the charset tag that is optionally defined in Version 1 LDIF files.

- **d debuglevel**  
  Set the LDAP debugging level to debuglevel. See "Server debug mode" on page 329 for information about debug levels.

- **D binddn**  
  Use *binddn* to bind to the LDAP directory. *binddn* is a string-represented DN. When used with -m DIGEST-MD5, it specifies the authorization ID. It can be either a DN or an authzId string that starts with "u:" or "dn:".

- **G realm**  
  Specify the name of the realm. When used with the -m DIGEST-MD5, the value is passed to the server during the bind.

- **h ldaphost**  
  Specify an alternate host on which the ldap server is running.

- **i file**  
  Read the entry modification information from file instead of from standard input or the command-line (by specifying rdn and newrdn). Standard input can be supplied from a file, as well ("< file").

- **k**  
  Specifies to use server administration control.

- **K keyfile**  
  Specify the name of the SSL or TLS key database file (with default extension of "kdb"). If the key database file is not in the current directory, specify the fully-qualified key database filename. If a key database filename is not specified, this utility will first look for the presence of the SSL_KEYRING environment variable with an associated filename. If the SSL_KEYRING environment variable is not defined, the default keyring file will be used, if present.

A default keyring file (that is, ldapkey.kdb) and the associated password stash file (that is, ldapkey.sth) are installed in the /lib directory under LDAPHOME, where LDAPHOME is the path to the installed LDAP support. LDAPHOME varies by operating system platform:

- AIX, Linux operating systems - /usr/ldap
- HP-UX operating systems - /usr/IBMIdap
- Solaris operating systems - /opt/IBMIdapc
- Windows operating systems - c:\Program Files\IBM\LDAP (Note: This is the default install location. The actual LDAPHOME is determined during installation.)

See IBM Directory C-Client SDK Programming Reference for more information about default key database files, and default Certificate Authorities.
If a keyring database file cannot be located, a "hard-coded" set of default trusted certificate authority roots is used. The key database file typically contains one or more certificates of certificate authorities (CAs) that are trusted by the client. These types of X.509 certificates are also known as trusted roots. For more information on managing an SSL or TLS key database, see “Using gsk7ikm” on page 79. Also see the “SSL, TLS notes” on page 289 and “Secure Sockets Layer” on page 73 for more information about SSL and certificates.

This parameter effectively enables the -Z switch.

-\texttt{m} \textit{mechanism}

Use \textit{mechanism} to specify the SASL mechanism to be used to bind to the server. The ldap_sasl_bind_s() API is used. The -\texttt{m} parameter is ignored if -V 2 is set. If -\texttt{m} is not specified, simple authentication is used.

-\texttt{M}

Manage referral objects as regular entries.

-\texttt{n}

Show what would be done, but don’t actually modify entries. Useful for debugging in conjunction with -v.

-\texttt{N} \textit{certificate}\textit{name}

Specify the label associated with the client certificate in the key database file. Note that if the LDAP server is configured to perform server authentication only, a client certificate is not required. If the LDAP server is configured to perform client and server Authentication, a client certificate might be required. \textit{certificate}\textit{name} is not required if a default certificate/private key pair has been designated as the default. Similarly, \textit{certificate}\textit{name} is not required if there is a single certificate/private key pair in the designated key database file. This parameter is ignored if neither -Z nor -K is specified.

-\texttt{O} \textit{hopcount}

Specify \textit{hopcount} to set the maximum number of hops that the client library takes when chasing referrals. The default hopcount is 10.

-\texttt{p} \textit{ldapport}

Specify an alternate TCP port where the ldap server is listening. The default LDAP port is 389. If not specified and -Z is specified, the default LDAP SSL port 636 is used.

-\texttt{P} \textit{keyfilepw}

Specify the key database password. This password is required to access the encrypted information in the key database file (which may include one or more private keys). If a password stash file is associated with the key database file, the password is obtained from the password stash file, and the -\texttt{P} parameter is not required. This parameter is ignored if neither -Z nor -K is specified.

-\texttt{r}

Remove old RDN values from the entry. Default action is to keep old values.

-\texttt{R}

Specifies that referrals are not to be automatically followed.

-\texttt{U} \textit{username}

Specifies the username. This is required with -m DIGEST-MD5 and ignored when any other mechanism is used. The value \textit{username} depends on what attribute the server is configured to use. It might be a uid or any other value that is used to locate the entry.

-\texttt{v}

Use verbose mode, with many diagnostics written to standard output.
Specifies the LDAP version to be used by **ldapmodrdn** when it binds to the LDAP server. By default, an LDAP V3 connection is established. To explicitly select LDAP V3, specify **-V 3**. Specify **-V 2** to run as an LDAP V2 application. An application, like **ldapmodrdn**, selects LDAP V3 as the preferred protocol by using **ldap_init** instead of **ldap_open**.

**-w passwd | ?**

Use **passwd** as the password for authentication. Use the ? to generate a password prompt. Using this prompt prevents your password from being visible through the ps command.

**-y proxydn**

Specifies the DN to be used for proxied authorization.

**-Y**

Use a secure TLS connection to communicate with the LDAP server. The **-Y** option is only supported when IBM's GSKit, is installed.

**-Z**

Use a secure SSL connection to communicate with the LDAP server. The **-Z** option is only supported when the SSL component entry, as provided by IBM's GSKit, is installed.

**dn newrdn**

See the following section, "Input format for dn newrdn," for more information.

**Input format for dn newrdn**

If the command-line arguments **dn** and **newrdn** are given, **newrdn** replaces the RDN of the entry specified by the DN, **dn**. Otherwise, the contents of file (or standard input if no -i flag is given) consist of one or more entries:

Distinguished Name (DN)

Relative Distinguished Name (RDN)

One or more blank lines may be used to separate each DN and RDN pair.

**Examples**

Assuming that the file /tmp/entrymods exists and has the contents:

```
cn=Modify Me, o=University of Life, c=US
cn=The New Me
```

the command:

```
ldapmodrdn -r -i /tmp/entrymods
```

changes the RDN of the Modify Me entry from Modify Me to The New Me and the old cn, Modify Me is removed.

**Notes**

If entry information is not supplied from file through the use of the -i option (or from the command-line pair **dn** and **rdn**), the **ldapmodrdn** command waits to read entries from standard input. To break out of the wait, use Ctrl+C or Ctrl+D.

**SSL, TLS notes**

To use the SSL or TLS-related functions associated with this utility, the SSL or TLS libraries and tools must be installed. The SSL or TLS libraries and tools are provided with IBM's Global Security Kit (GSKit), which includes security software developed by RSA Security Inc.

**Note:** For information regarding the use of 128-bit and triple DES encryption by LDAP applications, including the LDAP sample programs, see "LDAP_SSL"
in the IBM Directory C-Client SDK Programming Reference. This section describes the steps required to build the sample programs and your applications so they can use SSL with the strongest encryption algorithms available.

See the make file associated with the sample programs for more information on linking an LDAP application so that it has access to 128-bit and triple-DES encryption algorithms.

The content of a client’s key database file is managed with the gsk7ikm utility. For more information on this Java utility, see "Using gsk7ikm" on page 79. The gsk7ikm utility is used to define the set of trusted certification authorities (CAs) that are to be trusted by the client. By obtaining certificates from trusted CAs, storing them in the key database file, and marking them as ‘trusted’, you can establish a trust relationship with LDAP servers that use certificates issued by one of the trusted CAs. The gsk7ikm utility can also be used to obtain a client certificate, so that client and server authentication can be performed.

If the LDAP servers accessed by the client use server authentication only, it is sufficient to define one or more trusted root certificates in the key database file. With server authentication, the client can be assured that the target LDAP server has been issued a certificate by one of the trusted CAs. In addition, all LDAP transactions that flow over the SSL or TLS connection with the server are encrypted, including the LDAP credentials that are supplied on the ldap_bind or ldap_simple_bind_s. For example, if the LDAP server is using a high-assurance VeriSign certificate, you should obtain a CA certificate from VeriSign, import it into your key database file, and mark it as trusted. If the LDAP server is using a self-signed server certificate, the administrator of the LDAP server can supply you with a copy of the server’s certificate request file. Import the certificate request file into your key database file and mark it as trusted.

If the LDAP servers accessed by the client use client and server authentication, it is necessary to:

- Define one or more trusted root certificates in the key database file. This allows the client to be assured that the target LDAP server has been issued a certificate by one of the trusted CAs. In addition, all LDAP transactions that flow over the SSL or TLS connection with the server are encrypted, including the LDAP credentials that are supplied on the ldap_bind or ldap_simple_bind_s.
- Create a key pair using gsk7ikm and request a client certificate from a CA. After receiving the signed certificate from the CA, receive the certificate into the client key database file.

Diagnostics
Exit status is 0 if no errors occur. Errors result in a non-zero exit status and a diagnostic message being written to standard error.

See also
ldapadd, ldapchangepwd, ldapdelete, ldapexop, ldapmodify, ldapsearch

ldapsearch
The LDAP search tool and sample program

Synopsis

```
```
ldapsearch is a command-line interface to the ldap_search library call.

ldapsearch opens a connection to an LDAP server, binds, and performs a search using the filter. The filter should conform to the string representation for LDAP filters (see ldap_search in the IBM Tivoli Directory Server Version 5.2 C-Client SDK Programming Reference for more information on filters).

If ldapsearch finds one or more entries, the attributes specified by attrs are retrieved and the entries and values are printed to standard output. If no attrs are listed, all attributes are returned.

To display syntax help for ldapsearch, type ldapsearch -?.

Options
-a deref
  Specify how aliases dereferencing is done. deref should be one of never, always, search, or find to specify that aliases are never dereferenced, always dereferenced, dereferenced when searching, or dereferenced only when locating the base object for the search. The default is to never dereference aliases.

-A
  Retrieve attributes only (no values). This is useful when you just want to see if an attribute is present in an entry and are not interested in the specific values.

-b searchbase
  Use searchbase as the starting point for the search instead of the default. If -b is not specified, this utility will examine the LDAP_BASEDN environment variable for a searchbase definition. If neither is set, the default base is set to "", which is a null search. A null search returns all the entries in the entire Directory Information Tree (DIT). This search requires a -s subtree option. Otherwise, an error message is displayed. Be aware that null based search requests consume a lot of resource.

-B
  Do not suppress display of non-ASCII values. This is useful when dealing with values that appear in alternate characters sets such as ISO-8859.1. This option is implied by the -L option.

-C charset
  Specifies that strings supplied as input to the ldapsearch utility are represented in a local character set (as specified by charset). String input includes the filter, the bind DN and the base DN. Similarly, when displaying data, ldapsearch converts data received from the LDAP server to the specified character set. Use "-C charset" to override the default, where strings must be supplied in UTF-8. Also, if the -C option and the -L option are both specified, input is assumed to be in the specified character set, but output from ldapsearch is always preserved in its UTF-8 representation, or a base-64 encoded representation of the data when non-printable characters are detected. This is the case because standard LDIF files only contain UTF-8 (or base-64 encoded UTF-8) representations of string data. See "IANA character sets supported by platform" on page 347 for the specific charset values that are supported for each
operating system platform. Note that the supported values for charset are
the same values supported for the charset tag that is optionally defined in
Version 1 LDIF files.

-d debuglevel
Set the LDAP debugging level to debuglevel. See "Server debug mode" on
page 329 for information about debug levels.

-D binddn
Use binddn to bind to the LDAP directory. binddn is a string-represented
DN. When used with -m DIGEST-MD5, it specifies the authorization ID. It
can be either a DN or an authzId string that starts with "u:" or "dn:"

-e
Display the LDAP library version information and exits.

-F sep
Use sep as the field separator between attribute names and values. The
default separator is `=', unless the -L flag has been specified, in which case
case this option is ignored.

-G realm
Specify the name of the realm. When used with the -m DIGEST-MD5, the
value is passed to the server during the bind.

-h ldaphost
Specify an alternate host on which the ldap server is running.

-i file
Read a series of lines from file, performing one LDAP search for each line.
In this case, the filter given on the command line is treated as a pattern
where the first occurrence of %s is replaced with a line from file. If file is a
single "-" character, then the lines are read from standard input.

For example, in the command, ldapsearch -V3 -v -b "o=ibm,c=us" -D
"cn=admin" -w ldap -i filter.input %s dn, the filter.input file might
contain the following filter information:

(cn=*Z)
(cn=*Z*)
(cn=*Z*)
(cn=*Z*)
(cn=*A)
(cn=*A)
(cn=*B)

Note: Each filter must be specified on a separate line.

The command performs a search of the subtree o=ibm,c=us for each of the
filters beginning with cn=*Z. When that search is completed, the search
begins for the next filter cn=*Z* and so forth until the search for the last
filter cn<==B is completed.

Note: The -f < file> option replaces the -f< file> option. The -f option is still
supported, although it is deprecated.

-K keyfile
Specify the name of the SSL or TLS key database file (with default
extension of "kdb"). If the key database file is not in the current directory,
specify the fully-qualified key database filename. If a key database
filename is not specified, this utility will first look for the presence of the
SSL_KEYRING environment variable with an associated filename. If the
SSL_KEYRING environment variable is not defined, the default keyring file
will be used, if present.
A default keyring file (that is, ldapkey.kdb) and the associated password stash file (that is, ldapkey.sth) are installed in the /lib directory under LDAPHOME, where LDAPHOME is the path to the installed LDAP support. LDAPHOME varies by operating system platform:

- AIX, Linux operating systems - /usr/ldap
- HP-UX operating systems - /usr/IBMIdap
- Solaris operating systems - /opt/IBMldapc
- Windows operating systems - c:\Program Files\IBM\LDAP (Note: This is the default install location. The actual LDAPHOME is determined during installation.)

See the "Default Keyring and Password" section of the LDAP_SSL API in the IBM C-Client SDK Programming Reference for more information about default key database files, and default Certificate Authorities.

If a keyring database file cannot be located, a "hard-coded" set of default trusted certificate authority roots is used. The key database file typically contains one or more certificates of certificate authorities (CAs) that are trusted by the client. These types of X.509 certificates are also known as trusted roots. For more information on managing an SSL or TLS key database, see "Using gsk7ikm" on page 79. Also see the "SSL, TLS notes" on page 298 below and LDAP SSL or TLS APIs for more information about SSL and certificates.

This parameter effectively enables the -Z switch.

- **-l timelimit**
  
  Wait at most timelimit seconds for a search to complete.

- **-L**
  
  Display search results in LDIF format. This option also turns on the -B option, and causes the -F option to be ignored.

- **-m mechanism**
  
  Use mechanism to specify the SASL mechanism to be used to bind to the server. The ldap_sasl_bind_s() API will be used. The -m parameter is ignored if -V 2 is set. If -m is not specified, simple authentication is used.

- **-M**
  
  Manage referral objects as regular entries.

- **-n**
  
  Show what would be done, but don’t actually modify entries. Useful for debugging in conjunction with -v.

- **-N certificatename**
  
  Specify the label associated with the client certificate in the key database file.

**Note:** If the LDAP server is configured to perform server authentication only, a client certificate is not required. If the LDAP server is configured to perform client and server Authentication, a client certificate might be required. certificatename is not required if a default certificate/private key pair has been designated as the default. Similarly, certificatename is not required if there is a single certificate/private key pair in the designated key database file. This parameter is ignored if neither -Z nor -K is specified.

- **-o attr_type**
  
  To specify an attribute to use for sort criteria of search results, you can use the -o (order) parameter. You can use multiple -o parameters to further define the sort order. In the following example, the search results are
sorted first by surname (sn), then by given name, with the given name (givenname) being sorted in reverse (descending) order as specified by the prefixed minus sign (-):

\[-o \text{ sn} \ -o \ -\text{givenname}\]

Thus, the syntax of the sort parameter is as follows:

\[-]<\text{attribute name}><[:,]<\text{matching rule OID}>\]

where

- attribute name is the name of the attribute you want to sort by.
- matching rule OID is the optional OID of a matching rule that you want to use for sorting.
- The minus sign (-) indicates that the results must be sorted in reverse order.
- The criticality is always critical.

The default ldapsearch operation is not to sort the returned results.

\[-O \text{ maxhops}\]

Specify maxhops to set the maximum number of hops that the client library takes when chasing referrals. The default hopcount is 10.

\[-p \text{ ldapport}\]

Specify an alternate TCP port where the ldap server is listening. The default LDAP port is 389. If not specified and -Z is specified, the default LDAP SSL port 636 is used.

\[-P \text{ keyfilepw}\]

Specify the key database password. This password is required to access the encrypted information in the key database file (which may include one or more private keys). If a password stash file is associated with the key database file, the password is obtained from the password stash file, and the -P parameter is not required. This parameter is ignored if neither -Z nor -K is specified.

\[-q \text{ pagesize}\]

To specify paging of search results, two new parameters can be used: -q (query page size), and -T (time between searches in seconds). In the following example, the search results return a page (25 entries) at a time, every 15 seconds, until all the results for that search are returned. The ldapsearch client handles all connection continuation for each paged results request for the life of the search operation.

\[-q \text{ 25} \ -T \text{ 15}\]

If the -v (verbose) parameter is specified, ldapsearch lists how many entries have been returned so far, after each page of entries returned from the server, for example, **30 total entries have been returned.**

Multiple -q parameters are enabled such that you can specify different page sizes throughout the life of a single search operation. In the following example, the first page is 15 entries, the second page is 20 entries, and the third parameter ends the paged result/search operation:

\[-q \text{ 15} \ -q \text{ 20} \ -q \text{ 0}\]

In the following example, the first page is 15 entries, and all the rest of the pages are 20 entries, continuing with the last specified -q value until the search operation completes:
The default ldapsearch operation is to return all entries in a single request. No paging is done for the default ldapsearch operation.

**-R** Specifies that referrals are not to be automatically followed.

**-s scope**
Specify the scope of the search. scope should be one of base, one, or sub to specify a base object, one-level, or subtree search. The default is sub.

*Note:* If you specify a null search, either by not specifying a -b option or specifying -b "", you must the -s option. The default scope is disabled for a null search.

**-t** Write retrieved values to a set of temporary files. This is useful for dealing with non-ASCII values such as jpegPhoto or audio.

**-T seconds**
Time between searches (in seconds). The -T option is only supported when the -q option is specified.

**-U username**
Specifies the username. This is required with -m DIGEST-MD5 and ignored when any other mechanism is used. The value *username* depends on what attribute the server is configured to use. It might be a uid or any other value that is used to locate the entry.

**-v** Use verbose mode, with many diagnostics written to standard output.

**-V** Specifies the LDAP version to be used by ldapmodify when it binds to the LDAP server. By default, an LDAP V3 connection is established. To explicitly select LDAP V3, specify "-V 3". Specify "-V 2" to run as an LDAP V2 application. An application, like ldapmodify, selects LDAP V3 as the preferred protocol by using ldap_init instead of ldap_open.

**-w passwd | ?**
Use *passwd* as the password for authentication. Use the ? to generate a password prompt. Using this prompt prevents your password from being visible through the ps command.

**-y proxydn**
Specifies the DN to be used for proxied authorization.

**-Y** Use a secure TLS connection to communicate with the LDAP server. The -Y option is only supported when IBM’s GSKit, is installed.

**-z sizelimit**
Limit the results of the search to at most sizelimit entries. This makes it possible to place an upper bound on the number of entries that are returned for a search operation.

**-Z** Use a secure SSL connection to communicate with the LDAP server. The -Z option is only supported when the SSL component entry, as provided by IBM’s GSKit, is installed.

**-9 p** Sets criticality for paging to false. The search is handled without paging.

**-9 s** Sets criticality for sorting to false. The search is handled without sorting.

**filter**
Specifies a string representation of the filter to apply in the search. Simple filters can be specified as attributetype=attributevalue. More complex filters are specified using a prefix notation according to the following Backus Naur Form (BNF):
<filter> ::= ('<filtercomp>')
<filtercomp> ::= <and>|<or>|<not>|<simple>
<and> ::= '&& '<filterlist>
<or> ::= '|' '<filterlist>
<not> ::= '!' '<filter>
<filterlist> ::= <filter>|<filter><filtertype>
<simple> ::= <attributetype><filtertype>
<attributevalue> ::= '='|'~='|'<='|'>='

The '~=' construct is used to specify approximate matching. The representation for <attributetype> and <attributevalue> are as described in "RFC 2252, LDAP V3 Attribute Syntax Definitions". In addition, <attributevalue> can be a single * to achieve an attribute existence test, or can contain text and asterisks(*) interspersed to achieve substring matching.

For example, the filter "mail=*" finds any entries that have a mail attribute. The filter "mail=*@student.of.life.edu" finds any entries that have a mail attribute ending in the specified string. To put parentheses in a filter, escape them with a backslash (\) character.

Note: A filter like "cn=Bob *", where there is a space between Bob and the asterisk(*), matches "Bob Carter" but not "Bobby Carter" in IBM Directory. The space between "Bob" and the wildcard character(*) affects the outcome of a search using filters.

See "RFC 2254, A String Representation of LDAP Search Filters" for a more complete description of allowable filters.

Output format
If one or more entries are found, each entry is written to standard output in the form:

Distinguished Name (DN)
  attributename=value
  attributename=value
  attributename=value
  ...

Multiple entries are separated with a single blank line. If the -F option is used to specify a separator character, it will be used instead of the '=' character. If the -t option is used, the name of a temporary file is used in place of the actual value. If the -A option is given, only the "attributename" part is written.

Examples
The following command:

    ldapsearch "cn=john doe" cn telephoneNumber

performs a subtree search (using the default search base) for entries with a commonName of "john doe". The commonName and telephoneNumber values is retrieved and printed to standard output. The output might look something like this if two entries are found:

    cn=John E Doe, ou="College of Literature, Science, and the Arts", ou=Students, ou=People, o=University of Higher Learning, c=US
The command:
ldapsearch -t "uid=jed" jpegPhoto audio

performs a subtree search using the default search base for entries with user id of "jed". The jpegPhoto and audio values are retrieved and written to temporary files. The output might look like this if one entry with one value for each of the requested attributes is found:
cn=John E Doe, ou=Information Technology Division,
   ou=Faculty and Staff, ou=People, o=University of Higher Learning, c=US
cn=John Doe

cn=John E Doe 1

cn=John B Doe
telephoneNumber=+1 313 555-1111

This command:
ldapsearch -L -s one -b "c=US" "o=university*" o description

will perform a one-level search at the c=US level for all organizations whose organizationName begins with university. Search results will be displayed in the LDIF format (see LDAP Data Interchange Format). The organizationName and description attribute values will be retrieved and printed to standard output, resulting in output similar to this:
dn: o=University of Alaska Fairbanks, c=US
   o: University of Alaska Fairbanks
      description: Preparing Alaska for a brave new tomorrow
      description: leaf node only

dn: o=University of Colorado at Boulder, c=US
   o: University of Colorado at Boulder
description: No personnel information
description: Institution of education and research

dn: o=University of Colorado at Denver, c=US
o: University of Colorado at Denver
o: UCD
o: CU/Denver
o: CU-Denver
description: Institute for Higher Learning and Research

dn: o=University of Florida, c=US
o: University of Florida
o: UFl
description: Shaper of young minds

... This command:
ldapsearch -b "c=US" -o ibm-slapdDN "objectclass=person" ibm-slapdDN

performs a subtree level search at the c=US level for all persons. When this special attribute is used for sorted searches, the search results are sorted by the string representation of the Distinguished Name (DN). The output might look something like this:
cn=Al Edwards,ou=Widget Division,ou=Austin,o=IBM,c=US
cn=Al Garcia,ou=Home Entertainment,ou=Austin,o=IBM,c=US
cn=Amy Nguyen,ou=In Flight Systems,ou=Austin,o=IBM,c=US
cn=Arthur Edwards,ou=Widget Division,ou=Austin,o=IBM,c=US
cn=Becky Garcia,ou=In Flight Systems,ou=Austin,o=IBM,c=US
cn=Ben Catu,ou=In Flight Systems,ou=Austin,o=IBM,c=US
cn=Ben Garcia Jr,ou=Home Entertainment,ou=Austin,o=IBM,c=US
cn=Bill Keller Jr.,ou=In Flight Systems,ou=Austin,o=IBM,c=US
cn=Bob Campbell,ou=In Flight Systems,ou=Austin,o=IBM,c=US

SSL, TLS notes
To use the SSL or TLS-related functions associated with this utility, the SSL or TLS libraries and tools must be installed. The SSL or TLS libraries and tools are provided with IBM’s Global Security Kit (GSKit), which includes security software developed by RSA Security Inc.
Note: For information regarding the use of 128-bit and triple DES encryption by LDAP applications, including the LDAP sample programs, see SSL or TLS Usage Notes. This section describes the steps required to build the sample programs (and your applications) so they can use SSL or TLS with the strongest available encryption algorithms.

See the make file associated with the sample programs for more information on linking an LDAP application so that it has access to 128-bit and triple-DES encryption algorithms.

The contents of a client's key database file is managed with the gsk7ikm utility. For more information on this Java utility, see ["Using gsk7ikm" on page 79]. The gsk7ikm utility is used to define the set of trusted certification authorities (CAs) that are to be trusted by the client. By obtaining certificates from trusted CAs, storing them in the key database file, and marking them as trusted, you can establish a trust relationship with LDAP servers that use certificates issued by one of the CAs that are marked as trusted. The gsk7ikm utility can also be used to obtain a client certificate, so that client and server authentication can be performed.

If the LDAP servers accessed by the client use server authentication only, it is sufficient to define one or more trusted root certificates in the key database file. With server authentication, the client can be assured that the target LDAP server has been issued a certificate by one of the trusted CAs. In addition, all LDAP transactions that flow over the SSL or TLS connection with the server are encrypted (including the LDAP credentials that are supplied on the ldap_bind or ldap_simple_bind_s (see the LDAP_Bind APIs).

For example, if the LDAP server is using a high-assurance VeriSign certificate, you should obtain a CA certificate from VeriSign, import it into your key database file, and mark it as trusted. If the LDAP server is using a self-signed server certificate, the administrator of the LDAP server can supply you with a copy of the server's certificate request file. Import the certificate request file into your key database file and mark it as trusted.

If the LDAP servers accessed by the client use client and server authentication, it is necessary to:

- Define one or more trusted root certificates in the key database file. This allows the client to be assured that the target LDAP server has been issued a certificate by one of the trusted CAs. In addition, all LDAP transactions that flow over the SSL or TLS connection with the server are encrypted (including the LDAP credentials that are supplied on the ldap_bind or ldap_simple_bind_s (see the LDAP_Bind APIs).
- Create a key pair using gsk7ikm and request a client certificate from a CA. After receiving the signed certificate from the CA, receive the certificate into the client key database file.

Diagnostics
Exit status is 0 if no errors occur. Errors result in a non-zero exit status and a diagnostic message being written to standard error.

See also
ldapadd, ldapchangepwd, ldapdelete, ldapexop, ldapmodify, ldapmodrdn

**Server utilities**

This sections describes the server utilities.
Notes:
1. Except for ldif and db2ldif, the server must be stopped before using the server utilities.
2. Ensure that no applications are attached to the directory database. If there are applications attached, none of the server utilities will run.

bulkload utility

The bulkload utility is used to load the directory data from an LDIF file. It is a faster alternative to ldif2db and is available for bulk-loading large amounts of data in LDIF format.

Notes:
1. The server must be stopped before using the server import utilities.
2. Ensure that no applications are attached to the directory database. If there are applications attached, none of the server utilities will run.
3. All bulkload environment variables are deprecated in IBM Tivoli Directory Server Version 5.2. The ACLCHECK, ACTION, LDAPIMPORT, SCHEMACHECK, and STRING_DELIMITER environment variables are replaced with the command line options -A, -a, -L, -S, -s respectively. The command line switches are now case sensitive.
4. To run the bulkload utility you must have dbadm or sysadm privilege. If you use a Windows system, you must also run the bulkload utility within the DB2 command line interpreter (CLI). To start the DB2 CLI, click Start->Run, type db2cmd and click OK.
5. If archival logging is enabled in DB2, the bulkload utility will fail. Make sure archival logging is disabled before using the bulkload utility.
   update database configuration for ldapdb2 using LOGRETAIN OFF USEREXIT OFF
6. If loading data containing unique attributes, the DB2 unique constraints for the attributes that are going to be modified are dropped. After the data is loaded the DB2 unique constraints are established for the attributes whose unique constraints were dropped and for any new unique attributes listed in the unique attribute entry in the input file.

Note: If duplicate values are loaded for attributes that are specified as unique attributes, the DB2 unique constraint is not created for that attribute. This information is recorded in the bulkload.log file.

Synopsis:

Command line options:
-i <ldiffile>
   Specifies the name of the input file containing the LDIF data to be loaded into the directory. It might include a path. The file /usr/ldap/examples/sample.ldif contains some sample data in the correct format.

-a <parse_and_load | parseonly | loadonly>
   Specifies the load action mode.
-A <yes|no>
Specifies whether to process the ACL information contained in the
LDIF file. The default is yes. The no parameter loads the default
acls.

-c | -C <yes|no>
Allows you to skip index recreation. For example, if you are
running successive bulkloads and you want to skip recreation
between loads, you can postpone index creation until the last
bulkload. Issue the final bulkload with -c yes.

-d <number>
Use the -d to set the level of the debug mask and to turn debug
on. Use this option to find out the data records that might have a
problem and cause parsing errors. See "Server debug mode" on
page 329 for information about debug levels.

Note: Ensure that the ldtrc utility is on before using the -d option,
otherwise no messages are displayed. Issue the command ldtrc on.

-E <number>
Specifies the number limit for parsing errors reported. When the
limit is reached the bulkload command exits. The default is
infinity.

-f <configurationfile>
Use this option to specify the slapd configuration file.

-g
Specifies not to strip the trailing spaces on attribute values.

-I <yes|no>
Specifies whether to drop the indexes before the load. The default
is no.

-L <path>
Specifies the directory used for storing temporary data. The default
path for this temporary storage is:
- AIX operating systems /tmp/ldapimport
- Windows operating systems c:\tmp\ldapimport
- Linux, Solaris, and HP operating systems /var/ldap/ldapimport

-n | -N
Specifies that the load is nonrecoverable.

-?
Requests the bulkload syntax help message.

-p | -P <yes|no>
Specifies whether to generate password policy attributes for entries
containing the attribute userpassword.

-R <yes|no>
Specifies whether to remove the directory which was used for
temporary data. This directory is the default directory or the one
specified by the -L parameter. Default is yes.

Note: Although the default is yes, there are two exceptions. If
bulkload ends in a bad state (error condition), the temp files
are not deleted on error, because they are needed for
recovery, or if the user chooses the `-a parseonly` option the temp files are not deleted because the files are needed for the load phase.

`s <character>`

Specifies the string delimiting character used for importing

**Note:** Bulkload might fail to load LDIF files that contain certain UTF-8 characters. This is because of a problem with the DB2 LOAD tool when parsing the default bulkload string delimiter, vertical bar (|) in multi-byte character sets. Reassign the string delimiter to $.

bulkload -i `<ldiffile>` -s $

-S <yes|no|only>

Verifies that individual directory entries are valid based on the object class definitions and attribute type definitions found in the configuration files.

Schema checking verifies that all object classes and attributes have been defined, that all attributes specified for each entry comply with the list of “required” and “allowed” attributes in the object class definition, and that binary attribute values are in the correct 64-bit encoded form.

**yes** Schema checking is done on the data, before adding it to the directory.

**no** No schema checking is done on the data before adding it to the directory. This provides much faster performance. This option assumes that the data in the input file is valid. This is the default option.

**only** Schema checking is done on the data, but it is not added to the directory. This option provides the most feedback and error reporting.

The recommended approach is to use the `-S only` option first to validate the data, and thereafter to use the default `-S no` whenever loading the data into the directory.

-v

Specifies verbose mode. This option gives you the greatest amount of detail.

-x |-X <yes | no>

Specifies whether to translate entry data to database code page. Default is no.

**Note:** This parameter is only necessary when using a non-UTF-8 database.

For better performance the bulkload tool assumes that the data in the input file is correct or that the data has been checked in an earlier loading. The bulkload tool can, however, perform some basic checks on the input data.

The bulkload utility cannot run while the directory server (slapd) is running.

In addition to the disk space required for data storage in the local database directory, the bulkload tool requires temporary storage for data manipulation
before inserting the data into the database. The default path for this temporary storage is platform specific. See the \(-L\) option description for the path names. You can change the path using the \(-L\) option:

\[\text{bulkload -i } <\text{ldiffile} > \text{-L } /\text{newpath}\]

You must have write permission to this directory. You need temporary storage at least 2.5 times the size of the LDIF file that is available in the ldapimport directory. You still might need additional temporary storage depending on your data.

If you receive an error like the following:

SQL3508N Error in accessing a file of type "SORTDIRECTORY" during load or load query. Reason code: "2". Path: "/u/ldapdb2/sqlib/tmp/".

you need to set the environment variable DB2SORTTMP to a directory (or directories) in a file system with more space to be utilized during the bulkload. Multiple directories can be specified separated by a comma (,) as in:

\[\text{export DB2SORTTMP=/sortdir1,/sortdir2}\]

When running \texttt{bulkload}, inspect the output messages carefully. If errors occur during execution, the directory might be incompletely populated. You might need to drop all the LDAP tables, or drop the database (recreate an empty database), and start over. If this happens, no data was added to the directory, and the \texttt{bulkload} must be attempted again. In addition, you might lose data when you drop all the LDAP tables.

The file /usr/ldap/examples/sample.ldif includes sample data. You can use the data in the file to experiment with populating a directory using the bulkload tool, or you can use the \texttt{ldif2db} command line utility. However, the \texttt{ldif2db} utility might be considerably slower than the \texttt{bulkload} utility for large amounts of data.

For performance reasons, the \texttt{bulkload} tool does not check for duplicate entries. Ensure that your input LDIF file does not contain duplicate entries. If any duplicates exist, remove the duplicate entries.

If \texttt{bulkload} fails at the DB2 LOAD phase, see the db2load.log file for the reasons. This log file is located on the Windows operating systems in c:\tmp\ldapimport, on AIX operating systems in /tmp/ldapimport, and on Linux, Solaris, and HP operating systems in /var/ldap/ldapimport. If the \(-L\) option was specified, find the file in the directory defined by the \(-L\) option. Correct the problem and rerun \texttt{bulkload}. Bulkload reloads the files from the last successful load consistency point.

When \texttt{bulkload} fails, the recovery information is stored in \(\langle\text{installation directory}\rangle/\text{etc/bulkload_status}\). This file is not removed until all of the data is loaded successfully. This insures the data integrity of the directory. If you decide to reconfigure the database and start over, the bulkload_status file needs to be removed manually or \texttt{bulkload} still tries to recover from the last successful load point.

**dbback**

The \texttt{dbback} command is used to backup your database when the server is offline. You must stop the server before using this command.

**Synopsis:**

```
dbback [-?] [-d <backudir>] [-w <filename>]
```
**Options:**

- `-?` Displays the syntax format.
- `-d <backupdir>`
  Specifies the directory to use to back up the database.
- `-w <filename>`
  Specifies the full path name of the file into which the output is redirected.

**dbrestore**

The `dbrestore` command is used to restore your database when the server is offline. You must stop the server before using this command.

**Synopsis:**

`dbrestore [-?] [-d <backupdir> [-n]] [-w <filename>]`

**Options:**

- `-?` Displays the syntax format.
- `-d <backupdir>`
  Specifies the directory from which to restore the database.
- `-n` Specifies not to restore the `ibmslapd.conf` file. Use this option when you want to resynchronize replica data without overwriting the `ibmslapd.conf` file of the server.
- `-w <filename>`
  Specifies the full path name of the file into which the output is redirected.

**db2ldif utility**

This program is used to dump entries from a directory stored in a relational database into a text file in LDAP Directory Interchange Format (LDIF).

**Note:** This utility can be run at anytime, the server does not need to be stopped.

**Synopsis:**


**Options:**

All options are case sensitive.

- `-f <configfile>`
  Use this option to specify the slapd configuration file.
- `-l` Exports all suffixes, except the `cn=pwdpolicy` suffix, in addition to the `cn=localhost` subtree. This option cannot be used with the `-s` option.
- `-j` Indicates that the four operational attributes, `createTimestamp`, `creatorsName`, `modifiersName`, and `modifyTimestamp` are not to be exported to the LDIF file.
- `-o <outputfile>`
  Specifies the LDIF output file to contain the directory entries in LDIF. All entries from the specified subtree are written in LDIF to the output file. This option is required. If the file is not in the current directory, a full path and file name must be specified.
-p on|off
Exports all suffixes, except cn=localhost subtree, in addition to the
    cn=pwpolicy suffix. The default setting is off. This option cannot be used
    with the -s option.
-? Displays the usage of the command.
-s <subtree DN> [-x]
The subtree DN identifies the top entry of the subtree that is to be dumped
to the LDIF output file. This entry, plus all below it in the directory
hierarchy, are written out. If this option is not specified, all directory
entries stored in the database are written to the output file based on the
suffixes specified in the configuration file. When the -x option is specified
it means to exclude the subtree specified by the -s option. This option
cannot be used with the -l or -p options.

All other command line inputs result in a syntax error message, after which the
proper syntax is displayed.

ibmdiradm
To start the administration daemon, use the ibmdiradm command.

Synopsis
ibmdiradm [-h debug_mask] [-f path_to_configuration_file] [-s ssl_port]
    [-p nonssl_port] [-i servicename ]| [-u servicename ]

Description
Starts the administration daemon.

Options
-h debug_mask
Causes ibmdiradm to generate administration daemon debug output to
stdout. The debug_mask is a bit mask that controls which output is
generated with values up to 65535. This parameter is for use by IBM
service personnel. See "Server debug mode" on page 329 for additional
information on debug levels.
-f path_to_configuration_file
Specifies the location of the configuration file used when starting the
administration daemon server. This parameter is used if you want to use a
customized configuration file. If not specified, ibmdiradm defaults to the
platform-dependent location where the configuration file was installed.
-s ssl_port
Specifies the SSL port.
-p nonssl_port
Specifies the non-SSL port.
The following two parameters are for Windows systems only.
-i servicename
Adds the administration daemon as a Windows service.
-u servicename
Removes the administration daemon as a Windows service.

To stop the administration daemon:
• For UNIX-based systems, run the following commands:
ps -ef | grep ibmdiradm
kill -p pid_obtained_by_previous_command

• For Windows systems:
  1. Through the Control Panel, open the Services window.
  2. Click Directory Admin Daemon.
  3. Click Action -> Stop.

**ibmdirctl**

The administration daemon control program. The administration daemon (ibmdiradm) must be running. See “Starting the directory administration daemon” on page 13 and “ibmdiradm” on page 305.

**Note:** Only the administrator may use this utility.

**Synopsis**

```
ibmdirctl [-D adminDN] [-h hostname] [-K keyfile] [-N key_name]
 [-p port] [-v] [-w adminPW | ?] [-Z] [-?] command -- [ibmslapd options]
```

where command is {start | stop | restart | status | admstop}

**Description**

The administration daemon control program, **ibmdirctl**, is used to start, stop, restart or query the status of the IBM Tivoli Directory Server. It can also be used to stop the administration daemon. If ibmslapd options are requested, they must be preceded by the --.

To display syntax help for **ibmdirctl**, type ibmdirctl -?.

**Options**

- **-D adminDN**
  Use adminDN to bind to the LDAP directory. The adminDN is a string-represented DN (see LDAP Distinguished Names).

- **-h hostname**
  Specify an alternate host on which the LDAP server and the admin daemon are running.

- **-K keyfile**
  Specifies the file to use for keys.

- **-N key_name**
  Specifies the private key name to use in keyfile.

- **-p port**
  Specify an alternate TCP port where the admin daemon is listening. The default LDAP port is 3538.

- **-v**
  Specifies to run in verbose mode.

- **-w adminPW | ?**
  Use adminPW as the password for authentication. Use the ? to generate a password prompt. Using this prompt prevents your password from being visible through the ps command.

- **-?**
  Displays the help screen.

*command*

- **start** - Start the server.
- **stop** - Stop the server.
- **restart** - Stop then start the server.
- **status** - Query the status the server.
- **admstop** - Stop the IBM Tivoli Directory Server administration daemon.

**Note:** The **stop** command may be issued directly to the ldap server.

---

**ibmslapd options**

The **ibmslapd** options are any options the **ibmslapd** process takes at startup time, typically:

- `-a` `-A` - Start the server in configuration only mode.
- `-n` `-N` - Do not start the server, if the server is unable to start with the database backends (no configuration only mode).

**Notes:**

1. If **ibmslapd** options are requested, they must be preceded by the `--`.
2. The **ibmslapd** options are ignored if the **stop** command is issued.

**Example**

To start the server in configuration only mode issue the command:

```
ibmdirctl -h mymachine -D myDN -w mypassword -p 3538 start -- -a
```

To stop the server issue the command:

```
ibmdirctl -h mymachine -D myDN -w mypassword -p 3538 stop
```

---

**ldapdiff**

The LDAP replica synchronization tool

**Synopsis**

```
```

**Description**

This tool synchronizes a replica server with its master. To display syntax help for **ldapdiff**, type:

```
ldapdiff -?
```

**Options**

The following options apply to the **ldapdiff** command. There are two subgroupings that apply specifically to either the supplier server or the consumer server.
-a Specifies to use server administration control for writes to a read-only replica.

-b baseDN
Use searchbase as the starting point for the search instead of the default. If -b is not specified, this utility examines the LDAP_BASEDN environment variable for a searchbase definition.

-C countnumber
Counts the number of entries to fix. If more than the specified number of mismatches are found, the tool exits.

-F This is the fix option. If specified, content on the consumer replica is modified to match the content of the supplier server. This cannot be used if the -S is also specified.

-j Indicates to ignore the operational attributes in the LDIF file.

-L If the -F option is not specified, use this option to generate an LDIF file for output. The LDIF file can be used to update the consumer to eliminate the differences.

-S Specifies to compare the schema on both of the servers.

-v Use verbose mode, with many diagnostics written to standard output.

Options for a replication supplier: The following options apply to the consumer server and are denoted by an initial 's' in the option name.

-sD dn Use dn to bind to the LDAP directory. dn is a string-represented DN.

-sh host
Specifies the host name.

-sK keyStore
Specify the name of the SSL key database file with default extension of kdb. If the key database file is not in the current directory, specify the fully-qualified key database filename. If a key database filename is not specified, this utility will first look for the presence of the SSL_KEYRING environment variable with an associated filename. If the SSL_KEYRING environment variable is not defined, the default keyring file will be used, if present.

A default keyring file that is, ldapkey.kdb, and the associated password stash file that is, ldapkey.sth, are installed in the /lib directory under LDAPHOME, where LDAPHOME is the path to the installed LDAP support. LDAPHOME varies by operating system platform:

- AIX operating systems - /usr/ldap
- HP-UX operating systems - /usr/IBMldap
- Linux operating systems - /usr/ldap
- Solaris operating systems - /opt/IBMldaps
- Windows operating systems - c:\Program Files\IBM\LDAP

Note: This is the default install location. The actual LDAPHOME is determined during installation.

See IBM Directory C-Client SDK Programming Reference for more information about default key database files, and default Certificate Authorities.

If a keyring database file cannot be located, a "hard-coded" set of default trusted certificate authority roots is used. The key database file typically
contains one or more certificates of certificate authorities (CAs) that are trusted by the client. These types of X.509 certificates are also known as trusted roots. For more information on managing an SSL key database, see "Using gsk7ikm" on page 79. Also see the "SSL, TLS notes" on page 312 and "Secure Sockets Layer" on page 73 for more information about SSL and certificates.

This parameter effectively enables the -sZ switch.

-sN keyStoreType
Specify the label associated with the client certificate in the key database file. If the LDAP server is configured to perform server authentication only, a client certificate is not required. If the LDAP server is configured to perform client and server Authentication, a client certificate might be required. keyStoreType is not required if a default certificate/private key pair has been designated as the default. Similarly, keyStoreType is not required if there is a single certificate/private key pair in the designated key database file. This parameter is ignored if neither -sZ nor -sK is specified.

-sp ldapPort
Specify an alternate TCP port where the ldap server is listening. The default LDAP port is 389. If -sp is not specified and -sZ is specified, the default LDAP SSL port 636 is used.

-sP keyStorePwd
Specify the key database password. This password is required to access the encrypted information in the key database file, which may include one or more private keys. If a password stash file is associated with the key database file, the password is obtained from the password stash file, and the -sP parameter is not required. This parameter is ignored if neither -sZ nor -sK is specified.

-st trustStoreType
Specify the label associated with the client certificate in the trust database file. If the LDAP server is configured to perform server authentication only, a client certificate is not required. If the LDAP server is configured to perform client and server Authentication, a client certificate might be required. trustStoreType is not required if a default certificate/private key pair has been designated as the default. Similarly, trustStoreType is not required if there is a single certificate/private key pair in the designated key database file. This parameter is ignored if neither -sZ nor -sT is specified.

-sT trustStore
Specify the name of the SSL trust database file with default extension of tdb. If the trust database file is not in the current directory, specify the fully-qualified trust database filename. If a trust database filename is not specified, this utility will first look for the presence of the SSL_KEYRING environment variable with an associated filename. If the SSL_KEYRING environment variable is not defined, the default keyring file will be used, if present.

A default keyring file that is, ldapkey.tdb, and the associated password stash file that is, ldapkey.sth, are installed in the /lib directory under LDAPHOME, where LDAPHOME is the path to the installed LDAP support. LDAPHOME varies by operating system platform:
• AIX operating systems - /usr/ldap
- HP-UX operating systems - /usr/IBMldap
- Linux operating systems - /usr/ldap
- Solaris operating systems - /opt/IBMldaps
- Windows operating systems - c:\Program Files\IBM\LDAP

**Note:** This is the default install location. The actual LDAPHOME is determined during installation.

See *IBM Directory C-Client SDK Programming Reference* for more information about default key database files, and default Certificate Authorities.

If a keyring database file cannot be located, a "hard-coded" set of default trusted certificate authority roots is used. The key database file typically contains one or more certificates of certificate authorities (CAs) that are trusted by the client. These types of X.509 certificates are also known as trusted roots. For more information on managing an SSL key database, see "Using gsk7ikm" on page 79. Also see the "SSL, TLS notes" on page 312 and "Secure Sockets Layer" on page 73 for more information about SSL and certificates.

This parameter effectively enables the -sZ switch.

- **-sw password |?**
  Use *password* as the password for authentication. Use the ? to generate a password prompt. Using this prompt prevents your password from being visible through the *ps* command.

- **-sY**
  The password for the trusted database.

- **-sZ**
  Use a secure SSL connection to communicate with the LDAP server. The -Z option is only supported when the SSL component entry, as provided by IBM’s GSKit, is installed.

**Options for a replication consumer.** The following options apply to the consumer server and are denoted by an initial ‘c’ in the option name.

- **-cD dn**
  Use *dn* to bind to the LDAP directory. *dn* is a string-represented DN.

- **-ch host**
  Specifies the host name.

- **-cK keyStore**
  Specify the name of the SSL key database file with default extension of *kdb*. If the key database file is not in the current directory, specify the fully-qualified key database filename. If a key database filename is not specified, this utility will first look for the presence of the SSL_KEYRING environment variable with an associated filename. If the SSL_KEYRING environment variable is not defined, the default keyring file will be used, if present.

A default keyring file that is, ldapkey.kdb, and the associated password stash file that is, ldapkey.sth, are installed in the /lib directory under LDAPHOME, where LDAPHOME is the path to the installed LDAP support. LDAPHOME varies by operating system platform:

- AIX operating systems - /usr/ldap
- HP-UX operating systems - /usr/IBMldap
- Linux operating systems - /usr/ldap
- Solaris operating systems - /opt/IBMldaps
- Windows operating systems - c:\Program Files\IBM\LDAP

**Note:** This is the default install location. The actual LDAPHOME is determined during installation.

See *IBM Directory C-Client SDK Programming Reference* for more information about default key database files, and default Certificate Authorities.

If a keyring database file cannot be located, a "hard-coded" set of default trusted certificate authority roots is used. The key database file typically contains one or more certificates of certificate authorities (CAs) that are trusted by the client. These types of X.509 certificates are also known as trusted roots. For more information on managing an SSL key database, see "Using gsk7ikm" on page 79. Also see the "SSL, TLS notes" on page 312 and "Secure Sockets Layer" on page 73 for more information about SSL and certificates.

This parameter effectively enables the `-cZ` switch.

**-cN keyStoreType**

Specify the label associated with the client certificate in the key database file. If the LDAP server is configured to perform server authentication only, a client certificate is not required. If the LDAP server is configured to perform client and server Authentication, a client certificate might be required. `keyStoreType` is not required if a default certificate/private key pair has been designated as the default. Similarly, `keyStoreType` is not required if there is a single certificate/private key pair in the designated key database file. This parameter is ignored if neither `-cZ` nor `-cK` is specified.

**-cp ldapport**

Specify an alternate TCP port where the ldap server is listening. The default LDAP port is 389. If `-cp` is not specified and `-cZ` is specified, the default LDAP SSL port 636 is used.

**-cP keyStorePwd**

Specify the key database password. This password is required to access the encrypted information in the key database file, which may include one or more private keys. If a password stash file is associated with the key database file, the password is obtained from the password stash file, and the `-cP` parameter is not required. This parameter is ignored if neither `-cZ` nor `-cK` is specified.

**-ct trustStoreType**

Specify the label associated with the client certificate in the trust database file. If the LDAP server is configured to perform server authentication only, a client certificate is not required. If the LDAP server is configured to perform client and server Authentication, a client certificate might be required. `trustStoreType` is not required if a default certificate/private key pair has been designated as the default. Similarly, `trustStoreType` is not required if there is a single certificate/private key pair in the designated key database file. This parameter is ignored if neither `-cZ` nor `-cT` is specified.

**-cT trustStore**

Specify the name of the SSL trust database file with default extension of tdb. If the trust database file is not in the current directory, specify the fully-qualified trust database filename. If a trust database filename is not specified, this utility will first look for the presence of the SSL_KEYRING
environment variable with an associated filename. If the SSL_KEYRING environment variable is not defined, the default keyring file will be used, if present.

A default keyring file that is, ldapkey.tdb, and the associated password stash file that is, ldapkey.sth, are installed in the /lib directory under LDAPHOME, where LDAPHOME is the path to the installed LDAP support. LDAPHOME varies by operating system platform:

- AIX operating systems - /usr/ldap
- HP-UX operating systems - /usr/IBMldap
- Linux operating systems - /usr/ldap
- Solaris operating systems - /opt/IBMldaps
- Windows operating systems - c:\Program Files\IBM\LDAP

Note: This is the default install location. The actual LDAPHOME is determined during installation.

See IBM Directory C-Client SDK Programming Reference for more information about default key database files, and default Certificate Authorities.

If a keyring database file cannot be located, a "hard-coded" set of default trusted certificate authority roots is used. The key database file typically contains one or more certificates of certificate authorities (CAs) that are trusted by the client. These types of X.509 certificates are also known as trusted roots. For more information on managing an SSL key database, see "Using gsk7ikm" on page 79. Also see the "SSL, TLS notes" and "Secure Sockets Layer" on page 73 for more information about SSL and certificates.

This parameter effectively enables the -cZ switch.

-cw password |?

Use password as the password for authentication. Use the ? to generate a password prompt. Using this prompt prevents your password from being visible through the ps command.

-cY

The password for the trusted database.

-cZ

Use a secure SSL connection to communicate with the LDAP server. The -cZ option is only supported when the SSL component entry, as provided by IBM’s GSKit, is installed.

Examples

ldapdiff -b <baseDN> -sh <supplierhostname> -ch <consumerhostname> [options]

or

ldapdiff -S -sh <supplierhostname> -ch <consumerhostname> [options]

Notes

If no DN arguments are provided, the ldapdiff command waits to read a list of DNs from standard input. To break out of the wait, use Ctrl+C or Ctrl+D.

SSL, TLS notes

To use the SSL or TLS -related functions associated with this utility, the SSL or TLS libraries and tools must be installed. The SSL or TLS libraries and tools are provided with IBM’s Global Security Kit (GSKit), which includes security software developed by RSA Security Inc.
Note: For information regarding the use of 128-bit and triple DES encryption by LDAP applications, including the LDAP sample programs, see “LDAP_SSL” in the IBM Directory C-Client SDK Programming Reference. This section describes the steps required to build the sample programs and your applications so they can use SSL with the strongest encryption algorithms available.

See the makefile associated with the sample programs for more information on linking an LDAP application so that it has access to 128-bit and triple-DES encryption algorithms.

The content of a client’s key database file is managed with the gsk7ikm utility. For more information on this Java utility, see "Using gsk7ikm" on page 79. The gsk7ikm utility is used to define the set of trusted certification authorities (CAs) that are to be trusted by the client. By obtaining certificates from trusted CAs, storing them in the key database file, and marking them as ‘trusted’, you can establish a trust relationship with LDAP servers that use ‘trusted’ certificates issued by one of the trusted CAs. The gsk7ikm utility can also be used to obtain a client certificate, so that client and server authentication can be performed.

If the LDAP servers accessed by the client use server authentication only, it is sufficient to define one or more trusted root certificates in the key database file. With server authentication, the client can be assured that the target LDAP server has been issued a certificate by one of the trusted CAs. In addition, all LDAP transactions that flow over the SSL or TLS connection with the server are encrypted including the LDAP credentials that are supplied on the ldap_bind or ldap_simple_bind_s. For example, if the LDAP server is using a high-assurance VeriSign certificate, you should obtain a CA certificate from VeriSign, import it into your key database file, and mark it as trusted. If the LDAP server is using a self-signed server certificate, the administrator of the LDAP server can supply you with a copy of the server’s certificate request file. Import the certificate request file into your key database file and mark it as trusted.

If the LDAP servers accessed by the client use client and server authentication, it is necessary to:

- Define one or more trusted root certificates in the key database file. This allows the client to be assured that the target LDAP server has been issued a certificate by one of the trusted CAs. In addition, all LDAP transactions that flow over the SSL or TLS connection with the server are encrypted including the LDAP credentials that are supplied on the ldap_bind or ldap_simple_bind_s.
- Create a key pair using gsk7ikm and request a client certificate from a CA. After receiving the signed certificate from the CA, store the certificate in the client key database file.

Diagnostics
Exit status is 0 if no errors occur. Errors result in a non-zero exit status and a diagnostic message being written to standard error.

Idaptrace
The administration tracing utility

Notes:
1. Only the administrator or a member of the administrative group can use this utility.
2. Using Idaptrace consumes resources and affects the performance of the server.
Synopsis
ldaptrace -a port -l [on|off|clr|chg|info|dump] --[ldtrc options] -D adminDn
-h hostname -K keyfile -m debugLevel -N key_name -o debugFile
-p port -P key_pw -t [start|stop] -v -w adminPW -Z -?

Description
The administration tracing utility, ldaptrace, is used to dynamically activate or
deactivate tracing of the Directory Server. This extended operation can also be used
to set the message level and specify the name of the file to the output is written. If
LDAP trace facility (ldtrc) options are requested, they must be preceded by --.

To display syntax help for ldaptrace, type: ldaptrace -?

Note: While the ldaptrace utility can be used with SSL or TLS, only the simple
bind mechanism is supported.

Options
-a port  Specifies an alternate TCP port where IBM Administration Daemon
(ibmdiradm), not the Directory Server, is listening. The default port is 3538.
If not specified and -Z is specified, the default SSL port 3539 is used.

-l [on|off|clr|chg|info|dump] --[ldtrc options]
  on  Turns on the tracing facility. You can specify any of the following
       ldtrc options preceded by an extra -.
       • [-m <mask>] where <mask> =
         <products>.<events>.<components>.<classes>.<functions>.
       • [-p <pid>[.<tid>]] traces only the specified process or thread.
       • [-c <cpid>] traces only the specified companion process.
       • [-e <maxSeverErrors>] stops tracing after the maximum number
         of sever errors (maxSevereErrors) is reached.
       • [-s | -f <fileName>] sends the output to shared memory or a
         file.
       • [-i [<bufferSize>] | -l [<bufferSize>]] specifies to retain the last
         or the initial records. The default buffer is 1M.
       • [-this <thisPointer>] trace only the specified object.

Note: The tracing facility must be on for server data to be traced.

off  Turns off the tracing facility.

clr  Clears the existing trace buffer.

chg  The trace must be active before you can use the chg option to
     change the values for the following ldtrc options:
     • [-m <mask>] where <mask> =
       <products>.<events>.<components>.<classes>.<functions>.
     • [-p <pid>[.<tid>]] traces only the specified process or thread.
     • [-c <cpid>] traces only the specified companion process.
     • [-e <maxSeverErrors>] stops tracing after the maximum number
       of sever errors (maxSevereErrors) is reached.
     • [-this <thisPointer>] trace only the specified object.

info  Gets information about the trace. You must specify the source file
which can be either a binary trace file, or trace buffer and a
destination file. The following is an example of the information
that the info parameter gives:

C:\>ldtrc info
Trace Version : 1.00
Op. System : NT
H/W Platform : 80x86

Mask : *.*.*.*.*.
pid.tid to trace : all
cpid to trace : all
this pointer to trace : all
Treat this rc as sys err: none
Max severe errors : 1
Max record size : 32768 bytes
Trace destination : shared memory
Records to keep : last
Trace buffer size : 1048576 bytes
Trace data pointer check: no
dump Dumps the trace information to a file. This information includes
process flow data as well as server debug messages. You can
specify the the name of the destination file where you want to
dump the trace. The default destination files is:

For Unix-based systems:
/var/ldap/ibmslapd.trace.dump.

For Windows-based systems:
<installationpath>\var\ibmslapd.trace.dump

Note: This file contains binary ldtrc data that must be formatted
with the ldtrc format command.

-h ldaphost
Specify an alternate host on which the Directory Server and the
Administration Daemon are running.

-K keyfile
Specify the name of the SSL or TLS key database file with default
extension of kdb. If the key database file is not in the current directory,
specify the fully-qualified key database filename. If a key database
filename is not specified, this utility will first look for the presence of the
SSL_KEYRING environment variable with an associated filename. If the
SSL_KEYRING environment variable is not defined, the default keyring file
will be used, if present.

A default keyring file that is, ldapkey.kdb, and the associated password
stash file that is, ldapkey.sth, are installed in the /lib directory under
LDAPHOME, where LDAPHOME is the path to the installed LDAP
support. LDAPHOME varies by operating system platform:
• AIX operating systems - /usr/ldap
• HP-UX operating systems - /usr/IBMldap
• Linux operating systems - /usr/ldap
• Solaris operating systems - /opt/IBMldaps
• Windows operating systems - c:\Program Files\IBM\LDAP

Note: This is the default install location. The actual LDAPHOME is
determined during installation.
See IBM Directory C-Client SDK Programming Reference for more information about default key database files, and default Certificate Authorities.

If a keyring database file cannot be located, a "hard-coded" set of default trusted certificate authority roots is used. The key database file typically contains one or more certificates of certificate authorities (CAs) that are trusted by the client. These types of X.509 certificates are also known as trusted roots. For more information on managing an SSL or TLS key database, see "Using gsk7ikm" on page 79. Also see the "SSL, TLS notes" on page 278 and "Secure Sockets Layer" on page 73 for more information about SSL and certificates.

This parameter effectively enables the -Z switch.

-m debuglevel
   Set the mask debugging level for server debug messages. See "Server debug mode" on page 329 for information about debug levels.

-N certificatename
   Specify the label associated with the client certificate in the key database file. If the LDAP server is configured to perform server authentication only, a client certificate is not required. If the LDAP server is configured to perform client and server Authentication, a client certificate might be required. certificatename is not required if a default certificate/private key pair has been designated as the default. Similarly, certificatename is not required if there is a single certificate/private key pair in the designated key database file. This parameter is ignored if neither -Z nor -K is specified.

-o debugfile
   Specifies the output file name for the server debug messages.

-p port
   Specify an alternate TCP port where the ldap server is listening. The default LDAP port is 389. If not specified and -Z is specified, the default LDAP SSL port 636 is used.

-P keyfilepw
   Specify the key database password. This password is required to access the encrypted information in the key database file, which may include one or more private keys. If a password stash file is associated with the key database file, the password is obtained from the password stash file, and the -P parameter is not required. This parameter is ignored if neither -Z nor -K is specified.

-t [start | stop]
   start Starts the collection of server trace data.
   stop Stops the collection of server trace data.

-v Specifies to run in verbose mode.

-w adminPW | ?
   Use adminPW as the password for authentication. Use the ? to generate a password prompt. Using this prompt prevents your password from being visible through the ps command.

-? Displays the help screen.
**Examples**

To turn the ldtrc facility on and start the server trace with a 2M trace buffer, issue the command:

```bash
ldaptrace -h <hostname> -D <adminDN> -w <adminpw> -l on -t start -- -| 2000000
```

To stop the server trace, issue the command:

```bash
ldaptrace -h <hostname> -D <adminDN> -w <adminpw> -t stop
```

To turn off the ldtrc facility, issue the command:

```bash
ldaptrace -h <hostname> -D <adminDN> -w <adminpw> -l off
```

**ldif utility**

The LDAP Data Interchange Format (LDIF) tool `ldif` is a shell-accessible utility that converts arbitrary data values to LDIF. It reads input values from standard input and produces records appropriate for use in an LDIF file.

**Synopsis:**

```
ldif [-b]<attrname>
```

**Command Line Option:**

All options are case sensitive.

- `-b` Input is a single raw binary value. Output is a base64 encoded value.

- `<attrname>`
  
  The name of the attribute for which values are to be converted. Without the -b option, `ldif` considers each line of standard input to be a separate value of the attribute.

**Examples**

To find the LDIF format for the attribute sn (surname) with a value of smith at a command line enter:

1. Enter `ldif sn`
2. Enter `smith`
3. Press Ctrl C to exit.

Using the -b option:

1. Enter `ldif -b sn`
2. Enter `smith`
3. Press Ctrl C to process.
4. This returns `sn:: c21pdGgNCg==`

**ldif2db utility**

This program is used to load entries specified in text LDAP Directory Interchange Format (LDIF) into a directory stored in a relational database. The database must already exist. `ldif2db` can be used to add entries to an empty directory database or to a database that already contains entries.

**Notes:**

1. The server must be stopped before using the server import utilities.
2. Ensure that no applications are attached to the directory database. If there are applications attached, none of the server utilities will run.

3. If you have installed a 5.2 server over a 5.1 or a 4.1 server, you must initially start the server before using the \texttt{ldif2db} utility so that one-time migration processing can be completed.

**Synopsis:**

\texttt{ldif2db -i inputfile [-f configurationfile] [-g] [-r yes|no] | -?}

**Command line options:**

All options are case insensitive.

- \texttt{-i inputfile}
  
  Specify the name of the LDIF input file, containing directory entries in LDIF format. This option is required. If the file is not in the current directory, a full path and file name must be specified.

- \texttt{-f configurationfile}
  
  Use this option to specify the slapd configuration file.

- \texttt{-g}

  Specifies not to strip the trailing spaces on attribute values.

- \texttt{-r [yes|no]}

  Specifies whether to replicate. The default is \texttt{yes} which means entries are put into the Change table and are replicated when the server restarts.

- \texttt{-?}

  Displays the usage of the command.

All other command line inputs result in a syntax error message, after which the correct syntax is displayed.

**Note:** When records are added using \texttt{ldif2db}, the master server should be stopped and then restarted immediately.

**runstats**

**Synopsis:**

\texttt{runstats [-f configfile]}

**Command line options:**

- \texttt{-f configfile}

  Use this option to specify the slapd configuration file.
Part 6. Appendixes
Appendix A. Troubleshooting

GSKit certificate error

If you are trying to import a signer or personal certificate from an external certificate authority (CA) such as Entrust and the GSKIT fails with the error, An error occurred while receiving the certificate from the given file.

the problem might be that the certificate returned from Entrust is a chain certificate, not a root certificate. You must have a root certificate to start a certificate chain. A chain certificate cannot start a certificate chain.

If you do not already have a root certificate, the following is one method of obtaining one.

An example of a root certificate is GTE Cybertrust, which is included in Internet Explorer (IE) 5.5, however, it is not included by default in the GSKit kdb database. To obtain this certificate you must:
1. Export one of the GTE Cybertrust certificate (there are 3) from IE as Base64 encoded.
2. Add it as a trusted root certificate.

Note: In order to use the GSKit option to set a certificate as a trusted root, the certificate must be self-signed.
3. Add the chain CA certificate from Entrust.
4. Receive the SSL certificate from Entrust.

File permissions

On UNIX-based systems file, permissions are frequently altered inadvertently by the actions of copying or editing a key database file. This is because these actions are generally done as the userid root, therefore permissions are set for the user root. For the Directory Server to make use of this file, you must change the file permissions so that it is readable by the userid ldap. Otherwise the Directory Server fails to start.

chown ldap:ldap <mykeyring>.*

Kerberos

Kerberos service name change

Before IBM Directory Server 4.1, the LDAP server uses LDAP as its Kerberos service name, (LDAP/ldaphost.austin.ibm.com, ldaphost is the hostname of the machine where the LDAP server is located) to communicate with its client and the Kerberos KDC. For Version 4.1 and above, a lower case service name is used (ldap/ldapname.austin.ibm.com). Because of this change, a 4.1, 5.1, or 5.2 server might not be able to start after migrating from a 3.x server. This is because the 4.1, 5.1, or 5.2 server is looking for ldap in the keytab file in which an LDAP service name was located and used by the previous 3.x server. To correct this situation you can do either of the following:
• Generate a keytab file by adding a lower case LDAP Kerberos service name and start using the new keytab file to communicate.

• Set the environment variable LDAP_KRB_SERVICE_NAME to LDAP before starting the server. This environment variable causes the LDAP server to continue using the upper case LDAP server service name in the keytab file and to communicate with its clients. In the latter case, the environment variable needs to be set on the client side as well to continuing using the upper case LDAP service name to communicate with its server.

Error opening slapd.cat on Windows

On Windows systems, you might receive an error message that includes the following:

Error opening slapd.cat
Plugin of type DATABASE is successfully loaded from C:/Program Files/IBM/LDAP/bin/libback-config.dll.
Error opening rdbm.cat

If this occurs, check the NLSPATH environment variable. The installation program sets the NLSPATH environment variable as a system environment variable. However, if the system also has the NLSPATH variable set as a user environment variable, the user NLSPATH environment variable overrides the system setting.

To correct this, append the NLSPATH information from the system environment variable to the information in the user environment variable.

Web Administration

Corruption of data entered in the Web Administration Tool

If data that you enter in non-English languages in the Web Administration Tool is corrupted, do the following:

On the embedded version of WebSphere Application Server - Express
Edit the server.xml file in the following directory:

```
WAS_home/appsrv/config/cells/DefaultNode/nodes/DefaultNode/servers/server1
```

Add the text shown in bold to the stanza as shown:

```
<processDefinition xmi:type="processexec:JavaProcessDef"
 xmi:id="JavaProcessDef_1"
 executableName="${JAVA_HOME}/bin/java"
 executableTarget="com.ibm.ws.runtime.WsServer"
 executableTargetKind="JAVA_CLASS"
 workingDirectory="${USER_INSTALL_ROOT}"
 <execution xmi:id="ProcessExecution_1" processPriority="20" runAsUser=""
 runAsGroup="/"
 <monitoringPolicy xmi:id="MonitoringPolicy_1" pingInterval="60"
 maximumStartupAttempts="3" pingTimeout="300" autoRestart="true"
 nodeRestartState="STOPPED" />
 <ioRedirect xmi:id="OutputRedirect_1"
 stdoutFilename="${SERVER_LOG_ROOT}/native_stdout.log"
 stderrFilename="${SERVER_LOG_ROOT}/native_stderr.log"/>
 <jvmEntries xmi:id="JavaVirtualMachine_1" classpath="" bootClasspath=""
 verboseModeClass="false" verboseModeGarbageCollection="false"
 verboseModeJNI="false" initialHeapSize="0"
 maxHeapSize="256" runHProf="false" hprofArguments=""
 debugMode="false" debugArgs="-Djava.compiler=NONE -Xdebug -Xnoagent
 -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=7777"
```
On WebSphere Application Server
   On the WebSphere Administrative Console tree:
   • Select Servers.
   • Select Application Server.
   • Select the server you want; for example, server1.
   • Click Process Definition.
   • Click Java Virtual Machine.
   • Click Custom Properties.
   • Click the appropriate button for making a new property.
   • In the Name field, type client.encoding.override.
   • In the Value column, type UTF-8.
   • Click Apply.
   • Stop and restart the WebSphere Application Server.

Additional login panels fail
   When using the Web Administration Tool, do not open additional login panels from the File options of the browser. Only one instance of the Web Administration can function on a single browser instance. They cannot share the same cookies. Additional login panels must be opened from new instances of the browser.

   For Unix-based systems:
      Launch new windows from the command line using the & option. For example:
      mozilla &

   For Windows-based systems:
      • Internet Explorer - Open additional Internet Explorer windows using the Start window or an Internet Explorer short cut from the desktop.
      • Mozilla - The Mozilla Web browser does not support multiple Web Administration Tool sessions on Windows.

   Note: Netscape browsers are no longer supported.

The ldapmodify command puts Web Administration into inconsistent state
   If you are logged into the Web Administration Tool and you change your password using the command line (ldapmodify), the Web Administration Tool changes the server status to stopped. This occurs because the Web Administration Tool opens new connections to the server every time it launches a task. The Web Administration Tool tries to connect to the server with the old password, because it is unaware that the password has been changed, consequently the connection fails. You must log out and log back in using the new password.

   To avoid this situation, if you have sufficient access authority, use the User properties -> Change password option to change your user password when working in the Web Administration Tool.
Difficulties encountered using the Web Administration GUI console on the Windows 2003 platform

Web Administration errors occur if all the following conditions exist:

- Web Administration is installed locally
- Web Administration runs on a locally installed version of Microsoft® Internet Explorer
- Web Administration uses the locally installed embedded version of WebSphere Application Server - Express, V5.0
- An IP address or hostname is part of the URL used to access Web Administration

To avoid these errors:

1. If the embedded version of WebSphere Application Server - Express, V5.0 is running locally, add http://localhost to the list of trusted sites.
2. If the embedded version of WebSphere Application Server - Express, V5.0 is running on a remote machine, add the IP address or host name of the machine on which the Web application server is running to the list of trusted sites.
   http://<IP address> or http://<hostname>

To add a Web address to the Trusted Site list:

1. Click Tools -> Internet Options -> Security -> Trusted Site -> Sites.
2. Type the Web address in the Web site field.
3. Click Add.
4. Click OK.

To log on to the Web Administration Tool on the local machine, open an Internet Explorer Web browser and type the following in the Address field:
   http://localhost:9080/IDSWebApp/IDSjsp/Login.jsp

To log on to the Web Administration Tool on a remote machine, open an Internet Explorer Web browser and type the following in the Address field:
   http://<IP address>:9080/IDSWebApp/IDSjsp/Login.jsp

Websphere Application Server - Express on AIX

Starting the embedded version of IBM Websphere Application Server - Express (WAS) on AIX (startServer.sh server1), might not work because port (9090) already being used. See the WAS_install_path/logs/server1 directory for the actual log files. Usually SystemErr.log and SystemOut.log are most helpful, although the other logs might have some useful information.

To change the port number for the embedded version of IBM Websphere Application Server - Express from 9090 to 9091, which is the port used on AIX machines, edit the WAS_install_path/config/cells/DefaultNode/virtualhosts.xml file and change 9090 to 9091. Do the same thing in the
   WAS_install_path/config/cells/DefaultNode/nodes/DefaultNode/servers/server1/server.xml
   file.

Note: This path does have two subdirectories called DefaultNode. Make one change in each file for a total of two updates.
Web Administration Tool loses connections on HP-UX

If you are using the Web Administration Tool on the HP-UX operating system, you must set the following variables, otherwise the kernel can not allocate enough threads and the system runs out of memory.

The following table contains the parameters and values that must be set before installing Web Administration Tool.

Table 19. HP-UX operating system kernel configuration parameters

<table>
<thead>
<tr>
<th>Kernel parameter</th>
<th>Value 256MB+ physical memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>max_thread_proc</td>
<td>1024</td>
</tr>
<tr>
<td>maxusers</td>
<td>256</td>
</tr>
<tr>
<td>nproc</td>
<td>2068(+)</td>
</tr>
<tr>
<td>nkthread</td>
<td>3635(+)</td>
</tr>
</tbody>
</table>

Note: After you update the max_thread_proc and maxusers parameters, be sure that the nproc parameter is set to 2068 or more, and the nkthread parameter to 3635 or more.

Use this procedure to set the kernel configuration parameters:

1. At a command prompt, type: `sam`
   The System Administration Manager opens.
2. Double-click Kernel Configuration.
3. Double-click Configurable Parameters.
4. Double-click the parameter you want to edit and specify the new value in the Enter New Formula/Value field. Click OK.
5. Repeat step 4 for each parameter that needs to be set.
7. To process the modifications, click Yes.
8. Select Move Kernel Into Place and Shutdown/Reboot Now and click OK.

See the IBM Directory Server Version 5.1 Installation and Configuration Guide for additional parameter settings.

Web Administration tabs, table headers, and static list boxes are displayed in incorrect language

This is a problem that has been encountered on the HP-UX and AIX operating systems, however, other UNIX-based systems might encounter the same problem.

The environment variables LC_ALL and LANG need to be set to a native locale supported by Java, for example en_US.iso88591. They must not be set to either POSIX or C.

```
export LC_ALL=<new language>
export LANG=<new language>
```

The translation of the tabs, table headers, and static list boxes are saved in the language that was first used by the application server the first time a user logs into the Web Administration Tool application. If you change the locale on your machine, you might see the following exception:
java.lang.InternalError: Can't connect to X11 window server using ':0.0'
as the value of the DISPLAY variable.
at sun.awt.X11GraphicsEnvironment.initDisplay(Native Method)
at sun.awt.X11GraphicsEnvironment.<clinit>  
   (X11GraphicsEnvironment.java:58)
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Unknown Source)
at java.awt.GraphicsEnvironment.getLocalGraphicsEnvironment  
   (GraphicsEnvironment.java:53)
at sun.awt.motif.MToolkit.<clinit>(MToolkit.java:63)
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Unknown Source)
at java.awt.Toolkit$2.run(Toolkit.java:507)
at java.security.AccessController.doPrivileged(Native Method)
at java.awt.Toolkit.getDefaultToolkit(Toolkit.java:498)
at java.awt.Toolkit.getEventQueue(Toolkit.java:1171)
at java.awt.EventQueue.invokeLater(EventQueue.java:506)
at javax.swing.SwingUtilities.invokeLater(SwingUtilities.java:1086)
at javax.swing.Timer.post(Timer.java:337)
at javax.swing.TimerQueue.postExpiredTimers(TimerQueue.java:226)
at java.lang.Thread.run(Unknown Source)

To correct this exception, you must export the DISPLAY variable so that it is a valid machine, for example the machine on which the application server is running. Then perform xhost + on the application server machine.

On the machine where you want to export the DISPLAY to, issue the command:
export DISPLAY=<<valid machine name>:0

On the <valid machine name> issue the command:
xhost +

**HTML special characters are not displayed correctly**

Special characters in read-only data coming from the server are not displayed correctly in the HTML page. This is because of the way that the HTML is rendered by the Web browsers. A string containing multiple spaces such as "a b" is rendered as "a b" or a string containing the '<' special character is truncated for example, "abc<abc" is rendered as "abc". This affects such fields as labels, drop-down boxes, tables, captions and so forth.

**Web Administration requires IBM JDK on a Domino™ server**

If you want to use the Web Administration Tool with a Domino server you need to use the IBM 1.3.1 JDK. Using the JDK form Sun results in communication exceptions.

The following are limitations on the Domino server:
- Manage schema functions do not work.
- Domino does not support user defined suffixes.

**Note:** The standard suffix on the Domino server is a blank. Consequently, to view entries you must select the radio button with the plus sign (+) next to it and click **Expand**.
Debugging

Debug output for configuration

During configuration, you might experience some problems with the IBM Directory configuration programs. There are some extra debugging steps that can help you and IBM support teams determine the cause of these problems.

There are three configuration programs in the IBM Directory product. Two are run from a command line, and one is GUI-based. The configuration programs are:

- **ldapcfg** - A command line program to configure an Admin DN, and a database
- **ldapucfg** - A command line program to unconfigure the database
- **ldapxcfg** - A GUI program to configure Admin DN, a database, and perform various other operations.

See the IBM Tivoli Directory Server Version 5.2 Installation and Configuration Guide for information on these utilities.

These configuration programs support two main functions:
- Configuring the Admin DN and password
- Configuring or unconfiguring a database or both for use by the IBM Directory

The configuration of the Admin DN is very straightforward. Generally, the only reasons the configuration of the Admin DN fails are if the IBM Directory configuration file (\安装路径\etc\ibmslapd.conf) has had the permissions accidentally changed, or if the user enters an invalid DN.

Database configuration

This leaves the most problematic option, the database configuration/unconfiguration. Because there are so many variables at play during configuration, errors can occur. Some of the factors that can affect this option are:

- Which platform, and which version of the operating system, the user is using.
- Which version of DB2, and which version of the operating system, the user is using.
- Which fix packs have been installed for it.

**Note:** DB2 comes in a wide variety of packages: Personal Edition, Enterprise Edition, Extended Enterprise Edition, and others. Many of these are supported across several versions of DB2 (7.1, 7.2), plus each version can have several available fix packs.

- Amount of disk space available in affected drives and partitions.
- Third party software that alters commonly used environment variables.

If the database configuration fails, the bottom-line question for the user is, “What failed, and how do I fix it?” The following sections describe sources of output that can be used to debug configuration problems.

Standard sources of output

There are several “standard” sources of information available to the user:

- The output on the screen.

All of the configuration programs are either started from a console command line prompt (ldapcfg, ldapucfg) or open a background console (ldapxcfg). As the database configuration progresses, status messages (and limited error messages) are displayed in the associated console window. If a problem occurs, the user should copy these messages to the system clipboard and then save them in a file for the support teams.
• DB2 log files.
  If the error is a direct error from DB2, then DB2 often creates message/error files
  in the /tmp directory (on UNIX platforms). If the user has a database
  configuration problem on UNIX systems, they need to examine all of the files in
  the /tmp directory that were created around the time of the attempted
  configuration. On Windows systems, examine any DB2 error logs in your DB2
  install directory under the directory named for the instance you were trying to
  configure. For example, if your were trying to create the default ldapdb2
  instance and database, and if your DB2 was installed in D:\sqllib, then you need
  to examine the files in the D:\sqllib\ldadb2 directory if it exists. Especially look
  for and examine the 'db2diag.log' file in that directory.

• IBM Directory logs:
  IBM Directory logs most configuration errors in the file ‘ldacfg.out’. On UNIX
  platforms, this file can be found in the /tmp directory. On Windows platforms,
  this file is created in the root directory of the drive you ran configuration from.

Creating advanced debug output
There are two more sources of output that can be used to debug configuration
problems. Both of them are initiated by setting environment variables before
running the configuration. For both of these debug options, it is strongly
recommended that your console window be set to scrollable so that any messages
that scroll off the screen can be seen later.

JAVA_DEBUG
Set this environment variable to any non-empty value Example:
JAVA_DEBUG=1

On UNIX platforms, use export JAVA_DEBUG=1. This causes certain Java
debug information built into the code to be displayed on stdout (the
console).

LDAP_DBG
Set this environment variable to any non-empty value. Example:
LDAP_DBG=1

On UNIX platforms, use export LDAP_DBG=1. This causes a debug file to be
created for the IBM support and development teams. The file name that is
created is dbg.log.

On the Windows NT and Windows 2000 platforms, dbg.log is created in
the <ldapinstalldir> /var directory. On UNIX platforms, dbg.log is created in
the /var/ldap directory.

Note: This debug log file contains code-specific information intended for
the IBM development team and is not intended for use by the
customer. Send this file along with any other debug information to
the IBM support team.

ibmslapd command parameters
The ibmslapd command has two parameters on UNIX systems and an additional
two parameters on Windows systems.

-h <debug_mask>
Causes ibmslapd to generate debug output to stdout. The debug_mask is a
bit mask that controls which output is generated with values up to 65535.
This parameter is for use by IBM service personnel.
-f <path_to_configuration_file>
    Specifies the location of the configuration file used when starting the
    server. This parameter is used if you want to use a customized
    configuration file. If not specified, ibmslapd defaults to the platform
    dependent location where the configuration file was installed.

Additional parameters for Windows systems:

-i <servicename>
    Installs IBM Directory as service on the server.

-u <servicename>
    Removes IBM Directory as service from the server.

**Server debug mode**

If the error logs do not provide enough information to resolve a problem, you can
run the IBM Tivoli Directory Server in a special debug mode that generates very
detailed information. The server executable ibmslapd must be run from a
command prompt to enable debug output. The syntax is as follows:

```
ldtrc on
ibmslapd -h bitmask
```

where the specified bitmask value determines which categories of debug output
are generated.

<table>
<thead>
<tr>
<th>Hex</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0001</td>
<td>1</td>
<td>LDAP_DEBUG_TRACE</td>
</tr>
<tr>
<td>0x0002</td>
<td>2</td>
<td>LDAP_DEBUG_PACKETS</td>
</tr>
<tr>
<td>0x0004</td>
<td>4</td>
<td>LDAP_DEBUG_ARGS</td>
</tr>
<tr>
<td>0x0008</td>
<td>8</td>
<td>LDAP_DEBUG_CONNS</td>
</tr>
<tr>
<td>0x0010</td>
<td>16</td>
<td>LDAP_DEBUG_BER</td>
</tr>
<tr>
<td>0x0020</td>
<td>32</td>
<td>LDAP_DEBUG_FILTER</td>
</tr>
<tr>
<td>0x0040</td>
<td>64</td>
<td>LDAP_DEBUG_MESSAGE</td>
</tr>
<tr>
<td>0x0080</td>
<td>128</td>
<td>LDAP_DEBUG_ACL</td>
</tr>
<tr>
<td>0x0100</td>
<td>256</td>
<td>LDAP_DEBUG_STATS</td>
</tr>
<tr>
<td>0x0200</td>
<td>512</td>
<td>LDAP_DEBUG_THREAD</td>
</tr>
<tr>
<td>0x0400</td>
<td>1024</td>
<td>LDAP_DEBUG_REPL</td>
</tr>
<tr>
<td>0x0800</td>
<td>2048</td>
<td>LDAP_DEBUG_PARSE</td>
</tr>
<tr>
<td>0x1000</td>
<td>4096</td>
<td>LDAP_DEBUG_PERFORMANCE</td>
</tr>
<tr>
<td>0x1000</td>
<td>8192</td>
<td>LDAP_DEBUG_RDBM</td>
</tr>
<tr>
<td>0x4000</td>
<td>16384</td>
<td>LDAP_DEBUG_REFERRAL</td>
</tr>
<tr>
<td>0x8000</td>
<td>32768</td>
<td>LDAP_DEBUG_ERROR</td>
</tr>
<tr>
<td>0xffff</td>
<td>65535</td>
<td>LDAP_DEBUG_ANY</td>
</tr>
</tbody>
</table>

For example, specifying a bitmask value of "65535" turns on full debug output and
generates the most complete information.
When you are finished, issue the following command at a command prompt:
```
ldtrc off
```

It is recommended that you contact IBM Service for assistance with interpreting of the debug output and resolving of the problem.

---

**Replication command line interface error (Windows platforms only)**

If you are using Windows 2000 or Windows NT and have a master server configured to do replication, you might see an error like the following in the ibmslapd error log during updates:

```
[IBM][CLI Driver] CLI0157E Error opening a file. SQLSTATE=S1507
```

This problem can be resolved by adding the following entry to the \sqlib\db2cli.ini file:

```
[COMMON]
TempDir=x:\<your directory>
```

where `x:\<your directory>` specifies an existing directory on a drive that has space available. DB2 database writes temporary files to this directory. The amount of space required depends on the size of the directory entries you are adding or updating, but generally does require more space than the size of the largest entry you are updating.
Appendix B. IBM UUID

You can configure DB2 to enforce unique values for an LDAP attribute, such as UID, in the IBM Tivoli Directory Server. There are some requirements:

All of the values for the attribute must be stored on each LDAP server where values for the attribute can be created or updated. This means that you cannot have referrals in the directory tree that point to other servers that contain values for the attribute. If you have multiple masters (peer servers) where values for the attribute can be updated, be sure that your directory administrators and applications update the attribute on only one of these servers. If applications created, for example, the same value for the UID attribute on two peer servers at exactly the same time, replication conflicts might occur.

The following is a simple procedure you can use to enforce unique values for UID. In this procedure, you issue the SQL statement to set up a DB2 constraint on the table that contains the UID attribute. Then DB2 ensures that the attribute values are unique. To make this work, you must know how to set the parameters of the SQL statement. The first two steps in this procedure determine these SQL statement parameters. The third step creates the SQL constraint.

1. Determine the attribute for which you want to require directory entries to have unique values. Be sure that the attribute does not already have non-unique values. In this example, the UID attribute is used. The database can already have values in it for this UID, but if it does, they must each already be unique. If there are currently any duplicate values for UID in the database, you will not be able to set up the constraint in step 3 until you delete the non-unique values or change them so that they are unique.

2. Determine which DB2 table stores the attribute values and on which column in that table to set a DB2 constraint to enforce unique values. Understand that DB2 needs to create an index to efficiently enforce unique values in a column. It does not create indexes on columns that contain values more than 255 characters in length. So,
   - If the length specified for the attribute in the LDAP schema is 255 characters or less, the column in the DB2 table that contains the values for the attribute that can be indexed for a uniqueness constraint, by default, has exactly the same name as the attribute.
   - If the length of the attribute can be greater than 255 characters, DB2 does not allow the creation of an index on this column. The LDAP server knows this so it creates another column with the same name as the attribute, but with the characters ".T" appended to it. This extra truncated column contains the values for the attribute truncated to only 255 characters in length. DB2 can create an index on this column, so this is the column on which you must add a constraint for unique values.

You can tell what the maximum length of an attribute is by looking at its definition in the LDAP schema, for example with the Web Administration Tool. Note that in the case of the UID attribute, the default length in the schema packaged with the IBM Tivoli Directory Server is 256. Therefore, the second point is true for this attribute. In this example, we must set a uniqueness constraint on the column "UID_T". If we try to set it on the "UID" column, the SQL command fails because the required index cannot be created.

© Copyright IBM Corp. 2003
3. After determining the table and column on which we want DB2 to enforce unique values, issue a SQL ALTER TABLE statement to tell DB2 to allow only unique values for UID.

a. Go to a DB2 command prompt.
   - On Windows, type `db2cmd` at a Windows command prompt. This brings up a DB2 command window.
   - On UNIX platforms, type `su ldapdb2` while logged on as root. This sets the correct DB2 environment.

b. On Windows, type `set db2instance=ldapdb2` (This step is not needed on UNIX platforms.)

c. Connect to ldapdb2. This establishes a DB2 connection to the LDAP server’s database for the following alter table SQL command.

d. Type the following command:
   ```sql
 db2 alter table "ldapdb2.uid" add CONSTRAINT const1 UNIQUE (uid_t)
   ```

   This SQL statement establishes the constraint. Notice that the UNIQUE parameter value is `uid_t` because the UID attribute can be longer than 255 characters. From now on, DB2 does not allow a value to be specified, if the first 255 characters are not unique in the local database. The constraint is named `const1` in this example, but you can name it anything you want. Remember the constraint name in case you want to drop it and allow non-unique values again. To drop the uniqueness constraint issue the following SQL command:
   ```sql
 alter table "ldapdb2.uid" drop constraint const1
   ```

When an application tries to add an entry to the directory with a value for the UID attribute that duplicates an existing directory entry, an error with result code 20 is returned from the LDAP server; for example:

`LDAP: error code 20 - Attribute or Value Exists`
# Appendix C. Error codes

The possible values for an LDAP error code are shown in the following tables:

## Table 21. General return codes

<table>
<thead>
<tr>
<th>Dec value</th>
<th>Value</th>
<th>Hex value</th>
<th>Brief description</th>
<th>Detailed description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>LDAP_SUCCESS</td>
<td>00</td>
<td>Success</td>
<td>The request was successful.</td>
</tr>
<tr>
<td>00</td>
<td>LDAP_OPERATIONS_ERROR</td>
<td>01</td>
<td>Operations error</td>
<td>An operations error occurred.</td>
</tr>
<tr>
<td>02</td>
<td>LDAP_PROTOCOL_ERROR</td>
<td>02</td>
<td>Protocol error</td>
<td>A protocol violation was detected.</td>
</tr>
<tr>
<td>03</td>
<td>LDAP_TIMELIMIT_EXCEEDED</td>
<td>03</td>
<td>Time limit exceeded</td>
<td>An LDAP time limit was exceeded.</td>
</tr>
<tr>
<td>04</td>
<td>LDAP_SIZELIMIT_EXCEEDED</td>
<td>04</td>
<td>Size limit exceeded</td>
<td>An LDAP size limit was exceeded.</td>
</tr>
<tr>
<td>05</td>
<td>LDAP_COMPARE_FALSE</td>
<td>05</td>
<td>Compare false</td>
<td>A compare operation returned false.</td>
</tr>
<tr>
<td>06</td>
<td>LDAP_COMPARE_TRUE</td>
<td>06</td>
<td>Compare true</td>
<td>A compare operation returned true.</td>
</tr>
<tr>
<td>07</td>
<td>LDAP_STRONG_AUTH_NOT_SUPPORTED</td>
<td>07</td>
<td>Strong authentication not supported</td>
<td>The LDAP server does not support strong authentication.</td>
</tr>
<tr>
<td>08</td>
<td>LDAP_STRONG_AUTH_REQUIRED</td>
<td>08</td>
<td>Strong authentication required</td>
<td>Strong authentication is required for the operation.</td>
</tr>
<tr>
<td>09</td>
<td>LDAP_PARTIAL_RESULTS</td>
<td>09</td>
<td>Partial results and referral received</td>
<td>Partial results only returned.</td>
</tr>
<tr>
<td>10</td>
<td>LDAP_REFERRAL</td>
<td>0A</td>
<td>Referral returned</td>
<td>Referral returned.</td>
</tr>
<tr>
<td>11</td>
<td>LDAP_ADMIN_LIMIT_EXCEEDED</td>
<td>0B</td>
<td>Administration limit exceeded</td>
<td>Administration limit exceeded.</td>
</tr>
<tr>
<td>12</td>
<td>LDAP_UNAVAILABLE_CRITICAL_EXTENSION</td>
<td>0C</td>
<td>Critical extension not supported</td>
<td>Critical extension is not supported.</td>
</tr>
<tr>
<td>13</td>
<td>LDAP_CONFIDENTIALITY_REQUIRED</td>
<td>0D</td>
<td>Confidentiality is required</td>
<td>Confidentiality is required.</td>
</tr>
<tr>
<td>14</td>
<td>LDAP_SASL_BIND_IN_PROGRESS</td>
<td>0E</td>
<td>SASL bind in progress</td>
<td>An SASL bind is in progress.</td>
</tr>
<tr>
<td>16</td>
<td>LDAP_NO_SUCH_ATTRIBUTE</td>
<td>10</td>
<td>No such attribute</td>
<td>The attribute type specified does not exist in the entry.</td>
</tr>
<tr>
<td>17</td>
<td>LDAP_UNDEFINED_TYPE</td>
<td>11</td>
<td>Undefined attribute type</td>
<td>The attribute type specified is not valid.</td>
</tr>
<tr>
<td>18</td>
<td>LDAP_INAPPROPRIATE_MATCHING</td>
<td>12</td>
<td>Inappropriate matching</td>
<td>Filter type not supported for the specified attribute.</td>
</tr>
<tr>
<td>Dec value</td>
<td>Value</td>
<td>Hex value</td>
<td>Brief description</td>
<td>Detailed description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------------</td>
<td>-----------</td>
<td>--------------------------</td>
<td>--------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>19</td>
<td>LDAP_CONSTRAINT_VIOLATION</td>
<td>13</td>
<td>Constraint violation</td>
<td>An attribute value specified violates some constraint (for example, a postal address has too many lines, or a line that is too long).</td>
</tr>
<tr>
<td>20</td>
<td>LDAP_TYPE_OR_VALUE_EXISTS</td>
<td>14</td>
<td>Type or value exists</td>
<td>An attribute type or attribute value specified already exists in the entry.</td>
</tr>
<tr>
<td>21</td>
<td>LDAP_INVALID_SYNTAX</td>
<td>15</td>
<td>Invalid syntax</td>
<td>An attribute value that is not valid was specified.</td>
</tr>
<tr>
<td>32</td>
<td>LDAP_NO_SUCH_OBJECT</td>
<td>20</td>
<td>No such object</td>
<td>The specified object does not exist in the directory.</td>
</tr>
<tr>
<td>33</td>
<td>LDAP_ALIAS_PROBLEM</td>
<td>21</td>
<td>Alias problem</td>
<td>An alias in the directory points to a nonexistent entry.</td>
</tr>
<tr>
<td>34</td>
<td>LDAP_INVALID_DN_SYNTAX</td>
<td>22</td>
<td>Invalid DN syntax</td>
<td>A DN that is syntactically not valid was specified.</td>
</tr>
<tr>
<td>35</td>
<td>LDAP_IS_LEAF</td>
<td>23</td>
<td>Object is a leaf</td>
<td>The object specified is a leaf.</td>
</tr>
<tr>
<td>36</td>
<td>LDAP_ALIAS_DEREF_PROBLEM</td>
<td>24</td>
<td>Alias dereferencing problem</td>
<td>A problem was encountered when dereferencing an alias.</td>
</tr>
<tr>
<td>48</td>
<td>LDAP_INAPPROPRIATE_AUTH</td>
<td>30</td>
<td>Inappropriate authentication</td>
<td>Inappropriate authentication was specified (for example, LDAP_AUTH_SIMPLE was specified and the entry does not have a userPassword attribute).</td>
</tr>
<tr>
<td>49</td>
<td>LDAP_INVALID_CREDENTIALS</td>
<td>31</td>
<td>Invalid credentials</td>
<td>Invalid credentials were presented (for example, the wrong password).</td>
</tr>
<tr>
<td>50</td>
<td>LDAP_INSUFFICIENT_ACCESS</td>
<td>32</td>
<td>Insufficient access</td>
<td>The user has insufficient access to perform the operation.</td>
</tr>
<tr>
<td>51</td>
<td>LDAP_BUSY</td>
<td>33</td>
<td>DSA is busy</td>
<td>The DSA is busy.</td>
</tr>
<tr>
<td>52</td>
<td>LDAP_UNAVAILABLE</td>
<td>34</td>
<td>DSA is unavailable</td>
<td>The DSA is unavailable.</td>
</tr>
<tr>
<td>53</td>
<td>LDAP_UNWILLING_TO_PERFORM</td>
<td>35</td>
<td>DSA is unwilling to perform</td>
<td>The DSA is unwilling to perform the operation.</td>
</tr>
<tr>
<td>54</td>
<td>LDAP_LOOP_DETECT</td>
<td>36</td>
<td>Loop detected</td>
<td>A loop was detected.</td>
</tr>
<tr>
<td>64</td>
<td>LDAP_NAMING_VIOLATION</td>
<td>40</td>
<td>Naming violation</td>
<td>A naming violation occurred.</td>
</tr>
<tr>
<td>65</td>
<td>LDAP_OBJECT_CLASS_VIOLATION</td>
<td>41</td>
<td>Object class violation</td>
<td>An object class violation occurred (for example, a &quot;required&quot; attribute was missing from the entry).</td>
</tr>
</tbody>
</table>
### Table 21. General return codes (continued)

<table>
<thead>
<tr>
<th>Dec value</th>
<th>Value</th>
<th>Hex value</th>
<th>Brief description</th>
<th>Detailed description</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td>LDAP_NOT_ALLOWED_ON_NONLEAF</td>
<td>42</td>
<td>Operation not allowed on nonleaf</td>
<td>The operation is not allowed on a nonleaf object.</td>
</tr>
<tr>
<td>67</td>
<td>LDAP_NOT_ALLOWED_ON_RDN</td>
<td>43</td>
<td>Operation not allowed on RDN</td>
<td>The operation is not allowed on an RDN.</td>
</tr>
<tr>
<td>68</td>
<td>LDAP_ALREADY_EXISTS</td>
<td>44</td>
<td>Already exists</td>
<td>The entry already exists.</td>
</tr>
<tr>
<td>69</td>
<td>LDAP_NO_OBJECT_CLASS_MODS</td>
<td>45</td>
<td>Cannot modify object class</td>
<td>Object class modifications are not allowed.</td>
</tr>
<tr>
<td>70</td>
<td>LDAP_RESULTS_TOO_LARGE</td>
<td>46</td>
<td>Results too large</td>
<td>Results too large.</td>
</tr>
<tr>
<td>71</td>
<td>LDAP_AFFECTS_MULTIPLE_DSAS</td>
<td>47</td>
<td>Affects multiple DSAs</td>
<td>Affects multiple DSAs.</td>
</tr>
<tr>
<td>80</td>
<td>LDAP_OTHER</td>
<td>50</td>
<td>Unknown error</td>
<td>An unknown error occurred.</td>
</tr>
<tr>
<td>81</td>
<td>LDAP_SERVER_DOWN</td>
<td>51</td>
<td>Can’t contact LDAP server</td>
<td>The LDAP library cannot contact the LDAP server.</td>
</tr>
<tr>
<td>82</td>
<td>LDAP_LOCAL_ERROR</td>
<td>52</td>
<td>Local error</td>
<td>Some local error occurred. This is usually a failed memory allocation.</td>
</tr>
<tr>
<td>83</td>
<td>LDAP_ENCODING_ERROR</td>
<td>53</td>
<td>Encoding error</td>
<td>An error was encountered encoding parameters to send to the LDAP server.</td>
</tr>
<tr>
<td>84</td>
<td>LDAP_DECODING_ERROR</td>
<td>54</td>
<td>Decoding error</td>
<td>An error was encountered decoding a result from the LDAP server.</td>
</tr>
<tr>
<td>85</td>
<td>LDAP_TIMEOUT</td>
<td>55</td>
<td>Timed out</td>
<td>A time limit was exceeded while waiting for a result.</td>
</tr>
<tr>
<td>86</td>
<td>LDAP_AUTH_UNKNOWN</td>
<td>56</td>
<td>Unknown authentication method</td>
<td>The authentication method specified on a bind operation is not known.</td>
</tr>
<tr>
<td>87</td>
<td>LDAP_FILTER_ERROR</td>
<td>57</td>
<td>Bad search filter</td>
<td>An invalid filter was supplied to ldap_search (for example, unbalanced parentheses).</td>
</tr>
<tr>
<td>88</td>
<td>LDAP_USER_CANCELLED</td>
<td>58</td>
<td>User cancelled operation</td>
<td>The user cancelled the operation.</td>
</tr>
<tr>
<td>89</td>
<td>LDAP_PARAM_ERROR</td>
<td>59</td>
<td>Bad parameter to an LDAP routine</td>
<td>An LDAP routine was called with a bad parameter (for example, a NULL ld pointer, etc.).</td>
</tr>
<tr>
<td>90</td>
<td>LDAP_NO_MEMORY</td>
<td>5A</td>
<td>Out of memory</td>
<td>A memory allocation (for example malloc) call failed in an LDAP library routine.</td>
</tr>
<tr>
<td>91</td>
<td>LDAP_CONNECT_ERROR</td>
<td>5B</td>
<td>Connection error</td>
<td>Connection error.</td>
</tr>
</tbody>
</table>
### Table 21. General return codes (continued)

<table>
<thead>
<tr>
<th>Dec value</th>
<th>Value</th>
<th>Hex value</th>
<th>Brief description</th>
<th>Detailed description</th>
</tr>
</thead>
<tbody>
<tr>
<td>92</td>
<td>LDAP_NOT_SUPPORTED</td>
<td>5C</td>
<td>Not supported</td>
<td>Not supported.</td>
</tr>
<tr>
<td>93</td>
<td>LDAP_CONTROL_NOT_FOUND</td>
<td>5D</td>
<td>Control not found</td>
<td>Control not found.</td>
</tr>
<tr>
<td>94</td>
<td>LDAP_NO_RESULTS_RETURNED</td>
<td>5E</td>
<td>No results returned</td>
<td>No results returned.</td>
</tr>
<tr>
<td>95</td>
<td>LDAP_MORE_RESULTS_TO_RETURN</td>
<td>5F</td>
<td>More results to return</td>
<td>More results to return.</td>
</tr>
<tr>
<td>96</td>
<td>LDAP_URL_ERR_NOTLDAP</td>
<td>60</td>
<td>URL doesn’t begin with ldap://</td>
<td>The URL does not begin with ldap://.</td>
</tr>
<tr>
<td>97</td>
<td>LDAP_URL_ERR_NODN</td>
<td>61</td>
<td>URL has no DN (required)</td>
<td>The URL does not have a DN (required).</td>
</tr>
<tr>
<td>98</td>
<td>LDAP_URL_ERR_BADSCOPE</td>
<td>62</td>
<td>URL scope string is invalid</td>
<td>The URL scope string is not valid.</td>
</tr>
<tr>
<td>99</td>
<td>LDAP_URL_ERR_MEM</td>
<td>63</td>
<td>Can’t allocate memory space</td>
<td>Cannot allocate memory space.</td>
</tr>
<tr>
<td>100</td>
<td>LDAP_CLIENT_LOOP</td>
<td>64</td>
<td>Client loop</td>
<td>Client loop.</td>
</tr>
<tr>
<td>101</td>
<td>LDAP_REFERRAL_LIMIT_EXCEEDED</td>
<td>65</td>
<td>Referral limit exceeded</td>
<td>Referral limit exceeded.</td>
</tr>
<tr>
<td>112</td>
<td>LDAP_SSL_ALREADY_INITIALIZED</td>
<td>70</td>
<td>ldap_ssl_client_init</td>
<td>The ldap_ssl_client_init was successfully called previously in this process.</td>
</tr>
<tr>
<td>113</td>
<td>LDAP_SSL_INITIALIZE_FAILED</td>
<td>71</td>
<td>Initialization call failed</td>
<td>SSL Initialization call failed.</td>
</tr>
<tr>
<td>114</td>
<td>LDAP_SSL_CLIENT_INIT_NOT_CALLED</td>
<td>72</td>
<td>Must call ldap_ssl_client_init before attempting to use SSL connection</td>
<td>Must call ldap_ssl_client_init before attempting to use SSL connection.</td>
</tr>
<tr>
<td>115</td>
<td>LDAP_SSL_PARAM_ERROR</td>
<td>73</td>
<td>Invalid SSL parameter previously specified</td>
<td>An SSL parameter that was not valid was previously specified.</td>
</tr>
<tr>
<td>116</td>
<td>LDAP_SSL_HANDSHAKE_FAILED</td>
<td>74</td>
<td>Failed to connect to SSL server</td>
<td>Failed to connect to SSL server.</td>
</tr>
<tr>
<td>117</td>
<td>LDAP_SSL_GET_CIPHER_FAILED</td>
<td>75</td>
<td>Not used</td>
<td>Deprecated.</td>
</tr>
<tr>
<td>118</td>
<td>LDAP_SSL_NOT_AVAILABLE</td>
<td>76</td>
<td>SSL library cannot be located</td>
<td>Ensure that GSKit has been installed.</td>
</tr>
<tr>
<td>128</td>
<td>LDAP_NO_EXPLICIT_OWNER</td>
<td>80</td>
<td>No explicit owner found</td>
<td>No explicit owner was found.</td>
</tr>
<tr>
<td>129</td>
<td>LDAP_NO_LOCK</td>
<td>81</td>
<td>Could not obtain lock</td>
<td>Client library was not able to lock a required resource.</td>
</tr>
</tbody>
</table>

In addition, the following DNS-related error codes are defined in the ldap.h file:

### Table 22. DNS-related return codes

<table>
<thead>
<tr>
<th>Dec value</th>
<th>Value</th>
<th>Hex value</th>
<th>Detailed description</th>
</tr>
</thead>
<tbody>
<tr>
<td>133</td>
<td>LDAP_DNS_NO_SERVERS</td>
<td>85</td>
<td>No LDAP servers found</td>
</tr>
<tr>
<td>134</td>
<td>LDAP_DNS_TRUNCATED</td>
<td>86</td>
<td>Warning: truncated DNS results</td>
</tr>
<tr>
<td>135</td>
<td>LDAP_DNS_INVALID_DATA</td>
<td>87</td>
<td>Invalid DNS Data</td>
</tr>
</tbody>
</table>
Table 22. DNS-related return codes (continued)

<table>
<thead>
<tr>
<th>Dec value</th>
<th>Value</th>
<th>Hex value</th>
<th>Detailed description</th>
</tr>
</thead>
<tbody>
<tr>
<td>136</td>
<td>LDAP_DNS_RESOLVE_ERROR</td>
<td>88</td>
<td>Can’t resolve system domain or nameserver</td>
</tr>
<tr>
<td>137</td>
<td>LDAP_DNS_CONF_FILE_ERROR</td>
<td>89</td>
<td>DNS Configuration file error</td>
</tr>
</tbody>
</table>

The following UTF8-related error codes are defined in the ldap.h file:

Table 23. UTF8-related return codes

<table>
<thead>
<tr>
<th>Dec value</th>
<th>Value</th>
<th>Hex value</th>
<th>Detailed description</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>LDAP_XLATE_E2BIG</td>
<td>A0</td>
<td>Output buffer overflow</td>
</tr>
<tr>
<td>161</td>
<td>LDAP_XLATE_EINVAL</td>
<td>A1</td>
<td>Input buffer truncated</td>
</tr>
<tr>
<td>162</td>
<td>LDAP_XLATE_EILSEQ</td>
<td>A2</td>
<td>Unusable input character</td>
</tr>
<tr>
<td>163</td>
<td>LDAP_XLATE_NO_ENTRY</td>
<td>A3</td>
<td>No codeset point to map to</td>
</tr>
</tbody>
</table>
Appendix D. Object Identifiers (OIDs) and attributes in the root DSE

The OIDs and attributes shown in the following sections are used in IBM Tivoli Directory Server 5.2. These OIDs and attributes are in the root DSE. The root DSE entry contains information about the server itself.

IBM Tivoli Directory Server defines a root DSE entry that an LDAP server provides to supply you with information about the LDAP server. For example, you might want to know what version of LDAP a server supports.

To list the OIDs and attributes in the root DSE, run the following command:

```
ldapsearch -D <AdminDN> -w <Adminpw> -s base
- b ** objectclass=* * ibm-supportedcapabilities
ibm-enabledcapabilities
```

For more detailed information, see the IBM Tivoli Directory Server Version 5.2 C-Client SDK Programming Reference.

Attributes in the root DSE

The following attributes are in the root DSE:

**namingcontexts**

The naming contexts held in the server.

The values of this attribute correspond to the naming contexts that this server masters or shadows. If the server does not master or shadow any information (for example, it is an LDAP gateway to a public X.500 directory), this attribute is absent. If the server believes it contains the entire directory, the attribute has a single value, and that value is an empty string (indicating the null DN of the root). This allows a client to choose suitable base objects for searching when it has contacted a server (the list of highest level suffixes the user defines in the configuration).

**ibm-configurationnamingcontext**

The suffix where the server’s configuration entries are stored. For version 5.2 this is cn=configuration.

**subschemasubentry**

The value of this attribute is the name of a subschema entry in which the server makes available attributes specifying the schema. It is set to cn=schema.

**security**

The secure SSL port the server is listening on. For example 636. This is only present if SSL is enabled for the server.

**port**

The nonsecure port the server is listening on. For example 389. This is only present only if the server does not have a secure port enabled.

**supportedsaslmechanisms**

A list of supported SASL security features.
The values of this attribute are the names of supported SASL mechanisms that the server supports. If the server does not support any mechanisms then this attribute is absent. This attribute contains any SASL mechanism that is registered to the server.

**supportedldapversion**

LDAP versions implemented by the current server. The values of this attribute are the versions of the LDAP protocol that the server implements. The values are 2 and 3.

**ibmdirctoryversion**

The version of IBM Tivoli Directory Server installed on this server. The current version is 5.2.

**ibm-enabledcapabilities**

Lists the server capabilities currently enabled on the server. See "OIDs for supported and enabled capabilities" on page 341 for the values.

**ibm-ldapservicename**

Specifies the host name of the server. If a Kerberos realm is defined, the form is hostname@realmname.

**ibm-serverld**

The unique ID assigned to the server at the initial startup of the server. This ID is used in replication topology to determine a server’s role.

**vendorname**

The supplier of this version of LDAP. For IBM Tivoli Directory Server, this is set to International Business Machines (IBM).

**vendorversion**

For IBM Tivoli Directory Server 5.2, the vendor version is set to 5.2.

**ibm-sslciphers**

Specifies a list of encryption methods supported by the server. The list is in the form of alphanumeric pairs.

**ibm-slapdSizeLimit**

Limits the number of entries returned by a search initiated by nonadministrative users.

**ibm-slapdTimeLimit**

Specifies in seconds the maximum amount of time the server spends processing a search request initiated by nonadministrative users.

**ibm-slapdDerefAliases**

Describes how the server is configured to handle dereferencing.

**ibm-supportedAuditVersion**

The supported version of auditing. For example, in version 5.2 the server supports auditing version 2 that enables auditing of extended operations.

**ibm-supportedACIMechanisms**

Lists the ACL models the server supports. See "OIDs for ACI mechanisms" on page 342 for the values.

**ibm-supportedcapabilities**

Lists the server capabilities currently supported by the server. See "OIDs for supported and enabled capabilities" on page 341 for the values.

**ibm-supportedcontrols**

Lists the controls that the server recognizes. See "OIDs for controls" on page 344 for the values.
ibm-supportedextensions

Lists the extended operations the server supports. See “OIDs for extended operations” on page 343 for the values.

## OIDs for supported and enabled capabilities

The following table shows OIDs for supported and enabled capabilities. You can use these OIDs to see if a particular server supports these features.

**Table 24. OIDs for supported and enabled capabilities**

<table>
<thead>
<tr>
<th>Short name</th>
<th>Description</th>
<th>OID assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhanced Replication Model</td>
<td>Identifies the replication model introduced in IBM Directory Server v5.1 including subtree and cascading replication.</td>
<td>1.3.18.0.2.32.1</td>
</tr>
<tr>
<td>Entry Checksum</td>
<td>Indicates that this server supports the ibm-entrychecksum and ibm-entrychecksumop features.</td>
<td>1.3.18.0.2.32.2</td>
</tr>
<tr>
<td>Entry UUID</td>
<td>This value is listed in the ibm-capabilities Subentry for those suffixes that support the ibm-entryuuid attribute.</td>
<td>1.3.18.0.2.32.3</td>
</tr>
<tr>
<td>Filter ACLs</td>
<td>Identifies that this server supports the IBM Filter ACL model</td>
<td>1.3.18.0.2.32.4</td>
</tr>
<tr>
<td>Password Policy</td>
<td>Identifies that this server supports password policies</td>
<td>1.3.18.0.2.32.5</td>
</tr>
<tr>
<td>Sort by DN</td>
<td>Enables searches sorted by DNs in addition to regular attributes.</td>
<td>1.3.18.0.2.32.6</td>
</tr>
<tr>
<td>Administration Group Delegation</td>
<td>Server supports the delegation of server administration to a group of administrators that are specified in the configuration backend.</td>
<td>1.3.18.0.2.32.8</td>
</tr>
<tr>
<td>Denial of Service Prevention</td>
<td>Server supports the denial of service prevention feature, including read/write time-outs and the emergency thread.</td>
<td>1.3.18.0.2.32.9</td>
</tr>
<tr>
<td>Dereference Alias Option</td>
<td>Server supports an option to not dereference aliases by default</td>
<td>1.3.18.0.2.32.10</td>
</tr>
<tr>
<td>Admin Daemon Audit Logging</td>
<td>Server supports the auditing of the admin daemon.</td>
<td>1.3.18.0.2.32.11</td>
</tr>
<tr>
<td>Attribute Caching Search Filter Resolution</td>
<td>The server supports attribute caching for search filter resolution.</td>
<td>1.3.18.0.2.32.13</td>
</tr>
<tr>
<td>Dynamic Tracing</td>
<td>Server supports active tracing for the server with an LDAP extended operation.</td>
<td>1.3.18.0.2.32.14</td>
</tr>
<tr>
<td>Entry And Subtree Dynamic Updates</td>
<td>The server supports dynamic configuration updates on entries and subtrees.</td>
<td>1.3.18.0.2.32.15</td>
</tr>
<tr>
<td>Globally Unique Attributes</td>
<td>The server feature to enforce globally unique attribute values.</td>
<td>1.3.18.0.2.32.16</td>
</tr>
<tr>
<td>Group-Specific Search Limits</td>
<td>Supports extended search limits for a group of people.</td>
<td>1.3.18.0.2.32.17</td>
</tr>
<tr>
<td>IBMpolicies Replication Subtree</td>
<td>Server supports the replication of the cn=IBMpolicies subtree.</td>
<td>1.3.18.0.2.32.18</td>
</tr>
<tr>
<td>Max Age ChangeLog Entries</td>
<td>Specifies that the server is capable of retaining changelog entries based on age.</td>
<td>1.3.18.0.2.32.19</td>
</tr>
</tbody>
</table>
Table 24. OIDs for supported and enabled capabilities (continued)

<table>
<thead>
<tr>
<th>Short name</th>
<th>Description</th>
<th>OID assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor Logging Counts</td>
<td>The server provides monitor logging counts for messages added to server, command-line interface, and audit log files.</td>
<td>1.3.18.0.2.32.20</td>
</tr>
<tr>
<td>Monitor Active Workers Information</td>
<td>The server provides monitor information for active workers (cn=workers,cn=monitor).</td>
<td>1.3.18.0.2.32.21</td>
</tr>
<tr>
<td>Monitor Connection Type Counts</td>
<td>The server provides monitor connection type counts for SSL and TLS connections.</td>
<td>1.3.18.0.2.32.22</td>
</tr>
<tr>
<td>Monitor Connections Information</td>
<td>The server provides monitor information for connections by IP address instead of connection ID (cn=connections, cn=monitor)</td>
<td>1.3.18.0.2.32.23</td>
</tr>
<tr>
<td>Monitor Operation Counts</td>
<td>The server provides new monitor operation counts for initiated and completed operation types.</td>
<td>1.3.18.0.2.32.24</td>
</tr>
<tr>
<td>Monitor Tracing Info</td>
<td>The server provides monitor information for tracing options currently being used.</td>
<td>1.3.18.0.2.32.25</td>
</tr>
<tr>
<td>Null Base Subtree Search</td>
<td>Server allows null based subtree search, which searches the entire DIT defined in the server.</td>
<td>1.3.18.0.2.32.26</td>
</tr>
<tr>
<td>Proxy Authorization</td>
<td>Server supports Proxy Authorization for a group of users.</td>
<td>1.3.18.0.2.32.27</td>
</tr>
<tr>
<td>TLS Capabilities</td>
<td>Specifies that the server is actually capable of doing TLS.</td>
<td>1.3.18.0.2.32.28</td>
</tr>
<tr>
<td>Non-Blocking Replication</td>
<td>The server is capable of ignoring some errors received from a consumer (replica) that would normally cause an update to be re-transmitted periodically until a successful result code was received.</td>
<td>1.3.18.0.2.32.29</td>
</tr>
<tr>
<td>Kerberos Capability</td>
<td>Specifies that the server is capable of using Kerberos.</td>
<td>1.3.18.0.2.32.30</td>
</tr>
<tr>
<td>ibm-allMembers and ibm-allGroups operational attributes</td>
<td>Indicates whether or not a backend supports searching on the ibm-allGroups and ibm-allMembers operational attributes.</td>
<td>1.3.18.0.2.32.31</td>
</tr>
<tr>
<td>Language Tags</td>
<td>Server supports language tags.</td>
<td>1.3.6.1.4.1.4203.1.5.4</td>
</tr>
<tr>
<td>FIPS mode for GSKit</td>
<td>Enables the server to use the encryption algorithms from the ICC FIPS-certified library</td>
<td>1.3.18.0.2.32.32</td>
</tr>
</tbody>
</table>

OIDs for ACI mechanisms

The following table shows the OIDs for ACI mechanisms.

Table 25. OIDs for ACI mechanisms

<table>
<thead>
<tr>
<th>Short name</th>
<th>Description</th>
<th>OID assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM SecureWay V3.2 ACL Model</td>
<td>Indicates that the LDAP server supports the IBM SecureWay V3.2 ACL model</td>
<td>1.3.18.0.2.26.2</td>
</tr>
<tr>
<td>IBM Filter Based ACL Mechanism</td>
<td>Indicates that the LDAP server supports IBM Directory Server v5.1 filter based ACLs.</td>
<td>1.3.18.0.2.26.3</td>
</tr>
</tbody>
</table>
### Table 25. OIDs for ACI mechanisms (continued)

<table>
<thead>
<tr>
<th>Short name</th>
<th>Description</th>
<th>OID assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Restricted ACL Support</td>
<td>Server supports specification and evaluation of ACLs on system and restricted attributes.</td>
<td>1.3.18.0.2.32.7</td>
</tr>
</tbody>
</table>

### OIDs for extended operations

The following table shows OIDs for extended operations.

**Table 26. OIDs for extended operations**

<table>
<thead>
<tr>
<th>Short name</th>
<th>Description</th>
<th>OID assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event Registration Request</td>
<td>Request registration for events in SecureWay V3.2 Event support.</td>
<td>1.3.18.0.2.12.1</td>
</tr>
<tr>
<td>Event Unregister Request</td>
<td>Unregister for events that were registered for using an Event Registration Request.</td>
<td>1.3.18.0.2.12.3</td>
</tr>
<tr>
<td>Begin Transaction</td>
<td>Begin a Transactional context for SecureWay V3.2</td>
<td>1.3.18.0.2.12.5</td>
</tr>
<tr>
<td>End Transaction</td>
<td>End Transactional context (commit/rollback) for SecureWay V3.2</td>
<td>1.3.18.0.2.12.6</td>
</tr>
<tr>
<td>Cascading Control Replication</td>
<td>This operation performs the requested action on the server it is issued to and cascades the call to all consumers beneath it in the replication topology.</td>
<td>1.3.18.0.2.12.15</td>
</tr>
<tr>
<td>Control Replication</td>
<td>This operation is used to force immediate replication, suspend replication, or resume replication by a supplier. This operation is allowed only when the client has update authority to the replication agreement</td>
<td>1.3.18.0.2.12.16</td>
</tr>
<tr>
<td>Control Replication Queue</td>
<td>This operation marks items as &quot;already replicated&quot; for a specified agreement. This operation is allowed only when the client has update authority to the replication agreement.</td>
<td>1.3.18.0.2.12.17</td>
</tr>
<tr>
<td>Quiesce or Unquiesce Server</td>
<td>This operation puts the subtree into a state where it does not accept client updates (or terminates this state), except for updates from clients authenticated as directory administrators where the Server Administration control is present.</td>
<td>1.3.18.0.2.12.19</td>
</tr>
<tr>
<td>Clear Log Request</td>
<td>Request to Clear log file.</td>
<td>1.3.18.0.2.12.20</td>
</tr>
<tr>
<td>Get Lines Request</td>
<td>Request to get lines from a log file.</td>
<td>1.3.18.0.2.12.22</td>
</tr>
<tr>
<td>Number of Lines Request</td>
<td>Request number of lines in a log file.</td>
<td>1.3.18.0.2.12.24</td>
</tr>
<tr>
<td>Start, Stop Server Request</td>
<td>Request to start, stop or restart an LDAP server.</td>
<td>1.3.18.0.2.12.26</td>
</tr>
<tr>
<td>Update Configuration Request</td>
<td>Request to update server configuration for IBM Directory Server.</td>
<td>1.3.18.0.2.12.28</td>
</tr>
<tr>
<td>DN Normalization Request</td>
<td>Request to normalize a DN or a sequence of DNs.</td>
<td>1.3.18.0.2.12.30</td>
</tr>
<tr>
<td>Kill Connection Request</td>
<td>Request to kill connections on the server. The request can be to kill all connections or kill connections by bound DN, IP, or a bound DN from a particular IP.</td>
<td>1.3.18.0.2.12.35</td>
</tr>
<tr>
<td>User Type Request</td>
<td>Request to get the User Type of the bound user.</td>
<td>1.3.18.0.2.12.37</td>
</tr>
</tbody>
</table>
### Table 26. OIDs for extended operations (continued)

<table>
<thead>
<tr>
<th>Short name</th>
<th>Description</th>
<th>OID assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Server Tracing</td>
<td>Activate or deactivate tracing in the IBM Directory Server.</td>
<td>1.3.18.0.2.12.40</td>
</tr>
<tr>
<td>Start TLS</td>
<td>Request to start Transport Layer Security.</td>
<td>1.3.6.1.4.1.1466.20037</td>
</tr>
<tr>
<td>Unique Attributes</td>
<td>Feature to enforce attribute uniqueness.</td>
<td>1.3.18.0.2.6.574</td>
</tr>
<tr>
<td>Attribute Type Extended Operations</td>
<td>Retrieve attributes by supported capability: operational, language tag, attribute cache, unique or configuration.</td>
<td>1.3.18.0.2.12.46</td>
</tr>
</tbody>
</table>

### OIDs for controls

The following table shows OIDs for controls.

### Table 27. OIDs for controls

<table>
<thead>
<tr>
<th>Short name</th>
<th>Description</th>
<th>OID assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transactional Context</td>
<td>Marks the operation as part of a transactional context for SecureWay V3.2</td>
<td>1.3.18.0.2.10.5</td>
</tr>
<tr>
<td>Server Administration</td>
<td>Allows an update operation by the administrator under conditions when the operation would normally be refused (server is quiesced, a read-only replica, etc.)</td>
<td>1.3.18.0.2.10.15</td>
</tr>
<tr>
<td>Replication Supplier Bind Control</td>
<td>This control is added by the supplier, if the supplier is a gateway server.</td>
<td>1.3.18.0.2.10.18</td>
</tr>
<tr>
<td>Sorted Search</td>
<td>Allows a client to receive search results sorted by a list of criteria, where each criterion represents a sort key.</td>
<td>1.2.840.113556.1.4.319</td>
</tr>
<tr>
<td>Paged Search Results</td>
<td>Allows management of the amount of data returned from a search request.</td>
<td>1.2.840.113556.1.4.473</td>
</tr>
<tr>
<td>Tree Delete Control</td>
<td>This control is attached to a Delete request to indicate that the specified entry and all descendant entries are to be deleted.</td>
<td>1.2.840.113556.1.4.805</td>
</tr>
<tr>
<td>Password Policy</td>
<td>Password policy request or response</td>
<td>1.3.6.1.4.1.42.2.27.8.5.1</td>
</tr>
<tr>
<td>Manage DSAIT</td>
<td>Causes entries with the &quot;ref&quot; attribute to be treated as normal entries, allowing clients to read and modify these entries.</td>
<td>2.16.840.1.113730.3.4.2</td>
</tr>
</tbody>
</table>

---

**Note:**
Table 26 and Table 27 provide a list of OIDs for extended operations and controls, respectively, with descriptions and corresponding Object Identifier (OID) values. These tables are essential for understanding and configuring various operations and features within the IBM Tivoli Directory Server.
Appendix E. LDAP data interchange format (LDIF)

This documentation describes the LDAP Data Interchange Format (LDIF), as used by the `ldapmodify`, `ldapsearch` and `ldapadd` utilities. The LDIF specified here is also supported by the server utilities provided with the IBM Directory.

LDIF is used to represent LDAP entries in text form. The basic form of an LDIF entry is:

```
dn: <distinguished name>
<attrtype> : <attrvalue>
<attrtype> : <attrvalue>
...
```

A line can be continued by starting the next line with a single space or tab character, for example:

```
dn: cn=John E Doe, o=University of Higher Learning, c=US
```

Multiple attribute values are specified on separate lines, for example:

```
cn: John E Doe
cn: John Doe
```

If an `<attrvalue>` contains a non-US-ASCII character, or begins with a space or a colon `:`, the `<attrtype>` is followed by a double colon and the value is encoded in base-64 notation. For example, the value " begins with a space" would be encoded like this:

```
cn:: IGJlZ2lucyB3aXRoIGEgc3BhY2U=
```

Multiple entries within the same LDIF file are separated by a blank line. Multiple blank lines are considered a logical end-of-file.

LDIF example

Here is an example of an LDIF file containing three entries.

```
dn: cn=John E Doe, o=University of Higher Learning, c=US
 cn: John E Doe
 cn: John Doe
 objectclass: person
 sn: Doe

 dn: cn=Bjorn L Doe, o=University of Higher Learning, c=US
 cn: Bjorn L Doe
 cn: Bjorn Doe
 objectclass: person
 sn: Doe

 dn: cn=Jennifer K. Doe, o=University of Higher Learning, c=US
 cn: Jennifer K. Doe
 cn: Jennifer Doe
 objectclass: person
 sn: Doe
```

© Copyright IBM Corp. 2003
The jpegPhoto in Jennifer Jensen’s entry is encoded using base-64. The textual attribute values can also be specified in base-64 format. However, if this is the case, the base-64 encoding must be in the code page of the wire format for the protocol (that is, for LDAP V2, the IA5 character set and for LDAP V3, the UTF-8 encoding).

---

**Version 1 LDIF support**

The client utilities (ldapmodify and ldapadd) have been enhanced to recognize the latest version of LDIF, which is identified by the presence of the "version: 1" tag at the head of the file. Unlike the original version of LDIF, the newer version of LDIF supports attribute values represented in UTF-8 (instead of the very limited US-ASCII).

However, manual creation of an LDIF file containing UTF-8 values may be difficult. In order to simplify this process, a charset extension to the LDIF format is supported. This extension allows an IANA character set name to be specified in the header of the LDIF file (along with the version number). A limited set of the IANA character sets are supported. See "IANA character sets supported by platform" on page 347 for the specific charset values that are supported for each operating system platform.

The version 1 LDIF format also supports file URLs. This provides a more flexible way to define a file specification. File URLs take the following form:

```plaintext
attribute:< file:///path (where path syntax depends on platform)
```

For example, the following are valid file Web addresses:

```plaintext
jpegphoto:< file:///d:\temp\photos\myphoto.jpg (DOS/Windows style paths)
jpegphoto:< file:///etc/temp/photos/myphoto.jpg (UNIX style paths)
```

**Note:** The IBM Directory utilities support both the new file URL specification as well as the older style (e.g. "jpegphoto: /etc/temp/myphoto"), regardless of the version specification. In other words, the new file URL format can be used without adding the version tag to your LDIF files.

---

**Version 1 LDIF examples**

You can use the optional charset tag so that the utilities will automatically convert from the specified character set to UTF-8 as in the following example:

```plaintext
version: 1
charset: ISO-8859-1
dn: cn=Juan Griego, o=University of New Mexico, c=US
cn: Juan Griego
sn: Griego
description:: V2hhdCBhIGNhcmVmdWwgcmVhZGVyIHlvd
title: Associate Dean
title: [title in Spanish]
jpegPhoto: file:///usr/local/photos/jgriego.jpg
```

In this instance, all values following an attribute name and a single colon are translated from the ISO-8859-1 character set to UTF-8. Values following an attribute name and a double colon (such as description:: V2hhdCBhIGNhcm... ) must be
base-64 encoded, and are expected to be either binary or UTF-8 character strings. Values read from a file, such as the jpegPhoto attribute specified by the Web address in the previous example, are also expected to be either binary or UTF-8. No translation from the specified “charset” to UTF-8 is done on those values.

In this example of an LDIF file without the charset tag, content is expected to be in UTF-8, or base-64 encoded UTF-8, or base-64 encoded binary data:

```
IBM Directory sample LDIF file
#
The suffix "o=IBM, c=US" should be defined before attempting to load
this data.

version: 1

dn: o=IBM, c=US
objectclass: top
objectclass: organization
o: IBM

dn: ou=Austin, o=IBM, c=US
ou: Austin
objectclass: organizationalUnit
seealso: cn=Linda Carlesberg, ou=Austin, o=IBM, c=US
```

This same file could be used without the version: 1 header information, as in previous releases of the IBM Directory:

```
IBM Directory sample LDIF file
#
The suffix "o=IBM, c=US" should be defined before attempting to load
this data.

dn: o=IBM, c=US
objectclass: top
objectclass: organization
o: IBM

dn: ou=Austin, o=IBM, c=US
ou: Austin
objectclass: organizationalUnit
seealso: cn=Linda Carlesberg, ou=Austin, o=IBM, c=US
```

**Note:** The textual attribute values can be specified in base-64 format.

### IANA character sets supported by platform

The following table defines the set of IANA-defined character sets that can be defined for the charset tag in a Version 1 LDIF file, on a per-platform basis. The value in the left-most column defines the text string that can be assigned to the charset tag. An "X" indicates that conversion from the specified charset to UTF-8 is supported for the associated platform, and that all string content in the LDIF file is assumed to be represented in the specified charset. "n/a" indicates that the conversion is not supported for the associated platform.

String content is defined to be all attribute values that follow an attribute name and a single colon.

See [IANA Character Sets](#) for more information about IANA-registered character sets.
<table>
<thead>
<tr>
<th>Character</th>
<th>Locale</th>
<th>DB2 Code Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO-8859-1</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ISO-8859-2</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ISO-8859-5</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ISO-8859-6</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ISO-8859-7</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ISO-8859-8</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ISO-8859-9</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ISO-8859-15</td>
<td>X</td>
<td>n/a</td>
</tr>
<tr>
<td>IBM437</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>IBM850</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>IBM852</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>IBM857</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>IBM862</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>IBM864</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>IBM866</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>IBM869</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>IBM1250</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>IBM1251</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>IBM1253</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>IBM1254</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>IBM1255</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>IBM1256</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>TIS-620</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>EUC-JP</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>EUC-KR</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>EUC-CN</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>EUC-TW</td>
<td>X</td>
<td>n/a</td>
</tr>
<tr>
<td>Shift-JIS</td>
<td>n/a</td>
<td>X</td>
</tr>
<tr>
<td>KSC</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>GBK</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Big5</td>
<td>X</td>
<td>n/a</td>
</tr>
<tr>
<td>GB18030</td>
<td>n/a</td>
<td>X</td>
</tr>
<tr>
<td>HP15CN</td>
<td>X (with non-GB18030)</td>
<td>n/a</td>
</tr>
</tbody>
</table>

* Supported at Solaris 7.
Notes:
1. The new Chinese character set standard (GB18030) is supported with appropriate patches available from www.sun.com and www.microsoft.com
2. On the Windows 2000 operating system, you must set the environment variable zhCNGB18030=TRUE.
Appendix F. IPv6 support

Internet Protocol Version 6 (IPv6) is the protocol designed by the IETF to replace the current version Internet Protocol, IP Version 4 (IPv4). IPv6 fixes a number of problems in IPv4, such as the limited number of available IPv4 addresses. IPv6 uses a wider address (128-bit vs 32-bit) than IPv4, and this has an impact on the TCP application level. It also has improvements in areas such as routing and network autoconfiguration. IPv6 is expected to gradually replace IPv4.

IPv6 support on AIX

Both the client and server for AIX are enabled to support IPv6. The format of LDAP URLs for IPv4 and IPv6 is as follows:

- To use a literal IPv4 address in a URL, the format is `x.x.x.x:port`. An example of an LDAP server name in a URL is `ldap://9.53.90.21:80`.
- To comply with RFC 2732, literal IPv6 address in URLs must be enclosed in `[]` characters. Examples of LDAP server names in URLs are:
  - `ldap://[107:0:0:0:200:7051]:80`
  - `ldap://[::ffff:9.53.96.21]`
Appendix G. IBM Tivoli Directory Server 5.2 required attribute definitions

attributetypes=( 1.3.18.0.2.4.285
NAME 'aclEntry'
DESC 'Holds the access controls for entries in an IBM eNetwork LDAP directory'
EQUALITY 2.5.13.2
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.285
DBNAME( 'aclEntry' 'aclEntry' )
ACCESS-CLASS restricted
LENGTH 32700 )

attributetypes=( 1.3.18.0.2.4.286
NAME 'aclPropagate'
DESC 'Indicates whether the ACL applies on entry or subtree.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.286
DBNAME( 'aclPropagate' 'aclPropagate' )
ACCESS-CLASS restricted
LENGTH 5 )

attributetypes=( 1.3.18.0.2.4.287
NAME 'aclSource'
DESC 'Indicates whether the ACL applies on entry or subtree.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.287
DBNAME( 'aclSource' 'aclSource' )
ACCESS-CLASS system
LENGTH 1000 )

attributetypes=( 2.5.4.1
NAME ( 'aliasedObjectName' 'aliasedentryname' )
DESC 'Represents the pointed to entry that is specified within an alias entry.'
EQUALITY 2.5.13.1
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 2.5.4.1
DBNAME( 'aliasedObject' 'aliasedObject' )
ACCESS-CLASS normal
LENGTH 1000
EQUALITY )

attributetypes=( 1.3.6.1.4.1.1466.101.120.6
NAME 'altServer'
DESC 'The values of this attribute are URLs of other servers which may be contacted when this server becomes unavailable.'
EQUALITY 1.3.6.1.4.1.1466.109.114.1
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
USAGE dSAOperation )
IBMAttributetypes=( 1.3.6.1.4.1.1466.101.120.6
DBNAME( 'altServer' 'altServer' )
ACCESS-CLASS normal
LENGTH 2048 )

attributetypes=( 2.5.21.5
NAME 'attributeTypes'
DESC 'This attribute is typically located in the subschema entry
and is used to store all attributes known to the server and objectClasses.'
EQUALITY 2.5.13.30
SYNTAX 1.3.6.1.4.1.1466.115.121.1.3
USAGE directoryOperation )
IBMAttributetypes=( 2.5.21.5
DBNAME( 'attributeTypes' 'attributeTypes' )
ACCESS-CLASS system
LENGTH 30
EQUALITY )

attributetypes=( 2.5.4.15
NAME 'businessCategory'
DESC 'This attribute describes the kind of business performed by an organization.'
EQUALITY 2.5.13.2
SUBSTR 2.5.13.4
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
USAGE userApplications )
IBMAttributetypes=( 2.5.4.15
DBNAME( 'businessCategory' 'businessCategory' )
ACCESS-CLASS normal
LENGTH 128
EQUALITY
SUBSTR)

attributetypes=( 2.16.840.1.113730.3.1.5
NAME 'changeNumber'
DESC 'Contains the change number of the entry as assigned by the supplier server.'
EQUALITY 2.5.13.14
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
NO-USER-MODIFICATION
USAGE userApplications )
IBMAttributetypes=( 2.16.840.1.113730.3.1.5
DBNAME( 'changeNumber' 'changeNumber' )
ACCESS-CLASS normal
LENGTH 11
EQUALITY APPROX )

attributetypes=( 2.16.840.1.113730.3.1.8
NAME 'changes'
DESC 'Defines changes made to a directory server. These changes are in LDIF format.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.5
SINGLE-VALUE
NO-USER-MODIFICATION
USAGE userApplications )
IBMAttributetypes=( 2.16.840.1.113730.3.1.8
DBNAME( 'changes' 'changes' )
ACCESS-CLASS sensitive )

attributetypes=( 2.16.840.1.113730.3.1.77
NAME 'changeTime'
DESC 'Time last changed.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.24
SINGLE-VALUE
NO-USER-MODIFICATION
USAGE userApplications )
IBMAttributetypes=( 2.16.840.1.113730.3.1.77
DBNAME( 'changeTime' 'changeTime' )
ACCESS-CLASS normal
LENGTH 30 )

attributetypes=( 2.16.840.1.113730.3.1.7
NAME 'changeType'
DESC 'Describes the type of change performed on an entry. Accepted values include: add, delete, modify, modrdn.'

EQUALITY 2.5.13.2
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
NO-USER-MODIFICATION
USAGE userApplications
IBMAttributetypes=( 2.16.840.1.113730.3.1.7
DBNAME( 'changeType' 'changeType' )
ACCESS-CLASS normal
LENGTH 250
EQUALITY )

attributetypes=( 2.5.4.3
NAME ( 'cn' 'commonName' )
DESC 'This is the X.500 commonName attribute, which contains a name of an object. If the object corresponds to a person, it is typically the person's full name.'
SUP 2.5.4.41
EQUALITY 2.5.13.2
ORDERING 2.5.13.3
SUBSTR 2.5.13.4
USAGE userApplications
IBMAttributetypes=( 2.5.4.3
DBNAME( 'cn' 'cn' )
ACCESS-CLASS normal
LENGTH 256
EQUALITY
ORDERING
SUBSTR
APPROX )

attributetypes=( 2.5.18.1
NAME 'createTimestamp'
DESC 'Contains the time that the directory entry was created.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.24
SINGLE-VALUE
NO-USER-MODIFICATION
USAGE directoryOperation
IBMAttributetypes=( 2.5.18.1
DBNAME('ldap_entry' 'create_Timestamp')
ACCESS-CLASS system
LENGTH 26 )

attributetypes=( 2.5.18.3
NAME 'creatorsName'
DESC 'Contains the creator of a directory entry.'
EQUALITY 2.5.13.1
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
SINGLE-VALUE
NO-USER-MODIFICATION
USAGE directoryOperation
IBMAttributetypes=( 2.5.18.3
DBNAME('ldap_entry' 'creator')
ACCESS-CLASS system
LENGTH 1000
EQUALITY )

attributetypes=( 2.16.840.1.113730.3.1.10
NAME 'deleteOldRdn'
DESC 'a flag which indicates if the old RDN should be retained as an attribute of the entry'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
SINGLE-VALUE
NO-USER-MODIFICATION
USAGE userApplications
IBMAttributetypes=( 2.16.840.1.113730.3.1.10

Appendix G. IBM Tivoli Directory Server 5.2 required attribute definitions 355
DBNAME('deleteOldRdn' 'deleteOldRdn')
ACCESS-CLASS normal
LENGTH 5

attributetypes=( 2.5.4.13
NAME 'description'
DESC 'Attribute common to CIM and LDAP schema to provide lengthy description of a directory object entry.'
EQUALITY 2.5.13.2
SUBSTR 2.5.13.4
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
USAGE userApplications)
IBMAttributetypes=( 2.5.4.13
DBNAME('description' 'description')
ACCESS-CLASS normal
LENGTH 1024
EQUALITY
SUBSTR)

attributetypes=( 2.5.21.2
NAME 'ditContentRules'
DESC 'Refer to RFC 2252.'
EQUALITY 2.5.13.30
SYNTAX 1.3.6.1.4.1.1466.115.121.1.16
USAGE directoryOperation)
IBMAttributetypes=( 2.5.21.2
DBNAME('ditContentRules' 'ditContentRules')
ACCESS-CLASS system
LENGTH 256
EQUALITY)

attributetypes=( 2.5.21.1
NAME 'ditStructureRules'
DESC 'Refer to RFC 2252.'
EQUALITY 2.5.13.29
SYNTAX 1.3.6.1.4.1.1466.115.121.1.17
USAGE directoryOperation)
IBMAttributetypes=( 2.5.21.1
DBNAME('ditStructureRules' 'ditStructureRules')
ACCESS-CLASS system
LENGTH 256
EQUALITY)

attributetypes=( 2.5.4.49
NAME ( 'dn' 'distinguishedName' )
DESC 'This attribute type is not used as the name of the object itself, but it is instead a base type from which attributes with DN syntax inherit. It is unlikely that values of this type itself will occur in an entry.'
EQUALITY 2.5.13.1
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
USAGE userApplications)
IBMAttributetypes=( 2.5.4.49
DBNAME('dn' 'dn')
ACCESS-CLASS normal
LENGTH 1000
EQUALITY)

attributetypes=( 1.3.18.0.2.4.288
NAME 'entryOwner'
DESC 'Indicates the distinguished name noted as the owner of the entry'
EQUALITY 2.5.13.2
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
USAGE directoryOperation)
attributetypes=( 1.3.18.0.2.4.288
DBNAME( 'entryOwner' 'entryOwner' )
ACCESS-CLASS restricted
LENGTH 1000 )

attributetypes=( 2.5.18.9
NAME 'hasSubordinates'
DESC 'Indicates whether any subordinate entries exist below the entry holding this attribute.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
SINGLE-VALUE
NO-USER-MODIFICATION
USAGE directoryOperation )

attributetypes=( 1.3.18.0.2.4.2244
NAME 'ibm-allGroups'
DESC 'All groups to which an entry belongs. An entry may be a member directly via member, uniqueMember or memberURL attributes, or indirectly via ibm-memberGroup attributes. Read-only operational attribute (not allowed in filter).'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
NO-USER-MODIFICATION
USAGE directoryOperation )

attributetypes=( 1.3.18.0.2.4.2243
NAME 'ibm-allMembers'
DESC 'All members of a group. An entry may be a member directly via member, uniqueMember or memberURL attributes, or indirectly via ibm-memberGroup attributes. Read-only operational attribute (not allowed in filter).'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
NO-USER-MODIFICATION
USAGE directoryOperation )

attributetypes=( 1.3.18.0.2.4.1077
NAME 'ibm-audit'
DESC 'TRUE or FALSE. Enable or disable the audit service. Default is FALSE.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
SINGLE-VALUE
USAGE directoryOperation )

attributetypes=( 1.3.18.0.2.4.1073
NAME 'ibm-auditAdd'
DESC 'TRUE or FALSE. Indicate whether to log the Add operation. Default is FALSE.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
SINGLE-VALUE
USAGE directoryOperation )

ACCESS-CLASS critical
LENGTH 16 )

attributetypes=( 1.3.18.0.2.4.1070
NAME 'ibm-auditBind'
DESC 'TRUE or FALSE. Indicate whether to log the Bind operation. Default is FALSE.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.1070
DBNAME( 'auditBind' 'auditBind' )
ACCESS-CLASS critical
LENGTH 16 )

attributetypes=( 1.3.18.0.2.4.1071
NAME 'ibm-auditDelete'
DESC 'TRUE or FALSE. Indicate whether to log the Delete operation. Default is FALSE.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.1071
DBNAME( 'auditDelete' 'auditDelete' )
ACCESS-CLASS critical
LENGTH 16 )

attributetypes=( 1.3.18.0.2.4.1069
NAME 'ibm-auditExtOpEvent'
DESC 'TRUE or FALSE. Indicate whether to log LDAP v3 Event Notification extended operations. Default is FALSE.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.1069
DBNAME( 'auditExtOpEvent' 'auditExtOpEvent' )
ACCESS-CLASS critical
LENGTH 16 )

attributetypes=( 1.3.18.0.2.4.1078
NAME 'ibm-auditFailedOpOnly'
DESC 'TRUE or FALSE. Indicate whether to only log failed operations. Default is FALSE.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.1078
DBNAME( 'auditFailedOpOnly' 'auditFailedOpOnly' )
ACCESS-CLASS critical
LENGTH 16 )

attributetypes=( 1.3.18.0.2.4.1079
NAME 'ibm-auditLog'
DESC 'Specifies the pathname for the audit log.'
EQUALITY 2.5.13.5 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.1079
DBNAME( 'auditLog' 'auditLog' )
ACCESS-CLASS critical
LENGTH 1024 )

attributetypes=( 1.3.18.0.2.4.1072
NAME 'ibm-auditModify'
DESC 'TRUE or FALSE. Indicate whether to log the Modify operation. Default is FALSE.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
SINGLE-VALUE
USAGE directoryOperation
IBMAttributeTypes=( 1.3.18.0.2.4.1072
DBNAME( 'auditModify' 'auditModify' )
ACCESS-CLASS critical
LENGTH 16 )

attributeTypes=( 1.3.18.0.2.4.1075
NAME 'ibm-auditModifyDN'
DESC 'TRUE or FALSE. Indicate whether to log the ModifyRDN operation. Default is FALSE.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
SINGLE-VALUE
USAGE directoryOperation
IBMAttributeTypes=( 1.3.18.0.2.4.1075
DBNAME( 'auditModifyDN' 'auditModifyDN' )
ACCESS-CLASS critical
LENGTH 16 )

attributeTypes=( 1.3.18.0.2.4.1074
NAME 'ibm-auditSearch'
DESC 'TRUE or FALSE. Indicate whether to log the Search operation. Default is FALSE.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
SINGLE-VALUE
USAGE directoryOperation
IBMAttributeTypes=( 1.3.18.0.2.4.1074
DBNAME( 'auditSearch' 'auditSearch' )
ACCESS-CLASS critical
LENGTH 16 )

attributeTypes=( 1.3.18.0.2.4.1076
NAME 'ibm-auditUnbind'
DESC 'TRUE or FALSE. Indicate whether to log the Unbind operation. Default is FALSE.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
SINGLE-VALUE
USAGE directoryOperation
IBMAttributeTypes=( 1.3.18.0.2.4.1076
DBNAME( 'auditUnbind' 'auditUnbind' )
ACCESS-CLASS critical
LENGTH 16 )

attributeTypes=( 1.3.18.0.2.4.2483
NAME 'ibm-capabilitiessubentry'
DESC 'Names the ibm-capabilitiessubentry object listing the capabilities of the naming context containing this object.'
EQUALITY 2.5.13.1
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 SINGLE-VALUE
NO-USER-MODIFICATION
USAGE dSAOperation
IBMAttributeTypes=( 1.3.18.0.2.4.2483
DBNAME( 'ibmcapsubentry' 'ibmcapsubentry' )
ACCESS-CLASS system
LENGTH 1000 )

attributeTypes=( 1.3.18.0.2.4.2444
NAME 'ibm-effectiveAcl'
DESC 'An operational attribute that contains the accumulated filter based effective access for entries in an IBM LDAP directory.'
EQUALITY 2.5.13.2
SYNTAX 1.3.6.1.4.1.1466.115.121.115 NO-USER-MODIFICATION
USAGE directoryOperation
IBMAttributeTypes=( 1.3.18.0.2.4.2444
DBNAME( 'effectiveAcl' 'effectiveAcl' )
ACCESS-CLASS restricted
LENGTH 32700 )
attributetypes=( 1.3.18.0.2.4.2331
NAME 'ibm-effectiveReplicationModel'
DESC 'Advertises in the Root DSE the OID of the replication model in use by the server'
EQUALITY 1.3.6.1.4.1.1466.109.114.1
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
SINGLE-VALUE NO-USER-MODIFICATION
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2331
DBNAME( 'effectiveReplicat'
ACCESS-CLASS system
LENGTH 240 )

attributetypes=( 1.3.18.0.2.4.2482
NAME 'ibm-enabledCapabilities'
DESC 'Lists capabilities that are enabled for use on this server.'
EQUALITY 2.5.13.2
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
NO-USER-MODIFICATION
USAGE dSAOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2482
DBNAME( 'ibmenabledcap' )
ACCESS-CLASS system
LENGTH 100 )

attributetypes=( 1.3.18.0.2.4.2325
NAME 'ibm-entryChecksum'
DESC 'A checksum of the user attributes for the entry containing this attribute.'
EQUALITY 1.3.6.1.4.1.1466.109.114.1
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
SINGLE-VALUE
NO-USER-MODIFICATION
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2325
DBNAME( 'entryChecksum' )
ACCESS-CLASS system
LENGTH 100 )

attributetypes=( 1.3.18.0.2.4.2326
NAME 'ibm-entryChecksumOp'
DESC 'A checksum of the replicated operational attributes for the entry containing this attribute.'
EQUALITY 1.3.6.1.4.1.1466.109.114.1
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
SINGLE-VALUE NO-USER-MODIFICATION
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2326
DBNAME( 'entryChecksumOp' )
ACCESS-CLASS system
LENGTH 100 )

attributetypes=( 1.3.18.0.2.4.1780
NAME 'ibm-entryUuid'
DESC 'Uniquely identifies a directory entry throughout its life.'
EQUALITY 2.5.13.2
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
NO-USER-MODIFICATION
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.1780
DBNAME( 'ibmEntryUuid' )
ACCESS-CLASS system
LENGTH 36
EQUALITY )
attributetypes=( 1.3.18.0.2.4.2443
NAME 'ibm-filterAclEntry'
DESC 'Contains filter based access controls for entries in an IBM LDAP directory.'
EQUALITY 2.5.13.2
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2443
DBNAME( 'filterAclEntry' 'filterAclEntry' )
ACCESS-CLASS restricted
LENGTH 32700 )

attributetypes=( 1.3.18.0.2.4.2445
NAME 'ibm-filterAclInherit'
DESC 'Indicates whether filter based ACLs should accumulate up the ancestor tree.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2445
DBNAME( 'filterAclInherit' 'filterAclInherit' )
ACCESS-CLASS restricted
LENGTH 5 )

attributetypes=( 1.3.18.0.2.4.2330
NAME 'ibm-replicationChangeLDIF'
DESC 'Provides LDIF representation of the last failing operation'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.5
SINGLE-VALUE
NO-USER-MODIFICATION
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2330
DBNAME( 'replicationChange' 'replicationChange' )
ACCESS-CLASS system )

attributetypes=( 1.3.18.0.2.4.2498
NAME 'ibm-replicationIsQuiesced'
DESC 'Indicates whether the replicated subtree containing this attribute is quiesced on this server.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
SINGLE-VALUE
NO-USER-MODIFICATION
USAGE dsAOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2498
DBNAME( 'replIsQuiesced' 'replIsQuiesced' )
ACCESS-CLASS system
LENGTH 5 )

attributetypes=( 1.3.18.0.2.4.2338
NAME 'ibm-replicationLastActivationTime'
DESC 'Indicates the last time the replication thread was activated'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.24
SINGLE-VALUE
NO-USER-MODIFICATION
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2338
DBNAME( 'replicationLastAc' 'replicationLastAc' )
ACCESS-CLASS system
LENGTH 32 )

attributetypes=( 1.3.18.0.2.4.2334
NAME 'ibm-replicationLastChangeId'
DESC 'Indicates last change id successfully replicated for a replication agreement'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
NO-USER-MODIFICATION

Appendix G. IBM Tivoli Directory Server 5.2 required attribute definitions 361
IBMAttributetypes=( 1.3.18.0.2.4.2334
DBNAME( 'replicationLastCh' 'replicationLastCh' )
ACCESS-CLASS system
LENGTH 11 )

attributetypes=( 1.3.18.0.2.4.2335
NAME 'ibm-replicationLastFinishTime'
DESC 'Indicates the last time the replication thread completed sending all of the pending entries.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.24
SINGLE-VALUE
NO-USER-MODIFICATION
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2335
DBNAME( 'replicationLastFi' 'replicationLastFi' )
ACCESS-CLASS system
LENGTH 30 )

attributetypes=( 1.3.18.0.2.4.2448
NAME 'ibm-replicationLastGlobalChangeId'
DESC 'Indicates the ID of the last global (applies to the entire DIT, such as schema) change successfully replicated.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE
NO-USER-MODIFICATION
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2448
DBNAME( 'replicationLastGl' 'replicationLastGl' )
ACCESS-CLASS normal
LENGTH 11 )

attributetypes=( 1.3.18.0.2.4.2340
NAME 'ibm-replicationLastResult'
DESC 'Result of last attempted replication in the form:
<time><change id><resultcode> <entry-dn> '
EQUALITY 2.5.13.2
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE NO-USER-MODIFICATION
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2340
DBNAME( 'replicationLastRe' 'replicationLastRe' )
ACCESS-CLASS system
LENGTH 2048 )

attributetypes=( 1.3.18.0.2.4.2332
NAME 'ibm-replicationLastResultAdditional'
DESC 'Provides any additional error information returned by the consuming server in the message component of the LDAP result'
EQUALITY 2.5.13.2
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
NO-USER-MODIFICATION
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2332
DBNAME( 'replicationLastAd' 'replicationLastAd' )
ACCESS-CLASS system
LENGTH 1024 )

attributetypes=( 1.3.18.0.2.4.2339
NAME 'ibm-replicationNextTime'
DESC 'Indicates next scheduled time for replication'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.24
SINGLE-VALUE
NO-USER-MODIFICATION
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2339
DBNAME( 'replicationNextTi' 'replicationNextTi' )
ACCESS-CLASS system
LENGTH 11 )
Appendix G. IBM Tivoli Directory Server 5.2 required attribute definitions
ACCESS-CLASS system
LENGTH 240 )

attributetypes=( 1.3.18.0.2.4.2374
NAME 'ibm-slapdACLCache'
DESC 'Controls whether or not the server caches ACL information'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2374
DBNAME( 'ACLCache' 'ACLCache' )
ACCESS-CLASS normal
LENGTH 5 )

attributetypes=( 1.3.18.0.2.4.2373
NAME 'ibm-slapdACLCacheSize'
DESC 'Maximum number of entries to keep in the ACL Cache'
EQUALITY 2.5.13.14
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 S
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2373
DBNAME( 'slapdACLCacheSize' 'slapdACLCacheSize' )
ACCESS-CLASS normal
LENGTH 11 )

attributetypes=( 1.3.18.0.2.4.2428
NAME 'ibm-slapdAdminDN'
DESC 'Bind DN for ibmslapd administrator, e.g.: cn=root'
EQUALITY 2.5.13.1
ORDERING 1.3.18.0.2.4.405
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2428
DBNAME( 'slapdAdminDN' 'slapdAdminDN' )
ACCESS-CLASS critical
LENGTH 1000
EQUALITY ORDERING )

attributetypes=( 1.3.18.0.2.4.2425
NAME 'ibm-slapdAdminPW'
DESC 'Bind password for ibmslapd administrator.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.5
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2425
DBNAME( 'slapdAdminPW' 'slapdAdminPW' )
ACCESS-CLASS critical )

attributetypes=( 1.3.18.0.2.4.2366
NAME 'ibm-slapdAuthIntegration'
DESC 'Specifies integration of LDAP administrator access with local
OS users. Legal values are: 0 - do not map local OS users to LDAP
administrator, 1 - map local OS users with proper authority to LDAP
administrator. This is supported only on OS/400.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2366
DBNAME( 'slapdAuthIntegrat' 'slapdAuthIntegrat' )
ACCESS-CLASS system
LENGTH 11 )

attributetypes=( 1.3.18.0.2.4.2432
NAME 'ibm-slapdCLIErrors'

---

IBM Tivoli Directory Server: IBM Tivoli Directory Server Administration Guide
DESC 'File path or device on ibmslapd host machine to which DB2 CLI error messages will be written. On Windows, forward slashes are allowed, and a leading slash not preceded by a drive letter is assumed to be rooted at the install directory (i.e.: /tmp/cli.errors = D:\Program Files\IBM\ldap\tmp\cli.errors).'

EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2432
DBNAME( 'slapdCLIErrors' 'slapdCLIErrors' )
ACCESS-CLASS normal LENGTH 1024 )

attributetypes=( 1.3.18.0.2.4.2369
NAME 'ibm-slapdDB2CP'
DESC 'Specifies the Code Page of the directory database. 1208 is the code page for UTF-8 databases.'
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2369
DBNAME( 'slapdDB2CP' 'slapdDB2CP' )
ACCESS-CLASS normal LENGTH 11 )

attributetypes=( 1.3.18.0.2.4.2431
NAME 'ibm-slapdDBAlias'
DESC 'The DB2 database alias.'
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2431
DBNAME( 'slapdDBAlias' 'slapdDBAlias' )
ACCESS-CLASS normal LENGTH 8 )

attributetypes=( 1.3.18.0.2.4.2417
NAME 'ibm-slapdDbConnections'
DESC 'Specify the number of DB2 connections the server will dedicate to the DB2 backend. The value must be between 5 & 50 (inclusive). The ODBCCONS environment variable overrides this value. If ibm-slapdDbConnections (or ODBCCONS) is less than 5 or greater than 50, the server will use 5 or 50 respectively. Additional connections may be created for replication and change log.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2417
DBNAME( 'DbConnections' 'DbConnections' )
ACCESS-CLASS critical LENGTH 2 )

attributetypes=( 1.3.18.0.2.4.2418
NAME 'ibm-slapdDbInstance'
DESC 'The DB2 database instance for this backend.'
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2418
DBNAME( 'slapdDbInstance' 'slapdDbInstance' )
ACCESS-CLASS critical LENGTH 8 )

attributetypes=( 1.3.18.0.2.4.2382
NAME 'ibm-slapdDbLocation'
DESC 'The file system path where the backend database is located. On UNIX this is usually the home directory of the DB2INSTANCE owner (e.g.: /home/ldapdb2). On windows its just a drive specifier (e.g.: D:)'
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation
IBMAttributetypes=( 1.3.18.0.2.4.2382
DBNAME( 'slapdDbLocation' 'slapdDbLocation' )
ACCESS-CLASS critical
LENGTH 1024 )

attributetypes=( 1.3.18.0.2.4.2426
NAME 'ibm-slapdDbName'
DESC 'The DB2 database name for this backend.'
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2426
DBNAME( 'slapdDbName' 'slapdDbName' )
ACCESS-CLASS critical
LENGTH 8 )

attributetypes=( 1.3.18.0.2.4.2422
NAME 'ibm-slapdDbUserID'
DESC 'The user name with which to connect to the DB2 database for this backend.'
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2422
DBNAME( 'slapdDbUserID' 'slapdDbUserID' )
ACCESS-CLASS critical
LENGTH 8 )

attributetypes=( 1.3.18.0.2.4.2423
NAME 'ibm-slapdDbUserPW'
DESC 'The userpassword with which to connect to the DB2 database for this backend.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.5
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2423
DBNAME( 'slapdDbUserPW' 'slapdDbUserPW' )
ACCESS-CLASS critical )

attributetypes=( OID TBD
NAME 'ibm-slapdDerefAliases'
DESC 'Maximum alias dereferencing level on search requests, regardless of any derefAliases that may have been specified on the client requests. Allowed values are "never", "find", "search" and "always".'
EQUALITY 2.5.13.2
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.3054
DBNAME( 'DerefAliases' 'DerefAliases' )
ACCESS-CLASS critical
LENGTH 6 )

attributetypes=( 1.3.18.0.2.4.2449
NAME 'ibm-slapdDN'
DESC 'This attribute is used to sort search results by the entry DN (LDAP_ENTRY.DN column in the LDAPDB2 database).' 
EQUALITY 2.5.13.1
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
SINGLE-VALUE NO-USER-MODIFICATION
USAGE dSAOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2449
DBNAME( 'LDAP_ENTRY' 'DN' )
ACCESS-CLASS system
LENGTH 1000 )

attributetypes=( 1.3.18.0.2.4.2481
NAME 'ibm-supportedCapabilities'
DESC 'Lists capabilities supported, but necessarily enabled, by this
server.'
QUALITY 2.5.13.2
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
NO-USER-MODIFICATION
USAGE dSAOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2481
DBNAME( 'ibmsupportedCap' 'ibmsupportedCap' )
ACCESS-CLASS system
LENGTH 100 )

attributetypes=( 1.3.18.0.2.4.2421
NAME 'ibm-slapdEnableEventNotification'
DESC 'If set to FALSE, the server will reject all extended
operation requests to register for event notification with the
extended result LDAP_UNWILLING_TO_PERFORM.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2421
DBNAME( 'enableEvntNotify' 'enableEvntNotify' )
ACCESS-CLASS critical
LENGTH 5 )

attributetypes=( 1.3.18.0.2.4.2372
NAME 'ibm-slapdEntryCacheSize'
DESC 'Maximum number of entries to keep in the entry cache'
EQUALITY 2.5.13.14
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2372
DBNAME( 'slapdRDBMCacheSiz' 'slapdRDBMCacheSiz' )
ACCESS-CLASS normal
LENGTH 11 )

attributetypes=( 1.3.18.0.2.4.2424
NAME 'ibm-slapdErrorLog'
DESC 'File path or device on the ibmslapd host machine
to which error messages will be written. On Windows, forward
slashes are allowed, and a leading slash not preceded by a drive
letter is assumed to be rooted at the install directory (i.e.:
/tmp/slapd.errors = D:\Program Files\IBM\ldap\tmp\slapd.errors).'
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2424
DBNAME( 'slapdErrorLog' 'slapdErrorLog' )
ACCESS-CLASS critical
LENGTH 1024 )

attributetypes=( 1.3.18.0.2.4.2371
NAME 'ibm-slapdFilterCacheBypassLimit'
DESC 'Search filters that match more than this number of entries
will not be added to the Search Filter cache. Because the list of
entry ids that matched the filter are included in this cache, this
setting helps to limit memory use. A value of 0 indicates no
Appendix G. IBM Tivoli Directory Server 5.2 required attribute definitions 367
attributeTypes=(1.3.18.0.2.4.2370)
name='ibm-slapdFilterCacheSize'
desc='Specifies the maximum number of entries to keep in the Search Filter Cache.'
equality 2.5.13.14
syntax 1.3.6.1.4.1.1466.115.121.1.27
single-value
usage directoryOperation)
IBMAttributeTypes=(1.3.18.0.2.4.2370)
DBNAME('slapdFilterCacheSize' 'slapdFilterCacheSize')
access-class normal
length 11)

attributeTypes=(1.3.18.0.2.4.2378)
name='ibm-slapdIdleTimeOut'
desc='Reserved for future use.'
syntax 1.3.6.1.4.1.1466.115.121.1.27
single-value
usage directoryOperation)
IBMAttributeTypes=(1.3.18.0.2.4.2378)
DBNAME('SlapdIdleTimeOut' 'SlapdIdleTimeOut')
access-class critical
length 11)

attributeTypes=(1.3.18.0.2.4.2364)
name='ibm-slapdIncludeSchema'
desc='File path on the ibmslapd host machine containing schema definitions used by the LDCF backend. Standard values are: 
/etc/V3.system.at /etc/V3.system.oc
/etc/V3.ibm.at /etc/V3.ibm.oc /etc/V3.user.at /etc/V3.user.oc
/etc/V3.ldapsyntaxes /etc/V3.matchingrules /etc/V3.modifiedschema
On Windows, forward slashes are allowed, and a leading slash not preceded by a drive letter is assumed to be rooted at the install directory (i.e.: /etc/V3.system.at =
D:\Program Files\IBM\ldap\etc\V3.system.at).'
equality 2.5.13.5
syntax 1.3.6.1.4.1.1466.115.121.1.15
usage directoryOperation)
IBMAttributeTypes=(1.3.18.0.2.4.2364)
DBNAME('slapdIncludeSchema' 'slapdIncludeSchema')
access-class critical
length 1024)

attributeTypes=(1.3.18.0.2.4.2365)
name='ibm-slapdIpAddress'
desc='Specifies IP addresses the server will listen on. These can be IPv4 or IPv6 addresses. If the attribute is not specified, the server uses all IP addresses assigned to the host machine. This is supported on OS/400 only.'
equality 1.3.6.1.4.1.1466.109.114.1
syntax 1.3.6.1.4.1.1466.115.121.1.26
usage directoryOperation)
IBMAttributeTypes=(1.3.18.0.2.4.2365)
DBNAME('slapdIpAddress' 'slapdIpAddress')
access-class system
length 32)

attributeTypes=(1.3.18.0.2.4.2420)
NAME 'ibm-slapdKrbAdminDN'
DESC 'Specifies the kerberos ID of the LDAP administrator (e.g. ibm-kn=name@realm). Used when kerberos authentication is used to authenticate the administrator when logged onto the Web Admin interface. This is specified instead of adminDN and adminPW.'
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2420
DBNAME( 'slapdKrbAdminDN' 'slapdKrbAdminDN' )
ACCESS-CLASS critical
LENGTH 512 )

attributetypes=( 1.3.18.0.2.4.2394
NAME 'ibm-slapdKrbEnable'
DESC 'Must be one of { TRUE | FALSE }. Specifies whether the server supports kerberos authentication.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2394
DBNAME('slapdKrbEnable' 'slapdKrbEnable')
ACCESS-CLASS critical
LENGTH 5 )

attributetypes=( 1.3.18.0.2.4.2419
NAME 'ibm-slapdKrbIdentityMap'
DESC 'If set to TRUE, when a client is authenticated with a kerberos ID, the server will search for a local user with matching kerberos credentials, and add that user DN to the connections bind credentials. This allows ACLs based on LDAP user DNs to still be usable with kerberos authentication.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2419
DBNAME('KrbIdentityMap' 'KrbIdentityMap')
ACCESS-CLASS critical
LENGTH 5 )

attributetypes=(1.3.18.0.2.4.2416
NAME 'ibm-slapdKrbKeyTab'
DESC 'Specifies the LDAP servers keytab file. This file contains the LDAP servers private key, as associated with its kerberos account. This file should be protected (like the servers SSL key database file).
On Windows, forward slashes are allowed, and a leading slash not preceded by a drive letter (D:) is assumed to be rooted at the install directory (i.e.: /tmp/slapd.errors = D:\Program Files\IBM\ldap\tmp\slapd.errors).'
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2416
DBNAME( 'slapdKrbKeyTab' 'slapdKrbKeyTab' )
ACCESS-CLASS critical
LENGTH 1024 )

attributetypes=( 1.3.18.0.2.4.2400
NAME 'ibm-slapdKrbRealm'
DESC 'Specifies the LDAP servers kerberos realm. Used to publish the ldapservicename attribute in the root DSE. Note that an LDAP server can serve as the repository of account information for multiple KDCs (and realms), but the LDAP server, as a kerberos server, can only be a member of a single realm.'
EQUALITY 2.5.13.2
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15

Appendix G. IBM Tivoli Directory Server 5.2 required attribute definitions 369
SINGLE-VALUE
USAGE directoryOperation
IBMAttributeTypes=( 1.3.18.0.2.4.2400
 DBNAME( 'slapdKrbRealm' 'slapdKrbRealm' )
 ACCESS-CLASS critical
 LENGTH 256 )

attributetypes=( 1.3.18.0.2.4.2415
 NAME 'ibm-slapdLdapCrlHost'
 DESC 'Specify the hostname of the LDAP server that contains the Certificate Revocation Lists (CRLs) for validating client x.509v3 certificates. This parameter is needed when ibm-slapdSslAuth=serverclientauth AND the client certificates have been issued for CRL validation'.
 EQUALITY 2.5.13.2
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
 SINGLE-VALUE
 USAGE directoryOperation
 IBMAttributeTypes=( 1.3.18.0.2.4.2415
 DBNAME( 'LdapCrlHost' 'LdapCrlHost' )
 ACCESS-CLASS critical
 LENGTH 256 )

attributetypes=( 1.3.18.0.2.4.2407
 NAME 'ibm-slapdLdapCrlPassword'
 DESC 'Specify the password that server-side SSL will use to bind to the LDAP server that contains the Certificate Revocation Lists (CRLs) for validating client x.509v3 certificates. This parameter may be needed when ibm-slapdSslAuth=serverclientauth AND the client certificates have been issued for CRL validation. Note: If the LDAP server holding the CRLs permits unauthenticated access to the CRLs (i.e. anonymous access), then ibm-slapdLdapCrlPassword is not required.'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.5
 SINGLE-VALUE
 USAGE directoryOperation
 IBMAttributeTypes=( 1.3.18.0.2.4.2407
 DBNAME( 'CrlPassword' 'CrlPassword' )
 ACCESS-CLASS critical )

attributetypes=( 1.3.18.0.2.4.2404
 NAME 'ibm-slapdLdapCrlPort'
 DESC 'Specify the LDAP ibm-slapdPort used by the LDAP server that contains the Certificate Revocation Lists (CRLs) for validating client x.509v3 certificates. This parameter is needed when ibm-slapdSslAuth=serverclientauth AND the client certificates have been issued for CRL validation. (IP ports are unsigned, 16-bit integers in the range 1 - 65535)'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
 SINGLE-VALUE
 USAGE directoryOperation
 IBMAttributeTypes=( 1.3.18.0.2.4.2404
 DBNAME( 'LdapCrlPort' 'LdapCrlPort' )
 ACCESS-CLASS critical
 LENGTH 11 )

attributetypes=( 1.3.18.0.2.4.2403
 NAME 'ibm-slapdLdapCrlUser'
 DESC 'Specify the bind DN that server-side SSL will use to bind to the LDAP server that contains the Certificate Revocation Lists (CRLs) for validating client x.509v3 certificates. This parameter may be needed when ibm-slapdSslAuth=serverclientauth AND the client certificates have been issued for CRL validation. Note: If the LDAP server holding the CRLs permits unauthenticated access to the CRLs (i.e. anonymous access), then ibm-slapdLdapCrlUser is not required.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributeTypes=( 1.3.18.0.2.4.2403
DBName( 'LdapCrlUser' 'LdapCrlUser' )
ACCESS-CLASS critical
LENGTH 1000 )

attributeTypes=( 1.3.18.0.2.4.2409
NAME 'ibm-slapdMasterDN'
DESC 'Bind DN used by a replication supplier server. The value has to
match the replicaBindDN in the credentials object associated
with the replication agreement defined between the servers.
When kerberos is used to authenticate to the replica,
ibm-slapdMasterDN must specify the DN representation of the
derivations ID (e.g. ibm-kn=freddy@realm1). When kerberos is used,
MasterServerPW is ignored.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributeTypes=( 1.3.18.0.2.4.2409
DBName( 'MasterDN' 'MasterDN' )
ACCESS-CLASS critical
LENGTH 1000 )

attributeTypes=(1.3.18.0.2.4.2411
NAME 'ibm-slapdMasterPW'
DESC 'Bind password used by a replication supplier. The value has to
match the replicaBindPW in the credentials object associated with
the replication agreement defined between the servers. When kerberos
is used, MasterServerPW is ignored.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation
IBMAttributeTypes=( 1.3.18.0.2.4.2411
DBName( 'MasterPW' 'MasterPW' )
ACCESS-CLASS critical )

attributeTypes=( 1.3.18.0.2.4.2412
NAME 'ibm-slapdMaxEventsPerConnection'
DESC 'Maximum number of event notifications which can be registered
per connection. Minimum = 0 (unlimited) Maximum = 2,147,483,647'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation
IBMAttributeTypes=( 1.3.18.0.2.4.2412
DBName( 'EventsPerCon' 'EventsPerCon' )
ACCESS-CLASS critical
LENGTH 11 )

attributeTypes=( 1.3.18.0.2.4.2405
NAME 'ibm-slapdMaxEventsTotal'
DESC 'Maximum total number of event notifications which can be
registered for all connections. Minimum = 0 (unlimited) Maximum =
IBM Tivoli Directory Server Administration Guide

2,147,483,647
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2405
DBNAME( 'MaxEventsTotal' 'MaxEventsTotal' )
ACCESS-CLASS critical
LENGTH 11 )

attributetypes=( 1.3.18.0.2.4.2439
NAME 'ibm-slapdMaxNumOfTransactions'
DESC 'Maximum number of transactions active at one time. 0 = unlimited'
EQUALITY 2.5.13.29
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2439
DBNAME( 'MaxNumOfTrans' 'MaxNumOfTrans' )
ACCESS-CLASS critical
LENGTH 11
EQUALITY ORDERING SUBSTR APPROX )

attributetypes=( 1.3.18.0.2.4.2385
NAME 'ibm-slapdMaxOpPerTransaction'
DESC 'Maximum number of operations per transaction. 0 = unlimited'
EQUALITY 2.5.13.29
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2385
DBNAME( 'MaxOpPerTrans' 'MaxOpPerTrans' )
ACCESS-CLASS critical
LENGTH 11
EQUALITY ORDERING APPROX )

attributetypes=( 1.3.18.0.2.4.2386
NAME 'ibm-slapdMaxTimeLimitOfTransactions'
DESC 'The maximum timeout value of a pending transaction in seconds. 0 = unlimited'
EQUALITY 2.5.13.29
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2386
DBNAME('MaxTimeOfTrans' 'MaxTimeOfTrans' )
ACCESS-CLASS critical
LENGTH 11
EQUALITY ORDERING APPROX )

attributetypes=( 1.3.18.0.2.4.2500
NAME 'ibm-slapdMigrationInfo'
DESC 'Information used to control migration of a component.'
EQUALITY 2.5.13.2
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
USAGE directoryOperation )
IBMAttributetypes=(1.3.18.0.2.4.2500
DBNAME( 'slapdMigrationInf' 'slapdMigrationInf' )
ACCESS-CLASS critical
LENGTH 2048 )

attributetypes=( 1.3.18.0.2.4.2376
NAME 'ibm-slapdPagedResAllowNonAdmin'
DESC 'Whether or not the server should allow non-Administrator bind for paged results requests on a search request. If the value read from the ibmslapd.conf file is TRUE, the server will process any client request, including those submitted by a user binding anonymously. If the value read from the ibmslapd.conf file is FALSE, the server will process only those client requests submitted
by a user with Administrator authority. If a client requests paged results with a criticality of TRUE or FALSE for a search operation, does not have Administrator authority, and the value read from the ibmslapd.conf file for this attribute is FALSE, the server will return to the client with return code insufficientAccessRights - no searching or paging will be performed.

SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
SINGLE-VALUE
USAGE directoryOperation
IBMAttributetypes=( 1.3.18.0.2.4.2376
DBNAME( 'SlapdPagedNonAdmn' 'SlapdPagedNonAdmn' )
ACCESS-CLASS critical
LENGTH 5 )

attributetypes=( 1.3.18.0.2.4.2380
NAME 'ibm-slapdPagedResLmt'
DESC 'Maximum number of outstanding paged results search requests allowed active simultaneously. Range = 0.... If a client requests a paged results operation, and a maximum number of outstanding paged results are currently active, then the server will return to the client with return code of busy - no searching or paging will be performed.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation
IBMAttributetypes=( 1.3.18.0.2.4.2380
DBNAME( 'SlapdPagedResLmt' 'SlapdPagedResLmt' )
ACCESS-CLASS critical
LENGTH 11 )

attributetypes=( 1.3.18.0.2.4.2379
NAME 'ibm-slapdPageSizeLmt'
DESC 'Maximum number of entries to return from search for an individual page when paged results control is specified, regardless if any pagesize that may have been specified on the client search request. Range = 0.... If a client has passed a page size, then the smaller value of the client value and the value read from ibmslapd.conf will be used.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation
IBMAttributetypes=( 1.3.18.0.2.4.2379
DBNAME( 'SlapdPageSizeLmt' 'SlapdPageSizeLmt' )
ACCESS-CLASS critical
LENGTH 11 )

attributetypes=( 1.3.18.0.2.4.2406
NAME 'ibm-slapdPlugin'
DESC 'A plugin is a dynamically loaded library which extends the capabilities of the server. An ibm-slapdPlugin attribute specifies to the server how to load and initialize a plugin library. The syntax is: keyword filename init_function [args...]. The syntax will be slightly different for each platform due to library naming conventions.'
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
USAGE directoryOperation
IBMAttributetypes=( 1.3.18.0.2.4.2406
DBNAME( 'slapdPlugin' 'slapdPlugin' )
ACCESS-CLASS critical
LENGTH 2000 )

attributetypes=( 1.3.18.0.2.4.2408
NAME 'ibm-slapdPort'
DESC 'TCP/IP ibm-slapdPort used for non-SSL connections. Can not have the same value as ibm-slapdSecurePort. (IP ports are unsigned, 16-bit integers in the range 1 - 65535)'
IBM Tivoli Directory Server: IBM Tivoli Directory Server Administration Guide
attributetypes=( 1.3.18.0.2.4.2363
NAME 'ibm-slapdSchemaCheck'
DESC 'Must be one of { V2 | V3 | V3_lenient}. Specifies schema checking mechanism for add/modify operation. V2 = perform LDAP v2 checking. V3 = perform LDAP v3 checking. V3_lenient = not ALL parent object classes are required. Only the immediate object class is needed when adding entries.'
EQUALITY 2.5.13.2
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2363
DBNAME( 'SchemaCheck' 'SchemaCheck' )
ACCESS-CLASS critical
LENGTH 10)

attributetypes=( 1.3.18.0.2.4.2398
NAME 'ibm-slapdSecurePort'
DESC 'TCP/IP port used for SSL connections. Can not have the same value as ibm-slapdPort. (IP ports are unsigned, 16-bit integers in the range 1 - 65535)'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2398
DBNAME( 'SecurePort' 'SecurePort' )
ACCESS-CLASS critical
LENGTH 5)

attributetypes=( 1.3.18.0.2.4.2399
NAME 'ibm-slapdSecurity'
DESC 'Must be one of { none | SSL | SSLOnly }. Specifies types of connections accepted by the server. none - server listens on non-ssl port only. ssl - server listens on both ssl and non-ssl ports. ssloverly - server listens on ssl port only.'
EQUALITY 2.5.13.2
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2399
DBNAME( 'Security' 'Security' )
ACCESS-CLASS critical
LENGTH 7)

attributetypes=( 1.3.18.0.2.4.2397
NAME 'ibm-slapdSetenv'
DESC 'Server executes putenv() for all values of ibm-slapdSetenv at startup to modify its own runtime environment. Shell variables (%PATH% or %24LANG) will not be expanded. The only current use for this attribute is to set DB2CODEPAGE=1208, which is required if using UCS-2 (Unicode) databases.'
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2397
DBNAME( 'slapdSetenv' 'slapdSetenv' )
ACCESS-CLASS critical
LENGTH 2000)

attributetypes=( 1.3.18.0.2.4.2396
NAME 'ibm-slapdSizeLimit'
DESC 'Maximum number of entries to return from search, regardless of any sizelimit that may have been specified on the client search request. Range = 0.... If a client has passed a limit, then the smaller value of the client value and the value read from ibmslapd.conf will be used. If a client has not passed a limit and has bound as admin DN, then the limit will be considered unlimited.'
If the client has not passed a limit and has not bound as admin DN, then the limit will be that which was read from ibmslapd.conf file. $0 = unlimited.'

SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE USAGE directoryOperation)
IBMAttributetypes=( 1.3.18.0.2.4.2396
DBNAME( 'SizeLimit' 'SizeLimit' )
ACCESS-CLASS critical
LENGTH 11)

attributetypes=(1.3.18.0.2.4.2381
NAME 'ibm-slapdSortKeyLimit'
DESC 'Maximum number of sort conditions (keys) that can be specified on a single search request. Range = 0.... If a client has passed a search request with more sort keys than the limit allows, and the sorted search control criticality is FALSE, then the server will honor the value read from ibmslapd.conf and ignore any sort keys encountered after the limit has been reached - searching and sorting will be performed. If a client has passed a search request with more keys than the limit allows, and the sorted search control criticality is TRUE, then the server will return to the client with return code of adminLimitExceeded - no searching or sorting will be performed.'

SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation)
IBMAttributetypes=( 1.3.18.0.2.4.2381
DBNAME( 'SlapdSortKeyLimit' 'SlapdSortKeyLimit' )
ACCESS-CLASS critical
LENGTH 11)

attributetypes=(1.3.18.0.2.4.2377
NAME 'ibm-slapdSortSrchAllowNonAdmin'
DESC 'Whether or not the server should allow non-Administrator bind for sort on a search request. If the value read from the ibmslapd.conf file is TRUE, the server will process any client request, including those submitted by a user binding anonymously. If the value read from the ibmslapd.conf file is FALSE, the server will process only those client requests submitted by a user with Administrator authority. If a client requests sort with a criticality of TRUE for a search operation, does not have Administrator authority, and the value read from the ibmslapd.conf file for this attribute is FALSE, the server will return to the client with return code insufficientAccessRights - no searching or sorting will be performed.'

SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
SINGLE-VALUE
USAGE directoryOperation)
IBMAttributetypes=( 1.3.18.0.2.4.2377
DBNAME( 'SlapdSortNonAdmin' 'SlapdSortNonAdmin' )
ACCESS-CLASS critical
LENGTH 5)

attributetypes=(1.3.18.0.2.4.2395
NAME 'ibm-slapdSslAuth'
DESC 'Must be one of { serverauth | serverclientauth}. Specify authentication type for ssl connection. serverauth - supports server authentication at the client. serverclientauth - supports both server and client authentication.'
EQUALITY 2.5.13.2
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation)
IBMAttributetypes=( 1.3.18.0.2.4.2395
DBNAME( 'slapdSslAuth' 'slapdSslAuth' )
ACCESS-CLASS critical
LENGTH 16)
attributetypes=( 1.3.18.0.2.4.2389
NAME 'ibm-slapdSslCertificate'
DESC 'Specify the label that identifies the servers Personal Certificate in the key database file. This label is specified when the servers private key and certificate are created with the 1kgui application. If ibm-slapdSslCertificate is not defined, the default private key, as defined in the key database file, is used by the LDAP server for SSL connections.'
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation
IBMAttributetypes=( 1.3.18.0.2.4.2389
DBNAME( 'SslCertificate' 'SslCertificate' )
ACCESS-CLASS critical
LENGTH 128 )

attributetypes=(1.3.18.0.2.4.2429
NAME 'ibm-slapdSslCipherSpec'
DESC 'SSL Cipher Spec Value must be set to DES-56, RC2-40-MD5, RC4-128-MD5, RC4-128-SHA, RC4-40-MD5, TripleDES-168, or AES. It identifies the allowable encryption/decryption methods for establishing a SSL connection between LDAP clients and the server.'
EQUALITY 1.3.6.1.4.1.1466.109.114.1
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
USAGE directoryOperation
IBMAttributetypes=(1.3.18.0.2.4.2429
DBNAME( 'slapdSslCipherSpec' 'slapdSslCipherSpec' )
ACCESS-CLASS normal
LENGTH 30)

attributetypes=(1.3.18.0.2.4.2362
NAME 'ibm-slapdSslCipherSpecs'
DESC 'This attribute is deprecated in favor of ibm-slapdSslCipherSpec. Specifies a decimal number which identifies the allowable encryption/decryption methods for establishing a SSL connection between LDAP client(s) and the server. This number represents the availability of the encryption/decryption methods supported by the LDAP server. The pre-defined Cipher values and their descriptions are: SLAPD_SSL_TRIPLE_DES_SHA_US 0x0A Triple DES encryption with a 168-bit key and a SHA-1 MAC SLAPD_SSL_DES_SHA_US 0x09DES encryption with a 56-bit key and a SHA-1 MAC SLAPD_SSL_RC4_SHA_US 0x05 RC4 encryption with a 128-bit key and a SHA-1 MAC SLAPD_SSL_RC4_MD5_US 0x04 RC4 encryption with a 128-bit key and a MD5 MAC SLAPD_SSL_RC4_MD5_EXPORT 0x03 RC4 encryption with a 40-bit key and a MD5 MAC SLAPD_SSL_RC2_MD5_EXPORT 0x06 RC2 encryption with a 40-bit key and a MD5 MAC'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE USAGE directoryOperation
IBMAttributetypes=( 1.3.18.0.2.4.2362
DBNAME( 'SslCipherSpecs' 'SslCipherSpecs' )
ACCESS-CLASS critical
LENGTH 11 )

attributetypes=(1.3.18.0.2.4.2375
NAME 'ibm-slapdSSLKeyDatabase'
DESC 'File path to the LDAP servers SSL key database file. This key database file is used for handling SSL connections from LDAP clients, as well as for creating secure SSL connections to replica LDAP servers. On Windows, forward slashes are allowed, and a leading slash not preceeded by a drive specifier (D:) is assumed to be rooted at the install directory (i.e.: /etc/key.kdb = D:\Program Files\IBM\ldap\etc\key.kdb).'
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
attributeTypes=(1.3.18.0.2.4.2438
NAME 'ibm-slapdSSLKeyDatabasePW'
DESC 'Specify the password associated with the LDAP servers SSL key database file, as specified on the ibm-slapdSslKeyDatabase parameter. If the LDAP servers key database file has an associated password stash file, then the ibm-slapdSslKeyDatabasePW parameter can be omitted, or set to ibm-slapdSslKeyDatabasePW = none. Note: The password stash file must be located in the same directory as the key database file and it must have the same file name as the key database file, but with an extension of .sth, instead of .kdb.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.5
SINGLE-VALUE USAGE directoryOperation )
IBMAttributeTypes=( 1.3.18.0.2.4.2438
DBNAME( 'slapdSSLKeyDPW' 'slapdSSLKeyDPW' )
ACCESS-CLASS normal )

attributeTypes=(1.3.18.0.2.4.2392
NAME 'ibm-slapdSslKeyRingFile'
DESC 'file path to the LDAP servers SSL key database file. This key database file is used for handling SSL connections from LDAP clients, as well as for creating secure SSL connections to replica LDAP servers. On Windows, forward slashes are allowed, and a leading slash not preceeded by a drive specifier (D:) is assumed to be rooted at the install directory (i.e.: /etc/key.kdb = D:\Program Files\IBM\ldap\etc\key.kdb).'
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE USAGE directoryOperation )
IBMAttributeTypes=( 1.3.18.0.2.4.2392
DBNAME( 'SslKeyRingFile' 'SslKeyRingFile' )
ACCESS-CLASS critical
LENGTH 1024 )

attributeTypes=(1.3.18.0.2.4.2390
NAME 'ibm-slapdSslKeyRingFilePW'
DESC 'Specify the password associated with the LDAP servers SSL key database file, as specified on the ibm-slapdSslKeyRingFile parameter. If the LDAP servers key database file has an associated password stash file, then the ibm-slapdSslKeyRingFilePW parameter can be omitted, or set to ibm-slapdSslKeyRingFilePW = none. Note: The password stash file must be located in the same directory as the key database file and it must have the same file name as the key database file, but with an extension of .sth, instead of .kdb.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.5
SINGLE-VALUE USAGE directoryOperation )
IBMAttributeTypes=( 1.3.18.0.2.4.2390
DBNAME( 'SslKeyRingFilePW' 'SslKeyRingFilePW' )
ACCESS-CLASS critical )

attributeTypes=(1.3.18.0.2.4.2388
NAME 'ibm-slapdSuffix'
DESC 'Specifies a naming context to be stored in this backend.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
USAGE directoryOperation )
IBMAttributeTypes=( 1.3.18.0.2.4.2388
378
IBM Tivoli Directory Server: IBM Tivoli Directory Server Administration Guide
DBNAME( 'slapdSuffix' 'slapdSuffix' )
ACCESS-CLASS critical
LENGTH 1000 )

attributetypes=( 1.3.18.0.2.4.2480
NAME 'ibm-slapdSupportedWebAdmVersion'
DESC 'This attribute defines the earliest version of the web administration console that supports configuration of this server.'
EQUALITY 2.5.13.2
ORDERING 2.5.13.3
SUBSTR 2.5.13.4
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2480
DBNAME( 'slapdSupWebAdmVer' 'slapdSupWebAdmVer'
ACCESS-CLASS normal
LENGTH 256 )

attributetypes=( 1.3.18.0.2.4.2393
NAME 'ibm-slapdSysLogLevel'
DESC 'Must be one of { l | m | h }. Level at which debugging and operation statistics are logged in ibmslapd.log file. h - high (verbose), m - medium, l - low (terse).'
EQUALITY 2.5.13.2
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=(1.3.18.0.2.4.2393
DBNAME( 'SysLogLevel' 'SysLogLevel'
ACCESS-CLASS critical
LENGTH 1 )

attributetypes=( 1.3.18.0.2.4.2391
NAME 'ibm-slapdTimeLimit'
DESC 'Maximum number of number of seconds to spend on search request, regardless of any timelimit that may have been specified on the client request. Range = 0.... If a client has passed a limit, then the smaller value of the client value and the value read from ibmslapd.conf will be used. If a client has not passed a limit and has bound as admin DN, then the limit will be considered unlimited. If the client has not passed a limit and has not bound as admin DN, then the limit will be that which was read from ibmslapd.conf file. 0 = unlimited.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation)
IBMAttributetypes=( 1.3.18.0.2.4.2391
DBNAME( 'TimeLimit' 'TimeLimit'
ACCESS-CLASS critical
LENGTH 11 )

attributetypes=( ibm-slapdStartupTraceEnabled-oid
NAME 'ibm-slapdTraceEnabled'
DESC 'Must be one of { TRUE | FALSE }. Specifies whether trace information is to be collected at server startup'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
SINGLE-VALUE
USAGE directoryOperation)
IBMAttributetypes=( ibm-slapdStartupTraceEnabled-oid
ACCESS-CLASS normal
LENGTH 5 )

attributetypes=( ibm-slapdTraceMessageLevel-oid
NAME 'ibm-slapdTraceMessageLevel'
DESC 'any value that would be acceptable after the command line -h option, sets Debug message level'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( ibm-slapdTraceMessageLevel-oid
ACCESS-CLASS normal
LENGTH 16 )

attributetypes=( ibm-slapdTraceMessageLog-oid
NAME 'ibm-slapdTraceMessageLog'
DESC 'File path or device on ibmslapd host machine to which
LDAP C API and Debug macro messages will be written.
On Windows, forward slashes are allowed, and a leading
slash not preceded by a drive letter is assumed to be rooted at
the install directory
(i.e., /tmp/tracemsg.log = C:\Program Files\IBM\ldap\tmp\tracemsg.log).'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( ibm-slapdTraceMessageLog-oid
ACCESS-CLASS normal
LENGTH 1024 )

attributetypes=( 1.3.18.0.2.4.2384
NAME 'ibm-slapdTransactionEnable'
DESC 'If FALSE, globally disables transaction support; the server
will reject all StartTransaction requests with the response
LDAP UNWILLING_TO_PERFORM.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2384
DBNAME( 'TransactionEnable' 'TransactionEnable' )
ACCESS-CLASS critical
LENGTH 5 )

attributetypes=( 1.3.18.0.2.4.2499
NAME 'ibm-slapdUseProcessIdPW'
DESC 'If set to true the server will use the user login id
associated with the ibmslapd process to connect to the database. If
set to false the server will use the ibm-slapdDbUserID and
ibm-slapdDbUserPW values to connect to the database.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2499
DBNAME( 'useprocidpw' 'useprocidpw' )
ACCESS-CLASS normal
LENGTH 5 )

attributetypes=( 1.3.18.0.2.4.2436
NAME 'ibm-slapdVersion'
DESC 'IBM Slapd version Number'
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2436
DBNAME( 'slapdVersion' 'slapdVersion' )
ACCESS-CLASS normal
LENGTH 1024 )

attributetypes=( 1.3.18.0.2.4.2327
NAME 'ibm-supportedReplicationModels'
DESC 'Advertises in the Root DSE the OIDs of replication models
supported by the server'
EQUALITY 1.3.6.1.4.1.1466.109.114.1
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
NO-USER-MODIFICATION
USAGE dSAOperation
IBMAttributetypes=( 1.3.18.0.2.4.2327
DBNAME( 'supportedReplicat' 'supportedReplicat' )
ACCESS-CLASS system
LENGTH 240 )

attributetypes=( 1.3.18.0.2.4.470
NAME 'IBMAttributeTypes'
DESC ' ' EQUALITY 2.5.13.2
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.470
DBNAME( 'IBMAttributeTypes' 'IBMAttributeTypes' )
ACCESS-CLASS normal
LENGTH 256 )

attributetypes=( 1.3.6.1.4.1.1466.101.120.16
NAME 'ldapSyntaxes'
DESC 'Servers MAY use this attribute to list the syntaxes which are implemented. Each value corresponds to one syntax.' EQUALITY 2.5.13.30
SYNTAX 1.3.6.1.4.1.1466.115.121.1.54
USAGE directoryOperation )
IBMAttributetypes=( 1.3.6.1.4.1.1466.101.120.16
DBNAME( 'ldapSyntaxes' 'ldapSyntaxes' )
ACCESS-CLASS system
LENGTH 256 EQUALITY )

attributetypes=( 2.5.21.4
NAME 'matchingRules'
DESC 'This attribute is typically located in the subschema entry.' EQUALITY 2.5.13.30
SYNTAX 1.3.6.1.4.1.1466.115.121.1.30
USAGE directoryOperation )
IBMAttributetypes=( 2.5.21.4
DBNAME( 'matchingRules' 'matchingRules' )
ACCESS-CLASS system
LENGTH 256
EQUALITY )

attributetypes=( 2.5.21.8
NAME 'matchingRuleUse'
DESC 'This attribute is typically located in the subschema entry.' EQUALITY 2.5.13.30
SYNTAX 1.3.6.1.4.1.1466.115.121.1.31
USAGE directoryOperation )
IBMAttributetypes=( 2.5.21.8
DBNAME( 'matchingRuleUse' 'matchingRuleUse' )
ACCESS-CLASS system
LENGTH 256
EQUALITY )

attributetypes=( 2.5.4.31
NAME 'member'
DESC 'Identifies the distinguished names for each member of the group.' SUP 2.5.4.49
EQUALITY 2.5.13.1
USAGE userApplications )
IBMAttributetypes=( 2.5.4.31
DBNAME( 'member' 'member' )
ACCESS-CLASS normal
LENGTH 1000
EQUALITY )

attributetypes=( 2.5.18.4
NAME 'modifiersName'
DESC 'Contains the last modifier of a directory entry.'
EQUALITY 2.5.13.1 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
SINGLE-VALUE
NO-USER-MODIFICATION
USAGE directoryOperation )
IBMAttributetypes=( 2.5.18.4
DBNAME( 'ldap_entry' 'modifier' )
ACCESS-CLASS system
LENGTH 1000
EQUALITY )

attributetypes=( 2.5.18.2
NAME 'modifyTimestamp'
DESC 'Contains the time of the last modification of the directory entry.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.24
SINGLE-VALUE
NO-USER-MODIFICATION
USAGE directoryOperation )
IBMAttributetypes=( 2.5.18.2
DBNAME( 'ldap_entry' 'modify_Timestamp' )
ACCESS-CLASS system
LENGTH 26 )

attributetypes=( 2.5.4.41
NAME 'name' DESC 'The name attribute type is the attribute supertype from which string attribute types typically used for naming may be formed. It is unlikely that values of this type itself will occur in an entry.'
EQUALITY 1.3.6.1.4.1.1466.109.114.2
SUBSTR 2.5.13.4
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
USAGE userApplications )
IBMAttributetypes=( 2.5.4.41
DBNAME( 'name' 'name' )
ACCESS-CLASS normal
LENGTH 32700
EQUALITY
SUBSTR )

attributetypes=( 2.5.21.7
NAME 'nameForms'
DESC 'This attribute is typically located in the subschema entry.'
EQUALITY 2.5.13.30
SYNTAX 1.3.6.1.4.1.1466.115.121.1.35
USAGE directoryOperation )
IBMAttributetypes=( 2.5.21.7
DBNAME( 'nameForms' 'nameForms' )
ACCESS-CLASS normal
LENGTH 256
EQUALITY )

attributetypes=( 1.3.6.1.4.1.1466.101.120.5
NAME 'namingContexts'
DESC 'The values of this attribute correspond to naming contexts which this server masters or shadows.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
USAGE dSAOperation )
IBMAttributetypes=( 1.3.6.1.4.1.1466.101.120.5
DBNAME( 'namingContexts' 'namingContexts' )
ACCESS-CLASS normal
LENGTH 1000 )

attributetypes=( 2.16.840.1.113730.3.1.11
NAME 'newSuperior'
DESC 'Specifies the name of the entry that will become the
immediate superior of the existing entry, when processing a modDN
operation.'
EQUALITY 2.5.13.1
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
SINGLE-VALUE
NO-USER-MODIFICATION
USAGE userApplications )
IBMAttributetypes=( 2.16.840.1.113730.3.1.11
DBNAME( 'newSuperior' 'newSuperior' )
ACCESS-CLASS normal
LENGTH 1000
EQUALITY APPROX )
attributetypes=( 2.5.4.10
NAME ( 'o' 'organizationName' 'organization' )
DESC 'This attribute contains the name of an organization (organizationName).'
SUP 2.5.4.41
EQUALITY 1.3.6.1.4.1.1466.109.114.2
SUBSTR 2.5.13.4
USAGE userApplications )
IBMAttributetypes=( 2.5.4.10
DBNAME( 'o' 'o' )
ACCESS-CLASS normal
LENGTH 128 )
attributetypes=( 2.5.4.0
NAME 'objectClass'
DESC 'The values of the objectClass attribute describe the kind of
object which an entry represents.'
EQUALITY 2.5.13.0
SYNTAX 1.3.6.1.4.1.1466.115.121.1.38
USAGE userApplications )
IBMAttributetypes=( 2.5.4.0
DBNAME( 'objectClass' 'objectClass' )
ACCESS-CLASS normal
LENGTH 128
EQUALITY )
attributetypes=( 2.5.21.6
NAME 'objectClasses'
DESC 'This attribute is typically located in the subschema entry.'
EQUALITY 2.5.13.30
SYNTAX 1.3.6.1.4.1.1466.115.121.1.37
USAGE directoryOperation )
IBMAttributetypes=( 2.5.21.6
DBNAME( 'objectClasses' 'objectClasses' )
ACCESS-CLASS system
LENGTH 256
EQUALITY )
attributetypes=( 1.3.18.0.2.4.289
NAME 'ownerPropagate'
DESC 'Indicates whether the entryOwner applies on entry or subtree.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.289
DBNAME( 'ownerPropagate' 'ownerPropagate' )
ACCESS-CLASS restricted
LENGTH 5 )
attributetypes=( 2.5.4.11
NAME ( 'ou' 'organizationalUnit' 'organizationalUnitName' )
DESC 'This attribute contains the name of an organization (organizationName).'
SUP 2.5.4.41
EQUALITY 1.3.6.1.4.1.1466.109.114.2
SUBSTR 2.5.13.4
USAGE userApplications )
IBMAttributetypes=( 2.5.4.11
DBNAME( 'ou' 'ou' )
ACCESS-CLASS normal
LENGTH 128 )

attributetypes=( 2.5.4.32
NAME 'owner'
DESC 'Identifies the distinguished name (DN) of the person responsible for the entry.'
SUP 2.5.4.49
EQUALITY 2.5.13.1
USAGE userApplications )
IBMAttributetypes=( 2.5.4.32
DBNAME( 'owner' 'owner' )
ACCESS-CLASS normal
LENGTH 1000 )

attributetypes=( 1.3.18.0.2.4.290
NAME 'ownerSource'
DESC 'Indicates the distinguished name of the entry whose entryOwner value is being applied to the entry.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.290
DBNAME( 'ownerSource' 'ownerSource' )
ACCESS-CLASS system
LENGTH 1000 )

attributetypes=( 1.3.6.1.4.1.42.2.27.8.1.17
NAME 'pwdAccountLockedTime'
DESC 'Specifies the time that the users account was locked'
EQUALITY 2.5.13.27
ORDERING 2.5.13.28
SYNTAX 1.3.6.1.4.1.1466.115.121.1.24
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.6.1.4.1.42.2.27.8.1.17
DBNAME( 'pwdAccLockTime' 'pwdAccLockTime' )
ACCESS-CLASS critical
LENGTH 30 )

attributetypes=( 1.3.6.1.4.1.42.2.27.8.1.16
NAME 'pwdChangedTime'
DESC 'Specifies the last time the entries password was changed'
EQUALITY 2.5.13.27
ORDERING 2.5.13.28
SYNTAX 1.3.6.1.4.1.1466.115.121.1.24
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.6.1.4.1.42.2.27.8.1.16
DBNAME( 'pwdChangedTime' 'pwdChangedTime' )
ACCESS-CLASS critical
LENGTH 30 )

attributetypes=( 1.3.6.1.4.1.42.2.27.8.1.18
NAME 'pwdExpirationWarned'
DESC 'The time the user was first warned about the coming expiration of the password'
EQUALITY 2.5.13.27
ORDERING 2.5.13.28
SYNTAX 1.3.6.1.4.1.1466.115.121.1.24
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.6.1.4.1.42.2.27.8.1.18
DBNAME( 'pwdExpireWarned' 'pwdExpireWarned' )
ACCESS-CLASS critical

384 IBM Tivoli Directory Server: IBM Tivoli Directory Server Administration Guide
attributetypes=( 1.3.6.1.4.1.42.2.27.8.1.19
NAME 'pwdFailureTime'
DESC 'The timestamps of the last consecutive authentication failures'
EQUALITY 2.5.13.27
ORDERING 2.5.13.28
SYNTAX 1.3.6.1.4.1.1466.115.121.1.24
USAGE directoryOperation )
IBMAttributetypes=( 1.3.6.1.4.1.42.2.27.8.1.19
DBNAME( 'pwdFailureTime' 'pwdFailureTime' )
ACCESS-CLASS critical
LENGTH 30 )

attributetypes=( 1.3.6.1.4.1.42.2.27.8.1.21
NAME 'pwdGraceUseTime'
DESC 'The timestamps of the grace login once the password has expired'
EQUALITY 2.5.13.27
SYNTAX 1.3.6.1.4.1.1466.115.121.1.24
USAGE directoryOperation )
IBMAttributetypes=( 1.3.6.1.4.1.42.2.27.8.1.21
DBNAME( 'pwdGraceUseTime' 'pwdGraceUseTime' )
ACCESS-CLASS critical
LENGTH 30 )

attributetypes=( 1.3.6.1.4.1.42.2.27.8.1.20
NAME 'pwdHistory'
DESC 'The history of users passwords'
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
USAGE directoryOperation )
IBMAttributetypes=( 1.3.6.1.4.1.42.2.27.8.1.20
DBNAME( 'pwdHistory' 'pwdHistory' )
ACCESS-CLASS critical
LENGTH 1024 )

attributetypes=( 1.3.6.1.4.1.42.2.27.8.1.22
NAME 'pwdReset'
DESC 'Indicates that the password has been reset.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.17
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.6.1.4.1.42.2.27.8.1.22
DBNAME( 'pwdReset' 'pwdReset' )
ACCESS-CLASS critical
LENGTH 5 )

attributetypes=( 1.3.18.0.2.4.299
NAME 'replicaBindDN'
DESC 'Distinguished name to use on LDAP bind to the remote replica'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.299
DBNAME( 'replicaBindDN' 'replicaBindDN' )
ACCESS-CLASS critical
LENGTH 1000 )

attributetypes=( 1.3.18.0.2.4.302
NAME 'replicaBindMethod'
DESC 'LDAP bind type to use on LDAP bind to replica.'
EQUALITY 2.5.13.2
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.302
DBNAME( 'replicaBindMethod' 'replicaBindMethod' )
ACCESS-CLASS normal
LENGTH 100 )

attributetypes=( 1.3.18.0.2.4.300
NAME ( 'replicaCredentials' 'replicaBindCredentials' )
DESC 'Credentials to use on LDAP bind to the remote replica'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.5
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.300
DBNAME( 'replicaCred' 'replicaCred' )
ACCESS-CLASS critical )

attributetypes=( 1.3.18.0.2.4.298
NAME 'replicaHost'
DESC 'Hostname of the remote replica'
EQUALITY 2.5.13.2
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.298
DBNAME( 'replicaHost' 'replicaHost' )
ACCESS-CLASS normal
LENGTH 100 )

attributetypes=( 1.3.18.0.2.4.301
NAME 'replicaPort'
DESC 'TCP/IP port that the replica server is listening on.'
EQUALITY 2.5.13.2
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.301
DBNAME( 'replicaPort' 'replicaPort' )
ACCESS-CLASS normal
LENGTH 10 )

attributetypes=( 1.3.18.0.2.4.304
NAME 'replicaUpdateTimeInterval'
DESC 'Specifies the time between replica update transmissions from master to slave replica.'
EQUALITY 2.5.13.2
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.304
DBNAME( 'replicaUpdateInt' 'replicaUpdateInt' )
ACCESS-CLASS normal
LENGTH 20 )

attributetypes=( 1.3.18.0.2.4.303
NAME 'replicaUseSSL'
DESC 'Signifies whether replication flows should be protected using SSL communications.'
EQUALITY 2.5.13.2
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.303
DBNAME( 'replicaUseSSL' 'replicaUseSSL' )
ACCESS-CLASS normal
LENGTH 10 )

attributetypes=( 2.16.840.1.113730.3.1.34
NAME 'ref'
DESC 'standard Attribute'
EQUALITY 2.5.13.5
Appendix G. IBM Tivoli Directory Server 5.2 required attribute definitions
ACCESS-CLASS normal
LENGTH 11 )

attributetypes=( 1.3.6.1.4.1.1466.101.120.14
NAME 'supportedSASLMechanisms'
DESC 'The values of this attribute are the names of supported SASL mechanisms which the server supports.'
EQUALITY 2.5.13.2
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
USAGE dSAOperation )
IBMAttributetypes=( 1.3.6.1.4.1.1466.101.120.14
DBNAME( 'supportedSASLMech' 'supportedSASLMech' )
ACCESS-CLASS normal LENGTH 2048)

attributetypes=( 2.16.840.1.113730.3.1.6
NAME 'targetDN'
DESC 'Defines the distinguished name of an entry that was added, modified, or deleted on a supplier server. In the case of a modrDN operation, the targetDN contains the distinguished name of the entry before it was modified.'
EQUALITY 2.5.13.1
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
SINGLE-VALUE
NO-USER-MODIFICATION
USAGE userApplications )
IBMAttributetypes=( 2.16.840.1.113730.3.1.6
DBNAME( 'targetDN' 'targetDN' )
ACCESS-CLASS normal
LENGTH 1000
EQUALITY APPROX)
Appendix H. IBM Tivoli Directory Server 5.2 configuration schema object classes and attributes

These are the configuration object classes and attributes that are included in the IBM Tivoli Directory Server Version 5.2. They can be found in the V3config.nc and V3.config.at files in the etc directory. They define the objects that can appear in the ibmslapd.conf file.

Configuration object classes

These are the schema object classes that are shipped with the IBM Tivoli Directory Server Version 5.2

# File generated at 4:07:24 PM on 8/4/2003 from IBM LDAP schema version 1.5

objectclasses=( 1.3.18.0.2.6.489
NAME 'ibm-slapdAdmin'
DESC 'Global configuration settings for IBM Admin Daemon'
SUP ( ibm-slapdConfigEntry $ top )
STRUCTURAL
MUST ( cn $ ibm-slapdErrorLog $ ibm-slapdPort )
MAY ( ibm-slapdSecurePort ) )

objectclasses=( 1.3.18.0.2.6.556
NAME 'ibm-slapdAdminGroupMember'
DESC 'A User belonging to the IBM Directory Server Administration Group.'
SUP ( top $ ibm-slapdConfigEntry )
STRUCTURAL
MUST ( ibm-slapdAdminDN $ ibm-slapdAdminPW )
MAY ( ibm-slapdKrbAdminDN $ ibm-slapdDigestAdminUser ) )

objectclasses=( 1.3.18.0.2.6.490
NAME 'ibm-slapdConfigBackend'
DESC 'Config backend configuration for IBM Directory'
SUP ( top $ ibm-slapdConfigEntry )
STRUCTURAL
MUST ( cn $ ibm-slapdPlugin $ ibm-slapdSuffix )
MAY ( ibm-slapdReadOnly ) )

objectclasses=( 1.3.18.0.2.6.486
NAME 'ibm-slapdConfigEntry'
DESC 'ibm slapd config entry'
SUP 'top'
ABSTRACT
MUST ( cn )
MAY ( ibm-slapdInvalidLine ) )

objectclasses=( 1.3.18.0.2.6.560
NAME 'ibm-slapdConnectionManagement'
DESC 'Global connection settings for IBM Directory Server.'
SUP ( ibm-slapdConfigEntry $ top )
STRUCTURAL
MUST ( cn )

objectclasses=( 1.3.18.0.2.6.493
NAME 'ibm-slapdCRL'

© Copyright IBM Corp. 2003
DESC 'Certificate revocation list settings for IBM Directory.'
SUP ( top $ ibm-slapdConfigEntry )
STRUCTURAL
MUST ( cn $ ibm-slapdLdapCrlHost $ ibm-slapdLdapCrlPort )
MAY ( ibm-slapdLdapCrlPassword $ ibm-slapdLdapCrlUser )

objectclasses=( 1.3.18.0.2.6.575
NAME 'ibm-slapdDigest'
DESC 'Global configuration entries for the DIGEST-MD5 SASL bind mechanism for IBM Directory.'
SUP 'ibm-slapdConfigEntry'
STRUCTURAL
MAY ( ibm-slapdDigestAdminUser $ ibm-slapdDigestAttr
$ ibm-slapdDigestRealm )

objectclasses=( 1.3.18.0.2.6.500
NAME 'ibm-slapdEventNotification'
DESC 'Global event notification settings for IBM Directory.'
SUP ( top $ ibm-slapdConfigEntry )
STRUCTURAL
MUST ( cn $ ibm-slapdEnableEventNotification )
MAY ( ibm-slapdMaxEventsPerConnection $ ibm-slapdMaxEventsTotal )

objectclasses=( 1.3.18.0.2.6.501
NAME 'ibm-slapdFrontEnd'
DESC 'Global front-end settings which the server will load at startup.'
SUP ( top $ ibm-slapdConfigEntry )
STRUCTURAL
MAY ( ibm-slapdPlugin $ ibm-slapdSetenv $ ibm-slapdIdleTimeOut $ ibm-slapdACLCache
$ ibm-slapdACLCacheSize $ ibm-slapdFilterCacheSize $ ibm-slapdFilterCacheBypassLimit
$ ibm-slapdEntryCacheSize $ ibm-slapdDB2CP )

objectclasses=( 1.3.18.0.2.6.494
NAME 'ibm-slapdKerberos'
DESC 'Global kerberos authentication settings for IBM Directory.'
SUP ( top $ ibm-slapdConfigEntry )
STRUCTURAL
MUST ( cn $ ibm-slapdKrbAdminDN $ ibm-slapdKrbEnable $ ibm-slapdKrbIdentityMap
$ ibm-slapdKrbKeyTab $ ibm-slapdKrbRealm )

objectclasses=( 1.3.18.0.2.6.495
NAME 'ibm-slapdLdcfBackend'
DESC 'LDCF backend configuration for IBM Directory.'
SUP ( top $ ibm-slapdConfigEntry )
STRUCTURAL
MAY ( ibm-slapdSuffix $ ibm-slapdPlugin )

objectclasses=( 1.3.18.0.2.6.526
NAME 'ibm-slapdPendingMigration'
DESC 'Indicates that a server component requires migration.'
SUP 'top'
AUXILIARY
MAY ( ibm-slapdMigrationInfo )

objectclasses=( 1.3.18.0.2.6.497
NAME 'ibm-slapdRdbmBackend'
DESC 'DB2 database backend configuration for IBM Directory.'
SUP ( top $ ibm-slapdConfigEntry )
STRUCTURAL
MUST ( cn $ ibm-slapdDbName $ ibm-slapdDbInstance $ ibm-slapdDbUserID
$ ibm-slapdDbUserPW )
MAY ( ibm-slapdPlugin $ ibm-slapdSuffix $ ibm-slapdReadOnly
$ ibm-slapdChangeLogMaxEntries $ ibm-slapdPagedResAllowNonAdmin
$ ibm-slapdPagedResLmt $ ibm-slapdPageSizeLmt $ ibm-slapdSortKeyLimit
$ ibm-slapdSortSrchAllowNonAdmin $ ibm-slapdDbConnections $ ibm-slapdDbLocation
$ ibm-slapdDB2CP $ ibm-slapdReplDbConns $ ibm-slapdCLIErrors
$ ibm-slapdBulkloadErrors $ ibm-slapdDBAlias $ ibm-slapdUseProcessIdPW ) )

objectclasses=( 1.3.18.0.2.6.485
NAME 'ibm-slapdReferral'
DESC 'Global superior referrals for IBM Directory.'
SUP ( top $ ibm-slapdConfigEntry )
STRUCTURAL
MUST ( cn $ ibm-slapdReferral ) )

objectclasses=( 1.3.18.0.2.6.496
NAME 'ibm-slapdReplication'
DESC 'Contains the default bind credentials and master server referral URL. This is used when the server contains one or more replication contexts that are replicated to it by other servers. This server may be acting as one of several masters or as a read only replica. If the MasterDN is specified without the Master PW attribute, kerberos authentication is used.'
SUP ( top $ ibm-slapdConfigEntry )
STRUCTURAL
MUST ( cn )
MAY ( ibm-slapdMasterDN $ ibm-slapdMasterPW $ ibm-slapdMasterReferral ) )

objectclasses=( 1.3.18.0.2.6.499
NAME 'ibm-slapdSchema'
DESC 'Global schema settings for IBM Directory. Multiple schemas are not currently supported, but if they were then there would be one ibm-slapdSchema entry per schema.'
SUP ( top $ ibm-slapdConfigEntry )
STRUCTURAL
MUST ( cn $ ibm-slapdSchemaCheck $ ibm-slapdIncludeSchema )
MAY ( ibm-slapdSchemaAdditions ) )

objectclasses=( 1.3.18.0.2.6.492
NAME 'ibm-slapdSSL'
DESC 'Global SSL connection settings for IBM Directory.'
SUP ( top $ ibm-slapdConfigEntry )
STRUCTURAL
MUST ( cn $ ibm-slapdSecurity $ ibm-slapdSecurePort $ ibm-slapdSslAuth )
MAY ( ibm-slapdSslCertificate $ ibm-slapdSslCipherSpec $ ibm-slapdSslCipherSpecs $ ibm-slapdSSLKeyDatabase $ ibm-slapdSSLKeyDatabasePW $ ibm-slapdSslKeyRingFilePW ) )

objectclasses=( 1.3.18.0.2.6.488
NAME 'ibm-slapdSupplier'
DESC 'Contains bind credentials used by a replication supplier server to update the specified subtree on this consumer server. Use of this object class overrides the default bind credentials specified in an ibm-slapdReplication object'
SUP ( top $ ibm-slapdConfigEntry )
STRUCTURAL
MUST ( cn $ ibm-slapdReplicaSubtree $ ibm-slapdMasterDN )
MAY ( ibm-slapdMasterPW ) )

objectclasses=( 1.3.18.0.2.6.498
NAME 'ibm-slapdTop'
DESC 'Global configuration settings for IBM Tivoli Directory Server.'
SUP ( top $ ibm-slapdConfigEntry )
STRUCTURAL
MAY ( ibm-slapdServerId $ ibm-slapdVersion $ ibm-slapdMaxPendingChangesDisplayed $ ibm-slapdSupportedWebAdmVersion ) )

objectclasses=( 1.3.18.0.2.6.491
NAME 'ibm-slapdTransaction'

Appendix H. IBM Tivoli Directory Server 5.2 configuration schema object classes and attributes 391
Configuration attributes

These are the configuration attributes that are shipped with the IBM Tivoli Directory Server Version 5.2. For descriptive names to go with the syntax OIDs, see the V3.ldapsyntaxes file in the etc directory.

# File generated at 4:07:00 PM on 8/4/2003 from IBM LDAP schema version 1.5
attributetypes=( 1.3.18.0.2.4.3056
NAME 'ibm-auditExtOp'
DESC 'TRUE or FALSE Indicate whether to log the Extended operation. Default is FALSE.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.3056
DBNAME( 'auditExOp' 'auditExOp' )
ACCESS-CLASS normal
LENGTH 5 )
attributetypes=( 1.3.18.0.2.4.3055
NAME 'ibm-auditVersion'
DESC 'Specifies which version of auditing to use.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.3055
DBNAME( 'auditVersion' 'auditVersion' )
ACCESS-CLASS normal
LENGTH 11 )
attributetypes=( 1.3.18.0.2.4.3075
NAME 'ibm-replicationignoreerrorcount'
DESC 'Number of updates sent to a replica that returned a result other than LDAP_SUCCESS that were assumed to have already been applied'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE NO-USER-MODIFICATION
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.3075
DBNAME( 'replicationignore' 'replicationignore' )
ACCESS-CLASS normal
LENGTH 11 )
attributetypes=( 1.3.18.0.2.4.3076
NAME 'ibm-replicationskippederrorcount'
DESC 'Number of updates sent to a replica that returned a result other than LDAP_SUCCESS that were skipped to allow replication to continue'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
NO-USER-MODIFICATION
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.3076
DBNAME( 'replicationskippe' 'replicationskippe' )
ACCESS-CLASS normal
LENGTH 11 )
attributetypes=( 1.3.18.0.2.4.2485
NAME 'ibm-slapdACLAccess'
DESC 'If set to true anyone that can read an entry can also read the entries ACL attributes. If set to false only the entry owner or the administrator can read ACL attributes.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
Appendix H. IBM Tivoli Directory Server 5.2 configuration schema object classes and attributes

SINGLE-VALUE
USAGE userApplications
IBMAttributeTypes=( 1.3.18.0.2.4.2485
DBNAME('slapdACLAccess' 'slapdACLAccess')
ACCESS-CLASS normal
LENGTH 5 )

attributeTypes=( 1.3.18.0.2.4.2374
NAME 'ibm-slapdACLCache'
DESC 'Controls whether or not the server caches ACL information'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.17
SINGLE-VALUE
USAGE directoryOperation
IBMAttributeTypes=( 1.3.18.0.2.4.2374
DBNAME('ACLCache' 'ACLCache')
ACCESS-CLASS normal
LENGTH 5 )

attributeTypes=( 1.3.18.0.2.4.2373
NAME 'ibm-slapdACLCacheSize'
DESC 'Maximum number of entries to keep in the ACL Cache'
EQUALITY 2.5.13.14
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation
IBMAttributeTypes=( 1.3.18.0.2.4.2373
DBNAME('slapdACLCacheSize' 'slapdACLCacheSize')
ACCESS-CLASS normal
LENGTH 11 )

attributeTypes=( 1.3.18.0.2.4.2428
NAME 'ibm-slapdAdminDN'
DESC 'Bind DN for the directory administrator, e.g.: cn=root'
EQUALITY 2.5.13.1
ORDERING 1.3.18.0.2.4.405
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
SINGLE-VALUE
USAGE directoryOperation
IBMAttributeTypes=( 1.3.18.0.2.4.2428
DBNAME('slapdAdminDN' 'slapdAdminDN')
ACCESS-CLASS critical
LENGTH 1000
EQUALITY ORDERING )

attributeTypes=( 1.3.18.0.2.4.3013
NAME 'ibm-slapdAdminGroupEnabled'
DESC 'Must be one of { TRUE | FALSE }. Specifies whether the Administrative
Group is currently enabled. Defaults to FALSE if unspecified. If set to
TRUE, the server will allow users in the administrative group to login.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.17
SINGLE-VALUE
USAGE directoryOperation
IBMAttributeTypes=( 1.3.18.0.2.4.3013
DBNAME('AdmGroupEnabled' 'AdmGroupEnabled')
ACCESS-CLASS critical
LENGTH 5 )

attributeTypes=( 1.3.18.0.2.4.2425
NAME 'ibm-slapdAdminPW'
DESC 'Bind password for the directory administrator'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.5
SINGLE-VALUE
USAGE directoryOperation
IBMAttributeTypes=( 1.3.18.0.2.4.2425
DBNAME('slapdAdminPW' 'slapdAdminPW')
ACCESS-CLASS critical )
attributetypes=( 1.3.18.0.2.4.3021
NAME 'ibm-slapdAllowAnon'
DESC 'Specifies if anonymous binds are allowed.'
$SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.3021
DBNAME( 'slapdAllowAnon' 'slapdAllowAnon' )
ACCESS-CLASS normal
LENGTH 5 )

attributetypes=( 1.3.18.0.2.4.3024
NAME 'ibm-slapdAllReapingThreshold'
DESC 'Specifies a number of connections to maintain in the server before connection management is activated.'
$SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.3024
DBNAME( 'slapdAllReapingTh' 'slapdAllReapingTh' )
ACCESS-CLASS normal
LENGTH 11 )

attributetypes=( 1.3.18.0.2.4.3022
NAME 'ibm-slapdAnonReapingThreshold'
DESC 'Specifies a number of connections to maintain in the server before connection management of anonymous connections is activated.'
EQUALITY 2.5.13.14
$SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.3022
DBNAME( 'slapdAnonReapingT' 'slapdAnonReapingT' )
ACCESS-CLASS normal
LENGTH 11 )

attributetypes=( 1.3.18.0.2.4.2366
NAME 'ibm-slapdAuthIntegration'
DESC 'Specifies integration of LDAP administrator access with local OS users. Legal values are: 0 - do not map local OS users to LDAP administrator, 1 - map local OS users with proper authority to LDAP administrator. This is supported only on OS/400.'
$SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2366
DBNAME( 'slapdAuthIntegrat' 'slapdAuthIntegrat' )
ACCESS-CLASS system
LENGTH 11 )

attributetypes=( 1.3.18.0.2.4.3023
NAME 'ibm-slapdBoundReapingThreshold'
DESC 'Specifies a number of connections to maintain in the server before connection management of anonymous and bound connections is activated.'
EQUALITY 2.5.13.14
$SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.3023
DBNAME( 'slapdBoundReaping' 'slapdBoundReaping' )
ACCESS-CLASS normal
LENGTH 11 )

attributetypes=( 1.3.18.0.2.4.2368
NAME 'ibm-slapdBulkloadErrors'
DESC 'File path or device on ibmslapd host machine to which bulkload
error messages will be written. On Windows, forward slashes are allowed, and a leading slash not preceded by a drive letter is assumed to be rooted at the install directory (i.e.: /tmp/bulkload.errors = D:\Program Files\IBM\ldap\tmp\bulkload.errors).

EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
USAGE userApplications )
IBMAttributetypes=( 1.3.18.0.2.4.2368
DBNAME('slapdBulkloadErro' 'slapdBulkloadErro')
ACCESS-CLASS normal
LENGTH 1024 )

attributetypes=( 1.3.18.0.2.4.3069
NAME 'ibm-slapdCachedAttribute'
DESC 'Contains the names of the attributes to be cached in the attribute cache, one attribute name per value.'
EQUALITY 1.3.6.1.4.1.1466.109.114.2
ORDERING 2.5.13.3
SUBSTR 2.5.13.4
SYNTAX 1.3.6.1.4.1.1466.115.121.1.126
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.3069
DBNAME('slapdCachedAttr' 'slapdCachedAttr')
ACCESS-CLASS normal
LENGTH 256 )

attributetypes=( 1.3.18.0.2.4.3068
NAME 'ibm-slapdCachedAttributeSize'
DESC 'Amount of memory, in bytes, that can be used by the attribute cache. A value of 0 indicates not use an attribute cache.'
EQUALITY 2.5.13.14
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.3068
DBNAME('slapdAttrCacheSz' 'slapdAttrCacheSz')
ACCESS-CLASS normal
LENGTH 11 )

attributetypes=( 1.3.18.0.2.4.3012
NAME 'ibm-slapdChangeLogMaxAge'
DESC 'Specifies the maximum age, in hours, of changelog entries allowed in the associated backend. Each changelog backend has its own ibm-slapdChangeLogMaxAge attribute. If the attribute is undefined or out of range (negative), it defaults to 0. Min: 0 (unlimited) Max: 2,147,483,647 (32-bit, signed integer)
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE USAGE userApplications )
IBMAttributetypes=( 1.3.18.0.2.4.3012
DBNAME( 'chgLogMaxAge' 'chgLogMaxAge' )
ACCESS-CLASS critical
LENGTH 11 )

attributetypes=( 1.3.18.0.2.4.2427
NAME 'ibm-slapdChangeLogMaxEntries'
DESC 'Specifies the maximum number of changelog entries allowed in the associated backend. Each changelog backend has its own ibm-slapdChangeLogMaxEntries attribute. If the attribute is undefined or out of range (negative), it defaults to 0. Min: 0 (unlimited) Max: 2,147,483,647 (32-bit, signed integer)
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE USAGE userApplications )
IBMAttributetypes=( 1.3.18.0.2.4.2427
DBNAME( 'chgLogMaxEntries' 'chgLogMaxEntries' )
ACCESS-CLASS critical
LENGTH 11 )
attributetypes=( 1.3.18.0.2.4.2432
NAME 'ibm-slapdCLIErrors'
DESC 'File path or device on ibmslapd host machine to which DB2 CLI error messages will be written. On Windows, forward slashes are allowed, and a leading slash not preceded by a drive letter is assumed to be rooted at the install directory (i.e.: /tmp/cli.errors = D:\Program Files\IBM\ldap\tmp\cli.errors).
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2432
DBNAME( 'slapdCLIErrors' 'slapdCLIErrors' )
ACCESS-CLASS normal
LENGTH 1024 )

attributetypes=( 1.3.18.0.2.4.2369
NAME 'ibm-slapdDB2CP'
DESC 'Specifies the Code Page of the directory database. 1208 is the code page for UTF-8 databases.'
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2369
DBNAME( 'slapdDB2CP' 'slapdDB2CP' )
ACCESS-CLASS normal
LENGTH 11 )

attributetypes=( 1.3.18.0.2.4.2431
NAME 'ibm-slapdDBAlias'
DESC 'The DB2 database alias.'
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2431
DBNAME( 'slapdDBAlias' 'slapdDBAlias' )
ACCESS-CLASS normal
LENGTH 8 )

attributetypes=( 1.3.18.0.2.4.2417
NAME 'ibm-slapDbConnections'
DESC 'Specify the number of DB2 connections the server will dedicate to the DB2 backend. The value must be 5 or greater. Additional connections may be created for replication and change log.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2417
DBNAME( 'DbConnections' 'DbConnections' )
ACCESS-CLASS critical
LENGTH 2 )

attributetypes=( 1.3.18.0.2.4.2418
NAME 'ibm-slapDbInstance'
DESC 'The DB2 database instance for this backend.'
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2418
DBNAME( 'slapDbInstance' 'slapDbInstance' )
ACCESS-CLASS critical
LENGTH 8 )
attributetypes=( 1.3.18.0.2.4.2382
NAME 'ibm-slapdDbLocation'
DESC 'The file system path where the backend database is located. On UNIX this is usually the home directory of the DB2INSTANCE owner (e.g.: /home/ldapdb2). On windows its just a drive specifier (e.g.: D:)
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2382
DBNAME( 'slapdDbLocation' 'slapdDbLocation' )
ACCESS-CLASS critical
LENGTH 1024 )

attributetypes=( 1.3.18.0.2.4.2426
NAME 'ibm-slapdDbName'
DESC 'The DB2 database name for this backend.'
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2426
DBNAME( 'slapdDbName' 'slapdDbName' )
ACCESS-CLASS critical
LENGTH 8 )

attributetypes=( 1.3.18.0.2.4.2422
NAME 'ibm-slapdDbUserID'
DESC 'The user name with which to connect to the DB2 database for this backend.'
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2422
DBNAME( 'slapdDbUserID' 'slapdDbUserID' )
ACCESS-CLASS critical
LENGTH 8 )

attributetypes=( 1.3.18.0.2.4.2423
NAME 'ibm-slapdDbUserPW'
DESC 'The user password with which to connect to the DB2 database for this backend.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.5
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2423
DBNAME( 'slapdDbUserPW' 'slapdDbUserPW' )
ACCESS-CLASS critical)

attributetypes=( 1.3.18.0.2.4.3054
NAME 'ibm-slapdDerefAliases'
DESC 'Maximum alias dereferencing level on search requests, regardless of any derefAliases that may have been specified on the client requests. Allowed values are never, find, search and always.'
EQUALITY 2.5.13.2
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.3054
DBNAME( 'slapdDerefAliases' 'slapdDerefAliases' )
ACCESS-CLASS normal
LENGTH 6 )
attributetypes=( 1.3.18.0.2.4.3032
NAME 'ibm-slapdDigestAdminUser'
DESC 'Specifies the Digest MD5 User Name of the LDAP administrator
or administrative group member. Used when MD5 Digest authentication
is used to authenticate an administrator.'
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.466.115.121.1.15
SINGLE-VALUE USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.3032
DBNAME( 'DigestAdminUser' 'DigestAdminUser' )
ACCESS-CLASS critical
LENGTH 512 )

attributetypes=( 1.3.18.0.2.4.3082
NAME 'ibm-slapdDigestAttr'
DESC 'Overrides the default DIGEST-MD5 username attribute. The name
of the attribute to use for DIGEST-MD5 SASL bind username lookup.
If the value is not specified, the server uses uid.'
EQUALITY 2.5.13.0
SYNTAX 1.3.6.1.4.1.466.115.121.1.38
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.3082
DBNAME( 'slapdDigestAttr' 'slapdDigestAttr' )
ACCESS-CLASS critical
LENGTH 128 )

attributetypes=( 1.3.18.0.2.4.3083
NAME 'ibm-slapdDigestRealm'
DESC 'Overrides the default DIGEST-MD5 realm. A string which
can enable users to know which username and password to use,
in case they might have different ones for different servers.
Conceptually, it is the name of a collection of accounts that
might include the users account. This string should contain at
least the name of the host performing the authentication and
might additionally indicate the collection of users who might
have access. An example might be registered_users@gotham.news.example.com.
If the attribute is not specified, the server uses the fully
qualified hostname of the server.'
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.3083
DBNAME( 'slapdDigestRealm' 'slapdDigestRealm' )
ACCESS-CLASS critical
LENGTH 1024 )

attributetypes=( 1.3.18.0.2.4.2421
NAME 'ibm-slapdEnableEventNotification'
DESC 'If set to FALSE, the server will reject all extended
operation requests to register for event notification with
the extended result LDAP_UNWILLING_TO_PERFORM.'
SYNTAX 1.3.6.1.4.1.466.115.121.1.7
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2421
DBNAME( 'enableEvntNotify' 'enableEvntNotify' )
ACCESS-CLASS critical
LENGTH 5 )

attributetypes=( 1.3.18.0.2.4.2372
NAME 'ibm-slapdEntryCacheSize'
DESC 'Maximum number of entries to keep in the entry cache'
EQUALITY 2.5.13.14
SYNTAX 1.3.6.1.4.1.466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2372
DBNAME( 'slapdRDBMCacheSiz' 'slapdRDBMCacheSiz' )
ACCESS-CLASS normal
LENGTH 11 )

attributetypes=( 1.3.18.0.2.4.2424
NAME 'ibm-slapdErrorLog'
DESC 'File path or device on the ibmslapd host machine to which error
messages will be written. On Windows, forward slashes are
allowed, and a leading slash not preceded by a drive letter
is assumed to be rooted at the install directory
(i.e.: /tmp/slapd.errors = D:\Program Files\IBM\ldap\tmp\slapd.errors).'
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2424
DBNAME( 'slapdErrorLog' 'slapdErrorLog' )
ACCESS-CLASS critical
LENGTH 1024 )

attributetypes=( 1.3.18.0.2.4.3028
NAME 'ibm-slapdESizeThreshold'
DESC 'Specifies the number of work items on the work queue before the
Emergency thread is activated.'
EQUALITY 2.5.13.14
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.3028
DBNAME( 'slapdESizeThreshold' 'slapdESizeThreshold' )
ACCESS-CLASS normal
LENGTH 11 )

attributetypes=( 1.3.18.0.2.4.3030
NAME 'ibm-slapdEThreadActivate'
DESC 'Specifies which conditions will activate the Emergency Thread.
Must be set to one of the following values: S - size only,
T - time only, SOT - size or time, SAT - size and time.'
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.3030
DBNAME( 'slapdEThreadActivate' 'slapdEThreadActivate' )
ACCESS-CLASS normal
LENGTH 1024 )

attributetypes=( 1.3.18.0.2.4.3031
NAME 'ibm-slapdEThreadEnable'
DESC 'Specifies if the Emergency Thread can be activated.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
SINGLE-VALUE USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.3031
DBNAME( 'slapdEThreadEnable' 'slapdEThreadEnable' )
ACCESS-CLASS normal LENGTH 5 )

attributetypes=( 1.3.18.0.2.4.3029
NAME 'ibm-slapdETimeThreshold'
DESC 'Specifies the amount of time in minutes between items removed
from the work queue before the Emergency thread is activated.'
EQUALITY 2.5.13.14
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.3029
DBNAME( 'slapdETimeThreshold' 'slapdETimeThreshold' )
ACCESS-CLASS normal
attributetypes=( 1.3.18.0.2.4.2371
NAME 'ibm-slapdFilterCacheBypassLimit'
DESC 'Search filters that match more than this number of entries will not be added to the Search Filter cache. Because the list of entry ids that matched the filter are included in this cache, this setting helps to limit memory use. A value of 0 indicates no limit.'
EQUALITY 2.5.13.14
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2371
DBNAME('slapdRDBMCacheByp' 'slapdRDBMCacheByp')
ACCESS-CLASS normal
LENGTH 11 )

attributetypes=( 1.3.18.0.2.4.2370
NAME 'ibm-slapdFilterCacheSize'
DESC 'Specifies the maximum number of entries to keep in the Search Filter Cache.'
EQUALITY 2.5.13.14
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2370
DBNAME('slapdFilterCacheS' 'slapdFilterCacheS')
ACCESS-CLASS normal
LENGTH 11 )

attributetypes=( 1.3.18.0.2.4.2378
NAME 'ibm-slapdIdleTimeOut'
DESC 'Reserved for future use.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2378
DBNAME('SlapdIdleTimeOut' 'SlapdIdleTimeOut')
ACCESS-CLASS critical
LENGTH 11 )

attributetypes=( 1.3.18.0.2.4.2364
NAME 'ibm-slapdIncludeSchema'
DESC 'File path on the ibmslapd host machine containing schema definitions used by the LDIF backend. Standard values are:
/etc/V3.system.at /etc/V3.system.oc /etc/V3.ibm.at
/etc/V3.ibm.oc /etc/V3.user.at /etc/V3.user.oc
/etc/V3.ldapsyntaxes /etc/V3.matchingrules
/etc/V3.modifiedschema On Windows, forward slashes are allowed, and a leading slash not preceded by a drive letter is assumed to be rooted at the install directory (i.e.: /etc/V3.system.at = D:\Program Files\IBM\ldap\etc\V3.system.at).' 
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2364
DBNAME('slapdIncludeSchema' 'slapdIncludeSchema')
ACCESS-CLASS critical
LENGTH 1024 )

attributetypes=( 1.3.18.0.2.4.2430
NAME 'ibm-slapdInvalidLine'
DESC 'This attribute will be prepended to the beginning of any configuration attribute for which the value is invalid. This allows invalid configuration settings to be identified with a simple search for "ibm-slapdInvalidLine=".'
attributeTypes=( 1.3.18.0.2.4.2365
NAME 'ibm-slapdIpAddress'
DESC 'Specifies IP addresses the server will listen on. These can be IPv4 or IPv6 addresses. If the attribute is not specified, the server uses all IP addresses assigned to the host machine. This is supported on OS/400 only.'
EQUALITY 1.3.6.1.4.1.1466.109.114.1
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
USAGE directoryOperation )
IBMAttributeTypes=( 1.3.18.0.2.4.2365
DBNAME( 'slapdIpAddress' 'slapdIpAddress' )
ACCESS-CLASS system
LENGTH 32 )

attributetypes=( 1.3.18.0.2.4.2420
NAME 'ibm-slapdKrbAdminDN'
DESC 'Specifies the kerberos ID of the LDAP administrator (e.g. ibm-kn=name@realm). Used when kerberos authentication is used to authenticate the administrator when logged onto the Web Admin interface. This is specified instead of adminDN and adminPW.'
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributeTypes=( 1.3.18.0.2.4.2420
DBNAME( 'slapdKrbAdminDN' 'slapdKrbAdminDN' )
ACCESS-CLASS critical
LENGTH 512 )

attributetypes=( 1.3.18.0.2.4.2419
NAME 'ibm-slapdKrbIdentityMap'
DESC 'If set to TRUE, when a client is authenticated with a kerberos ID, the server will search for a local user with matching kerberos credentials, and add that user DN to the connections bind credentials. This allows ACLs based on LDAP user DNs to still be usable with kerberos authentication.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.17 SINGLE-VALUE
USAGE directoryOperation )
IBMAttributeTypes=( 1.3.18.0.2.4.2419
DBNAME( 'KrbIdentityMap' 'KrbIdentityMap' )
ACCESS-CLASS critical
LENGTH 5 )

attributetypes=( 1.3.18.0.2.4.2416
NAME 'ibm-slapdKrbKeyTab'
DESC 'Specifies the LDAP servers keytab file. This file'
contains the LDAP servers private key, as associated with its kerberos account. This file should be protected (like the servers SSL key database file). On Windows, forward slashes are allowed, and a leading slash not preceded by a drive letter ($) is assumed to be rooted at the install directory (i.e.: /tmp/slapd.errors = D:\Program Files\IBM\ldap\tmp\slapd.errors).'

EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2416
DBNAME( 'slapdKrbKeyTab' 'slapdKrbKeyTab' )
ACCESS-CLASS critical
LENGTH 1024 )

attributetypes=( 1.3.18.0.2.4.2400
NAME 'ibm-slapdKrbRealm'
DESC 'Specifies the LDAP servers kerberos realm. Used to publish the ldapservicename attribute in the root DSE. Note that an LDAP server can serve as the repository of account information for multiple KDCs (and realms), but the LDAP server, as a kerberos server, can only be a member of a single realm.'
EQUALITY 2.5.13.2
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2400
DBNAME( 'slapdKrbRealm' 'slapdKrbRealm' )
ACCESS-CLASS critical
LENGTH 256 )

attributetypes=( 1.3.18.0.2.4.3074
NAME 'ibm-slapdLanguageTagsEnabled'
DESC 'Specifies whether or not the directory server will allow Language Tags as part of an attribute description. Possible values include TRUE and FALSE.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.3074
DBNAME( 'slapdLanguageTags' 'slapdLanguageTags' )
ACCESS-CLASS critical
LENGTH 5 )

attributetypes=( 1.3.18.0.2.4.2415
NAME 'ibm-slapdLdapCrlHost'
DESC 'Specify the hostname of the LDAP server that contains the Certificate Revocation Lists (CRLs) for validating client x.509v3 certificates. This parameter is needed when ibm-slapdSslAuth=serverclientauth AND the client certificates have been issued for CRL validation'
EQUALITY 2.5.13.2
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2415
DBNAME( 'LdapCrlHost' 'LdapCrlHost' )
ACCESS-CLASS critical
LENGTH 256 )

attributetypes=( 1.3.18.0.2.4.2407
NAME 'ibm-slapdLdapCrlPassword'
DESC 'Specify the password that server-side SSL will use to bind to the LDAP server that contains the Certificate Revocation Lists (CRLs) for validating client x.509v3 certificates. This parameter may be needed when
ibm-slapdSslAuth=serverclientauth AND the client certificates have been issued for CRL validation. Note: If the LDAP server holding the CRLs permits unauthenticated access to the CRLs (i.e. anonymous access), then ibm-slapdLdapCrlPassword is not required.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.5
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2407
DBNAME( 'CrlPassword' 'CrlPassword' )
ACCESS-CLASS critical )

attributetypes=( 1.3.18.0.2.4.2404
NAME 'ibm-slapdLdapCrlPort'
DESC 'Specify the LDAP ibm-slapdPort used by the LDAP server that contains the Certificate Revocation Lists (CRLs) for validating client x.509v3 certificates. This parameter is needed when ibm-slapdSslAuth=serverclientauth AND the client certificates have been issued for CRL validation. (IP ports are unsigned, 16-bit integers in the range 1 - 65535)'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2404
DBNAME( 'LdapCrlPort' 'LdapCrlPort' )
ACCESS-CLASS critical
LENGTH 11 )

attributetypes=( 1.3.18.0.2.4.2403
NAME 'ibm-slapdLdapCrlUser'
DESC 'Specify the bindDN that server-side SSL will use to bind to the LDAP server that contains the Certificate Revocation Lists (CRLs) for validating client x.509v3 certificates. This parameter may be needed when ibm-slapdSslAuth=serverclientauth AND the client certificates have been issued for CRL validation. Note: If the LDAP server holding the CRLs permits unauthenticated access to the CRLs (i.e. anonymous access), then ibm-slapdLdapCrlUser is not required.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2403
DBNAME( 'LdapCrlUser' 'LdapCrlUser' )
ACCESS-CLASS critical
LENGTH 1000 )

attributetypes=( 1.3.18.0.2.4.2409
NAME 'ibm-slapdMasterDN'
DESC 'Bind DN used by a replication supplier server. The value has to match the replicaBindDN in the credentials object associated with the replication agreement defined between the servers. When kerberos is used to authenticate to the replica, ibm-slapdMasterDN must specify the DN representation of the kerberos ID (e.g. ibm-km=freddy@realm1). When kerberos is used, MasterServerPW is ignored.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2409
DBNAME( 'MasterDN' 'MasterDN' )
ACCESS-CLASS critical
LENGTH 1000 )

attributetypes=( 1.3.18.0.2.4.2411
NAME 'ibm-slapdMasterPW'
DESC 'Bind password used by a replication supplier. The value has to match the replicaBindPW in the credentials object associated with the replication agreement defined between the servers. When kerberos is used, MasterServerPW is ignored.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.5
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2411
DBNAME( 'MasterPW' 'MasterPW' )
ACCESS-CLASS critical )

attributetypes=( 1.3.18.0.2.4.2401
NAME 'ibm-slapdMasterReferral'
DESC 'URL of a master replica server (e.g.: ldaps://master.us.ibm.com:636)'
EQUALITY 2.5.13.2
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2401
DBNAME( 'MasterReferral' 'MasterReferral' )
ACCESS-CLASS critical LENGTH 256 )

attributetypes=( 1.3.18.0.2.4.2412
NAME 'ibm-slapdMaxEventsPerConnection'
DESC 'Maximum number of event notifications which can be registered per connection. Minimum = 0 (unlimited) Maximum = 2,147,483,647'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2412
DBNAME( 'EventsPerCon' 'EventsPerCon' )
ACCESS-CLASS critical LENGTH 11 )

attributetypes=( 1.3.18.0.2.4.2405
NAME 'ibm-slapdMaxEventsTotal'
DESC 'Maximum total number of event notifications which can be registered for all connections. Minimum = 0 (unlimited) Maximum = 2,147,483,647'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2405
DBNAME( 'MaxEventsTotal' 'MaxEventsTotal' )
ACCESS-CLASS critical LENGTH 11 )

attributetypes=( 1.3.18.0.2.4.2439
NAME 'ibm-slapdMaxNumOfTransactions'
DESC 'Maximum number of transactions active at one time. 0 = unlimited'
EQUALITY 2.5.13.29
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2439
DBNAME( 'MaxNumOfTrans' 'MaxNumOfTrans' )
ACCESS-CLASS critical LENGTH 11
EQUALITY ORDERING SUBSTR APPROX )

attributetypes=( 1.3.18.0.2.4.2385
NAME 'ibm-slapdMaxOpPerTransaction'
DESC 'Maximum number of operations per transaction. 0 = unlimited'
EQUALITY 2.5.13.29
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27

SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2385
DBNAME( 'MaxOpPerTrans' 'MaxOpPerTrans' )
ACCESS-CLASS critical
LENGTH 11
EQUALITY
ORDERING
APPROX )

attributetypes=( 1.3.18.0.2.4.2486
NAME 'ibm-slapdMaxPendingChangesDisplayed'
DESC 'Maximum number of pending replication updates to be
displayed for any given replication agreement on a supplier
server.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
USAGE userApplications )
IBMAttributetypes=( 1.3.18.0.2.4.2486
DBNAME( 'slapdMaxPendingCh' 'slapdMaxPendingCh' )
ACCESS-CLASS normal
LENGTH 11 )

attributetypes=( 1.3.18.0.2.4.2386
NAME 'ibm-slapdMaxTimeLimitOfTransactions'
DESC 'The maximum timeout value of a pending transaction in
seconds. 0 = unlimited'
EQUALITY 2.5.13.29
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2386
DBNAME( 'MaxTimeOfTrans' 'MaxTimeOfTrans' )
ACCESS-CLASS critical
LENGTH 11
EQUALITY
ORDERING
APPROX )

attributetypes=( 1.3.18.0.2.4.2500
NAME 'ibm-slapdMigrationInfo'
DESC 'Information used to control migration of a component.'
EQUALITY 2.5.13.2
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2500
DBNAME( 'slapdMigrationInf' 'slapdMigrationInf' )
ACCESS-CLASS critical
LENGTH 2048 )

attributetypes=( 1.3.18.0.2.4.2376
NAME 'ibm-slapdPagedResAllowNonAdmin'
DESC 'Whether or not the server should allow non-Administrator
bind for paged results requests on a search request. If the
value read from the ibmslapd.conf file is TRUE, the server will
process any client request, including those submitted by a user
binding anonymously. If the value read from the ibmslapd.conf
file is FALSE, the server will process only those client requests
submitted by a user with Administrator authority. If a client
requests paged results with a criticality of TRUE or FALSE for a
search operation, does not have Administrator authority, and the
value read from the ibmslapd.conf file for this attribute is FALSE,
the server will return to the client with return code
insufficientAccessRights - no searching or paging will be performed. '
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2376
attributetypes=( 1.3.18.0.2.4.2380
NAME 'ibm-slapdPagedResLmt'
DESC 'Maximum number of outstanding paged results search requests
allowed active simultaneously. Range = 0.... If a client requests
a paged results operation, and a maximum number of outstanding paged
results are currently active, then the server will return to the
client with return code of busy - no searching or paging
will be performed.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2380
DBNAME( 'SlapdPagedResLmt' 'SlapdPagedResLmt' )
ACCESS-CLASS critical
LENGTH 11 )

attributetypes=( 1.3.18.0.2.4.2406
NAME 'ibm-slapdPlugin'
DESC 'A plugin is a dynamically loaded library which extends the
capabilities of the server. An ibm-slapdPlugin attribute specifies
to the server how to load and initialize a plugin library.
The syntax is: keyword filename init_function [args...]
The syntax will be slightly different for each platform
due to library naming conventions.'
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2406
DBNAME( 'slapdPlugin' 'slapdPlugin' )
ACCESS-CLASS critical
LENGTH 2000 )

attributetypes=( 1.3.18.0.2.4.2408
NAME 'ibm-slapdPort'
DESC 'TCP/IP ibm-slapdPort used for non-SSL connections. Can not
have the same value as ibm-slapdSecurePort. (IP ports are unsigned,
16-bit integers in the range 1 - 65535)'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2408
DBNAME( 'slapdPort' 'slapdPort' )
ACCESS-CLASS critical
LENGTH 5 )

attributetypes=( 1.3.18.0.2.4.2402
NAME 'ibm-slapdPwEncryption'
DESC 'Must be one of { none | imask | crypt | sha }. Specify the
encoding mechanism for the user passwords before they are stored in
the directory. Defaults to none if unspecified. If the value is set
other than none, SASL digest-md5 bind will fail.'
EQUALITY 2.5.13.2
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2402
DBNAME( 'PwEncryption' 'PwEncryption' )
ACCESS-CLASS critical
LENGTH 5 )

attributetypes=( 1.3.18.0.2.4.2413
NAME 'ibm-slapdReadOnly'
DESC 'Must be one of { TRUE | FALSE }. Specifies whether
the backend can be written to. Defaults to FALSE if unspecified. If set to TRUE, the server will return LDAP_UNWILLING_TO_PERFORM (0x35) in response to any client request which would change data in the readOnly database.'

SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributeTypes=( 1.3.18.0.2.4.2413
DBNAME( 'ReadOnly' 'ReadOnly' )
ACCESS-CLASS critical
LENGTH 5 )

attributeTypes=( 1.3.18.0.2.4.2487
NAME 'ibm-slapdReferral'
DESC 'Specify the referral LDAP URL to pass back when the local suffixes do not match the request. Used for superior referral (i.e. ibm-slapdSuffix is not within the servers naming context).'
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
USAGE directoryOperation )
IBMAttributeTypes=( 1.3.18.0.2.4.2487
DBNAME( 'Referral' 'Referral' )
ACCESS-CLASS critical LENGTH 32700 )

attributeTypes=( 1.3.18.0.2.4.2434
NAME 'ibm-slapdReplDbConns'
DESC 'Number of database connections for use by replication'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE userApplications )
IBMAttributeTypes=( 1.3.18.0.2.4.2434
DBNAME( 'slapdReplDbConns' 'slapdReplDbConns' )
ACCESS-CLASS normal
LENGTH 11 )

attributeTypes=( 1.3.18.0.2.4.2367
NAME 'ibm-slapdReplicaSubtree'
DESC 'A DN identifying the top of a replicated subtree.'
EQUALITY 2.5.13.1
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
USAGE userApplications )
IBMAttributeTypes=( 1.3.18.0.2.4.2367
DBNAME( 'slapdReplicaSubtr' 'slapdReplicaSubtr' )
ACCESS-CLASS normal
LENGTH 1000 )

attributeTypes=( 1.3.18.0.2.4.2437
NAME 'ibm-slapdSchemaAdditions'
DESC 'File path on the ibmslapd host machine containing additional schema definitions used by the LDCF backend. Standard values are: /etc/V3.modifiedschema On Windows, forward slashes are allowed, and a leading slash not preceded by a drive letter is assumed to be rooted at the install directory (i.e.: /etc/V3.system.at = D:\Program Files\IBM\ldap\etc\V3.system.at).' EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
USAGE directoryOperation )
IBMAttributeTypes=( 1.3.18.0.2.4.2437
DBNAME( 'slapdSchemaAdditi' 'slapdSchemaAdditi' )
ACCESS-CLASS normal
LENGTH 1024 )

attributeTypes=( 1.3.18.0.2.4.2363
NAME 'ibm-slapdSchemaCheck'
DESC 'Must be one of { V2 | V3 | V3_lenient }.
Specifies schema checking mechanism for add/modify operation. V2 = perform LDAP v2 checking.'
V3 = perform LDAP v3 checking.
V3_lenient = not ALL parent object classes are required. Only the immediate
object class is needed when adding entries.'

EQUALITY 2.5.13.2
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation
IBMAttributetypes=( 1.3.18.0.2.4.2363
DBNAME( 'SchemaCheck' 'SchemaCheck' )
ACCESS-CLASS critical
LENGTH 10 )

attributetypes=( 1.3.18.0.2.4.2398
NAME 'ibm-slapdSecurePort'
DESC 'TCP/IP port used for SSL connections. Can not have the same
value as ibm-slapdPort. (IP ports are unsigned, 16-bit integers in
the range 1 - 65535)'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation
IBMAttributetypes=( 1.3.18.0.2.4.2398
DBNAME( 'SecurePort' 'SecurePort' )
ACCESS-CLASS critical
LENGTH 5 )

attributetypes=( 1.3.18.0.2.4.2399
NAME 'ibm-slapdSecurity'
DESC 'Must be one of { none | SSL | SSLOnly }. Specifies types of connections
accepted by the server.
none - server listens on non-ssl port only. ssl - server listens on
both ssl and non-ssl ports. ssloonly - server listens on ssl port only.'
EQUALITY 2.5.13.2
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation
IBMAttributetypes=( 1.3.18.0.2.4.2399
DBNAME( 'Security' 'Security' )
ACCESS-CLASS critical
LENGTH 7 )

attributetypes=( 1.3.18.0.2.4.2433
NAME 'ibm-slapdServerId'
DESC 'Identifies the server for use in replication'
EQUALITY 1.3.6.1.4.1.1466.109.114.1
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
SINGLE-VALUE
USAGE userApplications
IBMAttributetypes=( 1.3.18.0.2.4.2433
DBNAME( 'slapdServerId' 'slapdServerId' )
ACCESS-CLASS normal
LENGTH 240 )

attributetypes=( 1.3.18.0.2.4.2397
NAME 'ibm-slapdSetenv'
DESC 'Server executes putenv() for all values of ibm-slapdSetenv at startup
to modify its own runtime environment. Shell variables (%PATH% or \24LANG)
will not be expanded. The only current use for this attribute is to set
DB2CODEPAGE=1208, which is required if using UCS-2 (Unicode) databases.'
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
USAGE directoryOperation
IBMAttributetypes=( 1.3.18.0.2.4.2397
DBNAME( 'slapdSetenv' 'slapdSetenv' )
ACCESS-CLASS critical
LENGTH 2000 )

attributetypes=( 1.3.18.0.2.4.2396
NAME 'ibm-slapdSizeLimit'
DESC 'Maximum number of entries to return from search, regardless of any sizelimit that may have been specified on the client search request. Range = 0.... If a client has passed a limit, then the smaller value of the client value and the value read from ibmslapd.conf will be used. If a client has not passed a limit and has bound as admin DN, then the limit will be considered unlimited. If the client has not passed a limit and has not bound as admin DN, then the limit will be that which was read from ibmslapd.conf file. 0 = unlimited.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2396
DBNAME( 'SizeLimit' 'SizeLimit' )
ACCESS-CLASS critical
LENGTH 11 )

attributetypes=( 1.3.18.0.2.4.2381
NAME 'ibm-slapdSortKeyLimit'
DESC 'Maximum number of sort conditions (keys) that can be specified on a single search request. Range = 0.... If a client has passed a search request with more sort keys than the limit allows, and the sorted search control criticality is FALSE, then the server will honor the value read from ibmslapd.conf and ignore any sort keys encountered after the limit has been reached - searching and sorting will be performed. If a client has passed a search request with more keys than the limit allows, and the sorted search control criticality is TRUE, then the server will return to the client with return code of adminLimitExceeded - no searching or sorting will be performed.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2381
DBNAME( 'SlapdSortKeyLimit' 'SlapdSortKeyLimit' )
ACCESS-CLASS critical
LENGTH 11 )

attributetypes=( 1.3.18.0.2.4.2377
NAME 'ibm-slapdSortSrchAllowNonAdmin'
DESC 'Whether or not the server should allow non-Administrator bind for sort on a search request. If the value read from the ibmslapd.conf file is TRUE, the server will process any client request, including those submitted by a user binding anonymously. If the value read from the ibmslapd.conf file is FALSE, the server will process only those client requests submitted by a user with Administrator authority. If a client requests sort with a criticality of TRUE for a search operation, does not have Administrator authority, and the value read from the ibmslapd.conf file for this attribute is FALSE, the server will return to the client with return code insufficientAccessRights - no searching or sorting will be performed.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2377
DBNAME( 'SlapdSortNonAdmin' 'SlapdSortNonAdmin' )
ACCESS-CLASS critical
LENGTH 5 )

attributetypes=( 1.3.18.0.2.4.2395
NAME 'ibm-slapdSslAuth'
DESC 'Must be one of { serverauth | serverclientauth }. Specify authentication type for ssl connection. serverauth - supports server authentication at the client. serverclientauth - supports both server and client authentication.'
EQUALITY 2.5.13.2
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2395
DBNAME('slapdSslAuth' 'slapdSslAuth')
ACCESS-CLASS critical
LENGTH 16

attributetypes=( 1.3.18.0.2.4.2389
NAME 'ibm-slapdSslCertificate'
DESC 'Specify the label that identifies the servers Personal Certificate in the key database file. This label is specified when the servers private key certificate are created with the ikmgui application. If ibm-slapdSslCertificate is not defined, the default private key, as defined in the key database file, is used by the LDAP server for SSL connections.'
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2389
DBNAME('SslCertificate' 'SslCertificate')
ACCESS-CLASS critical
LENGTH 128

attributetypes=( 1.3.18.0.2.4.2429
NAME 'ibm-slapdSslCipherSpec'
DESC 'SSL Cipher Spec Value must be set to DES-56, RC2-40-MD5, RC4-128-MD5, RC4-128-SHA, RC4-40-MD5, TripleDES-168, or AES. It identifies the allowable encryption/decryption methods for establishing a SSL connection between LDAP clients and the server.'
EQUALITY 1.3.6.1.4.1.1466.109.114.1
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2429
DBNAME('slapdSslCipherSpe' 'slapdSslCipherSpe')
ACCESS-CLASS normal
LENGTH 30

attributetypes=( 1.3.18.0.2.4.2362
NAME 'ibm-slapdSslCipherSpecs'
DESC 'This attribute is deprecated in favor of ibm-slapdSslCipherSpec. Specifies a decimal number which identifies the allowable encryption/decryption methods for establishing a SSL connection between LDAP client(s) and the server. This number represents the availability of the encryption/decryption methods supported by the LDAP server. The pre-defined Cipher values and their descriptions are:

SLAPD_SSL_TRIPLE_DES_SHA_US 0x0A Triple DES encryption with a 168-bit key and a SHA-1 MAC
SLAPD_SSL_DES_SHA_US 0x09DES encryption with a 56-bit key and a SHA-1 MAC
SLAPD_SSL_RC4_SHA_US 0x05 RC4 encryption with a 128-bit key and a SHA-1 MAC
SLAPD_SSL_RC4_MD5_US 0x04 RC4 encryption with a 128-bit key and a MD5 MAC
SLAPD_SSL_RC4_MD5_EXPORT 0x03 RC4 encryption with a 40-bit key and a MD5 MAC
SLAPD_SSL_RC2_MD5_EXPORT 0x06 RC2 encryption with a 40-bit key and a MD5 MAC

SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2362
DBNAME('SslCipherSpecs' 'SslCipherSpecs')
ACCESS-CLASS critical
LENGTH 11

attributetypes=( 1.3.18.0.2.4.3088
NAME 'ibm-slapdSslFIPsModeEnabled'
DESC 'Specifies server will use ICC version of GSKit if TRUE, BSAFE version if false.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.3088
DBNAME('slapdSslFIPsModeE' 'slapdSslFIPsModeE')
ACCESS-CLASS critical
LENGTH 5

410 IBM Tivoli Directory Server: IBM Tivoli Directory Server Administration Guide
attributetypes=( 1.3.18.0.2.4.2375
NAME 'ibm-slapdSSLKeyDatabase'
DESC 'File path to the LDAP servers SSL key database file. This key database
file is used for handling SSL connections from LDAP clients, as well as for
creating secure SSL connections to replica LDAP servers. On Windows, forward
slashes are allowed, and a leading slash not preceeded by a drive
specifier (D:) is assumed to be rooted at the install directory
(i.e.: /etc/key.kdb = D:\Program Files\IBM\ldap\etc\key.kdb).'
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2375
DBNAME( 'slapdSSLKeyDatabase' 'slapdSSLKeyDatabase' )
ACCESS-CLASS critical
LENGTH 1024 )

attributetypes=( 1.3.18.0.2.4.2438
NAME 'ibm-slapdSSLKeyDatabasePW'
DESC 'Specify the password associated with the LDAP servers SSL key database file,
as specified on the ibm-slapdSSLKeyDatabase parameter. If the LDAP servers key
database file has an associated password stash file, then the
ibm-slapdSSLKeyDatabasePW parameter can be ommitted, or set to
ibm-slapdSSLKeyDatabasePW = none. Note that the password stash file must
be located in the same directory as the key database file and it must have the
same file name as the key database file, but with an extension of .sth,
instead of .kdb'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.5
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2438
DBNAME( 'slapdSSLKeyDBPW' 'slapdSSLKeyDBPW' )
ACCESS-CLASS normal )

attributetypes=( 1.3.18.0.2.4.2392
NAME 'ibm-slapdSslKeyRingFile'
DESC 'File path to the LDAP servers SSL key database file. This key database
file is used for handling SSL connections from LDAP clients, as well as for
creating secure SSL connections to replica LDAP servers. On Windows, forward
slashes are allowed, and a leading slash not preceeded by a drive
specifier (D:) is assumed to be rooted at the install directory
(i.e.: /etc/key.kdb = D:\Program Files\IBM\ldap\etc\key.kdb).'
EQUALITY 2.5.13.5
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2392
DBNAME( 'SslKeyRingFile' 'SslKeyRingFile' )
ACCESS-CLASS critical
LENGTH 1024 )

attributetypes=( 1.3.18.0.2.4.2390
NAME 'ibm-slapdSslKeyRingFilePW'
DESC 'Specify the password associated with the LDAP servers SSL key database file,
as specified on the ibm-slapdSslKeyRingFile parameter. If the LDAP servers key
database file has an associated password stash file, then the
ibm-slapdSslKeyRingFilePW parameter can be ommitted, or set to
ibm-slapdSslKeyRingFilePW = none. Note that the password stash file must
be located in the same directory as the key database file and it must have the
same file name as the key database file, but with an extension of .sth,
instead of .kdb.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.5
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2390
DBNAME( 'SslKeyRingFilePW' 'SslKeyRingFilePW' )

ACCESS-CLASS critical )

attributetypes=( 1.3.18.0.2.4.3058
NAME 'ibm-slapdStartupTraceEnabled'
DESC 'Must be one of [TRUE|FALSE]. Specifies whether trace information is to be collected at server startup.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.7
SINGLE-VALUE
IBMAttributetypes=( 1.3.18.0.2.4.3058
DBNAME( 'slapdStartupTrace' 'slapdStartupTrace' )
ACCESS-CLASS normal
LENGTH 5 )

attributetypes=( 1.3.18.0.2.4.2388
NAME 'ibm-slapdSuffix'
DESC 'Specifies a naming context to be stored in this backend.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2388
DBNAME( 'slapdSuffix' 'slapdSuffix' )
ACCESS-CLASS critical
LENGTH 1000 )

attributetypes=( 1.3.18.0.2.4.2480
NAME 'ibm-slapdSupportedWebAdmVersion'
DESC 'This attribute defines the earliest version of the web administration console that supports configuration of this server.'
EQUALITY 2.5.13.2
ORDERING 2.5.13.3
SUBSTR 2.5.13.4
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2480
DBNAME( 'slapdSupWebAdmVer' 'slapdSupWebAdmVer' )
ACCESS-CLASS normal
LENGTH 256 )

attributetypes=( 1.3.18.0.2.4.2393
NAME 'ibm-slapdSysLogLevel'
DESC 'Must be one of { l | m | h }. Level at which debugging and operation statistics are logged in ibmslapd.log file. h - high (verbose), m - medium, l - low (terse).'</n
EQUALITY 2.5.13.2
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributetypes=( 1.3.18.0.2.4.2393
DBNAME( 'SysLogLevel' 'SysLogLevel' )
ACCESS-CLASS critical
LENGTH 1 )

attributetypes=( 1.3.18.0.2.4.2391
NAME 'ibm-slapdTimeLimit'
DESC 'Maximum number of number of seconds to spend on search request, regardless of any timelimit that may have been specified on the client request. Range = 0.... If a client has passed a limit, then the smaller value of the client value and the value read from ibmslapd.conf will be used. If a client has not passed a limit and has bound as admin DN, then the limit will be considered unlimited. If the client has not passed a limit and has not bound as admin DN, then the limit will be that which was read from ibmslapd.conf file. 0 = unlimited.'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27
SINGLE-VALUE
USAGE directoryOperation )
IBMAttributeTypes=( 1.3.18.0.2.4.2391 
  DBNAME( 'TimeLimit' 'TimeLimit' ) 
  ACCESS-CLASS critical 
  LENGTH 11 )

attributeTypes=( ibm-slapdStartupTraceEnabled-oid 
  NAME 'ibm-slapdStartupTraceEnabled' 
  DESC 'Must be one of { TRUE | FALSE }. Specifies whether trace 
  information is to be collected at server startup' 
  SYNTAX 1.3.6.1.4.1.1466.115.121.1.7 
  SINGLE-VALUE 
  USAGE directoryOperation )

IBMAttributeTypes=( 1.3.18.0.2.4.3060 
  NAME 'ibm-slapdTraceMessageLevel' 
  DESC 'Any value that would be acceptable after the ibmslapd -h 
  command line option, sets the Debug message level' 
  EQUALITY 2.5.13.2 
  SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 
  SINGLE-VALUE 
  USAGE directoryOperation )

IBMAttributeTypes=( 1.3.18.0.2.4.3060 
  DBNAME( 'slapdTraceLevel' 'slapdTraceLevel' ) 
  ACCESS-CLASS normal 
  LENGTH 6 )

attributeTypes=( 1.3.18.0.2.4.3059 
  NAME 'ibm-slapdTraceMessageLog' 
  DESC 'File path or device on server host machine to which LDAP 
  CAPI and Debug macro messages will be written. On Windows forward 
  slashes are allowed and a leading slash not preceded by a drive 
  letter is assumed to be rooted at the install directory 
  (i.e., /tmp/tracemsg.log = C:\Program Files\IBM\LDAP\tmp\tracemsg.log).' 
  EQUALITY 2.5.13.2 
  SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 
  SINGLE-VALUE USAGE directoryOperation )

IBMAttributeTypes=( 1.3.18.0.2.4.3059 
  DBNAME( 'slapdTraceMessageLog' 'slapdTraceMessageLog' ) 
  ACCESS-CLASS normal 
  LENGTH 1024 )

attributeTypes=( 1.3.18.0.2.4.2384 
  NAME 'ibm-slapdTransactionEnable' 
  DESC 'If FALSE, globally disables transaction support; the server 
  will reject all StartTransaction requests with the response 
  LDAP_UNWILLING_TO_PERFORM.' 
  SYNTAX 1.3.6.1.4.1.1466.115.121.1.7 
  SINGLE-VALUE 
  USAGE directoryOperation )

IBMAttributeTypes=( 1.3.18.0.2.4.2384 
  DBNAME( 'TransactionEnable' 'TransactionEnable' ) 
  ACCESS-CLASS critical 
  LENGTH 5 )

attributeTypes=( 1.3.18.0.2.4.2499 
  NAME 'ibm-slapdUseProcessIdPW' 
  DESC 'If set to true the server will use the user login id associated 
  with the ibmslapd process to connect to the database. If set to false 
  the server will use the ibmslapdDbUserId and ibmslapdDbUserPW 
  values to connect to the database.' 
  SYNTAX 1.3.6.1.4.1.1466.115.121.1.7 
  SINGLE-VALUE 
  USAGE directoryOperation )

IBMAttributeTypes=( 1.3.18.0.2.4.2499 
  DBNAME( 'slapdUseProcessIdPW' 'slapdUseProcessIdPW' ) 
  ACCESS-CLASS normal 
  LENGTH 11 )
Dynamically-changed attributes

The following is a list of attributes that can be changed dynamically. You do not have to restart the server for these changes to take effect.

Cn=Configuration

- ibm-slapdadmin
- ibm-slapdadminpw
- ibm-slapderrorlog
- ibm-slapdpwencryption
- ibm-slapdsizelimit
- ibm-slapdsysloglevel
- ibm-slapdtimelimit

cn=Front End, cn=Configuration

- ibm-slapdaclcache
- ibm-slapdaclcachesize
- ibm-slapdentrycachesize
- ibm-slapdfiltercachebypasslimit
- ibm-slapdfiltercachesize
- ibm-slapdidletimeout

cn=Event Notification, cn=Configuration

- ibm-slapdmaxeventsperconnection
- ibm-slapdmaxeventstotal

cn=Transaction, cn=Configuration

- ibm-slapdmaxnumoftransactions
- ibm-slapdmaxoppertransaction
- ibm-slapdmaxtimelimitoftransactions
cn=ConfigDB, cn=Config Backends, cn=IBM Directory, cn=Schemas, cn=Configuration
  • ibm-slapdreadonly

cn=Directory, cn=RDBM Backends, cn=IBM Directory, cn=Schemas, cn=Configuration
  • ibm-slapdbulkloadererrors
  • ibm-slapdclienterrors
  • ibm-slapdpagedresallownonadmin
  • ibm-slapdpagedreslim
  • ibm-slapdpagesizelimit
  • ibm-slapdreadonly
  • ibm-slapdsortkeylimit
  • ibm-slapdsortsrchallownonadmin
  • ibm-slapdsuffix
Appendix I. Notices

This information was developed for products and services offered in the U.S.A. IBM might not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the information. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this information at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Department LZKS
11400 Burnet Road
Austin, TX 78758
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurement may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject to change without notice. Dealer prices may vary.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States, or other countries, or both:

- AIX
- DB2
- IBM
- OS/400
- SecureWay
- Tivoli
- WebSphere
- World Registry
- z/OS
Java is a registered trademark of Sun Microsystems, Inc..

Microsoft, MS-DOS, Windows, and Windows NT are registered trademarks of Microsoft Corporation

UNIX is a registered trademark of The Open Group.

Other company, product, and service names may be trademarks or service marks of others.
Glossary

Use this section to locate definitions of some of the IBM Directory product terms

**access control lists (ACLs)**
Access Control Lists (ACLs) provide a means to protect information stored in an LDAP directory. Administrators use ACLs to restrict access to different portions of the directory, or specific directory entries. LDAP directory entries are related to each other by a hierarchical tree structure. Each directory entry (or object) contains the distinguished name of the object as well as a set of attributes and their corresponding values.

**access control groups**
Groups to be used for access control. Each group contains a multivalued attribute consisting of member DNs. Access control groups have an object class of 'AccessGroup'.

**access permissions**
There are two sets of access permissions:
- Permissions that apply to an entire object
- Permissions that apply to attribute access classes or individual attributes.

**aclEntry**
aclEntry is a multivalue attribute that contains information pertaining to the access allowed to the entry object and each of its attributes. An aclEntry lists the following types of information:
- Who has rights to the entity object (scope of the protection).
- What attributes or classes of attributes the user has access to (attribute access classes).
- What rights the user or group has (permission).

**aclPropagate**
ACLs can be set on any object in the tree. As is typical in a hierarchical file system, LDAP access control lists can propagate down through the directory hierarchy. These ACLs, called propagating ACLs, have the aclPropagate attribute = true. All children of this object now inherits the ACL set at that point. In order to specify an ACL different from that of its parent, this new ACL must be explicitly set.

**aclSource**
Each object has an associated aclSource attribute. This contains the DN of the entry in which the ACL is defined. This attribute is kept by the server, but might be retrieved for administrative purposes.

**aliases**
Aliases can be used within LDAP to reference entries anywhere within the directory tree. An alias is simply a pointer to another directory object.

Aliases Objects are of 'objectclass=aliasObject'. The mandatory attribute in this class, 'aliasedObjectName', contains the full DN of another directory object (the one to which the alias refers).

On the C API, by default, aliases objects are not dereferenced during a search operation. The client may request dereferencing using a flag on the command line. Aliases may be dereferenced when locating the base entry of the search. If the object specified as the base is an alias object, the object will be dereferenced before beginning the search.

For example, an object with dn "cn=personOfTheWeek, o=Corporation, c=US" which has the attribute aliasedObjectName: "cn=personA, o=Corporation,c=US". With 'deref finding' set, a search base of "cn=personOfTheWeek, o=Corporation, c=US" is dereferenced to "cn=personA, o=Corporation,c=US". This now becomes the base for the search.

Another possibility is to dereference aliases during searching. In this case, the dn used as the base is the one given by the client, but alias entries found during the search are dereferenced.

An example of this might be a search for "cn=*week*" with a base of o=Corporation, c=US". While the located Node is "cn=personOfTheWeek,
o=Corporation, c=US" this object would be dereferenced and the entry "cn=personA, o=Corporation, c=US" is returned as the search result.

A dereference of 'all' might also be used. This means that alias entries are dereferenced both when locating the search base and when objects are found during the search operation.

attribute access classes
Attributes requiring similar permission for access are grouped together in classes. Attributes are assigned to an access class within the schema files. The three user-modifiable access classes are:
- Normal
- Sensitive
- Critical

bulkload
A command line utility that is used for bulk-loading large amounts of data in LDIF format.

cascading replication
A cascading replication is a replication topology in which there are multiple tiers of servers. A peer/master server replicates to a small set of read-only servers which in turn replicate to other servers. Such a topology off-loads replication work from the master servers.

consumer server
A consumer server is a server which receives changes through replication from another [supplier] server.

directory schema
Entries in a directory are made up of a collection of attributes and their associated values. Attributes might have one or more values. In order to identify a particular value in an entry, the attribute type name is specified along with the value, as in "cn=John Doe". This is referred to as an attribute:value pair. Every entry contains an objectClass attribute that identifies what type of information the entry contains. In fact, the object class dictates which other attributes may be present in an entry. The directory schema defines the valid attribute types and object classes that may appear in the directory. Attribute type definitions define the maximum length and syntax of its values. Object class definitions specify which attributes MUST be present in an object of that class, as well as attributes that might be present.

distinguished names (DNs)
Every entry in a directory has a distinguished name (DN). The DN is the name that uniquely identifies an entry in the directory. A DN is made up of attribute=value pairs, separated by commas, for example:

- cn=Ben Gray, ou=editing, o=New York Times, c=US
- cn=Lucille White, ou=editing, o=New York Times, c=US
- cn=Tom Brown, ou=reporting, o=New York Times, c=US

LDAP DNs begin with the most specific attribute (usually some sort of name), and continue with progressively broader attributes, often ending with a country attribute. The first component of the DN is referred to as the Relative Distinguished Name (RDN). It identifies an entry distinctly from any other entries that have the same parent.

dynamic groups
Dynamic groups are groups that are defined using a search expression. When an attribute is added to a directory entry, causing it to match the search expression, the entry automatically becomes a member of the group. In addition, simple, efficient methods are provided for client applications to:
- Test whether a specific entry is a member of a specific group.
- List all the members of a specific group.
- List all the groups to which a specific entry belongs.

The search expressions can be used in combination with other group attributes.

These groups can be used for access control.

entryOwner
Each object has an associated entryOwner attribute. The entryOwner attribute might be a user or a group, similar to what is allowed within the aclEntry. However, the entryOwner subject has certain privileges over the object. Entry owners are in
essence the administrators for particular objects. They have full access on that particular object, similar to the administrator DN. The administrator has full permission on any object in the database.

**Forwarding server**
A read-only server that replicates all changes sent to it. This contrasts to a peer/master server in that it is read only and it can have no peers.

**Gateway server**
A server that forwards all replication traffic from the local replication site where it resides to other Gateway servers in the replicating network. Also receives replication traffic from other Gateway servers within the replication network, which it forwards to all servers on its local replication site.

Gateway servers must be masters (writable).

**groups**
There are two type of groups:
- Normal groups
- Groups to be used for access control

Normal groups have an object class of ‘GroupOfNames’, ‘GroupOfUniqueNames’ or a user defined group. Access control groups have an object class of ‘AccessGroup’.

Each group object contains a multivalued attribute consisting of member DNs. Groups cannot contain group DNs.

**gsk7ikm**
The gsk7ikm utility is used to create public-private key pairs and certificate requests, receive certificate requests into a key database, and manage keys in a key database. gsk7ikm utilizes a graphical user interface. It provides you with the information you need to perform a task. If you make an error, it issues a message and prompts you again for the information.

**indexing rules**
Index rules attached to attributes make it possible to retrieve information faster. The IBM Tivoli Directory Server provides the following indexing rules:
- Equality
- Approximate
- Substring
- Reverse

See “Indexing rules” on page 122.

**ldapadd**
The LDAP modify-entry and LDAP add-entry tool ldapmodify is a shell-accessible interface to the ldap_modify and ldap_add library calls. ldapadd is implemented as a renamed version of ldapmodify. When invoked as ldapadd the -a (add new entry) flag is turned on automatically.

**ldapdelete**
The LDAP delete-entry tool ldapdelete is a shell-accessible interface to the ldap_delete library call. ldapdelete opens a connection to an LDAP server and binds and deletes one or more entries. If one or more dn arguments are provided, entries with those Distinguished Names (DN) are deleted. Each DN should be a string-represented DN.

**ldapmodify**
The LDAP modify-entry and LDAP add-entry tools ldapmodify is a shell-accessible interface to the ldap_modify and ldap_add library calls. ldapadd is implemented as a renamed version of ldapmodify. When invoked as ldapadd the -a (add new entry) flag is turned on automatically.

**ldapmodrdn**
LDAP modify-entry RDN tool ldapmodrdn is a shell-accessible interface to the ldap_modrdn library call. ldapmodrdn opens a connection to an LDAP server and binds and modifies the RDN of entries. The entry information is read from standard input, from a file, through the use of the -f option, or from the command-line pair DN and RDN.

**ldapsearch**
The LDAP search tool ldapsearch is a shell-accessible interface to the ldap_search library call. ldapsearch opens a connection to an LDAP server and binds and performs a search using the filter. The filter should conform to the string representation for LDAP filters.

**LDIF**
LDAP Data Interchange Format (LDIF), as used by the ldapmodify, ldapadd, and
**ldapsearch** command-line utilities is used to represent LDAP entries in a standard portable text form.

The LDIF tool **ldif** is a shell-accessible utility that converts arbitrary data values to LDIF. It reads input values from standard input and produces LDIF records.

**ldif2db**

This program is used to load entries specified in text LDAP Directory Interchange Format (LDIF) into a directory stored in a relational database. The database must already exist. **ldif2db** can be used to add entries to an empty directory database or to a database that already contains entries.

**matching rules**

Matching rules describe how to perform a comparison. Supported matching rules are:

- caseExactIA5Match
- caseExactMatch
- caseExactOrderingMatch
- caseExactSubstringsMatch
- caseIgnoreIA5Match
- caseIgnoreMatch
- caseIgnoreOrderingMatch
- caseIgnoreSubstringsMatch
- distinguishedNameMatch
- distinguishedNameOrderingMatch
- generalizedTimeMatch
- generalizedTimeOrderingMatch
- integerFirstComponentMatch
- integerMatch
- objectIdentifierFirstComponentMatch
- objectIdentifierMatch
- octetStringMatch
- telephoneNumberMatch
- telephoneNumberSubstringsMatch
- uTCTimeMatch

**multiple values**

Multiple values are used to assign more than one value to an attribute. The attribute can have multiple values, for example, to accommodate a maiden and married last name. To add multiple values to an attribute, click **Multiple values**, then add one value per line. If an attribute contains multiple values, the field displays as a drop-down list.

**nested groups**

Nesting of groups enables the creation of hierarchical relationships that can be used to define inherited group membership. A nested group is defined as a child group entry whose DN is referenced by an attribute contained within a parent group entry. A new attribute has been defined to explicitly distinguish nested groups from ordinary members.

**Nested subtree**

A nested subtree is a subtree within another subtree of the directory.

**object class definitions**

Every entry contains an objectClass attribute that identifies what type of information the entry contains. The object class dictates which other attributes can be present in an entry. The directory schema defines the valid attribute types and object classes that can appear in the directory. Attribute type definitions define the maximum length and syntax of its values. Object class definitions specify which attributes MUST be present in an object of that class, as well as attributes that might be present.

**object class types**

Object classes can be structural, for example, **person**; abstract, for example **top**; or auxiliary, for example **ePerson**.

**ownerPropagate**

Owner propagation works exactly the same as ACL Propagation. By default, owners are inherited down the hierarchy tree, and their owner propagate attribute is set to true. If set to false, the owner becomes an override, pertaining only to this particular object.

**ownerSource**

Each object also has an associated ownerSource attribute. This contains the DN of the entry in which the owner values are defined. This attribute is maintained by the server but can be retrieved for administrative purposes.

**Peer server**

The term used for a master server when there are multiple masters for a given subtree. A peer server does not replicate changes sent to it from another peer server; it only replicates changes that are originally made on it.

**quiesce**

To put the server into a state in which it does not accept client updates, except for
those done by the administrator and accompanied by replication management control.

referrals
Referrals provide a way for servers to refer clients to additional directory servers. With referrals you can:

- Distribute namespace information among multiple servers
- Provide knowledge of where data resides within a set of interrelated servers
- Route client requests to the appropriate server

The general format for a referral is: ldap[s]://hostname:port. Typically the format for a referral to a nonsecure server is: ldap://hostname:389 and to a secure SSL server is: ldaps://hostname:636. See “Creating and removing referrals” on page 62 for additional information.

relative distinguished name (RDN)
The relative distinguished name (RDN) is the first component of the distinguished name (DN). For example, if the entries DN is cn=John Doe,ou=Test,o=IBM,c=US, the RDN is cn=John Doe.

replicas
A replica is a server that runs a copy of the directory. This replicated server can keep a copy of the entire directory or just one tree of that directory. Any update to a replica server is referred to the master server. If the master server fails, you have a copy of the directory trees on the replica server. Using the replica server also improves the response time.

replicated subtree
A replicated subtree is a portion of the DIT that is replicated from one server to another. Under this design, a given subtree can be replicated to some servers and not to others. A subtree can be writable on a given server, while other subtrees may be read-only.

Replicating network
A network that contains connected replication sites.

replication agreement
A replication agreement is information contained in the directory that defines the “connection” or “replication path” between two servers. One server is called the supplier (the one that sends the changes) and the other is the consumer (the one that receives the changes). The agreement contains all the information needed for making a connection from the supplier to the consumer and scheduling replication.

replication context
Identifies the root of a replicated subtree. The ibm-replicationContext auxiliary object class may be added to an entry to mark it as the root of a replicated area. The configuration information related to replication is maintained in a set of entries created below a replication context.

replication site
A Gateway server and any master, peer or replica servers configured to replicate together.

distributed namespace information

roles
Roles are like groups, but contain special permissions granted by the Administrator.

Secure Sockets Layer (SSL)
The IBM Tivoli Directory Server has the ability to protect LDAP access with Secure Sockets Layer security. When using SSL to secure LDAP communications with the IBM Tivoli Directory Server, the SASL authentication mechanism, known as External, is used to authenticate the server, or the server and the client based on X.509 certificates.

sorted search
The sorted search control allows a client to receive search results sorted based on a list of criteria, where each criteria represents a sort key. This moves the responsibility of sorting from the client application to the server, where it might be done more efficiently. For example, you might want to sort a list of employees by surname, common name, and telephone number. Instead of building the search list twice so it can be sorted (once at the server and then again at the client after all the results are returned), the search list is built only once, and then sorted, before returning the results to the client application.

suffixes
A suffix is a DN that identifies the top entry in a locally held directory hierarchy.
Because of the relative naming scheme used in LDAP, this DN is also the suffix of every other entry within that directory hierarchy. A directory server might have multiple suffixes, each identifying a locally held directory hierarchy.

**supplier server**
A supplier server is a server that sends changes to another [consumer] server.

**syntax** Syntax refers to the required format for data. Supported syntaxes are:

- IBM Attribute Type Description
- Matching Rule Description
- Name Form Description
- Attribute Type Description
- Object Class Description
- DIT Structure Rule Description
- DIT Content Rule Description
- LDAP Syntax Description
- OID
- Matching Rule Use Description
- Boolean - TRUE/FALSE
- Binary - octet string
- INTEGER - integral number
- Generalized Time
- IA5 String - case-sensitive string
- Directory String - case-insensitive string
- UTC time
- Telephone Number
- DN - distinguished name
Index

A
access control lists 211
access controls
dynamic schema 125
access evaluation
combinatory rule 219
specificity rule 218
access permissions
LDAP operations 215
access rights 215
acl
propagation of 217
ACL cache size 49
acls 211
filter-based 212
filtered 222
non-filtered 221
syntax 212
administration
name 23
password 23
administration daemon 13
audit logs 193
error logs 191, 192
administration daemon audit logs 193
derror logs 191, 192
administrative group 39
administrator
administrator group 39
realms 249
agreements
replication 140
application server
devolution later 324
application servers
apache tomcat 17
embedded version of IBM WebSphere Application Server - Express 17
associating
servers with referrals 64
attribute
cache 68
MAY 132
MUST 132
syntax 123
attribute cache 68
attribute types
schema file 105
attributes 113
binary 205
dynamically-changed 414
unique 43
audit
error logs 185
Audit error logs 185
authentication
client 77
server 72
server and client 72

B
binary attributes 205
browsing the directory tree 199
bulkload 300
error logs 190
bulkload error logs 190

C
certificate authority 79
distinguished names 85
certificate requests 83
certificates 79
chained certificates
troubleshooting
GSKit 321
changing ports 47
checking
entries 131
client authentication 77
client utilities
ldapadd 264, 280
ldapchangepwd 264
ldapdelete 267
ldapdiff 307
ldapexop 271
ldapmodify 264, 280
ldapmodrdn 286
ldapsearch 290
command line 47
commands 263
bulkload 300
db2ldiff 304
dbback 303
dbsstore 304
ibmdirctl 264, 306
ldapadd 264, 280
ldapchangepwd 264
ldapdelete 267
ldapdiff 307
ldapexop 264, 271
ldapmodify 264, 280
ldapmodrdn 286
ldapsearch 290
ldaptrace 264, 313
ldif 317
ldif2ldf 317
runstats 318
common schema 107
configuration only mode 15
requirements 15
connections 34
preventing denial of service 36
properties 36
console 18
adding servers to 21
changing login 21
changing password 21
changing properties 22
logging off of 19
console (continued)
logging on to 18
removing servers from 22

D
data interchange format 345
database
backing up 303
restoring 304
database connections
number of 49
DB2
error logs 189
DB2 error logs 189
db2ldiff 304
dbback 303
dbsstore 304
debugging
advanced output 328
command parameters 328
configuration 327
database configuration levels of 329
server 329
troubleshooting 327
deleting
keys 82
deleting entries 264, 267
DEN 132
directory server
error logs 183
directory server error logs 183
directory-enabled network
schema support 132
disallowed changes
schema 125
distinguished name 7
pseudo 214
DN 7
pseudo 214
DN escape characters 8
dynamic
changes
schema 124
dynamic groups 231
dynamic schema
access controls 125
changes 124
matching rules 120
replication 125
dynamically-changed attributes 414

E
embedded version of IBM WebSphere Application Server - Express
problems starting 324
encryption
levels of 88
encryption (continued)
  one-way encoding 89
  crypt 89
  SHA-1 89
  ssl 88
  two-way encoding 90
  imask 90

entry
  changing passwords 264
  deleting 267
  modifying 286
  searching 290

entry checking
  against schema 131
  error codes 333
  error numbers 333
  errors 8

ldap 333
escaping rules 8
event notification 58
  disabling 58
  enabling 58
example
  LDIF 345
    Version 1 346
exporting
  keys 84
extended operations 271

F
file permissions
  troubleshooting 321

file permissions
filtered acls 212, 222

G
generalized time 133

G
global security 79
group
  membership 208
  object classes 235
groups 231
  dynamic 231
  hybrid 233
  management of 258
  nested 233
  proxy authorization 243
  search limit 239
  static 231
GSKit 79
  chained certificates
  troubleshooting 321

H
hybrid groups 233

I
IANA character sets 347
IBMAttributeTypes 119
ibmdirctl 264, 306
ibmslapd options 15

ibmslapd.conf 60
IBMsubschema 123
identity mapping
  Kerberos 99
importing
  keys 84
inheritance
  object class 108
iPlanet
  compatibility 133
  grammar 133

K
Kerberos 97
kerberos service name
  trouble shooting 321
key
  certificate request for existing key 86
  changing the database password 81
  defaults 82
  deleting 82
  exporting 84
  importing 84
  self-signing 83
  showing information about 82
  trusted root 85
  trusted root removal 85
  key pairs 79
  keyring file
    migration 86
  keys
    private 79
    public 79

L
language support 347
language tags
  disabling 47
  enabling 47
ldapadd 264, 280
ldapchangepwd 264
ldapdelete 267
ldapdiff 307
ldapexpop 264, 271
ldapmodif 47, 264, 280
ldapmodrdn 286
ldapsearch 290
ldaptrace 264, 313
ldif 317
LDIF 345
ldif2db 317
logs 183
audit
  administration daemon 193
  errors
    administration daemon 191, 192
    audit 185
    bulkload 190
    DB2 189
    directory server 183

M
matching rules 120
memberships 208
messages
  error 333
migration
  keyring file 86
mode
  debug 329
modifying entries 286
monitor
  service status 30

N
namespace 65
  nested groups 233
  non-filtered acls 233
  notification
    event 58
object class
  auxiliary 206
  IBMAttributeTypes 119
IBMsubschema 123
  object classes 107
  group 235
  object identifier 107
  OID 107
operations
  extended 271

P
password
  administrator 23
  console administrator 21
  security 91
  syntax requirements 96
password policy 91
passwords
  administration 23
  changing 264
peer-to-peer
  replication 154
performance 49
propagation
  acl 217
proxy authorization
  groups 243
  pseudo DNs 214
queries
  schema 124
  queues
    replication 175
search (continued)
  time limits 51
search filter elements
  number of 49
search limits
  groups 239
searches
  advanced 209
  entries 208
  extended controls 53
  manual 209
  simple 208
  size limit 239
  time limit 239
searching entries 290
secure sockest layer 71
security 79
  Kerberos 97
  password policy 91
  ssl 71
self-signing keys 83
server
  starting 24
  stopping 24
server and client authentication 72
server authentication 72
server certificates 75
server performance
  settings 49
server startup
  configuration only mode 15
server status
  connections 34
server 25
  stopping the server 24
subclassing 108
subschema entries 123
subtree
  comparing 307
  subtree comparison 307
suffixes 60
supplier information 146
syntax
  acl 212
  attribute 123
  Backus Naur Form 7
  distinguished name 7
  special characters 8

T
  templates 250
  management of 254
time
  generalized 133
  UTC 133
TLS 71
topology
  replication 137
  transaction layer security 71
transactions
  settings 57
troubleshooting
  application server 324
  chained certificates
    GSKit 321
debbuging 327
  embedded version of IBM Websphere
  Application Server - Express 324
  file permissions 321
  kerberos service name 321
  replication command line interface 330
trusted root 85

U
  unique attributes 43
users
  management of 257
  using the command line 47
UTC time 133
UTF-8 347
utilities
  client 264
command line 263
  bulkload 300
  db2ldif 304
dbb2 303
dbrestore 304
  ibmdirctl 306
  ldaptrace 313
ldif 317
ldif2db 317
runstats 318
sorted search 53, 293
ldapsearch 293
SSL 71
starting the server 24
  configuration only mode 15
status
  connections 34
server 25
  stopping the server 24
subclassing 108
subschema entries 123
subtree
  comparing 307
  subtree comparison 307
suffixes 60
supplier information 146
syntax
  acl 212
  attribute 123
  Backus Naur Form 7
  distinguished name 7
  special characters 8
uuid 331
W
Web admin daemon 13
Web administration console 18
Web Administration console logs 183
Web Administration Tool logging on to 23
worker server status 34