Second Edition (July 1997)

This edition applies to the IBM Firewall licensed program. This is a major revision, which replaces the previous editions, SC31-8279 and SC31-8280.

Publications are not stocked at the address given below. If you want more IBM publications, ask your IBM representative or write to the IBM branch office serving your locality.

A form for your comments is provided at the back of this document. If the form has been removed, you may address comments to:

IBM Corporation
Department CGM
P.O. Box 12195
Research Triangle Park, North Carolina 27709-2195
U.S.A.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 1997. All rights reserved.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.
Contents

About This Book .. vii
Prerequisite Knowledge vii
What Is New in This Release vii
 Java-based Graphical User Interface vii
 Secure Remote Login vii
 Enterprise Firewall Management vii
 Network Security Auditor viii
 Secure Remote Client viii
 Report Utilities viii
 Logging Enhancements viii
 Mail .. viii
 Password Rules viii
 Transparent Proxy ix
 Filter Enhancements ix
 Host Address Pricing ix
 Concurrent Sessions ix
 SNMP .. x
 HTTP Proxy ... x
 HACMP ... x
 SP Support ... x
 Default User x
 Administration Enhancements x
 Stronger Encryption Support x
 AIX 4.1.5 and 4.2 Support xi
 IBM Firewall Installable Units xi
 Entering IP Addresses xi
 How to Access Online Help xii
 Where to Find More Information xii
 How to Call IBM for Service xii

Chapter 1. Using the IBM Firewall Command Line Interface 1
 Commands ... 1

Chapter 2. Using Report Utilities 15
 Report Utilities Usage 15
 IBM Firewall Log Format 16

Chapter 3. Providing Your Own Authentication Methods 39
 User-Supplied Authentication 39
 User-Supplied Iteration Support 41

Chapter 4. Using Network Management with the IBM Firewall 53
 SNMP - Management Information Base (MIB) 55

Chapter 5. Using the Make Key File Utility (MKKF) 57
 Creating a keyfile 57

Chapter 6. Troubleshooting and Testing 65
 Initial Setup 65
 Routing Problems 65
About This Book

This book is intended as a reference for network or system security administrators who install, administer, and use the IBM Firewall Version 3.1.1 on an AIX/6000. To use client programs such as Telnet or FTP, please see the IBM Firewall User's Guide for your TCP/IP client programs.

Prerequisite Knowledge

It is important that you have a sound knowledge of TCP/IP and network administration before you install and configure the IBM Firewall. Because you will set up and configure a firewall that controls the access in and out of your network, you must first understand how the network operates. Especially, you need to understand the basics of IP addresses, fully qualified names, and subnet masks.

What Is New in This Release

The IBM Firewall offers a rich variety of functions.

Java-based Graphical User Interface

In addition to the command line and SMIT interfaces, the IBM Firewall can be administered through a Java*-based graphical user interface (known as the configuration client). The configuration client allows an administrator to perform remote configuration and administration. To ensure confidentiality and integrity the remote configuration connection can be authenticated using any of several mechanisms and encrypted using Secure Sockets Layer (SSL).

Secure Remote Login

An encrypted secure login is provided for remote IPSEC Windows 95 Clients and for configuration clients through the version 2 Secure Sockets Layer (SSL) technology. The supported SSL cipher specifications for both clients are:

- RC2,MD5,Export=06 with a session key size of 40 bits
- RC4,MD5,Export=03 with a session key size of 40 bits

Enterprise Firewall Management

Enterprise Firewall Management (EFM) provides the means to manage a group of remote firewalls from a single site. This is accomplished by creating an enterprise firewall server that maintains all the configuration files for all of the firewalls. All data is encrypted as it is sent. Access to the enterprise firewall is through the configuration client. An administrator can clone a firewall to create a new one and replicate configuration files to create or update another firewall.

Network Security Auditor

Network Security Auditor is a tool that checks your network for security holes or configuration errors. You will want to periodically verify that the firewall has not been modified in a way that creates a security vulnerability.

By periodically running the Network Security Auditor, you can make sure nothing has changed, especially after you put the firewall on-line.
Secure Remote Client

The Secure Remote Client is software that is installed on a client PC or an AIX workstation offering secure communication. Data sent between a PC and the firewall is encrypted with the 56-bit Data Encryption Standard (DES) and is authenticated. Also because the Secure Remote Client follows IPSec standards, it is interoperable with non-IBM firewalls.

The Secure Remote Client does not tie you to a specific Point-to-Point Protocol (PPP) server. The TCP/IP address that is assigned by your PPP server is irrelevant. You can change PPP server and TCP/IP addresses and it does not affect the operation of the Secure Remote Client. Other vendors are sensitive to the specific TCP/IP address and if you change the address, you must reconfigure your client.

Report Utilities

Report Utilities generates files of administrative information that are organized and formatted for easy mapping to relational database tables. These tables help the firewall administrator analyze:

- General usage of the firewall
- Errors in the firewall process
- Attempts at unauthorized access to the secured network

The format of the firewall log record is generally not readable. Using the report utilities, the administrator can create a readable text file of the messages. Additionally, tabulated files can be generated and imported into tables in a relational database system, such as DB2/6000 or DB2/2. The administrator can then use the Structure Query Language (SQL), or other tools like IBM's Visualizer or Query Management Facility to query the data and generate reports.

Logging Enhancements

Real Time Log Monitor notifies the administrator of a detected threshold condition on a real time basis.

Log Viewer is a tool for viewing logs from the configuration client.

Alerts viewer provides a view of the alerts through an easy to read formatted screen.

Mail

The IBM Firewall now supports its own Safemail mail gateway. Sendmail 8.7.X has been dropped from the firewall.

Password Rules

Password rules for the firewall now match AIX password rules. The administrator sets passwords to expired, thus requiring users to change passwords on the first use.
Transparent Proxy
Transparent proxy provides easy access from the secure side of the firewall (your private network) to the nonsecure side of the firewall. You can telnet or FTP transparently through the IBM Firewall. Transparent proxies require no firewall authentication, therefore users of transparent proxies do not have to be defined as firewall proxy users.

Filter Enhancements
The filter rules have been enhanced to allow for time-of-day, day, and date selection. For example, you can specify:

```
permit ftp to IP address between 8:00am and 6:00pm
```

Or you can restrict the filter validity to a particular day or set of days.

Filter rules allow IP addresses for interfaces (versus secure/nonsecure) to better support multiple interfaces.

Filter storage allocation has been changed from static to dynamic. This allocates less storage than currently required for 512 rules, while allowing the storage to dynamically grow as filters are added.

The filter rules now support Hostname. The filter process has been modified to accept hostnames in addition to IP addresses. The DNS will be contacted to determine the IP address for the first occurrence of a hostname in the filter file. If contact cannot be established with the DNS, a firewall file will be checked to use a predefined IP address for the hostname. The file will automatically be updated when the IP address for the host changes at the Domain Name Server.

Host Address Pricing
Firewall licenses are offered on a tiered basis with the price based upon the number of concurrent sessions.

When you purchased the IBM Firewall, you purchased a license for a certain number of hosts. The IBM Firewall tracks the number of unique hosts (IP addresses) and determines when the purchased number of hosts has been exceeded. When the limit has been exceeded, all overflow addresses are logged in the local4 facility. The following types of messages are displayed in the log file when the limit has been exceeded:

```
License file has been deleted, license limit 50 has been loaded.
License limit xxx has been read and loaded.
Host xxx exceeds the allowable number of licenses.
```

Concurrent Sessions
TCP and UDP sessions are tracked. There is a maximum of concurrent active TCP and UDP sessions. Once the threshold for each type of session is reached, no additional sessions are allowed unless a grace period had been configured. Sessions that are not allowed can be optionally logged. This function is only available to EFM firewalls.
SNMP

The Simple Network Management Protocol (SNMP), which is widely used in the TCP/IP environment for network management, can also be used to monitor IBM Firewall server status and generate traps. There are a significant number of SNMP managers existing in customer environments that can be used to monitor the resources and components without introducing the overhead of a management framework and requiring new application programs. Therefore, using SNMP with the IBM Firewall is a natural extension of management of IBM Firewall servers.

HTTP Proxy

A Hypertext Transfer Protocol proxy efficiently handles browser requests and responses through the firewall. Filter rules permit or deny HTTP transactions.

HACMP

The IBM Firewall continues to provide protection in the event of a hardware failure. Firewall operations are automatically shifted to a backup system. The technology for maintaining business critical applications is called High Availability Cluster Multi Processor (HACMP) for AIX version 4.2. It is the leading high availability technology for UNIX. If a hardware failure occurs, a backup system takes over within seconds to maintain network availability.

You can find more information on HACMP at URL:

SP Support

Necessary changes are implemented to support the AIX/6000 SP processor. Installation and hardening steps are enhanced for SP configuration requirements.

Default User

A default firewall user, fwdfuser, is created during installation. If a user attempting to login is not defined to the firewall, the firewall will authenticate the user with the authentication method defined for fwdfuser. This feature supports any user-defined authentication method.

Administration Enhancements

You do not need to be user root to perform administrative functions. Any user designated as a firewall administrator can perform administrative functions. These functions are customizable. You can limit an administrator’s authority over specific functions, such as administering proxy users.

Stronger Encryption Support

The IBM Firewall enables an export version of DES. This encryption is available in addition to the currently supported CDMF.
AIX 4.1.5 and 4.2 Support

AIX 4.1.5 and 4.2 are supported, exclusive of the AIX Common Desktop Environment.

IBM Firewall Installable Units

The IBM Firewall separate installable components are:

- **FW**
 - Base IBM Firewall
 - IBM Firewall Common Libraries and Catalogs
 - IBM Firewall Remote Configuration Client
 - IBM Firewall Report Generation Utilities
- **Netscape.NAV**
 - Netscape Navigator**
- **ipsec**
 - IPSec Client
- **nsauditor**
 - Network Security Auditor
 - Network Security Auditor HTML Interface
- **sva**
 - System View Agent for AIX
 - System View Agent for AIX SNMP Mapper

For directions on how to install the Windows 95 secure remote client, refer to the IBM Firewall User’s Guide for more information.

To install the PDF version of this manual and the IBM Firewall Reference download the following files from the :xph.fwbooks:exph. directory on the IBM Firewall CDROM to your workstation:

- `fwuser.pdf`
- `fwref.pdf`

Use the Adobe Acrobat** Reader to view these books. If you do not have the Adobe Acrobat Reader installed, you can go to the Adobe Web Site at: :hp2.www.adobe.com/prodindex/acrobat/:ehp2. to learn more about the Adobe Acrobat Reader and to get a copy.

Entering IP Addresses

When you configure your firewall, you will be asked to enter IP addresses. You should enter a complete dotted-decimal IP address, with all 4 octets, in the format:

```
nnn.nnn.nnn.nnn
```

where each `nnn` is a set of three numbers in the range 000–255.
How to Access Online Help

When using the configuration client to configure or administer the IBM Firewall, you can click on the Help button to get online help for the menu you are using.

Where to Find More Information

For additional information about security on the Internet, see the Bibliography.

Additional information about the IBM Firewall can be found on the firewall home page at URL:

How to Call IBM for Service

The IBM Support Center provides you with telephone assistance in problem diagnosis and resolution. You can call the IBM Support Center at any time; you will receive a return call within eight business hours (Monday–Friday, 8:00 a.m.–5:00 p.m., local customer time). The number to call is 1-800-237-5511.

Outside the United States or Puerto Rico, contact your local IBM representative or your authorized IBM supplier.
Chapter 1. Using the IBM Firewall Command Line Interface

This chapter discusses commands and command parameters that you can use from an IBM Firewall command line.

The following information applies to the commands:

- The commands listed in this book use the following syntax:
 - underlined indicates this is customer entered data.
 - [] indicates a parameter is optional.
 - {} indicates the user has a choice of parameters.
- All parameters use a keyword=value format.
- If a parameter has multiple values the values should be within double quotes and be delimited by blank spaces, for example:
 (secaddr="11.22.33.1 11.22.33.2")
- Do not include spaces inside any parameter unless it is within double quotes.
- If you omit one or more required parameters, the command-line utility lists missing parameters.
- If an invalid value for a parameter is entered, the command-line utility reports this error.
- Some of the firewall daemons (services) dynamically update their behavior when their configuration files change. Some require an explicit instruction. An update subcommand is provided for those daemons that require an instruction.
- Only firewall administrators can execute programs from the command line. Where appropriate, the executables will set userid to superuser before performing tasks.
- The configuration client must be used for all filter configuration. Unlike Version 2.2, a text editor cannot be used to modify a configuration.
- Because of the complexity and file interdependencies, do not directly edit any filter configuration files.

Commands

The commands are organized into these categories:

- Enterprise Firewall Manager
- Network Address Translation
- Domain Name Services
- Users
- Adapters
- Filters
- Log File Management
- Miscellaneous Commands
Enterprise Firewall Manager

Enterprise Firewall Manager (EFM) allows for selective management of all configuration files.

To download configuration files for requested functions to the specified firewall use `fwtransfer`.

```
fwtransfer cmd=transfer
type=changed
firewallname=FirewallName
service=[all |"DNS sendmail networkobj traffic NAT VPN pagersup interface logmonitor proxyadmin logfacility secagree SNMP"]
```

type=changed Downloads configuration files for requested services if a change has been made to the file since the last time the file was downloaded.

firewallname=FirewallName The name of the firewall.

service=[all |"DNS sendmail networkobj traffic NAT VPN pagersup interface logmonitor proxyadmin logfacility secagree SNMP"] Specifies services. The default is all.

The secagree service type also includes session limit changes.

To download configuration files for requested functions to the specified firewall for specified services use `fwtransfer`.

```
fwtransfer cmd=transfer
type=select
firewallname=FirewallName
service=[all |"DNS sendmail networkobj traffic NAT VPN pagersup interface logmonitor proxyadmin logfacility secagree SNMP"]
```

type=select Forces the download of configuration files for specified services.

firewallname=FirewallName The name of the firewall.

service=[all |"DNS sendmail networkobj traffic NAT VPN pagersup interface logmonitor proxyadmin logfacility secagree SNMP"] Specifies services. The default is all. The secagree service type also includes session limit changes.

To return a list of functions that have been modified since the last time configuration files were downloaded for the firewall use `fwtransfer`. The administrator can also use this command to confirm changes prior to initiating the download command.

```
fwtransfer cmd=list
    type=changed
    firewallname=FirewallName
```

cmd=list Returns a list of functions that have been modified since the last time configuration files were downloaded for the firewall

type=changed Lists the functions that have had configuration file changes.

firewallname=FirewallName The name of the firewall.
To read the EFM's security agreement record for the specified firewall and get a list of functions that can be administered at the EFM, use `fwmanager`.

```
fwmanager cmd=list
type=secagree
firewallname=FirewallName
```

`cmd=list` Lists each function in the security agreement and indicates whether the EFM or the managed firewall can configure that function.

`type=secagree` The security agreement.

`firewallname=FirewallName` The name of the firewall.

To activate configuration files previously downloaded to the managed firewall, use `fwact`.

```
fwact firewallname=FirewallName
    service=[all |"DNS sendmail networkobj traffic NAT VPN pagersuup interface logmonitor proxyadmin logfacility secagree SNMP"]
```

`firewallname=FirewallName` The name of the firewall.

`service=[all |"DNS sendmail networkobj traffic NAT VPN pagersuup interface logmonitor proxyadmin logfacility secagree SNMP"]` Specifies services. The default is all. The secagree service type also includes session limit changes.

Network Address Translation

Network address translation (NAT) provides a solution to the IP address depletion problem by allowing addresses inside your secured IP network to be reused by any other IP network.

The NAT configuration file controls the translation of IP addresses in a secured IP address space to IP addresses in an unsecured IP address space. The NAT configuration file can contain up to 512 of the following entries:

- Reserve Registered Addresses - A reserve registered address entry defines a set of registered IP addresses that can be used for outbound connections.
- Translate Secured IP Addresses - A translate secured IP address entry defines a set of secured network addresses that require NAT to perform IP address translation. By default, the network address translator performs address translation on all secured IP addresses.
- Exclude Secured IP Addresses - An exclude secured IP address entry defines a set of secured network addresses that does not require NAT to perform IP address translation. By default, the network address translator performs address translation on all secured IP addresses unless the address is within the range specified by an exclude secured IP addresses entry.
- MAP Secured IP Address - A map secured IP address entry defines a one-to-one mapping from a secured IP address to a registered IP address. This one-to-one IP address mapping allows external application clients, such as FTP or Telnet clients, to set up TCP sessions with server machines that reside within the secured network.

```
fwnat cmd=list | update | verify | shutdown | startlog | stoplog
```
Performs the indicated operations:

- `fwnat cmd=list` lists current NAT configuration
- `fwnat cmd=update` refreshes the NAT engine
- `fwnat cmd=verify` syntax-checks the configuration
- `fwnat cmd=shutdown` stops all address translation
- `fwnat cmd=startlog` starts logging each translated packet
- `fwnat cmd=stoplog` stops logging each translated packet

To add a reserve entry to the NAT configuration use `type=reserve`:

```
fwnat cmd=add | change
type=reserve
    addr=Addr
    mask=Mask
    [timeout=minutes]
```

- `type=reserve` adds a reserve entry
- `addr=Addr` IP address that identifies a range of registered IP addresses added to the registered address pool
- `mask=Mask` adds a range of IP addresses to the registered address pool
- `timeout=minutes` the number of minutes an address translation can remain idle before NAT can free the registered IP address

To add a translate entry to the NAT configuration use `type=translate`:

```
fwnat cmd=add | change
type=translate
    addr=Addr
    mask=Mask
```

- `type=translate` adds a translate entry
- `addr=Addr` IP address that identifies a range of secured IP addresses that require translation
- `mask=Mask` identifies a range of IP addresses

To add an exclude entry use `type=exclude`:

```
fwnat cmd=add | change
type=exclude
    addr=Addr
    mask=Mask
```

- `type=exclude` adds an exclude entry
- `addr=Addr` IP address that identifies a range of registered IP addresses excluded from the registered address pool
- `mask=Mask` identifies a range of IP addresses

To add a map entry to the NAT configuration use `type=map`:

```
fwnat cmd=add | change
type=map
    secaddr=SecureAddr
    remaddr=RegisteredAddr
```
Domain Name Services

The Domain Name Service (DNS) provides full domain name service to hosts inside the secure network while providing minimal information to hosts outside the secure network. Three domain name servers are required to accomplish this:

- One at the firewall
- One inside the secure network
- One outside the secure network.

See the *IBM Firewall User's Guide* for more information.

Note:

1. The x.x.x.x is an IP address in its dotted decimal format.
2. The value for the secaddr and remaddr parameters can be a single IP address or a list of IP addresses. If a list of IP addresses is specified, the list should be space delimited and contained within double quotes.
3. Duplicate addresses are detected and flagged as an error.
4. The first time DNS is configured, fwdns cmd=change creates the new file. The firewall will always have exactly one DNS configuration record. The values may be empty. The change subcommand is sufficient to change any or all of the values in the DNS record.

```bash
fwdns cmd=list | change
```

Performs the indicated operations:

- **cmd=list** lists current DNS configuration
- **cmd=change** changes the DNS configuration entry and creates the new file

To change the DNS configuration entry:

```bash
fwdns cmd=change
  secdomain=SecureDomainName
  secaddr=x.x.x.x "x.x.x.x x.x.x.x x.x.x.x"
  remaddr=x.x.x.x "x.x.x.x x.x.x.x x.x.x.x"
```

- **secdomain=SecureDomainName** domain name of your internal, secure network
- **secaddr=SecureDNSaddr[,...]** IP address of your secure domain name servers
- **remaddr=NonSecureDNSaddr[,...]** IP address the domain name servers outside your secured network that are provided by your Internet connection service provider.
Users
fwuser cmd=add|change
username=LoginName
[fullname="UsersRealName"]
[password={yes|no}]
[pwdvalue=Password]
[level={proxy|admin}]
[secshell=SecureShell]
[remshell=NonSecureShell]
[loclogin=LocalLoginAuthentication]
[secftp=SecureFTPAuthentication]
[remftp=NonSecureFTPAuthentication]
[secauth=SecureTelnetAuthentication]
[remauth=NonSecureTelnetAuthentication]
[secip=SecureIPSecClientAuthentication]
[remip=NonSecureIPSecClientAuthentication]
[secadmin=SecureAdminAuthentication]
[remadmin=NonSecureAdminAuthentication]
[key="SecureNet Key Code"]
[warnmtime=IdleWarningTime]
[disctime=IdleDisconnectTime]
[histexpire=HistoryExpiration]
[history=HistorySize]
[loginretries=LoginRetries]
[maxage=MaxAge]
[maxexpried=MaxExpiredAge]
[maxrepeats=MaxRepeatChars]
[minalpha=MinAlphaChars]
[mindiff=MinDifferentChars]
[minlen=MinLength]
[minother=MinNonAlphaChars]
[pwdwarnmtime=PasswordWarnTime]
[modeallowed=host|none]
[fg_all={yes|no}]
[fg_addrtrans={yes|no}]
[fg_dns={yes|no}]
[fg_interfaces={yes|no}]
[fg_logmonitor={yes|no}]
[fg_logs={yes|no}]
[fg_mail={yes|no}]
[fg_netobj1={yes|no}]
[fg_netobj2={yes|no}]
[fg_pagers={yes|no}]
[fg_proxyserver={yes|no}]
[fg_server={yes|no}]
[fg_user={yes|no}]
[fg_snmp={yes|no}]
[fg_traffic={yes|no}]
[fg_vpn={yes|no}]

Adds a new user or modifies one or more attributes of an existing firewall user. All parameters either have default values or are unnecessary in certain circumstances. For cmd=add, default values will be stored; for cmd=change, the existing values will be preserved.

Fundamental Parameters
username Login name for this user. Must be a valid AIX login name.

fullname User's full name, or some other brief (one-line) information pertaining to this user. If spaces are to be included in this value, the value must be enclosed in double-quotes.

password Indicates if a user will be prompted for a password. By default, you will be prompted if any authentication method is specified or allowed to default to password.

pwdvalue Used mostly for script programming, the pwdvalue parameter allows the value of a parameter to be specified on the command line. Note that this value is entered in clear text and is in no way obscured from eavesdroppers. There is no default.

level The default value is proxy, which indicates that the user being created is a simple proxy user. Administration function groups and administration authentications do not apply to proxy users.

Login Shells

secshell Shell to use for telnet logins from a secure interface. Valid values are /bin/restrict.sh, /bin/csh, /bin/ksh, /bin/bsh, and /bin/oneact.sh. The default is /bin/restrict.sh.

remshell Shell to use for telnet logins from a nonsecure interface. Valid values are /bin/restrict.sh, /bin/csh, /bin/ksh, /bin/bsh, and /bin/oneact.sh. The default is /bin/restrict.sh.

Authentications

loclogin Authentication method to use for logins from the local console. Valid values are deny, none, password, sdi, and user_defined. The default is deny.

secftp Authentication method to use for FTP logins from a secure interface. Valid values are deny, none, password, snk, sdi, and user_defined. The default is deny.

remftp Authentication method to use for FTP logins from a nonsecure interface. Valid values are deny, none, password, snk, sdi, and user_defined. The default is deny.

secauth Authentication method to use for telnet logins from a secure interface. Valid values are deny, none, password, snk, sdi, and user_defined. The default is deny.

remauth Authentication method to use for telnet logins from a nonsecure interface. Valid values are deny, none, password, snk, sdi, and user_defined. The default is deny.

secip Authentication method to use for Remote IPSec Client logins from a secure interface. Valid values are deny and password. The default is deny.

remip Authentication method to use for Remote IPSec Client logins from a nonsecure interface. Valid values are deny and password. The default is deny.

secadmin Authentication method to use for Firewall Configuration Client logins from a secure interface. Valid values are deny, none, password, sdi, and user_defined. The default is deny.
remadmin Authentication method to use for Firewall Configuration Client logins from a nonsecure interface. Valid values are deny, none, password, sdi, and user_defined. The default is deny.

key Key used to authenticate the user's Digital Pathways' SecureNet Key card. Because this value must contain spaces, it must be enclosed in double quotes.

Idle Proxy Parameters

warntime Idle time in minutes after which the fwIdleOut command will warn this user about a forthcoming disconnection.

disctime Idle time in minutes after which the fwIdleOut command will disconnect this user. Disctime should be greater than warntime.

Password Rule Parameters

histexpire Defines the period of time (in weeks) that a user cannot reuse a password. The value is an integer string. The valid values are 0 - 52. The value of 0 indicates no time limit is set. The default value is 26.

histsize Defines the number of previous passwords a user cannot reuse. The value is an integer string. The valid values are 0 - 20. The default value is 10.

loginretries Defines the number of unsuccessful login attempts allowed after the last successful login before the system locks the account. The value is an integer string. The valid values are 0 - 20. The default value is 10. A zero or negative value indicates that no limit exists. Once the user's account is locked, the user will not be able to log in until the system administrator resets the user's unsuccessful_login_count attribute in the /etc/security/lastlog file to be less than the value of loginretries. To do this, enter the following,

```
chsec -f /etc/security/lastlog -s username -a unsuccessful_login_count
```

maxage Defines the maximum age (in weeks) of a password. The password must be changed by this time. The value is an integer string. The valid values are 0 - 52. The value of 0 indicates no maximum age. The default is 13.

maxexpired Defines the maximum time (in weeks) beyond the maxage value that a user can change an expired password. After this defined time, only an administrative user can change the password. The value is an integer string. The valid values are -1 - 26. If the maxexpired attribute is 0, the password expires when the maxage value is met. If the maxage attribute is 0, the maxexpired attribute is ignored. The default is 3.

maxrepeats Defines the maximum number of times a character can be repeated in a new password. The valid values are 0 - 8, but a value of 0 is meaningless. The value of 8 indicates that there is not a maximum number. The default is 2.

minalpha Defines the minimum number of alphabetic characters that must be in a new password. The value is an integer string. The valid values are 0 - 8. The value of 0 indicates no minimum number. The default is 4.
mindiff Defines the minimum number of characters required in a new password that were not in the old password. The value is an integer string. The valid values are 0 - 8. The value of 0 indicates no minimum number. The default is 3.

minlen Defines the minimum length of a password. The value is an integer string. The valid values are 0 - 8. The value of 0 indicates no minimum number. The default is 8.

minother Defines the minimum number of non-alphabetic characters that must be in a new password. The value is an integer string. The valid values are 0 - 8. The value of 0 indicates no minimum number. The default is 1.

pwdwarntime Defines the number of days before the system issues a warning that a password change is required. The value is an integer string. The valid values are 0 - 30. A zero or negative value indicates that no message is issued. The value must be less than the difference of the maxage and minage attributes. Values greater than this difference are ignored and a message is issued when the minage value is reached.

Administration Functional Groups

modeallowed indicates the login modes allowed:

- none–User is not allowed to login to the firewall configuration server
- efm–Administrator may login in EFM mode (only administrators.)
- host–Administrator can login to the firewall configuration server host mode only.
- both–Administrator may login in either EFM mode or Host mode (only administrators.)

fg_all Enter yes if this administrator is allowed to administer all aspects of the firewall. The default is no.

fg_act Enter yes if this administrator is allowed to activate changes on a managed firewall. The default is no.

fg_addrtrans Enter yes if this administrator is allowed to administer Network Address Translation. The default is no.

fg_deact Enter yes if this administrator is allowed to deactivate services on a managed firewall. The default is no.

fg_dist Enter yes if this administrator is allowed to transmit configuration changes to a managed firewall. The default is no.

fg_dns Enter yes if this administrator is allowed to administer Domain Name Services. The default is no.

fg_interfaces Enter yes if this administrator is allowed to define firewall interfaces. The default is no.

fg_logmonitor Enter yes if this administrator is allowed to administer Log Monitor thresholds. The default is no.

fg_logs Enter yes if this administrator is allowed to administer Log Facilities. The default is no.

fg_mail Enter yes if this administrator is allowed to administer the firewall mail gateway. The default is no.
fg_netobjs1 Enter yes if this administrator is allowed to perform basic administration of Network Objects. The default is no.
fg_netobjs2 Enter yes if this administrator is allowed to perform advanced administration of Network Objects. The default is no.
fg_pagers Enter yes if this administrator is allowed to administer Pager Setup. The default is no.
fg_proxyserver Enter yes if this administrator is allowed to configure the firewall proxy daemons. The default is no.
fg_user Enter yes if this administrator is allowed to administer Firewall users. The default is no.
fg_secag Enter yes if this administrator is allowed to administer a managed Firewall's Security Agreement. The default is no.
fg_sesslfm Enter yes if this administrator is allowed to administer a managed Firewall's session limits. The default is no.
fg_snmp Enter yes if this administrator is allowed to administer SNMP managers and subagent. The default is no.
fg_traffic Enter yes if this administrator is allowed to administer Traffic Control. The default is no.
fg_vpn Enter yes if this administrator is allowed to administer Virtual Private Networks. The default is no.

To lists all attributes of all firewall users or of a single specified firewall user:
fwuser cmd=list
 [username=username]
 [type={short|long}]

type={short|long} The default for type is long if you use a username. If you do not use a username, the default is short.

To remove a user from the firewall:
fwuser cmd=delete
 username=username

Adapters
fwadapter cmd=list
 [addr=AdapterAddress]

addr=AdapterAddress Lists all adapters attached to this machine and identifies each as being either a secure or a nonsecure adapter. If the optional addr parameter is specified, only that adapter is listed.

fwadapter cmd=change
 addr=AdapterAddress
 state={secure|nonsecure}

addr=AdapterAddress Address of the adapter to change.
state={secure|nonsecure} Sets the secure/nonsecure state of the adapter answering to the specified IP address.
Filters
The firewall command line does not provide an interface to modify the filter configuration. See the IBM Firewall User's Guide for more information on setting up the configuration. The firewall does provide a command line interface to control the configuration that was built with the configuration client.

fwfilters cmd=update | verify | list | shutdown | startlog | stoplog

Performs the indicated operations:

fwfilter cmd=update rebuilds the configuration and activates that rule set.
fwfilter cmd=verify performs a “test build” of the configuration but does not activate any changes.
fwfilter cmd=list lists the most recently built configuration
fwfilter cmd=shutdown deactivates the filters mechanism
fwfilter cmd=startlog logs selected traffic to the local14 log
fwfilter cmd=stoplog stops the firewall filter logging

Log File Management
Log file management manages the size of your log and archive files.

The fwlog command adds, modifies and deletes records in the file /etc/syslog.conf and optionally also in the log-file-management config file.

fwlog cmd=add
 facility=Facility
 priority=Priority
 logfile=LogFileName
 [arcfile=ArchiveFileName]
 logtime=DaysToKeepInLog
 arctime=DaysToKeepInArchive
 workspace=workspace directory]

Valid values for facility:
• local4
• local1
• mail
• syslog
• *

Valid values for priority:
• debug
• info
• notice
• warning
• err
• crit
The logfile parameter indicates where the syslog entries should be sent. Valid values for logfile are:

- A fully qualified file name (starting with a '/' character), indicating the file to which the log entries should be written
- A host name prefixed with an '@' sign
- A user name on the firewall or a comma-delimited list of user names on the firewall.

Note: Files identified for local1 or local4 should be different from each other and different from the files for any other log facility if firewall features will be used to process these files.

It is important that ONLY local4 messages appear in files input to report utilities. No other facility should be directed to the same file as local4 or local1.

The arcfile, logtime, arctime, and workspace parameters are optional, and are only valid when the logfile parameter specifies a file name. All four parameters must be specified if any are specified.

The arcfile parameter must contain a fully qualified path name indicating the file that archived syslog records will be sorted. A valid arcfile name must end in .a.

The logtime parameter indicates how many days a syslog entry will remain in the logfile before being moved to the archive file.

The arctime parameter indicates how many days a syslog record will remain in the archive file before being purged.

The workspace parameter specifies a directory the archiving program should use for temporary work files when archiving syslog files.

```
fwlog cmd=change
        index=Index
        [facility=Facility]
        [priority=Priority]
        [logfile=LogFileName]
        [arcfile=ArchiveFileName]
        [logtime=DaysToKeepInLog]
        [arctime=DaysToKeepInArchive]
        [workspace=WorkspaceDirectory]
```

If a change, particularly the initial instance, fails to create a syntactically correct log file (for example, the log file that was created has missing fields), a warning is issued and the Firewall will not log data. If you have a crontab running, remove the crontab entry.

`fwlog` will maintain both the `syslog.conf` and the log-file-management config file. To perform logging but no archiving, only the `facility`, `priority`, and `logfile` parameters are required. To disable log archival once it's started, blank out the
archive, logtime, and arctime parameters. If you have crontab running, remove the crontab entry.

fwlog cmd=list

Lists the current log-file configuration data.

fwlog cmd=delete
 index=index of entry to delete

Deletes the syslog entry specified by the index number returned for the entry on the fwlog cmd=list command.

Miscellaneous Commands

fwfschk
 [cmd={-? | -& | -u | -f}]

Invokes the File System Integrity Checker. See “Testing the Firewall Ports Using fwice” on page 72 for more information. This utility is run from a crontab see Appendix G, “The Crontab Command” on page 167 for more information.

fwfschk --? usage
fwfschk --& logs output
fwfschk --u updates database
fwfschk --f forces the update to the database

fwice
 [hosts=HostsFileName]
 [services=ServicesFileName]
 [results=ResultsFileName]

Invokes fwice to test the firewall's filter rules.

fwlogmgmt -1 or fwlogmgmt -a

Invokes the logfile archiver to maintenance Log facilities that have been configured for archiving.
Chapter 2. Using Report Utilities

This chapter discusses using the report utilities of the IBM Firewall. The primary purpose of the report utilities is to generate tabulated files of administrative information from local4 log files.

The utilities also allow the administrator to create a readable text file of the local4 messages. Tabulated text files can be generated and imported into tables in a database system, such as DB2/6000 or DB2/2. The administrator can then use the Structured Query Language (SQL) or other tools like IBM's Visualizer or Query Management Facility to query the data and generate reports.

In addition to processing the firewall log file, the administrator can use the utilities to process the AIX su log file (usually /var/adm/sulog). This file contains information about attempted uses of the AIX su command. Logged-in users use the AIX su command to switch to a different user ID, potentially acquiring greater authority. Both successful and unsuccessful attempts are logged. The result of processing the su log file is a tabulated file that can be imported into a database system.

Report utilities consist of the following programs and files:

- **fwar2asc** Program to extract firewall log files from an archive library
- **fwlogtxt** Program to generate full-text messages from a firewall log file
- **fwlogtbl** Program to generate database import files, in DEL (delimited) format, from a firewall log and an su log
- **fwschema.ddl** File of SQL Data Definition Language (DDL) statements, suitable for defining the database tables
- **fwimport.dat** File of DB2 import statements, suitable for importing the DEL files into the database tables
- **fwqrysmp.dml** File of SQL Data Manipulation Language (DML) statements, suitable for generating sample reports

To use the report utilities, you should have some knowledge of relational databases and the use of an appropriate relational database product.

The DDL and DML files are specific to the DB2 family, but can be modified for use with other database management systems. DEL format files can be readily imported (loaded) into DB2/6000, DB2/2, and other database and file systems. Their simple format should allow conversion to other formats, if necessary.

Report Utilities Usage

This information explains how to use report utilities from the command line and SMIT. Refer to the IBM Firewall for AIX User's Guide for information on using the report utilities from the configuration client.

To view the firewall log file from the command line, use the **fwlogtxt** utility. See “Generating Messages from the Firewall Log File” on page 16 for more information.
To view the firewall log file in SMIT, select the Create Expanded Text Message File option. See “The SMIT Layout Panel” on page 22 for more information.

To generate reports based on log information:
1. Install the relational database product.
2. Create an empty database.
3. Create empty Firewall Log Tables in the database.
4. To produce the tabulated files, run *fwlogtbl* from the command line or select the Create Tabulated Text Manager File from SMIT.
5. Import the resulting files to populate the database tables with log data.
6. Produce reports by running SQL statements or SQL programs.

Note: The first three steps need to be done once, while the remaining steps are repeated each time new log data is available.

IBM Firewall Log Format

Each entry of the firewall log file has the format:

```
Date Time firewall_name:year;pid:msg_num; msg_ID;var_1;...;var_n;
```

where

- The first three fields, *date, time, and firewall-name* are added by syslog.
- *year* is the four-character year.
- *pid* is the AIX process ID to which the entry applies.
- *msg_num* is a sequential integer which the Report Utilities use to access the appropriate, translated message text from the fw_log.cat file.
- *msg_ID* is the external number of the message (such as ICA0001e).
- *var_1-n* represent the values of message variables, where *n* is the number of variables in the message definition.

Note: Do not direct other syslog records to the same file as the Firewall log. Such records will not conform to the format required by the report utilities and results are not predictable.

Generating Messages from the Firewall Log File

Use the command *fwlogtxt* to generate readable messages from the entries of a firewall log file.

The parameters include:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>Input is standard AIX input from a firewall log file</td>
</tr>
<tr>
<td>output</td>
<td>Output is standard AIX output</td>
</tr>
</tbody>
</table>
There are no parameters for fwlogtxt; it takes information from the standard input and puts results to the standard output.

Note that the second example filters the output to show full text of only those messages that start with 'ICA31'. Additional of filtering can be done using standard AIX facilities or user-provided scripts/programs. The third example of invocation (tail -f) permits dynamic monitoring of an active log and could also be filtered.

Extracting Firewall Log Files

Use the command `fwar2asc` to extract the named files from an archive library file into an ASCII file. The resulting ASCII file can be used as an input for both fwlogtxt and fwlogtbl. The archive library file is assumed to be in the format generated by Log File Management (the `fwlogmgmt` command). That is, the archived logs are compressed and end in '.Z'.

fwar2asc syntax

```
fwar2asc [-f OutFile] ArchiveFile LogName
```

Example:

```
fwar2asc -f myFwLog myLogs.a 961113fwLog.Z
fwar2asc myLogs.a 961113fwLog.Z
```

- `-f` is AIX syntax.
- `OutFile` Specifies the directory and file name of the output ASCII file. The default directory is the current directory. The default file name is the same as the value of the LogName parameter, but without terminating '.Z'.
- `ArchiveFile` Specifies the directory and file name of the input archive library file.
- `LogName` Specifies the name of the log file the user wants to extract from the archive library file. This will most likely end in '.Z' since the archived logs are compressed.

Generating Database Import Files

Use the command `fwlogtbl` to create, write over, or append to the tabulated files from which the user can populate the database tables for report generation.

The parameters include:
input
Firewall log file, for example one extracted from a log archive library file using fwar2asc

-w, -a, and -su are parameter options

output
File names:
- a_alert.tbl
- f_rule.tbl
- f_info.tbl
- f_match.tbl
- f_stat.tbl
- nat_info.tbl
- p_info.tbl
- p_ftp.tbl
- p_http.tbl
- p_info.tbl
- p_login.tbl
- p_stat.tbl
- server_info.tbl
- session.tbl
- s_ftp.tbl
- s_info.tbl
- ssl_info.tbl
- su.tbl
- t_cntxt.tbl
- t_policy.tbl
- t_stat.tbl

In addition to producing the *.tbl files, fwlogtbl will write a message to standard out the first time it encounters any ICA message number it is not prepared to map to the database from each log it processes.

fwlogtbl syntax

```
fwlogtbl -w [-d OutDir] [-su]LogName
   |            
   -a                     
Example:
   fwlogtbl -a -d /u/tai/fw/reports fw961031.log
```

- **-w**
 Specifies that the existing output file should be replaced. If the file does not exist, fwlogtbl creates it.

- **-a**
 Specifies that the file generated should be appended to the existing output file. If the file does not exist, fwlogtbl creates it.

- **-d**
 `-d` Identifies the output directory.

- **OutDir**
 Specifies the directory in which all the output files are to be stored. If no directory is specified, the output files will be stored in the current directory.

- **-su**
 Specifies that the LogName is the name of an AIX su log file.

- **Logname**
 Specifies an AIX su log file or a firewall log file.
The output file names are predefined but can be copied or renamed after running fwlogtbl. The output files have delimited ASCII (DEL) file format, with no character string delimiters, and use semicolon (;) as the column delimiters.

For more information on messages, see Appendix A, “Messages” on page 75.

Using a Database with Report Utilities

This section describes files provided with the firewall for creating the database, importing information into the database, and querying reports. If you have DB2, the db2 command can be used with these files. (Functions similar to the db2 command may exist in other database managers. The files may require alteration to be used with such functions.)

To run the db2 command, you must have DB2 installed and an ‘instance’ defined. (See the DB2 install documentation.) Initially, you must use DB2’s create database command to create an empty database. (We suggest calling it ‘fwlog’.) To do this, type at the command line:

```
db2 create database fwlog
```

You must then connect to fwlog:

```
db2 connect to fwlog
```

The -vf options of the db2 command can then be used as follows:

```
db2 -vf fwschema.ddl > schema.out
```

```
db2 -vf fwimport.dat > import.out
```

```
db2 -vf fwqrysmp.dml > report.out
```

These steps are described in the following sections. In each case, the user should carefully check the standard output (redirected to a file in each of the examples). For import, it is also necessary to check the .msg file produced by each individual import statement.

Your PATH environment variable should include /usr/lpp/FW/sample.

Creating the Tables

The example `db2-vf fwschema.ddl` creates all the tables and indexes needed. Issue this command once, preferably soon after installing the firewall. The current user ID at the time this example is run will be the creator ID of the tables. This ID may need to be used as a table name qualifier (such as creatorid.tableName) in later SQL statements, unless they are run under the creator’s ID. Thus, if not using the creator's ID, the user will need to edit the fwimport.dat and fwqrysmp.dml files to place the creator ID in front of each table name.

The `fwschema.ddl` file (/usr/lpp/FW/sample/fwschema.ddl) contains the DDL statements to create the database tables needed to accept records from the tabulated files created by `fwlogtbl`. You should look at schema.out to determine if your operation was successful. The statements can be used as is or can be modified to work with various database systems. (Users should not change table and column names.)
Importing the data

The example `db2 -vf fwimport.dat` loads data from all the DEL files into the tables created by the `db2-vf fwschema.ddl` example.

The fwimport.dat file (/usr/lpp/FW/sample/fwimport.dat) contains sample statements for importing the data from the *.tbl files into the DB2 database. As mentioned in “Creating the Tables” on page 19, if the user of the imports is not the creator of the tables, the creator ID must be placed in front of each table name.

Each import statement produces information in standard out and additional information in a tblname.msg file, where tblname is specific to each import statement. The user should check both forms of output to determine if the import was successful. When running all the import statements in this file with a program such as db2, the user should direct standard out to a file, then check that file and each of the .msg files. Each one of the import commands produces a separate .msg file. Also, the user should re-issue the db2 -vf ... command whenever they have a new log to reflect in the database.

When importing large log files you may receive SQL error codes with descriptions indicating the need for more memory or disk space. For example, the message may be `insufficient heap space` or `transaction log space`. These errors require adjustment of the parameter settings for the database product or for the fwlog database. See the DB2 documentation for more information. A temporary alternative to adjusting the DB2 parameter settings is to split large logs or large tabulated files into smaller files.

Running Sample Queries

The `db2 -vf fwqrysmp.dml` example runs the sample queries. The fwqrysmp.dml file (/usr/lpp/FW/sample/fwqrysmp.dml) contains sample SQL statements that can provide useful report data, based on some of the query requirements. You can build on these examples to create your own reports. As mentioned in “Creating the Tables” on page 19, if the user of the imports is not the creator of the tables, the creator ID must be placed in front of each table name.

When running queries from the command line, DB2 allocates the maximum space it might need for each output column. This can result in a report that is difficult to read. You may achieve more satisfactory results by requesting fewer columns in each query or by imbedding these query statements in a program where you can better control the presentation.

User Interface into Report Utilities

Report Utilities are installed as part of firewall install. They can also be separately installed and run on a non-firewall host. The configuration client can be used to run report utilities on a firewall. On a non-firewall, you will use SMIT or the command line.

Using the Reports with SMIT

This diagram illustrates the sequence leading to the panels for a firewall machine.
This is the sequence leading to the panels in a non-firewall machine.
The SMIT Layout Panel

Report Generation Utilities
Move cursor to desired item and press Enter.
Create Expanded Text Message File
Create Tabulated Message Files

Figure 1. The selection of Report Utility Type

The panel in figure 2 requests the name of a log archive. See figure 3 for usage of this information. A similar panel appears if Create Tabulated Message Files was selected.

Create Expanded Text Message File
Type or select values in entry fields.
Press Enter AFTER making all desired changes.

Enter Log Archive File Name

[Entry Fields]

Figure 2. The field for Log Archive File Name entry
The list for Log File Name field will be the list of names extracted from the Log Archive named on the preceding panel and shown at the bottom of this one. The names will end in .Z, since they have been compressed by the fwlogmgmt command. If no Log Archive name was given on the preceding panel, the list will show names of all files in the directory SMIT was started from. It is assumed that these are not compressed files. The Message Filter is used to select a subset of the log messages (which have an ICA prefix). The default filter is all messages in the log (ICA). A filter of ICA3 would select all messages related to SOCKS. A filter of ICA3012 would show the text of only that one message. The Default Output File is standard output.

For more information, see Appendix A, “Messages” on page 75.

![Create Expanded Text Message File](image)

Figure 3. The fields for “Create Expanded Text Message File”
See the description of the Create Expanded Text Message File panel for details about the list for Log File Name field. The Default for Directory for Output Files is the current directory.

Create Tabulated Message Files
Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Log File Name
Log File Type [Firewall log] +
Append to existing files [yes] +
Directory for Output Files
Log Archive File Name

Figure 4. The fields for “Create Tabulated Message Files”

The SQL Tables
This section defines the layout of the SQL tables.

Each Firewall log message or system SU log message is mapped to one of the following SQL tables:

ADMIN_ALERT
FILTER_INFO
FILTER_MATCH
FILTER_ACTIVE_RULE
FILTER_STATUS
NAT_INFO
PAGER_INFO
PROXY_FTP
PROXY_HTTP
PROXY_INFO
PROXY_LOGIN
PROXY_STATUS
SERVER_INFO
SESSION
SOCKS_FTP
SOCKS_INFO
SSL_INFO
SU
TUNNEL_CONTEXT
TUNNEL_POLICY
TUNNEL_STATUS

You should not change the table and column names.
Indexes
A log record representing a particular firewall event should appear only once in the database. If an administrator imports the same tabulated file multiple times or if another tabulated file derived from the same log file is imported, a log record could appear more than once.

To help avoid this problem, the database definition sample file, fwschema.dll, defines a unique index on each of the tables using these three fields:

- Filename of the log file that was the source of this record (LOG_FILE)
- The line number of this record in that log file (LINE_NUM)
- The repetition number for this line, based on the syslog 'last message repeated n times' message (REPEAT_NUM)

This index prevents you from loading the same line number from the same named file more than once. This, combined with careful management of your log file names, should prevent duplication of log events in your database.

Adding other indexes to your database may enhance performance of your most common queries. Consult your database documentation for more information.

Table descriptions
This section maps firewall log messages to tables and columns and points to information you may wish to query for your reports. All messages that are mapped to a particular table are listed in the note at the end of the table. Messages that provide data for particular columns are listed in that column's description.

For more information on firewall log messages, see Appendix A, “Messages” on page 75.

In the Data Type column in the following descriptions, 'int' implies SMALLINT column type for DB2; 'long int' implies DB2 INTEGER type. A date-time Data Type implies DB2 TIMESTAMP. In the timestamp, the microseconds value will always be "000000".

If a description is marked "required", this means a value must be specified to enter the record in the table.

The three columns that serve as the unique index are omitted from these table definitions because their definitions are identical and there is usually no reason to query them.

<table>
<thead>
<tr>
<th>Column</th>
<th>Data Type</th>
<th>Short Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE_TIME</td>
<td>date_time</td>
<td>Date and time for the action (required)</td>
</tr>
<tr>
<td>FIREWALL</td>
<td>char(100)</td>
<td>Fully qualified name of the firewall machine (required)</td>
</tr>
<tr>
<td>PID</td>
<td>int</td>
<td>Process ID (required)</td>
</tr>
<tr>
<td>MSG_NUM</td>
<td>int</td>
<td>Message number (required)</td>
</tr>
</tbody>
</table>
Table 1 (Page 2 of 2). ADMIN_ALERT. This table contains messages related to intrusion alerts from the a_alert.tbl file.

<table>
<thead>
<tr>
<th>Column</th>
<th>Data Type</th>
<th>Short Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTION</td>
<td>char(7)</td>
<td>"connect" (ICA3012) or "bind" (ICA3018)</td>
</tr>
<tr>
<td>NUM_COUNT</td>
<td>int</td>
<td>Number of authentication failures (ICA0001, ICA0002, ICA0003); number of log entries for TAG_MSG_NUM (ICA0004); number of days for (ICA9000)</td>
</tr>
<tr>
<td>TAG_MSG_NUM</td>
<td>char(8)</td>
<td>Tag message number (ICA0004)</td>
</tr>
<tr>
<td>SRC_IP</td>
<td>char(15)</td>
<td>Source IP address (ICA2001, ICA2028, ICA2079, ICA3012, ICA3018)</td>
</tr>
<tr>
<td>DST_IP</td>
<td>char(15)</td>
<td>Destination IP address (ICA2028, ICA2079, ICA3012, ICA3018)</td>
</tr>
<tr>
<td>AUTH_METHOD</td>
<td>char(20)</td>
<td>Authentication Method (ICA2002)</td>
</tr>
<tr>
<td>HOST_NAME</td>
<td>char(100)</td>
<td>Host name (ICA0003, ICA2002)</td>
</tr>
<tr>
<td>TIMEOUT_SEC</td>
<td>int</td>
<td>Time out seconds (ICA2026)</td>
</tr>
<tr>
<td>CONN_USERID</td>
<td>char(8)</td>
<td>Socks connect user name (for ICA3001)</td>
</tr>
<tr>
<td>APPLICATION</td>
<td>char(10)</td>
<td>Application name - "telnet", "ftp", ... (ICA3012)</td>
</tr>
</tbody>
</table>

Note: Related Messages: ICA0001 ICA0002 ICA0003 ICA0004 ICA0005 ICA0006 ICA0007 ICA0008 ICA0009 ICA0010 ICA0011 ICA0012 ICA0013 ICA0014 ICA0015 ICA0016 ICA0017 ICA0018 ICA0019 ICA0020 ICA0021 ICA0022 ICA1010 ICA2001 ICA2002 ICA2020 ICA2026 ICA2028 ICA2037 ICA2040 ICA2042 ICA2043 ICA2079 ICA3001 ICA3012 ICA3018 ICA9000 ICA9001

Table 2. FILTER_ACTIVE_RULE. This table contains active FILTER rules from the f_rule.tbl file.

<table>
<thead>
<tr>
<th>Column</th>
<th>Data Type</th>
<th>Short Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE_TIME</td>
<td>date_time</td>
<td>Date and time for the action (required)</td>
</tr>
<tr>
<td>FIREWALL</td>
<td>char(100)</td>
<td>Fully qualified name of the firewall machine (required)</td>
</tr>
<tr>
<td>PID</td>
<td>int</td>
<td>Process ID (required)</td>
</tr>
<tr>
<td>MSG_NUM</td>
<td>int</td>
<td>Message number (required)</td>
</tr>
<tr>
<td>RULE_NUM</td>
<td>int</td>
<td>Rule number (required)</td>
</tr>
<tr>
<td>RULE</td>
<td>char(150)</td>
<td>Rule (required)</td>
</tr>
</tbody>
</table>

Note: Related Message: ICA1037
Table 3. FILTER_INFO. This table contains error or general information messages related to FILTERS from the f_info.tbl file.

<table>
<thead>
<tr>
<th>Column</th>
<th>Data Type</th>
<th>Short Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE_TIME</td>
<td>date_time</td>
<td>Date and time for the action (required)</td>
</tr>
<tr>
<td>FIREWALL</td>
<td>char(100)</td>
<td>Fully qualified name of the firewall machine (required)</td>
</tr>
<tr>
<td>PID</td>
<td>int</td>
<td>Process ID (required)</td>
</tr>
<tr>
<td>MSG_NUM</td>
<td>int</td>
<td>Message number (required)</td>
</tr>
<tr>
<td>RULE_NUM</td>
<td>int</td>
<td>Filter rule number (ICA1005)</td>
</tr>
<tr>
<td>ERROR_NUM</td>
<td>int</td>
<td>System Error number -- AIX errno (ICA1007, ICA1008, ICA1009, ICA1011, ICA1013, ICA1015, ICA1021, ICA1023, ICA1024)</td>
</tr>
<tr>
<td>Load corresponding to this error number is obtainable via the _strerror function.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOAD_PATH</td>
<td>char(100)</td>
<td>Kernel extension load path (ICA1011, ICA1012)</td>
</tr>
<tr>
<td>DVC_DRV</td>
<td>char(25)</td>
<td>Device driver (ICA1021)</td>
</tr>
<tr>
<td>TERM_SIG</td>
<td>char(25)</td>
<td>Termination signal (ICA1260)</td>
</tr>
<tr>
<td>FILE_NAME</td>
<td>char(100)</td>
<td>File name (ICA1024)</td>
</tr>
<tr>
<td>RC</td>
<td>int</td>
<td>Internal firewall return code (ICA1019)</td>
</tr>
</tbody>
</table>

Note: Related Messages: ICA1001 ICA1002 ICA1003 ICA1005 ICA1007 ICA1008 ICA1009 ICA1011 ICA1012 ICA1013 ICA1014 ICA1015 ICA1016 ICA1017 ICA1019 ICA1021 ICA1022 ICA1023 ICA1024 ICA1200 ICA1260

Table 4 (Page 1 of 2). FILTER_MATCH. This table contains the filter rules matched from the f_match.tbl file.

<table>
<thead>
<tr>
<th>Column</th>
<th>Data Type</th>
<th>Short Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE_TIME</td>
<td>date_time</td>
<td>Date and time for the action (required)</td>
</tr>
<tr>
<td>FIREWALL</td>
<td>char(100)</td>
<td>Fully qualified name of the firewall machine (required)</td>
</tr>
<tr>
<td>PID</td>
<td>int</td>
<td>Process ID (required)</td>
</tr>
<tr>
<td>MSG_NUM</td>
<td>int</td>
<td>Message number (required)</td>
</tr>
<tr>
<td>RULE_NUM</td>
<td>int</td>
<td>Rule number (required)</td>
</tr>
<tr>
<td>ACTION</td>
<td>char(6)</td>
<td>Rule type: permit, deny, etc.</td>
</tr>
<tr>
<td>DIRECTION</td>
<td>char(8)</td>
<td>Direction the packet was traveling inbound or outbound (required)</td>
</tr>
<tr>
<td>SRC_IP</td>
<td>char(15)</td>
<td>IP address of the sender(required)</td>
</tr>
<tr>
<td>DST_IP</td>
<td>char(15)</td>
<td>IP address of the recipient(required)</td>
</tr>
</tbody>
</table>
Table 4 (Page 2 of 2). FILTER_MATCH. This table contains the filter rules matched from the f_match.tbl file.

<table>
<thead>
<tr>
<th>Column</th>
<th>Data Type</th>
<th>Short Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROTOCOL</td>
<td>char(7)</td>
<td>High-level protocol (required)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For example, UDP, IPIP, ICMP, TCP or TCP/ACK</td>
</tr>
<tr>
<td>SRC_PORT</td>
<td>int</td>
<td>• IP Packet type for ICMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Resource protocol port number for others (required)</td>
</tr>
<tr>
<td>DST_PORT</td>
<td>int</td>
<td>• IP Packet code for ICMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Destination protocol port number for others (required)</td>
</tr>
<tr>
<td>ROUTING</td>
<td>char(5)</td>
<td>Routing affiliation of the packets: route or local (required)</td>
</tr>
<tr>
<td>INTERFACE</td>
<td>char(10)</td>
<td>Interface type: secure or non-secure (required)</td>
</tr>
<tr>
<td>FRAGMENT</td>
<td>char(8)</td>
<td>Identifies if the packet is fragment or non-fragment (required)</td>
</tr>
<tr>
<td>TUNNEL_ID</td>
<td>int</td>
<td>Tunnel ID (required)</td>
</tr>
<tr>
<td>ENCRYPTION</td>
<td>char(7)</td>
<td>Encryption algorithm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DES_CBC or CDMF or none</td>
</tr>
<tr>
<td>BYTES</td>
<td>long int</td>
<td>Length of the specific packet (required)</td>
</tr>
</tbody>
</table>

Note: Related Message: ICA1036

Table 5. FILTER_STATUS. This table contains information on status changes of filters from the f_stat.tbl file.

<table>
<thead>
<tr>
<th>Column</th>
<th>Data Type</th>
<th>Short Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE_TIME</td>
<td>date_time</td>
<td>Date and time for the action (required)</td>
</tr>
<tr>
<td>FIREWALL</td>
<td>char(100)</td>
<td>Fully qualified name of the firewall machine (required)</td>
</tr>
<tr>
<td>PID</td>
<td>int</td>
<td>Process ID (required)</td>
</tr>
<tr>
<td>MSG_NUM</td>
<td>int</td>
<td>Message number (required)</td>
</tr>
<tr>
<td>DAEMON</td>
<td>char(25)</td>
<td>Filter logging daemon (ICA1004), such as /usr/sbin/fwlogd.</td>
</tr>
<tr>
<td>VERSION</td>
<td>int</td>
<td>Version number (ICA1004, ICA1033)</td>
</tr>
<tr>
<td>RELEASE</td>
<td>int</td>
<td>Release number (ICA1004, ICA1033)</td>
</tr>
<tr>
<td>PACKET_LOGGING</td>
<td>char(8)</td>
<td>Status of packet logging (ICA1035) enabled or disabled</td>
</tr>
</tbody>
</table>

Note: Related Messages: ICA1004 ICA1032 ICA1033 ICA1034 ICA1035. The details of the filter rule updates(ICA1032) can be obtained from FILTER_ACTIVE_RULE table.
Table 6. NAT_INFO. This table contains Network Address Translation message information from the nat_info.tbl file.

<table>
<thead>
<tr>
<th>Column</th>
<th>Data Type</th>
<th>Short Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE_TIME</td>
<td>date_time</td>
<td>Date and time for the action (required)</td>
</tr>
<tr>
<td>FIREWALL</td>
<td>char(100)</td>
<td>Fully qualified name of the firewall machine (required)</td>
</tr>
<tr>
<td>PID</td>
<td>int</td>
<td>Process ID (required)</td>
</tr>
<tr>
<td>MSG_NUM</td>
<td>int</td>
<td>Message number (required)</td>
</tr>
<tr>
<td>VERSION</td>
<td>int</td>
<td>NAT Version number (ICA9033)</td>
</tr>
<tr>
<td>RELEASE</td>
<td>int</td>
<td>NAT Release number (ICA9033)</td>
</tr>
<tr>
<td>IP</td>
<td>char(15)</td>
<td>IP address (ICA9035, ICA9036)</td>
</tr>
</tbody>
</table>

Note: Related Messages: ICA9032, ICA9033, ICA9034, ICA9035, ICA9036

Table 7 (Page 1 of 2). PAGER_INFO. This table contains information related to the paging feature of the Firewall, from the pgr_info.tbl file, for those pager messages that are mapped to the database.

<table>
<thead>
<tr>
<th>Column</th>
<th>Data Type</th>
<th>Short Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE_TIME</td>
<td>date_time</td>
<td>Date and time for the action (required)</td>
</tr>
<tr>
<td>FIREWALL</td>
<td>char(100)</td>
<td>Fully qualified name of the firewall machine (required)</td>
</tr>
<tr>
<td>PID</td>
<td>int</td>
<td>Process ID (required)</td>
</tr>
<tr>
<td>MSG_NUM</td>
<td>int</td>
<td>Message number (required)</td>
</tr>
<tr>
<td>USERID</td>
<td>char(8)</td>
<td>User ID (ICA4036, ICA4174, ICA4175)</td>
</tr>
<tr>
<td>ERROR_NUM</td>
<td>int</td>
<td>System Error number - AIX errno</td>
</tr>
<tr>
<td>PROGRAM</td>
<td>char(25)</td>
<td>Program name (ICA4000)</td>
</tr>
<tr>
<td>SIGNAL</td>
<td>int</td>
<td>Termination signal (ICA4000)</td>
</tr>
<tr>
<td>ID</td>
<td>int</td>
<td>Identifier (ICA4036)</td>
</tr>
<tr>
<td>PRIORITY</td>
<td>int</td>
<td>Priority (ICA4036)</td>
</tr>
<tr>
<td>PERIOD</td>
<td>int</td>
<td>Period (ICA4036)</td>
</tr>
<tr>
<td>RETRY_COUNT</td>
<td>int</td>
<td>Number of retries (ICA4036)</td>
</tr>
<tr>
<td>FROM_ENTRY</td>
<td>char(15)</td>
<td>Function name (ICA4036)</td>
</tr>
<tr>
<td>HOST_NAME</td>
<td>char(100)</td>
<td>Host name (ICA4174, ICA4175)</td>
</tr>
<tr>
<td>MESSAGE_TEXT</td>
<td>char(250)</td>
<td>Text of the page (ICA4036)</td>
</tr>
<tr>
<td>SERVICE</td>
<td>char(25)</td>
<td>Service name (ICA4017)</td>
</tr>
<tr>
<td>SOCKET</td>
<td>int</td>
<td>Socket number (ICA4017)</td>
</tr>
</tbody>
</table>
Table 7 (Page 2 of 2). PAGER_INFO. This table contains information related to the paging feature of the Firewall, from the pgr_info.tbl file, for those pager messages that are mapped to the database.

<table>
<thead>
<tr>
<th>Column</th>
<th>Data Type</th>
<th>Short Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILENAME</td>
<td>char(100)</td>
<td>Filename (ICA4154)</td>
</tr>
</tbody>
</table>

Note: Related Messages: ICA4000 ICA4001 ICA4007 ICA4017 ICA4036 ICA4154 ICA4168 ICA4174 ICA4175

Table 8. PROXY_FTP. This table contains FTP action information from FTP sessions from the p_ftp.tbl file.

<table>
<thead>
<tr>
<th>Column</th>
<th>Data Type</th>
<th>Short Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE_TIME</td>
<td>date_time</td>
<td>Date and time for the action (required)</td>
</tr>
<tr>
<td>FIREWALL</td>
<td>char(100)</td>
<td>Fully qualified name of the firewall machine (required)</td>
</tr>
<tr>
<td>PID</td>
<td>int</td>
<td>Process ID (required)</td>
</tr>
<tr>
<td>MSG_NUM</td>
<td>int</td>
<td>Message number (required)</td>
</tr>
<tr>
<td>USERID</td>
<td>char(8)</td>
<td>User ID (required)</td>
</tr>
<tr>
<td>SRC_IP</td>
<td>char(15)</td>
<td>IP Address of the User (required)</td>
</tr>
<tr>
<td>DST_IP</td>
<td>char(15)</td>
<td>IP address of the remote machine (required)</td>
</tr>
<tr>
<td>ACTION</td>
<td>char(5)</td>
<td>File transfer action. put or get (required)</td>
</tr>
<tr>
<td>FILE_NAME</td>
<td>char(100)</td>
<td>File name</td>
</tr>
<tr>
<td>BYTES</td>
<td>long int</td>
<td>Amount of data transferred.</td>
</tr>
<tr>
<td>SID</td>
<td>long int</td>
<td>Unique session id (required)</td>
</tr>
</tbody>
</table>

Note: Related Message: ICA2075

Table 9. PROXY_HTTP. This table contains HTTP action information from Proxy sessions from the p_http.tbl file.

<table>
<thead>
<tr>
<th>Column</th>
<th>Data Type</th>
<th>Short Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE_TIME</td>
<td>date_time</td>
<td>Date and time for the action (required)</td>
</tr>
<tr>
<td>FIREWALL</td>
<td>char(100)</td>
<td>Fully qualified name of the firewall machine (required)</td>
</tr>
<tr>
<td>PID</td>
<td>int</td>
<td>Process ID (required)</td>
</tr>
<tr>
<td>MSG_NUM</td>
<td>int</td>
<td>Message number (required)</td>
</tr>
<tr>
<td>STATUS</td>
<td>int</td>
<td>Status (required)</td>
</tr>
<tr>
<td>SRC_IP</td>
<td>char(15)</td>
<td>IP Address of the User (required)</td>
</tr>
<tr>
<td>REQUEST</td>
<td>char(250)</td>
<td>Content of the HTTP request (required)</td>
</tr>
<tr>
<td>BYTES</td>
<td>long int</td>
<td>Amount of data transferred.</td>
</tr>
</tbody>
</table>

Note: Related Message: ICA2099
Table 10. **PROXY_INFO.** This table contains error or general information messages related to PROXY from the `p_info.tbl` file.

<table>
<thead>
<tr>
<th>Column</th>
<th>Data Type</th>
<th>Short Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE_TIME</td>
<td>date_time</td>
<td>Date and time for the action (required)</td>
</tr>
<tr>
<td>FIREWALL</td>
<td>char(100)</td>
<td>Fully qualified name of the firewall machine (required)</td>
</tr>
<tr>
<td>PID</td>
<td>int</td>
<td>Process ID (required)</td>
</tr>
<tr>
<td>MSG_NUM</td>
<td>int</td>
<td>Message number (required)</td>
</tr>
<tr>
<td>USERID</td>
<td>char(8)</td>
<td>User ID (ICA2018, ICA2019, ICA2057, ICA2058)</td>
</tr>
<tr>
<td>ERROR_NUM</td>
<td>int</td>
<td>System Error number - AIX errno (ICA2005, ICA2006, ICA2009, ICA2029, ICA2035, ICA2038, ICA2039, ICA2052, ICA2054, ICA2055, ICA2056, ICA2057, ICA2058, ICA2059, ICA2063, ICA2064, ICA2065, ICA2066, ICA2067, ICA2068, ICA2069, ICA2069, ICA2070, ICA2071, ICA2074, ICA2110, ICA2111, ICA2113, ICA2114, ICA2115, ICA2118, ICA2119, ICA2121, ICA2122, ICA2123, ICA2124) Text for errno (AIX System Errors) is obtainable via the <code>_strerror</code> function.</td>
</tr>
<tr>
<td>OPTION_VAL</td>
<td>char(20)</td>
<td>Option flag or parm value (ICA2014, ICA2015, ICA2049, ICA2050)</td>
</tr>
<tr>
<td>TIME</td>
<td>char(15)</td>
<td>Invalid time interval (ICA2044)</td>
</tr>
<tr>
<td>RC</td>
<td>int</td>
<td>Internal Firewall return code (ICA2007, ICA2030, ICA2031, ICA2033, ICA2034, ICA2054, ICA2056, ICA2058, ICA2065, ICA2120)</td>
</tr>
<tr>
<td>INVOC_NAME</td>
<td>char(20)</td>
<td>Invocation name for socket or port at time system error occurred (ICA2055, ICA2056)</td>
</tr>
<tr>
<td>AUDIT_TYPE</td>
<td>char(7)</td>
<td>Unknown audit-type (7 hex digits) (ICA2004)</td>
</tr>
<tr>
<td>HOST_NAME</td>
<td>char(100)</td>
<td>Host name (ICA2106, ICA2107, ICA2126)</td>
</tr>
<tr>
<td>FILE_NAME</td>
<td>char(100)</td>
<td>File name (ICA2029, ICA2030, ICA2072)</td>
</tr>
<tr>
<td>LINE_NUM</td>
<td>int</td>
<td>Line number (ICA2029, ICA2030)</td>
</tr>
<tr>
<td>PROTOCOL</td>
<td>char(25)</td>
<td>Invalid protocol name (ICA2112, ICA2116)</td>
</tr>
<tr>
<td>CUSTOMIZED_ATTR</td>
<td>char(25)</td>
<td>Line number (ICA2105, ICA2106, ICA2125)</td>
</tr>
<tr>
<td>ODM_ERR_NUM</td>
<td>int</td>
<td>Error number from Object Data Manager (ICA2102, ICA2103, ICA2104, ICA2105, ICA2107, ICA2108, ICA2109, ICA2125)</td>
</tr>
</tbody>
</table>

Table 11. PROXY_LOGIN. This table contains information (primarily regarding authentication) about successful PROXY logins from the p_login.tbl file.

<table>
<thead>
<tr>
<th>Column</th>
<th>Data Type</th>
<th>Short Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE_TIME</td>
<td>date_time</td>
<td>Date and time for the action (required)</td>
</tr>
<tr>
<td>FIREWALL</td>
<td>char(100)</td>
<td>Fully qualified name of the firewall machine (required)</td>
</tr>
<tr>
<td>PID</td>
<td>int</td>
<td>Process ID (required)</td>
</tr>
<tr>
<td>MSG_NUM</td>
<td>int</td>
<td>Message number (required)</td>
</tr>
<tr>
<td>USERID</td>
<td>char(8)</td>
<td>User ID (required)</td>
</tr>
<tr>
<td>APPLICATION</td>
<td>char(10)</td>
<td>Application name which can be one of: telnet (ICA2024) or ftp (ICA2025) (required)</td>
</tr>
<tr>
<td>AUTH_METHOD</td>
<td>char(15)</td>
<td>Authentication method (required)</td>
</tr>
<tr>
<td>NETWORK</td>
<td>char(25)</td>
<td>Network (secure/nonsecure - may have additional info also) (required)</td>
</tr>
<tr>
<td>HOST_NAME</td>
<td>char(100)</td>
<td>Host name (required)</td>
</tr>
</tbody>
</table>

Note: Related Messages: ICA2024 ICA2025

Table 12. PROXY_STATUS. This table contains PROXY status information from the p_stat.tbl file.

<table>
<thead>
<tr>
<th>Column</th>
<th>Data Type</th>
<th>Short Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE_TIME</td>
<td>date_time</td>
<td>Date and time for the action (required)</td>
</tr>
<tr>
<td>FIREWALL</td>
<td>char(100)</td>
<td>Fully qualified name of the firewall machine (required)</td>
</tr>
<tr>
<td>PID</td>
<td>int</td>
<td>Process ID (required)</td>
</tr>
<tr>
<td>MSG_NUM</td>
<td>int</td>
<td>Message number (required)</td>
</tr>
<tr>
<td>REMOTE_HOST</td>
<td>char(100)</td>
<td>Remote host name (from perspective of firewall machine) (ICA2021, ICA2022, ICA2027)</td>
</tr>
</tbody>
</table>

Table 13. SERVER_INFO. This table contains information about Configuration Server status and activities from the srv_info.tbl file.

<table>
<thead>
<tr>
<th>Column</th>
<th>Data Type</th>
<th>Short Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE_TIME</td>
<td>date_time</td>
<td>Date and time for the action (required)</td>
</tr>
<tr>
<td>FIREWALL</td>
<td>char(100)</td>
<td>Fully qualified name of the firewall machine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(required)</td>
</tr>
<tr>
<td>PID</td>
<td>int</td>
<td>Process ID (required)</td>
</tr>
<tr>
<td>MSG_NUM</td>
<td>int</td>
<td>Message number (required)</td>
</tr>
<tr>
<td>USERID</td>
<td>char(8)</td>
<td>User ID (ICA9003, ICA9004)</td>
</tr>
<tr>
<td>ERROR_NUM</td>
<td>int</td>
<td>System Error number – AIX errno (ICA9008,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ICA9009) Text for errno (AIX System Errors) is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>obtainable with the strerror function.</td>
</tr>
</tbody>
</table>

Note: Related Messages: ICA9003 ICA9004 ICA9005 ICA9006 ICA9007 ICA9008 ICA9009 ICA9010 ICA9011 ICA9012 ICA9013 ICA9014 ICA9015

Table 14 (Page 1 of 2). SESSION. This table contains SOCKS and PROXY session start/stop information from the session.tbl file.

<table>
<thead>
<tr>
<th>Column</th>
<th>Data Type (length)</th>
<th>Short Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE_TIME</td>
<td>date_time</td>
<td>Date and time for the action (required)</td>
</tr>
<tr>
<td>FIREWALL</td>
<td>char(100)</td>
<td>Fully qualified name of the firewall machine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(required)</td>
</tr>
<tr>
<td>PID</td>
<td>int</td>
<td>Process ID (required)</td>
</tr>
<tr>
<td>MSG_NUM</td>
<td>int</td>
<td>Message number (required)</td>
</tr>
<tr>
<td>USERID</td>
<td>char(8)</td>
<td>User ID (required)</td>
</tr>
<tr>
<td>SERVICE_TYPE</td>
<td>char(10)</td>
<td>Service type which can be one of:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• socks, proxy (required)</td>
</tr>
<tr>
<td>APPLICATION</td>
<td>char(10)</td>
<td>Application name - telnet, ftp, (required)</td>
</tr>
<tr>
<td>SRC_IP</td>
<td>char(15)</td>
<td>IP Address of the User (required)</td>
</tr>
<tr>
<td>DST_IP</td>
<td>char(15)</td>
<td>IP address of the remote machine (required)</td>
</tr>
<tr>
<td>SESSION_EVENT</td>
<td>char(5)</td>
<td>• begin when a session is established.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• end when a session is terminated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(required)</td>
</tr>
</tbody>
</table>
| BYTES | long int | Amount of data transfered during the session.
| | | If the row is for PROXY, this column is only for ftp. |
| SID | long int | Unique session identifier, generated by the Firewall, based on clock time. |
Table 14 (Page 2 of 2). SESSION. This table contains SOCKS and PROXY session start/stop information from the session.tbl file.

<table>
<thead>
<tr>
<th>Column</th>
<th>Data Type (length)</th>
<th>Short Description</th>
</tr>
</thead>
</table>

Note:

Related Messages:
- Socks Session Start: ICA3011
- Socks Session Stop: ICA3015
- Proxy Telnet Session Start: ICA2036
- Proxy Telnet Session Stop: ICA2077
- Proxy FTP Session Start: ICA2041
- Proxy FTP Session Stop: ICA2076

Details of Socks FTP session actions are in SOCKS_FTP table. Details of Proxy FTP session actions are in PROXY_FTP.

Table 15. SOCKS_FTP. This table contains SOCKS FTP action information from FTP sessions from the s ftp.tbl file.

<table>
<thead>
<tr>
<th>Column</th>
<th>Data Type</th>
<th>Short Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE_TIME</td>
<td>date_time</td>
<td>Date and time for the action (required)</td>
</tr>
<tr>
<td>FIREWALL</td>
<td>char(100)</td>
<td>Fully qualified name of the firewall machine (required)</td>
</tr>
<tr>
<td>PID</td>
<td>int</td>
<td>Process ID (required)</td>
</tr>
<tr>
<td>MSG_NUM</td>
<td>int</td>
<td>Message number (required)</td>
</tr>
<tr>
<td>USERID</td>
<td>char(8)</td>
<td>User ID (required)</td>
</tr>
<tr>
<td>SRC_IP</td>
<td>char(15)</td>
<td>IP Address of the User (required)</td>
</tr>
<tr>
<td>DST_IP</td>
<td>char(15)</td>
<td>IP address of the remote machine (required)</td>
</tr>
<tr>
<td>DATA_BIND</td>
<td>char(5)</td>
<td>• 'start' when data bind is established.(ICA3010)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 'stop' when data bind is terminated.(ICA3014)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(required)</td>
</tr>
<tr>
<td>BYTES</td>
<td>long int</td>
<td>Amount of data transferred.</td>
</tr>
</tbody>
</table>

Note: Related Messages: ICA3010 ICA3014

Table 16 (Page 1 of 2). SOCKS_INFO. This table contains error or general information messages related to SOCKS from the s_info.tbl file.

<table>
<thead>
<tr>
<th>Column</th>
<th>Data Type</th>
<th>Short Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE_TIME</td>
<td>date_time</td>
<td>Date and time for the action (required)</td>
</tr>
</tbody>
</table>
Table 16 (Page 2 of 2). SOCKS_INFO. This table contains error or general information messages related to SOCKS from the s_info.tbl file.

<table>
<thead>
<tr>
<th>Column</th>
<th>Data Type</th>
<th>Short Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIREWALL</td>
<td>char(100)</td>
<td>Fully qualified name of the firewall machine (required)</td>
</tr>
<tr>
<td>PID</td>
<td>int</td>
<td>Process ID (required)</td>
</tr>
<tr>
<td>MSG_NUM</td>
<td>int</td>
<td>Message number (required)</td>
</tr>
<tr>
<td>USERID</td>
<td>char(8)</td>
<td>User ID (ICA3044, ICA3045, ICA3046, ICA3047, ICA3049)</td>
</tr>
<tr>
<td>ACTION</td>
<td>char(7)</td>
<td>"connect" (ICA3044, ICA3049) or "bind" (ICA3046, ICA3047)</td>
</tr>
<tr>
<td>ERROR_NUM</td>
<td>int</td>
<td>System Error number - AIX errno (ICA3013, ICA3019, ICA3031, ICA3032, ICA3040, ICA3044, ICA3101, ICA3102, ICA3103, ICA3104, ICA3106, ICA3107, ICA3108, ICA3122, ICA3124, ICA3125, ICA3126, ICA3128)</td>
</tr>
<tr>
<td>SRC_HOST</td>
<td>char(25)</td>
<td>Source host name (ICA3019, ICA3035)</td>
</tr>
<tr>
<td>DST_HOST</td>
<td>char(25)</td>
<td>Destination host name (ICA3016, ICA3045)</td>
</tr>
<tr>
<td>SRC_IP</td>
<td>char(15)</td>
<td>Source address (ICA3042, ICA3043, ICA3044, ICA3045, ICA3046, ICA3047, ICA3049)</td>
</tr>
<tr>
<td>DST_IP</td>
<td>char(15)</td>
<td>Destination address (ICA3044, ICA3045, ICA3046, ICA3047, ICA3049)</td>
</tr>
<tr>
<td>LINE_NUM</td>
<td>int</td>
<td>Line number (ICA3022, ICA3023, ICA3024, ICA3025, ICA3026, ICA3109, ICA3110, ICA3111, ICA3112, ICA3115, ICA3116, ICA3117, ICA3118, ICA3119, ICA3120); or Number of lines (ICA3113)</td>
</tr>
<tr>
<td>EXEC_STATUS</td>
<td>int</td>
<td>Exec status (ICA3027)</td>
</tr>
<tr>
<td>CMD</td>
<td>char(36)</td>
<td>Command, such as login (ICA3027, ICA3039, ICA3042, ICA3044, ICA3048) note: for ICA3042, the command is in hexadecimal format</td>
</tr>
<tr>
<td>FILE_NAME</td>
<td>char(100)</td>
<td>File name (ICA3030, ICA3032, ICA3105, ICA3109, ICA3110, ICA3111, ICA3112, ICA3113, ICA3114, ICA3115, ICA3116, ICA3117, ICA3118, ICA3119, ICA3120)</td>
</tr>
<tr>
<td>APPLICATION</td>
<td>char(10)</td>
<td>Application name telnet, ftp,... (ICA3044, ICA3045, ICA3049)</td>
</tr>
<tr>
<td>VERSION</td>
<td>char(10)</td>
<td>Socks version number in hex (ICA3043)</td>
</tr>
</tbody>
</table>

Note: Related Messages: ICA3013 ICA3016 ICA3017 ICA3019 ICA3022 ICA3023 ICA3024 ICA3025 ICA3026 ICA3027 ICA3030 ICA3031 ICA3032 ICA3033 ICA3035 ICA3039 ICA3040 ICA3041 ICA3042 ICA3043 ICA3044 ICA3045 ICA3046 ICA3047 ICA3048 ICA3049 ICA3052 ICA3101 ICA3102 ICA3103 ICA3104 ICA3105 ICA3106 ICA3107 ICA3108 ICA3109 ICA3110 ICA3111 ICA3112 ICA3113 ICA3114 ICA3115 ICA3116 ICA3117 ICA3118 ICA3119 ICA3120 ICA3121 ICA3122 ICA3123 ICA3124 ICA3125 ICA3126 ICA3127 ICA3128
Table 17. SSL_INFO. This table contains information about SSL status and activities from the ssl_info.tbl file.

<table>
<thead>
<tr>
<th>Column</th>
<th>Data Type</th>
<th>Short Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE_TIME</td>
<td>date_time</td>
<td>Date and time for the action (required)</td>
</tr>
<tr>
<td>FIREWALL</td>
<td>char(100)</td>
<td>Fully qualified name of the firewall machine (required)</td>
</tr>
<tr>
<td>PID</td>
<td>int</td>
<td>Process ID (required)</td>
</tr>
<tr>
<td>MSG_NUM</td>
<td>int</td>
<td>Message number (required)</td>
</tr>
<tr>
<td>Client_IP</td>
<td>char(15)</td>
<td>IP address of the client</td>
</tr>
</tbody>
</table>

Note: Related Messages: ICA5015 ICA5022 ICA5023 ICA5028 ICA5029 ICA5036 ICA5039 ICA5060 ICA5063 ICA5082 ICA5120

Table 18. SU. This table contains details about SU activities from the su.tbl file.

<table>
<thead>
<tr>
<th>Column</th>
<th>Data Type</th>
<th>Short Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE_TIME</td>
<td>date_time</td>
<td>Date and time for the action (required)</td>
</tr>
<tr>
<td>FROM_USERID</td>
<td>char(8)</td>
<td>User ID. (required)</td>
</tr>
<tr>
<td>TO_USERID</td>
<td>char(8)</td>
<td>User ID. (required)</td>
</tr>
<tr>
<td>LOGIN_STATUS</td>
<td>char(7)</td>
<td>Status of login attempt: success or failure (required)</td>
</tr>
</tbody>
</table>

Because AIX does not record the year in the su log file, the year portion of the DATE_TIME column is set to either the current year or the previous year, based on the month/day settings (if month/day is later than current month/day, assume it is last year.)

Table 19 (Page 1 of 2). TUNNEL_CONTEXT. This table contains active TUNNEL context specifications from the t_cntxt.tbl file.

<table>
<thead>
<tr>
<th>Column</th>
<th>Data Type</th>
<th>Short Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE_TIME</td>
<td>date_time</td>
<td>Date and time for the action (required)</td>
</tr>
<tr>
<td>FIREWALL</td>
<td>char(100)</td>
<td>Fully qualified name of the firewall machine (required)</td>
</tr>
<tr>
<td>PID</td>
<td>int</td>
<td>Process ID (required)</td>
</tr>
<tr>
<td>MSG_NUM</td>
<td>int</td>
<td>Message number (required)</td>
</tr>
<tr>
<td>TUNNEL_ID</td>
<td>long int</td>
<td>Tunnel ID (required)</td>
</tr>
<tr>
<td>SRC_IP</td>
<td>char(15)</td>
<td>Source IP address (required)</td>
</tr>
<tr>
<td>DST_IP</td>
<td>char(15)</td>
<td>Destination IP address (required)</td>
</tr>
</tbody>
</table>
Table 19 (Page 2 of 2). TUNNEL_CONTEXT. This table contains active TUNNEL context specifications from the t_cntxt.tbl file.

<table>
<thead>
<tr>
<th>Column</th>
<th>Data Type</th>
<th>Short Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCRYPTION</td>
<td>char(7)</td>
<td>Encryption algorithm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DES_CBC or CDMF</td>
</tr>
</tbody>
</table>

Note: Related Message: ICA1040 ICA1043

Table 20. TUNNEL_POLICY. This table contains TUNNEL policy statements from the t_policy.tbl file.

<table>
<thead>
<tr>
<th>Column</th>
<th>Data Type</th>
<th>Short Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE_TIME</td>
<td>date_time</td>
<td>Date and time for the action (required)</td>
</tr>
<tr>
<td>FIREWALL</td>
<td>char(100)</td>
<td>Fully qualified name of the firewall machine (required)</td>
</tr>
<tr>
<td>PID</td>
<td>int</td>
<td>Process ID (required)</td>
</tr>
<tr>
<td>MSG_NUM</td>
<td>int</td>
<td>Message number (required)</td>
</tr>
<tr>
<td>POLICY</td>
<td>char(60)</td>
<td>Policy statement read from fwpolicy file (required)</td>
</tr>
</tbody>
</table>

Note: Related Message: ICA1040

Table 21. TUNNEL_STATUS. This table contains information on status changes of TUNNELS from the t_stat.tbl file.

<table>
<thead>
<tr>
<th>Column</th>
<th>Data Type</th>
<th>Short Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE_TIME</td>
<td>date_time</td>
<td>Date and time for the action (required)</td>
</tr>
<tr>
<td>FIREWALL</td>
<td>char(100)</td>
<td>Fully qualified name of the firewall machine (required)</td>
</tr>
<tr>
<td>PID</td>
<td>int</td>
<td>Process ID (required)</td>
</tr>
<tr>
<td>MSG_NUM</td>
<td>int</td>
<td>Message number (required)</td>
</tr>
<tr>
<td>SESSION_SCKT</td>
<td>long int</td>
<td>Session socket port (for ICA1038)</td>
</tr>
<tr>
<td>MASTER_SCKT</td>
<td>long int</td>
<td>Master socket port (for ICA1038)</td>
</tr>
<tr>
<td>TUNNEL_ID</td>
<td>long int</td>
<td>Tunnel ID deleted (for ICA1041)</td>
</tr>
</tbody>
</table>

Note:

Related Messages: ICA1038 ICA1039 ICA1041 ICA1042

- The details of the policy defined(ICA1039) can be obtained from TUNNEL_POLICY table.
- The details of the tunnel context defined(ICA1042) can be obtained from TUNNEL_CONTEXT table.
Chapter 3. Providing Your Own Authentication Methods

This chapter gives you information on providing your own authentication methods.

There are two methods for user-supplied authentication:

1. Using executables fwuserpt and fwuserau, which authenticates a user based on a response to a single prompt.

2. Using the functions fwprompt, fw_tn_authenticate, and fw_ftp_authenticate, which authenticates a user based on responses to one or more prompts. This method is known as user-supplied iteration because the prompting is an iterative process.

You can use either method but not both. If fwuserpt and fwuserau are present in /usr/bin, then method 1 is used.

User-Supplied Authentication

To use user-supplied authentication as an authentication method, the firewall administrator must provide two executables: fwuserpt and fwuserau. The fwuserpt code provides the text that will prompt the user for an authentication token. The fwuserau code authenticates the user based on the response to the prompt.

If you choose the user-supplied authentication method for a firewall proxy user, the IBM Firewall takes these actions when that user logs on:

- Prompts the user for a user name.
- Invokes fwuserpt passing the user name as the input parameter.
- fwuserpt executes a printf statement to display a prompt to the user.
- Receives the printf string and displays it on the user console.
- Reads the user response, which may be multiple tokens on a single line.
- Invokes fwuserau passing the User Name and all the tokens read from the user terminal.
- Accepts or rejects the user based on the return code from fwuserau.

FWUSERPT and FWUSERAU Specifications

The executables, fwuserpt and fwuserau reside in /usr/bin. These subroutines are supported when compiled in an AIX machine compatible with the version of the firewall the subroutines are intended to run on. Once executed, the ownership is transferred to root.

fwuserpt takes user name as the input. It performs a database lookup or calculation and outputs a string using a printf statement. For example, if John is the user, fwuserpt can create one of the following as output:

- Please enter your secret code for authentication
- Secret code is required for John
- Secret code corresponding to 1345 is required for John. (1345 is a string associated with John.)
The return codes for `fwuserpt` and `fwuserau` are zero if successful and non-zero if unsuccessful.

The input to `fwuserau` are the user name and the strings of 'password' supplied by the user. If the password consists of a sequence of strings as in the case of Secure Key, they are in argv[2], argv[3], argv[4], argv[5] and so on.

The string `fwuserpt` issues with printf must not contain any special character like 'n' or 'r', otherwise, the result is unpredictable. It must contain a fflush statement after printf. The `fwuserau` must not contain any print statements, otherwise, the result is unpredictable.

Example of fwuserpt and fwuserau

The following is an example of `fwuserpt` and `fwuserau` with authentication performed.

Compile the following and name the output file `fwuserpt`.

```c
int main (int argc, char **argv)
{
    char *user = NULL; /* name of user to be authenticated */
    user = argv[1];
    if (user == NULL)
        return 1;
    /* Note, if you cannot validate the userid, return 1 and fwuserau will not be called */
    printf("User Supplied auth invoked. Please supply your password.");
    (void) fflush(stdout);
    return 0;
}
```

Compile the following and name the output file `fwuserau`.

```c
int main(int argc, char **argv)
{
    char *user = NULL; /* name of user to be authenticated*/
    user = argv[1];
    if (user == NULL)
        return 1;
    /* retrieve the authentication token from argv[2], argv[3], etc depending on the interface, ie, the number of tokens the user is expected to input at the prompt and validate the user. 
    return 0 if successful.
    return 1 if unsuccessful*/

    Secure Key as an Example of User-Supplied Authentication

    Sample code using Secure Key as an example of user- supplied authentication is provided in the `/usr/lpp/FW/sample` directory. These files are:
    - `makefile.ex`
    - `fwuserpt.c`
    - `fwuserau.c`

    These files have been used to test our user-supplied authentication API code and are provided as is.
User-Supplied Iteration Support

User-supplied iteration enables you to require multiple responses from a user attempting to logon, instead of just one prompt and one reply.

This user-supplied authentication method provides support for iterating through a loop during authentication for telneting. So, for example you can have telnet do a looping instead of doing just one prompt and one reply from users.

The following diagram depicts the user-supplied support for telnet:

```
Client Server(test99)
telnet test99
 login
 -------------------------->
 prompt user
 -------------------------->
 user reply
 -------------------------->
 enter your new credential
 -------------------------->
 user reply
 -------------------------->
 re-enter new credential
 -------------------------->
 user reply
 -------------------------->
 login OK or not OK
 -------------------------->
```

The following diagram depicts the user-supplied support for ftp:

```
Client Server(test99)
ftp test99
 login
 -------------------------->
 prompt user
 -------------------------->
 user reply
 -------------------------->
 OK or not OK
 -------------------------->
```
The following sections explain how to accomplish iterative prompting.

Library Requirements
You must supply the library functions that the Firewall invokes. The name of the shared library file is `fwuser.o`. This file must reside in /usr/lib. In addition, `fwuser.exp` must be present in /usr/lib. This library must contain the following functions:

- `fw_prompt`
- `fw_tn_authenticate`
- `fw_ftp_authenticate`

Note: Iteration does not apply to FTP; however, FTP authentication is supported.

During installation of the IBM Firewall, copies of `fwuser.o` and `fwuser.exp` are installed in /usr/lib. If a copy of `fwuser.o` already exists in /usr/lib, it will not be replaced during installation.

When you invoke the IBM-supplied `fwuser.o`, a message reminding you to supply your own version of user-written authentication is put into the local4 log.

The IBM-supplied `fwuser.o` denies authentication for FTP and telnet.

Details of `fw_prompt`
`fw_prompt` authenticates the user using FTP.

`fw_prompt` prompts the user for the returned string, `password`, for example.

`fw_prompt` verifies that a name is authorized in the database and displays messages to the user.

`fw_prompt` takes two arguments, a pointer to username (characters) and ret_code. ret_code is a pointer to a data structure called `fw_ret_struct` which is defined in `fwuser.h`. `fwuser.h` can be found in the /usr/lpp/FW/sample subdirectory.

In the argument ret_code, the req_rsp_code is set to FW_AUTH_REQ (request for prompt for username).

- `fw_prompt` uses the username to compute a prompt in the form of a string and puts it in ret_code->return_str to be displayed to the user.
- ret_code->return_str must not contain any special character like `\n`.
- If verification of username is successful, `fw_prompt` puts a string in ret_code->return_str to be displayed to user and sets the req_rsp_code to be FW_AUTH_OK. Setting req_rsp_code to anything else means the authentication failed.

Following is an example of the function for `fw_prompt`. This can be found in /usr/lpp/FW/sample/fwprompt.c.
Details of `fw_tn_authenticate`

`fw_tn_authenticate` authenticates the user using telnet.

`fw_ftp_authenticate` is the function that authenticates a user using FTP.

`fw_tn_authenticate` takes three arguments:
- a pointer to `username`
- a pointer to `response`
- a pointer to a data structure called `ret_code`.

`ret_code`, also called `fw_ret_struct`, is defined in `fwuser.h`. The description of the various arguments are:
- `username` always points to a NULL terminated string or user ID of the user.
- `response` points to a NULL terminated string or NULL.

If `response` points to NULL and the `req_rsp_code` is set to FW_AUTH_REQ, this is the first time `fw_tn_authenticate` is called for the user specified by the username. For example, when a telnet session is initiated, before any prompt is displayed, `fw_tn_authenticate` is called with `response` set to NULL and `req_rsp_code` set to FW_AUTH_REQ.

The `ret_code` is used to pass information back and forth between the Firewall and `fw_tn_authenticate`.

`ret_code` can have these values:
- **FW_AUTH_REQ** The initial setting; indicates the first call to `fw_tn_authenticate`
- **FW_AUTH_OK** The user has been verified; authentication is successful. `fw_tn_authenticate` is not called again.
- **FW_AUTH_FAILED** The user has not been verified. `fw_tn_authenticate` is not called again for that user. The user is rejected.
- **FW_AUTH_MISSING** `fwuser` is missing and authentication will fail.

If `ret_code` is set to anything other than these values, `fw_tn_authenticate` is called again. You should define a code, such as FW_AUTH_INIT, to indicate authentication is continuing and `fw_tn_authenticate` should be called again.

The `return_str` is the string Firewall will display to the user for `response`. This `return_str` must NOT contain any special characters like \"\n\".
For example, if an authentication uses a sequence of passwords defined by the user, the user can define FW_AUTH_CONT_REQ as 3 and FW_AUTH_INIT_REQ as 2 and put these in \textit{fwuser.h}. When \texttt{fw_tn_authenticate} is first called, the second parameter is set to NULL and req_rsp_code is set to FW_AUTH_REQ. Then \texttt{fw_tn_authenticate} can put a string like "Enter the initial code" in the return\_str and set req_rsp_code to be FW_AUTH_INIT_REQ.

When \texttt{fw_tn_authenticate} is called again, the second parameter will point to a string of response and the req_rsp_code will be FW_AUTH_INIT_REQ. If further input from the user is needed, \texttt{fw_tn_authenticate} can put "enter your second response" and set the req_rsp_code to FW_AUTH_CONT_REQ. When \texttt{fw_tn_authenticate} is called again, the second parameter will point to the second response given by the user and the req_rsp_code will be FW_AUTH_CONT_REQ.

If \texttt{fw_tn_authenticate} is satisfied with the response, \texttt{fw_tn_authenticate} will set req_rsp_code to FW_AUTH_OK and return FW_AUTH_OK.

If \texttt{fw_tn_authenticate} is not satisfied with the user response, it will set req_rsp_code to be FW_AUTH_FAILED and return.

Here is an example of \texttt{fw_tn_authenticate} that implements the above scenario. In this example, the user is first asked to enter "password" and the second authentication asks the user to enter the changed "password".
Details of fw_ftp_authenticate

fw_ftp_authenticate authenticates the user using FTP.

The argument taken by **fw_ftp_authenticate** is identical to that of **fw_tn_authenticate**. It can only return FW_AUTH_FAILED or FW_AUTH_OK. Any value other than FW_AUTH_OK in req_rsp_code will fail.

If the authentication is successful, the value in req_rsp_code must be set to FW_AUTH_OK and the returned value of the function is FW_AUTH_OK. Returning non-zero by the function or setting req_rsp_code to be anything other than FW_AUTH_OK will fail.
FW_AUTH_OK means authentication failed. This file can be found in /usr/lpp/FW/sample/fwauthen.c.

Following is an example of `fw_ftp_authenticate`. 
/*
* The following is an example of user authentication. It uses a
two stage authentication method. This procedure is provided as
is. The first time this procedure is invoked, it asks the user to respond with "password".
* If the user responds properly, it asks the user
to repond with "changed password". If the user responds properly, then
* the user is authenticated. Otherwise, the authentication fails.
* FW_AUTH_INIT_REQ and FW_AUTH_CONT_REQ are user defined constants that
* are defined in fwuser.h. The IBM Firewall does not use
* these two constants. The constants are defined in fwuser.h.
* The IBM Firewall uses (and user must not redefine) FW_AUTH_FAILED, FW_AUTH_OK and FW_AUTH_REQ.
* The fwuser.o that is being installed was not compiled using this program.
*/

#include <stdio.h>
#include <stdlib.h>
#include "fwuser.h"

int fw_tnAuthenticate (char *username, char *response, struct fw_ret_struct *ret_code)
{
    if (username == NULL) {
        return FW_AUTH_FAILED;
    }
    if (ret_code == NULL) {
        return FW_AUTH_FAILED;
    }

    memset(ret_code->return_str, 0x00, sizeof(ret_code->return_str));
    if ((response == NULL) && (ret_code->req_rsp_code == FW_AUTH_REQ)) {
        ret_code->req_rsp_code = FW_AUTH_INIT_REQ;
        /*
        In here, the program makes a computation or database lookup
        for username. It then comes up with a prompt for the user to
        enter the reponse. In this example, the user is asked to
        enter 'password' as a string. It can be changed to
        'please enter your password' or 'please enter your code'
        or any appropriate message to prompt the user for response.
        */
        strcpy(ret_code->return_str, "Please enter password");
        return FW_AUTH_OK;
    } else {
        switch (ret_code->req_rsp_code) {
            case FW_AUTH_INIT_REQ: /*
            The program is checking the response to see if it is valid.*/
            if (strcmp(response, "password") == 0) {
                ret_code->req_rsp_code = FW_AUTH_CONT_REQ; /*
            In this example, the first response from the user is valid and the user
            is asked to enter the 'changed password'. If the administrator,
            after looking up the user's credential, determines that the
            password has expired, a prompt requesting user change the
            password can be issued.
            */
                strcpy(ret_code->return_str, "Please enter changed password");
                return FW_AUTH_OK;
            } else {
                ret_code->req_rsp_code = FW_AUTH_FAILED;
                return FW_AUTH_FAILED;
            }
            break;
        } /* put other case statement defined in fwuser.h */
    }
}
Sample Makefile for fwuser.o

Following is an example of a makefile for making fwuser.o. In this example, fwauthen.c contains fw_tn_authenticate and fw_ftp_authenticate. fwprompt.c contains fw_prompt. Call this makefile Makefile.lib. This information can be found in/usr/lpp/FW/sample/Makefile.lib.
CDEBUGFLAGS=

LDFLAGS=
CDEBUGFLAGS=

HASSTDLIB=-DHASSTDLIB

LIB=fwuser.o
LIBOBSJ=fwauthen.o fwprompt.o

CFLAGS=\$(CDEBUGFLAGS) \$(HASSTDLIB)

all: \$(LIB)

\$(LIB): \$(LIBOBSJ)
  cc \$(HASSTDLIB) -o fwuser.o \$(LIBOBSJ) -bE:fwuser.exp -bM:SRE -e _t

fwauthen.o: fwauthen.c fwuser.h
fwprompt.o: fwprompt.c fwuser.h

fwuser.o can be obtained by executing the following command after renaming
fwuser.exp.df to fwuser.exp:
  * make -f Makefile.lib

The sample files Makefile.lib, fwuser.h, fwauthen.c and fwprompt.c are in
/usr/lpp/FW/sample. A copy of fwuser.exp.df is also in /usr/lpp/FW/sample.
To compile the sample files, rename fwuser.exp.df to fwuser.exp.
Migration

If both of the files /usr/bin/fwuserau and /usr/bin/fwuserpt are present, the functions in /usr/lib/fwuser.o will not be called. If you want to use the functions in fwuser.o, fwuserau or fwuserpt must be removed or renamed.
Chapter 4. Using Network Management with the IBM Firewall

This chapter describes how to use the Simple Network Management Protocol (SNMP).

SNMP is an open application protocol used in a TCP/IP environment for managing network functions. This chapter assumes familiarity with SNMP. The IBM Firewall uses the Management Information Base (MIB) and the SNMP Subagent to monitor the status of servers (INETD, FWPAGERD, FWMAILD, NAMED, PHTTPD, and SOCKD) and critical log records.

Management information is the abstraction of managed resources. These resources are defined as managed objects. The collection of managed objects is called a MIB. The MIB acts as the information store of the definition and specification of SNMP managed objects. The SNMP Subagent is a program or process that handles a specific portion of the MIB. The MIB registers with the SNMP agent so the agent knows where to send requests for the variables requested.

The SNMP agent performs all management operations as inspections or alterations of managed objects. The management operations are get or getnext. However, the firewall subagent does not support set.

The subagent can also emit unsolicited messages through "traps".

To set up SNMP traps:
1. Edit the /etc/snmpd.conf file

   There is a line in this file that defines where the traps are sent. It looks like this:
   ```
 trap public 1.23.456.78 1.2.3 fe
   ```

   where

   community name is public
   IP address of the manager to receive the trap is 1.23.456.78
   view=1.2.3
   traps to be blocked

   The last field (fe) indicates what traps you want to block:

   fe  block no traps (1111 1110)
   7e  block coldStart trap (0111 1110)
   be  block warmStart trap (1011 1110)
   3e  block coldStart trap and warmStart trap (0011 1110)

   There are many coldStart traps that are issued when SNMP starts. The mask of 7e may be used to block the coldStart traps.

2. Modify this trap line to point to an SNMP Manager address as follows:
   ```
 trap public 9.67.128.41 1.2.3 fe
   ```

3. The SNMP manager administrator sets up an SNMPTRAP listener application on the machine at the address specified on the trap statement in the /etc/snmpd.conf file.
4. When any of the six monitored servers changes states from Running to Not Running or vice versa, a trap is sent to the address defined in the trap statement in the /etc/snmpd.conf file on the Firewall machine.

**Note:** Only one trap statement is allowed. If more than one trap statement is added, there is no error message on startup, but only the first trap definition entry specifications are used.

These are servers and codes received when a trap is received on the manager and monitored by the Firewall SUBAGENT. (For example, 69 6E 65 74 64 is not running.) The numerical codes are the ASCII representation of the server names.

<table>
<thead>
<tr>
<th>Not Running</th>
<th>Running</th>
</tr>
</thead>
<tbody>
<tr>
<td>INETD</td>
<td>6E 6F 74 20 52 75 6E 6E 49 62 67</td>
</tr>
<tr>
<td>FWPAGERD</td>
<td>6E 6F 74 65 74 64</td>
</tr>
<tr>
<td>FWMMAILD</td>
<td>6E 6F 74 65 74 64</td>
</tr>
<tr>
<td>NAMED</td>
<td>6E 6F 74 65 74 64</td>
</tr>
<tr>
<td>PHTTPPD</td>
<td>73 6F 63 66 64</td>
</tr>
<tr>
<td>SOCKD</td>
<td>6E 6F 74 65 74 64</td>
</tr>
</tbody>
</table>

The subagent monitors the local4 log facility for -e, -i, and -w alert messages of emergency warning or information levels, and notifies the SNMP daemon of these alerts. A local4 log facility of at least information priority should be created.

**SNMP trappable events**

- ICA0001e Threshold conditions for authentication failures have been satisfied
- ICA0002e Threshold conditions for detecting a specific log message have been satisfied
- ICA0003e Threshold conditions for authentication failures from any specific host have been satisfied
- ICA0004e Threshold conditions for detecting a specific log message have been satisfied
- ICA0012e Daemon is abending or received terminate signal. Previous log messages would provide detail.
- ICA1010i The /usr/sbin/fwlogd daemon must be started under root authority
- ICA2001e A user, without an account, attempted to use ftp proxy from the network
- ICA2002e Firewall is unable to authenticate the indicated username using the specified authentication method
- ICA2026i Connection attempt timed out for specified user. Potential network routing problem or remote host is not available
- ICA2043i Authentication type for this user is 'password' and no password was found.
- ICA3001e Real user is ident username, not socks connect username refused -- Connect from src(real_user)@src_addr to dst_addr (application)
- ICA9000i Internet Connection IBM Firewall (FW) evaluation expires in number of days

SystemView Agent and SystemView Mapper are installed before the SNMP subagent can be invoked.
Note: The hostname must be known to itself. The /etc/hosts should have an entry of itself.

An SNMP manager is refreshed when an SNMP manager is added or deleted from the IBM Firewall.

If the filter is active, start an SNMP manager by:

1. Creating an object of the network manager with IP address.
2. Assuming there is an object for this firewall.
3. Creating a service to permit an SNMP query.
4. Creating a connection between the firewall interface and the manager.

The user must define filter rules to enable traps to go through the firewall.

A default.config file is shipped upon new installation. During the installation, no filter is activated. A pre-defined SNMP filter can be selected. If no permit on the filter rules is selected, all SNMP traffic is denied. If traffic does not match a permit rule or a denied rule, the traffic is denied.

Neither the SNMP daemon network agent (snmpd) or the SNMP firewall subagent is started during installation. Later when the subagent is started through the configuration client or SMIT and the firewall is brought down abruptly, rebooting the firewall starts the subagent automatically using the operational values given in the /etc/security/fwsubagt.cfg. If this file is missing, default values are used and /etc/security/fwsubagt.cfg is created.

Only the root authority can make changes to the Firewall Manager or starting subagent.

SNMP - Management Information Base (MIB)

See Appendix C, “SNMP Management Information Base (MIB)” on page 129 for more information on the MIB.
Chapter 5. Using the Make Key File Utility (M KK F)

M KK F is used to create public-private key pairs and certificate requests, receive certificate requests into a key ring, and manage keys in a key ring.

You cannot have a secure SSL network connection until you have:

- Configured your server for SSL
- Created a key for secure communications
- Received a certificate
- Been designated as a trusted root on your server
- Stashed your key file password

You need to use M KK F to create the initial server key, key ring file, and certificate request. M KK F is also used to receive the initial certificate into a key ring and stash your key file password.

Creating a keyfile

You can create a key file for the firewall machine that can be used for both IPSEC and the configuration server.

Since the key file must be owned by the root username, you should run this utility logged on as root.

**Note:** Do not give any other user or group ownership of the key file.

1. Go to the `/etc/security` directory and start the key utility by entering

```bash
mkkf
```

M KK F Key Manager
Copyright IBM Corp. 1996
All Rights Reserved

2. Create a new key ring file.

Key Ring Menu
Currently Selected Key Ring: (none)

N - Create New Key Ring File
O - Open Key Ring File
X - Exit

Enter a command: n
Enter 'n' as shown above to create a new key file.

You will be prompted for a file name to use for the key file. You can use any filename, but it must end in .kyr. By default, the firewall looks for a file named `fwkey.kyr`.

Enter a name for the key ring file, or press ENTER to accept the default of `fwkey.kyr`
MKKF will create a new key file and display the key ring menu. Note that the
key file will be listed as the currently selected key ring.

3. Create a new key and certificate request.

Key Ring Menu
Currently Selected Key Ring: fwkey.kyr

N - Create New Key Ring File
O - Open Key Ring File
S - Save Key Ring File
A - Save Key Ring as Another File
P - Set Password for Key Ring File
C - Create Stash File for Key Ring File
R - Receive a Certificate into a Key Ring File
W - Work with Keys and Certificates
X - Exit

Enter a command: w

Enter 'w', as shown above, to go to the Key menu.

Key Menu
Currently Selected Key Ring: fwkey.kyr
Selected Key Entry: (none)

L - List/Select a key to work with
C - Create a New Key and Certificate Request
I - Import a key from an Armored key file
X - Exit this menu

Enter a command: c

Enter 'c', as shown above, to create a new key.

Before a key can be stored in a key file, the key file must be password pro-
tected. MKKF will prompt you to enter a password to use to protect the key file.
The password will not display when you type it. MKKF will also ask if the pass-
word should expire. Enter 'n' as shown below:

Note: underlined indicates an example of text entered by the user.

Enter password to use for the key file: password
Enter the password again for verification: password
Should the password expire?
Enter Y for yes or N for no:
n
Password successfully set.
Press ENTER to continue

MKKF will prompt you for the type of key to create.

Choose Certificate Type Menu
S - Server Certificate
L - Low Assurance
C - Cancel

Enter a command: s

Enter 's', as shown above, to create a Server Certificate. MKKF will generate
an empty certificate:
Compose Secure Server Certificate Menu

Current Certificate Information
Key Name: (none)
Key Size: 0
Server Name: (none)
Organization: (none)
Organization Unit: (none)
City/Locality: (none)
State/Province: (none)
Postal Code: (none)
Country: (none)

M - Modify the Certificate Fields
R - Ready To Create Key and Certificate Request
C - Cancel

Enter a command: m

Enter 'm' to modify the empty certificate. You will be prompted to enter information about the new certificate:

- Enter a name to use. This name can be any string and is used only by the MKKF utility:
  Enter a name to use for the key entry:

  **Firewall Key**

- Enter the size of the key. The IBM Firewall ships only the exportable version of MKKF. The maximum key size is 512.
  1: 508
  2: 512
  Enter the number corresponding to the key size you want:

  2

- Enter the fully qualified TCP/IP host name for the Firewall (For example, jupiter.raleigh.ibm.com):
  Enter the server's fully qualified TCP/IP domain name or press Enter by itself to leave the field blank
  **jupiter.raleigh.ibm.com**

- Enter an organization name to associate with the certificate. (For example, the company name):
  Enter Organization Name for the certificate or press ENTER by itself to leave the field blank.
  **AAA Inc.**

- Enter the organizational unit name. (For example, a department name):
Enter Organizational Unit Name for the certificate or press ENTER by itself to leave the field blank.

**Network Security Products**

- Enter a city where the certificate will be used:
  Enter Locality/City Name for the certificate or press ENTER by itself to leave the field blank.

**RTP**

- Enter a state or province.
  **Note:** Due to the specifications for certificates, this field must be a minimum of three characters, so two letter state abbreviations are not valid.

Enter State/Province Name for the certificate or press ENTER by itself to leave the field blank. State/Province must be at least three characters long.

**N.C.**

- Enter a postal code to associate with the certificate. (This is the same thing as a zip code):
  Enter Postal Code for the certificate or press ENTER by itself to leave the field blank.

**27709**

- Enter a two letter country code:
  Enter Country Code for the certificate or press ENTER by itself to leave the field blank. Country code must be exactly two characters long.

**US**

After MKKF has collected all the information from you, the certificate will be displayed:
Compose Secure Server Certificate Menu

Current Certificate Information
Key Name: Firewall Key
Key size: 512
Server Name: jupiter.raleigh.ibm.com
Organization: AAA Inc.
Organizational Unit: Network Security Products
City/Locality: RTP
State/Province N.C.
Postal Code: 27709
Country: US

M - Modify the Certificate Fields
R - Ready To Create Key and Certificate Request
C - Cancel

Enter a command: r

If there are any mistakes in the certificate information, you can enter 'm' to make corrections. If the information is correct, enter 'r' to create the new key and its associated key file.

MKKF will prompt you for a file to store the certificate. You can use any file name, but a good convention to follow is to use the same base name as the key file and add .cert as the extension:

Enter file to store the certificate request in:
fwkey.cert
Creating Private Key...
Private key was successfully created.
Creating certificate request...
certificate request was successfully created
Adding new key to key file.
The new key and certificate request were created successfully.
Press ENTER to continue

4. Make the newly created key the default.

After the key and certificate have been created, the Key menu will be displayed. The newly created key will be listed as the Selected Key Entry:

Key Menu
Currently Selected Key Ring: fwkey.kyr
Selected Key Entry: Firewall Key

L - List/Select a Key To Work With
S - Show Information about Selected Key
D - Delete Selected key
C - Create a New Key and Certificate Request
I - Import a Key From an Armored Key File
E - Export Selected Key To an Armored Key File
F - Make Selected Key the Default Key for this Key Ring
U - Unmark Selected Key's Trusted Root Status
R - Create A Certificate Request for Selected Key
X - Exit This Menu

Enter a command: f
You must make the newly created key the default key in the key file. Enter 'f' as shown in the previous example. You will be prompted to confirm the action:

Key Menu
Currently selected key: Firewall Key
Are you sure you want to make this key the default?
Enter Y for yes or N for No:

y
Key was made the default key.
Press ENTER to continue

After the key has been marked as the default, the Key Menu is displayed:

Key menu
Currently Selected Key Ring: fwkey.kyr
Selected Key Entry: Firewall Key

L - List/Select a Key To Work With
S - Show Information about Selected Key
D - Delete Selected key
C - Create a New Key and Certificate Request
I - Import a Key From an Armored Key File
E - Export Selected Key To an Armored Key File
F - Make Selected Key the Default Key for this Key Ring
U - Unmark Selected Key's Trusted Root Status
R - Create A Certificate Request for Selected Key
X - Exit This Menu

Enter a command: x

Exit the Key menu by entering 'x'.

5. Receive the certificate into the key ring file.

The Key Ring menu will be displayed:

Key Ring Menu
Currently Selected Key Ring: fwkey.kyr

N - Create New Key Ring File
O - Open Key Ring File
S - Save Key Ring File
A - Save Key Ring as Another File
P - Set Password for Key Ring File
C - Create Stash File for Key Ring File
R - Receive a Certificate into a Key Ring File
W - Work with Keys and Certificates
X - Exit

Enter a command: r

Note: Since the firewall does not use SSL for authentication purposes, your certificate does not have to be signed by a certificate authority.
Enter file name or press ENTER for Cert.txt.

fwkey.cert
This is a self-signed certificate. Add it to the key file?
Enter Y for yes or N for no:

y
Certificate added to key ring.
Press ENTER to continue

6. Create a stash file for the key file.

After the certificate has been added to the key ring, the Key Ring Menu is displayed:

Key Ring Menu
Currently Selected Key Ring: fwkey.kyr

N - Create New Key Ring File
O - Open Key Ring File
S - Save Key Ring File
A - Save Key Ring as Another File
P - Set Password for Key Ring File
C - Create Stash File for Key Ring File
R - Receive a Certificate into a Key Ring File
W - Work with Keys and Certificates
X - Exit

Enter a command: c

You need to create a stash file for the key file. Enter 'c' as shown in the previous example. MKKF will use the same base name as the key file name and .sth as the extension:

Stashed password file saved to fwkey.sth
Press ENTER to continue

After the stash file has been created, the Key Ring Menu is displayed:

Key Ring Menu
Currently Selected Key Ring: fwkey.kyr

N - Create New Key Ring File
O - Open Key Ring File
S - Save Key Ring File
A - Save Key Ring as Another File
P - Set Password for Key Ring File
C - Create Stash File for Key Ring File
R - Receive a Certificate into a Key Ring File
W - Work with Keys and Certificates
X - Exit

Enter a command: x

Your key file is now ready to be used. Enter 'x' as shown above to exit MKKF and enter 'y' to save changes to your key file as shown:
Key ring file has been changed. Save?
Enter Y for yes or N for no:
yKey ring saved to fwkey.kyr
Press ENTER to continue#

7. Check the file permission.

After exiting the MKKF, check the file permissions on your key file, stash file and certificate file.

For security reasons, these files should be owned by root. If the files are not owned by root, change the owner using this command:

```bash
ls -l fwkey*
-rw-r--r-- 1 root security 1025 Mar 18 10:01 fwkey.cert
-rw------- 1 root security 3682 Mar 18 10:10 fwkey.kyr4
-rw------- 1 root security 129 Mar 18 10:09 fwkey.sth
```

After creating the keyfile, you must specify the key file name in the configuration server parameter file.

Edit the file /etc/security/rcsfile.cfg and look for the line that starts 'sslfile =' and modify it so the file name it lists matches the fully qualified path name of the keyfile you just created.

If you are using SSL encryption for the configuration server, you also need to modify the line that starts 'encr=none' and modify it to be 'encr=ssl'.

**Note:** This line does not have to be changed if you are using the key file only for IP SEC.
Chapter 6. Troubleshooting and Testing

This chapter tells you how to troubleshoot some of the common problems encountered when setting up and configuring a firewall. It also tells you how to test the firewall ports using the `fwi ce` command.

If you are having problems, first create a local4 log debug priority to increase the information sent to your logs. See “Log File Management” on page 11 for more information.

Initial Setup

Filter support fails

**Problem Explanation** This problem is caused by not rebooting the firewall after installation.

- Error on open/dev/ips_poi: A file or directory in the path name does not exist.
- Filter support verification failed.
- Socket creation call failed:
  - A file or directory in the path name does not exist.

**Recommended Action** Reboot your firewall and retry the procedure.

Routing Problems

The IBM Firewall provides a feature on the Security Policy panel entitled “Test IP Routing”, which can be useful for debugging routing problems. Enable this checkbox, activate your Connection configuration, and enable Connection Rules Logging. Then examine your local4 log to view detailed information about all packets flowing through your firewall.

Perform these tests first using IP addresses, then using host names. If your traffic routes properly using addresses but not using names, see “DNS Problems” on page 66 for more information.

Cannot ping nonsecure hosts from the Firewall

**Problem Explanation** Your network interface is not configured properly.

**Recommended Action** See your AIX documentation.

**Problem Explanation** Your connection to the nonsecure network is not configured properly.

**Recommended Action** Contact your Service Provider for assistance.

Cannot ping secure hosts from the Firewall

**Problem Explanation** If your secure network is isolated behind a router, your firewall must have a static route to that router. Use `netstat -rn` to verify static routing:

```
netstat -rn
```
The output should be as follows for Protocol Family 2:

Destination	Gateway	Flags	...
default	nrr.nrr.nrr.nrr	UG	
nnn.nnn.nnn	nnn.nnn.nnn.nnn	U	
sss.sss.sss	sss.sss.sss.sss	U	
ssl.ssl.ssl	srr.srr.srr.srr	UG	
127	127.0.0.1	U	

`nrr.nrr.nrr.nrr` represents your router to the internet and is the default route. The default route is a static route (Flag=UG).

`nnn.nnn.nnn` represents your nonsecure domain. This is an interface route (Flag=U).

`nnn.nnn.nnn.nnn` represents your nonsecure interface.

`sss.sss.sss` represents your secure domain. This is an interface route (Flag=U).

`sss.sss.sss.sss` represents your secure interface.

`ssl.ssl.ssl` represents a subdomain on the secure side of your network and `srr.srr.srr.srr` represents the router to that subdomain. This is a static route (Flag=UG).

`127.0.0.1` is the loopback or localhost. This is an interface route (Flag=U).

*Figure 5. Sample output from netstat -rn.*

You should have an interface route for each interface and your default route should point to the router on the nonsecure side of the Firewall.

**Recommended Action** Use SMIT to add a static route to your router.

**Problem Explanation** The subnet mask on your secure interface or the host you are trying to contact may be incorrect.

**Recommended Action** Use SMIT or your client's configuration utilities to correct the mask settings.

---

**Cannot ping nonsecure hosts from secure hosts (or vice-versa)**

**Problem Explanation** Each router adjacent to the Firewall must contain a static route specifying the Firewall as the gateway for destination networks beyond the Firewall.

**Recommended Action** Contact the router's administrator.

**Problem Explanation** If your secure network uses addresses which are not registered and routable on the nonsecure network, including private addresses as specified in RFC 1597, packets will not be routed back to the sender.

**Recommended Action** Use a client with a registered address. The Firewall's NAT feature may be used for TCP and UDP traffic, but NAT will not translate addresses in ICMP packets like ping.

---

**DNS Problems**

The firewall DNS resolves names by querying the secure name server. The secure name server resolves all names in the secure network. The secure name server forwards requests for nonsecure names to the firewall name server. The firewall name server queries the nonsecure name server to resolve the request.
Here are some examples to lead you through each step of this method using the nslookup utility in order to isolate the problem. In these examples, we will use the following placeholders:

- **www.ibm.com** represents an arbitrary hostname on the nonsecure network
- **nns.nns.nns.nns** represents the address of the nonsecure name server
- **sns.sns.sns.sns** represents the address of the secure name server
- **host.secure.company.com** represents the name of an arbitrary host inside your secure network
- **127.0.0.1** represents the loopback address on your Firewall.

These values can be obtained from the "Domain Name Services" panel in the Configuration Client. You will need these values as you work through these exercises.

**Note:** The `nslookup` command requires the additional dot following the hostname to prevent it from appending your secure domain name.

### DNS has not been configured yet

**Problem Explanation** You have not configured your Firewall's DNS facilities.

**Recommended Action** Complete the “Domain Name Services” panel.

### File permissions do not allow the specified action

**Problem Explanation** Firewall traffic control is not permitting the DNS packets to flow.

**Recommended Action** Go to the "Security Policy" panel, turn on the "Permit DNS Queries" checkbox and reactivate your traffic control.

### nslookup www.ibm.com. nns.nns.nns.nns fails

**Problem Explanation** The nonsecure name server is not using the indicated address or is not configured properly.

**Recommended Action** Contact your DNS service provider for a valid name server address.

### nslookup www.ibm.com. 127.0.0.1 fails

**Problem Explanation** named may not be running. Use `ps -ef|grep named` and look for `/usr/sbin/named`.

**Recommended Action** Restart your TCPIP services.

**Problem Explanation** Your loopback adapter may be down. Use `netstat -in`; if there are asterisks behind the entry for `1n0`, loopback is down.

**Recommended Action** Use `ifconfig lo0` up to restart your loopback adapter.

### nslookup host.secure.company.com.sns.sns.sns.sns fails

**Problem Explanation** Your secure name server is down.

**Recommended Action** Restart your name server.

Problem Explanation Your secure name server is not configured properly to interact with the IBM Firewall.

Recommended Action Refer to the IBM Firewall User’s Guide, Chapter 5 “Secure Name Server” for configuration requirements.

Configuration Client

Server not responding

Problem Explanation SSL encryption may not be configured properly.

Recommended Action Ensure that SSL is selected in the client's logon panel. Verify that encr=ssl is coded in /etc/security/rcsfile.cfg and the keyfile and stash file are configured as described in The IBM Firewall User's Guide, Chapter 3, "Setting UP the Configuration Server and the Configuration Client"

Problem Explanation The Firewall's configuration server may be disabled.

Recommended Action Ensure that /etc/inetd.conf contains the line ibmfwrcs stream tcp nowait root /usr/sbin/ibmfwrcs ibmfwrcs and restart your TCP subsystems.

Problem Explanation The Firewall's configuration server may be monitoring a non-standard port.

Recommended Action Examine /etc/services and ensure that it contains the line ibmfwrcs 1014/tcp. If you want to use the server on a different port, edit ibmfwrcs 1014/tcp accordingly and ensure that you specify the new port in the client's logon panel.

Problem Explanation The Firewall's traffic control may not be permitting communications to and from the Configuration Server. This only affects Configuration Clients running on a remote host.

Recommended Action Code a connection between the machine running the Configuration Client and the Firewall. The Configuration Client should be the source of the connection and the Firewall the destination. Regenerate and activate your changes. See the IBM Firewall User's Guide for more information.

Problem Explanation The Configuration Server may not be configured to permit logins from a remote host.

Recommended Action Ensure that /etc/security/rcsfile.cfg contains the line local=no.

Unable to log on to the Config Server

Problem Explanation Each username authenticated at the Firewall may be configured to use any of several authentication methods. DENY is used to prohibit the use of a particular service to that user.

Recommended Action Examine the Secure Administration and NonSecure Administration fields of the username being used. These fields are only valid for Administrators, not for Firewall users.
Problem Explanation When connecting from a remote host, you get the message Remote logins are not allowed for this account. Authentication failed. After responding correctly to the authentication challenge, the AIX rlogin parameter for this account is set to FALSE. This happens most frequently when using the root username and Firewall Administrators have this parameter set to TRUE.

Recommended Action Due to security concerns, it is not recommended that you change the root's rlogin setting to TRUE. Log onto the configuration client from the Firewall console using root. Then create a Firewall Administrator and use that ID for your remote configuration needs. Root should only be used when necessary to perform AIX administration.

Traffic Control Filters

Filters are damaged and contact to the manager is lost.

Problem Explanation The connection is lost between the firewall and the managed firewall.

Recommended Action

1. Logon locally to the managed firewall with the root password.
2. Select the /etc/security/ directory.
3. Copy fwconns.cfg.BAK to fwconns.cfg. This will put a working copy of the filter connection file in place to be activated. If problems exist other than results of adding a bad rule, you may have to copy all of fw*.cfg.BAK to the corresponding cfg file.
4. Edit secag.cfg and change the following two lines:
   a. Traffic: EFM to Traffic: host
   b. VPN: EFM to VPN: host
5. Bring up the Firewall GUI and login as root in Host mode.
6. Bring up connection activation window under Traffic Control on the GUI. Regenerate the Connection Rules from this panel. This will recreate and activate a working set of filters.
7. Bring up the Virtual Private Network window under Traffic Control. Chose the EFM Manager. Activate this VPN to allow the manager to regain a connection to the managed firewall.
8. From the EFM manager, force the security agreement to be transmitted and activated to the managed firewall.
9. Fix the problem that caused the connection to be lost. Transmit and activate the corrected filters.
Changes to fwfilters.cfg are lost

**Problem Explanation** In previous releases of the IBM Firewall, filters were configured by direct edits to the `/etc/security/fwfilters.cfg` file. In the IBM Firewall V3R1, the Configuration Client provides an object-oriented interface which constructs this file on your behalf. Any edits made directly to this file will be overwritten when the Configuration Client is used to make any changes.

**Recommended Action** Rebuild the configuration and perform the necessary changes using the Configuration Client. See the *IBM Firewall User's Guide* for more information.

Changes made to Connections do not take effect

**Problem Explanation** Changes made to any of the Traffic Control components do not take effect immediately. All changes must be activated. This includes the Security Policy panel under System Administration.

**Recommended Action** Use the Connection Activation panel to regenerate and activate your configuration.

Proxy Servers

No data transmitted

**Problem Explanation** The Firewall's Traffic Control must be configured to permit packets to flow to and from the proxy process, not directly through the Firewall.

**Recommended Action** Configure each half of the proxy connection as described in the IBM Firewall User's Guide, Chapter 7 "Examples of Services". Use the predefined services whenever possible, particularly with FTP traffic.

Cannot connect to the desired host

**Problem Explanation** If data is flowing to and from the proxy but the host cannot be contacted, your client may not be properly resolving hostnames.

**Recommended Action** Ensure that "Permit DNS Queries" is enabled on the "Security Policy" panel and your connection configuration has been activated. See "DNS Problems" on page 66 for more information.

**Problem Explanation** Each username being authenticated at the Firewall by the Telnet or FTP proxies may be configured to use any of several authentication methods. *DENY* is used to prohibit the use of a particular proxy to that user.

**Recommended Action** Examine the user account's authentication settings in the Users panel on the Configuration Client.
Idle telnet proxy users are not being timed out

Problem Explanation Idle proxy user timeout happens based on a command entered into the AIX crontab.

Recommended Action Code the appropriate crontab entry. See Appendix G, “The Crontab Command” on page 167 for more information.

Win 95 Remote IPSec Client

Unexpected characters received when using telnet

Problem Explanation When connected to any host over a dialed PPP connection, not only when using the secure connection, unexpected characters are received. Some telnet clients handle the PPP protocols improperly.

Recommended Action Get another telnet client and retry the procedure.

Report Utilities

Failure on system call: ar -vt ...

Problem Explanation The archive utility is sensitive about file names. A valid archive file name ends with .a and must by fully qualified. Empty files are allowed, but the file must exist.

Recommended Action Provide the fully qualified name of an existing archive file.

An error occurred while accessing the file: ...

Problem Explanation The above error may be seen after using any of the following commands:

```
db2 -vf fwschema.dll > schema.out
db2 -vf fwinport.dat > import.out
db2 -vf fwqrysmp.dml > sample.out
```

Recommended Action Provide fully qualified filenames for the .ddl, .dat, or .dml file.

Log Management

fwlogmgmt -l fails

Problem Explanation fwlogmgmt -l may generate this error message:

```
ar: 0707-106 Internal error while reading the fixed header of archive file /foobar.a"ar" of "foobar.Z" failed in /foobar.a
```

Check disk space.

This indicates insufficient disk space in either the working directory or the destination directory.
**Recommended Action** Remove the empty archive file which was created but not filed. Then increase the amount of disk space available, using the chfs command if necessary. See the AIX documentation for chfs information.

---

**Log archival never happens**

**Problem Explanation** The fwlogmgmt command is intended to run as an AIX cron job. If the crontab has not been updated with this command, logs will not be archived automatically.

**Recommended Action** Add the fwlogmgmt command to the AIX crontab. See Appendix G, “The Crontab Command” on page 167 for more information.

---

**Testing the Firewall Ports Using fwice**

This section tells you how to test the Firewall ports using fwice. When you installed the IBM Firewall, you also installed a set of test programs that you can run from workstations inside or outside the secure network to test how well the IBM Firewall protects your network. Fwice gives information on every port.

Use the fwice command to test the ports on your Firewall host to see if they are responding from inside and outside the secure network. To use fwice, you need two files:

- The hosts file contains a list of host names, one for each Firewall host you want to test.
- The ports file contains a list of the ports on those hosts that you want to test.

Running fwice might generate an ICA2000e message error. This might trigger a threshold violation from your log monitor facility.

**The hosts file**

Here is a sample entry in a hosts file:

124.8.7.4 test7.okla.norm.edu

If you do not supply a hosts file, /etc/hosts is used.

**The services file**

In the services file, each line has the format:

```
function port_no protocol
```

or

```
function port_no/protocol
```

If you do not supply a services file, the standard /etc/services on your system is used.
The results file

The *fwice* command stores its results in the *results* file you supply. If you do not supply one, the file `./results` is used. Here is a sample entry of the `./results` file.

```
9.67.96.243 tcp 7 (echo) is alive and listening.
No connection to 9.67.96.243 on udp 7 (echo)
9.67.96.243 tcp 9 (discard) is alive and listening.
No connection to 9.67.96.243 on udp 9 (discard)
No connection to 9.67.96.243 on tcp 11 (systat)
9.67.96.243 tcp 13 (daytime) is alive and listening.
No connection to 9.67.96.243 on udp 13 (daytime)
No connection to 9.67.96.243 on tcp 15 (netstat)
No connection to 9.67.96.243 on tcp 17 (qotd)
9.67.96.243 tcp 19 (chargen) is alive and listening.
No connection to 9.67.96.243 on udp 19 (chargen)
No connection to 9.67.96.243 on tcp 20 (ftp-data)
```
Appendix A. Messages

This appendix gives you the following information about the IBM Firewall messages:

- How the messages are formatted
- The messages' severity levels
- The messages and their explanations

Message Tag

ICA  The first 3 fixed bytes.
xxxx  A number in the range 0000 – 9999.
a   An indicator of severity. Messages are classified by severity level.
   • i – info
   • w– warning
   • e – error
   • s – severe

The numbers 0000 – 9999 are further classified into the following categories:

- 0000 – 0999 Intrusion Alarm
- 1000 – 1999 Filters
- 2000 – 2999 Proxy
- 3000 – 3999 Socks
- 4000 – 4999 Pager
- 5000 – 8999 Available
- 9000 – 9999 General/Others

Messages

ICA0001  ALERT - count authentication failures.
Explanation: Threshold conditions for authentication failures have been satisfied.

ICA0002  ALERT - count authentication failures for user user_name.
Explanation: Threshold conditions for detecting a specific log message have been satisfied.

ICA0003  ALERT - count authentication failures from host host IP address.
Explanation: Threshold conditions for authentication failures from any specific host have been satisfied.
ICA0004 ALERT - Tag message_id with count log entries.
Explanation: Threshold conditions for detecting a specific log message have been satisfied.

ICA0005 Log monitor - out of memory.
Explanation: Process ran out of memory.

ICA0006 Log monitor - failure accessing services file: errno
Explanation: Could not find entry for fwlogmond in /etc/services.

ICA0007 Log monitor - socket creation failed: errno
Explanation: Could not open socket - see error message.

ICA0008 Log monitor - bind() failed: errno
Explanation: Could not bind socket - see error message.

ICA0009 Could not open threshold definition file: errno
Explanation: Problem accessing threshold definition file - see error message.

ICA0010 Log monitor - fatal read error: errno
Explanation: Problem reading from socket - see error message.

ICA0011 Could not get status of threshold definition file: errno
Explanation: Problem accessing threshold definition file - see error message.

ICA0012 Log monitor daemon shutting down.
Explanation: Daemon is abending or received terminate signal. Previous log messages would provide detail.

ICA0013 Log monitor caught terminate signal.
Explanation: Daemon received terminate signal and will shut down.

ICA0014 Starting log monitor daemon.
Explanation: Daemon has been started.

ICA0015 Could not create daemon for log monitor: errno
Explanation: Daemon creation failed - see error message.

ICA0016 Could not open process id file - daemon may already be active.
Explanation: Daemon could not open process id file.

ICA0017 Could not write process id (process id) to file.
Explanation: Daemon could not write process id to the file.

ICA0018 Log monitor - empty read.
Explanation: Received packet with no data - discarded.
<table>
<thead>
<tr>
<th>Code</th>
<th>Message Description</th>
<th>Explanation</th>
<th>User Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICA0019</td>
<td>Log monitor - short read. Tag discarded.</td>
<td>Received packet with not enough data - discarded.</td>
<td></td>
</tr>
<tr>
<td>ICA0020</td>
<td>Log monitor - misformatted ICA tag.</td>
<td>Received packet with misformatted data - discarded.</td>
<td></td>
</tr>
<tr>
<td>ICA0021</td>
<td>Log monitor - misformatted authentication data.</td>
<td>Received packet with misformatted data - discarded.</td>
<td></td>
</tr>
<tr>
<td>ICA0022</td>
<td>Invalid syntax in threshold definition file <em>(invalid entry)</em>.</td>
<td>The indicated entry in the threshold file is syntactically incorrect.</td>
<td></td>
</tr>
<tr>
<td>ICA1001</td>
<td>Unable to create file with process id</td>
<td>Filter logging daemon encountered an error when writing the file fwlogd.pid.</td>
<td>Check the system where directory /etc/security resides. Possible out-of-space condition exists.</td>
</tr>
<tr>
<td>ICA1002</td>
<td>Communications with cfgfilt program not possible</td>
<td>Due to the fwlogd.pid file not being created, communication between the</td>
<td>Check the system where directory /etc/security resides. Possible out-of-space condition exists.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fwlogd daemon and the cfgfilt application (required for filter control) is not possible</td>
<td></td>
</tr>
<tr>
<td>ICA1003</td>
<td>Continuing with logging daemon initialization</td>
<td>The fwlogd daemon will continue start-up processing.</td>
<td></td>
</tr>
<tr>
<td>ICA1004</td>
<td>Filter logging daemon <code>/usr/sbin/fwlogd</code> <em>(level version.release)</em> initialized at time on date</td>
<td>The IP packet logging daemon has been started. If packet logging is enabled,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>daemon fwlogd will write the required records to the syslog, local4, file.</td>
<td></td>
</tr>
<tr>
<td>ICA1005</td>
<td>Suppressed logging of filter_rule_no packet message(s) due to buffer overflow</td>
<td>The fwlogd daemon filter log buffer has overflowed. A packet for the specified</td>
<td>Check the log. Your firewall may be under a deny-of-service attack or you may be logging messages that are not required. For example, broadcast messages should have a deny rule with log control set to no (l=n) to prevent filling up the log.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>filter rule cannot be logged.</td>
<td></td>
</tr>
<tr>
<td>ICA1007</td>
<td>Unable to fork child process: <em>errno</em></td>
<td>During startup of <code>/usr/sbin/fwlogd</code> daemon, the indicated system error was encountered.</td>
<td>Based on the error displayed, take corrective action.</td>
</tr>
<tr>
<td>ICA1008</td>
<td>Error return from setpgroup routine: <em>errno</em></td>
<td>During startup of <code>/usr/sbin/fwlogd</code> daemon, the indicated system error was encountered.</td>
<td></td>
</tr>
</tbody>
</table>

Appendix A. Messages
ICA1009  Unable to fork second child process: *errno*
Explanation: During startup of /usr/sbin/fwlogd daemon, the indicated system error was encountered.

ICA1010  This daemon must run with root authorization
Explanation: The /usr/sbin/fwlogd daemon must be started under root authority.
User Response: Restart with root authority.

ICA1011  sysconfig call to query kernel extension load_path failed: *errno*
Explanation: During startup of /usr/sbin/fwlogd daemon, the indicated system error was encountered.

ICA1012  AIX kernel extension netinet not loaded cannot continue
Explanation: The netinet device driver does not contain filter support.
User Response: Install the Firewall code. Potentially, the code has been installed but the reboot has not been performed.

ICA1013  Socket creation call failed: *errno*
Explanation: During startup of /usr/sbin/fwlogd daemon, the indicated system error was encountered.

ICA1014  AIX netinet device driver not at required level
Explanation: The netinet device driver and fwlogd daemon are not the same level.
User Response: Resolve the conflict. Possible reboot required after installing new Firewall level.

ICA1015  Error on ioctl() call (SIOCGFWLOG): *errno*
Explanation: During startup of /usr/sbin/fwlogd daemon, the indicated system error was encountered.

ICA1016  Cannot get current deferred log queue
Explanation: Additional information associated with immediately preceding log message.

ICA1017  Error return from SIOCGFWLOG ioctl() call
Explanation: During startup of /usr/sbin/fwlogd daemon, the indicated system error was encountered.

ICA1019  Unexpected error exit with rc internal_pw_return_code
Explanation: During startup of /usr/sbin/fwlogd daemon, the indicated error was encountered.

ICA1021  Error on open /dev/ipsp_poif: *errno*
Explanation: The indicated device driver has not been installed.
User Response: If the Firewall code has been installed, check the /tmp/rc/net.out file for possible error messages.
ICA1022  Filter support verification failed  
Explanation: Due to error ICA1021e, filter support cannot be verified.

ICA1023  Error on ioctl() call (SIOCGFWLVL): errno  
Explanation: During startup of /usr/sbin/fwlogd daemon, the indicated system error was encountered.  
User Response: Verify the correct level of the Firewall netinet device driver has been installed and the machine has been rebooted since the installation.

ICA1024  Error writing file /etc/security/fwlogd.pid: errno  
Explanation: Due to the indicated system errno, fwlogd was unable to write the specified file.  
User Response: Correct the indicated problem and restart the filter logging daemon.

ICA1032  Filter rules updated at time on date  
Explanation: IP packet filtering rules have been updated.

ICA1033  Filter support (level version.release) initialized at time on date  
Explanation: Firewall filter support has been initialized.

ICA1034  Filter support deactivated at time on date  
Explanation: IP packet filtering now using default filter rules.

ICA1035  Status of packet logging set to enabled/disabled at time on date  
Explanation: Status of packet logging has changed. Message indicates current state with time stamp.

ICA1036  
# rule_no R: rule_type direction: interface  
s:src_addr d: dst_addr p: protocol tag: src_port/icmp_type tag:  
dst_port/icmp_code r: routed/local a: secure/non_secure f:yes/no T:tunnel_id  
e:C/D/n l:packet_length  
Explanation: Log record indicating a processed IP packet and the corresponding filter rule it matched. For this record to be written, the matched filter rule must have log control set to yes. If the IP packet which matched this rule is a fragment, the ports/icmp type/code information appears for the header packet but is shown as zero for packets other than the header packet.

ICA1037  
#:rule_no action src_addr src_mask dst_addr dst_mask protocol logical_op value logical_op value interface_type routing direction! log_control  
f=fragment_control= tunnel_ID enc_alg auth_alg  
Explanation: When filters rules are updated, the activated rules are written to the log. This log message describes one of the activated rules.

ICA1038  Session Key engine started, using session socket port:port_no and master socket port:port_no  
Explanation: Encryption tunnel started using specified UDP port numbers, as defined in /etc/services.
ICA1039  Policy being (re)defined as:
Explanation: Policy cache being (re)defined using file /etc/security/fwpolicy. Following lines show the new policy cache.

ICA1040  >Policy statement: tunnel_origin tunnel_end tunnel_ID encrypt_flag/authenticate_flag
Explanation: Line logged was read from the /etc/security/fwpolicy file.

ICA1041  Context specification deleted for tunnel: tunnel_ID
Explanation: The tunnel context, for the listed ID, is no longer operational.

ICA1042  The following tunnel context specification(s) is defined:
Explanation: Tunnel context specifications are being defined, as listed on the following log records.

ICA1043  >tunnel_ID:number, src_addr:IP_address, dst_addr:IP_address, encryption: algorithm
Explanation: Message lists specific attributes of activated tunnel context.

ICA1044  Host Counter Warning: IP(IP Address) Overlimit
Explanation: There are too many secure hosts try to connect with firewall machine
System Action: pass connections

ICA1045  TCP Overlimit: IP Address(Port)->IP Address(Port) rejected
Explanation: There are too many TCP sessions through firewall machine
System Action: reject connections

ICA1046  UDP Overlimit: IP Address(Port)->IP Address(Port) rejected.
Explanation: There are too many UDP sessions through firewall machine
System Action: reject connections

ICA1047  Grace Period Warning: too many TCP sessions, IP Address(Port)->IP Address(Port) passed
Explanation: There are too many TCP sessions through firewall machine
System Action: pass connections

ICA1048  Grace Period Warning: too many UDP sessions, IP Address(Port)->IP Address(Port) passed
Explanation: There are too many UDP sessions through firewall machine

ICA1049  Invalid ipsec package: s:%1$s d:%2$s protocol:%3$s spi:%4$s
ICA1200  Terminating logging daemon due to above errors
Explanation: Due to errors recorded prior to this message, fwlogd daemon is terminating.
System Action: IP filter logging will not be activated.
User Response: Correct indicated errors and restart /usr/sbin/fwlogd.
ICA1260  Filter logging daemon terminating at time on date due to receipt of termination signal
Explanation: The fwlogd daemon received the indicated termination signal and is stopping.

ICA1305  "unknown"
Explanation: In formatting an IP packet for syslog, a record was found with an unknown protocol specification. Protocols IP, ICMP, TCP, UDP and IPSP are the recognized protocols. Note IPSP is IBM’s designation for the encrypted packets passed through a tunnel.

ICA2000  New FTP session to IP_address from IP_address (non-secure site).
Explanation: Starting a new FTP session from non-secure site.

ICA2001  Authentication failed for user name (unknown) from net FTP:IP_address.
Explanation: A user, without an account, attempted to use FTP proxy from the network.
User Response: See your firewall administrator to set up a proxy account.

ICA2002  Authentication failed for user name with authentication method from network: host name.
Explanation: Firewall is unable to authenticate the indicated user name using the specified authentication method.
User Response: See your Firewall administrator.

ICA2003  No shells configured for user name.
Explanation: The identified user attempted a proxy login and no login shell has been defined.
User Response: See your Firewall administrator to correct this user login profile.

ICA2004  Unknown audit event of 0xhex_value received.
Explanation: An unknown audit request was received by the module tcpip_audit.c.

ICA2005  Error writing to client: errno.
Explanation: Unable to communicate with client; see logged system message.

Explanation: Indicated error returned by telnet audit process. System files might be corrupted.

ICA2007  ptelnetd: panic state=value.
Explanation: Unknown error detected. System files might be corrupted.

ICA2008  Non-firewall user name from IP_address telneted in.
Explanation: A user, without a firewall account, attempted to use telnet proxy.
System Action: Assume Generic Authentication used.

ICA2009  /bin/login: errno.
Explanation: Fatal error during system login. See indicated system error message.
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Explanation</th>
<th>User Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICA2010</td>
<td>Connect to <code>IP_address</code> from <code>IP_address</code> (non-secure).</td>
<td>Successful connection between indicated IP addresses through the non-secure interface.</td>
<td></td>
</tr>
<tr>
<td>ICA2011</td>
<td>Connect to <code>IP_address</code> from <code>IP_address</code> (secure).</td>
<td>Successful connection between indicated IP addresses through the secure interface.</td>
<td></td>
</tr>
<tr>
<td>ICA2012</td>
<td>New FTP session to <code>IP_address</code> from <code>IP_address</code> (secure site).</td>
<td>Starting a new FTP session.</td>
<td></td>
</tr>
<tr>
<td>ICA2013</td>
<td>New Telnet session to <code>IP_address</code> from <code>IP_address</code>.</td>
<td>New telnet session established.</td>
<td></td>
</tr>
<tr>
<td>ICA2014</td>
<td>Option <code>value</code> not supported.</td>
<td>The indicated flag is not supported, see preceding message.</td>
<td></td>
</tr>
<tr>
<td>ICA2015</td>
<td>Option <code>-value</code> not supported.</td>
<td>The indicated flag is not supported, see preceding message.</td>
<td></td>
</tr>
<tr>
<td>ICA2016</td>
<td>Remote user-id <code>&quot;name&quot;</code>.</td>
<td>FTP connection request for indicated user.</td>
<td></td>
</tr>
<tr>
<td>ICA2018</td>
<td>SNK not found for user <code>name</code>.</td>
<td>SecureNetKey value was not found for indicated user_ID.</td>
<td>See your Firewall administrator for possible login configuration problem.</td>
</tr>
<tr>
<td>ICA2019</td>
<td>SNK not read properly for user <code>name</code>.</td>
<td>SecureNetKey value was not readable as octal digits for indicated user_ID.</td>
<td>See your Firewall administrator for possible login configuration problem.</td>
</tr>
<tr>
<td>ICA2020</td>
<td><code>/usr/bin/fwuserau</code> or <code>/usr/bin/fwuserpt</code> does not exist.</td>
<td>Authentication using user-supplied authentication method is aborted.</td>
<td>Make sure that <code>/usr/bin/fwuserau</code> and <code>/usr/bin/fwuserpt</code> exist and the owner is the root. If the executable does not exist, user should make an executable using a compiler compatible with the operating system of the firewall and name it <code>/usr/bin/fwuserau</code> or <code>/usr/bin/fwuserpt</code>.</td>
</tr>
<tr>
<td>ICA2021</td>
<td>Trying to connect to remote host <code>name</code> with user-id <code>name</code>.</td>
<td>Trying to establish a new FTP connection.</td>
<td></td>
</tr>
<tr>
<td>ICA2022</td>
<td>Trying to connect to remote host <code>name</code>.</td>
<td>Trying to establish a new FTP connection.</td>
<td></td>
</tr>
</tbody>
</table>
ICA2023  Usage: ptelnetd [-n] [-s].
Explanation: Unknown flag specified when starting the ptelnet daemon.
User Response: Use only flags -n and/or -s.

ICA2024  User name successfully authenticated using method authentication from network: host name.
Explanation: FW authenticated the indicated user name using the specified authentication method.

ICA2025  User name logged in using method authentication from network:host name.
Explanation: FTP user logged in.

ICA2026  User name timed-out after n seconds at current time.
Explanation: Connection attempt timed out for specified user. Either there is a potential network routing problem or the remote host is not available.

ICA2027  Connection from remote host at time.
Explanation: Net FTP connection established to Firewall.

ICA2028  FTP connection attempt to IP_address from IP_address refused. This machine does not support FTP from non-secure site.
Explanation: Generally indicates an attempt to establish an FTP connection to Firewall across the nonsecure interface.
System Action: Reject the connection.

ICA2029  System error with errno = - in line line.
Explanation: The system call encountered a problem while executing a system call.
System Action: System execution halted.
User Response: Get the log, find out the meaning of errno and try to resolve the problem. If cannot be resolved, contact IBM service.

ICA2030  Function call with return code = - in line line.
Explanation: The function call encounters a problem.
System Action: Error returned
User Response: get the log, find out the meaning of return code try to resolve the problem. If cannot be resolved, contact IBM service.

ICA2031  sdi function call creadcfg() rc = -
Explanation: The function call encounters a problem.
System Action: Error returned
User Response: Consult the SDI Reference for explanation.

ICA2032  Lost connection.
Explanation: Lost FTP connection.
User Response: Reestablish session.
ICA2033   sdi function call sd_init rc = -.
Explanation: The function call encountered a problem.
System Action: Error returned
User Response: Consult the SDI Reference for explanation.

ICA2034   sdi function call sd_check rc = -.
Explanation: The function call encounters a problem.
System Action: Error returned
User Response: Consult the SDI Reference for explanation.

ICA2035   setsockopt(): errno.
Explanation: System error on setsockopt call.

ICA2036   Telnet Session session id started for user user id (source IP addr:dest IP addr).
Explanation: Message generated at the start of each Telnet session. A session begins when userid, source IP and destination IP are all known to the firewall. The session ID is a unique identifier generated by the firewall.

ICA2037   User fwdfuser or fwdpuser tried to login, is not allowed.
Explanation: fwdfuser and fwdpuser are reserved users and should not be used.
System Action: Login is refused.
User Response: The administrator should investigate who is using this user.

ICA2038   ttloop: peer died: errno.
Explanation: Error occurred while flushing the network output buffer. Appears that peer process has died.

ICA2039   ttloop: read: errno.
Explanation: Error occurred while flushing the network output buffer.

ICA2040   Authentication set to password or none is not allowed for user ID fwdfuser.
Explanation: fwdfuser is a reserved user ID and should not use password or none as the authentication method.
System Action: Login is refused.
User Response: The administrator should change the authentication method for user ID fwdfuser.

ICA2041   FTP session session id started for user id (source IP addr:dest IP addr).
Explanation: Message generated at the start of each FTP session. A session begins when userid, source ip and destination ip are all known to the firewall. The session id is a unique identifier generated by the firewall.
ICA2042  req_rsp_code is incorrectly set to FW_AUTH_REQ.
Explanation:  fw_tn_authenticate is not allowed to set req_rsp_code to FW_AUTH_REQ.
System Action:  Abort the authentication.
User Response:  Change fw_tn_authenticate, make the library fwuser.o again, and put it into the Firewall.

ICA2043  Could not get password for user_name.
Explanation:  Authentication type for this user is 'password' and no password was found.
User Response:  See your Firewall administrator.

ICA2044  Incorrect time (value) specified for -t.
Explanation:  The time value shown contains characters outside the numeric range of 0 to 9 or exceeds the maximum allowed value.

ICA2045  Option -T not supported on firewall.
Explanation:  Indicated option is not supported.

ICA2046  Option -k not supported on firewall.
Explanation:  Indicated option is not supported.

ICA2047  Option -s not supported on firewall.
Explanation:  Indicated option is not supported.

ICA2048  Option -u not supported on firewall.
Explanation:  Indicated option is not supported.

ICA2049  Unknown flag -value ignored.
Explanation:  Indicated flag was specified and is not recognized.

ICA2050  Unknown parm value.
Explanation:  Indicated value, specified as an option, is not recognized.

ICA2051  adapt_addr conversion error on address.
Explanation:  IP address shown is not valid.
User Response:  The file /etc/security/fwsecadpt.cfg might be corrupted. Remove the file, reconfigure your secure interface(s), and reinitialize the filters.

ICA2052  afopen failed to open /etc/security/login.cfg: errno.
Explanation:  Unable to authenticate user; open error on indicated file.

ICA2053  Could not open secure interface file.
Explanation:  A secure interface has not been configured.
User Response:  If a secure interface should be defined, use Firewall commands/GUI panels to define the secure interface(s).
ICA2054  enduserdb rc=value, errno.
Explanation: Received indicated system error code when attempting to retrieve user login profile information.
User Response: See your Firewall administrator to verify your login account.

ICA2055  getpeername() (invocation name): errno.
Explanation: System error when FTP daemon attempted to get socket name.

ICA2056  getsockname() (invocation name): errno.
Explanation: System error when FTP daemon attempted to get port name.

ICA2057  getuser non-secure shell rc=value for user_ID, errno.
Explanation: Received indicated system error code when attempting to retrieve shell name for connection from nonsecure side of Firewall.
User Response: See your Firewall administrator to set a shell for your user login profile.

ICA2058  getuser secure shell rc=value for user_ID, errno.
Explanation: Received indicated system error code when attempting to retrieve shell name for connection from secure side of Firewall.
User Response: See your Firewall administrator to set a shell for your user login profile.

ICA2059  ioctl(): errno
Explanation: System error on ioctl() call for SIOCSPGRP.

ICA2060  ptelnetd: ftok for shared memory failed.
Explanation: Unable to allocate shared memory segment.
User Response: Contact the Firewall administrator.

ICA2061  ptelnetd: shmat for shared memory failed.
Explanation: Unable to allocate shared memory segment.
User Response: Contact the Firewall administrator.

ICA2062  ptelnetd: shmget for shared memory failed.
Explanation: Unable to allocate shared memory segment.
User Response: Contact the Firewall administrator.

ICA2063  setsockopt() (SO_DEBUG): errno.
Explanation: Indicated error message returned from system call 'setsockopt'.

ICA2064  setsockopt() (SO_KEEPALIVE): errno.
Explanation: Indicated error message returned from system call 'setsockopt'.

ICA2065  setuser rc=value, errno.
Explanation: Received a bad return code on a system call for the indicated reason.
ICA2066  signal(): errno.
Explanation: System error when FTP daemon attempted to establish signal handler.

ICA2067  Fatal pFTPd initialization error - bind(): errno
Explanation: pFTPd server initialization failed, daemon terminated.
User Response: Correct the indicated system problem and restart pFTPd. The most likely cause of this error is another FTP daemon already listening on the standard FTP port (21).

ICA2068  Fatal pFTPd initialization error - listen(): errno
Explanation: pFTPd server initialization failed, daemon terminated.
User Response: Correct the indicated system problem and restart pFTPd.

ICA2069  Fatal pFTPd error - main accept(): errno
Explanation: pFTPd server main routine failed, daemon terminated.
User Response: Correct the indicated system problem and restart pFTPd.

ICA2070  Fatal pFTPd initialization error - socket(): errno
Explanation: pFTPd server initialization failed, daemon terminated.
User Response: Correct the indicated system problem and restart pFTPd.

ICA2071  PFTPd error - spawn(): errno
Explanation: Attempt to spawn child to handle a FTP request failed.

ICA2072  FTP configuration file (filename) is not available.
Explanation: FTP daemon attempted to open the specified FTP configuration file but it either does not exist or could not be opened.
System Action: FTP daemon processing uses the default configuration
User Response: None, unless the file should exist, in which case it should be created or moved to the location specified in the message.

ICA2073  Unable to obtain storage for FTP language table.
Explanation: Storage required to represent a REPLYLANGUAGE statement in the FTP configuration file could not be obtained.
System Action: Processing continues.
User Response: Increase the region size or reduce the entries in the configuration file.

ICA2074  Processing complete for FTP config statement: configuration statement
Explanation: FTP has processed the indicated configuration statement.
System Action: Processing continues.
User Response: None

ICA2075  FTP for user id (source IP addr:dest IP addr), operation file name, numbytes bytes. sid: session id.
Explanation: Message generated for each file transfer on open FTP sessions. The sid is a unique identifier generated by the firewall at session start.
ICA2076  FTP Session  session id ended for  user id (source IP address:dest IP addr),
duration seconds, numbytes bytes.

Explanation:  Message generated at the end of each FTP session. The sid is a unique
identifier generated by the firewall at session start.

ICA2077  Telnet Session  session id ended for  user id (source IP address:dest IP addr),
numbytes bytes.

Explanation:  Message generated at the end of each Telnet session. The sid is a unique
identifier generated by the firewall at session start.

ICA2078  Disconnected proxy user  user - idle for  time minutes.

Explanation:  User's session has exceeded maximum allowable idle time.

ICA2079  Attention - Unauthorized connection attempt to  IP_address from  IP_address.

Explanation:  Generally indicates an attempt to establish a connection to Firewall across
the non-secure interface.

System Action:  Reject the connection.

ICA2080  Syntax error (reason) near column  column in FTP configuration file line  line:
configuration statement

Explanation:  The FTP configuration statement at the given line is in error. The reason for
the error and the location where the error was detected is provided.

System Action:  Statement is ignored.

User Response:  Correct the statement in the FTP configuration file.

ICA2081  No message catalog given by FTP configuration statements is usable.

Explanation:  Attempts to open the message catalogs given by the REPLYLANGUAGE
FTP configuration statements failed. No client message catalog can be used.

System Action:  Client message catalog is forced to the English language in the C direc-
tory.

User Response:  Ensure that there are catalog files in each of the directories associated
with the language directories in the FTP configuration REPLYLANGUAGE statements. Also
check that the NLSPATH environment variable is correctly set to allow substitution of both
the sub-directory from the LANG environment variable (%L) and the catalog name (%N).

ICA2082  Unable to set FTP LANG environment variable to  sub-directory, reason:
reason

Explanation:  A system error (given by the reason) occurred when the FTP daemon was
trying to change the setting of the LANG environment variable to the sub-directory specified.

System Action:  Processing continues. Recovery may generate other messages.

User Response:  Use the reason given to determine if this is a system error or program-
ming error.
ICA2083 Unable to open FTP client message catalog in directory: sub-directory,reason: reason
Explanation: FTP daemon could not open the message catalog in the given sub-directory. The reason given is the errno returned from catopen().
System Action: Processing continues. Recovery may generate other messages.
User Response: Ensure that there is a catalog in the directory associated with the language directory provided. Check that the NLSPATH environment variable is correctly set to allow substitution of both the sub-directory (%L) and the catalog name (%N).

ICA2084 Forcing FTP client message catalog to English via the C sub-directory.
Explanation: Due to previously listed errors, the FTP daemon has forced the client message catalog to the English language using the C sub-directory.
System Action: If the language can be forced to the C message catalog processing continues. If it can not, the program exits.
User Response: Correct the error from the previous messages. If the program also existed, create the message catalog in the C sub-directory and set the NLSPATH environment variable correctly.

ICA2085 Telnet Session ended for pid Process id (source IP address).
Explanation: Message generated at the end of each Telnet session.

ICA2086 Misconfigured user file; user user with no key (key).
Explanation: FTPd found requested user in user file, but could not find key - misconfigured user file.
User Response: use Firewall commands/smit panels to correct this problem.

ICA2087 FTPd could not find the specified user user in the user config file.
Explanation: the username specified has not been configured or the user.cfg file is corrupt.
User Response: use Firewall commands/smit panels to correct this problem.

ICA2088 FTPd could not open user configuration file.
Explanation: FTPd made a call to fopen which failed because it could not open the user config file.
User Response: Make sure the user config file (user.cfg by default) is available; use Firewall commands/smit panels

ICA2089 Authorization type from user file (Authorization type) did not match any entries in table (struct tab2 authtab[]).
Explanation: The authorization type of the specified user (returned from user.cfg) does not match any supported types (such as deny,none,snk,svi,password,etc.)
User Response: Check user.cfg file integrity or configuration; use Firewall commands/smit panels to correct this problem.

ICA2090 Authentication failed for user 'user name' from client ip because KEY=DENY in the user.cfg file.
Explanation: Authentication failed due to user.cfg file specifications set by the Firewall administrator.
User Response: See your Firewall administrator.
ICA2091  User "user name" not allowed to FTP to the non-secure port (firewall ip).
Explanation:  User tried to FTP into the firewall server via a non-secure port (nsp) - all nsps
users must have their 'fwnsFTP' key properly configured to a valid authorization type (in the
user.cfg file).
User Response:  Check user.cfg file integrity or configuration; use Firewall commands/smit
panels to correct this problem.

ICA2092  Internal Error: nt_gwauth() failed.
Explanation:  nt_gwauth() normally returns one of three values
(AUTHENTICATED, NOT_AUTHENTICATED or DENY) in this

ICA2093  User '%1$s' not allowed to FTP to the secure port (%2$s).
Explanation:  User tried to FTP into the firewall server via a secure port (sp) - all sp users
must have their 'fwsFTP' key properly configured to a valid authorization type (in the user.cfg
file).
User Response:  Check user.cfg file integrity or configuration; use Firewall commands/smit
panels to correct this problem.

ICA2094  Login Failed: expected format: "PASS <password>" after: "USER <user
name>"; received invalid cmd.
Explanation:  Authentication failed because the FTP client did not send the expected format
(PASS 'password' per RFC959)
User Response:  Type "user <username>"; enter correct password. See your Firewall
administrator.

ICA2095  Login Failed: (via method auth method) failed authentication of user 'user
name' from client ip (client site).
Explanation:  Authentication failed due to an invalid input (by client for specified
authentication type) - such as user entered invalid password, snk key, etc.
User Response:  See your Firewall administrator.

ICA2096  Authenticated: (via method auth method) successful authentication of user
'user name' from client ip (client site).
Explanation:  Authentication succeeded

ICA2097  httpd --> Starting HTTP proxy server version HTTP Proxy Version.
Explanation:  HTTP Proxy for WWW access starting.

ICA2098  httpd --> Shutting down HTTP proxy server.
Explanation:  HTTP Proxy for WWW access shutting down.

ICA2099  httpd --> Status: <HTTP Status code> from client <IP address>, who
requested <" HTTP GET request"> for <number of bytes> bytes.
Explanation:  Status of client HTTP request for some file thru the proxy.

ICA2100  Socket address equals zero.
Explanation:  An invalid destination address was found in the local request.
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICA2101</td>
<td>Socket address family error: <code>sin_family_type</code>.</td>
<td>An invalid address family type was found in the local request.</td>
</tr>
<tr>
<td>ICA2102</td>
<td>Error initializing odm: <code>odmerrno</code>.</td>
<td>An <code>odm_initialize()</code> error occurred for ODM (Object Data Manager).</td>
</tr>
<tr>
<td>ICA2103</td>
<td>Error setting odm default path: <code>odmerrno</code>.</td>
<td>An <code>odm_set_path()</code> error occurred for ODM (Object Data Manager). object class, OCSvhost.</td>
</tr>
<tr>
<td>ICA2104</td>
<td>Error locking odm database: <code>odmerrno</code>.</td>
<td>An <code>odm_lock()</code> error occurred for ODM (Object Data Manager).</td>
</tr>
<tr>
<td>ICA2105</td>
<td>Error opening odm object <code>Customized_Attribute</code>: <code>odmerrno</code>.</td>
<td>An <code>odm_open_class()</code> error occurred for ODM (Object Data Manager).</td>
</tr>
<tr>
<td>ICA2106</td>
<td>Error searching odm object <code>OCS_virtual_host</code>: <code>odmerrno</code>.</td>
<td>An <code>odm_get_first()</code> error occurred for ODM (Object Data Manager). object class, OCSvhost.</td>
</tr>
<tr>
<td>ICA2107</td>
<td>Error closing odm object <code>OCS_virtual_host</code>: <code>odmerrno</code>.</td>
<td>An <code>odm_close_class()</code> error occurred for ODM (Object Data Manager). object class, OCSvhost.</td>
</tr>
<tr>
<td>ICA2108</td>
<td>Error unlocking odm database: <code>odmerrno</code>.</td>
<td>An <code>odm_unlock()</code> error occurred for ODM (Object Data Manager).</td>
</tr>
<tr>
<td>ICA2109</td>
<td>Error terminating odm: <code>odmerrno</code>.</td>
<td>An <code>odm_terminate()</code> error occurred for ODM (Object Data Manager).</td>
</tr>
<tr>
<td>ICA2110</td>
<td>Error getting server by name: <code>errno</code>.</td>
<td>An <code>getservbyname()</code> error occurred. The host Login Monitor service, lm, is not specified properly in the <code>/etc/services</code> file.</td>
</tr>
<tr>
<td>ICA2111</td>
<td><code>byname()</code> error: <code>errno</code>.</td>
<td>An <code>gethostbyname()</code> error occurred. The host machine name is not specified properly in <code>/etc/hosts</code>.</td>
</tr>
<tr>
<td>ICA2112</td>
<td>Invalid protocol name: <code>protocol_name</code>.</td>
<td>The protocol name specified in the ODM object class, OCSvhost, is not supported.</td>
</tr>
<tr>
<td>ICA2113</td>
<td>Error opening socket to LM: <code>errno</code>.</td>
<td>A <code>socket()</code> error occurred to host machine where the Login Monitor resides.</td>
</tr>
<tr>
<td>ICA2114</td>
<td>Error binding local address: <code>errno</code>.</td>
<td>A <code>bind()</code> error using the local address for this OCS node.</td>
</tr>
</tbody>
</table>
ICA2115  Error connecting socket to LM: errno.
Explanation: A connect() error occurred to the host machine where the Login Monitor resides.

ICA2116  Protocol type error: protocol_type.
Explanation: The virtual terminal protocol type used to communicate with the host Login Monitor is invalid.

ICA2117  Malloc error on LM message.
Explanation: A malloc() error occurred when dynamically allocating space for the variable-length Login Monitor message.

ICA2118  Error transmitting msg to LM: errno.
Explanation: A send() error occurred when sending Login Monitor a request to open the correct host device.

ICA2119  Error receiving msg from LM: errno.
Explanation: A recv() error occurred when Login Monitor returns an acknowledgement.

ICA2120  Status error from LM: status.
Explanation: The acknowledgement from Login Monitor indicates that host device was NOT successfully opened.

ICA2121  Error opening OCS administration device: errno.
Explanation: The OCS administration device was not successfully opened.

ICA2122  Failed converting IP address to TBM ID: errno.
Explanation: ioctl() OCS_GET_TBMID error occurred. ioctl command OCS_GET_TBMID failed on the OCS administration device.

ICA2123  Error Connectting TBM determined by rlogin: errno.
Explanation: ioctl() OCS_IS_TBM_CONNECTED error occurred. ioctl command OCS_IS_TBM_CONNECTED failed on the OCS administration device.

ICA2124  No host nodes are connected: errno.
Explanation: There are no host nodes connected to this OCS node from the list of possible host nodes.

ICA2125  Error getting list for ODM(Object Data Manager): Customized_Attribute: odmerro.
Explanation: An odm_get_list() error occurred for ODM object class, CuAt(Customized Attribute).

ICA2126  No OCS host node name associated with: hostnode_to_connect.
Explanation: The CuAt(Customized Attribute) entry was found but there was no hostnode/ocsnode match.
### ICA2127
**Mallocl error on Host array.**

**Explanation:** A malloc() error occurred when dynamically allocating space for the array of possible host names.

### ICA2128
**User (unknown) from client ip (client site) attempted a command "invalid command" before authentication.**

**Explanation:** A user attempted actions before entering in username and password for authentication - users must first be authenticated before any further processing may continue.

**User Response:** Please login with USER and PASS

### ICA2129
**gethostbyname (invocation name): errno**

**Explanation:** System error when FTPd attempted to get host information corresponding to the host name.

### ICA2130
**User (username) from client ip (client site) attempted a command "invalid command".**

**Explanation:** Specified user attempted invalid command.

**User Response:** Only commands USER, QUOTE SITE and QUIT are allowed until you specify "quote site destination".

### ICA2131
**Authentication failed for user "user name" from client ip because of an error in the user.cfg file.**

**Explanation:** Authentication failed due to a user.cfg file specifications set by the Firewall administrator (check previous logs).

**User Response:** See your Firewall administrator.

### ICA2132
**User "user" from ip client ip (client site) attempted the invalid command "invalid command".**

**Explanation:** The user attempted an invalid command. The only valid commands at this point are SITE, USER, and QUIT.

### ICA2133
**Error: function call failed in instance: line (WSAGetLastError() = WSAGetLastError): errno**

**Explanation:** General error message; check logs

### ICA2134
**Notice: FTPd: connect() (in instance) could not reach IP (WSAGetLastError() = WSAGetLastError): errno.**

**Explanation:** Connect() could not find the requested address; check WSAGetLastError result.

**User Response:** double-check your address - may be DNS or network error

### ICA2135
**Data transfer completed: Received bytes bytes (from source IP); sent bytes bytes (to destination IP).**

**Explanation:** This information reflects a single data transfer during a particular FTP session.

### ICA2136
**Error: CreateThread() failed in instance: errno.**

**Explanation:** FTPd could not create a thread
ICA2137  Data connection established; server: source ip client: destination ip.
Explanation:  Successful data connection.

ICA2138  Insufficient memory: pFTPd: malloc(bytes) returned NULL in function instance.
Explanation:  Unable to allocate enough memory - malloc returned NULL.

ICA2139  LogonUser() failed: reason.
Explanation:  The Windows NT (SAM) API LogonUser (for password authentication) failed due to specified reason(s).
User Response:  Contact the Firewall administrator.

ICA2141  FTP session to IP_address from IP_address terminates.
Explanation:  The FTP session to firewall terminates no matter if quote site to the destination.

ICA2142  fw tn_authenticate authenticated userid successfully.
Explanation:  fw tn_authenticate has authenticated the specified user ID.
System Action:  Login is successful.

ICA2143  fw tn_authenticate authentication for userid failed.
Explanation:  fw tn_authenticate cannot authenticate the specified user ID.
System Action:  Login is refused.
User Response:  If fw tn_authenticate has any logging facilities, then the administrator should look at the log file to determine the cause.

ICA2144  fw tn_authenticate did not return successfully.
Explanation:  The value returned by fw tn_authenticate is not zero. The function fw tn_authenticate might be missing.
System Action:  Login is refused.
User Response:  Look at fw tn_authenticate carefully to see if it ever returns a non-zero value and correct it if it occurs. If that is the case, make the library fwuser.o again and put it into the Firewall.

ICA2145  The system returned return code rc in file filename at line linenumber.
Explanation:  A system call failed. The library fwuser.o might be absent.
System Action:  Authentication is aborted.
User Response:  Make sure that /usr/lib/fwuser.o is present. If it is, contact your IBM representative.

ICA2146  The IBM-supplied fwuser.o has not been replaced.
Explanation:  You are using the IBM-supplied fwuser.o because you have not replaced it with your own fwuser.o.
System Action:  Authentication is aborted.
User Response:  You should write and compile your own authentication if you defined any user to use User-Supplied authentication. The IBM-supplied n fwuser.o denies access to all non-AIX and non-Firewall users.
ICA2147  
**fwtelnet: user user id started a transparent telnet session from source IP addr (secure side) to dest IP addr.**

**Explanation:** Message generated at the start of each transparent proxy session (fwtelnet). A session begins when userid, source ip and destination ip are all known to the firewall. Only session started from secure side is allowed.

**System Action:** allow the transparent telnet.

ICA2148  
**Attention – Unauthorized connection attempt for user user id from source IP addr (nonsecure side) to dest IP addr, is not allowed.**

**Explanation:** Generally indicates an attempt to establish a connection to Firewall across the non-secure interface.

**System Action:** Reject the connection.

**User Response:** You should telnet from secure side using transparent proxy.

ICA2149  
**fwtelnet: a LOGIN_ADAPTER_ERROR occured while starting a transparent telnet session from source IP addr to dest IP addr.**

**Explanation:** A LOGIN_ADAPTER_ERROR occured when calling q_check_secure(0).

**System Action:** Reject the connection.

**User Response:** check the secure adapter.

ICA2150  
**PFTPd error - failing function: return code = 0xfunction return code**

**Explanation:** The pFTPd server detected an error in the indicated function. The daemon terminates.

**User Response:** Correct the indicated system problem and restart pFTPd.

ICA2151  
**login refused.**

**Explanation:** This message is to be displayed to user who tries to login but not allowed.

ICA2152  
**wlogin: write to device failed.**

**Explanation:** Cannot write to the device.

ICA2153  
**wlogin: read from device failed.**

**Explanation:** Cannot read to the device.

ICA2154  
**error in portname with reason.**

**Explanation:** This Firewall encountered a problem.

ICA2155  
**PFTPd error - failing function: system error message**

**Explanation:** The pFTPd server detected an error in the indicated function. The daemon terminates.

**User Response:** Correct the indicated system problem and restart pFTPd.
ICA2156  Attention -- User user id tried to use transparent FTP from NONSECURE side source IP addr to dest IP addr, was not allowed.
Explanation: Generally indicates an attempt to establish a connection to Firewall across the non-secure interface.
System Action: Reject the connection.
User Response: You should FTP from secure side using transparent proxy.

ICA2157  User user id from source IP addr is not allowed to use transparent proxy to dest IP addr.
Explanation: Generally indicates an attempt to establish a connection to Firewall while transparent proxy is not configured.
System Action: Reject the connection.
User Response: turn fwtpproxy FTP = on

ICA2158  Option value was specified incorrectly.
Explanation: Indicated flag was specified incorrectly.

ICA2159  Timeout value not specified for -t option.
Explanation: A timeout value must be supplied for the -t option.

ICA2160  Password changed for user user ID from network :host name.
Explanation: An FTP user has successfully changed his password in the password database.
System Action: None
User Response: None

ICA2161  User user ID attempted login using expired password from network :host name.
Explanation: An FTP user attempted to establish a connection to the Firewall using an expired password.
System Action: The FTP login validation fails and the user is returned to the FTP command shell.
User Response: The user must attempt to validate again through the FTP USER command or by re-establishing the FTP connection and passing the password string of the form "old_password/new_password/new_password".

ICA2162  Password change failure for user user ID from network :host name.
Explanation: An FTP user attempted to change his password and the password validation routine failed. The possible reasons for the failure include:

ICA2163  Fwmaild started.
Explanation: Starting fwmaild.

ICA2164  Fwmaild stop.
Explanation: stopping fwmaild.
ICA2165  Interrupted telnet session.
Explanation:  Telnet session is ending, but it cannot retrieve its session information from the pipe. The session was probably interrupted during startup by the client, thus the session was not fully initialized.

ICA3001  Real user is ident user name, not socks connect user name
Explanation:  Possible security breach attempt; user name not authenticated.

ICA3006  count bytes from client, count bytes from server
Explanation:  Message indicating number of bytes transferred between the sockd daemon and its respective client and server hosts.

ICA3010  connected -- Bind from user(real_user)@src_addr for dst_addr ( destination port)
Explanation:  Connection established.

ICA3011  connected -- Connect from user(real_user)@src_addr to dst_addr ( application)
Explanation:  Successful socket connection to external network.

ICA3012  Connection refused -- Connect from user(real_user)@src_addr to dst_addr ( application)
Explanation:  Remote host refused connection.

ICA3013  select()  errno
Explanation:  System error.

ICA3014  Connection terminated -- Bind from user(real_user)@src_addr for dst_addr ( destination port),(count bytes from client, count bytes from server)
Explanation:  Connection terminated; see log message.

ICA3015  terminated -- Connect from user(real_user)@src_addr to dst_addr ( destination host),(count bytes from client, count bytes from server)
Explanation:  Connection to server terminated; see log message.

ICA3016  Cannot find appropriate interface to communicate with destination host
Explanation:  File /etc/sockd.route does not contain routing information for the specified destination host.

ICA3017  Cannot execute shell command for pid sockd process
Explanation:  Sockd daemon unable to execute a /bin/sh command.
User Response:  Verify the /bin/sh shell is available on the system.

ICA3018  refused -- Bind from user(real_user)@src_addr for dst_addr
Explanation:  Remote host refused connection.

ICA3019  Error in GetDst() from host socks_src_name: errno
Explanation:  Error in resolving destination address for requested connection.
ICA3022  Invalid ?= field at line line number
Explanation:  Invalid entry found in /etc/sockd.conf file.

ICA3023  Invalid comparison at line line number
Explanation:  Invalid entry found in /etc/sockd.conf file.

ICA3024  Invalid entry at line line number
Explanation:  Invalid entry found in /etc/sockd.route file.

ICA3025  Invalid permit/deny field at line line number
Explanation:  Invalid entry found in /etc/sockd.conf file.

ICA3026  Invalid port number at line line number
Explanation:  Invalid entry found in /etc/sockd.conf file.

ICA3027  Shell Command Failed (exec status) for "cmd"
Explanation:  Displayed shell command failed.
User Response:  Verify shell processor is available on the system.

ICA3030  Unable to open config file (/etc/sockd.conf)
Explanation:  Open request against indicated file failed.

ICA3031  Unable to open routing file (/etc/sockd.route): errno
Explanation:  Open request against indicated file failed.
User Response:  See your Firewall administrator. A default file was provided during Firewall installation.

ICA3032  Unable to open userfile (user name file): errno
Explanation:  The filename specified for *=userlist on a permit rule could not be found.

ICA3033  Unexpected result from Validate()
Explanation:  Identd verification of the user name was specified. Identd responded with unexpected result.

ICA3035  Cannot connect to identd on client host
Explanation:  Identd verification of the user name was specified. Identd does not respond.

ICA3039  Error -- shell command "cmd" contains no alphanumeric characters.
Explanation:  Invalid shell command; see log message.

ICA3040  Error -- shell_cmd fork() errno
Explanation:  Sockd daemon unable to switch to child process via 'fork()'.

ICA3041  Error -- unable to get client address.
Explanation:  Error return from 'getpeername()' call.
User Response:  Check routing and DNS configuration.
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Explanation</th>
<th>User Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICA3042</td>
<td>Error -- undefined command (0xhex-command-received) from host client address</td>
<td>Invalid command received from client application.</td>
<td>Possible client configuration problem or mismatch on client and Firewall support level.</td>
</tr>
<tr>
<td>ICA3043</td>
<td>Error -- wrong version (0xhex-version-number) from host client address</td>
<td>Firewall supports socks version 4.2.</td>
<td>Possible client configuration problem or mismatch on client and Firewall support level.</td>
</tr>
<tr>
<td>ICA3044</td>
<td>Failed -- Connect from user(real_user)@src_addr to dst_addr (application). Error code: command causing failure errno.</td>
<td>Connection request failed.</td>
<td></td>
</tr>
<tr>
<td>ICA3045</td>
<td>Failed -- Bind from user(real_user)@src_addr for dst_addr. Error: connected to wrong host dst_name (dst_port (application)).</td>
<td>Bind request failed.</td>
<td></td>
</tr>
<tr>
<td>ICA3047</td>
<td>Timed-out -- Bind from user(real_user)@src_addr for dst_addr</td>
<td>Connection timed out.</td>
<td></td>
</tr>
<tr>
<td>ICA3048</td>
<td>Shell command too long: command...</td>
<td>The command to be executed, from the /etc/sockd.conf file, is too long.</td>
<td></td>
</tr>
<tr>
<td>ICA3049</td>
<td>Timed-out -- Connect from user(real_user)@src_addr to dst_addr (application)</td>
<td>Connection timed out; see log message.</td>
<td></td>
</tr>
<tr>
<td>ICA3050</td>
<td>matched sockd.conf filter rule</td>
<td>Filter rule from the /etc/sockd.conf file which matched the socks connection.</td>
<td></td>
</tr>
<tr>
<td>ICA3051</td>
<td>AIX sockd_route() cannot find interface for remote address.</td>
<td>Could not find interface route information.</td>
<td></td>
</tr>
<tr>
<td>ICA3052</td>
<td>Error setting userid to &quot;nobody&quot;.</td>
<td>Could not set userid of the child sockd process to &quot;nobody&quot;.</td>
<td></td>
</tr>
<tr>
<td>ICA3053</td>
<td>Error on popen(AIX route script): system error message</td>
<td>Failure running script to find routing information.</td>
<td></td>
</tr>
<tr>
<td>ICA3054</td>
<td>Fatal memory allocation failure in AIX sockd_route().</td>
<td>Memory allocation failure trying to gather routing information.</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Explanation</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------------------------------------------------------</td>
<td>--------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>ICA3055</td>
<td>Fatal error AIX sockd_route() parsing for first space in: input line</td>
<td>Error parsing system route information.</td>
<td></td>
</tr>
<tr>
<td>ICA3056</td>
<td>Fatal error AIX sockd_route() parsing for second space in: input line</td>
<td>Error parsing system route information.</td>
<td></td>
</tr>
<tr>
<td>ICA3057</td>
<td>Fatal error in AIX sockd_route() reading route script output: system error message</td>
<td>Error reading script output.</td>
<td></td>
</tr>
<tr>
<td>ICA3058</td>
<td>Error on popen(AIX adapter script): system error message</td>
<td>Failure running script to find interface information.</td>
<td></td>
</tr>
<tr>
<td>ICA3101</td>
<td>Sockd error sending data - select(): system error message</td>
<td>(SOCKS422) Error while sending data.</td>
<td></td>
</tr>
<tr>
<td>ICA3102</td>
<td>Sockd error sending data - write(): system error message</td>
<td>(SOCKS422) Error while sending data.</td>
<td></td>
</tr>
<tr>
<td>ICA3103</td>
<td>Sockd error receiving data - select(): system error message</td>
<td>(SOCKS422) Error while receiving data.</td>
<td></td>
</tr>
<tr>
<td>ICA3104</td>
<td>Sockd error receiving data - read(): system error message</td>
<td>(SOCKS422) Error while receiving data.</td>
<td></td>
</tr>
<tr>
<td>ICA3105</td>
<td>Cannot create process id file filename.</td>
<td>(SOCKS422) Process id file creation/write failed.</td>
<td></td>
</tr>
<tr>
<td>ICA3106</td>
<td>Sockd failed to fork child: system error message</td>
<td>(SOCKS422) Attempt to fork child to handle a SOCKS request failed.</td>
<td></td>
</tr>
<tr>
<td>ICA3107</td>
<td>Set inbound socket SO_LINGER option failed: system error message</td>
<td>(SOCKS422) not critical</td>
<td></td>
</tr>
<tr>
<td>ICA3108</td>
<td>Set outbound socket SO_LINGER option failed: system error message</td>
<td>(SOCKS422) not critical</td>
<td></td>
</tr>
<tr>
<td>ICA3109</td>
<td>Invalid entry at line line number in file filename.</td>
<td>(SOCKS422) Incorrect configuration entry syntax.</td>
<td></td>
</tr>
<tr>
<td>ICA3110</td>
<td>Illegal interface field at line line number in file filename.</td>
<td>(SOCKS422) Incorrect configuration entry syntax.</td>
<td></td>
</tr>
<tr>
<td>ICA3111</td>
<td>Illegal destination IP at line line number in file filename.</td>
<td>(SOCKS422) Incorrect configuration entry syntax.</td>
<td></td>
</tr>
</tbody>
</table>
ICA3112  Illegal destination mask at line line number in file filename.
Explanation:  (SOCKS422) Incorrect configuration entry syntax.

ICA3113  Parsed number of lines lines in file filename.
Explanation:  (SOCKS422) Incorrect configuration entry syntax.

ICA3114  No valid lines found in file filename.
Explanation:  (SOCKS422) Configuration file empty, or incorrect syntax.
User Response:  Correct the indicated configuration file.

ICA3115  Invalid 'permit/deny' field at line line number in file filename.
Explanation:  (SOCKS422) Incorrect configuration entry syntax.

ICA3116  Invalid '?=' field at line line number in file filename.
Explanation:  (SOCKS422) Incorrect configuration entry syntax.

ICA3117  Illegal source IP at line line number in file filename.
Explanation:  (SOCKS422) Incorrect configuration entry syntax.

ICA3118  Illegal source mask at line line number in file filename.
Explanation:  (SOCKS422) Incorrect configuration entry syntax.

ICA3119  Invalid comparison at line line number in file filename.
Explanation:  (SOCKS422) Incorrect configuration entry syntax.

ICA3120  Invalid port number at line line number in file filename.
Explanation:  (SOCKS422) Incorrect configuration entry syntax.

ICA3121  Received SIGUSR1 - dumping socks configuration.
Explanation:  (SOCKS422) Signal to dump active configuration to log file, following this message.

ICA3122  Sockd could not fork daemon: system error message
Explanation:  (SOCKS422) Fork to initialize sockd daemon failed.
User Response:  Correct the indicated system problem and restart sockd.

ICA3123  Sockd server starting.
Explanation:  (SOCKS422) Sockd has successfully initialized and is awaiting connections.

ICA3124  Fatal sockd initialization error - bind(): system error message
Explanation:  (SOCKS422) Sockd server initialization failed, daemon terminated.
User Response:  Correct the indicated system problem and restart sockd.
ICA3125  Fatal sockd initialization error - listen(): system error message
Explanation: (SOCKS422) Sockd server initialization failed, daemon terminated.
User Response: Correct the indicated system problem and restart sockd.

ICA3126  Fatal sockd error - main accept(): system error message
Explanation: (SOCKS422) Sockd server main routine failed, daemon terminated.
User Response: Correct the indicated system problem and restart sockd.

ICA3127  Sockd server received terminate signal.
Explanation: root or nobody killed the process, daemon terminated.
User Response: Restart sockd if the administrator so desires (type "sockd").

ICA3128  Fatal sockd initialization error - socket(): system error message
Explanation: Sockd server initialization failed, daemon terminated.
User Response: Correct the indicated system problem and restart sockd.

ICA3129  Fatal sockd initialization error - failing function: system error message
Explanation: Sockd server initialization failed in the indicated function, daemon terminated.
User Response: Correct the indicated system problem and restart sockd.

ICA3130  Sockd error - failing function: system error message
Explanation: The sockd server detected an error in the indicated function. The daemon continues, but connections may be refused or terminated.
User Response: If the problem persists, stop sockd, correct the indicated system problem and restart sockd.

ICA3131  Error reading file name. Previously cached data will be used.
Explanation: The file could not be read or contained incorrect data. A previous message should describe the problem. Sockd will continue to operate with cached data from the previous version of the file.
User Response: Correct the error in the indicated file.

ICA3132  Unknown flag -value.
Explanation: The indicated flag is not recognized, daemon terminated.
User Response: Correct the syntax and restart sockd.

ICA3133  Unknown parameter value.
Explanation: The indicated parameter is not recognized, daemon terminated.
User Response: Correct the syntax and restart sockd.

ICA3134  Conflicting options option1 and option2.
Explanation: The indicated options cannot be specified together, daemon terminated.
User Response: Correct the syntax and restart sockd.
ICA3135  Sockd error - failing function: return code = 0xfunction return code
Explanation: The sockd server detected an error in the indicated function. The daemon terminates.
User Response: Correct the indicated system problem and restart sockd.

ICA3700  WinSocket initialization error : WinSocket error
Explanation: Error occurred when initializing WinSocket.
User Response: Correct the indicated system problem and restart sockd.

ICA4000  program - Warning: Received signal signal, terminating
Explanation: Termination due to receipt of signal.

ICA4001  STOP program as PID processId
Explanation: Informational message.

ICA4002  Temporary ID
Explanation: Informational message.

ICA4003  Problem with child process processId.
Explanation: Could not create a child process.

Explanation: Signal handler.

ICA4005  No fwpagerd daemon running, program not found.
Explanation: Could not send a page because the daemon was not active.

ICA4006  No fwpagerd daemon running with process ID processId.
Explanation: Could not find the process Id of the daemon process.

ICA4007  START program as PID processId
Explanation: Informational message.

ICA4008  Cannot set sigignore for SIGPIPE.
Explanation: Failure while setting up to ignore the broken pipe signal.

ICA4009  Cannot set sigset for SIGCHILD.
Explanation: Failure while setting up to catch a dying child signal.

ICA4010  Cannot set termination process.
Explanation: Failure while setting signal to catch termination process.

ICA4011  Cannot open socket.
Explanation: Failure while opening socket.
ICA4012 Cannot set sigset for SIGTERM.
Explanation: Failure while setting up to catch SIGTERM and SIGINT signals.

ICA4013 Cannot set socket reuse option.
Explanation: Failure while setting socket reuse option.

ICA4014 Cannot set socket linger option.
Explanation: Failure while setting socket linger option.

ICA4015 Cannot bind the socket to the port.
Explanation: Failure while binding the socket to the port.

ICA4016 Cannot set listen on socket.
Explanation: Failure while setting up to listen on socket.

ICA4017 Service servName using TCP socket socket.
Explanation: Informational msg.

ICA4018 Function call select() failed.
Explanation: Internal function call failure.

ICA4019 Severe error from new_work().
Explanation: Internal severe error from new_work routine.

ICA4020 Error(program): Could not write to stream socket: socket
Explanation: Possible system error.
User Response: Check socket usage.

ICA4021 Problem receiving response.
Explanation: Problem receiving response from modem.
User Response: Check modem connections and the initialization string.

ICA4022 Request successful.
Explanation: Informational message.

ICA4023 Request failed.
Explanation: Request to send page has failed.

ICA4024 Error(program): Priority out of range (minpri - maxpri).
Explanation: Incorrect priority range.
User Response: Correct priority range. Valid values are from -1 through 5.
ICA4025  Error(program): Address must be in the form of ID@carrier when -n option is used.
Explanation: Incorrect command usage syntax.
User Response: Correct the command syntax.

ICA4026  Error(program): Unknown host hostname
Explanation: Could not resolve hostname.
User Response: Check hostname.

ICA4027  Error(program): Could not open stream socket : errno
Explanation: Could not create a new socket.

ICA4028  Error(program): Could not set socket options : errno
Explanation: Could not set socket linger option.

ICA4029  Error(program): Could not connect to host : errno.
Explanation: Could not connect to the host.
User Response: Check serial port configuration and existence of device driver file.

ICA4030  Error(program): Could not write to stream socket : errno.
Explanation: Could not write to the stream socket.

ICA4031  Problem receiving response. Condition of message unknown.
Explanation: Problem receiving response from modem.

ICA4032  Message sent successfully to queue.
Explanation: Informational message. Message has been sent to queue.

ICA4033  Message failed. No message(s) sent.
Explanation: Could not send the message onto the pager queue.

ICA4034  date Failed (ID ID Pri priority Secs period Tries retryCount) [ fromEntry]
          personName: mesage.
Explanation: The page could not be sent.

ICA4035  Cannot re-queue message mesg from program to person.
Explanation: Could not send into paging queue.

ICA4036  SUCCEEDED (ID ID Pri priority Secs period Tries retryCount) [ fromEntry]
          personName: mesage.
Explanation: The page is sent successfully.

ICA4037  DUMPED to dumpFile (ID ID Pri priority Secs period Tries retryCount) [ fromEntry]
          personName: mesage.
Explanation: Pages that are not sent immediately are dumped to a file to be tried later.
<table>
<thead>
<tr>
<th>Code</th>
<th>Message</th>
<th>Explanation</th>
<th>User Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICA4038</td>
<td>Cannot write to dump file dumpFile.</td>
<td>Dump file cannot be written into.</td>
<td>Check file system permissions.</td>
</tr>
<tr>
<td>ICA4039</td>
<td>IpcKey: 0xipcKey</td>
<td>Informational message.</td>
<td></td>
</tr>
<tr>
<td>ICA4040</td>
<td>Retry time of retryTime minutes exceeded.</td>
<td>Failed to initialize modem after the specified minutes.</td>
<td>Check initialization string.</td>
</tr>
<tr>
<td>ICA4041</td>
<td>Found alphanumeric message for numeric pager.</td>
<td>Numeric pagers cannot contain alphanumeric data.</td>
<td>Correct using the user interface menu.</td>
</tr>
<tr>
<td>ICA4042</td>
<td>Person cannot receive pages.</td>
<td>Pager is probably not activated.</td>
<td>Check pager for activation.</td>
</tr>
<tr>
<td>ICA4043</td>
<td>Carrier carrier does not exist.</td>
<td>Carrier specified does not exist.</td>
<td>Correct using the user interface menu.</td>
</tr>
<tr>
<td>ICA4044</td>
<td>Carrier carrier does not have a DTMF phone number.</td>
<td>Carrier specified does not have the DTMF phone number.</td>
<td>Correct using the user interface menu.</td>
</tr>
<tr>
<td>ICA4045</td>
<td>Pager number pagerNumber is too long for carrier’s maximum of carrLen.</td>
<td>Pager number is too long for carrier’s maximum.</td>
<td>Use another shorter pager number less than that of the carrier’s maximum.</td>
</tr>
<tr>
<td>ICA4046</td>
<td>Pager number pagerNumber is too long for default length of defaultCarrLen.</td>
<td>This message occurs when the default length is too less.</td>
<td>Correct using the user interface menu. Increase default length.</td>
</tr>
<tr>
<td>ICA4047</td>
<td>Problem at line lineNumber of modem file ModemfilePathname.</td>
<td>Modem definition file contains an invalid character.</td>
<td>Correct using the user interface menu.</td>
</tr>
<tr>
<td>ICA4048</td>
<td>Cannot open modem on device /dev/deviceName.</td>
<td>Could not open modem on specified device.</td>
<td>Check or re-configure serial port. Check device.</td>
</tr>
<tr>
<td>Code</td>
<td>Message</td>
<td>Explanation</td>
<td>User Response</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------------------------------------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>---------------------------------------------------</td>
</tr>
<tr>
<td>ICA4049</td>
<td>Modem open on /dev/deviceName.</td>
<td>Modem has been successfully detected on the serial port.</td>
<td></td>
</tr>
<tr>
<td>ICA4050</td>
<td>Cannot set modem characteristics.</td>
<td>Failed while trying to set modem characteristics.</td>
<td>Check modem initialization string.</td>
</tr>
<tr>
<td>ICA4051</td>
<td>Cannot initialize modem after numInitTries retries.</td>
<td>Modem could not be initialized.</td>
<td>Check modem initialization string and serial port configuration.</td>
</tr>
<tr>
<td>ICA4052</td>
<td>Cannot dial pager number pagerNumber</td>
<td>Pager number cannot be dialed.</td>
<td>Check pager number validity.</td>
</tr>
<tr>
<td>ICA4053</td>
<td>Cannot hangup modem.</td>
<td>Cannot hangup modem.</td>
<td>Check modem initialization string and hangup command used.</td>
</tr>
<tr>
<td>ICA4054</td>
<td>Cannot dial message message</td>
<td>Cannot dial message.</td>
<td></td>
</tr>
<tr>
<td>ICA4055</td>
<td>Problem at line lineNumber in modem file filename.</td>
<td>Invalid modem definition file.</td>
<td>Correct using the user interface menu.</td>
</tr>
<tr>
<td>ICA4056</td>
<td>Cannot dial carrier carrier's DTMF number (DTMFnumb).</td>
<td>DTMF number may have been changed or is incorrect for this carrier.</td>
<td>Correct using the user interface menu.</td>
</tr>
<tr>
<td>ICA4057</td>
<td>Cannot transmit block.</td>
<td>Failed while trying to transmit block.</td>
<td>Check carrier parameters using the user interface menu.</td>
</tr>
<tr>
<td>ICA4058</td>
<td>No response to transmitted block.</td>
<td>Could not get a response from the carrier after transmitting block.</td>
<td>Check carrier parameters using the user interface menu.</td>
</tr>
<tr>
<td>ICA4059</td>
<td>Cannot receive response to message delivery.</td>
<td>Could not get a response from the carrier after message delivery.</td>
<td>Check carrier parameters using the user interface menu.</td>
</tr>
</tbody>
</table>
ICA4060  Cannot transmit pager ID.
Explanation:  Cannot transmit pager id.
User Response:  Check pager number and carrier parameters using the user interface menu.

ICA4061  Cannot transmit end <CR> of automatic mode request.
Explanation:  Cannot transmit end <CR> of automatic mode request.
User Response:  Check carrier parameters using the user interface menu.

ICA4062  Cannot transmit automatic mode request.
Explanation:  Cannot transmit automatic mode request signal.
User Response:  Check carrier parameters using the user interface menu.

ICA4063  Failed to receive go-ahead from carrier carrier after numTries retries.
Explanation:  Carrier may be busy at this time.
User Response:  Check carrier parameters using the user interface menu and try later.

ICA4064  Communications error during prompt with carrier carrier.
Explanation:  Communications error may occur for a number of reasons. Try again later.
User Response:  Check carrier parameters using the user interface menu and try later.

ICA4065  Cannot receive response to logon.
Explanation:  Modem cannot receive response to logon.
User Response:  Check modem initialization string and carrier parameters.

ICA4066  Carrier carrier did not respond to logon attempt.
Explanation:  Carrier did not respond to logon attempt.
User Response:  Check carrier parameters using the user interface menu and try later.

ICA4067  Carrier carrier said receiveDataString.
Explanation:  Carrier transmitted back some error message or busy message.
User Response:  Check carrier parameters using the user interface menu and try later.

ICA4068  Carrier carrier forced a disconnect during logon.
Explanation:  Carrier forced a disconnect during logon.
User Response:  Check carrier parameters using the user interface menu.

ICA4069  Dumping messages to carrier carrier caused by ConnectRetryMax retry loops.
Explanation:  If carrier is busy, the program dumps pages and tries later.

ICA4070  Skipping messages to carrier carrier caused by maxTotalTries session connect tries.
Explanation:  Carrier cannot be contacted after a number of tries.
User Response:  Check carrier parameters and try again later.
ICA4071  Error(program): Cannot allocate memory for carrier retry: errno.
Explanation: Possible system or memory allocation errors.
User Response: Check carrier validity and try again.

ICA4072  Error(program): Cannot add to carrier retry list: errno.
Explanation: Carrier possibly may not exist.
User Response: Check carrier validity and try again.

ICA4073  Data connection to carrier carrier at phoneNumber failed after retryCount retries.
Explanation: Data connection has failed.
User Response: Check modem connections and carrier parameters using the user interface menu.

ICA4074  ID prompt from carrier carrier was not received after numTries retries.
Explanation: Carrier failed to response with an ID or acknowledgement prompt.
User Response: Make sure carrier uses the TeleAlphanumeric Protocol.

ICA4075  Communications error during logon with carrier carrier.
Explanation: Communications error could occur for a number of reasons.
User Response: Check carrier parameters using the user interface menu.

ICA4076  Maximum logon attempts to carrier carrier exceeded.
Explanation: Carrier has failed to respond within the specified attempts.
User Response: Check carrier parameters and try again later.

ICA4077  Message go-ahead not received from carrier carrier.
Explanation: Carrier has failed to response with a go-ahead prompt.
User Response: Check carrier parameters and try again later.

ICA4078  Cannot create blocks.
Explanation: Carrier could not create blocks for transmission.
User Response: Check carrier parameters using the user interface menu.

ICA4079  Carrier carrier did not respond to message delivery.
Explanation: Carrier had trouble delivering the message.
User Response: Check carrier parameters using the user interface menu.

ICA4080  Carrier carrier forced a disconnect during message delivery.
Explanation: Carrier forced a disconnect during message delivery.
User Response: Check carrier parameters and modem initialization string.

ICA4081  Carrier carrier rejected message or Pager ID.
Explanation: Carrier rejected the pager message or pager id.
User Response: Check validity of pager id, activation of pager and carrier parameters.
ICA4082  Communications error during message delivery to carrier carrier.
Explanation: Communications errors could occur for a number of reasons.
User Response: Check carrier parameters using the user interface menu.

ICA4083  Failed to receive confirmation from carrier carrier after maxTries retries.
Explanation: This message occurs if the carrier is busy or cannot establish a connection.
User Response: Check carrier parameters using the user interface menu and try again after a few minutes.

ICA4084  Cannot transmit <EOT>.
Explanation: Modem cannot transmit <EOT>.
User Response: Check modem connections and initialization string.

ICA4085  Cannot receive response to <EOT>.
Explanation: Modem cannot receive response to <EOT>.
User Response: Check modem connections and initialization string.

ICA4086  Carrier carrier did not respond to <EOT>.
Explanation: Carrier cannot respond to transmitted data.
User Response: Check carrier validity and modem connections.

ICA4087  Carrier carrier responded with data unacceptable error because of contents.
Explanation: Carrier cannot respond to transmitted data.
User Response: Check carrier parameters using the user interface menu.

ICA4088  Cannot open defaults file defaultPathname.
Explanation: The modem defaults file may not exist or has incorrect permissions.
User Response: Check file for existence and permissions.

ICA4089  Incomplete defaults file defaultPathname.
Explanation: The modem defaults file has missing data.
User Response: Correct using the user interface menu.

ICA4090  Invalid outside line number in defaults file defaultPathname at line lineNumber.
Explanation: Carrier database file has an invalid outside line number.
User Response: Clean the carrier database file.

ICA4091  Invalid baud rate value in defaults file defaultFile at line lineNumber.
Explanation: Carrier database file has an invalid baud rate.
User Response: Clean the carrier database file.

ICA4092  Invalid data bit value in defaults file defaultFile at line lineNumber.
Explanation: Carrier database file has an invalid data bit value.
User Response: Clean the carrier database file.
ICA4093  Invalid parity value in defaults file defaultFile at line lineNumber.
Explanation:  Carrier database file has an invalid parity value.
User Response:  Clean the carrier database file.

ICA4094  Invalid stop bit value in defaults file defaultFile at line lineNumber.
Explanation:  Carrier database file has an invalid stop bit value.
User Response:  Clean the carrier database file.

ICA4095  Unrecognized tag tag id in defaults file defaultFile on line lineNumber.
Explanation:  Carrier database file has an invalid tag.
User Response:  Clean the carrier database file.

ICA4096  Incorrect number of parameters.
Explanation:  Informational message.

ICA4097  Error(program): Cannot create carrier list. Memory problems.
Explanation:  Possible system or memory problems.

ICA4098  Error(program): Errors in paging carrier file carrierFile.
Explanation:  Carrier database file has some invalid data.
User Response:  Check the carrier database file for invalid tags.

ICA4099  Error(program): Cannot get IPC token errno.
ICA4100  Error(program): Cannot create retry list. Possible memory problems.
Explanation:  Possible system error or memory problems.

ICA4102  Error(program): Cannot setup signal catch for SIGTERM/SIGINT: errno.
Explanation:  Possible system error.

ICA4103  Error(program): Cannot set modem characteristics for carrier carrier.
Explanation:  Could not set up the modem.
User Response:  Check serial port configuration and initialization string.

ICA4104  Missing tag tag for carrier carrier.
Explanation:  Missing modem information. A tag could be baud rate, outside line, etc..
User Response:  Check modem configuration file for invalid characters.

ICA4105  Carrier carrier must have at least one phone number listed.
Explanation:  Carrier must contain the phone number.
User Response:  Add the phone number using the user interface menu.

ICA4106  Cannot open file CarrierFileName.
Explanation:  Carrier database file must exist.
User Response:  If not already present, create one using the user interface menu.
ICA4107  Line lineNumber too long.
Explanation:  Line in carrier database file is too long.
User Response:  Check carrier database file for invalid line.

ICA4108  Unknown tag at line lineNumber.
Explanation:  Unknown tag exists in carrier database file.
User Response:  Check carrier database file for invalid tag.

ICA4109  Invalid sequence at line lineNumber.
Explanation:  Invalid sequence exists in carrier database file.
User Response:  Check carrier database file for invalid sequence.

ICA4110  Carrier carrier is not valid and is being skipped.
Explanation:  Carrier cannot be used for paging purposes.
User Response:  Check validity of carrier.

ICA4111  Cannot add carrier to list.
Explanation:  Carrier cannot be added to list.
User Response:  Check carrier validity and phone numbers.

ICA4112  Carrier name is missing or too long on line lineNumber.
Explanation:  Carrier name is missing.
User Response:  Add carrier using the user interface menu.

ICA4113  Cannot allocate new paging carrier: carrier.
Explanation:  Carrier cannot be allocated to list.
User Response:  Check carrier validity and phone numbers.

ICA4114  Value on line lineNumber is too long.
Explanation:  Encountered a line that is too long in carrier database file.
User Response:  Cleanup the long line in carrier database file.

ICA4115  Duplicate tag tag on line lineNumber ignored.
Explanation:  Encountered a duplicate tag.
User Response:  Remove the duplicate tag from carrier database file.

ICA4116  Value on line lineNumber does not exist.
Explanation:  Encountered a blank field.
User Response:  Use the user interface to add a value in blank field.

ICA4117  Value must be either Y, Yes, N or No on line lineNumber.
Explanation:  This field requires either a Y, Yes, N or No.
User Response:  Use the user interface to add or change valid data.
<table>
<thead>
<tr>
<th>Code</th>
<th>Message</th>
<th>Explanation</th>
<th>User Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICA4118</td>
<td>Value must be greater than 0 on line <code>lineNumber</code>.</td>
<td>This field must be positive.</td>
<td>Change value using the user interface to a positive value.</td>
</tr>
<tr>
<td>ICA4119</td>
<td>Invalid value on line <code>lineNumber</code>.</td>
<td>Encountered an invalid value on specified line.</td>
<td>Change value using the user interface menu.</td>
</tr>
<tr>
<td>ICA4120</td>
<td>Carrier is not valid and is being skipped.</td>
<td>Encountered an invalid carrier.</td>
<td>Add a valid carrier using the user interface menu.</td>
</tr>
<tr>
<td>ICA4121</td>
<td>Cannot add carrier to list.</td>
<td>Cannot add carrier to the paging list.</td>
<td>Check carrier validity.</td>
</tr>
<tr>
<td>ICA4122</td>
<td>Duplicate tag <code>tag</code> on line <code>lineNumber</code> ignored.</td>
<td>Encountered a duplicate tag in a carrier stanza.</td>
<td>Cleanup the carrier stanza containing duplicate values.</td>
</tr>
<tr>
<td>ICA4123</td>
<td>Error(<code>program</code>): Could not get IPC token: <code>errNo</code>.</td>
<td>Program could not get IPC token.</td>
<td></td>
</tr>
<tr>
<td>ICA4124</td>
<td>Error(<code>program</code>): Error <code>pageqErr</code> while reading queue.</td>
<td>Program could not read queue.</td>
<td></td>
</tr>
<tr>
<td>ICA4125</td>
<td><code>count</code> Queue entries.</td>
<td>Informational message.</td>
<td></td>
</tr>
<tr>
<td>ICA4126</td>
<td>Message with ID <code>id</code> deleted.</td>
<td>Informational message.</td>
<td></td>
</tr>
<tr>
<td>ICA4127</td>
<td>ID <code>id</code> not in queue.</td>
<td>Informational message.</td>
<td></td>
</tr>
<tr>
<td>ICA4128</td>
<td>Error(<code>program</code>): Error <code>pageqErr</code> while attempting to delete ID <code>id</code>.</td>
<td>Tried to delete an ID of the queue.</td>
<td></td>
</tr>
<tr>
<td>ICA4129</td>
<td>Key is: <code>entryKey</code> content is <code>@ ptr</code>.</td>
<td>Informational message.</td>
<td></td>
</tr>
<tr>
<td>ICA4130</td>
<td>Modem Characteristics:</td>
<td>Modem initialization information.</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Explanation</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------</td>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>ICA4131</td>
<td>Name: <code>modemName</code></td>
<td>Modem initialization information.</td>
<td></td>
</tr>
<tr>
<td>ICA4132</td>
<td>Init: <code>initString</code></td>
<td>Modem initialization information.</td>
<td></td>
</tr>
<tr>
<td>ICA4133</td>
<td>Command mode: <code>command</code></td>
<td>Modem initialization information.</td>
<td></td>
</tr>
<tr>
<td>ICA4134</td>
<td>Command terminator: <code>0xterminator</code></td>
<td>Modem initialization information.</td>
<td></td>
</tr>
<tr>
<td>ICA4135</td>
<td>Dial: <code>dial</code></td>
<td>Modem initialization information.</td>
<td></td>
</tr>
<tr>
<td>ICA4136</td>
<td>Dial pause: <code>pause</code></td>
<td>Modem initialization information.</td>
<td></td>
</tr>
<tr>
<td>ICA4137</td>
<td>Dial <code>#</code>: <code>dialib</code></td>
<td>Modem initialization information.</td>
<td></td>
</tr>
<tr>
<td>ICA4138</td>
<td>Dial <code>*</code>: <code>dialstar</code></td>
<td>Modem initialization information.</td>
<td></td>
</tr>
<tr>
<td>ICA4139</td>
<td>Hangup: <code>hangup</code></td>
<td>Modem initialization information.</td>
<td></td>
</tr>
<tr>
<td>ICA4140</td>
<td>Valid command response: <code>validCommandresp</code></td>
<td>Modem initialization information.</td>
<td></td>
</tr>
<tr>
<td>ICA4141</td>
<td>Valid connect: <code>validConnect</code></td>
<td>Modem initialization information.</td>
<td></td>
</tr>
<tr>
<td>ICA4142</td>
<td>Echo: <code>echo</code></td>
<td>Modem initialization information.</td>
<td></td>
</tr>
<tr>
<td>ICA4143</td>
<td>Modem debug record: <code>PUTS(id) txd-&gt; outStr</code></td>
<td>Modem handshaking information.</td>
<td></td>
</tr>
<tr>
<td>ICA4144</td>
<td>Modem debug record: <code>PUTC(id) txd-&gt; outStr</code></td>
<td>Modem handshaking information.</td>
<td></td>
</tr>
<tr>
<td>ICA4145</td>
<td>Modem debug record: <code>GET rxd-&gt; %1$s</code></td>
<td>Modem handshaking information.</td>
<td></td>
</tr>
</tbody>
</table>

---

IBM: Firewall For AIX Reference
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICA4146</td>
<td>Modem debug record: INPUT(%1$s)</td>
<td>Modem handshaking information.</td>
</tr>
<tr>
<td>ICA4147</td>
<td>Modem debug record: ) rxd-&gt;</td>
<td>Modem handshaking information.</td>
</tr>
<tr>
<td>ICA4148</td>
<td>Modem debug record: WAITFOR(%1$s)</td>
<td>Modem handshaking information.</td>
</tr>
<tr>
<td>ICA4149</td>
<td>Could not unblock child signal.</td>
<td>Unblocks the SIGCHLD signal.</td>
</tr>
<tr>
<td>ICA4150</td>
<td>Could not block the child signal.</td>
<td>Blocks the SIGCHLD signal.</td>
</tr>
<tr>
<td>ICA4151</td>
<td>Warm start file filePathname does not exist.</td>
<td>Informational message.</td>
</tr>
<tr>
<td>ICA4152</td>
<td>Cannot open warm start file filePathname</td>
<td>Informational message.</td>
</tr>
<tr>
<td>ICA4153</td>
<td>Line is too long in warm start file filePathname</td>
<td>The warm start file contains some invalid characters.</td>
</tr>
<tr>
<td>ICA4154</td>
<td>Warm start file filePathname has data that is not being used.</td>
<td>Informational message.</td>
</tr>
<tr>
<td>ICA4155</td>
<td>Warm start file filePathname is empty.</td>
<td>Informational message.</td>
</tr>
<tr>
<td>ICA4156</td>
<td>Line lineNumber of warm start file filePathname has bad addressee address,</td>
<td>Warm start file has some invalid characters. Informational message.</td>
</tr>
<tr>
<td></td>
<td>ignored.</td>
<td></td>
</tr>
<tr>
<td>ICA4157</td>
<td>Line lineNumber of warm start file filePathname has bad format, ignored.</td>
<td>Warm start file has some invalid characters. Informational message.</td>
</tr>
<tr>
<td>ICA4158</td>
<td>Line lineNumber of warm start file filePathname has no message, ignored.</td>
<td>Warm start file has no messages. Informational message.</td>
</tr>
<tr>
<td>ICA4159</td>
<td>Error queueing line lineNumber of warm start file filePathname, ignored.</td>
<td>Warm start file has some invalid characters. Informational message.</td>
</tr>
<tr>
<td>ICA4160</td>
<td>Warm start of count messages from file filePathname complete.</td>
<td>Informational message.</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>ICA4161</td>
<td><strong>Error</strong>(<em>program</em>): Too many consecutive child errors. <strong>Explanation:</strong> Too many child errors in a row. This occurs if either the carrier or the modem definition file has some invalid characters. <strong>User Response:</strong> Check carrier database file and modem definition file using the user interface menu.</td>
<td></td>
</tr>
<tr>
<td>ICA4162</td>
<td>Child cannot exec <em>program</em>: <strong>errno</strong>. <strong>Explanation:</strong> Possible system error.</td>
<td></td>
</tr>
<tr>
<td>ICA4163</td>
<td>Error(<strong>errno</strong>): Child cannot fork child: <em>program name</em>. <strong>Explanation:</strong> Possible system error.</td>
<td></td>
</tr>
<tr>
<td>ICA4164</td>
<td>Could not create paging carrier list. <strong>Explanation:</strong> Internal program error.</td>
<td></td>
</tr>
<tr>
<td>ICA4165</td>
<td>Errors in paging carrier file <em>carrierFile</em>. <strong>Explanation:</strong> Carrier database contains some invalid data. <strong>User Response:</strong> Check carrier database file using the user interface menu.</td>
<td></td>
</tr>
<tr>
<td>ICA4166</td>
<td>Informational message. IPC key is: 0x<strong>IpcKey</strong>. <strong>Explanation:</strong> Informational message.</td>
<td></td>
</tr>
<tr>
<td>ICA4167</td>
<td>Could not create queue, page_q_err: <em>pageQerr</em>. <strong>Explanation:</strong> Failed while trying to create queue.</td>
<td></td>
</tr>
<tr>
<td>ICA4168</td>
<td>Paging Warm Start file created at <em>time</em>. <strong>Explanation:</strong> Informational message.</td>
<td></td>
</tr>
<tr>
<td>ICA4169</td>
<td>priority -p priority numPager from objfrom message. <strong>Explanation:</strong> Informational message.</td>
<td></td>
</tr>
<tr>
<td>ICA4170</td>
<td>priority -p priority alpaPager@carrier from from message. <strong>Explanation:</strong> Informational message.</td>
<td></td>
</tr>
<tr>
<td>ICA4171</td>
<td>priority -p priority -n numPager@carrier from from message. <strong>Explanation:</strong> Informational message.</td>
<td></td>
</tr>
<tr>
<td>ICA4172</td>
<td>End of pager warm start file. <strong>Explanation:</strong> Informational message. Denotes end of message.</td>
<td></td>
</tr>
<tr>
<td>ICA4173</td>
<td>Cannot write into warm start file <em>warmstrtFile</em>. <strong>Explanation:</strong> Warm start file may not exist.</td>
<td></td>
</tr>
<tr>
<td>ICA4174</td>
<td><strong>time</strong> STATUS-REQUEST from <em>user@host</em>. <strong>Explanation:</strong> Displays the status request information.</td>
<td></td>
</tr>
</tbody>
</table>
ICA4175  
Time SUMMARY-REQUEST from user@host.
Explanation: Displays the summary request information.

ICA4176  
Count queue entries.
Explanation: Counts the number of queue entries in pager queue.

ICA4177  
Oldest entry: ID id received at time.
Explanation: Displays the oldest entry in queue.

ICA4178  
Re-attaching memory after expansion failed.
Explanation: Possible system error.

ICA4179  
Re-attaching memory after expansion failed to align.
Explanation: Possible system error.

ICA4180  
Could not down PAGE_Q semaphore in page_q_print() : errno.
Explanation: Possible system error.

ICA4181  
Could not up PAGE_Q semaphore in page_q_print() : errno.
Explanation: Possible system error.

ICA4182  
Link headLink -> message ID: id.
Explanation: Informational message.

ICA4183  
Priority: priority.
Explanation: Informational message.

ICA4184  
Person: name.
Explanation: Informational message.

ICA4185  
Carrier: carrier.
Explanation: Informational message.

ICA4186  
Message: message.
Explanation: Informational message.

ICA4187  
Could not get shared RAM : errno.
Explanation: Possible system error.

ICA4188  
Could not get attached shared RAM : errno.
Explanation: Possible system error.

ICA4189  
Could not get PAGE_Q semaphore.
Explanation: Possible system error.
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICA4190</td>
<td>Could not initialize PAGE_Q semaphore in <code>page_q_create()</code>: <code>errno</code>.</td>
<td>Possible system error.</td>
</tr>
<tr>
<td>ICA4191</td>
<td>Could not set PAGE_Q semaphore in <code>page_q_create()</code>: <code>errno</code>.</td>
<td>Possible system error.</td>
</tr>
<tr>
<td>ICA4192</td>
<td>Could not down PAGE_Q semaphore in <code>page_q_empty()</code>: <code>errno</code>.</td>
<td>Possible system error.</td>
</tr>
<tr>
<td>ICA4193</td>
<td>Could not up PAGE_Q semaphore in <code>page_q_empty()</code>: <code>errno</code>.</td>
<td>Possible system error.</td>
</tr>
<tr>
<td>ICA4194</td>
<td>Could not down PAGE_Q semaphore in <code>page_q_enq(name,message)</code>: <code>errno</code>.</td>
<td>Possible system error.</td>
</tr>
<tr>
<td>ICA4195</td>
<td>Could not up PAGE_Q semaphore in <code>page_q_enq()</code>: <code>errno</code>.</td>
<td>Possible system error.</td>
</tr>
<tr>
<td>ICA4196</td>
<td><code>page_q_enq()</code>: ID(id) Pri(priority) Person(name) Mesg(message).</td>
<td>Informational message.</td>
</tr>
<tr>
<td>ICA4197</td>
<td>Could not down PAGE_Q semaphore in <code>page_q_head()</code>: <code>errno</code>.</td>
<td>Possible system error.</td>
</tr>
<tr>
<td>ICA4198</td>
<td>Could not up PAGE_Q semaphore in <code>page_q_head()</code>: <code>errno</code>.</td>
<td>Possible system error.</td>
</tr>
<tr>
<td>ICA4199</td>
<td>Could not down PAGE_Q semaphore in <code>page_q_first()</code>: <code>errno</code>.</td>
<td>Possible system error.</td>
</tr>
<tr>
<td>ICA4200</td>
<td>Could not up PAGE_Q semaphore in <code>page_q_first()</code>: <code>errno</code>.</td>
<td>Possible system error.</td>
</tr>
<tr>
<td>ICA4201</td>
<td>Could not down PAGE_Q semaphore in <code>page_q_next()</code>: <code>errno</code>.</td>
<td>Possible system error.</td>
</tr>
<tr>
<td>ICA4202</td>
<td>Could not up PAGE_Q semaphore in <code>page_q_next()</code>: <code>errno</code>.</td>
<td>Possible system error.</td>
</tr>
<tr>
<td>ICA4203</td>
<td>Could not down PAGE_Q semaphore in <code>page_q_tail()</code>: <code>errno</code>.</td>
<td>Possible system error.</td>
</tr>
<tr>
<td>ICA4204</td>
<td>Could not up PAGE_Q semaphore in <code>page_q_tail()</code>: <code>errno</code>.</td>
<td>Possible system error.</td>
</tr>
<tr>
<td>Code</td>
<td>Message</td>
<td>Explanation</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------------------------------------------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>ICA4205</td>
<td>Could not down PAGE_Q semaphore in page_q_del() : <em>errno</em>.</td>
<td>Possible system error.</td>
</tr>
<tr>
<td>ICA4206</td>
<td>Could not up PAGE_Q semaphore in page_q_del() : <em>errno</em>.</td>
<td>Possible system error.</td>
</tr>
<tr>
<td>ICA4207</td>
<td><code>page_q_del(ID)</code></td>
<td>Debug information.</td>
</tr>
<tr>
<td>ICA4208</td>
<td>Could not down PAGE_Q semaphore in page_q_deq() : <em>errno</em>.</td>
<td>Possible system error.</td>
</tr>
<tr>
<td>ICA4209</td>
<td>Could not up PAGE_Q semaphore in page_q_deq() : <em>errno</em>.</td>
<td>Possible system error.</td>
</tr>
<tr>
<td>ICA4210</td>
<td><code>page_q_deq()</code>: ID(<em>id</em>) Pri(<em>priority</em>) Person(<em>name</em>) Mesg(<em>message</em>).</td>
<td>Informational message.</td>
</tr>
<tr>
<td>ICA4211</td>
<td>Could not down PAGE_Q semaphore in page_q_walk() : <em>errno</em>.</td>
<td>Possible system error.</td>
</tr>
<tr>
<td>ICA4212</td>
<td>Could not up PAGE_Q semaphore in page_q_walk() : <em>errno</em>.</td>
<td>Possible system error.</td>
</tr>
<tr>
<td>ICA4213</td>
<td>PAGE_Q is full.</td>
<td>The paging queue is full.</td>
</tr>
<tr>
<td></td>
<td><strong>User Response:</strong> Send the page later.</td>
<td></td>
</tr>
<tr>
<td>ICA4300</td>
<td>Hanging up.</td>
<td>Hanging up the call.</td>
</tr>
<tr>
<td>ICA4301</td>
<td>Initializing modem ..</td>
<td>Initializing modem with the init string.</td>
</tr>
<tr>
<td>ICA4302</td>
<td>Dialing ......</td>
<td>Dialing the phone number.</td>
</tr>
<tr>
<td>ICA4303</td>
<td>Waiting for connection.</td>
<td>Waiting for the modem connection</td>
</tr>
<tr>
<td>ICA4304</td>
<td>CONNECTED <em>speed</em></td>
<td>Connecting at</td>
</tr>
<tr>
<td>ICA4305</td>
<td>CONNECTED!!!!!!!</td>
<td>Connected to the pager service provider</td>
</tr>
</tbody>
</table>
ICA4306 Requesting prompt for Automatic Mode.
Explanation: Requesting prompt for automatic mode. Waiting for "ID="

ICA4307 Prompt OK.....
Explanation: Got "ID=" back from the provider.

ICA4308 Sending Automatic Mode Request.
Explanation: Sending ID and SST over to the pager service provider

ICA4309 Send Automatic Mode Request .....OK!
Explanation: Got [p back. Means communication successful

ICA4310 Sending out message
Explanation: Sending out message block over

ICA4311 Waiting for result
Explanation: Waiting for the confirmation

ICA4312 Ack received. Page successful
ICA4313 Nak received, Resend block. Attempt NakTries
Explanation: Nak received. Pager provider is asking for resend

ICA4314 Transaction error. Resend block. Attempt RsTries
Explanation: Transaction error. Resending the block over.

ICA4315 Carrier Terminate Connection.
Explanation: Pager provider terminated the conversation. Call provider for the problem.

ICA4350 fwpage [carrier="..."] [modem="..."] [ID="..."] [msg="..."]
Explanation: fwpage usage. Check your parameters and try again

ICA4351 %1$s file not exist
Explanation: Check the file to see if it is under the right directory. carriers.cfg, modems.cfg, and pager.cfg must be created before using this code.

ICA4352 What file corrupted
Explanation: File has been modified by user and not in the stanza format. All attributes should be entered through GUI.

ICA4353 What too long, please shorten it and try again
Explanation: |What| too long. Shorten it and try again.
ICA4354  What is wrong.
Explanation: If baud rate wrong, the valid options are: 600, 1200. If data bit per byte wrong, the valid options are: 7, 8. If stop bits wrong, the valid options are: 1, 2. If out line prefix wrong, the inputs should only be numbers. If paging method wrong, only TAP is supported in this version. If pager ID error, check to see if its all numbers. If parity wrong, the valid options are: O(odd), E(even), N(none), S(space), M(mark). If COM port wrong, the valid options are: COM1, COM2 .... COM port should be less than 10 in this version. If message character wrong, check the message to see if there is special character in it.

ICA4355  Set Parameters in where error.
Explanation: Unable to set parameters in |where|. Check parameters and try again.

ICA4356  when When, COM port reading error.
Explanation: COM port reading error. Set modem echo on and try again

ICA4357  when Where, COM port writing error.
Explanation: COM port write error.

ICA4358  Set What error
Explanation: Set |What| error. Check the log file and pin down the error.

ICA4359  Max tries exceed in Where. Abort program ..... 
ICA4360  Unknown character in Carrier phone number: *pCarrierPhoneNum
Explanation: an unrecognized character found in the carrier phone number. Please check the number and try again.

ICA4361  Warning!!! Paging provider's modem normally should be less than 2400.
Explanation: This is just a warning. Paging provider's modem speed is normally set less than 2400.

ICA4362  Unable to initialize modem
Explanation: Change modem initialization string and try again.

ICA4363  Modem returned Error.
Explanation: Modem communication error

ICA4364  tries try on open Com port error. Retry in 1 minute
Explanation: Open com port error. Probably another program is using it. Automatically retry in 1 minutes

ICA4365  Send page failed on tries try. Retry in 1 minutes
Explanation: Send page failed. Check log file to find out the exact reason.

ICA4366  Message too long, truncated
Explanation: Just a warning. Message length is too long. Truncate to fit in.
ICA4367  Reset Max message length to the internal defined value:%1$d
Explanation: Reset the max message length to the default ones, because user defined message length is larger the the internal defined, which is 80.

ICA4368  Action: Where error
Explanation: If opening COM port error, check configuration and try again. If close COM handle error, system problem. If purge COM error, system problem. If send dial command error, dialing command problem. Check to see if it is a Hayes compatible modem. If send ID request error, check if the pager provider supports TAP protocol. If send automatic prompt error, check if the pager service works correctly. If send message error, check the log file to pin down the cause of failure. If prompt error, unable to get a prompt back from the pager provider.

ICA4369  Too many transaction error. aborting ....
Explanation: Too many transaction errors, abort this try.

ICA4370  Too many Nak received, aborting the program ..... 
Explanation: Too many Nak received from the page provider, abort this try.

ICA4371  szComPort on COM port with function FunctionName return Error Number
Explanation: check the parameters and try again.

ICA4372  Modem return error message...... ReturnMessag
Explanation: Messages are. Not connected Ringing, but not connected No carrier No dial tone Busy No answer unknown code, please report it.

ICA5022  The sslrctd daemon process is successfully activated.
Explanation: The Windows 95 Secure Remote Client SSL Server has been successfully activated.

ICA5023  Cannot start the sslrctd daemon process
Explanation: The Windows 95 Secure Remote Client SSL Server has not been activated. This may have been caused by the Windows 95 Secure Remote Client SSL Server not being able to find the SSL keyring file. See Chapter 5, “Using the Make Key File Utility (MKKF)” on page 57 for more information.

ICA5028  Invalid Login Request.
Explanation: The Windows 95 Secure Remote Client SSL Server received an invalid Login request packet.

ICA5030  Unknown Remote Client ID: UserID
Explanation: The Windows 95 Secure Remote Client SSL Server received an invalid UserID during the login sequence.

ICA5035  Invalid Logout Request
Explanation: The Windows 95 Secure Remote Client SSL Server received an invalid logout request packet.
<table>
<thead>
<tr>
<th>Code</th>
<th>Message Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICA5060</td>
<td>Tunnel up for client UserID</td>
</tr>
<tr>
<td><strong>Explanation:</strong></td>
<td>The Windows 95 Secure Remote Client SSL Server started a tunnel for UserID.</td>
</tr>
<tr>
<td>ICA5082</td>
<td>Tunnel to client UserID has been disconnected.</td>
</tr>
<tr>
<td><strong>Explanation:</strong></td>
<td>The Windows 95 Secure Remote Client SSL Server stopped a tunnel for UserID.</td>
</tr>
<tr>
<td>ICA5087</td>
<td>Authentication failed for UserID</td>
</tr>
<tr>
<td><strong>Explanation:</strong></td>
<td>The Windows 95 Secure Remote Client SSL Server received an invalid password for UserID.</td>
</tr>
<tr>
<td>ICA9000</td>
<td>IBM Firewall evaluation expires in number of days.</td>
</tr>
<tr>
<td><strong>Explanation:</strong></td>
<td>This software is branded as an evaluation copy and will disable itself as indicated.</td>
</tr>
<tr>
<td>ICA9001</td>
<td>File System Integrity Checker Warning - warning description text</td>
</tr>
<tr>
<td><strong>Explanation:</strong></td>
<td>fwfschk found a discrepancy in the system - potential security threat.</td>
</tr>
<tr>
<td>ICA9002</td>
<td>last message repeated number times</td>
</tr>
<tr>
<td><strong>Explanation:</strong></td>
<td>Message generated by AIX syslogd when an identical message is logged without any intervening message. The message is kept here for Log Monitor to be able to detect the condition. This message must be in whatever language the real syslogd message is being written.</td>
</tr>
<tr>
<td>ICA9003</td>
<td>Authentication failed for user name on the configuration server.</td>
</tr>
<tr>
<td><strong>Explanation:</strong></td>
<td>FW configuration server is unable to authenticate the indicated user.</td>
</tr>
<tr>
<td><strong>User Response:</strong></td>
<td>See your FW administrator.</td>
</tr>
<tr>
<td>ICA9004</td>
<td>User name successfully authenticated on the configuration server.</td>
</tr>
<tr>
<td><strong>Explanation:</strong></td>
<td>FW configuration server authenticated the indicated user.</td>
</tr>
<tr>
<td>ICA9005</td>
<td>Starting remote configuration server.</td>
</tr>
<tr>
<td><strong>Explanation:</strong></td>
<td>Configuration server has been started.</td>
</tr>
<tr>
<td>ICA9006</td>
<td>Ending remote configuration server.</td>
</tr>
<tr>
<td><strong>Explanation:</strong></td>
<td>Configuration server is ending.</td>
</tr>
<tr>
<td>ICA9007</td>
<td>Remote configuration server unable to open message catalog.</td>
</tr>
<tr>
<td><strong>Explanation:</strong></td>
<td>One or more message catalogs used by the remote configuration server may be missing.</td>
</tr>
<tr>
<td><strong>User Response:</strong></td>
<td>See your FW administrator.</td>
</tr>
<tr>
<td>ICA9008</td>
<td>Remote configuration server failed on getpeername(): error errno.</td>
</tr>
<tr>
<td><strong>Explanation:</strong></td>
<td>Configuration server is unable to obtain information about the client.</td>
</tr>
<tr>
<td><strong>User Response:</strong></td>
<td>See your FW administrator.</td>
</tr>
</tbody>
</table>
ICA9009  Remote configuration server failed on getsockname(): error errno.
Explanation: Configuration server is unable to obtain information about itself.
User Response: See your FW administrator.

ICA9010  Remote configuration server failed obtaining adapter information.
Explanation: Configuration server is unable to obtain adapter information.
User Response: See your FW administrator.

ICA9011  Configuration server not enabled for remote configuration.
Explanation: Configuration server has local=yes set in its configuration file and the client is on a remote machine.
User Response: See your FW administrator.

ICA9012  Remote configuration server unable to read logon request.
Explanation: Configuration server cannot read in the client logon request.
User Response: See your FW administrator.

ICA9013  Remote configuration server received incorrect logon request.
Explanation: Logon request contained incorrect information.
User Response: See your FW administrator.

ICA9014  Remote configuration server unable to create pipe.
Explanation: Configuration server cannot create a pipe for authentication.
User Response: See your FW administrator.

ICA9015  Remote configuration server unable to create process.
Explanation: Configuration server cannot create a process for authentication.
User Response: See your FW administrator.

ICA9016  Starting EFM daemon.
Explanation: The EFM daemon has been started on the managed firewall.

ICA9017  Ending EFM daemon; rc = value.
Explanation: The EFM daemon is ending with the specified return code.

ICA9018  EFM daemon unable to open message catalog.
Explanation: One or more message catalogs used by the EFM daemon may be missing.
User Response: See your FW administrator.

ICA9020  Unable to switch the running user ID.
Explanation: failed to make the system call to switch the running user ID.
User Response: See your FW administrator.
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICA9021</td>
<td>This firewall does not support logon mode.</td>
</tr>
<tr>
<td>Explanation:</td>
<td>This firewall does not support this particular mode.</td>
</tr>
<tr>
<td>User Response:</td>
<td>See your FW administrator.</td>
</tr>
<tr>
<td>ICA9022</td>
<td>user is not authorized to logon to the firewall in logon mode.</td>
</tr>
<tr>
<td>Explanation:</td>
<td>This username is not authorized to logon using this particular mode.</td>
</tr>
<tr>
<td>User Response:</td>
<td>See your FW administrator.</td>
</tr>
<tr>
<td>ICA9023</td>
<td>Unable to load EFM DLL.</td>
</tr>
<tr>
<td>Explanation:</td>
<td>failed to load the efm dll.</td>
</tr>
<tr>
<td>ICA9024</td>
<td>Transfer request started by username to firewall machinename.</td>
</tr>
<tr>
<td>Explanation:</td>
<td>The transfer operation has started.</td>
</tr>
<tr>
<td>ICA9025</td>
<td>Transfer request ended with return code returncode.</td>
</tr>
<tr>
<td>Explanation:</td>
<td>The transfer operation is complete.</td>
</tr>
<tr>
<td>ICA9026</td>
<td>Transfer request received from user on firewall machinename on date/time.</td>
</tr>
<tr>
<td>Explanation:</td>
<td>The transfer operation started at the specified time.</td>
</tr>
<tr>
<td>ICA9027</td>
<td>File filename in function function added to transfer request.</td>
</tr>
<tr>
<td>Explanation:</td>
<td>The specified file is to be transferred.</td>
</tr>
<tr>
<td>ICA9028</td>
<td>Activate request started by user to firewall machinename.</td>
</tr>
<tr>
<td>Explanation:</td>
<td>The activate operation has started.</td>
</tr>
<tr>
<td>ICA9029</td>
<td>Activate request ended with return code returncode.</td>
</tr>
<tr>
<td>Explanation:</td>
<td>The activate operation is complete.</td>
</tr>
<tr>
<td>ICA9030</td>
<td>Activate request received from user on firewall machinename on date/time.</td>
</tr>
<tr>
<td>Explanation:</td>
<td>The activate operation started at the specified time.</td>
</tr>
<tr>
<td>ICA9031</td>
<td>Activate of function function ended with return code returncode.</td>
</tr>
<tr>
<td>Explanation:</td>
<td>Activation of the specified function is complete.</td>
</tr>
<tr>
<td>ICA9032</td>
<td>NAT configuration updated at time on date.</td>
</tr>
<tr>
<td>Explanation:</td>
<td>NAT configuration has been updated.</td>
</tr>
<tr>
<td>ICA9033</td>
<td>NAT support (level version.release) initialized at time on date.</td>
</tr>
<tr>
<td>Explanation:</td>
<td>Firewall NAT support has been initialized.</td>
</tr>
<tr>
<td>ICA9034</td>
<td>NAT support deactivated at time on date.</td>
</tr>
<tr>
<td>Explanation:</td>
<td>NAT is disabled.</td>
</tr>
</tbody>
</table>
ICA9035  NAT unable to allocate Registered Address for Secured Address Secured IP Address.

Explanation: Registered Address not translated.

ICA9036  NAT released Registered Address Registered IP Address to address pool.

Explanation: Registered Address is released to registered IP address pool.
Appendix B. Hardening for AIX System Configuration

Hardening is a process that maximizes security and efficiency by turning off unnecessary daemons and disabling unauthorized user IDs. Hardening is part of installation of the IBM Firewall software and edits the system resources that might compromise security.

The hardening process:

- Removes these daemons from /etc/rc.tcpip: lpd, routed, gated, portmap, timed, snmpd, rwhod, fs, sendmail, named and dpid2.
- Disables the AIX Common Desktop Environment.
- Removes all unnecessary programs from inittab. Everything is taken out of /etc/init.tab EXCEPT init, brc, powerfail, rc, fbcheck, srcmstr, rctcpip, cron, cons, logsymp, diagd, acfgd, pmd and tty.
- Disables all logins for users except root, daemon, bin, adm, nobody, and any previous IBM Firewall users.
- Sets owners to root for all files and directories that have no owners, and sets permissions to zero.
- During the hardening process, root is converted to a firewall user with remote logins disabled. Also, any previous firewall users using a downlevel version are migrated to the new version.
- Disables nonsecure applications by setting permissions to zero. These non-secure applications are: tftp, utftp, ttftp, uucpd, rcp, rlogin, rlogind, rsh, and rshd.
- Disables everything in /etc/inetd.conf EXCEPT: ftp, telnet, and ibmfwrcs (remote config server daemon).

When the hardening process is complete, the file system integrity checker database is generated.
Appendix C. SNMP Management Information Base (MIB)

This appendix gives detail of the Firewall MIB.
-- FW fwMib Definitions
--
IBMWFW-fwMib DEFINITIONS ::= BEGIN

-- This component represents a system configured with IBM's 
-- Internet Connection IBM Firewall (FW) product. 
-- The groups defined are as follows:

-- the FW Syslog Trap group 
-- the FW Server Status Trap group 
-- the FW Component ID group 
-- the FW Software Component Information group 
-- the FW Subagent group 
-- the FW Server Table group 
-- the ftpd Proxy Server Group 
-- the telnetd Proxy Server Group 
-- the Mail Server Table Group 
-- the Log File Management Table group 
-- the FW Server Status Table group 
-- the FW Server Concurrency Status Table group 
-- the FW Configuration File Table group 
-- the FW Filter Status group 
-- the Network Configuration group 
-- the Threshold Configuration Table group 
-- the Active IP Tunnel Table group 
-- the Network Address Translation Table

IMPORTS
  Counter, enterprises
  FROM RFC1155-SMI
  OBJECT-TYPE
  FROM RFC-1212
  DisplayString
  FROM RFC1213-fwMib
  TRAP-TYPE
  FROM RFC-1215;

--
-- The MIB was registered under the original name Secured Network Gateway 
-- (SNG).
--
internet OBJECT IDENTIFIER ::= { iso org(3) dod(6) 1 }
private OBJECT IDENTIFIER ::= { internet 4}
enterprises OBJECT IDENTIFIER ::= { private 1 }
ibm OBJECT IDENTIFIER ::= { enterprises 2 }
ibmProd OBJECT IDENTIFIER ::= { ibm 6 }
ibmSNG OBJECT IDENTIFIER ::= { ibmProd 129 }
fwMib OBJECT IDENTIFIER ::= { ibmSNG 1 }
fwSubagent OBJECT IDENTIFIER ::= { ibmSNG 2 }

-- FW Syslog Trap Group

fwSyslogTrapGrp OBJECT IDENTIFIER ::= {fwMib 1}

fwSyslogFacility OBJECT-TYPE
  SYNTAX DisplayString (SIZE (0..20))
ACCESS  not-accessible
STATUS  mandatory
DESCRIPTION  "syslog facility that generated the record."
   --  The string can be one of the following:
   --  "local1"
   --  "local4"
::: {fwSyslogTrapGrp 1}

fwSyslogLogFileName OBJECT-TYPE
SYNTAX  DisplayString (SIZE (0..255))
ACCESS  not-accessible
STATUS  mandatory
DESCRIPTION  "File where the syslog record was entered."
::: {fwSyslogTrapGrp 2}

fwSyslogDate OBJECT-TYPE
SYNTAX  DisplayString (SIZE (0..50))
ACCESS  not-accessible
STATUS  mandatory
DESCRIPTION  "Date of the syslog record."
::: {fwSyslogTrapGrp 3}

fwSyslogTime OBJECT-TYPE
SYNTAX  DisplayString (SIZE (0..20))
ACCESS  not-accessible
STATUS  mandatory
DESCRIPTION  "Time of the syslog record."
::: {fwSyslogTrapGrp 4}

fwSyslogHost OBJECT-TYPE
SYNTAX  DisplayString (SIZE (0..255))
ACCESS  not-accessible
STATUS  mandatory
DESCRIPTION  "Host in the syslog record."
::: {fwSyslogTrapGrp 5}

fwSyslogPid OBJECT-TYPE
SYNTAX  INTEGER
ACCESS  not-accessible
STATUS  mandatory
DESCRIPTION  "Process id in the syslog record."
::: {fwSyslogTrapGrp 6}

fwSyslogMsgText OBJECT-TYPE
SYNTAX  DisplayString (SIZE (0..255))
ACCESS  not-accessible
STATUS  mandatory
DESCRIPTION  "Message text in the syslog record."
::: {fwSyslogTrapGrp 7}

-- FW Server Status Trap Group

fwSvrStatTrapGrp OBJECT IDENTIFIER ::= {fwMib 2}

fwSvrName OBJECT-TYPE
SYNTAX  DisplayString (SIZE (0..255))
ACCESS  not-accessible
STATUS  mandatory
DESCRIPTION "The server's name."
::= {fwSvrStatTrapGrp 1}

fwSvrProgram OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "The server executable name"
::= {fwSvrStatTrapGrp 2}

fwSvrState OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..50))
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "The server's current running state."
-- The string can be one of the following:
-- "running"
-- "not running"
::= {fwSvrStatTrapGrp 3}

fwSvrStateValue OBJECT-TYPE
SYNTAX INTEGER
{
  vUnknown       (0),
  vNotRunning    (1),
  vRunning       (2)
}
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "The server's current running state (integer form)."
::= {fwSvrStatTrapGrp 4}

fwSvrTrapTimestamp OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..30))
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "Timestamp at which the server status trap generated."
::= {fwSvrStatTrapGrp 5}

fwSvrTrapHost OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "Hostname from where the trap generated."
::= {fwSvrStatTrapGrp 6}

-- FW Component ID Group ******************************************************
fwComponentIdGroup OBJECT IDENTIFIER ::= {fwMib 3}

fwManufacturer OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..32))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The company that produced this component."
-- The string is: "IBM Corporation."
::= {fwComponentIdGroup 1}
fwProduct OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The name of this component or product."
-- The string is: "IBM FW SNMP Subagent."
::= {fwComponentIdGroup 2}

fwVersion OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..16))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The version string for this component."
::= {fwComponentIdGroup 3}

fwVerify OBJECT-TYPE
SYNTAX INTEGER
-- {
  -- vAnErrorOccurred;CheckStatusCode   (0),
  -- vThisComponentDoesNotExist         (1),
  -- vTheVerifyIsNotSupported           (2),
  -- vReserved                          (3),
  -- vComponent'sFunctionalityUntested (4),
  -- vComponent'sFunctionalityUnknown  (5),
  -- vComponentIsNotFunctioningCorrectly (6),
  -- vComponentFunctionsCorrectly       (7)
-- }
ACCESS read-only
STATUS mandatory
DESCRIPTION "A code that provides a level of verification that the component is still installed and working. This value is 2 for this release."
::= {fwComponentIdGroup 4}

fwVerifyString OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..32))
ACCESS read-only
STATUS mandatory
DESCRIPTION "A string that corresponds to the aVerify value. The string for this release will be: Verify is not supported."
::= {fwComponentIdGroup 5}

-- FW Software Component Information Group =========================
fwSoftwareCompInfoGroup OBJECT IDENTIFIER ::= {fwMib 4}

fwMajorVersion OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..16))
ACCESS read-only
STATUS mandatory
DESCRIPTION "Major version of this fwSoftware component."
::= {fwSoftwareCompInfoGroup 1}

fwMinorVersion OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..16))
ACCESS read-only
STATUS mandatory
DESCRIPTION "Minor version of this fwSoftware component."
::= {fwSoftwareCompInfoGroup 2}

fwRevision OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..16))
ACCESS read-only
STATUS mandatory
DESCRIPTION "Revision of this fwSoftware component."
::= {fwSoftwareCompInfoGroup 3}

fwTargetOperatingSystem OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The operating system for which this fwSoftware component is intended."
::= {fwSoftwareCompInfoGroup 4}

fwLanguageEdition OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..16))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The language edition of this fwSoftware component. This string will be: English."
::= {fwSoftwareCompInfoGroup 5}

fwTargetOsString OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..32))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The operating system for which this fwSoftware component is intended. This is AIX for this release."
::= {fwSoftwareCompInfoGroup 6}

-- FW Subagent Group =========================================
/fwSubagentGroup OBJECT IDENTIFIER ::= {fwMib 5}

fwSubagtName OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..32))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The name of this subagent is IBM FW Subagent. The string is: IBM FW Subagent."
::= {fwSubagentGroup 1}

fwSubagtUpTime OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..26))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The date and time the FW subagent was last started."
::= {fwSubagentGroup 2}

fwCritlogPoll OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory
DESCRIPTION "Polling interval (in minutes) for critlog thread."
::= {fwSubagentGroup 3}
fwCritlogTimestamp OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..26))
ACCESS read-write
STATUS mandatory
DESCRIPTION "Beginning timestamp for monitoring critlog records."
::= {fwSubagentGroup 4}

fwCritlogLocation OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-write
STATUS mandatory
DESCRIPTION "Location of critlog file(s)."
::= {fwSubagentGroup 5}

fwSvrStatPoll OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-write
STATUS mandatory
DESCRIPTION "Polling interval (in minutes) for server status thread."
::= {fwSubagentGroup 6}

-- FW Server Table Group =========================================
-- FwSvrEntry has to start with an upper case otherwise mosy gives an error

fwSvrTbl1 OBJECT-TYPE
SYNTAX SEQUENCE OF FwSvrEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "A list of entries for FW servers configured on this host."
::= {fwMib 6}

aFwSvrEntry OBJECT-TYPE
SYNTAX FwSvrEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION ""
INDEX {fwServerName}
::= {fwSvrTbl1 1}

FwSvrEntry ::= SEQUENCE
{ fwServerName DisplayString,
  fwServerSocketType DisplayString,
  fwServerProtocol DisplayString,
  fwServerWait DisplayString,
  fwServerUser DisplayString,
  fwServerProgram DisplayString,
  fwServerArgs DisplayString
}

fwServerName OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..50))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The name of the FW or inet server."
-- The string can be one of the following:
-- "Unknown"
-- "FTPD Proxy"
-- "Telnetd Proxy"
-- "Http Proxy"
-- ... or any service in the file /etc/services.
::= {afWsrvEntry 1}

fwServerSocketType OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..50))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The type of socket the server is using."
-- The string can be one of the following:
-- "stream"
-- "dgram"
-- "sunrpc_udp"
-- "sunrpc_tcp"
::= {afWsrvEntry 2}

fwServerProtocol OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..50))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The communication protocol the server is using."
-- The string can be one of the protocols found in the
-- file /etc/protocols.
::= {afWsrvEntry 3}

fwServerWait OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..50))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The wait/no wait attribute of the server."
-- The string can be one of the following:
-- "wait"
-- "nowait"
::= {afWsrvEntry 4}

fwServerUser OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..50))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The username inetd uses to start the server."
::= {afWsrvEntry 5}

fwServerProgram OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION "Full pathname of the server that inetd should execute."
::= {afWsrvEntry 6}

fwServerArgs OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..50))
ACCESS read-only
STATUS mandatory
DESCRIPTION "Command line arguments used in starting the server."
::= {afWsrvEntry 7}

-- ftpd Proxy Server Group -----------------------------------------
fwFtpdSvrGrp OBJECT IDENTIFIER ::= {fwMib 7}

fwFtpdSvrName OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..50))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The name of the FW server."
-- The string is "pftpd"
 ::= {fwFtpdSvrGrp 1}

fwFtpdSvrSocketType OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..50))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The type of socket the server is using."
-- The string can be one of the following:
   "stream"
   "dgram"
   "sunrpc_udp"
   "sunrpc_tcp"
 ::= {fwFtpdSvrGrp 2}

fwFtpdSvrProtocol OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..50))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The communication protocol the server is using."
-- The string can be one of the protocols found in the file /etc/protocols.
 ::= {fwFtpdSvrGrp 3}

fwFtpdSvrWait OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..50))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The wait/no wait attribute of the server."
-- The string can be one of the following:
   "wait"
   "nowait"
 ::= {fwFtpdSvrGrp 4}

fwFtpdSvrUser OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..50))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The user who invoked the server."
 ::= {fwFtpdSvrGrp 5}

fwFtpdSvrProgram OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION "Full pathname of the server that inetd should execute."
 ::= {fwFtpdSvrGrp 6}

fwFtpdSvrArgs OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..50))
ACCESS read-only
STATUS mandatory
DESCRIPTION "Command line arguments used in starting the server."
 ::= {fwTftpSvrGrp 7}

-- telnetd Proxy Server Group

fwTelnetdSvrGrp OBJECT IDENTIFIER ::= {fwMib 8}

fwTelnetdSvrName OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..50))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The name of the FW server."
-- The string is "ptelnetd"
 ::= {fwTelnetdSvrGrp 1}

fwTelnetdSvrSocketType OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..50))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The type of socket the server is using."
-- The string can be one of the following:
-- "stream"
-- "dgram"
-- "sunrpc_udp"
-- "sunrpc_tcp"
 ::= {fwTelnetdSvrGrp 2}

fwTelnetdSvrProtocol OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..50))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The communication protocol the server is using."
-- The string can be one of the protocols found in the
-- file /etc/protocols.
 ::= {fwTelnetdSvrGrp 3}

fwTelnetdSvrWait OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..50))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The wait/no wait attribute of the server."
-- The string can be one of the following:
-- "wait"
-- "nowait"
 ::= {fwTelnetdSvrGrp 4}

fwTelnetdSvrUser OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..50))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The user who invoked the server."
 ::= {fwTelnetdSvrGrp 5}

fwTelnetdSvrProgram OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION "Full pathname of the server that inetd should execute."
Appendix C. SNMP Management Information Base (MIB)

```plaintext
::= {fwTelnetdSvrGrp 6}

fwTelnetdSvrArgs OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..50))
ACCESS read-only
STATUS mandatory
DESCRIPTION "Command line arguments used in starting the server."
::= {fwTelnetdSvrGrp 7}

-- FW Mail Servers Group ==================================
- FwMailSvrEntry has to start with an upper case otherwise mosy gives an error

fwMailSvrTbl OBJECT-TYPE
SYNTAX SEQUENCE OF FwMailSvrEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "A list of entries for FW mail servers configured on this host"
::= {fwMib 9}

aFwMailSvrEntry OBJECT-TYPE
SYNTAX FwMailSvrEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION ""
INDEX {fwMailSecDomName}
::= {fwMailSvrTbl 1}

FwMailSvrEntry ::= SEQUENCE
{
 fwMailSecDomName DisplayString,
 fwMailSecNKSvr DisplayString,
 fwMailPubDomName DisplayString
}

fwMailSecDomName OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The name of the FW Secure Domain Name."
-- The first column in /etc/security/mail.conf
::= {aFwMailSvrEntry 1}

fwMailSecNKSvr OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The name of the FW Secure Network Mail Server."
-- The second column in /etc/security/mail.conf
::= {aFwMailSvrEntry 2}

fwMailPubDomName OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The name of the FW Public Domain Name."
-- The second column in /etc/security/mail.conf
::= {aFwMailSvrEntry 3}
```
-- Log File Management Table Group =============================

fwLogFileMgmtTbl OBJECT-TYPE
SYNTAX SEQUENCE OF FwLogFileMgmtEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "table of log files to be Managed"
 ::= {fwMib 10}

aFwLogFileMgmtEntry OBJECT-TYPE
SYNTAX FwLogFileMgmtEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION ""
INDEX {fwLogFileName}
 ::= {fwLogFileMgmtTbl 1}

FwLogFileMgmtEntry ::= SEQUENCE
{
  fwLogFileName DisplayString,
  fwLogDaysInLog INTEGER,
  fwLogArchive DisplayString,
  fwLogDaysInArc INTEGER,
  fwLogWorkSpace DisplayString,
  fwLogComments DisplayString
}

fwLogFileName OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION "Name of the log file to be Managed."
 ::= {aFwLogFileMgmtEntry 1}

fwLogDaysInLog OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "Days to keep in logfile."
 ::= {aFwLogFileMgmtEntry 2}

fwLogArchive OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION "Archive name."
 ::= {aFwLogFileMgmtEntry 3}

fwLogDaysInArc OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "Days to keep in archive."
 ::= {aFwLogFileMgmtEntry 4}

fwLogWorkSpace OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-only
Appendix C. SNMP Management Information Base (MIB)

<table>
<thead>
<tr>
<th>STATUS</th>
<th>mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>&quot;directory where log Management operations take place.&quot;</td>
</tr>
<tr>
<td>::=</td>
<td>{afWLogFileMgmtEntry 5}</td>
</tr>
</tbody>
</table>

fwLogComments OBJECT-TYPE
SYNTAX           | DisplayString (SIZE (0..255)) |
ACCESS           | read-only           |
STATUS           | mandatory           |
DESCRIPTION      | "comments."        |
 ::=             | {afWLogFileMgmtEntry 6} |

-- FW Server Status Table Group

fwSvrStatTbl OBJECT-TYPE
SYNTAX           | SEQUENCE OF FwSvrStatEntry      |
ACCESS           | not-accessible               |
STATUS           | mandatory                     |
DESCRIPTION      | "A list of status entries for FW servers configured on this host." |
 ::=             | {fwMib 11} |

aFwSvrStatEntry OBJECT-TYPE
SYNTAX           | FwSvrStatEntry     |
ACCESS           | not-accessible     |
STATUS           | mandatory          |
DESCRIPTION      | ""                |
INDEX            | {fwSvrStatServerName} |
 ::=             | {fwSvrStatTbl 1} |

FwSvrStatEntry ::= SEQUENCE
{                   |
   fwSvrStatServerName DisplayString,    |
   fwSvrStatServerState DisplayString        |
}

fwSvrStatServerName OBJECT-TYPE
SYNTAX           | DisplayString (SIZE (0..50)) |
ACCESS           | read-only           |
STATUS           | mandatory           |
DESCRIPTION      | "The name of the FW or inet server."        |
--               | The string can be one of the following: |
--               | "fwsubagt"    |
--               | "inetd"        |
--               | "fwpagerd"     |
--               | "fwmaintd"     |
--               | "named"        |
 ::=             | {aFwSvrStatEntry 1} |

fwSvrStatServerState OBJECT-TYPE
SYNTAX           | DisplayString (SIZE (0..50)) |
ACCESS           | read-only           |
STATUS           | mandatory           |
DESCRIPTION      | "Is the server running?" |
--               | The string can be one of the following: |
--               | "unknown"          |
--               | "running"          |
--               | "not running"      |
 ::=             | {aFwSvrStatEntry 2} |

-- FW Server Concurrency Status Table Group
fwSvrConStatTbl OBJECT-TYPE
SYNTAX           SEQUENCE OF FwSvrConStatEntry
ACCESS           not-accessible
STATUS           mandatory
DESCRIPTION      ""
::= {fwMib 12}

aFwSvrConStatEntry OBJECT-TYPE
SYNTAX           FwSvrConStatEntry
ACCESS           not-accessible
STATUS           mandatory
DESCRIPTION      ""
INDEX            {fwSvrConStatsServerName}
::= {fwSvrConStatTbl 1}

FwSvrConStatEntry ::= SEQUENCE
{
  fwSvrConStatsServerName DisplayString,
  fwSvrConStatsSessions INTEGER
}

fwSvrConStatsServerName OBJECT-TYPE
SYNTAX           DisplayString (SIZE (0..50))
ACCESS           read-only
STATUS           mandatory
DESCRIPTION      "The name of the FW."
  -- The string can be one of the following:
  -- "FTPD Proxy"
  -- "Telnetd Proxy"
  -- "SOCKS Server"
  -- "Http Proxy"
::= {aFwSvrConStatEntry 1}

fwSvrConStatsSessions OBJECT-TYPE
SYNTAX           INTEGER
ACCESS           read-only
STATUS           mandatory
DESCRIPTION      "Number of concurrent sessions."
::= {aFwSvrConStatEntry 2}

-- FW Configuration File Table Group ===================================
fwCfgFileTbl OBJECT-TYPE
SYNTAX           SEQUENCE OF FwCfgFileEntry
ACCESS           not-accessible
STATUS           mandatory
DESCRIPTION      "Information about FW and FW-related configuration files."
::= {fwMib 13}

aFwCfgFileEntry OBJECT-TYPE
SYNTAX           FwCfgFileEntry
ACCESS           not-accessible
STATUS           mandatory
DESCRIPTION      ""
INDEX            {fwCfgFileName}
::= {fwCfgFileTbl 1}
Appendix C. SNMP Management Information Base (MIB)
fwCheckSum OBJECT-TYPE
SYNTAX INDEX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "checksum on the file"
::= {afWcfgFileEntry 7}

-- FW Filter Status Group
fwFilterStatGrp OBJECT IDENTIFIER ::= {fwMib 14}

fwFilterNumIfs OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "Number of secure interfaces defined."
::= {fwFilterStatGrp 1}

fwFilterNumRules OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "Number of rules in filter list."
::= {fwFilterStatGrp 2}

fwFilterLevel OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..50))
ACCESS read-only
STATUS mandatory
DESCRIPTION "Netinet filter support code level."
::= {fwFilterStatGrp 3}

-- XXX Can status be anything other than 'not available'?
fwFilterStat OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..50))
ACCESS read-only
STATUS mandatory
DESCRIPTION "Status of filter support code."
::= {fwFilterStatGrp 4}

-- XXX Can status be anything other than 'not available'?
fwPktLogStat OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..50))
ACCESS read-only
STATUS mandatory
DESCRIPTION "Status of packet logging."
::= {fwFilterStatGrp 5}

fwFilterRulesTime Stamp OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..100))
ACCESS read-only
STATUS mandatory
DESCRIPTION "Timestamp of last update to rules."
::= {fwFilterStatGrp 6}

fwFilterNumRulesUpdates OBJECT-TYPE
SYNTAX INTEGER
Appendix C. SNMP Management Information Base (MIB)

ACCESS read-only
STATUS mandatory
DESCRIPTION "Number of updates to rules since initialization."
::= {fwFilterStatGrp 7}

-- Network Configuration Group

fwNetCfgGrp OBJECT IDENTIFIER ::= {tMib 15}

fwSecDomName OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..100))
ACCESS read-only
STATUS mandatory
DESCRIPTION "Secure domain name."
::= {fwNetCfgGrp 1}

fwNonSecDomSvrTb1 OBJECT-TYPE
SYNTAX SEQUENCE OF FwNonsecDomSvrEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION ""
INDEX {fwNonSecSvrAddr}
::= {fwNonSecDomSvrTb1 1}

FwNonsecDomSvrEntry ::= SEQUENCE
{
  fwNonSecSvrAddr DisplayString
}

fwNonSecSvrAddr OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..100))
ACCESS read-only
STATUS mandatory
DESCRIPTION ""
::= {fwNonSecDomSvrEntry 1}

fwSecDomSvrTb1 OBJECT-TYPE
SYNTAX SEQUENCE OF FwSecDomSvrEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION ""
::= {fwNetCfgGrp 3}

aFwSecDomSvrEntry OBJECT-TYPE
SYNTAX FwSecDomSvrEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION ""
INDEX {fwSecSvrAddr}
::= {fwSecDomSvrTb1 1}
FwSecDomSvrEntry ::= SEQUENCE
{  
  fwSecSvrAddr DisplayString
}

fwSecSvrAddr OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..100))
ACCESS read-only
STATUS mandatory
DESCRIPTION ""
 ::= {fwSecDomSvrEntry 1}

-- Threshold Configuration Group -------------------------------------
fwThrCfgGrp OBJECT IDENTIFIER ::= {fwMib 16}

fwMailToTbl1 OBJECT-TYPE
SYNTAX SEQUENCE OF FwMailToEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "Table of users to notify of threshold violations"
 ::= {fwThrCfgGrp 1}

aFwMailToEntry OBJECT-TYPE
SYNTAX FwMsgThrEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION ""
INDEX {fwMailToId}
 ::= {fwMailToTbl1 1}

FwMailToEntry ::= SEQUENCE
{  
  fwMailToId DisplayString,  
  fwMailToComments DisplayString
}

fwMailToId OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION "mail address to send threshold violation notice to"
 ::= {aFwMailToEntry 1}

fwMailToComments OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION "comments"
 ::= {aFwMailToEntry 2}

fwCommand OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION "program executed when threshold is reached."
 ::= {fwThrCfgGrp 2}
Appendix C. SNMP Management Information Base (MIB)

fwCommandComments OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION "comments"
::= {fwThrCfgGrp 3}

fwSnglAuthThrCount OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "number of failed authentication messages to be detected."
::= {fwThrCfgGrp 4}

fwSnglAuthThrTime OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "Number of minutes to detect failed auth messages."
::= {fwThrCfgGrp 5}

fwSnglAuthPagerAlert OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..20))
ACCESS read-only
STATUS mandatory
DESCRIPTION "Pager notification"
::= {fwThrCfgGrp 6}

fwSnglAuthThrComments OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION "comments"
::= {fwThrCfgGrp 7}

fwMultAuthThrCount OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "number of failed authentication messages to be detected."
::= {fwThrCfgGrp 8}

fwMultAuthThrTime OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "Number of minutes to detect failed auth messages."
::= {fwThrCfgGrp 9}

fwMultAuthPagerAlert OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..20))
ACCESS read-only
STATUS mandatory
DESCRIPTION "Pager notification"
::= {fwThrCfgGrp 10}

fwMultAuthThrComments OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION "comments"
::= {fwThrCfgGrp 11}

fwHostAuthThrCount OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "number of failed authentication messages to be detected."
::= {fwThrCfgGrp 12}

fwHostAuthThrTime OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "Number of minutes to detect failed auth messages."
::= {fwThrCfgGrp 13}

fwHostAuthPagerAlert OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..20))
ACCESS read-only
STATUS mandatory
DESCRIPTION "Pager notification"
::= {fwThrCfgGrp 14}

fwHostAuthThrComments OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION "comments"
::= {fwThrCfgGrp 15}

fwMsgThrTbl OBJECT-TYPE
SYNTAX SEQUENCE OF FwMsgThrEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "Table of message threshold definition entries"
::= {fwThrCfgGrp 16}

aFwMsgThrEntry OBJECT-TYPE
SYNTAX FwMsgThrEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION ""
INDEX {fwMsgThrTag}
::= {fwMsgThrTbl 1}

FwMsgThrEntry ::= SEQUENCE
{
    fwMsgThrTag     DisplayString,
    fwMsgThrCount   INTEGER,
    fwMsgThrTime    INTEGER,
    fwMsgThrPagerAlert DisplayString,
    fwMsgThrComments DisplayString
}
fwMsgThrTag OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..20))
ACCESS read-only
STATUS mandatory
DESCRIPTION ""
::= {afWMsgThrEntry 1}

fwMsgThrCount OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "number of failed authentication messages to be detected."
::= {afWMsgThrEntry 2}

fwMsgThrTime OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "Number of minutes to detect failed auth messages."
::= {afWMsgThrEntry 3}

fwMsgThrPagerAlert OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..20))
ACCESS read-only
STATUS mandatory
DESCRIPTION "Pager notification."
::= {afWMsgThrEntry 4}

fwMsgThrComments OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION ""
::= {afWMsgThrEntry 5}

-- FW Active IP Tunnel Table Group

fwActiveTunnelGrp OBJECT IDENTIFIER ::= {fwMib 17}

fwIbmTunnelTb1 OBJECT-TYPE
SYNTAX SEQUENCE OF FwIbmTunnelEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "List of all IBM Tunnels"
::= {fwActiveTunnelGrp 1}

aFwIbmTunnelEntry OBJECT-TYPE
SYNTAX FwIbmTunnelEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION "A list of all IBM Tunnels."
INDEX {fwIbmTunnelId}
::= {fwIbmTunnelTb1 1}

FwIbmTunnelEntry ::= SEQUENCE {

fwIbmTunnelId INTEGER,
fwIbmSrcAddr DisplayString,
fwIbmDestAddr DisplayString,
fwIbmEncryption DisplayString,
fwIbmPolicy DisplayString,
fwIbmSessionLife INTEGER,
fwIbmInitFlag DisplayString
}

fwIbmTunnelId OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "The Identification number of the IBM Tunnel."
::= {afwIbmTunnelEntry 1}

fwIbmSrcAddr OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..100))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The IP address of the local firewall."
::= {afwIbmTunnelEntry 2}

fwIbmDestAddr OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..100))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The IP address of the partner firewall."
::= {afwIbmTunnelEntry 3}

fwIbmEncryption OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..20))
ACCESS read-only
STATUS mandatory
DESCRIPTION "Algorithm used for IP Packet encryption ."
-- possible values are DES_CBC_8, CDMF, DES_CBC_4
::= {afwIbmTunnelEntry 4}

fwIbmPolicy OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..20))
ACCESS read-only
STATUS mandatory
DESCRIPTION "combination of encryption and authentication values."
-- Possible values are encr/auth, auth/encri, encr only, auth only,
::= {afwIbmTunnelEntry 5}

fwIbmSessionLife OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "Time in minutes current session can be used."
-- Max time is 1440.
::= {afwIbmTunnelEntry 6}

fwIbmInitFlag OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..20))
ACCESS read-only
Appendix C. SNMP Management Information Base (MIB)

STATUS mandatory
DESCRIPTION "Identifies which partner starts the session negotiation."
-- Possible values are yes, no
::={aFwIbmTunnelEntry 7}

fwManTunnelTbl OBJECT-TYPE
SYNTAX  SEQUENCE OF FwManTunnelEntry
ACCESS   not-accessible
STATUS   mandatory
DESCRIPTION ""
::={fwActiveTunnelGrp 2}

daFwManTunnelEntry OBJECT-TYPE
SYNTAX  FwManTunnelEntry
ACCESS   not-accessible
STATUS   mandatory
DESCRIPTION "A list of all MAN Tunnels."
INDEX   {fwManTunnelId}
::={fwManTunnelTbl 1}

FwManTunnelEntry ::= SEQUENCE
{
   fwManTunnelId   INTEGER,
   fwManSrcAddr    DisplayString,
   fwManDestAddr   DisplayString,
   fwManEncryption DisplayString,
   fwManPolicy     DisplayString,
   fwManSessionLife INTEGER,
   fwManTargetSPI  INTEGER
}

daFwManTunnelId OBJECT-TYPE
SYNTAX  INTEGER
ACCESS   read-only
STATUS   mandatory
DESCRIPTION "The Identification number of the Man Tunnel."
::={aFwManTunnelEntry 1}

daFwManSrcAddr OBJECT-TYPE
SYNTAX  DisplayString (SIZE (0..100))
ACCESS   read-only
STATUS   mandatory
DESCRIPTION "The IP address of the local firewall."
::={aFwManTunnelEntry 2}

daFwManDestAddr OBJECT-TYPE
SYNTAX  DisplayString (SIZE (0..100))
ACCESS   read-only
STATUS   mandatory
DESCRIPTION "The IP address of the partner firewall."
::={aFwManTunnelEntry 3}

daFwManEncryption OBJECT-TYPE
SYNTAX  DisplayString (SIZE (0..20))
ACCESS   read-only
STATUS   mandatory
DESCRIPTION "Algorithm used for IP Packet encryption ."
possible values are DES_CBC_8, CMDF, DES_CBC_4
$$:= \{aFwManTunnelEntry 4\}$$

fwManPolicy OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..20))
ACCESS read-only
STATUS mandatory
DESCRIPTION "combination of encryption and authentication values."
$$:= \{aFwManTunnelEntry 5\}$$

fwManSessionLife OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "Time in minutes manual tunnel will be operational."
$$:= \{aFwManTunnelEntry 6\}$$

fwManTargetSpi OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "Target Security Parameter Index for manual tunnel."
$$:= \{aFwManTunnelEntry 7\}$$

-- FW Network Address Translation Group

fwNatAddrTransGrp OBJECT IDENTIFIER ::= {fwMib 18}

fwNatReservedTbl OBJECT-TYPE
SYNTAX SEQUENCE OF FwResvRegisterEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION ""
$$:= \{fwNatAddrTransGrp 1\}$$

aFwResvRegisterEntry OBJECT-TYPE
SYNTAX FwResvRegisterEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION ""
INDEX \{fwRegisteredIpAddr\}
$$:= \{fwNatReservedTbl 1\}$$

FwResvRegisterEntry ::= SEQUENCE
$$\{\text{fwRegisteredIpAddr: DisplayString, } \text{fwRegisteredIpAddrMask: DisplayString, } \text{fwNatTimeout: INTEGER}\}$$

fwRegisteredIpAddr OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..100))
ACCESS read-only
STATUS mandatory
DESCRIPTION "Defines the IP addresses for outbound connections"
::= {aFwResvRegisterEntry 1}

fwRegisteredIpMask OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..100))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The mask specifies the bits in the registered IP addr used to:
::= {aFwResvRegisterEntry 2}

fwNatTimeout OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION "minutes an address translation can remain idle."
::= {aFwResvRegisterEntry 3}

fwNatTranslateTbl OBJECT-TYPE
SYNTAX SEQUENCE OF FwNatTranslateEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION ""
::= {fwNatAddrTransGrp 2}

aFwNatTranslateEntry OBJECT-TYPE
SYNTAX FwNatTranslateEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION ""
INDEX {fWtcFwTranslateSecIpAddr}
::= {fwNatTranslateEntry 1}

FwNatTranslateEntry ::= SEQUENCE
{
   fwTranslateSecIpAddr DisplayString,
   fwTranslateSecIpAddrMask DisplayString
}

fwTranslateSecIpAddr OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..100))
ACCESS read-only
STATUS mandatory
DESCRIPTION "Defines the IP addresses to be excluded from NAT"
::= {aFwNatTranslateEntry 1}

fwTranslateSecIpAddrMask OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..100))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The mask specifies the bits in the secured IP addr used to:
::= {aFwNatTranslateEntry 2}

fwNatExcludeTbl OBJECT-TYPE
SYNTAX SEQUENCE OF FwNatExcludeEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION ""
::= {fwNatAddrTransGrp 3}

aFwNatExcludeEntry OBJECT-TYPE
SYNTAX FwNatExcludeEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION ""
INDEX {fwExcludeSecIpAddr}
::= {fwNatExcludeEntry 1}

FwNatExcludeEntry ::= SEQUENCE {
  fwExcludeSecIpAddr DisplayString,
  fwExcludeSecIpAddrMask DisplayString
}

fwExcludeSecIpAddr OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..100))
ACCESS read-only
STATUS mandatory
DESCRIPTION "Defines the IP addresses to be excluded from NAT"
::= {aFwNatExcludeEntry 1}

fwExcludeSecIpAddrMask OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..100))
ACCESS read-only
STATUS mandatory
DESCRIPTION "The mask specifies the bits in the secured IP addr used to identify"
::= {aFwNatExcludeEntry 2}

fwNatMapTbl OBJECT-TYPE
SYNTAX SEQUENCE OF FwNatMapEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION ""
::= {fwNatAddrTransGrp 4}

aFwNatMapEntry OBJECT-TYPE
SYNTAX FwNatMapEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION ""
INDEX {fwMapSecIpAddr}
::= {fwNatMapTbl 1}

FwNatMapEntry ::= SEQUENCE {
  fwMapSecIpAddr DisplayString,
  fwMapRegisteredIpAddr DisplayString
}

fwMapSecIpAddr OBJECT-TYPE
Appendix C. SNMP Management Information Base (MIB)

SYNTAX
DisplayString (SIZE (0..100))

ACCESS
read-only

STATUS
mandatory

DESCRIPTION
"IP address to be translated into a specified registered IP address"

::= {aFwNatMapEntry 1}

fwMapRegisteredIpAddr OBJECT-TYPE
SYNTAX
DisplayString (SIZE (0..100))

ACCESS
read-only

STATUS
mandatory

DESCRIPTION
"IP address into which a specified secured IP address should be translated"

::= {aFwNatMapEntry 2}

fwNatStatus OBJECT-TYPE
SYNTAX
DisplayString (SIZE (0..20))

ACCESS
read-only

STATUS
mandatory

DESCRIPTION
"The status of Network Address Translation"

-- The possible values are active, inactive.

::= {fWNatAddrTransGrp 5}

fwNatLogStatus OBJECT-TYPE
SYNTAX
DisplayString (SIZE (0..20))

ACCESS
read-only

STATUS
mandatory

DESCRIPTION
"Logging status of Network Address Translation"

-- The possible values are enabled, disabled

::= {fWNatAddrTransGrp 6}

END
Appendix D. ESP Specification for CDMF

This appendix describes the CDMF security transform for the IP Encapsulating Security Payload (ESP). See RFC1829 EPS DES_CBC for more details.

Keys

The secret CDMF key shared between the communicating parties is eight octets in length. This key is a 64-bit quantity used by the CDMF algorithm. The CDMF algorithm first runs a key-shortening algorithm to reduce the 64-bit value (56-bit key) to a 40-bit key. The 40-bit key is stored as 64 bits (eight octets). This 40-bit key is then used for encryption and decryption.

Initialization Vector

CDMF requires an Initialization Vector (IV) that is eight octets in length.

Each datagram contains its own IV. Including the IV in each datagram ensures that decryption of each received datagram can be performed, even when other datagrams are dropped, or datagrams are reordered in transit.

The method for selection of IV values is implementation dependent.

Data Size

The CDMF algorithm operates on blocks of eight octets. The CDMF algorithm is essentially the same as running DES_CBC with a weakened key (40 bits versus 56 bits). This often requires padding after the end of the unencrypted payload data.

Both input and output result in the same number of octets, which facilitates in-place encryption and decryption.

On receipt, if the length of the data to be decrypted is not an integral multiple of eight octets, then an error is indicated, as described in RFC-1825.

Payload Format

Figure 6 on page 158 shows the payload format.
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Security Parameters Index (SPI)</strong></td>
<td>A 32-bit value identifying the Security Parameters for this datagram. The value must not be zero.</td>
</tr>
<tr>
<td><strong>Initialization Vector (IV)</strong></td>
<td>The size MUST be 64-bits. Octets are sent in network order with the most significant octet first (See RFC-1700.) It is the intent that the value not repeat during the lifetime of the encryption session key. Even when a full 64-bit IV is used, the session key should be changed at least as frequently as 2**32 datagrams.</td>
</tr>
<tr>
<td><strong>Payload Data</strong></td>
<td>The size of this field is variable. Prior to encryption and after decryption, this field begins with the IP Protocol/Payload header specified in the Payload Type field. Note that in the case of IP-in-IP encapsulation (Payload Type 4), this will be another IP header.</td>
</tr>
<tr>
<td><strong>Padding</strong></td>
<td>The size of this field is variable. Prior to encryption, it is filled with unspecified implementation-dependent (preferably random) values, to align the Pad Length and Payload Type fields at an eight octet boundary. After decryption, it must be ignored.</td>
</tr>
<tr>
<td><strong>Pad Length</strong></td>
<td>This field indicates the size of the Padding field. It does not include the Pad Length and Payload Type fields. The value typically ranges from 0 to 7, but may be up to 255 to permit hiding of the actual data length. This field is opaque. That is, the value is set prior to encryption and is examined only after decryption.</td>
</tr>
<tr>
<td><strong>Payload Type</strong></td>
<td>This field indicates the contents of the Payload Data field, using the IP Protocol/Payload value. Up-to-date values of the IP Protocol/Payload are specified in the most recent &quot;Assigned Numbers&quot; (See RFC-1700.) This field is opaque. That is, the value is set prior to encryption, and is examined only after decryption. For example, when encrypting an entire IP datagram (Tunnel- Mode), this field will contain the value 4, which indicates IP-in-IP encapsulation.</td>
</tr>
</tbody>
</table>
Algorithm

In CDMF, the base CDMF encryption function is applied to the XOR of each plaintext block with the previous ciphertext block to yield the ciphertext for the current block. This provides for re-synchronization when datagrams are lost.

Encryption

Append zero or more octets of (preferably random) padding to the plaintext, to make its modulo 8 length equal to 6. For example, if the plaintext length is 41, 5 octets of padding are added.

Append a Pad Length octet containing the number of padding octets just added.

Append a Payload Type octet containing the IP Protocol/Payload value which identifies the protocol header that begins the payload.

Provide an Initialization Vector (IV) of the size indicated by the SPI.

Encrypt the payload with CDMF, producing a ciphertext of the same length.

Octets are mapped to CDMF blocks in network order with the most significant octet first. (See RFC-1700.) Octet 0 (modulo 8) of the payload corresponds to bits 1-8 of the 64-bit CDMF input block, while octet 7 (modulo 8) corresponds to bits 57-64 of the CDMF input block.

Construct an appropriate IP datagram for the target destination, with the indicated SPI, IV, and payload.

The Total/Payload Length in the encapsulating IP header reflects the length of the encrypted data, plus the SPI, IV, padding, Pad Length, and Payload Type octets.

Decryption

First, the SPI field is removed and examined. This is used as an index into the local Security Parameter table to find the negotiated parameters and decryption key.

The encrypted part of the payload is decrypted using CDMF.

The Payload Type is removed and examined. If it is unrecognized, the payload is discarded with an appropriate ICMP message.

The Pad Length is removed and examined. The specified number of pad octets are removed from the end of the decrypted payload, and the IP Total/Payload Length is adjusted accordingly.

The IP Header(s) and the remaining portion of the decrypted payload are passed to the protocol receive routine specified by the Payload Type field.
Security Considerations

Users need to understand that the quality of the security provided by this specification depends completely on the strength of the CDMF algorithm, the correctness of that algorithm's implementation, the security of the key management mechanism and its implementation, the strength of the key and upon the correctness of the implementations in all of the participating nodes.

Among other considerations, applications may wish to take care not to select weak keys, although the odds of picking one at random are low.

The cut and paste attack exploits the nature of all Cipher Block Chaining algorithms. When a block is damaged in transmission, on decryption both it and the following block will be garbled by the decryption process, but all subsequent blocks will be decrypted correctly. If an attacker has legitimate access to the same key, this feature can be used to insert or replay previously encrypted data of other users of the same engine, revealing the plaintext. The usual (ICMP, TCP, UDP) transport checksum can detect this attack, but on its own is not considered cryptographically strong. In this situation, user or connection oriented integrity checking is needed. (See RFC-1826.)
Appendix E. Obtaining Requests for Comments (RFCs)

Requests for comments (RFCs) are documents that present new protocols and establish standards for the Internet protocol suite. Hardcopies of all RFCs are available from the Network Information Center (NIC), either individually or on a subscription basis. You can obtain these documents from:

Government Systems, Inc.
Attn: Network Information Center
14200 Park Meadow Drive
Suite 200
Chantilly, VA 22021

You can access RFCs from this URL:


Online copies are available from the NIC using FTP to connect to ds.internic.net. You can transfer the files using the following format:

RFC:RFCnnnn.TXT
RFC:RFCnnnn.PS

Where:

nnnn Is the RFC number
TXT Is the text format
PS Is the PostScript format

The format for the RFC index is:

RFC:RFC-INDEX.TXT

Note: Many RFCs are only available in text format. Before requesting a PostScript file, first check the RFC Index to make sure the RFC is available in that format. You can also request online copies of the RFCs through the electronic mail, from the automated NIC mail server, by sending a message to mailserv@ds.internic.net. You must include one of the following commands in body of your note:

SEND RFCnnnn.TXT
or
SEND RFCnnnn.PS

Where:

nnnn Is the RFC number
TXT Is the text format
PS Is the PostScript format

For example, to request the text format of RFC 812, you would specify in the body of your note:

SEND RFC812.TXT

To request an online copy of the RFC index, include the following command in the body of your note:
SEND RFC-INDEX.TXT
Appendix F. Creating a Socks Configuration File for AIX

This chapter shows you what an AIX socks client file should look like.

The socks configuration file (/etc/socks.conf) for AIX systems is used by the
socks client programs to permit or deny access through the firewall using the socks
server, or to redirect a client request to a standard (non-socks) server.

Some socks client programs use this file to determine whether to use a direct or a
socks server connection to a given destination host, and to exert access control
based on the destination host, the requested service (port number on the destina-
tion host), and the effective user ID of the requesting local user.

Web browsers generally have their own socks configuration methods.

Every time a socks client has to make a network connection, the client checks the
pending request against the file /etc/socks.conf, one line at a time. When the
client finds a line with conditions that are matched by the request, the action speci-
fied on that line is taken. The remaining lines of file /etc/socks.conf are skipped.
So the order of the lines in the file is extremely important; switch two lines and you
might have entirely different results. If no matching line is found throughout the file,
the request is denied.

Although there is an implied "deny all" at the end of the control file, you can supply
an explicit "deny all" rule, for example:

    deny 0.0.0.0 0.0.0.0.0 : /usr/bin/mail -s 'SOCKS: rejected %S from %u to %Z' root

Connection to address 127.0.0.1 (localhost) and 0.0.0.0 (broadcast) is always done
directly, so there is no need to specify those in /etc/socks.conf.

Notes:
1. Each line in the file can be up to 1023 characters long.
2. Spaces and tabs separate the fields.
3. Comment lines start with the character #.

The parameter options for the socks file are:

deny
    Tells the socks clients when to reject a request.
direct
    Tells the socks clients when to use a direct connection.
sockd
    Tells the socks clients when to use a socks server connection and, optionally,
    which socks server it should try.
@=serverlist
    Can be used only in a sockd rule. It names one or more socks servers that the
    socks client should try to use (in the indicated order). Only commas can be
    used as separators, no spaces or tabs are allowed in the list. Domain names of
    the servers can be used in the list, though it is probably more prudent to
    specify IP addresses. If this field is omitted, the client program will use the
default socks server, which is determined by the environment variable
SOCKS_SERVER if it exists. If that is not set, the client will try to use the name
compiled into the socks client itself.

*userlist
Consists of one or more user IDs or file names, separated by commas. (No
spaces or tabs are allowed in the list.)

- The user IDs should be IDs of users on the local host, not those on the
destination host or the socks server host.
- The file names must be full path names (with the leading /). The specified
files contains the user IDs, listed one or more to a line. You can separate
the IDs with any combination of blanks, tabs, and commas.
- If the *= userlist field is omitted, the line applies to all user IDs.

destination_address destination_mask
These operands specify the destination IP address or the range of destination
IP addresses. Specify both in the usual dotted form, for example 129.1.2.3. Bits
in destination_mask that are set to 0 indicate the bit positions which should be
masked off (ignored) during comparison of destination_address and the actual
destination IP address.

For example, if you specify 255.255.255.255 in the destination_mask field, the
actual destination address must match exactly the address specified in the
destination_address field.

But if you specify 0.0.0.0 in the destination_mask field, any destination address
will match.

Note: This is the way subnet masks are interpreted in TCP/IP, but is the
opposite of how the address masks are used in a router's access-lists.

log_op destination_portnumber
The log_op is an operation field, and can be one of these:

   eq    equal to
   neq   not equal to
   lt    less than
   gt    greater than
   le    less than or equal to
   ge    greater than or equal to

The destination_portnumber is a destination port.

The socks server uses the logical operation and the port number to compare to
the port number in a request. The destination port in the request, and the
destination_portnumber field must relate as stated by the log_op.

For example, if log_op is EQ and destination_port is 23, than the incoming
request is allowed ONLY if it is for port 23. If you omit this pair, the rule applies
to all ports.

command
Enter a colon (:) followed by a command to be executed when the conditions
on that line are satisfied. The following substitutions occur before the string is
presented to the Borne shell for execution:

%A Replaced by the client host's domain name if known, by its IP
address otherwise
%a   Replaced by the client host's IP address
%c   Replaced by "connect" or "bind"
%p   Replaced by the process id of the client program
%S   Replaced by the service name (ftp) if known, by the destination port number otherwise
%s   Replaced by the destination port number
%U   Replaced by the user ID at login
%u   Replaced by the effective user ID
%Z   Replaced by the destination host's domain name if known, by its IP address otherwise
%z   Replaced by the destination host's IP address
%%  Replaced by a single %

Several shell commands can be strung together "|" or ";."

---

**Example of a sockd Rule**

Consider this sample rule:

```
sockd 0=1.2.3.4 *='boss,root' 11.12.13.14 255.255.255.255 eq 23
```

To match the condition indicated in this line, a request must come from a local user whose effective ID is either boss or root. The destination IP address must be 11.12.13.14 exactly. The destination port must be 23. In that case, connection to host 11.12.13.14 should be done via a socks server on host 1.2.3.4.
The crontab command submits, edits, lists, or removes cron jobs. A cron job is a command run by the cron daemon at regularly scheduled intervals.

---

**crontab syntax**

```
crontab [-e | -l | -r | -v | File]
```

- `-e` Edits a copy of your crontab file or starts an editing session if you do not already have a crontab file. Each entry must be in a form acceptable to the cron daemon. When editing is complete, the entry is installed as your crontab file. The editing session is started using the editor specified by the EDITOR environment variable.

  The default editor is vi.

- `-l` Lists the contents of your crontab file.

- `-r` Removes an existing crontab file from the crontab directory.

- `-v` Lists the status of your cron jobs.

**File** Allows you to create your own crontab files.

When you finish creating entries and exit the file, the crontab command copies the file into the `/var/spool/cron/crontabs` directory and names it with your current username. If a file with your name already exists in the crontabs directory, the crontab command overwrites the existing name.

Alternatively, you can create a crontab file by specifying the File parameter. If the file already exists, it must be in the format the cron daemon expects. If the file does not exist, the crontab command invokes the editor. If the EDITOR environment variable exists, the command invokes the editor it specifies. Otherwise, the crontab command uses the vi editor.

The cron daemon runs commands according to the crontab file entries. Unless you redirect the output of a cron job to standard output or error, the cron daemon mails you any command output or error. If you specify a cron job incorrectly in your crontab file, the cron daemon does not run the job.

The cron daemon examines crontab files only when the cron daemon is initialized. When you make changes to your crontab file using the crontab command, a message indicating the change is sent to the cron daemon. This eliminates the overhead of checking for new or changed files at regularly scheduled intervals.

The `/var/adm/cron/cron.allow` and `/var/adm/cron/cron.deny` files control which users can use the crontab command. A root user can create, edit, or delete these files. Entries in these files are user login names with one name to a line. If your login ID is associated with more than one login name, the crontab command uses the first login name that is in the `/etc/passwd` file, regardless of which login name you might actually be using.

Here is a quick method for setting up a crontab. To learn more about the AIX crontab function, issue `"man crontab"` from the AIX command line.
To set up a crontab that will compress and archive all log files (that have been configured to be archived) every Sunday at 2am, follow these steps:

1. Start an editor session on the crontab file by issuing the `crontab -e` command.
   
   **Note**: This should bring up an editor session using the editor defined by your `$EDITOR` variable. If you wish to use another editor, you can either change the value of the `$EDITOR` variable or issue "crontab -1>tempcron". You can then edit the tempcron file and issue "crontab tempcron" to activate your changes to the file.

2. Each crontab file entry contains six fields separated by spaces or tabs in the following form:
   
   `minute hour day_of_month month weekday`

   These fields accept the following values:

   - **minute**: 0 through 59
   - **hour**: 0 through 23
   - **day_of_month**: 1 through 31
   - **month**: 1 through 12
   - **weekday**: 0 through 6 for Sunday through Saturday

   To run the `fwlogmgmt` command every Sunday at 2 am, add the following line to the bottom of the crontab file:

   `0 2 * * 0 /usr/bin/fwlogmgmt -1`

   Your crontab file should look something like:

   ```
 #c) COPYRIGHT International Business Machines Corp. 1989,1994
 #All Rights Reserved
 #Licensed materials - Property of IBM
 #
 #US Government Users Restricted Rights - Use, duplication or
 #disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
 #
 #0 3 * * * /usr/sbin/skulker
 #45 2 * * 0 /usr/lib/spell/compress
 #45 23 * * * ulimit 5000; /usr/lib/smdemon.cleanu > /dev/null
 0 11 * * * /usr/bin/errClear -d S,0 30
 0 12 * * * /usr/bin/errClear -d H 90
 0 2 * * 0 /usr/bin/fwlogmgmt -1
   ```

3. Save the file to activate the changes.
Bibliography

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to make them available in all countries in which IBM operates. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Subject to IBM’s valid intellectual property or other legally protectable rights, any functionally equivalent product, program, or service may be used instead of the IBM product, program, or service. The evaluation and verification of operation in conjunction with other products, except those expressly designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
USA

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

Site Counsel
IBM Corporation
P.O. Box 12195
3039 Cornwallis Road
Research Triangle Park, NC 27709-2195
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement.

This document is not intended for production use and is furnished as is without any warranty of any kind, and all warranties are hereby disclaimed including the warranties of merchantability and fitness for a particular purpose.

IBM is required to include the following statements in order to distribute portions of this document and the software described herein to which contributions have been made by the University of California and NEC Systems Laboratory.

This product includes software developed by the University of California, Berkeley and its contributors.

 Portions Copyright © 1993, 1994 by NEC Systems Laboratory.

This product contains code licensed from RSA Data Security Incorporated.

Trademarks

The following terms are trademarks of the IBM corporation in the United States or other countries or both:

- AIX
- AIXwindows
- AIX/6000
- Common User Access
- DB2
- HACMP
- IBM
- OS/2
- RS/6000
- RISC System/6000

Microsoft, Windows and the Windows 95 logo are trademarks or registered trademarks of Microsoft Corporation.

UNIX is a registered trademark in the United States and other countries licensed exclusively through X/Open Company Limited.

Java and HotJava are trademarks of Sun Microsystems, Inc.

Other company, product, and service names, which may be denoted by a double asterisk (**), may be trademarks or service marks of others.
Glossary

This glossary contains technical terms that are used in the documentation for many of the IBM networking software products. It includes IBM product terminology as well as selected terms and definitions from:

- The American National Standard Dictionary for Information Systems, ANSI X3.172-1990, copyright 1990 by the American National Standards Institute (ANSI). Copies may be purchased from the American National Standards Institute, 11 West 42nd Street, New York, New York 10036. Definitions are identified by the symbol (A) after the definition.

- The ANSI/EIA Standard—440-A, Fiber Optic Terminology. Copies may be purchased from the Electronic Industries Association, 2001 Pennsylvania Avenue, N.W., Washington, DC 20006. Definitions are identified by the symbol (E) after the definition.

- The Information Technology Vocabulary developed by Subcommittee 1, Joint Technical Committee 1, of the International Organization for Standardization and the International Electrotechnical Commission (ISO/IEC JTC1/SC1). Definitions of published parts of this vocabulary are identified by the symbol (I) after the definition; definitions taken from draft international standards, committee drafts, and working papers being developed by ISO/IEC JTC1/SC1 are identified by the symbol (T) after the definition, indicating that final agreement has not yet been reached among the participating National Bodies of SC1.


- Internet Request for Comments: 1208, Glossary of Networking Terms

- Internet Request for Comments: 1392, Internet Users’ Glossary


The following cross-references are used in this glossary:

Contrast with: This refers to a term that has an opposed or substantively different meaning.

Synonym for: This indicates that the term has the same meaning as a preferred term, which is defined in its proper place in the glossary.

Synonymous with: This is a backward reference from a defined term to all other terms that have the same meaning.

See: This refers the reader to an entry that provides more information, to a term that is the expanded version of an abbreviation or acronym, or to a more preferred term.

See also: This refers the reader to terms that have a related, but not synonymous, meaning.

Deprecated term for: This indicates that the term should not be used. It refers to a preferred term, which is defined in its proper place in the glossary.

A

adapter. A part that electrically or physically connects a device to a computer or to another device.

address. In data communication, the unique code assigned to each device, workstation, or user connected to a network.

Administrative Domain. A collection of hosts and routers, and the interconnecting networks, managed by a single administrative authority.

AIX. Advanced Interactive Executive.

AIX operating system. IBM’s implementation of the UNIX operating system. The RS/6000 system, among others, runs the AIX operating system.

API. Application programming interface.

application-level gateway. In a firewall, a proxy server that performs a requested service for a client. Contrast with circuit-level gateway.

application program interface. See application programming interface (API).

application programming interface (API). The set of programming language constructs or statements that can be coded in an application program to obtain the specific functions and services provided by an underlying operating system or service program.

ASCII (American National Standard Code for Information Interchange). The standard code, using a coded character set consisting of 7-bit coded characters (8 bits including parity check), that is used for information interchange among data processing systems, data communication systems, and associated equipment. The ASCII set consists of control characters and graphic characters. (A)
authentication. (1) In computer security, verification of the identity of a user or the user’s eligibility to access an object. (2) In computer security, verification that a message has not been altered or corrupted. (3) In computer security, a process used to verify the user of an information system or protected resources.

B

Berkeley Software Distribution (BSD). Pertaining to any of the series of UNIX specifications or implementations distributed by the University of California at Berkeley. The mnemonic “BSD” is usually followed by a number to specify the particular version of UNIX that was distributed (for example, BSD 4.3). Many vendors use BSD specifications as standards for their UNIX products.

BSD. Berkeley Software Distribution.

button. (1) A mechanism on a pointing device, such as a mouse, used to request or initiate an action or a process. (2) A graphical device that identifies a choice. (3) A graphical mechanism that, when selected, performs a visible action. For example, when a user clicks on a list button, a list of choices appears.

C

circuit-level gateway. In a firewall, a proxy server that redirects a client’s request through the firewall to the intended server. Contrast with application-level gateway.

click. To press and release a button on a pointing device without moving the pointer off of the object or choice.

client. A user.

command. A request from a terminal for the performance of an operation or the execution of a particular program.

command prompt. A displayed character or string of characters that indicates that a user may enter a command to be processed.

connection. (1) In data communication, an association established between functional units for conveying information. (2) In TCP/IP, the path between two protocol applications that provides reliable data stream delivery service. In the Internet, a connection extends from a TCP application on one system to a TCP application on another system.

D

daemon. A program that runs unattended to perform a standard service. Some daemons are triggered automatically to perform their task; others operate periodically.

DATABASE 2 (DB2). An IBM relational database management system.

Data Encryption Standard (DES). In computer security, the National Institute of Standards and Technology (NIST) Data Encryption Standard, adopted by the U.S. government as Federal Information Processing Standard (FIPS) Publication 46, which allows only hardware implementations of the data encryption algorithm.

datagram. (1) In packet switching, a self-contained packet, independent of other packets, that carries information sufficient for routing from the originating data terminal equipment (DTE) to the destination DTE without relying on earlier exchanges between the DTEs and the network. (2) See IP datagram, packet, segment, and User Datagram Protocol (UDP).

DB2. DATABASE 2.

default. Pertaining to an attribute, condition, value, or option that is assumed when none is explicitly specified.

DES. Data Encryption Standard.

directory. (1) A table of identifiers and references to the corresponding items of data. (2) A type of file containing the names and controlling information for other files or other directories. (3) A listing of the files stored on a disk or diskette.

distinguished name. (1) In systems management, the name of an object formed from the sequence of the relative distinguished names (RDNs) of the object and each of its superior objects. Because each object has exactly one superior object (except the global root, which has none), each object has only one distinguished name. (2) The abstract syntax of a distinguished name or a value of this type of abstract syntax.

DNS. Domain Name System.

domain. See Administrative Domain and domain name.

domain name. In the Internet suite of protocols, a name of a host system. A domain name consists of a sequence of subnames separated by a delimiter character. For example, if the fully qualified domain name (FQDN) of a host system is ralph7.vnet.ibm.com, each of the following is a domain name:
Domain Name System (DNS). In the Internet suite of protocols, the distributed database system used to map domain names to IP addresses.

drive. A peripheral device, especially one that has addressed storage media.

electronice mail (e-mail). (1) Correspondence in the form of messages transmitted between user terminals over a computer network. (T) (2) The generation, transmission, and display of correspondence and documents by electronic means. (A)

e-mail. Electronic mail.

encapsulation. In communications, a technique used by layered protocols by which a layer adds control information to the protocol data unit (PDU) from the layer it supports. In this respect, the layer encapsulates the data from the supported layer. In the Internet suite of protocols, for example, a packet would contain control information from the physical layer, followed by control information from the network layer, followed by the application protocol data.

Enterprise Firewall Manager (EFM). A component of the IBM Firewall that allows an organization to manage the configuration of multiple firewalls from a central location. This term may also refer to a machine on which this component is installed or to an IBM Firewall that is configured to be the EFM.

File Transfer Protocol (FTP). In the Internet suite of protocols, an application layer protocol that uses TCP and Telnet services to transfer bulk-data files between machines or hosts.

filter. (1) A device or program that separates data, signals, or material in accordance with specified criteria. (A) (2) See also IP filter.

finger. In the Internet suite of protocols, a program that displays information about the current users of a local or remote system. The finger usually displays the user's full name, last login time, idle time, terminal line, and terminal location (where applicable).

firewall. In communication, a functional unit that protects and controls the connection of one network to other networks. The firewall (a) prevents unwanted or unauthorized communication traffic from entering the protected network and (b) allows only selected communication traffic to leave the protected network.

FQDN. Fully qualified domain name.

FTP. File Transfer Protocol.

fully qualified domain name (FQDN). In the Internet suite of protocols, the name of a host system that includes all of the subnames of the domain name. An example of a fully qualified domain name is ralvm7.vnet.ibm.com. See also host name.

functional unit. An entity of hardware or software, or both, capable of accomplishing a specified purpose. (I) (A)

gateway. A functional unit that connects two networks or subnetworks having different characteristics, such as different protocols or different policies concerning security or transmission priority.

Gopher. In the Internet suite of protocols, a distributed information service that makes available hierarchical collections of information. A single Gopher client can access information from any accessible Gopher server. The Gopher client provides the user with a menu-driven interface.

graphical user interface (GUI). A type of computer interface consisting of a visual metaphor of a real-world scene, often of a desktop. Within that scene are icons, representing actual objects, that the user can access and manipulate with a pointing device. Contrast with command line interface (CLI).

GUI. Graphical user interface.

hacker. (1) A computer enthusiast who uses his or her knowledge and means to gain unauthorized access to protected resources. (T) (A) (2) A computer enthusiast.

HACMP. See high-availability cluster multiprocessing.

handle. (1) In the Advanced DOS and OS/2 operating systems, a binary value created by the system that identifies a drive, directory, and file so that the file can be found and opened. (2) In the AIX operating system, a data structure that is a temporary local identifier for an object. Allocating a handle creates it. Binding a handle makes it identify an object at a specific location.
hardening. The process of disabling nonsecure software on the machine where the IBM Firewall is being installed.

high-availability cluster multiprocessing (HACMP). An application service that enables up to eight RS/6000 servers to access the same data in parallel. This optimizes application execution and scalability and protects against unplanned outages and server downtime.

host. In the Internet suite of protocols, an end system. The end system can be any workstation.

host address. See IP address.

host name. In the Internet suite of protocols, the name given to a machine. Sometimes, "host name" is used to mean fully qualified domain name (FQDN); other times, it is used to mean the most specific subname of a fully qualified domain name. For example, if ralm7.vnet.ibm.com is the fully qualified domain name, either of the following may be considered the host name:
  - ralm7.vnet.ibm.com
  - ralm7

ICMP. Internet Control Message Protocol.

internet. A collection of networks interconnected by a set of routers that allow them to function as a single, large network. See also Internet.

Internet. The internet administered by the Internet Architecture Board (IAB), consisting of large national backbone networks and many regional and campus networks all over the world. The Internet uses the Internet suite of protocols.

Internet Control Message Protocol (ICMP). The protocol used to handle errors and control messages in the Internet Protocol (IP) layer. Reports of problems and incorrect datagram destinations are returned to the original datagram source. ICMP is part of the Internet Protocol.

Internet Protocol (IP). A connectionless protocol that routes data through a network or interconnected networks. IP acts as an intermediary between the higher protocol layers and the physical network. However, this protocol does not provide error recovery and flow control and does not guarantee the reliability of the physical network.

Internet service provider (ISP). An organization that provides access to the Internet.

interoperability. The capability to communicate, execute programs, or transfer data among various functional units in a way that requires the user to have little or no knowledge of the unique characteristics of those units. (T)

IP. Internet Protocol.

IP address. The 32-bit address defined by the Internet Protocol, standard 5, Request for Comments (RFC) 791. It is usually represented in dotted decimal notation.

IP datagram. In the Internet suite of protocols, the fundamental unit of information transmitted through an internet. It contains source and destination addresses, user data, and control information such as the length of the datagram, the header checksum, and flags indicating whether the datagram can be or has been fragmented.

IP filter. In the Internet suite of protocols, a set of rules based on IP addressing that control whether one host can access another host through a firewall.

IP tunnel. A mechanism for data encapsulation across an IP network.

ISP. See Internet Service Provider.

Java. An object-oriented programming language for portable interpretive code that supports interaction among remote objects. Java was developed and specified by Sun Microsystems, Incorporated.

LAN. Local area network.

local area network (LAN). (1) A computer network located on a user’s premises within a limited geographical area. Communication within a local area network is not subject to external regulations; however, communication across the LAN boundary may be subject to some form of regulation. (T) (2) A network in which a set of devices are connected to one another for communication and that can be connected to a larger network.

login. The procedure by which a user begins a terminal or communication session.
Management Information Base (MIB). (1) A collection of objects that can be accessed by means of a network management protocol. (2) A definition for management information that specifies the information available from a host or gateway and the operations allowed. (3) In OSI, the conceptual repository of management information within an open system.

menu. (1) A list of options displayed to the user by a data processing system, from which the user can select an action to be initiated. (T) (2) In text processing, a list of choices displayed to the user by a text processor from which the user can select an action to be initiated. (T) (3) A list of choices that can be applied to an object. A menu can contain choices that are not available for selection in certain contexts. Those choices are indicated by reduced contrast.

message. An assembly of characters and sometimes control codes that is transferred as an entity from an originator to one or more recipients. A message consists of two parts: envelope and content. (T)

MIB. Management Information Base.

modem (modulator/demodulator). (1) A functional unit that modulates and demodulates signals. One of the functions of a modem is to enable digital data to be transmitted over analog transmission facilities. (T) (A) (2) A device that converts digital data from a computer to an analog signal that can be transmitted on a telecommunication line, and converts the analog signal received to data for the computer.

multihomed host. In the Internet Protocol (IP), a host that is connected to more than one network.

name resolution. In Internet communications, the process of mapping a machine name to the corresponding Internet Protocol (IP) address. See also Domain Name System (DNS).

NAT. See network address translation.

National Computer Security Association (NCSA). An independent organization that strives to improve computer security by working with and fostering interaction among its members and constituents, which include computer users; product developers and vendors in the computer and communication industry; and computer and information security experts.

NCSA. See National Computer Security Association.

network. (1) An arrangement of nodes and connecting branches. (T) (2) A configuration of data processing devices and software connected for information interchange. (3) A group of nodes and the links interconnecting them.

network address translation (NAT). In a firewall, the conversion of secure IP addresses to external registered addresses. This enables communication with external networks but masks the IP addresses that are used inside the firewall.

Network Security Auditor. In an IBM Firewall, a program that scans a list of hosts and reports weak spots and potential security exposures for each system.

nonsecure interface. For security gateways, the physical layer connection between the gateway and a nonsecure network. Contrast with secure interface.

nonsecure network. A set of nodes that are not controlled by a single administrative party. Contrast with secure network.

octal. (1) Pertaining to a selection, choice, or condition that has eight possible different values or states. (I) (A) (2) Pertaining to a fixed-radix numeration having a radix of eight. (I) (A)

octet. A byte that consists of 8 bits. (T)

packet. In data communication, a sequence of binary digits, including data and control signals, that is transmitted and switched as a composite whole. The data, control signals, and, possibly, error control information are arranged in a specific format. (I)

parameter. A variable that is given a constant value for a specified application and that may denote the application. (I) (A)

partitioned data set (PDS). A data set in direct access storage that is divided into partitions, called members, each of which can contain a program, part of a program, or data.

path. The route used to locate files; the storage location of a file. A fully qualified path lists the drive identifier, directory name, subdirectory name (if any), and file name with the associated extension.

PDS. Partitioned data set.

PDU. Protocol data unit.
port. (1) An access point for data entry or exit. (2) A connector on a device to which cables for other devices such as display stations and printers are attached. (3) In the Internet suite of protocols, a 16-bit number used to communicate between TCP or the User Datagram Protocol (UDP) and a higher-level protocol or application. Some protocols, such as File Transfer Protocol (FTP) and Simple Mail Transfer Protocol (SMTP), use the same well-known port number in all TCP/IP implementations. (4) An abstraction used by transport protocols to distinguish among multiple destinations within a host machine. (5) Synonymous with socket.

port number. In Internet communications, the identification of an application entity to the transport service.

PostScript. A standard specified by Adobe Systems, Incorporated, that defines how text and graphics are presented on printers and display devices.

protocol. A set of semantic and syntactic rules that determine the behavior of functional units in achieving communication. (1)

protocol data unit (PDU). A unit of data specified in a protocol of a given layer and consisting of protocol control information of this layer, and possibly user data of this layer. (T)

protocol suite. A set of protocols that cooperate to handle the transmission tasks for a communication system.

proxy server. A server that receives requests intended for another server and that acts on the client's behalf (as the client's proxy) to obtain the requested service. A proxy server is often used when the client and the server are incompatible for direct connection (for example, when the client is unable to meet the security authentication requirements of the server but should be permitted some services).

R

RealAudio system. A client/server-based media delivery system developed by Progressive Networks. The RealAudio system supports live and on-demand audio over the Internet and can be used by news, entertainment, sports, and business organizations to create and deliver multimedia over the Internet.

reduced instruction-set computer (RISC). A computer that uses a small, simplified set of frequently used instructions for rapid execution.

Request for Comments (RFC). In Internet communications, the document series that describes a part of the Internet suite of protocols and related experiments. All Internet standards are documented as RFCs.

RFC. Request for Comments.

RISC. Reduced instruction-set computer.

S

SafeMail. An IBM proprietary mail gateway.

secure interface. For security gateways, the physical layer connection between the gateway and a secure network. Contrast with nonsecure interface.

secure network. A set of nodes that are controlled by a single administrative party. Contrast with nonsecure network.

Sendmail. In the UNIX operating system, the mail server that uses the Simple Mail Transfer Protocol (SMTP) to route mail from one host to another on the network.

server. (1) A functional unit that provides shared services to workstations over a network; for example, a file server, a print server, a mail server. (T) (2) In a network, a data station that provides facilities to other stations; for example, a file server, a print server, a mail server. (A)

session. In network architecture, for the purpose of data communication between functional units, all the activities which take place during the establishment, maintenance, and release of the connection. (T)

Simple Mail Transfer Protocol (SMTP). In the Internet suite of protocols, an application protocol for transferring mail among users in the Internet environment. SMTP specifies the mail exchange sequences and message format. It assumes that the Transmission Control Protocol (TCP) is the underlying protocol.

Simple Network Management Protocol (SNMP). In the Internet suite of protocols, a network management protocol that is used to monitor routers and attached networks. SNMP is an application layer protocol. Information on devices managed is defined and stored in the application's Management Information Base (MIB).

SMIT. System Management Interface Tool.

SMTP. Simple Mail Transfer Protocol.


socket. (1) An endpoint for communication between processes or application programs. (2) Synonym for port.

socket interface. A Berkeley Software Distribution (BSD) application programming interface (API) that
allows users to easily write their own communication application programs.

**socks server.** A circuit-level gateway that provides a secure one-way connection through a firewall to server applications in a nonsecure network.

**spoofing.** A hacker’s technique of using someone else’s IP address to gain access to a network.

**SQL.** Structured Query Language.

**Structured Query Language/Data System (SQL/DS).** An IBM relational database management system.

**subdirectory.** A directory contained within another directory in a file system hierarchy.

**subnet.** (1) In TCP/IP, a part of a network that is identified by a portion of the IP address. (2) Synonym for subnetwork.

**subnet address.** In Internet communications, an extension to the basic IP addressing scheme where a portion of the host address is interpreted as the local network address.

**subnetwork.** (1) Any group of nodes that have a set of common characteristics, such as the same network ID. (2) Synonymous with subnet.

**System Management Interface Tool (SMIT).** An interface tool of the AIX operating system for installing, maintaining, configuring, and diagnosing tasks.

**T**

**TCP.** Transmission Control Protocol.

**TCP/IP.** Transmission Control Protocol/Internet Protocol.

**Telnet.** In the Internet suite of protocols, a protocol that provides remote terminal connection service. It allows users of one host to log on to a remote host and interact as directly attached terminal users of that host.

**Time Sharing Option (TSO).** An option of the MVS operating system that provides interactive time sharing from remote terminals.

**Transmission Control Protocol (TCP).** A communications protocol used in the Internet and in any network that follows the U.S. Department of Defense standards for internetwork protocol. TCP provides a reliable host-to-host protocol between hosts in packet-switched communications networks and in interconnected systems of such networks. It uses the Internet Protocol (IP) as the underlying protocol.

**Transmission Control Protocol/Internet Protocol (TCP/IP).** A set of communications protocols that support peer-to-peer connectivity functions for both local and wide area networks.

**TSO.** Time Sharing Option.

**tunnel.** See IP tunnel.

**U**

**UDP.** User Datagram Protocol.

**UNIX operating system.** An operating system developed by Bell Laboratories that features multiprogramming in a multiuser environment. The UNIX operating system was originally developed for use on minicomputers but has been adapted for mainframes and microcomputers. The AIX operating system is IBM’s implementation of the UNIX operating system.

**user.** (1) Any person or any thing that may issue or receive commands and messages to or from the information processing system. (2) Anyone who requires the services of a computing system.

**User Datagram Protocol (UDP).** In the Internet suite of protocols, a protocol that provides unreliable, connectionless datagram service. It enables an application program on one machine or process to send a datagram to an application program on another machine or process. UDP uses the Internet Protocol (IP) to deliver datagrams.

**V**

**virtual private network (VPN).** A network comprised of one or more secure IP tunnels connecting two or more networks.

**VPN.** See virtual private network.

**W**

**World Wide Web (WWW).** A network of servers that contain programs and files. Many of the files contain hypertext links to other documents available through the network.

**WWW.** World Wide Web.
Index

Special Characters
(HACMP), High Availability Cluster Multi Processor  x
(MIB), SNMP Management Information Base  129
(MKKF), Using the Make Key File Utility  57
(RFCs), Requests for comments  161
(services), firewall daemons  1
(SNMP), Simple Network Management Protocol  x

Numerics
4.1.5 and 4.2 Support, AIX  xi
4.2 Support, AIX 4.1.5 and  xi

A
a keyfile, Creating  57
a_alert.tbl  18
Adapters  10
Address Pricing, Host  ix
Address, MAP Secured IP  3
Addresses, Entering IP  xi
Addresses, Exclude Secured IP  3
Addresses, Reserve Registered  3
Addresses, Translate Secured IP  3
ADMIN_ALERT  24
Administration Enhancements  x
Administration Functional Groups  9
AIX 4.1.5 and 4.2 Support  xi
and 4.2 Support, AIX 4.1.5  xi
and FWUSERAU Specifications, FWUSERPT  39
Auditor, Network Security  vii
authentication methods  39
Authentication, User-Supplied  39
Availability Cluster Multi Processor (HACMP), High  x

C
Call IBM for Service, How to  xii
c client, configuration  1
Client, Secure Remote  viii
Cluster Multi Processor (HACMP), High Availability  x
Command Line Interface  1
command, crontab  167
Commands  1
Commands, Miscellaneous  13
Concurrent Sessions  ix
configuration client  1
configuration file, socks  163
Creating a keyfile  57
crontab command  167

D
daemons (services), firewall  1
DB2  19
DB2/6000 or DB2/2  15
Default User  x
DNS Problems  66
Domain Name Services  5

E
Encryption Support, Stronger  x
Enhancements, Administration  x
Enhancements, Filter  ix
Enhancements, Logging  viii
Entering IP Addresses  xi
Enterprise Firewall Management  vii
Enterprise Firewall Manager  2
ESP Specification for CDMF  157
Exclude Secured IP Addresses  3

F
f_info.tbl  18
f_match.tbl  18
f_rule.tbl  18
f_stat.tbl  18
File Management, Log  11
file, socks configuration  163
files, local4 log  15
Filter Enhancements  ix
FILTER_ACTIVE_RULE  24
FILTER_INFO  24
FILTER_MATCH  24
FILTER_STATUS  24
Filters  11
firewall daemons (services)  1
firewall home page  xii
Firewall Installable Units, IBM  xi
Firewall Management, Enterprise  vii
for Service, How to Call IBM  xii
Functional Groups, Administration  9
Fundamental Parameters  6
fw_fip_authenticate  43, 45w_prompt  42
fw_ret_struct  42, 43
fw_lnauthenticate  43wadapter  10
fwar2asc  15, 17
fwfilters  11
fwfschk  13
fwice  13, 72

© Copyright IBM Corp. 1994, 1997
Communicating Your Comments to IBM

IBM
Firewall For AIX
Reference
Version 3.1.1
Publication No. SC31-8418-00

If you especially like or dislike anything about this book, please use one of the methods listed below to send your comments to IBM. Whichever method you choose, make sure you send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter, or completeness of this book. However, the comments you send should pertain to only the information in this manual and the way in which the information is presented. To request additional publications, or to ask questions or make comments about the functions of IBM products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers’ comment form (RCF) from a country other than the United States, you can give the RCF to the local IBM branch office or IBM representative for postage-paid mailing.

- If you prefer to send comments by mail, use the RCF at the back of this book.
- If you prefer to send comments by FAX, use this number:
  1-800-227-5088 (US and Canada)
- If you prefer to send comments electronically, use this network ID:
  - USIB2HPD@VNET.IBM.COM
  - USIB2HPD at IBMMAIL

Make sure to include the following in your note:

- Title and publication number of this book
- Page number or topic to which your comment applies.
Readers' Comments — We'd Like to Hear from You

IBM
Firewall For AIX
Reference
Version 3.1.1
Publication No. SC31-8418-00

Overall, how satisfied are you with the information in this book?

<table>
<thead>
<tr>
<th>Overall satisfaction</th>
<th>Very Satisfied</th>
<th>Satisfied</th>
<th>Neutral</th>
<th>Dissatisfied</th>
<th>Very Dissatisfied</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

How satisfied are you that the information in this book is:

<table>
<thead>
<tr>
<th></th>
<th>Very Satisfied</th>
<th>Satisfied</th>
<th>Neutral</th>
<th>Dissatisfied</th>
<th>Very Dissatisfied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accurate</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Complete</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Easy to find</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Easy to understand</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Well organized</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Applicable to your tasks</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? □ Yes □ No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without incurring any obligation to you.

Name
________________________________________

Address
________________________________________

Company or Organization
________________________________________

Phone No.
________________________________________