Contents

Preface .. xiii
Who Should Read This Document xiii
What This Document Contains xiii
Publications .. xiii
- Prerequisite and Related Documents xiii
- Accessing Publications Online xiv
- Ordering Publications .. xiv
- Providing Feedback about Publications xiv
Contacting Customer Support xiv
Accessibility Information ... xv
- Keyboard Access .. xv
Conventions Used in This Document xv
Platform-specific Information xv
Terminology ... xv
Reading Syntax Diagrams ... xvi
 - Required Syntax ... xvii
 - Optional Keywords and Variables xvii
 - Default Values .. xvii
 - Long Syntax Diagrams .. xviii
 - Syntax Fragments ... xviii
 - Commas and Parentheses xix
 - Highlighting, Brackets, and Braces xx
 - Abbreviations .. xxi

Part 1. NetView Commands .. 1

Chapter 1. Using Commands 5
Tasks ... 7
Command Types ... 7
Command Priority .. 8
Entering Commands ... 8
Restricting Access to Resources and Commands 9
Syntax Conventions Used in This Document 9

Chapter 2. NetView Commands and Command Descriptions 11
ACQ (NCCF; CNME0001) ... 12
ACT (NCCF; CNME0002) ... 15
ACTION (NPDA; CNME3001) .. 20
ADAPTER (NCCF; CNME8501) 22
ADDMD (NCCF) .. 24
AFTER (NCCF) .. 30
AINQ (NCCF) .. 34
ALERTSD (NPDA) ... 36
ALERTSH (NPDA) ... 37
ALL (BROWSE, WINDOW) .. 38
ALLC (TARA) .. 40
ALLOCATE (NCCF) ... 41
AMONRPT ... 54
APPLS (NCCF; CNME0003) ... 55
APPLSPEN (NCCF; CNME0005) 56
ASSIGN (NCCF) ... 58
ASSISCMD (RODM; CNME6220) 66
AT (NCCF) .. 67
ATTACH (NCCF) ... 71
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUPD (NCCF)</td>
<td>75</td>
</tr>
<tr>
<td>AUTBNAVL (NCCF; CNMEAUTB)</td>
<td>78</td>
</tr>
<tr>
<td>AUTOCNT (NCCF)</td>
<td>79</td>
</tr>
<tr>
<td>AUTOCOLL (NLDM; CNME2001)</td>
<td>83</td>
</tr>
<tr>
<td>AUTODROP (NCCF; CNM8003)</td>
<td>84</td>
</tr>
<tr>
<td>AUTOMAN (NCCF)</td>
<td>86</td>
</tr>
<tr>
<td>AUTORECD (NLDM; CNME2005)</td>
<td>87</td>
</tr>
<tr>
<td>AUTOTASK (NCCF)</td>
<td>88</td>
</tr>
<tr>
<td>AUTOTBL (NCCF)</td>
<td>91</td>
</tr>
<tr>
<td>AUTOTEST (NCCF)</td>
<td>99</td>
</tr>
<tr>
<td>AUTOTR (NCCF; CNME0006)</td>
<td>105</td>
</tr>
<tr>
<td>AUTOWRAP (NCCF)</td>
<td>107</td>
</tr>
<tr>
<td>BACK</td>
<td>109</td>
</tr>
<tr>
<td>BFRUSE (NCCF; CNME2007)</td>
<td>112</td>
</tr>
<tr>
<td>BFSESS (NCCF; CNME1001)</td>
<td>113</td>
</tr>
<tr>
<td>BGNSESS (NCCF)</td>
<td>115</td>
</tr>
<tr>
<td>BLOG (NCCF; CNME1099)</td>
<td>120</td>
</tr>
<tr>
<td>BOSESS (NCCF; CNME1002)</td>
<td>123</td>
</tr>
<tr>
<td>BOTTOM</td>
<td>125</td>
</tr>
<tr>
<td>BRIDGE (NCCF; CNME8503)</td>
<td>126</td>
</tr>
<tr>
<td>BROWSE (NCCF; CNME5001)</td>
<td>129</td>
</tr>
<tr>
<td>CALC (NCCF; CNME8001)</td>
<td>137</td>
</tr>
<tr>
<td>CANCMD (NCCF)</td>
<td>138</td>
</tr>
<tr>
<td>CCDEF (NCCF)</td>
<td>139</td>
</tr>
<tr>
<td>CCPDR (NCCF)</td>
<td>142</td>
</tr>
<tr>
<td>CCPLOADF (NCCF)</td>
<td>143</td>
</tr>
<tr>
<td>CCPLOADI (NCCF)</td>
<td>144</td>
</tr>
<tr>
<td>CCPLOADT (NCCF)</td>
<td>145</td>
</tr>
<tr>
<td>CDRMS (NCCF; CNME0008)</td>
<td>146</td>
</tr>
<tr>
<td>CDRSCS (NCCF; CNME0009)</td>
<td>148</td>
</tr>
<tr>
<td>CHANGEFP (NCCF; CNME7009)</td>
<td>151</td>
</tr>
<tr>
<td>CHKPT (RODM)</td>
<td>153</td>
</tr>
<tr>
<td>CHRON (NCCF)</td>
<td>155</td>
</tr>
<tr>
<td>CLEAR (NCCF)</td>
<td>171</td>
</tr>
<tr>
<td>CLOSE (NCCF)</td>
<td>172</td>
</tr>
<tr>
<td>CLRSTATS (STATMON)</td>
<td>175</td>
</tr>
<tr>
<td>CLSTRS (NCCF; CNME0010)</td>
<td>176</td>
</tr>
<tr>
<td>CMD (NCCF)</td>
<td>179</td>
</tr>
<tr>
<td>CMDSERV (NCCF)</td>
<td>181</td>
</tr>
<tr>
<td>CNVOSI (NCCF; CNME2103)</td>
<td>183</td>
</tr>
<tr>
<td>COLLECT (NLDM)</td>
<td>184</td>
</tr>
<tr>
<td>COMMAND (HELP, NCCF, NLDM, NPDA, STATMON, TARA; CNME1036)</td>
<td>186</td>
</tr>
<tr>
<td>CONFIG (GMFHS)</td>
<td>187</td>
</tr>
<tr>
<td>CONFIG DOMAIN (GMFHS)</td>
<td>188</td>
</tr>
<tr>
<td>CONFIG NETWORK (GMFHS)</td>
<td>191</td>
</tr>
<tr>
<td>CONFIG VIEW (GMFHS)</td>
<td>193</td>
</tr>
<tr>
<td>COPY (NLDM, NPDA, TARA, WINDOW)</td>
<td>195</td>
</tr>
<tr>
<td>COS (NCCF; CNME0045)</td>
<td>197</td>
</tr>
<tr>
<td>CPTBL (NCCF)</td>
<td>198</td>
</tr>
<tr>
<td>CSCF (NCCF)</td>
<td>200</td>
</tr>
<tr>
<td>CTRL (NPDA)</td>
<td>202</td>
</tr>
<tr>
<td>CTRL (TARA)</td>
<td>204</td>
</tr>
<tr>
<td>DATE (NCCF; CNME1003)</td>
<td>205</td>
</tr>
<tr>
<td>DBAUTO (NCCF; CNME2008)</td>
<td>206</td>
</tr>
<tr>
<td>DDOMAIN (NPDA)</td>
<td>209</td>
</tr>
<tr>
<td>DEFAULTS (NCCF)</td>
<td>211</td>
</tr>
<tr>
<td>DELAY (NCCF; CNME1021)</td>
<td>237</td>
</tr>
<tr>
<td>DELAY2 (NCCF; CNME1022)</td>
<td>239</td>
</tr>
<tr>
<td>DELCMD (NCCF)</td>
<td>240</td>
</tr>
<tr>
<td>DELDS (NCCF; CNME1085)</td>
<td>242</td>
</tr>
<tr>
<td>DETACH (NCCF)</td>
<td>243</td>
</tr>
</tbody>
</table>
FOCALPT QUERY (NCCF) .. 377
FOCALPT REFRESH (NCCF) ... 381
FORCE (EAS) ... 382
FORCE (NLDM) ... 383
FORWARD .. 385
FREE (NCCF) ... 387
FTRACE (NCCF; CNME0015) ... 393
GENALERT (NCCF) ... 401
GENALERT Generic Format (NCCF) 403
GENALERT NONGENERIC FORMAT (NCCF) 408
GENALERT RECFSMS FORMAT (NCCF) 411
GENALERT Resolved Format (NCCF) 414
GETCONID (NCCF) .. 419
GETPW ... 425
GMFHS (GMFHS; CNME2101) .. 428
GO (NCCF) .. 429
GROUPS (NCCF; CNME0047) .. 431
HELP (NCCF) ... 433
HELPDESK (NCCF; CNME1026) ... 436
HEXDEC (NCCF; CNME1027) .. 438
HILLENV (NCCF) ... 439
HOLD (NCCF) ... 444
ICOLOR (LOG-BROWSE) .. 445
IDCAMS (NCCF) ... 446
IDLEOFF (NCCF; CNME1057) .. 448
IMR (NCCF; CNME0016) ... 452
INACT (NCCF; CNME0017) ... 453
INACTF (NCCF; CNME0018) ... 456
INDEX (NCCF; CNME1024) ... 458
INITAMI .. 459
INITAMON ... 460
INITNRM (NCCF; CNME8601) .. 461
INPUT (NCCF) ... 467
IOPD (NCCF; CNME0019) .. 468
IPLOG (NCCF) .. 469
KEEP (NLDM) .. 471
LAN (NCCF; CNME8500) ... 473
LEFT .. 475
LINES (NCCF; CNME0020) ... 478
LINKDATA (NCCF) ... 480
LINKPD (NCCF) ... 482
LINKTEST (NCCF) .. 484
LIST (NCCF) ... 486
LIST (NLDM) .. 488
LISTA (NCCF) .. 507
LISTCAT (NCCF) ... 511
LISTCMD (NCCF; CNME1104) .. 513
LISTINIT (GMFHS) .. 516
LISTSENS (NCCF) ... 519
LISTVAR (NCCF; CNME1006) ... 520
LISWTWLM (NCCF; CNMELSTW) ... 524
LOADCL (NCCF) ... 527
LOADCL (NCCF) ... 527
LOGF (RODM) .. 531
LOGOFF (NCCF) ... 533
LOGP (RODM) .. 534
LOGPROF1 (NCCF; CNME1049) ... 535
LOGONPW (NCCF) ... 537
LOGQ (RODM) .. 540
LOGS (RODM) 541
LOGT (RODM) 543
LOGTSTAT (NCCF) 545
LOOP (TARA) 547
LPDA (NCCF) 548
LSESS (NCCF; CNME1007) .. 550
MAINMENU (NCCF; CNME1066) .. 551
MAJNODES (NCCF; CNME0022) .. 553
MAPCL (NCCF) 554
MDMCNFG (NCCF) 556
MDMCNTL (NCCF) 560
MEMLIST (NCCF; CNME1058) .. 563
MEMSTORE (NCCF; CNME1054) .. 564
MEMSTOUT (NCCF; CNMEOUTS) .. 566
MENU (NLDM, NPDA, TARA) .. 568
MESSAGE (NCCF) 569
MONIT (STATMON) 571
MONOFF (STATMON; CNME9001) .. 572
MONON (STATMON; CNME9002) .. 573
MRECENT (NPDA) 574
MSG (NCCF) 576
MTYPE (LOG-BROWSE) .. 579
MVS (NCCF) 580
NCCF (NLDM, NPDA, STATMON, TARA) .. 583
NCFDUMP (NCCF; CNME0013) .. 584
NCSTOR (NCCF; CNME0023) .. 586
NETCONV (NCCF) 588
NETVASIS (NCCF) 591
NETWORK (NCCF; CNME1060) .. 592
NEWS (NCCF; CNME1008) .. 593
NLDM (NLDM) 594
NMCPINIT 595
NMCPTEST 596
NODE (NCCF; CNME0024) .. 597
NOSTAT (NCCF; CNME0025) .. 599
NPDA (NPDA) 600
NRMCTL (NCCF) 601
NVMAN (NCCF; CNME2304) .. 604
NVSNMP (NCCF) 606
ORCNTL (RODM) 607
ORCONV (RODM) 608
OUTPUT (EAS) 616
OVERRIDE (NCCF) 618
PARSE (STATMON) 640
PATH (NCCF; CNME8507) .. 641
PATHS (NCCF; CNME0026) .. 643
PDFILTER (NPDA; CNME3004) .. 644
PENDING (NCCF; CNME0028) .. 645
PFKDEF (NCCF; CNME1010) .. 646
PING (NCCF; CNMEPING) .. 647
POLICY 650
PRGATT (NPDA) 653
PURGE (NCCF) 655
PURGE (NLDM) 658
PURGE (NPDA) 661
PURGEDB (NLDM, NPDA; CNME2007) .. 663
PWDSEC (NCCF) 668
QHCL (NCCF; CNME1011) .. 669
QNETWORK (NCCF; CNME8505) .. 670
QOS (NCCF) 671
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SENSE (NLDM; CNME2003)</td>
<td>800</td>
</tr>
<tr>
<td>SESMGET (NLDM; CNME2011)</td>
<td>801</td>
</tr>
<tr>
<td>SESS (NLDM; CNME2004)</td>
<td>804</td>
</tr>
<tr>
<td>SESSC (NLDM; CNME2012)</td>
<td>806</td>
</tr>
<tr>
<td>SESSDGRP (NLDM)</td>
<td>808</td>
</tr>
<tr>
<td>SESSIONS (NCCF; CNME0048)</td>
<td>809</td>
</tr>
<tr>
<td>SESSDIS (NCCF)</td>
<td>812</td>
</tr>
<tr>
<td>SET (NCCF)</td>
<td>814</td>
</tr>
<tr>
<td>SET (TARA)</td>
<td>817</td>
</tr>
<tr>
<td>SET HEX (NLDM)</td>
<td>820</td>
</tr>
<tr>
<td>SET RANGE (NLDM)</td>
<td>821</td>
</tr>
<tr>
<td>SETBQL (NCCF)</td>
<td>823</td>
</tr>
<tr>
<td>SETCGLOB (NCCF; CNME1081)</td>
<td>824</td>
</tr>
<tr>
<td>SETCONID (NCCF)</td>
<td>825</td>
</tr>
<tr>
<td>SETTINGS (EAS)</td>
<td>826</td>
</tr>
<tr>
<td>SHOW (GMFH5)</td>
<td>829</td>
</tr>
<tr>
<td>SMDR (NLDM)</td>
<td>832</td>
</tr>
<tr>
<td>SMENU (STATMON)</td>
<td>834</td>
</tr>
<tr>
<td>SNMP (NCCF; CNMESNMP)</td>
<td>835</td>
</tr>
<tr>
<td>SNMP BULKWALK (NCCF; CNMESNMP)</td>
<td>839</td>
</tr>
<tr>
<td>SNMP GET (NCCF; CNMESNMP)</td>
<td>842</td>
</tr>
<tr>
<td>SNMP GETBULK (NCCF; CNMESNMP)</td>
<td>845</td>
</tr>
<tr>
<td>SNMP GETNEXT (NCCF; CNMESNMP)</td>
<td>849</td>
</tr>
<tr>
<td>SNMP INFORM (NCCF; CNMESNMP)</td>
<td>852</td>
</tr>
<tr>
<td>SNMP SET (NCCF; CNMESNMP)</td>
<td>856</td>
</tr>
<tr>
<td>SNMP TRAP (NCCF; CNMESNMP)</td>
<td>860</td>
</tr>
<tr>
<td>SNMP WALK (NCCF; CNMESNMP)</td>
<td>865</td>
</tr>
<tr>
<td>SOCKET (NCCF)</td>
<td>869</td>
</tr>
<tr>
<td>SOLICIT (TARA)</td>
<td>883</td>
</tr>
<tr>
<td>SRATIO (NPDA)</td>
<td>885</td>
</tr>
<tr>
<td>SRFRESH (STATMON)</td>
<td>888</td>
</tr>
<tr>
<td>SRFILTER (NPDA)</td>
<td>889</td>
</tr>
<tr>
<td>SRVRNV (NCCF; CNME0054)</td>
<td>901</td>
</tr>
<tr>
<td>STACK (NCCF)</td>
<td>903</td>
</tr>
<tr>
<td>START (EAS)</td>
<td>904</td>
</tr>
<tr>
<td>START (GMFH5)</td>
<td>906</td>
</tr>
<tr>
<td>START (MVS)</td>
<td>908</td>
</tr>
<tr>
<td>START (NCCF)</td>
<td>910</td>
</tr>
<tr>
<td>START (RODM)</td>
<td>916</td>
</tr>
<tr>
<td>STARTCNM (NCCF; CNME1015)</td>
<td>921</td>
</tr>
<tr>
<td>STARTDOM (NCCF; CNME7001)</td>
<td>924</td>
</tr>
<tr>
<td>STATAPI (RODM)</td>
<td>925</td>
</tr>
<tr>
<td>STATCELL (RODM)</td>
<td>926</td>
</tr>
<tr>
<td>STATIONS (NCCF; CNME0033)</td>
<td>927</td>
</tr>
<tr>
<td>STATMON (STATMON)</td>
<td>927</td>
</tr>
<tr>
<td>STATS (NPDA; CNME305)</td>
<td>929</td>
</tr>
<tr>
<td>STATUS (GMFH5)</td>
<td>932</td>
</tr>
<tr>
<td>STATUS (NCCF; CNME0034)</td>
<td>933</td>
</tr>
<tr>
<td>STOP (EAS)</td>
<td>934</td>
</tr>
<tr>
<td>STOP (NCCF)</td>
<td>935</td>
</tr>
<tr>
<td>STOP (EAS)</td>
<td>937</td>
</tr>
<tr>
<td>STOPCNSM (NCCF; CNME1016)</td>
<td>943</td>
</tr>
<tr>
<td>SUBMIT (NCCF)</td>
<td>946</td>
</tr>
<tr>
<td>SUSPNRM (NCCF; CNME8602)</td>
<td>948</td>
</tr>
<tr>
<td>SVPFILTER (NPDA)</td>
<td>949</td>
</tr>
<tr>
<td>SVTAM (STATMON)</td>
<td>957</td>
</tr>
<tr>
<td>SWITCH (NCCF)</td>
<td>958</td>
</tr>
<tr>
<td>SWLD (NLDM; CNME2002)</td>
<td>960</td>
</tr>
<tr>
<td>SWPD (NPDA; CNME3006)</td>
<td>961</td>
</tr>
<tr>
<td>SWRAP (NPDA)</td>
<td>962</td>
</tr>
<tr>
<td>SYMION (TARA)</td>
<td>965</td>
</tr>
<tr>
<td>TARA (TARA)</td>
<td>967</td>
</tr>
<tr>
<td>Command</td>
<td>Page</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
</tr>
<tr>
<td>TASK (GMFHS)</td>
<td>968</td>
</tr>
<tr>
<td>TASKMON (CNME1100)</td>
<td>969</td>
</tr>
<tr>
<td>TASKUTIL (NCCF)</td>
<td>972</td>
</tr>
<tr>
<td>TCTRL (TARA; CNME3007)</td>
<td>978</td>
</tr>
<tr>
<td>TE (NCCF)</td>
<td>979</td>
</tr>
<tr>
<td>TERM (EAS)</td>
<td>980</td>
</tr>
<tr>
<td>TERM (GMFHS)</td>
<td>981</td>
</tr>
<tr>
<td>TERM (RODM)</td>
<td>982</td>
</tr>
<tr>
<td>TERMAMI</td>
<td>984</td>
</tr>
<tr>
<td>TERMAMON</td>
<td>985</td>
</tr>
<tr>
<td>TERMS (NCCF; CNME0035)</td>
<td>986</td>
</tr>
<tr>
<td>TERR (TARA; CNME3008)</td>
<td>988</td>
</tr>
<tr>
<td>TEST (NPDA)</td>
<td>989</td>
</tr>
<tr>
<td>THRESH (NCCF)</td>
<td>991</td>
</tr>
<tr>
<td>TIMER</td>
<td>993</td>
</tr>
<tr>
<td>TN3270 (NCCF)</td>
<td>996</td>
</tr>
<tr>
<td>TNSTAT (NCCF; CNME0036)</td>
<td>999</td>
</tr>
<tr>
<td>TOP</td>
<td>1001</td>
</tr>
<tr>
<td>TOPOSNA CRITICAL (TOPOSNA)</td>
<td>1002</td>
</tr>
<tr>
<td>TOPOSNA LISTPOOL (TOPOSNA)</td>
<td>1005</td>
</tr>
<tr>
<td>TOPOSNA LISTREQS (TOPOSNA)</td>
<td>1007</td>
</tr>
<tr>
<td>TOPOSNA LISTRODM (TOPOSNA)</td>
<td>1009</td>
</tr>
<tr>
<td>TOPOSNA LISTSTOR (TOPOSNA)</td>
<td>1012</td>
</tr>
<tr>
<td>TOPOSNA MONITOR (TOPOSNA)</td>
<td>1016</td>
</tr>
<tr>
<td>TOPOSNA PURGE (TOPOSNA)</td>
<td>1021</td>
</tr>
<tr>
<td>TOPOSNA QUERYDEF (TOPOSNA)</td>
<td>1023</td>
</tr>
<tr>
<td>TOPOSNA REFRESH (TOPOSNA)</td>
<td>1024</td>
</tr>
<tr>
<td>TOPOSNA SETDEFS (TOPOSNA)</td>
<td>1027</td>
</tr>
<tr>
<td>TOPOSNA STOP (TOPOSNA)</td>
<td>1035</td>
</tr>
<tr>
<td>TOPOSNA STOPMGR (TOPOSNA)</td>
<td>1038</td>
</tr>
<tr>
<td>TOPOSNA TRACE (TOPOSNA)</td>
<td>1039</td>
</tr>
<tr>
<td>TOTAL (NPDA)</td>
<td>1045</td>
</tr>
<tr>
<td>TRACE (EAS)</td>
<td>1047</td>
</tr>
<tr>
<td>TRACE (GMFHS)</td>
<td>1049</td>
</tr>
<tr>
<td>TRACE (NCCF)</td>
<td>1055</td>
</tr>
<tr>
<td>TRACE (NLDM)</td>
<td>1060</td>
</tr>
<tr>
<td>TRACEPPI (NCCF)</td>
<td>1063</td>
</tr>
<tr>
<td>TRANSMSG (NCCF)</td>
<td>1066</td>
</tr>
<tr>
<td>TS (NCCF)</td>
<td>1067</td>
</tr>
<tr>
<td>TSOUSER (NCCF; CNME0037)</td>
<td>1068</td>
</tr>
<tr>
<td>TSTAT (TARA; CNME3009)</td>
<td>1069</td>
</tr>
<tr>
<td>TTERR (TARA; CNME3010)</td>
<td>1070</td>
</tr>
<tr>
<td>TTRESP (TARA; CNME3011)</td>
<td>1071</td>
</tr>
<tr>
<td>TUTOR (NCCF; CNME5003)</td>
<td>1072</td>
</tr>
<tr>
<td>TWERR (TARA; CNME3012)</td>
<td>1073</td>
</tr>
<tr>
<td>TWRESP (TARA; CNME3014)</td>
<td>1074</td>
</tr>
<tr>
<td>TWSTAT (TARA; CNME3015)</td>
<td>1075</td>
</tr>
<tr>
<td>UNSTACK (NCCF)</td>
<td>1076</td>
</tr>
<tr>
<td>UPDCGLOB (NCCF; CNME1080)</td>
<td>1077</td>
</tr>
<tr>
<td>VBVSERV (NCCF)</td>
<td>1079</td>
</tr>
<tr>
<td>VPDALL (NCCF)</td>
<td>1080</td>
</tr>
<tr>
<td>VPDCMD (NCCF)</td>
<td>1083</td>
</tr>
<tr>
<td>VPDDCE (NCCF; CNME0052)</td>
<td>1086</td>
</tr>
<tr>
<td>VPDLOG (NCCF)</td>
<td>1088</td>
</tr>
<tr>
<td>VPDPU (NCCF; CNME0051)</td>
<td>1090</td>
</tr>
<tr>
<td>VRST (NCCF; CNME0038)</td>
<td>1092</td>
</tr>
<tr>
<td>VSAMPOOL (NCCF)</td>
<td>1093</td>
</tr>
<tr>
<td>WHO (NCCF; CNME1019)</td>
<td>1095</td>
</tr>
<tr>
<td>WINDOW (NCCF; CNME1505)</td>
<td>1096</td>
</tr>
<tr>
<td>WKSTA (TARA)</td>
<td>1100</td>
</tr>
<tr>
<td>WRAP (NCCF; CNME1020)</td>
<td>1101</td>
</tr>
</tbody>
</table>
Part 2. Appendixes 1105
Appendix A. Event Types 1107
Appendix B. Command List to Command Synonym Cross Reference 1111
Appendix C. Other Notices 1121
Preface

This document describes the commands and components of Tivoli® NetView® for z/OS™ Version 5 Release 1 (NetView) that can be used for network operation. You can use many of these commands in command lists or command procedures.

Who Should Read This Document

This document is intended for system console operators, network operators, and system programmers. Before using this document, be familiar with the basic functions presented in the Tivoli NetView for z/OS User’s Guide. Specific operator procedures are defined by the individual installation to suit local requirements.

What This Document Contains

This document is divided into the following sections:

- “Chapter 1. Using Commands” on page 5 describes the various components of NetView and explains the syntax conventions used in this document.
- “Chapter 2. NetView Commands and Command Descriptions” on page 11 alphabetically lists all of the NetView commands and their functions.
- “Appendix A. Event Types” on page 1107 provides information about events and alert types.
- “Appendix B. Command List to Command Synonym Cross Reference” on page 1111 provides a cross-reference of command list sample member names and their NetView-provided command synonyms.
- “Appendix C. Other Notices” on page 1121 provides additional notices.

Publications

This section lists prerequisite and related documents. It also describes how to access Tivoli publications online, how to order Tivoli publications, and how to make comments on Tivoli publications.

Prerequisite and Related Documents

To read about the new functions offered in this release, refer to the Tivoli NetView for z/OS Installation: Migration Guide.

You can find additional product information on these Internet sites:

<table>
<thead>
<tr>
<th>Table 1. Resource Web sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM®</td>
</tr>
<tr>
<td>Tivoli Systems</td>
</tr>
<tr>
<td>Tivoli NetView for z/OS</td>
</tr>
</tbody>
</table>

The Tivoli NetView for z/OS Web site offers demonstrations of the NetView product, related products, and several free NetView applications you can download. These applications can help you with tasks such as:

- Getting statistics for your automation table and merging the statistics with a listing of the automation table
Preface

- Displaying the status of a JES job or cancelling a specified JES job
- Sending alerts to the NetView program using the program-to-program interface (PPI)
- Sending and receiving MVS™ commands using the PPI
- Sending TSO commands and receiving responses

Accessing Publications Online

You can access many Tivoli publications online using the Tivoli Information Center, which is available on the Tivoli Customer Support Web site:

These publications are available in PDF format. Translated documents are also available for some products.

Ordering Publications

You can order many Tivoli publications online at the following Web site:

You can also order by telephone by calling one of these numbers:
- In the United States: 800-879-2755
- In Canada: 800-426-4968
- In other countries, for a list of telephone numbers, see the following Web site: http://www.tivoli.com/inside/store/lit_order.htm

Providing Feedback about Publications

We are very interested in hearing about your experience with Tivoli products and documentation, and we welcome your suggestions for improvements. If you have comments or suggestions about our products and documentation, contact us in one of the following ways:
- Send an e-mail to pubs@tivoli.com.
- Complete our customer feedback survey at the following Web site: http://www.tivoli.com/support/survey/

Contacting Customer Support

If you have a problem with any Tivoli product, you can contact Tivoli Customer Support. See the Tivoli Customer Support Handbook at the following Web site:

The handbook provides information about how to contact Tivoli Customer Support, depending on the severity of your problem, and the following information:
- Registration and eligibility
- Telephone numbers and e-mail addresses, depending on the country you are in
- What information you should gather before contacting support

Note: Additional support for Tivoli NetView for z/OS is available at the NetView for z/OS Web site:
Under Related Documents, select Other Online Sources.

The page displayed contains a list of newsgroups, forums, and bulletin boards.

Accessibility Information

Refer to Tivoli NetView for z/OS User’s Guide for information about accessibility.

Keyboard Access

Standard shortcut and accelerator keys are used by the product and are documented by the operating system. Refer to the documentation provided by your operating system for more information.

Refer to Tivoli NetView for z/OS User’s Guide for more information about keyboard access.

Conventions Used in This Document

The document uses several typeface conventions for special terms and actions. These conventions have the following meaning:

- **Bold** Commands, keywords, flags, and other information that you must use literally appear like this, in bold.

- **Italics** Variables and new terms appear like this, in italics. Words and phrases that are emphasized also appear like this, in italics.

- **Monospace** Code examples, output, and system messages appear like this, in a monospace font.

- **ALL CAPS** Tivoli NetView for z/OS commands are in ALL CAPITAL letters.

Platform-specific Information

For more information about the hardware and software requirements for NetView components, refer to the Tivoli NetView for z/OS Licensed Program Specification.

Terminology

For a list of Tivoli NetView for z/OS terms and definitions, refer to http://www.networking.ibm.com/nsg/nsgmain.html.

For brevity and readability, the following terms are used in this document:

- **NetView**
 - Tivoli NetView for z/OS Version 5 Release 1
 - Tivoli NetView for OS/390® Version 1 Release 4
 - Tivoli NetView for OS/390 Version 1 Release 3
 - TME® 10 NetView for OS/390 Version 1 Release 2
 - TME 10 NetView for OS/390 Version 1 Release 1
 - IBM NetView for MVS Version 3
 - IBM NetView for MVS Version 2 Release 4
 - IBM NetView Version 2 Release 3
MVS OS/390 or z/OS operating systems.

RACF®
RACF is a component of the SecureWay® Security Server for z/OS and OS/390, providing the functions of authentication and access control for OS/390 and z/OS resources and data, including the ability to control access to DB2® objects using RACF profiles. Refer to:

Tivoli Enterprise™ software
Tivoli software that manages large business networks.

Tivoli environment
The Tivoli applications, based upon the Tivoli Management Framework, that are installed at a specific customer location and that address network computing management issues across many platforms. In a Tivoli environment, a system administrator can distribute software, manage user configurations, change access privileges, automate operations, monitor resources, and schedule jobs. You may have used TME 10 environment in the past.

TME 10
In most product names, TME 10 has been changed to Tivoli.

V and R
Specifies the version and release.

VTAM® and TCP/IP
VTAM and TCP/IP for OS/390 are included in the IBM Communications Server for OS/390 element of the OS/390 operating system. Refer to http://www.software.ibm.com/enetwork/commserver/about/csos390.html

Unless otherwise indicated, references to programs indicate the latest version and release of the programs. If only a version is indicated, the reference is to all releases within that version.

When a reference is made about using a personal computer or workstation, any programmable workstation can be used.

Reading Syntax Diagrams

Syntax diagrams start with double arrowheads on the left (►) and move along the main line until they end with two arrowheads facing each other (◄►).

As shown in the following table, syntax diagrams use position to indicate the required, optional, and default values for keywords, variables, and operands.

<table>
<thead>
<tr>
<th>Element Position</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>On the command line</td>
<td>Required</td>
</tr>
<tr>
<td>Above the command line</td>
<td>Default</td>
</tr>
<tr>
<td>Below the command line</td>
<td>Optional</td>
</tr>
</tbody>
</table>
Required Syntax

The command name, required keywords, variables, and operands are always on the main syntax line. Figure 1 specifies that the resname variable must be used for the CCPLOADF command.

CCPLOADF

Figure 1. Required Syntax Elements

Keywords and operands are written in uppercase letters. Lowercase letters indicate variables such as values or names that you supply. In Figure 2, MEMBER is an operand and membername is a variable that defines the name of the data set member for that operand.

TRANSMMSG

Figure 2. Syntax for Variables

Optional Keywords and Variables

Optional keywords, variables, and operands are below the main syntax line. Figure 3 specifies that the ID operand can be used for the DISPREG command, but is not required.

DISPREG

Figure 3. Optional Syntax Elements

Default Values

Default values are above the main syntax line. If the default is a keyword, it appears only above the main line. You can specify this keyword or allow it to default.

If an operand has a default value, the operand appears both above and below the main line. A value below the main line indicates that if you choose to specify the operand, you must also specify either the default value or another value shown. If you do not specify an operand, the default value above the main line is used.

Figure 4 on page xviii shows the default keyword STEP above the main line and the rest of the optional keywords below the main line. It also shows the default values for operands MODNAME=** and OPTION=** above and below the main line.
Preface

Long Syntax Diagrams

When more than one line is needed for a syntax diagram, the continued lines end with a single arrowhead (►). The following lines begin with a single arrowhead (►), as shown in Figure 4.

Syntax Fragments

Commands that contain lengthy groups or a section that is used more than once in a command are shown as separate fragments following the main diagram. The fragment name is shown in mixed case. See Figure 5 on page xix for a syntax with the fragments ReMote and FromTo.
Commas and Parentheses

Required commas and parentheses are included in the syntax diagram. When an operand has more than one value, the values are typically enclosed in parentheses and separated by commas. In Figure 6 on page xx, the OP operand, for example, contains commas to indicate that you can specify multiple values for the testop variable.
If a command requires positional commas to separate keywords and variables, the commas are shown before the keyword or variable, as in Figure 4 on page xviii.

For example, to specify the BOSESS command with the sessid variable, enter:
```
NCCF BOSESS applid,,sessid
```

You do not need to specify the trailing positional commas. Positional and non-positional trailing commas either are ignored or cause the command to be rejected. Restrictions for each command state whether trailing commas cause the command to be rejected.

Highlighting, Brackets, and Braces

Syntax diagrams do not rely on highlighting, underscoring, brackets, or braces; variables are shown italicized in hardcopy or in a differentiating color for NetView help and BookManager® online books.

In parameter descriptions, the appearance of syntax elements in a diagram immediately tells you the type of element. See Table 3 for the appearance of syntax elements.

Table 3. Syntax Elements Examples

<table>
<thead>
<tr>
<th>This element...</th>
<th>Looks like this...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyword</td>
<td>CCPLOADF</td>
</tr>
<tr>
<td>Variable</td>
<td>resname</td>
</tr>
<tr>
<td>Operand</td>
<td>MEMBER=membername</td>
</tr>
<tr>
<td>Default</td>
<td>today or INCL</td>
</tr>
</tbody>
</table>

Figure 6. Sample Syntax Diagram with Commas

If a command requires positional commas to separate keywords and variables, the commas are shown before the keyword or variable, as in Figure 4 on page xviii.

For example, to specify the BOSESS command with the sessid variable, enter:
```
NCCF BOSESS applid,,sessid
```

You do not need to specify the trailing positional commas. Positional and non-positional trailing commas either are ignored or cause the command to be rejected. Restrictions for each command state whether trailing commas cause the command to be rejected.
Abbreviations

Command and keyword abbreviations are described in synonym tables after each command description.
Part 1. NetView Commands

Chapter 1. Using Commands

- Tasks ... 7
- Command Types 7
- Command Priority 8
- Entering Commands 8
- Restricting Access to Resources and Commands . . 9
- Syntax Conventions Used in This Document.... 9

Chapter 2. NetView Commands and Command Descriptions

- ACQ (NCCF; CNME0001) 12
- ACT (NCCF; CNME0002) 15
- ACTION (NPDA; CNME3001) 20
- ADAPTER (NCCF; CNME8501) 22
- ADDCMD (NCCF) 24
- AFTER (NCCF) 30
- AINVQ (NCCF) 34
- ALERTSD (NPDA) 36
- ALERTSH (NPDA) 37
- ALL (BROWSE, WINDOW) 38
- ALLC (TARA) 40
- ALLOCATE (NCCF) 41
- AMONRPT 54
- APPLS (NCCF; CNME0003) 55
- APPLSPEN (NCCF; CNME0005) 56
- ASSIGN (NCCF) 58
- ASSISCMD (RODM; CNME6220) 66
- AT (NCCF) 67
- ATTACH (NCCF) 71
- AUPD (NCCF) 75
- AUTBNABL (NCCF; CNMEAUTB) 78
- AUTOCNT (NCCF) 79
- AUTO COLL (NLDM; CNME2001) 83
- AUTODROP (NCCF; CNMS8003) 84
- AUTOMAN (NCCF) 86
- AUTORECD (NLDM; CNME2005) 87
- AUTOTASK (NCCF) 88
- AUTO TBL (NCCF) 91
- AUTO TEST (NCCF) 99
- AUTO TR (NCCF; CNME0006) 105
- A U TOWRAP (NCCF) 107
- BACK .. 109
- BFRUSE (NCCF; CNME0007) 112
- BFSSESS (NCCF; CNME1001) 113
- BGNSESS (NCCF) 115
- BLOG (NCCF; CNME1099) 120
- BOSS (NCCF; CNME1002) 123
- BOTTOM 125
- BRIDGE (NCCF; CNME8503) 126
- BROWSE (NCCF; CNMES001) 129
- CALC (NCCF; CNME8001) 137
- CANCMOD (NCCF) 138
- CCD (NCCF) 139
- CCPDR (NCCF) 142
- CC PLOADF (NCCF) 143
- CC PLOADI (NCCF) 144
- CCPLOADT (NCCF) 145
- CSVRS (NCCF; CNME0006) 146
- CDRSCE (NCCF; CNME0009) 148
- CH A NGEOF (NCCF; CNME7009) 151
- CHKPT (RODM) 153
- CHRON (NCCF) 155
- CLEAR (NCCF) 171
- CLOSE (NCCF) 172
- CLROSTATS (STATMON) 175
- CLSTFRS (NCCF; CNME0010) 176
- CMD (NCCF) 179
- CMDSERV (NCCF) 181
- CNVOSI (NCCF; CNME2103) 183
- COLLECT (NLDM) 184
- COMMAND (HELP, NCCF, NLDM, NPDA, STATMON, TARA; CNME1036) 186
- CONFIG (GMFS) 187
- CONFIG DOMAIN (GMFS) 188
- CONFIG NETWORK (GMFS) 191
- CONFIG VIEW (GMFS) 193
- COPY (NLDM, NPDA, TARA, WINDOW) ... 195
- COS (NCCF; CNME0045) 197
- CPTBL (NCCF) 198
- CSCF (NCCF) 200
- CTRL (NPDA) 202
- CTRL (TARA) 204
- DD (NCCF; CNME1003) 205
- DBAUTO (NCCF; CNME2008) 206
- DDOMAIN (NPDA) 209
- DEFAULTS (NCCF) 211
- DELAY (NCCF; CNME1021) 237
- DELAY2 (NCCF; CNME1022) 239
- DELCMD (NCCF) 240
- DELDS (NCCF; CNME1055) 242
- DETACH (NCCF) 243
- DFILTER (NPDA) 245
- DIS (NCCF; CNME1023) 247
- DIS (NPDA; CNME1023) 250
- DISABLE (NLDM) 252
- DISSQL (NCCF) 253
- DISC .. 254
- DISC (NCCF) 255
- DISG (NCCF; CNME1070) 257
- DISK (NCCF; CNME0046) 259
- DISKEEP (NLDM) 260
- DISPCMD (NCCF) 262
- DISPCNFG (NCCF) 264
- DSPFFK (NCCF; CNME1048) 266
- DISP LAY (EAS) 268
- DISP LAY (TARA) 272
- DISP LAY PPI (NCCF) 274
- DISP MOD (NCCF) 275
- DISP PPI (NCCF) 278
- DISPREG (NCCF) 283
- DM (NCCF) 285
- DMPRESET (RODM) 287
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRATIO (NPDA)</td>
<td>288</td>
</tr>
<tr>
<td>DRDS (NCCF; CNME0011)</td>
<td>290</td>
</tr>
<tr>
<td>DROPCL (NCCF)</td>
<td>291</td>
</tr>
<tr>
<td>DROUTE (NCCF; CNME0012)</td>
<td>293</td>
</tr>
<tr>
<td>DSILCMD (NCCF)</td>
<td>295</td>
</tr>
<tr>
<td>DSILSSIR (NCCF)</td>
<td>298</td>
</tr>
<tr>
<td>DIAPDR (NCCF; CNME1085)</td>
<td>299</td>
</tr>
<tr>
<td>DISKNYJ</td>
<td>300</td>
</tr>
<tr>
<td>DSRS (NCCF)</td>
<td>301</td>
</tr>
<tr>
<td>DWRAP (NPDA)</td>
<td>304</td>
</tr>
<tr>
<td>EKGVACTM (RODM)</td>
<td>306</td>
</tr>
<tr>
<td>EKGVCHGM (RODM)</td>
<td>308</td>
</tr>
<tr>
<td>EKGVCREM (RODM)</td>
<td>311</td>
</tr>
<tr>
<td>EKGVDELM (RODM)</td>
<td>313</td>
</tr>
<tr>
<td>EKGVNLKM (RODM)</td>
<td>315</td>
</tr>
<tr>
<td>EKGVLOC (RODM)</td>
<td>318</td>
</tr>
<tr>
<td>EKGVMTM (RODM)</td>
<td>320</td>
</tr>
<tr>
<td>EKGVQUEM (RODM)</td>
<td>322</td>
</tr>
<tr>
<td>EKGVSUBM (RODM)</td>
<td>326</td>
</tr>
<tr>
<td>ENABLE (NLDM)</td>
<td>329</td>
</tr>
<tr>
<td>END</td>
<td>330</td>
</tr>
<tr>
<td>ENDESS (NCCF)</td>
<td>331</td>
</tr>
<tr>
<td>ENDTASK (NCCF)</td>
<td>333</td>
</tr>
<tr>
<td>ENTRYPTNT (HELP, VIEW)</td>
<td>336</td>
</tr>
<tr>
<td>ERST (NCCF; CNME0014)</td>
<td>337</td>
</tr>
<tr>
<td>ESSESS (NCCF; CNME1004)</td>
<td>338</td>
</tr>
<tr>
<td>EVENTS (NPDA; CNME3003)</td>
<td>339</td>
</tr>
<tr>
<td>EVERY (NCCF)</td>
<td>340</td>
</tr>
<tr>
<td>EXCMD (NCCF)</td>
<td>345</td>
</tr>
<tr>
<td>EZLEMAIL (NCCF)</td>
<td>348</td>
</tr>
<tr>
<td>FIND (BROWSE)</td>
<td>349</td>
</tr>
<tr>
<td>FIND (NLDM)</td>
<td>351</td>
</tr>
<tr>
<td>FIND (WINDOW)</td>
<td>352</td>
</tr>
<tr>
<td>FLCV2RCM (NCCF)</td>
<td>354</td>
</tr>
<tr>
<td>FOCALPT (NCCF)</td>
<td>356</td>
</tr>
<tr>
<td>FOCALPT ACQUIRE (NCCF)</td>
<td>357</td>
</tr>
<tr>
<td>FOCALPT CHANGE (NCCF)</td>
<td>363</td>
</tr>
<tr>
<td>FOCALPT DELETE (NCCF)</td>
<td>366</td>
</tr>
<tr>
<td>FOCALPT DISPSOC (NCCF)</td>
<td>370</td>
</tr>
<tr>
<td>FOCALPT DROP (NCCF)</td>
<td>374</td>
</tr>
<tr>
<td>FOCALPT QUERY (NCCF)</td>
<td>377</td>
</tr>
<tr>
<td>FOCALPT REFRESH (NCCF)</td>
<td>381</td>
</tr>
<tr>
<td>FORCE (EAS)</td>
<td>382</td>
</tr>
<tr>
<td>FORCE (NLDM)</td>
<td>383</td>
</tr>
<tr>
<td>FORWARD (NLDM)</td>
<td>385</td>
</tr>
<tr>
<td>FREE (NCCF)</td>
<td>387</td>
</tr>
<tr>
<td>FTRACE (NCCF; CNME0015)</td>
<td>393</td>
</tr>
<tr>
<td>GENALERT (NCCF)</td>
<td>401</td>
</tr>
<tr>
<td>GENALERT Generic Format (NCCF)</td>
<td>403</td>
</tr>
<tr>
<td>GENALERT NONGENERIC FORMAT (NCCF)</td>
<td>408</td>
</tr>
<tr>
<td>GENALERT RECFSMS FORMAT (NCCF)</td>
<td>411</td>
</tr>
<tr>
<td>GENALERT Resolved Format (NCCF)</td>
<td>414</td>
</tr>
<tr>
<td>GETCONID (NCCF)</td>
<td>419</td>
</tr>
<tr>
<td>GETPW</td>
<td>425</td>
</tr>
<tr>
<td>GMFHS (GMFHS; CNME2101)</td>
<td>428</td>
</tr>
<tr>
<td>GO (NCCF)</td>
<td>429</td>
</tr>
<tr>
<td>GROUPS (NCCF; CNME0047)</td>
<td>431</td>
</tr>
<tr>
<td>HELP (NCCF)</td>
<td>433</td>
</tr>
<tr>
<td>HELPDESK (NCCF; CNME1026)</td>
<td>436</td>
</tr>
<tr>
<td>HEXDEC (NCCF; CNME1027)</td>
<td>438</td>
</tr>
<tr>
<td>HLLENV (NCCF)</td>
<td>439</td>
</tr>
<tr>
<td>HOLD (NCCF)</td>
<td>444</td>
</tr>
<tr>
<td>ICOLOR (LOG-BROWSE)</td>
<td>445</td>
</tr>
<tr>
<td>IDCAMS (NCCF)</td>
<td>446</td>
</tr>
<tr>
<td>IDLEOFF (NCCF; CNME1057)</td>
<td>448</td>
</tr>
<tr>
<td>IMR (NCCF; CNME0016)</td>
<td>452</td>
</tr>
<tr>
<td>INACT (NCCF; CNME0017)</td>
<td>453</td>
</tr>
<tr>
<td>INACTF (NCCF; CNME0018)</td>
<td>456</td>
</tr>
<tr>
<td>INDEX (NCCF; CNME1024)</td>
<td>458</td>
</tr>
<tr>
<td>INITAMI</td>
<td>459</td>
</tr>
<tr>
<td>INITAMON</td>
<td>460</td>
</tr>
<tr>
<td>INITNRM (NCCF; CNME8601)</td>
<td>461</td>
</tr>
<tr>
<td>INPUT (NCCF)</td>
<td>467</td>
</tr>
<tr>
<td>IOPD (NCCF; CNME0019)</td>
<td>468</td>
</tr>
<tr>
<td>ILOG (NCCF)</td>
<td>469</td>
</tr>
<tr>
<td>KEEP (NLDM)</td>
<td>471</td>
</tr>
<tr>
<td>LAN (NCCF; CNME8500)</td>
<td>473</td>
</tr>
<tr>
<td>LEFT</td>
<td>475</td>
</tr>
<tr>
<td>LINEMAP (NLDM)</td>
<td>477</td>
</tr>
<tr>
<td>LINES (NCCF; CNME0020)</td>
<td>478</td>
</tr>
<tr>
<td>LINES (NCCF)</td>
<td>480</td>
</tr>
<tr>
<td>LINES (NCCF)</td>
<td>480</td>
</tr>
<tr>
<td>LINKDATA (NCCF)</td>
<td>482</td>
</tr>
<tr>
<td>LINKPD (NCCF)</td>
<td>484</td>
</tr>
<tr>
<td>LINKTEST (NCCF)</td>
<td>486</td>
</tr>
<tr>
<td>LIST (NCCF)</td>
<td>488</td>
</tr>
<tr>
<td>LIST (NLDM)</td>
<td>507</td>
</tr>
<tr>
<td>LISTA (NCCF)</td>
<td>511</td>
</tr>
<tr>
<td>LISTCAT (NCCF)</td>
<td>513</td>
</tr>
<tr>
<td>LISTCMD (NCCF; CNME1104)</td>
<td>516</td>
</tr>
<tr>
<td>LISTINIT (GMFHS)</td>
<td>520</td>
</tr>
<tr>
<td>LISTSESS (NCCF)</td>
<td>522</td>
</tr>
<tr>
<td>LISTVAR (NCCF; CNME1006)</td>
<td>524</td>
</tr>
<tr>
<td>LISTWLM (NCCF; CNMELSTW)</td>
<td>526</td>
</tr>
<tr>
<td>LL2 (NCCF; CNME0021)</td>
<td>527</td>
</tr>
<tr>
<td>LOADCL (NCCF)</td>
<td>529</td>
</tr>
<tr>
<td>LOCATE (BROWSE)</td>
<td>531</td>
</tr>
<tr>
<td>LOGF (RODM)</td>
<td>533</td>
</tr>
<tr>
<td>LOGOFF (NCCF)</td>
<td>534</td>
</tr>
<tr>
<td>LOGP (RODM)</td>
<td>535</td>
</tr>
<tr>
<td>LOGPROF1 (NCCF; CNME1049)</td>
<td>537</td>
</tr>
<tr>
<td>LOGONPW (NCCF)</td>
<td>538</td>
</tr>
<tr>
<td>LOGQ (RODM)</td>
<td>540</td>
</tr>
<tr>
<td>LOGS (RODM)</td>
<td>541</td>
</tr>
<tr>
<td>LOGT (RODM)</td>
<td>543</td>
</tr>
<tr>
<td>LOGTSTAT (NCCF)</td>
<td>545</td>
</tr>
<tr>
<td>LOOP (TARA)</td>
<td>547</td>
</tr>
<tr>
<td>LOOP (TARA)</td>
<td>547</td>
</tr>
<tr>
<td>LPDA (NCCF)</td>
<td>548</td>
</tr>
<tr>
<td>LSESS (NCCF; CNME1007)</td>
<td>550</td>
</tr>
<tr>
<td>MAINMENU (NCCF; CNME1066)</td>
<td>551</td>
</tr>
<tr>
<td>MAJNODES (NCCF; CNME0022)</td>
<td>553</td>
</tr>
<tr>
<td>MAPCL (NCCF)</td>
<td>554</td>
</tr>
<tr>
<td>MDMCNFG (NCCF)</td>
<td>556</td>
</tr>
<tr>
<td>MDMCNTL (NCCF)</td>
<td>560</td>
</tr>
<tr>
<td>MEMLIST (NCCF; CNME1058)</td>
<td>563</td>
</tr>
<tr>
<td>MEMSTORE (NCCF; CNME1054)</td>
<td>564</td>
</tr>
<tr>
<td>MEMSTOUT (NCCF; CNMEOUTS)</td>
<td>566</td>
</tr>
<tr>
<td>MENU (NLDM, NPDA, TARA)</td>
<td>568</td>
</tr>
<tr>
<td>MESSAGE (NCCF)</td>
<td>569</td>
</tr>
<tr>
<td>MONIT (STATMON)</td>
<td>571</td>
</tr>
<tr>
<td>MONOFF (STATMON; CNME9001)</td>
<td>572</td>
</tr>
<tr>
<td>MONON (STATMON; CNME9002)</td>
<td>573</td>
</tr>
<tr>
<td>MIRECENT (NPDA)</td>
<td>574</td>
</tr>
<tr>
<td>Command</td>
<td>Page</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>MSG (NCCF)</td>
<td>576</td>
</tr>
<tr>
<td>MTYPE (LOG-BROWSE)</td>
<td>579</td>
</tr>
<tr>
<td>MVS (NCCF)</td>
<td>580</td>
</tr>
<tr>
<td>NCCF (NLDM, NPDA, STATMON, TARA)</td>
<td>583</td>
</tr>
<tr>
<td>NCPDUMP (NCCF; CNME0013)</td>
<td>584</td>
</tr>
<tr>
<td>NCPSTOR (NCCF; CNME0023)</td>
<td>586</td>
</tr>
<tr>
<td>NETCONV (NCCF)</td>
<td>588</td>
</tr>
<tr>
<td>NETVASS (NCCF)</td>
<td>591</td>
</tr>
<tr>
<td>NETWORK (NCCF; CNME1060)</td>
<td>592</td>
</tr>
<tr>
<td>NEWS (NCCF; CNME1008)</td>
<td>593</td>
</tr>
<tr>
<td>NLDM (NLDM)</td>
<td>594</td>
</tr>
<tr>
<td>NMCPICT</td>
<td>595</td>
</tr>
<tr>
<td>NMCPTEST</td>
<td>596</td>
</tr>
<tr>
<td>NODE (NCCF; CNME0024)</td>
<td>597</td>
</tr>
<tr>
<td>NOSTAT (NCCF; CNME0025)</td>
<td>599</td>
</tr>
<tr>
<td>NPDA (NPDA)</td>
<td>600</td>
</tr>
<tr>
<td>NMRCNTL (NCCF)</td>
<td>601</td>
</tr>
<tr>
<td>NVMAN (NCCF; CNME2304)</td>
<td>604</td>
</tr>
<tr>
<td>NVSNMP (NCCF)</td>
<td>606</td>
</tr>
<tr>
<td>ORCCTL (RODM)</td>
<td>607</td>
</tr>
<tr>
<td>OUTPUT (EAS)</td>
<td>610</td>
</tr>
<tr>
<td>OVERRIDE (NCCF)</td>
<td>613</td>
</tr>
<tr>
<td>PARSE (STATMON)</td>
<td>640</td>
</tr>
<tr>
<td>PATH (NCCF; CNME8507)</td>
<td>641</td>
</tr>
<tr>
<td>PATHS (NCCF; CNME0026)</td>
<td>643</td>
</tr>
<tr>
<td>PDFILTER (NPDA; CNME3004)</td>
<td>644</td>
</tr>
<tr>
<td>PENDING (NCCF; CNME0028)</td>
<td>645</td>
</tr>
<tr>
<td>PFKDEF (NCCF; CNME1010)</td>
<td>646</td>
</tr>
<tr>
<td>PING (NCCF; CNMEPING)</td>
<td>647</td>
</tr>
<tr>
<td>POLICY</td>
<td>650</td>
</tr>
<tr>
<td>PRGATT (NPDA)</td>
<td>653</td>
</tr>
<tr>
<td>PURGE (NCCF)</td>
<td>655</td>
</tr>
<tr>
<td>PURGE (NLDM)</td>
<td>658</td>
</tr>
<tr>
<td>PURGE (NPDA)</td>
<td>661</td>
</tr>
<tr>
<td>PURGEDB (NLDM, NPDA; CNME2007)</td>
<td>663</td>
</tr>
<tr>
<td>PWSEC (NCCF)</td>
<td>668</td>
</tr>
<tr>
<td>QHCL (NCCF; CNME1011)</td>
<td>669</td>
</tr>
<tr>
<td>QNETWORK (NCCF; CNME8505)</td>
<td>670</td>
</tr>
<tr>
<td>QOS (NCCF)</td>
<td>671</td>
</tr>
<tr>
<td>QREXX (NCCF; CNME8002)</td>
<td>672</td>
</tr>
<tr>
<td>QRS (NCCF)</td>
<td>673</td>
</tr>
<tr>
<td>QRYGLOBL (NCCF)</td>
<td>676</td>
</tr>
<tr>
<td>QRYKEEP</td>
<td>680</td>
</tr>
<tr>
<td>QUERY RANGE (NLDM)</td>
<td>681</td>
</tr>
<tr>
<td>QUEUE (NCCF)</td>
<td>682</td>
</tr>
<tr>
<td>RCFB (NCCF; CNME0029)</td>
<td>683</td>
</tr>
<tr>
<td>REACC (NCCF)</td>
<td>684</td>
</tr>
<tr>
<td>READSEC (NCCF)</td>
<td>685</td>
</tr>
<tr>
<td>RECORD (NLDM)</td>
<td>687</td>
</tr>
<tr>
<td>RECYCLE (EAS)</td>
<td>689</td>
</tr>
<tr>
<td>RECYCLE (NCCF; CNME0030)</td>
<td>691</td>
</tr>
<tr>
<td>RECYCLET (NCCF; CNME1089)</td>
<td>692</td>
</tr>
<tr>
<td>REDIAL (NCCF; CNME0031)</td>
<td>693</td>
</tr>
<tr>
<td>REFRESH (NCCF)</td>
<td>694</td>
</tr>
<tr>
<td>REGIP (NCCF)</td>
<td>704</td>
</tr>
<tr>
<td>REGISTER (NCCF)</td>
<td>706</td>
</tr>
<tr>
<td>REL (NCCF; CNME0032)</td>
<td>712</td>
</tr>
<tr>
<td>RELCONID (NCCF)</td>
<td>715</td>
</tr>
<tr>
<td>RELOAD (NLDM)</td>
<td>717</td>
</tr>
<tr>
<td>RELOAD (RODM)</td>
<td>718</td>
</tr>
<tr>
<td>REMOTE BR (NCCF)</td>
<td>720</td>
</tr>
<tr>
<td>REPEAT (BROWSE)</td>
<td>721</td>
</tr>
<tr>
<td>REPLY (NCCF)</td>
<td>722</td>
</tr>
<tr>
<td>REPORTS (NPDA)</td>
<td>723</td>
</tr>
<tr>
<td>REQMS (NPDA)</td>
<td>724</td>
</tr>
<tr>
<td>RESET (NCCF)</td>
<td>725</td>
</tr>
<tr>
<td>RESETDB (NCCF, NLDM, NPDA)</td>
<td>727</td>
</tr>
<tr>
<td>RESETH (NCCF)</td>
<td>728</td>
</tr>
<tr>
<td>RESOLVE</td>
<td>729</td>
</tr>
<tr>
<td>RESOURCE (NCCF)</td>
<td>730</td>
</tr>
<tr>
<td>RESTORE (NCCF)</td>
<td>732</td>
</tr>
<tr>
<td>RESTYLE (NCCF)</td>
<td>734</td>
</tr>
<tr>
<td>RESUME (NCCF)</td>
<td>736</td>
</tr>
<tr>
<td>RETRIEVE (NCCF)</td>
<td>737</td>
</tr>
<tr>
<td>RETURN</td>
<td>739</td>
</tr>
<tr>
<td>REVFIND (WINDOW)</td>
<td>740</td>
</tr>
<tr>
<td>REXEC (NCCF)</td>
<td>741</td>
</tr>
<tr>
<td>RID (NCCF)</td>
<td>743</td>
</tr>
<tr>
<td>RIGHT</td>
<td>745</td>
</tr>
<tr>
<td>RMTSEND (NCCF)</td>
<td>756</td>
</tr>
<tr>
<td>RODM (RODM; CNME1092)</td>
<td>760</td>
</tr>
<tr>
<td>RODMVIE (RODM)</td>
<td>763</td>
</tr>
<tr>
<td>ROLL (NCCF)</td>
<td>764</td>
</tr>
<tr>
<td>ROUTE (NCCF)</td>
<td>765</td>
</tr>
<tr>
<td>RSESS (NCCF; CNME1012)</td>
<td>767</td>
</tr>
<tr>
<td>RSH (NCCF)</td>
<td>769</td>
</tr>
<tr>
<td>RTREND (NLDM)</td>
<td>771</td>
</tr>
<tr>
<td>RTINIT (NCCF)</td>
<td>774</td>
</tr>
<tr>
<td>RTSUM (NLDM)</td>
<td>776</td>
</tr>
<tr>
<td>RTTBL (NCCF)</td>
<td>779</td>
</tr>
<tr>
<td>RUNCMD (NCCF)</td>
<td>780</td>
</tr>
<tr>
<td>RUNDIAG (NCCF)</td>
<td>783</td>
</tr>
<tr>
<td>SCLIST (STATMON)</td>
<td>784</td>
</tr>
<tr>
<td>SDOMAIN (NLDM)</td>
<td>785</td>
</tr>
<tr>
<td>SDOMAIN (NPDA)</td>
<td>787</td>
</tr>
<tr>
<td>SECMI (NCCF; CNME8004)</td>
<td>791</td>
</tr>
<tr>
<td>SEGMENT (NCCF; CNME8506)</td>
<td>798</td>
</tr>
<tr>
<td>SENDSESS (NCCF)</td>
<td>799</td>
</tr>
<tr>
<td>SENSE (NLDM; CNME2003)</td>
<td>800</td>
</tr>
<tr>
<td>SISEGGET (NLDM; CNME2011)</td>
<td>801</td>
</tr>
<tr>
<td>SESS (NLDM; CNME2004)</td>
<td>804</td>
</tr>
<tr>
<td>SESSC (NLDM; CNME2012)</td>
<td>806</td>
</tr>
<tr>
<td>SESSDR (NLDM)</td>
<td>808</td>
</tr>
<tr>
<td>SESSIONS (NCCF; CNME0048)</td>
<td>809</td>
</tr>
<tr>
<td>SESSMDIS (NCCF)</td>
<td>812</td>
</tr>
<tr>
<td>SET (NCCF)</td>
<td>814</td>
</tr>
<tr>
<td>SET (TARA)</td>
<td>817</td>
</tr>
<tr>
<td>SET HEX (NLDM)</td>
<td>820</td>
</tr>
<tr>
<td>SET RANGE (NLDM)</td>
<td>821</td>
</tr>
<tr>
<td>SETBQL (NCCF)</td>
<td>823</td>
</tr>
<tr>
<td>SETCLOG (NCCF; CNME1081)</td>
<td>824</td>
</tr>
<tr>
<td>SETCONID (NCCF)</td>
<td>825</td>
</tr>
<tr>
<td>SETTINGS (EAS)</td>
<td>826</td>
</tr>
<tr>
<td>SHOW (GMFH)</td>
<td>829</td>
</tr>
<tr>
<td>SMEDR (NLDM)</td>
<td>832</td>
</tr>
<tr>
<td>SMENU (STATMON)</td>
<td>834</td>
</tr>
<tr>
<td>SNMP (NCCF; CNMESNMP)</td>
<td>835</td>
</tr>
<tr>
<td>SNMP BULKWALK (NCCF; CNMESNMP)</td>
<td>839</td>
</tr>
<tr>
<td>SNMP GET (NCCF; CNMESNMP)</td>
<td>842</td>
</tr>
</tbody>
</table>
Chapter 1. Using Commands

When using NetView commands, it is helpful to know that the NetView program is composed of the following components:

Automated Operations Network
Provides a set of programs that can be customized and extended to provide network automation.

Browse facility
Provides the capability to browse the network log or a data set member.

Command facility
Provides base service functions and automated operations. Included are the operator interface and network and trace logging facilities. The command facility can also operate as a subsystem of MVS.

The component identifier for the command facility is NCCF.

Event/Automation Service
Provides translation and forwarding services for alerts, messages, TEC events and SNMP traps. The component identifier for the Event/Automation Service is EAS.

Graphic Monitor Facility host subsystem
Provides a link between RODM and the NetView Management Console to display Systems Network Architecture (SNA) and non-SNA resources.

The component identifier for the Graphic Monitor Facility host subsystem is GMFHS.

Hardware monitor
Provides information about physical network resources. This includes failure information that shows probable cause and recommended actions and information on the 4700 Support Facility. The information can be grouped into the following categories:
- Events
- Statistics
- Alerts

Events are unusual conditions detected by a device about itself or on behalf of a device it controls. Events can be records of permanent errors and other warning and exception conditions. Statistics include information describing the number of transmissions and retransmissions for traffic on a line. An alert is an event that is considered critical and requires operator attention. Whether an event is important enough to be considered an alert is determined by a filter. This filtering decision is made using criteria set in your installation based on how you want to manage and control your network and what information the operators need to see.

The component identifier for the hardware monitor is NPDA.

Help facility
Displays online help information for the NetView components, panels, messages, and commands. This facility includes a procedure that help desk personnel can use to help with problem determination. An index is provided for quick reference.
MultiSystem Manager
Simplifies the task of managing your network resources.

NetView Management Console
Monitors and graphically displays the resources that represent a network, a portion of a network, or a group of networks at various levels of detail.

The component identifier for the NetView Management Console is NMC.

Resource Object Data Manager
An object-oriented, high-speed, multithread in-memory data cache that provides application programs with a means of rapidly accessing or changing the status of data.

The component identifier for the Resource Object Data Manager is RODM.

Session monitor
Provides information about the logical network resources. This includes session-related information such as response time measurement and the components that make up a session. Table 4 shows how this information is grouped:

Table 4. Session Monitor Data Categories

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Data Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session awareness data</td>
<td>Information about session activity within the networks. This data identifies the</td>
</tr>
<tr>
<td></td>
<td>partners of each session, which can be in the same domain, in different domains,</td>
</tr>
<tr>
<td></td>
<td>or in different networks.</td>
</tr>
<tr>
<td>Session trace data</td>
<td>Consists of session activation parameters, VTAM path information unit (PIU) data,</td>
</tr>
<tr>
<td></td>
<td>and network control program (NCP) data.</td>
</tr>
<tr>
<td>Session response time data</td>
<td>Measured response time broken down into ranges of time that are specified by the</td>
</tr>
<tr>
<td></td>
<td>performance class definitions.</td>
</tr>
<tr>
<td>Route data</td>
<td>Includes a list of PUs and transmission groups (TGs) that make up the explicit</td>
</tr>
<tr>
<td></td>
<td>route used by a session.</td>
</tr>
<tr>
<td>Network accounting and availability</td>
<td>Network availability data and distribution of use of network resources.</td>
</tr>
<tr>
<td>measurement data</td>
<td></td>
</tr>
</tbody>
</table>

The component identifier for the session monitor is NLDM.

Status monitor
Displays the status of network resources in a hierarchical manner and enables you to browse the network log. This facility also automatically reactivates minor nodes except applications and cross-domain resources (CDRSC).

The component identifier for the status monitor is STATMON.

SNA Topology Manager
Performs dynamic collection and display of APPN®, subarea, and LU topology and status. This topology and status is stored in RODM for use by NMC.

The component identifier for the SNA Topology Manager is TOPOSNA.

4700 Support Facility
Provides support for the IBM 3600 and 4700 Finance Communication Systems.

The component identifier for the 4700 support facility is TARA.
The NetView program operates as a VTAM application or as a subsystem of MVS. It provides a network log to record information as necessary.

Additional Information

<table>
<thead>
<tr>
<th>Topic</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Summary</td>
<td>Tivoli NetView for z/OS User’s Guide</td>
</tr>
</tbody>
</table>

Tasks

The NetView program can perform many functions. The NetView program controls these functions by defining units of work called *tasks*. The types of tasks are:

OST Operator station task. There is one OST for each NetView operator. There are also automated OSTs (autotasks), which perform unattended operations functions related to automation. You can use OSTs to maintain the online sessions with the command facility terminal operators. The OST also analyzes commands as it receives them from the operator and invokes the appropriate command processors.

NNT NetView-NetView task. When you have more than one NetView domain, each OST can have secondary sessions across domains with other NetViews. The OST in the remote domain is called a NetView-NetView task (NNT). There is one NNT for each cross-domain NetView with which the local NetView domain communicates. This task controls communication with cross domain NetView programs to issue commands and receive responses. An NNT is not used by the RMTCMD command, which uses LU 6.2 to communicate and uses distributed automated OSTs. RMTCMD is recommended for issuing cross domain commands, although NNTs are still supported.

PPT Primary program operator interface task. This task processes commands and command lists that are performed on a system-level basis. NetView uses the PPT to carry out all timer management functions. It runs timer-initiated commands designed to run under the PPT, and it can expand and run command lists. The PPT also routes unsolicited VTAM messages to the authorized receiver.

DST Data services task. This task processes requests for communication network management (CNM) or virtual storage access method (VSAM) data. This is the interface to network management data and VTAM.

MNT Main task. The NetView main task loads and attaches other NetView tasks.

HCT Hardcopy task. The hardcopy task logs messages received from or sent to a specified operator station. The HCT uses a specified printer to accomplish this.

OPT Optional task. Optional tasks are user-defined subtasks that can provide increased flexibility beyond the subtasks that the NetView program provides.

Command Types

The NetView program processes different types of commands, including:

- Regular commands
- Immediate commands
- Data services task commands
Most commands and all command lists are **regular commands**. Regular commands can run concurrently with other regular commands. Regular commands can be interrupted by system routines or by immediate commands.

Immediate commands, such as RESET, GO, and AUTOWRAP, can interrupt or preempt regular commands. As their name implies, they run as soon as you enter the command. Only one immediate command runs at a time. You can run immediate commands only in the command facility.

Data services commands run under a data services task (DST). These commands are internal to the NetView program. You cannot enter them at your terminal.

Some commands can run as either regular or immediate commands. If you enter a command at your terminal, it is treated as an immediate command. If the command is in a command list, it is treated as a regular command.

Some commands can run as either immediate or data services commands. If you enter a command at your terminal, it is treated as an immediate command. If the command is run under a DST, it is treated as a data services command.

Command Priority

A NetView OST, PPT, NNT, or autotask’s command priority determines the order in which NetView commands and command lists are processed. You can set or modify command priority with the NetView DEFAULTS or OVERRIDE commands, or override it for one command with the CMD command.

Whether a command is entered by the operator or sent to the task, the command is queued on the message queue of that task.

Any command entered at a terminal or sent using an EXCMD command from another task is queued to the target task’s message queue corresponding to the target task’s command priority.

Additional Information

<table>
<thead>
<tr>
<th>Topic</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command priority</td>
<td>Tivoli NetView for z/OS User’s Guide</td>
</tr>
</tbody>
</table>

Entering Commands

You can enter commands from either the NetView console or from the MVS console. From the MVS console, you can use either the MVS MODIFY command or prefix the command with the NetView designator character.

Additional Information

<table>
<thead>
<tr>
<th>Topic</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entering commands from the MVS console</td>
<td>Tivoli NetView for z/OS User’s Guide</td>
</tr>
</tbody>
</table>
Restricting Access to Resources and Commands

Both the commands that you can issue and the resources you can access are set for your operator ID. One such restriction is called span of control. Span of control restricts your control to select network resources. The span of control for which you are authorized is defined in either your operator profile or in an SAF product, depending on the method used for security authorization.

Another restriction is called command authorization. Command authorization restricts the use of commands, keywords, and values. This command authorization is defined in either the DSIPARM data set or in an SAF product.

Additional Information

<table>
<thead>
<tr>
<th>Topic</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restricting command access</td>
<td>Tivoli NetView for z/OS Security Reference</td>
</tr>
<tr>
<td>List of commands, keywords, and values which can be restricted</td>
<td>Tivoli NetView for z/OS Security Reference</td>
</tr>
</tbody>
</table>

Syntax Conventions Used in This Document

The commands are listed in alphabetical order for easy reference. The NetView component, the equivalent NetView command list (if any), and any operating system restrictions are provided for each command. If more than one component name is listed next to the command name, you can use the command in more than one NetView component.

The formats and operands of the NetView commands and command lists are described in the same notation throughout the document. Each command description includes the format and description of operands and, where applicable, restrictions, examples, and responses. The command syntax and examples shown assume they are being entered from within the appropriate component.
Chapter 2. NetView Commands and Command Descriptions

This chapter describes the formats of NetView commands and command lists. You can enter these commands from the command facility or from any other NetView component.

The commands are listed in alphabetical order. Each command description includes the format and description of operands and, where applicable, usage notes, responses, and examples.

To get online help for a specific NetView component, enter:

HELP component

Where component is the name of the NetView component. The possible values for component are:

- **AON**: Automated Operations Network components
- **BROWSE**: Browse facility
- **EAS**: Event/automation service
- **GMFHS**: Graphic Monitor Facility host subsystem
- **HELP**: Online help
- **MultiSystem Manager**: MultiSystem Manager components
- **NCCF**: Command facility
- **NLDM**: Session monitor
- **NMC**: NetView Management Console
- **NPDA**: Hardware monitor
- **RODM**: Resource Object Data Manager
- **STATMON**: Status monitor
- **TARA**: 4700 Support Facility
- **TOPOSNA**: SNA topology manager

For online help on a specific command, enter:

HELP command

Where command is the name of the command.

For online help on messages, enter:

HELP msgid

Where msgid is the identifier of the NetView message for which a help panel is to be displayed.

Following are all base NetView commands, which are listed in alphabetical order.
ACQ (NCCF; CNME0001)

Syntax

ACQ

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>A</td>
</tr>
<tr>
<td>COMP</td>
<td>C</td>
</tr>
<tr>
<td>ONLY</td>
<td>O</td>
</tr>
<tr>
<td>PUSUB</td>
<td>P, PU</td>
</tr>
</tbody>
</table>

Purpose of Command

The ACQ command list acquires a network control program (NCP) major node or a physical unit, and can be used for backup and recovery.

Operand Descriptions

rename
Is the name of the resource to be acquired. This resource must be either an NCP major node or a physical unit within an NCP major node.

ACT
Specifies that the acquired resources should be activated.

COMP
Specifies that during the activation of the major node, any subordinate minor nodes being acquired should also be activated, according to their ISTATUS values. If the activation of the major node (except for NCP major nodes) is not the initial activation, COMP activates all subordinate minor nodes that were not previously active. When the activation is not the initial activation of an NCP major node, COMP activates all subordinate lines and PUs. LUs subordinate to the PUs are activated according to their ISTATUS specification. This operand is the default.
ALL
Specifies that all the acquired subordinate resources also should be activated, regardless of their defined ISTATUS (initial status) values in the resource definition statements.

ONLY
Specifies to activate the acquired resource only, regardless of its defined ISTATUS values.

U
Specifies that all the acquired subordinate resources should also be activated, according to their defined ISTATUS values.

luname
Is the name of a primary LU with which the activated LUs are to be in session.

logmode
Is the logmode name to be used for any logon initiated for an LU as a result of this command list.

loadmod
Is the name in VTAMLIST of the NCP load module to be acquired.

PUSUB
Specifies that physical units (with attached LUs) subordinate to the acquired NCP are to be acquired with the higher-level resources. This option applies to NCPs only.

owner
 Specifies the owner of the NCP named by resname. You can specify this keyword only if the NCP has previously been activated. This keyword is supported only by VTAM V3 R3 and later releases or VTAM V3 R2 with the JVT3214 or JVT3215 enhancement.

passthru
Specifies up to 6 parameters which are appended unchanged to the VTAM VARY command issued by the ACQ command. No validation for duplicate or conflicting parameters is performed.

Restrictions
The commas between operands are optional; however, if you omit a positional operand, indicate its absence with a comma. For instance, in the following example the third operand has been omitted:
ACQ A04NV4,ACT,,NCF01

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Functioned normally</td>
</tr>
</tbody>
</table>

Examples

Example: Taking over Resources of an NCP
If HOST2 with NCP21 has failed, and you want to take over its resources, use the following command:
ACQ NCP21

Response
If the ACQ request is successful, the system responds with the following messages:
Note: Certain VTAM message IDs are release dependent.

Example: Acquiring and Activating an NCP
To acquire and activate NCP21, enter:

```
ACQ NCP21,ACT,,AO4T0012
```

Response
The third operand is omitted, defaulting to COMP. Therefore, all subordinate resources with an ISTATUS value of ACTIVE are also activated. A session is requested from AO4T0012 to all secondary LUs.

Example: Acquiring and Activating an NCP and Its Active Resources
To activate NCP major node NCP21, and any of its subordinate resources having an ISTATUS value of active, enter:

```
ACQ NCP21,A,U
```

Example: Acquiring and Activating Only an NCP
To acquire and activate NCP21, with O (for Only) specifying that no subordinate resources are to be activated regardless of their ISTATUS specification, enter:

```
ACQ NCP21,A,O
```

Example: Taking over Resources Unconditionally
To acquire and activate NCP21, to activate all subordinate resources regardless of ISTATUS value, to log all secondary LUs to AO4T0012, and to specify M3BSCQ as the logmode for any LU logons, enter:

```
ACQ NCP21,A,ALL,AO4T0012,M3BSCQ
```
ACT (NCCF; CNME0002)

Syntax

ACT

- ACT resname
- NoYes: OffOn
- passthru

OffOn

- COMP
- ALL
- ONLY
- SYNTAX
- U
- OFF
- ON

NoYes:

- COMP
- ALL
- ONLY
- SYNTAX
- U
- WARM
- NO
- YES
- DUMPLOAD

- DUMPSTA=dump_name
- LOADMOD=mod_name
- LOADSTA=station_name

- LOGON=luname
- LOGMODE=logmode_name
- NEWPATH=(name)

- RNAME=(link_station)
- U=channel_name

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>A</td>
</tr>
<tr>
<td>COMP</td>
<td>C</td>
</tr>
</tbody>
</table>
Purpose of Command

The ACT command list activates VTAM resources.

Operand Descriptions

\(\text{resname} \)

Is the name of the resource to be activated.

COMP

Specifies that all subordinate minor nodes should also be activated, according to their ISTATUS values. If the activation of the major node (except for NCP major nodes) is not the initial activation, COMP activates all subordinate minor nodes that were not previously active. When the activation is not the initial activation of an NCP major node, COMP activates all subordinate lines and PUs. LUs subordinate to the PUs are activated according to their ISTATUS specification. This operand is the default.

ALL

Specifies that the resource named in the \(\text{resname} \) operand and all the subordinate resources should be activated, regardless of their defined ISTATUS values in the resource definition statements.

ONLY

Specifies to activate the resource specified by \(\text{resname} \) only. None of the subordinate resources are activated, regardless of their defined ISTATUS values.

SYNTAX

Specifies that the major node named in the \(\text{resname} \) operand is to have its VTAMLST definition file checked for syntax errors. This validation does not include user-replaceable tables such as USS tables, ALS tables, and so on. The error checking consists of validation of syntax, definition statements, operands, and the type of the operands. This checking is the same as is done when the VARY ACT command is used to activate a resource. When SYNTAX is specified, no resource activation takes place. All other operands are ignored when SYNTAX is specified.

U

Specifies that the resource named in the \(\text{resname} \) operand and all of the appropriate subordinate resources defined with ISTATUS=ACTIVE should be activated.

WARM

This option is valid only under MVS. It causes VTAM to restore the minor nodes to the status recorded for them in their configuration restart data set. However, if the major node’s configuration restart data set has never been used for status recording, or if the major node does not have a configuration restart data set, VTAM rejects the ACT command list.

NO

Specifies that the communication controller associated with the specified NCP is not loaded during the processing of this ACT command list.
YES
Specifies that the communication controller associated with the specified NCP is reloaded with the appropriate NCP load module.

EXTERNAL
Specifies that the NCP is loaded from the communication controller.

HOST
Specifies that the NCP is loaded from the host.

SAVEMOD
Specifies whether the NCP is saved on the communication controller external disk storage after the NCP is loaded from the host. This operand is not valid if you select EXTERNAL.

DUMPLOAD
Specifies whether VTAM should dump the NCP to the communication controller and then reload the NCP from the communication controller.

DUMPSTA=dump_name
Applies only to the first activation of an NCP. DUMPSTA is the name of a link station in an adjacent subarea node through which any later static dump operations for this NCP are to be carried out.

LOADMOD=mod_name
Specifies the name of the NCP load module to load.

LOADSTA=station_resname
Applies only to the first activation of an NCP. LOADSTA is the name of a link station in an adjacent subarea node through which any load operations for this NCP are carried out.

LOGON=luname
Is the name of a primary LU from which active logical units are put in session.

LOGMODE=logmode_name
Is the logmode name to be used for any session initiated for a logical unit as a result of this command list.

NEWPATH=name
Specifies the dynamic path update member names (n1,...n3) in the VTAM definition library for VTAM V3R3. You can specify up to three member names. This operand is valid only when an NCP major node is activated.

RNAME=link_station
Applies only to the first activation of an NCP. RNAME specifies the names of up to 13 Synchronous Data Link Control (SDLC) link stations in adjacent NCP subarea nodes through which the specified NCP is attached to the network. The operand also specifies which SDLC link stations (and associated links) in adjacent NCP subarea nodes are to be activated automatically as part of the activation of the specified NCP.

U=channel_name
Applies only to the activation of an inactive channel-attached NCP, an SNA physical unit, or an inactive channel link to an adjacent host subarea.

The U operand specifies the channel through which VTAM is to establish connectivity to the specified NCP, VTAM, or PU.

OFF
Specifies that a switched SDLC line is to be taken out of answer mode.
ON
 Specifies that a switched SDLC line is to be put in answer mode.

passthru
 Specifies additional parameters which are appended unchanged to the VTAM
 VARY command issued by the ACT command. The total number of parameters
 specified on the ACT command cannot exceed 31. No validation for duplicate
 or conflicting parameters is performed.

Restrictions
 The combination of HOST and DUMPLOAD without SAVEMOD is not valid.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Functioned normally</td>
</tr>
</tbody>
</table>

Examples

Example: Taking Over Resources of a Physical Unit
 To activate physical unit P12175 and all resources under it, use the following
 command:
 ACT P12175,ALL

Response

 If the ACT request is successful, the system responds with messages similar to the
 following:
 IST097I VARY ACCEPTED
 IST093I P12175 ACTIVE

Note: Certain VTAM message IDs are release dependent.

Example: Activating an NCP
 To activate NCP21 and all subordinate nodes based on their ISTATUS values, enter:
 ACT NCP21,C

Example: Reloading a Communication Controller
 If the communication controller associated with NCP21 is to be reloaded with the
 appropriate module, use the following command:
 ACT NCP21,O,YES

Example: Activating an NCP Only
 To activate NCP21 without activating any subordinate nodes, regardless of
 ISTATUS specifications, enter:
 ACT NCP21,O,NO

Response

 The communication controller associated with NCP21 is not loaded, regardless of
 its current status or contents.

Example: Activating an NCP and Its Active Subordinate Nodes
 To activate NCP21 and subordinate nodes with ACTIVE-ISTATUS, to log secondary
 LUs to AOT001, to specify M3BSCQ as the logmode for any LU logons, and to
 name LS01 as the link station for static dumps, enter:
Example: Activating an NCP and All Its Subordinate Nodes
To activate NCP21 and all subordinate nodes, regardless of ISTATUS specifications, to name LS01 as the link station in an adjacent subarea node through which all load operations for NCP21 are to be carried out, and to name 0CF as the channel device through which VTAM is to establish connectivity to NCP21, enter:

ACT NCP21,A,LOADSTA=LS01,U=0CF

Example: Activating an NCP and Its Subordinate Nodes
To activate NCP21 and its subordinate nodes based on their status at the time NCP21 was last activated, enter:

ACT NCP21,WARM

Example: Activating an NCP and Specifying SDLC
To activate NCP21 and specify LS1, LS2, and LS3 as the SDLC or channel link-stations in adjacent subarea nodes through which NCP21 is attached to the network, enter:

ACT NCP21,RNAME=(LS1,LS2,LS3)
ACTION (NPDA; CNME3001)

Syntax

```
ACTION

Dnumber
Enumber
Inumber
Rnumber
```

Purpose of Command

The ACTION command list provides a description of a specified recommended action displayed in the hardware monitor. `Dnumber`, `Enumber`, `Inumber`, and `Rnumber` are 3-digit recommended action numbers found on the Recommended Action and Resolution panels.

Use this command list to get additional information about a recommended or actual action. Actions shown on the Recommended Action panels are those you can take to bypass or resolve the event and are presented in the order most likely to be successful. The Resolution panel shows actual actions taken to resolve or fix the event.

NetView includes panels in support of `Dnumber` action numbers. Only `Dnumber` descriptions of recommended actions are installed with the NetView program. `Enumber`, `Inumber`, and `Rnumber` action panels are not provided with the NetView program.

The `Inumber` numbers are used for the IBM-defined generic alert code points. The `Enumber` numbers are used for the user-defined generic alert code points. `Rnumber` numbers are used for all of the actual action code points. For more information, refer to the Tivoli NetView for z/OS Customization Guide.

Operand Descriptions

- **Dnumber**
 Specifies to display a detailed description of a recommended action.

- **Enumber**
 Specifies to display a detailed description of a recommended action created by your system programmer from user-defined generic alert tables.

- **Inumber**
 Specifies to display a detailed description of a recommended action created by your system programmer from IBM-defined generic alert tables.

- **Rnumber**
 Specifies to display a detailed description of an actual action. The detailed description was created by your system programmer.
Examples

Example: Viewing Description of Recommended Action
To see a description of recommended action D023, enter:

ACTION D023
ADAPTER (NCCF; CNME8501)

Syntax

```
ADAPTER
LAN ADAPTER
LIST lanseg PROFILE lanseg adpname
REMOVAL lanseg adpname spname netid
```

Purpose of Command

The ADAPTER command list obtains status information about a local area network (LAN) adapter, removes an adapter from the managed network, or lists the current configuration of a Token-Ring Network or PC Network bus. Both the IBM LAN Network Manager and the IBM LAN Network Manager Entry support the ADAPTER command list.

Operand Descriptions

LAN

Specifies that ADAPTER is a LAN command list. This operand is optional.

LIST

Lists the current configuration of a Token-Ring Network or PC Network LAN segment. For the Token-Ring Network, the list consists of all the active adapters in the order they appear on the specified ring. The adapters are listed in their upstream order. For the PC Network, the list consists of all the adapters opened on the bus.

lanseg

Specifies the ring or bus segment number. The *lanseg* value can be from 0000–0FFF. To get the segment number, use the QNETWORK command. Segment name RING0001 is segment number 0001, and segment name CBUS0002 is segment number 0002.

PROFILE

Obtains the current status information of the specified adapter.

* Specifies that the IBM LAN Network Manager finds that adapter on all managed LAN segments and displays that information for PROFILE only. An asterisk (*) can replace *lanseg* for the PROFILE option only.

adpname

Specifies the name or address of the adapter.

REMOVAL

Removes an adapter from the managed network. By removing an adapter, you cause an active adapter to become inactive.

Attention: When an adapter is removed, it might have to be logically reinserted into the network by restarting the adapter support code.

netid

Specifies the network identifier in which the service point is located. This parameter is required only when you use a service point that is not in the local network. Use a period (.) to delimit netid from spname.
Specifies the 1- to 8-character service point name of the IBM LAN Network Manager.

Restrictions
Do not use the IBM LAN Network Manager command lists as commands in conjunction with the WAIT statement in a command procedure.

Examples

Example: Obtaining Status for a LAN Adapter
To obtain status about a local area network adapter, enter:

```
ADAPTER PROFILE 0002 LANMAN2 N4L021
```
ADDCMD (NCCF)

Syntax

ADDCMD

Purpose of Command

The ADDCMD command enables an operator to dynamically add or replace user-written commands to NetView without having to recycle NetView each time ADDCMD is issued. This improves NetView availability, and enables operators to quickly test new commands on a test system and introduce them to their production systems in a timely manner.

Operand Descriptions

NAME=commandname

Specifies the name of the command or command list being added to the NetView system command table (SCT) extension. The commandname cannot begin with the percent sign (%) because it is reserved for the NetView program. The commandname must be unique. If another command or command synonym is defined to NetView with the same name, the add request will be rejected unless REPLACE=Y is specified.
MOD=modulename

Specifies the name of the module that processes the command. For command lists, specify MOD=DSICCP.

Note: When you define a user-written command procedure, specify a unique module name on the MOD operand. Do not specify a name that the system might recognize as a command, because the NetView program attempts to execute that command instead of the user-written command procedure. NetView command modules begin with one of the following prefixes:

<table>
<thead>
<tr>
<th>AAU</th>
<th>BNT</th>
<th>EGV</th>
<th>EZL</th>
<th>FLB</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNH</td>
<td>CNM</td>
<td>EKG</td>
<td>FKB</td>
<td>FLC</td>
</tr>
<tr>
<td>BNI</td>
<td>DSI</td>
<td>EUY</td>
<td>FKV</td>
<td>FMG</td>
</tr>
<tr>
<td>BNJ</td>
<td>DUI</td>
<td>EXQ</td>
<td>FKX</td>
<td>FNA</td>
</tr>
<tr>
<td>BNK</td>
<td>DWO</td>
<td>EYV</td>
<td>FKX</td>
<td>IHS</td>
</tr>
</tbody>
</table>

TYPE=B|BP|D|H|I|P|R|RD|RP

Specifies the command type.

Note: Do not define regular command procedures with TYPE=I or TYPE=B.

B Indicates a command that can run as a regular or an immediate command. If an operator enters the command at a terminal, NetView processes it as an immediate command. If the command is in a command list, NetView processes it as a regular command.

BP Indicates a both or stage command.

D Indicates a data services command. Data services command procedures run under a data services task (DST). Because these commands are internal, operators cannot enter them at their terminals. Some internal commands that support the session and hardware monitors are TYPE=D.

H Type H is the same as type R except that type H commands are queued at high priority, regardless of the DEFAULTS and OVERRIDE setting of CMD priority.

I Indicates an immediate command. An immediate command interrupts a regular command. Immediate commands are usually screen-control or error-recovery commands. When an immediate command is running, the keyboard is locked and you cannot enter other commands. Immediate commands are not allowed in command lists or as initial commands. Also, you cannot use immediate commands with the PPT operand of the AT, EVERY, and AFTER commands.

P Indicates a stage command within a PIPE command. A command of type P controls the activity of a stage command within a pipeline.

R Indicates a regular command. Only one regular command runs at a time for an operator. If an operator enters a regular command while another regular command is running, the second command is held by the NetView program and runs when the first command completes. Regular commands are allowed in command lists. R is the default.

RD Indicates a regular or data services command.
RP Indicates a regular or stage command.

RES=N|Y
Specifies whether the command module is loaded during the ADDCMD command processing or when the added command is run.

N Indicates the command module is not loaded until the added command is run, and the storage that is used is freed upon completion.

Y Indicates the command module is loaded during the ADDCMD command processing and remains in storage. Y is the default.

ECHO=N|Y
Controls whether a command is echoed to the screen after it is entered by an operator. For commands in the NetView command list language, the setting for &CONTROL determines the echo status. TYPE=I and TYPE=B commands are not echoed after they are entered from a terminal.

N Means an entered command is not echoed.

Y Means an entered command is echoed. Y is the default.

Note: Commands that are echoed to the screen are subject to NetView automation if they match conditions in the automation table.

PARSE=N|Y
Specifies whether to parse the command buffer before giving control to the command module. This operand is ignored for command list invocations.

N Indicates that the command buffer is not parsed. This improves command processor performance for user-written command procedures that do not use the parse buffer PDB.

Y Indicates to parse the command buffer. Y is the default. For information about how to write command procedures, refer to Tivoli NetView for z/OS Customization: Using Assembler and Tivoli NetView for z/OS Customization: Using PL/I and C.

SEC=BY|CH|DE
Specifies whether to perform security verification on the command. All commands are authority-checked by default. Specify SEC only if you want to explicitly bypass authority checking or to check the command, regardless of the setting of AUTOSEC on the DEFAULTS command.

BY BYPASS - specifies that the NetView program will not perform authority verification for the command. This overrides AUTOSEC=CHECK as specified on the DEFAULTS command.

If you specify SEC=BY and NetView command authorization table statements or SAF statements for the same command, the command security statements are ignored.

Note: Specifying SEC=BY to bypass command authorization checking for commands that are frequently used and present no security risk can result in an overall savings in NetView processor utilization.

CH CHECK - specifies that the NetView program always performs authority verification when this command is issued. This overrides AUTOSEC=BYPASS as specified on the DEFAULTS command.

Specify SEC=CH to restrict access to commands that, when misused, could have negative effects in your environment. This statement causes
an authorization check and prevents a task from issuing an
unauthorized command, even if the command originated from the
automation table and AUTOSEC is set to BYPASS.

DE
DEFER - specifies that the NetView program conditionally performs
authority verification for the command. If the command is issued from
the automation table, authority checking is performed depending on
the value assigned to AUTOSEC by the DEFAULTS command. When
AUTOSEC=CHECK, the command is authority checked. When
AUTOSEC=BYPASS, the command is not checked. If the command is
not issued from the automation table, authority checking is performed.

IGNRLSUP=*|number
Specifies whether or not to ignore suppression of logging the command when
suppression characters are coded on a specific command.

* Logs the entire command string.

number
The value 0 indicates that suppression characters should be honored.
Values 1–250 indicate that the first n parsed tokens (character strings
delimited by blank, comma, period or equal sign) of the command
string should be logged.

Note: Specifying IGNRLSUP=1-250 with PARSE=N for the same
command definition is considered an error.

The command verb is the first parsed token. For example
IGNRLSUP=1 logs only the command verb.

Notes:
1. The IGNRLSUP value is honored only if the command is not suppressed
 for any other reason. For example, if the command is run from a command
 list and &CONTROL is set to ERR, then the command is suppressed.
2. The IGNRLSUP value coded on the ADDCMD command or CMDMDL
 statement takes precedence over any value coded on the DEFAULTS
 command. If IGNRLSUP is not coded on the DEFAULTS or ADDCMD
 commands or the CMDMDL statement for the command, then the
 suppression characters are honored for that command.
3. The IGNRLSUP value is ignored when processing commands in a
 command list.

CMDSYN=(csyn)
Specifies another 1 – 8 character name for the command being added. The
parentheses are not required if only one csyn is specified. Multiple
specifications of csyn must be enclosed in parentheses and separated by either
blanks or commas. If another NetView command or command synonym is
defined to NetView with the same name as the csyn, the add request is
rejected.

PARMSYN=(pname|psyn)
Defines a synonym for a keyword or value of the command being added. The
pname is the operand name defined by the command module. The psyn is
another 1 – 8 character name for the pname with which it is associated,
enclosed in parentheses. The outer parentheses are not required if only one
pname is specified. Multiple specifications of psyn must be separated by blanks
or commas.
REPLACE=N|Y
 Specifies if the command being added by the ADDCMD command should replace an existing command of the same name previously added by ADDCMD.

 N Specifies not to replace the existing command. The ADDCMD will be rejected. N is the default.

 Y Specifies to replace the existing command. When the command is replaced, the previous command is deleted but its storage is not freed. Specify FREE=Y with the DELCMD command to free the storage when the command is replaced.

 Note: REPLACE=Y does not replace the command module associated with the command name. To replace the command module, specify DELCMD FREE=Y and then enter the ADDCMD. Any existing ADDCMDs with RES=Y specified must be deleted and the command must not be running anywhere within NetView before the ADDCMD is issued.

 To determine if the current module is loaded into storage, use the DISPMOD command. Refer to the NetView online help for more information about the DISPMOD command.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Processing successful</td>
</tr>
<tr>
<td>4</td>
<td>Syntax error</td>
</tr>
<tr>
<td>8</td>
<td>Specification error</td>
</tr>
<tr>
<td>12</td>
<td>Internal processing error</td>
</tr>
</tbody>
</table>

Usage Notes

Consider the following when using the ADDCMD command.

- A command synonym or name with special characters, for example the equal sign (=), must be enclosed in a quoted string. A quoted string cannot be included in a list of command synonyms.
- You can use the ADDCMD command to perform authorization checking on non-NetView commands. For example, you can use DSIEX19 to check the commands passed to a service point using RUNCMD. To do this, specify MOD=DSISPCMD.
- You can add authority checking for new commands either before or after issuing ADDCMD. Use the NetView command authorization table or a NetView-supported SAF product.

Restrictions

The following restrictions apply to the ADDCMD command:

- The command type must be R (regular) for command lists.
- RES=Y must be specified for command lists.
- The ADDCMD command cannot replace a command that is defined internally to the NetView program.
- Do not use the following as command synonyms:
- A comma or a period
- A name that begins with a percent sign (%)
- A name that is a VTAM command
- Another NetView command
- A command in an application program that runs with the NetView program

- NetView help is keyed to command names. If you create a synonym, you can create help for that synonym or add the synonym to the helpmap sample (CNMS1048). Refer to the *Tivoli NetView for z/OS Customization Guide* for more information about writing help panels.

- The synonyms might not work as expected, depending on the NetView component you are using. For example, you can assign the T synonym to the TARA command using the CMDSYN statement. However, if you are in the hardware monitor component, T executes the TITLE command instead of the TARA command.

- The system console operator must always use the original command name.

- Do not use PARMSYN for VTAM, MVS, and terminal access facility (TAF) LU1 commands.

Examples

Example: Adding User-Written Commands

The following example adds a new command named mycmd:

```
addcmd name=mycmd,mod=mycmdmod,cmdsyn=mc,parmsyn=(parm1(p1,prm1),parm2(p2))
```
AFTER (NCCF)

Syntax

```
AFTER
```

Purpose of Command

The AFTER command enables the operator to schedule a command or command procedure to run after a specified period of time.

Operand Descriptions

time

Specifies the time interval after which the command is to be run. It must be the first operand. A value of minutes or seconds is required. The time period is specified as `ddd interval` where:

- `ddd` is the optional number of days (0–365).
- `interval` is the hours (00–24), minutes (00–59), and seconds (00–59). The format of `interval` is controlled by the setting of the time operands of the DEFAULTS and OVERRIDE commands. If not specified, hours, minutes and seconds all default to zero (0). If you specify 24 for hours, specify 00 for minutes and seconds. A time period of zero cannot be specified.

Note: If only a 2-digit value is specified for `interval`, the NetView program assumes it to be a value for minutes. If only a 2-digit value preceded by a colon is specified for `interval`, the NetView program assumes it to be a value for seconds.

PPT

Specifies that the command or command procedure indicated by `command` is to run under the primary program operator interface task (PPT). Commands scheduled under the PPT might not run in the order that you specified if the value of the time operand is the same for each command.

Note: Not all commands can run under the PPT. Examples of commands that cannot run under the PPT are the following:

- Commands that control the screen (such as AUTOWRAP, INPUT, and SET PF)
Commands or command procedures that invoke full-screen command processors (such as BGNSESS FLSCN, NLDM, NPDA, BROWSE, and HELP)

- Commands that issue STIMER
- Command procedures that issue the control statement &WAIT or &PAUSE
- REXX command lists that issue WAIT, PAUSE or TRAP
- High-level language (HLL) command procedures that issue WAIT or TRAP

ROUTE
Is the operator on which the command is to be run. A single operator or a group name can be specified. An asterisk (*) indicates the issuing operator. This is the default. Group names must begin with a plus (+) sign. A group name instructs NetView to queue the command to the first operator in that group, according to the ASSIGN order, that is logged on. If a group name was specified which contains no logged-on operators, the command is not executed. If the specified operator is not logged on, the command is not executed.

TIMEFMSG
Specifies whether timed commands which could not be queued to the target operator will produce a BNH357E error message. The valid values are:

- **NO**
 - Indicates that no error message will be issued. NO is the default.

- **YES**
 - Indicates that the error message will be issued.

ID= reqname
Is a 1- to 8-character identifier that you define for this timer request. The first three characters of the name cannot be ALL, RST, or SYS.

SAVE
Indicates that this timer event should be saved to the NetView Save/Restore database. If SAVE is not coded, the timer event is not saved.

GMT|LOCAL
Specifies whether a saved timer is relative to Greenwich Mean Time (GMT) or local system time. GMT means the timer will run at the absolute (GMT) time calculated for the local time specified when the timer was entered, regardless of subsequent local to GMT difference settings on the system. If LOCAL is used, NetView adjusts the time that the command is run to keep it relative to the new local settings. The default is GMT.

command
Is the command or command procedure to run after the time interval.

Usage Notes
If the scheduled command is to run under the PPT, it will not be authority checked unless AUTHCHK=SOURCEID is in effect.

For more information about authority checking of the scheduled command and the effect of SOURCEID and TARGETID, refer to the [Tivoli NetView for z/OS Security Reference](#).

Restrictions
The following restrictions apply to the AFTER command:
• Commands defined as *regular* or *both* when the NetView program was installed can be used with AFTER. You cannot use commands defined as *immediate* with AFTER. Commands scheduled under the PPT might not run in the order that you specified if the value of the time operand is the same for each command.

• The AFTER command is asynchronous and requires a CORRWAIT stage if used in a PIPE.

• When the timer on the AFTER command expires, the command to be run is queued to the appropriate task at the task’s command priority if it is a regular command.

• The scheduled command or command procedure runs at the indicated interval unless the AFTER command is purged. You can use the PURGE command to reset the timer request.

• No authorization checking is done for commands running under the PPT when you specify either:
 – SECOPTS.CMDAUTH=TABLE|SAF with SECOPTS.AUTHCHK = TARGETID in CNMSTYLE
 – CMDAUTH=TABLE|SAF with AUTHCHK = TARGETID on the REFRESH command

 In either case, make sure that the PPT operand of the AFTER command is protected.

Examples

The format of times specified in the following examples assumes the default setting for time formats on the DEFAULTS and OVERRIDE commands.

Example: Running Command List after Five Seconds

To schedule the SESSIONS command list to run after 5 seconds, enter:

```plaintext
AFTER :05,SESSIONS
```

Note: If you place 00 before the colon, the first operand is considered hours rather than minutes, and the AFTER command runs after 5 minutes, not 5 seconds.

Example: Running Command List after Five Minutes

To schedule the SESSIONS command list to run after 5 minutes, enter:

```plaintext
AFTER 5,SESSIONS
```

Example: Running Command List after Five Hours

To schedule the SESSIONS command list to run after 5 hours, enter:

```plaintext
AFTER 5:00,SESSIONS
```

Example: Running Command List after Five Days

To schedule the SESSIONS command list to run after 5 days, enter:

```plaintext
AFTER 5 00,SESSIONS
```

Note: You must put a space between the 5 and 00. If there is no space between 5 and 00, the operand is considered to specify 500 days. Valid values for days are 0–365, therefore a syntax error occurs.

Example: Running Command List after Five Hours and Saving the Command

To schedule the SESSIONS command list to run after 5 hours and to indicate that the command should be saved relative to local time, enter:

```plaintext
AFTER 5:00,SAVE,LOCAL,SESSIONS
```
To understand the effect of the LOCAL operand, suppose that the local system time when the AFTER command is issued is 1:00 a.m. eastern standard time (EST). At 2:00 a.m. the system clock is set forward 1 hour to 3:00 a.m. eastern daylight time (EDT), the NetView system is recycled, and the system operator issues the RESTORE TIMER command.

The SESSIONS command list was originally scheduled to run at 6:00 a.m. EST. The elapsed time from when the AFTER command is issued until the SESSIONS command list runs is 4 hours in absolute time because an hour was lost when the system clock was set forward for daylight saving time. If you want the command to ignore the time change and run after an absolute interval of 5 hours, specify GMT (the default) instead of LOCAL. If you specify GMT, the SESSIONS command list runs at 7:00 a.m. EDT.
AINQ (NCCF)

Syntax

```
AINQ
```

```
,ORIGNAME=origin_name
,ORIGNET=origin_network

,ORIGNAME=origin_name
,ORIGNET=current_network

,ORIGNET=target_network
,TYPE=LU

,ORIGNET=target_network
,TYPE=LU
```

Purpose of Command

The AINQ command retrieves information from the alias translation tables.

Operand Descriptions

- **ORIGNAME=origin_name**
 Is the resource name as the origin network knows it. For a logical unit, this operand is an alias name. For a class of service (COS) or logon mode, this resource name is the name of the COS or logon mode entry, known in the originating network, that is equivalent to the entry specified for the target network.

- **TARGNAME=target_name**
 Is the resource as it is known to the target network. For a logical unit, this operand is the real name. For a COS or logon mode entry, this operand is the local name defined in the target network.

- **ORIGNET=origin_network**
 Is the source network (the identifier of the network to which the name type applies). If you do not specify this operand, ORIGNET becomes the network identifier of the network on which the NetView program is running. If the NetView program is running in a non-gateway host, specify the ORIGNET operand. The default value is your current network.

- **TARGNET=target_network**
 Is the network identifier of the target network. TARGNET is not required if you specify ORIGNAME and TYPE=LU.

- **TYPE**
 Specifies the type of the ORIGNAME or TARGNAME. Valid types are:
 - **LU**
 Specifies that the ORIGNAME or TARGNAME is an LU. LU is the default.
 - **COS**
 Specifies that the ORIGNAME or TARGNAME is a class of service.
 - **MODE**
 Specifies that the ORIGNAME or TARGNAME is a logon mode.
Examples

Example: Displaying the Real Name of an LU
You are logged on to the NetView system in network NETA. You know that the alias name of a specific terminal LU in NETA is TERMA1, and you want to display the real name of that LU as it is known in target network, NETB.

To get translation information for TERMA1 in network NETB, enter:
AINQ ORIGNAME=TERMA1,ORIGNET=NETA,TYPE=LU,TARGNET=NETB

Response

The system responds with the following messages:
DSI743I INQUIRY DATA - ORIGNAME=TERMA1,
ORIGNET=NETA,TYPE=LU,TARGNET=NETB

DSI744I INQUIRY RESULT - TARGNAME=TERMB1,
TARGNET=NETB,CDRM=SSCPIDB

The response contains the translated name (TERMA1 translates to TERMB1).
ALERTSD (NPDA)

Syntax

```
ALERTSD
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALERTSD</td>
<td>ALD</td>
</tr>
</tbody>
</table>

Purpose of Command

The ALERTSD command displays the Alerts-Dynamic panel.

The panel shows alerts as they are received. As each new alert arrives, it is displayed at the top of the panel, pushing the oldest alert off the bottom of the panel.

Usage Notes

For explanations of the alert flags, refer to the NetView online help:

```
HELP NPDA 'DOMAIN'
   For domain alert flags

HELP NPDA 'RESNAME'
   For resource alert flags

HELP NPDA 'PROBABLE CAUSE'
   For probable cause alert flags
```
ALERTSH (NPDA)

Syntax

```
ALERTSH
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALERTSH</td>
<td>ALH</td>
</tr>
</tbody>
</table>

Purpose of Command

The ALERTSH command displays the Alerts-History panel. The panel shows all alerts from the hardware monitor database. The panel can have multiple pages. You can log records to Information/Management from this display. Information/Management does not support the printing of double-byte character set (DBCS) characters because unexpected results can occur. The number of alerts shown on the Alerts-History panel is determined by the alerts wrap count.

Usage Notes

For explanations of the alert flags, refer to the NetView online help:

- HELP NPDA 'DOMAIN'
 For domain alert flags
- HELP NPDA 'RESNAME'
 For resource alert flags
- HELP NPDA 'PROBABLE CAUSE'
 For probable cause alert flags
ALL (BROWSE, WINDOW)

Syntax

```
ALL [position.length] /string/
```

Purpose of Command

Use the ALL command to display a specified collection of lines in BROWSE and WINDOW. If parameters are not specified, all lines are displayed and current filtering is disregarded. If `/string/` is specified, only lines matching the string are displayed.

Operand Descriptions

`position.length`

Specifies the column where searching begins in each line and the length of the search. If you do not specify `position.length`, the entire line is searched.
- If you specify only `position`, the length will default to the length of the string given.
- You can specify `*` as the length, indicating the remainder of the line. For example, `37.*` indicates a search beginning in column 37 for the remainder of the line.

In log-browse, use the third heading line of the screen to identify columns. For example, `8.8` in log browse specifies column 8 and length 8, which corresponds to the operator ID for which the line was logged.

`/string/`

Specifies the character string that is to be matched. The first nonblank character encountered after the ALL command and the optional `position.length` value is the delimiter that establishes the boundary of the text string used. The delimiter must be a single quote (’), double quote (“) or slash (/). The next occurrence of that delimiter determines the end of the string. For simple searches, delimiters are not always required:
- If the string contains no blanks and begins with an alphabetic character (A-Z, a-z, #, @, $), delimiters are not required.
- When a leading delimiter is specified, the trailing delimiter is optional if the string does not end in blanks.

Usage Notes

For log browse, you can use the ALL command in conjunction with the BLOG command. If filtering information is specified on the BLOG command, the ALL command can be used with no parameters to turn off the BLOG filters. When a string is specified, BLOG filters are disregarded and the new string value is used as a filter.

When the ALL command is entered with no parameters, the action is to show all lines. If the cursor is positioned on a line within the display, the resulting display begins with that line. When the cursor is on the command line, the resulting display begins with the line that is currently at the top of the display.
When the ALL command is issued with filtering parameters, the action is to show only lines which match. The resulting display is determined in the following manner:

- For BROWSE, the cursor position determines the start of the search:
 - If the cursor is positioned on a line within the display, the search begins with that line. When the cursor is on the command line, the search begins with the line that is currently at the top of the display.
 - The search is first done in a forward manner. If matches are found after the starting line, they are displayed on the resulting panel, even when there are not enough records to completely fill the panel. To see any matching records prior to the starting line you can scroll backwards.
 - For log browse, when no matches are found from the starting line through the end of log, a search is performed in a backwards manner from the starting line. If any records are found in the backwards search, they are displayed on the resulting panel along with message BNH296I. This message indicates that the end of the log was encountered looking for records and it was necessary to search backwards from the starting line.

- For WINDOW, the search begins with the first line of data, regardless of cursor position.

For WINDOW, label lines will not be filtered.

Examples

Example: Displaying Only Lines Containing Characters TASK
To display only lines with characters TASK, enter the following command from the BROWSE or WINDOW command line.

```
ALL /TASK/
```

Response

The display shows only records with characters TASK.

Example: Displaying VTAM Messages in log browse
To display only VTAM messages, enter the following command from the log browse command line:

```
ALL 37 IST
```

Response

Only lines with IST in positions 37–39 are displayed. This command narrows the search to the first 3 characters of the message ID for each line logged.
ALLC (TARA)

Syntax

```
ALLC
```

Purpose of Command

The ALLC command displays a list of the 3600 and 4700 controllers in the network.
ALLOCATE (NCCF)

Syntax

```
ALLOCATE
  DATASET(dsname)
  DATASET(dsname(member))
  DUMMY
  BLKSIZE(block_size)
  BLOCK(block_size)
  CYLINDERS
  TRACKS
  BUFNO(buffer_count)
  ALX
  CONTIG
  MXIG
  CATALOG
  DELETE
  KEEP
  UNCATALOG
  ALX
  BUFNO
  COPIES(sysout_copies)
  DATACLAS(data_class_name)
  DEFER
  DEN(mag_tape_density)
  DEST(destination)
  node_userid
  DIR(dir_blocks)
  DSORG(data_set_org)
  EROPT(error_option)
  EXPDT(date)
  FILE(ddname)
  FORMS(forms_number)
  FREE
  HOLD
  NOHOLD
  INPUT
  OUTPUT
  KEYLEN(key_length)
  LABEL(label_type)
  LIKE(model_dsname)
  LRECL(record_length)
  MGMTCLAS(mgmt_class_name)
  MSVGP(mss_vol_group)
  OUTLIM(lines_of_output)
  PASSWORD(password)
  POSITION(seq_number)
  PROTECT
  RECFM(record_format)
```
IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLOCATE</td>
<td>ALLOC</td>
</tr>
<tr>
<td>DATASET</td>
<td>DSNAMES, DSN, DS, DA</td>
</tr>
<tr>
<td>BLOCK</td>
<td>BLK, BLKS</td>
</tr>
<tr>
<td>CYLINDERS</td>
<td>CYL</td>
</tr>
<tr>
<td>TRACKS</td>
<td>TRK, TRKS</td>
</tr>
<tr>
<td>CATALOG</td>
<td>CATLG</td>
</tr>
<tr>
<td>UNCATALOG</td>
<td>UNCATLG</td>
</tr>
<tr>
<td>FILE</td>
<td>DD, DDN, DDNAME, F, FI</td>
</tr>
<tr>
<td>POSITION</td>
<td>POS</td>
</tr>
<tr>
<td>RELEASE</td>
<td>RLSE</td>
</tr>
<tr>
<td>ROUND</td>
<td>RND</td>
</tr>
</tbody>
</table>

Purpose of Command

The ALLOCATE command dynamically allocates a new or existing data set from the NetView program. The function and syntax of this command closely resemble those of the TSO ALLOCATE command.

Files are allocated at the NetView address space level. When allocated, the file is accessible by all NetView tasks just as if the file was allocated from JCL in the NetView startup procedure.

Data sets allocated by ALLOCATE remain allocated until:
- They are freed by the FREE command.
- They are closed if the FREE operand was specified.
The NetView program terminates.

If you issue an ALLOCATE command without specifying any parameters, you get a temporary sequential data set that you can use as a work file. This temporary file consists of:

- A temporary disk data set (UNIT=SYSDA).
- Disposition of (NEW,DELETE).
- An assigned data set name (SYS......). This data set name consists of SYS followed by a date and time stamp, the job name, and any other information to make it unique.
- An assigned ddname (SYSnnnn).
- A sequential data set (DSORG=PS).
- Disk space. The amount and type of disk space is obtained from an MVS constants module (IEFAB445), which you can modify. The shipped default is SPACE=(1000,(10,50),RLSE)

Where:

1000
 The space in blocks. The length is 1000 bytes.
10 The primary allocation of blocks.
50 The secondary allocation of blocks.
RLSE
 Unused space can be released.

You can write information to this work file and read it back. The data set is available until it is unallocated.

Operand Descriptions

DATASET(dsname)

Specifies that data set dsname is to be allocated. The dsname can be a value of 1–44 characters, and can be a catalogued VSAM file name.

DATASET(dsname(member))

Specifies that the partitioned data set (PDS) dsname is to be allocated with member as the PDS member name. The member can be a value of 1–8 characters.

DUMMY

Is a dummy data set to be allocated.

BLKSIZE(block_size)

Specifies the block size and average record length for a data control block (DCB). The number (block_size) can be from 1–5 numeric characters from 0 to 65536.

BLOCK(block_size)

Specifies the block size and the record length for disk space. The block_size can be 1–5 numeric characters from 0 to 65536. This operand requires the SPACE operand.

CYLINDERS

Specifies that space is to be allocated by cylinders. This operand requires the SPACE operand.

TRACKS

Specifies that space is to be allocated by tracks. This operand requires the SPACE operand.
BUFNO(buffer_count)
Specifies the number of buffers. This operand can be from 1–3 numeric characters with a maximum value of 255.

CATALOG
Specifies that the data is to be cataloged. This operand is mutually exclusive with SYSOUT.

DELETE
Specifies that the data set is to be deleted when freed. DELETE is the default for new data sets and is mutually exclusive with SYSOUT.

KEEP
Specifies that the data set is to be kept when freed. KEEP is the default for existing data sets and is mutually exclusive with SYSOUT.

UNCATALOG
Specifies that the data set is to be uncataloged. This operand is mutually exclusive with SYSOUT.

ALX
Specifies that up to five separate areas of contiguous space are to be allocated to the data set, and each area must be equal to or greater than the primary quantity.

CONTIG
Specifies that space allocated to the data set must be contiguous.

MXIG
Specifies that space allocated to the data set must be the largest area of available contiguous space on the volume, and equal to or greater than the primary quantity.

COPIES(sysout_copies)
Specifies the total number of copies of the data set to be printed, subject to an installation limit. The default is 1. This can be 1–3 numeric characters, ranging from 1–255. Specify this operand with SYSOUT.

DATACLAS(data_class_name)
Specifies the DFSMS/MVS data class name to which the allocated file is to be assigned. The data_class_name can be 1–8 alphanumeric characters in length.

DEFER
Specifies to defer mounting of volumes until the data set is open.

DEN(mag_tape_density)
Specifies the magnetic tape density. This operand can be from 0 to 4 characters. Use the following values when specifying DEN (mag_tape_density):
0 200 bits-per-inch for 7-track tape
1 556 bits-per-inch for 7-track tape
2 800 bits-per-inch for 7- and 9-track tapes
3 1600 bits-per-inch for 9-track tape
4 6250 bits-per-inch for 9-track tape with 6250 BPI feature

DEST(destination)
Specifies a remote destination to which the system output data set is to be routed. Specify this operand with SYSOUT.

DEST(node_userid)
Specifies a user at a specified node to which the system output data set is to be routed. Specify this operand with SYSOUT.
DIR(dir_blocks)
Specifies the number of directory blocks required. The number (directory blocks) must be 1–6 digits. Specify this operand with SPACE and either BLOCK, TRACKS, or CYLINDERS.

DSORG(data_set_org)
Specifies the data set organization. This operand can be 2 or 3 characters. Use the following values when specifying the DSORG(data_set_org) operand:
- **DA**
 Direct access
- **DAU**
 Direct access unmovable
- **PO**
 Partitioned organization
- **POU**
 Partitioned organization unmovable
- **PS**
 Physical sequential
- **PSU**
 Physical sequential unmovable

EROPT(error_option)
Specifies the input/output error option. This number (error option) must be 3 characters. Use the following values when specifying EROPT (error option):
- **ABE**
 Cause abnormal end of task (default)
- **SKP**
 Skip the block causing the error
- **ACC**
 Accept the block causing the error

EXPDT(date)
Specifies the expiration date of the data set. The date (yyddd) must be 5 characters in Julian format, where yy specifies the year and ddd specifies the day of the year (001–366). This operand is mutually exclusive with SYSOUT and RETPD.

FILE(ddname)
Is the ddname to be associated with the data set or VSAM file. The ddname can be from 1–8 characters.

FORMS(forms_number)
Specifies the print forms number for the system output data set. This number can be from 1–4 characters and must be specified with SYSOUT.

FREE
Deallocates the data set when it is closed.

HOLD
Specifies that the data set is to be placed on a hold queue upon deallocation. Specify this operand with SYSOUT.

NOHOLD
Specifies that the data set is not to be placed on a hold queue upon deallocation. NOHOLD is the default for a system output data set. Specify this operand with SYSOUT.

INPUT
Specifies that the data set is processed for input only. INPUT is mutually exclusive with SYSOUT.
OUTPUT
Specifies that the data set is processed for output only. OUTPUT is mutually exclusive with SYSOUT.

KEYLEN(key_length)
Specifies the key length. The length (key_length) must be a numeric value between 0 to 255.

LABEL(label_type)
Specifies the type of label associated with the volume. The name of the label (label_type) can be 2 or 3 characters. This operand is mutually exclusive with SYSOUT. Use the following values to specify LABEL (label_type):

- NL Volume has no label
- SL Volume has an IBM standard label
- NSL Volume has a nonstandard label
- SUL Volume has an IBM standard label and a user label
- BLP Label processing is to be bypassed
- LTM Check for and bypass a leading tape mark
- AL Volume has an American National Standard label
- AUL Volume has an American National Standard label and a user label

LIKE(model_dsname)
Specifies the data set whose attributes are used to allocate a new data set. The following attributes are copied from the model_dsname:

- BLKSIZE Blocksize
- DIR Directory space quantity
- DSORG Data set organization
- EXPDT Expiration date
- KEYLEN Key length
- LRECL Logical record length
- OPTCD Optional services code
- RECFM Record format
- SPACE Primary and secondary space quantities
- VSEQ Volume sequence number

If SMS is not active, the following attributes are not copied:
- BLKSIZE
- EXPDT
- OPTCD
- VSEQ
You can override any attributes of the model data set by explicitly specifying the appropriate keyword or keywords on the ALLOCATE command.

Note: The LIKE keyword is supported on MVS/ESA™ only.

LRECL(record_length)
Specifies the logical record length. This operand can be from 1–5 numeric characters, not to exceed 32760.

MGMTCLAS(mgmt_class_name)
Specifies the DFSMS/MVS management class name to which the allocated file is to be assigned. The mgmt_class_name can be 1–8 alphanumeric characters in length.

MSVGP(mss_vol_group)
Specifies the mass storage volume group where the data set resides or is to reside. This operand is mutually exclusive with SYSOUT and VOLUME.

OUTLIM(lines_of_output)
Specifies the maximum lines of output allowed for the system output data set. Specify the number (lines_of_output) as 1–8 characters from 1–16777215. Specify this operand with SYSOUT.

PASSWORD(password)
Specifies the password for a password-protected data set. The password can be from 1–8 characters.

POSITION(seq_number)
Specifies the relative position of the data set on a multi-data set tape. The sequence-number can be from 1–4 numeric characters with a maximum value of 9999. POSITION is mutually exclusive with SYSOUT. You can also specify this operand as POS.

PROTECT
Specifies that the data set should be RACF-protected when created. PROTECT is mutually exclusive with SYSOUT.

RECFM(record_format)
Specifies the 1-character record format. Use the following values to specify RECFM(record_format):

- A: ASA printer characters
- B: Blocked
- D: Variable length ASCII records
- F: Fixed
- M: Machine control characters
- S: Standard blocks or spanned
- T: Track overflow
- U: Undefined
- V: Variable

RELEASE
Specifies that unused space is to be deleted when the data set is closed.

RETPD(days)
Specifies the data set retention period in days. You can specify this period (days) as 1–4 digits with a maximum value of 9999. This operand is mutually exclusive with SYSOUT and EXPDT.

ROUND
Specifies that space should be rounded up to cylinders.
SPACE(quantity, increment)
 Specifies the number of units of space and the increment. Both can be from 1–6 numeric characters.

NEW
 Specifies that the data set is to be created. NEW is the default. Do not specify NEW for VSAM files.

MOD
 Specifies that additions are to be made to the data set.

OLD
 Specifies that the data set exists and exclusive control is required.

SHR
 Specifies that the data set exists but exclusive control is not required.

SYSOUT(class)
 Specifies that the data set is to be a system output data set. class is the 1-character system output class.

STORCLAS(stor_class_name)
 Specifies the DFSMS/MVS storage class name to which the allocated file is to be assigned. The stor_class_name can be 1–8 alphanumeric characters in length.

UCS(char_set_spec)
 Specifies the universal character set (font name) to be used when processing a print data set. The char_set_spec can be 1–4 alphanumeric characters.

UNIT(unit_type)
 Specifies the device type to which a disk or tape data set is to be allocated. The device type (unit_type) can be from 1–8 characters.

VOLUME(serial)
 Specifies the volume on which the data set resides or is to reside. It must be 1–6 numeric characters. You can also specify this operand as VOL. This operand is mutually exclusive with SYSOUT.

VSEQ(vol_seq_number)
 Specifies which volume of a multivolume data set to begin processing. The vol_seq_number must be from 1–3 numeric characters with a maximum value of 255. The default is 1. This operand is mutually exclusive with SYSOUT.

WRITER(external_writer)
 Specifies the program in the system library that is to write the system output data set instead of JES. The external_writer can be in the range of 1–8 characters and must be specified with SYSOUT. Specify intrdr for the internal reader.

Restrictions
 The following restrictions apply to the ALLOCATE command:
 • If you omit the FILE operand, a unique ddname with a name of SYSnnnn is assigned by dynamic allocation and then returned in the CNM272I message. Do not specify the FILE operand unless a specific ddname must be allocated. This prevents allocations failing because of ddname conflicts. It also prevents problems caused by deallocating a data set being shared by multiple NetView tasks. Each NetView task should allocate the file with a unique ddname. If one task deallocates its ddname, the other tasks do not lose their access to the file.
• If you allocate a partitioned data set as an input data set and specify a member name that does not exist, the ALLOCATE command completes successfully with a return code of 0. However, you will receive an OPEN error when you attempt to open the data set for input.

• Allocate the files with the FREE operand whenever possible. The files are then deallocated automatically when they are closed. This reduces virtual storage use. There is also an MVS limit of 1635 concurrent allocations. When this limit is reached, deallocate resources to do additional allocations. Allocating files with the FREE operand helps to keep the allocations below the limit. This procedure also minimizes the time that critical data sets, volumes, and units are tied up. System output data sets also are spooled immediately when the files are closed, instead of when the NetView program terminates.

• If you specify the same operand more than once on the ALLOCATE command, the last one specified is used and the previous operands are ignored.

• The NetView LISTA command displays the ddnames and dsnames of currently allocated files.

• For disk files, the following operands are ignored by dynamic allocation:

<table>
<thead>
<tr>
<th>OPERAND</th>
<th>IGNORED BY DYNAMIC ALLOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPIES</td>
<td>HOLD</td>
</tr>
<tr>
<td>DEN</td>
<td>OUTLIM</td>
</tr>
<tr>
<td>DEST</td>
<td>POSITION</td>
</tr>
<tr>
<td>FORMS</td>
<td>WRITER</td>
</tr>
</tbody>
</table>

• For tape files, the following operands are ignored by dynamic allocation:

<table>
<thead>
<tr>
<th>OPERAND</th>
<th>IGNORED BY DYNAMIC ALLOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLOCK</td>
<td>TRACK</td>
</tr>
<tr>
<td>CONTIG</td>
<td>MXIG</td>
</tr>
<tr>
<td>COPIES</td>
<td>MXIG</td>
</tr>
<tr>
<td>DEST</td>
<td>MXIG</td>
</tr>
<tr>
<td>DIR</td>
<td>MXIG</td>
</tr>
<tr>
<td>FORMS</td>
<td>MXIG</td>
</tr>
<tr>
<td>HOLD</td>
<td>NOHOLD</td>
</tr>
<tr>
<td>NOHOLD</td>
<td>WRITER</td>
</tr>
</tbody>
</table>

Return Codes

Return Codes (Decimal): ALLOCATE

<table>
<thead>
<tr>
<th>RETURN CODE</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful.</td>
</tr>
<tr>
<td>4</td>
<td>Request denied by installation validation exit.</td>
</tr>
<tr>
<td>8</td>
<td>Command syntax not valid.</td>
</tr>
<tr>
<td>12</td>
<td>Storage unavailable.</td>
</tr>
<tr>
<td>20</td>
<td>Operator is not authorized to use a keyword or value. Check message DSI213I for the keyword or value.</td>
</tr>
<tr>
<td>24</td>
<td>Dynamic allocation error; check return code and information code in message CNM276I for more information.</td>
</tr>
</tbody>
</table>
Parameter is not valid.

ddname already in use.

Mutually exclusive parameters specified.

Data set not found.

Data set is unavailable.

Dynamic Allocation Return Codes (Hexadecimal)

These return codes appear in message CNM276I.

- **Unavailable System Resource**

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>020C</td>
<td>Request for exclusive use of the shared data set cannot be honored.</td>
</tr>
<tr>
<td>0210</td>
<td>Data set is unavailable. The data set is allocated to another job.</td>
</tr>
<tr>
<td>0214</td>
<td>Unit is not available.</td>
</tr>
<tr>
<td>0218</td>
<td>Volume is not mounted.</td>
</tr>
<tr>
<td>021C</td>
<td>Unit name specified is undefined.</td>
</tr>
<tr>
<td>0220</td>
<td>Requested volume is unavailable.</td>
</tr>
</tbody>
</table>

- **Parameter is not valid.**

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>035C</td>
<td>Parameter is not valid. Check information code to identify the parameter that is not valid.</td>
</tr>
<tr>
<td>0364</td>
<td>JOBLIB, STEPLIB, JOBCAT, STEPCAT ddnames are not allowed.</td>
</tr>
<tr>
<td>037C</td>
<td>Value specified for parameter is not valid. Check information code to identify the parameter that is not valid.</td>
</tr>
<tr>
<td>0380</td>
<td>Mutually exclusive parameters were specified. Check information code to identify the parameter.</td>
</tr>
<tr>
<td>0384</td>
<td>Mutually inclusive parameter was not specified. Check information code to identify the parameter that requires additional parameters.</td>
</tr>
<tr>
<td>0388</td>
<td>Required parameter was not specified. Check information code to identify the parameter not specified.</td>
</tr>
<tr>
<td>039C</td>
<td>Device type and volume are incompatible.</td>
</tr>
</tbody>
</table>

- **Environmental Errors**

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0410</td>
<td>Specified ddname is unavailable. It is already associated with a previously allocated data set.</td>
</tr>
<tr>
<td>0420</td>
<td>Specified ddname is associated with an open data set.</td>
</tr>
<tr>
<td>0438</td>
<td>Specified ddname is not allocated.</td>
</tr>
</tbody>
</table>
0440 Specified dsname is not allocated.
0448 Request for a new data set failed. The data set already exists.
0450 Dynamic allocations limit of 1635 concurrent resources reached.
046C Remote workstation is not defined to the job entry subsystem.
0478 Unable to process job entry subsystem request.
0484 Request denied by operator.
04C0 Protect request failed. User is not defined to RACF.

System Routine Error

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1708</td>
<td>Data set not found.</td>
</tr>
<tr>
<td>170C</td>
<td>Index is not valid or not specified.</td>
</tr>
<tr>
<td>1710</td>
<td>A data set exists at other than the lowest index level specified.</td>
</tr>
<tr>
<td>1714</td>
<td>Syntax error exists in the name.</td>
</tr>
<tr>
<td>1718</td>
<td>Permanent I/O error.</td>
</tr>
<tr>
<td>4704</td>
<td>Data set already exists on volume.</td>
</tr>
<tr>
<td>4708</td>
<td>No room available in VTOC.</td>
</tr>
<tr>
<td>470C</td>
<td>Permanent I/O error.</td>
</tr>
<tr>
<td>4710</td>
<td>Requested absolute track not available.</td>
</tr>
<tr>
<td>4714</td>
<td>Requested space not available.</td>
</tr>
<tr>
<td>4718</td>
<td>Average record length greater than 65535 bytes.</td>
</tr>
<tr>
<td>4728</td>
<td>Space request must begin on cylinder boundary.</td>
</tr>
<tr>
<td>4738</td>
<td>Directory space not available.</td>
</tr>
<tr>
<td>474C</td>
<td>No space specified for a new data set.</td>
</tr>
<tr>
<td>4768</td>
<td>Space subparameter is not valid.</td>
</tr>
<tr>
<td>4774</td>
<td>User labels not supported.</td>
</tr>
<tr>
<td>4780</td>
<td>Directory space not available.</td>
</tr>
<tr>
<td>479C</td>
<td>DASD allocation terminated because of VTOC error.</td>
</tr>
<tr>
<td>47A8</td>
<td>RACF define failed; data set profile already defined.</td>
</tr>
<tr>
<td>47AC</td>
<td>User not authorized to define data set.</td>
</tr>
<tr>
<td>47B0</td>
<td>Installation exit rejected the request with a return code of 8.</td>
</tr>
<tr>
<td>47B4</td>
<td>Installation exit rejected the request with a return code of 4.</td>
</tr>
<tr>
<td>5704</td>
<td>Catalog does not exist or is not open.</td>
</tr>
<tr>
<td>5708</td>
<td>Data set already cataloged.</td>
</tr>
<tr>
<td>5710</td>
<td>Index structure to catalog the data set does not exist.</td>
</tr>
<tr>
<td>5714</td>
<td>Insufficient space in the catalog data set.</td>
</tr>
<tr>
<td>571C</td>
<td>Permanent I/O error.</td>
</tr>
<tr>
<td>6704</td>
<td>Required volume not mounted.</td>
</tr>
<tr>
<td>6708</td>
<td>Data set not found.</td>
</tr>
<tr>
<td>670C</td>
<td>Permanent I/O error.</td>
</tr>
</tbody>
</table>

Dynamic Allocation Information Codes (Hexadecimal)
Examples

Example: Allocating a Specified Data Set
To allocate a data set called SYS1.MESSAGE with a *ddname* of DD0001 with a status of SHR, enter:

```
ALLOCATE DATASET(SYS1.MESSAGE) FILE(DD0001) SHR
```

Response

```
CNM272I DD0001 IS NOW ALLOCATED
```

Example: Allocating a Non-Cataloged Data Set
To allocate a data set called K76.JOBS(JOB1) that is not cataloged and resides on a 3380 volume ESPAAA with a *ddname* of K76 and a status of OLD, enter:

```
ALLOCATE DATASET(K76.JOBS(JOB1)) VOLUME(ESPAAA) UNIT(3380) DDNAME(K76) OLD
```

Response

```
CNM272I K76 IS NOW ALLOCATED
```
Example: Allocating a Non-Cataloged Data Set
To allocate a data set called K000076.BATCH.JOBS(JOB1) that is not cataloged and
resides on a 3380 volume ESPAAA with a *ddname* of K000076 and a status of OLD,
enter:

```
ALLOCATE DATASET(K000076.BATCH.JOBS(JOB1)) VOLUME(ESPAAA)
    UNIT(3380) DDNAME(K000076) OLD
```

Response

```
CNM272I K000076 IS NOW ALLOCATED
```

Example: Allocating a Temporary Data Set
To allocate a new temporary 10-cylinder data set on disk:

```
ALLOCATE NEW SPACE(10) CYLINDERS
```

Response

```
CNM272I SYS00011 IS NOW ALLOCATED
```

Example: Allocating an Internal Reader
To allocate the internal reader with a *ddname* of READER and to have it
automatically deallocated when it is closed:

```
ALLOCATE F(READER) SYSOUT(A) WRITER(INTRDR) FREE
```

Response

```
CNM272I READER IS NOW ALLOCATED
```
AMONRPT

Syntax

```
AMONRPT APPL=applname
   GNAME=generic_resource_name
   MODEL=model_name
   MONITOR=YES
   MONITOR=NO
   SESCT=NO
   SESCT=YES
```

Purpose of Command
The AMONRPT command turns VTAM status reporting on or off for a specific application, or all applications that match a generic resource name or model name.

Operand Descriptions

APPL
Specifies one of the following:
- The name of a VTAM application.
- The name of the APPL statement in the VTAMLST definition.
- The dynamically-created clone application name generated from a model definition.

GNAME
Specifies the generic resource name. Status reporting is modified for all applications that have a matching name.

MODEL
Specifies the model name. Status reporting is modified for all cloned applications that are built from this name.

MONITOR
Specifies whether VTAM sends status updates when a state is changed for a specified application. The default is YES.

SESCT
Specifies whether VTAM sends status updates when a session count is changed for a specified application. The default is NO.

Restrictions
The ACB monitor must be active when AMONRPT is issued. When VTAM initiates ACB status reporting, MONITOR=YES and SESCT=NO are set for every application.

The combination MONITOR=NO and SESCT=YES is invalid. Message BNH491E is received if this combination is entered.
APPLS (NCCF; CNME0003)

Syntax

APPLS

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>A</td>
</tr>
<tr>
<td>INACT</td>
<td>I</td>
</tr>
</tbody>
</table>

Purpose of Command

The APPLS command list displays active, inactive, or all application program minor nodes for each application program major node.

Operand Descriptions

- **ALL**
 Displays all application program minor nodes within each major node. ALL is the default.
- **ACT**
 Displays all active application program minor nodes within each major node.
- **INACT**
 Displays all inactive application program minor nodes within each major node.
- **other**
 Specifies a value for the SCOPE keyword used by the VTAM DISPLAY APPLS command.
- **passthru**
 Specifies additional parameters which are appended unchanged to the VTAM DISPLAY command issued by the APPLS command. You can specify up to 6 additional parameters on the APPLS command. No validation for duplicate or conflicting parameters is performed.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Functioned normally</td>
</tr>
</tbody>
</table>

Examples

Example: Displaying all Application Programs

To display all application programs, use the following command: APPLS
APPLSPEN (NCCF; CNME0005)

Syntax

```
APPLSPEN
```

```apl
APPLSPEN applid, status
```

Purpose of Command

The APPLSPEN command list displays sessions in a specific state for particular application programs.

Operand Descriptions

- `applid`
 Specifies the application program for which sessions will be displayed.

- `status`
 Specifies a 1- to 8-character name. Any session status matching the characters that you enter is displayed. PND (pending active) is the default.

Restrictions

The following restrictions apply to the APPLSPEN command:

- Incorrect results can occur if you run the APPLSPEN command list while MSGMOD is on.
- For more information about this command, refer to the appropriate VTAM manual.

Examples

Example: Displaying All Active Sessions with a Specified Application

To display all active sessions with the application named A01A701, enter:

```
APPLSPEN A01A701,ACT
```

Response

If the APPLSPEN request is successful, the system responds with messages similar to the following:

```
CNM221I APPLSPEN : NAME = 'A01A701', STATUS = 'ACT/S', DESIRED STATE = 'ACTIV'
CNM220I APPLSPEN : ACTIVE SESSIONS = '0000000000', SESSION REQUESTS = '0000000000'
CNM311I APPLSPEN : NAME STATUS SESSION ID
CNM313I APPLSPEN : TSO0101 ACTIV-P E7FF38CE6E8A9AD7
CNM312I APPLSPEN : 1 SESSION(S) IN THE ACT STATE FOR A01A701
```

Because you requested a status of ACT, you received both ACTIV-SEC and ACTIV-PRI.
Example: Displaying Primary and Secondary Active Statuses

To display primary and secondary active statuses, enter:

APPLSPEN DSIAMLUT,ACTIV

Response

ACTIV is specified; therefore, primary active (ACTIV-PRI) and secondary active (ACTIV-SEC) statuses are displayed. Refer to the STATUS command list help for more information about interpreting status codes.

VTAM V3R3 output is similar to the above, except the sessions and session requests fields display 10 digits. Also, ACTIV-SEC changes to ACTIV-S and STATUS= is not displayed.
ASSIGN (NCCF)

Syntax

ASSIGN

Add:

ADDFIRST
ADDLAST
DELETE
REPLACE

COPY:

COPY=({listitem})

MSG:

MSG=string
MEMBER=string

PriSec:

MSG=string
MEMBER=string
PRI=({listitem})
SEC=({listitem})
Purpose of Command

The ASSIGN command, when used with the MSG or MEMBER option, defines which operators receive copies of solicited, unsolicited, or authorized messages. The ASSIGN command, when used with the GROUP option, assigns operators to groups. When either option is assigned, any subsequent modifications to that assignment require the addition of one of the following:

- ADDFIRST
- ADDLAST
- DELETE
- REPLACE

The ASSIGN command with the DROP option removes assignments made with previous ASSIGN commands.

When used with the MEMBER option, the ASSIGN command can be used to denote a DSIPARM member or PIPE message data that has automation table statements. These statements are compiled into an automation table. When messages pass through this table, it is determined whether they satisfy ASSIGN routing criteria.

The ASSIGN command enables you to specify operators that are either not presently defined to the NetView program or cannot access the resource in the APPL class of the SAF product that represents NetView (when OPERSEC=SAFDEF). In these cases, you will receive message DWO840I to inform you that an operator you specified in the ASSIGN command is not defined to NetView. The assignment completes successfully. You can subsequently add the operator definition, at which time the ASSIGN command takes effect. (If your operator definitions are in DSIOPF, use the REFRESH command to activate the changes.)

Refer to the AUTH statement in the Tivoli NetView for z/OS Administration Reference for more information about the relationship that exists between automation, the ASSIGN command, and the AUTH statement.

Operand Descriptions

GROUP
Assigns operators to a group.

+groupid
Assigns operators to the group with the group ID of +groupid. The group ID must begin with a + followed by 1–7 alphanumeric characters or the special characters (@ # $); for example, +group1.

ALL
Drops all assigned group IDs. You can use GROUP=ALL only when you specify DROP.

DROP
Drops the specified group assignment.
Note: You cannot specify the value AUTH or COPY when you are dropping a group assignment. You can use AUTH or COPY only when specifying MSG or MEMBER.

OP=opid
Specifies the operators who are to be assigned to the group. opid is an operator ID, SYSOP, or LOG.

ADDFIRST
Adds the operators or group IDs entered to the beginning of the previously assigned PRI, SEC, COPY, or OP LIST.

ADDLAST
Adds the operators or group IDs entered to the end of the previously assigned PRI, SEC, COPY, or OP LIST.

DELETE
Deletes the operators or group IDs entered from the previously assigned PRI, SEC, COPY, or OP LIST.

REPLACE
Replaces the previously assigned PRI, SEC, COPY, or OP LIST with the list of operators or group IDs entered.

MSG
Identifies the messages that are to be routed to a specified operator, copied to other operators, or dropped from the assignment.

The value for MSG is handled the same way that the value for MEMBER is handled. Assignments can be altered or dropped using the value supplied on the parameter. MSG cannot be used in conjunction with MEMBER on the same ASSIGN command.

string
Designates the ID of the message to be assigned. Groups of messages can be designated by specifying a prefix and then an asterisk. For example, to specify all messages beginning with DSI, use:

```
DSI*
```

If the information contains a parenthesis or a single quotation mark, enclose the information within single quotation marks. If the information contains single quotation marks, each must be entered as two single quotation marks. For example, you would enter `JOHN'S (ID` as `JOHN''S (ID`. If the information contains neither parentheses nor single quotation marks, single quotation marks are not necessary.

Note: The message ID cannot contain blanks.

ALL
Drops all messages from the assignment. You can specify MSG=ALL only if you use DROP.

MEMBER
Specifies the source of automation table statements. It can be either a DSIPARM member or single/multiline message input to the PIPE NETV stage.
If input is taken from a pipe stream, the first character of the name must be an asterisk (*). The name is used as a tag to identify the routing criteria.

The value for MEMBER is handled the same way that the value for MSG is handled. Assignments can be altered or dropped using the value supplied on the parameter. MEMBER cannot be used in conjunction with MSG on the same ASSIGN command.

string

The name of a DSIPARM member or a tag for input from a PIPE stream.

Member specifications are ordered alphabetically for processing. Member specifications that are pipe strings (beginning with the asterisk `*`) are forced to the end of the sort order. For example ASSIGN MEMBER=AMEMBER takes precedence over ASSIGN MEMBER=BMEMBER. Similarly, a pipe string specification of *astring takes precedence over *bstring. Any '*pipestr specification is lower in precedence than an explicitly specified member, because of the leading asterisk `*'. Of the four examples given above, the following would be the precedence order: 1. AMEMBER 2. BMEMBER 3.*ASTRING 4. *BSTRING

COPY=listitem

Specifies that the listed operators or groups of operators receive copies of solicited messages. The message sent to the COPY receiver is flagged with a + in the last position of the *domainid field. COPY lets you collect network status information by routing access method events such as active or inactive messages.

The listitem parameter is an operator ID, a group ID, SYSOP, or LOG. Specify SYSOP to route messages to the system operator or LOG to send additional copies of the messages to the network log.

DROP

Drops the specified messages. Valid operands are:

AUTH

Drops the specified messages from the PRI and SEC assignments. You can use DROP=AUTH only when you specify MSG or MEMBER. AUTH is the default.

COPY

Drops the specified messages from the COPY assignments. You can use DROP=COPY only when you specify MSG or MEMBER.

LEVEL=level

Establishes the priority of an assignment to specify which assignment takes precedence if a MSG=assignment and MEMBER=assignment both match on a message.

Values for level range from 1 to 5, where 1 is the highest priority and 5 is the lowest priority. The default value for level is 3.

LEVEL can only be specified if PRI, SEC, or COPY is also specified. The priority level of an assignment can be changed by designating the PRI, SEC or COPY values again and specifying REPLACE.

PRI=listitem

Is the list of operators to receive the unsolicited or authorized message. listitem is an operator ID, a group ID, SYSOP, or LOG.

Only the highest-priority operator in the list who is logged on is notified. Operator priority is determined by the order of entry in the ASSIGN command. You can specify groups of operators in the PRI list. Only the first
operator assigned to the group who is logged on receives the message if a higher-priority operator did not receive it. The message sent to the PRI receiver is flagged with a % in the last portion of the domainid field. If you code PRI=LOG or PRI=SYSOP, the messages are not automated.

SEC=listitem

Is the list of operators who are to receive copies of the unsolicited or authorized messages. listitem is an operator ID, a group ID, SYSOP, or LOG.

SEC is valid only if PRI is specified or was specified on a previous ASSIGN command for the same message ID. If you enter SEC without PRI, enter an ADDLAST, ADDFIRST, DELETE, or REPLACE operand and a PRI must already exist. You can also specify GROUPS in the SEC list. All operators or groups of operators in this list receive the message if they are logged on and at least one operator in the PRI list is logged on. The message sent to the SEC receiver is flagged with an * in the last position of the domainid field. You cannot send a message to the system log if you are the secondary receiver.

Usage Notes

Using the REFRESH command or an SAF security product, you can dynamically delete operators and dynamically add operators without predefining the operators to the NetView program. The ASSIGN command enables you to assign messages to operators that are not presently defined to the NetView program. If you assign messages to an operator before you define the operator to the NetView program, you will receive a message to inform you that the operator specified in the ASSIGN command is not presently defined to the NetView program. The assignment completes successfully.

Regardless of whether an operator is defined to the NetView program, messages assigned to operators that are not logged on are delivered to the next assigned operator, or to the original destination.

If an operator definition is deleted using the REFRESH command or an SAF security product, the operator session continues until the operator logs off. Messages assigned to operators that are logged on but are no longer defined to the NetView program are still delivered to the operator.

Multiline write-to-operator (MLWTO) messages presented to MVS can have a control line (IEE932I) or a sequential message identifier, or both, appended to the message. This extra data can affect how the messages match routing criteria.

You can also perform some functions of the ASSIGN command using the ROUTE action of a NetView automation statement.

You can also specify group IDs in the ROUTE keyword of the EXEC ACTION of a NetView automation statement. For more information, refer to the Tivoli NetView for z/OS Automation Guide regarding IF-THEN and ALWAYS automation statements.

Restrictions

The following restrictions apply to the ASSIGN command:

- You cannot specify both MEMBER and MSG on the same ASSIGN command.
- MEMBER assignments take priority over MSG assignments if both have the same priority level.
• Messages that are solicited to consoles by route codes from the extended console interface are delivered directly to the console that solicited the route code and are not subject to ASSIGN processing.

Refer to the [Tivoli NetView for z/OS Automation Guide](#) for more information about message processing flows.

• Entries in the table with the same priority level are sorted from specific to general, not in order of the time entered. For example, DSI120I is processed before DSI*, regardless of the order in which the ASSIGN commands were entered. Therefore, operators assigned to receive DSI120I will receive it, and operators assigned to receive DSI* will not receive it.

Note: Operators assigned DSI* messages, can receive DSI120I if they are also authorized to receive that specific message.

• The SEC=listitem and COPY=listitem operands create copies of messages. These copies will not be subject to automation table processing in this domain.

• If ASSIGN defines SYSTOP or LOG as the primary receiver for a message for which NetView automation is in effect, that message is not automated.

• The ASSIGN command does not support full-screen response messages.

• For MLWTO messages, the entire set of message lines is assigned as a unit when the first line (control line) is assigned. Individual lines (other than the first line) cannot be assigned separately from the rest of the message.

• If you enter ADDFIRST, ADDLAST, or REPLACE, and the message string or group ID has not been previously assigned, the ASSIGN command completes successfully.

• Do not assign SYSTOP or LOG to a group ID that you plan to use in the ROUTE action of a NetView automation statement. SYSTOP and LOG are not processed in this case. You cannot route commands to SYSTOP or the network log.

• Target tasks for the ASSIGN command must be either OST, NNT, or PPT task types. The target tasks cannot be OPT or DST task types.

Examples

Example: Assigning Operators to Specified Groups

To assign operators OP1 and OP2 to GROUP ID +GROUP1:

```
ASSIGN GROUP=+GROUP1,OP=(OP1,OP2)
```

Example: Routing Messages from Jobs to Operators

To route messages from job SITEDB21 to OPER1 and make OPER1 the primary operator for these messages, define an automation member (for this example, TESTMEM) containing automation table comparison criteria of:

```
IF JOBNAME = 'SITEDB21' THEN;
```

Issue the following ASSIGN command:

```
ASSIGN MEMBER=TESTMEM,PRI=OPER1
```

Or, to route the messages without predefining an automation member, issue the PIPE command with the NETV stage:

```
PIPE LITERAL /IF JOBNAME='SITEDB21' THEN; / | 
NETV ASSIGN MEMBER=PIPESTR,PRI=OPER1 | CONSOLE
```

Example: Routing Message Strings to Operators

To route message strings to an operator, define an automation member (for this example, TESTMEM) containing automation comparison criteria of:
IF TEXT = 'text string'. THEN;

Issue the following ASSIGN command:
ASSIGN MEMBER=TESTMEM, PRI=OPER1

Example: Directing Messages
To direct your unsolicited and authorized messages, enter:
ASSIGN MSG=*, PRI=OPER2, SEC=OPER3

Response

All unsolicited and authorized messages are sent to OPER2 if the operator is logged on. Copies of the messages are sent to OPER3 if OPER2 and OPER3 are logged on. The messages are marked with a % in the last position of the domain ID field on OPER2's screen and with an * on OPER3's screen to indicate that they were assigned.

Example: Altering Previous Assignment
To alter a previous assignment, enter:
ASSIGN MSG=DSI*, PRI=OP1, SEC=OP2, ADDFIRST

Response

Operator OP1 is added to the beginning of the PRI list and operator OP2 is added to the beginning of the SEC list in the previously assigned message string DSI*.

Example: Setting an Assignment Priority
The following examples assume that the automation table statements in member "TEST" match message IST400, sending the message to OPER1, but there is also an outstanding message assignment sending the message to OPER2.

To give priority to the member assignment, enter one of the following:
ASSIGN MEMBER=TEST, PRI=OPER1, LEVEL=2
ASSIGN MSG=IST400I, PRI=OPER2
ASSIGN MEMBER=TEST, PRI=OPER1
ASSIGN MSG=IST400I, PRI=OPER2, LEVEL=4
ASSIGN MEMBER=TEST, PRI=OPER1
ASSIGN MSG=IST400I, PRI=OPER2

To give priority to the message id assignment, enter one of the following:
ASSIGN MEMBER=TEST, PRI=OPER1, LEVEL=4
ASSIGN MSG=IST400I, PRI=OPER2
ASSIGN MEMBER=TEST, PRI=OPER1
ASSIGN MSG=IST400I, PRI=OPER2, LEVEL=2

Example: Changing an Assignment Priority
To make an assignment and change the priority level, enter:
ASSIGN MEMBER=TEST, PRI=OPER1
ASSIGN MEMBER=TEST, PRI=OPER1, LEVEL=2, REPLACE

Example: Adding an Operator to a Group
To add operator OP2 to the end of the operator list in group ID +GRP1, enter:
ASSIGN GROUP=+GRP1, OP=OP2, ADDLAST

Example: Dropping an Assigned Group ID
To drop the assigned group ID +GRP1, enter:
ASSIGN GROUP=+GRP1, DROP
Example: Adding an Operator to More than One Group
To add the operator ID OP1 and group ID +GRP2 to the beginning of the SEC list in the message assignment IST105I, enter:
ASSIGN MSG=IST105I,SEC=(OP1,+GRP2),ADDFIRST

Example: Deleting an Operator
To delete operator ID OP1 from the PRI list, and operator ID OP2 from the SEC list in the message assignment IST105I, enter:
ASSIGN MSG=IST105I,PRI=OP1,SEC=OP2,DELETE

Example: Replacing the Contents of a PRI List
To replace the contents of the PRI list with group ID +GRP1, and the contents of the SEC list with group ID +GRP2 in the message assignment DSI002I, enter:
ASSIGN MSG=DSI002I,PRI=+GRP1,SEC=+GRP2,REPLACE

Example: Replacing the Contents of a COPY List
To replace the contents of the COPY list with group ID +GRP4, enter:
ASSIGN MSG=DSI002I,COPY=+GRP4,REPLACE

Example: Dropping an Assigned Group
To drop the assigned group ID +GRP2, enter:
ASSIGN GROUP=+GRP2,DROP

Example: Dropping All Assigned Group IDs
To drop all assigned group IDs, enter:
ASSIGN GROUP=ALL,DROP
ASSISCMD (RODM; CNME6220)

Syntax

ASSISCMD

Purpose of Command

The ASSISCMD command list uses the NetView VIEW facility to create a full-screen panel of the commands and text stored by the SAVECMD command. You can then approve, change, or discard the command. SAVECMD is an automation command list that saves command and text information for the ASSISCMD command. The SAVECMD command list is run when automation message DWO670I is received by DSIQTSK.

You can use ASSISCMD as an automation test facility. When commands are sent to the DSIQTSK task through the NetView program-to-program interface, the sender has the option of setting a parameter to indicate that the command is to be issued in test mode. When DSIQTSK receives such a command, instead of issuing it to one of its autotasks, it issues DWO670I, a multiline message containing the command text. This message can be trapped by the automation table, issued as the parameter to a SAVECMD command, and routed to an operator for viewing. Refer to the Tivoli NetView for z/OS Automation Guide for information about the SAVECMD command list.

The operator that receives the SAVECMD command can view the queued commands by entering ASSISCMD. A panel containing single lines of text for each command is then displayed. The operator can enter one of the following letters next to each command:

<table>
<thead>
<tr>
<th>Entry</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Enters the command.</td>
</tr>
<tr>
<td>D</td>
<td>Deletes the command.</td>
</tr>
<tr>
<td>M</td>
<td>Displays another panel containing the entire command text. From this panel, the operator can modify the command and issue it, issue the command as is, or return to the previous panel to delete the command.</td>
</tr>
</tbody>
</table>

RODM applications and methods send commands to NetView over the program-to-program interface by using the NetView-supplied method EKGSPPI. These applications and methods can specify that the command is issued as a SAVECMD command. Refer to the Tivoli NetView for z/OS Automation Guide for an example of using the EKGSPPI method.
Purpose of Command
The AT command schedules a command or command procedure to be run at a specific time.

Operand Descriptions

\(\text{day} \)
If you do not specify a date, the current date is used. However, if you specify a time that is earlier than the current time, tomorrow's date will be used.

\(\text{date} \)
Specifies the date on which the command is to be run. The format of date is controlled by the setting of the date operands of the DEFAULTS and OVERRIDE commands. If you do not specify a year, the date is assigned to be a future date, unless the date specified is the current date. If you do not specify a date, the current date is used.

\(\text{time} \)
Is the time at which the command is to be run. The format of time is controlled by the setting of the time operands of the DEFAULTS and OVERRIDE commands.

PPT
Specifies that the command or command procedure indicated by command is to run under the primary program operator interface task (PPT). Commands scheduled under the PPT might not run in the order that you specified if the value of the time operand is the same for each command.

Note: Not all commands can run under the PPT. Examples of commands that cannot run under the PPT are the following:
- Commands that control the screen (such as AUTOWRAP, INPUT, and SET PF)
- Commands or command procedures that invoke full-screen command processors (such as BGNSESS FLSCN, NLDM, NPDA, BROWSE, and HELP)
- Commands that issue STIMER
• Command procedures that issue the control statement &WAIT or &PAUSE
• REXX command lists that issue WAIT, PAUSE, or TRAP.
• High-level language (HLL) command procedures that issue WAIT or TRAP.

ROUTE
Is the operator on which the command is to be run. A single operator or a group name can be specified. An asterisk (*) indicates the issuing operator. This is the default. Group names must begin with a plus (+) sign. A group name instructs NetView to queue the command to the first operator in that group, according to the ASSIGN order, that is logged on. If a group name was specified which contains no logged-on operators, the command is not executed. If the specified operator is not logged on, the command is not executed.

TIMEFMSG
Specifies whether timed commands which could not be queued to the target operator will produce a BNH357E error message. The valid values are:

NO
Indicates that no error message will be issued. NO is the default.

YES
Indicates that the error message will be issued.

ID=rename
Is a 1–8 character identifier that you define for this timer request. The first three characters of the name cannot be ALL, RST, or SYS.

SAVE
Indicates to the NetView program that this timer event should be saved to the NetView Save/Restore database. If you do not code SAVE, the timer event is not saved.

GMT|LOCAL
Specifies whether a saved timer is relative to Greenwich Mean Time (GMT) or local system time. GMT means the timer will run at the absolute (GMT) time calculated for the local time specified when the timer was entered, regardless of subsequent local to GMT difference settings on the system. If LOCAL is used, NetView adjusts the time that the command is run to keep it relative to the new local settings. The default is LOCAL.

command
Is the command or command procedure to be processed when the timer expires. This must be the last operand.

Usage Notes
If the scheduled command is to run under the PPT, it will not be authority checked unless AUTHCHK=SOURCEID is in effect.

For more information about authority checking of the scheduled command and the effect of SOURCEID and TARGETID, refer to the Tivoli NetView for z/OS Security Reference.

Restrictions
The following restrictions apply to the AT command:
• The AT command is asynchronous and requires a CORRWAIT stage if used in a PIPE.
• Commands defined as regular or both when the NetView program was installed can be used with AT. You cannot use commands defined as immediate with AT.

• When the timer on the AT command expires, the command to be run is queued to the appropriate task at the task’s command priority if it is a regular command.

• The following rules apply when validating the date and time of the AT command:
 – If the date is defaulted and the time specified is earlier than the current time, the command is scheduled for the next day.
 – If the date specified is the same as the current month and day, the time must be later than the current time or a notifying message is issued.
 – If the month and day specified is earlier than the current month and day, the year is set to the following year.

• You can use the PURGE command to reset the timer requests scheduled by the AT command.

• No authorization checking is done for commands running under the PPT when you specify either:
 – SECOPTS.CMDAUTH=TABLE|SAF with SECOPTS.AUTHCHK = TARGETID in CNMSTYLE
 – CMDAUTH=TABLE|SAF with AUTHCHK = TARGETID on the REFRESH command

 In either case, make sure that the PPT operand of the AT command is protected.

Examples

The format of dates and times specified in the following examples assumes the default setting for date and time formats on the DEFAULTS and OVERRIDE commands.

Example: Issuing a Command at a Specified Time
If it is 14:05 and you want all the active operators displayed five minutes from now, enter:

AT 14:10, LIST STATUS=OPS

Example: Issuing a Command to All Operators
To send the message NCF14 SHUTS DOWN IN 15 MINUTES to all operators, whether or not you are logged on, enter:

AT 20:45:00, PPT, ID=WARNING, MSG ALL, NCF14 SHUTS DOWN IN 15 MINUTES

You can purge the timer request by using the reqname of WARNING.

Example: Issuing a Command at a Specified Time if Not Logged On
To schedule the command DISPPI to run at a specific time even if you are not logged on, enter:

AT 9/28 14:10, PPT, DISPPI

Example: Issuing a Command at a Specified Time and Date
If the system needs to be taken down for maintenance at 17:00 on 25 October, enter:

AT 10/25 17:00, TAKEDOWN
where 10 is the month of October and TAKEDOWN is a command list that notifies all operators of the impending process and begins an orderly takedown of the system.

Response

You see the following messages on your screen if the AT command runs successfully.

DSI034I COMMAND SCHEDULED BY AT/EVERY/AFTER COMMAND - command text
DSI201I TIMER REQUEST SCHEDULED FOR EXECUTION name

Example: Issuing a Command at a Specified Time and Saving the Command (GMT)
To display system resource usage by the NetView program at 11:30 and to indicate that this timer event should be saved relative to GMT, enter:

AT 11:30,SAVE,GMT,RESOURCE

To understand the effect of the GMT operand, suppose that this AT command is issued at 1:00 a.m. eastern standard time (EST). At 2:00 a.m. the system clock is set forward one hour to 3:00 a.m. eastern daylight time (EDT), the NetView system is recycled, and the system operator issues the RESTORE TIMER command. The RESOURCE command is scheduled to run at 12:30 p.m. EDT.

Example: Issuing a Command at Midnight
To run the RESOURCE command at midnight, 28 September, on the AUTO1 autotask and log a display of system resource usage by the NetView program, enter:

AT 9/28 0,RESOURCE,ROUTE=AUTO1

Tivoli NetView for z/OS Command Reference Vol. 1
ATTACH (NCCF)

Syntax

\[
\text{ATTACH} \quad \text{(options)} \quad \text{attached_command}
\]

options:

- \text{NAME verb_name}
- \text{NAME attach_name}
- \text{NODUMP}
- \text{DUMP}
- \text{MONO}
- \text{COLOR}

\[
\text{ACTION DEMAND}
\]

\[
\text{ACTION DISPLAY} \quad \text{invoked_command}
\]

Purpose of Command

The ATTACH command is used in a procedural environment to begin a simulated operator session, called a virtual OST (VOST), and execute a command in that session. The virtual screen created on the VOST is 24 rows by 80 characters with no query support.

VOSTs can be independent or dependent of the invoking procedure. An independent VOST is created when the NAME option is specified on the ATTACH command, and a dependent VOST is created when the NAME option is not specified. Dependent VOSTs are automatically detached when the invoking procedure terminates or when the \text{attached_command} ends. Independent VOSTs will persist until specifically detached using the DETACH command or when the \text{attached_command} ends.

To interact with an attached VOST, use the PIPE VET pipe stage. For information about VET, refer to the \text{Tivoli NetView for z/OS Customization: Using Pipes}.

Operand Descriptions

\text{ACTION}

Specifies the action to be taken by the task issuing the ATTACH command when data is returned from the VOST. ACTION can be one of the following:

- \text{DEMAND}

 Specifies that the data is only delivered when requested by a PIPE VET first stage.

- \text{DISPLAY}

 Specifies that the data is displayed at the owning task as soon as it is received. Messages are displayed and automated as they would be at the
owning task. Full screen output is displayed in message BNH150I in row format the same as returned by the command PIPE VET NEXT ROWS | CONSOLE.

`'invoked_command'`
Specifies when data is returned that the invoked_command is executed by the owning task. Returned data becomes the current message when the invoked_command is run. The message can be accessed by the invoked_command in several ways including PIPE SAFE * and GETMLINE(). Messages are passed to the invoked_command as messages and full screen output is passed in PIPE VET ROWS format.

`'Invoked_command'` must be enclosed in single quotes and cannot contain single quotes or unpaired parentheses.

The invoked_command is executed with all arguments included within the single quotes. The command will be invoked every time output is generated by the attached application, including:

- for each message. In this case the message is the returned data.
- for each update to a full screen display. In this case the returned data is a BNH150I message in ROWS format.

The invoked_command can obtain additional information about a full screen display using the VET pipe stage with the CURRENT option. It can also interact with the application using VET as a command or as a subsequent stage.

COLOR
Specifies that the full screen display on the VOST will support extended attributes including the reverse video, underscore, and blink highlighting attributes.

Note: Information about color and extended highlighting attributes is available to full screen automation applications only through the FIELDS option of the VET pipe stage.

DUMP
Used for problem determination purposes, the DUMP command causes all data sent to or from the VOST, including messages about state changes, to be logged.

Note: The dump is similar to that provided by CONSOLE DUMP.

MONO
Specifies that the full screen display on the VOST will not support extended attributes.

NAME
Specifies that the given value is to be used as the name for the attached command. When the NAME keyword is specified and not allowed to default, the attached command is independent of the invoking procedure.

`attach_name`
If a name is specified, it becomes a task global variable and must be unique for the task on which it is used.

The `attach name` must contain only upper and lowercase alphabetic characters, numbers, @, #, and $.
When NAME is not specified, the default name generated by NetView is the verb in the specified command. Default names need not be unique for the owning task.

NODUMP

Specifies that the data sent to or from the VOST is not to be displayed on the Command Facility screen on the owner’s console in dump format.

Restrictions

The following restrictions apply to the ATTACH command:

- The following can not be specified as *attached_command* on ATTACH:
 - ATTACH
 - EXCMD
 - NCCF
 - RMTCMD
 - ROUTE

- Any options specified must be between parentheses. Options that are not found between parentheses are interpreted as part of the *attached_command*.

- If BGNSESS OPTCL is specified as the *attached_command* on ATTACH, message DSI290I will be issued. OPCTL sessions can be started by procedures running on a VOST, however running OPCTL sessions on a VOST is not recommended.

- The following can not be run on a VOST either as *attached_command* on ATTACH or from a procedure running on a VOST:
 - ATTACH
 - NCCF
 - ROUTE
 - START DOMAIN
 - START HCL

- The operator issuing the ATTACH must have command authority to issue the *attached_command*.

- VOSTs are accessible only from the owning task. In addition, dependent VOSTs are accessible only from the procedure family in which they were attached.

- VTAM commands are not supported on a VOST. The MVS command must be used to issue VTAM commands on a VOST.

- When the application terminates, the *invoked_command* is called one more time without a current message.

- ATTACH cancels all NETVIEW NOPANEL stage options in effect at the time of the attach.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A VOST is created and the command starts.</td>
</tr>
<tr>
<td>16</td>
<td>The syntax is in error.</td>
</tr>
<tr>
<td>20</td>
<td>The name is not valid.</td>
</tr>
<tr>
<td>24</td>
<td>The name is duplicated.</td>
</tr>
<tr>
<td>28</td>
<td>The command you specified cannot be a target of ATTACH.</td>
</tr>
<tr>
<td>32</td>
<td>An internal error has occurred.</td>
</tr>
<tr>
<td>124</td>
<td>Storage is insufficient.</td>
</tr>
</tbody>
</table>
Examples

Example: Attaching an Independent VOST
To create an independent VOST named MYVOST that is running NLDM, enter:
ATTACH (NAME MYVOST) NLDM

Because this is an independent VOST that does not terminate on its own, it must be explicitly detached. To detach this VOST, enter:
DETACH NAME MYVOST

Example: Attaching a Dependent VOST
Unnamed VOSTs are dependent on the procedure family creating them. To create a dependent VOST that is running NLDM, enter:
ATTACH NLDM

This VOST can be explicitly detached using DETACH NLDM, or it will be automatically detached when all members of the procedure family terminate.
AUPD (NCCF)

Syntax

AUPD

Purpose of Command

The AUPD command alters the alias translation tables. You can add definitions, delete definitions, and replace definitions with a new set.

The AUPD command will perform system symbolic substitution on records read from the NetView alias definition members in the DSIPARM data set. The NetView-supplied &DOMAIN symbolic is also included in the substitution process. The substitution is performed after comment removal but prior to record processing. This command also removes comments after substitution. Substitution is always performed on the &DOMAIN symbolic, unless substitution was disabled when NetView was started. For MVS and user-defined system symbolic, substitution is not performed if you are not running on an MVS system, you are running on an MVS system prior to MVS Version 5 Release 2, substitution was disabled when NetView was started, or you have not defined an MVS system symbolic on your MVS system.

The records read in from the definition tables are processed sequentially, one at a time. If there is a syntax error, an error message is issued, the record is ignored, and the next record is read. Unusual conditions, such as an input or output error while reading, can cause the AUPD request to stop with only part of the tables updated. The processed record count and error messages tell you whether the command was successful.

Operand Descriptions

MEMBER=aliasname
 Is the name of the member that is to be altered.

ORIGNET
 Identifies the network associated with the member.
 netid
 Designates a specific network.
 *
 Means all networks represented in the member and the alias tables are the subject of the request. The default is *.
TYPE
Identifies the type of alias definition to be updated in the table.

ALL
Means that all types pertaining to the member name and ORIGNET in either the alias table or member are the subject of the request. If you omit the TYPE operand, ALL is the default.

COS
Identifies class of service (COS) as the type.

LU
Identifies LU as the type.

MODE
Identifies the logon mode as the type.

ADD
Lets you add new translation definitions to the alias translation tables or replace existing translation definitions. If any records already exist in the translation table for these members, they are deleted before the new records are written. ADD is the default.

DELETE
Deletes the translation definitions in ORIGNET and TYPE from the translation tables.

Restrictions
When adding or replacing translation tables, the AUPD command reads the predefined translation records from the specified member and adds these records to the tables in storage. The AUPD command does not let you alter predefined records in the alias definition members. If you want to change a translation record that is currently in use, first determine the member name that contains the record to be changed. Change the record in the same member that was used by the alias task to construct the translation tables. You can change the translation record using a system editor. When the member contains the information you want, you can enter the AUPD command specifying, with the ADD option, the same member name you just changed.

Examples

Example: Deleting Records in Translation Tables
If the NetView ALIASMEM initialization statement specified member names DEF001 and DEF002, the translation tables are built.

The definitions are kept together by network name, but the NetView program remembers the member from which each definition record came.
If you enter:
AUPD MEMBER=DEF001, ORIGNET=NETWRKA, DELETE

All the translation table entries for NETWRKA are deleted because they were defined in member DEF001.

If you enter:
AUPD MEMBER=DEF001, ORIGNET=NETWRKC, DELETE

The first two definitions (TERM1 and TERM2) for NETWRKC are deleted. The definitions for NETWRKA remain unchanged, and the TERM3 and TERM4 definitions for NETWRKC remain unchanged because they are defined in member DEF002.

Response

The output from the AUPD command reports how many records were deleted from the translation tables. If you issue an AUPD command with the DELETE option, you see the following messages:
*AUPD MEMBER=DEF001,DELETE
-DS1738I COUNT OF RECORDS DELETED FOR UPDATE OF MEMBER=DEF001 -
LU=nn, COS=nn, MODE=nn
AUTBNABL (NCCF; CNMEAUTB)

Syntax

Purpose of Command
The AUTBNABL command reads DSIPARM members DSIAUTB and DSIAUTBU to establish which command procedures can issue the AUTBYPAS function.

Usage Notes
The operator issuing this command must have read access to DSIAUTB and DSIAUTBU.
AUTOCNT (NCCF)

Syntax

```
AUTOCNT

RESET  REPORT= MSG
       MSU
       BOTH
       TEST

NAME=tblname

Stats:

STATS=SUMMARY
       DETAIL

FileName:

DISPLAY

FILE=membername
```

Purpose of Command

The AUTOCNT command produces reports describing the usage of automation table statements in either the active NetView automation table or an automation table that is being tested with the AUTOTEST command. The AUTOCNT command can also be used to reset the automation table usage counters.

Operand Descriptions

RESET

Resets the automation table usage counters to 0. This option can be specified with REPORT in order to get the usage counter information and then reset the counters.

REPORT

Specifies the type of report requested.

MSG

Requests information and statistics on message-type automation statements.

MSU

Requests information and statistics on Management Services Unit (MSU) type automation statements.
BOTH
Requests a report containing both message and MSU information.

This option can be specified with RESET to get the usage counter information and then reset the counters.

NAME=tblname
Specifies the name of the automation table within the list of active automation tables for which statistics will be reported. If a table name is not specified, the first table within the list of active automation tables is used to report statistics.

TEST
Requests a report for the automation table being tested with the AUTOTEST command.

STATS
Specifies whether the summary report or the detail report should be generated. A complete list of information produced for summary and detail reports is in the Tivoli NetView for z/OS Automation Guide.

SUMMARY
Specifies that only summary statistics should be generated. This includes the total number of messages or MSUs processed, the total number of messages or MSUs matched, the number of messages or MSUs resulting in commands processed, and other information. SUMMARY is the default.

DETAIL
Specifies that detail statistics should be generated along with summary statistics. Detail statistics include information for each automation statement. Using the DETAIL report you can better tune your automation table statements and determine if there are logic errors in your automation table.

DISPLAY
Sends the requested report in multiple-line message (MLWTO) form to the task that issued the AUTOCNT command. There can be as many as four separate multiple-line messages, one each for message detail, message summary, MSU detail, and MSU summary.

FILE=membername
Specifies the member or file in which the NetView program places the usage output it creates.

FILE creates or replaces the membername in the first data set defined to DSILIST DD. The format of the information placed in the member or file is identical to that returned when DISPLAY is specified.

Note: Temporary data sets in DSILIST DD are not supported.

REPLACE
Specifies whether the NetView program should replace the report file with the newly created report output if it already exists. The default is not to replace.

The member might already exist somewhere in the DSILIST DD statement. If the member exists in other than the first data set of the statement and you specify REPLACE, the output listing is written to the first data set and the original listing is not affected.

If you do not specify REPLACE and the report membername file exists as indicated previously, you receive error message DWO029I, and processing of the report file ends.
If you specify REPLACE and the report *membername* file does not already exist, the file is created. If the member being replaced is not an automation table usage report, the member is not replaced and message DWO826E is issued.

Usage Notes
When automation table usage reports are created, a 2-character key field (>>) is placed on the first line of the report. This key field identifies the file as a report file and stops the report file from replacing non-report files. If you attempt to replace a member or file that does not have the key field in the correct location, you will receive an error message. You can prevent a report file from being overwritten if you delete the key field from the first line of the report.

Restrictions
The following restrictions apply to the AUTOCNT command:
- Keywords are not positional.
- REPLACE is valid only when you use the FILE=*membername* option.

Return Codes
<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful processing.</td>
</tr>
<tr>
<td>4</td>
<td>The command did not complete successfully. Check the accompanying messages for more information.</td>
</tr>
</tbody>
</table>

Examples
For more information about automation table language and the usage report format, refer to the [Tivoli NetView for z/OS Automation Guide](http://example.com).

Example: Resetting Active Automation Table Counters to Zero
To reset the automation table counters to 0, enter:

```
AUTOCNT RESET
```

Response
If the AUTOCNT request is successful, the system responds with a message similar to the following:

```
DWO802I AUTOMATION TABLE COUNTERS RESET BY OPER1 AT 09/24/97 07:45:03
```

Example: Requesting a Summary Report of Active Automation Table Usage for Both Messages and MSUs
To request a summary report of automation table use for both messages and MSUs, enter:

```
AUTOCNT REPORT=BOTH,STATS=SUMMARY,DISPLAY
```

Response
Two multiple-line messages will be issued, one for the message summary statistics, and one for the MSU summary statistics. The message summary header line will be similar to the following:

```
DWO801I AUTOMATION TABLE MESSAGE SUMMARY REPORT BY OPER1
```

The MSU summary header line will be similar to the following:

```
DWO801I AUTOMATION TABLE MSU SUMMARY REPORT BY OPER1
```
Following each header line will be the summary statistics.

Example: Requesting a Detailed Report for Messages

To obtain a detailed report of the active automation table usage for messages and to have the report written to a file with the name of REPORT1, enter:

```plaintext
AUTOCNT REPORT=MSG,STATS=DETAIL,FILE=REPORT1
```

Response

Two multiple-line messages will be written to the file specified. One will contain detailed usage data for each message-type statement in the active NetView automation table and the other will contain summary statistics for the message-type statements in the automation table. The message detail report header line will be similar to the following:

```plaintext
DWO800I AUTOMATION TABLE MESSAGE DETAIL REPORT BY OPER1
```

Following the header line will be the detailed statistics.

The message summary header line will be similar to the following:

```plaintext
DWO801I AUTOMATION TABLE MESSAGE SUMMARY REPORT BY OPER1
```

Following the header line will be the summary statistics.
AUTOCOLL (NLDM; CNME2001)

Syntax

AUTOCOLL

20

time

Purpose of Command

The AUTOCOLL command list controls the collection of response time monitor (RTM) data. The AUTOCOLL command list issues the following command:
EVERY time,PPT,ID=NLDMC,NLDM COLLECT RTM * NOLOG.

Operand Descriptions

20 The default time of 20 minutes, which is used if you do not specify a time.

time The interval for session monitor collection of RTM data. A value of minutes or seconds is required. The time period is specified as hours (00–24), minutes (00–59), and seconds (00–59). The format of interval is controlled by the setting of the time operands of the DEFAULTS and OVERRIDE commands. If not specified, hours, minutes and seconds all default to 0. If you specify 24 for hours, specify 00 for minutes and seconds. A time period of zero cannot be specified.

Note: If only a 2-digit value is specified for time, the NetView program assumes it to be a value for minutes. If only a 2-digit value preceded by a colon is specified for time, the NetView program assumes it to be a value for seconds.

Restrictions

You can use the AUTOCOLL command list for 3174 or 3274 controllers in the issuing host’s domain if the controllers have the RTM feature installed.

Examples

Example: Collecting RTM Data
To collect RTM data every 15 minutes, enter:
AUTOCOLL 15
AUTODROP (NCCF; CNMS8003)

Syntax

AUTODROP

```plaintext
uses 0 0 1
```

Purpose of Command

The AUTODROP command checks all command lists that were pre-loaded in main storage by LOADCL to see if they are used enough to justify them being pre-loaded. NetView command lists that do not meet specified criteria for usage and elapsed time from time of pre-load will be dropped by DROPCL from main storage.

Operand Descriptions

- **uses**
 Indicates to drop the command list at this number of uses or fewer.

- **days**
 Indicates the number of elapsed days that are required before dropping the command list. The default is 0.

- **hours**
 Indicates the number of elapsed hours that are required before dropping the command list. The default is 1.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Processing successful</td>
</tr>
<tr>
<td>99</td>
<td>Too many parameters specified or the specified number is out of range</td>
</tr>
</tbody>
</table>

Examples

Example: Running AUTODROP to Automatically Drop Command Lists

To automatically drop all command lists from main storage that have been used three or less times and were loaded at least two days ago, enter:

```
AUTODROP 3 2 0
```

Response

```
* CNM01 AUTODROP 3 2 0
W CNM01
CNM429I MAPCL DISPLAY
NAME USAGE RECORDS BYTES DATE TIME DP R/C
-------- -------- -------- -------- -------- -------- -- ---
FTRACE 0 161 6224 05/21/98 13:27:22 C
-------- -------- -------- -------- -------- -------- -- ---
1 0 161 6224 --TOTALS--
- CNM01 CNM411I COMMAND LIST FTRACE DROPPED
```
Example: Running AUTODROP Every Eight Hours to Automatically Drop Command Lists
To run AUTODROP every eight hours, which automatically drops command lists from main storage that have been used two or less times and were loaded seven days ago, enter:
EVERY 8:00, ID=AUTD, AUTODROP 270

Response

When the timer is issued, the following is displayed:
* CNM01 EVERY 8:00, ID=AUTD, AUTODROP 270
- CNM01 P DSI034I COMMAND SCHEDULED BY AT/EVERY/AFTER COMMAND
 'AUTODROP 270'
- CNM01 P DSI20II TIMER REQUEST SCHEDULED FOR EXECUTION 'ID=AUTD'

When the timer expires, the following is displayed:
- CNM01 P DSI208I TIME EXPIRATION - ID='AUTD' - CMD='AUTODROP 270'

* CNM01 AUTODROP 270
W CNM01
CNM429I MAPCL DISPLAY
NAME USAGE RECORDS BYTES DATE TIME DP R/C
-------- -------- -------- -------- -------- -------- -- ---
FTRACE 0 161 6224 05/21/98 13:27:22 C
-------- -------- -------- -------- -------- -------- -- ---
1 0 161 6224 --TOTALS--
- CNM01 CNM411I COMMAND LIST FTRACE DROPPED
AUTOMAN (NCCF)

Syntax

AUTOMAN

Purpose of Command

The automation table management (AUTOMAN) command enables you to work
with individual or multiple automation tables through a full-screen panel interface.

Operand Descriptions

GROUP

Displays the Label/Block/Group panel only. Enabling or disabling any
group, block, or label from this panel applies to all automation tables.

Usage Notes

Refer to the Tivoli NetView for z/OS Automated Operations Network User’s Guide for
more information.
AUTORECD (NLDM; CNME2005)

Syntax

AUTORECD

Purpose of Command

The AUTORECD command list controls the collection of accounting and resource statistics data to the external log.

Operand Descriptions

20 The default time of 20 minutes, which is used if you do not specify a time.

time The interval for session monitor collection of accounting and resource statistics data. A value of minutes or seconds is required. The time period is specified as hours (00–24), minutes (00–59), and seconds (00–59). The format of interval is controlled by the setting of the time operands of the DEFAULTS and OVERRIDE commands. If not specified, hours, minutes and seconds all default to 0. If you specify 24 for hours, specify 00 for minutes and seconds. A time period of zero cannot be specified.

Note: If only a 2-digit value is specified for time, the NetView program assumes it to be a value for minutes. If only a 2-digit value preceded by a colon is specified for time, the NetView program assumes it to be a value for seconds.

Examples

Example: Recording Accounting and Statistics Data
To record accounting and resource statistics data to the external log every 15 minutes, enter:

AUTORECD 15
AUTOTASK (NCCF)

Syntax

AUTOTASK

\[\text{OPID} = \text{operid} \]
\[\text{CONSOLE} = \text{console_name} \]
\[\text{console_id} \]
\[\text{MASTER} \]
\[\text{ANY} \]
\[\text{DROP} \]

Purpose of Command

The AUTOTASK command starts an automated operator and optionally associates an MVS console with this automated operator.

Operand Descriptions

\textbf{OPID} = \textit{operid}

Is the operator ID to use for the automation task.

\textbf{CONSOLE}

Specifies an MVS console name or ID to be associated with the autotask. This allows an MVS operator to enter commands to the NetView program.

\textit{console_name}

Is a 2–8 character MVS console name from an MVS/ESA Version 4.1 or later release system.

\textbf{*MASTER*}

You can use CONSOLE=*MASTER* to assign an autotask to respond to commands from the current active master console. NetView uses the reserved keyword *MASTER* to indicate that the autotask should respond to whichever console is the active master console. This makes it easier for you to use NetView commands from the master console.

\textbf{*ANY*}

You can use CONSOLE=*ANY* to assign an autotask to respond to commands from any console not otherwise assigned to an autotask. The CONSOLE=*ANY* autotask discards other non-correlated or unsolicited output. The CONSOLE=*ANY* autotask does not process commands from consoles that are assigned by name, number, or by the *MASTER* assignment, and therefore performs a "last chance" service.

\textit{console_id}

Is the console ID for the MVS console as specified in your CONSOL.xx member (0–99).

You can use this keyword to associate a multiple console support console, an extended multiple console support (EMCS) console, or a subsystem-allocatable console with the autotask. You need to supply a value for the CONSOLE keyword that correctly associates the console you want with the autotask.
DROP
Removes the association between a specific MVS console and a NetView autotask. If you use DROP, the automation task remains in its current state (active or inactive).

Restrictions

The following restrictions apply to the AUTOTASK command:

- Do not use the AUTOTASK command to associate an operator with an MVS console that is being used by another NetView operator to enter MVS commands.
- If you associate MVS consoles with autotasks, the consoles work in the opposite direction from MVS consoles you obtain using the GETCONID or MVS command. The AUTOTASK command allows an MVS operator to enter commands to the NetView program. The MVS consoles obtained by the GETCONID or MVS command allow a NetView operator or autotask to enter commands to MVS.
- Avoid using the CONSOLE keyword for autotasks that are used for automation. Using unattended autotasks (those with no CONSOLE specified) for system automation is more efficient because it reduces WTO message traffic and system logging. If the autotask is also used for automation, all messages processed by automation can be written to the MVS console. This can cause the appearance of duplicated messages on the MVS console or the MVS system console log.
- If you are running a command procedure that uses the wait function under an automation task, specify a reasonable time-out value, so that the command list does not get trapped in an endless wait.
- Do not use the pause function under the automation task, because it does not provide a time-out facility.

Note: You can use the pause function, combined with the GO command, as a response to an automated message. The GO command in this case would serve to break the wait implied by the pause function.

- If you attempt to associate a second console with an autotask that already has one, the AUTOTASK command drops the first one before associating the new one. If the console is already being used by another autotask, the console association is denied.
- You can associate an EMCS console with an autotask even if the extended console is inactive or unknown.
- You can associate MVS console ID 0 with an autotask to run commands from the MVS timed command facility under an autotask. If you do not associate an autotask with console ID 0, the timer commands from MVS run under the primary program operator interface task (PPT).
- The association of a console with an autotask remains even if you log off the autotask. When the MVS operator enters a NetView command, the autotask is restarted. The RESET, CANCEL, and LOGOFF commands do not deactivate the autotask. These commands produce a message saying the autotask is already inactive. Use the DROP keyword to disassociate the autotask from the MVS console.
- When running MVS 4.1 or later, NetView commands issued through batch (the JCL COMMAND command) will run the primary program operator interface task (PPT) or an autotask associated with console ID 0.
- NetView will route commands received from the MVS master console to either the autotask associated with the console name of the master console or to the autotask associated with the console "*MASTER*". Assigning an autotask to
console ID "MASTER" is recommended so that your master console operator can always enter NetView commands. The autotask will continue to receive commands from the new master console in the event the master console is switched to a new device.

- Be careful when assigning the authorization of the autotask that is used for CONSOLE=*ANY*, and use source checking of the console authorization to limit the ability of operators disrupting the system.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful processing</td>
</tr>
<tr>
<td>4</td>
<td>The command did not complete successfully. Check the accompanying messages for more information.</td>
</tr>
</tbody>
</table>

Examples

Example: Starting an Automation Task
To start an automation task, enter:

```
AUTOTASK OPID=AUTOOP
```

Response
You will receive one of the following responses:

- Return code of 4 is returned if there is an error.
- Message CNM570I is issued to indicate the autotask is starting.

Example: Associating a System Console with an Automation Task
To associate the system console ID 03 with automation task AUTO2, and to activate AUTO2 if it is not active, enter:

```
AUTOTASK OPID=AUTO2,CONSOLE=03
```

Example: Associating a System Console with an Automation Task
To associate the system console name TAPEOPER with automation task AUTO2, and to activate AUTO2 if it is not active, enter:

```
AUTOTASK OPID=AUTO2,CONSOLE=TAPEOPER
```

Example: Dropping an Automation Task
To drop automation task AUTO2’s association with the system console if one exists, enter:

```
AUTOTASK OPID=AUTO2,DROP
```

Response
Automation task AUTO2 maintains its current state (active or inactive).
AUTOTBL (NCCF)

Syntax

AUTOTBL

Remove:

- REMOVE NAME=name

Compile:

- MEMBER=membername
 - TEST
 - SWAP
 - AT=#
 - NAME=name
 - INSERT
 - AT=#
 - BEFORE=#
 - AFTER=#
 - FIRST
 - LAST
 - LISTING=lname

Toggle:

- DISABLE
- ENABLE
- NAME=name
 - SEQUENCE=seq
 - LABEL=labelname
 - ENDLABEL=labelname
 - BLOCK=labelname
 - GROUP=groupname

Purpose of Command

The AUTOTBL command activates the NetView automation table function by specifying a member containing automation statements to be used to identify the
messages or management services units (MSUs) that are to result in actions (for example, processing command lists or commands). You can also use this command to:

- Insert, replace, or remove individual automation tables into the list of active automation tables.
- Display the status of the NetView automation tables.
- Disable and enable automation table statements.
- Test an automation table for syntax errors.
- Create an output listing of an automation table.

The AUTOTBL command will perform system symbolic substitution on automation table statements read from an automation table member in the DSIPARM data set. The NetView-supplied &DOMAIN symbolic is also included in the substitution process. The substitution is performed after comment removal but prior to record processing. This command also removes comments after substitution.

Substitution is always performed on the &DOMAIN symbolic, unless substitution was disabled when NetView was started. For MVS and user-defined system symbolics, substitution is not performed if substitution was disabled when NetView was started or you did not define an MVS system symbolic on your MVS system.

Operand Descriptions

OFF
Deactivates any currently active automation table.

REMOVE
Removes the automation table specified by the NAME keyword from the list of active automation tables.

NAME=name
Specifies the member name to which the DISABLE, ENABLE, SWAP, or REMOVE request applies.

If the request is a DISABLE or ENABLE request, this member name can be the member name used to identify an entire table within the list of active automation tables or an INCLUDE member within an active automation table. If the SEQUENCE, LABEL, ENDLABEL, BLOCK, or GROUP keyword is not specified, all statements within the specified member are disabled or enabled.

Use the SEQUENCE, LABEL, ENDLABEL, BLOCK, and GROUP keywords to enable or disable specific statements, blocks, or groups of statements.

If the request is a SWAP request and the NAME value identifying the target of the swap request matches the MEMBER specified, the SWAP request refreshes tables that were locked as the first or last table with the FIRST or LAST keywords. In this case, the FIRST or LAST characteristic are retained.

MEMBER=membername
The DSIPARM member which contains the automation table.

The member must be in a data set concatenated in the DSIPARM DD statement and conform to the following naming conventions:

Byte 1
A–Z, @, #, or $
Byte 2–8
A–Z, @, #, or $, and 0–9

If no additional keywords are specified, the member specified is compiled and installed as the only active automation table, replacing any single table or sequence of tables. There is no correlation made for statements in the current table or list of tables that are DISABLED. Thus, all statements that require disabling must be explicitly disabled by issuing commands.

If MEMBER is specified without the SWAP or INSERT keywords, the member specified can be compiled and installed only if there is a single table loaded which was not inserted with the FIRST or LAST keywords. Otherwise, the request fails.

In order to install a new table in place of a FIRST or LAST table or a chain of tables, you must first remove the tables individually or use the AUTOTBL OFF command.

TEST
Enables you to check the syntax of statements in a NetView automation table.

SWAP
Replaces the table that is specified with the NAME keyword or that is found at the location specified by the AT keyword with the newly compiled automation table. If the member being added is the same as the one being replaced, any effects of disabled statements within the replaced member will no longer be seen. In order to recreate the desired effects, reissue the AUTOTBL DISABLE command.

SWAP can be used to refresh a table inserted with the FIRST or LAST keyword if the NAME value matches the MEMBER value. With this refresh, the FIRST or LAST characteristic is retained in the refreshed table.

AT=#
Inserts the table in the list of active automation tables at the location specified. If the number specified is not the number of a table in the list, the new table is installed at the front or end of the list of tables as appropriate.

AT is functionally equivalent to the BEFORE keyword unless used with the SWAP keyword.

INSERT
When specified with the AT, BEFORE, AFTER, FIRST, or LAST keyword, this keyword is used for readability purposes only. When the INSERT keyword is specified without the AT, BEFORE, AFTER, FIRST, or LAST keywords, the compiled table is appended to the end of the list of active tables.

BEFORE=#
Inserts the table in the list of active automation tables preceding the location specified. If the number specified is less than the number of the first table in the list or higher than the last table in the list, the new table is installed at the front or end of the list of tables as appropriate.

BEFORE is functionally equivalent to the AT keyword when AT is used with the INSERT keyword.

AFTER=#
Inserts the table in the list of active automation tables after the location specified. If the number specified is less than the number of the first table in
the list or higher than the last table in the list, the new table is installed at the
front or end of the list of tables as appropriate.

FIRST
Inserts the table as the first table in the list of active automation tables.
Additionally, the table is marked as the first table and no other table can
replace it as the first table, unless it is deleted using the REMOVE
NAME=tblname syntax.

However, if a SWAP request specifies the same value for the MEMBER and
NAME keywords, a table inserted with the FIRST keyword can be refreshed
with the FIRST characteristic being retained in the new table.

LAST
Inserts the table as the last table in the list of active automation tables.
Additionally, the table is marked as the last table and no other table can
replace it as the last table, unless it is deleted using the REMOVE
NAME=tblname syntax.

However, if a SWAP request specifies the same value for the MEMBER and
NAME keywords, a table inserted with the LAST keyword can be refreshed
with the LAST characteristic being retained in the new table.

LISTING=lname
Specifies the member or file in which the NetView program places the listing
output it creates.

LISTING creates or replaces the lname member in the first data set in the
DSILIST DD statement.

READSEC authorization checking is performed to determine access authority
for the membername before a listing is generated.

Note: Temporary data sets in the DSILIST DD statement are not supported.

REPLACE
Specifies whether the NetView program should create or replace the lname file
with the newly created listing output if it already exists.

The member might already exist somewhere in the DSILIST DD statement.

Note: If the member exists in other than the first data set of the concatenation
and you specify REPLACE, the output listing is written to the first data
set and the original listing is not affected.

If you do not specify REPLACE and the lname file exists as indicated
previously, you receive error message DWO029I, and processing of the lname
listing ends.

If you specify REPLACE and the lname file does not already exist, the file is
created.

Note: If the member being replaced is not an automation table listing, the
member is not replaced and message DWO048E is issued.

DISABLE
Indicates that the statements identified are to be disabled.

ENABLE
Indicates that the statements identified are to be re-enabled if a corresponding
DISABLE request was previously issued.
SEQUENCE=seq

Specifies that the specific statement identified by the sequence number seq is to be enabled or disabled. This statement can be either an individual automation table statement or a statement that starts a BEGIN block. If seq identifies a BEGIN block, the DISABLE or ENABLE request applies to the entire block.

LABEL=labelname

Specifies that the specific statement identified by LABEL: labelname is to be enabled or disabled. This statement can be either an individual automation table statement or a statement that starts a BEGIN block. If labelname identifies a BEGIN block, the DISABLE or ENABLE request applies to the entire block.

If LABEL is specified for a LABEL that has a corresponding ENDLABEL, only the statement with the LABEL is affected. To disable the entire block, the BLOCK syntax must be specified on the DISABLE request.

ENDLABEL=labelname

Specifies that the specific statement identified by ENDLABEL: labelname is to be enabled or disabled. This statement can be either an individual automation table statement or a statement that starts a BEGIN block. If labelname identifies a BEGIN block, the DISABLE or ENABLE request applies to the entire block.

ENDLABEL is used to enable or disable the single statement that ends a block previously defined with a LABEL / ENDLABEL pair.

BLOCK=labelname

Specifies that the range of statements identified by the LABEL / ENDLABEL pair for labelname is to be enabled or disabled. The starting and ending statements of the BLOCK must be at the same BEGIN and INCLUDE level. However, any BEGINs or INCLUDEs within the block will be disabled or enabled.

GROUP=groupname

Specifies that statements identified by GROUP: groupname are to be enabled or disabled.

STATUS

Displays the name of the current active automation table, the date and time of activation, and the ID of the operator or task that activated it; or a message stating that the NetView automation table function is inactive.

If the automation table consists of a list of tables, the STATUS output includes:

• The list of members identifying the tables that make up the list.
• The operator responsible for each member.
• The time when each table was inserted in the list.
• The sequence number that identifies the relative position of the table in the list. The table identified as sequence number 1 is the first table that processes messages and MSUs during automation.

If any statement or range of statements in the automation table or list of tables is disabled, the STATUS output indicates:

• The member name that identifies the name of the compiled table within which the disabled statement or range is located.
• The include member (if any) in which the statement or range is located.
• The sequence number or range of sequence numbers that identify the disabled statement or statements.
Both the MEMBER name and INCLUDE member name are displayed in the STATUS output although only one name is required to identify the member for which to disable or enable statements. The AUTOTBL command determines whether the member specified is a high level automation table member or an INCLUDE member. The STATUS output reflects the type of member found.

If the DISABLE request was for a compiled high-level automation table member, the INCLUDE member is shown as "---n/a---".

If the DISABLE request was for an INCLUDE member, the TABLE value shows the name of the compiled high-level automation table that contains the INCLUDE member.

Usage Notes

You can add operators dynamically without predefining them to the NetView program. If you are using OPERSEC=SAFDEF, you can add them to your security product dynamically. Otherwise, you can use the REFRESH command after defining the operators to NetView. The automation table will activate successfully even when operators that are the target of the ROUTE keyword in automation statements are not presently defined to the NetView program. You will receive a message to inform you that the operator ID specified on the ROUTE keyword is unknown.

Include this command in your command authorization setup to limit its use to the initialization command list and a small set of authorized operators.

When a command or command list is scheduled to start by the automation table, the command or command list is not processed immediately. It is queued to the task for processing at the next interrupt.

If a command within a command list results in a message that in turn drives a second command list on the same task, the first command list is processed completely before the second one is processed. If synchronous processing of the command list is necessary, you can use the wait function with the command, or the second command list can be invoked directly within the first command list.

To manage multiple automation tables, use the AUTOMAN full screen command. Refer to the AUTOMAN command and the Tivoli NetView for z/OS Automated Operations Network User’s Guide for more information.

Restrictions

The following restrictions apply to the AUTOTBL command:

- When an automation table listing is created, a 2-character key field (->) is placed on the first line of the listing. This key field identifies the file as a listing file and prevents other members or files that have the same name from being accidentally replaced with the listing. If you attempt to replace a member or file that does not have the key field, you receive an error message. However, you can prevent a listing from being overwritten if you delete the key field from the listing.

- Keywords are not positional. TEST and LISTING are valid only when you specify MEMBER.

- If the table contains syntax errors, the automation table specified is not installed within the list of active automation tables. You can set a constant in the NetView
constants module, DSICTMOD if you want the automation table to be installed even if commands or command lists that are to be started by the automation table are missing.

- Only the operator who issues the AUTOTBL command is notified that a member has been activated. Use the AUTOTBL STATUS command to determine the active table members, the operator who activated them, and the time they were last activated.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful processing.</td>
</tr>
<tr>
<td>4</td>
<td>Unsuccessful processing due to an error in the command, a syntax error in the automation table, an I/O error, or you are not authorized to issue this command.</td>
</tr>
</tbody>
</table>

Examples

Example: Deactivating the NetView Automation Table
To deactivate the NetView automation table function, enter:

```
AUTOTBL OFF
```

Response

The following message is issued:

```
DSI411I NETVIEW AUTOMATION INACTIVE
```

Example: Displaying the Currently Active Automation Member
To display the name of the currently active NetView automation member, enter:

```
AUTOTBL STATUS
```

Response

Assume that a member named DSITBL01 is the one most recently activated by the AUTOTBL command and that no AUTOTBL OFF command has been issued. CNM01PPT is the operator ID from which the command was initiated. The following messages are issued:

```
DSI410I DSIPARM MEMBER DSITBL01 BEING USED FOR NETVIEW AUTOMATION
DWO040I AUTOMATION TABLE DSITBL01 ACTIVATED 05/21/98 10:36:44 BY CNM01PPT
```

If no member has been activated since the last AUTOTBL OFF command was issued, the following message is issued:

```
DSI411I NETVIEW AUTOMATION INACTIVE
```

Example: Activating a DSIPARM Member
To activate DSIPARM member DSITBL01 for NetView automation, enter:

```
AUTOTBL MEMBER=DSITBL01
```

Response

If no errors were found in the automation statements in member DSITBL01, the following message is displayed:
DSI410I DSIPARM MEMBER DSITBL01 BEING USED FOR NETVIEW AUTOMATION

If errors were found in the automation statements in member DSITBL01 (or included members), the following messages are displayed, where member is the name of the automation table member being used before you entered the AUTOTBL MEMBER=DSITBL01 command.

DSI412I THE FOLLOWING ERRORS Encountered processing DSIPARM MEMBER DSITBL01

. .

DSI415I END OF DSITBL01 ERROR DISPLAY
DSI410I DSIPARM MEMBER member BEING USED FOR NETVIEW AUTOMATION

Between messages DSI412I and DSI415I, a message is displayed indicating the first error for each entry. The table containing the errors is not activated.

If no valid statements were found in the automation entries, or the member could not be found, message DSI416I is displayed, indicating that processing failed for the AUTOTBL command you issued. Then message DSI410I or DSI411I is displayed, indicating that the status of the active NetView automation member is unchanged.

Example: Testing a DSIPARM Member
To test DSIPARM member DSITBL01 without activating it, enter:
AUTOTBL MEMBER=DSITBL01,TEST

Response
If the member DSITBL01 (and any included members) contains all valid automation statements, the following message is displayed:
CNM501I TEST OF NETVIEW AUTOMATION FILE "DSITBL01" WAS SUCCESSFUL

If you specify TEST, the member name on the AUTOTBL command tests for errors, but no new member is activated.
Purpose of Command

The AUTOTEST command enables the management of the various tasks related to using the automation table testing function. You can use this command to:

- Compile an automation table and load it into storage in preparation for activating an automation table test.
- Activate or deactivate the testing of an automation table.
• Specify the source of messages and MSUs to be used as input to the automation table being tested.
• Log messages or MSUs that are available to enter the production automation table whether the automation table is active or inactive. This member can be used at a later time as input for automation table testing.
• Display the status of the automation table testing function.

The AUTOTEST command will perform system symbolic substitution on automation table statements read from an automation table member in the DSIPARM data set. The NetView-supplied &DOMAIN symbolic is also included in the substitution process. The substitution is performed after comment removal but prior to record processing. This command also removes comments after substitution.

Substitution is always performed on the &DOMAIN symbolic, unless substitution was disabled when NetView was started. For user-defined system symbolics, substitution is not performed if you are running on an MVS system prior to MVS Version 5 Release 2, if substitution was disabled when NetView was started, or if you have not defined an MVS system symbolic on your system.

Operand Descriptions

OFF

Deactivates automation table testing. This ends current testing activity and removes the compiled automation table for testing.

Note: If you issue AUTOTEST OFF when SOURCE=sname is running under another task, testing activity will not end immediately.

STATUS

Displays the status of the automation table test mode including the following information:

- Automation table name
- Current source of messages or MSUs (PDS member name, PARALLEL, or NONE)
- Operator ID that activated the automation testing
- Date and time of activation
- Recording status

MEMBER=membername

Specifies the PDS member that is to be compiled and used for automation table testing. This member contains automation statements.

The member must be in a data set concatenated in the DSIPARM DD statement (or in the DSIASRC DD statement if specified) and conform to the following naming conventions:

Byte 1

A–Z, @, #, or $

Byte 2–8

A–Z, @, #, or $, and 0–9

The automation table loaded is used for NetView automation testing throughout the system, so only one automation table can be tested at a time. You can use the MEMBER operand to change the member being tested.
However, before you do this, you must stop any active automation testing by either specifying AUTOTEST OFF or AUTOTEST SOURCE=OFF.

DD

Specifies the DD statement containing *membername*. Valid options are DSIASRC and DSIPARM. The default is DSIPARM.

LISTING= lname

Specifies the member in which NetView places the listing output it creates. This output is needed for analyzing the test report; the test report references statements and line numbers in the listing output.

LISTING creates or replaces the *lname* member in the first data set in the DSILIST DD statement. Temporary data sets in the DSILIST DD statement are not supported.

READSEC authorization checking is performed to determine access authority for the *membername* before a listing is generated.

The LISTING operand is required when the MEMBER operand is specified.

REPLACE

Specifies whether the NetView program should replace the *lname* file with the newly created listing output if it already exists.

If the specified listing name already exists in the DSILIST DD concatenation, the attempt to create a listing file fails with error message DWO029I, unless REPLACE is specified.

RECORD

Specifies whether to record the messages and MSUs as they flow into the active automation table analysis process. The messages and MSUs are recorded as serialized AIFRs. All messages and MSUs are sent to the DSIATOPT optional task for recording. Valid options are:

- **OFF**
 - Stops the recording process.

- *recname*
 - Specifies the member in which the messages and MSUs are recorded.
 - Specifying *recname* starts the recording process. OFF is a reserved name; you cannot use this for the member name.

RECORD creates or replaces (if LOGREPL is specified) the *recname* member in the first data set in the DSIASRC DD statement. Temporary data sets in the DSIASRC DD statement are not supported.

LOGREPL

Specifies whether the NetView program should replace the *recname* file with the newly created log of messages and MSUs if one by that name already exists.

If the specified log file name already exists in the DSILIST DD concatenation, the attempt to create a log file fails with error message DWO029I, unless LOGREPL is specified.

SOURCE

Specifies the source of messages and MSUs to be analyzed during the automation table analysis process. Valid options are:

- **OFF**
 - Stops the automation table testing process. The compiled automation test table is not deleted.
Note: If you issue AUTOTEST SOURCE=OFF when SOURCE=sname is running under another task, testing activity will not end immediately.

PARALLEL
Specifies to use copies of the messages and MSUs that are going through the active automation table for testing. With this option, there is no indication of when to stop testing; use either AUTOTEST OFF or AUTOTEST SOURCE=OFF to end testing.

sname
Specifies the member in the DSIASRC DD statement that contains the messages and MSUs to be used for testing. When the end-of-file is reached in sname, testing ends. Specifying sname starts the recording process. OFF and PARALLEL are reserved names; you cannot use either one as the member name.

TASK=taskname
Specifies the task under which the messages and MSUs from the specified SOURCE will be analyzed.

The taskname task must be active before any automation testing can occur. If the TASK operand is not specified, automation testing for a particular message or MSU will be performed under whatever task normally automates that message or MSU.

REPORT=reportname
Specifies the member name in DSIARPT where the automation table testing report is to be placed. This report lists which commands would have been called or processed during automation table testing. If reportname does not exist, the member will be created. If reportname already exists and RPTREPL is not specified, the command will fail.

RPTREPL
Specifies whether the NetView program should replace the repname file with the newly created automation table testing report if one by that name already exists.

If the specified report file already exists in the DSIARPT DD concatenation, the attempt to create a report file fails with error message DWO029I, unless RPTREPL is specified.

Usage Notes
All messages and MSUs are sent to the DSIATOPT optional task for recording. DSIATOPT is also used to write records to the automation table testing report. If DSIATOPT fails to process the incoming buffers fast enough, buffers can queue up at the task’s message queue. You can use the DEFAULTS and OVERRIDE commands to control the rate of the incoming buffers and the amount of storage that DSIATOPT uses.

You cannot alter the current automation testing while testing is in progress. To alter the testing in progress:
- If SOURCE=PARALLEL is active, enter the following:
 AUTOTEST SOURCE=OFF
 AUTOTEST SOURCE=PARALLEL|sname TASK=taskname
- If automation table testing is still processing a log file specified with SOURCE=sname, that process must complete before a new SOURCE or TASK
can be specified. You can wait for the current testing to complete normally, or you can specify AUTOTEST SOURCE=OFF to stop the testing process.

You can add operators dynamically without predefining them to NetView. If you are using OPERSEC=SAFDEF, you can add them to your security product dynamically. Otherwise, you can use the REFRESH command after defining the operators to NetView. The test automation table will activate successfully even when operators that are the target of the ROUTE keyword in automation statements are not presently defined to the NetView program.

Include the AUTOTEST command in your command authorization setup to limit its use to a set of authorized operators.

Restrictions

The following restrictions apply to the AUTOTEST command:

- AUTOTEST SOURCE=servername and AUTOTEST SOURCE=PARALLEL cannot both be active at the same time.
- The INSERT, ENABLE, and DISABLE functions of the AUTOTBL command are not supported by the AUTOTEST command. You cannot create a chain of tables for use in testing or enable and disable statements within the test automation table.
- Temporary data sets in the DSIASRC DD statement are not supported.
- When AUTOTEST output files (listing files, source log files, or testing reports) are created, a 2-character key field (L>, S>, and R>, respectively) is placed on the first line of the file. This key field identifies the file as associated with the automation testing function. This key prevents other files with the same name from being overwritten by an automation testing file. If you attempt to replace a member that does not have the key field, you receive an error message. You can remove the key field from an automation testing file to prevent the file from being overwritten.
- Keywords are not positional.
- Only the operator who issues the AUTOTEST command is notified that a member has been activated. Use the AUTOTEST STATUS command to determine the active table member, the operator who activated it, and the time it was last activated.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful processing.</td>
</tr>
<tr>
<td>4</td>
<td>A command syntax error was encountered or one or more keywords or values were protected for security.</td>
</tr>
<tr>
<td>8</td>
<td>No storage was available.</td>
</tr>
<tr>
<td>12</td>
<td>The system was busy, re-enter the command.</td>
</tr>
<tr>
<td>16</td>
<td>A syntax error was detected in the automation table.</td>
</tr>
<tr>
<td>20</td>
<td>A PDS member could not be opened.</td>
</tr>
<tr>
<td>24</td>
<td>A data set member could not be read due to security protection.</td>
</tr>
</tbody>
</table>
The command was not valid. For example, an attempt was made to change the member name during automation table testing.

The DSIATOPT optional task was not active.

The AUTOTEST command cannot run under an exit.

There is an AUTOTEST listing error.

Internal error. See message DWO050 in the network log for more information.

Examples

Example: Deactivating the NetView Automation Table Testing
To deactivate the NetView automation table testing, enter:

```
AUTOTEST OFF
```

Example: Activating Parallel NetView Automation Table Testing
To activate the NetView automation table testing in parallel with the active automation table, and place the listing in DSILIST member MYLIST (replacing it if it already exists), enter:

```
AUTOTEST MEMBER=MYAUTO,SOURCE=PARALLEL,LISTING=MYLIST,REPLACE,REPORT=MYREPT
```

Example: Stopping NetView Automation Table Testing in Preparation for Testing Another Source Member
To stop the NetView automation table testing in preparation for testing another source member, enter:

```
AUTOTEST SOURCE=OFF
```

Example: Activating Recording of Messages and MSUs
To activate recording of messages and MSUs processed by the active NetView automation table, and place the recorded output in DSIASRC member MYRECORD (replacing it if it already exists), enter:

```
AUTOTEST RECORD=MYRECORD,LOGREPL
```

Example: Deactivating Recording of Messages and MSUs
To deactivate recording of messages and MSUs processed by the active NetView automation table, enter:

```
AUTOTEST RECORD=OFF
```
AUTOTR (NCCF; CNME0006)

Syntax

AUTOTR

```
AUTOTR resname,ON,OFF,ALL,passthru
```

Purpose of Command

The AUTOTR command list sets the buffer trace on or off for cross-domain resources belonging to the CDRM minor node name specified.

Operand Descriptions

resname

Specifies a CDRM minor node name. This is a required entry.

ON

Starts the buffer trace. ON is the default.

OFF

Stops the buffer trace.

ALL

Specifies that trace ON or OFF is to affect all resources in ACT/S or ACT/S----Y status under the designated CDRM, including any exceptions that your installation might have coded into the command list.

passthru

Specifies up to 4 parameters which are appended unchanged to the VTAM MODIFY command issued by the AUTOTR command. No validation for duplicate or conflicting parameters is performed.

Restrictions

The following restrictions apply to the AUTOTR command:

- If you omit a positional operand, indicate its absence with a comma.
- You can customize this command list so that buffer traces can be started only for specific resources.
- Incorrect results can occur if you run the AUTOTR command list while MSGMOD is active.

Examples

Example: Activating a Buffer Trace
To activate a buffer trace for cross-domain resources in the specified CDRM, enter:

```
AUTOTR CDRM10,ON
```

Note: If you customize the command list to affect only certain terminals in the named CDRM, buffer trace starts for those terminals only.
Example: Activating a Buffer Trace for All Terminals under a Node
To activate a buffer trace for all terminals under node CDRM10 in ACT/S or ACT----Y status, regardless of any customization statements coded in the command list, enter:

AUTOTR CDRM10,ON,ALL

Example: Inactivating a Buffer Trace for All Terminals under a Node
To inactivate a buffer trace for the CDRSCs under CDRM10, enter:

AUTOTR CDRM10,OFF
Autowrap (NCCF)

Syntax

```
AUTOWRAP
```

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>FULL</td>
</tr>
<tr>
<td>NO</td>
<td>TIME</td>
</tr>
<tr>
<td>TOGGLE</td>
<td>YES</td>
</tr>
</tbody>
</table>

Purpose of Command

The AUTOWRAP command controls whether your terminal is held when the screen is full of data, or if the screen is automatically overlaid with new data.

Issuing AUTOWRAP NO in a command procedure, issuing many writes to the screen from the procedure, then issuing AUTOWRAP YES, will not result in the AUTOWRAP NO being in effect through the screens of output issued by the procedure. The NetView program will process the AUTOWRAP NO, queue all messages issued to the screen, process the AUTOWRAP YES (which causes all the procedure output to AUTOWRAP off your screen), and continue processing the procedure with no apparent pause for message display.

Operand Descriptions

- **0**
 If you do not specify an AUTOWRAP time, the default of 0 seconds is used. Specify AUTOWRAP 0 only if you are sure you do not want the NetView program to stop for you to read the messages on the screen. Specifying AUTOWRAP 0 is useful when you are away from your terminal and want to avoid delay.

- **FULL**
 Specifies that AUTOWRAP is to start with a default time of 0 seconds. This is the same as specifying AUTOWRAP YES.

- **NO**
 Specifies that AUTOWRAP is to stop. With AUTOWRAP NO, press a PF, PA, Clear, or ENTER key to allow new data to overlay the screen. When you specify AUTOWRAP NO, press a key to let the system write the next message at the top of the screen. You can prevent the screen from wrapping when you want to read the message and do not want the system to write over it. When you prevent the screen from wrapping, the system does not write over the message already on the screen until you free the screen, by pressing the ENTER key, Clear key, or any PF key not defined as HOLD.

- **time**
 Is the number of seconds (0–999) that the system waits before new information overlays the screen. Zero is the default. This means the system overlays the screen when it is full.
TOGGLE
Specifies that AUTOWRAP functions as the WRAP command (see the WRAP command).

YES
Specifies that AUTOWRAP is to start with a default time of 0 seconds. This is the same as specifying AUTOWRAP FULL.

Restrictions
The following restrictions apply to the AUTOWRAP command:
- The AUTOWRAP command is not available to an autotask. If the AUTOWRAP command is issued by an autotask, message DSI198I is issued.
- The AUTOWRAP command is both a regular and an immediate command.

Examples

Example: Stopping Wrap
To set your display so that it does not wrap, enter:
AUTOWRAP NO

Response
The date, and time are displayed in the upper-right corner of your screen, along with this message:
DSI083I AUTOWRAP STOPPED

Example: Setting Wrap
To set your display so that it wraps, enter:
AUTOWRAP

Response
If you have turned on AUTOWRAP successfully, the following message is displayed in the immediate message area:
DSI082I AUTOWRAP STARTED
An A is also displayed in the upper-right corner of your screen.
If you issue the HOLD command to hold the screen, an H is displayed where the AUTOWRAP A is normally displayed.

Example: Setting Wrap Display Time
To set AUTOWRAP to display new data seven seconds after the screen is full, enter:
AUTOWRAP 7
BACK

Syntax

BACK

amount

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACK</td>
<td>B</td>
</tr>
</tbody>
</table>

Purpose of Command

The BACK command scrolls backward toward the beginning of the data.

Operand Descriptions

For STATMON and TARA, there are no parameters. The scroll amount has a fixed value of a single page.

For HELP, NLDM, NPDA, and VIEW (no-input):

`amount`

Specifies the amount to scroll back:

`number`

Scroll backward a specific number of pages. The range is 1–32767.

The default amount is one page.

For WINDOW (and WINDOW-based applications such as INDEX and HELPDESK):

`amount`

Specifies the amount to scroll back:

`number`

Scroll backward a specific number of lines.

The default amount is the cursor position. If the cursor is not on a data line, the default is the scroll amount displayed in the message area at the bottom of the screen (message BNH183I). If BNH183I is not displayed, the default is either one full page or the top of the screen, whichever is applicable.

For BROWSE:

`amount`

Specifies the amount to scroll back. The possible values for `amount` are:

- **Page or P**

 Scroll backward one page.

- **Half or H**

 Scroll backward half a page.
Csr or C
Scroll backward making the line indicated by the cursor the last displayed line.

Max or M
Scroll backward to the beginning of the data.

number
Scroll backward a specific number of lines. The range is 1–32767 when you are browsing a member or 1–9999999 when you are browsing the network log.

The default is Csr if the cursor is located in the data display area; otherwise the default is Page.

Usage Notes
Consider the following when using the BACK command:

- When you have issued the OVERRIDE command with the SCROLL keyword specifying a value other than OFF, the BROWSE panel displays a scroll amount in the upper-right area of the panel.
- When you issue the BACK command, the number of lines scrolled is determined in the following order:
 1. The explicit scroll amount specified on either the BACK command or on the command line when the BACK PF key is pressed.
 2. The scroll amount displayed in the message area at the bottom of the BROWSE screen as message BNH183I indicates the last scroll amount.
 3. The implicit scroll amount specified in the scroll amount area in the upper-right area of the screen.
 4. The cursor position when the scroll amount area indicates CSR.
 5. The cursor position when there is no scroll field or BNH183I message displayed.
- You can change the scroll amount in the scroll amount area by entering any portion of CSR, HALF, OFF, PAGE, or a numeric scroll amount. Overtyping the remaining contents of the field is not necessary unless you are changing a numeric value to another numeric value.

Restrictions
The following restrictions apply to the BACK command:

- If you enter this command for a single-page panel, no change occurs.
- If the value of amount is greater than the number of previous lines or pages, the top of the data or first page is displayed.

Examples

Example: Displaying a Previous Page
To display the previous sequential page of a multipage panel, enter either of the following:

```
BACK
B
```

Example: Displaying a Help Panel Further Than One Panel Back
If you want to navigate to a help panel that is three pages back, enter either of the following:
Chapter 2. NetView Commands and Command Descriptions 111
BFRUSE (NCCF; CNME0007)

Syntax

BFRUSE

Purpose of Command

The BFRUSE command list displays information about VTAM buffer use.

Operand Descriptions

* Specifies that common service area (CSA) use and IRNLIMIT information are to be displayed. This is the default.

buffid Displays information about the buffer ID entered.

passthru Specifies up to 6 parameters that are appended unchanged to the VTAM DISPLAY command issued by the BFRUSE command. No validation for duplicate or conflicting parameters is performed.

Restrictions

For more information about the BFRUSE command, refer to the appropriate VTAM manual.
BFSESS (NCCF; CNME1001)

Syntax

```
BFSESS

applid, srclu, disc, logmode, int, roll, DEFER
```

Purpose of Command

The BFSESS command list starts a full-screen session with another subsystem.

Operand Descriptions

- **applid**
 - The name of the logical unit in the destination subsystem.
 - * Indicates that a default srclu name should be used for the session.
- **srclu**
 - The name of the secondary logical unit for the session.
- **disc**
 - The Disconnect key for the session (PA key, PF key, or Clear). If you do not specify this operand, the default is the PA1 key.
- **logmode**
 - Is the logmode entry indicating the desired session bind operands. The default value is M2SDLCNQ.
 - Note: VOSTs only support non-query logmodes.
- **int**
 - Permits messages to interrupt your session. This can be either Y (yes) or N (no). N is the default.
- **roll**
 - The Roll key for the session (PA key or PF key). The default is none.
- **DEFER**
 - The establishment of the session is deferred until the destination subsystem initiates the session. Deferment permits another subsystem to acquire the logical unit. Not all destination subsystems initiate sessions. Your system programmer can tell you whether a particular subsystem initiates the session.

Restrictions

The following restrictions apply to the BFSESS command:
- The commas between operands are optional; however, if you omit a positional operand, indicate its absence with a comma.
- Use the principal LU name when starting a session with a time-sharing option (TSO) or another NetView system. Consult your system programmer or refer to the *Tivoli NetView for z/OS Installation: Configuring Additional Components* for the
correct name. You cannot use the access method control block (ACB) name (if different) or an alias. If you start a session with an improper name, the following message is displayed:

DSI461A SRCLU=name IS UNABLE TO ACCEPT A SESSION FROM APPLID=xxxnnn

Even though you are not able to use the session, issue the ENDSESS command to return to your regular NetView session.

• The intercept keys can be any PA or PF keys, but to avoid possible data loss, use the same type of key for both (either both PA keys or both PF keys). If a PA key is chosen or taken by default as the Disconnect key, you cannot send the Roll key to the application. For example, option 4 of the full-screen disconnect menu, SEND PFX KEY TO ‘APPLICATION’, is not presented for this key combination.

• If you specify the same key for Disconnect and Roll, the Roll key is hidden and you do not have a roll function. You might find it inconvenient to use other NetView components while using the terminal access facility (TAF) without a Roll key.

• If you do not specify srclu or you specify asterisk (*), BFSESS will use a default srclu on a virtual OST (VOST) only if sufficient LUs TFaa#nnn are defined for your system, where:

 aa Are the last two characters of the domain ID.
 nnn Are decimal numbers in the range of 000–999.

For example, if you expect your system will have a maximum of 50 LUs using default srclu values running in domain aa at any one time, you only need to define TFaa#000 through TFaa#049 using the DEFAULTS command.

Examples

Example: Beginning a Full-Screen TSO Session
To begin a full-screen TSO session with an srclu of SRCLU001, the Disconnect key as PF7, and int as NO, enter:

BFSESS TSO,SRCLU001,PF7,,N

Example: Starting or Resuming a TSO Full-Screen Session
To start or resume a full-screen session with TSO11, enter one of the following commands:

BFSESS TSO11,TAF11F00,PA2
BFSESS TSO11 TAF11F00 PA2

The secondary LU name is TAF11F00, the Disconnect key is PA2, and logmode is the default. If beginning a session, most messages do not interrupt (int defaults to N), and you do not have a Roll key. If resuming a session, the roll and int values are unchanged. The commas between the operands are optional.

Example: Starting or Resuming a CNM Full-Screen Session
To start or resume a full-screen session with CNM21, enter one of the following commands:

BFSESS CNM21,,PF12,,,PF6

The secondary LU name is assigned by the system, the Disconnect key is PF12, the logmode is the default, and PF6 causes a roll to the next NetView component (possibly another full-screen session).
BGNSESS (NCCF)

Syntax

```
BGNSESS
  FLSCN,D=PA1,INT=N
  Opctl,DEFER,TEXT=logon_text
```

Fiscn:

```
FLSCN,APPLID=luname,D=PA1,CLR,PAkey,PFkey,INT=N
```

Opctl:

```
OPCTL,APPLID=luname,LOGMODE=logmode_name,SESSID=session_id
```

Purpose of Command

The BGNSESS command starts a session with another subsystem or returns to a previously disconnected full-screen session with any of the subsystems. If you issue the BGNSESS command, and there is already a session active, the command returns the session to you.

Operand Descriptions

- **FLSCN**
 - Starts a full-screen session. FLSCN is the default.

- **APPLID=luname**
 - Specifies the name of the logical unit in the destination subsystem. If a full-screen session already exists for the specified `luname`, that session is resumed. In this case, the operands SRCLU, LOGMODE, DEFER, and TEXT are ignored. Specify APPLID for an OPCTL session.
D=
Specifies which key is the Disconnect key for a full-screen session. The valid operands are:

CLR
Specifies that the Clear key disconnects the full-screen session.

PAkey
Specifies the PA key that disconnects the full-screen session. Valid values for key are in the range 1–3. PA1 is the default.

PFkey
Specifies the PF key that disconnects the full-screen session. Valid values for key are in the range 1–24.

D= is ignored if specified on a virtual OST (VOST).

INT=N|Y
Specifies whether any messages will interrupt your session (Y) or not (N). N is the default.

LOGMODE=logmode_name
Is the logmode entry indicating the desired session BIND operands. If not specified, LOGMODE becomes the default BIND image table entry as defined to VTAM. If you use the DEFER operand, do not use the LOGMODE operand.

Attention:
When BGNSESS is used with ATTACH, your LOGMODE must be compatible with a 24 by 80, non-queryable screen.

R=
Specifies which key is the Roll key for a full-screen session. The valid operands are:

PAkey
Specifies the PA key that rolls the full-screen session panels. Valid values for key are in the range of 1–3.

PFkey
Specifies the PF key that rolls the full-screen session panels. Valid values for key are in the range of 1–24.

If you are beginning a session, NONE is the default. If you are resuming a session and you omit R=, the Roll key remains unchanged. If you use NONE to begin or resume a session, issue a BGNSESS command to resume that session after disconnecting.

R= is ignored if specified on a virtual OST (VOST).

SRCLU=secondary.lu
Specifies the name of the logical unit you are using as a secondary logical unit for this session.

If you do not specify SRCLU or you specify SRCLU=*, the current LU will be used. If no LU is in use, BGNSESS will select an LU name based on the naming convention TFaa##nnn, where:

aa Are the last two characters of the domain ID
nnn Is a decimal number in the range 000–999
The lowest number \textit{nnn} LU not currently in use will be selected. When BGNSESS chooses a secondary LU for you, it issues message DSI498 to inform you of the LU being used.

\textbf{Notes:}

1. ALL LUs from 000 to the maximum number you expect to run concurrently on domain ID \textit{aa} must be defined on the NetView system to use BGNSESS SRCLU=\textit{*}. If the LU selected by BGNSESS is not defined, message DSI475I is issued indicating the LU name attempted by BGNSESS.

For example, if your system will have a maximum of 50 BGNSESS full-screen sessions running in domain \textit{aa} at any one time, you only need to define TF\textit{aa}#000 through TF\textit{aa}#049.

2. A secondary \textit{lu} cannot be specified in the form TF\textit{aa}#\textit{nnn}. Names of this format can only be used with BGNSESS SRCLU=*.

\textbf{OPCTL}

Starts an operator-controlled session.

\textbf{SESSID=\textit{session_id}}

Is a 1–8 character session identifier associated with this specific operator-controlled session. You must use this session identifier in front of the command text sent with every SENDSESS command. If you do not specify SESSID, the APPLID value is used as the session identifier. SESSID is required if you establish multiple, operator-controlled sessions to the same destination.

All session identifiers used by one operator must be unique. If you use a screen format member that specified PREFIX as NMTYPE, SESSID, or NMFLAGS, messages from the application are identified with your session ID instead of a domain ID (refer to the \textit{Tivoli NetView for z/OS Customization Guide} for information about customizing the NCCF screen).

If the messages are routed by the ASSIGN command or through the primary program operator interface task (PPT), character positions 7 and 8 of the session ID can be overlaid with message codes. The session ID is altered for the network log and the hardcopy log, but not for the following:

- SESSID operand
- SESSID condition-item in automation table
- &SESSID control variable in command list language
- SESSID() function in REXX

\textbf{DEFER}

Specifies that the establishment of the session is deferred until the destination subsystem initiates the session. Deferring permits another subsystem to acquire the logical unit. Not all destination subsystems initiate sessions. Your system programmer can tell you whether a particular subsystem initiates the session.

\textbf{TEXT=}\textit{logon_text}

Specifies the text associated with the LOGON command of the subsystem you want to start. If you specify TEXT, it must be the last operand. If you have used the DEFER operand, do not use the TEXT operand. Ask your system programmer for the correct operand.

\textbf{Restrictions}

The following restrictions apply to the BGNSESS command:

- When you return to a time-sharing option (TSO) session with BGNSESS, use the same LU name that you used to start the session. This prevents ambiguity when NetView processes the bind for the generic TSO LU name (TSOnnnnn). To prevent this situation from occurring, use the access method control block (ACB)
name to start sessions in the same domain, and use the LU name for cross-domain sessions. Consult your system programmer or refer to the Tivoli NetView for z/OS Installation: Configuring Additional Components for the correct name.

- You cannot use the ACB name (if different) or an alias. If you start a session with an improper name, the following message is displayed:

 DSI461A SRCLU=name IS UNABLE TO ACCEPT A SESSION FROM APPLID=xxxnnn

Although you cannot use the session, issue the ENDSESS command to return to your regular NetView session.

- An intercept key can be any PA or PF key, but to avoid possible data loss, use the same type of key for both (either both PA keys or both PF keys). If you choose a PA key as the Disconnect key, or take it by default, you cannot send the Roll key to the application. For example, option 4 of the full-screen disconnect menu, SEND PFX KEY TO 'APPLICATION', is not presented for this key combination.

- Operator-controlled sessions have the following specifications:
 - Define a separate logical unit for each 8100/DPPX system.
 - For IMS/VS and CICS/VS systems, specify a logical unit on the BGNSESS OPCTL command if you currently have no OPCTL sessions.
 - If you enter BGNSESS OPCTL commands without specifying a logical unit name, SRCLU defaults to the last SRCLU on an active BGNSESS OPCTL command. Specify SESSID if you use the default.
 - You can establish no more than 30 operator-controlled sessions from one SRCLU value.

- Full-screen sessions have the following specifications:
 - Specify whether messages are to interrupt your session. Message interruption can cause a loss of input data. Messages that do not interrupt you are saved in the NetView disk log or hardcopy log. When you disconnect from the session, you are notified of messages that were received and logged while you were viewing your full-screen session.

 If you cannot be interrupted, even by urgent messages, use the NetView OVERRIDE command.
 - If the Clear key is used as the Disconnect key, refresh the screen manually.
 - You can use only one SRCLU operand for each operator for full-screen sessions.
 - The SRCLU operand is required for the first BGNSESS FLSCN command. The operand is ignored if you specify it on subsequent BGNSESS FLSCN commands, if at least one full-screen session is active.
 - If you logged on to your terminal with a nonquery logmode_name (refer to the Tivoli NetView for z/OS Installation: Configuring Additional Components) you cannot use the terminal access facility to go to another application with a query logmode_name. Both logmode_names must be nonquery. For example, if you use the following command:

 LOGON APPLID(CNM01) LOGMODE(M2BSCNQ)

 And attempt to use the terminal access facility to go to an application with LOGMODE MSDLCQ, the following message is displayed:

 DSI462I UNABLE TO START SESSION FOR APPLID=applid DUE TO INVALID BIND PARAMETERS
For terminal access facility sessions, always use an SDLC logmode_name. Sample supplied logmode_names (for example MSDLCQ and MSDLCNQ) can be found in the sample AMODETAB.

— No more than 1500 full-screen sessions can be established for one operator.

- The terminal access facility (TAF) often begins your session before the application sends its initial output screen. Some applications do not send an output panel. A panel with the application name and following message is displayed:

 SESSION PENDING, WAITING FOR DATA

- With most applications, you can wait for your logon panel. For those applications you can enter data on this panel or press any PF, PA key or CLEAR key. For a deferred session, the message is:

 SESSION DEFERRED, WAITING FOR DATA

- You can use the Roll key or Disconnect key to leave this panel. Message DSI479I will be displayed when your application is ready.

Examples

Example: Starting a CICS® Full-Screen Session
To begin a full-screen session with CICS using TAF555 as the FLSCN SRCLU, enter:

BGNSESS FLSCN,APPLID=CICS,SRCLU=TAF555

Response

When you successfully started the full-screen session, the following message is received:

DSI463A A SESSION HAS BEEN STARTED TO APPLID=CICS FROM SRCLU=TAF555

Example: Starting an Operator-Controlled CICS Session
To begin an operator-controlled session with CICS using TAF555 as the OPCTL SRCLU, enter:

BGNSESS OPCTL,APPLID=CICS,SRCLU=TAF555
BLOG (NCCF;CNME1099)

Syntax

BLOG

Filters:

| oper_id | domain_id | msg_id | msg_text |

Purpose of Command

The BLOG command activates the NetView log browse facility, showing a subset of the information based on filtering criteria.

When used with no parameters, the BLOG command will display a full-screen input panel where the filtering criteria can be entered. When used with parameters, the BLOG command will start the log browse facility based on the filtering criteria provided on the command line arguments.

Operand Descriptions

NETLOGA
The active network log.

NETLOGI
The inactive network log.

NETLOGP
The primary network log.

NETLOGS
The secondary network log.

oper_id
Is the NetView operator ID for which records in the network log were recorded. This ID corresponds to the ID displayed in columns 8–15 in the log browse display. You can use the * and ? characters as wildcard characters anywhere in this specification. The * matches zero or more characters and the ? matches exactly one character.

domain_id
Is the NetView domain ID for which records in the network log were recorded. This ID corresponds to the ID displayed in columns 17–21 in the log browse display. You can use the * and ? characters as wildcard characters anywhere in this specification. The * matches zero or more characters and the ? matches exactly one character.
msg_id

Is the message ID that is to be matched with records in the network log. This ID corresponds to the first blank-delimited word beginning in column 37 of the log browse display. The ID is limited to 10 characters. You can use the * and ? characters as wildcard characters anywhere in this specification. The * matches zero or more characters and the ? matches exactly one character.

msg_text

Is the text or subset of text that is to be matched with records in the network log. This text corresponds to any text in columns 1–255 of the log browse display. You can use the * and ? characters as wildcard characters anywhere in this specification. The * matches zero or more characters and the ? matches exactly one character.

Usage Notes

You can use either spaces or commas as delimiters. Use a comma when specifying a blank as input for a field. Refer to ”Examples”.

You can use the BLOG command in conjunction with the netlog browse ALL subcommand. The ALL command can be used from within the netlog browse facility to reset any BLOG filters or to specify new filters. For additional information about the ALL browse subcommand, refer to the NetView online help.

When using the menu to specify filtering, the format for entering date and time information is controlled by the date and time keywords on the DEFAULTS and OVERRIDE commands.

Restrictions

The following restrictions apply to the BLOG command:

- When specifying parameters on the BLOG command, they are positional. For example, to specify domain_id, you must specify both a network log type and oper_id. Note that you can use a single asterisk for oper_id, domain_id, msg_id, or msg_text.

- Multiline messages are processed as single records when processing the filtering criteria. For example, specifying a msg_id of IEE114I will match only the first line of a multiline IEE114I message.

- When using BLOG panel input to specify a remote NetView log to display, filtering is done at the remote NetView. The remote NetView must be NetView for OS/390 V1R1 or higher; however, when the target NetView is NetView V2R4 or V3R1, the BLOG samples (CNMS4298, CNMS8009, and CMS8010) supplied with the target release can be installed on the target to support remote filtering.

- Browse filters are not case-sensitive.

Examples

Example: Viewing Log Records for a Specific Operator

To browse the active network log displaying only records logged for NetView operator NETOP1, enter:

```
BLOG NETLOGA NETOP1
```

The log browse facility is activated and only records that were logged for operator NETOP1 are displayed.
Example: Displaying VTAM Messages Logged in the Network Log
To display all VTAM messages in the active network log, enter:

 BLOG NETLOGA ** IST*

You can enter the BLOG command with no parameters and complete the appropriate field of the BLOG input panel to accomplish the same result.

Example: Using the BLOG Input Panel
To use the BLOG input panel, enter:

 BLOG

The BLOG input panel is displayed where you can enter filtering information. When you have entered your choices, press Enter to start the browse process. Refer to the Tivoli NetView for z/OS User’s Guide for a description of the BLOG input panel.

Example: Using Blanks with BLOG
In the following example, the BLOG command is issued from the command line with a blank as input to the message ID field:

 BLOG *,*, ,*

This will return all message log data, including any message whose message ID field is longer than 10 characters. Specifying an asterisk (*) for the message ID field will discard any message whose message ID field is longer than 10 characters.
BOSESS (NCCF; CNME1002)

Syntax

BOSESS

```plaintext
BOSESS applid, srclu, sessid, logmode, DEFER
```

Purpose of Command

The BOSESS command list starts an operator-controlled session with another subsystem that supports line-mode input and output. The operator-controlled session allows you to send commands and receive responses from subsystems, line by line. You can have concurrent sessions with one or more subsystems.

Operand Descriptions

applid

Is the name of the logical unit in the destination subsystem.

srclu

Is the name of the secondary logical unit for the session.

sessid

Is a 1–8 character session identifier associated with this specific operator-controlled session. Use this session identifier in front of the command text sent with every SENDSESS command.

logmode

Is the logmode entry that indicates the specified session bind operands. The default is M3767.

DEFER

Specifies the establishment of the session is deferred until the destination subsystem initiates the session. Deferring permits another subsystem to acquire the logical unit. Not all destination subsystems initiate sessions. Your system programmer can tell you whether a particular subsystem initiates the session.

Restrictions

The following restrictions apply to the BOSESS command:

- The commas between operands are optional; however, if you omit a positional operand, indicate its absence with a comma.
- The BOSESS command list computes the `sessid` by concatenating the fourth and fifth characters of `&APPLID` to the characters SID, and then concatenating the characters OP. For example, the `sessid` for BOSESS CICS02, issued from the NetView domain CNM01 is SID01OP.

Examples

Example: Starting an IMS Operator Session

To begin an operator session with IMS, enter:

```
BOSESS IMS,TAFFL11,IMSA
```
You can now send supported commands to IMS.

Example: Starting an IMS1 Operator Session
To begin an operator session with IMS1, with M3767 as the logmode, enter:

```
BOSESS IMS1,,M3767
```
BOTTOM

Syntax

BOTTOM

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOTTOM</td>
<td>BOT</td>
</tr>
</tbody>
</table>

Purpose of Command

The BOTTOM command displays the last page of a multipage panel.

Restrictions

If you enter this command for a single-page panel, no change occurs.

Examples

Example: Scrolling to the Last Page
To get to the last page of a multipage panel, enter:

BOTTOM

OR

BOT
BRIDGE (NCCF; CNME8503)

Syntax

```
BRIDGE
   LAN
   LINK BrgName
   PROFILE BrgName
   UNLINK BrgName
```

BrgName:

```
brgname
   spname
   netid.spname
```

ConfigData:

```
BDGNUM bridge_number
FORWARD NO YES
HOPCNT adpname hopcount
INTERVAL notify_interval
LANSEG adpname adpnumber
LOSTHRED percent
LNKPASS0 new_password0
LNKPASS1 new_password1
LNKPASS2 new_password2
LNKPASS3 new_password3
SGLMODE A M
SGLROUTE adpname NO YES
```

Purpose of Command

The BRIDGE command list obtains status information about a bridge, links or unlinks a bridge to the IBM LAN Network Manager, or changes the current parameters in a bridge. The BRIDGE command list is supported by the IBM LAN Network Manager, but not by the IBM LAN Network Manager Entry.

Operand Descriptions

LAN

Specifies that BRIDGE is a LAN command list. This operand is optional.

CONFIGURE

Changes the current parameters in a bridge linked to the controlling IBM LAN Network Manager. The parameters that can be changed are:

- Bridge number
- Frame forwarding active
- Notification interval

126 Tivoli NetView for z/OS Command Reference Vol. 1
• Percent frame lost threshold
• LAN segment number
• Hop count limit
• Single-route broadcast for adapter
• Link password
• Single-route broadcast mode

brgname
 Specifies the bridge name.

netid
 Specifies the network identifier in which the service point is located. This parameter is required only when you use a service point that is not in the local network. Use a period (.) to delimit netid from spname.

spname
 Specifies the 1–8 character service point name of the IBM LAN Network Manager.

LINK
 Dynamically sets up an IBM LAN Network Manager link to a bridge.

PROFILE
 Obtains the current configuration of a bridge.

UNLINK
 Dynamically brings down a IBM LAN Network Manager link to a bridge.

BDGNUM bridge_number
 Changes the bridge number. This can be a numeric value from X'0' to X'F'.
 Attention: If the bridge number changes, this command list disrupts LAN data traffic.

FORWARD
 Specifies whether frame forwarding is active. The valid options are:
 NO
 Specifies frame forwarding is not active.
 YES
 Specifies frame forwarding is active.

HOPCNT adpname hopcount
 Changes the hop-count limit for the bridge adapter. This can be a numeric value from 1–7.

INTERVAL notify_interval
 Changes the performance notification interval. This can be a numeric value from 0–99.

LANSEG adpname adpnumber
 Changes the LAN segment number for the adapter.
 Attention: If the segment number changes, this command list disrupts LAN data traffic.

LOSTHRED percent
 Changes the percent frame-lost threshold. This can be a numeric value from 0–99.

LNKPASS0 new_password0
 Changes the link password 0.
LNKPASS1 *new_password1*
Changes the link password 1.

LNKPASS2 *new_password2*
Changes the link password 2.

LNKPASS3 *new_password3*
Changes the link password 3. This can be a numeric value from X’1’–X’FFF’.

Attention: If the password changes, it is displayed at the NetView console and in the network log. Operator intervention is required at the IBM LAN Network Manager.

SGLMODE
Changes the single-route broadcast mode to:

- **A** Automatic
- **M** Manual

SGLROUTE *adpname*
Changes the single-route broadcast for the bridge adapter. The valid options are:

- **NO**
 Specifies that the port will not accept and forward single-route broadcast frames when the single-route broadcast mode is set to Manual.

- **YES**
 Specifies that the port will accept and forward single-route broadcast frames when the single-route broadcast mode is set to Manual.

Restrictions
The following restrictions apply to the BRIDGE command:

- Consult your system programmer before reconfiguring your bridge. The *adpname* operand specifies the adapter name or address. It can be from 1–16 characters.
- If you change an adapter’s single-route broadcast by typing SGLROUTE and specifying the adapter’s name or address, followed by YES or NO, the adapter’s single-route broadcast mode is changed to manual.
- Do not use IBM LAN Network Manager command lists as commands in conjunction with the &WAIT statement in a command list.

Examples

Example: Getting Current Information about BRIDGE
To obtain current information about BRIDGE1, enter:

```
BRIDGE PROFILE BRIDGE1 N4L021
```
BROWSE (NCCF; CNME5001)

Syntax

BROWSE

ReMote:

MemBer:

Dataset Name:

‘fully qualified dataset name’

FromTo:

Chapter 2. NetView Commands and Command Descriptions 129
IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>BROWSE</td>
<td>BR</td>
</tr>
<tr>
<td>SUBSYM</td>
<td>SUBS</td>
</tr>
</tbody>
</table>

Purpose of Command

The BROWSE command list enables you to scan the network log, members of a partitioned data set, or members in storage. The member or network log can be on a local or remote NetView program.

The members are contained in a partitioned data set (PDS) or in storage loaded by the PIPE INSTORE stage. Only members in standard NetView data definition names can be browsed. Issue the following to see a list of valid DD names:

```
BROWSE !
```

Note: For NLS users, the exclamation point character (!) can be represented with X'5A'.

Operand Descriptions

NETLOGA
Is the active network log.

NETLOGI
Is the inactive network log.

NETLOGP
Is the primary network log file.

NETLOGS
Is the secondary network log file.

FROM
Identifies the operands that follow as the starting date and time. This operand is optional.

today
When specifying the FROM keyword, `date1` defaults to the current date if not specified. If `time1` is not specified, FROM defaults to the first record. When specifying the TO keyword, `date2` defaults to the current date if not specified. If `time2` is not specified, TO defaults to the last record.

date1
Specifies the starting date of the time range. The format of `date1` is controlled by the setting of the date operands of the DEFAULTS and OVERRIDE commands.

first_record
If you do not specify a starting time, the first record in the log with the specified date is used.

time1
Specifies the starting time of the time range. The format of `time1` is controlled by the setting of the time operands of the DEFAULTS and OVERRIDE commands.
TO
Identifies the operands that follow as the ending date and time. This operand is optional.

date2
Specifies the ending date of the time range. The format of date2 is controlled by
the setting of the date operands of the DEFAULTS and OVERRIDE commands.

last_record
If you do not specify an ending time, the last record in the log with the
specified date is used.

time2
Specifies the ending time of the time range. The format of time2 is controlled
by the setting of the time operands of the DEFAULTS and OVERRIDE
commands.

ddname.
The data definition name (library specification) containing the member to be
browsed. A period (.) must be specified between ddname and membername with
no intervening blanks.

*. All data definition names (library specifications) are to be searched for the
specified member. The asterisk and period must be specified before the
membername with no intervening blanks.

membername
The member name. If ddname was not specified or an asterisk (*) was specified,
the NetView program searches for the member in each of the following
libraries, if allocated, in the following order.

Note: In each library, the NetView program searches first in storage for the
member and then on disk.

1. DSIPARM
2. CNMPNL1
3. DSIPRF
4. DSICLD
5. DSIVTAM
6. BJJPNL1
7. BJJPNL2
8. DSOPEN
9. DSILIST
10. DSIMSG
11. DSASRC
12. DSARPT

When you omit the ddname (library specification), the NetView program first
determines if the specified membername is a command synonym of a
command list (using CMDSYN). If it is, the real command list member name is
browsed using the ddname of DSICLD, and a message indicating the name of
the command list is displayed on the second line of the BROWSE screen.
BROWSE displays command lists from DSICLD whether or not they are
loaded by LOADCL. If you want to view a LOADCL’d CLIST, use WINDOW LIST
CLIST=membername.

XINCL
Specifies that if the membername contains include statements, the member or
members included are displayed. Lines are added to the display indicating
transitions into and out of included members. These lines indicate which data
set the members come from with an indicator of DATASET: \(n \), where \(n \) is the relative number of the data set and can be matched to the data set name with the LISTA command. DATASET: 0 indicates that the member is INSTORE. DATASET: -1 indicates that the member is in an operator data set defined by OVERRIDE. Refer to the NetView online help for more information about LISTA, INSTORE, or OVERRIDE. XINCL is the default.

INCL

Specifies that if the membername contains include statements, the member or members included are displayed. No lines indicating transitions into or out of included members are added to the display.

NOINCL

Specifies that if the membername contains include statements, the statements are displayed and the member or members are not included.

SUBSYM

Specifies that if the membername contains MVS system symbolics, the system symbolics are substituted in the statements before they are displayed. The NetView-supplied &DOMAIN symbolic is also included in the substitution process. Substitution is always performed on the &DOMAIN symbolic unless substitution was disabled when NetView was started. For MVS and user-defined system symbolics, substitution is not performed if substitution was disabled when NetView was started or you did not define an MVS system symbolic on your MVS system. SUBSYM is the default.

NOSUBS

Specifies that if the membername contains MVS system symbolics, the system symbolics are not substituted in the statements before they are displayed.

NOTOAD

Specifies that any "data REXX" output messages are sent to the network log instead of being included in the data being browsed. This is the default.

TOAD

Specifies that any "data REXX" output messages are included in the data being browsed. Use this option for debugging purposes.

NODISKO

Specifies that the INSTORE member will be displayed if it exists. This is the default.

DISKONLY

Specifies that any member loaded by the INSTORE stage should be ignored.

DataSet Name

Specifies any fully qualified dataset name inclosed in single quotes.

LU=luname

Specifies a remote NetView domain name (VTAM application name). This is a required parameter for remote browse and is used with the NETID and OPERID parameters to communicate with the remote NetView program using a RMTCMD autotask association.

OPERID

Specifies the RMTCMD autotask on the remote NetView program used for processing the remote browse request. This is an optional parameter for remote browse and is used with the LU and NETID parameters to communicate with the remote NetView program using a RMTCMD autotask association.
op_id

Specifies the autotask on the remote NetView system for processing the commands.

- Specifies that the op_id defaults to an autotask that already exists for the requesting operator on the remote NetView system. If no autotask exists for the requesting operator, your operator ID is used as the default. If more than one autotask exists for the requesting operator, the first active autotask found processes the command.

NETID

Specifies the network ID. The network ID is an optional parameter for remote browse and is used with the LU and OPERID parameters to communicate with the remote NetView program using a RMTCMD autotask association.

- net_id

 Specifies which network to search for luname.

 - Specifies that the network identifier is the one determined by VTAM based solely on the LU name of the remote node. This is the default.

Usage Notes

You can use the following commands while you are using the BROWSE facility:

- **ALL**
- **BACK**
- **BOTTOM**
- **END**
- **FIND**
- **FORWARD**
- **ICOLOR** (LOG-BROWSE only)
- **LEFT** (LOG-BROWSE only)
- **LOCATE** (LOG-BROWSE only)
- **MTYPE** (LOG-BROWSE only)
- **REPEAT**
- **RETURN**
- **RIGHT** (LOG-BROWSE only)
- **TOP**

The following are some general considerations for using BROWSE:

- The MTYPE command is supported cross-domain if each NetView is higher than V1R2. Also, when browsing an up-level log from a pre-V1R3 NetView, the HDRMTYPE appears at the end of the line.
- For LOG-BROWSE and MEMBER-BROWSE, if the global variables CNMIMLBROWSE and CNMIMMBROWSE contain non-null values, the value is displayed at the bottom of the BROWSE panel. This is useful for displaying the settings of your PF keys. You can set the value of these global variables using the PFKDEF command.

 For more information, refer to the [Tivoli NetView for z/OS Customization Guide](#).
- You can use the OVERRIDE command with the SCROLL keyword to determine whether a SCROLL field is displayed on the BROWSE panel and, if so, to what value the SCROLL field is set.
- To browse a member, the BROWSE command uses a panel called CNMBROWS. This panel must be installed to browse a member. If it is not installed, a return code of 40 and message CNM907I will be displayed.
If you specify a time range for browsing the network log, the first and last records of the specified time range remain the first and last records during the entire browse. Network log updates do not appear until you reissue the BROWSE command.

When waiting for a response for a browse request, the BRUNLOCK setting defined in the DEFAULTS or OVERRIDE command indicates how many seconds to wait before unlocking the operator’s keyboard. This setting does not apply to local member browse. For the first panel of a local network log browse, 5 seconds is used regardless of the BRUNLOCK setting.

An outstanding browse request in progress, as indicated by message DSI360I, can be cancelled by pressing enter alone on the log browse display. The outstanding request is cancelled and your browse display will continue as it was prior to the cancelled request being issued.

The storage needed to browse a file or member varies depending on file or member size. The larger the file or member, the more storage needed. However, browsing the network log does not impact storage requirements.

If both network log files are inactive, specify either NETLOGP or NETLOGS.

Because of the length of the information or the effect of left and right scrolling in a network log line that contains double byte character set (DBCS) data, up to three consecutive dummy characters (periods) can appear at the start and end of the line to correct DBCS information that is incomplete. DBCS characters that are not valid are replaced by double-byte asterisks.

When you use the BROWSE facility, it remains on the NetView component stack that is used with ROLL until the BROWSE facility is ended.

You can cancel the BROWSE command by pressing the ATTN key from a terminal defined to VTAM as a Systems Network Architecture (SNA) resource. ATTN key processing is supported only for SDLC SNA LU Type 2 sessions.

You can suppress records while browsing the network log by using the BLOG command.

You can also use installation exit DSIEX18. Refer to the BLOG command for a description of BLOG and Tivoli NetView for z/OS Customization: Using Assembler for more information about DSIEX18.

Restrictions

The following general restrictions apply to the BROWSE command:

- Using BROWSE from the web browser interface without specifying ddname utilizes a different library search order than described in the membername operand description above. In this case, the NetView program searches for the member in the order displayed by issuing BROWSE !.

- Because CNMBROWS is a VIEW panel, you can customize its color. However, do not move the &var names and do not interchange input attribute characters (tildes) with non-input characters because the results can be unpredictable. The BROWSE panel supports two instances of variables that start in column 1 and have customizable attributes at the end of the previous line (&BCOL and &BDATALINE). However, this function is not supported generally in VIEW. Usually, when the line does not contain an attribute symbol or variable in column 1, the line is displayed in the default color and variable substitution does not occur.

For additional information about the VIEW command, refer to the Tivoli NetView for z/OS Customization Guide.

- You cannot use BROWSE to view the trace log. You can print the network log or the trace log using CNMPRT.
The following restrictions apply to the cross-domain BROWSE command:

- To use cross-domain browse, you must have the ability to run REXX command lists on your NetView system.
- The LU, OPERID, and NETID parameters are used to communicate with the remote NetView program using a RMTCMD autotask association. You must be authorized to establish the corresponding RMTCMD autotask association or the request will be rejected:
 - You must be authorized to issue the RMTCMD command for the autotask association used to complete the remote browse request.
 - The RMTCMD security definitions on the remote NetView program must authorize you for the autotask association used to complete the remote browse request.
 - The RMTCMD autotask in the remote NetView program used to complete the remote browse request must be authorized to browse the remote member or network log or the request will be rejected.
 - A remote browse request can initiate the specified RMTCMD autotask association if it does not already exist. This association is a typical RMTCMD association and will remain active when you exit the browse command.

- Response time for a remote browse request will depend on network delays:
 - When browsing a remote member, the entire member is transferred initially. When the data arrives, all subsequent browse requests such as FIND or scroll are processed locally without interaction with the remote NetView program. The RMTMAXL specification in the DEFAULTS and OVERRIDE commands indicates the maximum number of lines the remote NetView program will transfer. This setting can be used to control inadvertent or excessive data transfer, which can cause LU6.2 traffic delays for RMTCMD activity.
 - When browsing a remote network log, the log browse requests are processed interactively with the remote NetView. Any request which requires reading of the network log dataset will be sent to the remote NetView for processing. This provides the ability to browse remote network logs of any size.

- You can only have one network log browse and one member browse active at one time. Additional requests cause any previous one to complete making the new request active.
- The STATMON important message indicators are not supported for a remote netlog browse request.
- The target NetView for cross-domain BROWSE must be NetView Version 2 Release 4 or later.
- BROWSE uses the full screen capability of the display unless the target NetView is running a NetView release prior to Version 3 and the remote log is the target of the BROWSE command. In this case, only 18 lines of the remote log are retrieved and displayed at a time.

Examples

The format of dates and times specified in the following examples assumes the default setting for date and time formats on the DEFAULTS and OVERRIDE commands.
Example: Browsing the Active Network Log for a Specified Time
To browse the network log (either primary or secondary) that is currently active from 2:40 p.m. on February 5, 1997 to 2:00 a.m. on February 6, 1997, enter:
BROWSE NETLOGA FROM 02/05/97 14:40 TO 02/06/97 2:00

Example: Browsing the Active Network Log
To browse the network log (either primary or secondary) that is currently active, enter:
BROWSE NETLOGA

Example: Browsing the Inactive Network Log
To browse the network log (either primary or secondary) that is currently inactive, enter:
BROWSE NETLOGI

Example: Browsing the Primary Network Log
To browse the primary network log, regardless of whether the file is currently active or inactive, enter:
BROWSE NETLOGP

Example: Browsing a DSICMD Member
To browse a DSICMD member that contains include statements, enter:
BROWSE DSICMD INCL

Example: Browsing the ACT Command List
To browse the ACT command list, enter:
BROWSE ACT

Response
A browse panel describing the ACT command is displayed. Notice the following information about the top line of the screen:
LINE 00000 TO 00017 OF 00528

This information indicates the position of the screen in the member being browsed.
00000
 The TOP OF DATA line
00017
 The last line that is displayed
00528
 The number of lines in the member or file being browsed

If a member of a partitioned data set with secondary extents is edited while the NetView program is operating, BROWSE might not be able to find that member (until the NetView program is recycled).

Example: Browsing the Active Network Log on a Specified LU
To browse the active network log on CNM01, enter:
BROWSE LU=CNM01 NETLOGA

Response
The default RMTCMD autotask will be started (if it is not active) on CNM01 and the full-screen network log will be displayed.
CALC (NCCF; CNME8001)

Syntax

CALC

Purpose of Command

The CALC command list performs calculator functions using the REXX interpreter. It supports both decimal and hexadecimal calculations. The results are displayed in both decimal and hexadecimal (when available).

Restrictions

The following restrictions apply to the CALC command:

- When CALC is invoked, the system is in pause state. To continue, enter GO followed by the input. To exit, enter GO with no input.
- GO HEX enables you to perform calculations in hexadecimal mode, and GO DEC enables you to perform calculations in decimal mode.
- Decimal results that are greater than or equal to 10 billion are displayed in scientific notation. Hexadecimal values from 0–FFFFFFFF can be entered or displayed as a result. Negative hexadecimal results are displayed in decimal notation to 10 places.
- Numbers are listed accurately to 10 places before or after the decimal point.
- Decimal results that are not whole numbers are not converted to hex.
- Hexadecimal results with negative values are displayed with only two leading Fs.
- Verification of number (including decimal points), and operator (including */+-%//,**`) is performed. Hexadecimal numbers with values greater than 4294967295 are also rejected.

Examples

Example: Using Calculator Functions

CALC
CNM309I CALC : CALCULATOR IS NOW ACTIVE.
CNM309I CALC : (DECIMAL MODE) - ENTER "GO" FOLLOWED BY INPUT.
GO 22
CNM309I CALC : 22 = 22 (16 HEX)
CNM309I CALC : (DECIMAL MODE) - ENTER "GO" FOLLOWED BY INPUT.
GO 12 + 56
CNM309I CALC : 12 + 56 = 68 (44 HEX)
CNM309I CALC : (DECIMAL MODE) - ENTER "GO" FOLLOWED BY INPUT.
GO
CNM309I CALC : CALCULATOR ENDING.
CANCMD (NCCF)

Syntax

CANCMD

```
ID=resname
SP=spname
TAG=tag_id
```

Purpose of Command

The CANCMD command cancels any outstanding network product support (NPS) commands, except for CANCMD, DISPCMD, and MDMCNFG.

When a command is canceled, its processing is terminated. However, no action is taken to undo effects of the command, or to reset the state of the device's physical unit. Depending on when the command is entered, the command might or might not have taken effect. You might need to issue the INACT and ACT commands to reset the device's physical unit.

You can cancel a command entered under either your ID or another operator's ID.

Operand Descriptions

- **ID=resname**
 - Specifies the network name of a device.

- **SP=spname**
 - Specifies the network name of a service point.

- **TAG=tag_id**
 - Specifies the unique identifier of the command being canceled. Use DISPCMD to obtain this value.

Restrictions

In some cases, several commands can be issued for a given device, but only one at a time goes to that device. You can cancel an active command to let other commands go to that device. If any MDMCNFG commands are outstanding for a certain device, and you issue the CANCMD command for that device, no commands are cancelled including the MDMCNFG command.

Examples

Example: Canceling Outstanding Commands

To cancel outstanding commands sent to device NY3710, enter:

```
CANCMD ID=NY3710
```
Purpose of Command

The CCDEF command reads a member which defines the PIPE stages that are inserted into the pipeline by the PIPE CORRCMD stage.

Operand Descriptions

QUERY=

Requests a report on the current set of command characteristics.

* When an asterisk (*) is specified or allowed to default, then the group of stages comprising the definition of each command name is collected as a multiline message with BNH086I DEFINING cmdname as the first (label) line. The multiline grouping of related lines is to aid visual grouping of the display. However, if any stage specification is longer than the screen width, then lines are truncated. To see the entire definition, query a specific command.

cmdname

Specifies the command name.

When a command name is specified, CCDEF produces the definition as single line messages. To aid identification, PIPE stages that cause a wait (CORRWAIT) will display W (HDRTYPWT) in the upper-right of the operator’s screen.

MEMBER=

Specifies a ddname from which command characteristics are to be read. DSIPARM is the default.

ddname

Specifies the DDNAME from which to read the member. When **ddname** is not specified, the default is DSIPARM. When specifying **ddname**, a period (.) is used to separate it from the member name. Do not use spaces before or after the period.

The supported DDNAMEs are those which the DSIDKS macro supports. Refer to the BROWSE command in the NetView online help for a list of valid DDNAMEs. Dynamically allocated DDNAMEs are not supported.

member

Specifies the 1–8 character name of the member of the data set concatenation associated with the ddname being used. Parameter synonyms are not supported.
A sample file named DSICCDEF (CNMS1082) is provided with the NetView program. It contains several commands with appropriate timer and termination stages. However, you can customize the file to meet installation requirements.

DELETE=cmdname
Removes a definition for the specified command.

Restrictions
The following restrictions apply to the CCDEF command:

- CCDEF can be issued as often as desired, and the results affect all PIPE CORRCMD stage processing that follow. If a command is redefined, the redefinition supersedes the previous definition.
- The member to be read must be specified as a zero or greater number; each separated from the others by a line of equal signs. Each entry contains:
 - One record containing the command to be defined. Do not enter command synonyms.
 - Zero or greater stage specifications. A stage specification can be continued on multiple lines. Any record ending in a comma is continued to the next record.
- Blank lines are ignored except after continuation.
- It is appropriate to enter PIPE CORRWAIT with a time-out, followed by one or more PIPE TOSTRING or PIPE TAKE FIRST stages. Any stage not required to be a first stage except PIPE INTERPRT can be specified, however the effects of other PIPE stages might seem confusing or unnatural to users of the PIPE CORRCMD stage command.
- In addition to syntax error messages, CCDEF issues messages appropriate to errors reading the member (refer to the PIPE < stage description in the NetView online help) and messages appropriate to incorrect specification of a stage (see individual stage description). These errors are accompanied by an indication of an error in PIPELINE cmdname (DWO362E), where cmdname refers to the command being defined. This informs you that the command was not successfully defined.
 A failure of one command definition does not affect the definition of other commands found in the member.
- When QUERY is specified, the message BNH087I NETVIEW COMMAND CHARACTERISTICS TABLE NOT FOUND indicates that command CCDEF has never successfully processed.

Examples

Example: Loading the CCDEF Table
To load the CCDEF table from the member DSICCDEF associated with the DSIPARM ddname, enter:

CCDEF MEMBER=DSICCDEF

Response
BNH086I DEFINING CANCMOD.
BNH086I DEFINING DISPCMD.
BNH086I DEFINING DISPLAY.
BNH086I DEFINING DSIUSNDM.
BNH086I DEFINING LINKPD.
BNH086I DEFINING MODIFY.
BNH086I DEFINING MVS.
Example: Displaying Timer and Termination Stages for DISPLAY After the Table has been Loaded
To display timer and termination stages for the DISPLAY command after the table has been loaded, enter:

CCDEF QUERY=DISPLAY

Response

BNH086I DEFINING DISPLAY.
CORRWAIT 60
TOSTRING LAST 1.7 /IST314I/ 1.7 /IST093I/ 1.7 /IST191I/ 1.7
/IST061I/ 1.7 /IST039I/ 1.7 /IST453I/ 1.7 /DWO369I/
CCPDR (NCCF)

Syntax

```
CCPDR
```

```
CCPDR resname, {F|L|M|O}, data
```

Purpose of Command

The CCPDR command sends dynamic reconfiguration data to a 3708 Protocol Converter or a 3710 Network Controller.

Operand Descriptions

- `resname`
 Specifies the network name of the 3708 or 3710 to which data is to be sent.
- `F` Indicates that this is the first CCPDR command in a sequence.
- `L` Indicates that this is the last CCPDR command in a sequence.
- `M` Indicates that this is the middle CCPDR command in a sequence.
- `O` Indicates that this is the only CCPDR command in a sequence.
- `data`
 Specifies the data (in hexadecimal) to be sent to the specified device.

Restrictions

You cannot enter the CCPDR command directly from the command facility. This command must be issued from a communications control program (CCP) generated command list, or it is rejected. It also is rejected if it is issued under the primary program operator interface task (PPT).

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful processing of the command. The command sent the request to the device and the device accepted and processed the request successfully.</td>
</tr>
<tr>
<td>4</td>
<td>Error in processing the command. The error occurred in transmitting the request to the device, or the device rejected the request.</td>
</tr>
</tbody>
</table>
CCPLOADF (NCCF)

Syntax

```
CCPLOADF
```

Purpose of Command

The CCPLOADF command signals that a load sequence has completed. The load sequence sends configuration definition data to a 3708 Protocol Converter or a 3710 Network Controller.

Operand Descriptions

```
resname
```

Specifies the network name of the 3708 or 3710 to which data is to be sent.

Restrictions

You cannot enter the CCPLOADF command directly from the command facility. This command must be issued from a communication control program (CCP) generated command list, or it is rejected. It is also rejected if it is issued under the primary program operator interface task (PPT).

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful processing of the command. The command sent the request to the device and the device accepted and sent the request successfully.</td>
</tr>
<tr>
<td>4</td>
<td>Error in processing the command. The error occurred in transmitting the request to the device, or the device rejected the request.</td>
</tr>
</tbody>
</table>
CCPLOADI (NCCF)

Syntax

CCPLOADI

Purpose of Command

The CCPLOADI command signals that a load sequence has started. The load sequence sends configuration definition data to a 3708 Protocol Converter or a 3710 Network Controller.

Operand Descriptions

resname

Specifies the network name of the 3708 or 3710 to which data is to be sent.

Restrictions

You cannot enter the CCPLOADI command directly from the command facility. This command must be issued from a communication control program (CCP) generated command list, or it is rejected. It is also rejected if it is issued under the primary program operator interface task (PPT).

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful processing of the command. The request was sent to the device, and the device accepted and sent the request successfully.</td>
</tr>
<tr>
<td>4</td>
<td>Error in processing the request. The error occurred in transmitting the request to the device, or the device rejected the request.</td>
</tr>
</tbody>
</table>
CCPLOADT (NCCF)

Syntax

```
CCPLOADT
```

```
 CCPOADT resname, data
```

Purpose of Command

The CCPLOADT command sends load text information to a 3708 Protocol Converter or a 3710 Network Controller.

Operand Descriptions

- **resname**
 - Specifies the network name of the 3708 or 3710 to which data is to be sent.

- **data**
 - Specifies the load text (in hexadecimal) to be sent to the device.

Restrictions

You cannot enter the CCPLOADT command directly from the command facility. This command must be issued from a communication control program (CCP) generated command list, or it is rejected. It is also rejected if it is issued under the primary program operator interface task (PPT).

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful processing of the command. The request was sent to the device, and the device accepted and sent the request successfully.</td>
</tr>
<tr>
<td>4</td>
<td>Error in processing the request. The error occurred in transmitting the request to the device, or the device rejected the request.</td>
</tr>
</tbody>
</table>
CDRMS (NCCF; CNME0008)

Syntax

CDRMS

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>A</td>
</tr>
<tr>
<td>INACT</td>
<td>I</td>
</tr>
</tbody>
</table>

Purpose of Command

The CDRMS command list displays cross-domain resource manager (CDRM) major nodes known in your domain.

Operand Descriptions

ACT
Specifies that information is to be displayed about all active, pending, and connectable CDRM minor nodes within each major node.

ACTONLY
Specifies that information is to be displayed about all CDRM minor nodes in an active state within each major node. The display does not include CDRMs in pending or connectable states.

ALL
Specifies that information is to be displayed about all CDRM minor nodes (regardless of their status) within each major node. ALL is the default.

CONCT
Specifies that information is to be displayed about all CDRM minor nodes in a CONCT (connectable) state within each major node.

INACT
Specifies that information is to be displayed about all inactive CDRM minor nodes within each major node.

INACTONLY
Specifies that information is to be displayed about all inactive CDRM minor nodes within each major node. Resources in a RESET state are not included in the display.
PENDING
Specifies that information is to be displayed about all pending CDRM minor nodes within each major node. A pending state is a transient state to or from the fully active state.

RESET
Specifies that information is to be displayed about all CDRM minor nodes in a RESET state within each major node.

passthru
Specifies up to 6 parameters which are appended unchanged to the VTAM DISPLAY command issued by the CDRMS command. No validation for duplicate or conflicting parameters is performed.

Usage Notes
You should consider the following when using the CDRMS command:

• If the status parameter (ALL, ACT, and so on) is omitted, and no passthru parameters are specified, then ALL is the default. However, if passthru parameters are specified and there is no status parameter specified, then NetView does not include a SCOPE= keyword in the generated VTAM DISPLAY command. This enables you to include your own SCOPE= keyword using the passthru parameter.
• The valid values for the status parameter depend on the level of VTAM you are using.

Examples

Example: Displaying All CDRM Major Nodes
To display all the CDRM major nodes for your domain, enter:

CDRMS

Response

If the CDRMS request is successful, the system responds with messages similar to the following:

IST350I DISPLAY TYPE = CDRMS
IST089I XNETCDRM TYPE= CDRM SEGMENT , ACTIV
IST482I NETAHOST NEVAC, SA N/A, EL N/A, NETID=NETA
IST482I NETBHOST ACTIV, SA 075, EL 12, NETID=NETB
IST314I END

Notice that for each active major node, the name, status, subarea number, element address, and the network ID (if one exists) of each subordinate CDRM minor node are listed.
CDRSCS (NCCF; CNME0009)

Syntax

```
CDRSCS
```

Notes:
1. If you do not specify a netid, you must indicate its absence by specifying a comma in its place.
2. If you do not specify a netid, and you want to specify a passthru item, you must use two commas to indicate the absence of netid.

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>A</td>
</tr>
<tr>
<td>INACT</td>
<td>I</td>
</tr>
</tbody>
</table>

Purpose of Command

The CDRSCS command list displays cross-domain resource (CDRSC) major nodes known in your domain.

Operand Descriptions

ACT

Specifies that information is to be displayed about all active, pending, and connectable CDRSC minor nodes within each major node.

ACTONLY

Specifies that information is to be displayed about all CDRSC minor nodes in an active state within each major node. The display does not include CDRMs in pending or connectable states.

ALL

Specifies that information is to be displayed about all CDRSC minor nodes (regardless of their status) within each major node. ALL is the default.

CONCT

Specifies that information is to be displayed about all CDRSC minor nodes in a CONCT (connectable) state within each major node.
INACT
Specifies that information is to be displayed about all inactive CDRSC minor nodes within each major node.

INACTONLY
Specifies that information is to be displayed about all inactive CDRSC minor nodes within each major node. Resources in a RESET state are not included in the display.

PENDING
Specifies that information is to be displayed about all pending CDRSC minor nodes within each major node. A pending state is a transient state to or from the fully active state.

RESET
Specifies that information is to be displayed about all CDRSC minor nodes in a RESET state within each major node.

netid
Displays only those CDRSCs within the indicated network.

passthru
Specifies up to 6 parameters which are appended unchanged to the VTAM DISPLAY command issued by the CDRSCS command. No validation for duplicate or conflicting parameters is performed.

Usage Notes
Consider the following when using the CDRSCS command:

• If the status parameter (ALL, ACT, and so on) is omitted, and no passthru parameters are specified, then ALL is the default. However, if passthru parameters are specified and there is no status parameter specified, then NetView does not include a SCOPE= keyword in the generated VTAM DISPLAY command. This enables you to include the SCOPE= keyword using the passthru parameter.

• The valid values for the status parameter depend on the level of VTAM you are using.

Examples

Example: Displaying all CDRSCS Major Nodes
To display all the CDRSCS major nodes for your domain, enter:

CDRSCS

Response

If the CDRSCS request is successful, the system responds with messages similar to the following:

IST097I DISPLAY ACCEPTED
IST350I DISPLAY TYPE = CDRSCS
IST089I ISTCDRID TYPE= CDRST SEGMENT , ACTIV
IST483I NC100001 ACT/S----Y, CDRM = CDRM10
IST483I L1920 ACT/S----Y, CDRM = CDRM10
IST314I END

Notice that for each active CDRSC major node, the name, status, owning CDRM, and NETID of each subordinate CDRSC minor node are listed.
Note: Certain VTAM message IDs are release dependent.
CHANGFEP (NCCF; CNME7009)

Syntax

```
CHANGFEP
```

```
<table>
<thead>
<tr>
<th>CHANGFEP target_host</th>
<th>backup_host</th>
<th>ALERT</th>
<th>STATUS</th>
</tr>
</thead>
</table>
```

Purpose of Command

The CHANGFEP command list redefines the designated primary focal point for alerts and status, and redefines the designated primary and backup focal points that receive forwarded alerts from a given distributed host.

After the CHANGFEP STATUS command completes successfully, the target host initiates a synchronization series to begin forwarding status to its new focal point. The domain from which the command list is processed becomes the new primary focal point.

Note: Set up for the MSG category is no longer supported by NetView. For migration, message forwarding works as it did in previous releases of NetView.

Operand Descriptions

* target_host
 Specifies the name of the distributed host whose primary focal point host or primary and backup focal point hosts are to be changed.

* backup_host
 Specifies the focal point to which all forwarded messages and alerts are sent when the primary focal point is not available. This operand is optional.

* ALERT
 Indicates a change in the alert focal point. If you do not specify ALERT or STATUS, the default is ALERT and MSG.

 For alerts, the focal point attempts to obtain the entry point using the LUC alert-forwarding protocol. If the entry point being acquired is running NetView and has specified a value for NPDA.ALERTFWD in CNMSTYLE that begins with SNA-MDS, the CHANGFEP command fails as described in message DSI294I.

* STATUS
 Indicates a change in the status focal point. You can issue the STATUS keyword only from a host that has the CNMTAMEL task active. You cannot specify a backup host with this keyword.

Usage Notes

If you do not specify a backup host for messages and alerts, the current backup focal point host setting remains unchanged.
If persistent monitoring is set up between the target and new primary focal points, the session starts upon the arrival of the next message or alert forwarded from the target host.

For additional information about alert, message, and status forwarding, refer to the Tivoli NetView for z/OS Installation: Configuring Additional Components.

Restrictions

The following restrictions apply to the CHANGEFP command:

- If you are issuing the CHANGEFP command list to a target system running the NetView Version 2 Release 2 program or a later release, it is recommended that you use the FOCALPT CHANGE command to redefine the designated primary focal point.
- Command authorization checking is recommended for the CHANGEFP command list. Your system programmer should authorize you to use CHANGEFP.

Examples

Example: Setting the Primary and Backup Focal Points

To set the primary focal point host to CNM01 and the backup focal point host to CNM99, for the target domain CNM02 to receive alerts, the authorized operator in the domain CNM01 issues:

```
CHANGEFP CNM02,CNM99
```

Response

The change before and after the successful CHANGEFP command is as follows:

```
Backup  Primary  Backup  Primary
CNM02    CNM99    CNM02    CNM01
Distributed Host
```

(before command issued) (after command issued)
CHKPT (RODM)

Syntax

From an MVS console:

```
CHKPT
```

```
MODIFY name,CHKPT
```

TERM

From a NetView terminal:

```
CHKPT
```

```
RODM CHKPT
```

TERM

Purpose of Command

The CHKPT command takes a checkpoint of RODM which enables a snapshot of RODM to be saved. At the beginning of taking a checkpoint, all requests are rejected. When the checkpoint is taken, requests can be accepted.

Operand Descriptions

```
name
```

Specifies the RODM MVS job name.

```
CHKPT
```

Specifies that an RODM checkpoint is to be taken.

```
TERM
```

Specifies that RODM is to be ended after the checkpoint completes.

Restrictions

When taking a checkpoint of RODM, ensure that the data sets are kept together with the translation and master window data sets. If you do not keep these data sets together, you might experience problems warm-starting RODM.

Examples

Example: Requesting a RODM Checkpoint

To request a RODM checkpoint, enter:

```
RODM CHKPT
```

Response

You receive a response similar to:

```
EKG1302I EKGXRODM: RODM EKGXRODM IS NOW CHECKPOINTING.
EKG1115I EKGXRODM: THE TRANSLATION WINDOW CHECKPOINT IS COMPLETE.
EKG1303I EKGXRODM: RODM EKGXRODM HAS COMPLETED CHECKPOINTING.
```
Example: Taking a Checkpoint and Ending RODM
To take a checkpoint and end RODM, enter:
RODM CHKPT,TERM

Response

You receive a response similar to:

EKG1302I EKGXRODM: RODM EKGXRODM IS NOW CHECKPOINTING.
EKG1115I EKGXRODM: THE TRANSLATION WINDOW CHECKPOINT IS COMPLETE.
EKG1303I EKGXRODM: RODM EKGXRODM HAS COMPLETED CHECKPOINTING.
EKG1916I EKGXRODM: RODM EKGXRODM TERMINATION IS IN PROGRESS.
EKG1310I EKGXRODM: THE LOG FLUSHING IS COMPLETED.
EKG1917I EKGXRODM: RODM EKGXRODM TERMINATION IS COMPLETE.

IEF404I EKGXRODM - ENDED - TIME=13.57.33
$HASP395 EKGXRODM ENDED
Syntax

CHRON

CHRON

AT=()

AT= (datespec timespec)

AT= (yyyy-mm-dd-hh.mm.ss.micros)

AFTER= (timespec ddd-hh.mm.ss.micros)

EVERY=NONE

EVERY=NONE

EVERY=(EveryOptions)

RECOVERY=IGNORE

RECOVERY=AUTOLGN

RECOVERY=IGNORE

RECOVERY=PURGE

NOSAVE

SAVE

GMT

LOCAL

ROUTE=taskname

ID=idname

NOTIFY=(IGNORE= (taskname))

PURGE=

REFRESH

TEST

DEBUG

REM='any remark string'

COMMAND='string'

EveryOptions:

INTERVAL=()

INTERVAL=(timespec ddd-hh.mm.ss.micros)

Options
REMOVE=MANUALLY

REMAFTER=

datespec
timespec

DD=hh:mm:ss.micros
timespec

DAYSWEEEK=ALL

DAYSWEEEK=all

DAYSWEEEK=(

NOT

1ST
2ND
3RD
4TH
5TH
LAST
LAST-n

DAYSMON=ALL

DAYSMON=all

DAYSMON=(

NOT

LAST
LAST-n

CALENDAR=ALL

CALENDAR=all

CALENDAR=(

NOT

keyn

Options:

MXREPEAT=NOLIMIT

OFF= timespec

FOR= timespec

MXREPEAT=repeatcount
Purpose of Command

The CHRON command enables you to run NetView commands at timed intervals and provides the following capabilities:

- Repeat a command at regular intervals during a portion of the day, for example, once every hour from 8:00 a.m. to 12:00 noon.
- Specify which days of the week a repeating command will or will not execute, for example, the third Tuesday of any month.
- Specify which calendar days a repeating command will or will not execute. Use the DSISCHED calendar file to define which dates are classified as holidays, and define any other classes you prefer.
- Update the DSISCHED calendar file and have the scheduled commands conform to the time changes without removing the timers.
- Schedule commands that execute at a specific time of day on multiple days, which will compensate for daylight savings time and other changes to the system clock, regarding the time difference to Greenwich mean time (GMT).
- Save the command on disk. Like the AFTER, AT, and EVERY commands, CHRON does not save the command by default. You can use RESTORE TIMER to restore the timer manually or automatically when NetView is restarted.
- Schedule a command to a task or the first active task in a groups of tasks.
- Customize recovery and notification options.

The CHRON command provides efficient timed command scheduling by decreasing the amount of code in REXX procedures that are used in determining exception cases and time shifts. CHRON also reduces the number of timer elements by combining criteria that previously required multiple timers or combinations of AT-EVERY commands.

The CHRON EVERY function provides the ability to specify starting times that are earlier than the current time. This is useful for scheduling timed events for multiple days during a shift, and starting the first timer during the shift. This also helps when using CHRON EVERY in a procedure, because the intervals will start with the next one in the sequence.

Note: If AT is specified without EVERY, error message BNH554E is received if the date and time specified for AT is earlier than the current time.

The AUTOLGN option provides a capability for commands to run even if the start time has passed. CHRON commands that run only once, or one time each day, are scheduled immediately after a RESTORE if the start time has passed.

Operand Descriptions

datespec
An NLS-enabled date conversion. If omitted on AT, the command runs within the next 24 hours at the specified timespec. Use the DEFAULTS or OVERRIDE command to change the format of the date.

When specified with EVERY, datespec can be earlier than the current date.

timespec
Use the DEFAULTS or OVERRIDE command to change the format of the time. When specified with INTERVAL, timespec is the local time interval.

When specified with EVERY, timespec can be earlier than the current time.
When specified with FOR, `timespec` is the amount of time, following the time specified with AT, that the command stops repeating. The value must be less than 24 hours.

When specified with AFTER, the command starts `timespec` amount of time after the CHRON command runs.

When specified with AT or OFF, `timespec` is an NLS-enabled time conversion to a local time of day. When `timespec` is specified with AT and begins with an X, or multiple Xs instead of a number, the command is set to begin at the next increment of time. For example, `AT=XX:00:00` starts the command at the beginning of the next hour. Specifying `AT=XX:XX:00 INTERVAL=00:00:10` starts the command as near to 10 seconds as can be resolved by the system, starting with the beginning of the next minute. Specifying `AT=XX:XX:XX` is the equivalent of running the command immediately. Values of X are also valid in `AT=yyyy-mm-dd-hh.mm.ss.micros` specifications.

Special Dates and Times: Programmers can use the format `yyyy-mm-dd-hh.mm.ss.micros` (year, month, day, hours, minutes, seconds, and microseconds) instead of a `(datespec timespec)` combination. This enables program automation without determining the current NLS date and time format.

If `datespec` is not required with `timespec`, you can use the format `hh.mm.ss.micros` (hours, minutes, seconds, and microseconds) to specify the time. This provides automation programmers with a method of specifying time without determining the current NLS time format. The punctuation of `yyyy-mm-dd-hh.mm.ss.micros` and `hh.mm.ss.micros` is consistent with the DB2 time format. You can use this notation for the FOR or OFF options.

When used with AFTER, INTERVAL, or REMAFTER, the `timespec` can be in the form `ddd-hh.mm.ss.micros` to enable intervals to exceed one day. If used, the `ddd` value can be up to three digits and must be 365 days or less, followed by a minus (-) sign.

Table 5 lists the valid abbreviated date and time format for the AT operand:

<table>
<thead>
<tr>
<th>Format</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘yyyy’</td>
<td>‘yyyy-01-01-00.00.00.000000’</td>
</tr>
<tr>
<td>‘XXXX’</td>
<td>‘XXXX-01-01-00.00.00.000000’</td>
</tr>
</tbody>
</table>

Table 5. AT or REMOVE operand date and time abbreviations
<table>
<thead>
<tr>
<th>Format</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>'yyyy-mm'</td>
<td>'yyyy-mm-01-00.00.00.000000'</td>
</tr>
<tr>
<td>'XXXX-XX'</td>
<td>'XXXX-XX-01-00.00.00.000000'</td>
</tr>
<tr>
<td>'yyyy-mm-dd'</td>
<td>'yyyy-mm-dd-00.00.00.000000'</td>
</tr>
<tr>
<td>'XXXX-XX-XX'</td>
<td>'XXXX-XX-XX-00.00.00.000000'</td>
</tr>
<tr>
<td>'yyyy-mm-dd-hh'</td>
<td>'yyyy-mm-dd-hh.00.00.000000'</td>
</tr>
<tr>
<td>'XXXX-XX-XX-XX'</td>
<td>'XXXX-XX-XX-XX.00.00.000000'</td>
</tr>
<tr>
<td>'yyyy-mm-dd-hh:mm'</td>
<td>'yyyy-mm-dd-hh:mm.00.000000'</td>
</tr>
<tr>
<td>'XXXX-XX-XX-XX:mm'</td>
<td>'XXXX-XX-XX-XX:mm.000000'</td>
</tr>
<tr>
<td>'yyyy-mm-dd-hh:mm:ss'</td>
<td>'yyyy-mm-dd-hh:mm:ss.000000'</td>
</tr>
<tr>
<td>'XXXX-XX-XX-XX:mm:ss'</td>
<td>'XXXX-XX-XX-XX:mm:ss.000000'</td>
</tr>
<tr>
<td>'yyyy-mm-dd-hh:mm:ss.m'</td>
<td>'yyyy-mm-dd-hh:mm:ss.m000000'</td>
</tr>
<tr>
<td>'XXXX-XX-XX-XX:mm:ss.m'</td>
<td>'XXXX-XX-XX-XX:mm:ss.m000000'</td>
</tr>
<tr>
<td>'yyyy-mm-dd-hh:mm:ss.mi'</td>
<td>'yyyy-mm-dd-hh:mm:ss.mi0000'</td>
</tr>
<tr>
<td>'XXXX-XX-XX-XX:mm:ss.mi'</td>
<td>'XXXX-XX-XX-XX:mm:ss.mi0000'</td>
</tr>
<tr>
<td>'yyyy-mm-dd-hh:mm:ss.micro'</td>
<td>'yyyy-mm-dd-hh:mm:ss.micro00'</td>
</tr>
<tr>
<td>'XXXX-XX-XX-XX:mm:ss.micro'</td>
<td>'XXXX-XX-XX-XX:mm:ss.micro00'</td>
</tr>
<tr>
<td>'yyyy-mm-dd-hh:mm:ss.micros'</td>
<td>'yyyy-mm-dd-hh:mm:ss.micros00'</td>
</tr>
<tr>
<td>'XXXX-XX-XX-XX:mm:ss.micros'</td>
<td>'XXXX-XX-XX-XX:mm:ss.micros00'</td>
</tr>
<tr>
<td>'hh'</td>
<td>'XXXX-XX-XX-hh.00.00.000000'</td>
</tr>
<tr>
<td>'XX'</td>
<td>'XXXX-XX-XX-XX.00.00.000000'</td>
</tr>
<tr>
<td>'hh:mm'</td>
<td>'XXXX-XX-XX-hh:mm.00.000000'</td>
</tr>
<tr>
<td>'XX:XX'</td>
<td>'XXXX-XX-XX-XX.00.000000'</td>
</tr>
<tr>
<td>'hh:mm:ss'</td>
<td>'XXXX-XX-XX-hh:mm:ss.000000'</td>
</tr>
<tr>
<td>'XX:XX:XX'</td>
<td>'XXXX-XX-XX-XX.000000'</td>
</tr>
<tr>
<td>'hh:mm:ss.m'</td>
<td>'XXXX-XX-XX-hh:mm:ss.m000000'</td>
</tr>
<tr>
<td>'XX:XX:XX:XX'</td>
<td>'XXXX-XX-XX-XX.000000'</td>
</tr>
<tr>
<td>'hh:mm:ss.mic'</td>
<td>'XXXX-XX-XX-hh:mm:ss.mic0000'</td>
</tr>
<tr>
<td>'XX:XX:XX:XX:XX'</td>
<td>'XXXX-XX-XX-XX.000000'</td>
</tr>
<tr>
<td>'hh:mm:ss.micro'</td>
<td>'XXXX-XX-XX-hh:mm:ss.micro00'</td>
</tr>
<tr>
<td>'XX:XX:XX:XX:XX:XX'</td>
<td>'XXXX-XX-XX-XX.000000'</td>
</tr>
<tr>
<td>'hh:mm:ss.micros'</td>
<td>'XXXX-XX-XX-hh:mm:ss.micros00'</td>
</tr>
<tr>
<td>'XX:XX:XX:XX:XX:XX:XX'</td>
<td>'XXXX-XX-XX-XX.000000'</td>
</tr>
</tbody>
</table>
Table 6 lists the valid abbreviated date and time format for the AFTER, INTERVAL, and REMAFTER operands:

Table 6. AFTER, INTERVAL, and REMAFTER operand date and time abbreviations

<table>
<thead>
<tr>
<th>Format</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>’ddd’</td>
<td>’ddd-00.00.00.000000’</td>
</tr>
<tr>
<td>’ddd-hh’</td>
<td>’ddd-hh-00.00.000000’</td>
</tr>
<tr>
<td>’ddd-hh.mm’</td>
<td>’ddd-hh.mm-00.000000’</td>
</tr>
<tr>
<td>’ddd-hh.mm.ss’</td>
<td>’ddd-hh.mm.ss-000000’</td>
</tr>
<tr>
<td>’ddd-hh.mm.ss.m’</td>
<td>’ddd-hh.mm.ss.m-000000’</td>
</tr>
<tr>
<td>’ddd-hh.mm.ss.mi’</td>
<td>’ddd-hh.mm.ss.mi000000’</td>
</tr>
<tr>
<td>’ddd-hh.mm.ss.mic’</td>
<td>’ddd-hh.mm.ss.mic0000’</td>
</tr>
<tr>
<td>’ddd-hh.mm.ss.micro’</td>
<td>’ddd-hh.mm.ss.micro00’</td>
</tr>
<tr>
<td>’ddd-hh.mm.ss.micros’</td>
<td>’ddd-hh.mm.ss.micros00’</td>
</tr>
<tr>
<td>’hh’</td>
<td>’000-hh-00.00.0000000’</td>
</tr>
<tr>
<td>’hh.mm’</td>
<td>’000-hh.mm-00.0000000’</td>
</tr>
<tr>
<td>’hh.mm.ss’</td>
<td>’000-hh.mm.ss-000000’</td>
</tr>
<tr>
<td>’hh.mm.ss.m’</td>
<td>’000-hh.mm.ss.m-000000’</td>
</tr>
<tr>
<td>’hh.mm.ss.mi’</td>
<td>’000-hh.mm.ss.mi000000’</td>
</tr>
<tr>
<td>’hh.mm.ss.micro’</td>
<td>’000-hh.mm.ss.micro000000’</td>
</tr>
<tr>
<td>’hh.mm.ss.micros’</td>
<td>’000-hh.mm.ss.micros000000’</td>
</tr>
</tbody>
</table>

Table 7 lists the abbreviated date and time format allowed for the FOR and OFF operands (must be less than 24 hours):

Table 7. FOR and OFF operand date and time abbreviations

<table>
<thead>
<tr>
<th>Format</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>’hh’</td>
<td>’hh-00.00.000000’</td>
</tr>
<tr>
<td>’hh.mm’</td>
<td>’hh.mm-00.0000000’</td>
</tr>
<tr>
<td>’hh.mm.ss’</td>
<td>’hh.mm.ss-0000000’</td>
</tr>
<tr>
<td>’hh.mm.ss.m’</td>
<td>’hh.mm.ss.m-0000000’</td>
</tr>
<tr>
<td>’hh.mm.ss.mi’</td>
<td>’hh.mm.ss.mi0000000’</td>
</tr>
<tr>
<td>’hh.mm.ss.micro’</td>
<td>’hh.mm.ss.micro0000000’</td>
</tr>
<tr>
<td>’hh.mm.ss.micros’</td>
<td>’hh.mm.ss.micros0000000’</td>
</tr>
</tbody>
</table>

Table 8 on page 161 lists the abbreviated date and time format allowed for interval plus NOW:
Table 8. Interval plus NOW date and time abbreviations

<table>
<thead>
<tr>
<th>Format</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘ddd’</td>
<td>‘ddd-00.00.00.000000’</td>
</tr>
<tr>
<td>‘ddd-hh’</td>
<td>‘ddd-hh.00.00.000000’</td>
</tr>
<tr>
<td>‘ddd-hh.mm’</td>
<td>‘ddd-hh.mm.00.000000’</td>
</tr>
<tr>
<td>‘ddd-hh.mm.ss’</td>
<td>‘ddd-hh.mm.ss.000000’</td>
</tr>
<tr>
<td>‘ddd-hh.mm.ss.m’</td>
<td>‘ddd-hh.mm.ss.m000000’</td>
</tr>
<tr>
<td>‘ddd-hh.mm.ss.mi’</td>
<td>‘ddd-hh.mm.ss.mi0000’</td>
</tr>
<tr>
<td>‘ddd-hh.mm.ss.mic’</td>
<td>‘ddd-hh.mm.ss.mic00’</td>
</tr>
<tr>
<td>‘ddd-hh.mm.ss.micro’</td>
<td>‘ddd-hh.mm.ss.micro0’</td>
</tr>
<tr>
<td>‘hh’</td>
<td>‘000-hh.00.00.000000’</td>
</tr>
<tr>
<td>‘hh.mm’</td>
<td>‘000-hh.mm.00.000000’</td>
</tr>
<tr>
<td>‘hh.mm.ss’</td>
<td>‘000-hh.mm.ss.000000’</td>
</tr>
<tr>
<td>‘hh.mm.ss.mi’</td>
<td>‘000-hh.mm.ss.mi0000’</td>
</tr>
<tr>
<td>‘hh.mm.ss.mic’</td>
<td>‘000-hh.mm.ss.mic00’</td>
</tr>
<tr>
<td>‘hh.mm.ss.micro’</td>
<td>‘000-hh.mm.ss.micro0’</td>
</tr>
<tr>
<td>‘hh.mm.ss.micros’</td>
<td>‘000-hh.mm.ss.micros’</td>
</tr>
</tbody>
</table>

AT

Specifies the day and time the command is to start. If not specified, or if AT=() is specified, the command runs immediately, if eligible. If parentheses are used, the time is assumed to be in NLS format. Otherwise, the programmer format is used. The format of the date and time in NLS format is changed using the DEFAULTS or OVERRIDE command.

When the EVERY parameter is specified, the date and time can be earlier than the current date and time. The command will run on the next regular interval after the current time, with intervals calculated based on the start time. If the EVERY includes an OFF, FOR, or MXREPEAT that specifies a time under 24 hours, the EVERY can start today unless the stopping time has passed.

AFTER

Specifies an interval after which the command runs. AFTER is the equivalent of immediately at timespec plus NOW. The AFTER value is checked to determine whether it matches one of the programmer formats. If it does not, conversion is attempted using NLS format. The format of the date and time in NLS format is changed using the DEFAULTS or OVERRIDE command.

EVERY

Specifies the times the command is to be repeated between the AT/OFF times, and other interval options. The default is NONE.

- **NONE**

 Specifies that the command runs once at the AT or AFTER time.

- **0**

 Specifies that the command runs every day at the AT or AFTER time.
(EveryOptions) Specifies that the command runs at the AT or AFTER time, and at the specified time intervals thereafter. The INTERVAL value is checked to determine whether it matches one of the programmer formats. If it does not, conversion is attempted using NLS format. The format of the date and time in NLS format is changed using the DEFAULTS or OVERRIDE command. If INTERVAL=() is specified, the command runs once each day, subject to the DAYSWEEK, DAYSMONTH, and CALENDAR criteria.

OFF, FOR, or MXREPEAT

Provides different methods of specifying a period less than 24 hours, during which the commands are run. If MXREPEAT=NOLIMIT is specified, the interval is continuous, and the AT or AFTER time has no effect on the timing of repeated commands. Otherwise, the cycle is repeated on the next eligible day at the starting time determined by AT or AFTER. Eligible days are determined by DAYSWEEK, DAYSMON, and CALENDAR. The starting time on each day is subject to local clock adjustments, such as daylight savings, unless the GMT option is used.

If the INTERVAL is greater than, or equal to, 24 hours, MXREPEAT=NOLIMIT must be specified or used as the default. In this case, whether the interval remains constant, and local time changes have no effect on the interval, depends on whether the GMT or LOCAL option is specified or the default is used.

If the starting time is earlier than the current time, but the ending time has not passed, CHRON runs at the next regular interval after the current time.

INTERVAL=() The command runs once each day, subject to the DAYSWEEK, DAYSMONTH, and CALENDAR criteria.

OFF Specifies the time of day the interval is to end. The value must be less than 24 hours and can run into the next day. The timer does not run at, or after, the OFF time. The command first assumes the OFF time is in programmer format. If it does not match one of those formats, an NLS format conversion is attempted. The format of the date and time in NLS format is changed using the DEFAULTS or OVERRIDE command.

FOR Specifies the length of time the interval is to run. The timer does not run at, or after, the AT time of day with the FOR time. The command assumes the FOR time is in programmer format. If it does not match one of those formats, an NLS format conversion is attempted. The format of the date and time in NLS format is changed using the
DEFAULTS or OVERRIDE command. The interval can be anything less than 24 hours, and can run into the next day.

MXREPEAT=repeatcount

The number of times the command is repeated and applies during each AT time each day. The interval timespec multiplied by the repeatcount must be less than 24 hours.

MXREPEAT=NOLIMIT causes the timer to be scheduled at regular intervals, starting from the AT or AFTER time. Each new timer is set to run exactly at INTERVAL amount of time from the previous calculated run time. On subsequent days, the AT or AFTER time is not a factor. NOLIMIT is the default.

REMOVE

Specifies when a timed command is to be deleted, which eliminates scheduling an additional timer for removals. The REMOVE value is checked to determine whether it matches one of the programmer formats. If it does not, conversion is attempted using NLS format. The REMOVE time is the specified time on the specified day. You can use the REMAFTER option instead to specify the length of time following the AT or AFTER time that the CHRON is removed. NetView removes the CHRON earlier than the REMOVE time, if it can determine that the next scheduled event is after the REMOVE time. The format of the date and time in NLS format is changed using the DEFAULTS or OVERRIDE command.

The default is MANUALLY, which specifies that the command is to be retained until deleted with the PURGE command, or if the command is to only run once.

The (datespec timespec) or yyyy-mm-dd-hh.mm.ss.micros specifies the date and time that the command is removed.

REMAFTER

Specifies when a timed command is to be deleted, which eliminates scheduling an additional timer for removals. The REMAFTER value is checked to determine whether it matches one of the programmer formats. If it does not, conversion is attempted using NLS format. NetView removes the CHRON earlier than the computed REMAFTER time, if it can determine that the next scheduled event is after the computed REMAFTER time. The format of the date and time in NLS format is changed using the DEFAULTS or OVERRIDE command.

The dd-hh.mm.ss.micros or timespec specifies when the command is removed following the AT or AFTER time. For example, 001-00.00.00.000000 causes the timer to be removed one day after the AT or EVERY time. REMAFTER removes the CHRON regardless of whether any of the calendar conditions has enabled or prevented the command to run.

DAYSWEEK

The name of the week day. DAYSWEEK affects and is affected by DASYMON and CALENDAR. DAYSWEEK=ALL is the default. Valid values are as follows:

- SUN
- MON
Specifying NOT to omit selected days eliminates a longer list of days to be included. For example, instead of specifying `DAYS=TURE, WED, THU, FRI`, you achieve the same result by specifying `DAYS=(NOT MON, WEEKEND)` and the command would only execute on Tuesdays through Fridays.

You can specify that a command is to run on certain occurrences of that day within the month. For example, `DAYS=MON(1ST, 3RD), FRI(LAST)` causes the command to execute only on the first and third Monday, and the last Friday of the month. Using LAST or LAST-n prevents having to consider the number of a specific weekday within that month. Valid values are as follows:

- In the range 1ST–5TH
- LAST
- In the range LAST-1–LAST-4

```
DAYS=dayofmonthnumber
```

The number of the day within the month. Valid values are:

- In the range 1–31
- ALL
- LAST
- In the range LAST-1–LAST-30
- NOT

ALL is the default. DAYS affects and is affected by DAYS and CALENDAR.

Specifying NOT to omit selected days reduces a longer list of days to be included. For example, instead of specifying `DAYS=2, 4, 5, 6, 7, 8,..., 29, 30`, you achieve the same result by specifying `DAYS=(NOT 1, 3, 31)` and the command is not executed on the first, third, and thirty-first day of the month. Specifying `DAYS=(NOT 1, 3, LAST)` causes the command to not execute on the first, third, and last day of the month. Using LAST or LAST-n prevents having to consider the number of days within that month.

```
CALENDAR
```

A DSIPARM member (DSISCHED) that contains the following:

- An asterisk (*) in column one denotes that the line is a comment.
- A date in columns 1–10 in the form `yyyy-mm-dd`. This member is easier to maintain when the entries (dates or key names) are kept in order.
- A blank in column 11.
- User-defined key names in columns 12–72, separated by blanks. If a date has more key names than can fit on one line, add more statements and repeat the date on each statement. The maximum key name length is 24 characters. Key names that begin with DSI are reserved for use by NetView.
• Use an X to replace the year, month, or day number. For example:
 – XXXX-XX-XX is every day.
 – XXXX-XX-01 is the first of every month.
 – XXXX-02-XX is every day in February.
 – XXXX-02-02 is every February 2, each year.
 – 2001-XX-XX is every day in 2001.
 – 2001-XX-01 is the first of every month in 2001.
 – 2001-03-XX is every day in March in 2001.

CALENDAR affects and is affected by DAYSWEEK and DAYSMON.

Notes:
1. It is easier to maintain DSISCHED if you keep the entries (dates or key names) in order.
2. If the INSTORE stage command was used to update DSISCHED, those updates are accessed by CALENDAR. When you change the disk file, you must rerun INSTORE to reload the file.

keyn

The name of the key as defined in DSISCHED. The command runs on the specified days. If NOT is specified, the command does not run on the specified days. You can enter up to 1000 unique keys in the list. If you exceed this limit, message DSI656I is issued.

RECOVERY

Specifies the required action when the command is scheduled to run and a specified task is not active.

AUTOLGN

Specifies that an autotask is to be started with the specific task name. AUTOLGN cannot be specified with a group of tasks.

WHEN AUTOLGN is used with SAVE, the timer will run when RESTORED, even if the scheduled time has passed when the RESTORE processes. This affects CHRON commands that only run once or one time each day. INTERVAL CHRON commands run at the next regular scheduled time.

IGNORE

Specifies that the command is not to run unless the task is active. This is the default.

PURGE

Specifies that the command is to be removed if the task is not active.

NOSAVE

The command specified with CHRON is not saved to the save database. This is the default.

SAVE

The command specified with CHRON is saved to the save database. When SAVE and RECOVERY=AUTOLGN are both specified, the command runs immediately after a RESTORE is done if the CHRON is scheduled to run only once or one time each day.

LOCAL

Specifies that the AT/OFF times are to be adjusted automatically when daylight saving time changes, or when the MVS time is adjusted by an operator for other reasons. The AT time is
continuously relative to the local time. EVERY calculations are not affected. This is the default unless the following conditions exist:

- When AFTER is specified.
- When the AT time defaults to immediately.

A CHRON command scheduled with LOCAL specified or implied as the default is adjusted when the local time is adjusted, for example when the MVS SET CLOCK command is issued. The AT, AFTER, REMOVE, and shift start and stop times will use the new local time setting.

If an EVERY interval is now running with MXREPEAT=NOLIMIT and the LOCAL option is in effect, the next interval is adjusted to keep the intervals constant with respect to the local time. In this situation, if EVERY is specified to run every minute on the minute, it would still appear to be running on the minute. If the time is changed to an earlier time, the EVERY continues to run on the adjusted schedule. For example, a timer that was running every minute on the minute will continue this in the new local time reference.

If an EVERY specifies a start and stop time and the LOCAL option is in effect, the timer is adjusted and continues running on the local shift schedule if the current local time is within the shift.

GMT

Specifies that the command is to run as if it were on a Greenwich Mean Time schedule, where the GMT times are computed from the local time of day when CHRON runs. CHRON will appear to be running as if the local time reference, when it was entered, is still in effect. This is the default when the following conditions exist:

- When AFTER is specified.
- When the AT time defaults to immediately.

CHRON commands scheduled with the GMT option are not affected by local time changes. When displayed by the LIST TIMER command, the next start time is displayed in the new time, appearing to have changed.

If AFTER is specifying 20 minutes with the GMT option, the timed command will run 20 minutes after the CHRON was entered, regardless of changes to the local time.

If an EVERY is run with the GMT option, the intervals remain in real time and the scheduled times are unaffected by the new local time reference. The start and stop times, when compared to local time, will appear to have changed with respect to the new local time reference.

ROUTE=taskname

The name of a task or a group name. If a group name is specified, the command runs on the first task in the group that is active when the timer expires. This is identical to the ROUTE function of the AT, EVERY, and AFTER commands.

ID=idname

The ID of a timer, as defined for the AFTER, AT, and EVERY
commands. If idname is not specified, NetView generates a unique ID in the form SYSnnnn, where nnnn is a decimal number with leading zeros.

NOTIFY

Specifies that a notification is to be sent to an operator when a command does or does not run. If NOTIFY is not specified, no messages are sent. If a list of operators or list of group names is used, the notification is sent to all active tasks in the list.

Note: In contrast, the ROUTE operand runs the command to the first active task in the list.

The number of operator or group names in each NOTIFY list is limited to 255 for each IGNORE, PURGE, RUN, and REMOVE.

IGNORE

A command did not run because a specified task was not active. The command will resume running when the task is started, but none of the commands from the skipped intervals are run.

PURGE

A command was either purged because the specified task was not active and RECOVERY=PURGE was specified, or the command was purged with the PURGE TIMER command. The timer is removed from the database.

REMOVE

A command was either removed because the REMOVE time was reached, or the command was scheduled to run without an interval time.

RUN

The command was scheduled to run and the task was active.

REFRESH

REFRESH causes the DSISCHED member to be reread. Any pending timers are revised based upon the new definitions. NetView automatically refreshes the calendar settings each day at midnight before any timers are run for the day. Only use REFRESH if you have made changes to DSISCHED that affect timers on the same day. The NetView timer process keeps a list of which calendar keys apply each day and REFRESH updates that list.

COMMAND=’string’

The command to be executed when the timed event occurs. If COMMAND is not specified, the timer is still scheduled but only notification and debugging messages are produced. If COMMAND is specified, the string must be enclosed in apostrophes or single quotation marks, unless the value is only one word. The string cannot contain either of these delimiters within the string. If needed, use two apostrophes together or double quotation marks within the string, as follows:

'Hi there'

'Don't use one apostrophe within a string'

'George said "The double quotation mark is OK" to me'

The first example does not require an apostrophe within the string. The second example requires an apostrophe; two apostrophes together can be used. The third example illustrates that double quotation marks are also valid.
TEST Specifies that the syntax of CHRON is to be verified without running the command. If there are syntax errors or conflicts, error messages are received. If the testing of the syntax completed without errors, message DSI633I is received.

DEBUG Specifying DEBUG generates additional messages that can assist Tivoli Customer Support when CHRON encounters problems. When both DEBUG and TEST are specified, the command is not run.

REM=’any remark string’

Use REM to add your comments to CHRON commands. For example, you can use these comments to keep track of the purpose of each command and to identify which REXX procedure you are using. The comments are included in the LIST TIMER output and are not appended to the command when it runs.

The comments must be enclosed in apostrophes or single quotation marks. For more information, see the description for COMMAND=’string’.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>If message CNM536W is received, an operator or group name is not currently defined to NetView. The command is accepted, but will not run unless the operator ID or group name is defined prior to the time the command is scheduled to run. If message DSI633I is received, TEST was specified and no errors are detected.</td>
</tr>
<tr>
<td>4</td>
<td>No operands were found on the CHRON command.</td>
</tr>
<tr>
<td>8</td>
<td>An odd number of quotes was detected and the command could not be interpreted.</td>
</tr>
<tr>
<td>12</td>
<td>There is an uneven number of left and right parentheses.</td>
</tr>
<tr>
<td>16</td>
<td>A keyword or value was not accepted by security checking.</td>
</tr>
<tr>
<td>20</td>
<td>A keyword or operand has an incorrect length.</td>
</tr>
<tr>
<td>24</td>
<td>A keyword was not recognized. An equal sign (=) might be missing.</td>
</tr>
<tr>
<td>28</td>
<td>A duplicate keyword was found.</td>
</tr>
<tr>
<td>32</td>
<td>A keyword such as AT was used with a mutually exclusive keyword, such as AFTER.</td>
</tr>
<tr>
<td>36</td>
<td>A keyword has an invalid value.</td>
</tr>
<tr>
<td>40</td>
<td>The time specified for AT has already passed.</td>
</tr>
<tr>
<td>80</td>
<td>If message DSI030I, DWO341E, or DWO041E is received, the DSISCHED member could not be read because of an I/O error. If message DWO034E is received, the DSISCHED member could not be found in the DSIPARM data set.</td>
</tr>
</tbody>
</table>
Usage Notes

Consider the following when using the CHRON command:

- Use CHRON to replace combinations of AT-EVERY commands.
- The CHRON command is asynchronous and requires a CORRWAIT stage if used in a PIPE.
- The command runs at the specified AT or AFTER time and then at the intervals specified by EVERY. To replace an EVERY command with a CHRON command, use a CHRON command with AFTER and EVERY values.
- If you omit the AFTER and AT values, the command runs immediately.
- Keywords and values are checked for security.
- Keywords and values can use synonyms defined by command definitions.
- Because an interval timer can span from one day to the next, the timer on either day might not run because of calendar options. For example, intervals before and after midnight might have different calendar rules.
- For a command to run on a particular day, DAYSWEEK, DAYSMON, and CALENDAR must be compatible. For example, if DAYSWEEK=(FRI) CALENDAR=(DSISCHED HOLIDAY) is specified, the timer runs only on holidays that are on Friday.
- Either spaces or commas are valid where the syntax diagram shows required commas for words in lists. Parentheses must be used to indicate lists, to contain datespec and timespec pairs, and when required by the command syntax.
- The use of parentheses in the CHRON command is important and must be used correctly. For example, the EveryOptions are only valid within parentheses in the EVERY=() parameter list. The CHRON command uses a different parser that uses nested parentheses to identify which options are dependant upon other options.
- The INTERVAL has positional syntax for the time value. Additional options can be added in the parentheses, after the interval time.
- Use the order of operands shown in the syntax diagram for items that are not keyword=value pairs. The date, when specified, must precede the time. Single keywords, such as GMT and SAVE, can be placed in any order with the keyword=value pairs, but must not be within any of the sets of parentheses. In general, keyword=value pairs can be in any order, after the positional operands.
- Parameter alias conversion and keyword value are checked for authority for the following:

<table>
<thead>
<tr>
<th>KEYWORD</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td></td>
</tr>
<tr>
<td>AFTER</td>
<td></td>
</tr>
<tr>
<td>EVERY</td>
<td>NONE</td>
</tr>
<tr>
<td>INTERVAL</td>
<td></td>
</tr>
<tr>
<td>RECOVERY</td>
<td>IGNORE, AUTOLGN, PURGE</td>
</tr>
<tr>
<td>ROUTE</td>
<td>taskname</td>
</tr>
<tr>
<td>ID</td>
<td>idname</td>
</tr>
<tr>
<td>NOTIFY</td>
<td>IGNORE, PURGE, REMOVE, RUN</td>
</tr>
<tr>
<td>REFRESH</td>
<td></td>
</tr>
</tbody>
</table>
Examples

Example: Issuing a Command Every Hour for One Day
The following example sends a message to all operators every hour for one day. This command is saved based on the SAVE option when specified. When the REMAFTER time occurs, the command is removed from the save database. If the save database is not active when the CHRON command is issued, messages DWO161 and DWO166 are received. The REMAFTER shown removes the timer one day after the AT time.

CHRON AT=*XXXX-12-25-00.00.00.000000
EVERY=(INTERVAL=(01.00.00.000000)REMAFTER=001-00.00.00.000000)
COMMAND='MSG ALL,HAPPY HOLIDAYS' SAVE

Example: Issuing a Command on Certain Days
The following example issues the LOGTSTAT command once every hour from 8:00 a.m. until 5:00 p.m. on all weekdays except holidays, from now until the last day of the year 2000. The LOGTSTAT command will run on the PPT task. If this CHRON is entered between 8:00 a.m. and 5:00 p.m., LOGTSTAT will run at the next hour. This enables you to specify a shift for following days and have a partial shift run today.

CHRON AT=(08:00:00) EVERY=(INTERVAL=(01:00:00 OFF=17:00:00) REMOVE=(12/31/00 00:00:00) DAYSWEEK=(WEEKDAY) CALENDAR=(NOT HOLIDAY)) COMMAND=LOGTSTAT ROUTE=PPT

REMOVE defines when the CHRON command is no longer needed. Because the CALENDAR function is based on the DSISCHED file, CHRON will conform to the calendar the first time, and on each day, that the command is scheduled to execute.

Example: Refreshing the Calendar File
In the following example, NetView updates the new time changes to the CHRON commands which specified CALENDAR. This ensures that the commands execute on the intended time and day.

CHRON REFRESH

Example: Using RECOVERY
The following example schedules the NEWNEWS command to update a user-written news file every day at 8:00 a.m., even if the task is not active:

CHRON AT=(08:00:00) EVERY=()
ROUTE=AUTONEWS RECOVERY=AUTOLGN
COMMAND='NEWNEWS COMPANY MEETING TODAY AT 10:00'
CLEAR (NCCF)

Syntax

CLEAR

AUTOW=IMMED

Purpose of Command

The CLEAR command clears the screen. You can issue the CLEAR command from the command line or from a command list.

Operand Descriptions

AUTOW

Specifies to override or respect the current AUTOWRAP setting.

The valid operands are:

IMMED

Specifies that pending messages that are not yet displayed are to be deleted and a blank Command Facility screen is to be displayed. If messages were deleted, message DS1593A is displayed in the immediate message area. Messages deleted in this way have already been automated and logged, as appropriate. IMMED is the default.

RESPECT

Specifies that the autowrap value that is already set be recognized. It does, however, cycle normally through all pending output. The last screen of output will also be cleared after the autowrap period is completed or when the ENTER or CLEAR key is pressed.

Restrictions

The following restrictions apply to the CLEAR command:

- If you code more than one CMDMDL statement for MOD=DSICKP in DSICMD, code the TYPE=I statements last.
- If you issue CLEAR under an autotask or the primary program operator interface task (PPT), the CLEAR command will complete with a return code of 0 even though there is no screen to clear.
- Sending the CLEAR command through the EXCMD command is not recommended, because it can produce multiple clear requests at the target task.
- Held messages or reply messages are rewritten to the screen when the CLEAR command has cleared the screen.

Examples

Example: Clearing the Current Screen

To clear the current screen, enter:

CLEAR
CLOSE (NCCF)

Syntax

CLOSE

Purpose of Command

CLOSE ends all NetView activity, including system automation and network control. Messages remaining on held message queues when the NetView program is terminating are sent to the SYSLOG. Autotasks, NNTs, and OSTs might have held message queues.

The decision to end the NetView session implies that you are shutting down a portion of the network or have transferred control to another NetView system, possibly for maintenance or error recovery procedures.

Message DSI802A will appear during termination to allow you to choose additional CLOSE options. Use the system REPLY command to enter CLOSE from the system console.

Choose which option of the CLOSE command to use based on the following guidelines. In Table 9, the options are listed in order of severity of action, with the most severe (abend with a dump) at the bottom of the table.

Table 9. Choosing the CLOSE Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Comments</th>
<th>Possible Abends?</th>
<th>Dump?</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORMAL</td>
<td>Orderly shutdown; no new logons; all tasks must log off.</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>STOP</td>
<td>NetView logs off all tasks.</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>IMMED</td>
<td>NetView logs off all tasks. After one minute, NetView abends tasks.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>ABEND</td>
<td>NetView issues a user abend.</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>DUMP</td>
<td>NetView issues a user abend.</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

The recommended order for shutting down NetView is:

1. If you are willing to wait for all active operators to logoff, issue:

 CLOSE NORMAL

2. If you want the NetView program to attempt to logoff all operators, but not to abend any tasks, issue:

 CLOSE STOP
3. If you want the NetView program to attempt to logoff all operators, and to abend tasks after one minute, issue:
 CLOSE IMMED

4. If you want the NetView program to issue a user abend immediately but not to take a dump, issue:
 CLOSE ABEND

5. If you want the NetView program to issue a user abend immediately and to take a dump, issue:
 CLOSE DUMP

Operand Descriptions

NORMAL

Means that the NetView session is to be terminated in an orderly manner. The NetView system sends a message to tell all active operators that a shutdown will occur after current sessions (including autotasks and RMTCMD autotasks) are inactive. New logons from NetView terminals and new cross-domain NNT logons are not accepted. Logons are accepted for autotasks and RMTCMD autotasks in order to facilitate automation of NetView termination. The sessions that already exist continue until they are logged off. The NetView program restricts operators from using certain commands that would start new NetView sessions. NORMAL is the default.

STOP

Causes the NetView main task to begin shutdown by logging off the active operators, cross domain sessions and autotasks, and then all other tasks, without attempting to abnormally terminate any tasks. This enables NetView to end more quickly than with the NORMAL option, but without abends that might be caused by the IMMED option.

You should attempt to stop the NetView program using CLOSE STOP before using the system CANCEL or FORCE ARM commands.

IMMED

Causes NetView operator station tasks (OSTs), NetView-NetView tasks (NNTs), and all hardcopy, automation, data services, and other optional tasks to end immediately. The NetView program then allows approximately one minute for the tasks to end. Tasks that do not end within one minute are abended by NetView with a system abend of X'EC4', with no dump. The NetView session then ends when all task activity has ended. Provided that the NetView session was not forced by the system operator, the NetView program provides abend recovery for these tasks, including a completion of VSAM I/O that was running at the time of the abend. This does not prevent a partial update to a VSAM file because of a transaction that did not complete as a result of the abend.

ABEND

Causes the NetView main task to end immediately but not to take a dump. The NetView program issues a user abend (code 19) with no dump. This causes abnormal termination of all tasks in NetView, similar to the system CANCEL command.

You should attempt to stop the NetView program using CLOSE STOP before trying CLOSE ABEND.

DUMP

Causes the NetView main task to end immediately and to dump data. The
NetView operators receive no warning messages. You can enter and run this command even while a normal close is still going on.

ARMRSTRT

Causes the NetView program to be ARM restarted if NetView is ARM enabled. ARMRSTRT can be used with CLOSE ABEND and CLOSE DUMP.

If ARMRSTRT is not entered, the NetView program will not be ARM restarted even if it is ARM enabled.

If ARMRSTRT is entered and the NetView program is not ARM enabled, this operand is ignored.

Restrictions

The following restrictions apply to the CLOSE command:

- If CLOSE NORMAL, CLOSE STOP, and CLOSE IMMED fail to stop the NetView session, use REPLY to issue CLOSE ABEND or CLOSE DUMP (both of which cause an immediate abnormal end of the NetView program). Do not re-issue CLOSE NORMAL after CLOSE ABEND or CLOSE DUMP is issued.

 Attention: CLOSE DUMP or CLOSE ABEND can disrupt operations and cause data to be lost. You should try CLOSE IMMED first.

- If you use the CLOSE NORMAL command, every OST and NNT must be logged off before the NetView session can end. If the NetView session does not stop after you have entered the CLOSE command, you can use the system REPLY command to issue the CLOSE command with STOP, IMMED, DUMP, or ABEND options. However, do not issue the CLOSE NORMAL command again.

- If you use the CLOSE IMMED, CLOSE ABEND or CLOSE DUMP command and have an optional task that has an ESTAE coded, that task cannot post any other subtask or issue any macros that post while the CLOSE IMMED, CLOSE ABEND or CLOSE DUMP is processing.

Examples

Example: Ending the NetView Program Normally in MVS

To end the NetView program normally in MVS, enter:

```
R xx,CLOSE
```

Where *xx* is the NetView-generated reply-to number on the underlying operating system console.

Example: Ending the NetView Program from the NetView Console

To end the NetView program, enter the following command on the NetView console:

```
CLOSE NORMAL
```
CLRSTATS (STATMON)

Syntax

CLRSTATS

Purpose of Command

The CLRSTATS command resets the node status analysis statistics to 0. Reset the analysis statistics periodically so that you can better notice when nodes become inactive. The analysis statistics are cumulative.

Examples

Example: Resetting the Node Status Analysis Statistics
To reset the node status analysis statistics to 0, enter:
CLRSTATS

Example: Resetting the Node Status Analysis Statistics at a Specified Time
To reset the node status analysis statistics just before midnight, enter:
AT 23:59,PPT,CLRSTATS

Example: Resetting the Node Status Analysis Statistics over a Period of Time
To reset the node status analysis statistics every 6 hours regardless of whether the operator issuing the command is logged on, enter:
EVERY 6:00,PPT,CLRSTATS
CLSTRS (NCCF; CNME0010)

Syntax

```
CLSTRS
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>A</td>
</tr>
<tr>
<td>INACT</td>
<td>I</td>
</tr>
</tbody>
</table>

Purpose of Command

The CLSTRS command list displays the status of all cluster controllers (type 1 and type 2 PUs) and their respective major nodes.

Operand Descriptions

ACT
Specifies that information is to be displayed about all active, pending, and connectable physical units within each major node.

ACTONLY
Specifies that information is to be displayed about all physical units in an active state within each major node. The display does not include physical units in pending or connectable states.

ALL
Specifies that information is to be displayed about all physical units (regardless of their status) within each major node. ALL is the default.

CONCT
Specifies that information is to be displayed about all physical units in a CONCT (connectable) state within each major node.

INACT
Specifies that information is to be displayed about all inactive physical units within each major node.

INACTONLY
Specifies that information is to be displayed about all inactive physical units within each major node. Resources in a RESET state are not included in the display.
PENDING
Specifies that information is to be displayed about all pending physical units within each major node. A pending state is a transient state to or from the fully active state.

RESET
Specifies that information is to be displayed about all physical units in a RESET state within each major node.

passthru
Specifies up to 6 parameters which are appended unchanged to the VTAM DISPLAY command issued by the CLSTRS command. No validation for duplicate or conflicting parameters is performed.

Usage Notes
You should consider the following when using the CLSTRS command:
- If the status parameter (ALL, ACT, and so on) is omitted, and no passthru parameters are specified, then ALL is the default. However, if passthru parameters are specified and there is no status parameter specified, then NetView does not include a SCOPE= keyword in the generated VTAM DISPLAY command. This enables you to include your own SCOPE= keyword using the passthru parameter.
- The valid values for the status parameter depend on the level of VTAM you are using.

Examples

Example: Displaying Inactive Physical Units
To display all the inactive physical units for your domain, enter:

CLSTRS I

Response

If the CLSTRS request is successful, the system responds with messages similar to the following:

IST097I DISPLAY ACCEPTED
IST350I VTAM DISPLAY - DOMAIN TYPE = CLSTRS
IST089I NCP8F TYPE = PU T4/5 MAJ NODE , ACTIV
IST089I P3271K TYPE = PHYSICAL UNIT , NEVAC
IST089I N456F4A TYPE = PU T4/5 MAJ NODE , ACTIV
IST314I END

Example: Displaying All Physical Units
To display all the physical units for your domain, enter:

CLSTRS

or

CLSTRS ALL

Response

IST350I VTAM DISPLAY - DOMAIN TYPE = CLSTRS
IST089I NCP8F TYPE = PU T4/5 MAJ NODE , ACTIV
IST089I P3271K TYPE = PHYSICAL UNIT , ACTIV
IST089I P6223820 TYPE = PHYSICAL UNIT , ACTIV
IST089I N456F4A TYPE = PU T4/5 MAJ NODE , ACTIV
Purpose of Command

The CMD command enables the operator to queue a single command at a different priority than the user’s default.

Operand Descriptions

- **HIGH**
 Specifies that the included command should be queued to the high-priority message queue of the task issuing the CMD command. The default priority with CMD is the opposite of the normal default. For example, if you issue OVERRIDE CMD=LOW, the default for CMD is HIGH. Command synonyms are accepted.

- **LOW**
 Specifies that the included command should be queued to the low priority message queue of the task issuing the CMD command. The default priority with CMD is the opposite of the normal default. For example, if you were to issue OVERRIDE CMD=HIGH, the default priority for CMD is LOW. Command synonyms are accepted.

- **command**
 Specifies any text. The text, whether it is a valid command or not, is queued for processing. The task event handler issues error messages for commands that are not valid.

Restrictions

Do not include the CMD command as part of an execute-action statement in the NetView automation table.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful processing</td>
</tr>
<tr>
<td>12</td>
<td>Syntax error</td>
</tr>
<tr>
<td>1000</td>
<td>DSIMQS failure</td>
</tr>
</tbody>
</table>

Examples

Example: Suspending a Command List

If you have previously set OVERRIDE CMD=LOW and have a command list in wait state, enter:

CMD LIST ''
Response

The command list is temporarily suspended. LIST " runs, and then the command list resumes its wait. Without CMD, LIST " is queued after the command list and runs after completion of the command list.

Example: Running Two Command Lists in Sequence
If you have previously set DEFAULTS CMD=HIGH and want to run the two command lists XYZ and ABC in sequence, enter:

```
XYZ
CMD LOW ABC
```

Response

Command list ABC runs after completion of command list XYZ.
Purpose of Command

The CMDSERV command receives NetView commands that are passed through the NetView PPI subsystem (PPI). CMDSERV processes the command and returns the results through the PPI to the originating program.

Operand Descriptions

AUTHSNDR

Specifies whether the program sending commands to this NetView command server must be an APF authorized program. Valid choices are Y, YES, N, and NO.

NAME

Specifies the name by which this NetView command server is known on the PPI. The `server_PPI_name` can be any valid unique PPI name on the z/OS system on which the NetView command server is running. The default is DSICMDSV.

Usage Notes

To terminate the CMDSERV command, issue a NetView RESET command.

Restrictions

The following restrictions apply to the CMDSERV command:

- The z/OS system sending the commands through the PPI to CMDSERV must have a valid security product installed and active; otherwise, the NetView command will be rejected as not authorized.
- This command cannot be executed from a virtual OST (VOST).
- This command cannot be used with the ATTACH command.
- This command does not support any commands not allowed under a VOST. Refer to the restrictions on the ATTACH command in the NetView online help for more information.
- This command does not support full screen NetView commands.
- VTAM commands can only be issued from a CMDSERV client using the MVS command. Refer to the NetView online help for information about the MVS command.
- Although CMDSERV can be issued from any NetView command line (except under a VOST), it is recommended that CMDSERV be started by a NetView autotask.
Examples

Example: Issuing NetView Commands from TSO and UNIX®
To issue a NetView command from a TSO or UNIX command line, the PPI must be active and your TSO or UNIX user ID must be defined in your security product and as a NetView user. The NetView user ID must be authorized to issue the NetView commands sent to NetView. To define the user as a NetView operator, do the following:

- If NetView is running with OPERSEC=SAFDEF, the user ID needs to be authorized to the NetView domain identifier in the APPL class of the security product.
- If NetView is running with OPERSEC=SAFCHECK or below, the user ID needs to be defined in DSIOPF.

Refer to the [Tivoli NetView for z/OS Security Reference](#) for more information on defining NetView operators.

In this example, a REXX CLIST named NETVCMD is used to issue the NetView LIST command. NETVCMD is a NetView-supplied sample and can be found in CNMS8029. When the NetView command is issued, `server_name` must be the same as specified on CMDSERV NAME=`server_PPI_name`, or default to DSICMDSV.

To issue the command from TSO, enter:

```
NETVCMD SERVER=`server_name` LIST DEFAULTS
```

To issue the command from UNIX, enter:

```
NETVCMD -S`server_name` LIST DEFAULTS
```

Example: Using the Default Server Name
You do not have to specify a server name if you want to use the default DSICMDSV. The syntax of the command is the same from both TSO and UNIX:

```
NETVCMD LIST DEFAULTS
```

Example: Issuing Multiple NetView Commands from TSO and UNIX
To issue more than one NetView command from TSO, enter:

```
NETVCMD CMDLMTR=/ SERVER=`server_name` LIST DEFAULTS / LIST ''
```

To issue more than one NetView command from UNIX, enter:

```
NETVCMD *LIST DEFAULTS; LIST ''
```
CNVOSI (NCCF; CNME2103)

Syntax

```
CNVOSI
  OSI_object_identifier
  OSI_label
```

Purpose of Command

The CNVOSI command list enables you to convert OSI object identifiers to OSI labels. You can also use this command to convert OSI labels to OSI object identifiers.

Operand Descriptions

- **OSI_object_identifier**
 Specifies the OSI object identifier to be converted into a label.

- **OSI_label**
 Specifies the OSI label to be converted into an OSI object identifier.

Restrictions

The following restrictions apply to the CNVOSI command:

- If this command list is invoked as a command, the information is displayed on the NetView console.
- If this command list is invoked as a REXX function, the information is returned to the invoking program.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful processing from the command line.</td>
</tr>
</tbody>
</table>

Examples

Example: Converting an OSI Object Identifier into a Label
To convert an OSI object identifier of 1.3.18.0.0.1821 to label appnEN, enter:

```
CNVOSI 1.3.18.0.0.1821
```

Response

```
- 1.3.18.0.0.1821 = appnEN (class)
```

Example: Converting an OSI Label into an OSI Object Identifier
To convert an OSI label of operationalState to an OSI object identifier of 2.9.3.2.7.35, enter:

```
CNVOSI operationalState
```

Response

```
- operationalState = 2.9.3.2.7.35 (field)
```
COLLECT (NLDM)

Syntax

COLLECT

```
  COLLECT RTM resname NOLOG
  COLLECT RTM resname LOG
```

Purpose of Command

The COLLECT command gathers response-time data from PUs with the response time monitor (RTM) feature.

Every COLLECT command resets the affected LU counters to 0. Data from COLLECT commands that do not have the LOG option are accumulated and are logged when a COLLECT command with LOG is issued, or when the session ends.

Operand Descriptions

RTM

Collects response time data as measured by the RTM feature of a 3174 or 3274.

resname

Is the name of a link, PU, or terminal LU.

Collects data for all LU terminals in a domain attached to a 3174 or 3274 with the RTM feature.

NOLOG

Does not write collected data to the external log. NOLOG is the default.

LOG

Writes collected data to the external log.

Restrictions

The following restrictions apply to the COLLECT command:

- If you enter this command from a NetView component other than the session monitor, prefix the command with NLDM.

- Session start and end times and data collection times are stored on the VSAM database with times that are local to the owner of that database. For example, suppose the host that owns the primary end point of a session resides in time zone 1 and the host that owns the secondary end point resides in time zone 2. At the end of the session, the session is logged by the host of the primary and secondary end points with their respective local times. If the session lasted from 9:00 to 10:00 in time zone 1 and time zone 2 is three hours earlier than time zone 1, the session is logged in time zone 2 as lasting from 6:00 to 7:00.

- When an operator in time zone 1 views this session on the Session History panel, the times appear as 9:00 to 10:00. Suppose the secondary end point is a terminal attached to a 3174 controller equipped with the RTM feature. When the operator in time zone 1 views the panel NLDM.STIME for this session, the times are listed as 6:00 to 7:00, because the information was retrieved from the host residing in time zone 2.
Examples

Example: Collecting RTM Data
To collect RTM data from all terminals connected to the 3174/3274 whose PU is named LCL3174A, enter:
COLLECT RTM LCL3174A

Example: Collecting Data from All Terminal LUs
To collect data from all terminal LUs in the current domain that are connected to PUs with the RTM feature and to write the data to the external log, enter:
COLLECT RTM * LOG
COMMAND (HELP, NCCF, NLDM, NPDA, STATMON, TARA; CNME1036)

Syntax

```
COMMAND
```

component

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMAND C</td>
<td>C</td>
</tr>
</tbody>
</table>

Purpose of Command

The COMMAND command list displays a menu of all commands that you can use in various NetView components. You can then select a command description panel for any specific command.

Operand Descriptions

- **component**
 - Specifies the name of the component from which you need a list of commands.
 - If the `component` operand is missing and you are using the command facility, hardware monitor, session monitor, status monitor, or the 4700 Support Facility, the default is the component you are currently using; otherwise, all commands are listed.

Examples

Example: Displaying a List of Commands
To display a list of commands for the NetView component you are using, enter:

```
COMMAND
```

Example: Displaying a List of Hardware Monitor Commands
To display a list of hardware monitor commands when you are using a component other than the hardware monitor, enter:

```
COMMAND NPDA
```
Purpose of Command

The CONFIG command notifies the NetView GMFHS that the network, network management gateway (NMG), or domain definitions stored in the RODM data cache are to be changed or have already changed while GMFHS was running.

The keyword immediately following the CONFIG command indicates the type of RODM changes being made and controls the processing steps that the host subsystem makes to react to the changes. Refer to the *Tivoli NetView for z/OS Resource Object Data Manager and GMFHS Programmer’s Guide* for a discussion of which RODM modifications require which type of CONFIG commands.

Prefix the CONFIG commands with the GMFHS command or the MVS MODIFY command. The keyword can be one of the following:

- **DOMAIN**
- **NETWORK**
- **VIEW**

Usage Notes

The CONFIG command is designed to reinitialize the RODM data cache for a domain, a view, or a whole network. Because of the CPU cycles demanded by this operation, it is best to run this command during maintenance or off-shift operation.
CONFIG DOMAIN (GMFHS)

Syntax

CONFIG DOMAIN

Load

Purpose of Command

The CONFIG DOMAIN command requests a dynamic reconfiguration of one or more non-SNA domains. This process involves GMFHS interactions with RODM and with the network management gateways for non-SNA domains. Each non-SNA domain must have a Non_SNA_Domain_Class object in the RODM data cache.

Use the CONFIG DOMAIN command to:
- Set initial status when linking a GMFHS_Managed_Real_Objects_Class object to a Non_SNA_Domain_Class object. You can set the initial status when you add the GMFHS_Managed_Real_Objects_Class object or change which non-SNA domain it belongs to
- Run the RODM load function
- Checkpoint RODM (depending on the settings of the GMFHS initialization member)
- Send the generic Reconfigure command to a domain identified in the CONFIG DOMAIN command

Use the CONFIG DOMAIN command if you want to solicit initial status for resources that you added to a non-SNA domain. Otherwise, the status of that resource might be incorrect when viewed at the NMC workstation. Any views with that resource are updated automatically.

If this non-SNA domain does not solicit the initial status for resources under it through the settings of the DomainCharacteristics in the Non_SNA_Domain_Class object, the use of DisplayStatus command or a DisplayAbnormalStatus command and the use of DOMP010 Presentation Protocol, do not use the CONFIG DOMAIN command. Do not issue a CONFIG DOMAIN command, in this case, because you will lose all current status for the resources in the non-SNA domain, and all of the resources in the domain will change back to their initial status. This is not a problem for DOMP010 and initial status solicitation because the initial status
If you provide the correct status to the resource when you add it to RODM, you do not have to use the CONFIG DOMAIN command. For additional information about initial status solicitation, refer to the Tivoli NetView for z/OS Data Model Reference.

If GMFHS_Managed_Real_Objects_Class objects are linked or unlinked from Non_SNA_Domain_Class objects while the GMFHS is running, and the domain names are not included in a CONFIG DOMAIN command, the status of the resources defined by the GMFHS_Managed_Real_Objects_Class objects as viewed at the NMC workstation might not be correct.

The host subsystem issues a message indicating that the CONFIG DOMAIN command completed successfully, encountered errors, or failed. If you receive a message indicating that the host subsystem encountered errors while processing, use the host subsystem DBServer database print job to print the system error synopsis messages issued during the processing period. Also check the messages issued by RODM to the file or destination identified in the EKGPRINT DD statement of the GMFHS JCL.

Note: The reconfiguration processing start and end times are included in the error messages. Use these times to limit the selection of error synopsis messages when running the DBServer print job.

When you issue the CONFIG DOMAIN command, the GMFHS ends all network management gateway (NMG) communication sessions associated with the non-SNA domains identified in the CONFIG DOMAIN command. The sessions are re-established after all reconfiguration processing is complete.

Operand Descriptions

domain
Identifies the domain or domains to which changes are to be applied. *domain* can be from 1–8 characters in length. If you specify a single domain name, you do not need to enclose *domain* in parentheses. If you specify more than one domain name, enclose the names in parentheses and use commas to separate names. There must be a non-SNA domain object in the RODM data cache for each domain you specify.

LOAD
Specifies whether the RODM load utility is to be invoked to apply changes specified in the RODM load utility input statements. Valid choices are:

NO
The default is LOAD=NO.

YES
The RODM load utility is invoked to apply changes specified in the RODM load utility statements. These statements are read from a data set defined in a statement in the GMFHS job control language (JCL). You can specify the statement to read with the INDD=ddname parameter.

INDD=ddname
Specifies the name of the data definition statement in the GMFHS JCL that
points to the data set in which the changes to be made are described. *ddname* can be from 1 to 8 characters in length. If you do not specify a data set name, the default data set EKGIN3 is used.

Note: You can specify the INDD=*ddname* parameter only if you specify LOAD=YES.

Restrictions

The following restrictions apply to the CONFIG DOMAIN command:

- Use CONFIG NETWORK instead of CONFIG DOMAIN to make changes to NMG_Class, Non_SNA_Domain_Class, or SNA_Domain_Class objects. Domain reconfiguration does not recognize changes to these object types.

Note: The MSG operand is no longer supported on the CONFIG DOMAIN command. Do not specify this option because you are notified automatically if any of the views you are monitoring change.

Examples

Example: Dynamically Reconfiguring a Domain

To dynamically reconfigure a domain named CNM01, enter:

```
GMFHS CONFIG DOMAIN=CNM01
```

Response

You receive a response similar to the following:

```
DUI416I CONFIG COMMAND PROCESSING INITIATED
DUI4049I GMFHS DOMAIN CONFIGURATION INITIALIZED SUCCESSFULLY
```
CONFIG NETWORK (GMFHS)

Syntax

CONFIG NETWORK

GMFHS CONFIG NETWORK Load

Load

,LOAD= NO

,INDD=EKGIN3

,INDD=ddname

Purpose of Command

The CONFIG NETWORK command indicates that the objects defining network management gateways (NMGs), non-SNA domains, or SNA domains are to be changed or have changed.

This command causes the NetView GMFHS to completely re-initialize using the network configuration defined in RODM. During a network reconfiguration, you can change any of the RODM objects used or referenced by the GMFHS.

When you issue the CONFIG NETWORK command, the GMFHS ends all sessions with the graphic data servers and the native network element managers. The GMFHS also ends all processing, discarding any queued service requests, and reinitializes itself. The sessions restart after all configuration processing is complete.

Operand Descriptions

LOAD

Specifies whether the RODM load utility is to be invoked. Valid choices are:

NO

The default is LOAD=NO.

YES

The RODM load utility is invoked to apply changes specified in the RODM load utility statements. These statements are read from a data set defined in a statement in the GMFHS job control language (JCL). You can specify the statement to read with the INDD=ddname parameter.

INDD=ddname

Specifies the name of the data definition statement in the GMFHS JCL that points to the data set in which the changes to be made are described. ddname can be from 1 to 8 characters in length. If you do not specify a data set name, the default data set EKGIN3 is used.
Usage Notes

- The parameters in the DUIGINIT member of the DSIPARM data set are used during re-initialization. If changes are made to DUIGINIT, they are activated only if you issue a CONFIG NETWORK command or restart the GMFHS.

- If you want to take a checkpoint of RODM when using the CONFIG NETWORK command, specify CHECKPOINT=STARTUP in the DUIGINIT member of the DSIPARM data set.

- If GMFHS was started with an overriding domain value on the GMFHS start command, when the CONFIG NETWORK command is issued GMFHS is restarted using the previously used domain rather than the value specified in DUIGINIT or the GMFHS start procedure.

- You can avoid the necessity of using the CONFIG NETWORK command when adding NMGs and non-SNA domains by:
 - Setting the NMGCharacteristics attribute of the NMG to indicate that the NMG was dynamically added
 - Setting the DomainCharacteristics attribute of the non-SNA domain to indicate that the non-SNA domain was dynamically added.

When dynamically adding NMGs and non-SNA domains, you can control whether status setup and resource status solicitation is performed when the addition takes place. For more information about the required steps to dynamically add an NMG or non-SNA domain, refer to the Tivoli NetView for z/OS Resource Object Data Manager and GMFHS Programmer’s Guide.

- The host subsystem issues a message indicating that the CONFIG NETWORK command completed successfully, encountered errors, or failed. If you receive a message indicating that the host subsystem encountered errors while processing, use the host subsystem DBServer database print job to print the system error synopsis messages issued during the processing period. Check the messages issued by RODM to the file or destination identified in the EKGPRINT DD statement of the GMFHS JCL.

- The reconfiguration processing start and end times are included in the error messages. Use these times to limit the selection of error synopsis messages when running the DBServer print job.

Restrictions

The following restrictions apply to the CONFIG NETWORK command:

- You can specify the INDD=ddname parameter only if you specify LOAD=YES.

Examples

Example: Reinitializing GMFHS Using an Updated Network Configuration

To reinitialize the GMFHS using an updated network configuration defined in RODM, enter:

```
GMFHS CONFIG NETWORK
```

Response

You receive a response similar to the following:

```
DUI4016I CONFIG COMMAND PROCESSING INITIATED
DUI4019I NETWORK CONFIGURATION DEFINITION WILL BE REINITIALIZED
DUI4027I GMFHS MAIN TASK INITIALIZATION IS COMPLETE
DUI4003I GMFHS NETWORK CONFIGURATION INITIALIZED SUCCESSFULLY
```
CONFIG VIEW (GMFHS)

Syntax

CONFIG VIEW

GMFHS CONFIG VIEW Load

Load

\[\text{LOAD=NO} \]
\[\text{LOAD=YES, INDD=EKGIN3} \]
\[\text{LOAD=YES, INDD=ddname} \]

Purpose of Command

The CONFIG VIEW command is available for migration purposes only.

This command is no longer required, but can still be used to perform RODM functions. The syntax has been preserved for migration purposes. You will receive the following message when you use the CONFIG VIEW command:

```
DUI3933I  THE CONFIG VIEW COMMAND IS NO LONGER REQUIRED.
          THE RODM LOADER WILL BE RUN IF LOAD=YES IS SPECIFIED.
```

The CONFIG VIEW command is no longer required when RODM views are changed. The RODM loader or user-written methods or applications can be used to add, delete, or change views directly. If LOAD=YES was specified, the RODM loader will be started as specified.

Operand Descriptions

LOAD

Specifies whether the RODM load utility is to be invoked; valid choices are:

NO

The CONFIG VIEW command will have no affect if LOAD=NO is specified.

The default is LOAD=NO.

YES

The RODM load utility is invoked to apply changes specified in the RODM load utility statements. These statements are read from a data set defined in a statement in the GMFHS job control language (JCL). You can specify the statement to read with the INDD=ddname parameter.

INDD=ddname

Specifies the name of the data definition statement in the GMFHS JCL that points to the data set in which the changes to be made are described. ddname can be from 1–8 characters in length. If you do not specify a data set name, the default data set EKGIN3 is used.
Restrictions

The following restrictions apply to the CONFIG VIEW command:

• You can specify the INDD=ddname parameter only if you specify LOAD=YES.
• Do not include any changes that require a CONFIG DOMAIN or a CONFIG NETWORK command in the input to a CONFIG VIEW command.

Note: The MSG operand is no longer supported on the CONFIG VIEW command. Do not specify this option because you will be notified automatically if any of the views you are monitoring changes.
COPY (NLDM, NPDA, TARA, WINDOW)

Syntax

COPY

`COPY

ALL

PAGE

line.count`

Purpose of Command

The COPY command will log a copy of the panel or data being displayed. COPY chooses the log or logs to receive the copy based on the operator’s current DEFAULTS and OVERRIDE settings for NETLOG, HCYLOG, and SYSLOG. A message will be displayed at the operator’s terminal indicating the success or failure of the COPY command.

Operand Descriptions

ALL

Specifies that all the data currently available to the WINDOW is logged. This option is available for WINDOW only.

line.count

Specifies the starting line number and number of lines to be copied. This option is available for WINDOW only.

line

Specifies the first line of data to be copied. Line can be a number or asterisk (*). An asterisk means to start at the current line. The current line is either the line highlighted as a FIND target or the first line visible at the top of the panel. A number indicates the number of lines from the top of the data within the window.

count

Specifies the number of lines to be copied. Count can be a number or asterisk (*). An asterisk means to copy all lines after the starting line.

If **line** is specified without **count** and the preceding period, one line will be copied to the defined log or logs.

PAGE

Specifies that all the data currently visible on the screen is logged. This option is available for WINDOW only.

Examples

Example: Copying the Displayed Panel

To make a copy of the panel you are displaying, enter:

COPY

Response

A copy of the panel is recorded in the defined log or logs.
Example: Copying Data From a WINDOW

To copy the line containing "myTarget" in a WINDOW display, enter:

```
FIND myTarget
COPY *
```

Response

Assuming the FIND is successful, the one line containing "myTarget" is written to the log for commands and responses.

Example: Copying Parts of a WINDOW

To copy all lines on a window containing the results from a D NET,APPLS that contain the characters "TAF", enter:

```
ALL /TAF
COPY
```

Response

A copy of the lines containing "TAF" will be written to the defined log or logs.
COS (NCCF; CNME0045)

Syntax

```
cos
```

Purpose of Command

The COS command list displays information about the class-of-service (COS) table for a particular network or for all networks.

Operand Descriptions

- `puname` Specifies the PU (type 4 or 5), for which the COS table is to be displayed
- `netid` Displays the COS table for the network indicated by `netid`
- `*` Displays the COS tables for all the networks
- `passthru` Specifies up to 6 parameters which are appended unchanged to the VTAM DISPLAY command issued by the COS command. No validation for duplicate or conflicting parameters is performed.

Restrictions

If you omit a positional parameter, you must indicate its absence with a comma.

Examples

Example: Displaying COS Tables
To display all the class-of-service tables for `puname` na7110, enter:
```
COS na7110,*
```

Response

If the COS request is successful, the system responds with messages similar to the following:
```
IST862I NETID=NETA COSTABLE=ISTSDCOS
IST314I END
```
CPTBL (NCCF)

Syntax

```
CPTBL MEMBER=member_name,TEST
```

Purpose of Command

Use the CPTBL command to dynamically replace a generic alert code point table, specifying the name of a member that contains code point definitions. Use this command to verify the syntax of a code point member without activating that member. Refer to the Tivoli NetView for z/OS Customization Guide for more information about the code point tables.

Operand Descriptions

MEMBER=member_name

Is the name of the code point member that is to be tested or activated. The member must be in a BNJPNL1 DD data set as specified in the NetView start procedure.

TEST

Specifies that the NetView program will verify the syntax of the code point table statements but will not activate the table.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The command completed successfully.</td>
</tr>
<tr>
<td>4</td>
<td>The command did not complete successfully. Check the accompanying messages for more information.</td>
</tr>
</tbody>
</table>

Examples

Example: Activating a Member

To activate BNJPNL1 member BNJ92TBL, enter:

```
CPTBL MEMBER=BNJ92TBL
```

Response

If the CPTBL request is successful, the system responds with the following message:

```
DSI633I CPTBL COMMAND SUCCESSFULLY COMPLETED
```

If errors were encountered, the system responds with the following messages:

```
CNM735I THE FOLLOWING ERRORS ENCOUNTERED IN PROCESSING MEMBER BNJ92TBL:
```

```
DSI415I END OF BNJ92TBL ERROR DISPLAY
DSI416I PROCESSING FAILED FOR CPTBL MEMBER=BNJ92TBL COMMAND
```
Example: Testing a Member
To test the syntax of BNJPNL1 member BNJ93TST, enter:
CPTBL MEMBER=BNJ93TST,TEST

Response
If the CPTBL request is successful, the system responds with the following message:
CNM736I TEST OF CODE POINT FILE BNJ93TST WAS SUCCESSFUL
CSCF (NCCF)

Syntax

```
CSCF
```

```cscf
PU=resname
```

```
PURGE ALL
PURGE BEFORE date
time
```

Purpose of Command

The CSCF command invokes the central site control facility and enables you to run online diagnostic tests remotely on 3172 and 3174 devices that support this function. You can enter this command from the command facility or from any other NetView component.

Operand Descriptions

PU=resname

Is the physical unit name of the remote device on which the online diagnostic test is to be run. Span of control checking is performed to determine operator authority to access the resource specified by resname. The level of access must be READ or higher.

OP=(testop,**...)**

Is a single online diagnostic test operand or a list of online diagnostic test operands that specifies the online diagnostic test to be run. When the list format is used, commas separate multiple online diagnostic test operands. The online diagnostic test operand or list of online diagnostic test operands is referred to as the online diagnostic test general format. The online diagnostic test general format is specified exactly as it is specified for a local online diagnostic test. If you specify the OP operand, and the target remote device supports this operand, the online diagnostic test general format acts as a fast path for devices that support this operand.

Note: This operand is not supported by all devices (for example, 3172) that support CSCF.

PURGE ALL

Clears the CSCF VSAM database of all panel templates. If you are not already in CSCF, enter CSCF PURGE ALL.

PURGE BEFORE

Clears the CSCF VSAM database of panel templates that have not been used since the specified date and time, if you specify a time. Each template record in the database is time-stamped to indicate the last date and time it was used.

date

Purges templates that have not been used since the specified date. The format of date is controlled by the setting of the date operands of the DEFAULTS and OVERRIDE commands.
Purges templates that have not been used since the specified date and this time. The format of time is controlled by the setting of the time operands of the DEFAULTS and OVERRIDE commands. time is an optional operand.

Consider the following when using the CSCF command:

- For more information about online diagnostic tests, refer to 3174 Establishment Controller Customer Problem Determination or the 3172 Interconnect Control Program User’s Guide.
- You can use the COPY command to send the current display to the network log and to the hardcopy terminal if one is connected. Before you can use the COPY command, CSCF must be active and a CSCF panel must be displayed.

Examples

Example: Starting an Online Diagnostic Test
To initiate an online diagnostic test for physical unit B8888888, enter:

CSCF PU=B8888888

You enter the online diagnostic test function at the main menu.

Example: Displaying a PU Log
To display the log (online diagnostic test 1) for physical unit B8888888, enter:

CSCF PU=B8888888,OP=/1

For 3174, you enter the online diagnostic test function at the logs menu.

Example: Displaying PU Logged Events
To display logged events for port 3 (online diagnostic test 1,4,3,1) for physical unit B8888888, enter:

CSCF PU=B8888888,OP=(/1,4,3,1)

For 3174, you enter the online diagnostic test function at the log records panel that displays all logged events for port 3.
CTRL (NPDA)

Syntax

```
NPDA CTRL
```

- **resname**: Specifies the symbolic name of the resource.
- **LINK**: Displays controller link test results and resets link test counters.
- **LVL**: Displays release levels of hardware and microcode in hexadecimal. For the CTRL command with the option LVL, the hexadecimal part is the contents of a RECFMS X'05'. Refer to the *Tivoli NetView for z/OS Diagnosis Guide* for a description of a RECFMS X'05'.
- **SEC**: Displays the most recent errors for the specified control unit and resets these counters.

Purpose of Command

The CTRL command solicits and displays controller link test data, hardware or microcode levels, or error data from a specific resource.

Operand Descriptions

- **resname**: Specifies the symbolic name of the resource.
- **LINK**: Displays controller link test results and resets link test counters.
- **LVL**: Displays release levels of hardware and microcode in hexadecimal. For the CTRL command with the option LVL, the hexadecimal part is the contents of a RECFMS X'05'. Refer to the *Tivoli NetView for z/OS Diagnosis Guide* for a description of a RECFMS X'05'.
- **SEC**: Displays the most recent errors for the specified control unit and resets these counters.

Restrictions

The following restrictions apply to the CTRL command:

- The CTRL LINK and CTRL SEC commands are not supported by locally attached 3174s. You receive sense code X'080C' and the command is rejected.
- The CTRL command does not retrieve data from a downstream PU type 4 on an INN link.
- This command solicits link test counts, summary error counters, and release level information from SNA controllers. If you enter an incomplete CTRL command, the hardware monitor prompts you for missing operands. When the hardware monitor prompts you for resource names, anything other than a hardware monitor explicit command or the command facility command is taken as a resource name.

Examples

Example: Viewing the Release Level for an SNA Controller
To view the release level for SNA controller P51E40, enter:

```
CTRL P51E40 LVL
```
Example: Viewing the Link Data for an SNA Controller

To view the link data for SNA controller P51E40, enter:

CTRL P51E40 LINK
CTRL (TARA)

Syntax

```
TARA CTRL
```

```
CTRL ctrlname
```

Purpose of Command

The CTRL command displays a summary of the data and status associated with a specified 3600 or 4700 Controller and its resources.

Operand Descriptions

```
ctrlnames
```

The PU name of the controller.

Examples

Example: Viewing a Summary Display

To view the summary display for controller CTRL01, enter:

```
CTRL CTRL01
```
DATE (NCCF; CNME1003)

Syntax

```plaintext
DATE
```

Purpose of Command

The DATE command list displays the current date and time.

Usage Notes

As shipped with NetView, the format of the date is `mm/dd/yy`, where `mm` is the month, `dd` is the day, and `yy` is the year. The format of the time is `hh:mm`, where `hh` is the hour (00–23) and `mm` is the minutes (00–59). These formats are controlled by the settings of the date and time operands of the DEFAULTS and OVERRIDE commands.
DBAUTO (NCCF; CNME2008)

Syntax

```
DBAUTO
```

Purpose of Command

The DBAUTO command enables you to purge entries from your VSAM database, reorganize the database, switch to a secondary database, or clear the database altogether.

Operand Descriptions

- **NLDM**
 Session Monitor VSAM database.

- **NPDA**
 Hardware Monitor VSAM database. This option purges event, statistic, and GMFALERT records.

- **EZLSTS**
 AON status file. This option invokes the DBMAINT command to perform maintenance for the AON status file.

- **FKVSNBU**
 AON switched network backup (SNBU) status file. This option invokes the DBMAINT command to perform maintenance for the SNBU status file.

- **SAVE**
 Save/Restore VSAM database.

- **TARA**
 Threshold Analysis and Remote Access (4700 Support Facility) VSAM database.

- **CLEAR**
 Erases the contents of the entire VSAM data base. This is done by the RESETDB command. For NLDM, when the CLEAR request completes, NLDM session recording is started. If NLDM session recording was active prior to the CLEAR request, it is restarted when the CLEAR request completes. If NLDM session recording was not active prior to the CLEAR request, it is started when the CLEAR request completes.
PURGE

Enables you to selectively purge entries in your VSAM database. You can purge your VSAM database prior to a specified number of days, automatically. Use the days option to purge the database. After the database entries are purged, the VSAM database is reorganized (see REORG below).

days
The number of days of activity you want to keep in the VSAM database for the PURGE function. This parameter is optional and can only be specified with the PURGE function. This value overrides the common global variables: NLDM PURGE_DAYS, NPDA PURGE_DAYS. The defaults are 2 for NLDM and 5 for NPDA.

REORG

Enables you to reorganize your VSAM database, which claims free space and allows this space to be reused.

SWITCH

Enables you to switch from an active to an inactive VSAM database.

password
Specifies your VSAM database password. The password can be in the range of 1–8 alphanumeric characters. The default is blank.

CYL

Specifies space allocation-type of cylinder. This is the default.

TRK

Specifies space allocation-type of track.

primary_space
Specifies the amount of primary space allocated to temporarily hold the database contents while REORG is running. The default is 50, and the minimum allocation is 1 cylinder or track.

secondary_space
Specifies the amount of secondary space allocated to temporarily hold the database contents while REORG is running. The default is 50, and secondary space allocation is optional.

passthru
When used with EZLSTS or FKVSNBU, specifies parameters which are appended unchanged to the DBMAINT command.

Otherwise, specifies parameters which are appended unchanged to the internal ALLOCATE command which allocates the temporary database used to hold the contents of the VSAM file being reorganized. This ALLOCATE defaults the following parameters if not specified: RECFM(VB) LRECL(8196) BLKSIZE(8200).

Restrictions

The following restrictions apply to the DBAUTO command:

- PURGE can only be used by NLDM and NPDA.
- All keywords are positional. Commas are required as delimiters between each specified keyword. If a keyword is omitted, indicate its absence with a comma. Trailing commas are not required.
- There is no PURGE option for SAVE or TARA.
Examples

Example: Purging Entries
To purge everything in the database except for the last 4 days of entries, enter:
```
DBAUTO NLDM,PURGE,4
```

Example: Reorganizing the Database
To reorganize the database, default the password, and designate 30 cylinders for
the primary database and 20 cylinders for the secondary database, enter:
```
DBAUTO NPDA,REORG,,,CYL,30,20
```
DDOMAIN (NPDA)

Syntax

\[
\text{DDOMAIN}
\]

\[
\text{DDOMAIN} \quad \text{resname}
\]

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDOMAIN</td>
<td>DD</td>
</tr>
</tbody>
</table>

Purpose of Command

The DDOMAIN command displays the network-qualified name of the NetView domain in which you are in session or the session domain in which the specified resource resides.

Operand Descriptions

\[\text{resname}\]

Specifies the symbolic name of the resource.

Restrictions

The following restrictions apply to the DDOMAIN command:

- If you do not specify a name, the hardware monitor presents the name of the domain in which you are currently operating as a result of the SDOMAIN command (session domain) and the name of the domain to which you are actually logged on (host domain).
- To use DDOMAIN \textit{resname}, include a resource routing definition (RRD) statement for the resource in CNMSTYLE for cross-domain resources. Refer to the \textbf{Tivoli NetView for z/OS Administration Reference} for further information about the RRD statement.

Examples

Example: Displaying the Session Domain Identification of a Specified Resource

To display the session domain identification of P51E40, enter:

\[
\text{DDOMAIN P51E40}
\]

Response

The response is similar to:

\[
\text{BNJ232I RESOURCE RESIDES IN DOMAIN CNM02}
\]

Example: Displaying Domain Identification without Specifying a Resource

To display the domain identification of the session domain as the result of the SDOMAIN command and the host domain, enter:
Response

The response is similar to:
BNJ914I SESSION DOMAIN IS *.CNM02, HOST DOMAIN IS NETA.CNM01

Note: Beginning with NetView V3R1, the resource names are shown as network-qualified names.
DEFAULTS (NCCF)

Syntax

DEFAULTS

DtTmDefs:

LONGDATE=DateTmp9
SHORTDAT=DateTmp5
SUPZDATE=NO
YES
LONGTIME=TimeTmp9
SHORTTIME=TimeTmp5
SUPZTIME=NO
YES

DispDefs:

BANNER=string
BEEP=DISABLE
ENABLE
BRUNLOCK=unlocktm
DISPLAY=NO
YES
HOLD=DISABLE
ENABLE
LOCAL
PPREFIX=prefix
SCRFMT=member
STARTCOL=ccc
TAFPREFIX=prefix
TAFORECLN=linesize

Chapter 2. NetView Commands and Command Descriptions 211
LogDefs:

- CNM493I = NO
- YES
- HCYLOG = NO
- YES
- MSGMODID = NO
- YES
- NETLOG = NO
- YES
- SYSLOG = NO
- YES
- LOGTSTAT = YES
- NO

Lu62Defs:

- COSTIME = X'FFFFFFFF'
- cos_time = 86400
- MAXREPLY = maxnumber = 120
- NOREPLY = nrnumber = 120
- RCVREPLY = rcvnumber = 180
- SESINACT = sestime

MonitDefs:
OperDefs:
SecDefs:

- AUTOSEC = BYPASS
- CATAUDIT = ALL
- EMCSPARM = SAF
- IGNRLSUP = *
- LOGSPNCF = NO
- LOGSPNPCP = NO
- LOGSPNVF = NO
- LOGSPNVP = NO
- PRCIOSEC = DISABLE

TcpDefs:

- TCPNAME = tcpaddrspacename

UtilDefs:

- AVLMAX = 0
- AVLSLOW = 0
- MAXCPU = 0
- MAXCSSIR = 0
- MAXIO = 0
- MAXMQIN = 0
- MAXMQOUT = 0
- MAXSTG = 0
- SLOWSTG = 0

Purpose of Command

The DEFAULTS command sets NetView-wide defaults.

You can override some of the DEFAULTS command settings for a specific operator ID using the OVERRIDE command.
You can use the LIST DEFAULTS command to get a list of the current DEFAULTS settings and the number of dumps that have been taken for storage overlay or control block overwrite conditions (DMPTAKEN).

Operand Descriptions

AUTOLOGN
Specifies whether an autotask for an operator should be started by NetView at NMC sign-on time if the operator is not currently logged on to NetView. The valid values are:

- **NO** Indicates that NetView should not start an autotask for NMC operators. NO is the NetView-provided initial value.
- **YES** Indicates that NetView should start an autotask for NMC operators if the operator is not currently logged on to NetView.

AUTOSEC
Specifies whether commands routed to tasks from the NetView automation table should be authority checked using the command authorization table or an SAF security product. The valid values are:

- **CHECK** Specifies that all commands routed from the automation table are authority checked against the target task, unless SEC=BY was specified on the CMDMDL statement. CHECK is the NetView-provided initial value. The commands are checked unless SEC=BY was specified on the CMDMDL statement.
- **BYPASS** Specifies that commands and command lists routed from the NetView automation table, as well as any commands that are embedded in command lists, should not be authority checked, unless SEC=CH was specified on the CMDMDL statement.

Note: This keyword applies to commands, command list names, and command list contents.

Restrict access to commands that could cause interruptions in your enterprise by specifying SEC=CH on the CMDMDL statement. This causes an authorization check to always be made and prevents a task from issuing a command to which it is not authorized, even if the command originated from the automation table and AUTOSEC is set to BYPASS. For more information about AUTOSEC, SEC, and CMDAUTH, refer to the [Tivoli NetView for z/OS Security Reference](#).

AVLMAX= decimal
Specifies a percentage that determines, for any task, at which value the DSIGET macro will return an out of storage return code. In addition, queuing a message to a task that is over its AVLMAX limit will result in the task not active condition, and the message will not be transferred.

The percentage is specified as a decimal number from 0-99. NetView computes the ratio of the amount of storage a task is using compared to the sum of that amount and the amount of storage left in the NetView address space. If the task usage is above the specified limit, the DSIGET rejects the request.
Note: The specified limit enables you to have the tasks that are under the most storage stress fail instead of letting the whole region deplete storage, which might result in all tasks failing. For example, a task using 45 megabytes of storage, will get a storage failure if the amount of free space falls below 5 megabytes, using AVLMAX=90. Specifying a lower value for AVLMAX leaves more of the free address space for tasks that do not overuse storage. Specifying a higher or no limit value for AVLMAX increases the risk for storage failures on all tasks, regardless of whether they are in storage stress.

A value of zero means no limit is in effect, and no slowdown will occur. Specifying the keyword without a value is another way to set no limit. The maximum value allowed is 99.

When NetView is started the AVLMAX default is set to 90. You can revise these policies using the DEFAULTS command in your NetView initial command list.

AVLSLOW= *decimal*

Specifies a percentage that determines, for any task, at which point slowdown measures are used. In addition, queueing a message to a task that is over its AVLSLOW limit will result in that task having the same slowdown measures applied based on how much over the limit the receiving task gets.

A value of zero means no limit is in effect, and no slowdown will occur. Specifying the keyword without a value is another way to set no limit. The maximum value allowed is 99.

When NetView is started the AVLSLOW default is set to 85. You can revise these policies using the DEFAULTS command in your NetView initial command list.

Note: If you increase the value of this limit while a task is being delayed for an existing limit, the task delay is cancelled within approximately one second, and the task continues with the new limit in force.

Slowdown measures when a task exceeds AVLSLOW, all storage requests (using DSIGET) and message queuing to the affected task will have a time delay. The time delay is one microsecond for each byte of storage requested over the SLOWSTG limit value, and quadrupled for each 1% the task is beyond the AVLSLOW value thereafter. This produces a slowdown effect that is proportional to the size of the request as the task use of storage grows.

The initial slowdown rate is equivalent to allow storage to grow at a rate of 1 megabyte per second, in the range 0-1% beyond the limit value. When you lower a AVLSLOW value, you lower the point at which slowdown occurs. For example, SLOWSTG=85 will trigger if the task is using 42.5 MB of storage and there is only 7.5 MB of memory left in the region. Another example, SLOWSTG=80 will trigger if the task is using 40 MB of storage and there is only 10 MB left in the region.

Note: The maximum double value is 2^{10}, hence the doubling action does not increase beyond a 5% range of AVLSLOW.

BANNER= *string*

Specifies up to 24 characters of data that can be displayed on the following panels:
Logon Centered on the right side of the logon panel, replacing the
default phrase Tivoli NetView V5R1

NCCF At the top left of the command facility panel, replacing the
default value NCCF

If more than 24 characters is entered, the data is truncated.

You can specify string as follows:

- As a normal value that does not contain spaces, commas, or equal signs, and
 is not a single asterisk
- As a quoted string that does not contain single quotes
- As a current message to be displayed when a single asterisk is specified. See
 "Examples" on page 236 for more information

Note: When a single asterisk is specified and there is no message to be
displayed, the banner is the default value.

BEEP

Specifies whether the BEEP action is to be taken from the NetView automation
table. The valid values are:

ENABLE Indicates that the BEEP action is taken from the NetView automation table.
 ENABLE is the NetView-provided initial value.

DISABLE Indicates that the BEEP action is not taken from the NetView automation
 table.

BRUNLOCK

Specifies the number of seconds to wait for browse responses before unlocking
the operator's keyboard with message DSI360 indicating the request is in
progress.

Note: This value does not apply to local member browse. For the first panel of
a local network log browse, 5 seconds is used regardless of the
BRUNLOCK setting.

unlocktm

The number of seconds to wait before unlocking the operator's keyboard.
Valid values are in the range of 0–30. The default value is 5.

CATAUDIT

Specifies the default setting for auditing the NetView command authorization
table when used as either the primary command authorization facility or as a
backup for an SAF product. The valid values are:

NONE Specifies that no audit records are written unless explicitly requested by
 the AUDIT keyword on the EXEMPT or PROTECT statements in the active
 command authorization table. NONE is the NetView-provided initial
 value.

FAILURES Specifies that attempts to access protected commands that are blocked
 should be audited, unless overridden by the AUDIT keyword on the
 PROTECT statement in the active command authorization table.
 CATAUDIT=FAILURES does not apply to EXEMPT statements.
ALL
Specifies that all checks made against the command authorization table which yield a match are audited, unless overridden by the AUDIT keyword on the EXEMPT or PROTECT statements in the active command authorization table.

For more information about CATAUDIT, refer to the *Tivoli NetView for z/OS Security Reference*.

CMD
Specifies the global priority for operator commands.
The valid values are:

HIGH
Causes an operator’s commands to preempt previous commands as soon as processing allows. HIGH is the NetView-provided initial value.

LOW
Causes an operator’s regular commands to be queued and processed in order. This is the safest option. This option allows you to be sure that commands (and command lists) that set status affecting subsequent commands are processed in the order you specify.

CNM493I
Specifies whether message CNM493I, which indicates automation table command processing, should be sent to the network log. The valid values are:

YES
Causes message CNM493I to be sent to the network log. YES is the NetView-provided initial value.

NO
Prevents message CNM493I from being sent to the network log.

This message provides a tracking mechanism for automation command lists. You might want to prevent this message from being written to the network log if you have a similar tracking mechanism to help you debug automation problems.

The AUTOCNT command displays the number of times automation table commands are run. If you use the AUTOCNT command, you can further reduce the need for the CNM493I audit trail.

COSTIME=cos_time
Specifies the amount of time, in seconds, for a reply to wait before an outstanding send request through common operations services is considered a failure. The minimum value is 0, which specifies to use the time-out value determined by the RCVREPLY operand. The maximum value is the value assigned to the MAXREPLY operand. X'FFFFFFFF' specifies to use the time-out determined by the MAXREPLY parameter. The first time DSIGDS is started, the default specified in DSICTMOD is used to set the COSTIME value. The COSTIME value, whether default or user modified, is saved across task outages. X'FFFFFFFF' is the NetView-provided initial value.

DISPLAY
Specifies whether all messages are displayed on NetView terminals. The valid values are:
YES
Indicates that all messages are displayed on NetView terminals. YES is the NetView-provided initial value.

NO
Suppresses all messages unless they are identified in the NetView automation table with DISPLAY=NO.

EMCSPARM
Specifies how the extended console attributes are determined when a task obtains an extended console. Extended consoles are obtained when operators or autotasks issue the GETCONID command, or when a task first issues an MVS command. The CNMCSSIR task also obtains an extended multiple console support (EMCS) console. See the MVSPARM.MSGIFAC keyword in CNMSTYLE for determining whether or not extended consoles are in use.

Note: EMCSPARM does not apply when subsystem consoles are in use.
(MVSPARM.MSGIFAC=USESSI in CNMSTYLE)

SAF
The console attributes for the EMCS console are obtained from the OPERPARM segment of the SAF product if the segment exists for the console name, and can be accessed. This is the method by which extended console attributes were obtained in prior versions of NetView.

If the OPERPARM segment exists for the console name and can be accessed, any console attributes that are not specified in the OPERPARM segment are given the MVS default value, which is not necessarily the same as the NetView default value.

Note: For the OPERPARM segment to be accessible, the operator must have READ access to the MVS.MCSOPER.console_name definition in the OPERCMDS class.

If the OPERPARM segment does not exist for the console name, or the segment cannot be accessed, the console attributes are determined as specified for EMCSPARM=NETVIEW.

NETVIEW
The console attributes for the EMCS console are a combination of the values specified in CNMSTYLE and the values specified on the GETCONID command.

For a listing of the NetView default values and for more information about setting EMCS console attributes, refer to the Tivoli NetView for z/OS Security Reference.

EVERYCON
Specifies whether timed commands of type EVERY should continue to be queued even after queuing failures occur. The valid values are:

NO
Indicates that queuing failures cause timed commands to be deleted (they will no longer be queued). NO is the NetView-provided initial value.

YES
Indicates that such commands continue to be queued.

HCYLOG
Specifies whether all messages are written to the hardcopy log if an operator has one active. The valid values are:
YES
Indicates that all messages are written to the hardcopy log. YES is the
NetView-provided initial value.

NO
Indicates that all messages are not written to the hardcopy log.

HOLD
Specifies whether the HOLD action is to be taken from the NetView
automation table and whether queued action messages are rerouted to the
authorized receiver upon logoff. The valid values are:

DISABLE
Indicates that the HOLD action is not taken from the NetView automation
table. In addition, action messages will not be queued for rerouting to the
authorized receiver upon logoff unless OVERRIDE and automation table
settings indicate otherwise.

ENABLE
Indicates that the HOLD action is taken from the NetView automation
table. Queued action messages are rerouted to the authorized receiver
upon logoff unless automation table actions or OVERRIDE settings indicate
otherwise.

LOCAL
Indicates the HOLD action is taken from the NetView automation table.
Queued action messages will not be rerouted to the authorized receiver
upon logoff unless automation table actions or OVERRIDE settings indicate
otherwise.

IGNRLSUP=*|\number
Specifies whether or not to ignore suppression of logging the command when
suppression characters are coded on a specific command.

*
Logs the entire command string.

\number
The value 0 indicates that suppression characters should be honored.
Values 1 — 250 indicate that the first \(n \) parsed tokens (character strings
delimited by blank, comma, period or equal sign) of the command
string should be logged.

\textbf{Note}: Specifying IGNRLSUP=1-250 with PARSE=N for the same
command definition is considered an error.

The command verb is the first parsed token. For example
IGNRLSUP=1 logs only the command verb.

\textbf{Notes}:
1. The IGNRLSUP value is honored only if the command is not suppressed
 for any other reason. For example, if the command is run from a command
 list and &CONTROL is set to ERR, then the command is suppressed.
2. The IGNRLSUP value coded on the ADDCMD command or CMDMDL
 statement takes precedence over any value coded on the DEFAULTS
 command. If IGNRLSUP is not coded on the DEFAULTS or ADDCMD
 commands or the CMDMDL statement for the command, then the
 suppression characters are honored for that command.
3. The IGNRLSUP value is ignored when processing commands in a
 command list.
LOGSPNCF
Specifies whether span of control FAILUREs for requests from VTAM commands are to be logged. The valid values are:

NO
Indicates that no subsequent logging is to occur. NO is the NetView provided initial value.

YES
Indicates data is to be logged.

LOGSPNCP
Specifies whether span of control PASSes for requests from VTAM commands are to be logged. The valid values are:

NO
Indicates that no subsequent logging is to occur. NO is the NetView provided initial value.

YES
Indicates data is to be logged.

LOGSPNVF
Specifies whether span of control FAILUREs for requests from NMC are to be logged. The valid values are:

NO
Indicates that no subsequent logging is to occur. NO is the NetView provided initial value.

YES
Indicates data is to be logged.

LOGSPNVP
Specifies whether span of control PASSes for requests from NMC are to be logged. The valid values are:

NO
Indicates that no subsequent logging is to occur. NO is the NetView provided initial value.

YES
Indicates data is to be logged.

LOGTSTAT
Specifies whether task resource utilization data is logged to the external System Management Facility (SMF) log. The valid values are:

YES
Indicates data is to be logged. Specifying the keyword without a value selects the default, which is YES.

NO
Indicates that no subsequent logging of resource data is to occur.

LONGDATE=DateTmp8
Specifies a template describing the format used for dates when entered or presented in long form. The template can contain up to 8 characters, including delimiters, as follows:

Delimiter
Specifies the character used as a delimiter between components of the date. See "Usage Notes on page 235" for additional information.
DD Specifies a two-digit day of the month.

DDDD Specifies a three-digit day of the year.

MM Specifies a two-digit month of the year.

MMMM Specifies the first three characters of the month in uppercase (JAN, FEB, and so on).

YY Specifies the last two digits of the year.

YYYY Specifies the complete four digits of the year.

The long form date template must specify a complete date including the year and either month and day or day-of-year.

Some valid long form date templates are:

 DD-MM-YY
 DD/MM/YY
 DDMMYY
 MM/DD/YY
 YY.DDD
 YYYY.DDD

LONGTIME=Temp8
Specifies a template describing the format used for times when entered or presented in long form. The template can contain up to 8 characters, including delimiters, as follows:

 Delimiter
 Specifies the character used as a delimiter between components of the
time. See "Usage Notes" on page 235 for additional information.

 HH Specifies the two-digit hours.
 MM Specifies the two-digit minutes.
 SS Specifies the two-digit seconds.

The long form time template must specify a complete time including hours, minutes, and seconds.

Some valid long form time templates are as follows:

 HH:MM:SS
 HHMMSS
 SS:MM:HH

MAXABEND=maxnumber
Specifies the maximum number of times an operator can abend and recover a session. The valid value range for maxnumber is 0–32767. If you do not specify a value for MAXABEND, the default is the value specified on the MAXABEND statement in CNMSTYLE.

If the value of MAXABEND is lower than the number of times an operator has abended, the operator ID is logged off the next time the operator abends.

The MAXABEND count for a task is reset to zero if the task has run for at least one hour since the last abend.

MAXCPU=decimal
Specifies percentage of CPU utilization for the task in percent of a percent.
value of zero indicates no limit has been set and no slowdown will occur. Specifying the keyword without a value is another way to set no limit. The maximum value allowed is 99. When a task exceeds the limit, automatic task slowdown measures are used to bring the task back into the specified range. The task is suspended until enough time passes for the CPU to be within limits.

When NetView is started the MAXCPU default is set to 95% of one CPU for each task. This value is intended to allow tasks to run at high workloads, but not to prevent other tasks from running. You can revise this value by using the DEFAULTS command in your NetView initial command list procedure. In addition, the main task is preset to an OVERRIDE value of 95%, so that changing the default does not affect the main task. You can remove the preset value using the OVERRIDE command.

Note: If you increase the value of this limit while a task is being delayed for an existing limit, the task delay is cancelled within approximately one second, and the task continues with the new limit in force.

MAXCSSIR=0|decimal

Specifies the number of messages queued (messages awaiting a DOM signal) within CNMCSSIR before action is taken. When this threshold is reached, message BNH535A is issued. The value for decimal should be zero (0) or a number equal to or greater than 50. If a value of zero is specified, or if the DEFAULTS command specifies MAXCSSIR with no value, the threshold checking is disabled.

When NetView is started, the MAXCSSIR is set to 1000.

MAXIO=0|decimal

Specifies the number of I/O requests per minute allowed for the task. A value of zero means no limit has been set and no slowdown will occur. Specifying the keyword without a value is another way to set no limit. The maximum value is 999999999 I/Os per minute. When a task exceeds the limit, task slowdown measures are used to bring the task back into the specified range.

Note: If you increase the value of this limit while a task is being delayed for an existing limit, the task delay is cancelled within approximately one second, and the task continues with the new limit in force.

MAXLOGON=maxnumber

Specifies the maximum number of times an operator can enter incorrect logon information before a session terminates. The valid value range for maxnumber is 1–32767. If you do not specify a value for MAXLOGON, the default is the value specified on the MAXLOGON statement in CNMSTYLE.

If the limit of MAXLOGON is lower than the number of failures already incurred by an operator, the logon session is terminated at the next unsuccessful log on attempt.

MSGMODID

Determines whether the module identification information in DSI799I is logged for certain error conditions. The valid values are:

NO

Indicates that the information is not logged for certain error conditions. NO is the NetView-provided initial value.

YES

Indicates that the information is logged for certain error conditions.
MAXMQIN=0 | decimal

Specifies the number of message kilobytes per minute that is allowed to be sent to the task from other tasks. A value of zero means no limit has been set and no slowdown will occur. Specifying the keyword limit basis in effect, an no slowdown will occur. Specifying the keyword without a value is another way to set no limit. The maximum value allowed is 999999999 kilobytes per minute. When a task exceeds the limit, automatic task slowdown measures are used to bring the task back into the specified range. Other tasks that queue messages to the affected task are slowed down until the rate is under control.

Note: If you increase the value of this limit while a task is being delayed for an existing limit, the task delay is cancelled within approximately one second, and the task continues with the new limit in force.

MAXMQOUT=0 | decimal

Specifies the number of message kilobytes per minute allowed for the task to send to another task. A value of zero means no limit has been set and no slowdown will occur. Specifying the keyword without a value is another way to set no limit. The maximum value allowed is 999999999 kilobytes per minute. When a task exceeds the limit, automatic task slowdown measures are used to bring the task back into the specified range. If the task attempts to queue a message to another task, it is slowed down until the rate is under the limit.

Note: If you increase the value of this limit while a task is being delayed for an existing limit, the task delay is cancelled within approximately one second, and the task continues with the new limit in force.

MAXREPLY=maxnumber

Specifies the maximum number of seconds to wait for a reply to a request sent out using the DSI6SNDS macro, the DSIHSNDS macro, the CNMSENDMDU service, or the CNMHSENDMDU service. The valid value range for maxnumber is from 1–31622400 seconds (1 year). If you do not specify a value for MAXREPLY, the default (and the NetView-provided initial value) is 86400 seconds (one day).

The actual number of seconds the NetView program waits is determined by a parameter on the macro or service routine, or by the RCVREPLY default value. MAXREPLY sets an upper boundary on what can be specified by RCVREPLY or passed as input to the send services.

MAXREPLY is the time-out used when you specify -1 as input to the send services (DSI6SNDS or DSIHSNDS macros or CNMSENDMDU or CNMHSENDMDU service routines). The NetView program also uses the MAXREPLY value in determining how long to wait for a reply from a local application to a request received from another LU. Refer to Tivoli NetView for z/OS Customization: Using Assembler and Tivoli NetView for z/OS Customization: Using PL/I for information about the DSI6SNDS and DSIHSNDS macros and Tivoli NetView for z/OS Customization: Using C for information about the CNMSENDMDU and CNMHSENDMDU service routines.

MAXSTG=0 | decimal

Specifies the maximum amount of storage in kilobytes that a task can use. When this storage is reached the DSIGET macro will return an out of storage return code. In addition, queuing a message to a task that is over its MAXSTG limit will result in the task not active condition, and the message will not be transferred. Specifying the keyword without a value is another way to set no limit. The maximum value is 999999 K.
MDCFGTIM=$mdcfgtime
Specifies the amount of time (in seconds) the MDMCNFG application waits for input (the limit of time the message queue can be blocked by MDMCNFG panels). When this limit is reached, the application is ended and message DWO519I is displayed. The valid value range for $mdcfgtime is from 1–3600 seconds. If you do not specify a value for MDCFGTIM, the default (the NetView-provided initial value in the NetView constants module DSICMOD) is 1800 seconds.

MSGTOUT=$msgtonumber
Specifies the time interval that the NetView terminal access facility (TAF) waits before alerting an operator that an incoming message has not completed. When the time interval has passed, TAF displays message DWO310I with the fragment of data that is available. The valid value range for $msgtonumber is from 1–200 seconds. The NetView-provided initial value is 2 seconds.

When NetView is started the MAXSTG default is set to “unlimited” (0). The main task is preset to OVERRIDE to “unlimited” (0), so that using the DEFAULTS command will not affect the main task unless you remove the preset OVERRIDE. You can revise these policies using DEFAULTS and OVERRIDE commands in your NetView initial command list procedure.

NETLOG
Specifies whether all messages are written to the network log. The valid values are:

YES
Indicates that all messages are written to the network log. YES is the NetView-provided initial value.

NO
Indicates that all messages are not written to the network log.

NOREPLY=$nrnumber
Specifies the number of seconds to wait for an MDS error message or a Routing Report before considering the sending of a request-without-reply a success and freeing storage related to the send. The valid value range for $nrnumber is from 1 to the current value specified on the MAXREPLY operand. If you do not specify a value for NOREPLY, the default and the NetView-provided value is 120 seconds.

Remote access to the NetView Bridge also uses NOREPLY in the TRANSND and CNMSNDT commands.

Note: MAXREPLY, RCVREPLY, and NOREPLY are set for every send you issue within the NetView program.

PPIPREFX=$prefix
Specifies a two-character prefix for PPI receiver names, dynamically created by NetView, in the form of aa#nnnnn, where:

aa
Is the value selected, which cannot conflict with other receiver names that might be in use. Initially, NetView selects the last two characters of the domain ID for this value.

nnnnn
Is the value dynamically created by NetView.

PRCIOSEC
Specifies whether read or write security checking is performed on REXX EXECIO commands. The valid values are:
DISABLE
Indicates that security checking is not performed. This is the default.

ENABLE
Indicates that read or write security checking is performed, depending on the function executed by the EXECIO command.

RCVREPLY=rconumber
Specifies the number of seconds to wait for a reply before considering an outstanding send request a failure. This is the timeout value that is used if you do not specify a timeout value or you specify a timeout of zero (0) on the DS16SNDS or DS1HSNDS macro or the CNMSENDMU or CNMHSENDMU service routine.

The valid value range for rconumber is from 1 to the current value specified on the MAXREPLY operand. If you do not specify a value for RCVREPLY, the default and the NetView-provided value is 120 seconds.

REACQPRI
Specifies the time interval that the NetView program waits until it tries to reacquire its primary focal point. This operand affects only future attempts to reacquire the primary focal point. It does not affect any waits that are currently outstanding. The time interval being used for the outstanding wait is not reset.

REACQPRI is also the time interval that the NetView program waits until it tries to acquire its backup focal point if the first attempt was not successful.

The valid values are:

rreacqnumber
Specifies the number of seconds for the NetView program to wait before it tries to reacquire its primary focal point. The valid value range is from 5 to 86400 seconds (1 day). If you do not specify a value for REACQPRI, the default value (and the NetView-provided initial value) is 600 seconds (10 minutes).

NO
Specifies that the NetView program does not try to automatically reacquire the primary focal point.

Note: Changes made using the DEFAULTS REACQPRI command do not necessarily take place immediately. If a timer has already been set to try to reacquire the primary focal point, the NetView program tries when that timer goes off. After that, the NetView program either does not set the timer (if you specified NO), or sets the timer with the new value that you entered.

REXXENV
Specifies the number of active and inactive, but initialized, REXX environments to be retained for each operator.

The valid values are:

rexenvnumber
Specifies the number of REXX environments. The valid value range is 0–250 environments. If you do not specify a value for REXXENV, the default is 3 environments. If you set REXXENV to a value greater than the current number of environments, storage is acquired only when a new environment is needed. If you set REXXENV to a value lower than the
current number of environments, storage for the excess environments is not freed until a REXX command list uses one of the environments and completes.

REXXSLMT
Specifies the amount of storage, in 1 K increments, that a REXX environment is allowed to accumulate before being terminated after its current use is completed. The default value is 250.

UNLIMITD
Indicates that there are no cumulative REXX environment storage restrictions.

\[slmtnumber \]
Indicates the valid value range, which is a number in the range of 0–10000.

REXXSTOR
Specifies the amount of storage, in 1 K increments, to be acquired by REXX environment initialization processing.

DEFAULT
NetView is to specify that TSO/E REXX is to use the TSO/E REXX default. This is the default.

\[stornumber \]
Indicates the valid numeric values, which are in the range of 0–250. TSO/E recommends 12 K for each nesting level of REXX command lists.

REXXSTRF
Specifies whether the NetView operator can run REXX command lists that use the REXX STORAGE function.

ENABLE
Indicates that the NetView operator can run REXX command lists that use the REXX STORAGE function.

DISABLE
Indicates that the NetView operator cannot run REXX command lists that use the REXX STORAGE function. DISABLE is the default.

Note: The DEFAULTS REXXSTRF command is effective the next time a REXX environment is initialized, which is a function of the current REXXENV value and the number of active REXX command lists. Thus, it is never effective in the same command list invocation from which it is issued.

RMTMAXL
Specifies the maximum number of lines transferred for a cross-domain member browse request. If the remote member contains more than the maximum number of lines, the BROWSE command continues with the permitted number of lines and message CNM206I is issued. The BROWSE command uses the RMTMAXL setting of the operator issuing the cross-domain browse request. A large value for RMTMAXL will allow a cross-domain member browse request to return large amounts of data and can cause delays with other RMTCMD LU6.2 communication.

DEFAULT
Indicates the NetView-supplied value of 2500 is used.

\[rmtlines \]
Indicates the maximum number of lines the remote NetView program will transfer when a cross-domain member browse request is processed. The valid value range for \(rmtlines \) is 1–1000000.
Note: The RMTMAXL value does not apply to cross-domain netlog browse which can be used to browse network logs of unlimited size.

SCRFMT
Specifies that the screen format changes from the preset values or the current values.

* Indicates a reserved notation that resets the command facility screen format definitions to the NetView preset values.

member
Indicates a member of DSIPARM containing command facility screen format definitions.

Refer to the [Tivoli NetView for z/OS Administration Reference](#) for more information.

SELFISH
Specifies that tasks in this NetView (including PPT) might or might not be shared by other operators to process RMTCMDs or Web Browser functions.

NO
Specifies that this NetView allows sharing for RMTCMD and Web Browser functions. NO is the NetView-provided initial value.

YES
Specifying YES disallows task sharing by RMTCMDs and the Web Browser (except for Web Browser requests to autotasks started by the Web Browser) for this NetView. Autotasks that are started by RMTCMD processing will discontinue processing further RMTCMD commands if an operator logs on to the task by using the TAKEOVER=YES option.

SENDMSG
Maintains a list of values that determine whether the message that invokes an ORCONV command from the NetView automation table is routed to an operator.

The RODM field specified by the MSGFIELD keyword of the ORCONV command is queried and compared to the list maintained by DEFAULTS SENDMSG. If the value queried equals one of the values in the DEFAULTS SENDMSG list, the message is routed to the operators specified in the MSGPARM keyword of the ORCONV command. Refer to [Tivoli NetView for z/OS Automation Guide](#) for more information about the ORCONV command.

value
Is an integer from 0–255.

ADD
Specifies that the numbers passed in the SENDMSG operand are to be added to the list. ADD is the default.

DELETE
Specifies that the numbers passed in the SENDMSG operand are to be deleted from the list.

SESINACT=sestime
Controls the number of seconds that the NetView program maintains a conversation with a partner LU after the conversation has become idle. Specifically these conversations are for sending data through the high performance transport. The valid value range for `sestime` is from 1–99999999.
For this keyword, 0 is ignored and does not change the current setting. If you do not specify a value for SESINACT, the default (and the NetView-provided initial value) is 180 seconds.

The interval you specify is actually half the interval that the conversation stays active. The NetView system waits an equal interval to give applications another chance to send data.

Note: This keyword applies only to nonpersistent conversations. Nonpersistent conversations are controlled by the setting of the PERSIST keyword on the DSTINIT statement for the high performance transport task, or by the PARTNER statement for particular LUs.

SHORTDAT=DateTmp5

Specifies a template describing the format used for dates when entered or presented in short form. The template can contain up to 5 characters, including delimiters, as follows:

- **Delimiter**
 Specifies the character used as a delimiter between components of the date. See [Usage Notes](#) on page [233] for additional information.
- **DD**
 Specifies a 2-digit day of the month.
- **DDD**
 Specifies a 3-digit day of the year.
- **MM**
 Specifies a 2-digit month of the year.
- **MMM**
 Specifies the first three characters of the month in uppercase (JAN, FEB, and so on).
- **YY**
 Specifies the last two digits of the year.

The short form date template must specify a date including either day and month or day-of-year.

Some valid short form date templates are:
- DD-MM
- DDD
- DDMM
- MM/DD
- MMMDD
- YYDDD

SHORTTIM=TimeTmp5

Specifies a template describing the format used for times when entered or presented in short form. The template can contain up to 5 characters, including delimiters, as follows:

- **Delimiter**
 Specifies the character used as a delimiter between components of the date. See [Usage Notes](#) on page [233] for additional information.
- **HH**
 Specifies the 2-digit hour.
- **MM**
 Specifies the 2-digit minutes.

The short form date template must include hours and minutes.

Some valid short form time templates are:
SLOWSTG=0 \textit{decimal}
Specifies the maximum amount of storage in kilobytes that a task can use at which value slowdown measures are used. In addition, queuing a message to a task that is over its SLOWSTG limit will result in that task having the same slowdown measures applied based on how much over the limit the receiving task gets. A value of zero means no limit has been set and no slowdown will occur. Specifying the keyword without a value is another way to set no limit. The maximum value allowed is 999999K.

When NetView is started the MAXSTG default is set to “unlimited” (0). The main task is preset to OVERRIDE to “unlimited” (0), so that using the DEFAULTS command will not affect the main task unless you remove the preset OVERRIDE. You can revise these policies using DEFAULTS and OVERRIDE commands in your NetView initial command list procedure.

Note: If you increase the value of this limit while a task is being delayed for an existing limit, the task delay is cancelled within approximately one second, and the task continues with the new limit in force.

When a task exceeds SLOWSTG, all storage requests (using DSIGET) and message queueing to the affected task will have a time delay. The time delay is one microsecond for each byte of storage requested over the SLOWSTG limit value up to 110% of the limit, and doubled for each 10% over the SLOWSTG value thereafter. This will produce a slowdown effect that is proportional to the size of the request.

The initial slowdown rate is equivalent to allow storage to grow at a rate of 1 MB per second, in the range 100-110% of the limit value. When you lower a SLOWSTG value, you lower both the point at which slowdown occurs, and the amount of growth before the delay time is doubled. This enables you to tailor the exponential curve to fit the application. For example, SLOWSTG=100 will trigger at 100 K bytes limit value and double every 10 K bytes. In another example, SLOWSTG=500 will trigger at 500 KB limit value and double every 50 KB.

Note: The maximum doubled value is 2 raised to the 30th power.

STARTCOL=\textit{ccc}
Specifies the starting column displayed when browsing the network log. The column indicator in the third line of the network log browse display can be used to determine column numbers. The NetView-provided initial value is 17.

\textit{ccc} Specifies the starting column used when browsing the network log. The valid range is 1–178.

STORDUMP=\textit{maxnumber}
Specifies the maximum number of times a storage dump should be taken if storage overlay or control block overwrite is detected. The valid range is 0–2147483647. The default value is 2. To prevent any dumps from being taken for storage overlay or control block overwrite conditions, set STORDUMP to zero (0).

STRTSERV
Specifies whether to start TSO and UNIX servers as submitted batch jobs or
started tasks. STRTSERV with no value causes the NetView START TSOSERV and START UNIXSERV commands to start the servers as submitted batch jobs. STRTSERV has the following values:

SBMTJOB
Causes the NetView START TSOSERV and START UNIXSERV commands to start the servers as submitted batch jobs. This is the default.

STRTPROC
Causes the NetView START TSOSERV and START UNIXSERV commands to start the servers as started tasks.

SUPZDATE
Specifies whether leading zeros are to be suppressed when presenting dates. This applies only to the entire date string and not to each element of the string. The valid values are as follows:

- **NO**
 Indicates that zeros are not to be suppressed. NO is the NetView-provided initial value.

- **YES**
 Indicates that leading zeros are to be suppressed.

SUPZTIME
Specifies whether leading zeros are to be suppressed when presenting times. This applies only to the entire time string and not to each element of the string. The valid values are:

- **NO**
 Indicates that zeros are not to be suppressed. NO is the NetView-provided initial value.

- **YES**
 Indicates that leading zeros are to be suppressed.

SYSLOG
Specifies whether all messages are written to the system log. The valid values are:

- **NO**
 Indicates that all messages are not written to the system log. NO is the NetView-provided initial value.

- **YES**
 Indicates that all messages are written to the system log.

TAFPREFIX=prefix
Specifies a two-character prefix for use by the BGNSESS and BFSESS commands in selecting secondary LU names. Typically, BGNSESS and BFSESS will dynamically select a value for SRCLU in the form of TFaa#nnn, where:

- **aa**
 Is the value set by a DEFAULTS TAFPREFIX command.

- **nnn**
 Is a decimal number in the range of 000–999.

For **nnn**, BGNSESS always selects the smallest number currently not in use. By default, BFSESS allows BGNSESS to select the SRCLU value. However, if your system has dependencies on the naming scheme used by BFSESS in prior releases of NetView, then you can specify an asterisk for the value (DEFAULTS TAFPREFIX=*). However, using an asterisk disables the default SRCLU selection by BGNSESS and can make it difficult to use full-screen automation with the BGNSESS command.
If you do not issue a DEFAULTS TAFPREFX= command, the last two characters of the domain name are used.

TAFRECLN
Specifies the maximum record length (line size) of lines returned by the session partner in a TAF OPCTL session. If a line is shorter or the same length as the specified value, the line is returned unchanged. If it is longer, the line is split at the record length and the text is continued on the next line.

linesize
The maximum size of lines returned by a TAF OPCTL session partner. Valid values are 1–32000. The default value is 32000.

TAKEOVER
Specifies the value from the TAKEOVER option on the logon screen.

NO
Specifies that an operator must type YES on the logon screen in order to take over an existing session.

YES
Specifies that an operator that logs on automatically takes over an existing session, unless NO is specified on the logon screen.

Note: The TAKEOVER option is ignored when the task is in a disconnected state.

TCPNAME
Specifies the name of the TCP/IP address space. This value is used when initializing TCP/IP environments for the commands REXEC, RSH, IPLOG, and TN3270. The default is automatically set by Style processing. See keyword TCPNAME in sample CNMSTYLE for more information. You can use the defaults command to override the name used by the above commands, if desired.

TIMEFMSG
Specifies whether timed commands which could not be queued to the target operator will produce a BNH357E error message. The valid values are as follows:

NO
Indicates that no error message will be issued. NO is the NetView-provided initial value.

YES
Indicates that the error message will be issued.

WRNCPU=0\((decimal,decimal,decimal)\)
Specifies the percentage of the CPU utilization for the task. When the CPU utilization reaches the percentage(s) specified, a status change is sent to NetView Resource Manager.

Up to three percentage values can be specified. The default is zero (0). The parentheses are not required when only one value is specified. Multiple values must be enclosed in parentheses and separated by either blanks or commas. Zero cannot be specified with other values. A value of zero indicates that no status changes are sent. Issuing the keyword with no value also indicates that no status changes are sent. Valid values are any number in the range 1–99. These values are not positional. WRNCPU is similar to the MAXCPU keyword.

WRNIO=0\((decimal,decimal,decimal)\)
Specifies the number of I/O requests, per minute, allowed for the task. The *decimal* value(s) specified indicate when status changes are sent to NetView Resource Manager.
Up to three values can be specified. The default is zero (0). The parentheses are not required when only one value is specified. Multiple values must be enclosed in parentheses and separated by either blanks or commas. Zero cannot be specified with other values. A value of zero indicates that no status changes are sent. Issuing the keyword with no value also indicates that no status changes are sent. Valid values are any number in the range 1–999999999. These values are not positional. WRNIO is similar to the MAXIO keyword.

WRNMQIN=01 (decimal,decimal,decimal)
Specifies the number of message kilobytes, per minute, allowed to be sent to the task from other tasks. The decimal value(s) specified indicate when status changes are sent to NetView Resource Manager.

Up to three values can be specified. The default is zero (0). The parentheses are not required when only one value is specified. Multiple values must be enclosed in parentheses and separated by either blanks or commas. Zero cannot be specified with other values. A value of zero indicates that no status changes are sent. Issuing the keyword with no value also indicates that no status changes are sent. Valid values are any number in the range 1–999999999. These values are not positional. WRNMQIN is similar to the MAXMQIN keyword.

WRNMQOUT=01 (decimal,decimal,decimal)
Specifies the number of message kilobytes, per minute, allowed to be sent from this task to other tasks. The decimal value(s) specified indicate when status changes are sent to NetView Resource Manager.

Up to three values can be specified. The default is zero (0). The parentheses are not required if only one value is specified. Multiple values must be enclosed in parentheses and separated by either blanks or commas. Zero cannot be specified with other values. A value of zero indicates that no status changes are sent. Issuing the keyword with no value also indicates that no status changes are sent. Valid values are any number in the range 1–999999999. These values are not positional. WRNMQOUT is similar to the MAXMQOUT keyword.

WRNMSGCT=01 (decimal,decimal,decimal)
Specifies the number of buffers on the message queue of the task. The decimal value(s) specified indicate when status changes are sent to NetView Resource Manager.

Up to three values can be specified. The default is zero (0). The parentheses are not required when only one value is specified. Multiple values must be enclosed in parentheses and separated by either blanks or commas. Zero cannot be specified with other values. A value of zero indicates that no status changes are sent. Issuing the keyword with no value also indicates that no status changes are sent. Valid values are any number in the range 1–999999999. These values are not positional.

WRNSTG=01 (decimal,decimal,decimal)
Specifies the number of kilobytes of storage in use by a task. The decimal value(s) specified indicate when status changes are sent to NetView Resource Manager.

Up to three values can be specified. The default is zero (0). The parentheses are not required when only one value is specified. Multiple values must be enclosed in parentheses and separated by either blanks or commas. Zero cannot be specified with other values. A value of zero indicates that no status changes are sent. Issuing the keyword with no value also indicates that no
status changes are sent. Valid values are any number in the range 1 – 999999 kilobytes. These values are not positional. WRNSTG is similar to the MAXSTG keyword.

Usage Notes

The following usage notes apply to the DEFAULTS command:

• The commas between keywords are optional. You can either use commas or blank spaces to separate multiple keywords.

• The MAXREPLY, MDCFGTIM, NOREPLY, RCVREPLY, REACQPRI, REXXENV, REXXSMLMT, REXXSTOR, SESINACT, STORDUMP, and TAFRECLN operands accept integer values. If these operands are entered without a value, the original values provided by the NetView program are used.

• The default formats for the date and time operands are as follows:

 LONGDATE
 mm/dd/yy

 LONGTIME
 hh:mm:ss

 SHORTDAT
 mm/dd

 SHORTTIM
 hh:mm

• Delimiters for the LONGDATE, LONGTIME, SHORTDAT, and SHORTTIM operands can be any printable character except the following:
 – Alphanumeric characters
 – Apostrophes (‘)
 – Asterisks (*)
 – Blanks
 – Commas (,)
 – Equals (=)
 – National characters (@, #, $)
 – Parentheses
 – Underscores (_)

• For keywords that allow a value with an equal sign or no value to be specified, code the keyword with neither the equal sign nor value if you want the default value. Coding a keyword and equal sign without a value is a syntax error.

Restrictions

Unsolicited messages received from the MVS subsystem interface are not written to the network log if they do not have an automation table entry and have not been assigned a task with the ASSIGN command. If the automation table entry used to automate an unsolicited message from the MVS subsystem interface contains an EXEC action with both the CMD and ROUTE parameters, only the command specified with the CMD keyword is routed. Routing of the message being processed by the automation table is not affected. To change the routing of the message, use an EXEC action with the ROUTE parameter and not the CMD parameter.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The command completed successfully.</td>
</tr>
</tbody>
</table>
The command did not complete successfully. Check the accompanying messages for more information.

Examples

Example: Specifying Parameters for Incoming Messages
To specify that messages do not sound the audible alarm, that they are written to the system log but not the network or hardcopy log, and that they are displayed on NetView terminals, enter the following:

```
DEFAULTS BEEP=DISABLE, SYSLOG=YES, NETLOG=NO, HCYLOG=NO, DISPLAY=NO
```

Example: Changing the Number of Times an Operator Can Attempt an Incorrect Logon
To change the maximum number of times an operator can attempt to logon with incorrect information to 5, enter the following:

```
DEFAULTS MAXLOGON=5
```

Response

You receive message DSI633I stating that the DEFAULTS command completed successfully.

Example: Resetting MAXLOGON to Its Previous Default Value
MAXLOGON=3 was coded as the default value in CNMSTYLE. The DEFAULTS command in a previous example was used to change the MAXLOGON keyword value to 5. To reset the keyword value to its default value, enter the following:

```
DEFAULTS MAXLOGON
```

Response

You receive message DSI633I stating that the DEFAULTS command completed successfully. The MAXLOGON keyword value is reset to the default value of 3.

Example: Bypassing Command Authority Checking for Automation
To specify that commands and command procedures from the automation table are not authority checked (except for those which have SEC=CH on the CMDMDL statement), enter the following:

```
DEFAULTS AUTOSEC=BYPASS
```

Example: Listing OPER4 DEFAULTS and OVERRIDE Settings
To see a list of the DEFAULTS and OVERRIDE settings for OPER4, enter the following:

```
LIST OVERRIDE=OPER4
```

Example: Changing the Banner
To change the banner on the NetView logon and command facility panels, enter one of the following:

```
DEFAULTS BANNER=OneBigWord
```

```
DEFAULTS BANNER='Up to 24 characters'
```

Example: Changing the Banner to Display a Current Message
Use a pipeline to display a current message on the NetView logon and command facility panels:

```
myStr = 'Customizable user data.'
'PIPE VAR myStr | NETV DEFAULTS BANNER=''
```
DELAY (NCCF; CNME1021)

Syntax

\[
\text{DELAY} \quad \text{time}, \text{command}
\]

Purpose of Command

The DELAY command list waits for a specified length of time before sending a command or command procedure to the system. You should use the AFTER command in place of the DELAY command list whenever possible.

Operand Descriptions

\textit{time}

Specifies the time interval after which the command is to be run. It must be the first operand. A value of minutes or seconds is required. The time period is specified as the hours (00–24), minutes (00–59), and seconds (00–59). The format of interval is controlled by the setting of the time operands of the DEFAULTS and OVERRIDE commands. If not specified, hours, minutes and seconds all default to 0. If you specify 24 for hours, specify 00 for minutes and seconds. A time period of zero cannot be specified.

\textit{Note:} If only a 2-digit value is specified for \textit{time}, the NetView program assumes it to be a value for minutes. If only a 2-digit value preceded by a colon is specified for \textit{time}, the NetView program assumes it to be a value for seconds. If the time specification on the DEFAULTS and OVERRIDE commands includes a colon delimiter between the minute and second values in the template, you can precede a single numeric value with a colon (:) to indicate a time in seconds.

\textit{command}

Specifies the command or command procedure to be processed after the delay. The command or command procedure runs under the primary program operator interface task (PPT).

Restrictions

The following restrictions apply to the DELAY command:

- The DELAY command list invokes the AFTER command, which assigns a timer ID to the operator ID that issued the DELAY command list. If more than one operator issues a DELAY command list, each operator could be assigned an identical timer ID. If this happens, the first operator to be assigned the timer ID is scheduled, but the remaining ones are not scheduled. Instead, a message is issued saying that no command is scheduled.

- If you are issuing a command containing commas in the operand list, enclose the command in single quotes to preserve the commas. For example, enter:

\[
\text{DELAY 00:01,}'\text{D NET,BFRUSE}'
\]
Examples

The format of times specified in the following examples assumes the default setting for time formats on the DEFAULTS and OVERRIDE commands.

Example: Delaying the MAJNODES Command for 30 Minutes
To wait 30 minutes before displaying the active major nodes in the domain, enter:

```
DELAY 30,'D NET,MAJNODES'
```

Example: Delaying the MAJNODES Command for 30 Seconds
To delay the MAJNODES command for 30 seconds, enter:

```
DELAY :30,'D NET,MAJNODES'
```

or

```
DELAY 00:00:30,'D NET,MAJNODES'
```
Syntax

DELAY2

Purpose of Command

The DELAY2 command list issues a command and purges the timer. You can use DELAY2 to cancel an AFTER, AT, or EVERY command. Use DELAY2 when the timer was set with the primary program operator interface task (PPT) option.

Operand Descriptions

timerid
 Is the identifier that you specified on a timer command (AFTER, AT, or EVERY).

command
 Is the name of the command or command list that the system is to run.

Restrictions

The following restrictions apply to the DELAY2 command:
 • The DELAY2 command list can cancel only those timer commands that are started under the PPT task.
 • For performance reasons, you should use the PURGE command to purge timer events whenever possible.
 • If you are issuing a command containing commas in the operand list, enclose the command in single quotes to preserve the commas.

Examples

Example: Canceling the Process Time of a Command

You have previously issued the following AT command:

AT 15:00,PPT,1O=DISP,MAJNODES

To cancel the timer, which is set to process the command at 15:00, enter:

DELAY2 'DISP'

To cancel the timer, which is set to process the command at 15:00, and send the command to the system immediately, enter:

DELAY2 'DISP','D NET,MAJNODES'
DELCMD (NCCF)

Syntax

DELCMD

Purpose of Command

The DELCMD command enables an operator to dynamically delete user-written commands from NetView without having to recycle NetView each time DELCMD is issued. This improves NetView availability.

Operand Descriptions

NAME=commandname

Specifies the name or synonym of a command, or command list, to be deleted from the NetView system command table (SCT) extension. The parentheses are not required if only one commandname is specified. Multiple specifications of commandname must be enclosed in parentheses and separated by either blanks or commas. Any command synonyms created for this command are also deleted.

FREE=N|Y

Specifies whether the command processor module and associated SCT entry storage should be freed.

N Indicates that the command processor module and associated storage should not be freed. This is the default.

Y Indicates that the command processor module and associated storage should be freed.

Notes:

1. If the named command processor is executing at the time FREE=Y is executed, the task executing the named command processor might abend.

2. The module might not be freed from storage depending upon the link edit attributes specified for the module and any other residency specifications for the same module. For example, if the same command module is defined for multiple commands.

Note: After the DELCMD command has executed with FREE=N, or the ADDCMD command specified REPLACE=Y for the named command, the storage for the named command can only be freed by command name, but not by command synonym name. If multiple instances of the same command have been replaced, or added, and subsequently deleted but not freed, unless a command synonym is specified for the named command, FREE=Y will free the storage of the oldest deleted command.
Usage Notes
A command synonym or name with special characters (for example, =) must be enclosed in a quoted string. A quoted string cannot be included in a list of names.

Restrictions
The DELCMD command cannot delete a command that is defined internally to NetView.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Processing successful</td>
</tr>
<tr>
<td>4</td>
<td>Syntax error</td>
</tr>
<tr>
<td>8</td>
<td>Specification error</td>
</tr>
<tr>
<td>12</td>
<td>Internal processing error (for example, no storage)</td>
</tr>
</tbody>
</table>
DELDS (NCCF; CNME1055)

Syntax

```
DELDS dsname
```

Purpose of Command

The DELDS command deletes certain data sets, such as the one created by option 9 of the CNMS1101 sample.

Operand Descriptions

`dsname`

The name of the fully qualified data set to delete.

Restrictions

The DELDS command uses ALLOCATE with the OLD and DELETE operands, followed by the FREE command. Any restrictions and error messages associated with these commands can also apply to DELDS. For example, data sets which are part of NetView standard data definitions (DDs), as listed by the BROWSE command, are not supported.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The command functioned normally. Refer to the output messages.</td>
</tr>
<tr>
<td>4</td>
<td>There was a syntax error. Refer to the output message.</td>
</tr>
<tr>
<td>8</td>
<td>The ALLOCATE command produced a non-zero return code. Refer to the output messages.</td>
</tr>
</tbody>
</table>
DETACH (NCCF)

Syntax

```
DETACH
```

Purpose of Command

The DETACH command is used to terminate a virtual OST (VOST) created by an ATTACH command. DETACH simulates sending a LOGOFF command to the application running on the VOST.

DETACH requests termination of a VOST, but does not wait for the VOST to be terminated. Due to system problems, DETACH might not terminate the VOST. STOP FORCE can be used to force a VOST to terminate. All data associated with the terminated VOST is freed immediately.

Operand Descriptions

NAME

Specifies the name given on the ATTACH command. The NAME keyword is optional. DETACH NAME `attach_name` is the same as DETACH `attach_name`.

attach_name

The name given to a VOST using the NAME operand on the ATTACH command or the default name if no NAME operand was specified. A named VOST can be detached by any procedure or from the command line of the owner.

You can obtain the name of the VOST by listing the LIST STATUS=VOST command.

only_one

If no operand is specified on the DETACH command, one VOST is detached. Do not use DETACH without an operand if you have attached more than one VOST within your procedure group.

Restrictions

If you have issued more than one ATTACH within a procedure family, do not use DETACH without the NAME operand. An unnamed DETACH will detach one VOST. The VOST that is detached is unknown under these conditions.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The VOST detach is proceeding.</td>
</tr>
<tr>
<td>16</td>
<td>A syntax error was found.</td>
</tr>
<tr>
<td>20</td>
<td>An invalid character in DETACH name found.</td>
</tr>
<tr>
<td>36</td>
<td>The VOST was not found.</td>
</tr>
</tbody>
</table>
Examples

Example: Detaching a Dependent VOST
A single VOST running NLDM was attached within a procedure family. This VOST will automatically detach when all members of the procedure family terminate, or can be explicitly terminated using one of the following:

DETACH

DETACH NLDM

Example: Detaching an Independent VOST
An independent VOST must be named when attached. In this example, a VOST running NPDA was attached previously with the name MYVOST. MYVOST can be detached in either of the following ways:

DETACH MYVOST

DETACH NAME MYVOST
DFILTER (NPDA)

Syntax

DFILTER

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFILTER</td>
<td>DF</td>
</tr>
</tbody>
</table>

Purpose of Command

The DFILTER command displays recording, viewing, and hardware monitor filters that are currently in effect.

Operand Descriptions

AREC

Specifies the alert recording filters in use.

C

Lists the description of the alert specified code. These codes are used in defining hardware monitor use filters.

code

Specifies the code identifying a particular event or alert. This option is used only for problem records that are in a format other than the generic NMVT format. The format of code is BBBcc where:

BBB

Specifies a block ID.

c

Specifies an event description number.

COLOR

Specifies the alert color settings in use.

ESREC

Specifies the event and statistics recording filters in use.

OPER

Specifies the authorized operator filters in use.

ROUTE

Specifies the route filters in use.

TECROUTE

Specifies the TECROUTE filters in use.
TRAPROUT
 Specifies the TRAPROUT filter in use.

VIEW
 Specifies the viewing filters in use.

Restrictions
 The following restrictions apply to the DFILTER command:
 • You cannot issue this command from the hardware monitor Alerts-Dynamic panel.

Examples

 Example: Displaying Hardware Monitor Filters
 To display the viewing filters that are currently in effect for your operator identification, enter:
 DFILTER VIEW
Syntax

```
NCCF DIS
```

```
DIS resname
```

```
netid
```

```
, passthru
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>A</td>
</tr>
<tr>
<td>INACT</td>
<td>I</td>
</tr>
<tr>
<td>ONLY</td>
<td>O</td>
</tr>
</tbody>
</table>

Purpose of Command

The NCCF DIS command list displays the status of system resources.

Operand Descriptions

`resname`

Specifies the name of the specific resource to be displayed.

ALL

Specifies to display status information about the named resource (`resname`) as well as names and statuses of all its subordinate resources. ALL is the default.

ACT

Specifies to display status information about the named resource (`resname`) as well as names and statuses of all its active, connectable, and pending subordinate resources.

ACTONLY

Specifies to display status information about the named resource (`resname`) as well as names and statuses of all its active subordinate resources. Information about connectable or pending subordinate resources is not displayed.

CONCT

Specifies to display status information about the named resource (`resname`) as well as names and statuses of all its connectable subordinate resources. Information about active or pending subordinate resources is not displayed.

INACT

Specifies to display status information about the named resource (`resname`) as well as names and statuses of all its inactive or reset subordinate resources.
INACTONLY
Specifies to display status information about the named resource (resname) as well as names and statuses of all its inactive subordinate resources. Information about reset subordinate resources is not displayed.

ONLY
Specifies to display status information about the named resource (resname) only.

PENDING
Specifies to display status information about the named resource (resname) as well as names and statuses of all its pending subordinate resources. Information about active or connectable subordinate resources is not displayed.

RESET
Specifies to display status information about the named resource (resname) as well as names and statuses of all its reset subordinate resources. Information about inactive subordinate resources is not displayed.

netid
Limits the scope of the display to a specified network for cross-domain resource major and minor nodes only.

passthru
Specifies up to 6 parameters which are appended unchanged to the NODE command issued by the DIS command. No validation for duplicate or conflicting parameters is performed.

Restrictions
The following restrictions apply to the DIS command:

- When you enter a parameter after resname, the following VTAM command is generated:
 \[\text{DISPLAY NET, ID=resname, SCOPE=ALL} \]
 For more information about this command, refer to the appropriate VTAM manual.

- For compatibility with the VTAM DISPLAY command, you can preface the following command lists with the DIS command list:

<table>
<thead>
<tr>
<th>APPLS</th>
<th>COS</th>
<th>MAJNODES</th>
<th>STATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFRUSE</td>
<td>DISK</td>
<td>NCPSTOR</td>
<td>TERMS</td>
</tr>
<tr>
<td>CDRMS</td>
<td>DROUTE</td>
<td>PATHS</td>
<td>TSOUER</td>
</tr>
<tr>
<td>CDRSCS</td>
<td>GROUPS</td>
<td>PENDING</td>
<td></td>
</tr>
<tr>
<td>CLSTRS</td>
<td>LINES</td>
<td>SESSONS</td>
<td></td>
</tr>
</tbody>
</table>

 DIS COS, DIS DISK, DIS GROUP, and DIS SESSIONS are available only for VTAM V3R2 and later releases.

 Note: Resource names can be network qualified when using DIS.

Examples

Example: Displaying the Pending Nodes
To display the pending nodes, enter:

 DIS PENDING
Example: Displaying the Status of a Specified Node
To display the status of node NCP21, enter:
DIS NCP21

Example: Displaying the Status of a Specified Major Node and Its Resources
To display information about the channel-attached major node CTCA7F0 and its subordinate resources, enter:
DIS CTCA7F0 ALL
DIS (NPDA; CNME1023)

Syntax

```plaintext
NPDA DIS
```

Purpose of Command

The NPDA DIS command list displays the results of modem or controller tests.

Operand Descriptions

- **resname1**
 - Specifies the symbolic name of the resource.

- **EV**
 - Displays the most recent events for the specified resource.

- **LINK**
 - Displays link test results and resets link test counters.

- **LVL**
 - Displays levels of hardware and microcode.

- **SEC**
 - Displays the most recent errors for the specified control unit.

- **ST**
 - Displays the most recent statistics for the specified resource.

- **resname2**
 - Specifies the communication or network controller.

- **resname3**
 - Specifies the device at the remote end of the line.

- **DTE**
 - Displays the current and transition states of the Electronics Industries Association (EIA) leads.

- **LS**
 - Conducts and displays the results of a link status test.

- **RST**
 - Conducts a remote self test.

- **LSL1**
 - Conducts a test on link segment level 1. LSL1 is the default.
LSL2
Conducts a test on link segment level 2.

LA
Conducts a line analysis test.

MLS
Conducts a modem and line status test.

TRT
Conducts a transmit/receive test.

\(n \) Specifies the number of text sequences the modems should exchange. Valid only with the TRT operand.

Restrictions
The following restrictions apply to the DIS command:

- The operands DTE, LS, and RST work with modems that have LPDA®-1 capabilities on a line specified as LPDA-1.
- The operands MLS, LA, and TRT work with data circuit-terminating equipment (DCE) that have LPDA-2 capabilities on a line specified as LPDA-2.

Examples

Example: Displaying the Most Recent Events Panel for a Specified Node
To display the Most Recent Events panel for node NCP21, enter:

DIS NCP21 EV
DISABLE (NLDM)

Syntax

DISABLE

Purpose of Command

The DISABLE command stops the collection of session awareness data by VTAM and the session monitor.

Restrictions

The following restrictions apply to the DISABLE command:

- You cannot start tracing after issuing the DISABLE command because session awareness data is not being collected.
- The DISABLE command does not disable session awareness if a trace is active for any resource.
- The DISABLE command does not disable session awareness if the network accounting and availability function is initialized.
- After you enter a DISABLE command, recycle the session monitor task (AAUTSKLP) by using the STOPCNM and STARTCNM command lists to restart session awareness data collection.

Examples

Example: Stopping Collection of Session Awareness Data

To stop collecting session awareness data, enter:

NLDM DISABLE
DISBQL (NCCF)

Syntax

DISBQL

Purpose of Command
The DISBQL command displays the receiver’s buffer queue limit and the number of buffers currently available. This command also displays the current receiver or receivers defined to the NetView program-to-program interface facility.

Operand Descriptions

ALL
Displays information about all the receivers.

receiver
Displays information for the receiver specified.

Restrictions
The following restrictions apply to the DISBQL command:

- You can use the receiver or the ALL operands on the NetView subsystem procedure (PROC) that has the same first 4 characters as the NetView application.
- In MVS, if the NetView subsystem interface is inactive, the NetView program-to-program interface is also inactive. You receive message CNM563I as well as the information about all the receivers. If you recycle the subsystem address space and the NetView program-to-program interface is brought up, the receivers that were previously defined in the NetView program-to-program interface are still defined, but the receivers’ buffer queue is lost.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successfully processing</td>
</tr>
<tr>
<td>8</td>
<td>Unsuccessfully processing</td>
</tr>
</tbody>
</table>

Examples

Example: Displaying Information about a Specified Receiver
To display information for the receiver ID CNMRCV, enter:

DISBQL CNMRCV

Example: Displaying Information about All Receivers
To display information about all receivers, enter:

DISBQL ALL
DISC

Syntax

DISC

Purpose of Command

The DISC command changes an ordinary operator station task (OST) into a disconnected autotask without stopping processes that are working on that task except full-screen panels. Full-screen panels end and generally report I/O or PSS errors. No command synonyms are defined for DISC. A CMDMDL statement can be added to create a synonym. Authorization control must be defined separately for DISC and synonyms defined in a new CMDMDL statement. DISC performs the following action on the different OST task types:

- **SNA OST (normal logon)** The session is terminated. OST becomes a disconnected autotask.
- **IP OST (NMC-3270 logon)** The session is terminated. OST becomes a disconnected autotask.
- **console OST (Operated from MVS console)** The console is dropped. OST becomes a disconnected autotask.
- **VOST (Full Screen Automation)** A DISC command entered on a NetView 3270 Management Console full-screen panel operates as if it was entered on the NCCF panel.
- **AOST (normal autotask)** Enables the task for reconnection. There is no other action.
- **DOST (distributed autotask)** The connection between the autotask and the owning operator is disconnected. Subsequent unsolicited messages are not routed. The task becomes a disconnected autotask.

A Web logon, unlike the SNA and IP types, is designed to be shared. The action of DISC depends on how the command is issued and how OST was started. For DISC to work properly when issued by a Web logon, the full web security package must be implemented. The DISC command disconnects the web user from the task he is sharing, without affecting the other operator who might be using the same task. To do this, the DISC command must be issued by the web operator directly, not within a pipe or prefixed by other commands (such as NCCF DISC). A DISC issued directly by a CLIST that is issued by the operator will work.
DISCONID (NCCF)

Syntax

```
DISCONID
```

Purpose of Command

The DISCONID command displays MVS console names or IDs used by the NetView program.

For additional information about associating an autotask with an MVS console name or ID, refer to the AUTOTASK command.

Restrictions

The following restrictions apply to the DISCONID command:

- An asterisk (*) displayed next to the console ID implies that the NetView autotask specified is associated with the MVS console ID or name shown.
- The displayed autotask is not necessarily active.
- The associated console can be a multiple console support console, an extended multiple console support (EMCS) console, or a subsystem-allocatable console.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The command completed successfully.</td>
</tr>
<tr>
<td>Nonzero</td>
<td>The command did not complete successfully. An error message is issued.</td>
</tr>
</tbody>
</table>

Examples

Example: Displaying the MVS Console IDs with EMCS Consoles

To display the MVS console IDs on systems running with EMCS consoles, enter:

```
DISCONID
```

Response

You receive a display similar to the following:

```
* CNM01   DISCONID
  CNM01
  CNM492I OPERATOR ID   CONSOLE ID   CONSOLE NAME
  --------------   --------------   --------------
  CNM492I OPER1   EXTENDED   OPER1
  CNM492I OPER2   EXTENDED   OPER2X
  CNM492I AUTO1   1   * TAPEOPER
  CNM492I AUTO2   INACTIVE   USER3
  CNM492I AUTO3   UNKNOWN   USER4
  CNM492I AUTO3   EXTENDED   OPER2
  END DISPLAY
```
The asterisk (*) beside AUTO1, AUTO2, and AUTO3 specifies that these NetView autotasks are associated with the MVS console ID or name shown. For example, AUTO1 can receive commands from associated MVS console 1 (TAPEOPER) if they are entered with the NetView designator character(s). The associations were established by issuing the AUTOTASK command.

When you issue AUTOTASK OPID=AUTO1,CONSOLE=TAPEOPER, AUTO1 is associated with the TAPEOPER console. The TAPEOPER MVS console can issue NetView commands using the NetView designator character(s). Like OPER1, autotask AUTO1 has also obtained extended console AUTO1 by issuing a GETCONID or MVS command.

OPER1, OPER2, AUTO1, and AUTO3 have obtained EMCS consoles as a result of an MVS or GETCONID command. OPER2 might have used either CONSNAME in the operator profile or NetView segment in the SAF product to specify a console name that differs from the task name, and then used either the MVS or GETCONID command to obtain the console. AUTO1 obtained a migration ID using the GETCONID command.

The INACTIVE status for the USER3 console name indicates that the USER3 console has become unavailable. The UNKNOWN status for the USER4 console name indicates that this EMCS console has never been active in the MVS system. The console ID status can be EXTENDED or UNKNOWN only when extended consoles are used.

Example: Displaying MVS Console IDs without EMCS Consoles

To display the MVS console IDs on systems running without EMCS consoles, enter: DISCONID

Response

You receive a display similar to the following:

```
* CNM01 DISCONID
  ' CNM01
CNM492I OPERATOR ID CONSOLE ID CONSOLE NAME
CNM492I ----------- ---------- ------------
CNM492I OPER1 11 SUBCON1
CNM492I OPER2 12 12
CNM492I AUTO1 1 * TAPEOPER
CNM492I AUTO1 14 SUBCON4
CNM492I AUTO2 INACTIVE * SYSCON3
CNM492I END DISPLAY
```

OPER1, OPER2, and AUTO1 have obtained MVS consoles by issuing an MVS command. OPER2 obtained MVS console ID 12. The console name for this console is also 12 because there has been no name defined for the console in CONSOL.xx. The default name is the console ID.

AUTO1 and AUTO2 are associated with MVS consoles and can process NetView commands entered on the TAPEOPER and SYSCON3 MVS consoles, respectively.

Console name SYSCON3 is currently inactive, but as soon as it is activated, autotask AUTO2 will process commands from SYSCON3.
DISG (NCCF; CNME1070)

Syntax

DISG

DISG resname [ALL ONLY]

Purpose of Command

The DISG command list displays resource status and connectivity information for LUs, PUs, lines, network control programs (NCPs), and major nodes.

Operand Descriptions

resname
 Specifies the resource for which status and connectivity information is to be displayed.

ALL
 Specifies that information is to be displayed for this resource and its lower nodes (if any). For example, if DISG is processed for an LU, and the PU is selected from the initial display, all LUs for that PU are displayed.

Note: The ALL option increases response time.

ONLY
 Specifies that information is to be displayed for this resource only, and not any of its lower nodes.

Note: If neither ALL nor ONLY is specified, any lower nodes for the resource are displayed. However, if a higher node is selected from the subsequent display, the lower nodes for that higher node are not displayed. For example, if the DISG command list is processed for a PU, all of the LUs for that PU are displayed. However, if LINE is selected from the initial display, the PUs under that line are not displayed.

Restrictions

The following restrictions apply to the DISG command:

• The DISG command list supports parallel channels. If you enter DISG resname1, where resname1 is any resource from the NCP to an LU downstream, the result is as follows:
 - If multiple channels are defined between VTAM and the NCP, MUL (multiple) is displayed for the values of the channel unit address (CUA) and the start I/O (SIO) counts.
 - If one channel is defined between VTAM and the NCP, the values are displayed for CUA® and SIO just as they did before parallel channel support.

You can resume a previously active DISG display, if you left it active, by issuing the DISG command list with no argument.

• Resource names can be network qualified when using DISG.
The DISG command list is designed to display only one network control point at a time. If the resource specified is a remote NCP, only the host and remote NCP are displayed. The intermediate network node (INN) links and intermediate NCPs are not displayed.

The DISG command list does not display link stations, line groups, or CDRSC, CDRM, APPL, and CA major nodes. It also does not support TCP/IP major nodes.

The DISG command list cannot run under the primary program operator interface task (PPT).

Attention: Incorrect results can occur if you run the DISG command list while VTAM MSGMOD is active.

Examples

Example: Displaying Resource Status for a Non-SNA Logical Unit
To display resource status for A01A441 and higher resources, enter:

```
DISG A01A441
```

To return to line mode, press the End key.

Example: Displaying Resource Status of a Logical Unit
To display resource status for LU T13030C1, enter:

```
DISG T13030C1
```
Syntax

DISK

DISK ncpname

Purpose of Command

The DISK command list displays information about the disk contents of 3720 and 3745 Communication Controllers. It provides module and dump information.

Operand Descriptions

ncpname

Specifies the name of the NCP in the 3720 or 3745 Communication Controller for which information is to be displayed.

passthru

Specifies up to 6 parameters that are appended unchanged to the VTAM DISPLAY command issued by the DISK command. No validation for duplicate or conflicting parameters is performed.

Restrictions

The following restrictions apply to the DISK command:

• DISK does not provide load module and dump source information. To view dump source information, use the NCPSTOR command list.
• This command list is supported only by VTAM Version 3 Release 2 and later releases.

Examples

Example: Displaying the Contents of a Specified NCP
To display the contents of NCP NA7110, enter:

DISK NA7110

Response

When the command list completes successfully, the system response is similar to:

IST097I DISPLAY ACCEPTED
IST951I DISPLAY DISK INFORMATION FOR NA7110
IST952I DUMP NAME DATE TIME
IST953I NA7110 07/23/97 12:02:23
IST924I -------------------------------------
IST954I LOAD MODULE DATE TIME LOAD STATUS AUTOIPL IN CCU
IST955I NA7110 07/23/97 12:02:23 LOADED YES YES
IST314I END
DISKEEP (NLDM)

Syntax

```
DISKEEP
```

```
<table>
<thead>
<tr>
<th>DISKEEP</th>
<th>PIUS</th>
<th>FOR</th>
<th>resname1</th>
<th>ALL</th>
<th>resname2</th>
</tr>
</thead>
</table>
```

Purpose of Command

The DISKEEP command displays the number of path information units (PIUs) kept for each resource or the number of sessions kept on the session monitor direct access storage device (DASD). This command causes the NLDM.DISK panel to display the current settings.

Operand Descriptions

PIUS

Displays the PIU keep count per resource or resource pair. The keep count is the number of PIUs that are retained. DISKEEP PIUS displays only resources with known active sessions.

SESS

Displays DASD session wrap counts. The session keep count is the number of sessions (history) that are retained in DASD. DISKEEP SESS displays only resources known to exist on the session monitor DASD. If the DISKEEP SESS command processes successfully, and you did not specify a resource name, message AAU289I is displayed, indicating the current global DASD session wrap count. If the DISKEEP SESS command processes successfully, and you specified a resource name, the NLDM.DISK panel is displayed. If you specify two resource names for the DISKEEP SESS command, and `resname1` is a DGROUP name, `resname2` is ignored. In this case, no error message is displayed.

FOR

Identifies the operand that follows as the resource name.

rename1

Is the resource name against which to apply keep count (LU, PU, or SSCP name). `rename1` can include the pattern-matching character * only if you specify DISKEEP SESS.

ALL

Applies keep count against all sessions with `rename1`. ALL is the default.

rename2

Is the second name to identify a specific session. `rename2` can include the pattern-matching character * only if you specify DISKEEP SESS.

Usage Notes

The current global DASD session wrap count applies to all sessions that are not overridden by a KEEP SESS command specified for that KCLASS mapping.
Examples

Example: Displaying the PIU Count of All Sessions for a Specified Logical Unit
To display the PIU count for all sessions with an LU named LCL3278A, enter:
DISKEEP PIUS LCL3278A

Example: Displaying the PIU Count of All Sessions for a Specified Logical Unit (FOR optional)
To display PIU count for all sessions with an LU named LCL3278A (use of FOR is optional), enter:
DISKEEP PIUS FOR LCL3278A

Example: Displaying the Global DASD Count
To display the global DASD session count, enter:
DISKEEP SESS

Example: Displaying the DASD Count for a Specified Logical Unit
To display the DASD keep count for an LU named LCL3279, enter:
DISKEEP SESS LCL3279
DISPCMD (NCCF)

Syntax

```
DISPCMD
```

- `OP=''` Displays the commands for the issuing operator. `OP=''` is the default.
- `operid` Displays the outstanding NPS commands for that operator.
- `ALL` Displays all outstanding NPS commands.
- `ID=resname` Specifies the network name of a device. This operand displays all commands that are to be sent, or have been sent, to the specified device.
- `PPT` Displays all outstanding NPS commands under the primary program operator interface task (PPT).
- `SP=spname` Specifies the network name of a service point.

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>A</td>
</tr>
</tbody>
</table>

Purpose of Command

The DISPCMD command displays a list of the outstanding network product support (NPS) commands.

Operand Descriptions

- **OP**
 - Specifies an operator ID.
 - `''` Displays the commands for the issuing operator. `OP=''` is the default.
 - `operid` Displays the outstanding NPS commands for that operator.
- **ALL**
 - Displays all outstanding NPS commands.
- **ID=resname**
 - Specifies the network name of a device. This operand displays all commands that are to be sent, or have been sent, to the specified device.
- **PPT**
 - Displays all outstanding NPS commands under the primary program operator interface task (PPT).
- **SP=spname**
 - Specifies the network name of a service point.

Usage Notes

If you issue the DISPCMD command without any operands, the system displays all outstanding commands for the issuing operator.

The total number of commands displayed is limited by the number of solicited DSRBs available to the DSIGDS subtask. This value is set according to the DSRBO operand in the DSICPINT initialization member.
Examples

Example: Displaying Outstanding Messages for a Specified Device

To display a list of all outstanding messages for device NY3710, enter:

```
DISPCMD ID=NY3710
```

Response

When the command completes successfully, the system responds as follows:

```
DSI271I  COMMAND  OPERATOR  ID/SP  TAG
DSI272I  cmd1  operid1  node1  tag1
DSI272I  cmd2  operid2  node2  tag2
DSI273I  END OF OUTSTANDING COMMANDS DISPLAY
```

Where `cmd` is the name of the command as entered by the operator, `operid` is the name of the operator who issued the command, `node` is the network name of the device to which the command has been sent (or will go), and `tag` is the numeric identifier for the command (this value can be used with the TAG operand on the CANCMD). The NetView program displays the commands in the order the operator enters them.
DISPCNFG (NCCF)

Syntax

```
DISPCNFG
```

Purpose of Command

The DISPCNFG command displays a 3710 Network Controller configuration. You can display the complete configuration or a single element of the configuration.

Operand Descriptions

- **ID=**resname
 - Is the name of the 3710.

- **PRODUCT**
 - Specifies the network name and type of the 3710 specified in the ID operand. PRODUCT is the default.

- **ALL**
 - Specifies the network names and device types for all elements in the specified 3710 configuration.

- **ADAPTER=**adapter_name
 - Specifies the 3710 name and type of adapter and configuration data specific to the named feature. Specify the name for the 8-port line adapter installed on a 3710.

- **DISPLAY=**display_name
 - Specifies the resource name and type of the specified binary synchronous communication (BSC) 3270 display. You can also use this operand to display data about an LU associated with an 8-port line adapter by using the adapter’s resource name.

- **LINE=**line_name
 - Specifies the network name and type of the specified line. Specify the network name for LINE.

- **STATION=**station_name
 - Specifies the network name and type of the specified station. Specify the network name for STATION. You can also use this operand to display data about a PU attached to an 8-port line adapter by using the adapter’s network name.

- **VERIFY**
 - Is used only in a command list. VERIFY is intended for use by System Support
Program Product (SSP) configuration control program (CCP) command lists that need to retrieve product data for performing dynamic reconfiguration application sequence verification.

DUMP

Dumps the record for the selected product, line, station, or display element. The DUMP operand is ignored if you specify the ALL operand.

Examples

Example: Displaying the Configuration of a Specified Line on a Specified Device

To display the configuration for LINE2 on device NY3710, enter:

```
DISPCNFG ID=NY3710,LINE=LINE2
```

Example: Displaying the Name and Device Type for a Specified Device

To display the name and device type for NY3710, enter:

```
DISPCNFG ID=NY3710
```

Example: Displaying the Name, Device Type, and Dump Records for a Specified Device

To display the name, device type, and dump records for NY3710, enter:

```
DISPCNFG ID=NY3710,DUMP
```

Example: Displaying the Configuration for a Specified Line on a Specified Device

To display the configuration for line LN02 on device NY3710, enter:

```
DISPCNFG ID=NY3710,LINE=LN02
```
DISPFK (NCCF; CNME1048)

Syntax

```
DISPFK
```

```
  current_application
   ALL
   ALT
   application
   ?

DISPLAY

SAVE
```

Purpose of Command

The DISPFK command list enables you to display or save the PF key settings for various NetView components.

Operand Descriptions

- **ALL**
 - Lists or saves PF or PA key settings for all applications.

- **ALT**
 - Displays the first alternative set of PF or PA key definitions. An alternate set is indicated by any PF or PA key having a definition of the form PFKDEF `membername`, where the `membername` contains the alternate key definitions. For additional information, see the PFKDEF command. Using ALT with SAVE is not valid.

- **application**
 - Lists or saves PF or PA key settings for a specific application. The name must be 1–8 alphanumeric characters, and can contain @, # and $. The following NetView applications provide default PF and PA key settings: log browse (LBROWSE), member browse (MBROWSE), NCCF, NLDM, NPDA, STATMON, TARA, WINDOW, and DISPFK.

 Other applications using the first parameter on the VIEW command to specify an application name, such as MAINMENU and ACTION command lists, can have their own PF key settings, which can be displayed.

 You can display default keys by using `application NETVIEW`, and list default keys for VIEW command output panels by using `application VIEW`. If `application` is omitted, the default is the current application, or if the current application is not one of the above nor an applid specified by DSIPSS, the default is NCCF.

 Note: Because keys are arranged in a hierarchy (specific `application`, VIEW and NETVIEW), sometimes it is useful to know what key definitions exist at the different levels. For this reason, the application for which a given key was set (SET-APPL) is displayed as well as the setting for that key. VIEW default keys are listed for applid VIEW, for application IDs for which the VIEW keyword was specified in the last SET, and for VIEW applications which have been invoked.

- **?**
 - Displays help information.
DISPLAY
Displays the key setting. DISPLAY is the default.

SAVE
Saves the key settings. Only supported if an OVERRIDE command has defined an operator dataset for the DSIOPEN DD for this operator. If so, a member called CNMKEYSV is created or replaced on this dataset. CNMKEYSV will automatically be processed by the PFKDEF command. For more information, refer to the PFKDEF command in the NetView online help. The panel produced by the DISPLAY option supports a SAVE subcommand which produces the same results. The default CNMKEYS sample sets PF10 to SAVE for DISPFK.

If you need only a single PF key definition, you can use the LIST command.

Restrictions
The DISPFK command list cannot run under the primary program operator interface task (PPT).

Examples

Example: Displaying PF Key Settings
To display PF key settings for the current application, enter:

```
DISPFK
```

This is PF4 in the default PF key settings.

Refer to the SET command for an explanation of the displayed operands.

Example: Saving PF Key Settings
To save all PF key settings, enter:

```
DISPFK ALL SAVE
```
DISPLAY (EAS)

Syntax

EAS DISPLAY

MODIFY procname,DISPLAY STATUS QSTATS

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIFY</td>
<td>F</td>
</tr>
</tbody>
</table>

Purpose of Command

The DISPLAY command displays operational characteristics of the event/automation service. The STATUS option displays information about the operational status of each service and additional information about the connectivity of the service outside of the event/automation service address space.

Operand Descriptions

procname

Specifies the event/automation service job name.

STATUS

Displays the status of the following:

- The alert adapter service task
- The message adapter service task
- The event receiver service task
- The trap-to-alert service
- The alert-to-trap service
- PPI connection
- TCP/IP connection.

QSTATS

Displays information about the number of data buffers sent and received by all of the subtasks that make up the event/automation service, and the total number of data buffers that are currently queued to a subtask and have not been processed.

Examples

Example: Displaying Event/automation Service Status

To display the status for the event/automation service job named IHSAEVNT, enter:

F IHSAEVNT,DISPLAY,STATUS

Response

A response similar to the following is displayed:
<table>
<thead>
<tr>
<th>SERVICE</th>
<th>STATUS</th>
<th>ADDITIONAL INFO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALERTA</td>
<td>CO-IDLE</td>
<td>9.18.27.36</td>
</tr>
<tr>
<td>MESSAGEA</td>
<td>UP</td>
<td>9.18.27.37</td>
</tr>
<tr>
<td>EVENTRCV</td>
<td>IPCYCLE</td>
<td>NETVALRT,1001</td>
</tr>
<tr>
<td>TRAPALRT</td>
<td>DOWN</td>
<td>*</td>
</tr>
<tr>
<td>ALRTTRAP</td>
<td>UP</td>
<td>9.18.27.39</td>
</tr>
<tr>
<td>PPI</td>
<td>UP</td>
<td>IHSATEC</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>UP</td>
<td>9.18.27.39</td>
</tr>
</tbody>
</table>

The ADDITIONAL INFO provides connectivity information for each service. The information displayed for each service is as follows:

ALERTA, MESSAGEA

One or more IP addresses, which are taken from the ServerLocation statement of the configuration file of the service. These addresses are listed one per output line. The service name is not repeated for each address after the first address. If a host name is supplied on the ServerLocation statement instead of an IP address, the value represents the host name resolved to the IP address. If the value cannot be resolved, *NR* is displayed instead of an IP address.

EVENTRCV, TRAPALRT

The name of the PPI mailbox to which the service forwards alerts, followed by the port number which the service has registered with TCP/IP in order to act as an IP server.

ALRTTRAP

The IP address from the HostName statement of the configuration file of the service. If a host name is supplied on the HostName statement instead of an IP address, the value represents the host name resolved to the IP address.

PPI

The name of the mailbox that the event/automation service has registered with the NetView Program to Program interface (PPI). This mailbox is used to receive data from the NetView address space.

TCP/IP

The IP address of the local host on which the event/automation service is running. For any service that is not active, for example the STATUS is DOWN, the ADDITIONAL INFO contains an asterisk (*).

The STATUS can be one of the following:

UP

For PPI, this status indicates that the NetView Program to Program interface (PPI) is active and the event/automation service has successfully registered a mailbox name with the PPI.

For TCP/IP, this status indicates that TCP/IP is active and the event/automation service is able to retrieve the IP address of the host on which the service is running.

For ALERTA and MESSAGEA, this status indicates that the service is active and currently not connected through TCP/IP to a Tivoli Enterprise Console server. This status is not associated with a specific IP address and is always displayed on the first output line for the service, regardless of how many addresses were specified on the ServerLocation statement of the service. If the ConnectionMode of the service is ConnectionOriented, the status...
indicates UP until the first Tivoli Enterprise Console event is sent to one of the specified Tivoli Enterprise Console servers. A connection to a Tivoli Enterprise Console server is not established until an event needs to be sent to the server.

For EVENTRCV and TRAPALRT, this status indicates that the service is active and has registered a port with TCP/IP.

For ALRTTRAP, this status indicates that the service is active and has connected through TCP/IP to the SNMP agent.

DOWN
For the event/automation services, this status indicates that the service is stopped. For PPI and TCP/IP, this status indicates that the event/automation service is not able to contact the service which typically indicates that it is not active.

IPCYCLE
For EVENTRCV and TRAPALRT, this status indicates that the service cannot register its port with TCP/IP. This can occur for a number of reasons, including the following:

- TCP/IP might not be active.
- The port might be reserved by TCP/IP or registered with TCP/IP by another program.
- For EVENTRCV only, the portmapper program might not be active. This can occur only if the UsePortmapper setting is Yes.

The service task is recycled every 60 seconds until it can register its port with TCP/IP. The status remains IPCYCLE until the port can be successfully registered, or the service is manually stopped with the STOP command. This status does not occur for any other service.

GETPORT
For ALERTA and MESSAGEA, this status indicates that the service is attempting to retrieve a Tivoli Enterprise Console server port from the portmapper of the server and there is a delay in retrieving the port. The status appears on the line that contains the IP address of the Tivoli Enterprise Console server. This status does not occur for any other service.

SOCKET
For ALERTA and MESSAGEA, this status indicates that the service is attempting to retrieve a socket in preparation for connecting to a Tivoli Enterprise Console server and there is a delay in retrieving the socket. The status appears on the line that contains the IP address of the Tivoli Enterprise Console server. This status does not occur for any other service.

CONNECT
For ALERTA and MESSAGEA, this status indicates that the service is attempting to connect to a remote Tivoli Enterprise Console server and there is a delay in connecting with the server. The status appears on the line that contains the IP address of the Tivoli Enterprise Console server. This status does not occur for any other service.

SEND
For ALERTA and MESSAGEA, this status indicates that the service is sending an event to a Tivoli Enterprise Console server and there is a delay in sending the event. The status appears on the line that contains the IP address of the Tivoli Enterprise Console server. This status does not occur for any other service.

CO-IDLE
For ALERTA and MESSAGEA, this status indicates that the service has a connection to a Tivoli Enterprise Console server that is idle.
An idle connection is a connection where data is not in the process of being sent or received. This status appears only for services that have a ConnectionMode of ConnectionOriented. The status appears on the line that contains the IP address of the Tivoli Enterprise Console server. This status does not occur for any other service.

SHUTDWN

For ALERTA and MESSAGEA, this status indicates that the service is shutting down the connection to a Tivoli Enterprise Console server and there is a delay in shutting the connection down. The status appears on the line that contains the IP address of the Tivoli Enterprise Console server. This status does not occur for any other service.

CLOSE

For ALERTA and MESSAGEA, this status indicates that the service is closing the connection to a Tivoli Enterprise Console server and there is a delay in closing the connection. The status appears on the line that contains the IP address of the Tivoli Enterprise Console server. This status does not occur for any other service.

RETRY

For ALERTA and MESSAGEA, this status indicates that the service has disconnected from a Tivoli Enterprise Console server and is waiting for a 60 second interval before attempting to reconnect to a Tivoli Enterprise Console server. This status appears only for services that have a ConnectionMode of ConnectionOriented. The status is not related to a specific IP address and therefore appears on the first line of the service output. This status does not occur for any other service.

FL-IDLE

For ALERTA and MESSAGEA, this status indicates that the service has sent the number of events from the data cache that corresponds to the BufferFlushRate setting, and is waiting until more events can be sent. The amount of wait time is dependent on how much time is left in the current send window. It can never be more than 60 seconds. The status appears on the line that contains the IP address of the Tivoli Enterprise Console server. This status does not occur for any other service.

Example: Displaying Queue Count Information

To display the current internal queue information for the event/automation service job named IHSAEVNT, enter:

```
F IHSAEVNT,DISPLAY,QSTATS
```

Response

A response similar to the following is displayed:

```
IHSA0145I TASK   QCOUNT   TOTAL SENT   TOTAL RCVD
IHSA0146I ----   ------   -----------   -----------
IHSA0147I CONTROL 0   12       9
IHSA0147I ALERTA 3   0        3
IHSA0147I MESSAGEA 0  0        4
IHSA0147I EVENTRCV 0  7        0
IHSA0147I TRAPALRT 0  2        0
IHSA0147I ALRTTRAP 0  0        2
```

The QCOUNT column represents the total number of data buffers that are waiting on the input queue. The TOTAL SENT column represents the total number of data buffers queued from this task to any other task. The TOTAL RCVD column represents the total number of data buffers received and processed by this task.
DISPLAY (TARA)

Syntax

```
DISPLAY

>>DISPLAY THRESH,threshid,ctrlname,resname

WRAP,wrapid,ctrlname,resname
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISPLAY</td>
<td>D</td>
</tr>
</tbody>
</table>

Purpose of Command

The DISPLAY command displays the current 3600 and 4700 Support Facility operational operands associated with the specified controller.

Operand Descriptions

THRESH

Specifies a current threshold value.

`threshid`

Indicates the type of threshold value to be displayed. Valid `threshids` are:

- **ERROR**

 Displays loop basic counter 2 and extended counter threshold values

- **RESP**

 Displays response time threshold values.

`ctrlname`

Identifies the specific controller about which data is to be displayed.

`resname`

Identifies the specific resource or group of resources attached to the `ctrlname` about which data is to be displayed. Valid resources are:

- **ALL**

 Specifies to display all loops or workstations.

`loopname`

Specifies a loop that is specified as LP`nn`, where `nn` is the loop number.

`wsname`

Specifies a workstation that is specified as WS`nn`, where `nn` is the workstation number.

If both `ctrlname` and `resname` are included, they must be separated by a comma.

WRAP

Specifies a current wrap count.

`wrapid`

Indicates the type of wrap count to be displayed. Valid `wrapids` are:
ERROR
Displays error wrap count

RESP
Displays response time wrap count

STATUS
Displays status wrap count.

Examples

Example: Displaying Threshold Values for a Specified Controller and a Specified Resource
To display the threshold values for controller CTRL01 and resource LP02, enter:
DISPLAY THRESH,ERROR,CTRL01,LP02
DISPLAY PPI (NCCF)

Syntax

From an MVS console:

```
DISPLAY PPI

MODIFY procname,DISPLAY PPI
```

From a NetView terminal:

```
DISPLAY PPI

MVS MODIFY procname,DISPLAY PPI
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIFY F</td>
<td></td>
</tr>
</tbody>
</table>

Purpose of Command

The DISPLAY program-to-program interface command indicates whether the program-to-program interface is active and shows the subsystem address space in which it is running.

This command can be issued from a NetView operator ID (using the MVS command) or an MVS console by using the modify function of the program-to-program interface. The system console operator receives a message indicating the success or failure of the command.

For additional information, refer to the Tivoli NetView for z/OS Application Programmer’s Guide.

Operand Descriptions

`procname`

The NetView subsystem address space procedure name.

Examples

Example: Determining if the Program-to-Program Interface is Active

To determine if the program-to-program interface is active in the CNMPSSI NetView subsystem address space, enter:

```
MODIFY CNMPSSI,DISPLAY PPI
```

Response

```
CNM631I NETVIEW PROGRAM TO PROGRAM INTERFACE IS ACTIVE ON CNMPSSI
```
DISPMOD (NCCF)

Syntax

DISPMOD

```
DISPMOD [ALL] module_name [csect_name|ALL] prefix
```

Purpose of Command

The DISPMOD command displays information about NetView load modules currently loaded in the NetView job pack area.

DISPMOD provides the following information:

- Name of load module
- Length of load module, in hexadecimal
- Name of CSECT in load module (default is CSECT of entry point)
- Compile date (‘------’ if no compile date is available)
- Entry point address (if currently resident in storage)
- PTF (‘--------’ if no PTF has been applied to this CSECT)
- Addressing mode (24 or 31)
- Linkage editor attributes (RN, RU, AUTH)

The DISPMOD command is useful in determining the level of a module or CSECT when applying maintenance, verifying fixes, and resolving problems. You can also use this command to determine module storage requirements.

Operand Descriptions

ALL

Specifies to display all currently loaded NetView modules and give a total of module storage used.

module_name

Is the name of the module you want displayed.

csect_name | ALL

Is the name of the CSECT in the specified *module_name*. *csect_name* is optional. If you specify *csect_name*, the compile data and entry point address displayed are the CSECT’s. If you do not specify *csect_name*, it displays the first CSECT name and compile date found after the entry point. ALL displays all CSECTs. To find a CSECT when the load module is not known, specify ALL for the module name and specify the desired CSECT. All currently loaded modules are searched for the CSECT.

prefix

 Specifies as many as 5 module prefixes, where each prefix matches the pattern of the first three characters of the module name.
Usage Notes

When you issue the DISPMOD command and specify a module, DISPMOD searches for a usable copy of the module that is linkedited as reentrant or serially reusable. If a usable copy of the module is not found currently loaded into storage, DISPMOD loads it into storage, displays it, and then removes it from storage.

Multiple copies of a single module can be loaded into storage at any given time in a multitasking environment. If a module is link-edited as reentrant or serially reusable, only one copy of the module is loaded into storage. However, if a module is neither link-edited as reentrant nor serially reusable, each subtask can have its own copy of the module loaded into storage. The DISPMOD command then displays the load module that was loaded by the task where the DISPMOD command is running.

DISPMOD is intended for use against NetView control sections containing programs. Some control sections within NetView, such as DSIMDM, DSIMDMV, and DSICTMOD, are tables or lists and do not contain programs. DISPMOD will not show a PTF number or compile date even though a PTF might have been applied to that module. If DSIPMOD does not show a compile date for a module, that module belongs to the nonload group.

Examples

Example: Displaying Information about a Specified NetView Module
To display information about NetView module DSIZDST, enter:

DISPMOD DSIZDST

Response

CNM263I MODULE LENGTH CSECT DATE PTF EPA AM ATTR
CNM263I DSIZDST 009EF8 DSIZDST 99.020 ------- 83500108 31 RN RU
CNM265I END OF DISPLAY

Example: Displaying All the CSECTs in a Specified Module
To display all the CSECTs in the module DSIZDST, enter:

DISPMOD DSIZDST ALL

Response

CNM263I Module LENGTH CSECT DATE PTF EPA AM ATTR
CNM263I DSIZDST 009EF8 DSIZDST 99.020 ------- 83500108 31 RN RU
CNM263I DSIZDST 009EF8 DSICREND 98.337 ------- 83501ED0 31 RN RU
CNM263I DSIZDST 009EF8 DSIFRSP 98.337 ------- 83502548 31 RN RU
CNM263I DSIZDST 009EF8 DSIFSSP 98.337 ------- 83502798 31 RN RU
CNM263I DSIZDST 009EF8 DSILUTRM 98.337 ------- 83502978 31 RN RU
CNM263I DSIZDST 009EF8 DSILMCT 98.337 ------- 83502E90 31 RN RU
CNM263I DSIZDST 009EF8 DSILMPT 98.337 ------- 83503DA0 31 RN RU
CNM263I DSIZDST 009EF8 DSIZCSEP 98.337 ------- 83504580 31 RN RU
CNM263I DSIZDST 009EF8 DSIZGEN1 98.337 ------- 83505270 31 RN RU
CNM263I DSIZDST 009EF8 DSIZGEN2 98.337 ------- 83505508 31 RN RU
CNM263I DSIZDST 009EF8 DSIZMSEP 98.337 ------- 83505940 31 RN RU
CNM263I DSIZDST 009EF8 DSIZSNP 98.337 ------- 83506E88 31 RN RU
CNM263I DSIZDST 009EF8 DSIZMMEP 98.337 ------- 83507500 31 RN RU
CNM263I DSIZDST 009EF8 DSIZVRBC 98.337 ------- 83509608 31 RN RU
CNM265I END OF DISPLAY
Example: Displaying All the Modules That Contain a Specified CSECT
To display all the modules that contain the DSIFSSP CSECT, enter:

```
DISPMOD ALL DSIFSSP
```

Response

```
CNM263I MODULE  LENGTH  CSECT   DATE    PTF    EPA    AM    ATTR
CNM263I DSIZDST  009EF8  DSIFSSP  98.337  -------  835D2798  31 RN RU
CNM265I END OF DISPLAY
```
DISPPI (NCCF)

Syntax

From an MVS console:

MVS DISPPI

\[\text{MODIFY ssiname,DISPPI \quad BUFQ \quad ALL \quad TRACE RCVRID=receiver_id \quad TABLE}\]

From a NetView terminal:

DISPPI

\[\text{DISPPI \quad BUFQ \quad ALL \quad TRACE RCVRID=receiver_id \quad TABLE}\]

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIFY</td>
<td>F</td>
</tr>
</tbody>
</table>

Purpose of Command

The DISPPI command displays program-to-program interface (PPI) receiver status. DISPPI can also be used to display PPI trace status and definition.

This command can be entered as a NetView command (NCCF) or it can be issued directly using the modify function of the program-to-program interface.

Operand Descriptions

\textit{ssiname}

Specifies the MVS subsystem interface name.

\textbf{ALL}

Specifies that the requested display is for all current program-to-program interface receivers.

\textbf{BUFQ}

Requests a display of buffer queue information for the program-to-program interface receiver that is specified on the RCVRID operand or for all program-to-program interface receivers.

\textbf{TABLE}

Requests a display of information about the program-to-program interface trace table.
TRACE
Requests a display of trace status for the program-to-program interface receiver that is specified on the RCVRID operand or for all program-to-program interface receivers.

RCVRID=receiver_id
Identifies a single program-to-program interface receiver for the requested display.

Usage Notes
To identify the job or started task that initialized an active PPI receiver, do the following:

- Issue the DISPPI command to get the ASID of the active receiver. DISPPI lists all active and inactive receivers, but only active receivers have an associated ASID.
- Issue the MVS D A,A command to get the job name and ASID of the active job. Use the NetView WINDOW command (for example, WINDOW MVS D A,A) to place the output within a window where you can scroll and search for the ASID.

You can then determine what job activated the receiver by matching the ASID from the output. This is helpful in identifying which address spaces may need to be dumped or diagnosed further if a PPI receiver problem is suspected. For example, the output from DISPPI includes the following lines:

```
DWO948I RECEIVER RECEIVER BUFFER QUEUED TOTAL STORAGE RCVR
DWO949I IDENTITY STATUS LIMIT BUFFERS BUFFERS ALLOCATED ASID
DWO950I -------- -------- ---------- ---------- ---------- ---------- ----
DWO952I NETVALRT INACTIVE 1000 0 0 0 0
DWO9511 ISTMTRCV ACTIVE 500 0 2 0 001D
```

And the output from D A,A includes the following lines:

```
JOBS M/S TS USERS SYSAS INITS ACTIVE/MAX VTAM OAS
00003 00010 00002 00026 00008 00002/00300 00007
VTAM VTAM VTAM NSW S A=001D PER=NO SMC=000
```

A search on the ASID 001D (for example, using the FIND command) shows the active job to be VTAM.

Examples

Example: Displaying Information about Buffer Queues
To display information about the buffer queues for all program-to-program interface receivers, enter:

From an MVS console:
```
F ssiname,DISPPI BUFQ ALL
```

From a NetView terminal:
```
DISPPI BUFQ ALL
```

Response
You see information similar to the following:

```
DWO948I RECEIVER RECEIVER BUFFER QUEUED TOTAL STORAGE RCVR
DWO949I IDENTITY STATUS LIMIT BUFFERS BUFFERS ALLOCATED ASID
DWO950I -------- -------- ---------- ---------- ---------- ---------- ----
DWO952I NETVALRT INACTIVE 1000 0 0 0 0
```
<table>
<thead>
<tr>
<th>RECEIVER IDENTITY</th>
<th>Displays the ID of the program-to-program interface receiver.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECEIVER STATUS</td>
<td>Indicates whether the program-to-program interface receiver is active or inactive.</td>
</tr>
<tr>
<td>BUFFER LIMIT</td>
<td>Displays the receiver’s buffer queue limit.</td>
</tr>
<tr>
<td>QUEUED BUFFERS</td>
<td>Displays the number of buffers in the receiver’s queue.</td>
</tr>
<tr>
<td>TOTAL BUFFERS</td>
<td>Displays the total number of buffers that were sent to a receiver during the time a receiver was defined.</td>
</tr>
<tr>
<td>STORAGE ALLOCATED</td>
<td>Displays the number of bytes allocated for the buffers in the receiver’s buffer queue.</td>
</tr>
<tr>
<td>RCVR ASID</td>
<td>Displays the address space ID of the program-to-program interface receiver.</td>
</tr>
</tbody>
</table>

Note: Inactive PPI receivers do not list an ASID.

Example: Displaying Trace Status for All Program-to-Program Interface Receivers

To display trace status for all program-to-program interface receivers, enter:

From an MVS console:

```
F ssiname,DISPPI TRACE ALL
```

From a NetView terminal:

```
DISPPI TRACE ALL
```

You will see information similar to the following:

```
DWO955I RECEIVER TRACE Trace
DWO956I IDENTITY STATUS BUFFER SIZE
DWO950I --------- ---------  ---------
DWO951I NETVALRT ACTIVE 100
DWO951I RECVR001 ACTIVE 100
DWO968I END OF DISPLAY
```

Where:

RECEIVER IDENTITY

Displays the ID of the program-to-program interface receiver.

TRACE STATUS

Is ACTIVE, INACTIVE or NOT DEFINED. ACTIVE means that the receiver has a trace defined and the trace is turned on. INACTIVE means that the receiver has a trace defined but the trace has been turned off. NOT DEFINED means that the receiver does not have a trace defined.
TRACE BUFFER SIZE
Displays the number of bytes being copied into a trace record from each buffer being sent or received by the receiver.

Example: Displaying Information about the Program-to-Program Interface Trace Table
To display information about the program-to-program interface trace table, enter the following.

From an MVS console:
F ssidname,DISPPI TABLE

From a NetView terminal:
DISPPI TABLE

Response
You see information similar to the following:

```
DWO957I TRACE DEFINED: YES
DWO959I TRACE TYPE: INTERNAL
DWO962I TABLE SIZE: 10
DWO963I TABLE ADDRESS: 02B2D000
DWO964I TRACE ALL: YES
DWO965I DEFAULT BUFFER SIZE: 100
DWO968I END OF DISPLAY
```

OR

```
DWO957I TRACE DEFINED: YES
DWO960I TRACE TYPE: GTF
DWO964I TRACE ALL: YES
DWO966I DEFAULT BUFFER SIZE: 100
DWO968I END OF DISPLAY
```

OR

```
DWO957I TRACE DEFINED: YES
DWO961I TRACE TYPE: GTF DISABLED
DWO964I TRACE ALL: YES
DWO966I DEFAULT BUFFER SIZE: 100
DWO968I END OF DISPLAY
```

OR

```
DWO957I TRACE DEFINED: YES
DWO960I TRACE TYPE: GTF
DWO965I TRACE ALL: NO
DWO968I END OF DISPLAY
```

OR

```
- CNM01 DWO958I TRACE DEFINED: NO
```

Where:

TRACE DEFINED
Indicates whether a trace is currently defined.

TRACE TYPE
Indicates whether an internal or GTF trace is defined.
TABLE SIZE
Contains the size of the program-to-program interface trace table in number of pages. (One page is 4096 bytes.)

TABLE ADDRESS
Indicates the address, in hexadecimal, of the program-to-program interface trace table.

TRACE ALL
Indicates whether all receivers are being traced.

DEFAULT BUFFER SIZE
Indicates the default trace buffer size when a receiver initializes the program-to-program interface with the program-to-program interface trace facility on.
DISPREG (NCCF)

Syntax

DISPREG

Purpose of Command

The DISPREG command displays registration information and hierarchy for programmable network access (PNA) resources. You can use this command to determine what the upstream and downstream resources are and whether a resource is registered. If the resource you specify is a front-end PNA, all lower level resources are displayed in addition to the front-end PNA. If the resource you specify is not a front-end PNA, the complete hierarchy from the front-end PNA down to the resource is displayed.

The following information is displayed:

- The type of resource. The possible resource types are:
 - FE_GATEWAY: A front-end resource
 - BE_GATEWAY: A back end resource
 - PU: A physical unit
- The name of the upstream link.
- The name of the resource.
- The recovery status. The possible values are:
 - COMPLETE: Indicates that resource recovery is complete.
 - ACTIVE/Q: Indicates that the resource is active but it is waiting on query registration.
 - PENDING: Indicates that the resource is pending.
- The date and time the resource registered.
- The name of the application running in the gateway.

Operand Descriptions

ID=resname

Is the name of the PNA resource whose information you want to display. If you enter the DISPREG command with no parameters, all front-end PNA resources are displayed.

Examples

Example: Displaying information about a Specified Resource

If you want to display information about resource P3C02410, enter:

DISPREG ID=P3C02410
Response

DWO149I DISPLAY REGISTRATION FOR P3C02410
DWO149I FE_GATEWAY --N/A-- P3C02410 COMPLETE 07/09/97 17:11:51 PNA
DWO149I PU CILINE0 NVP_CPU COMPLETE -------N/A------- --N/A--
DWO149I PU CILINE1 PU3174 COMPLETE 07/09/97 17:11:51 PNA
DWO149I BE_GATEWAY C0LINE1 PNACAS COMPLETE 07/09/97 17:11:53 PNA
DWO149I PU CILINE1 CLU000 COMPLETE -------N/A------- --N/A--
DWO149I END OF DISPLAY
DM (NCCF)

Syntax

```
DM
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>CLRHELD, DELHMSG</td>
</tr>
</tbody>
</table>

Purpose of Command

Use the DM command to selectively delete held or frozen messages from your NetView command facility display (NCCF). You can delete one specific message, a group of messages with the same prefix, or all of your held messages.

Operand Descriptions

ALL
- Deletes all messages held on your NetView command facility display, including messages generated by AON and other programs.

message_string
- Deletes any messages beginning with the string you specify. For example:
 - **AON**
 - Deletes all AON messages.
 - **SA390**
 - Deletes all SA/390 messages.
 - **IST**
 - Deletes all VTAM messages.
 - **DSI**
 - Deletes all NetView messages.

type_pos
- The start position to use for the message type. The default is 7.

message_string
- The identifier that represents the type of message.
 - **A** Action message
 - **D** Action message
 - **E** Error message
 - **I** Informational message
Warning

Usage Notes

- The message_string parameter can be any text such as IST, IST1, DSI, DWO, AAU, EZL, FKV, FKW, FKX, IEC, IEE, USR, and ABCDEFG.
- You cannot delete one-character message strings that match the supported message types A, E, I, W, or D.

Examples

To delete all held messages, issue:
DM

To delete all AON held messages, issue:
DM AON

To delete all AOF* informational and action type messages, issue:
DM AOF I A

To delete all DSI5* informational messages, issue:
DM DSI5 I

To delete all AON and SA390 messages, issue:
DM AON SA390

To delete all EZL and AOF informational and action type messages, issue:
DM EZL AOF I A
DMPRESET (RODM)

Syntax

From an MVS console:

DMPRESET

MODIFY name,DMPRESET

From a NetView terminal:

DMPRESET

MVS MODIFY name,DMPRESET

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIFY</td>
<td>F</td>
</tr>
</tbody>
</table>

Purpose of Command

The DMPRESET command enables the user to clear the dump statistics used by RODM to enforce the DUMP_LIMIT. The DUMP_LIMIT parameter is specified in the customization file. Use this command if you have reached your DUMP_LIMIT, but want to enable dumps for RODM before the allowed time interval. After issuing DMPRESET, the DUMP_LIMIT is in effect. However, it is as if no dumps had occurred in the last time interval.

Operand Descriptions

name

Specifies the RODM MVS job name.

Restrictions

The following restriction applies to the DMPRESET command:

• The DMPRESET command can be issued from a NetView Operator ID (using the MVS command) or an MVS console.

Examples

Example: Clearing the current RODM dump statistics
To clear the current RODM dump statistics, enter:

F name,DMPRESET
DRATIO (NPDA)

Syntax

```
DRATIO
```

```
DRATIO ALL resname
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRATIO</td>
<td>DR</td>
</tr>
</tbody>
</table>

Purpose of Command

The DRATIO command displays the current ratio established for the error-to-traffic alerting threshold for a specified resource. This command can be entered from the hardware monitor menu panel, a command list, an automated operator, or any NetView component.

Operand Descriptions

ALL

When specified in an environment other than an NPDA panel (such as a command list, autotask, PPT or NCCF console), specifies that the ratio is displayed for all entries if multiple entries are found.

When specified from an NPDA panel, the ALL parameter has no effect.

N

Specifies that the next operand is a resource name.

resname

Specifies the symbolic name of the resource. You can specify up to five resource names to fully qualify the resource for which data is to be displayed.

Usage Notes

Whenever statistics are reported to the hardware monitor, the error counters and traffic counters are compared to determine the current error-to-traffic ratio. If this ratio exceeds the threshold set by your system programmer, the statistic becomes an alert, unless blocked by an alert recording filter.

If you are issuing the command from within NPDA and the name of the resource specified is not a unique resource configuration on the database, a selection panel is displayed on which you can choose which configuration is relevant.

If you are issuing the command from within a command list and the name of the resource specified is not a unique configuration on the database, message BNJ1963I is issued. Determine the unique resource and reissue the command or use the ALL parameter to display all the configurations that match the specified resource.

If you are issuing the command outside a command list in an environment other than NPDA and the name of the resource specified is not a unique configuration...
on the database, the Hardware Monitor Multiple Entries panel is displayed. From this panel select one or more configurations to display.

Restrictions
The following restrictions apply to the DRATIO command:
- The resource names that you can use with this command must have resource types which conform to the following conditions:
 - In a second-level resource hierarchy, the only valid resource type for the second-level resources are CBUS, FRLY, and LAN.
 - In a third-level resource hierarchy, all resource types are valid.
 - In a fourth-level resource hierarchy, the fourth-level resource cannot have a resource type of LINE.
 - In a fifth-level resource hierarchy, all resource types are valid.
- You cannot run this command from a multiple entries panel.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The command, issued from a command list, was successful for all entries of a multiple entries panel.</td>
</tr>
<tr>
<td>2</td>
<td>The command, issued from a command list, did not specify the ALL parameter, but multiple entries were found.</td>
</tr>
<tr>
<td>4</td>
<td>The command, issued from a command list, encountered multiple entries for one or more of the resource hierarchies and failed.</td>
</tr>
</tbody>
</table>

Examples

Example: Displaying the Status and Threshold Value of the Error-to-Traffic Ratio for a Specified Device
To display the status and threshold value of the error-to-traffic ratio for PU08, enter:

DRATIO N PU08
DRDS (NCCF; CNME0011)

Syntax

```
DRDS
   resname
   ,passthru
```

Purpose of Command

The DRDS command list reconfigures a network control program (NCP) with a specific dynamic reconfiguration data set or file.

Operand Descriptions

`resname`

Is the name of a member in a data set or the name of a CMS file containing the dynamic reconfiguration (DR) statements.

`passthru`

Specifies up to 6 parameters which are appended unchanged to the VTAM VARY command issued by the DRDS command. No validation for duplicate or conflicting parameters is performed.

Restrictions

Resources that are dynamically reconfigured are not known to the status monitor.
DROPCL (NCCF)

Syntax

```markdown
DROPCL
clist_name
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>DROPCL</td>
<td>DCL</td>
</tr>
</tbody>
</table>

Purpose of Command

The DROPCL command drops, or purges, the command lists that were previously loaded by the LOADCL command from main storage.

See LOADCL command for more information.

Operand Descriptions

`clist_name`

- Specifies the name or names of the storage-resident command lists to be dropped.
- * If specified alone, * indicates that all storage-resident command lists are to be dropped.

Usage Notes

Enter at least one `clist_name` operand.

You receive message CNM411I following the successful completion of the DROPCL command. The format of message CNM411I is:

```
CNM411I COMMAND LIST cmdlst DROPPED
```

Where `cmdlst` is the name of the command list as it was entered in the LOADCL command (not as it was entered in the DROPCL command).

Restrictions

If another operator is running the command list when the DROPCL command is issued, the drop does not occur until the processing completes.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td><code>clist_name</code> is not loaded</td>
</tr>
</tbody>
</table>
Examples

Example: Purging a Previously Loaded Command List
To purge the command list WTOR2, previously loaded by the LOADCL command, enter:
DROPCL WTOR2

Response

If the command list is currently not in use, the response is:
CNM411I COMMAND LIST WTOR2 DROPPED

If the command list is currently in use, the response is:
CNM425I DROP PENDING FOR COMMAND LIST WTOR2

When all users currently using STATA have finished, the command list is dropped.
DROUTE (NCCF; CNME0012)

Syntax

```
DROUTE subarea1, ER=ALL, ER=ernumber, COS=' ', COS=cosname, VR=vrnumber,
,ORIGIN=subarea2_puname, NET=netid, passthru
```

Purpose of Command

The DROUTE command list displays the status of explicit routes and virtual routes in a domain.

Operand Descriptions

`subarea1`

Is the subarea of the destination.

`ER=`

Indicates the explicit route number. If you specify this operand, the explicit routes to the specified destination area that are identified by this explicit route number are displayed.

`ALL`

Displays every explicit route to the specified destination subarea. ALL is the default.

`ernumber`

Is an explicit route number (0–7).

`COS=`

Is the class-of-service name. COS=cosname specifies that all virtual routes to the specified destination subarea within this class of service are displayed. COS=' ' specifies a cosname value of blanks to be passed to VTAM.

`VR=vrnumber`

Is a virtual route number (0–7). If you specify this operand, the virtual routes to the specified destination subarea that are identified by this virtual route number are displayed.

`NO`

Specifies that the requested route status is to be displayed, but that no explicit route test is to be performed. NO is the default.
YES
 Specifies that an explicit route test is to be performed for each explicit route contained in the requested display.

ORIGIN=\texttt{subarea2_pu\textunderscore name}
 Specifies the name of the subarea PU where the route starts.

NET=\texttt{netid}
 Specifies the network attached to the origin node that contains the routes.

\texttt{passthru}
 Specifies up to 6 parameters which are appended unchanged to the VTAM DISPLAY command issued by the DROUTE command. No validation for duplicate or conflicting parameters is performed.

Restrictions

The explicit route numbers are 0–15, rather than 0–7, for the following:
- VTAM Version 3 Release 2 and later releases
- NCP Version 5 Release 2.1 and later releases

\textbf{Note:} You can code explicit route numbers 0–15 only if you specify ERLIMIT=16 on the BUILD definition statement in NCP.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Functioned normally</td>
</tr>
</tbody>
</table>

Examples

\textbf{Example: Displaying an Explicit Route Number to a Specified Subarea without Performing an Explicit Route Test}
To display the explicit route number 1 to subarea 20 without doing an explicit route test, enter:
\texttt{DROUTE 20,ER=1,ORIGIN=NCP1}

Response

If the DROUTE request is successful, you receive a response similar to:
\texttt{IST535I ROUTE DISPLAY 3 FROM SA 10 TO SA 20}
\texttt{IST808I ORIGIN PU = NCP1 DEST PU = NCP2}
\texttt{IST536I VR TP STATUS ER ADJSUB STATUS}
\texttt{IST537I 5 0 INACT 1 20 INOP}
\texttt{IST537I 5 1 INACT 1 20 INOP}
\texttt{IST537I 5 2 INACT 1 20 INOP}
\texttt{IST314I END}

In this example, VR is the virtual route number and TP is the transmission priority, the status is inactive, ER is the explicit route number, and ADJSUB is the adjacent subarea number with a status of inoperative.
DSILCMD (NCCF)

Syntax

```
DSILCMD
```

Purpose of Command

The DSILCMD command lists the set of NetView commands that meet the selection criteria specified or defaulted on the command. The display contains a header line, followed by one or more unordered detail lines. A command can appear multiple times depending upon the name selection criteria. Each detail line contains the following information for one command:

- The name of the command.
- The date and time that the command was added with the ADDCMD command or CMDMDL statement.
- The ID of the NetView operator who added the command.
- The number of times the command was invoked since it was added.
- The name and size of the command module.
- Whether or not the command was deleted, but not freed from storage.
- The type of command.
- Whether or not the command is resident.
- Whether or not the command is to be echoed.
- Whether or not the command is to be parsed.
- The type of security verification to be performed when the command is executed.
- Whether or not suppression characters are honored for logging of the command.

If the command has command synonyms, they are listed within single parentheses, for example (synonym,synonym). If the command has parameter synonyms, the parameters are listed within single parentheses. Within those parentheses, the corresponding synonyms are listed within a second pair of parentheses following...
the parameter, for example, (parameter(synonym)). If there are no command or parameter synonyms, the parentheses are empty, for example ().

Operand Descriptions

NAME=|commandname**

Is the wildcarded NetView command or command synonym name to be used to search the NetView system command table (SCT). Any NetView command or command synonym that matches any specified names are included in the output list if the SCT entry also satisfies the other specified selection criteria. A single asterisk (*) matches all SCT entries and is the default.

The parentheses are not required if only a single wildcarded *commandname* is specified. Multiple specifications of *commandname* must be enclosed in parentheses and separated by either blanks or commas.

MOD=|modulename**

Is the wildcarded name of the NetView command processor module. Any NetView command processor name that matches any specified names are included in the output list if the SCT entry also satisfies the other specified selection criteria. A single asterisk (*) matches all SCT entries and is the default.

The parentheses are not required if only a single wildcarded *modulename* is specified. Multiple specifications of *modulename* must be enclosed in parentheses and separated by either blanks or commas.

DATE=|TODAY|date1-date2**

The *date1-date2* is the range of dates during which the NetView commands were added to the SCT. The dates must be in the format yyyyMMdd. The specified date cannot be later than the current date. The *date2* must be equal to, or greater than, *date1* and separated with a dash (-) with no embedded blanks. Any NetView command that was added within, and including the dates in the specified range, is included in the output list if the SCT entry also satisfies the other specified selection criteria. If a single *date1* is specified, only the NetView commands added on that date is included in the output list.

If an asterisk (*) is specified for *date1*, all NetView commands added since the last time NetView was started, up to and including *date2*, are included in the output list. If an asterisk (*) is specified for *date2*, all NetView commands added on *date1*, up to and including the day the command is executed, are included in the output list. A single asterisk (*) matches all SCT entries and is the default.

TODAY specifies only those commands added since midnight of the current day are included in the output list.

OPID=|"|operatorid**

The *operatorid* is the wildcarded NetView operator ID of the operator that added the commands dynamically with the ADDCMD command or SYSOP for commands added with a CMDMDL statement. Any operator ID in the NetView SCT that matches any specified *operatorid* is included in the output list if the SCT entry also satisfies the other specified selection criteria. A single asterisk (*) matches all SCT entries and is the default.

The double quotation marks (") matches SCT entries having the ID of the operator issuing this display command.

The parentheses are not required if a single wildcarded *operatorid* is specified. Multiple specifications of *operatorid* must be enclosed in parentheses and separated by either blanks or commas.
USAGE= *min-max*

The *min-max* is the range of NetView command invocation counts since the command was added. The *max* must be equal to, or greater than, *min* and separated with a dash (-) with no embedded blanks. The *min* and *max* must be numeric values in the range 0–2147483647 or an asterisk (*). If an asterisk is specified for *max*, the maximum value is 2147483647. Any NetView command that has been invoked the number of times specified within the range, including the minimum and maximum values specified, is included in the output list if the SCT entry also satisfies the other specified selection criteria. If only *min* is specified, only NetView commands with invocation counters equal to *min* are included in the output list. A single asterisk matches all SCT entries and is the default.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Processing successful</td>
</tr>
<tr>
<td>2</td>
<td>No commands qualify for listing</td>
</tr>
<tr>
<td>4</td>
<td>Syntax error</td>
</tr>
<tr>
<td>8</td>
<td>Specification error</td>
</tr>
<tr>
<td>12</td>
<td>Internal processing error (for example, no storage)</td>
</tr>
</tbody>
</table>

Usage Notes

A command synonym or name with special characters (for example, =) must be enclosed in a quoted string. A quoted string cannot be included in a list of names.

Consider the following when using wildcards:
- The wildcard characters are an asterisk (*) and a question mark (?).
- The * matches any number of characters.
- The ? matches a single character.
- A wildcard name can be comprised of any mixture of wildcard characters and fixed characters, only fixed characters, or a single * character.
- Wildcard names and IDs used in this command cannot exceed 8 characters.
DSILSSIR (NCCF)

Syntax

DSILSSIR

- STATS
- ALLSTATS
- SHOWMSG

Purpose of Command

The DSILSSIR command provides statistical information about the CNMCSSIR task and other task MVS message and command queues. It can also display the queue of pending messages within the CNMCSSIR task.

Operand Descriptions

ALLSTATS
Issues BNH537I messages for each task having MVS message and command statistics.

SHOWMSG
Issues BNH538I messages for each message retained on the CNMCSSIR task internal queue. This option is used by CNME1103. These messages consist of the BNH538I message ID, then information about the message, followed by the original message text. For more information about the contents of the message, see the [Tivoli NetView for z/OS Messages and Codes](#).

In addition, the messages have the attributes of the original messages. Therefore, if the message has the attributes of a WTOR, the corresponding BNH538I has the attributes of a WTOR. For this reason, BNH538I is not exposed and therefore not automated or logged. To expose BNH538I, embed the DSILSSIR command within a PIPE that contains a subsequent EXPOSE FORCE state.

STATS
Issues message BNH536I containing CNMCSSIR MVS message and command statistics.

Usage Notes

NetView procedure CNME1103 uses the DSILSSIR command to retrieve the queue of backlog action messages.
DSISAPDR (NCCF; CNME1085)

Syntax

```
DSISAPDR
```

```
>>DSISAPDR resname
```

Purpose of Command

The DSISAPDR command list changes the service adapter password for a 3710 Network Controller.

Operand Descriptions

```
resname
```

Is the network name of the 3710 containing the PC element field to be changed.

Restrictions

Enter the password into the command list using an editor. The password must be 6 to 8 alphanumeric characters. The first character of the password must be alphabetic, or @, #, or $.

Examples

Example: Changing the Password for a Specified User

To change the password for NYC3710, edit the command list to change the password, then issue the command:

```
DSISAPDR NYC3710
```
DSIZKNYJ

Syntax

```
DSIZKNYJ
```

Purpose of Command

The DSIZKNYJ command is used to edit encrypted definition member DSITCPRF in DSIPRF. If you are authorized to issue this command, follow the on-screen instructions. For more information, refer to the Tivoli NetView for z/OS Security Reference.
DSRBS (NCCF)

Syntax

DSRBS
 DSRBS taskname

Purpose of Command

The DSRBS command displays the usage of data services request blocks (DSRBs) by data services tasks.

The following information is displayed:

- Unsolicited DSRBs (DSRBU)
 The Number of solicited and unsolicited DSRBs allocated, in use, and available
- Solicited DSRBs (DSRBO)
 The Number allocated, in use, being redriven because of VSAM contention, and available
- Total DSRBs (DSRBO + DSRBU)
 The Number allocated, in use, being redriven because of VSAM contention, and available

For DSRBs currently in use, the following information is displayed:

- Type of DSRB (unsolicited or solicited)
- Status (active or inactive)
- Task that initiated the request
- Type of request

 VSAM
 Used for a VSAM request from the DSIZVSMS macro

 CNMI
 Used for a CNMI request from the DSIZCSMS macro

 LUC
 Used for a request over an LUC session

 HLL
 Used for a high-level language application for a synchronous send from the LU 6.2 transport

- Type of VSAM request (ENDREQ, ERASE, GET, POINT, PUT)
- Whether the VSAM request is being redriven because of contention (YES|NO)
- Request serial number

The request serial number is a unique number assigned to each new request when a DSRB is allocated to process the request. During normal processing, the serial number displayed for a particular DSRB is updated frequently. If this number does not change for an extended period of time, it might be an indication that the task for which the DSRBS command was entered is hung.

- Step sequence number
The step sequence number is a count of the number of VSAM or CNMI services that have been performed on behalf of this request. It is a count of the number of invocations of the DSIZCSMS and DSIZVSMS macros for the request.

Operand Descriptions

taskname

Is the name of the data services task (DST) whose data services request block use you want to display.

Usage Notes

The DSRBS command is useful in determining DSTs that are hung waiting for requests to complete. This command is also useful in determining the optimum number of DSRBs to allocate. Too few DSRBs can result in DST requests being queued. Too many DSRBs can result in excessive storage and CPU use, and excessive numbers of VSAM requests being redriven.

When the DSRBS command is invoked directly from the NetView console, it is a full-screen command processor. Otherwise, the output is generated using message DSI379I. If the command was issued in full-screen mode, press the ENTER key each time you want updated information. The screens are automatically copied to the network log.

Restrictions

The following restrictions apply to the DSRBS command:

- System and subsystem consoles, in multiline messages, the title line is truncated at 34 characters, while the remaining lines are truncated at 68 characters.
- If DSRBS is run on the primary program operator interface task (PPT) or an automated task, the screen is copied to the log and command processing ends. This allows DSRBS to run on a NetView timer command.
- The DST being displayed must be active.
- For DSRBs currently in use, the TYPE of request might be N/A, meaning more specific information is not available. These DSRBs are not being used for any of the long-running requests (VSAM, CNMI, HLL, or LUC) for which a DSRB might be suspended and later redriven. In general, these DSRBs are used to process work that the task whose name is displayed for the DSRB gives to the task for which the command was entered. The REQUEST and REDRIVE columns are valid only for VSAM requests and display N/A for DSRBs that are not being used for VSAM requests.

Examples

Example: Displaying Information about the Hardware Monitor’s Data Services Request Block

To display information about the hardware monitor’s data services request block use, enter:

```plaintext
DSRBS BNJDSERV
```

Response

```plaintext
DSRBS  Data Services Request Block Usage for BNJDSERV

Unsolicited DSRBs: 5 Used: 0 Free: 5
Solicited DSRBs:  5 Used: 5 VSAM Redrive: 0 Free: 0
TOTAL DSRBs: 10 Used: 5 VSAM Redrive: 0 Free: 5
```
Current DSRB Usage

<table>
<thead>
<tr>
<th>No.</th>
<th>DSRB Status</th>
<th>Taskname</th>
<th>Type</th>
<th>Request</th>
<th>Redrive</th>
<th>Serial No.</th>
<th>Step No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Unsl Inact</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>Unsl Inact</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>Unsl Inact</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>Unsl Inact</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>005</td>
<td>Unsl Inact</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>006</td>
<td>Soli Active</td>
<td>NCF01PPT</td>
<td>VSAM Erase</td>
<td>No</td>
<td>5104</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>007</td>
<td>Soli Active</td>
<td>NCF01PPT</td>
<td>VSAM Get</td>
<td>No</td>
<td>5100</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>008</td>
<td>Soli Active</td>
<td>NCF01PPT</td>
<td>VSAM Put</td>
<td>Yes</td>
<td>5105</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>009</td>
<td>Soli Active</td>
<td>PCF01PPT</td>
<td>VSAM Get</td>
<td>No</td>
<td>5102</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>010</td>
<td>Soli Active</td>
<td>PCF01PPT</td>
<td>VSAM Put</td>
<td>No</td>
<td>5103</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Example: Displaying Information about the Session Monitor’s Data Services Request Block

To display information about the session monitor’s data services request block use, enter:

DSRBS AAUTSKLP

Response

DSRBS Data Services Request Block Usage for AAUTSKLP

Unsolicited DSRBs: 2 Used: 0 Free: 2
Solicited DSRBs: 5 Used: 1 VSAM Redrive: 0 Free: 4
TOTAL DSRBs: 7 Used: 1 VSAM Redrive: 0 Free: 6

Current DSRB Usage

<table>
<thead>
<tr>
<th>No.</th>
<th>DSRB Status</th>
<th>Taskname</th>
<th>Type</th>
<th>Request</th>
<th>Redrive</th>
<th>Serial No.</th>
<th>Step No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>UNSL INACT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>UNSL INACT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>SOLI ACTIVE</td>
<td>DSIAMLUT</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>1827</td>
<td>14</td>
</tr>
<tr>
<td>004</td>
<td>SOLI INACT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>005</td>
<td>SOLI INACT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>006</td>
<td>SOLI INACT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>007</td>
<td>SOLI INACT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The active DSRB in this display is most likely being used to process session awareness data that has been passed from DSIAMLUT to AAUTSKLP.
DWRAP (NPDA)

Syntax

DWRAP

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>DWRAP</td>
<td>DW</td>
</tr>
</tbody>
</table>

Purpose of Command

The DWRAP command displays the current wrap count. The wrap count is the number of records to be retained in the database for a specified resource. This command can be entered from the hardware monitor menu panel, a command list, an automated operator, or any NetView component.

Operand Descriptions

AL
Displays the wrap count for alert data.

ALL
When specified in an environment other than an NPDA panel (such as command list, autotask, PPT or NCCF console), specifies that the wrap count is displayed for all entries if multiple entries are found. The ALL parameter is valid only for event or statistical data.

When specified from an NPDA panel, the ALL parameter has no effect.

EV
Displays the wrap count for event data.

N
Identifies the following operand as a resource name.

`resname`
Specifies the name of the resource (for event and statistical data only). You can specify up to five resource names to fully qualify the resource for which data is to be displayed.

ST
Displays the wrap count for statistical data.

Restrictions

The following restrictions apply to the DWRAP command:
If you are issuing the command from within NPDA and the name of the resource specified is not a unique resource configuration on the database, a selection panel is displayed on which you can choose which configuration is relevant.

If you are issuing the command from within a command list and the name of the resource specified is not a unique configuration on the database, message BNJ1963I is issued. Determine the unique resource and reissue the command or use the ALL parameter to display all the configurations that match the specified resource.

If you are issuing the command outside a command list in an environment other than NPDA and the name of the resource specified is not a unique configuration on the database, the Hardware Monitor Multiple Entries panel is displayed. From this panel, select one or more configurations to display.

You cannot run this command from a multiple entries panel.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The command, issued from a command list, was successful for all entries of a multiple entries panel.</td>
</tr>
<tr>
<td>2</td>
<td>The command, issued from a command list, did not specify the ALL parameter, but multiple entries were found.</td>
</tr>
<tr>
<td>4</td>
<td>The command, issued from a command list, encountered multiple entries for one or more of the resource hierarchies and failed.</td>
</tr>
</tbody>
</table>

Examples

Example: Displaying the Statistical Data Wrap Count for a Specified Device

To display the statistical data wrap count for PU08, enter:

```
DWRAP ST N PU08
```
EKGVACTM (RODM)

Syntax

```
EKGVACTM
```

```
rodm_name  rodm_userid  rodm_user_password  CHECKPNT
CONNECT
DISCONN
STOP
STOPC
```

```
UCONNECT
UPDATE
```

Purpose of Command

The EKGVACTM command performs the connect, disconnect, checkpoint, and stop functions for the Resource Object Data Manager (RODM).

Operand Descriptions

- **rodm_name**
 Specifies the name of the RODM data cache. This name is specified in the MVS PARM field of the RODM started task, not the MVS procedure name.

- **rodm_userid**
 Specifies the userid used to connect to RODM.

- **rodm_user_password**
 Specifies the password used to connect to RODM.

- **CHECKPNT**
 Specifies to checkpoint the RODM data cache.

- **CONNECT**
 Specifies to connect to the RODM data cache.

- **DISCONN**
 Specifies to disconnect from the RODM data cache.

- **STOP**
 Specifies to stop the RODM data cache.

- **STOPC**
 Specifies to stop the RODM data cache after performing a RODM checkpoint.

- **UCONNECT**
 Specifies to connect to the RODM data cache and assigns `wildcard` to be the wildcard character for queries.

- **UPDATE**
 Changes the existing wildcard for the specified user.

- **wildcard**
 Specifies the wildcard character to be used in RODM queries.
Usage Notes

All parameters are required and must be separated by a blank. All parameters are positional. If you want to pass a null parameter, you can use N-U-L-L for null RODM_User_ID, and RODM_User_Password.

To use EKGVACTM with mixed case parameters, you must prefix the command with NETVASIS if it is used on the NetView command line, or with ADDRESS NETVASIS if used in a NetView REXX command list.

Restrictions

The RODMView command list uses the EKGVACTM command.

Return Codes

Return codes and reason codes are displayed in message EKGV68001I. For reason codes between 0 and 65535, refer to the Tivoli NetView for z/OS Resource Object Data Manager and GMFHS Programmer’s Guide. For reason codes greater than 65535, refer to message EKGV68001I in the NetView online help.

Examples

Example: Connecting to RODM
To connect to RODM with a name of EKGXRODM using a user ID of OPER1 with a null password, enter:

EKGVACTM EKGXRODM OPER1 N-U-L-L CONNECT

Example: Connecting to RODM Using Asterisk as the Query Wildcard
To connect and assign the asterisk (*) as the query wildcard, enter:

EKGVACTM EKGXRODM OPER1 N-U-L-L UCONNECT *
EKGVCHGM (RODM)

Syntax

EKGVCHGM

```
  rodm_name  rodm_userid  N  class_id  object_name

  object_id  field_name  field_id

  field_data
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD</td>
<td>A</td>
</tr>
<tr>
<td>ANON</td>
<td>A</td>
</tr>
<tr>
<td>CHAR</td>
<td>C</td>
</tr>
<tr>
<td>DELETE</td>
<td>D</td>
</tr>
<tr>
<td>REPLACE</td>
<td>R</td>
</tr>
</tbody>
</table>

Purpose of Command

The EKGVCHGM command changes the value of a field or a value subfield of an object or class in the RODM data cache. You can also specify whether change methods are triggered.

Operand Descriptions

- **rodm_name**
 Specifies the name of the RODM data cache. This name is specified in the MVS PARM field of the RODM started task, not the MVS procedure name.

- **rodm_userid**
 Specifies the user ID used to connect to RODM.

- **N**
 Specifies that change methods are not to be triggered.

- **Y**
 Specifies that change methods are to be triggered.

- **class_name**
 Specifies the name of the class for the field or value subfield to be changed.
class_id
 Specifies the ID of the class for the field or value subfield to be changed.

object_name
 Specifies the name of the object for the field or value subfield to be changed.

object_id
 Specifies the ID of the object for the field or value subfield to be changed.

field_name
 Specifies the name of the field or value subfield to be changed.

field_id
 Specifies the ID of the field or value subfield to be changed.

ANONYMOUSVAR
 Specifies that the data type of field_data is AnonymousVar.

BERVAR
 Specifies that the data type of field_data is BerVar.

CHARVAR
 Specifies that the data type of field_data is CharVar.

FLOATING
 Specifies that the data type of field_data is Floating.

INDEXLIST
 Specifies that the data type of field_data is IndexList.

INTEGER
 Specifies that the data type of field_data is Integer.

SMALLINT
 Specifies that the data type of field_data is SmallInt.

TIMESTAMP
 Specifies that the data type of field_data is TimeStamp.

ADD
 Specifies that the IndexList elements are added to those already defined for the field.

DELETE
 Specifies that the IndexList elements are deleted from those already defined for the field.

REPLACE
 Specifies that the IndexList elements replace those already defined for the field.

ANON
 Specifies that the field_data for the IndexList is hexadecimal data (AnonymousVar).

CHAR
 Specifies that the field_data for the IndexList is character data (CharVar).

field_data
 Specifies the data to be placed in the value of the field or value subfield.

Usage Notes
 All parameters are required and must be separated by a blank. All parameters are positional. If you want to pass a null parameter, you must supply one of these substitutions:
N-U-L-L
Value for null class name, object name, field name, RODM user ID, and
RODM user password

0 Value for null class ID, object ID, field ID, and maximum lines.

Hexadecimal values must be specified as even numbers of hexadecimal digits. No
delimiting X” characters are allowed.

To use EKGVCHGM with mixed case parameters, you must prefix the command
with NETVASIS if it is used on the NetView command line, or with ADDRESS
NETVASIS if used in a NetView REXX command list.

The RODMView command list uses the EKGVCHGM command.

Restrictions
The NetView command line is restricted to 240 characters. This can cause a
problem if you are supplying long names. To avoid this situation, you can supply
numeric identifiers and the null parameter substitution N-U-L-L for names.

Return Codes
Return codes and reason codes are displayed in message EKGV68001I. For reason
codes between 0 and 65535, refer to the Tivoli NetView for z/OS Resource Object Data
Manager and GMFHS Programmer’s Guide. For reason codes greater than 65535, refer
to message EKGV68001I in the online help.

Examples
Example: Setting the Value of a Field in RODM
To set the DisplayStatus field of object NAP.RES1 in the
GMFHS_Managed_Real_Objects_Class to 129, enter:

NETVASIS EKGVCHGM EKGXRODM OPER1 Y GMFHS_Managed_Real_Objects_Class
0 NAP.RES1 0 DisplayStatus 0 INTEGER 129
EKGVCREM (RODM)

Syntax

EKGVCREM

rodm_name rodm_userid parent_class_name parent_class_id

child_class_name object_name field_name field_data_type

inheritance_status

Purpose of Command

The EKGVCREM command creates classes, objects, and fields in the RODM data cache. You can also specify whether the created fields are private, public, or public and indexed.

Operand Descriptions

rodm_name

Specifies the name of the RODM data cache. This name is specified in the MVS PARM field of the RODM started task, not the MVS procedure name.

rodm_userid

Specifies the user ID used to connect to RODM.

parent_class_name

If you are creating a class, specifies the parent of the class you are creating. If you are creating an object or field, specifies the name of the class to which the object or field belongs.

parent_class_id

If you are creating a class, specifies the ID of the parent class for the class you are creating. If you are creating an object or field, specifies the ID of the class to which the object or field belongs.

child_class_name

If you are creating a class, specifies the name of the class. If you are creating an object or field, you should set this field to N-U-L-L.

object_name

If you are creating an object, specifies the name of the object. If you are creating a field, you set this to N-U-L-L.

field_name

Specifies the name of the field you are creating. If you are creating an object or class, you should set this to N-U-L-L.

field_data_type

If you are creating a field, specifies the RODM abstract data type of the field. This is a number from 1 to 32. For information about the RODM abstract data types, refer to the Tivoli NetView for z/OS Data Model Reference. If you are creating a class or an object, you should set this field to 0.
inheritance_status

Specifies that the inheritance status of the field you are creating. If you are not creating a field, you should set this field to 0. You can specify the following values when creating a field:

1 Specifies an inheritance status of public.
2 Specifies an inheritance status of private.
3 Specifies an inheritance status of public and indexed. Only CharVar and IndexList fields can be public and indexed, which enables the locate objects function to operate on them.

Usage Notes

All parameters are required and must be separated by a blank. All parameters are positional. If you want to pass a null parameter, you must supply one of these substitutions:

N-U-L-L

Value for null class name, object name, field name, RODM user ID, and RODM user password.

0 Value for null class ID, field data type, and inheritance status.

Hexadecimal values must be specified as even numbers of hexadecimal digits. No delimiting ‘X’ characters are allowed.

To use EKGVCREM with mixed case parameters, you must prefix the command with NETVASIS if it is used on the NetView command line, or with ADDRESS NETVASIS if used in a NetView REXX command list.

The RODMView command list uses the EKGVCREM command.

Restrictions

The NetView command line is restricted to 240 characters. This can cause a problem if you are supplying long names. To avoid this situation, you can supply numeric identifiers and the null parameter substitution N-U-L-L for names.

Return Codes

Return codes and reason codes are displayed in message EKGV68001I. For reason codes between 0 and 65535, refer to the Tivoli NetView for z/OS Resource Object Data Manager and GMFHS Programmer’s Guide. For reason codes greater than 65535, refer to message EKGV68001I in the NetView online help.

Examples

Example: Creating an Object in RODM

To create an instance named NAP.RES1 in the GMFHS_Managed_Real_Objects_Class, enter:

NETVASIS EKGVCREM EKGXRODM OPER1 GMFHS_Managed_Real_Objects_Class
 0 N-U-L-L NAP.RES1 N-U-L-L 0 0
EKGVDELM (RODM)

Syntax

EKGVDELM

- rodm_name rodm_userid class_name class_id object_name

- object_id field_name field_id

Purpose of Command

The EKGVDELM command deletes classes, objects, and fields in the RODM data cache. The delete function is subject to all RODM rules concerning deletion. There is no automatic deletion of objects, classes, or links. For information about deletion rules, refer to the Tivoli NetView for z/OS Resource Object Data Manager and GMFHS Programmer’s Guide.

Operand Descriptions

rodm_name
 Specifies the name of the RODM data cache. This name is specified in the MVS PARM field of the RODM started task, not the MVS procedure name.

rodm_userid
 Specifies the user ID used to connect to RODM.

class_name
 If you are deleting a class, specifies the name of the class. If you are deleting an object or field, specifies the name of the class to which the object containing the field belongs.

class_id
 If you are deleting a class, specifies the ID of the class. If you are deleting an object or field, specifies the ID of the class to which the object containing the field belongs.

object_name
 If you are deleting an object, specifies the name of the object. If you are deleting a field or class, you should set this to N-U-L-L.

object_id
 If you are deleting an object, specifies the object ID. If you are deleting a field or class, you should set this to 0.

field_name
 Specifies the name of the field you are deleting. If you are deleting an object or class, you should set this to N-U-L-L.

field_id
 Specifies the ID of the field you are deleting. If you are deleting an object or class, you should set this to 0.
Usage Notes

All parameters are required and must be separated by a blank. All parameters are positional. If you want to pass a null parameter, you must supply one of these substitutions:

N-U-L-L
 Value for null class name, object name, field name, RODM user ID, and RODM user password.

0 Value for null class ID, object ID, and field ID.

Hexadecimal values must be specified as even numbers of hexadecimal digits. No delimiting X’” characters are allowed.

To use EKGVDELM with mixed case parameters, you must prefix the command with NETVASIS if it is used on the NetView command line, or with ADDRESS NETVASIS if used in a NetView REXX command list.

The RODMView command list uses the EKGVDELM command.

Restrictions

The NetView command line is restricted to 240 characters; thereby, a problem can occur if you are supplying long names. To avoid this situation, you can supply numeric identifiers and the null parameter substitution N-U-L-L for names.

Return Codes

Return codes and reason codes are displayed in message EKGV68001I. For reason codes between 0 and 65535, refer to the Tivoli NetView for z/OS Resource Object Data Manager and GMFHS Programmer’s Guide. For reason codes greater than 65535, refer to message EKGV68001I in the NetView online help.

Examples

Example: Deleting a Field from an Object in RODM

To delete a field named ExtraData from class ExtraClass, enter:

NETVASIS EKGVDELM EKGXRODM OPER1 ExtraClass 0 N-U-L-L 0 ExtraData 0
EKGVLNKM (RODM)

Syntax

EKGVLNKM

```plaintext
EKGVLNKM  rodm_name  rodm_userid  LINKG  class1_name—class1_id
          LINKT
          LINKNT
          UNLINKG
          UNLINKT
          UNLINKNT

object1_name—object1_id—field1_name—field1_id—class2_name

class2_id—object2_name—object2_id—field2_name—field2_id
```

Purpose of Command

The EKGVLNKM command links or unlinks fields in the RODM data cache. The link function can also trigger associated methods. For linking or unlinking the GMFHS DisplayResourceType, AggregationParent, or AggregationChild, this command uses the DUIFCUAP or DUIFCLRT methods to perform the link function. For more information, refer to the Tivoli NetView for z/OS Resource Object Data Manager and GMFHS Programmer’s Guide.

Operand Descriptions

`rodm_name`
Specifies the name of the RODM data cache. This name is specified in the MVS PARM field of the RODM started task, not the MVS procedure name.

`rodm_userid`
Specifies the user ID used to connect to RODM.

`LINKG`
Triggers the DUIFCUAP or DUIFCLRT method to link the fields. The method used is determined by the classes to which the objects belong.

`LINKT`
Links the object fields and triggers associated methods.

`LINKNT`
Links the object fields without triggering associated methods.

`UNLINKG`
Triggers the DUIFCUAP or DUIFCLRT method to unlink the fields. The method used is determined by the classes to which the objects belong.

`UNLINKT`
Unlinks the object fields and triggers associated methods.

`UNLINKNT`
Unlinks the object fields without triggering associated methods.
class1_name
 Specifies the name of the class containing the object from which the link is to be created or removed.

class1_id
 Specifies the ID of the class containing the object from which the link is to be created or removed.

object1_name
 Specifies the name of the object from which the link is to be created or removed.

object1_id
 Specifies the ID of the object from which the link is to be created or removed.

field1_name
 Specifies the name of the field from which you are creating or removing a link. If you are linking or unlinking with LINKG or UNLINKG, you should set this field to N-U-L-L.

field1_id
 Specifies the ID of the field from which you are creating or removing a link. If you are linking or unlinking with LINKG or UNLINKG, you should set this field to zero (0).

class2_name
 Specifies the name of the class containing the object to which the link is to be created or removed.

class2_id
 Specifies the ID of the class containing the object to which the link is to be created or removed.

object2_name
 Specifies the name of the object to which the link is to be created or removed.

object2_id
 Specifies the ID of the object to which the link is to be created or removed.

field2_name
 Specifies the name of the field to which you are creating or removing a link. If you are linking or unlinking with LINKG or UNLINKG, you should set this field to N-U-L-L.

field2_id
 Specifies the ID of the field to which you are creating or removing a link. If you are linking or unlinking with LINKG or UNLINKG, you should set this field to zero (0).

Restrictions

The following restriction applies when you use the EKGVMETM command:

When using LINKG and UNLINKG to establish or break an aggregation path between two objects, the first object specification is the aggregation child and the second object specification is the aggregation parent.

All parameters are required and must be separated by a blank. All parameters are positional. If you want to pass a null parameter, you must supply one of these substitutions:
N-U-L-L
Value for null class name, object name, field name, RODM user ID, and RODM user password.

0 Value for null class ID, object ID, and field ID.

Hexadecimal values must be specified as even numbers of hexadecimal digits. No delimiting X’’ characters are allowed.

To use EKGVLNKM with mixed case parameters, you must prefix the command with NETVASIS if it is used on the NetView command line, or with ADDRESS NETVASIS if used in a NetView REXX command list.

The RODMView command list uses the EKGVLNKM command.

The NetView command line is restricted to 240 characters. This can cause a problem if you are supplying long names. To avoid this situation, you can supply numeric identifiers and the null parameter substitution N-U-L-L for names.

Return Codes
Return codes and reason codes are displayed in message EKGV68001I. For reason codes between 0 and 65535, refer to the Tivoli NetView for z/OS Resource Object Data Manager and GMFHS Programmer’s Guide. For reason codes greater than 65535, refer to message EKGV68001I in the NetView online help.

Examples
Example: Creating a Link between Objects in RODM
To create a link between the field ChildAccess of NAP.RES1 and field ParentAccess of NAP.RES2 in class GMFHS_Managed_Real_Objects_Class, and trigger any associated methods, enter:

```
NETVASIS EKGVLNKM EKGXRODM OPER1 LINKT
          GMFHS_Managed_Real_Objects_Class 0 NAP.RES1 0 ChildAccess 0
          GMFHS_Managed_Real_Objects_Class 0 NAP.RES2 0 ParentAccess 0
```

Example: Creating an Aggregation Link between Objects in RODM
To create an aggregation parent-child relationship between NAP1.RES1 in class GMFHS_Managed_Real_Objects_Class and NAP1.AGG in class GMFHS_Aggregate_Objects_Class, enter:

```
NETVASIS EKGVLNKM EKGXRODM OPER1 LINKG
          GMFHS_Managed_Real_Objects_Class 0 NAP1.RES1 0 N-U-L-L 0
          GMFHS_Aggregate_Objects_Class 0 NAP1.AGG 0 N-U-L-L 0
```
EKGVLOCM (RODM)

Syntax

```
EKGVLOCM

EKGVLOCM rodm_name rodm_userid output_option field_name field_id

CHARVAR max_lines locate_data
INDEXLIST
INDEXHEX
```

Purpose of Command

The EKGVLOCM command locates objects in RODM with the specified indexed field containing the specified data.

Operand Descriptions

- `rodm_name` Specifies the name of the RODM data cache. This name is specified in the MVS PARM field of the RODM started task, not the MVS procedure name.
- `rodm_userid` Specifies the user ID used to connect to RODM.
- `output_option` Specifies whether to return a count of the objects located or a formatted list of objects located. Valid values are:
 - 0 Indicates to return the count of located objects
 - 1 Indicates to return the list of located objects
- `field_name` Specifies the name of the field containing the data to be located.
- `field_id` Specifies the ID of the field containing the data to be located.
- `CHARVAR` Specifies to locate character data in an indexed CharVar field.
- `INDEXHEX` Specifies to locate hexadecimal data (AnonymousVar) in an indexed IndexList field.
- `INDEXLIST` Specifies to locate character data in an indexed IndexList field.
- `max_lines` Specifies the maximum number of lines to return as output.
- `locate_data` The data to be located based on the data type specified. CHARVAR and LISTCHAR data can be enclosed in single quotes to signify leading and trailing blanks. Hexadecimal data is not delimited by any special notation.
Usage Notes
All parameters are required and must be separated by a blank. All parameters are positional. If you want to pass a null parameter, you must supply one of these substitutions:

N-U-L-L
Value for null field name, RODM user ID, and RODM user password.

0 Value for null field ID.

Hexadecimal values must be specified as even numbers of hexadecimal digits. No delimiting X’‘ characters are allowed.

To use EKGVLOCM with mixed case parameters, you must prefix the command with NETVASIS if it is used on the NetView command line, or with ADDRESS NETVASIS if used in a NetView REXX command list.

The RODMView command list uses the EKGVLOCM command.

Restrictions
The NetView command line is restricted to 240 characters. This can cause a problem if you are supplying long names. To avoid this situation, you can supply numeric identifiers and the null parameter substitution N-U-L-L for names.

Return Codes
Return codes and reason codes are displayed in message EKGV68001I. For reason codes between 0 and 65535, refer to the Tivoli NetView for z/OS Resource Object Data Manager and GMFHS Programmer’s Guide. For reason codes greater than 65535, refer to message EKGV68001I in the NetView online help.

Examples
Example: Locating an Object in RODM
To locate an object in RODM with a DisplayResourceName of NAP.RES1, enter:

NETVASIS EKGVLOCM EKGXRODM OPER1 1 DisplayResourceName 0 CHARVAR 1 NAP.RES1
EKGVMETM (RODM)

Syntax

EKGVMETM

rodm_name rodm_userid method_name NAMED DELETE

OI INSTALL

REPLACE

TRIGGER

class_name class_id object_name object_id field_name field_id

Purpose of Command

The EKGVMETM command installs, deletes, replaces, or triggers methods in RODM.

Operand Descriptions

rodm_name
 Specifies the name of the RODM data cache. This name is specified in the MVS PARM field of the RODM started task, not the MVS procedure name.

rodm_userid
 Specifies the user ID used to connect to RODM.

method_name
 Specifies the name of the method.

NAMED
 Specifies that method_name is a named method.

OI
 Specifies that method_name is an object-independent method.

DELETE
 Specifies that method_name is to be deleted.

INSTALL
 Specifies that method_name is to be installed.

REPLACE
 Specifies that method_name is to be replaced.

TRIGGER
 Specifies that method_name is to be triggered.

class_name
 Specifies the name of the class under which the named method is to be installed, deleted, replaced, or triggered.

class_id
 Specifies the ID of the class under which the named method is to be installed, deleted, replaced, or triggered.

object_name
 Specifies the name of the object under which the named method is to be installed, deleted, replaced, or triggered.
object_id
Specifications the ID of the object under which the named method is to be installed, deleted, replaced, or triggered.

field_name
Specifications the name of the field under which the named method is to be installed, deleted, replaced, or triggered. The field type must be MethodSpec.

field_id
Specifications the ID of the field under which the named method is to be installed, deleted, replaced, or triggered. The field type must be MethodSpec.

Usage Notes
All parameters are required and must be separated by a blank. All parameters are positional. If you want to pass a null parameter, you must supply one of these substitutions:

N-U-L-L
Value for null class name. object name, field name, RODM user ID, and RODM user password.

0
Value for null class ID, object ID, or field ID.

To use EKGVMETM with mixed case parameters, you must prefix the command with NETVASIS if it is used on the NetView command line, or with ADDRESS NETVASIS if used in a NetView REXX command list.

The RODMView command list uses the EKGVMETM command.

Restrictions
The NetView command line is restricted to 240 characters. This can cause a problem if you are supplying long names. To avoid this situation, you can supply numeric identifiers and the null parameter substitution N-U-L-L for names.

Return Codes
Return codes and reason codes are displayed in message EKGV68001I. For reason codes between 0 and 65535, refer to the Tivoli NetView for z/OS Resource Object Data Manager and GMFHS Programmer’s Guide. For reason codes greater than 65535, refer to message EKGV68001I in the NetView online help.

Examples

Example: Installing a method in RODM
To install an object-independent method named USERMET1 in RODM, enter:

```
NETVASIS EKGVMETM EKGXRODM OPER1 USERMET1 OI INSTALL
   N-U-L-L 0 N-U-L-L 0 N-U-L-L 0
```
EKGVQUEM (RODM)

Syntax

EKGVQUEM

QuerySpec:

- rodm_name—rodm_userid—field_detail—subfield_detail—class_name
- class_id—object_name—object_id—field_name—field_id—max_lines

CompoundQuery:

GLOBALVARS invocation_tglobal Where Traverse

Where:

WHERE Clause
 AND Clause
 OR Clause

Traverse:

TRAVERSE traverse_field_name_tglobal Where

Clause:

field_name_tglobal = field_value_tglobal
 <
 >
 <=
 >=
 <>
 <=
 >=

Purpose of Command

The EKGVQUEM command queries RODM data for classes, objects, fields, and subfields. All data types can be output in either text or text and hexadecimal format.
The command can also be used to perform a compound query for objects that match a specified criteria.

Operand Descriptions

rodm_name

Specifies the name of the RODM data cache. This name is specified in the MVS PARM field of the RODM started task, not the MVS procedure name.

rodm_userid

Specifies the user ID used to connect to RODM.

field_detail

An integer value, interpreted as a bit field, which specifies the level of field information to produce. Specify the sum of the numbers to get the level of detail desired. The individual levels are:

- 1: Include field names and data type names only.
- 2: Include data contained in fields formatted normally.
- 4: Include data contained in fields formatted in hexadecimal.
- 8: Include field identifiers.
- 16: Include inheritance and index information.

subfield_detail

An integer value, interpreted as a bit field, which specifies the level of subfield information to produce. Specify the sum of the numbers to get the level of detail desired. The individual levels are:

- 0: Do not include subfield information.
- 1: Include subfield structure (subfield existence) only.
- 2: Include data contained in subfields formatted normally.
- 4: Include data contained in subfields formatted in hexadecimal.

class_name

Specifies the class name against which the query is to be performed.

class_id

Specifies the class ID against which the query is to be performed.

object_name

Specifies the object name against which the query is to be performed.

object_id

Specifies the object ID against which the query is to be performed.

field_name

Specifies the field name against which the query is to be performed.

field_id

Specifies the field ID against which the query is to be performed.

max_lines

Specifies the maximum number of lines to be returned as output.

GLOBALVARS

Specifies that the compound query form of the command is to be run. The query specification as well as the query criteria are stored in task global variables.
Invocation_tglobal
Specifies the name of a task global variable that contains a query specification. The value of the variable is a text string in the format defined as QuerySpec.

Field_name_tglobal
Specifies the name of a task global variable that contains the name of a field to be queried as part of a search criteria.

Field_value_tglobal
Specifies the name of a task global variable that contains the value against which the value of the field specified by field_name_tglobal is to be compared.

Traverse_field_name_tglobal
Specifies the name of a task global variable that contains the name of a list field to query for classes or objects. If specified, the classes or objects defined on this list field will be the ones further selected by optional Where criteria.

Restrictions
Consider the following restrictions when using the EKGVQUEM command:

- All parameters are required and must be separated by a blank. All parameters are positional. If you want to pass a null parameter, you must supply one of these substitutions:
 N-U-L-L
 Value for null class name, object name, field name, RODM user ID, and RODM user password.
 0
 Value for null class ID, object ID, or field ID.

- To use EKGVQUEM with mixed case parameters, you must prefix the command with NETVASIS if it is used on the NetView command line, or with ADDRESS NETVASIS if used in a NetView REXX command list.

- The RODMView command list uses the EKGVQUEM command.

- When using the compound query form of the command, fields with the following datatypes will only match on equal (=) or not equal (&<>) to N-U-L-L:
 - ClassIDList
 - ClassLinkList
 - CharVarAddr
 - method_parameter_list
 - MethodSpec
 - ObjectIDList
 - ObjectLink
 - ObjectLinkList
 - SelfDefining
 - RecipientSpec
 - SubscriptSpec
 - SubscriptSpecList
 - IndexList

The NetView command line is restricted to 240 characters. This can cause a problem if you are supplying long names. To avoid this situation, you can supply numeric identifiers and the null parameter substitution N-U-L-L for names.

Return Codes
Return codes and reason codes are displayed in message EKGV68001I. For reason codes in the range of 0–65535, refer to the Tivoli NetView for z/OS Resource Object
Examples

Example: Querying an Object in RODM
To query the hexadecimal object IDs of the first 100 objects in RODM under the class GMFHS_Managed_Real_Objects_Class, enter:

```
NETVASIS EKGVQUEM EKGXRODM OPER1 4 0
    GMFHS_Managed_Real_Objects_Class 0 N-U-L-L 0
    MyObjectChildren 0 100
```
EKGVSUBM (RODM)

Syntax

EKGVSUBM

\[\text{EKGVSUBM} \quad \text{rodm_name} \quad \text{rodm_userid} \quad \text{CREATE} \quad \text{DELETE} \quad \text{REVERT} \quad \text{CHANGE} \quad \text{NOTIFY} \quad \text{PREV_VALUE} \quad \text{QUERY} \quad \text{TIMESTAMP} \quad \text{VALUE} \]

\[\text{class_name} \quad \text{class_id} \quad \text{object_name} \quad \text{object_id} \quad \text{field_name} \quad \text{field_id} \]

Purpose of Command

The EKGVSUBM command creates and deletes subfields on classes, and reverts subfields to inherited values on RODM classes and objects.

Operand Descriptions

rodm_name

Specifies the name of the RODM data cache. This name is specified in the MVS PARM field of the RODM started task, not the MVS procedure name.

rodm_userid

Specifies the user ID used to connect to RODM.

CREATE

Specifies that a subfield is to be created.

DELETE

Specifies that a subfield is to be deleted.

REVERT

Specifies that a subfield is to revert to its inherited value.

CHANGE

Specifies that a change subfield is to be created, deleted, or revert to its inherited value.

NOTIFY

Specifies that a notify subfield is to be created, deleted, or revert to its inherited value.

PREV_VALUE

Specifies that a previous-value subfield is to be created, deleted, or revert to its inherited value.

QUERY

Specifies that a query subfield is to be created, deleted, or revert to its inherited value.

TIMESTAMP

Specifies that a timestamp subfield is to be created, deleted, or revert to its inherited value.
VALUE
Specifies that a value subfield is to revert to its inherited value.

class_name
Specifies the class name containing the subfield to be created, deleted, or revert to its inherited value.

class_id
Specifies the class ID containing the subfield to be created, deleted, or revert to its inherited value.

object_name
Specifies the object name containing the subfield to be created, deleted, or revert to its inherited value.

object_id
Specifies the object ID containing the subfield to be created, deleted, or revert to its inherited value.

field_name
Specifies the field name containing the subfield to be created, deleted, or revert to its inherited value.

field_id
Specifies the field ID containing the subfield to be created, deleted, or revert to its inherited value.

Usage Notes
All parameters are required and must be separated by a blank. All parameters are positional. If you want to pass a null parameter, you must supply one of these substitutions:

N-U-L-L
Value for null class name, object name, field name, RODM user ID, and RODM user password.

0
Value for null class ID, object ID, or field ID.

To use EKGVSUBM with mixed case parameters, you must prefix the command with NETVASIS if it is used on the NetView command line, or with ADDRESS NETVASIS if used in a NetView REXX command list.

The RODMView command list uses the EKGVSUBM command.

Restrictions
The NetView command line is restricted to 240 characters. This can cause a problem if you are supplying long names. To avoid this situation, you can supply numeric identifiers and the null parameter substitution N-U-L-L for names.

Return Codes
Return codes and reason codes are displayed in message EKGV68001I. For reason codes in the range of 0–65535, refer to the Tivoli NetView for z/OS Resource Object Data Manager and GMFHS Programmer’s Guide. For reason codes greater than 65535, refer to message EKGV68001I in the NetView online help.
Examples

Example: Reverting a RODM Subfield to its Inherited Value
To revert the notify subfield of the MyObjectChildren field of the class GMFHS_Managed_Real_Objects_Class to its inherited value, enter:

```
NETVASIS EKGVSUBM EKGRDOM OPER1 REVERT NOTIFY
    GMFHS_Managed_Real_Objects_Class 0
    N-U-L-L 0 MyObjectChildren 0
```
ENABLE (NLDM)

Syntax

NLDM ENABLE

Purpose of Command

The NLDM ENABLE command begins collection of session awareness data. The command enables the session monitor to be aware of currently active sessions and any sessions activated after the command is issued.
END

Syntax

```plaintext
END
```

Purpose of Command

The END command stops the current component panel sequence and returns to the component that was previously active.

Examples

Example: Leaving the Component and Returning to the Previous Component

To exit the component and return to the component of origin, enter:

```plaintext
END
```
ENDSESS (NCCF)

Syntax

ENDSESS

\[\text{FLSCN}, \text{APPLID}=	ext{luname} \]

\[\text{OPCTL}, \text{APPLID}=	ext{luname} \]

\[\text{SESSID}=	ext{session_id} \]

Purpose of Command

The ENDSESS command ends specific subsystem sessions.

Operand Descriptions

FLSCN

Ends the full-screen sessions.

ALL

Specifies that all OPCTL or FLSCN sessions that you started are to end.

APPLID=luname

Specifies the logical unit name of the destination subsystem with which an active session exists and is to end. APPLID applies to all SESSIDs with this APPLID. If you need to stop only a single session for this APPLID, use the SESSID operand instead of APPLID.

OPCTL

Ends the operator-control sessions.

SESSID=session_id

Specifies the unique session identifier for operator-control sessions.

Examples

Example: Ending a TSO Session for a Specified Application Program

To end a TSO session for an application program named RALTSO, enter:

ENDSESS FLSCN,APPLID=RALTSO

Response

After you enter ENDSESS, you receive this message:

DSI495I FLSCN SESSION(S) FOR APPLID=RALTSO ENDING

If the session ends successfully, you receive this message:

DSI496I FLSCN SESSION BETWEEN APPLID=RALTSO AND SRCLU=NCF11 ENDED

Example: Ending a Specified Full-Screen Session

To end a full-screen session with IMS1, enter:

ENDSESS FLSCN,APPLID=IMS1
Example: Ending All Operator-Controlled Sessions
To end all operator-control sessions, enter:
ENDSESS OPCTL,ALL
ENDTASK (NCCF)

Syntax

```
ENDTASK
```

ENDTASK

LU= `luname`

Specifies a distributed NetView domain name (VTAM application name).

IP

Specifies that remote operations through TCP/IP are to be stopped.

DOMAIN= `name`

Specifies the 1- to 5-character target NetView domain identifier for the ENDTASK request. DOMAIN is required when IP is specified.

NETID

Specifies the network ID.

* Specifies that the network identifier is the one determined by VTAM based solely on the LU name of the remote node. This is the default.

Operands

- **LU=** `luname`

 Specifies a distributed NetView domain name (VTAM application name).

- **IP**

 Specifies that remote operations through TCP/IP are to be stopped.

- **DOMAIN=** `name`

 Specifies the 1- to 5-character target NetView domain identifier for the ENDTASK request. DOMAIN is required when IP is specified.

- **NETID**

 Specifies the network ID.

 * Specifies that the network identifier is the one determined by VTAM based solely on the LU name of the remote node. This is the default.

Purpose of Command

The ENDTASK command ends tasks established by or taken over by the RMTCMD command. The RMTCMD command can cause an owner relationship to be initiated for an autotask. You can use ENDTASK to end autotasks that have such an association. You can also route a DISC command to end the association without stopping the autotask.

The distributed NetView system can control which operators at which remote nodes can stop an autotask.

Security filters can be set for one or more of the following:

- Remote network_id
- Remote `luname`
- Remote `operator_id`

This control is available by using an SAF security product, such as RACF, or the RMTCMD security table in DSIPARM. Refer to RMTSECUR and RMTSEC in the [Tivoli NetView for z/OS Installation: Configuring Additional Components](https://www.ibm.com) for more information.

If you initiated a session with a distributed autotask, you can issue the ENDTASK command against that autotask regardless of the security filters.
Note: If two NetView systems in two different networks have the same domain name, the one that VTAM finds can vary depending on the configuration of nodes that are active at any given time.

network_id
Specifies the remote network identifier for the NetView system on which you want to terminate autotasks.

OPERID= *operator_id*
Specifies the autotask you want to end. The default is your operator ID.

ALL
Specifies all RMTCMD autotasks in a distributed NetView system.

DISCONN
Indicates that the TCP/IP connection initiated by the current domain with a target domain by RMTCMD SEND is to be terminated. TCP/IP-based remote operators in the target domain owned by anyone in the current domain will be logged off. DISCONN is only valid when IP is specified.

FORCE
Indicates that you are ending the specified autotask or autotasks, regardless of who initiated them. FORCE can be issued from any operator ID and any NetView system.

STOP
Indicates that you are ending the specified autotasks. You can end the autotasks with this operand only if you were the operator that initiated them. STOP must be issued from the operator ID and NetView system that initiated the original request.

Restrictions
If you specify ENDTASK with the ALL and STOP parameters, all RMTCMD autotasks on the specified LU you started are ended. If you specify ENDTASK with the ALL and FORCE parameters, all RMTCMD autotasks on the specified LU started by any NetView operator is ended.

Beginning with NetView V3, the ENDTASK command supports correlation and can be used in a cross-domain pipe. Both the sending and receiving NetView systems must be at this level for the response to flow back through the pipe. If either system is at a lower level, the command will be sent to the target NetView and run, but the response will not flow back to the originator.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful processing of the command.</td>
</tr>
<tr>
<td>12</td>
<td>The command did not complete successfully. Check the accompanying messages for more information.</td>
</tr>
</tbody>
</table>

Examples

Example: Ending a Remote Task
If you have used the RMTCMD command to establish an association with OPER03 in NetView NETA.CNM02 (where NETA is the default network ID) and you want to end the OPER03 task, enter:

```
ENDTASK LU=CNM02,OPERID=OPER03,STOP
```
OR
ENDTASK LU=CNM02,NETID=NETA,OPERID=OPER03,STOP

Response

You receive the following message:
DWO571I RMTCMD AUTOTASK OPER03 ON NETA.CNM02 TERMINATED

Note: The network ID NETA is optional because it is the default.

Example: Ending Two Remote Tasks
If you have issued the RMTCMD command twice to establish an association with OPER03 and with OPER04 in NetView NETA.CNM02 and you want to end both tasks, enter:
ENDTASK LU=CNM02,ALL,STOP

Response

You receive the following messages:
DWO571I RMTCMD AUTOTASK OPER03 ON NETA.CNM02 TERMINATED
DWO571I RMTCMD AUTOTASK OPER04 ON NETA.CNM02 TERMINATED
ENTRPNT (HELP, VIEW)

Syntax

ENTRPNT

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTRYPNT</td>
<td>ENT</td>
</tr>
</tbody>
</table>

Purpose of Command

The ENTRYPNT command returns you to the first panel displayed when you entered the current HELP or VIEW command.
The ERST command displays the meaning of the explicit route status code.

Operand Descriptions

status
Specifies the explicit route status code that you want explained.

Examples

Example: Displaying the Description of a Specified Code
To display the description of the code PDEFA, enter:
ERST PDEFA

Example: Displaying the Meaning of a Specified Route Status
To display the meaning of the explicit route status INACT, enter:
ERST INACT
ESESS (NCCF; CNME1004)

Syntax

ESESS

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLSCN</td>
<td>F</td>
</tr>
<tr>
<td>OPCTL</td>
<td>O</td>
</tr>
</tbody>
</table>

Purpose of Command

The ESESS command list ends subsystem sessions. ESESS issues the ENDSESS command.

Operand Descriptions

ALL
 Ends all subsystem sessions

FLSCN
 Ends one or all subsystem sessions in full-screen mode
 applid
 Is the application identifier of a specific full-screen session to be ended

OPCTL
 Ends one or all subsystem sessions in operator control mode
 sessid
 Is the identifier of the operator control subsystem session to be ended

Examples

Example: Ending All Subsystem Sessions of All Types
To end all subsystem sessions of all types, enter:
 ESESS ALL

Example: Ending All Full-Screen Sessions
To end all full-screen sessions, enter:
 ESESS F,ALL
EVENTS (NPDA; CNME3003)

Syntax

EVENTS

\[\text{EVENTS } \text{resname}\]

Purpose of Command

The EVENTS command list displays a list, last to first, of the most recent events for a specified resource.

Operand Descriptions

\[\text{resname}\]

Specifies the symbolic name of the resource. You can specify up to five resource names to fully qualify the resource for which data is to be displayed.

Restrictions

The following restrictions apply to the EVENTS command:

- If the name of the resource is not associated with a unique resource configuration on the database, a selection panel is displayed on which you can choose which configuration is relevant.

Examples

Example: Displaying the Most Recent Events for a Specified Controller

To view the most recent events for controller RAL01, enter:

\[\text{EVENTS } \text{RAL01}\]
EVERY (NCCF)

Syntax

EVERY

Purpose of Command

The EVERY command schedules a command or command procedure to be processed repeatedly at a timed interval.

If an EVERY command timer is saved to the Save/Restore database, the next scheduled processing time is updated each time the scheduled command is executed. If this processing time has passed when an EVERY timer is restored, the next scheduled processing time is adjusted so that the timer event continues to be scheduled on its original intervals.

When the timer on the EVERY command expires, the command to be run is queued to the appropriate task at the task’s command priority if it is a regular command.

The command runs at the indicated interval until the EVERY command is purged. You can use the PURGE command to reset the timer requests scheduled by the EVERY command.

Operand Descriptions

time

Specifies the time interval after which the command is to be run. It must be the first operand. A value of minutes or seconds is required. The time period is specified as ddd interval where:

ddd

Is the optional number of days (0–365).

interval

Is the hours (00–24), minutes (00–59), and seconds (00–59). The format of interval is controlled by the setting of the time operands of the DEFAULTS and OVERRIDE commands. If not specified, hours, minutes and seconds all default to 0. If you specify 24 for hours, specify 00 for minutes and seconds. A time period of zero cannot be specified.
Note: If only a 2-digit value is specified for interval, the NetView program assumes it to be a value for minutes. If only a 2-digit value preceded by a colon is specified for interval, the NetView program assumes it to be a value for seconds.

PPT

Specifies that the command or command procedure indicated by command is to run under the primary program operator interface task (PPT). Commands scheduled under the PPT might not run in the order that you specified if the value of the time operand is the same for each command.

Note: Not all commands can run under the PPT. Examples of commands that cannot run under the PPT are:

- Commands that control the screen (such as AUTOWRAP, INPUT, and SET PF)
- Commands or command procedures that invoke full-screen command processors (such as BGNSESS FLSCN, NLDM, NPDA, BROWSE, and HELP)
- Commands that issue STIMER
- Command procedures that issue the control statement &WAIT or &PAUSE
- REXX command lists that issue WAIT, PAUSE, or TRAP
- High-level language (HLL) command procedures that issue WAIT or TRAP

ROUTE

Is the operator on which the command is to be run. A single operator or a group name can be specified. An asterisk (*) indicates the issuing operator. This is the default. Group names must begin with a plus (+) sign. A group name instructs NetView to queue the command to the first operator in that group, according to the ASSIGN order, that is logged on. If a group name was specified which contains no logged-on operators, the command is not executed. If the specified operator is not logged on, the command is not executed.

TIMEFMSG

Specifies whether timed commands which could not be queued to the target operator will produce a BNH357E error message. The valid values are:

- NO
 Indicates that no error message will be issued. NO is the default.

- YES
 Indicates that the error message will be issued.

EVERYCON

Specifies whether this timed command continues to be queued even after queuing failures occur. If EVERYCON is not specified, the EVERYCON setting from the OVERRIDE command is used. If EVERYCON is not specified on the OVERRIDE command, then the setting from the DEFAULTS command is used. The valid values are:

- NO
 Indicates that queuing failures cause this command to be deleted (it will no longer be queued).

- YES
 Indicates that this command continue to be queued.
ID=\(reqname \)

Is a 1–8 character identifier that you define for this timer request. The first three characters of the name cannot be ALL, RST, or SYS and must be unique to other requests created by this task. This operand is optional.

SAVE

Indicates to the NetView program that this timer event should be saved to the NetView Save/Restore database. If you do not code SAVE, the timer event is not saved.

GMT|LOCAL

Specifies whether a saved timer is relative to Greenwich Mean Time (GMT) or local system time. GMT means the timer will run at the absolute (GMT) time calculated for the local time specified when the timer was entered, regardless of subsequent local to GMT difference settings on the system. If LOCAL is used, NetView adjusts the time that the command is run to keep it relative to the new local settings. The default is GMT.

command

Indicates the command or command procedure to run. You must specify command, and it must be the last operand.

Usage Notes

If the scheduled command is to run under the PPT, it will not be authority checked unless AUTHCHK=SOURCENID is in effect.

For more information about authority checking of the scheduled command, and the effect of SOURCEID and TARGETID, refer to the [Tivoli NetView for z/OS Security Reference](http://example.com).

Restrictions

The following restrictions apply to the EVERY command:

- The EVERY command is asynchronous and requires a CORRWAIT stage if used in a PIPE.
- Commands defined as regular or both when the NetView program was installed can be used with EVERY. You cannot use commands defined as immediate with EVERY. Commands scheduled under the PPT might not run in the order that you specified if the value of the time operand is the same for each command.
- To avoid overloading system resources, do not run an excessive number of commands with short time intervals.
- No authorization checking is done for commands running under the PPT when you specify either:
 - SECOPTS.CMDAUTH=TABLE|SAF with SECOPTS.AUTHCHK = TARGETID in CNMSTYLE
 - CMDAUTH=TABLE|SAF with AUTHCHK = TARGETID on the REFRESH command
 - In either case, make sure that the PPT operand of the EVERY command is protected.

Examples

The format of times specified in the following examples assumes the default setting for time formats on the DEFAULTS and OVERRIDE commands.
Example: Listing Your Operator ID after Each Specified Time Cycle
To list your operator ID every 3 minutes and 30 seconds, with a timer ID of OP21TMP, enter:
EVERY 00:03:30,ID=OP21TMP,LIST OP7

You can also list your operator ID every 3 minutes and 30 seconds even if you are not logged on. To do this, enter:
EVERY 00:03:30,PPT,ID=OP21TMP,LIST OP7

Response
You see the following messages on your screen if the EVERY command runs successfully:
DSI034I COMMAND SCHEDULED BY AT/EVERY/AFTER COMMAND - LIST OP7
DSI201I TIMER REQUEST SCHEDULED FOR EXECUTION ID=OP21TMP

Example: Running a Command Every Specified Time Cycle and Saving the Timer Event
To run the RESOURCE command every 30 minutes, and to indicate that this timer event should be saved relative to local time, enter:
EVERY 00:30:00,SAVE,LOCAL,RESOURCE

To understand the effect of the LOCAL operand, suppose that this EVERY command is issued at 1:00 local time. At 2:00, after the RESOURCE command has processed for the second time, the system clock is set back 1 hour and the NetView program is recycled. A RESTORE TIMER command is issued at 1:15 (new) local time. The RESOURCE command is scheduled to run at 2:30 and every 30 minutes thereafter.

The elapsed time from when the RESOURCE command runs at 2:00 old time until it runs at 2:30 new local time is 1 hour and 30 minutes in absolute time. If you wanted the command list to run after an absolute interval of 30 minutes, you could specify GMT instead of LOCAL or allow the system to default. If you specified GMT, the RESOURCE command would be scheduled to run at 1:30 local system time and every 30 minutes thereafter.

Example: Activating Specified Resources at a Specified Time Independent of the Operator
To attempt to activate the resource PU23NY and its subordinate resources once every three days, whether or not the operator who issued the command is logged on, enter:
EVERY 3 00,PPT,VARY NET,ACT,ID=PU23NY,SCOPE=U

Example: Writing Task Utilization Data to the SMF Log Every Day
To write task utilization data for all NetView tasks to the SMF log every day at this time, enter:
EVERY 24:00:00,PPT,ID=DAILY,LOGTSTAT

The timer request is assigned DAILY as an identifier and is processed whether or not the operator who issued the command is logged on.

Example: Running a Command after a Specified Interval and Saving the Timer
The following example indicates that a LIST STATUS=TASKS command runs every 8 hours, at 1:00, 9:00, and 17:00. This command also indicates that the timer should
be saved so that the LIST command continues to be scheduled at those local times if the NetView program is recycled and timers are restored. To schedule the LIST STATUS=TASKS command to run at the desired times, enter the following EVERY command at 1:00:

```
EVERY 8:00,SAVE,LOCAL,LIST STATUS=TASKS
```
EXCMD (NCCF)

Syntax

EXCMD

opid command

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXCMD</td>
<td>AONCMD</td>
</tr>
</tbody>
</table>

Purpose of Command

The EXCMD command queues a NetView command or command list to another task. If the task is capable of processing commands, it is processed as a regular command.

Operand Descriptions

opid

Specifies any active operator ID or task. Operators and tasks defined as active are:

- Operators logged on in this domain
- Operator IDs used by operators in other domains for cross-domain routing to this domain (using the ROUTE or RMTCMD commands)
- Autotasks
- The primary program operator interface task (PPT)
- Data services tasks (DSTs), but only with type D and RD commands
- Other optional tasks that provide support for command execution

The opid is a required operand and is treated as a keyword when the command is checked for authorized use.

* An asterisk (*) can be substituted for the opid. When used on a virtual OST (VOST), the * is interpreted as the owning task's opid. When used on any other task, the * is interpreted as the issuing task’s opid. No parameter authority checking of the command is done when * is used for opid.

command

Specifies any valid NetView command or command list and parameters. Enter the entire command. The required operand command is treated as a keyword or as a value when the command is checked for authorized use. This provides a way to further restrict an operator from sending a command to an opid.

If the command parameters include a date or time specification, the format must match the format required by the task where the command is to run.

Usage Notes

The following considerations apply to the EXCMD command:
When you are using EXCMD in a NetView PIPE stage such as CORRCMD and expect a response, the best approach is to use the label syntax to route the command rather than EXCMD because the label syntax provides automatic serialization at the target task.

For more information about the label syntax, refer to the `Tivoli NetView for z/OS User's Guide`.

If you have defined a suppression character, you can use it on the EXCMD command. These suppression characters are normally carried through to the target command being issued. However, you can override the suppression characters on the target command by specifying them prior to the target command. NetView is shipped with the suppression character set to `?`. Using this sample suppression character, you can enter:

```shell
?EXCMD AUTO1,??MSG FRED HELLO FRED!
```

The EXCMD command is suppressed (no echo and no logging) and the MSG command is quiet (no echo) in the example:

```shell
??EXCMD AUTO1,MSG TOM HELLO TOM!
```

The EXCMD command is quiet and the MSG command is suppressed.

Ensure the specified command or command list can be run in the environment provided by the destination task that is specified by `opid`. For example, a command defined as Typeable on the CMDMDL statement runs as a regular command. Do not run immediate commands, because they produce errors at the target `opid`. Regular commands (as specified on the CMDMDL statement) are queued to the target task at the command priority of the target task. If a command is defined as TYPE=B on the CMDMDL statement, it is queued at the target task at high priority. It preempts any queued normal or low-priority commands and interrupts any currently running command when processing allows.

When commands are queued to another task using EXCMD, the authority check is made against the issuer of the EXCMD or the receiver of the queued command. This is determined by the setting of `SECOPTS.AUTHCHK` in `CNMSTYLE` or on the `REFRESH` command.

For more information about authority checking of the queued command, and the effect of `SOURCEID` and `TARGETID`, refer to the `Tivoli NetView for z/OS Security Reference`.

Note: Some NetView optional tasks do not support command execution. For example, the CNMCSSIR task will forward commands to the task that started CNMCSSIR. Other optional tasks that do not support command execution might ignore the commands and might never free the storage for the associated command buffers.

Restrictions

Do not send commands to the following tasks:

- DSIAACBMT
- DSIDCMBT
- DSIIHLLMT
- DSISLOGMT
- DSISTMNT
- DSIWTOMT

346 Tivoli NetView for z/OS Command Reference Vol. 1
Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful processing of command</td>
</tr>
</tbody>
</table>

Refer to the DSI prefix messages in the NetView online help for more information about the following return codes. The return code number corresponds to the DSI message number. For example, return code 4 would correspond to DSI004.

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Text operand is missing or not valid.</td>
</tr>
<tr>
<td>8</td>
<td>Operator ID is currently undefined or not active.</td>
</tr>
<tr>
<td>74</td>
<td>Message not sent to the specified operator.</td>
</tr>
<tr>
<td>213</td>
<td>Access is not authorized.</td>
</tr>
</tbody>
</table>

Examples

Example: Queuing a Specified Command to Run on a Specified Task
To queue the MSG command to process on NETOP1 task, enter:

```
EXCMD NETOP1 MSG OPER1 Please monitor CN07
```

Example: Queuing a Specified Command to Run on a Specified PPT Task
To queue the LIST command to be processed on the primary program operator interface task (PPT) task, enter:

```
EXCMD PPT LIST STATUS=TASKS
```

Example: Queuing a Specified Command to Run on a Specified Task
To queue the LIST command to be processed on the OPER2 task, enter:

```
EXCMD OPER2,LIST STATUS=TASKS
```
EZLEMAIL (NCCF)

Syntax

```
EZLEMAIL
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>EZLEMAIL</td>
<td>EMAIL</td>
</tr>
</tbody>
</table>

Purpose of Command

The EZLEMAIL command is used to send e-mail messages using SMTP from NetView.

Usage Notes

To use EZLEMAIL, you might need to customize variable EZLsmtpNAME. For details, see CNMSTYLE.

Examples

Example: Sending an E-mail Message

To send an e-mail message from NetView, enter the following:

```
EZLEMAIL
```

OR

```
EMAIL
```

The EZLKMAIL panel is displayed. You can enter up to 12 lines of text.
FIND (BROWSE)

Syntax

BROWSE FIND

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIND</td>
<td>F</td>
</tr>
<tr>
<td>NEXT</td>
<td>N</td>
</tr>
<tr>
<td>PREV</td>
<td>P</td>
</tr>
</tbody>
</table>

Purpose of Command

The FIND command locates specific information while browsing a data set and a member. You can search for a previous entry or for the next entry. The default is NEXT. You can limit columns to be searched by specifying left and right column numbers.

Operand Descriptions

string

Specifies the information for which you are searching. If the information contains blanks or single quotation marks, enclose the information in single quotation marks. If the information contains single quotation marks, each must be entered as two single quotation marks. If the information contains neither blanks nor single quotation marks, single quotation marks are not necessary.

NEXT

Searches forward to find the next entry. NEXT is the default.

PREV

Searches backward to find the previous entry.

left

Specifies the leftmost (start) column for the search. Default is 1 for both BROWSE member and BROWSE log.

right

Specifies the rightmost column for the search. When used for browsing a member, right specifies the rightmost column for starting or ending the search. Defaults are 80 for BROWSE member and 255 for BROWSE log.

Usage Notes

Use the following notes when you work with the FIND command:

- Defaults are 1 for start (left) column and 255 for end (right) when browsing a log.
- Defaults are 1 for start (left) column and 80 for end (right) when browsing a member. Column 0 is not valid.
• Use the **Repeat Find** PF key to repeat the last FIND command entered.

• When browsing the log, you can cancel the FIND command by pressing the **Return** or **End** key. Also, you can use the **Attn** key from a terminal defined to VTAM as a SNA resource to cancel the FIND command. **Attn** key processing is supported only for SDLC SNA LU Type 2 sessions.

• If you specify a range on the BROWSE command, only the records within the range are searched.

• The FIND command only searches for the records that were not suppressed by an installation exit.

 You can suppress records while browsing the network log by using installation exit DSIEX18. Refer to *Tivoli NetView for z/OS Customization: Using Assembler* for more information.

Examples

Example: Finding the Next Occurrence of a Specified String
To find the next occurrence of DSI, enter:

```
FIND DSI
```

OR

```
F DSI
```

Example: Finding the Next Occurrence of a Specified String That Limits the Search to Specified Columns
To find the next occurrence of RESOURCE1 in the log (the search is limited to columns 1–90), enter:

```
FIND RESOURCE1 1 90
```

OR

```
F RESOURCE1 1 90
```

Example: Finding the Previous Occurrence of a Specified String
To scan the lines previous to the current line for an occurrence of the string RESOURCE1, enter:

```
FIND RESOURCE1 PREV
```

OR

```
F RESOURCE1 P
```
FIND (NLDM)

Syntax

NLDM FIND

operand descriptions

Purpose of Command

The NLDM FIND command displays the page of the resource list that contains the specified entry and highlights that entry.

Operand Descriptions

rname

The name of the resource to be located. You can use an * (wildcard) in the resource name. When used, the * must be the last character in the character string. The first name matching the FIND criteria is highlighted. You will receive an error message if a resource name does not match the FIND criteria.

Restrictions

The NLDM FIND command is only valid on the resource list panels (LU, PLU, SLU, PU, and SSCP).

Examples

Example: Displaying a Resource Name

To display the first occurrence of the resource beginning with CNM in the current resource list, enter:

FIND CNM*

Response

The first occurrence of CNM will be highlighted.

(12) A01A744 ACTIVE
(13) A01A745 ACTIVE
(14) BNJHWMON ACTIVE
(15) CNM011UC ACTIVE
(16) CNM01PPT ACTIVE
(17) CNM01SPT ACTIVE
(17) CNM01000 ACTIVE
(19) CNM01001 ACTIVE
FIND (WINDOW)

Syntax

WINDOW FIND

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIND</td>
<td>F</td>
</tr>
<tr>
<td>NEXT</td>
<td>N</td>
</tr>
<tr>
<td>PREV</td>
<td>P</td>
</tr>
</tbody>
</table>

Purpose of Command

The FIND command locates specific information while displaying data with the WINDOW command. This includes command and message help, helpdesk, and index information. You can search for a previous entry or for the next entry. The default is NEXT. You can limit columns to be searched by specifying left and right column numbers.

The search begins where the cursor is located, if the cursor is in the display. Otherwise, the search begins at the first line of information displayed on your screen.

Operand Descriptions

string
Specifies the information for which you are searching. If the information contains blanks or quotation marks, enclose the information in single or double quotation marks; otherwise the quotation marks are optional. You must use quotation marks if you specify NEXT, PREV, or a left and right column limit for the search.

If string is omitted, FIND searches for the same text as was specified on the previous FIND command.

NEXT
Searches forward to find the next entry. NEXT is the default.

PREV
Searches backward to find the previous entry. This provides the same function as the REVFIND command.

left
Specifies the leftmost (start) column for the search. The default is 1.

right
Specifies the rightmost column for the search. An asterisk indicates that all the data to the right of the left limit is searched; this is the default.
Usage Notes

Use the following notes when you work with the FIND command:

- The FIND command will begin its search at the current cursor position if the
cursor is in the data area; otherwise, at the selected level, if any, or at the first
data line shown on the screen.

A line is selected by WINDOW when it is the target of the previous FIND
command, or when an operator types ENTER and the cursor is in the data area,
and no command is entered. The selected line is highlighted.

- You must use quotation marks if you specify NEXT, PREV, or a left and right
column limit for the search.

- Use the Repeat Find PF key to repeat the last FIND command entered.

- You can cancel the FIND command by pressing the Return or End key. Also,
you can use the Attn key from a terminal defined to VTAM as a SNA resource
to cancel the FIND command. Attn key processing is supported only for SDLC
SNA LU Type 2 sessions.

Examples

Example: Finding the Next Occurrence of a Specified String
To find the next occurrence of DSI, enter:

F DSI

Example: Finding the Next Occurrence of a Specified String That
Contains an Apostrophe
To find the next occurrence of the string NCP'S STATUS (single quotation marks
enclose the entire string, and two single quotation marks are used where the single
quotation mark occurs in the string), enter:

F 'THE NC''S STATUS'

Example: Finding the Next Occurrence of a Specified String That
Limits the Search to Specified Columns
To find the next occurrence of RESOURCE1 in columns 1–90, enter:

F 'RESOURCE1' 1 90
FLCV2RCM (NCCF)

Syntax

FLCV2RCM

Purpose of Command

The FLCV2RCM command is part of a pipeline to convert statements in the BLDVIEWS language into RODM Collection Manager collections. FLCV2RCM can either update RODM immediately with the converted definitions or it can emit RODM loader statements that can be saved to a dataset and loaded into RODM to create the collections at a later time.

Operand Descriptions

Loader

LOADER

The LOADER keyword emits RODM loader statements.

UPDATE

The UPDATE keyword updates RODM immediately, creating RODM Collections Manager collections.

Usage Notes

When using the UPDATE operand to update RODM immediately, FLCV2RCM uses the CNMSTYLE values RODMname and RCMRODMUser for RODM authentication. Ensure that these values are set appropriately for your installation.

Restrictions

The following restrictions apply when using the FLCV2RCM command:

- FLCV2RCM needs to run as part of a pipeline. It requires BLDVIEWS language statements, one per line, as input from the output of a previous pipeline state.
- When FLCV2RCM is invoked with the LOADER operand, the RODM Loader statements are sent to the output stream first, followed by the informational messages bracketed by messages FLC178I and FLC179I. See the examples for further information.

Examples

Example: Using the RODM Loader Statements

Given the following pipeline:

PIPE LIT /VIEW=NEWVIEW,CREATE=Y%AGGREGATE=ALL%NO_SUCH_STATEMENT/ | SPLIT AT STRING /%/ | COLLECT | NETV FLCV2RCM LOADER | CONSOLE

The following output is produced at the NCCF console:

CREATE INVOKER ::= 00000001;
OBJCLASS ::= Network_View_Collection_Class;
OBJINST ::= MyName = (CHARVAR)
Note that the RODM loader statements come out first, followed by the FLC178I and FLC179I messages. Message FLC184E appears between the bracketing FLC178I and FLC179I messages, indicating that an invalid BLDVIEWS statement "NO_SUCH_STATEMENT" was encountered, but the RODM loader output was otherwise unaffected.

Example: Creating a RODM Collection Manager Collection
To read BLDVIEWS cards from a dataset and immediately create RODM Collection Manager collections in RODM, enter the following:
```
PIPE < DSIPARM.BVCARDS | COLLECT | NETV FLCV2RCM UPDATE | CONSOLE
```

Example: Showing Loader Statements
To read BLDVIEWS cards from a dataset and then show the resulting RODM loader statements, enter the following:
```
PIPE < DSIPARM.BVCARDS | COLLECT | NETV FLCV2RCM LOADER | CONSOLE
```

Example: Reading BLDVIEWS Cards from a Stem Variable
To read BLDVIEWS cards from within a stem variable in a REXX exec, and then update RODM directly:
```
/* REXX */
stemvar.0 = 2
stemvar.1 = "VIEW=MyView,ANNOTATION='MyAnnotation,CREATE=YES'
stemvar.2 = "IP_HOST=ALL"
'PIPE STEM stemvar. | COLLECT | NETV FLCV2RCM UPDATE | STEM result.'
say 'FLCV2RCM invoked... this is the output it produced:'
do i = 1 to result.0
   say result.i
say end
```

Example: Writing RODM Loader Statements to a Dataset Member
You can also read BLDVIEWS cards from a dataset and then write the RODM loader statements to a dataset member, excluding the messages. The output is echoed to the console:
```
PIPE (END %) < DSIPARM.BVCARDS

| COLLECT |
| NETV FLCV2RCM LOADER |
| A: NOT TOSTRING NOINCL 1.7 /FLC178I/ |
| CONSOLE % |
| A: QSAM RODM.LOADER(MEMBER) |
| CONSOLE |
```
The FOCALPT command enables the NetView program to be a focal point for alerts, operations management, LINKSERV, SPCS, and user-defined categories using the MS transport. The FOCALPT command also enables the NetView program to be a focal point for status and alerts using LUC. Your NetView program can act as the highest level focal point, or (for operations management and user-defined categories) as the entry point.

The FOCALPT command enables the appropriate application at an entry point to determine the identity of the node to which it should forward unsolicited, one-way data. If the node that is identified as the focal point changes, FOCALPT assigns the focal point that is currently designated.

For online information, enter:
- HELP FOCALPT ACQUIRE
- HELP FOCALPT CHANGE
- HELP FOCALPT DELETE
- HELP FOCALPT DISPLOC
- HELP FOCALPT DROP
- HELP FOCALPT QUERY
- HELP FOCALPT REFRESH

IBM-Defined Synonyms

The FOCALPT command has the following synonyms:

<table>
<thead>
<tr>
<th>Command</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOCALPT</td>
<td>FOC, FPT</td>
</tr>
</tbody>
</table>

Restrictions

The FOCALPT command should not be issued in a NetView pipeline because the output of the FOCALPT command cannot be correlated.
FOCALPT ACQUIRE (NCCF)

Syntax

```
FOCALPT ACQUIRE
```

Primary:

```
PRIMARY = KEEP
PRINET = *prim_name*, *prim_id*
```

Backup:

```
BACKUP = KEEP, DROP
BACNET = *backup_name*, *backup_id*
```

BackList:

```
BACKLIST = 
ADD BKUP
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACQUIRE</td>
<td>A, ACQ</td>
</tr>
<tr>
<td>FPCAT</td>
<td>CAT, TYPE, TYP</td>
</tr>
<tr>
<td>Command or Operand</td>
<td>Synonym</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>PRIMARY</td>
<td>PRI</td>
</tr>
<tr>
<td>PRINET</td>
<td>PN</td>
</tr>
<tr>
<td>BACKUP</td>
<td>BU</td>
</tr>
<tr>
<td>BACNET</td>
<td>BN</td>
</tr>
<tr>
<td>BACKLIST</td>
<td>BL</td>
</tr>
<tr>
<td>ADDBKUP</td>
<td>ADDBU, ABK, ADD, AB</td>
</tr>
<tr>
<td>DEFFOCPT</td>
<td>DF</td>
</tr>
</tbody>
</table>

Purpose of Command

Use the FOCALPT ACQUIRE command at the entry point to:
- Change the primary focal point name
- Change the backup focal point name
- Define a new backup list for a category
- Add backup focal points to an existing backup list
- Remove focal points from the backup list
- Override an outstanding FOCALPT ACQUIRE command for the specified category
- Reconfigure focal points using the values in DSISINIT

Note: The relationship with the focal point is referred to as *implicit*.

Operand Descriptions

FPCAT=fpcat
Indicates the category of data for which the entry point is trying to acquire a focal point. The FPCAT operand has the following values:

- **ALERT**
 Indicates an acquire request for the alert focal point. The type of alert forwarding protocol is determined by the setting on the NPDA.ALERTFWD statement in CNMSTYLE.

- **LINKSERV**
 Indicates an acquire for the LINKSERV focal point.

- **OPS_MGMT**
 Indicates an acquire request for the operations management focal point.

- **SPCS**
 Indicates an acquire request for the service point command service focal point.

- **user_defined**
 Indicates an acquire request for the user-defined focal point. The user-defined category name can be up to 8 characters long.

- **PRIMARY**
 Indicates the primary focal point.

- **KEEP**
 Specifies that the entry point’s remote primary focal point name is not changed. KEEP is the default.

- **primary_name**
 Specifies the LU name or VTAM CP name of the new remote primary focal point.
point that overrides the existing primary focal point name. A request is sent to the specified focal point to attempt to acquire it as the new current focal point. If a current primary focal point exists, it is dropped and a revocation is sent. If the current focal point is the backup focal point, the backup focal point is allowed to remain as the current focal point until the new focal point is accepted or rejected. If it is accepted, a revocation is sent to the backup focal point and the user-specified primary focal point becomes the current focal point.

PRINET

Specifies the primary network identifier.

* Specifies that the network is the one determined by VTAM, based solely on the remote primary focal point node name. This is the default.

primary_id

Specifies the name of the network in which the new primary focal point resides.

BACKUP

Specifies whether to keep the current backup focal point, purge the backup focal point list, or assign a new backup focal point.

KEEP

Specifies that the entry point’s remote backup focal point name is not changed. KEEP is the default.

DROP

Specifies that the backup list is to be purged.

backup_name

Specifies the LU name or VTAM CP name of the new, remote backup focal point that overrides the existing list of backup focal point names. All backup focal points that were defined are replaced with this single backup focal point. Any current backup focal points are dropped.

BACNET

Specifies the backup network identifier.

* Specifies that the network is the one determined by VTAM based solely on the backup focal point node name. This is the default.

backup_id

Specifies the name of the network in which the new backup focal point resides.

BACKLIST=(backup_focal_point,...,backup_focal_point)

Specifies a new list of backup focal points for the category, replacing any existing list and dropping any old focal points. The backup list can contain from 1–8 focal points. If more than 8 backup focal points are specified, an error message is issued and the command is rejected.

ADDBKUP

 Specifies that the list of backup focal points defined with the keyword BACKLIST should be added to the end of the existing backup list, rather than replacing the entire list. If the request would result in more than eight backup focal points, the last entries in the BACKLIST list are ignored.

DEFFOCPT

Specifies that the current focal point details should be discarded and the
DEFFOCPT statements read at DSI6DST task initialization used. If no DEFFOCPT statements exist for this category, the command fails and you receive an error message.

OVERRIDE
Specifies that if another acquire request is currently in progress for the specified category, the outstanding request is to be canceled and this request serviced.

Restrictions
If two nodes in two different networks have the same LU name, the one that VTAM finds can vary depending on the configuration of the active nodes.

Return Codes
You can automate the FOCALPT command by using the return codes from a command list. The return codes for this command are:

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The request has been accepted and a reply comes back later.</td>
</tr>
<tr>
<td>4</td>
<td>The command did not complete successfully. Check the accompanying messages for more information.</td>
</tr>
<tr>
<td>8</td>
<td>Not a valid call of the command processor. No message is issued.</td>
</tr>
</tbody>
</table>

Examples

Example: Specifying a New Backup Focal Point and Keeping the Current Primary Focal Point
In this example, the current focal point is a backup. To acquire a new backup focal point without changing the current primary focal point, use this command:

```
FOCALPT ACQUIRE FPCAT=OPS_MGMT,PRIMARY=KEEP,BACKUP=CNM99
```

Response
The current backup focal point and any additional backup focal points in the backup list are dropped and a revocation is sent to the current backup. A request is sent to CNM99, the user-specified new backup name.

Example: Specifying New Primary and Backup Focal Points
To change the remote primary and backup focal point names, use this command:

```
FOCALPT ACQUIRE FPCAT=OPS_MGMT,PRIMARY=CNM01,BACKUP=CNM99
```

Response
Both the primary and the backup focal point names are changed to the values you specified. A request is sent to the specified primary focal point to attempt to acquire it as the new current focal point. If a current primary or backup focal point exists, this former current focal point is dropped and a revocation is sent to it.

Example: Specifying Two Backup Focal Points
To acquire the node NETA.CNM01 as the primary focal point and NETC.CNM99 and CNM88 as backup focal points for category OPS_MGMT, use this command:

```
FOCALPT ACQUIRE FPCAT=OPS_MGMT PRIMARY=CNM01 PRINET=NETA BACKLIST=(NETC.CNM99,CNM88)
```
If the FOCALPT ACQUIRE request is successful, the system responds with the following messages:

DWO051I FOCALPT ACQUIRE COMMAND FOR CATEGORY OPS_MGMT COMPLETED SUCCESSFULLY
DWO796I NEW REMOTE FOCAL POINT DETAILS ARE AS FOLLOWS:
DWO790I CURRENT: NETA.CNM01 TYPE: PRIMARY
DWO792I PRIMARY: NETA.CNM01
DWO793I BACKUP LIST:
DWO794I 1) NETC.CNM99 2) *.CNM88

Example: Specifying a New Primary Focal Point, Deleting the Old Focal Points, and Creating a New Backup Focal Point List
Use the following command to acquire the node NETA.CNM01 as the primary focal point for category OPS_MGMT, delete the old backup focal point list, and build a new list containing NETA.CNM99, NETB.CNM88, NETC.CNM77, NETD.CNM66, and NETE.CNM55:

FOCALPT ACQUIRE FPCAT=OPS_MGMT PRIMARY=CNM01 PRINET=NETA
 BACKLIST=(NETA.CNM99,NETB.CNM88,NETC.CNM77,NETD.CNM66,NETE.CNM55)

If the NetView program is unable to acquire the primary focal point, it tries to acquire the first backup focal point from the list, then the second, and so on until a backup is acquired.

Response
If the FOCALPT ACQUIRE request is successful, the system responds with the following messages. The old remote focal point information indicates that the sixth node in the backup list (NETA.CNM08) was the current focal point, as indicated in message DWO790I by TYPE: BACKUP(6).

DWO051I FOCALPT ACQUIRE COMMAND FOR CATEGORY OPS_MGMT COMPLETED SUCCESSFULLY
DWO796I NEW REMOTE FOCAL POINT DETAILS ARE AS FOLLOWS:
DWO790I CURRENT: NETA.CNM34 TYPE: BACKUP(2)
DWO792I PRIMARY: NETA.CNM01
DWO793I BACKUP LIST:
DWO794I 1) NETA.CNM56 2) NETA.CNM34 3) NETA.CNM06
DWO794I 4) NETA.CNM98 5) NETA.CNM07 6) NETA.CNM08
DWO794I 7) NETA.CNM87 8) NETA.CNM09

Example: Adding Backup Focal Points to an Existing List
To add backup focal points to the end of the existing backup list without removing any from the list, use this command:

FOCALPT ACQUIRE FPCAT=OPS_MGMT BACKLIST=(NETA.CNM99,NETB.CNM88) ADDBKUP

Response
If the FOCALPT ACQUIRE request is successful, the system responds with the following messages:

DWO051I FOCALPT ACQUIRE COMMAND FOR CATEGORY OPS_MGMT COMPLETED SUCCESSFULLY
DWO796I NEW REMOTE FOCAL POINT DETAILS ARE AS FOLLOWS:
DWO790I CURRENT: NETA.CNM34 TYPE: BACKUP(2)
DWO792I PRIMARY: NETA.CNM01
DWO793I BACKUP LIST:
DWO794I 1) NETA.CNM56 2) NETA.CNM34 3) NETA.CNM06
OLD REMOTE FOCAL POINT DETAILS ARE AS FOLLOWS:

CURRENT: NETA.CNM34 TYPE: BACKUP(2)
PRIMARY: NETA.CNM01

BACKUP LIST:
1) NETA.CNM56 2) NETA.CNM34 3) NETA.CNM06
4) NETA.CNM09 5) NETA.CNM07
FOCALPT CHANGE (NCCF)

Syntax

```
FOCALPT CHANGE
```

```
,FOCALPT=FOCALPT, FOC, FPT
,BACKUP=BACKUP, BU
,BACNET=BACNET, BN
,FPCAT=FPCAT, CAT, TYPE, TYP
,TARGET=TARGET, TG
,TARGNET=TARGNET, TN
```

IBM-Defined Synonyms

The FOCALPT CHANGE command has the following synonyms:

<table>
<thead>
<tr>
<th>Command</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOCALPT</td>
<td>FOC, FPT</td>
</tr>
<tr>
<td>BACKUP</td>
<td>BU</td>
</tr>
<tr>
<td>BACNET</td>
<td>BN</td>
</tr>
<tr>
<td>FPCAT</td>
<td>CAT, TYPE, TYP</td>
</tr>
<tr>
<td>TARGET</td>
<td>TG</td>
</tr>
<tr>
<td>TARGNET</td>
<td>TN</td>
</tr>
</tbody>
</table>

Purpose of Command

The FOCALPT CHANGE command establishes your system as the architected focal point of another node. This focal point-entry point relationship uses the MS transport to another NetView system for operations management data or to a non-NetView system for operations management, SPCS, LINKSERV, alert, and user-defined data. The relationship with the entry point is referred to as explicit.

The FOCALPT CHANGE command enhances the existing CHANGEFP command by enabling you to support operations management, and to support the change focal point function for alerts that use the MS transport.

This command also provides a time-out function. When you send a request over an LUC session using the FOCALPT CHANGE command, it is sent so that if no
response is received in a specified amount of time, FOCALPT CHANGE can process the time-out detected by the xxxx LUC task, where xxxx is the NetView program identifier.

Operand Descriptions

BACKUP
Enables you to specify the desired backup focal point for the target.

KEEP
Indicates that the target node is to keep the current backup name.

DROP
Indicates that the backup focal point name in the target is set to null.

backup_name
Specifies the focal point LU name or VTAM CP name to which all forwarded data is sent when the primary focal point is not available. This is an optional operand.

BACNET
Specifies the backup network identifier.

backup_id
Specifies the name of the network in which the backup focal point resides.

FPCAT
Is the category of data for which you want to change the focal point. The FPCAT operand is a required operand and has the following values:

ALERT
Indicates a change in the alert focal point. The focal point first attempts to obtain the entry point using the SNA-MDS/LU 6.2 alert forwarding protocol and, if unsuccessful, attempts to obtain the entry point using the NV-UNIQ/LUC alert forwarding protocol. If the entry point being acquired is running NetView and has specified a value for NPDA.ALERTFWD in CNMSTYLE that starts with SNA-MDS, the SNA-MDS/LU 6.2 alert forwarding protocol is used.

LINKSERV
Indicates a change in the LINKSERV focal point.

OPS_MGMT
Indicates a change in the operations management focal point.

SPCS
Indicates a change in the service point command service focal point.

STATUS
Indicates a change in the status focal point. You can issue the STATUS keyword only from a host that has the NetView Management Console installed and has the CNMTAMEL task active. You cannot specify a backup host with this keyword.

user_defined
Indicates a change in the user-defined focal point.

TARGET=target_name
Specifies the node or LU name or VTAM CP name of the distributed host
whose primary focal point host or primary and backup focal point hosts are to be changed. The target node can be a NetView or non-NetView resource.

TARGNET
Specifies the target network.

* * Specifies that the target network is the one determined by VTAM based solely on the LU name of the target node. This is the default.

`target_network`
Specifies the name of the network in which the target host resides.

Usage Notes
If the target node is a NetView program that forwards alerts over the LUC, always use the LU name (NetView domain name) as the `target_name`, and not the VTAM CP name. Otherwise NetView cannot establish the focal point/entry point relationship over either the LU 6.2 or the LUC.

The FOCALPT CHANGE command is supported by systems running the NetView Version 2 Release 2 program and later releases. If a migration node does not have Version 2 Release 2, use the CHANGEFP command to change a focal point.

The FOCALPT CHANGE command does not support the message type. Use the CHANGEFP command for messages.

If two nodes in two different networks have the same LU name, the one that VTAM finds can vary depending on the configuration of active nodes.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful processing of command.</td>
</tr>
<tr>
<td>4</td>
<td>Error in processing. Check the accompanying DSI or DWO prefix message for more information.</td>
</tr>
</tbody>
</table>

Examples

Example: Requesting Your NetView System to Be the Focal Point of Another Node

To request that your NetView system (CNM01) become the focal point of another node (CNM02) for OPS_MGMT data, enter:

`FOCALPT CHANGE TARGET=CNM02,FPCAT=OPS_MGMT`

Response

If a current focal point (CNM99) exists for OPS_MGMT data when you enter this command, a revocation is sent to notify CNM99 that it is no longer the focal point for CNM02 OPS_MGMT data and that the new focal point is CNM01. If there is no current focal point when you enter this command, no revocation is sent when CNM01 is established as the focal point.
FOCALPT DELETE (NCCF)

Syntax

```
FOCALPT DELETE

FPCAT= ALERT

TARGET= netid.nau

TARGNET= target_name

TARGLIST= (netid.nau, ..., netid.nau)
```

IBM-Defined Synonyms

The FOCALPT DELETE command has the following synonyms:

<table>
<thead>
<tr>
<th>Command</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOCALPT</td>
<td>FOC, FPT</td>
</tr>
<tr>
<td>FPCAT</td>
<td>TYPE, TYP, CAT</td>
</tr>
<tr>
<td>TARGET</td>
<td>TG</td>
</tr>
<tr>
<td>TARGNET</td>
<td>TN</td>
</tr>
</tbody>
</table>

Purpose of Command

The FOCALPT DELETE command, entered at the focal point, removes an entry point from a focal point’s sphere of control. When this command is issued, the entry point is put into either a DELETE PENDING or a DELETE ADD PENDING state. Although the entry point is in a DELETE PENDING or a DELETE ADD PENDING state, the focal point continues to provide services for the entry point. The entry point is not removed from the sphere of control until the session with the entry point is lost or the entry point revokes the focal point.

Operand Descriptions

FPCAT

Indicates the registered focal point category from which the entry point will be deleted. The FPCAT operand has the following values:

- **ALERT**
 - Indicates that the entry point is to be deleted from the alert focal point.

- **OPS_MGMT**
 - Indicates that the entry point is to be deleted from the OPS_MGMT focal point.
LINKSERV
Indicates that the entry point is to be deleted from the LINKSERV focal point.

SPCS
Indicates that the entry point is to be deleted from the SPCS focal point.

user_defined
Indicates that the entry point is to be deleted from the user-defined focal point.

* Indicates that the entry point is to be deleted from all categories. You can also specify an asterisk (*) following a character set to limit the scope of categories. For example, FPCAT=XYZ* deletes an entry point from all user-defined categories beginning with XYZ. You cannot precede the character set with an * or embed an asterisk within a character set.

TARGET
Specifies the name of the entry point that is to be deleted from the sphere of control.

netid.nau
Specifies the fully qualified network name and LU or VTAM CP name of the entry point to be deleted.

*.nau
Specifies the unresolved network name and LU or VTAM CP name of the entry point to be deleted. The asterisk (*) indicates that the network name was not resolved by VTAM after a FOCALPT CHANGE command was issued using targnet=* . Because VTAM could not resolve the network name when the FOCALPT CHANGE command was entered, the entry point is known to the sphere of control as *.nau.

* Specifies that all entry points are to be deleted from the sphere of control. You can also specify an asterisk (*) following a character set to delete a range of entry points. For example, TARGET=NETA.* deletes all entry points beginning with NETA from the sphere of control.

TARGNET
Specifies the target network.

* Specifies that the target network is the one determined by VTAM based solely on the LU name of the target node. This is the default.

target_network
Specifies the name of the network in which the target host resides.

TARGLIST=(netid.nau,...,netid.nau)
Specifies the fully qualified network name and LU or VTAM CP name of a list of entry points that are to be deleted from the sphere of control. The target list can contain from 1 to 8 entry points. If more than 8 entry points are specified, an error message is issued and the command is rejected.

Examples

Example: Deleting Entry Points from the Sphere of Control for a Specified Category
To delete all entry points with a netid of NETA from the sphere of control for category OPS_MGMT, enter:
FOCALPT DELETE FPCAT=OPS_MGMT TARGET=NETA.*
Response

You see a message similar to the following:

```
CNM01  BNH017I FOCALPT DELETE SUCCESSFUL. 0 ENTRY POINTS REMOVED FROM THE SPHERE OF CONTROL AND 1 ENTRY POINTS SET TO A DELETE STATE FOR CATEGORY OPS_MGMT
```

The entry points will now have a state of DELETE PENDING or DELETE ADD PENDING.

Example: Deleting an Entry Point from a Sphere of Control for All Focal Point Categories

To delete entry point NETA.CNM01 from the sphere of control for all categories, enter:

```
FOCALPT DELETE FPCAT=* TARGET=NETA.CNM01
```

Response

You see messages similar to the following:

```
CNM01  BNH017I FOCALPT DELETE SUCCESSFUL. 1 ENTRY POINTS REMOVED FROM THE SPHERE OF CONTROL AND 0 ENTRY POINTS SET TO A DELETE STATE FOR CATEGORY ALERT
CNM01  BNH017I FOCALPT DELETE SUCCESSFUL. 1 ENTRY POINTS REMOVED FROM THE SPHERE OF CONTROL AND 0 ENTRY POINTS SET TO A DELETE STATE FOR CATEGORY OPS_MGMT
```

The entry points will now have a state of DELETE PENDING or DELETE ADD PENDING.

Example: Deleting All Entry Points from the Sphere of Control for a Specified Category

To delete all entry points from the sphere of control for category OPS_MGMT, enter:

```
FOCALPT DELETE FPCAT=OPS_MGMT TARGET=* 
```

Response

You see a message similar to the following:

```
CNM01  BNH017I FOCALPT DELETE SUCCESSFUL. 1 ENTRY POINTS REMOVED FROM THE SPHERE OF CONTROL AND 5 ENTRY POINTS SET TO A DELETE STATE FOR CATEGORY OPS_MGMT
```

Five entry points will have a state of DELETE PENDING or DELETE ADD PENDING and one entry point is removed for category OPS_MGMT.

Example: Deleting More Than One Entry Point from a Specified Category

To delete entry points NETA.CNM01 and NETB.CNM02 from the OPS_MGMT category, enter:

```
FOCALPT DELETE FPCAT=OPS_MGMT TARGLIST=(NETA.CNM01,NETB.CNM02) 
```

Response

You see a message similar to the following:

```
CNM01  BNH017I FOCALPT DELETE SUCCESSFUL. 1 ENTRY POINTS REMOVED FROM THE SPHERE OF CONTROL AND 5 ENTRY POINTS SET TO A DELETE STATE FOR CATEGORY OPS_MGMT
```
The entry point NETA.CNM01 is removed from the sphere of control for category OPS_MGMT and entry point NETB.CNM02 is set to a state of DELETE PENDING or DELETE ADD PENDING for category OPS_MGMT.
FOCALPT DISPSOC (NCCF)

Syntax

FOCALPT DISPSOC

IBM-Defined Synonyms

The FOCALPT DISPSOC command has the following synonyms:

<table>
<thead>
<tr>
<th>Command</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOCALPT</td>
<td>FOC, FPT</td>
</tr>
<tr>
<td>FPCAT</td>
<td>TYPE, TYP, CAT</td>
</tr>
<tr>
<td>TARGET</td>
<td>TG</td>
</tr>
<tr>
<td>TARGNET</td>
<td>TN</td>
</tr>
</tbody>
</table>

Purpose of Command

The FOCALPT DISPSOC command, entered at the focal point, displays all the entry points in the sphere of control for a registered focal point.

Operand Descriptions

FPCAT

Indicates the registered focal point category for the entry points displayed. The FPCAT operand has the following values:

- ALERT
 Indicates that all entry points in the sphere of control for the alert category are to be displayed. Entry point NetViews that forward alerts over the LUC are not displayed.

- OPS_MGMT
 Indicates that all entry points in the sphere of control for the OPS_MGMT category are to be displayed.
LINKSERV
Indicates that all entry points in the sphere of control for the LINKSERV category are to be displayed.

SPCS
Indicates that all entry points in the sphere of control for the SPCS category are to be displayed.

user_defined
Indicates that all entry points in the sphere of control for a user-defined category are to be displayed.

* Specifies any and all matching target networks. This is the default.

TARGET
Specifies the name of the entry point in the sphere of control that is to be displayed. The TARGET operand has the following values:

netid.nau
Specifies the fully qualified network name and LU or VTAM CP name of the entry point.

* Specifies that all entry points in the sphere of control are to be displayed. You can specify an * following a character set to limit the scope of entry points. For example, TARGET=NETA.* displays all entry points in the sphere of control beginning with NETA.

TARGNET
Specifies the target network.

* Specifies that the target network is the one determined by VTAM based solely on the LU name of the target node. This is the default.

 target_network
 Specifies the name of the network in which the target host resides.

ALL
Specifies that all states are to be displayed.

ADDPEND
Specifies that only entry points with the state of ADD PENDING are to be displayed.

ACTIVE
Specifies that only entry points with the state of ACTIVE are to be displayed.

DELPND
Specifies that only entry points with the state of DELETE ADD PENDING are to be displayed.

DELPEND
Specifies that only entry points with the state of DELETE PENDING are to be displayed.

INACTIVE
Specifies that only entry points with the state of INACTIVE are to be displayed.

UNKNOWN
Specifies that only entry points with the state of UNKNOWN are to be displayed.
Examples

Example: Displaying the Sphere of Control for a Specified Category
To display the sphere of control for category OPS_MGMT, enter:
FOCALPT DISPSOC FPCAT=OPS_MGMT TARGET=** ALL

Response
You see messages similar to the following:
* CMN01 FOCALPT DISPSOC FPCAT=OPS_MGMT TARGET=** ALL
' CMN01
BNH029I FOCAL POINT CATEGORY: OPS_MGMT
DWO171I
BNH001I ENTRY POINT SPHERE OF CONTROL ENTRY POINT
BNH002I NAME TYPE STATE
DWO950I --------------- --------------- ---------------
BNH007I *.CNM02 EXPLICIT ADD PENDING
BNH008I NETC.CNM10 EXPLICIT ACTIVE
DWO171I
BNH013I END OF SPHERE OF CONTROL INFORMATION

Where:

FOCAL POINT CATEGORY
Displays the name of the focal point category.

ENTRY POINT NAME
Displays the name of the entry point.

SPHERE OF CONTROL TYPE
Displays the type of focal point for the entry point. The types are:
• EXPLICIT
• IMPLICIT

ENTRY POINT STATE
Displays one of the following entry point states:
• ADD PENDING
• ACTIVE
• DELETE ADD PENDING
• DELETE PENDING
• INACTIVE
• INACTIVE RETRY
• UNKNOWN

Example: Displaying the Sphere of Control for Active Entry Points
To display the sphere of control for active entry points in all categories, enter:
FOCALPT DISPSOC FPCAT=** TARGET=** ACTIVE

Response
You see messages similar to the following:
* CMN01 FOCALPT DISPSOC FPCAT=** TARGET=** ACTIVE
' CMN01
BNH029I FOCAL POINT CATEGORY: SPCS
DWO171I
BNH016E NO ENTRY POINTS QUALIFY FOR TARGET: *, STATE: ACTIVE
DWO171I

Example: Displaying the Sphere of Control for Nodes in a Specified Entry Point
To display the sphere of control for category OPS_MGMT for all nodes in NETB, enter:
FOCALPT DISP5OC FPCAT=OPS_MGMT TARGET=NETB.* ALL

Response
You see messages similar to the following:
* CNM01 FOCALPT DISP5OC FPCAT=OPS_MGMT TARGET=NETB.* ALL
 CNM01
BNH029I FOCAL POINT CATEGORY: OPS_MGMT
DW0171I
BNH001I ENTRY POINT SPHERE OF CONTROL ENTRY POINT
BNH002I NAME TYPE STATE
DW0950I ------------- ----------------- ----------------
BNH008I NETB.CNM02 EXPLICIT ACTIVE
DW0171I
BNH013I END OF SPHERE OF CONTROL INFORMATION
FOCALPT DROP (NCCF)

Syntax

FOCALPT DROP

\[\text{FOCALPT DROP}\]

\[\text{FPCAT=} \text{ALERT}\]

\[\text{LINKSERV}\]

\[\text{OPS_MGMT}\]

\[\text{SPCS}\]

\[\text{user_defined}\]

\[\text{BACKUP}\]

\[\text{BACKLIST=} (\text{backup_focal_point}, ..., \text{backup_focal_point})]\n
\[\text{OVERIDE}\]

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>DROP</td>
<td>D, DRP</td>
</tr>
<tr>
<td>FPCAT</td>
<td>CAT, TYPE, TYP</td>
</tr>
<tr>
<td>BACKUP</td>
<td>BU</td>
</tr>
<tr>
<td>BACKLIST</td>
<td>BL</td>
</tr>
</tbody>
</table>

Purpose of Command

The FOCALPT DROP command enables the backup focal point name or both the primary and backup focal point names to be dropped at the entry point. You can also use the FOCALPT DROP command to remove one or more focal points from the backup list. FOCALPT DROP allows you a great deal of flexibility at the entry point because it does not require you to recycle the NetView program or to send a FOCALPT CHANGE command to the entry point from the desired focal point itself. With FOCALPT DROP, you can request that the entry point attempt to drop the desired focal point, which will also remove the entry point from the focal point’s sphere of control.

Operand Descriptions

FPCAT=fpcat

Indicates the category of data for which the entry point’s focal point names are to be dropped. The FPCAT operand has the following values:

- **ALERT**

 Indicates a change in the alert focal point. The protocol used to drop an alert focal point is determined by the setting on the NPDA.ALERTFWD statement in CNMSTYLE.

- **LINKSERV**

 Indicates a change in the LINKSERV focal point.

- **OPS_MGMT**

 Indicates a change in the operations management focal point.
SPCS
Indicates a change in the service point command service focal point.

user_defined
Indicates a change in the user-defined focal point

ALL
Indicates that the current focal point, regardless of whether it is primary or
backup, is to be dropped as the current focal point for this category. The names
for both the primary and backup focal points are set to null and a revocation is
sent to the current focal point. If no current focal point exists when you enter
this command, the primary and backup focal points are set to null.

BACKUP
Indicates that all backup focal points are to be dropped for this category. If a
backup focal point is currently the active focal point for this category, a
revocation is sent to the former current focal point.

BACKLIST=(backup_focal_point, ..., backup_focal_point)
Specifies the fully qualified network name or node name of the focal point
whose name is to be removed from the backup list. If the netid is not specified,
the NetView program scans the list looking for a node name (NAU) that
matches. If the focal point specified is currently the active focal point for this
category, a revocation is sent to it.

OVERRIDE
Indicates that if an ACQUIRE request is currently in progress for the specified
category, the outstanding acquire request is canceled and this drop request is
serviced.

Restrictions
The following restrictions apply to the FOCALPT DROP command:
• You cannot drop the primary focal point without dropping all backup focal
points.
• You can use the FOCALPT QUERY command to determine the current focal
point status for a category before using the FOCALPT DROP command to drop
a focal point.
• If a single backup focal point is dropped, the focal point name is removed from
the list of backups. If the backup was the active focal point for the category, a
revocation is sent to the focal point. Acquisition of another backup focal point is
not attempted. The next attempt to send data to the primary focal point will fail
and a timer will be set. When this timer expires, the NetView program attempts
to acquire another backup focal point.
• FOCALPT DROP cannot be used by an end node to drop a domain focal point.
Only the serving network node can drop the domain focal point.

Return Codes
You can automate the FOCALPT command by using the return codes from a
command list. The return codes for this command are:

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The request has been accepted and a reply comes back later.</td>
</tr>
<tr>
<td>4</td>
<td>The request failed. An error message is issued.</td>
</tr>
<tr>
<td>8</td>
<td>Not a valid call of the command processor. No message is issued.</td>
</tr>
</tbody>
</table>
Examples

Example: Dropping the Current Focal Point
To drop the current focal point for category OPS_MGMT, regardless of whether it was a primary or backup focal point, use this command:

FOCALPT DROP FPCAT=OPS_MGMT ALL

Response

If a current primary or backup focal point exists when you enter this command, it is dropped, a revocation is sent to the former current focal point, and the names for both the primary and backup focal points are set to null.

Example: Dropping Specified Backup Focal Points
To remove focal points NETA.CNM99 and NETB.CNM44 from the backup list, use this command:

FOCALPT DROP FPCAT=OPS_MGMT BACKLIST=(NETA.CNM99,NETB.CNM44)

Response

If the FOCALPT DROP request is successful, the system responds with the following messages:

DWO051I FOCALPT DROP COMMAND FOR CATEGORY OPS_MGMT COMPLETED SUCCESSFULLY
DWO768I THE FOLLOWING BACKUP FOCAL POINT(S) HAS BEEN DROPPED:
DWO769I NETA.CNM99 NETB.CNM44
DWO780I THE CURRENT REMOTE FOCAL POINT IS NETA.CNM11. TYPE : PRIMARY

Example: Dropping All Backup Focal Points from a Specified Category
To remove all backup focal points for the OPS_MGMT category, use this command:

FOCALPT DROP FPCAT=OPS_MGMT BACKUP

Response

If the FOCALPT DROP request is successful, the system responds with the following messages:

DWO051I FOCALPT DROP COMMAND FOR CATEGORY OPS_MGMT COMPLETED SUCCESSFULLY
DWO768I THE FOLLOWING BACKUP FOCAL POINT(S) HAS BEEN DROPPED:
DWO769I NETA.CNM01 NETA.CNM06 NETA.CNM12 NETA.CNM67
DWO769I NETA.CNM23 NETA.CNM78 NETA.CNM37 NETA.CNM86
DWO058I THE OLD CURRENT FOCAL POINT NETA.CNM86 HAS BEEN SENT A REVOCATION

Example: Dropping All Focal Points from a Specified Category
To remove all focal points (primary and backup) for the OPS_MGMT category, use this command:

FOCALPT DROP FPCAT=OPS_MGMT ALL

Response

If the FOCALPT DROP request is successful, the system responds with the following messages:

DWO051I FOCALPT DROP COMMAND FOR CATEGORY OPS_MGMT COMPLETED SUCCESSFULLY
DWO057I THE PRIMARY FOCAL POINT NETA.CNM34 HAS BEEN DROPPED
DWO058I THE OLD CURRENT FOCAL POINT NETA.CNM27 HAS BEEN SENT A REVOCATION
FOCALPT QUERY (NCCF)

Syntax

```
FOCALPT QUERY
```

```
FPCAT=ALERT
```

```
FPCAT=LINKSERV
```

```
FPCAT=OPS_MGMT
```

```
FPCAT=STATUS
```

```
FPCAT=SPCS
```

```
FPCAT=user_defined
```

```
FPCAT=
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY</td>
<td>Q, QRY</td>
</tr>
<tr>
<td>FPCAT</td>
<td>TYPE, TYP, CAT</td>
</tr>
</tbody>
</table>

Purpose of Command

Use the FOCALPT QUERY command to see the current primary and backup focal points defined for alerts, status data, and operations management data, and the current status of the data.

Operand Descriptions

FPCAT=fpcat

Indicates the category for which data is to be displayed. The FPCAT operand has the following values:

ALERT

Indicates a query of the alert focal point.

LINKSERV

Indicates a query of the LINKSERV focal point.

OPS_MGMT

Indicates a query of the operations management focal point.

STATUS

Indicates a query of the status focal point.

SPCS

Indicates a query of the service point command service focal point.

user_defined

Indicates a query of the user-defined focal point. An * can be used as the last character of a user-defined category name to match any string of characters.

**=* Indicates a query of all focal point categories.
Restrictions

The following restrictions apply to the FOCALPT QUERY command:

- You can use FOCALPT QUERY to provide the function of LIST FOCPT, but you cannot use LIST FOCPT to provide the function of FOCALPT QUERY. The FOCALPT QUERY command enables you to see focal point information for operations management and user-defined categories.
- If you do not specify a category, current focal point information for ALERT, STATUS and operations management (as well as any currently registered user-defined focal point categories) is displayed.

Return Codes

You can automate the FOCALPT command by using the return codes from a command list. The return codes for this command are:

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The request has been accepted and a reply comes back later.</td>
</tr>
<tr>
<td>4</td>
<td>The request failed. An error message is issued.</td>
</tr>
<tr>
<td>8</td>
<td>Not a valid call of the command processor. No message is issued.</td>
</tr>
</tbody>
</table>

Examples

Example: Displaying Information about an Operations Management Focal Point

To display information about the operations management focal point, use the following command:

```
FOCALPT QUERY FPCAT=OPS_MGMT
```

Response

If the command was issued from an end node, you receive messages similar to the following:

```
DWO170I DISPLAY OF CURRENT FOCAL POINT INFORMATION
DWO171I
DWO172I CATEGORY (EBCDIC): OPS_MGMT CATEGORY (ARCH): X'23F0F1F7'
DWO173I LOCAL FOCAL POINT:
DWO174I APPL NAME: --NONE-- ACTIVE: N/A
DWO173I REMOTE FOCAL POINT:
DWO790I CURRENT: NETA.CNM40 TYPE: BACKUP(6)
DWO792I PRIMARY: NETA.CNM88
DWO793I BACKUP LIST:
DWO794I 1) NETB.CNM22  2) *.CNM99  3) NETB.CNM25
DWO794I 4) NETA.CNM30  5) NETA.CNM35  6) *.CNM40
DWO794I 7) *.CNM45  8) *.CNM50
DWO795I DOMAIN : NETA.CNM36
DWO176I RETRY TIMER SET: Y
DWO171I
DWO189I END OF CURRENT FOCAL POINT INFORMATION
```

Notes:

1. Current focal point is one of the backups (messages DWO174I and DWO790I). Either the primary focal point has failed or an attempt to acquire it as the remote focal point failed. (There is no local focal point and the current remote focal point is one of the backup focal points.)
2. Current focal point is the sixth backup in the list (message DWO790I)
 Attempts to acquire the first five backup focal points in the backup list failed.
 The request to acquire the sixth focal point in the list was successful; this is the
 current focal point. (Message DWO790I indicates that the sixth backup is now
 the current focal point.)

3. End node has a domain focal point (message DWO795I)
 The end node has received notification from the serving network node of the
 domain focal point for this category. This end node has both an implicit focal
 point (NETA.CNM40) and a domain focal point (NETA.CNM36).

4. VTAM has resolved the NETID (message DWO790I)
 The NETID of the active backup focal point has been resolved by VTAM and is
 displayed in the current remote focal point name field. Note that the backup
 list shows what was entered by the user, not the resolved NETID.

5. Timer has been set (message DWO176I)
 The timer has been set to attempt to reacquire the primary remote focal point.
 If you are running on a backup focal point, the NetView program automatically
 attempts to acquire the primary focal point again when the timer is activated. If
 the original management services capabilities message indicated that the focal
 point is responsible for retry, this timer is not set.

Example: Displaying Information about an Alert Focal Point
To display information about the alert focal point, use the following command:
FOCALPT QUERY FPCAT=ALERT

Response

If the command was issued from an end node using the SNA-MDS/LU 6.2 alert
forwarding protocol, you receive messages similar to the following:

 * CNM01 FOCALPT QUERY FPCAT=ALERT
 ' CNM01
 DWO170I DISPLAY OF CURRENT FOCAL POINT INFORMATION
 DWO171I
 DWO060I CATEGORY ALERT SUPPORTS BOTH SNA-MDS AND NETVIEW-UNIQUE FOCAL POINTS
 DWO171I
 DWO061I THE SNA-MDS FOCAL POINT INFORMATION FOR CATEGORY ALERT FOLLOWS:
 DWO172I CATEGORY (EBCDIC): ALERT CATEGORY (ARCH): X'23F0F3F1'
 DWO173I LOCAL FOCAL POINT:
 DWO174I APPL NAME: X'23F0F3F1' ACTIVE: Y
 DWO173I REMOTE FOCAL POINT:
 DWO790I CURRENT: NETA.CNM02 TYPE: PRIMARY
 DWO792I PRIMARY: NETA.CNM02
 DWO793I BACKUP LIST: --NONE--
 DWO176I RETRY TIMER SET: N
 DWO171I
 DWO062I THE NETVIEW-UNIQUE FOCAL POINT INFORMATION FOR CATEGORY ALERT FOLLOWS:
 BNH093I *** NV-UNIQ FOCAL POINT DISALLOWED DUE TO "ALERTFWD SNA-MDS" IN CNMSTYLE
 DWO171I
 DWO189I END OF CURRENT FOCAL POINT INFORMATION

Note: Message BNH093I is displayed to show that there is no NV-UNIQ/LUC
alert forwarding information to display because the SNA-MDS/LU 6.2 alert
forwarding protocol is being used.

If the command was issued from an end node using the NV-UNIQ/LUC alert
forwarding protocol, you receive messages similar to the following:
* CNM01 FOCALPT QUERY FPCAT=ALERT
' CNM01
DWO170I DISPLAY OF CURRENT FOCAL POINT INFORMATION
DWO171I
DWO060I CATEGORY ALERT SUPPORTS BOTH SNA-MDS AND NETVIEW-UNIQUE FOCAL POINTS
DWO171I
DWO061I THE SNA-MDS FOCAL POINT INFORMATION FOR CATEGORY ALERT FOLLOWS:
DWO172I CATEGORY (EBCDIC): ALERT CATEGORY (ARCH): X'23F0F3F1'
DWO173I LOCAL FOCAL POINT:
DWO174I APPL NAME: X'23F0F3F1' ACTIVE: Y
DWO173I REMOTE FOCAL POINT:
DWO189I *** SNA-MDS FOCAL POINT DISALLOWED DUE TO "ALERTFWD NV-UNIQ" IN CNMSTYLE
DWO171I
DWO062I THE NETVIEW-UNIQUE FOCAL POINT INFORMATION FOR CATEGORY ALERT FOLLOWS:
DWO173I LOCAL FOCAL POINT:
DWO174I NOT APPLICABLE, NETVIEW-UNIQUE ALERT FOCAL POINTS ARE ALWAYS REMOTE
DWO173I REMOTE FOCAL POINT:
DWO067I PRIMARY NAME: CNM02
DWO067I BACKUP NAME: --NONE--
DWO171I
DWO189I END OF CURRENT FOCAL POINT INFORMATION

Note: Message BNH093I is displayed to show that there is no SNA-MDS/LU 6.2 alert forwarding information to display because the NV-UNIQ/LUC alert forwarding protocol is being used.
FOCALPT REFRESH (NCCF)

Syntax

FOCALPT REFRESH

Purpose of Command

The FOCALPT REFRESH command, entered at the focal point, causes the sphere of control manager (SOC-MGR) to read the sphere of control configuration file. The SOC-MGR reads in all of the explicit entry point names and issues a focal point change command for each entry point in the sphere of control configuration file. If the focal point change command is successful for a particular entry point, the focal point then becomes the explicit focal point for the entry point.

Focal point-entry point relationships defined in the sphere of control configuration file take precedence over relationships in the current sphere of control environment. For example, because the sphere of control configuration file defines explicit entry points, any entry point with a sphere of control type of implicit in the current sphere of control environment is changed to explicit when the FOCALPT REFRESH command is issued. Also, if an explicit entry point exists in a focal point’s sphere of control in the current environment, but is not defined in the configuration file when the FOCALPT REFRESH command is issued, the entry point is placed in DELETE PENDING status.

Examples

Example: Reading in the SOC Configuration File
To process the SOC configuration file, enter:

FOCALPT REFRESH

Response

You see a message similar to the following:

DW00511 FOCALPT REFRESH COMMAND FOR CATEGORY OPS_MGMT COMPLETED SUCCESSFULLY
BNH0201 SPHERE OF CONTROL ENVIRONMENT INITIALIZED FROM DSI6SCF DATA
FORCE (EAS)

Syntax

EAS FORCE

MODIFY proname,FORCE

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIFY</td>
<td>F</td>
</tr>
</tbody>
</table>

Purpose of Command

The FORCE command causes the NetView event/automation service job to halt all activity within ten seconds. If the event/automation service job has not halted activity within ten seconds, any service that is still active is forcibly terminated.

Operand Descriptions

proname

Specifies the event/automation service job name.

Usage Notes

The FORCE command may terminate the event/automation service abnormally. Any service that has not terminated within ten seconds of issuing the FORCE command is forcibly terminated. This might result in the loss of data if there are events waiting on the service data queue when the service is forced.

Examples

Example: Ending the Event/automation Service Job

To end the event/automation service job named IHSAEVNT, enter:

F IHSAEVNT,FORCE

Response

The following response is displayed:

IHS0119I Event/automation service is terminating due to an operator request.
FORCE (NLDLM)

Syntax

```
FORCE
```

```
resname1             NET netid1

resname2             NET netid2
```

Purpose of Command

The FORCE command causes session data to be recorded in a VSAM database.

When a session ends, the session monitor automatically saves the session trace data for that session. In addition, at any time, you can save session trace data by using the FORCE command.

The FORCE command can be helpful with a hung terminal, where the session cannot be terminated. In this case, the session monitor never automatically saves the trace data. By using FORCE, you can save the session trace data so the technical support people can perform problem determination tasks.

Operand Descriptions

- **resname1**

 Is the resource name for which data is forced to the VSAM database.

- **NET netid1**

 Is the name of the network in which the first resource resides. If you do not specify this operand, the specified resource is assumed to reside in the network of the domain (NetView system) in which the FORCE command is processed.

- **resname2**

 Is the second name to identify a specific name pair.

- **NET netid2**

 Is the name of the network in which the second resource resides. If you do not specify this operand, the specified resource is assumed to reside in the network of the domain (NetView system) in which the FORCE command is processed.

Restrictions

The following restrictions apply to the FORCE command:

- Request the most recent trace data from VTAM before you enter the FORCE command. First display the session trace data selected from the session configuration panel, then issue the FORCE command.

- If a session being forced is cross-domain or cross-network, force the session by a separate command in each domain to preserve the data integrity of the forced session.

- You can issue the FORCE command naming only one resource. If you do this, data for all sessions with the named resource is forced to the VSAM database.

- If you name an SLU, you cause session data to be recorded for the SSCP-LU session and all LU-LU sessions involving the SLU.
If you name a PLU, you force data for all the sessions involving that PLU. If, for example, you issued FORCE CICS, you might force data to the database for hundreds of sessions. For this reason, name only SLUs in the FORCE command if only one resource name is used.

The FORCE command forces only those sessions that are known to the session monitor that processes the command. For example, a session monitor in network A has no knowledge of a single network session in network B, so a FORCE on that session from network A is not valid.

Examples

Example: Issuing a FORCE Command to One Network from Another Network
To record session data for a session in which resource LCL3278A is in network A01M and resource L51R79M is in network where FORCE command is issued, enter:

```
FORCE LCL3278A NET A01M L51R79M
```

Example: Recording Session Data from a Specified Resource
To record session data for all sessions involving resource LC51R in the local network, enter:

```
FORCE LC51R
```

Example: Recording Inter-resource Data
To record data for the session between resources IMS1 and LC51R, enter:

```
FORCE IMS1 LC51R
```

Example: Recording Inter-resource Data from Two Different Networks
To record data for the session between IMS1 and LC51R, where IMS1 is located in a nonlocal network (NETA) an LC51R is in the local network (the NET keyword is not specified for LC51R, defaulting to local), enter:

```
FORCE IMS1 NET NETA LC51R
```
FORWARD

Syntax

```
FORWARD
```

![Diagram of FORWARD command syntax]

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORWARD</td>
<td>FO</td>
</tr>
</tbody>
</table>

Purpose of Command

The FORWARD command scrolls forward toward the end of the data.

Operand Descriptions

For STATMON and TARA, there are no parameters. The scroll amount has a fixed value of a single page.

For HELP, NLDM, NPDA, and VIEW (no-input):

- `amount`
 Specifies the amount to scroll forward:
 - `number`
 Scroll forward a specific number of pages. The range is 1–32767.

 The default amount is one page.

For WINDOW (and WINDOW-based applications such as INDEX and HELPDESK):

- `amount`
 Specifies the amount to scroll forward:
 - `number`
 Scroll forward a specific number of lines.

 The default amount is the cursor position. If the cursor is not on a data line, the default is the scroll amount displayed in the message area at the bottom of the screen (message BNH183I). If BNH183I is not displayed, the default is either one full page or the bottom of the screen, whichever is applicable.

For BROWSE:

- `amount`
 Specifies the amount to scroll forward. The possible values for `amount` are:
 - **Page or P**
 Scroll forward one page
 - **Half or H**
 Scroll forward half a page
Cs or C
Scroll forward making the line indicated by the cursor the first displayed line

Max or M
Scroll forward to the beginning of the data

number
Scroll forward a specific number of lines. The range is 1–32767 when you are browsing a member or 1–9999999 when you are browsing the network log.

The default is CSR if the cursor is located in the data display area; otherwise the default is Page.

Usage Notes
Consider the following when using the FORWARD command:

- When you have issued the OVERRIDE command with the SCROLL keyword specifying a value other than OFF, the BROWSE panel displays a scroll amount in the upper right area of the panel.
- When you issue the FORWARD command, the number of lines scrolled is determined in the following order:
 1. The explicit scroll amount specified on either the FORWARD command or on the command line when the FORWARD PF key is pressed.
 2. The scroll amount displayed in the message area at the bottom of the BROWSE screen as message BNH183I indicating the last scroll amount.
 3. The implicit scroll amount specified in the scroll amount area in the upper right area of the panel.
 4. The cursor position when the scroll amount area indicates CSR.
 5. The cursor position when there is no scroll field or BNH183I message displayed.
- You can change the scroll amount in the scroll amount area by entering any portion of CSR, HALF, OFF, PAGE, or a numeric scroll amount. You do not need to type over the remaining contents of the field unless you are changing a numeric value to another numeric value.

Restrictions
The following restrictions apply to the FORWARD command:

- If you enter this command for a single-page panel, no change occurs.
- If the value of amount is greater than the number of remaining lines or pages, the bottom of the data or last page is displayed.

Examples

Example: Displaying the Next Page of a Multipage Panel
To display the next page of a multipage panel, enter:

FORWARD

Example: Advancing a Specified Number of Help Panels
If you want to move ahead five help panels, enter:

FORWARD 5
FREE (NCCF)

Syntax

```
FREE
  DATASET(dsname)
  DATASET(dsname(member))
  FILE(ddname)
  HOLD NOHOLD
  CATALOG
  DELETE
  KEEP
  SYSOUT(class)
  UNCATALOG
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREE</td>
<td>UNALLOC</td>
</tr>
<tr>
<td>DATASET</td>
<td>DA, DS, DSNAMEx, DSN</td>
</tr>
<tr>
<td>FILE</td>
<td>DD, DDN, DDDNAME, F, FI</td>
</tr>
<tr>
<td>CATALOG</td>
<td>CATLG</td>
</tr>
<tr>
<td>UNCATALOG</td>
<td>UNCATLG</td>
</tr>
</tbody>
</table>

Purpose of Command

The FREE command dynamically deallocates a data set from the NetView system. A file can be deallocated in one of three ways:

- Using `ddname` (FILE operand)
- Using data set name (DATASET operand)
- Using `ddname` and data set name (FILE and DATASET operands)

Operand Descriptions

DATASET(dsname)

Specifies that data set `dsname` is to be freed. The `dsname` can be a catalogued VSAM file name.

DATASET(dsname(member))

Specifies that partitioned data set `dsname` with `member` is to be freed. `dsname` can be 1–44 characters, while `member` can be 1–8 characters.

FILE(ddname)

Specifies the `ddname` associated with the data set to be deallocated. `ddname` can be from 1 to 8 characters.

HOLD

Specifies that the data set is to be placed on a hold queue upon deallocation. Specify this operand with SYSOUT. HOLD is ignored if the file is not a system output data set.
NOHOLD
 Specifies that the data set is not to be placed on a hold queue upon
deallocation. Specify this operand with SYSOUT. NOHOLD is ignored if the
file is not a system output data set. NOHOLD is the default for a system
output data set.

CATALOG
 Catalogs the data set upon deallocation. It is mutually exclusive with SYSOUT.

DELETE
 Specifies that the data set is to be deleted upon deallocation. DELETE is
mutually exclusive with SYSOUT.

KEEP
 Specifies that the data set is to be kept upon deallocation. KEEP is mutually
exclusive with SYSOUT.

SYSOUT(class)
 Overrides the system output class of a system output data set. This operand is
ignored if the file is not a system output data set.

UNCATALOG
 Uncatalogs the data set upon deallocation. UNCATALOG is mutually exclusive
with SYSOUT.

DEST(destination)
 Overrides the remote destination of a system output data set. This operand is
ignored if the file is not a system output data set.

Usage Notes
 Deallocationg a file by specifying only the DATASET operand deallocates all files
that have the specified data set name. For this reason, to prevent unintended file
deallocations, specify the ddname operand. To further restrict the deallocation, you
can specify both the ddname and DATASET. This only deallocates the file if the
ddname and DATASET name specified with the FREE command match the file
allocated.

 If you specify the same operand more than once on the FREE command, the last
one is used and the previous ones are ignored.

 Issue the FREE command before using IDCAMS to delete a VSAM file. Otherwise,
if you want to delete and redefine a data set, the OPEN will fail. To erase and
redefine a VSAM file, perform the following sequence:
1. CLOSE the VSAM file if it is open.
2. FREE the ddname if it is allocated.
 Attention: The next step erases the original file data. Save anything you need
to keep.
3. DELETE the VSAM file.
4. DEFINE the VSAM file.
5. ALLOC the ddname.
6. OPEN the file.

Restrictions
 Files that are open cannot be deallocated.
Return Codes

Return Codes (Decimal)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Processing successful.</td>
</tr>
<tr>
<td>4</td>
<td>Request denied by installation validation exit.</td>
</tr>
<tr>
<td>8</td>
<td>Not a valid command syntax.</td>
</tr>
<tr>
<td>12</td>
<td>Storage unavailable.</td>
</tr>
<tr>
<td>20</td>
<td>Operator is not authorized to use a keyword or value. Check message DSI213I for keyword or value.</td>
</tr>
<tr>
<td>24</td>
<td>Dynamic allocation error. Check return code and information code in message CNM276I for more information.</td>
</tr>
<tr>
<td>28</td>
<td>Not a valid parameter.</td>
</tr>
<tr>
<td>48</td>
<td>File is not allocated.</td>
</tr>
<tr>
<td>52</td>
<td>File is open.</td>
</tr>
</tbody>
</table>

Dynamic Deallocation Return Codes (Hexadecimal)

Following are return codes that appear in message CNM276I.

- **Unavailable System Resource**

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>020C</td>
<td>Request for exclusive use of the shared data set cannot be honored.</td>
</tr>
<tr>
<td>0210</td>
<td>Data set is unavailable. The data set is allocated to another job.</td>
</tr>
<tr>
<td>0214</td>
<td>Unit is not available.</td>
</tr>
<tr>
<td>0218</td>
<td>Volume is not mounted.</td>
</tr>
<tr>
<td>021C</td>
<td>Unit name specified is undefined.</td>
</tr>
<tr>
<td>0220</td>
<td>Requested volume is unavailable.</td>
</tr>
</tbody>
</table>

- **Not a valid parameter**

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>035C</td>
<td>Parameter is not valid. Check information code to identify the parameter that is not valid.</td>
</tr>
<tr>
<td>0364</td>
<td>JOBLIB, STEPLIB, JOBCAT, STEPCAT ddnames are not allowed.</td>
</tr>
<tr>
<td>037C</td>
<td>No valid value specified for parameter. Check information code to identify the parameter that is not valid.</td>
</tr>
<tr>
<td>0380</td>
<td>Mutually exclusive parameters were specified. Check information code to identify the parameter.</td>
</tr>
<tr>
<td>0384</td>
<td>Mutually inclusive parameter was not specified.</td>
</tr>
</tbody>
</table>
Check information code to identify the parameter that requires additional parameters.

0388
Required parameter was not specified. Check information code to identify the parameter not specified.

039C
Device type and volume are incompatible.

Environmental Errors

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0410</td>
<td>Specified ddname is unavailable. It is already associated with a previously allocated data set.</td>
</tr>
<tr>
<td>0420</td>
<td>Specified ddname is associated with an open data set.</td>
</tr>
<tr>
<td>0438</td>
<td>Specified ddname is not allocated.</td>
</tr>
<tr>
<td>0440</td>
<td>Specified dsname is not allocated.</td>
</tr>
<tr>
<td>0448</td>
<td>Request for a new data set failed. The data set already exists.</td>
</tr>
<tr>
<td>0450</td>
<td>Dynamic allocations limit of 1635 concurrent resources reached.</td>
</tr>
<tr>
<td>046C</td>
<td>Remote workstation is not defined to the job entry subsystem.</td>
</tr>
<tr>
<td>0478</td>
<td>Unable to process job entry subsystem request.</td>
</tr>
<tr>
<td>0484</td>
<td>Request denied by operator.</td>
</tr>
<tr>
<td>04C0</td>
<td>Protect request failed. User is not defined to RACF.</td>
</tr>
</tbody>
</table>

System Routine Error

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1708</td>
<td>Data set not found.</td>
</tr>
<tr>
<td>170C</td>
<td>Index not valid or not specified.</td>
</tr>
<tr>
<td>1710</td>
<td>A data set exists at other than the lowest index level specified.</td>
</tr>
<tr>
<td>1714</td>
<td>Syntax error exists in the name.</td>
</tr>
<tr>
<td>1718</td>
<td>Permanent I/O error.</td>
</tr>
<tr>
<td>4704</td>
<td>Data set already exists on volume.</td>
</tr>
<tr>
<td>4708</td>
<td>No room available in VTOC.</td>
</tr>
<tr>
<td>4710</td>
<td>Requested absolute track not available.</td>
</tr>
<tr>
<td>4714</td>
<td>Requested space not available.</td>
</tr>
<tr>
<td>4718</td>
<td>Average record length greater than 65,535 bytes.</td>
</tr>
<tr>
<td>4728</td>
<td>Space request must begin on cylinder boundary.</td>
</tr>
<tr>
<td>4738</td>
<td>Directory space not available.</td>
</tr>
<tr>
<td>474C</td>
<td>No space specified for a new data set.</td>
</tr>
<tr>
<td>4768</td>
<td>Not a valid space subparameter.</td>
</tr>
<tr>
<td>4774</td>
<td>User labels not supported.</td>
</tr>
<tr>
<td>4780</td>
<td>Directory space not available.</td>
</tr>
<tr>
<td>479C</td>
<td>DASD allocation terminated because of VTOC error.</td>
</tr>
<tr>
<td>47A8</td>
<td>RACF define failed; data set profile already defined.</td>
</tr>
</tbody>
</table>
47AC User not authorized to define data set.
47B0 Installation exit rejected the request with a return code of 8.
47B4 Installation exit rejected the request with a return code of 4.
5704 Catalog does not exist or is not open.
5708 Data set already cataloged.
5710 Index structure to catalog the data set does not exist.
5714 Insufficient space in the catalog data set.
571C Permanent I/O error.
6704 Required volume not mounted.
6708 Data set not found.
670C Permanent I/O error.

Information Codes (Hexadecimal)

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>\textit{ddname} (DDNAME)</td>
</tr>
<tr>
<td>0002</td>
<td>Data set name (DSNAME)</td>
</tr>
<tr>
<td>0003</td>
<td>Member name (DSNAME(xxxxxxxx))</td>
</tr>
<tr>
<td>0004</td>
<td>Data set status (NEW,OLD,MOD,SHR)</td>
</tr>
<tr>
<td>0005</td>
<td>Data set normal disposition (DELETE,KEEP,CATLG,UNCATLG)</td>
</tr>
<tr>
<td>0007</td>
<td>Track space allocation (TRACKS)</td>
</tr>
<tr>
<td>0008</td>
<td>Cylinder space allocation (CYLINDERS)</td>
</tr>
<tr>
<td>0009</td>
<td>Block space allocation (BLOCK)</td>
</tr>
<tr>
<td>000A</td>
<td>Primary space allocation (SPACE(xxxx))</td>
</tr>
<tr>
<td>000B</td>
<td>Secondary space allocation (SPACE(xxxxxx))</td>
</tr>
<tr>
<td>000C</td>
<td>Partitioned data set directory blocks (DIR)</td>
</tr>
<tr>
<td>000D</td>
<td>Release unused space (RELEASE)</td>
</tr>
<tr>
<td>000F</td>
<td>Allocate whole cylinders (ROUND)</td>
</tr>
<tr>
<td>0010</td>
<td>Volume serial number (VOLUME)</td>
</tr>
<tr>
<td>0012</td>
<td>Volume sequence number (VSEQ)</td>
</tr>
<tr>
<td>0015</td>
<td>Unit type (UNIT)</td>
</tr>
<tr>
<td>0018</td>
<td>Output class (SYSOUT(x))</td>
</tr>
<tr>
<td>001C</td>
<td>Free data set at closure (FREE)</td>
</tr>
<tr>
<td>001D</td>
<td>Sysout copies (COPIES)</td>
</tr>
<tr>
<td>001E</td>
<td>Label type (LABEL)</td>
</tr>
<tr>
<td>001F</td>
<td>Data set sequence number (POSITION)</td>
</tr>
<tr>
<td>0022</td>
<td>Data set expiration date (EXPDT)</td>
</tr>
<tr>
<td>0023</td>
<td>Data set retention period (RETPD)</td>
</tr>
<tr>
<td>0024</td>
<td>Dummy data set (DUMMY)</td>
</tr>
<tr>
<td>0030</td>
<td>Data set block size (BLKSIZE)</td>
</tr>
<tr>
<td>0034</td>
<td>Buffer number (BUFNO)</td>
</tr>
<tr>
<td>003B</td>
<td>Magnetic tape density (DEN)</td>
</tr>
<tr>
<td>003C</td>
<td>Data set organization (DSORG)</td>
</tr>
<tr>
<td>0040</td>
<td>Length of keys in data set (KEYLEN)</td>
</tr>
<tr>
<td>0042</td>
<td>Data set logical record length (LRECL)</td>
</tr>
<tr>
<td>0049</td>
<td>Data set record format (RECFM)</td>
</tr>
<tr>
<td>0058</td>
<td>Remote workstation (DEST(xxxxxxxx))</td>
</tr>
<tr>
<td>0059</td>
<td>Sysout hold queue (HOLD)</td>
</tr>
<tr>
<td>0063</td>
<td>Sysout user ID (DEST(xxxxxxxx))</td>
</tr>
</tbody>
</table>
Examples

Example: Deallocating a Specified Ddname Data Set
To deallocate a data set with a *ddname* of MASTER, enter:
FREE FILE(MASTER)

Response
CNM272I MASTER IS NOW DEALLOCATED

Example: Deallocating a Specified Dsname Data Set
To deallocate a data set with a *dsname* of ESP.DSIPARM, enter:
FREE DATASET(ESP.DSIPARM)

Response
CNM272I ESP.DSIPARM IS NOW DEALLOCATED
FTRACE (NCCF; CNME0015)

Syntax

```
FTRACE

BUF, Opts

IO, Opts

EVERY, Opts

LINE, Opts

TG, Opts

NETCTRL, Opts

SIT, Opts

SMS, Opt1

TSO, Opts

GPT, Opts

CNM, Opts

VTAM, Opts

Cnmopts

VtamOpts

```

Opts:

```
ON
OFF

'resname'

```

Opt1:

```
ON
OFF

'VTAMBUF'

```

BufOpts:

```
ONLY
ALL

PARTIAL

FULL (1)

RESOURCE

CP SSCP

NO

YES (1)

```
Notes:
1. These operands are not valid when stopping a trace. The operands and their positional commas must be omitted when stopping the trace.

IoOpts:

LineOpts:

TgOpts:

NetOpts:

SitOpts:
Notes:
1 These operands are not valid when stopping a trace. The operands and their positional commas must be omitted when stopping the trace.
ON

OFF

INT,50

size

'API,MSG,NRM,PIU,SSCP'

(1)

(2)

(3)

END

FORCE

API

APPC

CFS

CIO

ESC

LCS

LOCK

MSG

NRM

PIU

PSS

SMS

SSCP

TCP

VCNS

Notes:

1 These operands are not valid when stopping a trace. The operands and their positional commas must be omitted when stopping the trace.

2 These five options are defaults for MODE=INT. There are no default options for MODE=EXT.

3 OPTION=END and OPTION=FORCE are only valid for NOTRACE and MODE=INT.

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVERY</td>
<td>E</td>
</tr>
<tr>
<td>LINE</td>
<td>L</td>
</tr>
</tbody>
</table>

Purpose of Command

The FTRACE command list starts, modifies, or stops VTAM traces.

Operand Descriptions

adj_lnk_sta_nm

Specifies the name of the adjacent link station through which the tracing is to occur.
ALL
For LINE and SIT traces, specifies that all of the data is to be traced. For a VTAM trace, specifies to start the VTAM internal trace for all of the VTAM internal functions for which the VTAM internal trace is available. For other traces, specifies to start traces for all nodes subordinate to the specified node.

API
Specifies tracing the application program interface.

APPC
Specifies tracing LU 6.2 communication.

BUF
Specifies the tracing of text that passes through VTAM buffers on the way to or from the nodes specified.

CFS
Specifies tracing coupling facility services.

CIO
Specifies tracing channel I/O for channel-attached devices and for lines attached to a communication adapter.

CNM
Specifies a communications network management trace. This trace option is not valid on releases of VTAM prior to version 4 release 2.

CP
Specifies tracing for the control point (CP) specified by resname.

DATA
Specifies that only data frames are to be traced by the cluster control unit.

END
Stops internal trace recording and frees the internal trace table.

ESC
Specifies tracing execution sequence control.

EVERY
Specifies that I/O and BUF traces are to be done.

EXT
 Specifies that the VTAM internal trace is to record its data on an external trace file as well as on an internal, wraparound table.

FORCE
Stops internal trace recording if VTAM appears to be in a hung condition.

FULL
Specifies that VTAM should record all of the data transmitted in message buffers.

GPT
Specifies an NCP generalized PIU trace (GPT) for the resources specified by resname.

INT
Specifies that the VTAM internal trace is to record its data on an internal, wraparound table.

IO
Specifies tracing of input/output (I/O) activity associated with the nodes specified.
LCS
 Specifies tracing LAN channel stations.

line
 Specifies the name of a link that is attached to the 3710 that is to be traced.

LINE
 Specifies an NCP line trace for the lines specified.

LOCK
 Specifies tracing locking.

MSG
 Specifies tracing messages.

NETCTLR
 Specifies tracing of a 3710 Network Controller line.

NO
 Specifies not to save a MODIFY TRACE command for an undefined resource.

NRM
 Starts tracing network resource management.

number_of_bytes
 Specifies the number of bytes of data to be traced.

OFF
 Stops the specified trace.

ON
 Starts the specified trace or modifies parameters for online trace. ON is the default.

ONLY
 Specifies a trace only for the specified node.

OPT=
 Specifies the options for the VTAM TRACE command.

other
 Specifies up to 4 additional parameters which are appended unchanged to the VTAM MODIFY command issued by the FTRACE command. No validation for duplicate or conflicting parameters is performed.

PARTIAL
 Specifies that VTAM should record the data in trace records with a maximum size of 256 bytes.

PDPJUBUF
 Specifies tracing a problem determination PIU buffer.

PIU
 Specifies tracing path information units.

PSS
 Specifies tracing process scheduling services.

pu_name
 Specifies the name of the physical unit representing the device for which the trace is to be started.

resname
 Is the name of one or more resources to be traced, up to a maximum of eight resources. If more than one resource name is specified, the list must be
enclosed in single quotes. Specify at least one resource name unless you specify VTAM. If you specify VTAM, a resource name is not required.

RESOURCE
Specifies tracing for a CP, an SSCP, or another resource with the name specified by `resname`.

SAWBUF
Specifies a trace of buffers containing session awareness data.

SIT
Specifies a scanner interface trace.

`size`
Specifies the number of 4K pages to be allocated for the internal trace table.

SMS
Specifies tracing storage management services.

SSCP
For a VTAM trace, starts tracing the system services control point. For IO and BUF, starts tracing for the system services control point (SSCP) with the name specified by `resname`.

TCP
Specifies tracing the VTAM to TCP/IP interface events.

TG
Specifies an NCP transmission group trace for the transmission groups containing the NCP lines specified.

`trace_point_id`
Specifies the point in the microcode at which tracing should be activated for CSS resources on an IBM 3745 Communication Controller.

TSO
Specifies a TSO component trace for the user ID identified by `resname`.

VCNS
Specifies tracing VTAM common network services.

VTAM
Specifies a VTAM internal trace for the API, PIU, SMS, and SSCP components.

YES
If the resource does not exist when this command is issued, VTAM saves the trace command until the resource is defined.

Restrictions
The following restrictions apply to the FTRACE command:
- When you trace terminals, all the data passed to or from the terminal is traced, including passwords.
- The ON or OFF option is positional. If you omit ON or OFF, but include a resource name, indicate its absence with a comma.
- Some operands are dependent on the VTAM release being used on your system.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Functioned normally</td>
</tr>
</tbody>
</table>
Examples

Example: Starting a VTAM Internal Trace
To start a VTAM internal trace, enter:
FTRACE VTAM

Example: Stopping a VTAM Internal Trace
To stop VTAM internal trace, enter:
FTRACE VTAM,OFF

Example: Tracing NCP Lines Associated with Specified Resources
To trace the NCP lines associated with resources RESNM1, RESNM2, and RESNM3, enter:
FTRACE L,,'RESNM1,RESNM2,RESNM3'

Example: Tracing I/O Activity and Buffers Associated with Specified Resources
To trace the I/O activity and buffers associated with resources RESNM1 and RESNM2, enter:
FTRACE E,,'RESNM1,RESNM2'

Example: Tracing All of the Data in Buffers Associated with Specified Resources
To trace all of the data in buffers associated with resources RESNM1 and RESNM2, enter:
FTRACE BUF,,'RESNM1,RESNM2',OPT=(,FULL)

Example: Stopping Trace for Buffers Associated with a Specified Resource
To stop the trace for the buffers associated with RESNM1, enter:
FTRACE BUF,OFF,RESNM1
The GENALERT command generates an error record that is processed by the hardware monitor. Using filters, you can process the record as an alert and display it on the alert screens.

Alerts are events (including resolutions) that you have decided require attention. As soon as an event record is created, the hardware monitor checks the current state of its recording filters to see if this event qualifies for alert status. An alert appears on your Alerts-Dynamic panel as a one-line summary of the event that shows the error description and probable cause. The alert summary also shows the NetView domain where the alert originated. The hardware monitor also issues a message about the alert to an authorized operator if filters are set up to provide this function.

Events are classified by type.

The task DSICRTR must be active to route the error record to the hardware monitor.

Note: The PRID keyword has been renamed to PSID; however, PRID is still supported. You will find it is not necessary to change previously written GENALERT commands that used PRID.

For online information, enter:
- `HELP GENALERT GENERIC FORMAT`
- `HELP GENALERT NONGENERIC FORMAT`
- `HELP GENALERT RECFMS FORMAT`
- `HELP GENALERT RESOLVED FORMAT`

Restrictions

The following restrictions apply to the GENALERT command:

- The format operand (G, N, R, or C) is the only positional parameter. This operand must follow the command name (GENALERT). G is the default. Do not enclose values in parentheses. Separate multiple values with a comma. The last value specified must be followed by a blank.
- Enclose text in single quotes.

Note: If the text being enclosed in single quotes already contains a single quote, followed by a space, parsing problems can result. The only operands for which this can happen are TEXT and UDAT. You can avoid this by coding the GENALERT command in a PIPE and passing the data for either or both of these operands as shown in the following REXX example:

```rexx
UdatVar = 'UDAT' UdatDataHere
TextVar = 'TEXT' TextDataHere
'PIPE VAR UdatVar TextVar',
  'COLLECT',
  'NETV GENALERT ...',
  'CONS ...'
```

- A resource hierarchy that contains a resource type equal to DOM at level 1 causes NetView to eliminate the recording of the record as an event. The record is processed by the alert recording filter to determine if it should be recorded in the Alerts database.
• Some of the alerts generated through GENALERT can deviate from architected alerts. For example:
 – More TYPES are allowed in GENALERT than are architected (SV92).
 – The HIER values of GENALERT are contained in SV03 instead of SV05.
 – No SV82 is allowed with GENALERT.

• For more information about creating alerts with the GENALERT command, refer to the Tivoli NetView for z/OS Automation Guide. You can use all three formats to create alerts, but any new alerts created through automation must use the generic format. You can use the nongeneric and RECFMS formats only to access existing stored screen alerts in NetView.
GENALERT Generic Format (NCCF)

Syntax

GENALERT G

G

ACTS=

FAIL=

USER=

INST=

ALID=alertid DESC=alert_description HIER=hier_name,hier_type

PC=probable_cause PSID=product_set_id

SV='subvector'

TEXT='optional_text'

TYPE=NTFY

UDAT='your_text'

Purpose of Command

Any new alerts created through automation must use the generic format. You can also use the generic form of GENALERT to change the status of non-SNA resources being monitored by the NetView GMFHS.

Operand Descriptions

G Specifies a generic alert format. G is the default. When specified, this must be the first operand of the generic format of the GENALERT command. The format operand (G, N, R, or C) is the only positional parameter. This operand must follow the command name (GENALERT). Do not enclose values in parentheses. Separate multiple values with a comma. The last value specified must be followed by a blank.

ACTS=action_code Specifies recommended actions, X’81’. You can specify one or more action codes. Each is a 4-character hexadecimal value that identifies an action description. Use ACTS only when a user (USER), install (INST), or failure (FAIL) cause cannot be identified, and only a list of actions is available. ACTS requires the use of generic alert code points, which can be found in the Tivoli NetView for z/OS Diagnosis Guide.
ALID=alertid
Specifies an alert ID, a maximum of 8 hexadecimal characters. If it is fewer than 8 characters, the value is right-justified and padded with leading zeros. This operand is based on the values in the TYPE, DESC, PC, USER, FAIL, and INST fields.

Note: You should specify the number as documented in Systems Network Architecture Formats using the X’92’ CRC algorithm.
However, the NetView program does not require that the ALID field be generated using the CRC algorithm.

DESC=alert_description
Specifies an alert description, X’92’. DESC is a 4-character hexadecimal value that you must specify. DESC requires the use of generic alert code points, which can be found in the Tivoli NetView for z/OS Diagnosis Guide.

FAIL=failure_cause,action_code
Specifies failure causes, X’96’, and actions, X’81’. FAIL gives one or more failure cause and action identifier pairs. FAIL requires the use of generic alert code points, which can be found in the Tivoli NetView for z/OS Diagnosis Guide.

HIER=hier_name,hier_type
Specifies names (maximum of 8 characters) and types (maximum of 4 characters), up to a maximum of 5 pairs. HIER is a required entry. Each pair is specified in name-type order.

INST=install_cause,action_code
Specifies installation causes, X’95’, and actions, X’81’. INST gives one or more installation cause and action identifier pairs. INST requires generic alert code points, which can be found in the Tivoli NetView for z/OS Diagnosis Guide.

PC=probable_cause
Specifies probable causes, X’93’ (maximum of 3). Each is a 4-character hexadecimal value that identifies a probable cause description. Causes are listed in the order of the most likely to least likely. PC requires generic alert code points, which can be found in the Tivoli NetView for z/OS Diagnosis Guide.

PSID=product_set_id
Specifies a product set ID of the product sending the alert. product_set_id can be 2, 4, 5, 7, or 9 alphanumeric characters. PSID is a required entry.

SV=subvector
Specifies any subvector, coded in hexadecimal, up to a maximum length of 127 bytes (254 hexadecimal characters). A valid subvector is in the following form:
LLTTDD...D

Where:
LL Is the length of subvector
TT Is the type of subvector
DDD...D Is the subvector data

The generic subvector, which is automatically created by various keywords, will override the generic subvector created from SV.
SV is limited by the length restrictions of an NCCF command. Other than the length field, no authorization checking is performed against the SV data. Therefore, it is possible to enter a valid GENALERT command that creates an alert that is rejected by NPDA.

You can use SV to override other subvectors created by the GENALERT command, such as the cause, action, and hierarchy subvectors. If you want to override other subvectors, specify SV and data before the corresponding keyword you are replacing. However, you cannot use SV in place of required keywords.

TEXT=‘optional_text’

Specifies text message, X’31’, with a maximum of 244 characters. Enclose the specified text in single quotation marks. TEXT is an optional parameter.

TYPE=alert_type

Specifies an alert type of IMPD, PAFF, PERM, PERF, TEMP, and UNKN. You can also specify the following alert types, which are not defined within the generic alert architecture:

- NTFY
- AVAL
- BYPS
- CUST
- DLRC
- ENV
- HELD
- IMR
- INTV
- PROC
- REDL
- SCUR
- SNA
- USER

The default is NTFY.

UDAT=‘your_text’

Specifies text message with a maximum of 140 characters. Enter any printable data and enclose the specified text in single quotation marks. UDAT can be used for filtering. See the U operand of the SRFILTER and SVFILTER commands.

USER=user_cause,action_code

Specifies user causes, X’94’, and action, X’81’. USER is an alternative to the ACTS specification. USER gives one or more user cause and action identifier pairs. USER requires the use of generic alert code points that can be found in the Tivoli NetView for z/OS Diagnosis Guide.

Table 10 provides a summary of the parameters of the generic format of the GENALERT command.

<table>
<thead>
<tr>
<th>Key-</th>
<th>Description</th>
<th>Valid Values</th>
<th>Subvector Sub-field</th>
<th>Hardware Monitor Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>word</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G (def)</td>
<td>Format</td>
<td>G – generic</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 2. NetView Commands and Command Descriptions 405
Table 10. Generic Format of GENALERT Command (continued)

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
<th>Valid Values</th>
<th>Subvector Subfield</th>
<th>Hardware Monitor Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTS (opt)</td>
<td>Actions</td>
<td>0000–FFFF</td>
<td>SV 97 SF 81</td>
<td>Resolution Cause/Action (45A)</td>
</tr>
<tr>
<td>ALID (req)</td>
<td>Alert ID</td>
<td>00000000–FFFFFFFF</td>
<td>SV 92</td>
<td>Events Detail (43S)</td>
</tr>
<tr>
<td>DESC (req)</td>
<td>Alert description</td>
<td>0000–FFFF</td>
<td>SV 92</td>
<td>Alerts Dynamic, Alerts History, Events Detail</td>
</tr>
<tr>
<td>FAIL (opt)</td>
<td>Failure cause; action</td>
<td>0000–FFFF</td>
<td>SV 96 SF 81 SF 01</td>
<td>Resolution Cause/Action (45A)</td>
</tr>
<tr>
<td>HIER (req)</td>
<td>Hierarchy</td>
<td>Name 1–8 chars., type 1–4 chars. Up to 5 name/type pairs</td>
<td>SV 03</td>
<td>All panels</td>
</tr>
<tr>
<td>INST (opt)</td>
<td>Install cause; action</td>
<td>0000–FFFF</td>
<td>SV 95 SF 81 SF 01</td>
<td>Resolution Cause/Action (45A)</td>
</tr>
<tr>
<td>PC (req)</td>
<td>Probable cause (max. of 3)</td>
<td>0000–FFFF</td>
<td>SV 93</td>
<td>Alerts Dynamic, Alerts History, Events Detail (43S)</td>
</tr>
<tr>
<td>PSID (req)</td>
<td>Product set ID</td>
<td>Hardware ID (2 or 4 chars.), user ID (5 chars.), software ID (7 or 9 chars.)</td>
<td>SV 10</td>
<td>Events Detail (43S), Product ID (44B)</td>
</tr>
<tr>
<td>TEXT (opt)</td>
<td>Optional text</td>
<td>Text (244 chars. maximum)</td>
<td>SV 31</td>
<td>Events Detail</td>
</tr>
<tr>
<td>TYPE (opt)</td>
<td>Alert type</td>
<td>Hardware monitor ETYPE (see hardware monitor SRF command)</td>
<td>SV 92</td>
<td>All panels</td>
</tr>
<tr>
<td>UDAT (opt)</td>
<td>Optional text</td>
<td>Text (140 chars. maximum)</td>
<td>SV 33</td>
<td>Events Detail</td>
</tr>
<tr>
<td>USER (opt)</td>
<td>User cause; action</td>
<td>0000–FFFF</td>
<td>SV 94 SF 81 SF 01</td>
<td>Resolution Cause/Action (45A)</td>
</tr>
</tbody>
</table>

Restrictions

The following restrictions apply to the GENALERT Generic Format command.

- Enclose text or product-unique text in single quotes.
- A resource hierarchy that contains a resource type equal to DOM at level 1 causes the NetView program to eliminate the recording of the record as an event. The record is processed by the alert recording filter to determine if it should be recorded in the Alerts database.
- Specify either ACTS or one or more USER, FAIL, or INSTALL cause and action pairs in the generic format of the GENALERT command. When you specify USER, FAIL, or INST, actions must follow causes and must be separated from the last cause by a semicolon. If you specify ACTS, you cannot specify USER, FAIL, or INST. ACTS implies CAUSE UNDETERMINED.
The GENALERT command does not support all subvectors and subfields that are defined as part of the generic alert architecture, for example, X'82', X'83', X'84', and X'85' subfields.

Each generic alert request has several characteristics that indicate different attributes of the request. The generic alert request is a data record that has a number of vectors and subvectors, each of which holds information about one of the attributes of the request. This form of data record is also known as a network management transport vector, or NMVT, and it forms part of the SNA management services architecture.

You can specify some, but not all, of the generic alert attributes defined by SNA as operands of the GENALERT command. Some operands are optional and some are required. The proper use of these is important in designing an efficient alert-based system.

Some of the alerts generated through GENALERT can deviate from architected alerts. For example:
- More TYPEs are allowed in GENALERT than are architected (SV92).
- The HIER values of GENALERT are contained in SV03 instead of SV05.
- No SV82 is allowed with GENALERT.

For more information about creating alerts with the GENALERT command, refer to the Tivoli NetView for z/OS Automation Guide.

Examples

Example: Generating a Generic NMVT to Be Logged to the Hardware Monitor Database
The following command generates a generic NMVT to be logged to the hardware monitor database.

```
GENALERT G TYPE=PERM ALID=17511734 DESC=2000 PSID=USER1
  PC=1001,0101 ACTS=1012,1205,3300,0600,3110
  TEXT='APPLICATION ABENDED' HIER=RALVS12,CPU,REPTGEN,PROG
```
GENALERT NONGENERIC FORMAT (NCCF)

Syntax

```plaintext
GENALERT N

, ACT=action_code, HIER=hier_name,hier_type

MAJ=major_cause, MIN=minor_cause, PSID=product_set_id

QUAL=product_qualifier, SV='subvector'

TEXT='optional_text', TYPE=NTFY
```

Purpose of Command

You can use the nongeneric format of the GENALERT command to create alerts, but any new alerts created through automation must use the generic format. You can use the nongeneric format only to access existing stored screen alerts in the NetView program.

Operand Descriptions

- **N**: Specifies a nongeneric alert format. When specified, this must be the first operand of the nongeneric format of the GENALERT command. The format operand (G, N, R, or C) is the only positional parameter. Do not enclose values in parentheses. Separate multiple values with a comma. The last value specified must be followed by a blank.

- **ACT=action_code**: Specifies recommended actions, X’81’. You can specify only one. Each is a 2-character hexadecimal value that identifies an action description. ACT is used only when a user (USER), install (INST), or failure (FAIL) cause cannot be identified, and only a list of actions is available. ACT requires the use of generic alert code points that can be found in the *Tivoli NetView for z/OS Diagnosis Guide*.

- **HIER=hier_name,hier_type**: Specifies names (maximum of 8 characters) and types (maximum of 4 characters), up to a maximum of 5 pairs. HIER is a required entry. Each pair is specified in name-type order.

- **MAJ=major_cause**: Specifies a major cause. The nongeneric format of this operand is MAJ=xx where xx is a valid hex value from 00–FF.
MIN=minor_cause
Specifies a minor cause.

PSID=product_set_id
Specifies a product set ID of the product sending the alert. *product_set_id* can be 2, 4, 5, 7, or 9 alphanumeric characters. PSID is a required entry.

QUAL=product_qualifier
Specifies product-unique qualifiers (maximum of 3).

SV=subvector
Specifies any subvector in hexadecimal up to 256 bytes (512 hexadecimal characters). A valid subvector is in the form of

\[LLTTDD\ldots D\]

where:

- **LL** is length of subvector
- **TT** is type of subvector
- **DDD\ldots D** is subvector data

The nongeneric subvector, which is automatically created by various keywords, will override the nongeneric subvector created from SV.

SV is limited by the length restrictions of an NCCF command. Other than the length field, no authorization checking is performed against the SV data. Therefore, it is possible to enter a valid GENALERT command that creates an alert that is rejected by NPDA.

You can use SV to override other subvectors created by the GENALERT command, such as the cause, action, and hierarchy subvectors. If you want to override other subvectors, specify SV and data before the corresponding keyword you are replacing. However, you cannot use SV in place of required keywords.

TEXT=’optional_text’
Specifies text message, X’31’, with a maximum of 244 characters. Enclose the specified text in single quotation marks. TEXT is an optional parameter.

TYPE=alert_type
Specifies an alert type of IMPD, PAFF, PERE, PERM, TEMP, and UNKN. You can also specify the following alert types, which are not defined within the generic alert architecture:

- **NTFY**
- **AVAL**
- **BYPX**
- **CUST**
- **DLRC**
- **ENV**
- **HELD**
- **IMR**
- **INTV**
- **PROC**
- **SCUR**
- **SNA**
- **USER**

The default is NTFY.
UDAT='your_text'

Specifies text message with a maximum of 140 characters. Enter any printable data and enclose the specified text in single quotation marks. UDAT can be used for filtering the U operand of the SRFILTER and SVFILTER commands.

Table 11. Nongeneric Format of GENALERT Command

<table>
<thead>
<tr>
<th>Key-word</th>
<th>Description</th>
<th>Valid Values</th>
<th>Sub-vector Sub-field</th>
<th>Hardware Monitor Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (req)</td>
<td>Format</td>
<td>N – nongeneric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACT (req)</td>
<td>Action code</td>
<td>00–FF</td>
<td>SV 91</td>
<td>Resolution Cause/Action</td>
</tr>
<tr>
<td>HIER (req)</td>
<td>Hierarchy</td>
<td>Name 1–8 chars., Type 1–8 chars., Up to 5 name/type pairs</td>
<td>SV 03</td>
<td>All panels</td>
</tr>
<tr>
<td>MAJ (req)</td>
<td>Major cause</td>
<td>00–FF</td>
<td>SV 91</td>
<td>Events Detail</td>
</tr>
<tr>
<td>MIN (req)</td>
<td>Minor cause</td>
<td>00–FF</td>
<td>SV 91</td>
<td>Events Detail</td>
</tr>
<tr>
<td>PSID (req)</td>
<td>Product set ID</td>
<td>Hardware ID (2 or 4 chars.), user ID (5 chars.), software ID (7 or 9 chars.)</td>
<td>SV 10</td>
<td>Events Detail</td>
</tr>
<tr>
<td>QUAL (opt)</td>
<td>Qualifiers (max of 3)</td>
<td>Maximum 8 chars.</td>
<td>SV A0</td>
<td>Events Detail</td>
</tr>
<tr>
<td>TEXT (opt)</td>
<td>Optional text</td>
<td>Text (244 chars. maximum)</td>
<td>SV 00</td>
<td>Events Detail</td>
</tr>
<tr>
<td>TYPE (opt)</td>
<td>Alert type</td>
<td>Hardware monitor ETYPE (see hardware monitor SRF command)</td>
<td>SV 91</td>
<td>All panels</td>
</tr>
<tr>
<td>UDAT (opt)</td>
<td>Optional text</td>
<td>Text (140 chars. maximum)</td>
<td>SV 33</td>
<td>Events Detail</td>
</tr>
</tbody>
</table>

Restrictions

The following restrictions apply to the GENALERT Nongeneric Format command:

- Enclose text or product-unique text in single quotes.
- A resource hierarchy that contains a resource type equal to DOM at level 1 causes the NetView program to eliminate the recording of the record as an event. The record is processed by the alert recording filter to determine if it should be recorded in the Alerts database.
- Some of the alerts generated through GENALERT can deviate from architected alerts. For example:
 - More TYPEs are allowed in GENALERT than are architected (SV92).
 - The HIER values of GENALERT are contained in SV03 instead of SV05.
 - No SV82 is allowed with GENALERT.
- For more information about creating alerts with the GENALERT command, refer to the *Tivoli NetView for z/OS Automation Guide*.
GENALERT RECFMS FORMAT (NCCF)

Syntax

GENALERT R

 ACT=action_code BKID=block_id

 HIER=hier_name,hier_type MAJ=major_cause MIN=minor_cause

 QUAL=product_qualifier TEXT='optional_text'

 TYPE=NTFY

Purpose of Command

You can use the RECFMS format of the GENALERT command to create alerts, but any new alerts created through automation must use the generic format. You can use the RECFMS format only to access existing stored screen alerts in the NetView program.

Operand Descriptions

 R Specifies an RECFMS alert format. When specified, this must be the first operand of the RECFMS format of the GENALERT command. The format operand (G, N, R, or C) is the only positional parameter. Do not enclose values in parentheses. Separate multiple values with a comma. The last value specified must be followed by a blank.

 ACT=action_code Specifies recommended actions, X'81'. You can specify only one. Each is a 2-character hexadecimal value that identifies an action description. ACT is used only when a user (USER), install (INST), or failure (FAIL) cause cannot be identified, and only a list of actions is available. ACT requires the use of generic alert code points that can be found in the Tivoli NetView for z/OS Diagnosis Guide.

 BKID=block_id Specifies a block ID.

 HIER=hier_name,hier_type Specifies names (maximum of 8 characters) and types (maximum of 4 characters), up to a maximum of 5 pairs. HIER is a required entry. Each pair is specified in name-type order.
MAJ=\textit{major_cause}

Specifies a major cause. The RECFMS format of this operand MAJ=\textit{x} where \textit{x} is a valid hexadecimal value from 0–F.

MIN=\textit{minor_cause}

Specifies a minor cause.

QUAL=\textit{product_qualifier}

Specifies product unique qualifiers (maximum of 3).

TEXT=\textit{optional_text}'

Specifies text message, X'31', with a maximum of 244 characters. Enclose the specified text in single quotation marks. TEXT is an optional parameter.

TYPE=\textit{alert_type}

Specifies an alert type of IMPD, PAFF, PERF, PERM, TEMP, and UNKN. You can also specify the following alert types, which are not defined within the generic alert architecture:

- NTFY
- AVAL
- BYPS
- CUST
- DLRC
- ENV
- HELD
- IMR
- INTV
- PROC
- SCUR
- SNA
- USER

The default is NTFY.

Table 12 provides a summary of the parameters of the RECFMS format of the GENALERT command.

\textbf{Table 12. RECFMS Format of GENALERT Command}

<table>
<thead>
<tr>
<th>Key-word</th>
<th>Description</th>
<th>Valid Values</th>
<th>Hardware Monitor Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>R (req)</td>
<td>Format</td>
<td>R—RECFMS</td>
<td></td>
</tr>
<tr>
<td>ACT (req)</td>
<td>Action code</td>
<td>01–FF</td>
<td>Resolution Cause/Action</td>
</tr>
<tr>
<td>BKID (req)</td>
<td>Block ID</td>
<td>001–FFF (3 hex. digits).</td>
<td>Events Detail</td>
</tr>
<tr>
<td>HIER (req)</td>
<td>Hierarchy</td>
<td>Name 8 chars., type 4 chars.</td>
<td>All panels</td>
</tr>
<tr>
<td>MAJ (req)</td>
<td>Major cause</td>
<td>1–F</td>
<td>Events Detail</td>
</tr>
<tr>
<td>MIN (req)</td>
<td>Minor cause</td>
<td>01–FF</td>
<td>Events Detail</td>
</tr>
<tr>
<td>QUAL (opt)</td>
<td>Qualifiers (max of 3)</td>
<td>Max 8 chars.</td>
<td>Events Detail</td>
</tr>
<tr>
<td>TEXT (opt)</td>
<td>Optional text</td>
<td>Max 244 chars.</td>
<td>Events Detail</td>
</tr>
</tbody>
</table>
Table 12. **RECFMS Format of GENALERT Command (continued)**

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
<th>Valid Values</th>
<th>Hardware Monitor Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE (opt)</td>
<td>Alert type</td>
<td>Hardware monitor ETYPE (see hardware monitor SRF command)</td>
<td>All panels</td>
</tr>
</tbody>
</table>

Restrictions

Enclose text or product-unique text in single quotes.
GENALERT Resolved Format (NCCF)

Syntax

```
GENALERT C

ACTS=actual_action_code
FAIL=actual_failure_cause
USER=actual_user_cause
INST=actual_install_cause
DESC=resolution_description
HIER=hier_name,hier_type
PC=actual_cause
PSID=product_set_id
SV='subvector'
TEXT='optional_text'
UDAT='your_text'
RTYP=rtype
```

Purpose of Command

The GENALERT Resolved Format indicates which alerts have resolved or cleared.

Operand Descriptions

- **C** Specifies a resolved alert format. The format operand (G, N, R, or C) is the only positional parameter. When specified, this must be the first operand of the resolved format of the GENALERT command. Separate multiple values with a comma. The last value specified must be followed by a blank.

- **ACTS=action_code**
 Specifies actual actions, X’86’. You can specify one or more action codes. Each is a 4-character hexadecimal value that identifies an action description. Use ACTS only when a user (USER), install (INST), or failure (FAIL) cause cannot
be identified, and only when a list of actions is available. ACTS requires
generic alert code points, which can be found in the *Tivoli NetView for z/OS Diagnosis Guide*.

DESC=`resolution_description`

Specifies a resolution description, X'92'. DESC is a 4-character hexadecimal
value that you must specify. DESC requires generic alert code points, which
can be found in the *Tivoli NetView for z/OS Diagnosis Guide*.

FAIL=`actual_failure_cause,actual_action_code`

Specifies actual failure causes, X'96', and actual actions, X'86'. FAIL gives one or
more actual failure cause and actual action identifier pairs. FAIL requires
generic alert code points, which can be found in the *Tivoli NetView for z/OS Diagnosis Guide*.

HIER=`hier_name,hier_type`

Specifies names (maximum of 8 characters) and types (maximum of 4
characters), up to a maximum of 5 pairs. HIER is a required entry. Each pair is
specified in name-type order.

INST=`actual_install_cause,actual_action_code`

Specifies actual install causes, X'95', and actual actions, X'86'. INST gives one or
more actual installation cause and actual action identifier pairs. INST requires
generic alert code points, which can be found in the *Tivoli NetView for z/OS Diagnosis Guide*.

PC=`actual_cause`

Specifies actual causes, X'93'(maximum of 3). Each is a 4-character hexadecimal
value that identifies an actual cause description. PC requires generic alert code
points, which can be found in the *Tivoli NetView for z/OS Diagnosis Guide*.

PSID=`product_set_id`

Specifies a product set ID of the product sending the alert. The `product_set_id`
can be 2, 4, 5, 7, or 9 alphanumeric characters. PSID is a required entry.

SV=`subvector`

Specifies any subvector in hexadecimal up to 256 bytes (512 hexadecimal
characters). A valid subvector is in the form of

```
LLTTDDD...D
```

Where:

- **LL** The length of subvector
- **TT** The type of subvector
- **DDD...D** The subvector data

The generic and nongeneric subvectors, which are automatically created by
various keywords, will override the generic and nongeneric subvectors created
from SV.

SV is limited by the length restrictions of an NCCF command. Other than the
length field, no authorization checking is performed against the SV data.
Therefore, it is possible to enter a valid GENALERT command that creates an
alert that is rejected by NPDA.

You can use SV to override other subvectors created by the GENALERT
command, such as the cause, action, and hierarchy subvectors. If you want to
override other subvectors, specify SV and data before the corresponding keyword you are replacing. However, you cannot use SV in place of required keywords.

TEXT=’optional_text’

Specifies text message, X’31’, with a maximum of 244 characters. Enclose the specified text in single quotation marks. TEXT is an optional parameter.

UDAT=’your_text’

Specifies text message with a maximum of 140 characters. Enter any printable data and enclose the specified text in single quotation marks. UDAT can be used for filtering the U operand of the SRFILTER and SVFILTER commands.

USER=actual_user_cause, actual_action_code

Specifies actual user causes, X’94’, and actual action, X’86’. USER is an alternative to the ACTS specification. USER gives one or more actual user cause and actual action identifier pairs. USER requires the use of generic alert code points that can be found in the Tivoli NetView for z/OS Diagnosis Guide.

RTYP=rtyp

Specifies how the original problem was resolved. Accepted values are any hex value 00–FF, with a maximum of 2 characters. The default value is 07. Supported values are:

1. Resolved due to service
2. Resolved due to permanent bypass
3. Resolved due to temporary bypass
4. Resolved, component permanently placed offline
5. Resolved with no action
6. Incident closed, but problem still exists
7. Resolved for unknown reason
8. Resolved into duplicate incident

All other values will cause the text UNSUPPORTED TYPE to be displayed on the Hardware Monitor Event Detail panel.

Table 13. Resolved Format of GENALERT Command

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
<th>Valid Values</th>
<th>Subvector</th>
<th>Hardware Monitor Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>C (def)</td>
<td>Format</td>
<td>C – resolved</td>
<td></td>
<td>Resolution Cause/Action</td>
</tr>
<tr>
<td>ACTS (opt)</td>
<td>Actual actions</td>
<td>0000–FFFF</td>
<td>SV 97 SF 86</td>
<td>Alerts Dynamic, Alerts History, Events Detail</td>
</tr>
<tr>
<td>DESC (req)</td>
<td>Resolution description</td>
<td>0000–FFFF</td>
<td>SV 92</td>
<td>Resolution Cause/Action</td>
</tr>
<tr>
<td>FAIL (opt)</td>
<td>Actual failure cause; actual action</td>
<td>0000–FFFF</td>
<td>SV 96 SF 86 SF 01</td>
<td>Resolution Cause/Action (45A)</td>
</tr>
<tr>
<td>HIER (req)</td>
<td>Hierarchy</td>
<td>Name 1–8 chars., type 1–4 chars. Up to 5 name/type pairs</td>
<td>SV 03</td>
<td>All panels</td>
</tr>
<tr>
<td>INST (opt)</td>
<td>Actual install cause; actual action</td>
<td>0000–FFFF</td>
<td>SV 95 SF 86 SF 01</td>
<td>Resolution Cause/Action (45A)</td>
</tr>
</tbody>
</table>
Table 13. Resolved Format of GENALERT Command (continued)

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
<th>Valid Values</th>
<th>Subvector Sub-field</th>
<th>Hardware Monitor Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC (req)</td>
<td>Actual cause (max. of 3)</td>
<td>0000–FFFF</td>
<td>SV 93</td>
<td>Alerts Dynamic, Alerts History, Events Detail (43S)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSID (req)</td>
<td>Product set ID</td>
<td>Hardware ID (2 or 4 chars.), user ID (5 chars.), software ID (7 or 9 chars.)</td>
<td>SV 10</td>
<td>Events Detail (43S), Product ID (44B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTYP (opt)</td>
<td>Resolution type</td>
<td>01–08</td>
<td>SV 92</td>
<td>Events Detail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEXT (opt)</td>
<td>Optional text</td>
<td>Text (244 chars. maximum)</td>
<td>SV 31</td>
<td>Events Detail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UDAT (opt)</td>
<td>Optional text</td>
<td>Text (140 chars. maximum)</td>
<td>SV 33</td>
<td>Events Detail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USER (opt)</td>
<td>Actual user cause; actual action</td>
<td>0000–FFFF</td>
<td>SV 94 SF 86 SF 01</td>
<td>Resolution Cause/Action (45A)</td>
</tr>
</tbody>
</table>

Restrictions

The following restrictions apply to the GENALERT Resolved Format command:

- Enclose text or product-unique text in single quotes.
- A resource hierarchy that contains a resource type equal to DOM at level 1 causes the NetView program to eliminate the recording of the record as an event. The record is processed by the alert recording filter to determine if it should be recorded in the Alerts database.
- Specify either ACTS or one or more USER, FAIL, or INSTALL cause and actual action pairs in the resolved format of the GENALERT command. When you specify USER, FAIL, or INST, actual actions must follow actual causes and must be separated from the last cause by a semicolon. If you specify ACTS, you cannot specify USER, FAIL, or INST. ACTS implies CAUSE UNDETERMINED.
- The GENALERT command does not support all subvectors and subfields that are defined as part of the resolution architecture, for example, X'82', X'83', X'84', and X'85' subfields.
- Each resolution request has several characteristics that indicate different attributes of the request. The resolution request is a data record that has a number of vectors and subvectors, each of which holds information about one of the attributes of the request. This form of data record is also known as a network management transport vector, or NMVT, and it forms part of the SNA management services architecture.
- You can specify some, but not all, of the resolution attributes defined by SNA as operands of the GENALERT command. Some operands are optional and some are required. The proper use of these is important in designing an efficient alert-based system.
- Some of the alerts generated through GENALERT can deviate from architected alerts. For example:
 - The HIER values of GENALERT are contained in SV03 instead of SV05.
 - No SF82 is allowed with GENALERT.
• For more information about creating alerts with the GENALERT command, refer to the *Tivoli NetView for z/OS Automation Guide*.
GETCONID (NCCF)

Syntax

```
GETCONID
```

Purpose of Command

The GETCONID command obtains an extended multiple console support (EMCS) console for an operator, an autotask, or the primary program operator interface task (PPT). The GETCONID command can obtain a console with a different name than the default for the operator task (OST) or PPT.

Operand Descriptions

AUTH=auth_value

Requests a particular level of authority for the EMCS console.

The AUTH console attribute is determined in the following order:

1. If EMCSPARM=SAF, from the NetView DEFAULTS or OVERRIDE command, the value specified in the SAF OPERPARM segment, if the OPERPARM segment exists.

2. The value specified on the GETCONID AUTH keyword if you do not have an SAF OPERPARM segment, or EMCSPARM=NETVIEW.

3. The MVSPARM.DEFAUTH value in CNMSTYLE if you do not have an SAF OPPROBRIUM segment and you do not specify a TECTONIC AUTO keyword.

4. The NetView default value (MASTER) if you do not have an SAF OPPROBRIUM segment, you do not specify a TECTONIC AUTO keyword, and you have not changed the MVSPARM.DEFAUTH value in CNMSTYLE.
If you are using Resource Access Control Facility (RACF) Version 1.9 or a later release, or a compatible security product, you can protect individual MVS commands in the OPERCMDS class. The OPERCMDS class protection of specific MVS commands overrides the AUTH value for the console. For example, if you are using a console that has an authority of INFO, you might be able to enter MVS commands that require MASTER authority if an OPERCMDS class definition specifically permits it.

The levels of authority are:

MASTER

The EMCS console can enter all possible MVS commands. This is the default.

INFO

The EMCS console can enter informational command group commands.

I/O&SYS

- The EMCS console can enter the following command groups:
 - Informational
 - System control
 - I/O control

Type I/O&SYS without spaces.

CONS&SYS

- The EMCS console can enter the following command groups:
 - Informational
 - System control
 - Console control

Type CONS&SYS without spaces.

CONS&I/O

- The EMCS console can enter the following command groups:
 - Informational
 - I/O control
 - Console control

Type CONS&I/O without spaces.

SYS

- The EMCS console can enter informational and system control command groups.

I/O

- The EMCS console can enter informational and I/O control command groups. Type I/O without spaces.

CONS

- The EMCS console can enter informational and console control command groups.

ALL

- The EMCS console can enter the following command groups:
 - Informational
 - System control
 - I/O control
 - Console control
ALERTPCT=alertpct
Specifies the percentage of the QLIMIT value that causes warning message DWO204I to be issued. This is an optional operand. The default is 80 percent.

CONSOLE=
Specifies the MVS console name to be obtained. The name must be 2 to 8 characters, as required by MVS. Valid characters for console names are A–Z, 0–9, @, #, or $. The first character of the console name must be alphabetic (A–Z) or one of the following special characters: @, #, or $. If you do not specify the console name, NetView will determine the console name in the following order:

1. If a SETCONID command was used, that name is used.
2. If OPERSEC=SAFDEF was in effect when the operator logged on, NetView uses the value of CONSNAME specified for this operator in the NetView segment of the SAF product. If there is not a CONSNAME in the NetView segment, see 3.
3. If OPERSEC=SAFDEF was not in effect when the operator logged on, NetView uses the value of CONSNAME specified in the operator’s profile in DSIPRF. If there is not a CONSNAME in the operator’s profile, see 4.
4. If a CONSNAME was not specified in either the NetView segment or the operator’s profile, NetView uses the operator task name as the console name. In this case, the operator ID must be greater than one character in length and abide by the same rules as for console names.

MIGRATE=migrate_value
Indicates whether the console is to be assigned a migration ID.

If you do not specify a value for MIGRATE, the default is the MVSPARM.MIGRATE value in CNMSTYLE.

NO
 Specifies that a migration ID is not requested. If no value is specified, NO is assigned.

YES
 Specifies that a migration ID is requested.

You might require a migration ID to receive messages from subsystems or applications that do not support 4-byte console IDs. Specify MIGRATE=YES only when necessary because a limited number of migration IDs are available in any MVS system or sysplex.

QLIMIT=qlimit
Specifies the number of messages that can be queued to this console. This is an optional operand. The default is 2,147,483,647 messages.

QRESUME=qresume
Specifies the lower percentage limit that the qlimit specified for messages must reach before message queuing resumes. The valid range is from 0–99 percent. The default is 1 percent.

STORAGE=megabytes
Specifies the maximum number of megabytes that can be allocated to the MVS data space for EMCS console messages. MVS creates this data space when the first NetView task obtains an EMCS console. You can obtain an EMCS console using the GETCONID command, by entering an MVS command or by activating the task with load module name CNMCSSIR. If you do not use the GETCONID command with the STORAGE keyword first, the default size data
space is created. When you release all EMCS consoles from all NetView tasks, the data space is removed. The valid range is 1–2000 megabytes. The default is 2000 MB.

Usage Notes

To use this command you must have the NetView program running on a system with EMCS consoles.

The AUTH, MIGRATE, and STORAGE values might be overridden by your SAF OPERPARM segment definition for the console. You can control whether or not the OPERPARM segment is used with the EMCSPARM keyword of the NetView DEFAULTS and OVERRIDE command.

Restrictions

The following restrictions apply to the GETCONID command:

- If you need to issue MVS commands, you can issue the GETCONID command in your initial command list to ensure that the console is properly obtained.
- The first EMCS console obtained by the NetView system determines the size of the data space for system messages. MVS manages this data space storage. The NetView program cannot determine the current maximum size for the data space or how much of the data space is in use.

Refer to the [Tivoli NetView for z/OS Security Reference](#) for more information about setting EMCS console attributes.

- Setting QLIMIT to a value that is too small for your installation could result in the loss of MVS messages under certain circumstances. Therefore, a value of 1 should not be used. The appropriate value for QLIMIT depends on your installation.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The command completed successfully. The obtained EMCS console is now available for the MVS command processors.</td>
</tr>
<tr>
<td>4</td>
<td>The command did not complete successfully. Check the accompanying messages for more information.</td>
</tr>
<tr>
<td>8</td>
<td>The console could not be obtained from MVS. See error code in message DSI445I for details.</td>
</tr>
<tr>
<td>12</td>
<td>QLIMIT value is not valid.</td>
</tr>
<tr>
<td>16</td>
<td>ALERTPCT value is not valid.</td>
</tr>
<tr>
<td>20</td>
<td>QRESUME value is not valid.</td>
</tr>
<tr>
<td>24</td>
<td>CONSOLE value is not valid.</td>
</tr>
<tr>
<td>28</td>
<td>MIGRATE value is not valid.</td>
</tr>
<tr>
<td>32</td>
<td>AUTH value is not valid.</td>
</tr>
<tr>
<td>36</td>
<td>Console could not be obtained from MVS because the system or release does not support EMCS consoles.</td>
</tr>
<tr>
<td>40</td>
<td>STORAGE value is not valid.</td>
</tr>
</tbody>
</table>
This task has already obtained a console.

Interface is not valid. Extended console interface is required for this command.

The console requested is already in use.

A migration console ID was not available. No console has been obtained.

This task was not authorized by the security software to obtain the specified EMCS console.

Examples

Example: Obtaining an EMCS Console
To obtain an EMCS console, enter:

```
GETCONID
```

Response

Obtains an EMCS console with a console name as explained under the CONSOLE keyword.

Example: Obtaining an EMCS Console with SERVCON as the Console Name
To obtain an EMCS console with SERVCON as the console name, enter:

```
GETCONID CONSOLE=SERVCON
```

Response

Obtains an EMCS console with SERVCON as the console name.

Example: Obtaining an EMCS Console with ALT44 as the Console Name
To obtain an EMCS console with ALT44 as the console name, enter:

```
GETCONID CONSOLE=ALT44,QLIMIT=3000,ALERTPCT=75,QRESUME=20
```

Response

This console can have up to 3000 system messages (QLIMIT) queued to it at a time. When 75% (ALERTPCT) of the 3000 messages are queued to the console, a warning message is issued. If the QLIMIT of 3000 messages is reached, MVS temporarily halts system message queuing to the console. MVS resumes system message queuing to the console when the console message queue is less than 20% full (QRESUME).

Example: Obtaining an EMCS Console and Specifying an Authority Level
To obtain an EMCS console and to request the authority level of MASTER, enter:

```
GETCONID AUTH=MASTER
```

Response

Obtains an EMCS console with a console name as explained under the CONSOLE keyword.
Example: Obtaining an EMCS Console with MIGOPER as the Console Name
To obtain an EMCS console with MIGOPER as the console name, and to request a migration ID, enter:
GETCONID CONSOLE=MIGOPER,MIGRATE=YES

Response

Obtains an extended MIGOPER as the console name. A migration ID is also requested. The security software might override the MIGRATE keyword.
GETPW

Syntax

GETPW

```
| gateway_ID | domain_name | group_ID | READ | INIT=password | DELETE | REGEN MASK=mask | UPDATE |
```

Purpose of Command

The GETPW command initializes the System Automation for OS/390 and/or AON password protection feature. The GETPW command processor maintains a VSAM file containing passwords for gateway operator IDs, called the password data set. These passwords are used when establishing gateway sessions. The records in the password data set are keyed using a combination of the user ID and domain ID. Each record has three fields:

- The current-password field
- The new-password field
- The date-password-last-changed field

Passwords are stored in encrypted format and are changed every 30 days.

Operand Descriptions

gateway_id

The name of the gateway autotask.

domain_name

The domain for which password maintenance services are required.

Note: In a shared System Authorization Facility (SAF) data set environment, if the originating system logs on to two or more destination systems, the domain name specified for this parameter is the originating system, and must match the OWNER value specified in the Gateway Definitions customization-dialog panel for the originating system.

group_id

This parameter is required only for environments where multiple shared SAF databases are in use. The group_id can be any 2 characters to identify each shared SAF database. This parameter is required when:

- The originating system logs on to two or more destination systems that reside within the same shared SAF database.
- The originating system logs on to two or more shared SAF databases as described above.

You must code a blank between the gateway_id and domain_name and group_id values, as shown in the GETPW syntax figure.

READ

Specifies that the appropriate password is retrieved from the data set.
INIT
Used to create an entry in the password data set for the specified gateway_id and domain_name values, and to specify an initial password value for the entry.

The password value must be between 4 and 8 characters long.

Using GETPW with the INIT parameter is required as part of installing the password protection feature.

DELETE
Specifies that the record with the matching gateway ID and domain name is deleted.

REGEN
Causes a new password to be generated (satisfying the requirements of the mask if it is specified). The current and new passwords are shown in response to GETPW REGEN and any subsequent GETPW READ until there is a GETPW UPDATE.

MASK
Describes the format used when generating new passwords for gateway autotasks. The password generation mask consists of 4 to 8 pairs of characters, each pair defining the attributes of a single password character. The first character of each pair determines how the second character is used.

! A password character of the value indicated by the following mask character is required.
%
A password character of the type indicated by the following mask character is required.
?
A password character of the type indicated by the following mask character is optional.

The password mask is processed from left to right, and generates a string of characters with a length equal to or greater than the number required. Passwords of at least 4 characters are required.

The password character type codes indicate the set of characters to be used when generating a new password. The valid type codes are as follows:

$ National only
A Alphabetic only
B Alphabetic/National
C Consonant (Alphabetic, no vowels)
E Even numerics
N Numeric only
O Odd numerics
V Vowels only
W Alphanumeric (no vowels)
X Alphanumeric
Y Alphabetic/National
Z Alphanumeric/National (no vowels)
For example, a password mask of !N!N%T%N%E would cause passwords to be generated that begin with ‘NNT’ followed by a national character, a consonant, and a two or three digit even number.

UPDATE

Makes the new password generated by REGEN become the current password.

Usage Notes

- Use a blank instead of a comma to separate the gateway_id and domain_name and group_id values.
- The password value must be 8 characters long.
- For security reasons, using NetView command-class checking on GETPW is strongly recommended.

Examples

This example involves three systems, CNM01, CNM02, and CNM03.

These systems do not share a SAF data set; each system maintains its own SAF data set. The following GETPW commands are issued on each system to initialize password values for gateway operator IDs outbound from each system and inbound on the other systems in the password data set for each system.

From system CNM01, the following GETPW commands are issued:

GETPW GATCNM01 CNM02,INIT=AAAAAAAA
GETPW GATCNM01 CNM03,INIT=BBBBBBBB

From system CNM02, the following GETPW command is issued:

GETPW GATCNM02 CNM01,INIT=CCCCCCCC

From system AOF03, the following GETPW command is issued:

GETPW GATCNM03 CNM01,INIT=DDDDDDDD

If these systems shared a SAF data set, the only difference in GETPW commands issued is the following from system CNM01:

GETPW GATCNM01 CNM01,INIT=EEEEEEEE
GMFHS (GMFHS; CNME2101)

Syntax

```
GMFHS

GMFHS command
```

Purpose of Command

The GMFHS command list processes NetView GMFHS commands. You can also process GMFHS commands using the MVS MODIFY command.

Operand Descriptions

```
command
```

Specifies the GMFHS command to process. The GMFHS commands are:

- CONFIG DOMAIN
- CONFIG NETWORK
- CONFIG VIEW
- HELP
- LISTINIT
- SHOW
- START
- STATUS
- TASK
- TERM
- TRACE

Note: The START command is not preceded by the GMFHS keyword. It is a procedure that starts the GMFHS task from the MVS console, and is supported by the GMFHS command list (CNME2101).

Restrictions

The following restrictions apply to the GMFHS command:

- The global variables DUIFHPRC and DUIFHNAM, which are defined in CNMSTYLE, must be set to your GMFHS procedure name and your GMFHS nickname respectively. If you do not use a GMFHS nickname, do not use the DUIFHNAM global variable.
GO (NCCF)

Syntax

```go
GO
```

Purpose of Command

The GO command resumes running a command procedure that is in pause status or wait status. You can use the GO command to give values to a command procedure that is in pause status. You can also use the GO command to end a wait state caused by the CORRWAIT stage command of the PIPE command. The GO command is both a regular and an immediate command.

You can enter the GO command from a terminal to end a wait or pause. To reply to a REXX command procedure that is in pause state, precede the responses to PARSE EXT or PARSE PULL with GO. In MVS, to reply to a high-level language (HLL) command procedure that is in pause state waiting for operator input, precede the operator input with GO.

Operand Descriptions

operand

Is an operand or a group of operands that you can pass to a suspended command procedure if the command procedure requested data.

The operand field can be any character other than a comma or blank. A comma or blank means the end of an operand. Single quotation marks are not allowed within operands. Text within single quotation marks is treated as a single operand. Two commas in a row indicate a null operand. All operands are positional.

Restrictions

The NetView program rejects the GO command if a STACK command has been entered.

For information about using the GO command with HLL command procedures, refer to *Tivoli NetView for z/OS Customization: Using PL/I and C*.

Examples

Example: Resuming a Paused Command Procedure

If you have a P in the top right corner of your screen, which indicates a pause state, and you want to resume running a command procedure, enter:

```go
GO
```

Response
If the GO command is successful, the P in the upper right corner of your screen disappears. The command procedure resumes running. A message is not displayed.
GROUPS (NCCF; CNME0047)

Syntax

GROUPS

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>Specifies that information is to be displayed about all line groups (regardless of their status) within each major node. ALL is the default.</td>
</tr>
<tr>
<td>ACT</td>
<td>Specifies that information is to be displayed about all active, pending, and connectable line groups within each major node.</td>
</tr>
<tr>
<td>ACTONLY</td>
<td>Specifies that information is to be displayed about all line groups in an active state within each major node. The display does not include line groups in pending or connectable states.</td>
</tr>
<tr>
<td>INACT</td>
<td>Specifies that information is to be displayed about all inactive line groups within each major node.</td>
</tr>
<tr>
<td>INACTONLY</td>
<td>Specifies that information is to be displayed about all inactive line groups within each major node. Resources in a RESET state are not included in the display.</td>
</tr>
<tr>
<td>CONCT</td>
<td>Specifies that information is to be displayed about all line groups in a CONCT (connectable) state within each major node.</td>
</tr>
<tr>
<td>PENDING</td>
<td>Specifies that information is to be displayed about all line groups in a pending state within each major node.</td>
</tr>
<tr>
<td>RESET</td>
<td>Specifies that information is to be displayed about all line groups in a RESET state within each major node.</td>
</tr>
</tbody>
</table>

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>E</td>
</tr>
<tr>
<td>ACT</td>
<td>A</td>
</tr>
<tr>
<td>INACT</td>
<td>I</td>
</tr>
</tbody>
</table>

Purpose of Command

The GROUPS command list displays information about all line groups.

Operand Descriptions

ACT

Specifies that information is to be displayed about all active, pending, and connectable line groups within each major node.

ACTONLY

Specifies that information is to be displayed about all line groups in an active state within each major node. The display does not include line groups in pending or connectable states.

ALL

Specifies that information is to be displayed about all line groups (regardless of their status) within each major node. ALL is the default.

CONCT

Specifies that information is to be displayed about all line groups in a CONCT (connectable) state within each major node.

INACT

Specifies that information is to be displayed about all inactive line groups within each major node.

INACTONLY

Specifies that information is to be displayed about all inactive line groups within each major node. Resources in a RESET state are not included in the display.
PENDING
Specifies that information is to be displayed about all pending line groups within each major node. A pending state is a transient state to or from the fully active state.

RESET
Specifies that information is to be displayed about all line groups in a RESET state within each major node.

passthru
Specifies up to 6 parameters which are appended unchanged to the VTAM DISPLAY command issued by the GROUPS command. No validation for duplicate or conflicting parameters is performed.

Usage Notes
You should consider the following when using the GROUP command:

- If the status parameter (ALL, ACT, and so on) is omitted, and no passthru parameters are specified, then ALL is the default. However, if passthru parameters are specified and there is no status parameter specified, then NetView does not include a SCOPE= keyword in the generated VTAM DISPLAY command. This enables you to include your own SCOPE= keyword using the passthru parameter.
- The valid values for the status parameter depend on the level of VTAM you are using.

Examples

Example: Displaying All Line Groups
To display all line groups, enter:
GROUPS ALL

Response
When the command list completes successfully, the system responds as follows:

IST097I DISPLAY ACCEPTED
IST350I DISPLAY TYPE = GROUPS
IST089I ISTPUS TYPE = PU_T4/5 MAJ NOD , ACTIV
IST089I ISTGROUP TYPE = LINE GROUP , ACTIV
IST089I GROUP77 TYPE = LINE GROUP , ACTIV
IST089I X211CA TYPE = CA MAJ NOD , ACTIV
IST089I GROUP78 TYPE = SHM LINE GROUP , ACTIV
IST089I GROUP79 TYPE = SHM LINE GROUP , ACTIV
IST314I END
HELP (NCCF)

Syntax

NCCF HELP

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>HELP</td>
<td>H</td>
</tr>
</tbody>
</table>

Purpose of Command

The HELP command displays help information for NetView components, messages, commands, and terms.

If you enter HELP from a within a component, help information for that component is displayed. If you want to invoke the NetView HELP facility from within a component, you might need to enter the command as CMD HELP, depending on whether that component has its own HELP command.

You can use the following commands while you are using the HELP facility:

- BACK
- BOTTOM
- END
- FORWARD
- HELP
- RETURN
Operand Descriptions

ALL
All components or all hardware monitor panels

command
Displays information about a specific command or command list.

COMMANDS
Displays a list of commands and command lists.

current_component
The NetView component you are currently using. If you are not currently using one of the components for which there is help for terms (NCCF, NLDM, NPDA, STATMON, or TARA), then the default is ALL.

‘delimited_string’
Displays definitions of terms which contain the character string within the delimiters. If this string is a null string, NetView displays definitions for all terms related to the specified component. The delimiter is any character except alphanumeric characters, parenthesis, blank, and national characters (@, #, and $).

NetView presents the display using the WINDOW facility. You can use the help function within the WINDOW to display available functions and subcommands.

AON
Automated Operations Network

GMFHS
Graphic Monitor Facility Host Subsystem

msgid
Specifies the NetView message for which a help panel is displayed.

MSM
MultiSystem Manager

NCCF
Command facility

NETVIEW
NetView program

NLDM
Session monitor

NPDA
Hardware monitor

panel_id
The hardware monitor panel which contains the term to be defined. For all other components the only valid specification is ALL, which is the default.

The value of panel_id is used as a pattern to match against one or more hardware monitor panel IDs. For example, ‘51’ displays descriptions for terms contained in panels whose IDs contain the string ‘51’ and ‘’ displays descriptions for terms in all panels.

Using actual hardware monitor panel IDs in this manner displays those terms which are NOT in the hardware monitor COMMON or COUNTERS glossaries.
To see terms in these glossaries, specify COMMON or COUNTERS as the `panel_id`. This limits the search to the corresponding glossary set, rather than a particular panel. The following displays terms associated with the hardware monitor COMMON glossary.

These special panel IDs are provided for consistency with COMMON and COUNTERS hardware monitor glossaries in previous releases of NetView.

```
HELP NPDA 'COMMON
```

PFKEYS
Displays information about PF key settings.

RODM
Resource Object Data Manager

SCREENS
Displays information about component screens.

SPCS
Common Operations Services.

STATMON
Status monitor

TAF
Terminal access facility

TARA
4700 support facility

VTAM
Virtual Telecommunications Access Method

Usage Notes

Consider the following when using the HELP (NCCF) command:

- If the same name for a command is used across components, for example `START`, you can preface `command` with the component name to get help for that component command. Otherwise, you will receive a menu from which to choose the command.

- Use a comma or a blank as a delimiter between operands.

Examples

Example: Displaying Help for Command Facility Commands

To receive help for the command facility commands, enter:

```
HELP NCCF COMMANDS
```

Example: Displaying an Online Help Panel for a Specified Message

To display an online help panel for message CNM937I, enter:

```
HELP CNM937I
```

The action suffix (`I`) is not required.

Example: Displaying Help for Fields

To receive help for the APPNCOS term on a session monitor screen, enter:

```
HELP NLDM 'APPNC'
```
HELPDESK (NCCF; CNME1026)

Syntax

```
HELPDESK
HELPDESK
ten selection
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>HELPDESK</td>
<td>HD</td>
</tr>
</tbody>
</table>

Purpose of Command

The HELPDESK command list provides information to assist you in performing network management functions including problem determination.

Operand Descriptions

`selection`

Can be one of the following:

1. HelpDesk introduction.
2. HelpDesk contents.
3. A terminal is not working.
4. A transaction or an application is not working.
5. Response time is slow.
6. Problems have been identified through network monitoring.
8. An agent or service point problem has occurred.
9. Displays status and statistics.
10. Gathers trace data.
11. Displays common checklists.

If you know the selection number of a topic, enter it directly from the HELPDESK command. You can enter the HELPDESK command from the NetView command line or from within the help desk. For example, to display the help desk topic on collecting VTAM buffer trace data, enter:

```
HELPDESK 8.4
```

Usage Notes

When you use this command list, the HELPDESK component remains on the NetView component stack, which is used with ROLL, until the component is ended.
Use the backward and forward PF keys to move through the HelpDesk. Use the FIND command to search within a topic. If you want to select a topic from a HelpDesk screen, either enter the selection number in the command area or position your cursor on the highlighted line and press Enter.

Lines highlighted in yellow are command lines that can be executed when that line is selected. If the command line contains variable text (for example, HELP msgno) the operator can type over the variable with specific data then press the Enter key to execute the command.

Lines highlighted in pink are links to other topics.

To return to a previous topic, you can use the return PF key. To leave the HelpDesk, you can use the END command.

Restrictions

The following restrictions apply to the HELPDESK command:

- You can enter only one option at a time, even though multiple options are given.
HEXDEC (NCCF; CNME1027)

Syntax

```
HEXDEC
```

```
HEXDEC hexnumber ,EXIT ,command
```

Purpose of Command

The HEXDEC command list displays the decimal equivalent of a hexadecimal number.

Operand Descriptions

- **hexnumber**
 - Is the hexadecimal number to be converted. It can be up to 4 characters long.

- **EXIT**
 - If specified, causes the decimal value to be returned as a return code.

- **command**
 - If specified, is a command with operands (up to 7) that is to be issued. The decimal number is also passed to the command list or command after the last operand.

Examples

Example: Converting a Hexadecimal Value to a Decimal Value

To convert the hexadecimal value 44 to a decimal value, enter:

```
HEXDEC 44
```

Response

You will see the following response:

```
C NCF01 CNM324I HEXDEC: X"0044" = 68
```
HLLENV (NCCF)

Syntax

```
HLLENV
```

Purpose of Command

The HLLENV command defines and manages two types of preinitialized environments:

- **AD/Cycle® PL/I**
- **AD/Cycle C**

Note: NetView provides concurrent support for AD/Cycle PL/I and AD/Cycle C. However, concurrent support is not provided between the AD/Cycle languages and prior language products.

You can define a preinitialized environment for each language using the HLLENV command. The HLLENV TYPE keyword specifies which language preinitialized environment is being defined. The HLLENV command lets you change parameters and list statistics for a preinitialized environment.

Operand Descriptions

CHANGE

Specifies that one or more of the preinitialization parameters be changed.

REGENVS=reg_preinit_env

Specifies the number of preinitialized environments to be defined immediately. This operand can have a value in the range of 0–99. Environments allocated with REGENVS are retained by NetView in a global pool and are available to preinitialization-enabled programs that you define to run in a preinitialized environment. These programs can run in a preinitialized environment on any subtask where the program could ordinarily run.

You can define programs to run in a preinitialized environment using the DEFAULT keyword of HLLENV or by setting certain bits in HLOPTS.
Refer to [Tivoli NetView for z/OS Customization: Using PL/I and C](#) for more information about HLLOPTS.

If you change the REGENVS value, any environments not in use are freed or allocated as requested. Any preinitialized environment in use when REGENVS is changed, is not affected until the program running in that environment completes processing.

If you do not specify REGENVS, the value does not change. The initial value for REGENVS is zero (0).

CRITENVS= `crit_preinit_env`

Specifies the maximum number of preinitialized environments that can be allocated exclusively for preinitialization-enabled programs with bit 4 set in HLLOPTS. CRITENVS can have a value in the range of 0–99.

To specify that a program run in an environment allocated with CRITENVS, set bit 4 to 1 in HLLOPTS.

Refer to [Tivoli NetView for z/OS Customization: Using PL/I and C](#) for more information about HLLOPTS.

If you change the CRITENVS value, any environments not in use are freed or allocated as requested. Any preinitialized environment in use when CRITENVS is changed, is not affected until the program running in that environment completes processing.

If you do not specify CRITENVS the value does not change. The initial value for CRITENVS is zero (0).

DEFAULT

Specifies whether running eligible programs in a preinitialized environment should be the default.

NOTPREINIT

Specifies that your preinitialization-enabled programs should not run in a preinitialized environment. NOTPREINIT is the initial value for DEFAULT.

PREINIT

Specifies that your preinitialization-enabled programs should run in a preinitialized environment.

You can use the HLLOPTS bits 2 and 3 in your program to override the DEFAULT settings.

Refer to [Tivoli NetView for z/OS Customization: Using PL/I and C](#) for more information about HLLOPTS.

The DEFAULT value cannot be changed if REGENVS and CRITENVS environments have been allocated. Prior to changing DEFAULT, programs running in REGENVS and CRITENVS environments must be terminated and the values of REGENVS and CRITENVS set to zero (0). When all the allocated environments are terminated, DEFAULT, REGENVS, and CRITENVS can be set to the values required for your system.

PSTACK= `preinit_stack`

Specifies the STACK run-time option value used when building the preinitialized environment. If you change PSTACK, environments not in use are freed and reallocated with the new run-time option value. Environments in use when PSTACK is changed are not affected until the program running in that environment completes execution.
If you do not specify PSTACK the value does not change. The initial value for PSTACK is 4096 bytes.

PHEAP=preinit_heap

Specifies the HEAP run-time option value used when building the preinitialized environment. If you change PHEAP, any environments not in use are freed and reallocated with the new HEAP run-time option value. Environments in use when PHEAP is changed are not affected until the program running in that environment completes execution.

If you do not specify PHEAP the value does not change. The initial value for PHEAP is 4096 bytes.

RESET

Specifies that the preinitialized environment usage statistics be reset. This request takes effect after all other parameter changes on the HLLENV command are complete. Allocation information cannot be reset.

The statistics that are reset include:
- The date and time the statistics were last reset
- The maximum number of environments that were in use at any time
- The number of times preinitialization-enabled programs used a preinitialized environment.
- The number of times a preinitialization-enabled program tried to get a preinitialized environment but none were available
- The average number of environments needed

Only the statistics for programs of the type specified in TYPE= keyword are reset.

NORESET

Specifies that the preinitialized environment statistics should not be reset. NORESET is the default.

LIST

Lists the usage statistics or the allocation information by NetView subtask for preinitialized environments.

STATS

Lists preinitialized environment usage statistics since the last time the statistics were reset for a given environment type. This is the default value for LIST.

ALLOC

Lists preinitialized environment allocation information for NetView subtasks. This information includes a list of tasks that have preinitialized environments allocated and the number of environments each task has allocated.

TYPE

Specifies the preinitialized environment category.

IBMADPLI

Specifies that the preinitialized environment category is PL/I AD/Cycle.

IBMADC

Specifies that the preinitialized environment category is C/370™ AD/Cycle.
Examples

Example: Changing the Values for DEFAULT, PSTACK, and PHEAP

To specify that all AD/Cycle PL/I programs run in a preinitialized environment and to change the PSTACK and PHEAP values for these programs, enter:

```
HLLENV CHANGE,DEFAULT=PREINIT,PSTACK=2048,PHEAP=512,TYPE=IBMADPLI
```

Response

```
BNH052I IBMADPLI ENVIRONMENT KEYWORD DEFAULT HAS BEEN CHANGED FROM NOTPREINIT TO PREINIT
BNH052I IBMADPLI ENVIRONMENT KEYWORD PSTACK HAS BEEN CHANGED FROM 4096 TO 2048
BNH052I IBMADPLI ENVIRONMENT KEYWORD PHEAP HAS BEEN CHANGED FROM 4096 TO 512
```

Example: Changing the Number of Preinitialized Environments

To increase the number of preinitialized environments in the global pool from 3 to 4, and increase the maximum number of preinitialized environments allocated exclusively for AD/Cycle C/370 programs with bit 4 set in HLOOPTS from 1 to 2, enter:

```
HLLENV CHANGE,REGENVS=4,CRITENVS=2,TYPE=IBMADC
```

Response

```
BNH052I IBMADC ENVIRONMENT KEYWORD REGENVS HAS BEEN CHANGED FROM 3 TO 4
BNH052I IBMADC ENVIRONMENT KEYWORD CRITENVS HAS BEEN CHANGED FROM 1 TO 2
```

Note: All programs defined to run in preinitialized environments can use the environments allocated with the REGENVS keyword. The CRITENVS keyword defines environments that can be used exclusively by AD/Cycle C/370 programs with bit 4 set in HLOPTS.

Example: Listing the Preinitialization Statistics

To list preinitialization usage statistics for AD/Cycle PL/I environments and then reset, enter:

```
HLLENV LIST,STATS,RESET,TYPE=IBMADPLI
```

Response

```
BNH040I IBMADPLI PREINITIALIZED ENVIRONMENT STATISTICS
BNH041I STATISTICS RESET AT: 05/17/99 16:44:04
BNH042I PSTACK: 4096  PHEAP: 4096  DEFAULT: NOTPREINIT
BNH043I NUMBER REQUESTED.  REGENVS: 4  CRITENVS: 2
BNH044I PREINITIALIZED.  REGENVS: 4  CRITENVS: 1
BNH045I IN USE.  REGENVS: 4  CRITENVS: 1
BNH046I MOST NEEDED.  REGENVS: 4  CRITENVS: 1
BNH047I TIMES USED.  REGENVS: 4  CRITENVS: 1
BNH048I TIMES UNAVAILABLE.  REGENVS: 0  CRITENVS: 1
BNH049I AVERAGE NEEDED.  REGENVS: 2.50  CRITENVS: 1.00
BNH053I IBMADPLI ENVIRONMENT STATISTICS RESET
```

Example: Listing Preinitialization Allocation Information

To list preinitialization allocation information for the default environment category IBMADPLI, enter:

```
HLLENV LIST,ALLOC,TYPE=IBMADPLI
```

Response

```
442
Tivoli NetView for z/OS Command Reference Vol. 1
```
Example: Resetting the Preinitialization Statistics
To reset the preinitialization statistics for the default environment category IBMADPLI, enter:

```
HLLENV RESET,TYPE=IBMADPLI
```

Response

```
BNH053I IBMADPLI ENVIRONMENT STATISTICS RESET
```
HOLD (NCCF)

Syntax

HOLD

Purpose of Command

The HOLD command prevents the screen from autowrapping until you unlock it with the ENTER or Clear key. You can use the HOLD key if you notice something that you need time to read before it is erased. You can also use the HOLD key to freeze the screen while you mark messages for deletion or enter a command.

Operand Descriptions

LOCKSCRN

Indicates to use the AUTOWRAP setting to determine when the screen should be unlocked during a command procedure HOLD. If you do not specify LOCKSCRN, unlock the screen manually using the ENTER or Clear key.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful processing of command</td>
</tr>
<tr>
<td>8</td>
<td>Command was issued from a task that is not valid</td>
</tr>
</tbody>
</table>

Examples

Example: Holding the Current Screen

To hold a currently displayed screen, press the HOLD key or enter:

```
HOLD
```

Response

The following message appears at the bottom of your screen:

```
DS1662I SCREEN HELD
```

To unlock the screen again, press the Enter or the Clear key.
ICOLOR (LOG-BROWSE)

Syntax

ICOLOR

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICOLOR</td>
<td>I</td>
</tr>
</tbody>
</table>

Purpose of Command

The ICOLOR command switches between the ALL and ONE mode for displaying message indicators:

- **ALL**: Displays all message indicator types (*1*, *2*, *3*, and *4*) and any related messages in the colors indicated by DSICNM (statements with ‘A’ in column 1).
- **ONE**: If you selected an active message indicator, displays that indicator with related messages in the color indicated by DSICNM. Otherwise, messages are displayed in their original color/highlighting.

Restrictions

DSICNM color/highlighting applies only to those cases where the message indicators are displayed. Otherwise, ICOLOR toggles between the original message color/highlighting and neutral color/highlighting.

Examples

Example: Switching Between Original and DSICNM Message Colors

If you are browsing the network log without having selected an active message indicator, and you want to switch from DSICNM color/highlighting to original color/highlighting (or vice versa), enter:

ICOLOR
IDCAMS (NCCF)

Syntax

IDCAMS

```
| IDCAMS ddname1 | SYSPRINT | ddname2 |
```

Purpose of Command

The IDCAMS command processes the access method services program (IDCAMS). This command enables you to perform access method services commands from the NetView program. This enables you to perform the NetView VSAM database maintenance from the NetView program without having to shut down the NetView program. This method of database maintenance includes using the DELETE, DEFINE, and REPRO commands from IDCAMS.

Operand Descriptions

`ddname1`

This is the name of the DD statement that references the data set containing access method services utility commands. Specify this `ddname1` in the NetView job control language (JCL) cataloged procedure. The name is passed to the access method services utility as an override for the SYSIN file. Choose unique `ddnames` for the JCL data set statements that do not conflict with existing NetView JCL data set `ddnames`.

`SYSPRINT`

If you do not specify a value for `ddname2`, the default is SYSPRINT. This parameter must be defined in the NetView JCL cataloged procedure.

`ddname2`

Specifies a file that contains the access method services message output as an override for the SYSPRINT file. This parameter must be defined in the NetView JCL cataloged procedure. The default is SYSPRINT.

Restrictions

The following restrictions apply to the IDCAMS command:

- Code the desired access method services commands in the data sets. The data sets can be sequential or partitioned data sets specified with a member. Add JCL statements to the NetView JCL cataloged procedure that specify the data sets containing the access method services commands.
- If you use the IDCAMS command to delete and redefine databases, you should define the databases with the same storage allocation and on the same volumes. If the database is defined with a different storage allocation or on a different volume, an open error could result that would require recycling of the NetView program.
- If you are operating in an environment, such as SMS, in which the database can be moved to a different volume as a result of deleting and redefining, you can receive an open error in the form of message DSI556I with return code=X’08’ and ACB error field=X’A8’. If so, free the database before deleting and redefining.
and reallocate after deleting and redefining. To do this, use the FREE command first and then the ALLOCATE command.

Examples

Example: Running the Access Method Service Utility from a Specified File
To run the access method services utility from a file containing commands whose ddname is RORGNLDM, enter:

IDCAMS RORGNLDM

Response

CNM270I ACCESS METHOD SERVICES ENDED WITH A RETURN CODE 00
IDLEOFF (NCCF; CNME1057)

Syntax

```
IDLEOFF
```

Purpose of Command

The IDLEOFF command examines operator idle times as reported by the LIST command, then determines which operators should be stopped with the STOP command. Idle time is defined as the time since new input was provided by the task owner. Commands queued by EXCMD or EVERY commands are not considered as actions for attended NetView tasks. The following task types are considered attended:

- OSTs directly logged on
- Autotasks accessible through a system console
- Distributed autotasks started with RMTCMD
- NetView-NetView tasks (NNTs)

IDLEOFF also maintains a list of tasks exempted from the STOP process. A task is exempt from IDLEOFF if any of the exemption rules apply. For example, EXCEPTNNT NONE does not affect tasks that are exempted by EXCEPTOP or EXCEPTLU.

IDLEOFF is intended to be run on one task, preferably an autotask, that has authority to issue STOP TASK against the operator IDs that are to be controlled.
Operand Descriptions

idlemin
Specifies the maximum number of minutes that an operator can be idle. Idle operators that are exceeding this time when IDLEOFF runs will be logged off, unless previously excepted. The idlemin value must be a positive integer.

TEST
Produces a list of tasks that would be stopped, but does not issue the STOP command.

EXCEPTOP, EXCEPTLU, opid, and luname
Specifies a list of operator IDs or LU names that are not to be logged off by subsequent IDLEOFF commands. If an operator ID or LU name is immediately preceded by a not sign (¬), that name is removed from the exemption list if present.

Notes:
1. An alternate method of maintaining an exemption list is to restrict command authority for STOP TASK on the autotask where IDLEOFF will run.
2. These lists support wildcards. The question mark (?) specifies that a single character position in the name can be any character. An asterisk (*) specifies that zero or any number of characters is to be skipped when checking the names. For example, the pattern L?*L* matches LILY, LOULY, and LONLY, but not LLOYD because LLOYD does not have a character between the two Ls.
3. Two lists are kept: one for LUs and one for operator IDs.
4. The specified names do not need to be valid to be added to, or deleted from, these lists.

EXCEPTAUTO
Specifies which autotasks are exempt from IDLEOFF.

ALL Specifies that all autotasks are exempt. Specifying EXCEPTAUTO by itself is the equivalent of EXCEPTAUTO ALL.
DIST Specifies distributed autotasks. Those receiving RMTCMD commands are exempt, but system consoles are not exempt as a group.
CONSOLE Specifies that system console autotasks are exempt, but distributed autotasks are not exempt as a group.
NONE Specifies that all attended autotasks are eligible. This is the initial setting.

EXCEPTNNT
Specifies which NNT tasks are exempt from IDLEOFF.

ALL Specifies that all NNT tasks are exempt. Specifying EXCEPTNNT by itself is the equivalent of EXCEPTNNT ALL.
NONE Specifies that all NNT tasks are eligible. This is the initial setting.

EXCEPTRMTCMD
Specifies which RMTCMD users are exempt from IDLEOFF.

ALL Specifies that all users of RMTCMD are exempt, but does not
exempt distributed autotasks. Specifying EXCEPTRMTCMD by itself is the equivalent of EXCEPTRMTCMD ALL.

Note: This exempts any task that used RMTCMD, even if the task has no current RMTCMD sessions, and even if the RMTCMD failed to start a session.

NONE Specifies that all RMTCMD users are eligible. This is the initial setting.

INIT Specifies to start the IDLEOFF process with an EVERY command.

Note: The IDLEOFF process can be started by an explicit EVERY command, but subsequent IDLEOFF commands must explicitly be issued on the same task, usually with EXCMD or a labeled command. Therefore, specifying INIT is recommended.

 INITop Specifies the operator task under which the IDLEOFF process is to be started or restarted. An asterisk (*) specifies that the process is to be restarted under the previous task. If there is no current IDLEOFF process as defined by a previous INIT request, an asterisk specifies to start under the task on which the INIT was issued.

Note: Subsequent IDLEOFF commands, regardless from where they are issued, will be routed to the specified INIT task, provided that the issuing operator has authority to EXCMD to that task.

idtime Specifies IDLEOFF idlemin when the IDLEOFF process is invoked by the EVERY command.

evtime Specifies the interval to be used with the EVERY command reissuing IDLEOFF nn on the specified initop task.

tid Specifies the timer ID to be used with the EVERY command reissuing IDLEOFF nn on the specified initop task. The default is IDLEOFF.

? Requests a report of exempted operators.

Return Codes

<table>
<thead>
<tr>
<th>Return Codes</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The task functioned normally.</td>
</tr>
<tr>
<td>8</td>
<td>A syntax error occurred.</td>
</tr>
<tr>
<td>12</td>
<td>The EVERY command resulting from an INIT request failed. Ensure the specified interval is valid for EVERY.</td>
</tr>
</tbody>
</table>

Examples

Example: Logging Off Idle Operators
The following example issues IDLEOFF on the AUTO1 task every ten minutes and logs off operators who have been idle over 60 minutes (see also CNMSTYLE).

IDLEOFF INIT AUTO1 60 10
Example: Exempting Idle Operators
The following example prevents operators KIM and JIM from being logged off if they match the idle limit:

```
IDLEOFF EXCEPTOP KIM JIM
```

Example: Reversing Exempt Operators
The following example changes operator JIM from being exempt to eligible:

```
IDLEOFF EXCEPTOP ~JIM
```
IMR (NCCF; CNME0016)

Syntax

```
IMR
```

Notes:

1. If you do not specify a positional parameter, you must indicate its absence by specifying a comma in its place.

Purpose of Command

The IMR command list starts or stops intensive mode recording (IMR) for a link station or physical unit. This command list can assist in problem determination.

Operand Descriptions

- **station**
 Specifies the name of the link station or physical unit.

- **ACT**
 Specifies that intensive mode recording should be started for the named station. ACT is the default.

- **errors**
 Specifies the maximum number of temporary errors that are to be recorded for the named station. The value can be in the range of 1–65535. The default is 10. You cannot use this operand if you also specified the INACT operand.

- **INACT**
 Specifies that IMR should be stopped for the main station.

- **passthru**
 Specifies up to 6 parameters which are appended unchanged to the VTAM MODIFY command issued by the IMR command. No validation for duplicate or conflicting parameters is performed.

Examples

Example: Turning on IMR for a Specified Link Station and Recording Temporary Errors

To turn on intensive mode recording for STATION1 and record the first 20 temporary errors, enter:

```
IMR STATION1,ACT,20
```
INACT (NCCF; CNME0017)

Syntax

INACT

```
INACT node_id, I, F, G, R
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>U</td>
</tr>
</tbody>
</table>

Purpose of Command

The INACT command list deactivates a VTAM resource. For more information about this command, refer to the appropriate VTAM manual.

Operand Descriptions

nodeid

Specifies the name of the major or minor node to deactivate.

I

Specifies that the resource and applicable subordinate resources are to be deactivated immediately. I is the default.

F

Specifies that the resource and applicable subordinate resources are to undergo forced deactivation.

G

Specifies return of ownership of resources to the original SSCP.

R

Specifies that the resource and applicable subordinate resources are to undergo forced deactivation and subsequent reactivation.

FINAL

Specifies that the physical unit is no longer required and that there are no immediate plans to reactivate it.

ACT

Specifies that active cross-domain links and link stations are to remain active after the NCP major node is deactivated. ACT is the default.

INACT

Specifies that cross-domain links and link stations are to be deactivated as part of the NCP deactivation.
RMPO
Applies to an NCP major node only. Specifies that the communication controller in which the NCP is running is to be powered off automatically at the completion of the deactivation.

passthru
Specifies up to 6 parameters which are appended unchanged to the VTAM VARY command issued by the INACT command. No validation for duplicate or conflicting parameters is performed.

Restrictions
You cannot use the FINAL and RMPO operands together.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Functioned normally</td>
</tr>
</tbody>
</table>

Examples

Example: Deactivating an NCP While Keeping Active Cross-Domain Links and Link Stations Active
To deactivate NCP1 but keep any active cross-domain links and link stations active, enter:
INACT NCP1

Example: Deactivating an NCP While Keeping Cross-Domain Links and Link Stations Active
To deactivate NCP01 and specify that the cross-domain links and link stations remain active after NCP01 deactivates, enter:
INACT NCP01,ACT

Response
Existing sessions are not broken, but new sessions cannot be established.

Example: Immediately Deactivating an NCP, Specifying No Reactivating, and Shutting Down the Communication Controller
To cause an immediate deactivation of NCP01, specify that NCP01 is not reactivated, and power off the associated communication controller, enter:
INACT NCP01,1,RMPO

Response
Sessions involving NCP01 are disrupted. VTAM waits for application program sessions to end before completing deactivation.

Example: Forcing Deactivation of an NCP
To force deactivation of NCP01, enter:
INACT NCP01,F

Response
VTAM deactivates resources or superior nodes without waiting for responses to these requests.
Example: Forcing Deactivation of an NCP and Reactivating It
To force deactivation of NCP01, then reactivate it, enter:
INACT NCP01,R

Response

VTAM sends deactivation requests to resources or their superior nodes, then waits for responses before beginning reactivation.
INACTF (NCCF; CNME0018)

Syntax

```
INACTF
```

```
   ,FINAL
   ,ACT
   ,INACT
   ,RMPO
   ,passthru
```

Purpose of Command

The INACTF command list deactivates a VTAM resource with a forced deactivation. The status monitor does not monitor any nodes that you inactivate using the INACTF command list.

Operand Descriptions

```
node_id
```

Specifies the name of the major or minor node to deactivate.

```
FINAL
```

Specifies that the physical unit is no longer required and that there are no immediate plans to reactivate it.

```
ACT
```

Specifies that active cross-domain links and link stations are to remain active after the NCP major node is deactivated. ACT is the default.

```
INACT
```

Specifies that cross-domain links and link stations are to be deactivated as part of the NCP deactivation.

```
RMPO
```

Applies to an NCP major node only and specifies that the communication controller in which the NCP is running is to be powered off automatically at the completion of the deactivation.

```
passthru
```

Specifies up to 6 parameters which are appended unchanged to the VTAM VARY command issued by the INACTF command. No validation for duplicate or conflicting parameters is performed.

Restrictions

You cannot use the FINAL and RMPO operands together.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Functioned normally</td>
</tr>
</tbody>
</table>
Examples

Example: Forcing Deactivation of an NCP
To force deactivation of NCP12, enter:

```
INACTF NCP12
```

Response

VTAM deactivates its internal representations of applicable resources and sends deactivation requests to the resources or their superior nodes without waiting for responses to these requests. Because the command list defaults to ACT, the active cross-domain links and link stations remain active after the major node is deactivated.

Example: Forcing Deactivation of an NCP and Its Cross-Domain Links and Link Stations
To force deactivation of NCP12 and specify that the cross-domain links and link stations are to be deactivated as part of NCP deactivation, enter:

```
INACTF NCP12,INACT
```

Example: Forcing Deactivation of an NCP and Powering Off Its Communication Controller
To force deactivation of NCP12 and power off the associated communication controller, enter:

```
INACTF NCP12,RMPO
```
Purpose of Command
The INDEX command list displays subjects that are explained in the online help facility. Use the backward and forward PF key to move through the index. Use the FIND command to search for a particular topic. If you find a topic you want to refer to, enter the option next to the topic.

Operand Descriptions
character
Is the first character of the subject in the index.

Usage Notes
Specifying character is only meaningful in the English version of the NetView program because the entries (contained in CNMPNL1 member EUYCLIST) are alphabetically ordered in English.

Restrictions
The following restrictions apply to the INDEX command:
• You can enter only one option at a time, even if multiple options are given.
• If you enter the index by using a particular letter, you cannot move to another letter without issuing the INDEX command list again. When you use this command list, the INDEX component remains on the NetView component stack that is used with ROLL until the component is ended.

Examples
Example: Displaying Index Entries
To display the online index, enter:
INDEX

To display all index entries beginning with the letter R, enter:
INDEX R
INITAMI

Syntax

INITAMI

Purpose of Command

Starts the application management interface (AMI) instrumentation running on NetView by doing the following:

- Initializing the AUTOAMI autotask
- Initializing global variables
- Processing the configuration file, DSIAMII.

Usage Notes

- In environments with multiple NetViews per system or in a sysplex, the INITAMI command should be issued on the autotask AUTOAMI.
- The console ID for AUTOAMI is set to ‘AMI’ concatenated with the rightmost five characters of the NetView domain. The console ID will be unique in a sysplex, and commands issued from that autotask will correlate.
INITAMON

Syntax

```plaintext
INITAMON entry_point
```

Purpose of Command

The INITAMON command initializes the VTAM ACB Monitor or a specific ACB Monitor entry point. This command can only be issued on the ACB Monitor focal point NetView.

If the entry point is specified, ACB status reporting is initiated for the VTAM associated with that NetView.

If the entry point is not specified, initialize the DB2 database and activate ACB status reporting from the VTAM associated with this (focal point) NetView and from all VTAMs associated with NetView domains (entry points) listed with the AMONLU keyword coded in DSIAMII.

Operand Descriptions

`entry_point`

Specifies the NetView domain name of an entry point to be activated.

Note: The ACB Monitor must have been initialized by issuing the INITAMON command, without the entry point parameter, prior to activating a specific entry point.
Syntax

```
INITNR
```

Purpose of Command

The INITNR command is used to initialize and start NetView Resource Manager (NRM). INITNR can be issued by itself, or with parameters.

When INITNR is issued without parameters, the information documented in CNMSTYLE is used as follows:

- When INIT.NRM=NO is specified in CNMSTYLE, NRM initializes as a manager, provided a RODMNAME is found. Default values are used for any other required parameters for a manager.
When INIT.NRM=YES is specified in CNMSTYLE, NRM reads parameters in CNMSTYLE under the “NETVIEW RESOURCE MANAGER INITIALIZATION PARAMETERS” section and starts NRM as defined.

When INITNRM is issued with selected parameters, NRM initializes and starts with parameters in the following order:
1. Parameters specified with INITNRM
2. Parameters defined in CNMSTYLE
3. Defaults for parameters, if any

When INITNRM is issued with all parameters, NRM starts. The specified parameters override the values defined in CNMSTYLE.

Operand Descriptions

TYPE
Specifies whether this host is an NRM *manager* or an *agent* host. If TYPE is omitted, a valid RODMNAME must be found. Refer to the description of the RODMNAME operand.

AGENT
Indicates the agent host forwards local host information to one or more manager hosts.

MGR
Indicates the manager host stores information in RODM for viewing at the NetView management console. This is the default.

RODMNAME
Specifies the RODM name for the RODM being used on that NetView. RODMNAME is required if TYPE=MGR. The following sequence is used for this value when it is required:
1. The value specified with RODMNAME
2. The CNMSTYLE.RODMNAME variable
3. The system symbolic &CNMRODM

CMODE
Specifies the mode to communicate between NetView hosts. Because one or more host destinations can be specified, multiple CMODE values can be specified. If you want to use the same communication mode for all host destinations, then one value of SNA or IP can be specified. If both SNA and IP communication modes are used, then you must specify a CMODE value for each HOSTDEST value. CMODE is ignored if HOSTDEST is not specified.

The parentheses are not required if only one value is specified. Multiple values must be enclosed in parentheses and separated by either blanks or commas.

CONNINT
Specifies the interval between connection retries when establishing communication between two NetView hosts. The value is in seconds and is in the range 0–1440. This value is used in conjunction with CONNRETRY. If this value is zero (0), the retries will occur back to back with no time delay. The default is 180.

CONNRETRY
Specifies the number of connection retries to be attempted when communication between two NetView hosts fails. The value is in the range 0–10. The default is 3.
HBRETRY
Specifies how often an NRM manager tests connectivity to its agents. When
NRM determines that connectivity is lost, the status for all resources for that
domain is UNKNOWN. The value is in seconds and is in the range 30–600.
The default is 30. This keyword is valid only with TYPE=MGR.

Note: It is strongly recommended that you use the default. See Tivoli NetView
for z/OS Tuning Guide for more information.

HOSTDEST
Specifies the NRM manager host(s) that shows status for this agent host.
HOSTDEST can be specified for an NRM manager or agent host. It is a
required parameter if TYPE=AGENT is specified. One or more host
destinations can be specified. If the communication mode (see CMODE)
between this agent and the manager host is SNA, the value for HOSTDEST is
the NetView domain of the manager. If the communication mode between this
agent and the manager host is IP, the value for HOSTDEST is a dotted decimal
IP address or a host name.

The parentheses are not required if only one value is specified. Multiple values
must be enclosed in parentheses and separated by either blanks or commas.

PORT
Specifies the port number for the DSIRTTR task at each HOSTDEST. If only
one port number is specified, that port number is used for all IP host
destinations. The value is in the range 1–65535 and the default is 4021. PORT is
only valid with CMODE=IP and HOSTDEST. If both SNA and IP
communication modes are used, then you must specify a PORT value for each
HOSTDEST value. You must specify a null value for CMODE=SNA when both
SNA and IP are specified. Refer to “Example: Forwarding Host Data Using
Multiple Protocols” on page 463.

The parentheses are not required if only one value is specified. Multiple values
must be enclosed in parentheses and separated by either blanks or commas.

SAMPLE
Specifies the frequency in requesting complete data for this host. The value is
in minutes and is in the range 0–1440. The default is 0.

TCPNAME
Specifies the TCP/IP job identifier of the local host. TCPNAME is required if
CMODE=IP is specified. The following sequence is used for this value when it
is required:
1. The value specified with TCPNAME
2. The CNMSTYLE.TCPNAME variable
3. The system symbolic &CNMTCPN
4. The default value of TCPIP

XCLDOM
Specifies which domains the NRM manager host should not monitor. The
value is 1–5 characters in length. Wildcards can be specified for the domain
names. Refer to “Example: Using Wildcards with XCLDOM” on page 463.

The parentheses are not required if only one value is specified. Multiple values
must be enclosed in parentheses and separated by either blanks or commas.

Note: This keyword is only applicable to a NetView Resource Manager host.
XCLSRC
Specifies which set of exclusion lists, if any, that you want to use with NetView Resource Manager.

CTL
Indicates to use the exclusion lists that were in effect prior to this execution of INITNRM. This enables you to retain exclusion lists that you have defined dynamically across NetView Resource Manager invocations.

VARS
Indicates to use the exclusion lists as defined in CNMSTYLE or the INITNRM command. Specifying VARS will override any exclusion lists that were previously set. This is the default.

XCLTASKN
Specifies which tasks the NRM manager host should not monitor. The value is 1–8 characters in length. Wildcards can be specified for the task names. Refer to “Example: Using Wildcards with XCLTASKN” on page 466.

The parentheses are not required if only one task is specified. Multiple values must be enclosed in parentheses and separated by either blanks or commas.

Note: This keyword is a function of the NetView Resource Agent and is only applicable on the local NetView host.

XCLTASKT
Specifies which types of tasks the NRM manager should not monitor. For example, specifying XCLTYPE=OST excludes all operator station tasks from monitoring by NRM. Valid types are as follows:

- DST
- HCT
- MNT
- NNT
- OPT
- OST
- PPT

The parentheses are not required if only one task type is specified. Multiple values must be enclosed in parentheses and separated by either blanks or commas.

Note: This keyword is a function of the NetView Resource Agent and is only applicable on the local NetView host.

RESET
Specifies if you want all NetView Resource Manager objects set to an initial status at NetView Resource Manager initialization.

YES
Indicates that the status of objects should be set to the status specified by NRM.STATUS.RESET under the DISPLAY STATUS section in CNMSTYLE.

NO
Indicates that no initial status will be set during NetView Resource Manager initialization.

Note: NetView Resource Manager objects will be updated to their correct status when an agent communicates status to the manager.
Usage Notes

Consider the following when using the INITNRM command:

- Either spaces or commas are valid where the syntax diagram shows required commas for multiple values.
- Parentheses are required when multiple values are specified.
- RODMNAME is required when TYPE=MGR.
- TCPNAME is required when CMODE=IP for at least one host destination, but will default to TCPIP if none is found.
- When using CMODE=IP, the INITNRM command might take longer to complete because GETHOSTBYNAME and GETHOSTBYADDR calls are issued to resolve the host name or IP address.
- CMODE and PORT are ignored if HOSTDEST is not specified.

Examples

Example: Overriding CNMSTYLE
The following example starts a Manager host and overrides the RODMname specified in CNMSTYLE:

```
INITNRM RODMNAME=MYRODM
```

Example: Forwarding Agent Host Data
The following example starts an Agent host that forwards its status to CNM01 using SNA:

```
INITNRM TYPE=AGENT,HOSTDEST=CNM01
```

Example: Forwarding Host Data
The following example starts a Manager host that forwards its status to two Manager hosts using IP, specifying an IP host name and an IP address:

```
INITNRM HOSTDEST=(system.ibm.com,150.99.88.66),CMODE=(IP)
```

Note: Because the same protocol is used to communicate with both destination Managers, one CMODE can be specified.

Example: Forwarding Host Data Using Multiple Protocols
The following example starts an Agent host that forwards its status to three Manager hosts using both SNA (CNM01 and CNM02) and IP (system.ibm.com). PORT is only valid for IP, so null values are used for SNA:

```
INITNRM TYPE=AGENT,HOSTDEST=(CNM01,system.ibm.com,CNM02),CMODE=(SNA,IP,SNA),PORT=(),4021,)
```

In CNMSYTLE, PORT.1 and PORT.3 can be omitted or specified as:

```
PORT.1 =
PORT.3 =
```

Example: Excluding a Domain from Monitoring
To start a Manager host that will not process date for Agent host CNM02, enter the following on the Manager host:

```
INITNRM XCLDOM=CNM02
```

Example: Excluding a Task from Monitoring
To start a Manager or Agent host that will not receive any status for the task OPER5, enter:

```
INITNRM XCLTASKN=OPER5
```
Example: Using Wildcards with XCLDOM

These examples use wildcards to specify domains to be excluded. The question mark (?) wildcard replaces one character. The asterisk (*) replaces zero or more characters. The first example excludes all domains:

XCLDOM=*

The following example excludes domains NTV90 and any domain beginning with C01:

XCLDOM=(NTV90,C01*)

The following example excludes any domain name beginning with NTV and ending with zero, such as NTVX0 and NTV80:

XCLDOM=NTV?0

The fourth character is any valid character in the domain name.

Example: Using Wildcards with XCLTASKN

These examples use wildcards to specify tasks to be excluded. The question mark (?) wildcard replaces one character. The asterisk (*) replaces zero or more characters. The first example excludes any task:

XCLTASKN=*

The following example excludes any task beginning with EZL:

XCLTASKN=EZL*

The following example excludes any task name ending with RTR, or beginning with NETOP or OPER and containing an additional character, such as NETOP3:

XCLTASKN=(*RTR,NETOP?,OPER?)
INPUT (NCCF)

Syntax

\[
\text{INPUT}
\]

\[\text{INPUT} \begin{array}{c}
\underbrace{1} \\
\underbrace{\text{lines}}
\end{array}\]

Purpose of Command

The INPUT command modifies the length of the input area of the command facility screen. The input area is at the bottom of the command facility display area.

Operand Descriptions

\[\text{lines}\]

Specifies the number of command input lines. The input area can be 1, 2, or 3 continuous 80-character input lines. The default is 1 line.

Restrictions

The following restrictions apply to the INPUT command:

- The length of the input area is limited to 240 characters.
- If the display area width is greater than 80 characters, the number of input lines is 240 divided by the display width. The result is rounded up. Only the command facility is affected.
- Commands retrieved from the hardware monitor or session monitor command line are truncated to fit the command line.

Examples

Example: Changing the Input Area to a Specified Number of Lines

To change the command entry area to two lines, enter:

\[
\text{INPUT 2}
\]

Response

The NetView program refreshes the screen and increases or decreases the input area as specified.
IOPD (NCCF; CNME0019)

Syntax

IOPD

Purpose of Command

The IOPD command list enables the operator to change the input/output (I/O) problem determination time-out interval.

Operand Descriptions

interval

Specifies the time-out interval in seconds for the I/O problem determination function. The range is from 0–5366000 seconds.

passthru

Specifies up to 6 parameters which are appended unchanged to the VTAM MODIFY command issued by the IOPD command. No validation for duplicate or conflicting parameters is performed.

Examples

Example: Changing the I/O Problem Determination Time-Out Interval

To change the I/O problem determination time-out interval to 300 seconds (5 minutes), enter:

IOPD 300
IPLOG (NCCF)

Syntax

IPLOG

```
IPLOG host -a port -p facility.priority message
```

Purpose of Command

The IPLOG command sends a message to the syslog daemon on a remote host for processing. Standard UNIX protocol for the syslog daemon is used. The remote host must have a syslog server active for the command to work.

Operand Descriptions

host

Specifies the remote host. It can be specified as a hostname, or in dotted IP address format.

-a port

Specifies the port to use on the remote host. The default is 514.

facility.priority

Specifies the origin facility for the message and the priority for the message. The facility is optional. Either facility or priority can be specified as "*", in which case the default value is used.

Following are the appropriate values for facility:

- KERNEL
- USER
- MAIL
- DAEMON
- AUTH
- SYSLOG (default)
- LPR
- UUCP
- CRON
- LOCAL0
- LOCAL1
- LOCAL2
- LOCAL3
- LOCAL4
- LOCAL5
- LOCAL6
- LOCAL7

Following are the valid values for priority:

- EMERGENCY
- ALERT
• CRITICAL
• ERROR
• WARNING
• NOTICE (default)
• INFO
• DEBUG

message
Is the message to log. It will be formatted to include a timestamp and origin information (NetView domain and operator ID).

Usage Notes
The following restrictions apply to the IPLOG command:
• When sending a message to a system that supports mixed-case commands, such as a UNIX system, prefix IPLOG with NETVASIS. This respects the case of the message.

Examples

Example: Sending a Message to a UNIX System
To send the message "TeSt" to a UNIX host, taking the defaults for facility and priority and port number, enter:
NETVASIS IPLOG HOST1 TeSt

Example: Sending a Message Using a Different Port
To send the message "TEST" to host HOST1, taking the defaults for facility and priority but specifying port 1033, enter:
IPLOG HOST1 -a 1033 TEST

Example: Sending a Message Specifying Priority
To send the message "TEST" to host HOST1, taking the defaults for port and facility, but specifying priority "EMERGENCY", enter either:
IPLOG HOST1 -p EMERGENCY TES
or:
IPLOG HOST1 -p *.EMERGENCY TEST

Example: Sending a Message Specifying Priority and Facility
To send the message TEST to HOST1, specifying facility MAIL and priority DEBUG, enter:
IPLOG HOST1 -p MAIL.DEBUG TEST

Example: Sending a Message Specifying Facility
To send the message TEST to HOST1, specifying facility MAIL but keeping the default priority INFO, enter:
IPLOG HOST1 -p MAIL.* TEST
KEEP (NLDM)

Syntax

\[
\text{KEEP} \quad \text{items=PIUS} \quad \text{FOR} \quad \text{res1} \quad \text{res2} \quad \text{count=INITIAL} \quad \text{SESS} \quad \text{ALL}
\]

Purpose of Command

The KEEP command changes the amount of path information unit (PIU) data to be kept by the session monitor for the active sessions associated with the given resources, and sets the current global direct access storage device (DASD) session wrap count to the value specified.

Operand Descriptions

\text{items}

Specifies the number of PIUs to be kept. The valid range is from 0–999 PIUs.

\text{PIUS}

Specifies a change to the KEEP PIU count. KEEP PIUS restricts the number of PIUs kept by the session monitor for the active sessions associated with the given resources. This command keeps the specified number of PIUs for the active sessions. When that number has been reached, new PIUs are saved and the oldest PIUs are discarded from the session monitor.

\text{FOR}

Identifies the operand that follows as the resource name.

\text{res1}

Is the resource name against which to apply the keep count.

\text{ALL}

Applies the keep count against all sessions for \text{res1}. ALL is the default.

\text{res2}

Is the second name to identify a specific resource pair.

\text{count}

Specifies the new global DASD session wrap count. All sessions recorded to DASD are wrapped by the specified value unless overridden by a KEEPSESS parameter specified for that KCLASS mapping. The valid range is 1–999. The default is zero (0), which sets the global DASD session wrap count to off, and DASD session-wrapping does not occur.

\text{INITIAL}

Sets the current global DASD session-wrap count to the initial global DASD session-wrap count, which is the value specified in the NLDM.KEEPSESS statement in CNMSTYLE.

\text{SESS}

Specifies that the global DASD session wrap count is to be changed. If KEEP
SESS processes successfully, message AAU288I is displayed, indicating the new and old global DASD session wrap counts.

If you specify two resource names for KEEP SESS, and res1 is a DGROUP name, res2 is ignored. In this case, no error message is displayed.

KEEP SESS sets the global DASD session wrap count. This operand restricts the number of DASD sessions kept by the session monitor for those sessions that do not have wrap counts specified (in KCLASS statements in the initialization member specified on the NLD.M.KEEPMEM statement in CNMSTYLE).

Restrictions

The following restrictions apply to the KEEP command:

- To restrict the amount of data retained by the session monitor, you can establish KEEP counts in the session monitor.
- When a trace has been started for a resource, the session monitor collects session formation parameter data, PIU trace data, and NCP trace data. The PIU trace data consists of a portion of each message sent to and from the traced resource.
- The current global DASD session wrap count applies to all sessions that are not overridden by a KEEP SESS command specified for that KCLASS mapping.

Examples

Example: Decreasing the Session Keep Count for a Specified Terminal
To decrease the session keep count to 5 for the terminal L51R79M, enter:

KEEP 5 PIUS L51R79M

Example: Setting KEEP PIU Count Between Two Resources
To set KEEP PIU count between resources LR79M and APPL01 at 5 (use of FOR is optional), enter:

KEEP 5 PIUS FOR LR79M APPL01

Example: Setting the Global DASD Session Wrap Count to a New Default Value
To set the global DASD session wrap count to a new default value of 20, enter:

KEEP 20 SESS

Example: Setting the DASD Session Wrapping to Off
To set the DASD session wrapping off, enter:

KEEP 0 SESS

Example: Resetting the Initial Global DASD Wrap Count
To reset the global DASD session wrap count to the initial global DASD session wrap count that was specified in member AAUPRMLP, enter:

KEEP INITIAL SESS
LAN (NCCF; CNME8500)

Syntax

```
LAN SP
```

`SP=` specifies the 1–8 character service point name of the IBM LAN Network Manager.

`netid` specifies the network identifier in which the service point is located. This parameter is required only when you use a service point that is not in the local network. Use a period (.) to delimit `netid` from `spname`.

`APPL=` specifies the application name. If you do not specify a name, LANMGR is the default.

`lan_mgmt_cmd` specifies the actual command string to the IBM LAN Network Manager.

Purpose of Command

The LAN command list provides a generic interface to the IBM LAN Network Manager Version 1.1. This command list enables access to the functions available through the other LAN command lists, as well as additional functions supported by the IBM LAN Network Manager Version 1.1.

Note: Use the LAN command lists with IBM LAN Network Manager Version 1.1 or later releases. The LAN command list is not valid for IBM LAN Network Manager Version 1.0 or LAN Manager Version 2.

Unless otherwise stated, IBM LAN Network Manager refers to LAN Manager and all versions of LAN Network Manager.

If you are using IBM LAN Network Manager Version 1.0 or LAN Manager Version 2, enter:

```
HELP LAN COMMANDS
```

The following command lists provide additional support for the IBM LAN Network Manager:

- ADAPTER
- BRIDGE
- PATH
- QNETWORK
- RESETLAN
- SEGMENT

Operand Descriptions

- `SP=` specifies the 1–8 character service point name of the IBM LAN Network Manager.
- `netid` specifies the network identifier in which the service point is located. This parameter is required only when you use a service point that is not in the local network. Use a period (.) to delimit `netid` from `spname`.
- `APPL=` specifies the application name. If you do not specify a name, LANMGR is the default.
- `lan_mgmt_cmd` specifies the actual command string to the IBM LAN Network Manager.
Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful processing</td>
</tr>
<tr>
<td>4</td>
<td>Command issued from a task that is not valid</td>
</tr>
</tbody>
</table>

Examples

Example: Accessing All IBM LAN Network Manager Commands

To access all supported IBM LAN Network Manager commands, enter:

`LAN SP=spname,CMD HELP`
LEFT

Syntax

LEFT

amount

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEFT</td>
<td>L</td>
</tr>
</tbody>
</table>

Purpose of Command

The LEFT command displays session configuration data in the primary direction from the Session Configuration Data panel.

The LEFT command enables you to view columns of data that are not currently visible on the Log-Browse screen. The data moves to the right a specified number of positions to display information to the left of the first column.

Operand Descriptions

amount

For session monitor, this operand is not allowed. For Log-Browse, this operand specifies the amount to scroll to the left. The possible values for amount are:

Page or P
Scroll left one screen

Half or H
Scroll left half a screen

Csr or C
Scroll left making the column indicated by the cursor the right column

Max or M
Scroll to the leftmost column of the data

number
Scroll left a specific number of columns.

The default is Csr if the cursor is located in the data display area, otherwise the default is Page.

Usage Notes

Consider the following when using the LEFT command:

- When you have issued the OVERRIDE command with the SCROLL keyword specifying a value other than OFF, the LOG-BROWSE panel displays a scroll amount in the upper right area of the panel.
- When you issue the LEFT command, the number of columns scrolled is determined in the following order:
1. The explicit scroll amount specified on either the LEFT command or on the command line when the LEFT PF key is pressed.

2. The scroll amount displayed in the message area at the bottom of the LOG-BROWSE screen as message BNH183I indicating the last scroll amount.

3. The implicit scroll amount specified in the scroll amount area in the upper right area of the panel.

4. The cursor position when the scroll amount area indicates CSR.

5. The cursor position when there is no scroll field or BNH183I message displayed.

- You can change the scroll amount in the scroll amount area by entering any portion of CSR, HALF, OFF, PAGE, or a numeric scroll amount. You do not need to overtype the remaining contents of the field unless you are changing a numeric value to another numeric value.

Examples

Example: Moving in the Primary Direction from Session Configuration Data Panel
To move in the primary direction from the Session Configuration Data panel, enter:

LEFT

OR

L

Example: Issuing Several LEFT Commands from the Log-Browse Screen
LEFT commands are cumulative. For example, entering the commands:

L 10
L 10

Is equivalent to entering:

L 20

Example: Displaying the Leftmost Margin of the Log-Browse Screen
If you have issued several RIGHT or LEFT commands and would like to view the first column, enter:

L MAX
LINEMAP (NLDM)

Syntax

LINEMAP

LINEMAP ncpname station_name

Purpose of Command

The LINEMAP command displays the network control program (NCP) line port address associated with a station attached to an NCP within the same domain.

Operand Descriptions

ncpname

Specifies the name of the NCP to which the station is attached.

station_name

Specifies the name of the PU for which the address is displayed.

Restrictions

The following restrictions apply to the LINEMAP command:

- For stations where a port address is not applicable, the message returned (AAU015I) specifies a port address of N/A.
- You must have NCP Version 3 or a later release to use this command.

Examples

Example: Displaying NCP Line Port Addresses for a Specified PU
To display NCP line port addresses for PU LCL3174B attached to NCP27, enter:

LINEMAP NCP27 LCL3174B
LINES (NCCF; CNME0020)

Syntax

```
LINES
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>A</td>
</tr>
<tr>
<td>INACT</td>
<td>I</td>
</tr>
</tbody>
</table>

Purpose of Command

The LINES command list displays the status of lines and channel links in the domain.

Operand Descriptions

- **ACT**
 Specifies that information is to be displayed about all active, pending, and connectable lines within each major node.

- **ACTONLY**
 Specifies that information is to be displayed about all lines in an active state within each major node. The display does not include lines in pending or connectable states.

- **ALL**
 Specifies that information is to be displayed about all lines (regardless of their status) within each major node. ALL is the default.

- **CONCT**
 Specifies that information is to be displayed about all lines in a CONCT (connectable) state within each major node.

- **INACT**
 Specifies that information is to be displayed about all inactive lines within each major node.

- **INACTONLY**
 Specifies that information is to be displayed about all inactive lines within each major node. Resources in a RESET state are not included in the display.
PENDING
Specifies that information is to be displayed about all pending lines within each major node. A pending state is a transient state to or from the fully active state.

RESET
Specifies that information is to be displayed about all lines in a RESET state within each major node.

passthru
Specifies up to 6 parameters which are appended unchanged to the VTAM DISPLAY command issued by the LINES command. No validation for duplicate or conflicting parameters is performed.

Usage Notes
You should consider the following when using the LINES command:
- If the status parameter (ALL, ACT, and so on) is omitted, and no passthru parameters are specified, ALL is the default. However, if passthru parameters are specified and there is no status parameter specified, NetView does not include a SCOPE= keyword in the generated VTAM DISPLAY command. This enables you to include your own SCOPE= keyword using the passthru parameter.
- The valid values for the status parameter depend on the level of VTAM you are using.

Examples
Example: Displaying the Status of All Active Lines
To display the status of all active lines, enter:

LINES ACT

Response
You receive a response similar to the following:
IST350I DISPLAY TYPE = LINES
IST354I PU T4/5 MAJOR NODE = ISTPUS
IST170I LINES:
IST080I 09C-L ACTIV----I 03F-L ACTIV----I 08F-L ACTIV----I
IST231I CA MAJOR NODE = H21C10
IST170I LINES:
IST080I H21CC94 ACTIV----E
LINESTAT (NCCF)

Syntax

```plaintext
LINESTAT
```

```
LINESTAT ID=resname,
LINE=netname,
PORT=portnumber,
FULL
HALF
NOSNBU
SNBU
SSL
```

Purpose of Command

The LINESTAT command controls a specified 3710 Network Controller.

Operand Descriptions

ID=resname

Is the network name of the 3710 to which the line is attached.

LINE=netname

Is the network name of the line for which you want to change line status.

PORT=portnumber

Is the 3710 port number of the line for which you want to display or change line status. The valid port numbers are 1AA, 1BB, 1CC, 1DD, and so on, up to and including 16AA and 16BB.

FULL

Sets the line attached to the port to full speed.

HALF

Sets the line attached to the port to half speed.

NOSNBU

Specifies that the line or port is to be changed from a switched backup line to a normal line.

SNBU

Specifies that the line or port is to be changed to a switched network backup line.

SSL

Is used to notify a 3710 when you are reactivating a specific secondary line.

Restrictions

The following restrictions apply to the LINESTAT command:

- With the LINESTAT command, you **cannot** set lines using start-stop transmission or X.25 protocols to half speed or to switched network backup mode.
- For addresses 1 through 15, ports AA and DD are valid. For address 16, only ports AA and BB are valid.
Examples

Example: Changing a Specified Line on a Specified Device to Full Speed
To change LINE1 on device NY3710 to full speed, enter:
LINESTAT ID=NY3710,LINE=LINE1,FULL

Example: Changing a Specified Port to a Switched Network-Backup Line
To change the RAL3710 port 8DD to a switched network-backup line, enter:
LINESTAT ID=RAL3710,PORT=8DD,SNBU

Example: Changing a Specified Line on a Specified Device to Half Speed
To change line L45NYC, which is connected to NY3710T, to half speed, enter:
LINESTAT ID=NY3710T,LINE=L45NYC,HALF
LINKDATA (NCCF)

Syntax

LINKDATA

\[\text{LINKDATA SP=spname} \quad \text{NETID=local_network} \quad \text{APPL=applname} \]

\[\text{LINE=line_name} \quad \text{RESOURCE=resname} \quad \text{ENTRYLCC=entryname} \quad \text{EXITLCC=exitname} \quad \text{UN=using_node} \quad \text{RD=remote_device} \]

Purpose of Command

The LINKDATA command requests a service point to return device data for a given link or link segment.

You can use the ENTRYLCC and EXITLCC operands to reduce the data received. You can issue this command from a command list to help automate problem determination and error recovery. If you issue the LINKDATA command from a command list, the NetView program returns the resulting data to the command list for its use. If you issue LINKDATA from a command line, the results are displayed on your terminal on one or more LINKDATA REPLY panels.

If the LINKDATA command is invoked from a command list, the operator’s low-priority command queue is serviced after the command has completed. To prevent commands from remaining in an outstanding status, implement a time-out value.

For more information, see the COSTIME operand of the DEFAULTS command.

Alternatively, you can periodically issue the DISPCMD command to display outstanding COS commands and then issue the CANCMD command for each COS command that needs to be canceled.

For information about screens and messages that this command generates, enter:

\text{HELP SPCS}

Sample command lists are provided with the NetView program to simplify the specification of the parameters for this command. These command lists are described in the Tivoli NetView for z/OS Application Programmer's Guide.

Operand Descriptions

\text{SP=spname}

Specifies the name of the service point to run the command.

\text{NETID=network_id}

Specifies the network identifier of the network in which the service point is located. If there is another node or logical unit in any connected network with...
the same name as the service point you specified on the SP operand,
communication is allowed only if the service point is located.

If you specify NETID=*, the RUNCMD command processor looks for the target
service point on any network. If you omit the NETID parameter, the RUNCMD
command processor looks for the target service point on the local network.

The network_id must be a 1–8 character value using only the EBCDIC
characters 0–9 and A–Z. At least one of the characters must be alphabetic.

APPL=applname
Specifies the name of the link connection subsystem manager (LCSM) to run
the command.

LINE=line_name
Identifies the line name of the link connection.

RESOURCE=resname
Identifies the name of the link connection component within a link connection.

ENTRYLCC=entryname
Identifies the name of the first (entry) link connection component of a link
connection.

UN=using_node
Identifies the name of the primary link station for an unbalanced mode link or
either node that contains the link station of a balanced mode link.

EXITLCC=exitname
Identifies the name of the last (exit) link connection component of a link
connection.

RD=remote_device
Identifies the name of the secondary (adjacent) link station for an unbalanced
mode link or the other node containing a link station of a balanced mode link.

Restrictions
Do not use the WAIT function with the service point commands. Use the NetView
automation table to trap messages generated from the COS commands.

Examples

**Example: Sending a LINKDATA Command to a Specified Service
Point to Retrieve Data from a Specified Line**
To send a LINKDATA command to service point NMWS1 to retrieve data on line
LIN3, enter:

```
LINKDATA SP=NMWS1 APPL=APPL07 LINE=LIN3
```

APPL07 is the link connection subsystem manager (LCSM) that runs the command.
LINKPD (NCCF)

Syntax

\[
\text{LINKPD} \quad \text{SP}=} \text{spname} \quad \text{NETID=} \text{local_network} \quad \text{APPL=} \text{applname} \\
\quad \text{NETID=} \text{network_id} \\
\quad \text{LINE=} \text{line_name} \\
\quad \text{ENTRYLCC=} \text{entryname} \\
\quad \text{EXITLCC=} \text{exitname} \\
\quad \text{RESOURCE=} \text{resname} \\
\quad \text{UN=} \text{using_node} \\
\quad \text{RD=} \text{remote_device}
\]

Purpose of Command

The LINKPD command requests a service point to do problem determination on a given link or link segment.

You can use the ENTRYLCC and EXITLCC operands to reduce the data received. You can issue this command from a command list to help automate problem determination and error recovery. If you issue the LINKPD command from a command list, the NetView program returns the resulting data to the command list and to your terminal as a message or messages. If the LINKPD command is invoked from a command list, the operator’s low-priority command queue is serviced after the command has completed. To prevent commands from remaining in an outstanding status, implement a time-out value.

For more information, see the COSTIME operand of the DEFAULTS command.

Alternatively, you can periodically issue the DISPCMD command to display outstanding COS commands and then issue the CANCMD command for each COS command that needs to be canceled.

For information about screens and messages that this command generates, enter:

HELP SPCS

Sample command lists are provided with the NetView program to simplify the specification of the parameters for this command. These command lists are described in the [Tivoli NetView for z/OS Application Programmer’s Guide](#).

Operand Descriptions

- **SP=spname**
 Specifies the name of the service point to run the command.

- **NETID=network_id**
 Specifies the network identifier of the network in which the service point is located. If there is another node or logical unit in any connected network with the same name as the service point you specified on the SP operand, communication is allowed only if the service point is located.
If you specify NETID=*, the RUNCMD command processor looks for the target service point on any network. If you omit the NETID parameter, the RUNCMD command processor looks for the target service point on the local network.

The network_id must be a 1–8 character value using only the EBCDIC characters 0–9 and A–Z. At least one of the characters must be alphabetic.

APPL=applname
Specifies the name of the line connection subsystem manager (LCSM) to run the command.

LINE=line_name
Identifies the line name of the link connection.

RESOURCE=resname
Identifies the name of link connection component within a link connection.

ENTRYLCC=entryname
Identifies the name of the first (entry) link connection component of a link connection.

UN=using_node
Identifies the name of the primary link station for an unbalanced mode link or either node that contains the link station of a balanced mode link.

EXITLCC=exitname
Identifies the name of the last (exit) link connection component of a link connection.

RD=remote_device
Identifies the name of the secondary (adjacent) link station for an unbalanced mode link or the other node containing a link station of a balanced mode link.

Restrictions
Do not use the WAIT function with the service point commands. Use the NetView automation table to trap messages generated from the COS commands. Five LINKPD messages (DSI533I, DSI534I, DSI535I, DSI536I, and DSI582I) are set to values you can use in the form of control and parameter variables.

Examples

Example: Sending a LINKPD Command to a Service Point
To send a LINKPD command to service point (SP) NMWS1 to do a problem analysis on line LIN3, enter:

```
LINKPD SP=NMWS1 APPL=APPL07 LINE=LIN3
```

APPL07 is the link connection subsystem manager that runs the command.
LINKTEST (NCCF)

Syntax

```
LINKTEST
```

```
SP=spname
```

```
APPL=applname
```

```
NETID=local_network
```

```
NETID=network_id
```

```
LINE=line_name
```

```
RESOURCE=resname
```

```
ENTRYLCC=entryname
```

```
EXITLCC=exitname
```

```
UN=using_node
```

```
RD=remote_device
```

```
SELFcnt=number_of_reps
```

Purpose of Command

The LINKTEST command requests a service point to test a given link or link segment.

You can use the ENTRYLCC and EXITLCC operands to reduce the data received. You can issue this command from a command list to help automate problem determination and error recovery. If you issue the LINKTEST command from a command list, the NetView program returns the resulting data to the command list for its use. If you issue LINKTEST from a command line, the results are displayed at your terminal on one or more LINKTEST REPLY panels.

If the LINKTEST command is invoked from a command list, the operator’s low-priority command queue is serviced after the command has completed. To prevent commands from remaining in an outstanding status, implement a time-out value.

For more information see the COSTIME operand of the DEFAULTS command.

Alternatively, you can periodically issue the DISPCMD command to display outstanding COS commands and then issue the CANCMD command for each COS command that needs to be canceled.

For information about screens and messages that this command generates, enter:
```
HELP SPCS
```

Sample command lists are provided with the NetView program to simplify the specification of the parameters for this command. These command lists are described in the Tivoli NetView for z/OS Application Programmer’s Guide.

Operand Descriptions

- **SP=spname**
 Specifies the name of the service point to run the command.
NETID=network_id
Specifies the network identifier of the network in which the service point is located. If there is another node or logical unit in any connected network with the same name as the service point you specified on the SP operand, communication is allowed only if the service point is located.

If you specify NETID=*, the RUNCMD command processor looks for the target service point on any network. If you omit the NETID parameter, the RUNCMD command processor looks for the target service point on the local network.

The network_id must be a 1–8 character value using only the EBCDIC characters 0–9 and A–Z. At least one of the characters must be alphabetic.

APPL=applname
Specifies the name of the link connection subsystem manager (LCSM) to run the command.

LINE=line_name
Identifies the line name of the link connection.

RESOURCE=resname
Identifies the name of the link connection component within a link connection.

ENTRYLCC=entryname
Identifies the name of the first (entry) link connection component of a link connection.

UN=using_node
Identifies the name of the primary link station for an unbalanced mode link or either node that contains the link station of a balanced mode link.

EXITLCC=exitname
Identifies the name of the last (exit) link connection component of a link connection.

RD=remote_device
Identifies the name of the secondary (adjacent) link station for an unbalanced mode link or the other node containing a link station of a balanced mode link.

SELFCNT=number_of_reps
Specifies the number of self test repetitions to be run. The range is 1–255. The default is 1.

Restrictions
Do not use the WAIT function with the service point commands. Use the NetView automation table to trap messages generated from the COS commands.

Examples

Example: Sending a LINKTEST Command to a Specified Service Point to Test a Specified Line
To send a LINKTEST command to service point NMWS1 to perform a test on line LIN3, enter:

```
LINKTEST SP=NMWS1 APPL=APPL07 LINE=LIN3
```

APPL07 is the link connection subsystem manager that runs the command.
LIST (NCCF)

Syntax

NCCF LIST
ListOp:

Chapter 2. NetView Commands and Command Descriptions 489
Purpose of Command

The NCCF LIST command gives information about your NetView session, including the current primary and backup focal points.

Operand Descriptions

ASSIGN
Lists message assignments or operators assigned to groups.

AUTH
Lists unsolicited and authorized message assignments.

COPY
Lists solicited message assignments.

GROUP
Lists the operators assigned to all groups defined by the ASSIGN command.

OP=operid | ALL
Specifies the operator ID of an operator for which an assignment was made. ALL is the default.
You can use this keyword only with ASSIGN=AUTH, ASSIGN=COPY, and ASSIGN=GROUP. This keyword causes LIST ASSIGN to list only the assignments that contain the indicated operator ID. Groups are not resolved in listing message assignments (LIST ASSIGN=AUTH or LIST ASSIGN=COPY). If the operator specified on the OP operand is assigned to a group and that group is assigned to a msgid, that msgid is not included in a list of message assignments. For example, if you enter LIST ASSIGN=AUTH, OP=OPER1, you receive a list of the authorized message assignments that contain OPER1.

You can designate sets of operators by specifying a prefix followed by a #. The assignments for all the operids that begin with the characters preceding the # are displayed. For example, if you enter LIST ASSIGN=COPY, OP=OPER#, you receive a list of the COPY assignments for all messages assigned to operators whose operids begin with OPER.

MSGID=message_id | ALL

Specifies the message identifier for which an assignment was made. ALL is the default.

You can use this keyword only with ASSIGN=AUTH or ASSIGN=COPY. This keyword causes LIST ASSIGN to list only the assignment for the indicated message_id. If you specify a prefix followed by an asterisk (*), you receive a list of the assignments for the specified character string. The asterisk is not a wildcard because of its use with the ASSIGN command. For example, if you enter LIST ASSIGN=COPY, MSGID=IST*, you receive a list of the copy assignment for IST*, but not for all messages beginning with IST.

You can designate sets of messages by specifying a prefix followed by a #. The assignments for all the message_ids that begin with the characters preceding the # are displayed. For example, if you enter LIST ASSIGN=AUTH, MSGID=IST#, you receive a list of the authorized message assignments for all message_ids that begin with IST.

GROUP=groupid | ALL

Specifies the group identifier for which an assignment was made. ALL is the default. Refer to the ASSIGN command for more information.

You can use this keyword only with ASSIGN=GROUP. This keyword causes LIST ASSIGN=GROUP to list only the group assignment for the specified group.

You can designate sets of groups by specifying a prefix followed by a #. The assignments for all the groupids that begin with the characters preceding the # are displayed.

CLIST=clist_name

Is the name (member name or synonym name) of the command list you want displayed. If this CLIST is loaded in storage by LOADCL, the in-storage CLIST is displayed. If not, NetView reads the CLIST from the DSICLD library. A header line indicates whether the CLIST was found in storage or on disk. If you want to read the CLIST from DSICLD whether or not it is loaded, use BROWSE.

DEFAULTS

Lists the NetView system defaults and the number of dumps taken for storage overlay or control block overwrite conditions (DMPTAKEN).

DSILOG

Displays the status of the network log.
DSITRACE
Displays the status of the trace log.

DST=dstname
Displays the outstanding data services task (DST) requests. The identifier of the operator who made the request, the DST request number, the step sequence number, and an indicator for the last DST request are displayed.

Note: For DSIUDST, the level of security is also displayed.

OP=*|ALL|PPT|operid
Lists operators having DST or timer requests. Valid parameters are:

* Lists DST or timer requests for your own operator ID. If you do not specify OP, this is the default.

ALL Lists all operators having the DST or timer request specified.

operid Lists only requests for the named operator and DST or timer request. You can specify operid even if the operator is not currently logged on.

PPT Lists the primary program operator interface task (PPT) timer requests.

FOCPT
Displays the current status focal points. The FOCALPT QUERY command provides support for all focal point categories including user-defined categories. The FOCALPT QUERY command also displays the backup focal point names.

hcname Is the name of the hardcopy log device whose status you want displayed.

KEY=
Lists PF and PA key definitions.

ALL Lists all the PF and PA key definitions. A message is given for keys that have not yet been set.

PA key Gives you the individual PA key settings. The key can be from 1 to 3.

PF key Gives you the individual PF key settings. The key can be from 1 to 24.

Note: The response to a LIST KEY command is a multiline message. The message ID of the first message in this multiline message is DSI606I.

APPL
Specifies the application for which you want PF or PA key settings listed.

ALL Lists PF/PA key settings for all applications.

applid Lists PF/PA key settings for a specific application. The name must be 1 to 8 alphanumeric characters, and can contain @, # and $. The following NetView applications provide default PF and PA key settings:

- log browse (LBROWSE)
- member browse (MBROWSE)
Other applications using the first parameter on the VIEW command to specify an application name, such as MAINMENU and ACTION command lists, might have PF key settings, which can be displayed. To display default key settings, use \texttt{applid} NETVIEW. To list default keys for VIEW command output panels, use \texttt{applid} VIEW.

If \texttt{applid} is omitted, the default is the current application, or if the current application is neither one of the previous key settings nor an \texttt{applid} specified by DSIPSS, the default is NCCF.

Note: Because keys are arranged in a hierarchy (specific \texttt{applid}, VIEW and NETVIEW), it is useful to know which key definitions exist at the different levels. For this reason, the application for which a given key was set (SET-APPL) and the setting for that key are displayed. VIEW default keys are listed for \texttt{applid} VIEW, application IDs for which the VIEW keyword was specified in the last SET, and for VIEW applications which have been invoked.

\textbf{MEMSTAT=\texttt{*|\texttt{ddname}|\texttt{membername}}}

Displays information about members such as whether it is loaded in storage, storage size of the member, number of times accessed or “hits”, date and time member was loaded, and what task loaded the member.

- \texttt{*} Lists all members indicated by the OP operand.

\texttt{ddname}

Lists all members in the specified DDNAME. Refer to the BROWSE command for a list of valid DDNAMEs.

\texttt{membername}

If the value specified is not a DDNAME, the member will be listed.

\textbf{OP=\texttt{*|ALL|PPT|operid|NONE|\texttt{%}}}

- \texttt{*} Lists all members matching the MEMSTAT value. This is the default.

\texttt{ALL}

Lists all the loaded members.

\texttt{PPT}

Lists the members loaded by the PPT.

\texttt{operid}

Lists the members loaded by the named operator.

\texttt{NONE}

Lists the members not loaded.
% Lists the members not loaded or loaded by the operator processing the
LIST command (used by CLIST CNME1054).

MSG
Lists message assignments.

AUTH
Lists unsolicited and authorized message assignments.

COPY
Lists solicited message assignments.

operator_id
Displays current information for the specified operator. This information
includes:
- The terminal name the operator is using
- The name of the hardcopy log being used
- The profile name being used
- The session status
- Whether the operator is eligible to be the authorized message receiver
- Whether the operator has specific, general, or global control
- Whether the operator has NMC administrator authority
- The default MVS console name
- The view security level being used for the operator
- The domain list
- The active span list

The active span list contains the access level at which the operator started the
span. If OPERSEC=SAFDEF is in effect, the PROFILE field on the display has a
value of N/A. If OPERSEC=SAFDEF was in effect when the operator logged
on but is not currently in effect, the profile field on the display has a value of
NONE.

* An asterisk (*) in place of the operator_name indicates that you want your status
to be displayed. You can also receive this information by specifying two single
quotation marks (""). The information includes:
- Terminal name
- Name of the hardcopy log
- Profile name
- Session status
- Authorized message receiver
- Span of control (specific, general, or global)
- NMC administrator authority
- Default MVS console name
- View security level assigned
- Domain list
- Active span list

When the terminal is the NetView 3270 management console, the TCP/IP
address of the console is also shown.

Your active span list contains the access level at which you started the span. If
OPERSEC=SAFDEF is in effect, the PROFILE field on the display has a value
of N/A. If OPERSEC=SAFDEF was in effect when you logged on but is not
currently in effect, the profile field on the display has a value of NONE.

OVERRIDE=opid
Lists the NetView system defaults, along with any defaults that have been
changed for the specified operator using the OVERRIDE command. If you do not specify opid, the defaults for the operator issuing the LIST command are displayed.

PERSIST
Displays the status of all enabled PIPE PERSIST elements.

PRIORITY
Lists all NetView tasks and their priorities. The NetView priorities can be 0–9, where 0 is the highest priority. The tasks are listed in order of their priority, with the highest priority task listed first.

PROFILE=profile_name
Specifies the name of the profile you want displayed. This option will perform system symbolic substitution on records read from the specified profile member in the DSIPRF data set. The NetView-supplied &DOMAIN symbolic is also included in the substitution process. The substitution is performed prior to record processing. Substitution is always performed on the &DOMAIN symbolic, unless substitution was disabled when NetView was started. For MVS and user-defined system symbolics, substitution is not performed if you are not running on an MVS system, you are running on an MVS system prior to MVS Version 5 Release 2, substitution was disabled when NetView was started, or you have not defined an MVS system symbolic on your MVS system. This option is not available when OPERSEC=SAFDEF is in effect.

RESOURCE=rname
Displays a list of the spans that include the specified resource name from the NetView span table. If the resource name is not defined to any spans, NONE is displayed in place of the list of spans. In this case, the resource can still be valid, and access authority exists if the operator has CTL=GENERAL or CTL=GLOBAL authority. The value of rname cannot contain wildcard characters. An asterisk (*) or question mark (?) is used literally.

ROLL
Displays a list of components to which you can return to continue operation. Use either the ROLL or RESUME command to return to the active component.

SAFOP
Displays operator information stored in the requested segment in RACF or other SAF product. The selected operator does not have to be logged on. The displayed information will not contain passwords.

* Lists the information for the issuing operator.

`opid`
The name of the SAF operator whose USER class segment information is to be listed.

SEGMENT
Displays segment information for any operator by any authorized NetView operator.

BASE
Displays the SAF user RACF/base segment information.

LANGUAGE
Displays the SAF user Language segment information.

NETVIEW
Displays the SAF user NetView segment information.
OMVS Displays the SAF user OMVS segment information.

SECOPTS Displays a list of the security options, their current values, the date and time of the last update, and either the last operator ID to update the option or INITIALIZATION if the option has not been dynamically changed using the NetView REFRESH or DEFAULTS commands.

SPAN=span_name Displays the resources and views from the NetView span table. If a resource or view name contains an asterisk (X'5C'), question mark (X'6F'), blank (X'40'), comma (X'6B'), or quotation mark (X'7F'), it is preceded by the escape character (\).

STATUS Displays the status of the specified operand. Valid operands are:

AMLUSESS Displays all VTAM-LU sessions.

CNMSESS Displays all active communication network management (CNM) data sessions with your NetView program and the status of these sessions.

NNT Displays all the NNT (NetView-NetView task) sessions.

OPS Displays all the operator terminals known in this domain.

OPT Displays all the active optional tasks.

PROFILES Displays the list of profiles known in this domain. This option will perform system symbolic substitution on records read from the DSIOPF member in the DSIPARM data set. The NetView-supplied &DOMAIN symbolic is also included in the substitution process. The substitution is performed prior to record processing. Substitution is always performed on the &DOMAIN symbolic, unless substitution was disabled when NetView was started. For MVS and user-defined system symbolics, substitution is not performed if you are not running on an MVS system, you are running on an MVS system prior to MVS Version 5 Release 2, substitution was disabled when NetView was started, or you have not defined an MVS system symbolic on your MVS system. This option is not available when OPERSEC=SAFDEF is in effect.

SPANS Displays a list of all the spans defined in the NetView span table.

TASKS Displays all the tasks, except virtual OSTs (VOSTs), in your NetView system.

EXTEND=0|1 When EXTEND=1 is specified, the following are added:

MOD: This is followed by the name of the module that runs the task.

VITAL: This is followed by YES or NO, indicating whether the task
is reinstated by NetView automatically if it fails. Refer to the NCCF STOP command for more information.

Extend=0 is the default and leaves out these items.

WLM=NO|YES

When WLM=YES is specified, each NetView subtask list entry includes either of the two following entries, starting in column 95:

SvcCls: Not Available

or

SvcCls: WLMserviceClassName

where **WLMserviceClassName** is the WLM service class assigned to the listed NetView subtask.

The 'Not Available' string appears for inactive tasks or tasks that are not yet assigned a WLM service class. The 'Not Available' string also appears if NetView is not enabled for WLM services through the NetView WLM style statement.

WLM=NO is the default. If this default is used, the columns are left blank.

TSOSERV

Displays all active TSO servers.

VOST

Displays all virtual OSTs (VOSTs) in your NetView system.

TASK=taskname

The name of the task whose status you want displayed. To determine the name of an optional task, use the LIST STATUS=OPT command. For operator tasks, use the LIST STATUS=OPS command.

For task DSIUDST, the level of security is displayed.

terminal_name

Is the name of the terminal whose status you want displayed.

TIMER

Displays timer requests.

ALL

Displays all the pending timer requests, depending on the OP operand. If you do not specify the OP operand, all pending non-PPT timer elements that you entered are displayed.

reqname

Displays the status of the named timer request. The **reqname** is the optional name specified on the ID operand of the AT, AFTER, or EVERY command or generated by the system.

TRACE

Displays the options currently in effect for the TRACE command.

VIEW=vname

Displays a list of the spans that include the specified view name from the NetView span table. If the view name is not defined to span, NONE is displayed in place of the list of spans. In this case, the view might still be valid, and access authority exists if the operator has CTL=GENERAL or
CTL=GLOBAL authority. The value of vname cannot contain wildcard characters. An asterisk (*) or question mark (?) is used literally.

Usage Notes

The following usage notes apply to the LIST (NCCF) command:

- When listing a dynamic resource, such as the message routing tables created by the ASSIGN command (AUTH, COPY, or GROUP), duplicate entries might exist. This condition can occur when considerable ASSIGN command activity or routing activity is taking place that prevents old entries from being deleted. The last duplicate entry is the most recent entry added. If you encounter this problem, rerun the LIST command.

- If you enter a LIST command using a task name that is being used by another command, such as the SWITCH command, the message No further status available is displayed. To obtain status, reissue the LIST command after the other command completes.

- For hardcopy log printing, if a status of DEVICE DORMANT is given, this means that the task exists, but the hardcopy terminal is not connected.

- Timer requests are displayed in the order that they are scheduled to next be considered to run. A CHRON timer can be deferred by calendar or other conditions. The LIST TIMER runs asynchronously and requires a CORRWAIT stage if used in a PIPE.

- If you are listing information about a domain list, an A indicates an active cross-domain session, and an I indicates that no cross-domain session currently exists, but that you can start one.

- VOST task names, which are names of the format DSI#nnnn, cannot be specified for taskname. The status of VOSTs can be obtained using LIST STATUS=VOST.

- You must use RACF Version 2 Release 1 with PTF UW90113, or later releases, or an SAF product with equivalent capabilities to issue the SAFOP parameter. Ensure that the SAF product is running and the security classes used by NetView (such as the NETCMDS class) are active. For information about how to set up these types of security, refer to the Tivoli NetView for z/OS Security Reference.

- For cleaner, more user-friendly output, you can also use the LISTWLM command instead of the LIST STATUS=TASKS,WLM=YES command.

- You can always list the details of the RACF/base segment of your own user profile. To list details of the RACF/base segment of another user’s profile, one of the following conditions must be true:
 - You are the owner of the user’s profile.
 - You have the SPECIAL attribute.
 - The user’s profile is within the scope of a group in which you have the group-SPECIAL attribute.
 - You have the AUDITOR attribute.
 - The user’s profile is within the scope of a group in which you have the group-AUDITOR attribute.

To list information from other segments of a user profile, including your own, one of the following conditions must be true:

- You must have the SPECIAL or AUDITOR attribute
- You have at least READ authority for the desired field within the segment through field-level access checking
Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The operation was successful.</td>
</tr>
<tr>
<td>2</td>
<td>SAF segment data was not found or is not defined.</td>
</tr>
</tbody>
</table>
| 4 | One of the following occurred:
| | • Syntax error
| | • Unknown name specified
| | • Not authorized to issue command |
| 8 | An internal error occurred. |

Examples

Example: Displaying Your SAF NETVIEW Segment Data
To display your NETVIEW segment data, enter:

```
LIST SAFOP=*,SEGMENT=NETVIEW
```

Response

The response is similar to the following example:

```
* NTV8E LIST SAFOP=*,SEGMENT=NETVIEW
' NTV8E
BNH1761 Display of OPER1 SAF NETVIEW segment data.  
   IC: LOGPROF1  
   CONSNAME:  
   CTL: GLOBAL  
   MSGRECVR: NO  
   OPCLASS: 2  
   DOMAINS: NTV9E NTV8E NTV7E NTV6E NTV5E NTV4E NTV3E NTV2E NTV1E B01NV CNM99 CNM02 CNM01  
   NGMFADMN: NO  
   NGMFVSPN:  
```

Example: Displaying SAF BASE Segment Data
To display SAF BASE segment data for an operator named OPER2, enter:

```
LIST SAFOP=OPER2
```

Response

The response is similar to the following example:

```
* NTV8E LIST SAFOP=OPER2
' NTV8E
BNH1771 Display of OPER2 SAF BASE segment data.  
   NAME:  
   OWNER: IBMUSER  
   Created: 99.088  
   DFLTGRP: SYS1  
   PW changed: 99.088  
   PW INTERVAL:  
   Attributes:  
   REVOKE:  
   RESUME:  
   Last Access: 99.088/11:09:31  
   CLAUTH:  
   DATA:  
   MODEL:  
   Access days: ANYDAY  
   Access time: ANYTIME  
```
Example: Displaying the PF Key Settings for All Applications
To display the PF key setting for all applications, enter:
LIST KEY=ALL APPL=ALL (or DISP FK ALL)

Example: Displaying the Status of the Network Log
To display the status of the network log, enter:
LIST DSILOG

Response

The response is similar to the following example:
LIST DSILOG
TYPE: OPT TASKID: DSILOG TASKNAME: DSILOG STATUS: ACTIVE
MEMBER: DSILOGBK PRIMARY:DSILOGP STATUS:
ACTIVE SECONDARY:DSILOGS STATUS:INACTIVE
AUTOFLIP: YES RESUME: NO
LOADMOD: DSIIZDST
Task Serial: 19
Messages Pending: 0 Held: 0
WLM Service Class: NETVIEW
END OF STATUS DISPLAY

This example shows that the task name is DSILOG and it is active. The primary data set (DSILOGP) is active while the secondary data set (DSILOGS) is inactive.

Example: Displaying a Specified Command List
To display a specified command list, for example WTORC, enter:
LIST CLIST=WTORC

Response

The response is similar to the following example:
LIST CLIST=WTORC
COMMAND LIST WTORC DEFINITION FROM DISK:
WTORC CLIST
&CONTROL ERR
&AREAID = '?'
WTO 'AREAID = &AREAID'
&WRITE RC FROM WTO = &RETCODE
&EXIT

Example: Displaying the Status of a Specified Operator
To display the status of a specified operator where OPERSEC=SAFDEF, enter:
LIST OPER1
Response

The response is similar to the following example:

- D12NV LIST OPER1
- D12NV STATION: OPER1 TERM: D12A702
- D12NV HCOPY: NOT ACTIVE PROFILE: N/A
- D12NV STATUS: ACTIVE IDLE MINUTES: 0
- D12NV ATTENDED: YES CURRENT COMMAND: LIST
- D12NV AUTHRCVR: NO CONTROL: GLOBAL
- D12NV NGMFADMN: NO DEFAULT MVS CONSOLE NAME: NONE
- D12NV NGMFVSPN: NNNN (NO SPAN CHECKING ON NMC VIEWS)
- D12NV NGMFCMDS: YES AUTOTASK: NO
- D12NV IP ADDRESS: N/A
- D12NV OP CLASS LIST: NONE
- D12NV DOMAIN LIST: A01NV (I) A02NV (I) A20NV (I) A55NV (I) A57NV (I)
- D12NV A99NV (I) C01NV (I) C02NV (I) C03NV (I) C04NV (I)
- D12NV B10NV (I) B28NV (I) B63NV (I) B90NV (I) D (I)
- D12NV D16 (I) D01NV (I) D12NV (I) D52NV (I)
- D12NV ACTIVE SPAN LIST: NONE
- D12NV Task Serial: 18079
- D12NV Messages Pending: 0 Held: 2
- D12NV WLM Service Class: NETVIEW
- D12NV END OF STATUS DISPLAY

In this example, the follow information was provided:

PROFILE: N/A Indicates that OPERSEC=SAFDEF was in effect at the time the listed operator logged on.

IDLE MINUTES: 0 For attended tasks, this is the time since the most recent operator action. Any operator action will reset this value to zero. Examples of operator action include issuing a command or making a selection on a full screen display. It does not include a command resulting from a previous EVERY command or from message automation.

For unattended tasks, this is the time since the most recent command from any source. Commands from message automation and timers do reset the value.

The time is rounded down to the nearest minute.

ATTENDED: YES Whether commands are received from and messages are routed to some controlling authority. The values are as follows:

- YES The task has a standard VTAM 3270 terminal connection or that the task was started by a START DOMAIN request (NNT).
- YES IP The task is operated from an IP connection to an NMC 3270 console.
- YES CONS The task is operated from an MVS system console.
- YES WEB The task was started by a request from a Web browser.
- YES NMC The task was started by an NMC
client and DEFAULTS
AUTOLGN=YES was in effect.

YES DIST The task was started by a
RMTCMD request from another
NetView.

NO None of the above. The task was a
standard autotask.

CURRENT COMMAND: list The verb of the command currently running on the
task, if any. If a synonym was used to initiate the
command, then that synonym is listed. The value
is the command as invoked. Commands called
directly by other commands do not change the
value.

AUTOTASK: NO A modifier for the ATTENDED value and shows
whether the task is considered automated. The
values are as follows:

NO The value of ATTENDED is YES or
YES IP.

YES disconnected The value of ATTENDED is YES
NMC, YES DIST, or NO and the
task is eligible for reconnect.

YES None of the above.

IP ADDRESS: N/A The value is an IP address when the task was
started by the NMC 3270 console or by a request
from a Web browser. When from a Web browser,
the value is the address of the Web application
server.

Task Serial: 18079 Every task started by NetView is assigned a serial
number when attached. The serial number is an
integer in the range of 1–4294967296 (4 gigabytes).
If a task is logged off, or stopped and then
restarted, it will be assigned a new serial number.

Messages Pending: 0 Held: 2 The first number is the number of messages (or
commands) that have been sent to the task since it
was last able to receive new messages. The count
does not include messages that have been accepted
by the task and are being processed. The second
number shows how many messages are currently
being held by the task because the messages are
marked as action, or are subject to HOLD(Y) action
by automation or the MSGROUTE command.

WLM Service Class: NetView NetView is the WLM service class assigned to the
listed subtask. This is replaced by ‘Not Available’
for inactive tasks or tasks that are not yet assigned
a WLM service class.

Example: Displaying Your Status
To display the status of your operator ID, enter:

LIST *
Response

The response is similar to the following example:

```
* D12NV  LIST *
- D12NV  STATION: OPER1   TERM: D12A702
- D12NV  HCOPY: NOT ACTIVE  PROFILE: DSIPROFA
- D12NV  STATUS: ACTIVE  IDLE MINUTES: 0
- D12NV  ATTENDED: YES   CURRENT COMMAND: LIST
- D12NV  AUTRCVR: NO     CONTROL: GLOBAL
- D12NV  NGMFADMN: NO    DEFAULT MVS CONSOLE NAME: NONE
- D12NV  NGMFVSPN: NNNN  (NO SPAN CHECKING ON NMC VIEWS)
- D12NV  NGMFCMDS: YES   AUTOTASK: NO
- D12NV  IP ADDRESS: N/A
- D12NV  OP CLASS LIST: NONE
- D12NV  DOMAIN LIST: A01NV (I) A02NV (I) A20NV (I) A55NV (I) A57NV (I)
  - D12NV  A99NV (I) C01NV (I) C02NV (I) C03NV (I) C04NV (I)
  - D12NV  B10NV (I) B28NV (I) B63NV (I) B99NV (I) D (I)
  - D12NV  D16 (I) D01NV (I) D12NV (I) D52NV (I)
- D12NV  ACTIVE SPAN LIST: NONE
- D12NV  Task Serial: 18079
- D12NV  Messages Pending: 0 Held: 0
- D12NV  WLM Service Class: Not Available
- D12NV  END OF STATUS DISPLAY
```

Example: Displaying a Specified Profile

To display the profile named DSIPROFA, enter:

```
LIST PROFILE=DSIPROFA
```

Response

The response is similar to the following example:

```
DSIPROFA PROFILE IC=LOGPROF1
  AUTH MSGRECVR=NO,CTL=GLOBAL
END
```

The response includes comment statements in the profile.

Example: Displaying a Specified Timer Request

If you have defined a timer with an ID of RCF, you can display it by entering:

```
LIST TIMER=RCF
```

Response

The response is similar to the following example:

```
DISPLAY OF OUTSTANDING TIMER REQUESTS
TYPE: EVERY TIME: 08/04/98 14:00:00 INTERVAL: 00:02:00 EVERYCON: YES
COMMAND: LIST SECOPTS
  OP: OPER1 (OPER1 ) ID: RCF SAVED TIMEFMSG: YES LOCAL
1 TIMER ELEMENT(S) FOUND FOR OPER1
END OF DISPLAY
```

Note: The operator or group name following the OP: label is where the timed command will execute (for GROUP, as the first logged on operator in that group). The operator name in parentheses indicates the origin of the timer command.

Example: Displaying Timer Requests from an Operator

To display timer requests from operator OPER1, enter:

```
LIST TIMER=ALL OP=OPER1
```
Response

If you have defined timers, you will receive a response similar to the previous example. If no timers are in effect, you will receive a response similar to the following:

```
DISPLAY OF OUTSTANDING TIMER REQUESTS
0 TIMER ELEMENT(S) FOUND FOR OPER1
END OF DISPLAY
```

Example: Displaying Virtual OSTs (VOSTs)

To display the VOSTs on your NetView system, enter:

```
LIST STATUS=VOST
```

Response

You will receive a response similar to the following:

```
TASKNAME: DSI#0603 OWNER: OPER2 ATTACHN: NLDI STATUS: ACTIVE
```

Example: Displaying the PF1 Key Setting in the Hardware Monitor

To display the current hardware monitor key settings, enter:

```
LIST KEY=PF1 APPL=NPDA
```

Example: Displaying PF10 Settings for All Full-Screen Applications

To display the PF10 key settings for all applications, enter:

```
LIST KEY=PF10 APPL=ALL
```

Example: Displaying the PF Key Settings for All Applications

To display the settings for all keys for all applications, enter:

```
LIST KEY=ALL APPL=ALL
```

Example: Displaying the Current Security Options

To display the current security options, enter:

```
LIST SECOPTS
```

Response

The response is similar to the following example:

```
<table>
<thead>
<tr>
<th>NCCF</th>
<th>* C03NV</th>
<th>LIST SECOPTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>' C03NV</td>
<td></td>
</tr>
<tr>
<td>BNH2291 OPTION</td>
<td>VALUE</td>
<td>LAST UPDATED</td>
</tr>
<tr>
<td>BNH2291 OPERSEC</td>
<td>SAFCHECK</td>
<td>06/19/99 06:37:51</td>
</tr>
<tr>
<td>BNH2291 OPSSPAN</td>
<td>NETV</td>
<td>06/19/99 06:37:51</td>
</tr>
<tr>
<td>BNH2291 CMDAUTH</td>
<td>TABLE</td>
<td>06/19/99 06:37:51</td>
</tr>
<tr>
<td>BNH2291 TBLNAME</td>
<td>DSICAUTH</td>
<td>06/19/99 06:37:51</td>
</tr>
<tr>
<td>BNH2291 AUTHCHK</td>
<td>SOURCEID</td>
<td>06/19/99 06:37:51</td>
</tr>
<tr>
<td>BNH2291 SPANAUTH</td>
<td>TABLE</td>
<td>06/19/99 06:37:51</td>
</tr>
<tr>
<td>BNH2291 SPANCHK</td>
<td>TARGETID</td>
<td>06/19/99 06:37:51</td>
</tr>
<tr>
<td>BNH2291 SPANTBL</td>
<td>MAINSPAN</td>
<td>06/19/99 06:37:51</td>
</tr>
<tr>
<td>BNH2291 CATAUDIT</td>
<td>NONE</td>
<td>06/19/99 06:37:51</td>
</tr>
<tr>
<td>BNH2291 AUTOSEC</td>
<td>CHECK</td>
<td>06/19/99 06:37:51</td>
</tr>
<tr>
<td>BNH2291 RMTSEC</td>
<td>TABLE</td>
<td>06/19/99 06:37:51</td>
</tr>
<tr>
<td>BNH2291 TBLNAME</td>
<td>DSISECUR</td>
<td>06/19/99 06:37:51</td>
</tr>
<tr>
<td>BNH2291 WEBAUTH</td>
<td>CHECK</td>
<td>06/19/99 06:37:51</td>
</tr>
<tr>
<td>BNH2301 END OF LIST SECOPTS INFORMATION</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
The LAST UPDATED field shows when each security option was changed to its current setting. The UPDATE ID shows either INITIALIZATION or the operator ID that changed the setting after initialization.

Note the following conditions in the previous example:

- Operator passwords are checked through SAF.
- Span of control authorization is provided by a NetView span table. The table is named MAINSPAN.
- Commands and command list names are verified using a command authorization table DSICAUTH. Command authorization is checked against SOURCEID.
- By default, no audit records are written for the active command authorization table.
- Commands routed to operators from the automation table are verified.
- Cross domain RMTCMD requests are verified using the DSISECUR table.

Example: Displaying Span of Control Information

To display the span of control information for SPAN1, enter:

```
LIST SPAN=SPAN1
```

Response

The response is similar to the following example:

```
SPAN NAME: SPAN1

SPECIFIC RESOURCES: A01CDRSC, A01APPLS, A01CDRM, A01LOCAL, A01PATH,
                    A02CDRSC, A02APPLS, A02CDRM

GENERIC RESOURCES: A01NET* (OMIT: A01NETA.*, A01NETB.*), A01SWNET.*

SPECIFIC VIEWS: A01_Network, A02_RESOURCES

GENERIC VIEWS: NONE
```

Example: Displaying Resource Span of Control Information

To display the span of control information for resource A01CDRSC, enter:

```
LIST RESOURCE=A01CDRSC
```

Response

The response is similar to the following example:

```
A01CDRSC SPECIFICALLY DEFINED TO SPANS:
        SPAN1, SPAN9, SPAN10

A01CDRSC GENERICALLY DEFINED TO SPANS:
        SPAN7
```

Example: Displaying the Current Defaults

To display the current defaults, enter:

```
LIST DEFAULTS
```

For an explanation of the various defaults, see the DEFAULTS command. Note that some values, such as SENDMSG, SCRFMT, and SCROLL, are not valid on the DEFAULTS command.
Example: Displaying Members in Storage
To display members in storage and members that have a non-zero hit count, enter:
LIST MEMSTAT=*

Response
The response is similar to the following example:

<table>
<thead>
<tr>
<th>DDNAME</th>
<th>MEMNAME</th>
<th>HITS</th>
<th>LOADTASK</th>
<th>STORAGE</th>
<th>DATE</th>
<th>TIME</th>
<th>DP</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNMNL1</td>
<td>MEMABC</td>
<td>105.96</td>
<td>DSIMEMST</td>
<td>28K</td>
<td>11/22/97</td>
<td>15:43:07</td>
<td></td>
</tr>
<tr>
<td>CNMNL1</td>
<td>MEMXYZ</td>
<td>10.83</td>
<td>DSICLD</td>
<td>CLIST21</td>
<td>11/23/97</td>
<td>12:24:18</td>
<td>*</td>
</tr>
<tr>
<td>DSICLD</td>
<td>CLIST21</td>
<td>1.12</td>
<td>OPER1</td>
<td>8K</td>
<td>11/23/97</td>
<td>12:22:01</td>
<td></td>
</tr>
<tr>
<td>DSICLD</td>
<td>CLIST7</td>
<td>0.00</td>
<td>OPER1</td>
<td>4K</td>
<td>11/23/97</td>
<td>12:22:01</td>
<td></td>
</tr>
</tbody>
</table>

Example: Displaying Active TSO Servers
To display all active TSO servers, enter:
LIST STATUS=TSOSERV

Response
The response is similar to the following example:

<table>
<thead>
<tr>
<th>OPID</th>
<th>TSOSERV</th>
<th>MEMBER</th>
<th>PPI</th>
<th>NAME</th>
<th>STATUS</th>
<th>STARTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>USER1</td>
<td>CNMSJTSO</td>
<td>$8E00003</td>
<td>ACTIVE</td>
<td>OPER2</td>
<td></td>
</tr>
<tr>
<td>OPER1</td>
<td>USER3</td>
<td>CNMSJTSO</td>
<td>$8E00005</td>
<td>ACTIVE</td>
<td>OPER2</td>
<td></td>
</tr>
<tr>
<td>OPER2</td>
<td>USER2</td>
<td>CNMSJTSO</td>
<td>$8E00004</td>
<td>ACTIVE</td>
<td>OPER2</td>
<td></td>
</tr>
</tbody>
</table>

Example: Displaying the Status of All Enabled PIPE PERSIST Elements
To display the status of all enabled PIPE PERSIST elements, enter:
LIST PERSIST

Response
The response is similar to the following example:

<table>
<thead>
<tr>
<th>Persist</th>
<th>LRC Serial</th>
<th>Action</th>
<th>Mins Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>1STT1st</td>
<td>794</td>
<td>R</td>
<td>20</td>
</tr>
<tr>
<td>PIPE</td>
<td>735</td>
<td>C</td>
<td>7</td>
</tr>
<tr>
<td>CASESIX</td>
<td>743</td>
<td>C</td>
<td>7</td>
</tr>
<tr>
<td>2NDT1st</td>
<td>776</td>
<td>D</td>
<td>8</td>
</tr>
</tbody>
</table>

In this example, the follow information was provided:

Persist Indicates the name of the PIPE enabling the PERSIST element.
LRC Serial Long running command serial number.
Action Indicates the action specified on the PERSIST stage specification:
 • C - COMMAND
 • D - DISPLAY
 • R - ROUTE
Mins Left Indicates the time left (in minutes) until the PERSIST element times out.
LIST (NLDM)

Syntax

```
NLDM LIST
```

ActiveAllHistory:

```
ACTIVE
ALL
HISTORY
LU local_net
PLU
PU
SLU
SSCP
CP
LU
NET netid
RESNAME rname
```

Routes:

```
ER
VR
FROM origin_pu
* TO dest_pu
NET netid
```

Purpose of Command

The NLDM LIST command displays a list of resources (network addressable unit names), domain names, active explicit routes or active virtual routes for which session data has been collected, and lists all DASD session group names that exist in the session monitor data set.

This command displays the following panels:
- Resource Name List
- Domain List
- Active Explicit Route List
- Active Virtual Route List

These session monitor panels provide lists of resource names, domain names, or active explicit and virtual routes known to the session monitor. The resource names displayed are determined by the specific LIST command option you select.
Operand Descriptions

ACTIVE
Displays active resources only. ACTIVE is the default.

ALL
Displays all resources.

HISTORY
Displays the resources which this NetView program previously had knowledge. This NetView program no longer lists these resources as ACTIVE.

LU
Displays logical unit names. LU is the default.

NET
Is a keyword denoting the following operands as a network name. NET is optional.

`netid`
Specifies the network name for which data is to be listed. The default is the local network.

PLU
Displays primary logical units for LU-LU sessions only.

PU
Displays physical units only.

SLU
Displays secondary logical units for LU-LU sessions only.

CP
Displays CPs and SSCPs.

SSCP
Displays CPs and SSCPs.

RESNAME
Is a keyword denoting the following operand as a resource name.

`rname`
Displays all resources named `rname`. You can use wildcard characters when specifying `rname`.

DGRP
Lists all DASD group names for which sessions have been recorded to the session monitor data set.

DOMAIN
Lists all domains defined to this NetView system.

ER
Lists active explicit routes as defined by an origin subarea PU name and a destination subarea PU name.

VR
Lists active virtual routes as defined by an origin subarea PU name and a destination subarea PU name.

FROM
Identifies the operand that follows as the originating subarea PU name. This operand is optional.

`origin_pu`
Is the originating subarea PU name of the route to be displayed.

TO
Identifies the operand that follows as the destination subarea PU name. This operand is optional.

`dest_pu`
Is the destination subarea PU name of the route to be displayed.

* Lists the origination point or destination point of active PUs.

Restrictions
The following restrictions apply to the LIST (NLDM) command:
• The Domain List panel lists other domains defined to the local session monitor. The table also shows the status of conversations that the local session monitor has started with each of these other domains. Information is available only if the two session monitors have started the session and have exchanged local-domain information. If the conversation is shown to be inactive or pending activation, the session monitor can display N/A (not applicable) in certain fields of the panel.

• For LIST DGRP, define the DASD group names in the KEEPMEM initialization member through the DGROUP parameter of the KCLASS statements.

Examples

Example: Listing Active PUs That Have Session Data
To list active PUs for which session data exists, enter:
LIST PU

Example: Listing All Active ERs That Originate in a Specified PU
To list all the active ERs that originate in A01MPU, enter:
LIST ER FROM A01MPU TO *

Example: Listing All LUs in a Specified Network
To list all LUs in network NET1, enter:
LIST ALL LU NET1

Example: Listing All PLUs with Specified Characters in Their Names
To list all PLUs beginning with A and having MN in positions 4 and 5, enter:
LIST PLU RESNAME A??MN

Example: Listing All Active LUs Beginning with Specified Characters
To list all active LUs beginning with CNM, enter:
LIST ACTIVE LU RESNAME CNM*

Example: Listing All Active SLUs in the Local Network
To list all active SLUs in the local network, enter:
LIST ACTIVE SLU

Example: Listing a Specified SLU
To list only SLU CNM01, enter:
LIST SLU RESNAME CNM01

Example: Listing All Active ERs Originating in a Specified PU
To list all active ERs originating in PU1, enter:
LIST ER FROM PU1 TO *

Example: Listing All DGROUP Names in the Session Monitor Data Set
To list all DGROUP names in the session monitor data set, enter:
LIST DGRP

Example: Listing All Active CPs and SSCP
To list all active CPs and SSCP of which this NetView program has knowledge, enter:
LIST CP
OR
LIST SSCP
LISTA (NCCF)

Syntax

\[
\text{LISTA} \quad \text{ddname} \quad \text{memname}
\]

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>LISTA</td>
<td>LISTALC</td>
</tr>
</tbody>
</table>

Purpose of Command

The LISTA command displays the data set status, disposition, \(\text{ddname} \), and data set names of the files currently allocated to the NetView program. It can also indicate which data sets contain a specific member.

The LISTA command lists the files allocated to the NetView program. This includes files allocated through JCL and those allocated dynamically by the NetView ALLOCATE command. In addition, (OPER-DS) indicates an operator data set designated by the OVERRIDE command. Also, (INSTORE-COMMON) indicates a member loaded by the INSTORE stage.

Operand Descriptions

\(\text{ddname} \)

Is the name of the file you want to display. If you omit \(\text{ddname} \), all allocated files are displayed.

\(\text{memname} \)

Is the name of the member for which you want to search. The line for each partitioned data set will indicate whether it contains this member.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The LISTA command completed successfully.</td>
</tr>
<tr>
<td>8</td>
<td>An error occurred. Refer to the accompanying error message.</td>
</tr>
</tbody>
</table>

Examples

Example: Listing a File with a Specified Ddname

To list the file with a \(\text{ddname} \) of AAUVSPL, enter:

\[
\text{LISTA AAUVSPL}
\]

Response

You receive a response similar to the following:
Example: Listing a File with a Specified Ddname and Member
The following example illustrates how to find the data set in DSIPARM that contains member DSIWBMEM:
LISTA DSIPARM DSIWBMEM

Response
You receive a response similar to the following:

Example: Listing All Allocated Files
To list all allocated files, enter:
LISTA

Response
You receive a list of all files allocated to the NetView program.
LISTCAT (NCCF)

Syntax

LISTCAT

LISTCAT taskname

Purpose of Command

The LISTCAT command displays VSAM database definition and performance data for NetView data services tasks that have open VSAM databases. The information is similar to the data from the access method services LISTCAT command; however, the NetView LISTCAT command provides the information online, while the VSAM database is active.

The LISTCAT command is useful in tuning the VSAM databases and in validating the database definitions. When this command is invoked directly from the NetView console, it is a full-screen command processor. Otherwise, the output is generated using message DSI377I. If the command was issued in full-screen mode, press the ENTER key each time you want updated information. The screens are automatically copied to the network log.

The data services task must be active and it must have an active VSAM database.

The following information is displayed:

VSAM ACB options:
- NSR No LSR and no DFR
- LSR Local shared resources
- DFR Local shared resources including deferred write
- KEY Database access by keys
- ADR Database access by relative byte address (RBA)
- SEQ Database sequential access
- DIR Database direct access
- IN Database opened for input
- OUT Database opened for output

Cluster information:
- DDNAME ddname of database (JCL ddname)
- KEYLEN Length of VSAM key
- RKP Relative key position in record
- BSTRNO Number of VSAM strings initially allocated
- STRNO Number of VSAM strings currently active
- STRMAX Maximum number of strings used
- BUFSP Minimum amount of space for buffers

Data component information:
- LRECL Maximum length of DATA records
CINV
 DATA control interval size
BUFND
 Number of DATA buffers specified in ACB
BUFNO
 Number of DATA buffers used
NEXT
 Number of extents in the DATA component
FS Number of free control intervals per control area
NCIS
 Number of DATA control interval splits
NSSS
 Number of DATA control area splits
NEXCP
 Number of DATA EXCPS (I/Os)
NLOGR
 Number of records written in the DATA component
NRETR
 Number of DATA records retrieved
NINSR
 Number of DATA records inserted
NUPDR
 Number of DATA records updated
NDELR
 Number of DATA records deleted
AVSPAC
 Number of bytes available in the DATA component. This number changes
 based on extents allocated by VSAM.
ENDRBA
 Number of bytes used in the DATA component. This number changes
 based on extents allocated by VSAM.
HALCRBA
 Number of bytes allocated in the DATA component. This number changes
 based on extents allocated by VSAM.

Index component information:
LRECL
 Maximum length of INDEX records
CINV
 INDEX control interval size
BUFNI
 Number of INDEX buffers specified in ACB
BUFNO
 Number of INDEX buffers used
NEXT
 Number of extents in the INDEX component
NIXL
 Number of INDEX levels
NEXCP
 Number of INDEX EXCPS (I/Os)
NLOGR
 Number of records written in the INDEX component
AVSPAC
 Number of bytes available in the INDEX component
ENDRBA
 Number of bytes used in the INDEX component
HALCRBA
Number of bytes allocated in the INDEX component

Operand Descriptions

taskname
Is the name of the data services task whose VSAM database information you want to display.

Examples

Example: Displaying Information about the Hardware Monitor’s VSAM Database
To display information about the hardware monitor’s VSAM database, enter:
LISTCAT BNJDSERV

Response

You receive a response similar to the following:
LISTCAT Listcat of Active VSAM Data Base for BNJDSERV

VSAM ACB Options: LSR, DFR, ADR, KEY, SEQ, DIR, OUT
Cluster Information:
 DDNAME: BNJLGPR KEYLEN:76 RKP:0
 BUFSP:0
DATA Component Information:
 LRECL:4086 CINV:4096
 BUFND:12 BUFNO:0
 NCIS:1651 NSSS:19
 AVSPAC:9027584 ENDRBA:16056320 HALCRBA:155648
INDEX Component Information:
 LRECL:4089 CINV:4096
 BUFNI:0 BUFNO:0
 NEXT:26 NIXL:2
 NEXCP:2248 NLOGR:21
 AVSPAC:69632 ENDRBA:155648 HALCRBA:155648
LISTCMD (NCCF; CNME1104)

Syntax

LISTCMD

- **NAME**: `*`, `commandname`
- **MOD**: `*`, `modulename`
- **DATE**: `*`, `TODAY`, `date1 - date2`
- **OPID**: `*`, `operatorid`
- **USAGE**: `*`, `min - max`
- **SORTBY**: `NAME`, `DATE`, `DEL`, `ECHO`, `IGNRLSUP`, `MOD`, `NAME`, `OPID`, `PARSE`, `RES`, `SEC`, `SIZE`, `TIME`, `TYPE`, `USAGE`, `ASCENDING`, `DESCENDING`
- **DATIMFMT**: `*`, `DSILCMD`
- **WINDOW**: `*`, `NOWINDOW`
- **HELP**: `*`
Purpose of Command

The LISTCMD command displays the output specified on the DSILCMD command. The display contains a header line, followed by one or more sorted detail lines. Each detail line contains the following information for one command:
- The name of the command.
- The date and time that the command was added with the ADDCMD command or CMDMDL statement.
- The ID of the NetView operator who added the command.
- The number of times the command was invoked since it was added.
- The name and size of the command module.
- Whether or not the command was deleted, but not freed from storage.
- The type of command.
- Whether or not the command is resident.
- Whether or not the command is to be echoed.
- Whether or not the command is to be parsed.
- The type of security verification to be performed when the command is executed.
- Whether or not suppression characters are honored for logging of the command.

If the command has command synonyms, they are listed within single parentheses, for example (synonym,synonym). If the command has parameter synonyms, the parameters are listed within single parentheses. Within those parentheses, the corresponding synonyms are listed within a second pair of parentheses following the parameter, for example, (parameter(synonym)). If there are no command or parameter synonyms, the parentheses are empty, for example ().

Operand Descriptions

NAME=(*|commandname)

Is the wildcarded NetView command or command synonym name to be used to search the NetView system command table (SCT). Any NetView command or command synonym that matches any specified names will be included in the output list if the SCT entry also satisfies the other specified selection criteria. A single asterisk (*) matches all SCT entries and is the default.

The parentheses are not required if only a single wildcarded commandname is specified. Multiple specifications of commandname must be enclosed in parentheses and separated by either blanks or commas.

MOD=(*|modulename)

Is the wildcarded name of the NetView command processor module. Any NetView command processor name that matches any specified names will be included in the output list if the SCT entry also satisfies the other specified selection criteria. A single asterisk (*) matches all SCT entries and is the default.

The parentheses are not required if only a single wildcarded modulename is specified. Multiple specifications of modulename must be enclosed in parentheses and separated by either blanks or commas.

DATE=*|TODAY|date1-date2

The date1-date2 is the range of dates during which the NetView commands were added to the SCT. The dates must match the date format specified by the operator. The specified date cannot be later than the current date. The date2 must be equal to, or greater than, date1 and separated with a dash (-) with no embedded blanks. Any NetView command that was added within, including the dates in the specified range, will be included in the output list if the SCT...
entry also satisfies the other specified selection criteria. If a single \textit{date1} is
specified, only the NetView commands added on that date will be included in the
output list.

If an asterisk (*) is specified for \textit{date1}, all NetView commands added since the
last time NetView was started up to and including \textit{date2} will be included in the
output list. If an asterisk (*) is specified for \textit{date2}, all NetView commands
added on \textit{date1} and up to and including the day the command is executed will
be included in the output list. A single asterisk (*) matches all SCT entries and
is the default.

\textsc{TODAY} specifies only those commands added since midnight of the current
day will be included in the output list.

\textsc{OPID=(*\textbar|operatorid)}

The \textit{operatorid} is the wildcarded NetView operator IDs of the operator that
added the commands dynamically with the \textsc{ADDCMD} command, or SYSOP
for commands added with a \textsc{CMDMDL} statement. Any operator ID in the
NetView SCT that matches any specified \textit{operatorid} will be included in the
output list if the SCT entry also satisfies the other specified selection criteria. A
single asterisk (*) matches all SCT entries and is the default.

The double quotation marks (\textbar) matches SCT entries having the ID of the
operator issuing this display command.

The parentheses are not required if a single wildcarded \textit{operatorid} is specified.
Multiple specifications of \textit{operatorid} must be enclosed in parentheses and
separated by either blanks or commas.

\textsc{USAGE=*\textbar|min-max}

The \textit{min-max} is the range of NetView command invocation counts since the
command was added. The \textit{max} must be equal to or greater than \textit{min} and
separated with a dash (-) with no embedded blanks. The \textit{min} and \textit{max} must be
numeric values in the range 0–2147483647 or an asterisk (*). If an asterisk is
specified for \textit{max}, the maximum value is 2147483647. Any NetView command
that has been invoked the number of times specified within the range,
including the minimum and maximum values specified, will be included in the
output list if the SCT entry also satisfies the other specified selection criteria. If
only \textit{min} is specified, only NetView commands with invocation counters equal
to \textit{min} will be included in the output list. A single asterisk matches all SCT
entries and is the default.

\textsc{SORTBY=}()

The \textsc{SORTBY} parameter provides the ability to sort the output messages on
any of up to eight of the output message columns. The names reflect the
column heading meanings. Valid choices are as follows:

\begin{itemize}
 \item NAME
 \item DATE
 \item TIME
 \item OPID
 \item USAGE
 \item MOD
 \item SIZE
 \item DEL
 \item TYPE
 \item RES
 \item ECHO
 \item PARSE
 \item SEC
\end{itemize}
The output is sorted by command NAME by default.

ASCENDING|DESCENDING

Specifies whether the sorted output is displayed in ascending or descending order. The default is ASCENDING.

DATIMFMT=*|DSILCMD

Specifies whether to convert the date and time format supplied by DSILCMD.

An asterisk (*) specifies to convert the date and time format to match the DEFAULTS or OVERRIDE command date and time specifications. This is the default.

DSILCMD specifies that the date and time format is to remain unchanged.

WINDOW|NOWINDOW

Specifies whether the sorted output is displayed in a NetView window or issued as a standard MLWTO message which is suitable for further processing by REXX or automation. The default is WINDOW if this command is invoked from an operator terminal. The default is NOWINDOW if this command is issued from a command procedure.

HELP

Causes the command help to be displayed online. HELP should be specified without any other parameters. If other parameters are specified, they are ignored.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>Command cancelled</td>
</tr>
<tr>
<td>0</td>
<td>Processing successful</td>
</tr>
<tr>
<td>12</td>
<td>Internal processing error (for example, no storage)</td>
</tr>
</tbody>
</table>

Usage Notes

A command synonym or name with special characters (for example, =) must be enclosed in a quoted string. A quoted string cannot be included in a list of names.

Consider the following when using wildcards:

- The wildcard characters are an asterisk (*) and a question mark (?).
- The * matches any number of characters.
- The ? matches a single character.
- A wildcard name can be comprised of any mixture of wildcard characters and fixed characters, only fixed characters, or a single * character.
- Wildcard names and IDs used in this command cannot exceed 8 characters.

Examples

- `LISTCMD`
- `LISTCMD NAME=(AAU*,EKG*),USAGE=1-*`
- `LISTCMD MOD=DSICCP DATE=02/05/99-* SORTBY=(DATE TIME)`
- `LISTCMD OPID=''`
- `LISTCMD NAME=CNME* SORTBY=USAGE DESCENDING`
- `LISTCMD OPID=USER* DATE=10/01/98-12/31/98 SORTBY=OPID`
- `LISTCMD DATE=TODAY SORTBY=TIME ASCENDING`
- `LISTCMD USAGE=0 DATIMFMT=DSILCMD`
LISTINIT (GMFHS)

Syntax

LISTINIT

Purpose of Command

The LISTINIT command produces a formatted display of the Graphic Monitor Facility host subsystem (GMFHS) initialization parameters.

You can enter the LISTINIT command from the MVS console using the MVS MODIFY command or from a NetView terminal by using the GMFHS command list.

Parameters of the LISTINIT command are found in the DUIGINIT member of the DSIPARM data set. Refer to the Tivoli NetView for z/OS Installation: Configuring Graphical Components for more information.

Examples

Example: Displaying GMFHS Initialization Parameters

To see a display of the GMFHS initialization parameters, enter:

GMFHS LISTINIT

Response

A response similar to the following is displayed:

DUI4054I INITIALIZATION PARAMETER DISPLAY
DUI4089I JAPANESE = OFF
DUI4089I GMTOFFSET = +0500
DUI4089I ROOMNAME = X
DUI4089I RODMNAME = GMFHS34
DUI4089I RODMID = GMFHS34
DUI4089I DOMAIN = CNM01
DUI4089I TRACE = OFF
DUI4089I TASK = NONE
DUI4089I LEVEL = 0
DUI4089I API = NONE
DUI4089I PRINTPDU38 = INTERNAL
DUI4089I TRACEPAGES = 100
DUI4089I TRACEBYTES = 64
DUI4089I CHECKPOINT = NONE
DUI4089I LCON-ALERT-CMD-TIMEOUT = 30000
DUI4089I LCON-NMG-POLL-INTERVAL = 18000
DUI4089I LCON-NCC-RETRY-LIMIT = 3
DUI4089I LCON-NCC-RSC-LIMIT = 10
DUI4089I LCON-EVCHANGE-BUFFER-INTERVAL = 500
DUI4089I LCON-AIP-RESET-INTERVAL = 12000
DUI4089I LCON-AGG-BUNDLE-INTERVAL = 500
DUI4089I LCON-STATUS-DELAY-TIME = 50
DUI4089I LCON-STATUS-DELAY-MAX = 10
DUI4089I LCON-REPORT-UNKNOWN-STATUS = 0
DUI4089I LCON-HEX-SUBVECTOR-DISPLAY = 1
DUI4089I LCON-OPERATOR-CMD-AUDIT = 0
LISTSESS (NCCF)

Syntax

```
LISTSESS
```

Purpose of Command

The LISTSESS command displays the status of command facility router conversations.

If LISTSESS is entered with no operands, all sessions are listed.

Operand Descriptions

- **APPLID=application**
 - Lists the status for all sessions with a particular application program

- **FLSCN**
 - Lists all the full-screen sessions

- **OPCTL**
 - Lists all the operator-control sessions

- **SRCLU=luname**
 - Lists the status for all sessions with a particular logical unit

Examples

Example: Displaying a List of All Operator Control Sessions
To display a list of all operator control sessions, enter:

```
LISTSESS OPCTL
```

Example: Displaying a List of Sessions for a Specified Application
To display a list of all sessions with TAF21, enter:

```
LISTSESS APPLID=TAF21
```

Example: Listing All Active Full-Screen Sessions
To list all the full-screen sessions that you have active, enter:

```
LISTSESS FLSCN
```

Response

If no sessions are active, you receive a response similar to the following:

```
DSI447I NO FLSCN SESSIONS ARE ACTIVE
```

If sessions are active, you receive a response similar to the following:
<table>
<thead>
<tr>
<th>APPLID</th>
<th>SRCU</th>
<th>SESSID</th>
<th>TYPE</th>
<th>STATUS</th>
<th>DATA</th>
<th>NOTIFY</th>
<th>INTERRUPT</th>
<th>DISC</th>
<th>ROLL-KEY</th>
<th>SDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSO</td>
<td>TAFU2A</td>
<td>-</td>
<td>-</td>
<td>FLSCN</td>
<td>ACTIVE NO</td>
<td>NO</td>
<td>YES</td>
<td>PF7</td>
<td>PF5</td>
<td>YES</td>
</tr>
</tbody>
</table>

SESSION STATUS DISPLAY BY FLSCN

(OPERATOR ID)

Chapter 2. NetView Commands and Command Descriptions
LISTVAR (NCCF; CNME1006)

Syntax

LISTVAR

Purpose of Command

The LISTVAR command list displays environment variable values.

Refer to Tivoli NetView for z/OS Customization: Using REXX and the NetView Command List Language for an explanation of the variables.

Examples

Example: Displaying the Settings of the Variables
To display the settings of the variables, enter:

LISTVAR

Response

You receive a response similar to the following:

* CNM01 LISTVAR
 C CNM01 CNM353I LISTVAR : OPSYSTEM = MVS/ESA
 C CNM01 CNM353I LISTVAR : MVSLEVEL = SP4.1.0
 C CNM01 CNM353I LISTVAR : CURSYS = F79MVS
 C CNM01 CNM353I LISTVAR : VTAMLVL = V341
 C CNM01 CNM353I LISTVAR : VTCOMPID = 5685-08501-411
 C CNM01 CNM353I LISTVAR : NETVIEW = NV31
 C CNM01 CNM353I LISTVAR : NETID = NETA
 C CNM01 CNM353I LISTVAR : DOMAIN = CNM01
 C CNM01 CNM353I LISTVAR : APPLID = CNM01002
 C CNM01 CNM353I LISTVAR : OPID = OPER1
 C CNM01 CNM353I LISTVAR : LU = A01A701
 C CNM01 CNM353I LISTVAR : TASK = OST
 C CNM01 CNM353I LISTVAR : NCCFCNT = 4
 C CNM01 CNM353I LISTVAR : HCOPY =
 C CNM01 CNM353I LISTVAR : CURCONID = NVOPER1

Example: Displaying the Settings of a Specified Autotask
To display the settings for autotask AUTO2, enter the following at its associated MVS console:

LISTVAR

Response

You receive a response similar to the following:

- SYS1 %listvar
- SYS1 STC00009 LISTVAR
- SYS1 STC00009 CNM353I LISTVAR : OPSYSTEM = MVS/ESA
- SYS1 STC00009 CNM353I LISTVAR : MVSLEVEL = SP4.1.0
- SYS1 STC00009 CNM353I LISTVAR : CURSYS = SYS1
- SYS1 STC00009 CNM353I LISTVAR : VTAMLVL = V341
- SYS1 STC00009 CNM353I LISTVAR : VTCOMPID = 5685-08501-411
- SYS1 STC00009 CNM353I LISTVAR : NETVIEW = NV31
Chapter 2. NetView Commands and Command Descriptions
LISTWLM (NCCF; CNMELSTW)

Syntax

LISTWLM

Purpose of Command

The LISTWLM command displays a windowed list of active NetView subtasks with their assigned WLM service class name. This list is sorted in ascending order by WLM service class name, task type, and task ID. The list output looks similar to that for the LIST STATUS=TASKS, WLM=YES command without the long white space in the middle of each line. LISTWLM causes each NetView subtask list entry to include either of the two following entries, starting in column 62:

SvcCls: Not Available

or

SvcCls: WLMserviceClassName

where WLMserviceClassName is the WLM service class assigned to the listed NetView subtask.

The 'Not Available' string appears for tasks that are not assigned a WLM service class. The 'Not Available' string also appears if NetView is not enabled for WLM service through the NetView WLM style statement.

Operand Descriptions

WLMserviceClassName

WLMserviceClassName is the 8-character NetView WLM service class name. If specified, the resulting list only contains the NetView subtasks assigned to the specified WLM service class. If not specified, the resulting list contains all the active NetView subtasks with their assigned NetView WLM service class name.
LL2 (NCCF; CNME0021)

Syntax

```
LL2
```

```
LL2 station, CANCEL, CONT, ntrans
```

```
string, passthru
```

Purpose of Command

The LL2 command list requests a link level 2 test for a nonswitched SDLC link. This command list tests a communication line between a network control program (NCP) and one of its peripheral physical units, or between two NCPs.

Operand Descriptions

- **station**
 Specifies the name of a link station or physical unit to be tested.

- **10**
 If you do not specify a number of test messages to be sent, the default of 10 is used.

- **CANCEL**
 Specifies that the currently running test should be stopped.

- **CONT**
 Specifies that the test being started should run continuously until canceled.

- **ntrans**
 Specifies the number of test messages that are to be sent. This value can be a number from 1–65534. The default is 10.

- **1**
 If you do not specify a number of test messages to be sent to the physical unit each time its station is selected, the default of 1 is used.

- **nframes**
 Specifies the number of test messages that are to be sent to the physical unit each time its station is selected. This value can be a number from 1–65535. The default is 1.

- **ABCDEFGHIJKLMNOPQRSTUVWXYZ**
 If you do not specify user data to be used as part of the test message, the string ABCDEFGHIJKLMNOPQRSTUVWXYZ is used.

- **string**
 Specifies optional user data to be used as part of the test message. The default is A–Z.
passthru

Specifies up to 6 parameters which are appended unchanged to the VTAM
MODIFY command issued by the LL2 command. No validation for duplicate
or conflicting parameters is performed.

Restrictions

If you omit a positional operand, indicate its absence with a comma.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Functioned normally</td>
</tr>
</tbody>
</table>

Examples

Example: Starting a Link Level 2 Test for a Link to an SDLC Peripheral Node Containing a Specified Physical Unit
To start a link level 2 test for a link to an SDLC peripheral node containing
physical unit DPU3274, enter:

```
LL2 DPU3274
```

Example: Canceling a Link Level 2 Test for a Specified Station
To cancel the link level 2 test for station LS1A, enter:

```
LL2 LS1A,CANCEL
```

Example: Sending a Specified Group of a Specified Number of Test Messages to a Specified Station
To send 40 test messages to station LS1A, 10 messages at a time, enter:

```
LL2 LS1A,40,10
```

Example: Sending a Specified Group of a Specified Number of Test Messages, Including a Test String, to a Specified Station
To send 40 test messages, 10 messages at a time, including the test string
AAAAAAA, to station LS1A, enter:

```
LL2 LS1A,40,10,AAAAAA
```

Example: Sending a Specified Group of Messages, Including a Test String
To send 10 messages, one at a time, including the test string AAAAAAA, enter:

```
LL2 LS1A,,AAAAAA
```
LOADCL (NCCF)

Syntax

LOADCL

clist_name

(REPLACE)

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command orOperand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOADCL</td>
<td>LCL</td>
</tr>
</tbody>
</table>

Purpose of Command

The LOADCL command loads command lists into main storage. A message is displayed upon successful or unsuccessful completion of this command. The LOADCL command sets a return code when invoked. If LOADCL is invoked from a REXX command list, the return code is in variable RC. If LOADCL is invoked from a NetView command list language command list, the return code is in variable &RETCODE.

Operand Descriptions

clist_name

Is the file name of the command list to be loaded. This is the name by which the loaded command lists are known. You can specify more than one command list.

These operands are the member names in the MVS data sets whose ddname is DSICLD.

(REPLACE)

Indicates that even if the command lists were previously loaded by LOADCL, the command lists are loaded again and the previously loaded copies are dropped automatically when the current users have finished using them. Enclose REPLACE in parentheses.

Restrictions

If a command list that is not loaded is invoked, it is temporarily loaded into non-shared storage, processed, and purged.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Processing successful</td>
</tr>
<tr>
<td>4</td>
<td>One of the following:</td>
</tr>
<tr>
<td></td>
<td>• Command list not found</td>
</tr>
<tr>
<td></td>
<td>• Command list is already loaded</td>
</tr>
<tr>
<td></td>
<td>• Member not found</td>
</tr>
<tr>
<td></td>
<td>• Command list name is not valid</td>
</tr>
</tbody>
</table>
Examples

Example: Loading a Specified Command List into Main Storage
To load a command list WTOR2 into main storage, enter:

LOADCL WTOR2

Response

CNM406I COMMAND LIST WTOR2 LOADED

Example: Loading a Command List that was Previously Loaded
To load the command list WTOR2 into main storage, enter:

LOADCL WTOR2

Response

CNM408I COMMAND LIST WTOR2 ALREADY LOADED - REPLACE NOT SPECIFIED

This response appears if you try to load an already loaded command list. You need to use the REPLACE option.

Example: Replacing a Command List that was Previously Loaded
To replace the previously loaded WTOR2 command list, enter:

LOADCL WTOR2,(REPLACE)

Response

CNM411I COMMAND LIST WTOR2 DROPPED
CNM406I COMMAND LIST WTOR2 LOADED
LOCATE (BROWSE)

Syntax

LOCATE

record_number

topleftline_date

first_record

TODAY
date
time

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATE</td>
<td>LOC</td>
</tr>
</tbody>
</table>

Purpose of Command

The LOCATE command enables you to position your log browse display to a given record number, or to a given date and time. When used with no parameters, the LOCATE command will position the log browse display to the first record of the date currently being displayed.

For remote netlog browse, the LOCATE command will be accepted only when the target NetView is at NetView for OS/390 Version 1 Release 1 or higher.

Operand Descriptions

record_number

Specifies the record number to locate. This record will be the first log record on the screen after the LOCATE command is processed. When used with the log browse filtering, if the record number to be located is filtered, the next record available for display is located. A record number can have a value in the range of 1–999999.

Nota: Record numbers are displayed in columns 1–6 for each log line displayed.

topleftline_date

The default date is the date of the record at the top of the current display, if you do not specify a date.

Nota: This date is displayed on browse title line. This will be the default date if no date is specified.

TODAY

Allows easy specification for locating records for the current system date. Specifying TODAY without any time parameter will position the log browse display at the first record of the current system date.

date

Specifies the starting date of the time range. The format of date is controlled
by the setting of the date operands of the DEFAULTS and OVERRIDE commands. If no date is given, the default date is the date at the top line of the current display.

first_record

If you do not specify a starting time, the first record in the log with the specified date is used. If neither the time nor date is specified, the first record of topline_date is located.

time

Specifies the time to locate. The format of time is controlled by the setting of the time operands of the DEFAULTS and OVERRIDE commands. If time is not specified, the default is the first record of the date specified.

Examples

Example: Locating 11 A.M. of Today’s Date

To locate the log browse display at 11 a.m. of today’s date, enter:

LOCATE 11:00 TODAY

Response

The log browse display is positioned at or nearest to 11am of the current system time. If no records exist for 11:00:00 the display is positioned at the first record prior to 11 a.m.

Example: Locating January 15th

To locate the log browse display at the first record of January 15th, using the current year as a default year, enter:

LOCATE 1/15

Response

The log browse display is positioned at the first record of January 15th of the current year. If no records for 00:00:00 of January 15th exist, you are positioned at the first record that exists for that date. The log browse display will not backup one record when the result is a date change.
LOGF (RODM)

Syntax

From an MVS console:

```
LOGF
```

```
MODIFY name,LOGF
```

From a NetView terminal:

```
LOGF
```

```
RODM LOGF
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIFY</td>
<td>F</td>
</tr>
</tbody>
</table>

Purpose of Command

The LOGF command specifies that the Resource Object Data Manager (RODM) writes any buffered log to the current RODM log data set.

Operand Descriptions

- `name` Specifies the RODM MVS job name.

Examples

Example: Writing Buffered Log Entries from RODM to the Current RODM Log Data Set

To write any buffered log entries from RODM to the current RODM log data set, enter the following from a NetView terminal:

```
RODM LOGF
```

Response

```
EKG1310I EKGXRODM: THE LOG FLUSHING IS COMPLETED
```
LOGOFF (NCCF)

Syntax

LOGOFF

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOGOFF</td>
<td>LOG</td>
</tr>
</tbody>
</table>

Purpose of Command

The LOGOFF command ends the session between your terminal and the system. When your task terminates, some of your messages are rerouted to another authorized receiver. The messages rerouted include all messages with HDRTYPEY (>) and any messages that were routed to you as a primary receiver but were not processed at the time of termination. HDRTYPEY designates those messages from VTAM or from your MVS operating system that require a reply or action from you.

Examples

Example: Logging Off Successfully
To logoff enter:

LOGOFF

OR

LOG

Response

If you have logged off successfully, you see this message:

DS1081I OPERATOR operid, LOGOFF PROCEEDING: TERMINAL=terminalname
LOGP (RODM)

Syntax
From an MVS console:

LOGP

MODIFY name,LOGP

From a NetView terminal:

LOGP

RODM LOGP

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIFY</td>
<td>F</td>
</tr>
</tbody>
</table>

Purpose of Command
The LOGP command specifies that the Resource Object Data Manager (RODM) records to the primary log.

The primary log is cleared when you issue the LOGP command.

Operand Descriptions

name Specifies the RODM MVS job name.

Restrictions
The following restriction applies to the LOGP command:

• When you use the LOGP command, the current buffer is not written to the previously active log unless you have previously issued a LOGF command.

Examples

Example: Switching Logging to the Primary Log
To switch logging for RODM to the primary log, enter the following from a NetView terminal:

RODM LOGP

Response
If the secondary log was open when you issued the LOGP command, you receive message EKG1314I as follows:

EKG1314I EKGXRODM: THE SECONDARY LOG FILE IS NOW CLOSED.
When the LOGP command successfully opens the primary log, you receive message EKG1315I as follows:

EKG1315I EKGRROOM: THE PRIMARY LOG FILE IS NOW CURRENT.
LOGPROF1 (NCCF; CNME1049)

Syntax

LOGPROF1

Purpose of Command

LOGPROF1 is the default logon profile for an operator.

This command list is responsible for:

- Setting defaults such as PF key settings and operator data sets
- Presenting news that your system programmer has set up
- Displaying the Tivoli NetView main menu panel
LOGONPW (NCCF)

Syntax

```
LOGONPW
```

Purpose of Command

The LOGONPW command enables you to specify whether the NetView logon screen can be bypassed. You can also query the current setting of the screen bypass function.

Operand Descriptions

- **QUERY**
 Queries the state of the NetView logon screen bypass function. This is the default.

- **DISABLE**
 Specifies that you cannot bypass the NetView logon screen.

- **ENABLE**
 Specifies that you can bypass the NetView logon screen.

Restrictions

1. Before you can use this command, you must add a CMDMDL statement in DSICMD for the LOGONPW command. A sample CMDMDL statement for LOGONPW is shipped commented out in DSICMD.
2. The LOGONPW command is not supported for logons from the NetView 3270 management console.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Processing successful</td>
</tr>
<tr>
<td>4</td>
<td>Command not processed. Possible reasons are syntax errors, lack of NetView storage, or the operator is not authorized to issue the command. A message is issued to indicate the cause of the error.</td>
</tr>
</tbody>
</table>

Examples

Example: Enabling the NetView Logon Screen to be Bypassed
To enable the NetView logon screen to be bypassed, enter:

```
LOGONPW ENABLE
```

Response

```
BNH111I  NETVIEW LOGON SCREEN BYPASS IS NOW ENABLED
```
You can now bypass the NetView logon screen by entering:

```
logon applid(cnm01) data(operid,pw)
```

This bypasses the NetView logon screen and uses the default settings for the operator profile, the hardcopy log, and the initial command. For additional information about options for the LOGON command, refer to the *Tivoli NetView for z/OS User's Guide*.
LOGQ (RODM)

Syntax

From an MVS console:

```
LOGQ
```

```
MODIFY name,LOGQ
```

From a NetView terminal:

```
LOGQ
```

```
RODM LOGQ
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIFY</td>
<td>F</td>
</tr>
</tbody>
</table>

Purpose of Command

The LOGQ command queries the current Resource Object Data Manager (RODM) log.

Operand Descriptions

`name` Specifies the RODM MVS job name.

Examples

Example: Querying the Current RODM Log

To query the current RODM log, enter the following from a NetView terminal:

```
RODM LOGQ
```

Response

If a log file is open when you issue the LOGQ command, you receive a message similar to:

```
EKG0002I EKGXRODM: THE CURRENT ACTIVE LOG FILE IS NOW EKGLOGP
```

Otherwise, you receive message EKG1311I as follows:

```
EKG1311I EKGXRODM: NO LOG FILE IS CURRENTLY OPEN.
```
LOGS (RODM)

Syntax

From an MVS console:

```
LOGS
```

```
MODIFY name,LOGS
```

From a NetView terminal:

```
LOGS
```

```
RODM LOGS
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIFY</td>
<td>F</td>
</tr>
</tbody>
</table>

Purpose of Command

The LOGS command specifies that the Resource Object Data Manager (RODM) records to the secondary log.

The secondary log is cleared when you issue the LOGS command.

Operand Descriptions

`name` Specifies the RODM MVS job name.

Restrictions

The following restriction applies to the LOGS command:

- When you use the LOGS command, the current buffer is not written to the previously active log unless you have previously issued a LOGF command.

Examples

Example: Switching Logging to the Secondary Log

To switch logging for a RODM named EKGXRODM to the secondary log, enter the following from a NetView terminal:

```
RODM LOGS
```

Response

If the primary log was open when you issued the LOGS command, you receive message EKG1313I as follows:

```
EKG1313I  EKGXRODM: THE PRIMARY LOG FILE IS NOW CLOSED.
```
When the LOGS command successfully opens the secondary log, you receive message EKG1316I as follows:

EKG1316I EKGXRODM: THE SECONDARY LOG FILE IS NOW CURRENT.
LOGT (RODM)

Syntax

From an MVS console:

```
LOGT
```

```
MODIFY name,LOGT
```

From a NetView terminal:

```
LOGT
```

```
RODM LOGT
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIFY</td>
<td>F</td>
</tr>
</tbody>
</table>

Purpose of Command

The LOGT command specifies that the Resource Object Data Manager (RODM) ends logging activity.

Operand Descriptions

```
name
```

Specifies the RODM MVS job name.

Restrictions

The following restriction applies to the LOGT command:

- The log buffer is not written to the log file when you issue LOGT, and the log file is closed and cannot be reused until RODM is recycled.

Examples

Example: Ending RODM Logging Activity

To end RODM logging activity, enter the following from a NetView terminal:

```
RODM LOGT
```

Response

If the primary log file is open, you receive message EKG1313I as follows:

```
EKG1313I EKGXRODM: THE PRIMARY LOG FILE IS NOW CLOSED
```

If the secondary log file is open, you receive message EKG1314I as follows:

```
EKG1314I EKGXRODM: THE SECONDARY LOG FILE IS NOW CLOSED
```

If neither log file is open, you receive message EKG1311I as follows:
EKG1311I EKGRROOM: NO LOG FILE IS CURRENTLY OPEN.
LOGTSTAT (NCCF)

Syntax

```
LOGTSTAT
```

Purpose of Command

The LOGTSTAT command can be used to write task utilization data to the System Management Facility (SMF) log. You can use the LOGTSTAT command to create a record for one specified task, or for all tasks at one point in time. If LOGTSTAT is used to generate records for all tasks, an SMF record is written for each task that is active.

For an example, see sample TASKURPT (CNMS8024) in the Tivoli NetView for z/OS Diagnosis Guide.

Operand Descriptions

* Specifies to log statistics for all tasks. This is the default.

 taskname

 Is the name of the NetView task for which statistics are logged.

 DETAIL

 Specifies that statistics are to be logged for all tasks. Message BNH548I will be issued for each task for which recording is inactive.

 INTERVAL

 Specifies that an SMF record 38 subtype 2 record will be created with an interval identifier. This record will contain statistics over the interval since the last interval record or since the task began. If a record is written, the maximum values for CPU, I/O, MQSIN, MQSOUT, and STORAGE are reset to the current values. Subsequent SMF record 38 subtype 2 records will report maximum values relative to the last interval record.

 RESETMAX

 Specifies to reset the maximum values for CPU, I/O, MQSIN, MQSOUT, and STORAGE. Data in the SMF record is for the entire life of the task, not the prior interval.

 Note: If neither INTERVAL nor RESETMAX is specified, the maximum values for the task are not reset, and the data recorded is for the entire life of the task.

 TEST

 Specifies that messages appropriate to the requested function are issued without writing records to SMF. This is useful for checking the LOGTSTAT SMF recording setting for a single task or all tasks.
Usage Notes

Message DSI633I will be issued if the LOGTSTAT command has written at least one SMF record. This message follows after message BNH548I, unless no records are written.

Message BNH548I is issued if:
- The *DETAIL is specified and at least one task has LOGTSTAT logging turned off. If *DETAIL is specified and all tasks have LOGTSTAT logging turned off, a BNH548I message is issued for each task that is running, and a BNH548I message with the task name * ends the list.
- The * is specified and all tasks have LOGTSTAT logging turned off. The BNH548I message is issued with the task name *.
- A single task is specified and it has LOGTSTAT logging turned off.

If a task abnormally ends, an SMF record is produced showing the data up to the abend. The task data is reset to zero, and subsequent records show values since the abend occurred. Each reinstatement of the task is treated as a separate instance of the task.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful processing at least one SMF record was written.</td>
</tr>
<tr>
<td>4</td>
<td>SMF recording is not active for the tasks specified.</td>
</tr>
<tr>
<td>8</td>
<td>The taskname was inactive or not a valid task name, an extra option was specified, or an operand was misspelled. Valid options are INTERVAL, RESETMAX, or TEST. Message DSI486I, BNH517E, or DSI011I is issued to describe the error.</td>
</tr>
<tr>
<td>16</td>
<td>SMF failed to record the data. Message DWO050E is logged in the NetView log to indicate the return code from the MVS SMFWTM macro. Message BNH167I is also issued to help you identify the failure.</td>
</tr>
</tbody>
</table>
LOOP (TARA)

Syntax

```
LOOP
  ERROR, ctrlname, loopname
  STAT, ctrlname, loopname
```

Purpose of Command

The LOOP command displays the most recent status and error data for a 3600 or 4700 Controller loop. Data is presented in reverse chronological order.

Operand Descriptions

- **ERROR**
 - Specifies error data.

- **ctrlname**
 - Specifies the physical unit name of the controller to which the loop is attached.

- **loopname**
 - Specifies the loop name (LPnn) of the loop.

- **STAT**
 - Specifies status data.

Examples

Example: Viewing Error Data for a Specified Controller and Loop

To view detailed error data for controller CTRL01 and loop LP02, enter:

```
LOOP ERROR, CTRL01, LP02
```
LPDA (NCCF)

Syntax

```
LPDA
```

```
LPDA ID=node_name, LINE=line_name, QUERY
```

```
STATION=station_name, QUERY
```

```
, NONE
```

```
, TYPE1
```

```
, TYPE2
```

```
, TYPE3
```

Purpose of Command

The link problem determination aid (LPDA) command changes or queries the LPDA status of a line or station attached to a communication controller. The LPDA command applies to communication controllers only. The LPDA command overrides network control program (NCP) definitions.

The following matrix indicates when the LPDA command works successfully and where it fails with a sense code.

<table>
<thead>
<tr>
<th>Channelized Line</th>
<th>Non-Channelized Line</th>
<th>Stations Block and Allow</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDLC</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>BSC</td>
<td>NO</td>
<td>YES</td>
</tr>
</tbody>
</table>

Note: You can still query the LPDA status of any line, channelized or not.

Operand Descriptions

ID=node_name

Is the network name of the node to which the line or station attaches.

LINE=line_name

Is the network name of a line. LPDA status is changed or queried for the named line.

QUERY

Displays LPDA status for the station or line indicated. QUERY is the default.

NONE

Specifies not to enable LPDA for the line specified with the LINE operand. You can use NONE with the LINE operand only.

TYPE1

Enables LPDA-1 for the line specified.

TYPE2

Enables LPDA-1 for the line specified with 3867 attributes.
TYPE3

Enables LPDA-2 for the line specified.

STATION=station_name

Is the name of the link station whose LPDA status is being changed or queried. When you specify STATION, LPDA status is changed or queried for that station only.

ALLOW

Enables LPDA for the station specified with the STATION operand. You can use ALLOW with the STATION operand only.

BLOCK

Specifies not to enable LPDA for the station specified with the STATION operand. You can use BLOCK with the STATION operand only.

Examples

Example: Querying the LPDA Status of a Specified Line Attached to a Specified NCP

To query the LPDA status of LINE7 attached to NCP2, enter:

LPDA ID=NCP2,LINE=LINE7

Response

You receive a response similar to DSI268I LPDA COMPLETE or a message with a sense code indicating that LPDA cannot be set.
LSESS (NCCF; CNME1007)

Syntax

LSESS

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td></td>
</tr>
<tr>
<td>A,applid</td>
<td>O</td>
</tr>
<tr>
<td>FLSCN</td>
<td></td>
</tr>
<tr>
<td>OPCTL</td>
<td></td>
</tr>
<tr>
<td>S,srcLu</td>
<td></td>
</tr>
</tbody>
</table>

IBM-Defined Synonyms

Command or Operand | Synonym
OPCTL | O

Purpose of Command

The LSESS command list displays the status of your subsystem sessions. This command list generates a LISTSESS command.

Operand Descriptions

- **ALL** Displays a list of all sessions.
- **A,applid** Displays a list of the status of all sessions with the named application program.
- **FLSCN** Displays a list of all full-screen sessions.
- **OPCTL** Displays a list of all operator-control sessions.
- **S,srcLu** Displays a list of all sessions with the named srcLu (source LU).

Examples

Example: Listing All Operator Control Sessions
To list all operator control sessions, enter:

LSESS OPCTL

Example: Displaying All IMS1 OPCTL and FLSCN Sessions
To display all IMS1 OPCTL and FLSCN sessions, enter:

LSESS A,IMS1

Example: Displaying All Operator Control Sessions
To display all operator control sessions, enter:

LSESS 0

Example: Displaying All OPCTL and FLSCN Sessions
To display all OPCTL and FLSCN sessions, enter:

LSESS ALL
MAINMENU (NCCF; CNME1066)

Syntax

```
MAINMENU
```

Purpose of Command

The MAINMENU command list displays the NetView Main Menu panel.

If you use LOGPROF1 in your operator profile or the SAF NETVIEW segment when you log on to the NetView program, the NetView Main Menu panel appears. To use this panel, enter a command listed on the panel on the CMD line. After entering a command from this panel, you can return to the NetView Main Menu by pressing the PF key assigned to the Roll, End, or Return commands, or by entering the MAINMENU command list.

When you use the MAINMENU command list, the NetView Main Menu remains on the NetView component stack that is used with Roll until the component is ended.

To leave the NetView Main Menu panel, press the End or Return key.

Operand Descriptions

? Displays the help for the MAINMENU command.

ALL

Causes all defined commands for the current invocation of NetView to be displayed on the main menu. Active commands are highlighted in a different color from the rest of the menu. Inactive commands are displayed in the same color as the word ‘command’ following the command name.

Usage Notes

- The NetView Main Menu automatically recognizes whether a command on the menu is active or inactive. The NetView Main Menu only displays active options by default. For example, if the NetView Automated Operations Network component and Session Monitor are not active, those commands are not displayed on the menu. If the status of a command changes, you can update the Main Menu by pressing Enter. You can use the ALL keyword to display inactive commands on the NetView Main Menu.

- If a command on the NetView Main Menu is backlit, it is only partially available. That means that some functions are available using the command, but not all functions. For example, if the BROWSE command is backlit, only partial use of the command is available. You can use the BROWSE member command, but not the BROWSE NETLOGA command. If the status of a command changes, you can update the Main Menu by pressing Enter.
Examples

Viewing the NetView Main Menu
This panel shows examples of the NetView Main Menu. This example assumes that the NetView Automated Operations Network component and System Automation for OS/390 are not active and that the BROWSE command is only partially available. The size of the white space and the backlit commands in the menu might vary. If the status of a command changes, you can update the Main Menu by pressing Enter.

<table>
<thead>
<tr>
<th>CNMINETV</th>
<th>Tivoli NetView for z/OS Version 5 Main Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator ID = OPER3</td>
<td>Application = NTV74046</td>
</tr>
</tbody>
</table>

Enter a command (shown highlighted or in white) and press Enter.

- **Browse Facility**
- **Command Facility**
- **News**
- **PF Key Settings**
- **Help Facility**
- **Index of help topics**
- **Help Desk**
- **Automated Operations Network**

To log off or disconnect: LOGOFF command or DISC command

TO SEE YOUR KEY SETTINGS, ENTER 'DISPFK'

Action ===>
MAJNODES (NCCF; CNME0022)

Syntax

MAJNODES

-passthru-

Purpose of Command

The MAJNODES command list displays the status of all the active major nodes in the domain.

Operand Descriptions

-passthru-

Specifies up to 6 parameters which are appended unchanged to the VTAM DISPLAY command issued by the MAJNODES command. No validation for duplicate or conflicting parameters is performed.

Examples

Example: Displaying the Active Major Nodes in the Domain

To display the active major nodes in the domain, enter:

MAJNODES

Response

You receive a response similar to:

IST350I DISPLAY TYPE = MAJNODES
IST089I VTAMSEG TYPE = APPL SEGMENT , ACTIV
IST089I ISTPUS TYPE = PU_T4/5 MAJ NODE , ACTIV
IST089I M00 TYPE = CDRM SEGMENT , ACTIV
IST089I ASYSJES TYPE = APPL SEGMENT , ACTIV
IST089I A2ITSO TYPE = APPL SEGMENT , ACTIV
MAPCL (NCCF)

Syntax

MAPCL

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPCL</td>
<td>MCL</td>
</tr>
</tbody>
</table>

Purpose of Command

The MAPCL command lists all or specified command lists that are in main storage. If a specified command list is loaded in main storage by the LOADCL command (and not dropped by the DROPCL command), it is listed. A storage-resident command list, in this context, refers to a command list that has been loaded into storage using the LOADCL command and has not yet been dropped from storage.

If no operands are specified, the list contains all of the command lists in main storage.

If one or more specified command lists are not storage-resident, then:

- Message CNM429I is displayed if there is at least one command list currently loaded into storage.
- Message CNM427I is displayed if there are no storage-resident command lists.

Operand Descriptions

* Indicates that all command lists in main storage are to be listed. This operand is the default.

clist_name

Specifies the names of the command lists to be checked for storage-residency. To find a match, use the same name that you used on the LOADCL command (either the command or the command synonym). You can specify more than one clist_name.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>At least one command list specified as an operand is not loaded in main storage. The command lists that were not loaded are indicated in the MAPCL display as not found.</td>
</tr>
</tbody>
</table>
Examples

Example: Determining Whether Specified Command Lists Were Loaded by Using LOADCL

To use the LOADCL command to show whether the command lists STATA and STATB have been loaded, enter:

MAPCL STATA,STATB

Response

If the MAPCL command is successful, you receive a response similar to:

* CNM01 MAPCL STATA,STATB
' CNM01
CNM4291 MAPCL DISPLAY

<table>
<thead>
<tr>
<th>NAME</th>
<th>USAGE</th>
<th>RECORDS</th>
<th>BYTES</th>
<th>DATE</th>
<th>TIME</th>
<th>DP</th>
<th>R/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATA</td>
<td>0</td>
<td>62</td>
<td>7,112</td>
<td>03/20/97</td>
<td>15:43:07</td>
<td>+</td>
<td>C</td>
</tr>
<tr>
<td>STATB</td>
<td>2</td>
<td>18</td>
<td>2,592</td>
<td>05/23/97</td>
<td>12:24:18</td>
<td>R</td>
<td></td>
</tr>
</tbody>
</table>

--- TOTALS ---

The meanings of the displayed operands are as follows:

NAME
Is the name of the command list as specified on the LOADCL command. Command list synonym names are supported.

USAGE
Is the number of times the command list was invoked for processing since the last time it was loaded. NOT FOUND status occurs when a command list was not found in main storage. However, it can exist in auxiliary storage.

RECORDS
Is the number of command list records read in from the disk.

BYTES
Is the amount of main storage that is currently being used by the command list and its associated data structures.

DATE
Is the date stamp of when the member was loaded by LOADCL.

TIME
Is the time stamp of when the member was loaded by LOADCL.

DP
If a * is present in this column, it indicates that a drop has been issued for this command list, but the command list is currently in use.

R/C
C indicates that the entry is a NetView command list. If the R is shown, the entry is a REXX command list.
MDMCNFG (NCCF)

Syntax

```
MDMCNFG
```

```
MDMCNFG ID=node,STATION=devicename,LEVEL=LEVEL
```

```
,,MODEM=LOCAL,,BROWSE=CONFIG
```

```
,,MODEM=REMOTE,,CHANGE=CONFIG
```

Purpose of Command

The MDMCNFG command retrieves and updates the IBM LPDA-2 modem configuration data. Use the MDMCNFG command from the command line during installation to configure both local and remote modems. Also, you can use the MDMCNFG command in a command list.

Operand Descriptions

ID=node

Specifies the network name of the node that passes the command to the modem.

STATION=devicename

Specifies the network name of the data terminal equipment (DTE) at the end of the link with which the modem pair is associated.

LEVEL

Changes the configuration of a pair of modems. If you specify LEVEL, you cannot specify DMPX.

1 Changes the first pair of modems. one (1) is the default.

2 Changes the second pair of modems.

MODEM

Changes the configuration of a modem.

LOCAL

Changes the modem closest to the using node that issues the command to the link station. Secondary or tributary changes are not allowed. LOCAL is the default.

REMOTE

Changes the modem closest to the station.

BROWSE

Displays the configuration of a panel.
CONFIG
Displays the basic configuration operands panel.

COUPLER
Displays the coupler operands and phone numbers panel.

DMPX
Displays the data multiplexing (MPX) panel.

NOCHANGE
Displays the nonchangeable configuration operands panel.

CHANGE
Displays the panels of configuration operands that can be changed.

CHANGE
Displays the changeable basic configuration operands panel. If you do not change any field on the panels, you receive a message that the modem configuration is not updated.

If the modem that is being configured is integrated into the controller, the following are not allowed for the CHANGE=CONFIG option:
- SPEED CONTROL MODE = DTE
- TRANSMIT CLOCK OPTION = EXTERNAL
- LOCAL LOOP BACK WRAP = NO

COUPLER
Displays the changeable coupler operands and phone numbers panel. If you do not change any field on the panels, you receive a message that the modem configuration is not updated.

DMPX
Displays the changeable data multiplexing (DMPX) operands panel. If you do not change any field on the panels, you receive a message that the modem configuration is not updated.

Restrictions
The following restrictions apply to the MDMCNFG command:
- Not all IBM LPDA-2 devices support every configuration option. See your specific device’s operation manual for more information.
- Use either the BROWSE or CHANGE operand but not both at the same time.
- Configure a local modem before its adjacent remote modem. The NetView system requires that the local modem address be 01.
- If you want to cancel a change to the configuration, the coupler panel, or the DMPX panel, enter the CANCEL command on the command line and press ENTER.
- The MDMCNFG command only runs under an operator station task (OST).
- If MODEM=REMOTE and CONFIGURATION is M (multipoint), then NETWORK FUNCTION cannot be C (control).
- If LEVEL=2 and MODEM=LOCAL, then TRANSMIT CLOCK must be EXTERNAL.
- If you need to change the transmit clock option, issue CHANGE=CONFIG before you use CHANGE=DMPX. This ensures that you have the desired setting for “port used for external clock.”
Examples

Example: Displaying the Changeable Configuration Operands For a Remote Modem
To display the changeable configuration operands for the remote modem on the link connecting NCP1 and TERM4, enter:

```
MDMCNFG ID=NCP1,STATION=TERM4,MODEM=REMOTE,BROWSE=CONFIG
```

Example: Changing the Configuration Operands for a Remote DMPX Modem
To change the configuration operands for the remote DMPX modem on the link connecting NCP1 and TERM4, use the following command:

```
MDMCNFG ID=NCP1,STATION=TERM4,MODEM=REMOTE,CHANGE=DMPX
```

Response

The panel shown in Figure 8 appears.

![Figure 8. Change DMPX Configuration Operands](image)

Information about the panel follows:

Port

Refers to a physical connection used to connect to a device.

Channel

Refers to a portion of the line bandwidth dedicated to transmitting a data stream. Valid channel numbers are 1–4.

The channel number for port A must be 1. The channel number for port B, C, or D cannot be more than one greater than the largest channel number to its left. For example, the number for port C could be 1, 2, or 3, but not 4. You can reuse any channel number to indicate fan-in or fan-out ports.

Asynchronous Transmission

The fields for asynchronous transmission are:

- **Speed**
- **Character Length**
- **Buffer Transmit Clock**
- **Port Used for External Clock**

Figure 8. Change DMPX Configuration Operands

Information about the panel follows:

Port

Refers to a physical connection used to connect to a device.

Channel

Refers to a portion of the line bandwidth dedicated to transmitting a data stream. Valid channel numbers are 1–4.

The channel number for port A must be 1. The channel number for port B, C, or D cannot be more than one greater than the largest channel number to its left. For example, the number for port C could be 1, 2, or 3, but not 4. You can reuse any channel number to indicate fan-in or fan-out ports.

Asynchronous Transmission

The fields for asynchronous transmission are:
Speed Valid speeds, in kilobytes per second (KBPS), are 0.3, 0.6, 1.2, 2.4, 4.8, 7.2, 9.6, 12.0, and 14.4.

Character Length Valid lengths are 7–12 bits.

Synchronous Transmission The fields for synchronous transmission are:

Speed in Use The speeds listed are the current transmit speeds (for a local modem) or the current receive speeds (for a remote modem). At the right side of this line, the NetView program displays (OF MODEM: FULL) or (OF MODEM: BACKUP), to show whether the modem’s aggregate transmit speed is currently full or backup.

Full Speed The aggregate transmit speed on your primary line. Valid speeds, in KBPS, are 2.4, 4.8, 7.2, 9.6, 12.0, 14.4, 16.8, and 19.2.

Backup Speed The aggregate transmit speed on your backup line. Valid speeds, in KBPS are 0.0, 2.4, 4.8, 7.2, 9.6, 12.0, 14.4, and 16.8.

Buffer Transmit Clock The modem ignores this option if another modem or DCE is connected to its DTE interface. The modem forces the option’s value to EXTERNAL.

Port Used for External Clock This option has a value of N (for not applicable) when TRANSMIT CLOCK OPTION is INTERNAL on the CHANGE | BROWSE = CONFIG panel.
Purpose of Command

The MDMCNTL command performs the following actions for an IBM LPDA-2 modem:

- Changes line speed
- Closes or opens a contact (integrated relay) or detects current of a sensor
- Dials the station using the switched network backup (SNBU) line
- Disconnects the station and activates SNBU
- Senses current on a sensor relay of the modem

Operand Descriptions

ID=node

Specifies the network name of the node that passes the command to the modem.
STATION=devicename
Specifies the network name of the data terminal equipment (DTE) at the end of
the link with which the modem pair is associated.

LEVEL
Changes the speed of a pair of modems.
 1 Changes the first pair of modems. 1 is the default.
 2 Changes the second pair of modems.

MODEM
Changes the speed of a modem.

 LOCAL
 Changes the modem closest to the node that issues the command to the
 link station. LOCAL is the default.

 ALLRMT
 Requests the action for all the remote modems attached to the local. This
 operand is valid with the SPEED operand only.

REMOTE
Changes the modem closest to the station.

CONTACT
Opens, closes, or detects the state of a contact.

 CLOSE
 Closes a contact.

 OPEN
 Opens a contact.

 QUERY
 Detects the state of the contact and the electrical current flowing through
 the sensor.

SPEED
Changes the transmit speed of a modem. You can specify this operand only
when LEVEL=1.

 BACKUP
 Changes the transmit speed of the modem to the backup speed.

 FULL
 Changes the transmit speed of the modem to the full speed.

CHAN=ONLY
Specifies that you are changing the transmit speed only for the modem on the
connection between the node and controller named by ID and STATION. This
operand is valid only if you also specify SPEED=FULL or SPEED=BACKUP.

CONNECT=phonenum
Dials out on a switched network backup (SNBU) line. You can use this
operand only with MODEM=LOCAL.

When you are entering the telephone numbers, you can insert a P (pause)
between two digits whenever an intermediate dial tone is expected from the
carrier network. One P (for example, 9P9918997) causes the modem to pause
before continuing to dial. The length of the pause is modem dependent. Using
multiple Ps (for example, 9PPP9918997) causes the modem’s pause to be the
specified multiple of the basic pause time.
DISCONN

Disconnects a station on the switched network backup line. You can use this operand only with MODEM=LOCAL.

Restrictions

The following restrictions apply to the MDMCNTL command:

• This command applies only to IBM LPDA-2 modems.
• The NetView system requires that the local modem address be 01.
• You cannot specify LEVEL=2 and the SPEED operand together.
• If the transmit speed of only one remote modem is changed, the COMMAND COMPLETED message is returned along with the new modem speed. If the transmit speed of all remote modems is changed, only the COMMAND COMPLETED message is returned.
• One of the operands SPEED, CONTACT, CONNECT, or DISCONN is required with the MDMCNTL command, but you can specify only one at a time. If you write a command list to change the speed of both the local and remote modems on the same line, run the MDMCNTL command twice. Place a WAIT statement between the two MDMCNTL commands to ensure that the second command is not rejected by the communication controller while the first command is being processed.

Examples

Example: Using a Backup Link between a Specified LAN and Station

The communication link between LANCP2 and NYSNA1 has problems and you have received a request to use the backup link until the problem is resolved. The phone numbers for the backup link are 1-800-555-6789 and 1-800-555-6790. Enter the following command:

```
MDMCNTL ID=LANCP2,STATION=NYSNA1,CONNECT=(18005556789,18005556790)
```
Purpose of Command
The MEMLIST command outputs a list of members associated with a specific data definition or data set name matching a specified wildcard. Each matching name is followed by a relative data set number beginning in column 10, which indicates the data set in which it was found. For a PDS, the number is 1. For a DD, the numbers match the concatenated data sets indicated by the LISTA command.

Operand Descriptions

`dsndd`
The name of the DD or data set to process. If specified as an asterisk (*), all standard NetView DD names are processed.

`memspec`
The member specification, which can include the following wildcard characters:

- `?` Any single character.
- `*` Any set of characters, including none.

The default is `*`.

Usage Notes
If message DWO970I is output, refer to the PIPE MEMLIST stage command in the NetView online help for a list of return codes and their meanings.

Examples

Example: Listing DD Members
The following examples lists all members in DSIPARM beginning with an A:

```
MEMLIST DSIPARM A*
```

Response
You receive a response similar to:

```
A 1
ABCMEM 1
A 10
```

Example: Listing Data Set Members
The following example lists all members in USER.INIT:

```
MEMLIST USER.INIT
```

This outputs a list of all members in this data set, each followed by the number 1.
MEMSTORE (NCCF; CNME1054)

Syntax

MEMSTORE

MEMSTORE storg minhits

Purpose of Command

Use the MEMSTORE command to reduce I/O rates to PDS members. The MEMSTORE command manages an algorithm that loads the NetView PDS members with the highest usage in storage to avoid additional disk I/O.

By default, MEMSTORE is started using the memStore keyword in CNMSTYLE. Use the MEMSTOUT command to control or refresh members.

MEMSTORE is run at timed intervals and always on the same task named in CNMSTYLE. MEMSTORE obtains a list of members which have high recent disk usage and loads these members into storage, within the storage specified with storg. If necessary, members with lower disk usage, previously loaded into storage by this task, will be unloaded.

Notes:
1. Changes to a loaded member will not take effect until it is unloaded or reloaded. Use the LIST MEMSTAT command to determine whether a member is loaded, and issue the MEMSTOUT command with the REFRESH option to ensure that your changes take effect.
2. Refer to the comments in CNMSTYLE for more information. For more information on the MEMSTOUT command, refer to the online help.

Operand Descriptions

storg
Specifies a numeric storage value ending with the character %, M, or K. This is the amount of storage allocated to in-storage members managed by MEMSTORE. A value ending with % specifies the percentage of your region size (above 16 M from the RESOURCE command). A value ending with M specifies the number of megabytes (MB). A value ending with K specifies the number of kilobytes (KB). The storg value must be positive (zero is supported with an unload request).

minhits
Specifies the minimum number of usage hits against the member. A member with less than this will not be loaded into storage. This value corresponds to the HITS value in the output from the LIST MEMSTAT command. Review the output from WINDOW LIST MEMSTAT=* to determine the hit counts in your system.

A value of U causes MEMSTORE to unload members until the storg value is reached. The lowest usage members are unloaded first.

Restrictions

The following restrictions apply to the MEMSTORE command:
• It is possible to exceed the storg value when MEMSTORE loads members. For example, there is sufficient storage when MEMSTORE loads a member, but when the load is complete, the storage is exceeded. MEMSTORE will not load or unload other members until space is freed.

• Any process using the INSTORE stage command with the COMMON option might conflict with MEMSTORE if it runs on the same task. Therefore, run MEMSTORE on its own task or on a task that runs no other processes that need to keep a member in common storage.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Functioned normally</td>
</tr>
<tr>
<td>4</td>
<td>Syntax error</td>
</tr>
<tr>
<td>8</td>
<td>An internal failure occurred. Refer to the accompanying message.</td>
</tr>
<tr>
<td>20</td>
<td>The function failed. Over half of the region size was specified.</td>
</tr>
</tbody>
</table>

Examples

Example: Reinitializing MEMSTORE
To reinitialize MEMSTORE, enter the following:

```
RESTYLE MEMSTORE
```

Example: Reducing MEMSTORE Storage
To reduce storage to 4 MB using the AUTO1 task, enter the following:

```
/AUTO1: MEMSTORE 4M U
```
MEMSTOUT (NCCF; CNMEOUTS)

Syntax

MEMSTOUT

UNLOAD

REFRESH

RESET

member

ddname

Purpose of Command

The MEMSTOUT command controls functions of the MEMSTORE automatic memory caching service. You can use MEMSTOUT when new versions of changed members need to be put into use although they are cached by MEMSTORE.

Operand Descriptions

UNLOAD

Specifies that members cached by MEMSTORE should be removed from the cache and not cached again.

REFRESH

Specifies that members cached by MEMSTORE should be removed from the cache, but can be cached again after being read from disk.

RESET

Specifies that the list of members not to be cached should be deleted. A new list can optionally be entered after the RESET keyword, or set later using the UNLOAD keyword.

member

A member name is required (except with RESET) and indicates which member to act on. An asterisk can be specified instead of a name, in which case all members from the DD named are acted on.

ddname

Specifies the name of the data definition for which the member is located. If ddname is not specified, (or when an asterisk is used) the action is against that member in all DDs defined to NetView (issue "BROWSE !" for a list of these DDs). Use a period to separate ddname from member name.

Usage Notes

MEMSTOUT can be issued in two modes: normal and direct.

Normal

When issued in the normal mode, MEMSTOUT is dependent on automation in DSITBL01 and does not return correlated output. The "memstore" task defined in your style sheet must be active.

Direct

Users authorized to EXCMD can prefix a label designating the "memstore" task defined in your style sheet. When issued direct, MEMSTOUT does produce correlated output.
Restrictions

The following restrictions apply to the MEMSTOUT command:

- In normal operation, the DSITBL01 automation member must be active.
- For direct operation, operator must be authorized to use EXCMD to send MEMSTOUT to the MEMSTORE task (or logon to the task).

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Functioned normally</td>
</tr>
<tr>
<td>16</td>
<td>Syntax error</td>
</tr>
</tbody>
</table>

Examples

Access DSIOPF with MEMSTOUT
You can use the MEMSTOUT command to make new changes for member DSIOPF to be accessed by entering the following:

```
MEMSTOUT REFRESH DSIPARM.DSIOPF
```

Prevent CLIST from Being Cached
You can use the MEMSTOUT command to prevent any CLIST from being cached by entering the following:

```
/AUTO2: MEMSTOUT DSICLD.*
```
MENU (NLDM, NPDA, TARA)

Syntax

MENU

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENU</td>
<td>M</td>
</tr>
</tbody>
</table>

Purpose of Command

The MENU command displays:

- The hardware monitor main menu
- The Selection Options panel for the session monitor
- The 4700 Support Facility main menu

Examples

Example: Displaying the First Sequence Panel for the Hardware Monitor, the 4700 Support Facility, or the Session Monitor

To display the first panel of the hardware monitor sequence, the 4700 Support Facility sequence, or the session monitor sequence, enter:

MENU

OR

M
MESSAGE (NCCF)

Syntax

MESSAGE

Purpose of Command

The MESSAGE command is used by command procedures to issue certain NetView messages.

While the primary use of the MESSAGE command is to issue messages for NetView-supplied command lists, customer-written command procedures can use the MESSAGE command to issue these same messages.

To use the MESSAGE command in your command procedures, do the following:

1. To find the messages you want to issue, refer to the NetView online help.

 Note: Messages numbered DSI900–DSI999 are reserved for customer use. You can create your own message members, DSIDS190 through DSIDS199, and define messages there. These messages are then accessible to the MESSAGE command.

2. Add the appropriate call to the MESSAGE command within your command procedure.

 Note: Messages previously defined in DSICNMnn, DSIDS1nn, DSIDS11nn, DSIDWO1nn, and DSIFLB1nn message members have been internalized to enhance performance. These messages are still supported by the MESSAGE command as well as other commands. However, not all messages are supported by the MESSAGE command.

Operand Descriptions

PPT Indicates that the message should be sent to the authorized receiver. This keyword is optional.

CNM Specifies an optional 3-character message prefix. CNM is the default.

BNH Specifies an optional 3-character message prefix.

BNJ Specifies an optional 3-character message prefix.
DSI Specifies an optional 3-character message prefix.

DUI Specifies an optional 3-character message prefix.

DWO Specifies an optional 3-character message prefix.

EZL Specifies an optional 3-character message prefix.

FKV Specifies an optional 3-character message prefix.

FKX Specifies an optional 3-character message prefix.

FLB Specifies an optional 3-character message prefix.

FLC Specifies an optional 3-character message prefix.

IHS Specifies an optional 3-character message prefix.

msgnumber
Indicates the message number. The valid range for this variable is 001–999.

text Specifies 1–9 words or strings within single quotes. These words are used as inserts in the message, replacing &1...&9 in the message definition.

Note: The inserts in the message definition can appear in any order, but the words from the text string are used in order to replace &1...&9.

Restrictions
The following restrictions apply to the MESSAGE command:

- The MESSAGE command can be issued only by a command procedure running under an OST, NNT, PPT, or DST.
- When you issue MESSAGE under a DST and the PPT option is not given, the message output goes to the operator who last issued START for the DST if that operator is still logged on. Otherwise, the output is sent to the authorized receiver.

Examples

Example: Informing an Operator of an Incorrect Parameter
If you are writing a command list to validate parameters, you can use MESSAGE to inform an operator of an incorrect parameter:

MESSAGE 306, 'MYCLIST'

Response
Using this command list, the operator receives this error message:

CNM306E MYCLIST : INVALID PARAMETER(S)
MONIT (STATMON)

Syntax

MONIT

```plaintext
MONIT START,ALL, ID=nodename
```

Purpose of Command

The MONIT command enables or disables the automatic node reactivation function.

Operand Descriptions

- **START**
 Starts automatic node reactivation.
- **STOP**
 Stops automatic node reactivation.
- **ALL**
 Specifies all applicable nodes.
- **ID=nodename**
 Specifies a specific node.

Restrictions

The following restrictions apply to the MONIT command:

- The only nodes that you can add to (start) or remove from (stop) the reactivation list are those that were *not* specified as NOMONIT in the file VTAMLST.
- Issuing the MONIT START,ALL command starts global monitoring for all nodes that were *not* specified as NOMONIT in the file VTAMLST.
- If you issue MONIT STOP, ID=nodename for a specific node, issue MONIT START, ID=nodename to restart automatic node reactivation for that node. You cannot issue MONIT START,ALL.
- If you issue a MONIT STOP, ALL command, you cannot restart node reactivation of a specific node with a MONIT START, ID=nodename command. You must use the MONIT START, ALL command.
- If you inactivate resources with the V NET, INACT command, you cannot automatically reactivate them with the MONIT command unless you use the ID=nodename operand.

Examples

Example: Starting the Automatic Node Reactivation Function for All Nodes Not Specified as NOMONIT in VTAMLST

To start the automatic node reactivation function for all nodes not specified as NOMONIT in the file VTAMLST, enter:

```
MONIT START, ALL
```

Example: Starting the Automatic Reactivation of a Specified Line

To start automatic reactivation of LINE27, enter:

```
MONIT START, ID=LINE27
```
MONOFF (STATMON; CNME9001)

Syntax

MONOFF

Purpose of Command
The MONOFF command list stops automatic reactivation of one or all resources. This command list generates a MONIT STOP command.

Operand Descriptions

ALL
Specifies all applicable nodes. ALL is the default.

nodeName
Specifies a specific node.

Examples

Example: Stopping Automatic Reactivation of a Specified Line
To stop automatic reactivation for LINE27, enter:
MONOFF LINE27

Example: Stopping Automatic Reactivation of All Nodes
To stop automatic reactivation of all nodes, enter:
MONOFF

Response
CNM0021 "MONIT" FUNCTION IS COMPLETE

Example: Stopping Automatic Reactivation of a Specified Resource
To stop automatic reactivation of resource A01P4A0, enter:
MONOFF A01P4A0

Response
MONOFF A01P4A0
CNM0021 "MONIT" FUNCTION IS COMPLETE
MONON (STATMON; CNME9002)

Syntax

MONON

Purpose of Command

The MONON command list starts automatic reactivation of one or all resources. This command list generates a MONIT START command.

Operand Descriptions

ALL

Specifies all applicable nodes. ALL is the default.

nodename

Specifies a specific node.

Examples

Example: Starting Automatic Reactivation of a Specified Line
To start automatic reactivation for LINE27, enter:

MONON LINE27

Example: Starting Automatic Reactivation of a Specified Resource
To start automatic reactivation of resource A01P4A0, enter:

MONON A01P4A0

Response

MONON A01P4A0

CNM0021 ""MONIT"" FUNCTION IS COMPLETE

Example: Attempting to Start Automatic Reactivation of a Specified Resource
To start the automatic reactivation of resource A01P4A1, which is not being monitored, enter:

MONON A01P4A1

Response

MONON A01P4A1

CNM0341 YOUR REQUEST WAS IGNORED: A01P4A1 IS NOT INACTIVE
MRECENT (NPDA)

Syntax

MRECENT

<table>
<thead>
<tr>
<th>EV A adaptadr</th>
<th>EV ALL N resname</th>
</tr>
</thead>
<tbody>
<tr>
<td>EV N resname</td>
<td>ST N link_station</td>
</tr>
</tbody>
</table>

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRECENT</td>
<td>MR</td>
</tr>
</tbody>
</table>

Purpose of Command

The MRECENT command displays in reverse chronological order a list of the most recent events or statistics for a specified resource.

Operand Descriptions

EV

Specifies the data type as event.

A

Identifies the operand that follows as an adapter address.

adaptadr

Specifies the 12-hexadecimal digit adapter address. The A (adapter) address is not a valid option for a resource type of CBUS.

ALL

Specifies to show all events for a particular resource that might have multiple hierarchies associated with it.

N

Identifies the operand that follows as a resource name.

resname

Specifies the symbolic name of the resource. You can specify up to five resource names to fully qualify the resource for which data is to be displayed. If you specify MRECENT EV ALL, resname can be an eight-character Systems Network Architecture (SNA) name or an associated resource name of up to 56 characters.

An associated resource is a resource that is not hierarchically connected to the alert sender. An alert sender can add an associated resource to the generic alert.

ST

Specifies the data type as statistical.

link_station

Specifies the name of a link station for which statistics are gathered by an NCP or VTAM.
Restrictions

The following restrictions apply to the MRECENT command:

- If you specify MRECENT EV ALL N resname, panel NPDA-41B (correlated events) is displayed.
- Statistics are only generated by link_station in the current release of NCP and VTAM. If you request the most recent statistics for the line or NCP above a link station, you receive message BNJ925I NO DATA EXISTS FOR COMMAND SPECIFIED. However, the TOTAL ST command does allow you to specify superior resources and presents a menu of subordinate statistics records from which to choose.
- If the name of the resource is not associated with a unique resource configuration on the database, a selection panel is displayed on which you can choose which configuration is relevant.

Examples

Example: Viewing the Most Recent Statistics for a Specified Controller
To view the most recent statistics for controller RAL01, enter:

MRECENT ST N RAL01
MSG (NCCF)

Syntax

```
MSG ALL, text

MSG +groupid, text

MSG LOG, text

MSG operid, text

MSG PPT, text

MSG SYSOP, text
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Commands and operands</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSG</td>
<td>M</td>
</tr>
<tr>
<td>PPT</td>
<td>P, AUTHRCV</td>
</tr>
</tbody>
</table>

Purpose of Command

The MSG command sends a message to an operator or to the network log.

Operand Descriptions

ALL

Indicates that the message is sent to all active operators and autotasks in the domain, all operators and autotasks in other domains that have established a cross-domain (NNT) session to the domain, and the system console.

+groupid

Indicates the group ID to which the message is sent. You can assign the operators to the group ID using the ASSIGN command. At least one of the operators must be logged on to receive the message.

LOG

Indicates that the message is sent to the logs that are enabled by the current DEFAULTS and OVERRIDE command settings.

operid

Is the operator to whom you are sending the message.

PPT

Indicates that the message text is to be sent to the primary program operator interface task (PPT). If an authorized receiver is logged on, the message is routed there.

SYSOP

Indicates that the message is sent to the system console operator.

text

Specifies up to 240 characters of message text.

Restrictions

The following restrictions apply to the MSG command:
• A comma or blanks must come before the message text. All characters after the comma or blanks are considered part of the text. You can use blanks and commas in the text. Quotation marks ("”) or apostrophes (‘’) are not required; if they are in the text, they are treated as part of the text.

• The MSG LOG command does not work if you specify NETLOG=NO with the DEFAULTS or OVERRIDE commands. You can do two things to send messages to the network log, regardless of these settings:
 – First, create a command list that issues OVERRIDE NETLOG=YES as its first command. Create a second command list that sends the message to the autotask. The autotask then writes the message to the log.
 – Use the LITERAL and LOGTO stages of the PIPE command. For more information about the PIPE stages, refer to the online help.

• There is no reason to send messages to the following tasks:
 – DSIACBMT
 – DSIDCBMT
 – DSIHLLMT
 – DSILOGMT
 – DSISTMMT
 – DSIWTOMT

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Task not found</td>
</tr>
</tbody>
</table>

Examples

Example: Sending a Message About a Specified Resource to the Network Log
To send a message about the status of resource L21E78B to the network log, enter:

```
MSG LOG,L21E78B WAS IN SESSION WITH TAPPL2 AT TIME OF FAILURE
```

Example: Sending a Message to All Active Terminals and System Console Operators
To send a message indicating system shutdown to all active terminals and to the system console operator, enter:

```
MSG ALL,SYSTEM SHUTDOWN IN 15 MINUTES
```

Response

The receiving operators see:

```
DSI039I MSG FROM NCF01 : SYSTEM SHUTDOWN IN 15 MINUTES
```

You see:

```
DSI001I MESSAGE SENT TO ALL
```

Example: Sending a Message to the Network Log
To send a message to the network log (when NETLOG=NO in the DEFAULTS or OVERRIDE command), enter:

```
PIPE LITERAL /I am sending this message to the NETLOG/
| LOGTO NETLOG
```

Assigning Operators to Specified Groups
To assign operators OP1 and OP2 to the group ID +GROUP1, enter:

```
ASSIGN GROUP++GROUP1,OP=(OP1,OP2)
```
Sending a Message to a Group ID
This example assumes that you have defined a group ID as +GROUP1, as in the above example. To send a message to the group ID +GROUP1, enter:

MSG +GROUP1,text
MTYPE (LOG-BROWSE)

Syntax

```
MTYPE
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTYPE</td>
<td>MT</td>
</tr>
</tbody>
</table>

Purpose of Command

The MTYPE command toggles between displaying important message indicators and HDRMTYPE values in column 35 on the log browse screen.

Restrictions

When browsing a pre-V1R3 log, MTYPE has no effect. Also, when browsing an up-level log from a pre-V1R3 NetView, the HDRMTYPE will appear at the end of the line.
MVS (NCCF)

Syntax

MVS

Purpose of Command

The MVS command enables you to enter an MVS system operator command from the NetView program. If your task has not obtained an MVS console, the MVS command attempts to obtain one for you.

Operand Descriptions

command

Is an MVS, JES2, JES3, or VTAM command.

Note: The MVS command text is limited to 126 characters.

Restrictions

The following restrictions apply to the MVS command:

- If you are running a system with extended multiple console support (EMCS) consoles, and your task has not obtained an EMCS console, NetView attempts to obtain an EMCS console for the task.

NetView determines the console name in the following order:

1. If OPERSEC=SAFDEF was in effect when the operator logged on, NetView uses the value of CONSNAME specified in the NetView segment of the SAF product. If there is not a CONSNAME in the NetView segment, see 3.
2. If OPERSEC=SAFDEF was not in effect when the operator logged on, NetView uses the value of CONSNAME specified in the operator’s profile in DSIPRF. If there is not a CONSNAME in the operator’s profile, see 3.
3. If a CONSNAME was not specified in either the NetView segment or the operator’s profile, NetView uses the operator task name as the console name. In this case, the operator ID must be greater than one character in length and use the same rules as console name rules.

If you want to specify a particular console name, refer to the GETCONID command.

Refer to the Tivoli NetView for z/OS Security Reference for information about EMCS console attributes.

- You can issue some commands in the master console (MC) only group from the NetView program.
- NetView command authorization checking can be specified on the first keyword which is the system command name and the next token which is the first keyword of the system command. For example, in the command:

MVS D A,L

Where:
D Is the system command name and can be authority checked as the keyword to the command MVS.

A Is the keyword to the D command. A can be authority checked as a value for the command MVS and the keyword D.

L Is a modifier to the A keyword. You cannot protect the L modifier using NetView command-authorization checking because only the first two tokens on an MVS command can be protected.

To protect this MVS command to the most specific level using either CMDAUTH=TABLE or CMDAUTH=SAF, specify a command identifier as follows:

netid.luname.MVS.D.A

For information about protecting MVS system commands using the OPERCMDS class of an SAF product, refer to the [Tivoli NetView for z/OS Security Reference](https://www.ibm.com).
<table>
<thead>
<tr>
<th>Return Code</th>
<th>Corresponding Message</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>623</td>
<td>DWO623</td>
<td>A migration console ID was not available. No console has been obtained.</td>
</tr>
</tbody>
</table>

Examples

Example: Using the MODIFY Command

To use the MODIFY command, enter:

```
MVS MODIFY TSO,USERMAX=nnnn
```
NCCF (NLDM, NPDA, STATMON, TARA)

Syntax

\[\text{NCCF} \]

Purpose of Command

The NCCF command enters the command facility from the hardware monitor, the session monitor, the status monitor, or the 4700 Support Facility.

After you enter NCCF (with or without operands), you see the command facility panel. To resume the component from which you entered the NCCF command, issue the ROLL or RETURN command.

When you send a command to the command facility from another component, the command is processed by the command facility as if it had been entered directly from the command facility.

When you use this command from another component, the command facility remains on the NetView component stack that is used with ROLL until you issue RETURN from the command facility panel.

Operand Descriptions

\[\text{command} \]

Is a command facility command and parameters. Command facility immediate commands are not accepted.
NCPDUMP (NCCF; CNME0013)

Syntax

NCPDUMP

ncpname

local_station

station_name

DYNA

RMPO

PDS=filename

NCP

CSP

MOSS

STORE

PURGE

passthru

Purpose of Command

The NCPDUMP command list initiates a static dump of an active network control program (NCP).

Operand Descriptions

ncpname

Is the name of the NCP to be dumped.

local_station

If you do not specify a station_name, your local station is used.

station_name

Is the name of a link station, in a node adjacent to the NCP to be dumped, through which a static dump operation is to be performed. If you specify station_name, you cannot specify DYNA.

DYNA

Specifies that power to the communication controller should not be turned off, and that the NCP is to be dumped dynamically. If you specify DYNA, you cannot specify CSP or MOSS.

RMPO

Specifies that power to the communication controller should be turned off after the NCP is dumped statically. RMPO is the default. If you specify RMPO, you cannot specify CSP or MOSS.

PDS=filename

Identifies the file that is to contain the dump.

NCP

Specifies that the NCP in the communication controller’s main storage is to be dumped and the resulting dump is to be sent to the host and stored in a host data set. NCP is the default.

CSP

Specifies that a communication scanner processor-dump contained on the maintenance and operator subsystem (MOSS) disk in the communication controller is to be sent to the host and stored in a host data set.
MOSS
Specifies that a maintenance operator subsystem-dump contained on the MOSS
disk in the communication controller is to be sent to the host and stored in a
host data set.

STORE
Causes the NCP to be dumped to the controller’s hard disk. The NCP name is
the only operand allowed when STORE is specified. STORE is only valid for
NCP V5R3 or later.

PURGE
Purges the dump from the controller’s hard disk.

passthru
Specifies up to 6 parameters which are appended unchanged to the VTAM
MODIFY command issued by the NCPDUMP command. No validation for
duplicate or conflicting parameters is performed.

Note: The first unrecognized operand is considered to be the station_name. The
specification for station_name is therefore required when using passthru
and must precede the specification for passthru.

Restrictions
If you omit a positional operand, indicate its absence with a comma.

Return Codes
<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Functioned normally</td>
</tr>
</tbody>
</table>

Examples

Example: Dumping an NCP and Putting the Results in a File
If you want to dynamically dump NCP1 and put the results in a file defined by
NCPDUMP, enter:
NCPDUMP NCP1,DYNA,PDS=NCPDUMP

Example: Recording a Static Dump of an Inactive NCP
To record a static dump of the inactive NCP named NCP1 in the file called
NCPDUMP1 through link station LSA2, enter:
NCPDUMP NCP1,LSA2,RMPO,PDS=NCPDUMP1,NCP

Example: Recording a Dump of an Active NCP
To record a dump of the active NCP named NCP2 in the file called NCPDUMP2,
enter:
NCPDUMP NCP2,DYNA,PDS=NCPDUMP2,NCP
NCPSTOR (NCCF; CNME0023)

Syntax

NCPSTOR

```
NCPSTOR ncpid, addr, length, MAIN, DUMPMAIN, DUMPVEC, passthru
```

Purpose of Command

The NCPSTOR command list displays the storage contents of a communication controller running a network control program (NCP). You can display up to 256 (decimal) bytes from any address within the communication controller.

Operand Descriptions

- **ncpid**
 Specifies the name of the NCP whose storage is to be displayed.

- **addr**
 Specifies the address (in hexadecimal) of the first byte of data to be displayed.

- **32**
 If you do not specify the number of bytes of NCP storage to be displayed, the default of 32 is used.

- **length**
 Specifies the number of bytes of NCP storage to be displayed. The value can be any decimal number from 1–256. The default is 32.

- **MAIN**
 Specifies the storage contents of a 3720 or 3745 Communication Controller running an NCP. MAIN is the default.

- **DUMPMAIN**
 Specifies the main part of an NCP dump stored on a 3720 or 3745 Communication Controller.

- **DUMPVEC**
 Specifies the state vector of the NCP stored on a 3720 or 3745 Communication Controller.

- **passthru**
 Specifies up to 6 parameters which are appended unchanged to the VTAM DISPLAY command issued by the NCPSTOR command. No validation for duplicate or conflicting parameters is performed.

Restrictions

MAIN, DUMPVEC, and DUMPMAIN are only available for VTAM Version 3 Release 3 or later releases.
Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Functioned normally.</td>
</tr>
<tr>
<td>20</td>
<td>Length is not valid.</td>
</tr>
<tr>
<td>100</td>
<td>Internal failure, see message DWO050 in the NetView log for more information.</td>
</tr>
</tbody>
</table>

Examples

Example: Listing the Contents of a Specified NCP

To list the storage contents of NCP572P, beginning with address 260 for 32 bytes, enter:

NCPSTOR NCP572P,260

Response

You receive messages similar to:

IST097I NCPSTOR ACCEPTED
IST244I NCP STORAGE FOR ID = NCP572P
IST245I 000260 81C2282F 104828AE 415CF00F 991528B3
IST245I 000270 0108E1F0 80804154 A821D410 2589F2A0
NETCONV (NCCF)

Syntax

```
NETCONV
```

```
<table>
<thead>
<tr>
<th>ACTION=</th>
<th>START - STOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>LU=</td>
<td>pcluname</td>
</tr>
<tr>
<td>IP=</td>
<td>ipid</td>
</tr>
<tr>
<td>PORT=</td>
<td>default</td>
</tr>
<tr>
<td>PORT=</td>
<td>portnum</td>
</tr>
<tr>
<td>OPID=</td>
<td>ALL</td>
</tr>
<tr>
<td>operatorid</td>
<td></td>
</tr>
</tbody>
</table>
```

Notes:

1. This value is set in the DUIFPMEM file. If it is not present in the DUIFPMEM file, then the default is 4020.

Purpose of Command

The NETCONV command starts and stops an LU 6.2 or IP communication session between a status focal point host and a server workstation. The NetView Management Console uses this session to forward resource status data to the workstation where the data is displayed graphically.

The NETCONV command lists all server workstations communicating to the status focal point host through one particular NetView operator ID, or all NetView operator IDs, on the host.

Operand Descriptions

LU=pcluname

Specifies the network name of the independent LU defined in the workstation. This name must match the name specified in the VTAM or in the network control program (NCP) definitions for the LU defined in the workstation.

IP=ipid

Specifies the IP address and host name of the workstation.

ACTION=action

For LU 6.2, starts or stops a conversation between the NetView APPC transaction program and its partner as indicated by the LU’s transaction program.

For IP, starts or stops a conversation between the NetView TCP/IP interface and its partner as indicated by the IP configuration of the workstation.

Lists all workstations by LU name or IP address, which are logged onto by a specified operator.

The values for ACTION are:

LIST

Lists operator IDs and the workstations to which they are connected.

START

Initiates a conversation.

STOP

Stops a conversation.
OPID=operatorid
Specifies the operator ID to list the LU 6.2/IP sessions to which the operator is connected.

PORT=portnum
Specifies the port number for the session of the workstation to which the operator is connected. The PORT keyword is valid when an IP connection or session is being established.

If PORT is not specified, the NetView program uses the PORT value specified in the DUIFPMEM file. If no value is specified in the DUIFPMEM file, then the default value 4020 is assigned.

Restrictions
The following restrictions apply to the NETCONV command:

- This command is not restricted to any particular operator. You can issue it from a command list or from an automated operator task.
- When the operator station task (OST) or primary program operator interface task (PPT) that issued a NETCONV command for a workstation terminates for any reason, then the communication between the status focal point host and the server workstation terminates.
- You should use command authorization checking for NETCONV because there is no security or RACF support for LU 6.2 or IP.
- If you plan to download view preprocessor generated views, you cannot issue the NETCONV command from a PPT. Additionally, if NetView operator security checking is done using OPERSEC=SAFCHECK or OPERSEC=SAFDEF, the task that issues the NETCONV command must have SAF authority to access the views data set.
- When NETCONV is terminated because TCP/IP ended, it can take 1–60 seconds before CNMTAMEL is updated with this information.

Examples

Example: Starting Communication with a Specified LU
To start communication with an LU named N3L0510, enter:
NETCONV ACTION=START LU=N3L0510

Response

You receive a response similar to:
DUI101I NETCONV COMMAND PROCESSED SUCCESSFULLY
COMMUNICATION TO LU N3L0510 STARTED

Example: Starting Communication with a Specified IP and Port number
To start communication with an IP named HOSTABC on port 8080, enter:
NETCONV ACTION=START IP=HOSTABC PORT=8080

Response

You receive a response similar to:
DUI401I NETCONV COMMAND PROCESSED SUCCESSFULLY
COMMUNICATION TO IP HOSTABC:8080 STARTED
Example: List Operator's LU/IP Sessions

To list the LU/IP sessions to which operator USER1 is communicating, enter:

```
NETCONV ACTION=LIST OPID=USER1
```

Response

You receive a response similar to:

```
DUI124I OPERATOR USER1 IS COMMUNICATING WITH
  WORKSTATION AT LU N3L0510

DUI424I OPERATOR USER1 IS COMMUNICATING WITH
  WORKSTATION AT IP HOSTABC:8080
```
NETVASIS (NCCF)

Syntax

\[
\text{NETVASIS}\]

\[
\text{NETVASIS cmdtext}\]

Purpose of Command

When you enter a command, the NetView program converts lowercase characters to uppercase prior to processing. Prefixing your commands with NETVASIS prevents this conversion and allows you to enter commands in mixed case.

Operand Descriptions

\[\text{cmdtext}\]

Specifies a mixed case command.

Restrictions

To use NETVASIS, you must include the following statement in CNMSTYLE:

\[
\text{transTbl} = \text{DSIEBCDC}\]

Examples

Example: Invoking a Mixed Case Command

To invoke your command list RODMINST, which displays instances of a particular RODM class, prefix the command with NETVASIS because RODM class names are case-sensitive. To display a list of network management gateways defined in RODM, enter:

\[
\text{netvasis rodminst NMG_Class}\]
NETWORK (NCCF; CNME1060)

Syntax

```
NETWORK
```

```
NETWORK ncpid
```

Purpose of Command

The NETWORK command list displays all networks defined to a network control program (NCP). This command list also enables you to see what HSCBs are used and available.

Operand Descriptions

```
ncpid
```

Specifies the name of the NCP for which all defined networks are to be displayed.

Restrictions

Incorrect results can occur if you run the NETWORK command list while MSGMOD is on.

Examples

Example: Displaying Networks Defined to a Specified NCP

To display the networks defined to NCP21, enter:

```
NETWORK NCP21
```
NEWS (NCCF; CNME1008)

Syntax

NEWS

Purpose of Command

The NEWS command list displays messages from your network control center. Your system programmer enters messages by updating the CNMNEWS member.
NLDM (NLDM)

Syntax

```
NLDM
```

```
[ N ] [ X ] command
```

Purpose of Command

The NLDM command enters the full-screen mode of the session monitor or processes a single session monitor command from another NetView component.

Operand Descriptions

- **N** Indicates that the session monitor is to enter full-screen mode using a non-extended data stream regardless of whether the session monitor has detected an extended data stream terminal. You usually enter this operand only the first time you use the NLDM command or after you use the NLDM END command.

- **X** Indicates that the session monitor is to enter full-screen mode using an extended data stream regardless of whether the session monitor has detected an extended data stream terminal. If the terminal is not an extended data stream terminal, I/O errors occur. You usually enter this operand only the first time you use the NLDM command or after you use the NLDM END command.

```
command
```

Specifies a session monitor command. For a list of these commands, refer to the NetView online help by issuing the following:

```
HELP NLDM COMMANDS
```

Restrictions

The following restrictions apply to the NLDM command:

- If no operand is specified, the session monitor determines whether to use extended data streams by examining the logon mode.
- When you use this command, the session monitor remains on the NetView component stack that is used with the ROLL command until the session monitor ends.
NMCPINIT

Syntax

```
NMCPINIT
```

Purpose of Command

The NMCPINIT command processes NMCSTATUS policy definitions currently loaded in the Policy Repository. You can resynchronize your current NMCSTATUS policies when modified CHRON timers affect your policy. When NMCPINIT is issued, NMCSTATUS policies are read from storage and checked for errors. If errors are found, the policy file must be corrected and read into storage with the POLICY REQ=LOAD command. If no errors are found, any existing CHRON timers previously set for NMCSTATUS policies are deleted. Any objects in RODM created for the policy are also deleted. New CHRON timers are set to indicate the start and end of policy schedules. When these timers pop, command lists are executed to add or delete RODM objects that represent the policy. For details on how to define and reload a policy file with your definitions, refer to NMCSTATUS in the [Tivoli NetView for z/OS Administration Reference](https://www.ibm.com/servers/resourcelink/novelforum�).

Restrictions

The following restrictions apply to the NMCPINIT command:

- TOWER GRAPHICS must be specified in the CMNSTYLE file.
- RODMname must be specified in the CNMSTYLE file.
NMCPTEST

Syntax

Purpose of Command

The NMCPTEST command enables you to verify NMCSTATUS policy definitions currently loaded in the Policy Repository. When NMCPTEST is issued, NMCSTATUS policies are read from storage and checked for errors. If errors are found, the policy file must be corrected and read into storage with the POLICY REQ=LOAD command. If no errors are found, issue the NMCPINIT command to further process your NMCSTATUS policy definitions. For details on how to define and reload a policy file with your definitions, refer to NMCSTATUS in the NetView for z/OS Administration Reference.

Restrictions

The following restrictions apply to the NMCPTEST command:

- TOWER GRAPHICS must be specified in the CMNSTYLE file.
- RODMname must be specified in the CNMSTYLE file.
Syntax

```
NODE
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>EVERY, E</td>
</tr>
<tr>
<td>ACT</td>
<td>A</td>
</tr>
<tr>
<td>INACT</td>
<td>I</td>
</tr>
<tr>
<td>ONLY</td>
<td>O</td>
</tr>
</tbody>
</table>

Purpose of Command

The NODE command list provides information about a particular major node or minor node and its subordinate resources.

Operand Descriptions

resname

Is the name of the major node or minor node. The default is your terminal. You can use a network-qualified name.

ACT

Specifies that information is to be displayed about the named resource as well as about all active, pending, and connectable subordinate resources.

ACTONLY

Specifies that information is to be displayed about the named resource as well as about all subordinate resources in an active state. The display does not include subordinate resources in pending or connectable states.

ALL

Specifies that information is to be displayed about the named resource as well as about all subordinate resources (regardless of their status). ALL is the default.

CONCT

Specifies that information is to be displayed about the named resource as well as about all subordinate resources in a CONCT (connectable) state.
INACT
Specifies that information is to be displayed about the named resource as well as about all inactive subordinate resources.

INACTONLY
Specifies that information is to be displayed about the named resource as well as about all inactive subordinate resources. Resources in a RESET state are not included in the display.

ONLY
Displays status information about the named resource (resname) only.

PENDING
Specifies that information is to be displayed about the named resource as well as about all pending subordinate resources. A pending state is a transient state to or from the fully active state.

RESET
Specifies that information is to be displayed about the named resource as well as about all subordinate resources in a RESET state.

netid
Limits the scope of the display to a specific network. The default netid is the default VTAM network ID.

passthru
Specifies up to 6 parameters which are appended unchanged to the VTAM DISPLAY command issued by the NODE command. No validation for duplicate or conflicting parameters is performed.

Usage Notes
You should consider the following when using the NODE command:
• If the status parameter (ALL, ACT, and so on) is omitted, and no passthru parameters are specified, then ALL is the default. However, if passthru parameters are specified and there is no status parameter specified, then NetView does not include a SCOPE= keyword in the generated VTAM DISPLAY command. This allows you to include your own SCOPE= keyword using the passthru parameter.
• The valid values for the status parameter depend on the level of VTAM you are using.

Examples

Example: Displaying Information About a Specified Channel-Attached Major Node
To display information about the channel-attached major node CTCA7F0 and its subordinate resources, enter:

NODE CTCA7F0,ALL

Response
You receive a message similar to:

IST097I DISPLAY ACCEPTED
IST350I DISPLAY TYPE = NODE
IST486I NAME= CTCA7F0, STATUS= ACTIV, DESIRED STATE= ACTIV
IST654I I/O TRACE = ON, BUFFER TRACE = N/A
IST170I LINES:
IST232I CTCL1 , ACTIV----E, CUA = 7F0
IST314I END
NOSTAT (NCCF; CNME0025)

Syntax

NOSTAT

Purpose of Command

The NOSTAT command list stops the recording of tuning statistics.

Operand Descriptions

pass thru

Specifies up to 6 parameters that are appended unchanged to the VTAM MODIFY command, which is issued by the NOSTAT command. No validation for duplicate or conflicting parameters is performed.
NPDA (NPDA)

Syntax

```
NPDA
```

Purpose of Command

The NPDA command enters the hardware monitor or processes a single hardware monitor command.

Operand Descriptions

```
command
```

Specifies a hardware monitor line command. For a list of these commands, refer to the NetView online help by issuing the following:

```
HELP NPDA COMMANDS
```

Usage Notes

The Alerts Detail screen from the NPDA online help shows the first 212 characters. To view the maximum of 250 characters, select option 3 “HEXADECIMAL DISPLAY OF DATA RECORD” from the screen.

Restrictions

The following restrictions apply to the NPDA command:

- Generally when you use this command, the hardware monitor remains on the NetView component stack that is used with ROLL until the component is ended. The exceptions are when one of the following commands is issued: REPORTS, SRFILTER, SVFILTER, SWRAP, SRATIO, or END. You can process these commands from other NetView components without changing the state of the NetView component stack.
NRMCTL (NCCF)

Syntax

```
NRMCTL
  LISTPARM
  LISTMON
  ExclusionLists
```

ExclusionLists:

```
XCLDOM
  = (domain)

XCLTASK
  = (taskname)

XCLTYPE
  = (tasktype)
```

Purpose of Command

The NRMCTL command is used to set or change excluded resources for, and display information about, the NetView Resource Manager.

Operand Descriptions

LISTPARM

If NRM is active, this option lists the NRM parameters, and the current task name and task type exclusion lists. If NRM is inactive or is active as a manager, it also lists current domain exclusion lists. LISTPARM cannot be specified with any other parameters.

LISTMON

Lists domains currently being monitored by an NRM manager host (not valid for an agent). LISTMON cannot be specified with any other parameters.

XCLDOM

Specifies which domains the NRM manager host should not monitor. The value is 1 – 5 characters in length. Wildcards can be specified for the domain names. Refer to "Example: Using Wildcards with XCLDOM" on page 603.

You can specify XCLDOM without a value to not exclude domains.

The parentheses are not required if only one value is specified. Multiple values must be enclosed in parentheses and separated by either blanks or commas.

Note: This keyword is only applicable to a NetView Resource Manager host.

XCLTASK

Specifies which tasks the NRM manager should not monitor. The value is 1 – 8
characters in length. Wildcards can be specified for the task names. Refer to "Example: Using Wildcards with XCLTASK" on page 603.

You can specify XCLTASK without a value to not exclude tasks.

The parentheses are not required if only one task is specified. Multiple values must be enclosed in parentheses and separated by either blanks or commas.

Note: This keyword is only applicable on the local NetView host. It is a function of the NetView Resource Agent.

XCLTYPE

Specifies which types of tasks the NRM manager should not monitor. For example, specifying XCLTYPE=OST excludes all operator station tasks from monitoring by NRM. Valid types are as follows:

- DST
- HCT
- MNT
- NNT
- OPT
- OST
- PPT

You can specify XCLTYPE without a value to not exclude tasks by type.

The parentheses are not required if only one task type is specified. Multiple values must be enclosed in parentheses and separated by either blanks or commas.

Note: This keyword is only applicable on the local NetView host. It is a function of the NetView Resource Agent.

Usage Notes

Consider the following when using the NRMCTL command:

- LISTPARM and LISTMON must be specified separately, without any other parameters.
- If LISTPARM or LISTMON is omitted, then you must specify XCLDOM, XCLTASK, or XCLTYPE.
- Either spaces or commas are valid where the syntax diagram shows required commas for multiple values.
- Parentheses are required when multiple values are specified.

Examples

Example: Excluding a Domain from Monitoring

To specify that CNM02 should not be monitored if NRM is started on this host, enter:

```
NRMCTL XCLDOM=CNM02
```

This is issued on the Manager host.

Example: Excluding a Task from Monitoring

To specify that the status for OPER5 should not be processed if NRM is started on this host, enter:

```
NRMCTL XCLTASK=OPER5
```
This is issued on either a Manager or Agent host.

Example: Using Wildcards with XCLDOM
These examples use wildcards to specify domains to be excluded. The question mark (?) wildcard replaces one character. The asterisk (*) replaces zero or more characters. The first example excludes all domains:

```
XCLDOM=*
```

The following example excludes domains NTV90 and any domain beginning with C01:

```
XCLDOM=(NTV90, C01*)
```

The following example excludes any domain name beginning with NTV and ending with zero, such as NTVX0 and NTV80:

```
XCLDOM=NTV?0
```

The fourth character is any valid character in the domain name.

Example: Using Wildcards with XCLTASK
These examples use wildcards to specify tasks to be excluded. The question mark (?) wildcard replaces one character. The asterisk (*) replaces zero or more characters. The first example excludes any task:

```
XCLTASK=*
```

The following example excludes any task beginning with EZL:

```
XCLTASK=EZL*
```

The following example excludes any task name ending with RTR, or beginning with NETOP or OPER and containing an additional character, such as NETOP3:

```
XCLTASK=(*RTR, NETOP?, OPER?)
```
Syntax

```
NVMAN

man

command_name
```

Purpose of Command

The NVMAN command provides help information (manual pages) for UNIX/390 commands.

Operand Descriptions

`command_name` Specifies the name of the UNIX/390 command for which you want help. If `command_name` is not specified, the help for the `man` command is the default.

Usage Notes

Consider the following when using the NVMAN command:

- The NVMAN command is case-sensitive and must be issued in lower case. To preserve the lower case structure, you must issue NVMAN with the NETVASIS command. See "Examples".
- UNIX services must be running on NetView.

Examples

Example: Sending a Man Command to UNIX
The following example sends a man command to UNIX:

```
netvasis nvman
```

A response similar to the following is received:

```
* NTVBB nvman
x NTVBB DS1037I Process 671088660 spawned for 'man'.
x NTVBB
FSUMA082 Usage:*man -wx -M path section entry ...
*man -k -M path keyword ...
x NTVBB -0000000003 UNIX 2 0 0 0
```

Example: Getting Help for Other UNIX Commands
The following example sends a request to UNIX for help on the chgrp (change group) command:

```
netvasis nvman chgrp
```

A response similar to the following is received:

```
* B63NV nvman chgrp
x B63NV DS1037I Process 1744830488 spawned for 'man chgrp'.
x B63NV
chgrp -- Change the group owner of a file or directory
```
Format

chgrp -fhR group pathname ...

Description

chgrp sets the group ID to group for the files and directories named by the pathname arguments.

group can be a group name from a group database, or it can be a numeric group ID (GID).

Note: chgrp can be used only by the file owner or a superuser. The file owner must have the new group as his or her group or one of the supplementary groups.

Localization

chgrp uses the following localization environment variables:

- LANG
- LC_ALL
- LC_CTYPE
- LC_MESSAGES
- NLSPATH

Exit Values

0 You specified -f, or chgrp successfully changed the group ownership of all the specified files and directories.

1 Failure due to any of the following:

- Inability to access a specified file
- Inability to change the group of a specified file
- An irrecoverable error was encountered when you specified the -R option

2 Failure due to any of the following:

- The command line contained an unknown option or too few arguments
- chgrp did not recognize the specified group

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

The -f option is an extension of the POSIX standard.

Related Information

chmod, chown

+0000000000 COMMAND man chgrp
Purpose of Command

The NVSNMP command enables you to manage devices through SNMP with either NetView SNMP or CS/390 osnmp. The NVSNMP command is described in Volume 2 of the *Tivoli NetView for z/OS Command Reference* and the NetView online help.
ORCNTL (RODM)

Syntax

```
ORCNTL
```

```
CHKPT, OR=name
CHNG, OR=name
CONN, OR=name
DISC, OR=name
LIST, REPOSIT, IMMED
NOAOREP, TASK
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORCNTL</td>
<td>ORC</td>
</tr>
</tbody>
</table>

Purpose of Command

The ORCNTL command assists in managing the RODM data caches and autotasks under the control of DSIQTSK.

This command also enables you to:
- Disconnect from a RODM
- Take a checkpoint on a RODM
- Change the current run-time RODM
- List the status of autotasks under the control of DSIQTSK
- List the status of all RODMs under the control of the DSIQTSK subtask

Refer to the Tivoli NetView for z/OS Administration Reference for information about DSIQTSKI.

Operand Descriptions

CHKPT

Indicates to take a checkpoint of the specified RODM. CHKPT stores RODM information to DASD storage.

OR= name

Specifies the name of the RODM on which you want to act. You must specify this operand with all keywords except LIST and NOAOREP.

CHNG

Changes the current run-time automation RODM to the one you specify in the command. The current run-time automation RODM is the default that automation applications access when using CNMQAPI, DSINOR, or ORCONV.

Refer to Tivoli NetView for z/OS Customization: Using PL/I and C or Tivoli NetView for z/OS Customization: Using Assembler for more information.
If you defined an initialization command processor for RODM in DSIQTSKI, refer to the Tivoli NetView for z/OS Administration Reference for more information.

CONN
Indicates to connect the specified RODM.

If you defined an initialization command processor for a RODM in DSIQTSKI, this keyword invokes the command processor with a notice indicating that this RODM is now connected. However, if you issue an ORCNTL CONN command when you are already connected to the specified RODM, any defined initialization command is not processed. Refer to the Tivoli NetView for z/OS Administration Reference for information about DSIQTSKI.

DISC
Indicates to disconnect the specified RODM. If you do not specify IMMED with this keyword, a checkpoint occurs. If the RODM you are disconnecting is the current run-time RODM, there will not be a default RODM. Automation using this RODM is effectively turned off; that is, DSINOR, CNMQAPI, and ORCONV requests that are using the default RODM fail.

IMMED
Specifies that DSIQTSK disconnects from the specified RODM without a checkpoint. IMMED is an optional operand.

LIST
Lists the state of all RODMs or autotasks defined to DSIQTSK, the current run-time RODM, and the NetView program-to-program interface receiver. The valid operands are:

REPOSIT
Lists all RODMs defined to DSIQTSK. The list also includes whether a connection exists to the DSIQTSK subtask and whether a checkpoint is currently in progress.

You can specify this operand as REPOSIT or REP.

TASK
Lists all the autotasks and operator station tasks defined to DSIQTSK. The list also includes whether a RODM is using the task.

NOAOREP
Specifies that you do not want a runtime automation RODM. The current runtime automation RODM is the default that automation applications access when using CNMQAPI, DSINOR, or ORCONV. You can use this keyword to stop automation processing when errors are occurring on RODM. This keyword does not cause RODM to be disconnected. Therefore, you can still access RODM to correct the errors.

Examples

Example: Taking a Checkpoint of a Specified RODM
To take a checkpoint of the RODM RODM1, enter:

```
ORCNTL CHKPT,OR=RODM1
```

Response

You receive a response from the DSIQTSK subtask similar to the following:
Example: Listing the Status of Databases Maintained by the DSIQTSK Task
To list the status of the databases maintained by the DSIQTSK subtask, enter:
ORCNTL LIST,REP

Response

You receive a response similar to:

DW0735I DSIQTSK RCVR = ACTIVE, AUTO REP = RODM1
DW0736I DSIQTSK RODM(RODM1) STATE(CONNECT) CHKPT(ACTIVE)
DW0736I DSIQTSK RODM(RODM2) STATE(DISC) CHKPT(INACTIVE)
DW0738I DSIQTSK END OF DISPLAY REQUEST.

The meanings of the displayed operands are:

RCVR
Indicates whether the status of the program-to-program interface subsystem is active or inactive, or whether a write-to-operator command (WTOR) was issued. If the status is INACTIVE, no commands from the RODMs are processed. If the status is WTOR, a WTOR was issued because no tasks were available to which to issue a command. When WTOR is outstanding, ORCNTL CHNG commands are processed, but no initialization commands are run. Attempts to connect to a RODM fail.

AUTO REP
Indicates the name of the current run-time RODM.

Note: The name of each RODM defined to the DSIQTSK subtask is listed, along with its current checkpoint status.

Example: Listing the Status of Tasks Controlled by the DSIQTSK Subtask
To list the status of the tasks controlled by the DSIQTSK subtask, enter:
ORCNTL LIST,TASK

Response

The response received from the DSIQTSK subtask is:

DW0735I DSIQTSK RCVR = ACTIVE, AUTO REP = RODM1
DW0737I DSIQTSK TASK(AUTO1) STATE(INUSE)
DW0737I DSIQTSK TASK(AUTO2) STATE(INUSE)
DW0738I DSIQTSK END OF DISPLAY REQUEST.
ORCONV (RODM)

Syntax

ORCONV

- ORCONV
 - Change
 - Named
 - ObjInd
 - ERROR=err_routine
 - ID='identifier'
 - PARM='method_parm', PARMTYPE='method_parm_data_type'
 - WAITF=N, WAITT=integer

Change:

- TYPE=CHANGE,
 - OR=name,
 - CLASS='class_name'
 - OBJECT='object_name'
 - FIELD='field_name'
 - SUBFIELD=VALUE
 - DATA='field_data'
 - MSGFIELD='message_field', MSGPARMS='MSGROUTE parm_list'

Named:

- TYPE=NAMED,
 - OR=name,
 - CLASS='class_name'
 - OBJECT='object_name'
 - FIELD='field_name'
 - MSGFIELD='message_field', MSGPARMS='MSGROUTE parm_list'
Purpose of Command

The ORCONV command changes fields and invokes methods in the RODM from the following sources:

- The NetView automation table
- Command lists
- The command facility
- Procedures written in the following languages:
 - REXX
 - PL/I
 - C

The ORCONV command can be used only with RODMs managed by the DSIQTSK task. Refer to the Tivoli NetView for z/OS Installation: Configuring Additional Components for more information about the DSIQTSK subtask.

Operand Descriptions

TYPE

Indicates the type of RODM request. The valid values are:

- **CHANGE**
 - Specifies that an object or class field change is performed. CHANGE is the default.
- **NAMED**
 - Specifies that a named method is invoked.
- **OBJIND**
 - Specifies that an object independent method is invoked.

OR=name

Specifies the name of the RODM on which you want to act. The default is the current run-time RODM. The name can be in the range of 1–8 bytes. Refer to the description of the REP statement in the Tivoli NetView for z/OS Administration Reference for information about setting the current run-time RODM.

CLASS='class_name'

Specifies the name of the class in RODM. The classname can be in the range of 1–64 bytes. Refer to the Tivoli NetView for z/OS Resource Object Data Manager and GMFHS Programmer's Guide for more information.

OBJECT='object_name'

Specifies the name of the RODM object that is to be altered. The object name can be in the range of 1–254 bytes. Refer to the Tivoli NetView for z/OS Resource Object Data Manager and GMFHS Programmer's Guide for more information.

FIELD='field_name'

Specifies the name of the RODM object or class field on which you want to act. If you specify TYPE=NAMED, the field contains the name of the method to be
invoked. The field_name can be in the range of 1–64 bytes. Refer to the Tivoli NetView for z/OS Resource Object Data Manager and GMFHS Programmer’s Guide for more information.

If TYPE=CHANGE (default), the field that you specify must be one of the following data types:

- INTEGER
- SMALL INTEGER
- FLOATING POINT
- CHARACTER

SUBFIELD=VALUE

Specifies the subfield to be updated. You can use SUBFIELD to bypass the invocation of a change method for the specified field. If you do not specify SUBFIELD, the change method is started. If you specify SUBFIELD=VALUE, the method is not invoked. Refer to the Tivoli NetView for z/OS Resource Object Data Manager and GMFHS Programmer’s Guide for more information.

DATA=’field_data’

Specifies the data to be stored in the field you specified. The field_data name can be in the range of 1–254 bytes.

ID=’identifier’

A user-defined string of characters that is logged in the network log when the ORCONV command is issued. You can define unique strings for each invocation of the ORCONV command to aid in debugging. The identifier name can be in the range of 1–254 bytes.

MSGFIELD=’message_field’

Specifies the RODM field to be queried to determine whether to route a message. MSGFIELD must be of type integer or smallint. ORCONV checks the specified field in RODM and compares it to the DEFAULTS SENDMSG list. If a match is found, the message that drove the ORCONV command is routed to the operator IDs you specified in the MSGPARMS parameter list. If the ORCONV request specified by the TYPE keyword fails or the query of the field specified by the MSGFIELD parameter fails, the message is still routed. This precaution prevents the loss of an important message. If you specify MSGFIELD, MSGPARMS is required. Refer to the Tivoli NetView for z/OS Automation Guide for a message-routing scenario. For information about setting the SENDMSG list, refer to the DEFAULTS command.

MSGPARMS=’MSGROUTE parm_list’

Specifies the MSGROUTE parameter list used to route the message that drove ORCONV from the NetView automation table. If you specify MSGPARMS, also specify MSGFIELD.

Note: The field to be acted on by the ORCONV command, and the field to be queried for message routing by the ORCONV command must be in the same RODM class or object. The field to be queried for message routing must be integer or smallint and cannot be inherited.

OBJINDEP=method

Specifies the name of the object-independent method you want to invoke. The method name can be in the range of 1–8 bytes.

ERROR=err_routine

Specifies the name of a NetView application (command list or command processor) that is invoked if one of the following errors occurs:
• The specified object is not found.
• The specified field is not found.
• The type of data specified to be stored is not valid. This can occur when translation from character format to binary format takes place. If truncation of character data occurs, the event is logged in the error log.

The input to the invoked error routine is the input supplied to the ORCONV command processor, along with a return code. The err_routine name can be in the range of 1–8 bytes.

The return codes used with this keyword are:

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Syntax error</td>
</tr>
<tr>
<td>6</td>
<td>Truncation of data has occurred</td>
</tr>
<tr>
<td>8</td>
<td>RODM error</td>
</tr>
<tr>
<td>10</td>
<td>Translation binary/floating point failure</td>
</tr>
<tr>
<td>12</td>
<td>RODM is not available</td>
</tr>
<tr>
<td>16</td>
<td>Specified an ERROR command that is not valid</td>
</tr>
<tr>
<td>18</td>
<td>NetView program internal macro failure</td>
</tr>
<tr>
<td>20</td>
<td>Data type of MSGFIELD is not integer or smallint</td>
</tr>
<tr>
<td>22</td>
<td>MSGFIELD’s value is inherited</td>
</tr>
<tr>
<td>24</td>
<td>Message routing failed</td>
</tr>
</tbody>
</table>

PARM=’method_parm’

Specifies the data to be passed to the invoked named method, change method, or object independent method. The method_parm name can be in the range of 1–254 bytes.

PARMTYPE=’method_parm _data_type’

Specifies the data type of the parameter being passed to the invoked name method, change method, or object independent method. Valid values of the PARMTYPE parameter are INTEGER, SMALLINT, CHARVAR, and FLOAT.

WAITF=N | Y

Specifies whether to wait for a checkpoint completion.

- **N** Indicates that you do not want to wait for a checkpoint to complete if one is in progress. If a checkpoint is in progress, the request fails.
- **Y** Indicates that a checkpoint is to complete if one is in progress. If you specify Y, also specify WAITT to indicate the duration of the wait. If WAITF=Y and you did not specify the WAITT keyword, the wait time defaults to the time specified in DSIQTSK’s initialization file by the keyword T.

WAITT=integer

Specifies the amount of time to wait if a checkpoint is in progress. This operand is valid only if you specify WAITF=Y. The allowable range for integer is 10–3600 seconds (1 hour). If you specify a value greater than 3600, 3600 is used.

Restrictions

The following restrictions apply to the ORCONV command:

- You can specify the keywords in any order and you only need to specify those keywords that are applicable to the request.
If a keyword equal sign is followed directly by a comma, or you did not specify a keyword, it is a syntax error and the following rules apply:

- For the keywords CLASS, OBJECT, ERROR, FIELD, OBJINDEP, and PARM, the value is set to null.
- For the DATA keyword, the following apply:
 - If the field to be updated is defined as a character field, the value is set to blanks.
 - If the field to be updated is binary or floating point, the value is set to 0.
- If you issue ORCONV from the NetView command facility, the command is converted to uppercase. This limits the RODM classes, fields, objects, and other elements that can be affected to only those that are entered in the RODM data cache in uppercase letters.

Examples

Example: Updating the Status of a Job
This example updates the status of a job, JOB1, to indicate an abend. This example assumes that RODM is customized to contain a class named JOB that has an object called JOB1 and a field called STATE with data type SMALLINT (FIXED BIN(15,0)).

Message trapped:
IEF450I JOB1 JOB1 - ABEND=S222 U0000 REASON=00000000

IF MSGID='IEF450I' & TOKEN(2)=JOBNAME THEN
 EXEC(CMD('ORCONV CLASS='JOB',OBJECT='JOBNAME',FIELD='STATE',DATA='256')
 ROUTE(ONE *));

Example: Updating a Field without Method Invocation
This example updates a field without method invocation. You can update a field in RODM without starting change and notification methods by specifying SUBFIELD=VALUE in the ORCONV command. In this example, an error routine, ERRROUT, and ID=JOBABEND are added. The update is performed on the current run-time RODM.

IF MSGID='IEF450I' & TOKEN(2)=JOBNAME THEN
 EXEC(CMD('ORCONV CLASS='JOB',OBJECT='JOBNAME',FIELD='STATE',SUBFIELD='VALUE',DATA='256',ERROR=ERRROUT,ID='JOBABEND')
 ROUTE(ONE *));

Example: Starting an Object-Independent Method
This example shows how you can start an object-independent method by specifying the name of the object-independent method using the OBJINDEP keyword. You can specify optional parameters with the PARM keyword. Instead of updating RODM directly, you can trigger an object-independent method called VERIFY and pass it the jobname JOB1 to determine whether this job should be recovered. The command is as follows:

IF MSGID='IEF450I' & TOKEN(2)=JOBNAME THEN
 EXEC(CMD('ORCONV TYPE=OBJIND,OBJINDEP=VERIFY,PARM='' JOBNAME ''')
 ROUTE(ONE *));

Example: Starting a Named Method
This example shows you how to start a named method. The difference between an object-independent method and a named method is that a named method is
associated with a particular class or object and is referenced using a field name. The name of the method to be invoked is in the VERIFY field. The command is as follows:

```plaintext
IF MSGID='IEF450I' & TOKEN(2)=JOBNAME THEN
  EXEC(CMD('ORCONV TYPE=NAMED,CLASS='JOB',OBJECT='' JOBNAME
                ,FIELD='VERIFY'
                )
       ROUTE(ONE *));
```
OUTPUT (EAS)

Syntax

EAS OUTPUT

\[
\text{MODIFY } \text{procname}, \text{OUTPUT } \to= \text{destination}
\]

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIFY</td>
<td>F</td>
</tr>
</tbody>
</table>

Purpose of Command

The OUTPUT command controls the logical destination of the trace/error message output logged by all event/automation service tasks.

Operand Descriptions

\text{procname}

Specifies the event/automation service job name.

\text{TO=destination}

Specifies the logical event/automation service output destination for all tasks. The \text{destination} can have the following values:

- \text{SYSOUT}: Log trace and error messages to a designated output file for each event/automation service task.
- \text{GTF}: Log trace and error messages to the GTF trace facility.
- \text{ALL}: Log trace and error messages to both the designated output file and the GTF trace facility.

Examples

Example: Setting Output Destinations

To send trace and error message information for all event/automation service tasks to both the GTF trace facility and the designated output file for the event/automation service job named IHSAEVNT, enter:

\text{F } \text{IHSAEVNT,OUTPUT,TO=ALL}

Response

A response similar to the following, depending on your destination output file and OUTSIZE parameter settings, is displayed:

- IHS0165I The OUTPUT is set to ALL.
- IHS0167I The OUTSIZE is set to 0 bytes.
- IHS0168I CONTROL output file is //DD:IHSC
- IHS0168I ALERTA output file is //DD:IHSA
- IHS0168I MESSAGEA output file is //DD:IHSM

Tivoli NetView for z/OS Command Reference Vol. 1
IHS0168I EVENTRCV output file is //DD:IHSE
IHS0168I TRAPALRT output file is //DD:IHST
IHS0169I ALRTTRAP output file is //DD:IHSL

Example: Displaying Output Destination Settings

To display the current output destination for the event/automation service job named IHSAEVNT, enter:

```
F IHSAEVNT,OUTPUT
```

Response

A response similar to the following, depending on your destination output file and OUTSIZE parameter settings, is displayed:

```
IHS0165I The OUTPUT is set to ALL.
IHS0167I The OUTSIZE is set to 0 bytes.
IHS0168I CONTROL output file is //DD:IHSC
IHS0168I ALERTA output file is //DD:IHSA
IHS0168I MESSAGEA output file is //DD:IHSM
IHS0168I EVENTRCV output file is //DD:IHSE
IHS0168I TRAPALRT output file is //DD:IHST
IHS0169I ALRTTRAP output file is //DD:IHSL
```
OVERRIDE (NCCF)

Syntax

```
OVERRIDE

OVERRIDE
  DispOpts
  DtTmOpts
  LogOpts
  MonitOpts
  OperOpts
  RexxOpts
  SecOpts
  UtilOpts
  ddn=dsn
```

DtTmOpts:

```
  LONGDATE= DateTmp8
    DEFAULT
  SHORTDAT= DateTmp5
    DEFAULT
  SUPZDATE= NO
    DEFAULT
    YES
  LONGTIME= TimeTmp8
    DEFAULT
  SHORTTIME= TimeTmp5
    DEFAULT
  SUPZTIME= NO
    DEFAULT
    YES
```

DispOpts:
LogOpts:

MonitOpts:
OperOpts:

CMD=
 DEFAULT
 HIGH
 LOW
EMCSPARM=
 SAF
 NETVIEW
 DEFAULT
EVERYCON=
 NO
 YES
 DEFAULT
HELPTEXT=
 MIX
 UP
MDCFGTIM=mdcfgtime
MSGTOUT=
 DEFAULT
 msgtonumber
NETVASIS=
 NO
 YES
 DEFAULT
RMTMAXL=
 DEFAULT
 rmtlines
SELFISH=
 NO
 YES
 DEFAULT
TIMEFMSG=
 NO
 YES
 DEFAULT

RexxOpts:

REXXENV=
 DEFAULT
 rxenvnumber
REXXSLMT=
 DEFAULT
 UNLIMITD
 slmtnumber
REXXSTOR=
 DEFAULT
 stornumber
REXXSTRF=
 DISABLE
 ENABLE

SecOpts:
Purpose of Command

The OVERRIDE command can be used to specify options for a particular operator. The OVERRIDE options take precedence over the options specified by the DEFAULTS command. The OVERRIDE options that are related to message display (BEEP, DISPLAY, HOLD) apply to all messages that are to be displayed at the individual operator’s terminal. The OVERRIDE option settings for BEEP, DISPLAY, HCYLOG, HOLD, NETLOG, and SYSLOG take precedence over corresponding actions specified in the NetView automation table. The OVERRIDE option settings for EVERYCON and TIMEFMSG affect AFTER, AT, and EVERY timer commands issued by these tasks.

Use the LIST OVERRIDE command to request a list of the current OVERRIDE settings.
Operand Descriptions

BEEP
Specifies whether the BEEP action is to be taken from the NetView automation table. Valid values are:

DEFAULT
Indicates that the option you specified on the DEFAULTS command is used. This is the NetView-provided initial value when you log on to the NetView system.

DISABLE
Indicates that the BEEP action is not taken from the NetView automation table.

ENABLE
Indicates that the BEEP action is taken from the NetView automation table.

BRUNLOCK
Specifies the number of seconds to wait for browse responses before unlocking the operator’s keyboard with message DSI360 indicating the request is in progress. This value does not apply to local member browse. For the first panel of a local network log browse, 5 seconds is used regardless of BRUNLOCK’s setting. Valid values are:

DEFAULT
Indicates that the default value for the system is used.

unlocktm
The number of seconds to wait before unlocking the operator’s keyboard. Valid values are 0–30.

CMD
Specifies the task priority for operator commands. Valid values are:

DEFAULT
Indicates that the option you specified on the DEFAULTS command is used. This is the NetView-provided initial value when you log on to the NetView system.

HIGH
Causes an operator’s commands to preempt previous commands as soon as processing allows.

LOW
Causes an operator’s regular commands to be queued and processed in order.

CNM493I
Specifies whether message CNM493I, which indicates automation table command processing, should be sent to the network log. The task that CNM493I is logged under is determined by what task the message is automated on, not by what task the command or message is routed to by EXEC actions in the automation table. Valid values are:

DEFAULT
Indicates that the option you specified on the DEFAULTS command is used. This is the NetView-provided initial value when you log on to the NetView system.

YES
Causes message CNM493I to be sent to the network log.
NO
Prevents message CNM493I from being sent to the network log.

DISPLAY
Specifies whether all messages are displayed on NetView terminals. Valid values are:

DEFAULT
Indicates that the option you specified on the DEFAULTS command is used. This is the NetView-provided initial value when you log on to the NetView system.

NO
Indicates that no messages are displayed on your NetView terminal.

YES
Indicates that all messages are displayed on your NetView terminal.

Note: NetView messages that are sent to the immediate message area of the operator’s screen will always be displayed, regardless of the setting for the DISPLAY action.

EMCSPARM
Specifies how the extended console attributes are determined when a task obtains an extended console. Extended consoles are obtained when operators or autotasks issue the GETCONID command, or when a task first issues an MVS command. The CNMCSSIR task also obtains an extended multiple console support (EMCS) console. Refer to the MVSPARM.MSGIFAC statement in CNMSTYLE to determine whether or not extended consoles are in use.

Note: EMCSPARM does not apply when subsystem consoles are in use (MVSPARM.MSGIFAC=USESSI in CNMSTYLE).

SAF
The console attributes for the EMCS console are obtained from the OPERPARM segment of the SAF product if the segment exists for the console name and can be accessed. This is the method by which extended console attributes were obtained in prior versions of the NetView program.

If the OPERPARM segment exists for the console name, and can be accessed, any console attributes that are not specified in the OPERPARM segment is given the MVS default value, which is not necessarily the same as the NetView default value.

Note: For the OPERPARM segment to be accessible, the operator must have READ access to the MVS.MCSOPER.console_name definition in the OPERCMDS class.
If the OPERPARM segment does not exist for the console name, or the segment cannot be accessed, the console attributes are determined as specified for EMCSPARM=NETVIEW.

NETVIEW
The console attributes for the EMCS console are a combination of the values specified on the MVSPARM statement in CNMSTYLE and the values specified on the GETCONID command.

For a listing of the NetView default values, refer to the Tivoli NetView for z/OS Security Reference for more information about setting EMCS console attributes.
DEFAULT
Indicates that the option you specified on the DEFAULTS command is used. This is the NetView-provided initial value when you log on to the NetView system.

EVERYCON
Specifies whether timed commands of type EVERY should continue to be queued even after queuing failures occur. The valid values are:

NO
Indicates that queuing failures cause timed commands to be deleted (they will no longer be queued).

YES
Indicates that such timed commands continue to be queued.

DEFAULT
Indicates that the option you specified on the DEFAULTS command is used. This is the NetView-provided initial value when you log on to the NetView system.

HCYLOG
Specifies whether all messages are written to the hardcopy log if an operator has one active. Valid values are:

DEFAULT
Indicates that the option you specified on the DEFAULTS command is used. This is the NetView-provided initial value when you log on to the NetView system.

NO
Indicates that no messages are written to the hardcopy log.

YES
Indicates that all messages are written to the hardcopy log.

HELPTEXT
Defines text for window-based help and help-desk help.

UP
Specifies that the text for window-based help and the HelpDesk will be uppercase.

MIX
Specifies that the text for window-based help and the HelpDesk will be mixed case.

HOLD
Defines whether the HOLD action is taken from the NetView automation table and whether held action messages are queued for rerouting to an authorized receiver upon logoff. Valid values are:

DEFAULT
Indicates that the option you specified on the DEFAULTS command is used. This is the NetView-provided initial value when you log on to the NetView system.

DISABLE
Indicates that the HOLD action is not taken from the NetView automation table. In addition, action messages will not be rerouted to the authorized receiver upon logoff.
ENABLE
Indicates that the HOLD action is taken from the NetView automation table. In addition, action messages can be rerouted to the authorized receiver upon logoff.

LOCAL
Has the same function as ENABLE except that action messages will not be rerouted to the authorized receiver upon logoff.

LOGSPNCF=NO|YES|DEFAULT
Specifies whether span of control FAILUREs for requests from VTAM commands are to be logged. The valid values are:

NO
Indicates that no subsequent logging is to occur.

YES
Indicates data is to be logged.

DEFAULT
Specifies that the option you specified on the DEFAULTS command is to be used. A value of DEFAULT causes the override setting to be removed, and the applicable default value to become active.

LOGSPNCP=NO|YES|DEFAULT
Specifies whether span of control PASSes for requests from VTAM commands are to be logged. The valid values are:

NO
Indicates that no subsequent logging is to occur.

YES
Indicates data is to be logged.

DEFAULT
Specifies that the option you specified on the DEFAULTS command is to be used. A value of DEFAULT causes the override setting to be removed, and the applicable default value to become active.

LOGSPNVF=NO|YES|DEFAULT
Specifies whether span of control FAILUREs for requests from NMC are to be logged. The valid values are:

NO
Indicates that no subsequent logging is to occur.

YES
Indicates data is to be logged.

DEFAULT
Specifies that the option you specified on the DEFAULTS command is to be used. A value of DEFAULT causes the override setting to be removed, and the applicable default value to become active.

LOGSPNVP=NO|YES|DEFAULT
Specifies whether span of control PASSes for requests from NMC are to be logged. The valid values are:

NO
Indicates that no subsequent logging is to occur.

YES
Indicates data is to be logged.
DEFAULT
Specifies that the option you specified on the DEFAULTS command is to be used. A value of DEFAULT causes the override setting to be removed, and the applicable default value to become active.

LOGTSTAT=YES|NO|DEFAULT
Specifies whether task resource utilization data is logged to the external System Management Facility (SMF) log. The valid values are:

YES
Indicates data is to be logged. Specifying the keyword without a value selects the default, which is YES.

NO
Indicates that no subsequent logging of resource data is to occur.

DEFAULT
Specifies that the option you specified on the DEFAULTS command is to be used. A value of DEFAULT causes the override setting to be removed, and the applicable default value to become active.

LONGDATE=DateTmp8|DEFAULT
Specifies a template describing the format used for dates when entered or presented in long form.

DateTmp8
The date template can contain up to 8 characters, including delimiters, as follows:

Delimiter
Specifies the character used as a delimiter between components of the date. See “Usage Notes” on page 638 for additional information.

DD
Specifies a 2-digit day of the month.

DDD
Specifies a 3-digit day of the year.

MM
Specifies a 2-digit month of the year.

MMM
Specifies the first three characters of the month in uppercase (JAN, FEB, and so on).

YY
Specifies the last 2-digits of the year.

YYYY
Specifies the complete four digits of the year.

The long form date template must specify a complete date including year and either month and day or day-of-year.

Some valid long form date templates are:
DD-MM-YY
DD/MM/YY
DDMMDYYYY
MM/DD/YY
YY.DDD
YYYY.DDD

DEFAULT
Specifies that the option you specified on the DEFAULTS command is to be used. A value of DEFAULT causes the override setting to be removed, and the applicable default value to become active.
LONGTIME=TimeTmp8 DEFAULT
Specifies a template describing the format used for times when entered or presented in long form.

TimeTmp8
The time template can contain up to 8 characters, including delimiters, as follows:

Delimiter
Specifies the character used as a delimiter between components of the time. See "Usage Notes" on page 638 for additional information.

HH Specifies the 2-digit hour.

MM Specifies the 2-digit minutes.

SS Specifies the 2-digit seconds.

The long form time template must specify a complete time including hour, minutes, and seconds.

Some valid long form time templates are:

HH:MM:SS
HHMMSS
SS:MM:HH

DEFAULT
Specifies that the option you specified on the DEFAULTS command is to be used. A value of DEFAULT causes the override setting to be removed, and the applicable default value to become active.

MAXCPU=0 | decimal | DEFAULT
Specifies percentage of CPU utilization for the task in hundredths of a percent. A value of zero (0) means no limit has been set and no slowdown will occur. The maximum value allowed is 99. When a task exceeds the limit, automatic task slowdown measures will be used to bring the task back into the specified range. The task is suspended until enough time passes for the CPU to be within limits. A value of DEFAULT removes the override setting and the applicable default value becomes active. Specifying the keyword without a value is equal to MAXCPU=DEFAULT.

When NetView is started the MAXCPU default is set to 95% of one CPU for each task. This value is intended to enable tasks to run at high workloads, but not prevent other tasks from running. You can revise this value by using the DEFAULTS command in your NetView initial command list procedure.

Note: If you increase the value of this limit while a task is being delayed for an existing limit, the task delayed is cancelled within approximately one second, and the task continues with the new limit in force.

MAXIO=0 | decimal | DEFAULT
Specifies the number of I/O requests per minute allowed for the task. A value of zero means no limit has been set and no slowdown will occur. The maximum value allowed is 999999999 inputs and outputs per minute. When a task exceeds the limit, task slowdown measures will be used to bring the task back into the specified range. A value of DEFAULT removes the override setting and the applicable default value becomes active. Specifying the keyword without a value is equal to MAXIO=DEFAULT.
Note: If you increase the value of this limit while a task is being delayed for an existing limit, the task delay is cancelled within approximately one second, and the task continues with the new limit in force.

MAXMQIN=0 | decimal | DEFAULT
Specifies the number of message kilobytes per minute that is allowed to be sent to the task from other tasks. A value of zero means no limit has been set and no slowdown will occur. The maximum value allowed is 999999999 kilobytes per minute. When a task exceeds the limit, automatic task slowdown measures will be used to bring the task back into the specified range. Other tasks that queue messages to the affected task will be slowed down until the rate is under control. A value of DEFAULT removes the override setting and the applicable default value becomes active. Specifying the keyword without a value is equal to MAXMQIN=DEFAULT.

Note: If you increase the value of this limit while a task is being delayed for an existing limit, the task delay is cancelled within approximately one second, and the task continues with the new limit in force.

MAXMQOUT=0 | decimal | DEFAULT
Specifies the number of message kilobytes per minute allowed for the task to send to another task. A value of zero means no limit has been set and no slowdown will occur. The maximum value allowed is 999999999 kilobytes per minute. When a task exceeds the limit, automatic task slowdown measures will be used to bring the task back into the specified range. If the task attempts to queue a message to another task, it will be slowed down until the rate is under the limit. A value of DEFAULT removes the override setting and the applicable default value becomes active. Specifying the keyword without a value is equal to MAXMQOUT=DEFAULT.

Note: If you increase the value of this limit while a task is being delayed for an existing limit, the task delay is cancelled within approximately one second, and the task continues with the new limit in force.

MAXSTG=0 | decimal | DEFAULT
Specifies the maximum amount of storage in kilobytes that a task can use. When this storage is reached the DSIGET macro will return an out of storage return code. In addition, queuing a message to a task that is over its MAXSTG limit will result in the task not active condition, and the message will not be transferred. The maximum value allowed is 999999K. A value of DEFAULT removes the override setting and the applicable default value becomes active. Specifying the keyword without a value is equal to MAXSTG=DEFAULT.

When NetView is started the MAXSTG default is set to 50% of the region size for each task other than the main task. The main task is preset to 80% of the region. (The main task serves as the manager for storage shared by all tasks, and thus needs a larger value). You can revise this value by using a DEFAULTS command in your NetView initial command list procedure.

MDCFGTIM=mdcfgtime
Specifies the amount of time (in seconds) the MDMCNFG application waits for input (the limit of time the message queue can be blocked by MDMCNFG panels). When this limit is reached, the application is ended and message DWOS519I is displayed. The valid value range for mdcfgtime is from 1–3600 seconds. The default is 1800 seconds.

MSGTOUT
Specifies the time interval that the NetView terminal access facility (TAF) waits before alerting an operator that an incoming message has not completed. When
the time interval has passed, TAF displays message DWO310I with the fragment of data that is available. Valid values are:

DEFAULT
Indicates that the default value for the system is used initially. You can also return to this setting by specifying DEFAULT as the value of MSGTOUT.

msgtonumber
Specifies the value of the time-out in seconds. Valid values are in the range of 1–200 seconds.

NETLOG
Specifies whether all messages are written to the network log. Valid values are:

DEFAULT
Indicates that the option you specified on the DEFAULTS command is used. This is the NetView-provided initial value when you log on to the NetView system.

NO
Indicates that no messages are written to the network log.

YES
Indicates that all messages are written to the network log.

NETVASIS
NETVASIS applies to NCCF, Window, and NMC. NETVASIS specifies whether lowercase characters in commands are converted to uppercase. Valid values are:

YES
Indicates that lowercase characters are not converted to uppercase. When OVERRIDE NETVASIS=YES is entered, the ??? at the bottom of the panel is replaced by >>>.

NO
Indicates that lowercase characters are converted to uppercase.

SELFISH
Specifies that a task (including PPT) might or might not be shared by other operators to process RMTCMDs or Web Browser functions.

NO
Specifies that this task allows sharing for RMTCMD and Web Browser functions.

YES
Specifying YES disallows task sharing by RMTCMDs and the Web Browser (except for Web Browser requests to autotasks started by the Web Browser.) Autotasks that are started by RMTCMD processing will discontinue processing further RMTCMD commands if an operator logs on to the task by using the TAKEOVER=YES option.

DEFAULT
Indicates that the action specified on the DEFAULTS command is used.

REXXENV
Specifies the number of active and inactive, but initialized, REXX environments to be retained for this operator. Valid values are:

DEFAULT
Indicates that the option you specified on the DEFAULTS command is
used. If you do not specify a value for REXXENV, this value is the default. This is the NetView-provided initial value when you log on to the NetView system.

rxenvnumber
Indicates the valid numeric values in the range of 0–250. If you set REXXENV higher than the current number of environments, storage is acquired only when a new environment is needed. If you set REXXENV lower than the current number of environments, storage for the excess environments is not freed until a REXX command list uses one of the environments and completes.

REXXSLMT
Specifies the amount of storage, in 1K increments, that a REXX environment is allowed to accumulate before being terminated after its current use is completed. Valid values are:

DEFAULT
Indicates that the option you specified on the DEFAULTS command is used. If you do not specify a value for REXXSLMT, this value is the default. This is the NetView-provided initial value when you log on to the NetView system.

slmtnumber
Indicates the valid value range, which is a number in the range of 0–10 000.

UNLIMITD
Indicates that there are no cumulative REXX environment storage restrictions.

REXXSTOR
Specifies the amount of storage, in 1K increments, to be acquired by REXX environment initialization processing. Valid values are:

DEFAULT
Indicates that the option you specified on the DEFAULTS command is used. If you do not specify a value for REXXSTOR, this value is the default. This is the NetView-provided initial value when you log on to the NetView system.

stornumber
Indicates the valid numeric values, which are in the range of 0–250. TSO/E recommends 12K for each nesting level of REXX command lists.

REXXSTRF
Specifies whether the NetView operator can run REXX command lists that use the REXX STORAGE function. Valid values are:

DEFAULT
Indicates that the value you specified on the DEFAULTS command is used. This is the NetView-provided initial value when you log on to the NetView system.

DISABLE
Indicates that the NetView operator cannot run REXX command lists that use the REXX STORAGE function.

ENABLE
Indicates that the NetView operator can run REXX command lists that use the REXX STORAGE function.
Note: The OVERRIDE REXXSTRF command is effective the next time a REXX environment is initialized, which is a function of the current REXXENV value and the number of active REXX command lists. Thus, it is never effective in the same command list invocation from which it is issued.

RMTMAXL
Specifies the maximum number of lines transferred for a cross-domain member browse request. If the remote member contains more than the maximum number of lines, the BROWSE command continues with the permitted number of lines and message CNM206I is issued. The BROWSE command uses the RMTMAXL setting of the operator issuing the cross-domain browse request. A large value for RMTMAXL will allow a cross-domain member browse request to return large amounts of data and can cause delays with other RMTCMD LU6.2 communication.

DEFAULT
Indicates that the default value for the system is used.

\texttt{rmtlines}
Specifies the maximum number of lines the remote NetView program will transfer when a cross-domain member browse request is processed. The valid value range for \texttt{rmtlines} is 1–10 000 000.

Note: The RMTMAXL value does not apply to cross-domain netlog browse which can be used to browse network logs of unlimited size.

SCNFLOW
Controls the operation of the NetView console as data is entered. This option only pertains to an SNA attended operator station task (OST). It has no effect on other task types. Valid values are:

CONTINUE
Indicates that NetView should continue sending screen updates as the operator types. This is the default and produces the most efficient data flow.

STOP
Indicates that NetView should stop sending screen updates until the operator finishes typing and presses an action key such as ENTER, PF key, or PA key. This option is related to possible terminal hardware limitations that cause loss of command line input at a busy operator terminal. The option should not be used unless recommended by Tivoli Customer Support.

SCRNFMT
Specifies the screen format changes from the preset values or the current values. Valid values are:

* Indicates a reserved notation that removes the current OVERRIDE screen format and resets the NetView preset values.

\texttt{member}
Indicates a member of DSIPARM containing command facility screen format definitions.

Refer to the Tivoli NetView for z/OS Administration Reference for more information.

SCROLL
Specifies whether a scroll field is present for the BROWSE command as well as the default scroll amount. Valid values are:
amount
Indicates a 1- to 4-character scroll amount which is used by the BACK, FORWARD, LEFT, and RIGHT commands. This value is placed in the scroll amount field on the BROWSE panel unless the value is OFF in which case the scroll amount field is not present.

CSR
Indicates that the cursor determines the amount to scroll forward or back.

HALF
Indicates that the scroll amount is half of a screen.

OFF
Indicates that no scroll field is displayed on the BROWSE panel. This setting makes BROWSE scrolling consistent with the scrolling in the WINDOW command.

PAGE
Indicates that the scroll amount is a full screen.

SHORTDAT=DateTmp5 | DEFAULT
Specifies a template describing the format used for dates when entered or presented in short form.

DateTmp5
The date template can contain up to 5 characters, including delimiters, as follows:

Delimiter
Specifies the character used as a delimiter between components of the date. See "Usage Notes" on page 638 for additional information.

DD
Specifies a 2-digit day of the month.

DDD
Specifies a 3-digit day of the year.

MM
Specifies a 2-digit month of the year.

MMM
Specifies the first three characters of the month in uppercase (JAN, FEB, and so on).

YY
Specifies the last two digits of the year.

The short form date template must specify a date including either day and month or day-of-year.

Some valid short form date templates are:

DD-MM
DDD
DDMM
MM/DD
MMMDD
YYDDD

DEFAULT
Specifies that the option you specified on the DEFAULTS command is to be used. A value of DEFAULT causes the override setting to be removed, and the applicable default value to become active.

SHORTTIM=TimeTmp5 | DEFAULT
Specifies a template describing the format used for times when entered or presented in short form.
TimeTmp5

The time template can contain up to 5 characters, including delimiters, as follows:

Delimiter

Specifies the character used as a delimiter between components of the date. See "Usage Notes" on page 638 for additional information.

HH Specifies the 2-digit hour.

MM Specifies the 2-digit minutes.

The short form date template must include hours and minutes.

Some valid short form time templates are:

- HH:MM
- HHMM
- MMHH

DEFAULT

Specifies that the option you specified on the DEFAULTS command is to be used. A value of DEFAULT causes the override setting to be removed, and the applicable default value to become active.

SLOWSTG= decimal | DEFAULT

Specifies the maximum amount of storage in kilobytes that a task can use at which value slowdown measures are used. In addition, queuing a message to a task that is over its SLOWSTG limit will result in that task having the same slowdown measures applied based on how much over the limit the receiving task gets. The maximum value allowed is 999999K. A value of DEFAULT removes the override setting and the applicable default value becomes active. Specifying the keyword without a value is equal to SLOWSTG=DEFAULT.

When NetView is started the SLOWSTG default is set to 25% of the region size for each task other than the main task. The main task is preset to 72% of the region. (The main task serves as the manager for storage shared by all tasks, and thus needs a larger value). You can revise this value by using a DEFAULTS command in your NetView initial command list procedure.

Note: If you increase the value of this limit while a task is being delayed for an existing limit, the task delay is cancelled within approximately one second, and the task continues with the new limit in force.

When a task exceeds SLOWSTG, all storage requests (using DSIGET) and message queueing to the affected task will have a time delay. The time delay will be one microsecond for each byte of storage requested over the SLOWSTG limit value up to 110% of the limit, and doubled for each 10% over the SLOWSTG value thereafter. This produces a slowdown effect that is proportional to the size of the request as the task use of storage grows.

The initial slowdown rate is equivalent to allow storage to grow at a rate of 1 MB per second, in the range 100-110% of the limit value. When you lower a SLOWSTG value, you lower both the point at which slowdown occurs, and the amount of growth allowed before the delay time is doubled. This allows you to tailor the exponential curve to fit the application. For example, SLOWSTG=100 will trigger at 100 KB limit value and double every 10 KB. Another example, SLOWSTG=500 will trigger at 500 KB limit value and double every 50 KB.
Note: The maximum doubler value is 2 raised to the 30th power.

STARTCOL
Specify the starting column displayed when browsing the network log. The column indicator in the third line of the network log browse display can be used to determine column numbers. Valid values are:

DEFAULT
Indicates that the default value for the system is used.

ccc Specifies the starting column used when browsing the network log. The valid range is 1–178.

STMREFR
Specifies whether the status monitor domain status summary panel will start in dynamic or static mode. For additional information about this setting, refer to the SREFRESH command. Valid values are:

YES
Indicates that the domain status summary panel will start in dynamic mode. This setting is indicated on the panel with REFRESH=ON. YES is the default.

NO
Indicates that the domain status summary panel will start in static mode. This setting is indicated on the panel with REFRESH=OFF.

SUPZDATE
Specifies whether leading zeros are to be suppressed when presenting dates. This applies only to the entire date string and not to each element of the string. The valid values are:

NO
Indicates that zeros are not to be suppressed. NO is the NetView-provided initial value.

YES
Indicates that leading zeros are to be suppressed.

DEFAULT
Specifies that the option you specified on the DEFAULTS command is to be used. A value of DEFAULT causes the override setting to be removed, and the applicable default value to become active.

SUPZTIME
Specifies whether leading zeros are to be suppressed when presenting times. This applies only to the entire time string and not to each element of the string. The valid values are:

NO
Indicates that zeros are not to be suppressed. NO is the NetView-provided initial value.

YES
Indicates that leading zeros are to be suppressed.

DEFAULT
Specifies that the option you specified on the DEFAULTS command is to be used. A value of DEFAULT causes the override setting to be removed, and the applicable default value to become active.

SYSLOG
Specifies whether all messages are written to the system log. Valid values are:
DEFAULT
Indicates that the option you specified on the DEFAULTS command is used. This is the NetView-provided initial value when you log on to the NetView system.

NO
Indicates that no messages are written to the system log.

YES
Indicates that all messages are written to the system log.

TASK=taskname
Indicates the task for which override value applies. If omitted, the settings apply to the task which the command runs. The TASK keyword can only be used in combination with the MAXCPU, MAXIO, MAXMQIN, MAXMQOUT, MAXSTG, SLOWSTG, WNRCPU, WRNIO, WRNMQIN, WRNMQOUT, WRNMSGCT, WRNSTG, and CNM493I keywords. These values can be set by operators or automation even for tasks that do not run commands, such as CNMCSIR.

TIMEFMSG
Specifies whether timed commands which could not be queued to the target operator will produce a BNH357E error message. The valid values are:

DEFAULT
Indicates that the option you specified on the DEFAULTS command is used. This is the NetView-provided initial value when you log on to the NetView system.

NO
Indicates that no error message will be issued.

YES
Indicates that the error message will be issued.

TAFRECLN
Specifies the maximum record length (line size) of lines returned by the session partner in a TAF OPCTL session. If a line is shorter or the same length as the specified value, the line is returned without changes. If it is longer, the line is split at the record length and the text is continued on the next line.

DEFAULT
Indicates that the default value for the system is used.

linesize
The maximum size of lines returned by a TAF OPCTL session partner.
Valid values are 1 – 32000.

ddn
A NetView DD name (for example, DSIPARM, DSIOOPEN or CNMPNL1). For a complete list, refer to the BROWSE command.

Note: The following DD names are not allowed from the command line:
DSIPARM, DSICLD, DSIVTAM and DSIPRF. They are only allowed from a command procedure, the PPT task, an optional task, or automation.

dsn
The name of a partitioned data set (PDS) which will be logically appended to the front of the concatenation for the specified DD, for all DSIDKS-based applications such as BROWSE, the < stage, or command list processing. Members in this PDS are then read by the OVERRIDE operator(s).
Notes:
1. Members in this operator data set are prioritized after those (with the same name) established by the INSTORE stage with the LOCAL operand, but before those established by the INSTORE stage with the COMMON operand.
2. This function works only if the operator has authority to read from the specified PDS.
3. When this command is issued, an internal list of members is created. When new members are created on this data set, the command must be reissued in order to read them.
4. A value of asterisk (*) removes any operator data set from the DD for this operator.

WRNCPU=\{decimal,decimal,decimal\} DEFAULT
Specifies the percentage of the CPU utilization for the task. When the CPU utilization reaches the percentage(s) specified, a status change will be sent to NetView Resource Manager.

Up to three percentage values can be specified. The parentheses are not required if only one value is specified. Multiple values must be enclosed in parentheses and separated by either blanks or commas. Zero cannot be specified with other values. A value of zero indicates that no status changes will be sent. Valid values are any number in the range 1 – 99. These values are not positional. Specifying the keyword without a value is equal to WRNCPU=DEFAULT. WRNCPU is similar to the MAXCPU keyword.

WRNIO=\{decimal,decimal,decimal\} DEFAULT
Specifies the number of I/O requests, per minute, allowed for the task. The decimal value(s) specified indicate when status changes are sent to NetView Resource Manager.

Up to three values can be specified. The parentheses are not required if only one value is specified. Multiple values must be enclosed in parentheses and separated by either blanks or commas. Zero cannot be specified with other values. A value of zero indicates that no status changes will be sent. Valid values are any number in the range 1 – 999999999. These values are not positional. Specifying the keyword without a value is equal to WRNIO=DEFAULT. WRNIO is similar to the MAXIO keyword.

WRNMQIN=\{decimal,decimal,decimal\} DEFAULT
Specifies the number of message kilobytes, per minute, that can be sent to the task from other tasks. The decimal value(s) specified indicate when status changes are sent to NetView Resource Manager.

Up to three values can be specified. The parentheses are not required if only one value is specified. Multiple values must be enclosed in parentheses and separated by either blanks or commas. Zero cannot be specified with other values. A value of zero indicates that no status changes are sent. Valid values are any number in the range 1 – 999999999. These values are not positional. Specifying the keyword without a value is equal to WRNMQIN=DEFAULT. WRNMQIN is similar to the MAXMQIN keyword.

WRNMQOUT=\{decimal,decimal,decimal\} DEFAULT
Specifies the number of message kilobytes, per minute, that can be sent from this task to other tasks. The decimal value(s) specified indicate when status changes are sent to NetView Resource Manager.

Up to three values can be specified. The parentheses are not required if only one value is specified. Multiple values must be enclosed in parentheses and
separated by either blanks or commas. Zero cannot be specified with other values. A value of zero indicates that no status changes are sent. Valid values are any number in the range 1 – 999999999. These values are not positional. Specifying the keyword without a value is equal to WRNMQOUT=DEFAULT. WRNMQOUT is similar to the MAXMQOUT keyword.

WRNMSGCT=0\(\text{decimal,decimal,decimal}\)|DEFAULT

Specifies the number of buffers on the message queue of the task. The *decimal* value(s) specified indicate when status changes are sent to NetView Resource Manager.

Up to three values can be specified. The parentheses are not required if only one value is specified. Multiple values must be enclosed in parentheses and separated by either blanks or commas. Zero cannot be specified with other values. A value of zero indicates that no status changes are sent. Valid values are any number in the range 1 – 999999 kilobytes. These values are not positional. Specifying the keyword without a value is equal to WRNMSGCT=DEFAULT.

WRNSTG=0\(\text{decimal,decimal,decimal}\)|DEFAULT

Specifies the number of kilobytes of storage in use by a task. The *decimal* value(s) specified indicate when status changes are sent to NetView Resource Manager.

Up to three values can be specified. The parentheses are not required if only one value is specified. Multiple values must be enclosed in parentheses and separated by either blanks or commas. Zero cannot be specified with other values. A value of zero indicates that no status changes are sent. Valid values are any number in the range 1 – 999999 kilobytes. These values are not positional. Specifying the keyword without a value is equal to WRNSTG=DEFAULT. WRNSTG is similar to the MAXSTG keyword.

Usage Notes

The following usage notes apply to the OVERRIDE command:

- The commas between keywords are optional. You can use either commas or blank spaces to separate multiple keywords.
- If you omit a parameter of the OVERRIDE command, the current value of the parameter remains in effect. If you never changed a parameter of the OVERRIDE command, the NetView-provided initial value remains in effect.
- DISPLAY=NO enables an operator to suppress all messages.
- The default formats for the date and time operands are as follows:
 - **LONGDATE**

 `mm/dd/yy`
 - **LONGTIME**

 `hh:mm:ss`
 - **SHORTDAT**

 `mm/dd`
 - **SHORTTIM**

 `hh:mm`
- Delimiters for the LONGDATE, LONGTIME, SHORTDAT, and SHORTTIM operands can be any printable character except:
 - Alphanumeric characters
 - Apostrophes (‘)
 - Asterisks (*)
Restrictions

The following restrictions apply to the OVERRIDE command:

- The DEFAULT option sets the processing back to the environment created by the DEFAULTS command and the NetView automation table.
- Unsolicited messages received from the MVS subsystem interface are not written to the network log if they do not have an automation table entry and have not been assigned a task with the ASSIGN command. If the automation table entry used to automate an unsolicited message from the MVS subsystem interface contains an EXEC action with both the CMD and ROUTE parameters, only the command specified with the CMD keyword is routed. Routing of the message being processed by the automation table is not affected. To change the routing of the message, use an EXEC action with the ROUTE parameter and not the CMD parameter.
- No messages are produced if this command runs correctly.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Processing successful</td>
</tr>
<tr>
<td>nonzero</td>
<td>Error in processing</td>
</tr>
</tbody>
</table>

Examples

Example: Changing the HCYLOG and DISPLAY Options
To change the HCYLOG and DISPLAY options, enter:

```
OVERRIDE HCYLOG=YES,DISPLAY=NO
```

Messages are now written to the active hardcopy log but no longer displayed on the NetView terminal (only for the operator who entered the command). Other options are unaffected.

Response

You receive message DSI633I stating the OVERRIDE command completed successfully.

```
DSI633I OVERRIDE COMMAND SUCCESSFULLY COMPLETED
```

Example: Listing OPER4 DEFAULTS and OVERRIDE Settings
To see a list of the DEFAULTS and OVERRIDE settings for OPER4, enter:

```
LIST OVERRIDE=OPER4
```

Example: Defining an Operator Specific Dataset

```
OVERRIDE DSIOPEN=NETV.OPDS.OPER1 DSICLD=NETV.OPDS.OPER1
```

This operator can now access members on NETV.OPDS.OPER1 as command lists or as PF key definitions. The PF key definitions can also be saved to NETV.OPDS.OPER1(CNMKEYSV). Refer to the DISPFK command for information on saving PF key definitions.
PARSE (STATMON)

Syntax

```
PARSE
```

Purpose of Command

The PARSE command enables you to see how the status monitor parses a message.

Operand Descriptions

- **msgnumber**
 - Identifies the number of the message.
- **msgtext**
 - Specifies the full message text.

Examples

Example: Determining How a Message IsParsed

If you are writing a filter to set off message indicator 2 for certain nodes, you need to know how the message is parsed. To find this information, enter:

```
PARSE IST105I nodename NODE NOW INACTIVE
```

Response

The following table is displayed:

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>TEXT</th>
<th>DELIMITER</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMN131I</td>
<td>1</td>
<td>IST105I</td>
</tr>
<tr>
<td>CMN131I</td>
<td>2</td>
<td>NODENAME</td>
</tr>
<tr>
<td>CMN131I</td>
<td>3</td>
<td>NODE</td>
</tr>
<tr>
<td>CMN131I</td>
<td>4</td>
<td>NOW</td>
</tr>
<tr>
<td>CMN131I</td>
<td>5</td>
<td>INACTIVE</td>
</tr>
<tr>
<td>CMN134I</td>
<td></td>
<td>END OF PARSE DISPLAY</td>
</tr>
</tbody>
</table>

Example: Determining How a Message Is Parsed

```
PARSE IST595I IRNLIMIT=NOLIMIT,CURRENT=0000000K,MAXIMUM=0000000K
```

Response

The following table is displayed:

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>TEXT</th>
<th>DELIMITER</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMN131I</td>
<td>1</td>
<td>IST595I</td>
</tr>
<tr>
<td>CMN131I</td>
<td>2</td>
<td>IRNLIMIT</td>
</tr>
<tr>
<td>CMN131I</td>
<td>3</td>
<td>NOLIMIT</td>
</tr>
<tr>
<td>CMN131I</td>
<td>4</td>
<td>CURRENT</td>
</tr>
<tr>
<td>CMN131I</td>
<td>5</td>
<td>0000000K</td>
</tr>
<tr>
<td>CMN131I</td>
<td>6</td>
<td>MAXIMUM</td>
</tr>
<tr>
<td>CMN131I</td>
<td>7</td>
<td>0000000K</td>
</tr>
<tr>
<td>CMN134I</td>
<td></td>
<td>END OF PARSE DISPLAY</td>
</tr>
</tbody>
</table>
PATH (NCCF; CNME8507)

Syntax

PATH

LAN PATH TEST sourceaddr targetaddr routeinfo . spname

Purpose of Command

The PATH command list tests the operation of a specific pathway between two adapters in different Token-Ring Network LAN segments. The PATH command list is supported by the IBM LAN Manager Version 2, but not by the IBM LAN Network Manager.

Operand Descriptions

LAN

Specifies that PATH is a LAN command list. This operand is optional.

TEST

Tests the operation of a specific pathway.

sourceaddr

Specifies the source adapter name or address.

targetaddr

Specifies the target adapter name or address.

routeinfo

Specifies the routing information (7–31 hexadecimal digits). The route is composed of the sequence xxx y xxx, where:

xxx

Specifies the ring number for the bridge

y

Specifies the bridge number

For example, route 00A 1 01D 1 00C entered as (00A101D100C) specifies the path from ring 00A to ring 01D through bridge 1 of the bridges between ring 00A and ring 01D, and from ring 01D to ring 00C through bridge 1 of the bridges between ring 01D and ring 00C.

netid

Specifies the network identifier in which the service point is located. This parameter is required only when you use a service point that is not in the local network. Use a period (.) to delimit netid from spname.

spname

Specifies the 1- to 8-character service point name of the IBM LAN Network Manager.

Restrictions

The following restrictions apply to the PATH command:

- The source adapter and the target adapter cannot be on the same ring.
- The maximum number of bridges you can test is 7.
• The PATH command list applies to Token-Ring Networks only. You cannot perform a PATH test on PC Networks.
• Do not use the IBM LAN Manager command lists as commands in conjunction with the &WAIT statement in a command list.
• The PATH command is supported only by LAN Manager Version 2. It is not supported by IBM LAN Network Manager releases. You can use the information from the QNETWORK STATUS command, the BRIDGE CONFIGURE command, and the ADAPTER PROFILE command to derive an equivalent result.

Examples

Example: Testing the Operation of a Pathway
To test the operation of the pathway between adapter 10005A0005A9 and 10005A084F10, enter:
PATH TEST 10005A0005A9 10005A084F10 0011002 N4L021
PATHS (NCCF; CNME0026)

Syntax

```
PATHS
PATHS resname
```

Purpose of Command

The PATHS command list displays dial-out path information about a switched physical unit.

Operand Descriptions

`resname`

Specifies the name of a switched physical unit.

`passthru`

Specifies up to 6 parameters which are appended unchanged to the VTAM DISPLAY command issued by the PATHS command. No validation for duplicate or conflicting parameters is performed.

Examples

Example: Displaying Dial-Out Path Information for a Physical Unit

To display dial-out path information for physical unit HD3790N1, enter:

```
PATHS HD3790N1
```

Response

A message similar to the following example is displayed:

```
IST097I DISPLAY ACCEPTED
IST148I DIAL OUT PATH INFORMATION FOR PHYSICAL UNIT HD3790N1
IST149I LINE GRP TELEPHONE NUMBER OR LINE NAME PID GID CNT
IST168I EGROUP40  4094    001 001 005 AVA AUT
IST168I EGROUP50  4094    002 002 001 AVA MAN
IST314I END
```

PID is the path identifier, GID is the group identifier, and CNT is the retry count. AVA means the path is available, and AUT or MAN shows whether the dial-out is automatic or manual.
PDFILTER (NPDA; CNME3004)

Syntax

```
PDFILTER
```

Purpose of Command

The PDFILTER command list defines the viewing and recording filters that you use during your hardware monitor session.

You can use the PDFILTER sample command list to set recording filters for the hardware monitor’s data services task (DST). Because it contains recording filters, any changes to it would affect the hardware monitor’s filters as a whole, not just the filters for a particular operator. For this reason, your system operator decides which filters to include in this list at initialization.
Syntax

PENDING

Purpose of Command

The PENDING command list displays information about nodes in the domain in a pending state.

Operand Descriptions

passthru

Specifies up to 6 parameters which are appended unchanged to the VTAM DISPLAY command issued by the PENDING command. No validation for duplicate or conflicting parameters is performed.

Examples

Example: Displaying Nodes in a Pending State

To display nodes in a pending state, enter:

PENDING

Response

Information similar to the following is displayed:

IST350I VTAM DISPLAY - DOMAIN TYPE = PENDING
IST159I THE FOLLOWING NODES ARE IN A PENDING STATE
IST080I M09 PACDR M10 PACDR H21CC94P PCTD1
IST080I P668B PCTD1 P1402C PCTD1 P45A2 PCTD1
IST080I P45A5CE PCTD2 T45A5E00 INOP T45A5E01 INOP
IST314I END

In this example, node M09 is in the PACDR state. To display the meaning of PACDR, use the STATUS command list.
PFKDEF (NCCF; CNME1010)

Syntax

```
PFKDEF
```

```
membername

?  Indicates the name of a member which contains operands of the SET command. The last 8 characters of each line are ignored. To continue an operand specification to another line, end the line to be continued with a comma and continue the operand on the following statement. Refer to sample CNMKEYS.

Refer to the Tivoli NetView for z/OS Customization Guide for more information.

?  Indicates to display help information.

Usage Notes

Consider the following in defining key definitions:

- If an operator data set has been defined for DSIOPEN and it contains a member called CNMKEYSV which contains key definitions, these will be defined after those in `membername`. If the same key is defined in both members, the definition in CNMKEYSV is used. This enables key definitions saved for specific operators by the DISPFK command. Refer to the DISPFK and OVERRIDE commands in the NetView online help for information about overriding general key settings.

  **Note:** The definitions in CNMKEYSV are different from those in `membername`. Do not invoke PFKDEF CNMKEYSV.

- OPID() and SUPPCHAR() are special names that are resolved as if they were REXX control variables.

- Do not use SUPPCHAR() with DELAY-type keys.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful completion.</td>
</tr>
<tr>
<td>8</td>
<td>Invoked from a task which does not support PF keys.</td>
</tr>
<tr>
<td>12</td>
<td>Extraneous parameters were given.</td>
</tr>
<tr>
<td>16</td>
<td>The <code>membername</code> is incorrect or contains incorrect key definitions.</td>
</tr>
</tbody>
</table>
PING (NCCF; CNMEPING)

Syntax

```
PING host [Options]
```

Options:

- `-c number` or COUNT
  Specifies the number of ICMP echo requests (pings) to send to the target IP host. If zero is specified, the PING command sends ICMP echo requests until it is reset. The default is 3.

- `-d target` or DEBUG
  Generates tracing information and details related to sent and received data packets. Valid values are as follows:
  - ALL or ON
    Turns on debugging for all targets
  - ARGS
    Traces argument processing
  - ECHO
    Traces processing relating to the receipt and verification of ECHO packets received
  - PING
    Traces processing relating to the construction of the PING packet being sent
  - RESOLVE
    Traces all operations relating to Domain Name Server (DNS) resolution of IP addresses and host names
  - SOCKET
    Traces all operations relating to socket calls

- `-s name` or TCPNAME name
  Specifies the name to be used as the source of the TCP connection.

- `-t number` or TIMEOUT number
  Specifies the time-out value (in milliseconds) for each ping request.

- `-v` or VERBOSE
  Displays the tracing information and details related to sent and received data packets.

- `-?`
  Displays the online help for the PING command.

Purpose of Command
The PING command is used to send an ICMP echo request to an IP host, listen for responses, and report them.

Operand Descriptions

- `-c` or COUNT
  Specifies the number of ICMP echo requests (pings) to send to the target IP host. If zero is specified, the PING command sends ICMP echo requests until it is reset. The default is 3.

- `-d` or DEBUG
  Generates tracing information and details related to sent and received data packets. Valid values are as follows:
  - ALL or ON
    Turns on debugging for all targets
  - ARGS
    Traces argument processing
  - ECHO
    Traces processing relating to the receipt and verification of ECHO packets received
  - PING
    Traces processing relating to the construction of the PING packet being sent
  - RESOLVE
    Traces all operations relating to Domain Name Server (DNS) resolution of IP addresses and host names
  - SOCKET
    Traces all operations relating to socket calls

- `-h` or HELP
  Displays the online help for the PING command.
-l or LENGTH
   Specifies the length of ICMP data packets to be sent. The minimum length is 18 bytes and the maximum is 256 bytes. The default is 18 bytes.

-q or QUICK
   Specifies that only a single PING packet is to be sent to an IP host. See "Usage Notes".

-s or TCPNAME
   Specifies the name of the IP stack in which to direct the PING. The default is specified by system CS/390 IP definitions.

-t or TIMEOUT
   Specifies the effective time-to-live (TTL) in seconds on ICMP echo requests to be sent. The default is 2 seconds.

-v or VERBOSE
   This option generates more output which can be useful when attempting to determine exactly why there are unexpected results from PING.

-? Displays the online help for the PING command.

Usage Notes
Consider the following when using the PING command:

- The operands are not case-sensitive.
- The operands, including the host name or address, can be issued in any order. Switch operands (options specified with a hyphen) take precedence if duplicate operands are specified.
- If an IP address is specified and no host name can be determined through DNS resolution, the host name is specified in any output as INDETERMINATE HOSTNAME. If a host name is specified which cannot be resolved to an address, the PING command terminates.
- PING can be invoked from the NCCF command line, from within a command list, or as a REXX function or subroutine:
  - When invoked from the command line with the -q or QUICK option, a single ICMP echo is sent and a single output message indicates the success or failure of that ping.
  - When invoked as a REXX external function or subroutine, no message is issued but the REXX result variable is set to 1 indicating success or 0 indicating failure. Therefore, PING() can be considered a REXX external boolean function.
  - Do not run SNMP commands in NetView pre-initialization command lists.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The NCCF PING command completed successfully whether the IP host being pinged was pinged successfully or not. However, if PING is called from a REXX command list as an external function or subroutine, a return code of zero indicates the IP host did not echo the PING.</td>
</tr>
<tr>
<td>1</td>
<td>Indicates the NCCF PING command completed successfully and the IP host being pinged did echo the PING. This return code only applies to calls of PING as an external function or subroutine from REXX.</td>
</tr>
</tbody>
</table>
Examples

Pinging an IP Host name
The following example pings the fully-qualified host name w3.olympus.ibm.com, using all defaults:

```
PING W3.OLYMPUS.IBM.COM
```

You will receive a response similar to the following:
```
BNH765I Pinging OLYMPUS.TAMPA.ADVANTIS.COM at 164.120.77.170 with 3 packets of length 18 bytes
BNH767I 18 bytes received from 164.120.77.170: seq=0001 in 201ms
BNH767I 18 bytes received from 164.120.77.170: seq=0002 in 52ms
BNH767I 18 bytes received from 164.120.77.170: seq=0003 in 43ms
BNH769I 3 packets sent, 3 packets received, 0.00% packet loss
BNH770I Round trip times from 43 to 201 ms, averaging 122ms
```

Pinging an IP Address with Options
The following example pings an IP address ten times with 128 byte packets, allowing five seconds for echo response on each packet:

```
PING -C 10 9.8.0.1 -L 128 -T 5
```

You will receive a response similar to the following:
```
BNH765I Pinging INDETERMINATE HOSTNAME at 9.8.0.1 with 10 packets of length 128 bytes
BNH767I 128 bytes received from 9.8.0.1: seq=0001 in 496ms
BNH767I 128 bytes received from 9.8.0.1: seq=0002 in 563ms
BNH767I 128 bytes received from 9.8.0.1: seq=0003 in 483ms
BNH767I 128 bytes received from 9.8.0.1: seq=0004 in 476ms
BNH767I 128 bytes received from 9.8.0.1: seq=0005 in 480ms
BNH767I 128 bytes received from 9.8.0.1: seq=0006 in 568ms
BNH767I 128 bytes received from 9.8.0.1: seq=0007 in 386ms
BNH767I 128 bytes received from 9.8.0.1: seq=0008 in 385ms
BNH767I 128 bytes received from 9.8.0.1: seq=0009 in 381ms
BNH767I 128 bytes received from 9.8.0.1: seq=0010 in 468ms
BNH769I 10 packets sent, 10 packets received, 0.00% packet loss
BNH770I Round trip times from 381 to 568 ms, averaging 474ms
```

Issuing a PING Command From a REXX Command List
In the following example, PING is used as an external REXX boolean function to test the availability of IP hosts 9.67.50.46 and 1.2.3.4:

```
/*TESTPING : Ping an IP host and see if it is up */
arg ipHost
if CNMEPING('-q' ipHost) then say 'OK'
else address NETVIEW 'MESSAGE DSI042,' ipHost
exit 0
```

You will receive a response similar to the following:
```
TESTPING 9.67.50.46
OK
```

Or:
```
TESTPING 1.2.3.4
DSI042I 1.2.3.4 RESOURCE NOT AVAILABLE
```
**POLICY**

**Syntax**

```
POLICY

POLICY [neighbouring Hệ thống]
```

**Purpose of Command**

The POLICY command manages which policy files are loaded into the Policy Repository and performs actions on those policy definitions. The POLICY command is a multi-purpose generic Application Programming Interface (API) into the Policy Repository. The POLICY command provides standardized access to all policy loaded into the Policy Repository. Some applications might ship more specific interfaces. For example, the SETAUTO command enables you to manage just the AON RECOVERY policy. When using SETAUTO you will not see any other policy definitions even though they might be loaded. Application-specific interfaces are documented in the appropriate User’s Guide.

**Operand Descriptions**

- **ADD**
  
  Creates a new policy definition in the Policy Repository with provided keywords and values.

- **DEL**
  
  Deletes a policy definition from the Policy Repository.

- **GET**
  
  Retrieves the requested policy definition from the Policy Repository. This is the default.

- **LOAD**
  
  Loads the Policy Repository based on CNMSTYLE definitions.

- **SET**
  
  Updates the requested policy definition keyword with a value.
STATUS
Queries which policy file or files have been loaded in the Policy Repository.

TEST
Performs a syntax check of the policy file or files.

\[**MEMBER=filename**\]
The name of the actual policy file to test. If not specified on a TEST request, then all of the currently active policy files are tested.

DISP
Whether to display messages at the user console.

\[**N**\] Does not display messages.

\[**Y**\] Displays messages. This is the default.

\[**ENTRY=policy\_name**\]
Any valid policy name, such as RECOVERY or NMCSTATUS, as defined in the [Tivoli NetView for z/OS Administration Reference](#) or by other applications.

\[**TYPE**\]
The type of policy definition to return.

\[**\***\] Returns all policy definitions for a given policy\_name. This is the default.

\[**policy\_def**\]
Any valid policy definition, such as HOLIDAY, as defined in the [Tivoli NetView for z/OS Administration Reference](#) or by other applications.

\[**SAFE=safe\_name**\]
The name of a safe containing the output from the request.

\[**keyword**\]
Any policy keyword allowed by the policy application, such as NOAUTO.

\[**value**\]
Any keyword value allowed by the policy application.

**Usage Notes**

- You can have one or more keyword=value pairs
- You can specify TYPE=* to retrieve all policy definitions for a given policy grouping. For example, POLICY REQ=GET ENTRY=RECOVERY TYPE=* will return all RECOVERY policy definitions from all policies.
- You cannot delete (REQ=DEL) keywords or keyword values, only specific policy definitions.
- You cannot query (REQ=GET) keywords or keyword values, only specific policy definitions.
- No parameters are allowed with REQ=STATUS or REQ=LOAD
- If MEMBER= is not specified for a REQ=TEST then all currently active policy files are syntax tested based on the current policy loaded in the Policy Repository.
- User-written applications that drive 3270 panels should use DISP=N to avoid messages interrupting the application.
- User-written applications that are querying or changing policy definitions can use the default of DISP=Y.

**Return Codes**

-1 SIGNAL FAILURE
-5  SIGNAL HALT
0  Request was successful.
1  Requested policy definition not found (GET/ADD/SET).
3  Missing Parameters — look for message EZL203I
4  Invalid Parameters - look for message EZL204I.
7  SIGNAL NOVALUE- look for message EZL271E.
8  SIGNAL SYNTAX - look for message EZL275E.
9  Security Authorization Failure - look for message EZL228E.
10  Request not processed - other error encountered.
PRGATT (NPDA)

Syntax

```
PRGATT
 EV -ST- date N resname -days
```

Purpose of Command

The PRGATT command removes event or statistical data for the specified resource and all the resources that are attached to it and known to the hardware monitor.

If you issue this command from a non-hardware monitor screen or from a command list, such as the PURGEDB command list, the response to this command is sent to the command facility screen and the messages are logged. The messages received are the same as if the command was issued under the PPT.

This command can be useful if you rename your network control program (NCP). When generating a new NCP, a new set of hardware monitor database records is recorded for each resource attached to the NCP. With this command, you can purge all database records for the specified resource and all attached resources. You cannot process multiple PRGATT commands concurrently.

If the name of the resource is not associated with a unique resource configuration on the database, a selection panel is displayed on which you can choose which configuration is relevant.

Operand Descriptions

**EV**

Specifies event data.

**ST**

Specifies statistical data.

* Specifies both event and statistical data.

**date**

Deletes all data recorded before this date. The format of `date` is controlled by the setting of the date operands of the DEFAULTS and OVERRIDE commands.

**-days**

Deletes data that is older than the specified number of days (0–365).

* Deletes data regardless of age.

**N**

Specifies that the operand that follows is a resource name.

**resname**

Specifies the symbolic name of the resource. You can specify up to five resource names to fully qualify the resource for which data is to be displayed.
Restrictions

To reclaim the space made available by the PRGATT command, use the DBAUTO NPDA,REORG command. If the REORG is not done, the free space can not be reused.

Examples

Example: Erasing Statistical Data for NCP001 and Attached Resources

To erase all statistical data for NCP001 and all resources attached to it, enter:

PRGATT ST = N NCP001
**PURGE (NCCF)**

**Syntax**

```plaintext
NCCF PURGE
```

**PurgeDst:**

```plaintext
DST=dstname REQ=ALL PurgeOp
```

**PurgeOp:**

```plaintext
OP=''
```

**Purpose of Command**

The NCCF PURGE command purges a timer request scheduled by the AFTER, AT, or EVERY command from the timer queue as well as the Save/Restore database. You can also purge a data services task (DST) request with which there is a problem, such as a request unable to complete. If you purge events, statistics, or GMFALERT records, they are purged from the hardware monitor database. Specify GMFALERT to purge GMFALERT records from the hardware monitor database.

**Operand Descriptions**

**COSCONF**
Indicates that the current target nodes specified by the common operations services (COS) commands are to be purged and the new configuration is to be used. The NetView system attempts an MS transport connection for an SP operand first. If an LU 6.2 session cannot be established, an SSCP-PU session is used.

If you do not specify PURGE COSCONF, the NetView program continues to use the type of connection established on a prior COS request.

**DST=dstname**
Is the task name of the DST that is processing the request.

**REQ**
Specifies that DST requests are to be purged.
ALL
Indicates that all DST requests for the operid specified on the OP operand are to be purged (maximum value is 999 requests).

req_number
Specifies the DST request number you want purged. The DST numbers are obtained with the command LIST DST=dstname.

OP
Purges timer requests or timer elements for the designated operator.

_" 
Specifies to purge non-PPT timer elements, or DST requests sent by you. This is the default.

PPT
Purges primary program operator interface task (PPT) timer elements.

operid
Specifies the operator whose timer or DST requests are to be purged.

TIMER
Specifies that timer requests are to be purged, depending on the OP operand.

ALL
Indicates that all pending timer requests are to be purged. If you do not specify the OP operand, all pending timer elements you entered without the PPT operand are purged.

req_name
Indicates that the named timer request sent under the operator or task specified on the OP operand is to be purged.

Restrictions
The PURGE command is asynchronous and requires a CORRWAIT stage if used in a PIPE.

Examples

Example: Purging All Outstanding DST Requests
To purge all outstanding DST requests for BNJDSERV that are from operator HELPDSK1, enter:
PURGE DST=BNJDSERV REQ=ALL OP=HELPDSK1

Example: Purging All Timer Requests Entered Without the PPT Operand
To purge all timer requests you entered without the PPT operand, enter:
PURGE TIMER=ALL

Example: Purging Timer Request SYS0001
To purge the timer request SYS0001, enter:
PURGE TIMER=SYS0001

Example: Purging All Timer Requests Sent with the PPT Operand
To purge all timer requests you sent with the PPT operand, enter:
PURGE TIMER=ALL OP=PPT

Example: Purging All Requests Made By OPER7 to the DST Task DSIGDS
To purge all requests made by OPER7 to the DST task DSIGDS, enter:
PURGE DST=DSIGDS REQ=ALL OP=OPER7
Response

If the purge is successful, the following is displayed:

DSI205I nnn TIMER ELEMENTS PURGED OP = operid
DSI510I taskname: rrr REQUESTS PURGED

In the example, rrr is the decimal number of requests purged.
PURGE (NLDM)

Syntax

```
NLDM PURGE

PURGE ALL BEFORE date time
PURGE ROUTE BEFORE date time
PURGE SESSION resname1 resname2 BEFORE date time

```

Purpose of Command

The NLDM PURGE command deletes route data, session data, or both from the session monitor database.

The session monitor purge, when it is initiated by the PURGE command, runs asynchronously. When the network operator receives the PURGE STARTED message indicating that the session monitor purge has started, the operator can continue using the session monitor. When the session monitor purge has completed, the authorized receiver receives a PURGE COMPLETED message. This message indicates the type and count of the data purged. If a network operator issues a session monitor PURGE and a PURGE COMPLETED message has not been received by the authorized receiver for a prior session monitor PURGE command, the network operator still receives a PURGE STARTED message for the PURGE command. However, the new session monitor PURGE does not begin until the prior purge has completed.

Operand Descriptions

**ALL**

Deletes all session and route data. This operand deletes route and session data that ended prior to the specified BEFORE date and time.

**ROUTE**

Deletes route data only. This operand deletes only route data that ended before the specified BEFORE date and time.

**SESSION**

Deletes session data only. This operand deletes only session data that ended before the specified BEFORE date and time. If you specify SESSION, also specify `resname1` and `resname2`.

For the SESSION operand, the resource names limit the purge to only the sessions that had session partners of `resname1` and `resname2`. You can use the wildcard characters * and ? within `resname1` and `resname2` to specify more generic resource names.

**resname1 resname2**

Specifies the resource names of the session partner data to be purged. These names must be 1–8 alphanumeric characters and can contain the wildcard characters * and ?.

* An asterisk (*) alone is an alternative way of specifying either `resname1` or `resname2`. 
**Note:** Specify either two resource names, a resource name and an asterisk, or two asterisks.

**BEFORE**
Deletes the specified data that has an ending time stamp that is less than or equal to the specified date and time.

**date**
Specifies the date before which data is to be purged. The format of date is controlled by the setting of the date operands of the DEFAULTS and OVERRIDE commands.

**time**
Specifies the time before which data is to be purged. The format of time is controlled by the setting of the time operands of the DEFAULTS and OVERRIDE commands.

*  Specifies that all data up to the current date and time is to be purged.

**Restrictions**
When you purge using wildcards (*) for both resname1 and resname2, you might have to issue the PURGE command twice to achieve the desired results if the database has become corrupted with mixed session data. Corruption to the database can occur if you change the PURGE=SPEED|DASD parameter of the AAUPRMLP and do not delete and redefine the database.

**Examples**
The format of dates and times specified in the following examples assumes the default setting for date and time formats on the DEFAULTS and OVERRIDE commands.

**Example: Purging All Sessions by Resource Name Pairs and Session End Time**
To purge all sessions that have resource name pairs of LCL3278A and L51R79M and a session end time before (or at) 23:59 on 3/20/98, enter:
PURGE SESSION LCL3278A L51R79M BEFORE 3/20/98 23:59

**Example: Purging All Route Data by End Time**
To purge all route data with an end time before (or at) the current system date/time, enter:
PURGE ROUTE BEFORE *

**Example: Purging All Session and Route Data by Current System Date and Time**
To purge all session data and all route data before (or at) the current system date/time, enter:
PURGE ALL BEFORE *

**Example: Purging All Sessions According to Name Pair Patterns and Current System Date and Time**
To purge all sessions that have resource name pairs matching the patterns A?C*, * and a session end time before (or at) the current system date/time, enter:
PURGE SESSION A?C* * BEFORE *

**Example: Purging All Sessions Between Two Resources According to Session End Time**
To purge all sessions between resources APPL01 and LU01 with a session end time at or before 23:59 on 3/20/98, enter:
PURGE SESSION APPL01 LU01 BEFORE 3/20/98 23:59
PURGE (NPDA)

Syntax

NPDA PURGE

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>PURGE</td>
<td>PRG</td>
</tr>
</tbody>
</table>

Purpose of Command

The NPDA PURGE command removes event or statistical data for a specified resource or for all resources from the database. In addition, it can purge all information based on the adapter address. If you PURGE events, statistics, or GMFAERT records, they are purged from the hardware monitor database. Specify GMFAERT to purge GMFAERT records from the hardware monitor database.

If you issue this command from a non-hardware monitor screen or from a command list, such as the PURGEDB command list, the response to this command is sent to the command facility screen and the messages are logged. The messages received are the same as if the command was issued under the PPT.

Operand Descriptions

EV

Specifies event data.

ST

Specifies statistical data.

*  

Specifies both event and statistical data.

date

Deletes all the data before this date. The format of date is controlled by the setting of the date operands of the DEFAULTS and OVERRIDE commands.

-days

Deletes data that is older than the specified number of days (0–365).

*  

Deletes data regardless of age.

N  

Identifies the operand that follows as a resource name.

*ALL

Deletes data for the date previously noted for all resources.
resname
   Specifies the symbolic name of the resource. You can specify up to five
   resource names to fully qualify the resource for which data is to be purged.

A
   Identifies the operand that follows as an adapter address.

adaptadr
   Specifies the 12-hexadecimal-digit adapter address. The A (adapter) address is
   not a valid option for a resource type of CBUS.

GMFALERT
   Purges the GMFALERT records from the hardware monitor database.

EVSTGMF
   Purges the events, statistics, and GMFALERT records. Note that if the target
   domain is prior to NetView for OS/390 V1R1 (for example, if you issue an
   NPDA SDOMAIN command to the hardware monitor of an earlier NetView
   release), the PURGE EVSTGMF command purges only events and statistics
   records because the target domain contains no GMFALERT records.

Restrictions
   The following restrictions apply to the PURGE command:
   • This command does not purge records for attached resources.
   • The recording function is suspended when a purge of the entire database is in
     progress, and incoming data can be lost. You cannot process multiple PURGE
     commands concurrently.
   • If the name of the resource is not associated with a unique resource
     configuration on the database, a selection panel is displayed on which you can
     choose which configuration is relevant.
   • To reclaim the space available as a result of the PURGE command, use the
     "DBAUTO NPDA,REORG" command. If the REORG command is not issued, the
     free space cannot be reused.

Examples
   The format of dates specified in the following examples assumes the default setting
   for date formats on the DEFAULTS and OVERRIDE commands.

Example: Erasing All Records on an Event Database Recorded
Prior to a Specified Date
   To erase all records on an event database that were recorded before March 1, 1998,
   enter either command:
   PURGE EV 030198 N *ALL
   PRG EV 030198 N *ALL
PURGEDB (NLDM, NPDA; CNME2007)

Syntax

PURGEDB

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROUTE</td>
<td>RT</td>
</tr>
<tr>
<td>SESSION</td>
<td>SESS</td>
</tr>
<tr>
<td>EVENT</td>
<td>EV</td>
</tr>
<tr>
<td>STAT</td>
<td>ST</td>
</tr>
<tr>
<td>ATTACHED</td>
<td>ATT</td>
</tr>
<tr>
<td>EV/ST/GMFALERT</td>
<td>EVSTGMF and EV/ST/GMF</td>
</tr>
</tbody>
</table>

Purpose of Command

The PURGEDB command list deletes hardware monitor or session monitor data from the database.

Use the PURGEDB command list to delete either session monitor data or hardware monitor data. If you purge events, statistics, or GMFALERT records, they are purged from the hardware monitor database. Specify GMFALERT to purge GMFALERT records from the hardware monitor database. Specify EV/ST/GMFALERT to purge events, statistics, and GMFALERT records from the hardware monitor database.

The session monitor purge, when initiated by the PURGE command, runs asynchronously. When you receive the PURGE STARTED message indicating that the session monitor purge began, you can continue using the session monitor. When the session monitor purge ends, you and an authorized receiver receive a PURGE COMPLETED message. This message indicates the type and count of the data purged.
**Operand Descriptions**

**ROUTE**
Indicates that session monitor route data is to be purged.

The ROUTE or RT operand deletes session monitor route data that ended before the specified BEFORE date and time.

**RT/SESS**
Indicates that route data and session monitor data are to be purged.

The RT/SESS operand deletes session monitor session data and route data that ended before the specified BEFORE date and time.

**SESSION**
Indicates that session monitor session data is to be purged.

The SESSION or SESS operand deletes session monitor session data that ended before the specified BEFORE date and time.

For the session monitor SESSION or SESS operand, the resource name limits the purge to only those sessions that had session partners of resource res1 and res2. Use the wildcard characters * and ? within res1 and res2 to specify more generic resource names.

res1 res2
Specifies the name of the resource for which data is to be purged. The resource name can contain the wildcard character ? for session monitor data.

**BEFORE**
Identifies the operands that follow as the starting date and time.

date
Deletes all the data before this date. The format of date is controlled by the setting of the date operands of the DEFAULTS and OVERRIDE commands.

-days
Deletes data that is older than the specified number of days (0–365).

* 
Deletes data that is older than the current date (and current time unless time is explicitly specified following the date).

time
Time before which the specified data is to be purged from the session monitor database only. The format of time is controlled by the setting of the time operands of the DEFAULTS and OVERRIDE commands.

**EVENT**
Indicates hardware monitor event data is to be purged.

The EVENT or EV operand deletes hardware monitor event data logged before the specified BEFORE date.

**ALL**
Indicates all hardware monitor data is to be purged (for hardware monitor purge only).

adaptadr
Specifies a 12-hexadecimal-digit adapter address in place of a resource name (for hardware monitor purge only). The A (adapter) address is not a valid option for a resource type of CBUS.

resname
Specifies the symbolic name of the resource. You can specify up to five resource names to fully qualify the resource for which data is to be purged.
EV/ST
Indicates hardware monitor event data and statistical data are to be purged.
The EV/ST operand deletes hardware monitor event and statistical data logged
before the specified BEFORE date.

STAT
Indicates hardware monitor statistical data is to be purged.
The STAT or ST operand deletes hardware monitor statistical data logged
before the specified BEFORE date.

ATTACHED
Indicates all hardware monitor data associated with resname is to be purged
(for hardware monitor purge only).

GMFALERT
Indicates GMFALERT records are to be purged from the hardware monitor.

EV/ST/GMFALERT
Indicates events, statistics, and GMFALERT records are to be purged. Note that
if the target domain is prior to NetView for OS/390 V1R1 (for example, if you
issue an NPDA SDOMAIN command to the hardware monitor of an earlier
NetView release), the PURGEDB EVSTGMF command purges only events and
statistics records because the target domain contains no GMFALERT records.

Restrictions
The following restrictions apply to the PURGEDB command:

- When you purge using wildcards (*) for both resname1 and resname2, it might be
  necessary to issue the PURGE command twice to achieve the desired results if
  the database has become corrupted with mixed session data. Corruption to the
database can occur if you change the PURGE=SPEED|DASD parameter of the
AAUPRMLP and do not delete and redefine the database.

- For the hardware monitor EVENT, EV, STAT, ST, or EV/ST operand, the resource
  name limits the purge to only the event data or statistical data that used
  resource resname.

- If you issue PURGEDB for hardware monitor or session monitor data and
  PURGE, PRGATT, or PURGEDB command is currently running, the new
  PURGEDB request is denied. You cannot concurrently process multiple
  PURGEDB, PURGE, or PRGATT commands for hardware monitor or session
  monitor.

- The PURGEDB command list issues NPDA PURGE, NPDA PRGATT, and
  NLDM PURGE commands. If these commands are individually checked for
  authorization, the use of the PURGEDB command list is restricted as if it were
  also checked for authorization.

- To clear an entire hardware monitor database or session monitor database, use
  the IDCAMS purge database facility or the RESETDB command.

- To reclaim the free space made available by the PURGEDB command, use the
  “DBAUTO NPDA,REORG” command or the “DBAUTO NLDM,REORG”
  command, as appropriate. If the REORG is not done, the free space cannot be
  reused.

Examples
The format of dates and times specified in the following examples assumes the
default setting for date and time formats on the DEFAULTS and OVERRIDE
commands.
Example: Purging All Session Monitor Route Data Before a Specified Time of the Current Date
To purge all session monitor route data before a specified time of the current date, enter:

PURGEDB ROUTE BEFORE * 16:32

Response
All session monitor route data before 16:32:59 of the current date are purged.

Example: Purging All Session Monitor Data Using Wildcard Characters for a Specified Date
To purge all session monitor session data using the wildcard characters * and ?, and for a specified date, enter:

PURGEDB SESSION * ABC?E BEFORE 7/1/97

Response
All session monitor session data matching * ABC?E before 7/1/97 23:59:59 are purged.

Example: Purging All Session Monitor Session Data and Route Data Before the Current Date and Time
To purge all session monitor session data and route data before the current date and time, enter:

PURGEDB RT/SESS BEFORE *

Response
All session monitor session data and route data before the current date and time are purged.

Example: Purging All Hardware Monitor Event Data for a Resource Before the Current Date
To purge all hardware monitor event data for resource RES25 before the current date, enter:

PURGEDB EVENT RES25 BEFORE *

Response
All hardware monitor event data for resource RES25 before the current date and time are purged.

Example: Purging All Hardware Monitor Statistical Data Before a Specified Date
To purge all hardware monitor statistical data before March 1, 1998 enter:

PURGEDB ST *ALL BEFORE 3/1/98

Response
All hardware monitor statistical data before March 1, 1998, are purged.

Example: Purging All Hardware Monitor Event Data Attached to a Resource Before the Current Date
To purge all hardware monitor event data attached to resource NAME2 before the current date, enter:
PURGEDB EV ATT NAME2 BEFORE *

Response

All hardware monitor event data attached to resource NAME2 before the current date are purged.

Example: Purging All Session Monitor Session Data for Specified Resources Before the Current Date and Time
To purge all session monitor session data for sessions between resources specified by A and B before the current system date and time, enter:
PURGEDB SESS A B* BEFORE * *

Example: Purging Session Monitor Route Data
To purge session monitor route data for all routes that have a session end date before May 26, 1997, enter:
PURGEDB RT BEFORE 5/26/97

Example: Purging All Session Monitor Data for Sessions with an End Date 5 Days Before the Current Date
To purge all session monitor data for sessions with an end date of 5 days prior to the current system date and all routes with this end date, enter:
PURGEDB RT/SESS BEFORE -5

Example: Purging All Hardware Monitor Event Data for a Resource Before the Current System Date
To purge all hardware monitor event data for resource RES1 before the current system date, enter:
PURGEDB EV RES1 BEFORE *

Example: Purging All Event and Statistical Data Before the Current System Date
To purge all event and statistics data before the current system date, enter:
PURGEDB EV/ST *ALL BEFORE *
PWDSEC (NCCF)

Syntax

```
-> PWDSEC resourcename
```

Purpose of Command

The PWDSEC command checks the authorization for an operator to view a password.

Operand Descriptions

```
resourcename
```
Specifies the item for which a password has been assigned.

Usage Notes

PWDSEC serves as a central point to control access to passwords used by AON, including IPMAN, in which an operator might view password data.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>User is authorized to view the password</td>
</tr>
<tr>
<td>4</td>
<td>User is not authorized to view the password</td>
</tr>
</tbody>
</table>

Examples

Determining Password Authority

To determine if an operator is allowed to access a password for a resource named, for example, TVT2011, enter the following:

```
PWDSEC TVT2011
```

If the operator is authorized, message DSI633I is issued. Otherwise, the operator receives security-generated messages stating why they are not authorized.
QHCL (NCCF; CNME1011)

Syntax

```
QHCL
```

Purpose of Command

The QHCL command list displays information about the hardcopy log (printer), if one exists.

Operand Descriptions

```
passthru
```

Specifies up to 6 parameters which are appended unchanged to the VTAM DISPLAY command issued by the QHCL command. No validation for duplicate or conflicting parameters is performed.

Examples

**Example: Querying a Printer**

To query the printer, enter:

```
QHCL
```

Response

If no printer exists, the following is displayed:

```
CNM393I QHCL: NO ACTIVE HARD-COPY LOG FOR THIS SESSION
```
QNETWORK (NCCF; CNME8505)

Syntax

QNETWORK

----------LAN----------QNETWORK STATUS----------spname----------netid.spname----------

Purpose of Command

The QNETWORK command list obtains the current status of the managed rings, buses, and bridges in the local area network (LAN). The QNETWORK command list is supported by the IBM LAN Network Manager and the IBM LAN Network Manager Entry.

For the IBM LAN Network Manager, this command produces a list of all the managed LAN segments, with their status, followed by a list of all the linked bridges. For the IBM LAN Network Manager Entry, this command produces the current status of the LAN segment managed by the IBM LAN Network Manager Entry.

Note: To enable the NetView program to support the maximum configuration (255 bridges), the duplicate information in the list of all the linked bridges is not sent by the IBM LAN Network Manager.

Operand Descriptions

LAN
    Specifies that QNETWORK is a LAN command list. This operand is optional.

STATUS
    Specifies to obtain the status of all managed rings, buses, and bridges in the network.

netid
    Specifies the network identifier in which the service point is located. This parameter is required only when you use a service point that is not in the local network. Use a period (.) to delimit netid from spname.

spname
    Specifies the 1–8 character service point name of the IBM LAN Network Manager.

Restrictions

Do not use the IBM LAN Network Manager command lists as commands in conjunction with the &WAIT statement in a command list.

Examples

Example: Obtaining the Current Status of the Local Area Network
To obtain the current status of the local area network, enter:

QNETWORK STATUS N4L021
QOS (NCCF)

Syntax

QOS OP=operid

Purpose of Command

The QOS command displays information about whether an operator is defined to the NetView program and whether the operator is currently logged on.

Operand Descriptions

OP=operid

Specifies the operator ID whose status is being queried. The response indicates whether the operator is defined to the NetView program and whether it is logged on.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The operator is defined to the NetView program and is presently logged on.</td>
</tr>
<tr>
<td>4</td>
<td>The operator is defined to the NetView program but is not presently logged on.</td>
</tr>
<tr>
<td>8</td>
<td>The operator is not defined to the NetView program but is presently logged on.</td>
</tr>
<tr>
<td>12</td>
<td>The operator is not defined to the NetView program.</td>
</tr>
<tr>
<td>104</td>
<td>The command did not complete successfully. Check the accompanying messages for more information.</td>
</tr>
</tbody>
</table>

Examples

Example: Querying the Status of an Operator

If the command is issued from an operator terminal, the command format to query whether operator BOB is defined to the NetView program and is logged on is:

QOS OP=BOB

Response

One of the following messages is returned:

DWO837I BOB IS DEFINED AND LOGGED ON TO NETVIEW
DWO838I BOB IS DEFINED TO NETVIEW BUT IS NOT LOGGED ON
DWO839I BOB IS NOT DEFINED TO NETVIEW BUT IS LOGGED ON
DWO840I BOB IS NOT DEFINED TO NETVIEW
QREXX (NCCF; CNME8002)

Syntax

QREXX

Purpose of Command

The QREXX command list queries whether the REXX interpreter is installed and available. You enter the QREXX command list from the command line or a command list.

Examples

Example: Querying the Availability of the REXX Interpreter
To query the availability of the REXX interpreter, enter:
QREXX

Response

If the REXX interpreter is available, the following message is displayed:
CNM228I QREXX : REXX INTERPRETER INSTALLED AND AVAILABLE

If the REXX interpreter is unavailable, the following message is displayed:
CNM229I QREXX : REXX INTERPRETER NOT AVAILABLE
QRS (NCCF)

Syntax

QRS — OP=operid — RESOURCE=rname — RODMOBID='objectid'X — RODMNAME=rodm_name — VIEW=vname

ACCLVL=ALTER

ACCLVL=ALTER

CONTROL

READ

UPDATE

Purpose of Command

The QRS command indicates whether a resource or view is contained in an operator’s span of control. A resource or view is contained in an operator’s span of control under the following conditions:

- When CTL=SPECIFIC or CTL=GENERAL and the resource or view is contained in an active span for the operator
- When CTL=GENERAL and the resource or view is not contained in any span
- When CTL=GLOBAL is in effect

Operand Descriptions

**OP=operid**

Specifies the operator ID whose span authority is being checked.

**RESOURCE=rname**

The name of the resource to be verified for span authorization. The name can be 1–255 characters in length, can contain DBCS characters, can be network qualified, and is case sensitive. You can use the NETVASIS command to keep the NetView program from translating the resource name to upper case when the QRS command is entered on the NetView command line, and the NETVASIS environment when the QRS command is used in a REXX command list. The value of **rname** cannot contain wildcard characters. An asterisk (*) or question mark (?) is used literally.

**RODMOBID='objectid'X**

Specifies the hexadecimal RODM object ID of the resource to be checked for span authorization. The length must be 16 hexadecimal characters. The RODM that is used by GMFHS will be queried unless **rodm_name** specifies a different RODM. The RODM must be active when using this keyword.

**RODMNAME=rodm_name**

Specifies the name of the RODM containing the resource to be checked for span authorization. The length can be 1–8 characters in length, cannot contain DBCS characters, and must be in upper case. The default is the RODM used by GMFHS.

**VIEW=vname**

The name of the view to be checked for span authorization. The name can be
1–255 characters in length, can contain DBCS characters, and is case sensitive.
You can use the NETVASIS command to keep the NetView program from
translating the view name to upper case when the QRS command is entered on
the NetView command line, and the NETVASIS environment when the QRS
command is used in a REXX command list. The value of vname cannot contain
wildcard characters. An asterisk (*) or question mark (?) is used literally.

ACCLVL=
Specifies the access level against which to check the operator’s authority. This
is the access level given to the operator when the operator ID is permitted to
access the span.

For more information, refer to the Tivoli NetView for z/OS Security Reference.
The ACCLVL value can be one of the following:

ALTER  Multiwrite access. This is the default.
CONTROL  Multiread and single-write access
UPDATE  Change access. This is the access level of commands such as VARY,
MODIFY, REPLY, or generic actions such as activate and deactivate.
READ  Information-only access. This is the access level of commands such as LIST
or DISPLAY.

Return Codes

Return Code  Meaning
0  The operator can access the view or resource at the
specified access level.
64  The operator cannot access the resource or view at
the specified level.
101  A RODM query failed.
104  The command syntax is not valid, or an
authorization error has occurred.
128  The operator logged off.
160  The operator has no active spans.
200  An internal storage error occurred.

Examples

Example: Querying the Availability of a Resource for an Operator
The QRS command format to query whether resource A01CNM01 is in a span that
is active for operator BOB is:
QRS OP=BOB RESOURCE=A01CNM01 ACCLVL=READ

Response

One of the following messages is received:
BNH224I BOB IS ALLOWED ACCESS TO A01CNM01 AT ACCESS LEVEL READ

BNH225I BOB IS NOT ALLOWED ACCESS TO A01CNM01 AT ACCESS LEVEL READ
QRYGLOBL (NCCF)

Syntax

```
QRYGLOBL [BOTH | COMMON | TASK] [VARS=varspec] [FILE=membername] [MODE=modename] [REPLACE]
```

Purpose of Command

The QRYGLOBL command displays information about NetView global variables. QRYGLOBL performs the following tasks:

- Displays the expected number of variables from the NetView Constants Module for either task or common global variables, or both
- Displays the actual number of either task or common global variables, or both
- Displays either task or common global variables, or both
- Optionally, directs all of the preceding information to an output file

Operand Descriptions

**BOTH**

Displays requested information about both common and task global variables.

**COMMON**

Displays requested information about only the common global variables.

**TASK**

Displays requested information about only the task global variables.

**VARS**

Specifies that the specific variables should be displayed for either the common global variable dictionary, the task global variable dictionary, or both.

When the VARS keyword is omitted, both messages BNH034I and BNH035I are generated for the output. When the VARS keyword is specified, only message BNH035I is generated.

**varspec**

Specifies the variables that are displayed or written to the output file. The varspec supports an asterisk (*) as a multi-character wildcard and a percent sign (%) as a single-character wildcard.

**FILE**

Directs the output to the specified output file.

**membername**

Specifies the member or file in which the NetView program places the output it creates. It creates or replaces membername in a DSILIST DD. If the DSILIST DD is a concatenation of partitioned data sets, the member created is placed in the first concatenated data set.
**MODE**

Specifies the mode on which the output file resides. It is valid only on VM systems.

modename

Specifies the minidisk where the output file is written. This operand is used only with the VM operating system. You specify this operand as Az, where:

A = A letter from A–Z indicating the minidisk where the information is written. The default is A.

z = A number in the range of 0–6 indicating the use characteristics of the file created. The default is 1.

You can specify the minidisk identifier without the created file’s characteristics, but you cannot specify the use characteristic without a minidisk identifier. For example, MODE=Y is valid and defaults to a file mode of Y1. But MODE=3 is not valid.

The minidisk you select must be in the CMS format. If you select a DOS formatted minidisk, you receive an ABEND013 error code.

**REPLACE**

Specifies whether the NetView program should replace a preexisting output file with any newly created output file. The default is to not replace.

If you specify REPLACE and the report membername file does not already exist, the file is created. If the member being replaced is not an automation table usage report, the member is not replaced and message DWO826 is issued.

**Restrictions**

The following restrictions apply to the QRYGLOBL command:

- When specifying a variable or group of variables to display, do not include the ampersand (&) associated with NetView command list language variables.
- The information displayed at the operator console is in a multiline write-to-operator (MLWTO) message. To determine how many variables exist, run the QRYGLOBL command without the VARS keyword. To see a large number of variables, direct the output to an output file. Using an output file avoids potential storage or performance problems that can result from displaying a large MLWTO message.
- When a QRYGLOBL output file is created, a 2-character key field (&*) is placed on the first line of the file. This key field identifies the file as a QRYGLOBL output file and stops the output file from replacing non-QRYGLOBL files. If you attempt to replace a member or file that does not have the key field in the correct location, you receive an error message. You can prevent a QRYGLOBL file from being overwritten if you delete the key field from the first line of the file.

**Return Codes**

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The command completed successfully.</td>
</tr>
<tr>
<td>4</td>
<td>The command did not complete successfully. Check the accompanying messages for more information.</td>
</tr>
</tbody>
</table>
Examples

Example: Determining the Number of Task and Common Global Variables
To determine the number of tasks and common global variables, enter:
QRYGLOBL

Response

The NetView program responds with the following multiline write-to-operator (MLWTO):
BNH031I NETVIEW GLOBAL VARIABLE INFORMATION
BNH103I COMMAND ISSUED AT: 03/20/98 21:02:51
BNH061I
BNH032I COMMON GLOBAL VARIABLES
BNH061I ----------------------------------
BNH034I EXPECTED NUMBER OF VARIABLES: 100
BNH035I NUMBER OF VARIABLES FOUND: 5
BNH061I
BNH033I TASK GLOBAL VARIABLES FOR OPER1
BNH061I ----------------------------------
BNH034I EXPECTED NUMBER OF VARIABLES: 100
BNH035I NUMBER OF VARIABLES FOUND: 2
BNH061I
BNH037I NETVIEW GLOBAL VARIABLE INFORMATION COMPLETE

Example: Displaying the Value of a Single Common Global Variable
To display the value of a single common global variable, enter:
QRYGLOBL COMMON VARS=CGAUTHID1

Response

The NetView program responds with the following multiline write-to-operator (MLWTO):
BNH031I NETVIEW GLOBAL VARIABLE INFORMATION
BNH103I COMMAND ISSUED AT: 03/20/98 21:04:44
BNH061I
BNH032I COMMON GLOBAL VARIABLES
BNH061I --------------------- ----------------------
BNH036I GLOBAL VARIABLE NAME: GLOBAL VARIABLE VALUE:
BNH061I --------------------- ----------------------
BNH039I CGAUTHID1 AUTO1
BNH035I NUMBER OF VARIABLES FOUND: 1
BNH061I
BNH037I NETVIEW GLOBAL VARIABLE INFORMATION COMPLETE

Example: Displaying All Global Variables Starting with CGAUTH
To display all global variables starting with CGAUTH, enter:
QRYGLOBL VARS=CGAUTH*

Response

The NetView program responds with the following multiline write-to-operator (MLWTO):
BNH031I NETVIEW GLOBAL VARIABLE INFORMATION
BNH103I COMMAND ISSUED AT: 03/20/98 21:06:14
BNH061I
BNH032I COMMON GLOBAL VARIABLES
BNH061I --------------------- ----------------------
BNH036I GLOBAL VARIABLE NAME: GLOBAL VARIABLE VALUE:
BNH061I --------------------- ----------------------
Example: Directing a QRYGLOBL Output to a File
To direct a QRYGLOBL output file to a specific file, enter:
QRYGLOBL FILE=QRYG1 REPLACE

Response

The NetView program responds by writing the information to an output file. The file name is DSILIST(QRYG1).

The following information is written to the output file:

&*BNH031I NETVIEW GLOBAL VARIABLE INFORMATION
BNH031I COMMAND ISSUED AT: 03/06/98 21:22:22
BNH061I
BNH032I COMMON GLOBAL VARIABLES
BNH061I ----------------------------------
BNH034I EXPECTED NUMBER OF VARIABLES: 100
BNH035I NUMBER OF VARIABLES FOUND: 5
BNH061I
BNH033I TASK GLOBAL VARIABLES FOR NETOP1
BNH061I ----------------------------------
BNH034I EXPECTED NUMBER OF VARIABLES: 100
BNH035I NUMBER OF VARIABLES FOUND: 2
BNH061I
BNH037I NETVIEW GLOBAL VARIABLE INFORMATION COMPLETE
QRYKEEP

Syntax

Purpose of Command

The QRYKEEP command reports the name, number of messages, and the total storage of each active PIPE KEEP stage command on the task where it is issued. Refer to Tivoli NetView for z/OS Customization: Using Pipes for more information about the KEEP stage command.

Examples

The following is a sample output:

```
BNH560I KEEP Status for taskName

<table>
<thead>
<tr>
<th>Keep Name</th>
<th>Number Messages</th>
<th>Total Storage</th>
<th>Time Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEEP1</td>
<td>40</td>
<td>18212</td>
<td>1000</td>
</tr>
<tr>
<td>KEEP2</td>
<td>1</td>
<td>1040</td>
<td>*</td>
</tr>
</tbody>
</table>
```
QUERY RANGE (NLDM)

Syntax

QUERY RANGE

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUERY RANGE</td>
<td>Q RANGE</td>
</tr>
</tbody>
</table>

Purpose of Command

The QUERY RANGE command displays the active time range from either the last SET RANGE command or the default time range.

Examples

Example: Displaying the Current Time Range
To display the time range set on the last SET RANGE command, enter either command:
QUERY RANGE
Q RANGE
QUEUE (NCCF)

Syntax

QUEUE
text

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUEUE</td>
<td>Q</td>
</tr>
</tbody>
</table>

Purpose of Command

The QUEUE command adds a text message to the operator input queue of a high-level language (HLL) command processor or installation exit routine running with the HLL QUEUED_INPUT bit of HLLOPTS turned on. Refer to Tivoli NetView for z/OS Customization: Using PL/I and C for more information about HLLOPTS.

Use the QUEUE command when it is not possible for an operator to determine whether an HLL command processor or installation exit routine is ready to accept input. One example is when an HLL command processor or installation exit routine is running under an autotask.

Use the EXCMD command to route text to an HLL command processor or installation exit routine running under a different task.

After the text message has been added to the HLL command processor or installation exit routine’s operator input queue, the message can be read from this queue by the HLL service routine, CNMGETD. Refer to Tivoli NetView for z/OS Customization: Using PL/I and C for more information.

Operand Descriptions

text

Specifies the message to be added to the operator input queue.

Restrictions

Use the QUEUE command only with tasks running a single HLL command processor or installation exit routine.
RCFB (NCCF; CNME0029)

Syntax

RCFB

Purpose of Command

The RCFB command list displays information describing the specified return code and feedback code. This command list handles only VTAM return codes and feedback codes.

Operand Descriptions

return_code
  Specifies the 1- or 2-digit hexadecimal return code.

feedback_code
  Specifies the 1- or 2-digit hexadecimal feedback code.

Leading zeros are not required for the return or feedback codes.

Examples

Example: Displaying the Meaning of Return and Feedback Codes
To display the meaning of return code 8 and feedback code 0, enter:

RCFB 8,0
REACC (NCCF)

Syntax

```
REACC
```

```
^(REACC-ddname^)
```

Purpose of Command

Regain access to members of NCCF ddname that have been placed in dynamic extents.

Operand Descriptions

- `ddname` Name of one of the preset NCCF input DD names. Examples are DSIPARM and DSICLD.

Restrictions

If REACC is issued while another operator or task is reading the same ddname, the other operator or task will experience I/O errors.

Examples

**Example: Regaining use of WINDOW**

After changing WINDOW (CNME1505) several times, the following error occurs when you attempt to use WINDOW: DSI030I I/O ERROR READING CNME1505. Issue the following to regain the use of WINDOW:

```
REACC DSICLD
```
READSEC (NCCF)

Syntax

```
READSEC DD=ddname DSN=dsname (membername)
```

Purpose of Command

The READSEC command checks an operator’s read authority to a data set or DD name and optionally checks a member.

Operand Descriptions

**ddname**

Specifies the DD name against which a read authority check is performed. If *ddname* is a NetView standard partitioned data set, authority checking is done for that DD name and, optionally, for member *membername*. Refer to the BROWSE command help for a list of valid DNAMEs.

For nonstandard DD names, READSEC converts *ddname* to its underlying data set name and then checks for read authority for that data set name.

For VSAM files, READSEC also converts *ddname* to its underlying data set name and checks for read authority for that data set name.

**dsname**

Specifies the data set name against which read authority checking is done.

**(membername)**

Specifies the member name of the data set against which read authority is checked.

*Note:* A VSAM file does not have a *membername*.

Usage Notes

Consider the following when using the READSEC command:

- The READSEC command acts as a central point to control read access by all methods by which an operator might display the contents of a data set. These methods are:
  - QSAM PIPE stage
  - < PIPE stage
  - CLIST and PROFILE keywords of the LIST command
  - Member BROWSE
  - DSIVSMX (VSAM access through REXX and CLIST)
- When the READSEC command is entered by an operator, it results in one of the following messages:
  - DSI633I for successful read access
  - DSI213I for unsuccessful read access

The actual data is not accessed nor its existence verified.
When protecting specific data set names using CMDAUTH=TABLE or CMDAUTH=SAF, slashes (/) must be substituted for periods (.) in the data set name.

Restrictions
The following restrictions apply to the READSEC command:

- The READSEC command does not resolve member names to their potential synonym names. It is therefore possible that the BROWSE command will disallow access to a given member after resolving it to a synonym name, even if READSEC indicates that the member name is authorized.
- When the READSEC command is issued with a non-standard DD name, the command normally converts the DD name to the underlying data set name. This conversion is not allowed when the READSEC command runs under the PPT. In other words, READSEC cannot process dynamic DD names under the PPT.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Authorization check was successful.</td>
</tr>
<tr>
<td>4</td>
<td>Not authorized to issue the command.</td>
</tr>
<tr>
<td>8</td>
<td>Syntax error.</td>
</tr>
<tr>
<td>12</td>
<td>Unknown DD name.</td>
</tr>
<tr>
<td>16</td>
<td>Dynamic names not allowed under the PPT.</td>
</tr>
</tbody>
</table>

Examples

Example: Checking Read Access to the DSIPARM Data Set
To determine whether read access authority exists for the DSIPARM data set, enter:

```
READSEC DD=DSIPARM
```

Response

If read access is valid, the response is message DSI633I. Otherwise, the response is message DSI213I.
RECORD (NLDM)

Syntax

```
RECORD
 SESSTATS resname1 resname2
 STRGDATA
```

Purpose of Command

The RECORD command writes accounting and resource statistics data, or storage and central processing unit (CPU) utilization data, to the external log. After you issue the RECORD command, the counters are reset; they are not cumulative.

If you request that only availability data be collected (SESSTATS=AVAIL on an INITMOD statement), the session monitor does not collect any accounting data and records zeros for accounting data in the external log.

Also, if you request that availability data not be kept for the session (AVAIL=NO on a KCLASS statement), the session monitor does not record any data in the external log.

Operand Descriptions

**SESSTATS**

Writes accounting and resource statistics for `resname1` and `resname2` to the external log.

`resname1`

Specifies the resource name of the primary session partner.

You can use specific resource names for `resname1`, or you can use one of the following forms:

* Represents all resource names.

`abc*`  Represents all resource names beginning with abc.

`ab?????c`  Represents all 8-character resource names, beginning with ab and ending with c.

**Note:** Record data in either the VTAM program or the session monitor. If both the VTAM program and the session monitor record data, the counter will be inaccurate.

`resname2`

Specifies the resource name of the secondary session partner.

You can use specific resource names for `resname2`, or you can use one of the following forms:

* Represents all resource names.

`abc*`  Represents all resource names beginning with abc.
ab?????c

Represents all 8-character resource names, beginning with ab and ending with c.

Note: Record data in either the VTAM program or the session monitor. If both the VTAM program and the session monitor record data, the counter will be inaccurate.

STRGDATA

Writes session monitor storage data statistics to the external log.

Examples

Example: Writing Accounting and Resource Statistics for All Sessions
To write accounting and resource statistics for all sessions, use the following command:

RECORD SESSTATS * *

Example: Writing Accounting and Resource Statistics for All Sessions with Specified Resources
To write accounting and resource statistics for all sessions between resources beginning with TSO and LU, use the following command:

RECORD SESSTATS TSO* LU*

Example: Writing Accounting and Resource Statistics for All Sessions with Specified Resources and Names
To write accounting and resource statistics for all sessions between resources with 8-character names, beginning with a T and ending with 1, and all resources beginning with LU2, use the following command:

RECORD SESSTATS T??????1 LU2*

Example: Writing Accounting and Resource Statistical Data to the External Log
To write accounting and resource statistical data to the external log for session partners NY37 and L01, use the following command:

RECORD SESSTATS NY37 L01

Example: Writing Data to the Log for Sessions with Specified Resources
To write data to the log for sessions between resources beginning with T2 and all LU2 resources, use the following command:

RECORD SESSTATS T2?????? LU2*

Example: Writing Storage Statistics to the External Log
To write storage statistics to the external log, use the following command:

RECORD STRGDATA
RECYCLE (EAS)

Syntax

EAS RECYCLE

```plaintext
MODIFY procname,RECYCLE -TASK=(taskid)
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIFY</td>
<td>F</td>
</tr>
</tbody>
</table>

Purpose of Command

The RECYCLE command stops any event/automation service (EAS) task that is not already stopped, and then recycles the task.

Note: If an attempt is made to recycle a task that is already stopped, a warning console message will be issued and the recycle attempt proceeds.

Operand Descriptions

`procname`

- Specifies the EAS job name.

`TASK=taskid`

- Specifies the EAS service tasks to be recycled. The `taskid` can have the following values:
  - `ALERTA` The alert adapter service task
  - `MESSAGEA` The message adapter service task
  - `EVENTRCV` The event receiver service task
  - `TRAPALRT` The trap to alert conversion task
  - `ALRTTRAP` The alert to trap conversion task
  - `ALL` All service tasks

Restrictions

You can specify only one TASK operand for each RECYCLE command. If you want to specify more than one service task, separate each `taskid` with a comma and enclose the `taskids` string within parentheses.

Examples

Example: Recycling a Service Task
To recycle the alert adapter service task for the EAS job named IHSAEVNT, enter:

```plaintext
F IHSAEVNT,RECYCLE,TASK=ALERTA
```

Response
You should receive the following response:
IHS0118I Alert Adapter task has terminated.
IHS0124I Alert Adapter task initialization complete.

**Example: Recycling Multiple Service Tasks**
To recycle the alert adapter and message adapter service tasks for the EAS job named IHSAEVNT, enter:
F IHSAEVNT,RECYCLE,TASK=(ALERTA,MESGAE)

**Response**
You should receive the following response:
IHS0118I Alert Adapter task has terminated.
IHS0118I Message Adapter task has terminated.
IHS0124I Alert Adapter task initialization complete.
IHS0124I Message Adapter task initialization complete.
RECYCLE (NCCF; CNME0030)

Syntax

RECYCLE

    RECYCLE resource inactp actp

Purpose of Command

The RECYCLE command list deactivates and then activates a network node. This command list sends the VARY ACT command to the system until the VTAM ACTIVE message responds that the resource is active or CNM223I indicates the resource cannot be activated. After 40 seconds, this command list ends.

Note: Certain VTAM message IDs are VTAM release dependent.

Operand Descriptions

resource

    Specifies the name of a network node to be deactivated and then activated.

inactp

    Specifies additional parameters that are appended to the VTAM VARY INACT command. The VTAM VARY INACT command is issued by the RECYCLE command list. If more than one inactp parameter is specified, the parameters must be placed inside a pair of single quotation marks and be separated by commas. Do not put a comma before the first parameter. No validation for duplicate or conflicting parameters is performed. If you specify inactp parameters, no additional optional parameters are added by NetView; otherwise, NetView appends 'I' (immediate).

actp

    Specifies additional parameters that are appended to the VTAM VARY ACT command. The VTAM VARY ACT command is issued by the RECYCLE command list. If more than one actp parameter is specified, the parameters must be placed inside a pair of single quotation marks and be separated by commas. Do not put a comma before the first parameter. No validation for duplicate or conflicting parameters is performed. No additional optional parameters are added by NetView.

Examples

Example: Activating and Deactivating a Specified Node

    To deactivate and activate node HD3790N1, enter:

    RECYCLE HD3790N1
RECYCLET (NCCF; CNME1089)

Syntax

```
RECYCLET
 taskname parameter
```

Purpose of Command

The RECYCLET command list starts or restarts an optional task with a specified initialization parameter.

Operand Descriptions

- **taskname**
  Specifies the name of the task to be started or restarted. This name corresponds with a name specified on a TSKID keyword on a TASK definition in CNMSTYLE.

- **parameter**
  Specifies a 1- to 8-character token to be passed to the task when it is started or restarted. For data services tasks (DSTs), this is the name of the initialization member. This operand is optional.

Restrictions

Any authorization checking performed on the START and STOP commands is in force for the RECYCLET command list.

Examples

**Example: Restarting a Task**
If you determine that a primary status focal point cannot be activated in a reasonable period of time, log onto another node, and enter:

```
RECYCLET CNMTAMEL DUIISFP
```

Response

Issue multiple CHANGEFP or FOCALPT commands to switch data server support to your new focal point when the RECYCLET command list finishes processing.

**Example: Re-enabling a Status Collection Point**
If you determine that your status collection point can be re-enabled, enter:

```
RECYCLET CNMTAMEL DUIISC
```

Response

Issue CHANGEFP or FOCALPT commands from the new status focal point for all resource status collectors when the RECYCLET commands finish processing.
REDIAL (NCCF; CNME0031)

Syntax

REDIAL

\[ \text{REDIAL} \text{ line_name} \_\text{password} \]

Purpose of Command

The REDIAL command list requests that the VTAM program search for an alternative path, if a dial-out attempt is unsuccessful, or end a session request without searching for an alternative path.

Operand Descriptions

\textit{line_name}

Specifies the resource name of a switched line.

\textit{password}

Specifies up to 6 parameters which are appended unchanged to the VTAM VARY command issued by the REDIAL command. No validation for duplicate or conflicting parameters is performed.

Examples

**Example: Searching for an Alternative Path**

To search for an alternative path for LINE27, enter:

REDIAL LINE27

**Example: Ending a Session without Searching for an Alternative Path**

To end the session request for LINE1 without searching for an alternative path, enter:

REDIAL LINE1,END
REFRESH (NCCF)

Syntax

REFRESH

SecOpts:

AUTHCHK=

CMDAUTH=

OPERSEC=

SPANAUTH=

SURROGAT=

WEBAUTH=

Purpose of Command

The REFRESH command dynamically updates operator definitions and security options. The REFRESH command will perform system symbolic substitution on records read from the DSIOPF member in the DSIPARM data set, profile members in the DSIPRF data set, the DSISECUR data sets, the command authorization tables in the DSIPARM data set, and a NetView span table. The NetView-supplied...
&DOMAIN symbolic is also included in the substitution process. The substitution is performed after comment removal but prior to record processing. This command also removes comments after substitution. Substitution is always performed on the &DOMAIN symbolic, unless substitution was disabled when NetView was started. For MVS and user-defined system symbolics, substitution is not performed if you are not running on an MVS system, you are running on an MVS system prior to MVS Version 5 Release 2, substitution was disabled when NetView was started, or you have not defined an MVS system symbolic on your MVS system.

**Operand Descriptions**

**OPERS**

Specifies that the NetView operator definitions in DSIOPF are to be refreshed. Operators that are logged on when the REFRESH OPERS command is issued do not have their profile information refreshed until they log off and then log on again.

**TEST**

Indicates that you want to see a list of the specified changes to the operator definitions in DSIOPF before you issue the REFRESH OPERS command to make the changes effective.

The OPERS operand will fail if there are no valid operator definitions in DSIOPF.

The OPERS operand is not available when OPERSEC=SAFDEF.

If you issue the REFRESH OPERS command and the value of OPERSEC is SAFCHECK or SAFPW, you might also need to add, delete, or change operator definitions in your SAF security product.

**RMTSEC=**

Specifies the method to be used to determine which incoming RMTCMD requests should be accepted. This security function enables you to specify which operators from which domains are authorized to start and stop RMTCMD sessions with autotasks in your NetView program.

**Notes:**

1. The REFRESH RMTSEC=SAF command differs from the REFRESH OPSPAN=SAF and REFRESH CMDAUTH=SAF in that the RMTSEC operator will complete if the RMTOPS class is not active, but the NETSPAN class and NETCMDS classes must be active for the other two REFRESH commands noted to complete.

2. This RMTCMD security is in addition to the normal command authority checking for RMTCMD and the command being issued within the RMTCMD command.

You can specify the following values:

**SAF**

Specifies that the RMTOPS class of the SAF product is to be called for authorization checking of the initial RMTCMD request and ENDTASK requests. If an RMTCMD security table was previously in use, the storage for the table is reclaimed.
TABLE
Specifies that a RMTCMD security table is to be read and built into an internal table to be used for any subsequent RMTCMD or ENDTASK authorization checks.

TBLNAME=
Specifies the 1–8 character name of the RMTCMD authorization table in DSIPARM to be used when RMTSEC=TABLE is specified. If TBLNAME is not specified for RMTSEC=TABLE, the DSISECUR table is used.

For further information about the RMTCMD authorization table, refer to the Tivoli NetView for z/OS Security Reference. A sample table is provided as member DSISEC in CNMSAMP.

AUTHCHK=
Specifies whether a command’s authorization is checked against the original issuer of the command or the final issuer of the command when they are different. You can specify the following values:

SOURCEID
Specifies that the command is checked against the authority of the original issuer of the command. When this information is not available, the identity of the task where the command first entered NetView is checked.

TARGETID
Specifies that the command is checked against the authority of the final issuer of the command.

For more information about the prerequisites and security considerations of this keyword, refer to the Tivoli NetView for z/OS Security Reference.

CMDAUTH=
Specifies which method should be used for command authority checking. You can specify the following values:

SAF
Specifies that command authorization should be checked in the NETCMDS class of the SAF product. This value is only allowed when OPERSEC=SAFCHECK or OPERSEC=SAFDEF. Specifying CMDAUTH=SAF without specifying BACKTBL results in no backup command authority checking.

The SAF product is not called for immediate commands. If a backup command authorization table exists, immediate commands will be checked in the backup table. The backup table will also be checked if the SAF product is not able to make a security decision. This process can happen when:
• No definition in the NETCMDS class applies to the command.
• The NETCMDS class is not active.
• The SAF product is not active.

In these cases, you can define another method for command authority checking by specifying a backup command authorization table.

If you choose not to specify a backup table, you can specify the SAFNODEC option to pass or fail command authorization when the SAF product does not make a security decision. It is recommended that a
backup table always be specified when using CMDAUTH=SAF to provide a more controlled security environment when the SAF product is unable to make a decision.

**SAFNODEC=**
Specifies the action to take during command authorization when no security decision has been made by the SAF product for the command and no backup command authorization table has been specified. SAFNODEC and BACKTBL are mutually exclusive. Valid values are:

**PASS**
Specifies that command authorization is to pass for the command. This is the default value.

**Note:** Specifying SAFNODEC=PASS allows any command to process when the SAF product could not make a decision on the authority to issue the command.

Refer to the [Tivoli NetView for z/OS Security Reference](../) for information about the effects of not using BACKTBL.

**FAIL**
Specifies that command authorization is to fail for the command.

**Note:** If you specify SAFNODEC=FAIL and a problem occurs in the SAF product, no operator will be able to issue any command except immediate commands and commands with SEC=BY specified on the CMDMDL statement.

**BACKTBL=**
Specifies the 1-8 character name of the backup command authorization table in DSIPARM to be used when the SAF product cannot be called for immediate commands, or the SAF product does not yield a security decision.

For further information about the command authorization table, refer to the [Tivoli NetView for z/OS Security Reference](../).

**TABLE**
Specifies that a command authorization table is to be read and built into a dynamic internal table to be used for any subsequent command authorization checks.

**TBLNAME=**
Specifies the 1-8 character name of the command authorization table in DSIPARM to be used when CMDAUTH=TABLE is specified.

For further information about the command authorization table, refer to the [Tivoli NetView for z/OS Security Reference](../).

**TEST**
Tests the syntax of the command authorization table without enabling it.

Commands entered before the REFRESH command completes are checked using the authorization method in effect before the REFRESH command was issued.

**OPERSEC=**
Specifies the method used for operator identifier checking. You can specify the following values:
NETVPW
Specifies that NetView operators are defined by a list of operator identifiers in DSIOPF. The identification is validated with a password associated with the identifier in DSIOPF. The profile, read from DSIPRF at logon, contains the operator attributes.

SAFCHECK
Specifies that operator identification and password checking is done using an SAF security product. The operator identifier must also be defined in DSIOPF, and other attributes given to the operator at logon are taken from the operator’s specified profile in DSIPRF.

Other SAF checks, such as data set access and MVS system command authorization through the OPERCMDS class, are done using NetView task user IDs.

SAFDEF
Specifies that operator identification and password checking is done using an SAF security product. Authority to log on as a NetView operator is controlled through the APPL class in the SAF product. To log on, the operator must be permitted to access the resource name that represents your NetView application in the APPL class. The resource name is the domain name.

The attributes given to the operator at logon are defined in the NetView segment of the operator’s user profile.

Other SAF checks, such as data set access and MVS system command authorization through the OPERCMDS class, are done using NetView task user IDs.

SAFPW
Specifies that operator identification and password checking is done using an SAF security product. The operator identifier must also be defined in DSIOPF. Other attributes given to the operator at logon are taken from the operator’s specified profile in DSIPRF.

Other SAF checks, such as data set access and MVS system command authorization through the OPERCMDS class, are done against the NetView startup procedure name.

For more information about operator attributes, refer to the Tivoli NetView for z/OS Administration Reference.

If you change from SAFDEF to any other option, you might need to dynamically allocate the DSIPRF data set if it is not contained in the NetView startup procedure.

Before changing from NETVPW to SAFPW, SAFCHECK, or SAFDEF, ensure that your operators are defined to the SAF product.

If you specify a value for SECOPTS.OPERSEC that uses DSIOPF definitions, the DSIOPF operator definitions are refreshed from DSIPARM. Although MINIMAL is a valid SECOPTS.OPERSEC value in CNMSTYLE, you cannot use the REFRESH command to specify OPERSEC=MINIMAL.

OPSPAN=
Specifies whether the operators ability to start spans is controlled through DSIPRF or by the NETSPAN class of an SAF product. You can specify the following values:
NETV
Specifies that authority checking for starting spans is controlled by SPAN and ISPAN statements in operator profiles defined in DSIPRF. You cannot specify this value when OPERSEC=SAFDEF.

SAF
Specifies that authority checking for starting spans is controlled by the NETSPAN class of an SAF product. This value is only valid when OPERSEC=SAFCHECK or OPERSEC=SAFDEF.

For more information about span of control, refer to the [Tivoli NetView for z/OS Security Reference](#).

When changing from SAF to NETV, any currently active spans that were defined by logging on with an operator profile (OPSPAN=NETV) will have their access level reset to the authority permitted by the operator profile. Any active spans known only to SAF will retain only the access level permitted by the SAF product. If these spans are stopped, they cannot be restarted.

When changing from NETV to SAF, any currently active spans will have their access level reset to the authority permitted by the SAF product. You might lose some currently active spans unless they are defined in an SAF product and the operator is permitted to the span.

SPANAUTH=
Defines the span of control used by NetView to secure resource and view access.

SPANAUTH cannot be specified when OPERSEC=MINIMAL. You can specify the following values:
- TABLE
  Specifies that the NetView program is to verify authorization for resources and views using a NetView span table specified by the SPANTBL keyword. The table can be modified and reloaded using the REFRESH command without requiring the NetView program to be recycled.

SPANTBL=
Specifies the 1–8 character name of the NetView span table in DSIPARM to be used when SPANAUTH=TABLE is specified.

TEST
Tests the syntax of the NetView span table without enabling it.

SPANCHK=
Specifies whether a VTAM command is span checked against the original issuer of the command or the final issuer of the command. You can specify the following values:
- SOURCEID
  Specifies that span checking is done using the source operator ID.
- TARGETID
  Specifies that span checking is done using the target operator ID.

SURROGAT=

YES
Specifies that SAF surrogate checking should be performed for the START TSOSERV, STOP TSOSERV, and the TSO PIPE stage.
NO
Specifies that SAF surrogate checking should not be performed for the
START TSOSERV, STOP TSOSERV, and the TSO PIPE stage.

WEBAUTH=CHECK|PASS
Specifies whether authorization checking is to be performed for operator access
to the NetView Web server.

CHECK
Perform authorization checking for access to the NetView Web server.

PASS
Do not perform authorization checking for access to the NetView Web
server. For performance reasons, if all NetView operators are to be
granted access to the NetView Web server, specify a value of PASS.

Usage Notes
The following usage notes apply to the REFRESH command:

- After issuing the REFRESH command, you can use the LIST SECOPTS
  command to review the security options in effect.

- For RMTCMD security, if NetView could not create an SAF security environment
during the initialization of the DSIUDST task, REFRESH RMTSEC=SAF is
rejected. You can issue a REFRESH RMTSEC=TABLE command or fix the SAF
error and recycle the DSIUDST task.

- Have a VTAM APPL statement in your VTAM applications major node member
(for example, A01APPLS) for each defined NetView operator. If you do not have
enough APPL statements for dynamically added operators, define a new VTAM
application major node with a VTAM APPL statement for each additional
operator.

For more information about creating VTAM APPL definitions for NetView
operators, refer to [Tivoli NetView for z/OS Installation: Getting Started].

- If you want to retrieve operator availability and span of control information for
dynamically added operators, use the QOS and QRS commands or use the
service macros DSIQOS and DSIQRS in any user-written applications.

For more information about the DSIQOS and DSIQRS service macros, refer to
[Tivoli NetView for z/OS Customization: Using Assembler].

Restrictions
The following restrictions apply to the REFRESH command:

- If RMTSECUR NONE was specified in DSIUINIT at installation, no RMTCMD
security checking is performed. You can access a security product (if
SAFREFSH=YES was specified or the default was taken) or the RMTCMD
security table by issuing the REFRESH command.

- If SECOPTS.OPERSEC=MINIMAL is specified in CNMSTYLE, the REFRESH
command cannot be used to change any of the security settings. However, the
REFRESH command can be used to test the validity of the syntax of a command
authorization table.

- The following conditions exist for operators that you dynamically delete using
the REFRESH OPERS command:
  - If an operator is logged on when you issue the REFRESH OPERS command,
the operator session continues until the operator logs off. However, the
operator can no longer issue the DISPLAY, MODIFY, or VARY commands for
any resource that is defined in any span of control, unless OPSPAN=SAF is
being used for span definitions. If you do not want a deleted operator to
remain logged on after issuing the REFRESH OPERS command, issue the
STOP FORCE command to terminate the session.
- If the operator is not logged on when you issue the REFRESH OPERS
command, the operator will no longer be able to log on.

- Only one task at a time can issue the REFRESH command. If you issue a
REFRESH command while another REFRESH command is processing under
another task, your task waits until the other REFRESH command completes
before your command proceeds.

## Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The function was successful.</td>
</tr>
<tr>
<td>4</td>
<td>The syntax of the REFRESH command was not valid.</td>
</tr>
<tr>
<td>8</td>
<td>Incompatible keyword/value combinations were entered on the REFRESH command, or keyword/value combinations conflict with current settings.</td>
</tr>
<tr>
<td>12</td>
<td>Required task DSIUDST is not active.</td>
</tr>
<tr>
<td>16</td>
<td>The RMTCMD SAF security environment is not available.</td>
</tr>
<tr>
<td>20</td>
<td>REFRESH to SAF is not allowed as specified in the initialization member for task DSIUDST.</td>
</tr>
<tr>
<td>24</td>
<td>The RMTCMD security table member is not found in DSIPARM.</td>
</tr>
<tr>
<td>28</td>
<td>The RMTCMD security table has no valid statements.</td>
</tr>
<tr>
<td>32</td>
<td>Internal error in processing the RMTCMD security table.</td>
</tr>
<tr>
<td>36</td>
<td>Storage exhausted building the RMTCMD security table.</td>
</tr>
<tr>
<td>40</td>
<td>Internal error encountered by REFRESH OPERS.</td>
</tr>
<tr>
<td>44</td>
<td>No valid operator definitions in DSIOPF.</td>
</tr>
<tr>
<td>48</td>
<td>Syntax error encountered in DSIOPF for the REFRESH command.</td>
</tr>
<tr>
<td>52</td>
<td>Syntax error encountered in DSIOPF for the REFRESH OPERS,TEST command.</td>
</tr>
<tr>
<td>56</td>
<td>DSIPRF is not allocated for refreshing operator definitions.</td>
</tr>
<tr>
<td>60</td>
<td>The NETCMDS class, NETSPAN class, or SAF is unavailable.</td>
</tr>
<tr>
<td>64</td>
<td>The FASTAUTH service for the NETCMDS class is unavailable.</td>
</tr>
<tr>
<td>68</td>
<td>Internal dynamic resource error.</td>
</tr>
</tbody>
</table>
The security environment for the NetView program's main task does not exist.

The command authorization table or NetView span table has syntax errors.

The command authorization table member or NetView span table member was not found in DSIPARM.

An error was found in a %INCLUDE statement contained in a command authorization table or NetView span table.

An error occurred while reading a command authorization table member or NetView span table member from DSIPARM.

Storage was exhausted when building a command authorization table or NetView span table.

Examples

**Example: Consulting an SAF Product for Remote Security Authorization Decisions**
If RMTSECUR TABLE TBLNAME=tblname was specified in the DSIUINIT member of DSIPARM at installation, the tblname member of DSIPARM is consulted for authorization checking during RMTCMD and ENDTASK processing. To consult an SAF product for authorization decisions, enter:

```
REFRESH RMTSEC=SAF
```

Response

```
DSI633I REFRESH COMMAND SUCCESSFULLY COMPLETED
```

**Example: Using the LCLSECUR Table in DSIPARM for All RMTCMD Security Checks**
If the NetView program is using an SAF product for authorization decisions during RMTCMD and ENDTASK processing, you can use the REFRESH command to switch to the LCLSECUR table. To use the LCLSECUR table in DSIPARM for all subsequent checks, enter:

```
REFRESH RMTSEC=TABLE TBLNAME=LCLSECUR
```

Response

```
DWO330I RMTSEC SECURITY TABLE HAS BEEN INITIALIZED
DSI633I REFRESH COMMAND SUCCESSFULLY COMPLETED
```

**Example: Dynamically Updating the Group of Valid NetView Operators**
You can add or delete operators in DSIOPF and dynamically update their ability to log on by using the REFRESH OPERS command. To add OPERADD and delete OPERDEL you could change OPERDEL to OPERADD in DSIOPF. To update the group of valid NetView operators, enter:

```
REFRESH OPERS
```

Response

```
DWO831I OPERATOR OPERADD IS ADDED TO THE GROUP OF VALID NETVIEW OPERATORS
DWO830I OPERATOR OPERDEL IS DELETED FROM THE GROUP OF VALID NETVIEW OPERATORS
DSI633I REFRESH COMMAND SUCCESSFULLY COMPLETED
```
Note: This example assumes that the value of SECOPTS.OPERSEC in CNMSTYLE is neither SAFDEF nor MINIMAL.

**Example: Checking Updates in the DSIOPF Table**
You can add or delete operators in DSIOPF and check these changes by using the REFRESH OPERS TEST command before changing the group of valid NetView operators. To check the changes in the previous example before issuing the REFRESH OPERS command, enter:

```
REFRESH OPERS TEST
```

**Response**

```
DWO834I NEW OPERATOR DEFINITION FOR OPERADD IS FOUND IN DSIOPF
DWO833I CURRENTLY DEFINED OPERATOR OPERDEL IS NOT FOUND IN DSIOPF
DWO835I TEST OF REFRESH OPERS COMMAND SUCCESSFULLY COMPLETED
```

This example assumes that the value of SECOPTS.OPERSEC in CNMSTYLE is neither SAFDEF nor MINIMAL.

**Example: Setting SAF Command Authority Checking**
You can specify that SAF command authority checking is the normal method for command authorization. You can also specify a backup command authorization table to be used for immediate commands and when the SAF product yields no security decision.

To set SAF security checking for command authorization, and to specify a backup command authorization table of BKUPTBL, enter:

```
REFRESH CMDAUTH=SAF BACKTBL=BKUPTBL
```

**Response**

```
BNH211I BACKUP COMMAND AUTHORIZATION TABLE BKUPTBL HAS BEEN INITIALIZED
DSI633I REFRESH COMMAND SUCCESSFULLY COMPLETED
```

The previous example assumes that the value of SECOPTS.OPERSEC in CNMSTYLE or in a previous REFRESH command is either SAFDEF or SAFCHECK.
REGIP (NCCF)

Syntax

\[
\text{REGIP host [ADD | DELETE | LIST]}
\]

Purpose of Command

The REGIP command grants a remote host permission to send syslog messages to the NetView syslog server. The command can be used to add remote hosts, delete them or list the registered hosts. NetView task DSIPLOG must be active for the command to work.

Operand Descriptions

- **host**: Specifies the remote host to register. It can be specified as a TCP/IP host name or as an IP address in dotted notation (127.44.44.44 for example).
- **ADD**: Registers the specified host.
- **DELETE**: Deletes the specified host.
- **LIST**: Outputs a MWLTO listing the registered hosts. If no hosts are registered, BNH733I is issued instead.

Usage Notes

The following restrictions apply to the REGIP command:

- TCP/IP should be able to resolve host names and addresses (the GETHOSTBYNAME and GETHOSTBYADDR functions must work)
- Hosts can be deleted using either hostnames or IP addresses.
- When using the LIST option, the host operand is invalid. The only valid form of the command is "REGIP * LIST".

Examples

**Example: Registering a Host Using Hostname**
To register host HOST1.RALEIGH.IBM.COM, enter:

```
REGIP HOST1.RALEIGH.IBM.COM
```

**Example: Registering a Host Using IP Address**
To register host with IP address 146.84.158.83, enter:

```
REGIP 146.84.158.83
```

**Example: Deleting a Host:**
To delete HOST1, enter:

```
REGIP HOST1 DELETE
```
Example: Listing Registered Hosts
To list currently registered hosts, enter:
REGIP * LIST
REGISTER (NCCF)

Syntax

REGISTER

REGISTER = ALL, QUERY = ALL, APPL = applname

RegisterType:

RegisterType:

TYPE = DEREGHP, DEREGMS, DEREGOM, REGHP, REGMS, REGOM

FOCALPT = NO, FOCALPT = YES

FOCALPT = NO, FOCALPT = YES

FPCAT = fp_cat, LOGMODE = logmode_name

NOTIFY = NONE, NOTIFY = ALL, NOTIFY = ERROR

PRI = LOW, PRI = NORMAL, PRI = HIGH, PRI = TEST

REPLACE = YES, REPLACE = NO

Purpose of Command

The REGISTER command registers or deregisters the following:

- A management services (MS) application with:
  - The NetView MS transport
  - The MS_CAPS focal point application
- An operations management served application with the NetView operations management application
- A high performance application with the NetView high performance transport

Before accepting the registration request, the NetView program verifies that the task issuing the REGISTER command has the authority to issue the command specified on the COMMAND = cmd_name keyword.

The current task where the command is issued is registered as the task where the application receives unsolicited data.
An application can register as an MS application, an operations management-served application, and a high performance application. A registration of one type does not affect the registration of the other type.

You can use the CNMREGIST and CNMHREGIST service routines to register user-written applications. For more information about the CNMREGIST and CNMHREGIST service routines, refer to [Tivoli NetView for z/OS Customization: Using PL/I and C, SC31-8861](#).

You can use the DSI6REGS and DSIHREGS macros to register user-written applications. Refer to [Tivoli NetView for z/OS Customization: Using Assembler](#) for more information about the DSI6REGS and DSIHREGS macros.

If the REGISTER command runs more than one line, you can use the INPUT command to add up to two more lines.

**Operand Descriptions**

**QUERY**

Specifies which registered applications should be displayed.

- **ALL**
  Specifies that all registered MS applications, operations management served applications, and high performance applications should be displayed. ALL is the default if you do not specify any value.

- **HP**
  Specifies that registered high performance applications should be displayed.

- **MS**
  Specifies that registered MS applications should be displayed.

- **OM**
  Specifies that registered operations management served applications should be displayed.

**APPL=applname**

Specifies the name of the MS application, operations management served application, or high performance application being registered, deregistered, or queried. The application name is either one of the architecturally defined hexadecimal values or a 1–8 character user-defined name.

User-defined names must use only the EBCDIC characters 0–9 and A–Z (uppercase only).

If an architectured name is used, it is specified as 'X'hhhhhhhh', where hhhhhhhhh is the architecturally defined hexadecimal value. IBM-supplied application names are restricted so that they can be registered and deregistered only from IBM-supplied code. The IBM-supplied application names include:

<table>
<thead>
<tr>
<th>Restricted Application</th>
<th>Hex Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALERT</td>
<td>X'23F0F3F1'</td>
</tr>
<tr>
<td>EP_OPS</td>
<td>X'23F0F1F6'</td>
</tr>
<tr>
<td>EP_SPCS</td>
<td>X'23F0F1F4'</td>
</tr>
<tr>
<td>HMON_DST</td>
<td>X'30F0F8F5'</td>
</tr>
<tr>
<td>HMON_OST</td>
<td>X'30F0F8F4'</td>
</tr>
<tr>
<td>LINKSERV</td>
<td>X'23F0F3F5'</td>
</tr>
<tr>
<td>MDS_ROUT</td>
<td>X'23F0F1F0'</td>
</tr>
<tr>
<td>MS_CAPS</td>
<td>X'23F0F1F1'</td>
</tr>
</tbody>
</table>
OPS_MGMT  X'23F0F1F7'
R_BRIDGE  X'30F0F5F9'
RMTCMD_O  X'30F0F7F2'
RMTCMD_R  X'30F0F5F5'
RMTCMD_S  X'30F0F7F0'
SPCS      X'23F0F1F5'
STATUS    No hexadecimal equivalent
No character equivalent  X'23F0F0F1'
No character equivalent  X'30F0F7F3'

TYPE
Specifies the type of application to register or deregister. Valid operands are:

DEREGHP
  Deregisters a high performance application.

DEREGMS
  Deregisters an MS application.

DEREGOM
  Deregisters an operations management served application.

REGHP
  Registers a high performance application to the NetView high performance transport.

REGMS
  Registers an MS application to the NetView MS transport.

REGOM
  Registers a second-level application to the operations management application, making the application a served application of operations management.

COMMAND=cmd_name
Specifies the name of the command processor that is driven with any data that has a destination name equal to the one in the applname operand. The only exception is for replies to requests that specified a command on the CNMSENDMU invocation. Refer to Tivoli NetView for z/OS Customization: Using PL/I and C for more information about the CNMSENDMU invocation. The data is received as an MDS-MU.

This operand is required for registration requests and not valid for deregistration requests.

FOCALPT
Specifies whether the MS application is a focal point application.

NO
  Specifies that the MS application is not a focal point application. NO is the default.

  Note: If an MS application registers as a focal point application and later the same MS application registers again with FOCALPT=NO, the registered application still receives focal point data from any node that did not attempt to send while the application was unregistered. This operand is not valid for operations management served applications or high performance applications.

YES
  Specifies that the MS application is a focal point application. YES is allowed only for an MS application registration.
Note: When you specify YES, the focal point category name is the application name specified in `applname`.

This operand is optional for registration requests and not valid for deregistration requests.

**FPCAT=fp_cat**
Specifies the focal point category for which the registering application receives focal point information. Focal point category names are the `applnames` of MS focal point applications (applications registered with FOCALPT=YES). The NetView program supplies three focal point categories:

- Alerts — ALERT (X'23F0F3F1')
- Operations management — OPS_MGMT (X'23F0F1F7')
- Common Operations Services — SPCS (X'23F0F1F5')
- LINKSERV (X'23F0F3F5')

This operand is optional for registration requests and not valid for deregistration requests.

**LOGMODE=logmode_name**
Specifies the logmode that the registered high performance application uses when sending data. The `logmode_name` is matched with an entry in the VTAM logmode table to obtain session parameters. If no matching `logmode_name` is found, VTAM uses its own default session parameters for any session established for the registered high performance application.

Note: Specify the `logmode_name` operand for REPLACE=NO. If you specify the `logmode_name` for REPLACE=YES, the name must match the logmode of the currently registered application of the same name. If the application is not currently registered, specify `logmode_name`. This operand is not valid for MS applications or operations management served applications.

This operand is optional for registration requests and is not valid for deregistration requests.

**NOTIFY**
Specifies the type of session outage notification requested.

- NONE
  The application does not receive session outage notification.

- ALL
  The application receives notification of all session outages.

- ERROR
  The application receives session outage notification when there is an abnormal loss of connectivity to another node and the transport cannot re-establish connectivity.

**PRI**
Specifies the MQS priority for incoming requests. The MQS priority is used when the high performance transport uses the MQS for processing any unsolicited MDS-MU. Valid values are:

- LOW
  Processing is preempted by HIGH and NORMAL priority requests. This is the default.
NORMAL
Processing preempts a queue of LOW priority requests.

HIGH
Processing begins after any NORMAL requests currently in progress completes, but before queued NORMAL or LOW requests.

TEST
Queues the request based on the priority of the receiving task. The command priority can be set using the DEFAULTS or OVERRIDE commands.

REPLACE
Specifies whether the registration supersedes any previous registration for the same application.

YES
Specifies that this registration supersedes any previous registration for the same application. YES is the default. Use this operand to:
- Change the name of the command driven to process data received.
- Change the task where the command is driven with unsolicited data
- Specify whether the application receives focal point information.

Note: You cannot change the logmode of a high performance application using the REPLACE=YES option. To change the logmode of a high performance application, deregister the application and register it again with the new logmode value.

NO
Specifies that this registration does not supersedes any current registration for the same application. If the same application is already registered, the command fails and a message is displayed.

This operand is optional for registration requests and not valid for deregistration requests.

Restrictions
The following restrictions apply to the REGISTER command:
- The FOCALPT STATUS category is restricted. You cannot register MS applications as interested in an fp_cat of STATUS.
- You cannot authority check architected application names because their length exceeds 8 characters.
- Deregistration terminates the NetView MS transport’s awareness of the MS application, operations management’s awareness of the served application, or the NetView high performance transport’s awareness of the high performance application. No further data can be sent or received by the application using the NetView transports.

Examples

Example: Registering an Operations Management-Served Application
To register an operations management-served application named ACTIVATR, with ACTCMD as the name of the command for receiving data and OPS_MGMT as the focal point category, enter:
The task under which this command is processed also receives unsolicited data. The ACTIVATR application receives notification of any focal point for operations management.

**Example: Registering a High Performance Application**
To register a high performance application named HPOPS, with HPCMD as the name of the command for receiving data and DSIL6MOD as the logmode to be used for session parameters, enter:

```
REGISTER TYPE=REGHP,APPL=HPOPS,
COMMAND=HPCMD,LOGMODE=DSIL6MOD
```

**Response**

The HPOPS application is ready to send and receive data. For sends, the DSIL6MOD logmode is used (if it exists).

**Example: Displaying All Registered Applications**
To display all registered applications, enter:

```
REGISTER QUERY
```

**Response**

A panel that lists all registered applications and their associated data is displayed.
REL (NCCF; CNME0032)

Syntax

```
REL
```

```
 ncpname ACT INACT owner
 , , , ,
```

```
 ,passthru
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIVEBACK</td>
<td>G</td>
</tr>
<tr>
<td>IMMED</td>
<td>I</td>
</tr>
</tbody>
</table>

Purpose of Command

The REL command list releases a previously acquired network control program (NCP) or releases a physical unit attached by a nonswitched line to an NCP.

Operand Descriptions

- **ncpname**
  Specifies the name of the NCP to be released.

- **puname**
  Specifies the name of the physical unit to be released.

- **ACT**
  Specifies that active cross-domain links and link stations are to remain active after they are released. ACT is the default.

- **INACT**
  Specifies that cross-domain links and link stations within the scope of the release are to be deactivated as part of the release processing.

- **owner**
  Specifies the owner of the NCP named by **ncpname** or **puname**. You can specify this keyword only if the NCP has previously been activated.

- **GIVEBACK**
  Specifies that all subordinate resources that are capable of nondisruptive deactivation are to be released without disruption to the LU-LU sessions. This applies only to an NCP.

- **IMMED**
  Specifies that the sessions using the released resources are to be ended immediately.
Note: If you do not specify this keyword, normal release occurs. Normal release prevents the establishment of new sessions, but does not end existing sessions.

passthru
Specifies up to 6 parameters which are appended unchanged to the VTAM VARY command issued by the REL command. No validation for duplicate or conflicting parameters is performed.

Restrictions
The following restrictions apply to the REL command:

- The commas between operands are required. If you omit a positional operand, indicate its absence with a comma. You do not need to specify trailing commas.
- If you specify ACT or INACT for a non-NCP PU, it is ignored.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Functioned normally</td>
</tr>
<tr>
<td>100</td>
<td>Internal failure; refer to message DWO050 in the NetView log for more information.</td>
</tr>
</tbody>
</table>

Examples

**Example: Releasing a Previously Acquired Specified NCP**
To release a previously acquired NCP1, use the following command:

REL NCP1

**Example: Releasing a Specified NCP and Leaving Links and Link Stations Active**
To release NCP1 and leave links and link stations active, enter:

REL NCP1,ACT

**Example: Specifying Immediate Release of a Specified NCP**
To specify immediate release of NCP1, and to default the status of links and link stations to active, enter:

REL NCP1,,,I

**Example: Specifying Immediate Release of a Specified NCP and Deactivating Links and Link Stations**
To specify immediate release of NCP1 and deactivate links and link stations, enter:

REL NCP1,INACT,,I

**Example: Releasing a Specified PU**
To release PU2, enter:

REL PU2

**Example: Having a Normal Release of a Specified NCP and Deactivating Cross-Domain Links and Link Stations**
To have a normal release of NCP1 and deactivate the cross-domain links and link stations whose owning SSCP is SSCP1, enter:

REL NCP1,INACT,SSCP1
Example: Releasing a Specified NCP and Leaving Cross-Domain Links and Link Stations Active
To release NCP1 and leave the cross-domain links and link stations active to the NCP (the default is ACT), enter:
REL NCP1,,,G
RELCONID (NCCF)

Syntax

RELCONID

Purpose of Command

The RELCONID command releases any MVS console that was previously obtained using an MVS or GETCONID command.

You obtain an MVS console when you issue an MVS or GETCONID command. For normal operation, you do not need the RELCONID command because an operator authorized to issue the MVS command needs to retain a console to receive command response messages and to issue more MVS commands. Your console is released when you log off.

Operand Descriptions

SWITCH

Specifies that MVS should route message traffic for the console being released to an alternative console in your MVS defined alternative console group. SWITCH is available on systems running with extended multiple console support (EMCS) consoles.

Restrictions

RELCONID cannot be used to release a console that was previously associated using an AUTOTASK command. However, the AUTOTASK command can be used with the DROP option to drop the previously associated console.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful processing.</td>
</tr>
<tr>
<td>4</td>
<td>Error in processing.</td>
</tr>
<tr>
<td>213</td>
<td>The command is rejected by the NetView program.</td>
</tr>
</tbody>
</table>

Examples

**Example: Releasing a Specified MVS Console**

To release the MVS console, enter:

RELCONID

**Response**

The specified console is released from the task.

**Example: Releasing the EMCS Console**

To release the EMCS console and specify that MVS should route message traffic for the console being released to an MVS alternative console, enter:
RELCONID SWITCH

Response

Messages for the subject console are routed to the MVS-defined alternative console, if an alternative console is available.
RELOAD (NLDM)

Syntax

RELOAD

KEEPMEM

PERFMEM

FROM

membername

Purpose of Command

The RELOAD command reloads the response time monitor (RTM) PCLASS and MAPSESS or the KCLASS and MAPSESS definition statements.

The RELOAD command does not affect current sessions.

Operand Descriptions

KEEPMEM

Reloads keep class definitions.

PERFMEM

Reloads RTM performance class definitions.

FROM

Identifies the operand that follows as the name of a member in DSIPARM from which definitions are loaded. This operand is optional.

membername

Specifies the name of a member in DSIPARM (a data set) from which definitions are reloaded.

Examples

Example: Reloading the RTM Performance Class Definitions
To reload the RTM performance class definitions from member RTMCLASS of DSIPARM, enter:

RELOAD PERFMEM RTMCLASS

Example: Reloading Performance Class Definitions from a File
To reload performance class definitions from file RTMCLASS (use of FROM is optional), enter:

RELOAD PERFMEM FROM RTMCLASS
RELOAD (RODM)

Syntax

From an MVS console:

RELOAD

From a NetView terminal:

RELOAD

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIFY name,RELOAD</td>
<td>F</td>
</tr>
</tbody>
</table>

Purpose of Command

The RELOAD command reloads the RODM customization member.

Operand Descriptions

- **name**
  Specifies the RODM MVS job name.

- **MEMBER=name**
  Specifies the name of the customization member to be loaded. This member must exist in the EKGCUST partitioned data set as specified in the RODM start JCL. The default customization member is EKGCUST.

Restrictions

Only the following parameters of EKGCUST are reloadable:

- **IO_QUEUE_THRESHOLD**
- **LOCK_SLEEPTIME**

For additional information, refer to the Tivoli NetView for z/OS Administration Reference.
Examples

**Example: Reloading a Customization Member**
To reload the customization member EKGRMCT, enter the following command from a NetView terminal:

```
RODM RELOAD, MEMBER=EKGRMCT
```

**Response**

The RODM customization member EKGRMCT is reloaded.
REMOTEBR (NCCF)

Syntax

REMOTEBR

Purpose of Command

The REMOTEBR command initializes the autotask that receives the cross-domain or cross-network requests and replies. The REMOTEBR command enables the NetView Bridge remote dispatcher to register as an application on the high performance transport. This command is driven by the profile of the NetView Bridge remote dispatcher autotask. Set up the autotask in the host NetView system sending transactions and receiving replies and the host NetView system that contains the database server.

This autotask can be an autotask that is already being used by the NetView Bridge to communicate with a local database server, but this setup is not recommended. Issue the REMOTEBR command from a new autotask.

When the REMOTEBR command issues an error message, the autotask in which the command is running is still active. You can do one of the following:

- Recycle the autotask as follows:
  1. Issue EXCMD autotaskname,LOGOFF to log off the autotask from the NetView operator terminal.
  2. Correct the error.
  3. Issue AUTOTASK OPID=autotaskname to bring up the autotask.
- Correct the error, then issue EXCMD autotaskname,REMOTEBR from the NetView operator terminal.

When the REMOTEBR command has completed successfully, the task can be terminated under severe errors. You can recycle the autotask as follows:

1. Correct the error.
2. Issue AUTOTASK OPID=autotaskname.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful processing</td>
</tr>
<tr>
<td>20</td>
<td>Error in processing</td>
</tr>
</tbody>
</table>
REPEAT (BROWSE)

Syntax

\[
\text{REPEAT}\ 
\text{findp}
\]

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPEAT</td>
<td>R or RFIND</td>
</tr>
</tbody>
</table>

Purpose of Command

The REPEAT command reissues the last FIND command while you are browsing the network log or a member of a partitioned data set. Because the REPEAT command is sensitive to the current position of the cursor, it is normally entered using a PF key.

By repeatedly pressing the PF key set to REPEAT, you can find successive occurrences of a specified character string. When the first occurrence of a character string has been found, the REPEAT key will find the next occurrence. When the last occurrence of a character string has been found, the REPEAT key can be used to continue the search, wrapping around from the bottom line to the top line (or from the top line to the bottom line if the FIND command included the PREV parameter).

Operand Descriptions

\[\text{findp}\]

Specifies the same set of parameters found on the FIND command. \[\text{findp}\] is only supported if the REPEAT command is being issued from a web browser.
REPLY (NCCF)

Syntax

REPLY

```
REPLY Lnumber , text
```

Purpose of Command

The REPLY command responds to outstanding VTAM requests.

Operand Descriptions

- `Pnumber` | `Lnumber`
  
  Is the 2 or 4 digit reply number that is displayed in a message.

  When a VTAM message is displayed with one of the following formats, the message requests a network operator reply:

  - `Pnn messagenumber messagetext`
  - `Lnn messagenumber messagetext`

  Enter the NetView reply command using the reply ID (`Pnumber` or `Lnumber`) from the message.

- `text`
  
  The information you want to enter in the VTAM program.

Examples

**Example: Replying to a Message**

If you receive the message `P45 IST272A NO INITIAL TEST FOR A08NV6 - REPLY 'U' TO BYPASS - OR CANCEL`, you can respond using the P45 reply number. You enter:

```
REPLY P45, CANCEL
```
REPORTS (NPDA)

Syntax

```
REPORTS
```

Purpose of Command

The REPORTS command controls the logging of report records by causing them to be written to a system management facilities (SMF) log. Refer to the *Tivoli NetView for z/OS Administration Reference* for the format of this record.

Operand Descriptions

- OFF
  - Stops external logging.
- ON
  - Starts external logging.
- XLO
  - Indicates that if a record is external log only (XLO), based on BNJDSERV/XITCI return code or automation table setting, it is recorded on the external log.

Restrictions

The following restrictions apply to the REPORTS command:

- For the NetView Version 1 Release 2 program DBCS, the DBCS release of Service Level Recorder (SLR) is required to run SLR against SMF logs.
- Report records are not created in focal point domains for alert records that have been forwarded to the focal point from distributed host domains.
REQMS (NPDA)

Syntax

REQMS

\[\text{REQMS } \text{puname} \quad \text{[N]} \quad \text{[Y]}\]

Purpose of Command

The REQMS command requests Systems Network Architecture (SNA) summary error counts from a physical unit and stores the data on the hardware monitor database.

Operand Descriptions

- **puname**: Specifies the physical unit name.
- **N**: Specifies that you are to be notified only of a negative response to the request. N is the default.
- **Y**: Specifies that you are to be notified of both positive and negative responses.

Restrictions

The following restrictions apply to the REQMS command:

- The REQMS command is not supported by locally attached 3174 controllers. You receive sense code X’080C’ and the command is rejected.
- You can also use the REQMS command in a command list. However, do not use this command in a command list before you start the hardware monitor.

Examples

**Example: Requesting Error Data and Statistics From a Specified PU**
To request error data and statistics from PU04, enter:

```
REQMS PU04
```

**Example: Requesting Error Data from a Specified PU**
To request error data from PU99, enter:

```
REQMS PU99
```
RESET (NCCF)

Syntax

RESET

Purpose of Command

The RESET command ends the command or command procedure that is running.

Operand Descriptions

NORMAL
Causes NetView to stop the active command or command procedure at the next breakpoint even if work remains to be done. NORMAL is the default.

RESET NORMAL might not work for a command that has no breakpoint. You might have to use RESET IMMED instead.

DUMP
Causes the same processing as IMMED. Additionally, a dump is requested.

IMMED
Causes the system to end the command immediately. NetView issues user abend 257. All currently active command procedures, NetView components, cross-domain sessions, and TAF sessions are ended on the task being RESET. Spans are not affected. If the task has not exceeded the MAXABEND count (specified in CNMSTYLE), the task is reinstated and processing of queued and new commands continues. If the abend causes the task’s restate count to exceed MAXABEND, the task is ended. The MAXABEND count for a task will be reset to zero if the task has run for at least one hour since the last abend.

Usage Notes

The following usage notes apply to the RESET command:

• If you issue RESET NORMAL and no command or command procedure is active, no message is issued.

• If you send the RESET IMMED or RESET DUMP command from an NNT/OST cross-domain session to the other domain using the ROUTE command, the cross-domain session ends. This does not apply to RMTCMD cross-domain sessions.

• RESET IMMED closes any open files (for example, EXECIO files) that are associated with your operator station task (OST). If you are using a function that runs partially under your OST and partially under a data services task (DST), the associated DST (for example, the session monitor or hardware monitor) is not affected by the RESET command. Data returned from the DST is discarded or ignored because any correlation data kept under the OST has been lost. Because the OST part of the function has dropped correlation, it can send duplicate requests to the DST and cause problems in the DST part of the
function. If an error occurs while the system is attempting to close any open files, messages indicating the error are sent to the system operator’s console.

- You cannot retrieve RESET IMMED and RESET DUMP using the RETRIEVE command. You can retrieve RESET or RESET NORMAL.

The following usage notes are for high-level language (HLL):

- If a command procedure is cancelable, it behaves according to the rules specified above. A command procedure terminates at its next breakpoint whenever RESET NORMAL is issued. A breakpoint occurs in an HLL command procedure whenever an HLL service routine is invoked.
- If the command procedure is not cancelable, it is reset only when RESET IMMED or RESET DUMP is issued. If you issue RESET NORMAL, the command procedure might or might not be reset. When an HLL command procedure is defined as not cancelable, the system programmer can determine what action is taken when RESET NORMAL is issued. Because the system programmer has control over not cancelable command procedures, the RESET command can appear to behave erratically to a NetView operator. The following results can occur when RESET NORMAL is issued:
  - The command procedure might or might not be reset.
  - A long delay can result before the command procedure is reset.
  - If the command procedure is reset, the operator gets a NetView cancelation message (CNM982E) for each command procedure that is canceled. This includes command procedures that were called from within the command procedure invoked by the operator.

For more detail on how HLL command procedures respond to the RESET command, refer to Tivoli NetView for z/OS Customization: Using PL/I and C.

Examples

Example: Ending a Currently Running Command or Command Procedure
To end the command or command procedure that is currently running, enter:

RESET

Response

The following message is displayed only if a command or command list is running; otherwise, there is no response.

DS1852I command COMMAND SELF-TERMINATED BY OPERATOR REQUEST

Note: Message CNM982E is displayed for an HLL command procedure.

The normal responses to RESET IMMED or RESET DUMP are these messages:

DS1131I COMMANDS ABENDED BY RESET COMMAND. STATION HAS BEEN RESET.
DS1172I SUBTASK OPER1 ABENDED WITH CODE X'000101'
RESETDB (NCCF, NLDM, NPDA)

Syntax

RESETDB

Purpose of Command

The RESETDB command clears the hardware monitor or session monitor VSAM database while the NetView program is active.

The RESETDB command clears the specified hardware monitor or session monitor VSAM database by opening the VSAM database with the RST option, then closing it. Before you issue the RESETDB command, define the VSAM database with the Access Method Services Define Cluster parameter REUSE and inactivate the database. You can do this while the NetView program is active, and while the hardware monitor or session monitor is active, as long as the intended VSAM database is inactive.

Operand Descriptions

ddname

Specifies the ddname of the VSAM database you want to clear. This field is required.

Restrictions

Attention: Unpredictable results can occur if you use RESETDB to reset NetView VSAM databases other than the hardware monitor or the session monitor databases.

Examples

Example: Clearing the Session Monitor Primary VSAM Database
To clear the session monitor primary VSAM database, enter:

RESETDB AAUVSPL

Response

DSI387I DATA BASE ALLOCATED TO 'AAUVSPL' HAS BEEN CLEARED
RESETLAN (NCCF; CNME8508)

Syntax

```
RESETLAN

LAN RESETLAN spname
```

Purpose of Command

The RESETLAN command list resets the IBM LAN Network Manager or the LAN Manager in use at the indicated service point. If the IBM LAN Network Manager’s adapter is not already closed, RESETLAN reinitializes all subcomponents and reopens the adapter. You can also use the RESETLAN command list to reopen the IBM LAN Network Manager’s adapter if it is closed because of an error condition. When the IBM LAN Network Manager is reset, it is restarted with any configuration changes made by the local IBM LAN Network Manager operator or network administrator. The RESETLAN command list is supported by the IBM LAN Network Manager and the IBM LAN Network Manager Entry.

Operand Descriptions

**LAN**

Specifies that RESETLAN is a LAN command list. This operand is optional.

**netid**

Specifies the network identifier in which the service point is located. This parameter is required only when you use a service point that is not in the local network. Use a period (.) to delimit `netid` from `spname`.

**spname**

Specifies the 1–8 character service point name of the IBM LAN Network Manager.

Restrictions

Do not use the IBM LAN Network Manager command lists as commands in conjunction with the &WAIT statement in a command list.

Examples

**Example: Resetting the Local Network of a Specified Service Point**

To reset the local area network in use at service point N4L021, enter:

```
RESETLAN N4L021
```
RESOLVE

Syntax

RESOLVE

RESOLVE cmdverb anytext

Purpose of Command

The RESOLVE command displays information about other commands.

Operand Descriptions

cmdverb

The cmdverb parameter is a token that might be a valid NetView command verb. RESOLVE determines its validity and the type of command verb this is.

anytext

Anything typed after the command verb is ignored.

If cmdverb is not a valid NetView command verb, RESOLVE produces message DSI002I.

If cmdverb would be prohibited by command authority in the current environment, RESOLVE produces message DSI213I before continuing. Information about the command is displayed in message DWO018I.
RESOURCES (NCCF)

Syntax

```
RESOURCES
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESOURCE</td>
<td>RES</td>
</tr>
</tbody>
</table>

Purpose of Command

The RESOURCES command displays system resource use by the NetView program. The resources displayed are CPU utilization, CPU time used, and storage use.

The following information is displayed for the NetView address space:

**Total CPU Utilization**
Total complex CPU utilization based on a maximum of 100%. This utilization is calculated over the most recent 1-second interval.

**NetView CPU Utilization**
NetView CPU utilization based on a maximum of 100%. This utilization is calculated over the most recent 1-second interval.

**NetView CPU Time Used**
The combination of trusted computing base (TCB) and SRB CPU time used.

**Real Storage Usage**
The number of real storage frames in use (shown in kilobytes).

**Private Below**
The amount of virtual storage allocated below the 16M line.

**Private Above**
The amount of virtual storage allocated above the 16M line.

**Private Below Region**
The total amount of virtual storage below the 16M line.

**Private Above Region**
The total amount of virtual storage above the 16M line.

The RESOURCES command is useful in determining how much resource the NetView program is using. By having your NetView automation table activate a command list when message DSI386I is generated in response to the RESOURCES command, you can compare current resource utilization to previously established thresholds.
Examples

Example: Displaying NetView Resource Use
To display NetView resource use, enter:

RESOURCE

Response

DSI386I NETVIEW RESOURCE UTILIZATION 09:41:36
TOTAL CPU % = 3.28
E330EGNV CPU % = 0.04
E330EGNV CPU TIME USED = 6.43 SEC.
REAL STORAGE IN USE = 7872K
PRIVATE ALLOCATED < 16M = 876K
PRIVATE ALLOCATED > 16M = 49064K
PRIVATE REGION < 16M = 8160K
PRIVATE REGION > 16M = 71680K
END OF DISPLAY
RESTORE (NCCF)

Syntax

RESTORE

RESTORE TIMER DELETE

Purpose of Command

The RESTORE command restores the timer command data that has been saved in the Save/Restore database.

Operand Descriptions

TIMER
Performs the requested operation on all TIMER type records in the Save/Restore database. These are events that have been saved by the SAVE parameter on CHRON, AT, EVERY, or AFTER commands.

DELETE
Erases all TIMER type records.

Restrictions

The following restrictions apply to the RESTORE command:

- RESTORE TIMER DELETE does not affect the internal active timer list. It causes all TIMER records to be deleted from the currently active Save/Restore database.

  Note: The RESTORE command reads timer events from the Save/Restore database and activates them for processing. Invoking the command more than once between NetView outages activates duplicate timer events. Use the RESTORE command only when starting the NetView program.

- If the local system time is changed and the NetView program is recycled between the time an event is saved and the time when the RESTORE command is issued, the scheduled execution of the restored timer is adjusted according to the GMT or LOCAL option you specified at the time of the SAVE. For EVERY timers, GMT or LOCAL affects only the next processing time and not the continuing execution interval.

- Any AT or AFTER timer event whose execution time is prior to the restore time is not rescheduled or processed. The event is listed with message CNM465I and is deleted from the Save/Restore database. CNM465I tells you the command that was not processed and the information in this multiline message can be used to issue the command from the timer event.

- For timer events from EVERY commands, the next processing time is adjusted based on the GMT or LOCAL operand you specified at the time of the SAVE. Subsequent processing times are computed so that the events are scheduled to process on their original intervals. For example, at 12:00, a user requested that every hour a message be sent to an operator. If the NetView program is recycled at 13:30 after one processing of the command, the system clock is not reset, and a RESTORE occurs at 13:35, the message continues to be sent on the hour (at 14:00, 15:00, and so on).
Note: See the CHRON, AFTER, AT, and EVERY commands for examples of the effect of GMT and LOCAL on the scheduled execution timers.

- The CHRON command has an option that allows past due timers to be issued when timers are restored.
- The NetView program assigns each timer event an ID equal to SYSxxxxx, where xxxxx is a number in the range of 1–99999. Timer events that were originally scheduled without an ID are assigned a new ID, and their image in the Save/Restore database is updated. The new ID is a RESTORE ID (RSTxxxxx).
- Any timer event that is being restored and has a user-selected ID that is a duplicate of a currently active timer is not restored. The event is also listed with message CNM465I.

Examples

**Example: Restoring All Timer Requests That Were Saved**
To restore all timer requests that were saved, enter:

```
RESTORE TIMER
```

**Example: Deleting All Timer Requests That Were Saved**
To delete all timer requests that were saved, enter:

```
RESTORE TIMER DELETE
```
RESTYLE (NCCF)

Syntax

RESTYLE

Purpose of Command

The RESTYLE command rereads your style sheet and sets new values related to the keyword specified.

Operand Descriptions

ALERTRCVNAME
Rereads the alert receiver name and recycles the CNMICALRT task.

COMMON
All common global variables defined with the COMMON keyword are redefined. No variable definitions are removed.

GHB
Rereads all GHB stem values and recycles DUIDGHB.

IPLOG
Rereads all IPLOG stem values and recycles DSIPLOG.

LUC
Rereads all LUC stem values and recycles the domidLUC task.

MCON
Rereads all MCON stem values and recycles DSITCPIP.

MEMSTORE
Refreshes the MEMSTORE definitions. Removes from storage all members controlled by MEMSTORE.

NLDM
Rereads all NLDM stem values and recycles the three NLDM tasks.

NPDA
Rereads all NPDA stem values and recycles BNJDNSERV.
NRM  Rereads the NetView Resource Manager parameters, and shuts down NetView Resource Manager. NetView Resource Manager is restarted if INIT:NRM is Yes.

OPDSPREFIX  
Rereads the operator data set prefix. You must reissue OVERRIDE commands for data sets using the prefix (set in LOGPROFI).

REEXEC  
Rereads all REXEC stem values and recycles DSIRXEXEC.

RSH  
Rereads all RSH stem values and recycles DSIRSH.

RTT  
Rereads all RTT stem values and recycles DSIRTTR.

TAMEL  
Rereads all TAMEL stem values and recycles CNMTAMEL.

VBV  
Rereads the parameters for the Visual BLDVIEWS server.

WEB  
Rereads all WEB stem values and recycles DSIWBTSSK.

Examples

Example: Reloading the NPDA Specifications
You can change the characteristics of your Hardware Monitor (NPDA) by editing your style member specifications and using RESTYLE. Find the name of your style member by using the QRYGLOBL command to determine the value of the common global variable "CNMSTYLE.STYLE". Edit this member and set a new value for the stem variable "NPDA," and possibly for stem variable "PWD.BNJDSERV." If your new values are to be temporary, you can put the new values in another member and use "PIPE INSTORE ... COMMON" to load them as the style member. Then type the following to invoke the command:

RESTYLE NPDA

This causes the new values to be set and Hardware Monitor to be restarted.
RESUME (NCCF)

Syntax

RESUME

Purpose of Command

The RESUME command returns you to the component from which you issued a command that took you to another NetView component.

Operand Descriptions

component

Specifies the 1–8 character name of the component to which you want to return. This is the command verb that was used to start a rollable element.

If RESUME is used from a command list to redisplay a VIEW panel, you do not need to specify the component.

Usage Notes

To list the active components, enter the LIST ROLL command.

Examples

Example: Returning to the Command Facility from Another Component

To return to the command facility from another component, enter:

RESUME NCCF
RETRIEVE (NCCF)

Syntax

```
RETRIEVE

EDIT

EXECUTE
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>RETRIEVE EXECUTE</td>
<td>=</td>
</tr>
</tbody>
</table>

Purpose of Command

The RETRIEVE command places the last command you issued in the command input area. This command gives you a convenient method to review, rerun, or edit and rerun commands you have recently entered.

Operand Descriptions

**EDIT**

Places the most recently processed command on the command line, ready to be reprocessed, or altered and processed. EDIT also advances a pointer, so repeated processing of RETRIEVE EDIT retrieves successively older commands. EDIT is the default.

**EXECUTE**

Processes, without redisplaying, the most recent command, unless RETRIEVE EDIT is the most recent. RETRIEVE EXECUTE processes the next command on the retrieve stack (the one that would have been displayed by the RETRIEVE EDIT command).

Restrictions

The following restrictions apply to the RETRIEVE command:

- The NetView program maintains a stack of operator commands. Each command you enter is added to the top of the stack. However, suppressed commands and commands processed with the RETRIEVE command are not added to the stack. Only commands you enter are saved, including commands entered with a PF key. Commands issued through automation, or those that are changed or suppressed by DSIEX01 are not saved.

- If you enter a command other than the RETRIEVE command, the pointer is reset, so that the most recent command is invoked by RETRIEVE.

- You can define and use synonyms for RETRIEVE and its keywords. When the symbol = is used as the RETRIEVE synonym, the default is EXECUTE. With any other symbol, the default is EDIT.

- You cannot use the RETRIEVE command when accessing the NetView system through an MVS system console.

- The number of commands you can retrieve depends on the length of the commands you entered. Use the following as guidelines:
If you enter commands that are 240 characters long, you can retrieve approximately the last three commands that you entered.

If you enter commands that are 80 characters long, you can retrieve approximately the last nine commands that you entered.

If you enter commands that are 40 characters long, you can retrieve approximately the last 18 commands that you entered.

You can use the RETRIEVE command from any NetView fullscreen application that uses DSIPSS TYPE=ASYPANEL (PANEL parmlist-2). This includes:

- Log browse
- Member browse
- Command facility
- Session monitor
- Status monitor
- Hardware monitor
- 4700 support facility
- VIEW command using the NOINPUT option
- VIEW command using the INPUT option and special variables.

For additional information about the VIEW command, refer to the Tivoli NetView for z/OS Customization Guide.

You cannot retrieve RESET IMMED and RESET DUMP using the RETRIEVE command. However, you can retrieve RESET, used without operands.
Syntax

RETURN

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>RETURN</td>
<td>RET     (for BROWSE, HELP, HELPDESK, STATMON, and VIEW)</td>
</tr>
<tr>
<td></td>
<td>R       (for NLDM, NPDA, and TARA)</td>
</tr>
</tbody>
</table>

Note: The command facility has no synonym for the RETURN command.

Purpose of Command

The RETURN command returns you to the previous component or the last selection panel that you used.

Do not issue this command from a command list.

Restrictions

The following restrictions apply to the RETURN command:

- The hardware monitor maintains a table (called the hierarchy table) to keep track of the sequence of panels you have viewed. When you issue an explicit hardware monitor command, this table is reset and the panel sequence is lost. Therefore, if you enter RETURN from a panel that is presented as the result of an explicit hardware monitor command, the NetView program takes you back to the hardware monitor main menu, not to the panel you were viewing before you issued the explicit command. If you issued the RETURN command from the help panel, the panel from which you requested help is displayed.
- If you created the current panel (in the 4700 Support Facility) using an explicit command, the RETURN command displays the menu panel.
REVFIND (WINDOW)

Syntax

REVFIND

'string'

NEXT

PREV

1

left

right

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>REVFIND</td>
<td>REV</td>
</tr>
</tbody>
</table>

Purpose of Command

The REVFIND command reissues the last FIND command and searches for a previous occurrence of the specified character string. By repeatedly pressing the PF key set to REVFIND, you can continue finding previous occurrences of the specified character string.

Operand Descriptions

string
Specifies the information for which you are searching. If the information contains blanks or single quotation marks, enclose the information in single quotation marks. If the information contains single quotation marks, each must be entered as two single quotation marks. If the information contains neither blanks nor single quotation marks, single quotation marks are not necessary.

NEXT
Searches backward to find the previous entry. This is the default.

PREV
Searches forward to find the next entry.

1
Begins the search in column 1 of the left column. This is the default.

left
Specifies the left column where the search is to be started.

*
Searches all the data to the right of the left limit. This is the default.

c
Specifies the right, search column.
REXEC (NCCF)

Syntax

```
REXEC

REXEC host -L remuser -a port command
```

Purpose of Command

The REXEC command sends a command to remote host over IP for execution and displays the resulting output. Standard UNIX RSH protocol is used. The remote host must have an REXEC server listening at the specified (or defaulted) port for the command to work.

Operand Descriptions

- `host`
  Specifies the name of the remote host. It can be specified as a hostname, or in dotted IP address format.

- `-L remuser`
  Specifies a username on the remote system. The command will run on the remote system under this user. It can be a value of 1-16 characters. When REXEC is entered from the terminal, a screen is presented prompting the operator for the password of the remuser on the remote system. If REXEC is driven from an environment in which interactive panels might cause problems, such as a CLIST, automated environment, or NCM 3270 Console operator’s screen, remuser must be specified as remuser/password. If specified from the operator’s terminal, remuser can be omitted, in which case it defaults to the operator ID of the operator issuing the command.

- `-a port`
  Specifies a port on the remote server. This defaults to port 512.

- `command`
  Specifies the name of the command to be sent to the remote host for execution.

Usage Notes

The following restrictions apply to the REXEC command:

- The command sent to the remote host should not require interactive input (such as prompting the operator for information) and it should only produce line-mode output.

- When sending a command to a system that supports mixed-case commands, such as a UNIX system, prefix REXEC with NETVASIS. This will respect the case of the username and command.

- The command might hang due to TCP/IP not responding or a problem on the remote host. If that happens, RESET IMMED can be used to cancel the command. In some cases, the operator task might need to be recycled.
Examples

Sending an LS Command to a UNIX System:
To list the contents of the home directory on user Testuser on the UNIX host HOST1, enter:

NETVASIS REXEC HOST1 -l Testuser ls
RID (NCCF)

Syntax

```
RID
```

```
RID TASK=opid
```

```
OPT ION=*
```

```
MODNAME=*
```

```
HAPIENTR
```

```
HAPIEXIT
```

Purpose of Command

The RID command controls the debugging of high-level language (HLL) programs running under a NetView subtask.

Operand Descriptions

**TASK=**<i>opid</i>

Specifies that the target task is to be debugged.

**STEP**

Specifies that the target task is to stop whenever control is given to a debug point that matches the criteria specified by the MODNAME or OPTIONS keyword (see the following for details about these keywords). Messages providing data captured at the debug point are displayed at the operator station that invoked RID to monitor the target task. STEP is the default.

**CONTINUE**

Resumes the processing of a task that was stopped by the STEP option of RID. You can specify new debug point match criteria in conjunction with the CONTINUE option. The CONTINUE keyword is provided for readability only. To resume processing, reissue the RID command with its original operands.

**END**

Causes debugging of a task to cease and allows other operators to invoke RID for the target task. If the target task is stopped when the END option is invoked, the high-level language (HLL) command processor or installation exit running under the target task resumes.

**RUN**

Specifies that the target task is to continue to process after issuing the messages at the debug points. The RUN option resumes processing a task stopped in STEP mode.

**MODNAME**

Specifies the name of the module being monitored:
Specifies that the RID command is to monitor all HLL command processors and installation exits running under the target task. The asterisk (*) is the default.

{name}
The name of the module being monitored by the RID command.

**OPTION**
Specifies the type of debug points to display and trace:

* All debug points are displayed. The asterisk (*) is the default.

**HAPIENTR**
Enter to HLL API service routines.

**HAPIEXIT**
Exit from HLL API service routines.

**Restrictions**
The following restrictions apply to the RID command:

- The RID command is useful in debugging HLL programs running under a NetView subtask. To use this facility, you need to have a NetView or MVS operator console to display the RID output. You can run the target program under any subtask.
- For more information about the RID command, refer to [Tivoli NetView for z/OS Customization: Using PL/I and C](#).

**Examples**

**Example: Debugging HLL Programs from an Operator Station Task**
To debug HLL programs running under OPER1 from an operator station task (OST) other than OPER1, enter:

RID TASK=OPER1

**Response**

If OPER1 is logged on, the following message is displayed:

CNM986I RID FUNCTION 'STEP' COMPLETED FOR TASK OPER1

If OPER1 is not logged on, the following message is displayed:

DSI031I SPECIFIED NAME 'OPER1' INVALID
RIGHT

Syntax

RIGHT

amount

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIGHT</td>
<td>RI</td>
</tr>
</tbody>
</table>

Purpose of Command

The RIGHT command displays session configuration data in the secondary direction from the Session Configuration Data panel.

The RIGHT command enables you to view columns of data that are not currently visible on the Log-Browse screen. The data moves to the left a specified number of positions to display information to the right of the last column.

Operand Descriptions

amount

For session monitor, this operand is not allowed. For Log-Browse, this operand specifies the amount to scroll to the right. The possible values are:

- **PAGE** or **P**
  - Scroll right one screen
- **HALF** or **H**
  - Scroll right half a screen
- **CSR** or **C**
  - Scroll right making the column indicated by the cursor the left column
- **MAX** or **M**
  - Scroll to the rightmost column of the data

number

Scroll right a specific number of columns

The default is CSR if the cursor is located in the data display area; otherwise, the default is PAGE.

Usage Notes

Consider the following when using the RIGHT command:

- When you have issued the OVERRIDE command with the SCROLL keyword specifying a value other than OFF, the LOG-BROWSE panel displays a scroll amount in the upper right area of the panel.
- When you issue the RIGHT command, the number of columns scrolled is determined in the following order:
1. The explicit scroll amount specified on either the RIGHT command or on the command line when the RIGHT PF key is pressed.
2. The scroll amount displayed in the message area at the bottom of the LOG-BROWSE screen as message BNH183I indicating the last scroll amount.
3. The implicit scroll amount specified in the scroll amount area in the upper right area of the panel.
4. The cursor position when the scroll amount area indicates CSR.
5. The cursor position when there is no scroll field or BNH183I message displayed.

- You can change the scroll amount in the scroll amount area by entering any portion of CSR, HALF, OFF, PAGE, or a numeric scroll amount. Typing over the remaining contents of the field is not necessary unless you are changing a numeric value to another numeric value.

**Examples**

**Example: Moving in the Secondary Direction from the Configuration Data Panel**
To move in the secondary direction from the Session Configuration Data panel, enter either command:

RIGHT

RI

**Example: Issuing Several RIGHT Commands from the Log-Browse Screen**
RIGHT commands are cumulative. For example, entering the commands:

RI 10
RI 10

Is equivalent to entering:

RI 20

**Example: Displaying the Rightmost Margin of the Log-Browse Screen**
If you have issued several RIGHT or LEFT commands and want to view the last column, enter:

RI MAX
RMTCMD (NCCF)

Syntax

Send:

```
SEND
 DOMAIN=nvdomain
 LU=nvdomain
 rmtsyndef
 IP=ipaddr
 PORT=number
 OPERID=your_id
 OPERID=op_id
 NETID=command
```

Query:

```
QUERY
 LCLAUTOS
 TaskID
 RMTLUS
 RMTDOMS
 RMTAUTOS
 LU=luname
 IP
 DOMAIN=name
 TaskID
 NetID
```

TaskID:

```
TASKID=ALL

```

NetId:

```
NETID=*net_id*
```
Purpose of Command

The RMTCMD command processor sends system, subsystem, and network commands to a remote NetView system for processing. The responses to these commands are returned to the RMTCMD issuer. To do this, RMTCMD can use an existing task, if already active. If the task specified by the OPERID value is not active, RMTCMD processing automatically starts the task. The command specified with RMTCMD is processed by the task. Any responses from the command are returned to the RMTCMD issuer across an LU 6.2 session or over TCP/IP, whichever is used to send the request.

To use RMTCMD over an LU 6.2 session, tasks DSIHPDST and DSIUDST must be active on both NetView systems. To use RMTCMD over TCP/IP, only the DSIUDST task must be active.

When you send a command to a task that is disconnected or was inactive prior to the command, RMTCMD establishes an ownership relationship between you and that task. Because of this relationship, the task is then known as a distributed autotask. A distributed autotask will forward all unsolicited messages it receives to the owner. These include messages sent to the task by ASSIGN routing, message automation routing, the MSG command, the MSGROUTE command, and all other messages that can arrive at an operator task, other than as a direct, correlated response to a command.

To end the relationship with a distributed autotask, issue a DISC command at the autotask. You can also terminate the task using the LOGOFF command or the ENDTASK command. When an owner logs off, all owned distributed autotasks will also terminate. For more information on these commands, refer to the NetView online help.

When a message is automated on a distributed autotask and then routed to the owner, the message is not considered to have been automated on the domain that receives the message if the receiving domain is not the same as the sending domain. This prevents double automation of messages in a NetView system.

The command text specified in the RMTCMD command processor runs in a remote NetView program with the same command type as it has in the driving RMTCMD. When RMTCMD is driven as terminal input, the command in the remote NetView program runs as terminal input and echoes and logs in the remote NetView program. When RMTCMD is driven as an internal function request (such as through an automation table or the PIPE command), the command on the remote NetView program runs as an internal function request and does not echo or log.

When RMTCMD is driven with a command that has message buffers associated with it (such as a command driven from the automation table), the message buffers are sent to the remote NetView program along with the command text specified on the RMTCMD command processor. When that command runs on the remote NetView program, you can access the message buffers by issuing PIPE SAFE * and by using the GETMSIZE or GETMLINE facility.

When RMTCMD is driven by a PIPE NETVIEW stage command, the input message buffer to the NETVIEW RMTCMD stage command is sent to the remote NetView program along with the command text specified on the RMTCMD command processor. Use the COLLECT stage command before the NETVIEW RMTCMD stage to combine multiple messages of an input stream into one message. The collected messages are sent to the remote NetView program along
Operand Descriptions

SEND
   Enables you to send a command to a remote NetView system and receive the responses. SEND is the default.

QUERY
   Enables you to query RMTCMD details.

   Note: Use the RMTSESS command for an easier method to determine all the distributed autotasks you have activated. The RMTSESS command uses this QUERY function to determine your distributed autotask information.

LU=nvdomain
   Specifies the NetView domain ID where the command is to be sent. Use LU, instead of DOMAIN, when you want to require that the command be sent over LU 6.2. This overrides any RMTSYN definition set in CNMSTYLE.

DOMAIN=nvdomain
   Specifies the NetView domain ID where the command is to be sent. When DOMAIN is specified, but IP is not, the command is sent by either TCP/IP or LU 6.2, as specified with the RMTSYN definition in CNMSTYLE.

rmtsyndef
   If the IP address and port number are omitted, the values default to the values specified with the RMTSYN definitions in CNMSTYLE.

IP=ipaddr
   Specifies the host name or IP address for remote NetView operations over TCP/IP. When specifying a host name, ensure the DUIDGHB task is started. The IP address is specified in dotted decimal notation. The default value is the host name or IP address specified with the RMTSYN definition in CNMSTYLE.

PORT=number
   Specifies the port number to provide for a RMTCMD server for remote NetView operations over TCP/IP. The default is set with the RMTSYN definition in CNMSTYLE. PORT is only valid when IP is specified.

NETID
   Specifies the network ID.

   net_id
      Specifies the remote network identifier for the NetView system on which you want to run the specified command.

   *
      Specifies that the network identifier is the one determined by VTAM based solely on the LU name of the remote node. This is the default.

   Note: If two NetView systems in different networks have the same domain name, the one that VTAM finds can vary depending on the configuration of nodes that are active at any given time.

OPERID
   Specifies the autotask for processing the commands. This is an optional operand. If you do not specify this operand, your operator ID is used as a default at the remote NetView system.
Command authorization checking is performed on the OPERID keyword except when:

- OPERID is not specified
- OPERID=* is specified

Command authorization checking is bypassed when OPERID=* is specified to allow applications to use OPERID=* as a default value, even when command authorization checking for OPERID is in effect.

**your_id**
Specifies your operator ID to be started as the autotask on the remote NetView system for processing commands. This is the default.

**op_id**
Specifies the autotask on the remote NetView system for processing the commands.

* Specifies that the op_id defaults to an autotask that already exists for the requesting operator on the remote NetView system. If no autotask exists for the requesting operator, your operator ID is used as the default. If more than one autotask exists for the requesting operator, the first active autotask found processes the command.

**command**
Is the command and parameters to be sent to the remote NetView system for processing. If the command parameters include a date or time specification, the format must match the format required by the domain and task where the command is to run.

**LCLAUTOS**
Queries distributed autotasks active on your NetView system. The output will include the distributed autotask origin information.

**TASKID**
An optional parameter specifying the distributed autotask on the NetView system you are querying. ALL is the default.

ALL Specifies that all distributed autotasks on this NetView system are to be queried. ALL is the default.

**task_id**
Specifies the distributed autotask on the NetView system which you are querying.

**RMTLUS**
Lists the remote NetView systems on which you have started distributed autotasks. Use the RMTCMD QUERY RMTAUTOS command against entries in this list to determine the distributed autotasks you have active on them. A RMTLUS remote NetView program list is kept for each operator. An entry is added to your list when you successfully start a distributed autotask on a remote NetView program. This entry remains in the list until the end of your session, even if the distributed autotasks you started on a remote NetView are terminated.

The returned list includes data for remote NetView systems contacted via LU6.2 only.

When you logoff, your remote NetView program list is removed and all your distributed autotasks are terminated.
**RMTDOMS**

Lists the remote NetView systems on which you have started distributed autotasks. Use the RMTCMD QUERY RMTAUTOS command against entries in this list to determine the distributed autotasks you have active on them. A RMTDOMS remote NetView program list is kept for each operator. An entry is added to your list when you successfully start a distributed autotask on a remote NetView program. This entry remains in the list until the end of your session, even if the distributed autotasks you started on a remote NetView are terminated.

The returned list includes data for all remote NetView systems.

When you logoff, your remote NetView program list is removed and all your distributed autotasks are terminated.

**RMTAUTOS**

Determines distributed autotasks you have started on a remote NetView program. The request is sent to the remote NetView program only if you have already started a distributed autotask on it. If you issue the RMTCMD QUERY RMTLUS command, you will see the list of remote NetView programs to which you can send the RMTCMD QUERY RMTAUTOS request.

**Note:** If the request is sent to the remote NetView program, the response to this query will be asynchronous. When using the PIPE command to trap the output of this command, use the CORRWAIT stage to trap the asynchronous responses.

**LU=**luname

Specifies a remote NetView domain name (VTAM application name). The connection between the current and target NetView domains is SNA LU6.2.

**IP**

Specifies the query is for remote operators owned by the requesting operator. The connection between the current and target NetView domains is TCP/IP.

**DOMAIN=**name

Specifies the 1- to 5-character target NetView domain identifier. DOMAIN is required when IP is specified.

**TASKID**

The distributed autotask on the remote NetView program you are querying to determine if it has started.

**ALL**

Specifies that all distributed autotasks you have started in the remote NetView program are queried. The first operator ID in the message is the operator which is used when the RMTCMD command is issued to that NetView system with the OPERID=* specification. ALL is the default.

**task_id**

Specifies the distributed autotask on the remote NetView program you are querying.

**OPERID=***

Specifies that the distributed autotask used with the RMTCMD OPERID= * for sending commands is to be queried.

**Note:** If you have started more than one distributed autotask on the remote NetView program, the first operator in the list is used if you specify OPERID=* for a RMTCMD send command.
Usage Notes

The following considerations apply to the RMTCMD command:

- If the task name you specified is already logged on or actively associated with another operator, your command is invoked and correlated responses will be returned to you. In this case, you do not become the owner of the task unless the task was previously in a disconnected state.

- The remote NetView program can control which operators at which remote NetView nodes can initiate a distributed autotask. Security filters can be set for one or more of the following:
  - Remote `net_id`
  - Remote `luname`
  - Remote `op_id`

This control is available by using an SAF product such as RACF or a table in DSIPARM. Refer to the [Tivoli NetView for z/OS Security Reference] for more information about RMTCMD security.

- If you send commands to a V2R3 domain by the RMTCMD command in a NetView PIPE stage, use the regular RMTCMD command format and construct an appropriate PIPE command to serialize the output of the command.

- When you are using RMTCMD in a NetView PIPE stage such as CORRCMD, consider using the label syntax to route the command rather than RMTCMD. The label syntax provides automatic serialization at the target NetView. Refer to the [Tivoli NetView for z/OS User’s Guide] for more information.

- For more information about protecting your NetView application from receiving RMTCMD requests from other domains, refer to the [Tivoli NetView for z/OS Security Reference].

Restrictions

The following restrictions apply to the RMTCMD command:

- When specified, the SEND or QUERY operand must directly follow the RMTCMD command. SEND is the default.

- You can send commands that produce single or multiline messages, or commands that do not produce output. RMTCMD does not support commands that produce full-screen output. However, the BROWSE command uses the RMTCMD command to provide a full-screen cross-domain member and netlog browse facility. See the BROWSE command for details.

- You can specify the operands in any order with the following exceptions:
  - The SEND and QUERY operands must be specified first.
  - The text of the command to be sent to the remote NetView must be specified last.

- Do not send commands to optional tasks unless the documentation for the task provides information on how to do so.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful processing. The request was sent to the target system.</td>
</tr>
<tr>
<td>8</td>
<td>Task not found.</td>
</tr>
<tr>
<td>12</td>
<td>Error in processing.</td>
</tr>
</tbody>
</table>
Note: Although a return code of zero indicates that the RMTCMD command ran successfully, it does not guarantee that the remote NetView program processed the request correctly. You can trap the output of the RMTCMD request to determine if the remote NetView program successfully processed the request.

Examples

Example: Sending a Message to an Operator
To send a message to an operator with an ID of OP01 in a NetView system, with a resource name of NETV11, enter:

```
RMTCMD SEND LU=NETV11,MSG OP01 HELLO
```

Response

The following message is displayed:

```
DSI001I MESSAGE SENT TO OP01
```

You now have an association with an active task on NETV11 with the same operator ID as yours. You can use this task to issue additional commands routed with RMTCMD commands. To end the task, issue the ENDTASK command, log off, or issue an RMTCMD command containing a LOGOFF.

Example: Sending a DIS APPLS Command to be Started
To send a DIS APPLS command to be started on task OPER2 in NetView domain CNM02, by way of OPER4, in domain CNM03, enter:

```
RMTCMD SEND LU=CNM03,OPERID=OPER4,RMTCMD
SEND LU=CNM02,OPERID=OPER2,DIS APPLS
```

Response

You now have an active association with task OPER4 in domain CNM03, and OPER4 has an active association with OPER2 in CNM02. The response to the DIS APPLS command is returned to the task where you issued the RMTCMD command. The messages are processed by OPER4 in CNM03 and can be automated there. These messages are expedited back to your task and can be automated in your domain, CNM02, or CNM03.

Example: Collecting the Lines of the DSIUINIT Member and Sending the Resulting Message to a Remote NetView Program
To collect the lines of the DSIUINIT member and send the resulting multiline message to a remote NetView program named CNM01, enter:

```
PIPE < DSIUINIT
 COLLECT
 | NETVIEW RMTCMD SEND LU=CNM01, cmd
```

Where:

```
| cmd
```

Specifies the command and parameters to be sent to the remote NetView system.

Response
When `cmd` runs on the remote NetView program (CNM01), it has access to the multiline message containing the lines of the DSIUINIT member. For information about data buffers, refer to PIPE CORRCMD in *Tivoli NetView for z/OS Customization: Using Pipes*.

**Example: Determining Whether a Task Is an RMTCMD Autotask**

To determine if OPER6 is a distributed autotask, enter:

```
RMTCMD QUERY LCLAUTOS TASKID=OPER6
```

**Response**

The following multiline response shows that OPER6 is a distributed autotask and the origin operator is OPER6 on NETB.CNM02. The origin NetView program level is V5R1:

```
BNH060I RMTCMD QUERY INFORMATION
BNH061I --
BNH064I DISTRIBUTED ORIGIN ORIGIN ORIGIN
BNH065I AUTOTASK NETVIEW OPERATOR VERSION TRANSPORT
BNH061I -------- -------------- -------- ------- ---------
BNH067I OPER6 NETB.CNM02 OPER6 V3R1 SNA
```

The following response implies that OPER6 is a valid operator and is active; however, it is not a distributed autotask:

```
BNH062I OPER6 ON NETA.CNM01 IS NOT A DISTRIBUTED AUTOTASK
```

See also REXX functions DISTAUTO(), DOMAIN('R'), and OPID('R').

**Example: Listing All Active Distributed Autotasks for a NetView System**

To list all active distributed autotasks on this NetView system, enter:

```
RMTCMD QUERY LCLAUTOS
```

By not specifying the TASKID parameter on the query, the default is that ALL distributed autotasks are queried.

**Response**

The following response lists all active distributed autotasks on this NetView system and the details of each autotask:

```
BNH060I RMTCMD QUERY INFORMATION
BNH061I --
BNH064I DISTRIBUTED ORIGIN ORIGIN ORIGIN
BNH065I AUTOTASK NETVIEW OPERATOR VERSION TRANSPORT
BNH061I -------- -------------- -------- ------- ---------
BNH067I OPER2 NETZ.DOM42 PAUL V5R1 SNA
BNH066I OPER3 NETK.LUONE MONITOR V5R1 SNA
BNH067I OPER6 NETB.CNM02 OPER5 V5R1 SNA
BNH066I NETOP1 NETB.CNM55 OPER55 V3R1 SNA
BNH066I NETOP2 NETB.CNM55 OPER55 V3R1 SNA
```

**Example: Querying Remote LUs**

To list the remote NetView programs to which you have started one or more distributed autotasks, enter:

```
RMTCMD QUERY RMTLUS
```

**Response**
In the following response, the message indicates that OPER1 has no remote NetView programs in its remote NetView program list, hence the operator currently has no active distributed autotasks.

BNH063I NO RMTCMD QUERY INFORMATION EXISTS FOR REQUEST

This problem can occur if OPER1 has not issued an RMTCMD, or has logged off then logged on again.

For the following response, assume the operator has issued RMTCMDs successfully to NETB.CNM02 and NETC.CNM03.

BNH060I RMTCMD QUERY INFORMATION
BNH061I --------------------------------------
BNH068I REMOTE NETVIEW VERSION TRANSPORT
BNH061I ------------------ ------- ---------
BNH069I NETB.CNM02    V2R4   SNA
BNH069I NETC.CNM03    V2R4   SNA

This response shows that the remote domains on which OPER1 has started distributed autotasks are NETB.CNM02 and NETC.CNM03. The versions of the remote NetView programs are included.

**Example: Querying Remote Autotasks**
To query remote autotasks which you have started on NETA.CNM02, enter:
RMTCMD QUERY RMTAUTOS,LU=CNM02,TASKID=ALL

Response

For the following response, assume OPER1 has started OPER1 and OPER2 on CNM02.

BNH072I RMTCMD QUERY INFORMATION FROM NETA.CNM02
BNH061I -----------------------------------------
BNH070I OPER1
BNH070I OPER2

The response shows that OPER1 on NETA.CNM01 has active RMTCMD associations with OPER1 and OPER2 on NETB.CNM02. This response is asynchronous because it was processed by the remote NetView program; however, the response can be correlated and trapped by using PIPE with RMTCMD and CORRWAIT. In addition, if you issue an RMTCMD SEND specifying OPERID=∗ on the QUERY, remote operator OPER1 is used.

To query remote autotasks that you started on X.N90 via TCP/IP, enter:
RMTCMD QUERY IP NETID=X DOMAIN=N90 RMTAUTOS

Response

BNH072I RMTCMD QUERY INFORMATION FROM X.N90
BNH061I ------------------------------------------
BNH070I IP ADDRESS: 69.97.5.90 PORT: 4022
BNH061I ------------------------------------------
BNH070I NETOP2

This response has an additional line to show the IP address and port for the target NetView.
RMTSEND (NCCF)

Syntax

```
RMTSEND
```

```
<table>
<thead>
<tr>
<th>RMTSEND</th>
<th>SNATIMEOUT=300</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOMAIN=domain_name</td>
<td>SNATIMEOUT=interval</td>
</tr>
<tr>
<td>IP=ip_address</td>
<td>PORT=4022</td>
</tr>
<tr>
<td>host_name</td>
<td>IPTIMEOUT=600</td>
</tr>
<tr>
<td>net_id</td>
<td>OPERID=your_id</td>
</tr>
<tr>
<td>OPERID=operator_id</td>
<td></td>
</tr>
<tr>
<td>PRITRANS=(SNA,IP)</td>
<td>DISPLAY=YES</td>
</tr>
<tr>
<td></td>
<td>NO SAFENAME=safe_name</td>
</tr>
</tbody>
</table>
```

Purpose of Command

The RMTSEND command enables operators and command procedures to issue one command to send RMTCMDs using SNA or TCP/IP. All RMTCMD SEND restrictions and notes apply to this command.

Operand Descriptions

- **DOMAIN=domain_name**
  Specifies a remote NetView domain name (VTAM application name) or the name of the NetView domain to be found at the specified IP address and port. If a question mark (?) is found in the domain name and at least one RMTCMD was previously issued, a selection panel is displayed from which you can select a remote target. The selection panel is only displayed when DISPLAY=YES.

- **SNATIMEOUT=interval**
  Specifies the timeout value to be used for SNA RMTCMD requests. If responses are not received in this period of time, the command ends. The default is 300 seconds.

- **IP=ip_address**
  Specifies the host name or IP address for remote NetView operations over TCP/IP. When specifying a host name, ensure the DUIDGHB task is started.
The IP address is specified in dotted decimal notation. If a question mark (?) is found in the IP address and at least one RMTCMD was previously issued, a selection panel is displayed from which you can select a remote target. The selection panel is only displayed when DISPLAY=YES.

**PORT=number**
For remote NetView operations over TCP/IP, specifies the port number to use for a RMTCMD server. PORT is only valid when IP is specified. The default is 4022.

**IPTIMEOUT=interval**
Specifies the timeout value to be used for IP RMTCMD requests. If responses are not received in this period of time, the command ends. The default is 600 seconds.

**NETID**
Specifies the network ID.

  * **net_id**
    Specifies the remote network identifier for the NetView system on which you want to run the specified command.

  * **-**
    Specifies that the network identifier is the one determined by VTAM based on the LU name of the remote node. This is the default.

**Note:** If two NetView systems in different networks have the same domain name, the one that VTAM finds can vary depending on the configuration of nodes that are active at any given time.

**OPERID**
Specifies the autotask for processing the commands. This is an optional operand. If you do not specify this operand, your operator ID is used as a default at the remote NetView system.

Command authorization checking is performed on the OPERID keyword except when:

  * OPERID is not specified
  * OPERID=* is specified

Command authorization checking is bypassed when OPERID=* is specified to allow applications to use OPERID=* as a default value, even when command authorization checking for OPERID is in effect.

  * **your_id**
    Specifies your operator ID to be started as the autotask on the remote NetView system for processing commands. This is the default.

  * **op_id**
    Specifies the autotask on the remote NetView system for processing the commands.

  * **-**
    Specifies that the op_id defaults to an autotask that already exists for the requesting operator on the remote NetView system. If no autotask exists for the requesting operator, your operator ID is used as the default. If more than one autotask exists for the requesting operator, the first active autotask found processes the command.

**PRITRANS=(transport_method)**
Specifies which transport method to use. If both SNA and IP are specified, the second method is attempted only if there is a failure using the first method.
DISPLAY
  Specifies whether the results of the command are displayed.

  YES
  Display the results of the command for the user

  NO
  Return the results of the command in a PIPE safe.

SAFENAME
  Specifies the name of the safe in which the command results are returned.

  command
  Specifies the command and parameters to be sent to the remote NetView
  system for processing. If the command parameters include a date or time
  specification, the format must match the format required by the domain and
  task where the command is to run.

Usage Notes
  The following considerations apply to the RMTSEND command:
  • If you specify both IP and SNA for PRITRANS and also provide target
    information for both IP and SNA, the RMTSEND command issues the RMTCMD
    using the second transport method only if the first RMTCMD fails.
  • If you specify both IP and SNA for PRITRANS and only provide SNA target
    information, the RMTCMD over SNA is attempted. No error conditions are set.
  • If PRITRANS specifies only IP and an SNA target is specified, return code 16 is
    set.
  • Use caution when specifying the command target. If you are using the IP
    address, it is possible for the NETID and DOMAIN of the local system to be
    identical to the NETID and DOMAIN of a remote system. If this occurs and you
    specify both IP and SNA for PRITRANS, the SNA request is sent to the local
    VTAM and the IP request is sent to the remote system.
  • Validity checks are not made for the values of DOMAIN, IP, PORT, NETID, and
    OPERID.
  • Validity or syntax checks are not made for the specified command.
  • If the task name you specified is already logged on or actively associated with
    another operator, your command is invoked and correlated responses are
    returned to you. In this case, you do not become the owner of the task unless
    the task was previously in a disconnected state.
  • The remote NetView program can control which operators at which remote
    NetView nodes can initiate a distributed autotask. Security filters can be set for
    one or more of the following:
    – Remote net_id
    – Remote domain_name
    – Remote operator_id

This control is available by using an SAF product such as RACF or the
command authorization table in DSIPARM. Refer to the Tivoli NetView for z/OS
Security Reference for more information about RMTCMD security.
  • For more information about protecting your NetView application from receiving
    RMTSEND requests from other domains, refer to the Tivoli NetView for z/OS
    Security Reference.
  • The output received from the RMTCMD is not reformatted by the RMTSEND
    command.
Restrictions

The following restrictions apply to the RMTSEND command:

- You can send commands that produce single or multiline messages, or commands that do not produce output. RMTSEND does not support commands that produce full-screen output.
- You can specify the keyword operands in any order. The text of the command to be sent to the remote NetView must be specified last.
- Do not send commands to the following tasks:
  - DSIACBMT
  - DSIDCBMT
  - DSIHLLMT
  - DSILogMT
  - DSISTMMT
  - DSITIMMT
  - DSITWTOMT

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful completion</td>
</tr>
<tr>
<td>4</td>
<td>Required parameter missing</td>
</tr>
<tr>
<td>8</td>
<td>Incorrect keyword specified</td>
</tr>
<tr>
<td>12</td>
<td>Incorrect value specified</td>
</tr>
<tr>
<td>16</td>
<td>Parameter conflict</td>
</tr>
<tr>
<td>20</td>
<td>RMTCMD command failed</td>
</tr>
</tbody>
</table>

Note: Although a return code of zero indicates that the RMTSEND command ran successfully, it does not guarantee that the remote NetView program processed the request correctly. You can trap the output of the RMTSEND request to determine if the remote NetView program successfully processed the request.

Examples

Example: Issuing a Command Over Two Possible Paths

The following example sends a message to an operator with an ID of OP01 in a remote NetView system. The remote NetView system can be reached using an LU name of NETV1, or by using a TCP/IP hostname of NETVIEW1. The preferred method for sending the command is over TCP/IP. To send the message, enter:

RMTSEND DOMAIN=NETV11,IP=NETVIEW1,PRITRANS=IP,MSG OP01 HELLO
RMTSESS (NCCF; CNME1092)

Syntax

```
RMTSESS
```

Purpose of Command

The RMTSESS command list displays the distributed autotasks an operator has activated.

Note: When a remote NetView program is slow in responding to an RMTSESS request, RMTSESS will wait up to 30 seconds for a reply. You can enter the GO command to end the wait. RMTSESS will end and only the RMTSESS information gathered up to this point will display.

Restrictions

The following restrictions apply to the RMTSESS command:

- Remote NetView V2R2 or V2R3 systems cannot be queried and the distributed autotask query information is listed as "UNKNOWN". If a NetView V2R2 or V2R3 system is listed as "UNKNOWN", there was at one time active RMTCMD associations, but there is no way of determining the specific distributed autotask associations that might currently exist.

- The RMTSESS command will display only the first level of detail for nested RMTCMD associations. A nested RMTCMD association is when you issue a RMTCMD that issues another RMTCMD, giving two distributed autotask associations.

- The RMTSESS command issues the RMTCMD QUERY RMTLUS and RMTCMD QUERY RMTAUTOS commands to gather the autotask association details. The operator must be authorized to issue these commands for the RMTSESS command to gather the details. The RMTSESS command will issue message BNH285I when a problem is encountered issuing the RMTCMD command.

Examples

Example: Listing RMTCMD Associations
To list the RMTCMD associations that you started, enter:

```
RMTSESS
```

Response

```
C CNM99
BNH060I RMTCMD QUERY INFORMATION
BNH061I -------------------------------------
BNH083I REMOTE RMTCMD REMOTE
BNH084I NETVIEW AUTOTASK VERSION
BNH061I ----------------- --------- -------
BNH085I NETA.CNM01 OPER1 V2R4
BNH085I NETA.CNM01 OPER5 V2R4
BNH085I NETB.CNM02 *UNKNOWN* V2R3
```
This example shows that the operator has two active distributed autotasks on NETA.CNM01 (OPER1 and OPER5). In addition, the operator started an RMTCMD autotask on NETB.CNM02 but the specific autotask details cannot be queried because that NetView program is version V2R3. The autotask query function is available on NetView V2R4 and later releases.
RODM (RODM; CNME1098)

Syntax

RODM

command

Purpose of Command

The RODM command list processes NetView RODM commands. You can also process RODM commands using the MVS MODIFY command.

command

Specifies the RODM command to process:
- CHKPT
- LOGF
- LOGP
- LOGQ
- LOGS
- LOGT
- RELOAD
- START
- STATAPI
- STATCELL
- TERM

Some of these commands support additional parameters that can be appended to the end of the command. Additional parameters must be separated by commas or spaces.

Restrictions

The following restriction applies to the RODM command:
- The global variables EKGHPRC and EKGHNAM, defined in CNMSTYLE, must be set to your RODM procedure name and your RODM nickname respectively. If you do not use a RODM nickname, do not use the EKGHNAM global variable.

Examples

Example: Warm-starting RODM
To warm-start RODM, enter:

RODM START,TYPE=WARM

See the RODM START command for additional information.

Example: Writing API statistics to the RODM log
To write API statistics to the RODM log and clear the statistics enter:

RODM STATAPI,CLEAR

See the STATAPI command for additional information.
RODMVIEW (RODM)

Syntax

RODMVIEW

Purpose of Command

The RODMVIEW command starts a full-screen application, which provides a series of menus, and displays as a front-end to the RODMVIEW command processors. The RODMVIEW panels enable you to display, create, update, and delete classes, objects, fields, and relationships in RODM.

Usage Notes

For additional information about the classes, objects, attributes, and relationships, refer to the Tivoli NetView for z/OS Resource Object Data Manager and GMFHS Programmer’s Guide. For additional usage information, refer to the Tivoli NetView for z/OS User’s Guide.

Restrictions

This command can only be run under the control of an OST.
ROLL (NCCF)

Syntax

ROLL

Purpose of Command

The ROLL command returns to a previous component and the last panel that you used in that component.

The system remembers the sequence in which you go from one component to another. When you use the ROLL command, the system moves the name of your current component to the beginning of the sequence of components, and brings up the component at the end of the sequence, displaying the panel that was displayed when you left that component.

Examples

Example: Re-entering the Help Facility
If you previously entered the session monitor, followed by the help component, followed by the hardware monitor, the sequence remembered is:
NLDM - HELP - NPDA

To return to the place within the help facility from where you exited, enter:
ROLL

Response

The last panel you had accessed within the help facility is displayed.
ROUTE (NCCF)

Syntax

ROUTE
domainid,command

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROUTE</td>
<td>RT</td>
</tr>
</tbody>
</table>

Purpose of Command

The ROUTE command sends NetView and VTAM commands to other domains.

You can use the ROUTE command to send logon information to other domains after these domains have started.

Messages associated with the command being sent are returned to the sending terminal.

For information about authority checking of this command and the effect of SOURCEID and TARGETID, refer to the Tivoli NetView for z/OS Security Reference.

Operand Descriptions

domainid
The name of the NetView domain where the command is sent

command
The command that is sent

Restrictions

The following restrictions apply to the ROUTE command:

- Do not use the ROUTE command to route commands that produce full-screen output such as HELP or HELPDESK.
- Some multiline messages might become single-line messages when transmitted across a NetView-to-NetView session.
- If you use the suppression character defined by your system programmer as a prefix with the ROUTE command, neither the ROUTE command nor the command that is sent is echoed to the screen or logged.

Examples

Example: Displaying the Status of a Resource
If you want to display the status of a resource named LU2024A1 in domain D2, enter:

ROUTE D2,DISPLAY NET,ID=LU2024A1
Example: Displaying the Status of a Resource
To display the status of LU2A in DOM2, enter:

ROUTE DOM2,DISPLAY NET,ID=LU2A
RSESS (NCCF; CNME1012)

Syntax

RSESS

applid

bgnsess_int_default

int

d

Purpose of Command

The RSESS command list returns to a previously disconnected full-screen terminal access facility (TAF) session.

This command list generates a BGNSESS command.

Operand Descriptions

applid

Specifies the logical unit name of the subsystem to which you want to return. This name must match the luname specified on the APPLID parameter in a previous BGNSESS command.

bgnsess_int_default

If you do not specify whether most messages interrupt your session (with the int operand), the value specified on the previous BGNSESS command for this session is used.

int

Specifies whether most messages interrupt your session. This operand can be either Y (yes) or N (no). If omitted, int defaults to the selection made in the previous BGNSESS command for this session. If no selection was made in the previous BGNSESS command, the default is N.

bgnsess_d_default

If you do not specify a Disconnect key for this full-screen session (with the d operand), the value specified on the previous BGNSESS command for this session is used.

d

Specifies the Disconnect key for this full-screen session. Valid values for d are:

CLR

Specifies that the Clear key disconnects the full-screen session.

PA

key

Specifies the PA key that disconnects the full-screen session. Valid values for key are 1–3.

PF

key

Specifies the PF key that disconnects the full-screen session. Valid values for key are 1–24.
If omitted, \(d\) defaults to the selection made in the previous BGNSESS command for this session. If no selection was made in the previous BGNSESS command, PA1 is the default.

\textit{roll}

Specifies the Roll key for this session. Valid values for \textit{roll} are:

\textit{PA}\text{\textsubscript{key}}

Specifies the PA key that disconnects the full-screen session. Valid values for \textit{key} are 1–3.

\textit{PF}\text{\textsubscript{key}}

Specifies the PF key that disconnects the full-screen session. Valid values for \textit{key} are 1–24.

If you are resuming a session and you omit roll, the Roll Intercept key remains unchanged. If you use NONE to begin or resume a session, issue a BGNSESS command to resume that session after disconnecting.

\textbf{Restrictions}

If you omit a positional operand, indicate its absence with a comma. You do not need to specify trailing positional commas.

\textbf{Examples}

\textbf{Example: Returning to a Previously Disconnected Full-Screen TSO1 Session}

To return to a previously disconnected full-screen TSO1 session using PF12 as the Disconnect key and PF6 as the Roll key, enter:

\texttt{RSESS TSO1,N,PF12,PF6}

Because N is specified, you are not interrupted with messages. The new Disconnect key is PF12, and the new Roll key is PF6.
RSH (NCCF)

Syntax

\[
\text{RSH}\quad \text{host} \quad -L \quad \text{remuser} \quad -a \quad \text{port} \quad \text{command}
\]

Purpose of Command

The RSH command sends a command to a remote host over IP for execution. The output can be displayed as line-mode output or in a panel. The remote host must have an RSH server listening at the specified (or defaulted) port for the command to work, and the NetView/NetView operator ID combination must be authorized at the remote host. If the remote host supports it, additional commands can be issued from the panel where the output is displayed. The panel is placed on the NetView roll stack.

Operand Descriptions

- \( \text{-f} \) Specifies that a full-screen panel is used to display the output. This option can be specified as \( Y \) or \( N \). If the \( -f \ Y \) option is specified in an environment that does not support full-screen processing, the option is ignored.

- \( \text{host} \)
  Specifies the remote host to execute the command. It can be specified as a hostname or in dotted IP address format.

- \( \text{L \ remuser} \)
  Specifies the name of the user on the remote host that executes the command. It can be a value of 1-16 characters. It defaults to the operator ID of the operator issuing the command.

- \( \text{a \ port} \)
  Specifies a port on the remote server. This defaults to port 514.

- \( \text{command} \)
  The name of the command sent to the remote host.

Usage Notes

The following restrictions apply to the RSH command:

- The command sent to the remote host should not require interactive input (such as prompting the operator for information) and it should only produce line-mode output.
- When sending a command to a system that supports mixed-case commands, such as a UNIX system, prefix RSH with NETVASIS. This respects the case of the username and command.
- Security is the responsibility of the remote host. The command assumes processing such as \( /etc/hosts.equiv \) and \( .rhosts \) occurs on the remote host. In addition to the username on the remote host, a username from NetView must be supplied. The remote host then grants or denies access based on the combination...
of requesting host and requesting username. NetView uses the OPID of the operator issuing the RSH command as the requesting username.

- The command might hang due to TCP/IP not responding or a problem on the remote host. If that happens, RESET IMMED can be used to cancel the command. In some cases, it might be necessary to recycle the operator task.
- The -f option used with the RSH command is for interactive commands and should not be used on commands scheduled to run via the TIMER command unless it runs on an operator’s task with an operator present.

Examples

Example: Sending an LS Command to a UNIX System
To list the contents of the home directory on user Testuser on the UNIX host HOST1, enter:

```
NETVASIS RSH HOST1 -L Testuser ls
```
RTREND (NLDM)

Syntax

RTREND

Purpose of Command

The RTREND command displays the response-time trend over a specified range of time for a terminal LU connected to a cluster controller that supports the response time monitor (RTM) feature.

This command displays the Response Time Trend panel.

Operand Descriptions

luname

Specifies the name of the terminal for which response time is measured.

OBJ

Specifies the response time objective set for this LU. OBJ is the default.

seconds

Specifies the maximum response time, in seconds, to be used for the graph. The format is ssss.s. The maximum value allowed is 1800 seconds.

FROM

Identifies the operands that follow as the starting date and time. This operand is optional.

set_range_start

If you do not specify a starting date and time, the starting time set by the most recent SET RANGE command is used.

date1

Specifies the starting date of the time range. The format of date1 is controlled by the setting of the date operands of the DEFAULTS and OVERRIDE commands. If you specify a starting time but omit the date, the current date is used.

time1

Specifies the starting time of the time range. The format of time1 is controlled by the setting of the time operands of the DEFAULTS and OVERRIDE commands. If you do not specify a starting time, the default is the starting time set by the most recent SET RANGE command. If no SET RANGE
command has been issued, the default for *time1* is two hours earlier than the
time specified on the ending time (*time2*).

* Specifies to use the default start and end times and not the start and end times
specified by the SET RANGE command. A single asterisk (*) in place of both
*date1* and *time1* specifies a starting time of two hours before the ending time. A
single * in place of both *date2* and *time2* specifies an ending time of the current
date and time.

**TO**

Identifies the operands that follow as the ending date and time. This operand
is optional.

*set_range_end*

If you do not specify an ending date and time, the ending time set by the most
recent SET RANGE command is used.

*date2*

Specifies the ending date of the time range. The format of *date2* is controlled by
the setting of the date operands of the DEFAULTS and OVERRIDE commands.
If you specify an ending time but omit the date, the current date is used.

*time2*

Specifies the ending time of the time range. The format of *time2* is controlled
by the setting of the time operands of the DEFAULTS and OVERRIDE
commands. If you do not specify an ending time, the default is the ending
time set by the most recent SET RANGE command. If no SET RANGE
command has been issued, the default for *time2* is the current time. If you issue
a command that has an end time past the time the last command was issued,
the latest time is used.

**Restrictions**

If the LU is in another domain, first use the SDOMAIN command to specify the
domain that contains the LU.

**Examples**

The examples shown assume the following conditions are true:

- You are collecting data every 30 minutes on the quarter hour (07:45, 08:15, 08:45,
and so on) and a user with terminal luname LU3270A logged on at 08:43
(March 14, 1998).
- The user is still logged on and the time is now 14:17.
- The user’s session was mapped into a performance class with counter
boundaries of .5, 2, 5, and 10 seconds, and an objective that 80% of the
transactions should take less than 5 seconds.
- The format of dates and times specified use the default setting for date and time
formats on the DEFAULTS and OVERRIDE commands.

**Example: Displaying Response Time Trends**

To display the response time trend from 09:00 today to the current date and time
(14:17), enter either command:

```
RTREND LU3270A FROM 9:00 TO *
```

```
RTREND LU3270A 9:00 *
```
A panel of two pages (because there are more bars than can be shown on one page) with percentages of transactions under 5 seconds from 09:00 to 14:17 is displayed.

**Example: Displaying Response Time Trends Meeting a Specified Performance Objective**

To display the response time trend for transactions that met the performance objective of 80% (less than 5 seconds), for the period of 2 hours before the current date and time (12:17 on March 14, 1998) to 15:00 today, enter:

```
RTREND LU3270A OBJ * 15:00
```

**Response**

A panel with four bars representing the percentage of transactions under 5 seconds from 12:45 to 14:17 is displayed.

**Example: Displaying Response Time Trends by Percentages**

To display the response time trend showing the percentage of transactions under 1.5 seconds from 08:00 on March 14, 1998 to 13:30 on March 14, 1998, enter either command:

```
RTREND LU3270A 1.5 FROM 3/14/98 08:00 TO 3/14/98 13:30
RTREND LU3270A 1.5 3/14/98 08:00 3/14/98 13:30
```

**Response**

A one-page panel showing the percentage of transactions under 2 seconds from 08:43 to 13:15 is displayed; 1.5 seconds was rounded to the nearest counter boundary, which is 2 seconds.
RTRINIT (NCCF)

Syntax

```
RTRINIT
```

Purpose of Command

The RTRINIT command initializes the interface between a NetView autotask and a specific set of database servers. This command must be run under an autotask.

The RTRINIT command is driven by the profile of a NetView autotask. This autotask serves as the interface between a NetView autotask and a specific set of database servers, and connects three user-provided queue names to the NetView program-to-program interface (PPI). For more information about PPI queues, refer to the [Tivoli NetView for z/OS Application Programmer’s Guide](#).

Operand Descriptions

- **hqueue**
  Identifies the name of the hold queue. A PPI queue is created to save transactions that have not been dispatched to a database server. This 1–8 character field is required and can contain uppercase alphabetic characters, numeric characters, or $, %, &, @, and #.

- **rqueue**
  Specifies the name of the ready queue. A PPI queue is created to save the READY tokens generated by the database servers. This 1–8 character field is required and can contain uppercase alphabetic characters, numeric characters, or $, %, &, @, and #.

- **oqueue**
  Specifies the name of the output queue. A PPI queue is created to receive transaction replies and control messages from the database servers. This queue has the same name as the tioutq queue name defined in the CNMETIN service routine of the server support API.

  This 1–8 character field is required and can contain uppercase alphabetic characters, numeric characters, or $, %, &, @, and #.

- **hqueuel**
  Defines the limit of the hold queue to the PPI. This parameter is required, and must be an integer. Its value must be between 50 and 2000, inclusive.

Restrictions

- The following restrictions apply to the RTRINIT command:
  - The operands are positional and must be placed in the order shown.
  - To activate NetView Bridge, use the RTRINIT command. If you attempt to route transactions first use the SDOMAIN command to specify through the bridge without issuing the RTRINIT command, several error messages are displayed. Repeated attempts do not produce error messages, however.
• If you issue the RTRINIT command from a NetView command list, do not use the ampersand (&) as part of a queue name. The ampersand is defined as a special character in the NetView command list language.

• When the RTRINIT command issues an error message, the autotask in which the command is running is still active. You can do one of the following:
  – Recycle the autotask as follows:
    1. Issue EXCMD autotaskname,LOGOFF to log off the autotask from the NetView operator terminal.
    2. Correct the error.
    3. Issue AUTOTASK OPID=autotaskname to bring up the autotask.
  – Correct the error. Then issue EXCMDautotaskname,RTRINIT hqueue,rqueue,oqueue,hqueuel from the NetView operator terminal.

• When the RTRINIT command completes successfully, the task can be terminated under severe errors. You can recycle the autotask as follows:
  1. Correct the error
  2. Issue AUTOTASK OPID=autotaskname

• The queue limit for rqueue, hqueuel, and oqueue is 2000. If this limit is exceeded, NetView Bridge message DWO550I is issued.

• You can increase the limit of hqueuel by changing the value specified by hqueuel in the RTRINIT command and issuing AUTOTASK OPID=autotaskname to bring up the autotask.

• If the NetView subsystem interface address space is down, use the same subsystem interface procedure to bring it up. If you use a different subsystem interface procedure, recycle the autotask.

**Return Codes**

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful processing</td>
</tr>
<tr>
<td>20</td>
<td>Error in processing</td>
</tr>
</tbody>
</table>
RTSUM (NLDM)

Syntax

```
RTSUM

RTSUM luname FROM set_range_start time1 TO

set_range_start

FROM

date1

time1

*

set_range_start

FROM

date2

time2
```

Purpose of Command

The RTSUM command displays the response-time summary for a terminal LU connected to a cluster controller that supports the response time monitor (RTM) feature.

This command displays the Response Time Summary panel.

Operand Descriptions

- `luname`  
  Specifies the name of the terminal for which response time is measured.

- `FROM`  
  Identifies the operands that follow as the starting date and time. This operand is optional.

- `set_range_start`  
  If you do not specify a starting date and time, the starting time set by the most recent SET RANGE command is used.

- `date1`  
  Specifies the starting date of the time range. The format of `date1` is controlled by the setting of the date operands of the DEFAULTS and OVERRIDE commands. If you specify a starting time but omit the date, the current date is used.

- `time1`  
  Specifies the starting time of the time range. The format of `time1` is controlled by the setting of the time operands of the DEFAULTS and OVERRIDE commands. If you do not specify a starting time, the default is the starting time set by the most recent SET RANGE command. If no SET RANGE command has been issued, the default for `time1` is one hour earlier than the time specified on the ending time (`time2`).

- `*`  
  Specifies to use the default start and end times and not the start and end times specified by the SET RANGE command. A single asterisk (*) in place of both
date1 and time1 specifies a staring time of one hour before the ending time. A single * in place of both date2 and time2 specifies an ending time of the current date and time.

TO
Identifies the operands that follow as the ending date and time. This operand is optional.

set_range_end
If you do not specify an ending date and time, the ending time set by the most recent SET RANGE command is used.

date2
Specifies the ending date of the time range. The format of date2 is controlled by the setting of the date operands of the DEFAULTS and OVERRIDE commands. If you specify an ending time but omit the date, the current date is used.

time2
Specifies the ending time of the time range. The format of time2 is controlled by the setting of the time operands of the DEFAULTS and OVERRIDE commands. If you do not specify a ending time, the default is the ending time set by the most recent SET RANGE command. If no SET RANGE command has been issued, the default for time2 is the current time. If you issue a command that has an end time past the time the last command was issued, the latest time is used.

Restrictions
If the LU is in another domain, first use the SDOMAIN command to specify the domain that contains the LU.

Examples
The examples shown assume the following conditions are true:

- You are collecting data every 30 minutes on the quarter hour (07:45, 08:15, 08:45, and so on) and a user with terminal LU name LU3270B logged on at 08:12 (March 15, 1998).
- The user is still logged on and the time is now 13:24.
- The format of dates and times specified use the default setting for date and time formats on the DEFAULTS and OVERRIDE commands.

Example: Displaying the Response Time Summary
To display the response time summary from 8:00 today to the current date and time, enter either command:

RTSUM LU3270B 8:00 *

RTSUM LU3270B FROM 3/15/98 8:00 TO 3/15/98 13:30

Response
A panel showing a summary of the user’s response times between 08:12 and 13:24 is displayed.

Example: Displaying the Response Time Summary
To display the response time summary from 9:00 to 10:00 today, enter:

RTSUM LU3270B 9:00 10:00

Response
A panel showing a summary of the user’s response times between 08:45 and 10:15 is displayed.

**Example: Displaying the Response Time Summary**
To display the response time summary from one hour before the current date and time and the current date and time, enter:

```
RTSUM LU3270B * *
```

**Response**

A panel showing a summary of the user’s response times between 12:15 and 13:24 is displayed.
RTTBL (NCCF)

Syntax

```
RTTBL
```

Purpose of Command

The RTTBL command dynamically updates member BNJRESTY. For additional information about BNJRESTY, refer to the Tivoli NetView for z/OS Customization Guide.
RUNCMD (NCCF)

Syntax

```
RUNCMD SP=spname NETID=local_network , APPL=applname , CLISTVAR=NO ,
```

Purpose of Command

The RUNCMD command routes commands to service points for processing by one of the service point applications.

For information about screens and messages that this command generates, enter:

```
HELP SPECS
```

Operand Descriptions

**SP=spname**

Specifies the name of the service point to process the command.

**NETID**

Specifies the network identifier of the network in which the service point is located. If there is another node or logical unit in any connected network with the same name as the service point you specified on the SP operand, communication is allowed only if VTAM locates that service point based solely on the LU name (spname) of the NETID. NETID can be specified as one of the following:

- **local_network**
  
  Specifies to search for the target service point only in the local network. This is the default if NETID is not specified.

- **net_id**
  
  Specifies which network to search for the target service point. The net_id must be a 1–8 character value using only the EBCDIC characters 0–9 and A–Z. At least one of the characters must be alphabetic.

- *****
  
  Specifies to search for the target service point in any network.

**APPL=applname**

Specifies the name of the link connection subsystem manager (LCSM) to process the command.

**CLISTVAR**

Specifies whether to save replies in command list variables. You can only use
CLISTVAR when coding the RUNCMD command in a command list. For more information, refer to *Tivoli NetView for z/OS Customization: Using REXX and the NetView Command List Language*.

**NO**
- Does not save replies in command list variables. NO is the default.

**YES**
- Saves replies in command list variables.

You cannot use the CLISTVAR=YES option in a pipeline even if the pipeline is issued from a NetView command list. You receive message BNH074I if you try to use CLISTVAR=YES in a pipeline. Refer to *Tivoli NetView for z/OS Customization: Using REXX and the NetView Command List Language* for more information about using RUNCMD in a pipeline.

**command**
- Specifies the command to be run.

**Usage Notes**

The following considerations apply to the RUNCMD command:

- If the RUNCMD command is invoked from a command list, the operator’s low-priority command queue is serviced after the command has completed. To prevent commands from remaining in an outstanding status, implement a time-out value. See the COSTIME operand of the DEFAULTS command for more information. Alternatively, you can periodically issue the DISPCMD command to display outstanding COS commands and then issue the CANCMD command for each COS command that needs to be canceled.

- The RUNCMD command calls installation exit DSIEX19, which can be used to perform command authority checking for the service point application commands. For more information, refer to *Tivoli NetView for z/OS Customization: Using Assembler*.

**Restrictions**

The following restrictions apply to the RUNCMD command:

- The limit on the length of the RUNCMD is 253 characters.
- The given command string must be the last operand. It can be in any format. Sample command lists are provided with the NetView program to simplify the specification of the parameters for this command. These command lists are described in the *Tivoli NetView for z/OS Application Programmer's Guide*, SC31-8855.
- The RUNCMD command builds, as part of its outgoing record, an unformatted subvector 31, which has been retired. This deviates from the current architecture.
- Do not use the WAIT function with this command. Use the NetView automation table to trap these messages to command list variables or to have them returned to command list variables.
Examples

Example: Routing Commands to Service Points

RUNCMD SP=SP01,APPL=APPL02,DISPLAY LINES

Response

The normal response to RUNCMD command is messages from the service point application, or message DSI268I RUNCMD COMPLETE when no messages are returned from the service point application. The messages returned can be command facility or service point application messages. If you specify CLISTVAR, the messages are returned in command list variables. Refer to Tivoli NetView for z/OS Customization: Using REXX and the NetView Command List Language for more information. If the RUNCMD is issued from within a PIPE stage command, message DSI268I will be issued in addition to any messages from the service point application.

Example: Sending the SWITCH_LINES Command to a Service Point Application

To send the SWITCH_LINES command to service point application APPL07, enter:

RUNCMD SP=NMWS1,APPL=APPL07,SWITCH_LINES OLD=LINE1,NEW=LINE2

Response

The response is the messages from the service point application or command facility messages that the service point application wants displayed.
RUNDIAG (NCCF)

Syntax

RUNDIAG

      ID=resname, LINE=line_name, PORT=port_number, TEST=testid

Purpose of Command

The RUNDIAG command performs online diagnostics on a 3710 Network Controller. An operand on the command specifies the diagnostic test to be run.

Operand Descriptions

ID=resname
   The network name of the 3710 to which the device being tested attaches.

LINE=line_name
   The network name of the line to be tested.

PORT=port_number
   The number of the port to be tested. The valid port numbers are 1AA, 1BB, 1CC, 1DD, and so on, up to and including 16AA and 16BB.

TEST=testid
   The ID of the specific diagnostic test to be run. The valid test IDs are:
      1  To test a communication adapter
      2  To test a cable
      3  To test the service modem

Restrictions

The following restrictions apply to the RUNDIAG command:

- For addresses 1–15, ports AA, BB, CC, and DD are valid.
- For address 16, only ports AA and BB are valid.

Examples

Example: Running a Test on a Cable
To run a cable test on the cable attached to port 14CC of 3710 controller WD40, enter:

RUNDIAG ID=WD40,PORT=14CC,TEST=2
SCLIST (STATMON)

Syntax

SCLIST

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCLIST</td>
<td>SC</td>
</tr>
</tbody>
</table>

Purpose of Command

The SCLIST command displays the command lists that you can run against one or more of the displayed resources.

Examples

**Example: Displaying Allowed Command Lists from a Status Monitor Panel**

If you are displaying a status monitor panel containing resources, you can show a list of allowed command lists that you can run against one or more displayed resources by entering:

`sclist`
SDOMAIN (NLDM)

Syntax

```
NLDM SDOMAIN
```

```
SDOMAIN domainid
```  
```
CP LOCAL cpname
```  
```
netid
```  

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDOMAIN</td>
<td>SD</td>
</tr>
</tbody>
</table>

Purpose of Command

The NLDM SDOMAIN command specifies the domain from which session data is to be displayed.

Operand Descriptions

- `domainid`
  Specifies the name of the desired domain.

- `cpname`
  Indicates the name of the CP or SSCP associated with the NetView domain from which session monitor should collect the data.

- `netid`
  Specifies the network in which `cpname` is defined. If not entered, the default is the network of the NetView to which you are logged on.

Restrictions

Before using the SDOMAIN command, define the domains to each other in DSILUCTD and DSIAMLTD. You can also allow or prohibit operator access to the specified domain by using the appropriate initialization statements for that domain. For more information, refer to the Tivoli NetView for z/OS Administration Reference.

Examples

**Example: Displaying Session Data**

To specify that session data is to be displayed from DOM3, enter either command:

```
SDOMAIN DOM3
```

```
SD DOM3
```

**Example: Specifying Where Session Data Is to Be Obtained**

To specify that session data is to be obtained from domain DOM1, enter either command:
To specify that session data is to be obtained from CP1, in the local network, enter either command:

SDOMAIN CP CP1

SD CP CP1
SDOMAIN (NPDA)

Syntax

NPDA SDOMAIN

SDOMAIN domainid QUIET

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDOMAIN</td>
<td>SD</td>
</tr>
</tbody>
</table>

Purpose of Command

The NPDA SDOMAIN command establishes a cross-domain session with the specified hardware monitor domains.

Operand Descriptions

domainid

Specifies the network-qualified name of the NetView domain where you want to view data. The domainid can be of the form netid.domainid or be specified as the unqualified domain name, in which case the netid defaults to *. In either case, the actual domain name is limited to 5 characters in length. The network-qualified form is ignored when an LU 6.2 session cannot be established with the target node.

QUIET

Sets domain and returns a message for automation (used from a command list).

Restrictions

The following restrictions apply to the SDOMAIN command:
• You cannot run this command from a multiple-entries panel.
• As a focal point operator, if you want to issue a modem test for a collection point, use the SDOMAIN command to establish a cross-domain session before issuing the modem test. You cannot do the test by using TAF.
• For the SDOMAIN command, NetView tries to establish the cross-domain session in the following order:
  1. Over the LU 6.2 transport. If unsuccessful, message BNJ923I or BNH094I is sent to the NetView log.
  2. Over the LUC transport. If unsuccessful, message BNJ70nI (where n is a number 0–9) is sent to the authorized receiver.
  3. Over the LU0 transport (OST-NNT session). If unsuccessful, message BNJ924I is sent to the NetView console and message BNJ926I is displayed on the hardware monitor panel message line.
Note: For the hardware monitor SDOMAIN command to successfully establish a session over the LU0 transport, issue the NCCF START DOMAIN command prior to issuing the NPDA SDOMAIN command.

When the cross-domain session is established, message BNJ911I is displayed on the hardware monitor panel message line.

- If you use the SDOMAIN command from an alert focal point to establish a cross-domain session with an entry point, and one or more intermediate nodes separate the focal point and entry point, then the SDOMAIN command might fail. The focal point NetView might be unable to establish a session directly with the entry point.
- If you establish a cross-domain session with a focal point domain and request data from one of the focal point’s distributed hosts, the request fails if the NetView program cannot establish a session between your host domain and the distributed (owning) host domain.

Examples

Example: Viewing Data in the NCCF2 Domain
From NCCF1, to view data in the NCCF2 domain, enter either command:

SDOMAIN NCCF2
SDOMAIN *.NCCF2

Response

The usual response is:
BNJ911I SESSION DOMAIN NOW NETA.NCCF2, WAS NETA.NCCF1

Example: Invoking SDOMAIN with the QUIET Option
You can issue the hardware monitor SDOMAIN command with the QUIET option from a command list to set the domain and return a message for automation.

To trap the message in a REXX command list, issue the SDOMAIN command after issuing a TRAP instruction, but before issuing a WAIT command.

To trap the message in a command list written in the NetView command list language, issue the SDOMAIN command from the &WAIT statement.

NetView supplies a sample command list written in the NetView command list language that issues this command (see "Example: Invoking SDOMAIN with the QUIET Option"). In this command list, whenever an SDOMAIN message occurs that is not tested on the &WAIT statement, the message is written to the command facility panel and the command list stops execution.

The following example shows how to invoke the SDOMAIN command with the QUIET option from a command list:

```clist
&CONTROL ERR

* 5655-007 (C) COPYRIGHT IBM CORP. 1987, 1995 *
* LAST CHANGE: *
* *
* NAME(CNME0044) SAMPLE(CNME0044) RELATED-TO() *
* *
* DESCRIPTION: THIS CLIST ISSUES THE SDOMAIN QUIET COMMAND WHICH * INITIATES A CROSS DOMAIN SESSION WITHOUT DISPLAYING *
```
THE NPDA MAIN MENU. IF THE SDOMAIN QUIET COMMAND IS SUCCESSFUL, THE ALERTSD COMMAND IS ISSUED.

CNME0044 CHANGED ACTIVITY:

CHANGE CODE DATE DESCRIPTION

--- -------- --------------------------------------------------------------------

THE FIRST (AND ONLY) PARAMETER EXPECTED BY THIS CLIST IS THE DOMAIN NAME FOR WHICH THE ALERTSD INFORMATION IS DESIRED.

&DOMAINID = &1

IF A DOMAIN NAME IS NOT PASSED TO THE CLIST, THEN SET THE DOMAIN NAME TO THE DOMAIN THE USER IS LOGGED ONTO.

&IF .&DOMAINID NE . &THEN &GOTO -XDOMAIN

&DOMPART = &LENGTH &APPLID
&DOMPART = &DOMPART - 3
&DOMAINID = &SUBSTR &APPLID 1 &DOMPART

INVOKE THE SDOMAIN COMMAND WITHIN THE &WAIT STATEMENT TO TRAP THE MESSAGES PUT OUT BY HARDWARE MONITOR.

-XDOMAIN

&WAIT CONWAIT SUPPRESS
&WAIT 'NPDA SDOMAIN &DOMAINID QUIET'

BNJ711I=-NPDATL
BNJ911I=-NPDACM
BNJ912I=-INCOMPAT
BNJ924I=-BADXDOM
BNJ926I=-SDFAIL
BNJ1303I=-NPDANA
DSI210I=-WRITE210
*ERROR=-ERROR
*10=-TIMEOUT

&GOTO -ERROR

DISPLAY APPROPRIATE MESSAGE

** SD/SDOMAIN OPERAND domain IS TOO LONG, GREATER THAN FIVE CHARACTERS
-NPDATL
&WRITE IN CNME0044: &MSGID &MSGSTR
&GOTO -END

** CROSS DOMAIN SESSION TO AN INCOMPATIBLE LVL OF NETVIEW WAS ATTEMPTED
-INCOMPAT
&WRITE IN CNME0044: &MSGID &MSGSTR
&GOTO -END

** CROSS DOMAIN SESSION TO AN UNEDEFINED DOMAIN WAS ATTEMPTED
-BADXDOM
&WAIT CONTINUE

** THE SDOMAIN COMMAND FAILED
-SDFAIL
&WRITE IN CNME0044: &MSGID &MSGSTR
&GOTO -END
** USER NOT AUTHORIZED TO ISSUE COMMAND

** -NPDANA
GO
&WRITE IN CNME0044: &MSGID &MSGSTR
&GOTO -END

** AN UNEXPECTED ERROR OCCURRED

** -ERROR
&WRITE IN CNME0044: UNDETERMINED ERROR OCCURRED
&GOTO -END

** &WAIT TIMED OUT BEFORE ANY MESSAGES IT WAS TESTING FOR OCCURRED

** -TIMEOUT
&WRITE IN CNME0044: TIME OUT ON SDOMAIN COMMAND
&GOTO -END

***************WHILE IN A WAIT, DSI210I WAS RECEIVED ***************

-WRITE210
&WAIT DISPLAY
&WRITE &MSGID &MSGSTR
&WRITE TERMINATING CLIST
&GOTO -END

***********************************************************************
* SDOMAIN COMMAND WORKED CORRECTLY, ISSUE THE ALERTS DYNAMIC COMMAND *
***********************************************************************

-NPDACM
NPDA ALERTSD
&GOTO -END

***********************************************************************
* END OF CLIST *
***********************************************************************

&CONTROL ERR

The most common messages produced by the SDOMAIN command are:

BNJ911I

SESSION DOMAIN NOW netid1.nau1, WAS netid2.nau2.

BNJ912I

RELEASE LVLS INCOMPATIBLE BETWEEN DOMAINS domain1 AND domain2.

BNJ924I

CANNOT SEND TO SPECIFIED DOMAIN.

BNJ926I

SD/SDOMAIN COMMAND FAILED. SESSION DOMAIN IS UNCHANGED.
SECMIGR (NCCF; CNME8004)

Syntax

SECMIGR

 Ops2Racf:

 SCP2TBL

 Spn2Racf:

 SCP2TBL

 Scp2Tbl:

 Tbl2Racf:

 Chapter 2. NetView Commands and Command Descriptions  791
**Purpose of Command**

The SECMIGR command assists you in converting your current security settings and definitions. The command produces output members which can be used to define the desired security settings. In most cases SECMIGR converts existing security statements into statements that provide equivalent security. Review the generated statements to validate that they provide the desired security before enabling them in your installation.

The SECMIGR command will perform system symbolic substitution on records read from disk. The NetView SUBSYM PIPE stage is added to all PIPE commands that have disk read stages.

Substitution is always performed on the &DOMAIN symbolic, unless substitution was disabled when NetView was started. For MVS and user-defined system symbolics, substitution is not performed if you are not running on an MVS system, you are running on an MVS system prior to MVS Version 5 Release 2, substitution was disabled when NetView was started, or you have not defined an MVS system symbolic on your MVS system.
Operand Descriptions

Entering the SECMIGR command with no operands initiates a full-screen interface to prompt you for your processing options. To bypass this set of panels, enter the options on the command line.

**cmd_dd**
Specifies the DD statement containing the member specified by **cmd_file**. The default is DSIPARM. This specification is limited to a subset of the DD statements in the NetView procedure. Refer to “Restrictions” on page 796 for the DD statement specifications that are valid.

**cmd_file**
Specifies the member containing the CMDMDL statements as well as CMDCLASS, KEYCLASS, and VALCLASS statements that you are migrating. This member can contain %INCLUDE statements to embed other members. The default is DSICMD.

**comments**
Specifies that comments are to be copied from the input file to the output file. A value other than Y causes comments not to be copied. The default is Y. This keyword is not valid for the SPN2TBL function.

**dbl_asterisk**
Specifies that a double asterisk and a period (**.**) should be prefixed to each resource name as it is added to the list of resources for a span. This list of resources is then used to create the SPANDEF statement. A value other than Y prevents a double asterisk from being added. The default is Y. Creating identifiers in the NetView span table that consist of resource names prefixed with a double asterisk ensures that a match will be found for not only the resource name but the fully-qualified resource name as well.

**oper_dd**
Specifies the DD statement containing the member specified by **oper_file**. The default is DSIPARM. This specification is limited to a subset of the DD statements in the NetView procedure. Refer to “Restrictions” on page 796 for the DD statement specifications that are valid.

**oper_file**
Specifies the member containing the OPERATOR statements to be migrated. This member might contain %INCLUDE statements to embed other members. The default is DSIOPF.

**opersec**
Specifies the desired OPERSEC setting to be used with the generated RACF statements. Valid values are:

- **SAFPW**
  Causes RACF operator and password definition statements to be generated.

- **SAFCHECK**
  Causes RACF operator and password definition statements to be generated.

- **SAFDEF**
  Causes RACF operator and password definition statements as well as NETVIEW segment definition statements to be generated. SAFDEF is the default.
OPS2RACF
Converts operator definitions in NetView to a list of statements to define them in RACF based on the opersec setting.

out_file
Specifies the output file to contain the generated statements. The out_file specification is in the form of data_set(member). The default is the first data set in the DSILIST concatenation. The default member name is determined by the migration function you are using, as follows:

OPS2RACF
  Member = SECOPERS

SPN2RACF
  Member = SECSPANS

SCP2TBL
  Member = SECTABLE

TBL2RACF
  Member = SECCMDS

SCP2RACF
  Member = SECRACF

SPN2TBL
  Member = SPNTABLE

SCP2RACF
Converts scope statements and operator classes into a list of RACF statements required to provide equivalent security. This migration is performed by converting the scope statements to NetView command authorization table statements and then converting the command authorization statements to RACF definition statements.

Note: If you plan to use CMDAUTH=SAF and SAFNODEC=FAIL, there will be commands that are not protected under the current CMDAUTH, that are now protected because they were not defined in RACF with your SECMIGR output. SAFNODEC=FAIL specifies that the undefined commands, and their keywords and values, will fail the authority check. Add more definitions in RACF to allow access. The default is not to allow access. If you are sure that you have protected all sensitive commands, add an RDEFINE command for netid.luname.* to force a match on undefined commands.

SCP2TBL
Converts obsolete scope statements and operator classes into NetView command authorization table statements required to provide equivalent security.

span_dd
Specifies the DD statement that contains the member specified by span_file. The default is DSIPARM. This specification is limited to a subset of the DD statements in the NetView procedure. Refer to "Restrictions" on page 798 for the DD statement.

span_file
Specifies the member containing the SPANLIST statements to be migrated. The default is DSISPNN.

SPN2RACF
Converts the spans defined in each of the operator profiles to a list of RACF
statements necessary to define them. SPN2RACF does not create statements that define operators to RACF. You can use the OPS2RACF function to do this.

**SPN2TBL**

Converts the spans defined in the DSISPN and VTAMLST statements to NetView span table statements. Span names and resource names are alphabetically sorted. Resources are grouped with their associated spans.

**table_dd**

Specifies the DD statement containing the member specified by *table_file*. This member might contain %INCLUDE statements to embed other members. The default is DSIPARM. This specification is limited to a subset of the DD statements in the NetView procedure. Refer to "Restrictions" on page 796 for the DD statement specifications that are valid.

**table_file**

Specifies the member containing the NetView command authorization statements to be migrated to RACF statements. The default is SECTABLE.

**tmp_tbl_dd**

Specifies to which DD concatenation the temporary NetView command authorization table is written. The first data set in the concatenation is used for this purpose. The valid values are:

- **DSILIST**
  If DSILIST is selected, the temporary command authorization table is not syntax checked prior to converting the table to RACF statements.

- **DSIPARM**
  If DSIPARM is selected, the temporary command authorization table is syntax checked prior to converting the table to RACF statements. DSIPARM is the NetView-defined default specified in the SECMIGR command. The operator needs write-authority to the first data set in the DSIPARM concatenation.

**TBL2RACF**

Converts NetView command authorization table statements to the statements required to define equivalent command security with RACF.

**Notes:**

1. Immediate commands in NetView are not checked by RACF. You can specify a backup table on either the SECOPTS.CMDAUTH statement in CNMSTYLE or on the REFRESH command to provide protection for these commands.

2. If you plan to use CMDAUTH=SAF and SAFNODEC=FAIL, there will be commands that are not protected under the current CMDAUTH, that are now protected because they were not defined in RACF with your SECMIGR output. SAFNODEC=FAIL specifies that the undefined commands, and their keywords and values, will fail the authority check. Add more definitions in RACF to allow access. The default is not to allow access. If you are sure that you have protected all sensitive commands, add an RDEFINE command for netid.luname.* to force a match on undefined commands.

**vtam_dd**

Specifies the DD statement containing the VTAMLST statements. The default is DSIVTAM. This specification is limited to a subset of the DD statements in the NetView procedure. Refer to "Restrictions" on page 796 for the DD statement specifications that are valid.
Usage Notes

- When SECMIGR creates output members, it places a 2-character key field (>S) in the first line of the report. This key field identifies the file as SECMIGR output and stops SECMIGR from replacing members it did not create. If you attempt to replace a member or file that does not have the key field in the correct location, you will receive an error message. You can prevent a SECMIGR output member from being overwritten by removing the write protect key from the first line of the member.

- The output member of the SECMIGR command using either the SPN2TBL or the SCP2TBL function must be placed in a data set in the DSIPARM concatenation before it can be used by NetView.

- When the SECMIGR command creates an output member, it includes comments that include the operator ID that issued the command, the date and time it was run, the input DD name and member names, and the output data set and member name.

- For SECMIGR requests using the OPS2RACF, SCP2RACF, SPN2RACF, and TBL2RACF functions, the output member contains RACF commands. The output member formatting must be altered in order to place the statements into effect using a batch job or TSO CLIST.

Restrictions

The following restrictions apply to the SECMIGR command:

- The DD statement specifications for the SECMIGR command are restricted to a subset of the DD statements in the NetView procedure. Refer to the BROWSE command help for a list of valid DDNAMEs.

- The SECMIGR command assumes that the input control statements that you are converting are syntactically correct and performs minimal syntax checking.

- The SECMIGR command uses only the first profile specified on the PROFILEN statement in the operator definition member. Profiles are read from DSIPRF DD members.

- The SECMIGR command does not support comments on the same line with keywords in DSIOPF and DSIPRF. They should be removed before running the SECMIGR command. Whole line comments are allowed.

- When using the SCP2RACF function, a member of the first data set in the DSILIST or DSIPARM concatenation is used to hold the intermediate table during the conversion. The SECMIGR command list contains a constant which is assigned the value of this member name. The value of the constant as shipped by NetView is SECMTEMP. If this data set and member combination is not available, the command fails.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Functioned normally.</td>
</tr>
<tr>
<td>1</td>
<td>Non-valid argument.</td>
</tr>
<tr>
<td>2</td>
<td>Error reading input file.</td>
</tr>
<tr>
<td>4</td>
<td>Error reading profile.</td>
</tr>
<tr>
<td>6</td>
<td>Error returned from call to allocate output or temporary file.</td>
</tr>
<tr>
<td>8</td>
<td>Error writing to output file.</td>
</tr>
</tbody>
</table>
Examples

Example: Migrating Operator IDs to RACF
The following example converts existing operator definitions and passwords from member DSIOPF in DSIPARM to RACF operator definition statements. This also includes NetView attributes and places the RACF statements in member SECOPERS of the first data set in the DSILIST concatenation:

```
SECMIGR OPS2RACF,,SAFDEF
```

The input data set and member names, as well as the output data set and members names, are determined by the command defaults.

Example: Migrating DSISPNI, VTAMLST to NetView Span Table
The following example converts existing span of control definitions from member DSISPNI in DSIPARM and the VTAMLST members in DSIVTAM to NetView span table statements in member SPNTABLE of the USER.DSIPARM data set:

```
SECMIGR SPN2TBL,,USER.DSIPARM(SPNTABLE)
```

The input data sets and member names as well as the output data set and member name are determined by the command defaults.
SEGMENT (NCCF; CNME8506)

Syntax

```
SEGMENT

LAN SEGMENT TEST lanseg spname

netid
```

Purpose of Command

The SEGMENT command list checks a ring or bus to see if it is capable of transferring data. The SEGMENT command list is supported by the IBM LAN Network Manager and the IBM LAN Network Manager Entry.

Operand Descriptions

**LAN**

Specifies that SEGMENT is a LAN command list. This operand is optional.

**TEST**

Checks the LAN segment to see if it is capable of transferring data.

**lanseg**

Specifies the ring or bus segment number. The `lanseg` value can be in the range of 0000–0FFF.

**netid**

Specifies the network identifier in which the service point is located. This parameter is required only when you use a service point that is not in the local network. Use a period (.) to delimit `netid` from `spname`.

**spname**

Specifies the 1–8 character service point name of the IBM LAN Network Manager.

Restrictions

The following restrictions apply to the SEGMENT command:

- To get the segment number, use the QNETWORK command. Segment name RING0001 is segment number 0001, and segment name CBUS0002 is segment number 0002.
- Do not use the IBM LAN Network Manager command lists as commands in conjunction with the &WAIT statement in a command list.

Examples

**Example: Checking a Ring at a Specified Service Point**

To check RING0001 at service point N4L021, enter:

```
SEGMENT TEST 0001 N4L021
```
SENDSESS (NCCF)

Syntax

SENDSESS

SENDSESS session_id, text*

Purpose of Command

The SENDSESS command sends a command to an operator-control (OPCTL) session partner (CICS/VS, IMS/VS, or HCF). An OPCTL session must already exist with the subsystem before commands are sent using the SENDSESS command.

Operand Descriptions

session_id

The session identifier (SESSID) you previously specified in the BGNSESS OPCTL command for this session. If you do not specify a SESSID with the BGNSESS OPCTL command, the APPLID value is used as the session identifier.

text

The command, message, or other text you want sent. It should be in the format required for CICS/VS, IMS/VS, or HCF, and must be less than 256 characters.

* Specifies that you request permission to send again. When you use *, you send an attention to the subsystem.

Restrictions

The following restrictions apply to the SENDSESS command:

- Messages associated with the text are sent to the sender of the SENDSESS command.
- You can enter several commands or logical lines to CICS/VS, IMS/VS, or HCF using a semicolon to indicate the end of each logical line. To send a single semicolon to a subsystem, use two semicolons in a row ;;.
SENSE (NLDM; CNME2003)

Syntax

SENSE

SENSE  code

Purpose of Command

The SENSE command list displays help for the SNA sense codes set by VTAM. Refer to the appropriate SNA manual for more information about SNA (System Network Architecture) sense code.

Operand Descriptions

code

The sense code in hexadecimal.

M  Indicates that message output (AAU977I) is desired. The M option is only supported by the SENSE command list, not the NLDM SENSE command.

Examples

Example: Getting a Description of a Two-Byte Sense Code
To get a description of the 2-byte sense code X'0806', enter:
SENSE  0806

Example: Displaying a Description of a 4-Byte Sense Code
To display a description of 4-byte sense code X'087D0005', enter:
SENSE  087D0005
**SESMGET (NLDM; CNME2011)**

**Syntax**

```
SESMGET
```

```
SESMGET RES1=\text{res1name} RES2=\text{res2name} DOMAIN=\text{domid} CP=\text{cpname} NET=\text{netid} NETLOG=\text{NO/YES} SELECT=\text{ACTIVE/ALL} SESLIMIT=\text{nnnnnn} NETLOG=\text{NO/YES}
```

**Purpose of Command**

The SESMGET command displays session monitor data.

**Operand Descriptions**

- **RES1=\text{res1name}**
  - Specifies the resource for which you want session data. When RES2 is not present, you receive sessions for which \text{res1name} is either the primary or secondary endpoint.

- **RES2=\text{res2name}**
  - Specifies the name of the second endpoint. When present, you get sessions between the two named endpoints. If RES2 is not present, you will receive sessions for which \text{res1name} is either the primary or secondary endpoint.

- **DOMAIN=\text{domid}**
  - Specifies the NetView domain from which the session monitor should collect the data. When neither DOMAIN nor CP is present, the local domain is used. DOMAIN and CP are mutually exclusive.

- **CP=\text{cpname}**
  - Indicates the name of the CP or SSCP associated with the NetView domain from which session monitor should collect the data. DOMAIN and CP are mutually exclusive. If CP is specified without NET the default is the local network.

- **NET=\text{netid}**
  - Specifies the network in which \text{cpname} is defined.

- **SELECT=**
  - **ACTIVE**
    - Indicates only active sessions. This is the default if SELECT is not specified.
  - **ALL**
    - Indicates all sessions for the resource or resource pair, including inactive sessions.
SESLIMIT=nnnnnnn
Specifies the maximum number of sessions for which you want responses. If not specified, SESMGET will attempt to provide data for all sessions specified by the other parameters, except when invoked through a web browser, in which case it defaults to 200.

NETLOG=

**NO**
Indicates that the output messages are not put in the network log. This is the default.

**YES**
Indicates that the output messages are put in the network log.

**A Description of a Successful Response from a SESMGET Command**
A successful response to a SESMGET command is derived from the session monitor Session List panel (NLDM.SESS) in the same order as the corresponding NLDM.SESS entries. The response is returned as a multiline message consisting of one AAU975I message, followed by one or more AAU976I messages. Refer to the message help for AAU975I and AAU976I.

When invoked from a web browser, these messages are presented on a web page that consists of a list of the specified sessions. The configuration information is formatted from AAU978I messages, which contain most, but not all, of the configuration information known to session monitor. You can view the configuration of any session. The primary resource name, session start time, and PCID fields are all selectable. If there is a sense code, it is also selectable.

**Examples**

**Example: SESMGET RES1=NTVFE SELECT=ALL**
Enter:

SESMGET RES1=NTVFE SELECT=ALL

Requests a data message for each session known to the local session monitor for which NTVFE is an endpoint. The response is similar to the following messages, which are displayed as one multiline message:

Response:

Message 1:

|+++++++1++-++++-2-----------3--------4---------5--------6--------7--

AAU975I NTVAA

Message 2:

|+++++++1++-++++-2-----------3--------4---------5--------6--------7--

AAU976I USIBMNT.NTVFE LU USIBMNT.NTVE8 LU 081596
+-+++-++-9--------10--------11--------12--------13--------14----

054255INITF USIBMNT.NTFMVS.F56B5A6E977D7FC7 087D0001 C

Message 3:
Chapter 2. NetView Commands and Command Descriptions

---++---1---2---3---4---5---6---7---
AAU976I USIBMNT.NTVFE LU N/A USIBMNT.NTAAL703 LU NTVAATOV081496

---++---8---9---10---11---12---13---14---
154259081496154259USIBMNT.NTFEMVS.F5B31C2E7EE86147 D
SESS (NLDM; CNME2004)

Syntax

SESS

∗DISCARD

resname1

resname2

WITH PCID

Purpose of Command

The SESS command lists the sessions for a specific resource or all sessions between two specific resources.

This command displays the Session History panel.

Operand Descriptions

∗DISCARD

Selects the ∗DISCARD pseudosession (the session to which all discarded PIUs are associated).

resname1

Selects only those sessions in which one of the session partners is indicated by resname1. resname1 must be 1 to 8 alphanumeric characters.

resname2

Selects only those sessions between resname1 and resname2. resname2 must be 1 to 8 alphanumeric characters.

WITH PCID

Displays the fully qualified procedure-correlation identifier (FQPCID) associated with each session.

Usage Notes

To prevent listing sessions for a specific resource that has an excessive number of sessions, use a PROTECT statement in the NetView security table or SAF product, similar to the following:

PROTECT *.∗.NLDM.SESS.SSCP27

This statement has no effect when both session end-points are used.

Restrictions

The following restrictions apply to the SESS command:

• Session monitor trace data cannot be viewed for sessions that are active unless the session monitor trace is active for those sessions.

Examples

Example: Displaying a Session List That Includes a Specified LU

To display the session list that includes LU L51R79M, enter:

SESS L51R79M
Example: Displaying a List of Active and Inactive Sessions in Specified Resources
To display a list of active and inactive sessions between the resources LCL3278A and L51R79M, along with their PCIDs, enter:
SESS LCL3278A L51R79M WITH PCID

Example: Displaying a List of Current and Inactive Sessions in a Specified Resource
To display a list of current and inactive sessions associated with resource L51R79M1, enter:
SESS L51R79M1

Example: Displaying a List of Current and Inactive Sessions in Specified Resources
To display a list of current and inactive sessions between resources L51R79M1 and AP01 and to have the PCID for any applicable sessions displayed, enter:
SESS L51R79M1 AP01 WITH PCID
Purpose of Command
The SESSC command displays session monitor configuration data.

Operand Descriptions

- **RES1=res1name**
  Specifies the resource for which you want session configuration data. If RES2 is not present, the list of sessions searched internally for a matching PCID are those for which res1name is either the primary or secondary endpoint.

- **RES2=res2name**
  Specifies the name of the second endpoint. When present, the list of sessions searched internally for a matching PCID are those for which res1name and res2name are the endpoints.

- **HTML=YES**
  Specifies that the output is HTML. This is used by NMC and is not needed for web browser requests.

- **PCID=pcidname**
  Specifies the PCID (or partial PCID) which is matched against the session list described by the endpoint(s). The first one that matches is the one for which the configuration is gathered.

- **DOMAIN=domid**
  Specifies the NetView domain from which the session monitor should collect the data. When neither DOMAIN nor CP is present, the local domain is used. DOMAIN and CP are mutually exclusive.

- **CP=cpname**
  Indicates the name of the CP or SSCP associated with the NetView domain from which session monitor should collect the data. DOMAIN and CP are mutually exclusive. If CP is specified without NET, the default is the local network.

- **NET=netid**
  Specifies the network in which cpname is defined.

Examples

**Example: Request Configuration For a Session**
The following example requests configuration information for a particular session:

SESSC RES1=NTVFELUC RES2=NTVAALUC PCID=F56B5A6E489CFFBB
For an example of a successful response, refer to the help for message AAU978I.
SESSDGRP (NLDM)

Syntax

SESSDGRP

SESSDGRP dgroupl_name WITH PCID

Purpose of Command

The SESSDGRP command displays session history (on the NLDM.SESSION panel) for all sessions that belong to the specified direct access storage device (DASD) group name.

Operand Descriptions

dgroupl_name

Specifies the DASD group name for which the session history of all sessions in the DASD group is listed.

WITH PCID

Displays the fully qualified procedure-correlation identifier (FQPCID) associated with each session.

Restrictions

Define the DASD group name in the KEEPMEM initialization member with the DGROUP operand of the KCLASS statements.
SESSIONS (NCCF; CNME0048)

Syntax

SESSIONS

LuSluPlu:

Purpose of Command

The SESSIONS command list displays session status information. To display sessions between specified logical units (LUs), one of the session partners must reside in the host VTAM network.

Operand Descriptions

LU1=luname1

Specifies the LU for which sessions are to be displayed. You can specify luname1 as a network-qualified name. If you specify LU2, only sessions between LU1 and LU2 are displayed. Do not specify the PLU, SLU, and SID operands with the LU1 operand.

LU2=luname2

Specifies the LU for which sessions are to be displayed. Specify luname2 as a network-qualified name. If you specify LU1, only sessions between LU2 and LU1 are displayed. You cannot specify the PLU, SLU, and SID operands with the LU2 operand.

PLU=pluname

Specifies the logical unit that is the primary session partner. Specify pluname as a network-qualified name. If you also specify SLU, only sessions in which the PLU’s pluname is the primary logical unit and the SLU’s pluname is the secondary logical unit are displayed. You cannot specify the LU1, LU2, and SID operands with the PLU operand.


**SLU=sluname**
Serves the logical unit that is the secondary session partner. You can specify sluname as a network-qualified name. If you also specify PLU, only sessions in which the PLU’s sluname is the primary logical unit and the SLU’s sluname is the secondary logical unit are displayed. You cannot specify the LU1, LU2, and SID operands with the SLU operand.

**SCOPE**
Specifies the status of the sessions to be displayed. You cannot issue the SID operand with the SCOPE operand. Parameters are:

- **ALL**
  Displays all sessions, regardless of session status. ALL is the default.

- **ACT**
  Displays only active sessions.

- **PEND**
  Displays only pending sessions.

- **Q**
  Displays only queued sessions.

- **other**
  Specifies a value for the SCOPE keyword used by the VTAM DISPLAY SESSIONS command.

**LIST**
Specifies the amount of detail to be displayed. You cannot issue the SID operand with the LIST operand. Parameters are:

- **COUNT**
  Displays the total number of sessions whose status has been specified by the SCOPE operand. COUNT is the default.

- **ALL**
  Displays all session status information for those sessions whose status has been specified by the SCOPE operand.

- **other**
  Specifies a value for the LIST keyword used by the VTAM DISPLAY SESSIONS command.

**SID=session_id**
Specifies the VTAM session to be displayed. This session_id cannot be more than 16 characters long. You cannot specify the LU1, LU2, PLU, SLU, SCOPE, and LIST operands with the SID operand.

**passthru**
Specifies additional parameters which are appended unchanged to the VTAM DISPLAY command issued by the SESSIONS command. You can specify up to 6 additional parameters on the SESSIONS command. No validation for duplicate or conflicting parameters is performed.

**Restrictions**
The following restrictions apply to the SESSIONS command:

- If you specify LU1 and LU2, only sessions involving both LUs are displayed.
- If you specify PLU and SLU, only sessions involving both named LUs in the primary/secondary relationship are displayed.
- This command list is supported by VTAM Version 3 Release 2 and later releases only.
Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Functioned normally</td>
</tr>
</tbody>
</table>

Examples

Example: Displaying Pending Sessions for a Specified LU
To display pending sessions for a specific LU (ECHO01), enter:
SESSIONS LU=ECHO01,SCOPE=PEND,LIST=ALL

Response

If the command list has processed successfully, the following message is displayed:

```
IST873I PLU SLU SID STATUS
IST874I NETA.ECHO01 NETA.ECHO099 DF279FE40944400D PSEST
IST874I NETA.ECHO01 NETA.ECHO099 DF279FE40944400E PSEST
IST874I NUMBER OF PENDING SESSIONS 2
IST314I END
```

Example: Displaying Number of Active Sessions in Which ECHO99 Is the Primary Partner
To display the number of active sessions in which ECHO99 is the primary partner, enter:
SESSIONS PLU=ECHO99,SCOPE=ACT,LIST=COUNT

Example: Displaying Active Sessions in Which A01A741 Is the Secondary Partner
To display the active sessions in which A01A741 is the secondary partner, enter:
SESSIONS SLU=A01A741,SCOPE=ACT,LIST=ALL
SESSMDIS (NCCF)

Syntax

SESSMDIS

Purpose of Command

The SESSMDIS command displays session monitor session counts, storage use, and traffic rates.

You can use the SESSMDIS command to monitor and tune session monitor storage and VSAM usage. You can also use this command to determine the size of the network (as known by the session monitor) by using the session counts.

The following information is displayed:

• Session monitor options in effect:
  SAW (Yes/No)
  LU trace (Yes/No)
  CP/SSCP trace (Yes/No)
  SESSTATS (Avail/Yes/No)

• Session counts (current and high water marks):
  CP - CP
  SSCP - SSCP
  SSCP - PU
  SSCP - LU
  LU - LU
  Filtered

  Note: Filtered session counts reflect the number of sessions filtered by VTAM and the session monitor.

• Session monitor storage use:
  Resource storage
  Session storage
  Session parameter storage
  PIU trace storage
  SESSTATS storage
  RTM storage
  RSCV storage
  OTHER storage (internal control blocks, work storage, and others)
  TOTAL storage

• VSAM recording queue (current and high water mark):
  Number of sessions waiting to be recorded to VSAM.

• Session monitor workload (total and 4-second rate):
  Number of SAW buffers sent from VTAM to the session monitor.
  Number of session starts sent from VTAM to the session monitor.
  Number of session ends sent from VTAM to the session monitor.
  Number of PIU trace buffers sent from VTAM to the session monitor.
  Number of sessions recorded to the session monitor.
Note: These totals represent the values since the session monitor was started or the session monitor record STRGDATA command was entered.

- Total current explicit routes (SARTs). This number is intended as a guide in setting the value of NLD.M.ERCOUNT in CNMSTYLE.

The above data is output in multiline message DSI378I. If SESSMDIS is invoked in a full-screen environment, this message is displayed through the WINDOW command. Use the WINDOW REFRESH subcommand (typically F2) to refresh the data. Each REFRESH will also log the new data if it was logged the first time. See the descriptions for the LOG and NOLOG keywords.

For system and subsystem consoles, in multiline messages, the title line is truncated at 34 characters, while the remaining lines are truncated at 68 characters.

**Operand Descriptions**

LOG

Log the resulting message lines in the network log. This is the default.

NOLOG

Do not log the resulting message lines.

**Restrictions**

The following restrictions apply to the SESSMDIS command:

- The AAUTSKLP data services task must be active.
- SESSMDIS does not run on the primary program operator interface task (PPT).

**Examples**

Example: Displaying Session Counts, Storage Usage, and Statistics

To display the session counts, storage usage, and statistics for the session monitor, enter:

SESSMDIS
SET (NCCF)

Syntax

```
NCCF SET

SET current_appl applid VIEW applid
DELETE PAkey IMMED DELAY IGNORE text
PFkey IMMED DELAY APPEND text
```

Purpose of Command

The NCCF SET command defines PA and PF keys for the command facility or a full-screen application that supports its PF or PA settings. These settings remain valid until you delete them or log off.

Operand Descriptions

`applid`

Indicates to which application the specified PF or PA key setting applies. NetView-supplied application IDs that support their own PA and PF keys are LBROWSE, MAINMENU, MBROWSE, NCCF, NETVIEW, NLD, NPDA, STATMON, TARA, VIEW, and WINDOW. Also, other applications using the first parameter on the VIEW command to specify an application name can have their own PF key settings, which can be specified using SET.

If `applid` is omitted from the SET command, the default is the current application, or if that one is neither one of the above nor an application ID specified using DSIPSS, the default is NCCF.

`DELETE`

The system will delete all PA and PF key definitions for the specified `applid`.

`PAkey`

Specifies which program attention key you want to set. You can specify 1–3 for PA keys. (Your keyboard might not have that many PA keys. Some keyboards have only 2 PA keys.) When you type the key number, do not leave a space between the PA and the number.

`PFkey`

Specifies which program function key you want to set. You cannot set PF keys that are set to a command module statement. You can specify 1–24 for PF keys. (Your keyboard might not have that many PF keys. Some keyboards have only 12 PF keys.) When you type the key number, do not leave a space between the PF and the number.

`DELAY`

Indicates that the command is written into the input area of the screen with a blank space between the last character and the cursor. The command runs when you press the ENTER key. This enables you to modify the command before it is started. DELAY is the default.
IMMED
The system will run this command immediately when you press the key. Use IMMED for commands you want to enter the same way each time. Do not use IMMED to assign a PA key to a command that is sensitive to the position of the cursor, because the cursor position is unknown when a PA key is pressed.

IGNORE
Specifies that the input area for this key is to be ignored. Type IGNORE after the PF or PA key and before the command text. IGNORE is the default.

APPEND
Appends the data in the input area to the end of the command text from the SET command when you press the PF key.

text
Specifies the command or command list for the PF or PA key. A comma or blanks must come before the message text. All characters after the comma or blanks are considered part of the text. You can use blanks and commas in the text. Quotation marks (") or apostrophes (‘) are not required; if they are in the text, they are treated as part of the text.

Restrictions
The following restrictions apply to the SET command:

- For migration, LOG is supplied as a PARMSYN for LBROWSE so that many existing SET LOG definitions will continue to work, although some abbreviated key texts previously supported by SET LOG must be updated (H, HL, HLP, HE, HEL, E, EN, RO, ROL, BC, BCK, F, RP*, REPEATFIN*, LF, LFT, RGT, RG, ALL, ONE). Other applications that use the first parameter on the VIEW command to specify an application name, for example MAINMENU and ACTION command lists, can have their own key settings, which are set by the SET command. For such VIEW applications, add the VIEW keyword before the application ID on the SET command so that the LIST KEY command can list VIEW defaults for this applid. Set default keys by using application ID NETVIEW; set default keys for VIEW applications by using application ID VIEW.

- If you define a key for a specific application ID, the definition takes effect for that application. Otherwise, if that application uses VIEW to output its panels, and a given key is defined for application ID VIEW, the VIEW definition takes effect. If the key is defined for application ID NETVIEW, the NETVIEW definition takes effect. If you press a key that is not defined in this hierarchy, a message is displayed.

- If you attempt the SET command on an NetView-NetView task (NNT) or the primary program operator interface task (PPT), a warning message is issued and no action is taken. The NNT and PPT do not have terminals, and therefore do not have PF or PA keys to set.

- PA keys cannot send data; therefore, do not use the PA key and the APPEND operand together.

- If you start a cross-domain session and specify a profile that has an initial command or command list, a SET command might unintentionally be attempted. An initial command list should check the task before attempting SET.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Operation successful if not accompanied by a storage error message.</td>
</tr>
</tbody>
</table>
Examples

Example: Setting PF12 to Retrieve Your Last Command
To set the PF12 key to retrieve your last command, enter:

```
SET PF12 IMMED RETRIEVE
```

Response

Press PF12 while in any application for which you have not set PF12 to something else. The previous command is placed in the command area.

Example: Setting PA2 to Write a Partial Command to the Command Line
To set PA2 to write the partial command `ID=MODEM1,STATION=JAT,BROWSE=NOCHANGE` to the command line, enter:

```
SET PA2 ID=MODEM1,STATION=JAT,BROWSE=NOCHANGE
```

Response

Press PA2 while in NCCF. The cursor is positioned immediately after the last character of the command text. You can then modify the command before pressing ENTER to process it.

Example: Setting PF10 to Run the SET HEX Command Immediately
To set PF10 to process the SET HEX command immediately, enter:

```
SET NCCF PF10 IMMED APPEND SET HEX
```

Response

Press PF10 while in NCCF. Data from the command input line is appended to the end of the command. For example, if either ON or OFF were appended, then pressing PF10 would enter `SET HEX ON` or `SET HEX OFF`.

Example: Setting PF2 to end NPDA
To set PF2 to run the END command from NPDA, enter:

```
SET NPDA PF2 IMMED END
```

Response

Pressing PF2 while in NPDA causes you to exit from NPDA.

Example: Setting PF14 to FIND a User-Entered String
To set PF14 to run FIND followed by your command line input, enter:

```
SET MBROWSE PF14 IMMED APPEND FIND
SET LBROWSE PF14 IMMED APPEND FIND
```

Response

Pressing PF14 while in Member-browse or Log-browse causes your command line input to be appended to FIND and processed.
SET (TARA)

Syntax

TARA SET

\[
\text{SET} \quad \text{PARM,parmid,ctrlname,resname} \quad ,\text{count}, \quad \text{name} \\
\text{THRESH,threshid,ctrlname,resname,thrshval} \\
\text{WRAP,wrapid,ctrlname,resname,wrpcnt}
\]

Purpose of Command

The TARA SET command adjusts the 4700 Support Facility operational operands associated with the specified controller.

Operand Descriptions

PARM

Specifies that a change is to be made to a CNM/CS operational operand. When PARM is used to change the active interval timer, the 4700 Support Facility shuts off all timers defined for that resource and then activates the specified timer. Do not omit the resname information when issuing the SET PARM, INTERVAL command.

parmid

Indicates the operand to be changed. Valid parameters are:

- **TIMER**
  - Activates the timer named by the name operand on the workstation specified by ctrlname and resname.

- **INTERVAL**
  - Sets the interval for monitoring loop status changes.

ctrlname

Identifies the specific controller for which 4700 Support Facility operational operands are to be set.

resname

Identifies the specific resource or group of resources attached to ctrlname about which data are to be displayed. Omit this operand when issuing the SET PARM, INTERVAL command. Valid resources are:

- **LPnn**
  - Specifies the loops on a 4700 controller, where nn is the loop number. This operand is not valid with the PARM option.

- **WSnn**
  - Specifies the workstation on a 4700 controller, where nn is the workstation number.

- **ALL**
  - Specifies all loops and workstations on a 4700 controller.

count

Specifies the new value to be used as the loop status monitor interval. The value is expressed as 1–4 decimal digits, where 123=123 seconds. Use the count operand only with SET PARM, INTERVAL.
name
Specifies the symbolic names of the timers to be set on. Use the name operand only with SET PARM, TIMER.

THRESH
Specifies that a new threshold value is to be set.

threshid
Indicates the type of threshold value to be set. Valid threshids are:

- BASIC2
  Sets the loop basic counter 2 threshold value.

- EXTEND
  Sets the threshold value for the extended statistical counter specified by the resname operand.

- RESPAVG
  Sets the average response time threshold for the workstation specified by the resname operand.

- RESPMIN
  Sets the minimum number of times that the response measurement must occur before the response time received is compared to the user-defined average threshold value.

threshval
Specifies the new threshold value, expressed as 1 to 4 decimal digits, which have the following meanings:
- Loop basic counter 2: 123=123 errors/hour
- Extended statistical counters: 123=1.23% error rate
- Workstation response time: 123=12.3 seconds.

WRAP
Specifies that a new wrap count is to be set.

wrapid
Specifies the type of wrap count to be set.
Valid wrapids are:

- STATUS
  Specifies the loop status data

- ERROR
  Specifies the error data

- RESP
  Specifies the workstation response-time data

wrpcnt
New wrap count value. Expressed as 1 to 4 decimal digits where 123=123 records.

Usage Notes
Together, ctrlname and resname identify the specific resources for which a threshold is to be set.
Examples

Example: Setting an Error Wrap Count of 25 for LP02 Attached to CTRL01
To set an error wrap count of 25 for LP02 attached to CTRL01, enter:
SET WRAP,ERROR,CTRL01,LP02,25
SET HEX (NLDM)

Syntax

```
NLDM SET HEX
```

Purpose of Command

The SET HEX command sets hexadecimal display mode on or off.

Operand Descriptions

`toggle`

If you do not specify ON or OFF, the SET HEX command toggles between the current setting and the reverse setting.

**OFF**

Specifies that hexadecimal mode is to be turned off.

**ON**

Specifies that hexadecimal mode is to be turned on.

Restrictions

The following restrictions apply to the SET HEX command:

- When hexadecimal mode is on, the trace data and the session activation parameters are displayed in hexadecimal. When hexadecimal mode is off, the trace data and the session activation parameters are displayed as text.
- This command affects the following panels only:
  - PIU Trace Data
  - NCP Session Trace Data
  - Session Parameters
- The hexadecimal mode setting remains in effect until you leave the session monitor with the END command. Hexadecimal mode is turned off the next time you enter the session monitor.
SET RANGE (NLDM)

Syntax

NLDM SET RANGE

FROM date1 time1 TO

Purpose of Command

The SET RANGE command sets the default time range used for all session monitor commands that display data by time.

Operand Descriptions

FROM
Identifies the operands that follow as the starting date and time. This operand is optional.

* Uses the default time and date for the date display command being issued.

date1
Specifies the starting date of the time range. If you specify the time but omit the date, the date defaults to the current date. The format of date1 is controlled by the setting of the date operands of the DEFAULTS and OVERRIDE commands.

time1
Specifies the starting time of the time range. The format of time1 is controlled by the setting of the time operands of the DEFAULTS and OVERRIDE commands.

TO
Identifies the operands that follow as the ending date and time. This operand is optional.

date2
Specifies the ending date of the time range. The format of date2 is controlled by the setting of the date operands of the DEFAULTS and OVERRIDE commands. If you specify the time but omit the date, the date defaults to the current date.

time2
Specifies the ending time of the time range. The format of time2 is controlled by the setting of the time operands of the DEFAULTS and OVERRIDE commands.

Restrictions

The time range setting remains in effect until you leave the session monitor with the END command. The time range returns to its default setting the next time you
enter the session monitor. Refer to the *Tivoli NetView for z/OS Installation: Getting Started* for a description of the default setting.

**Examples**

The format of times specified in the following example assumes the default setting for time formats on the DEFAULTS and OVERRIDE commands.

**Example: Setting a Default Range of 8 a.m. to 5 p.m.**

To set a default range of 8 a.m. to 5 p.m., enter:

```
SET RANGE FROM 08:00 TO 17:00
```
SETBQL (NCCF)

Syntax

SETBQL

\[\text{SETBQL receiver\_id qlimit} \]

Purpose of Command

The SETBQL command resets a receiver’s buffer queue limit.

Operand Descriptions

receiver\_id

Specifies the receiver ID that was defined to the NetView program-to-program interface.

qlimit

Specifies a new buffer queue limit in the range of 0–4294967295.

Restrictions

The following restrictions apply to the SETBQL command:

- The new buffer queue limit can be up to 10 digits.
- You can use the SETBQL command to adjust the buffer queue limit for the NetView alert receiver (receiverid is NETVALRT).
- You can use the SETBQL command on the NetView procedure that has the same first 4 characters as the NetView application.
- You can use the DISBQL command to display information about receivers.
- If the NetView subsystem interface (SSI) is inactive, the NetView program-to-program interface is also inactive. You receive message CNM563I as well as the information about all the receivers. If you recycle the subsystem address space and the NetView program-to-program interface is brought up, the receivers that were previously defined in the NetView program-to-program interface are still defined, but the receivers’ buffer queue is lost.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful processing</td>
</tr>
<tr>
<td>8</td>
<td>Error in processing</td>
</tr>
</tbody>
</table>

Examples

**Example: Resetting the Buffer Queue Limit for CNMRCV**

To reset the buffer queue limit for CNMRCV, enter:

SETBQL CNMRCV 100
SETCGLOB (NCCF; CNME1081)

Syntax

```
SETCGLOB

>>SETCGLOB varname TO value
```

Purpose of Command

Use SETCGLOB to set the value of the specified common global variable.

Operand Descriptions

- **varname**
  Specifies the common global variable for the value which is updated.

- **value**
  Specifies the new value assigned to the specified common global variable. A null value (blank) is acceptable.

Restrictions

The following restrictions apply to the SETCGLOB command:

- The use of SETCGLOB is limited to the command procedure and automation environments (command must originate in REXX, HLL, automation, or an optional task). Use of SETCGLOB directly from the operator’s command line results in message DSI290I and return code 8.
- The SETCGLOB command list sets a common global variable to any value. This command list is appropriate to use in any situation where it is not important to serialize the access between multiple tasks. If serialization of updates is important, use PIPE VARLOAD. If the value is numeric, you can use the UPDCGLOB command list.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The common global variable was set as requested.</td>
</tr>
<tr>
<td>8</td>
<td>The operator who issued the command list is not authorized to use SETCGLOB.</td>
</tr>
<tr>
<td>16</td>
<td>No variable name was specified or no value was specified.</td>
</tr>
</tbody>
</table>

Examples

**Example: Setting the NetView Common Global Variable &TASKCOUNT to 1**

To set the NetView common global variable &TASKCOUNT to a value of 1, enter:

```
SETCGLOB TASKCOUNT TO 1
```
SETCONID (NCCF)

Syntax

NCCF SETCONID

SETCONID CONSOLE=consolename

Purpose of Command

The SETCONID command enables you to change the default console name used by an operator or autotask for submitting MVS commands. Use SETCONID in the initial command list for an operator or an autotask. Program the initial command list to choose a unique console name based upon the naming convention you decide to use.

Unlike the GETCONID command, SETCONID does not allocate the console when the CLIST runs. Instead, it sets the name of the console that is later used when the GETCONID command is entered with no console name specified, or if an MVS command is issued by the operator or autotask and a console is already allocated. SETCONID is similar to setting the console name in the user profile using the CONSNAME keyword. To display the current value for this console name, use the LIST operatorid command.

Operand Descriptions

consolename

Specifies the default console name for this operator or task. You typically write a REXX procedure to compute a value for consolename to ensure unique console names (within a SYSPLEX).

Return Codes

The following are return code values for the SETCONID command:

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Completed successfully</td>
</tr>
<tr>
<td>4</td>
<td>Syntax error, operand in error</td>
</tr>
<tr>
<td>24</td>
<td>Invalid value for console name</td>
</tr>
</tbody>
</table>

Examples

Example: ISSUING SETCONID
To issue the SETCONID command, enter:

SETCONID CONSOLE=GOODNAME

The following message will be received:

DSI633I SETCONID COMMAND SUCCESSFULLY COMPLETED
SETTINGS (EAS)

Syntax

E/AS SETTINGS

\[\text{MODIFY } \text{procname}, \text{SETTINGS } \text{TASK=} (\text{taskid})\]

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIFY</td>
<td>F</td>
</tr>
</tbody>
</table>

Purpose of Command

The SETTINGS command displays the current configuration settings for the requested event/automation service task. The settings are displayed as console messages on the system console.

Operand Descriptions

\(\text{procname}\)

Specifies the event/automation service job name.

\(\text{TASK=} \text{taskid}\)

Specifies the service task for which configuration settings are to be displayed. The \text{taskid} can have the following values:

- ALERTA: The alert adapter service task.
- MESSAGEA: The message adapter service task.
- EVENTRCV: The event receiver service task.
- TRAPALRT: The trap to alert conversion task.
- ALRTTRAP: The alert to trap conversion task.
- GLOBAL: Display settings that are common for all services.
- ALL: Display all settings.

Usage Notes

Consider the following when using the SETTINGS command:

- The information returned for each service is dependent upon the service itself. Nearly all of these settings are provided by default if they are not explicitly provided through a startup parameter or a configuration file statement. If the following immediately follows the setting:

  \((C)\) The setting was taken from a configuration file statement.

  \((D)\) The setting was taken from the default.

  \((P)\) The setting was taken from a startup parameter.
The settings for each service are derived from the statements in the service configuration file. All of the service configuration file statements have default values, with the exception of the ServerLocation statement.

The configuration file used by each service can be specified either as a startup parameter or in the global configuration, or IHSAINIT, file.

The global event/automation service settings include the name of the global configuration file, the PPI value, and the OUTSIZE parameter value.

Any settings that specify file names use the actual file name instead of the exact value from the configuration file statement. For example, if you have the AdapterCdsFile=IHSAACDS statement in the alert adapter configuration file, and dataset NETVIEW.SCNMUXCL is provided on the IHSSMP3 dataset definition statement in the event/automation service startup procedure and contains member IHSAACDS, the actual value displayed by the SETTINGS command is as follows:

NETVIEW.SCNMUXCL(IHSAACDS) (C)

The settings provided on the Filter and FilterCache statements are not followed by an indication of how the setting was provided. These settings can only be provided from an adapter service configuration file. If there are no Filter or FilterCache statements in this file, these settings are not displayed.

Restrictions
You can specify only one TASK operand. If you want to specify more than one service task, separate each task ID with a comma and enclose the string within parentheses.

Examples

Example: Showing the Alert Adapter Settings
To show the current alert adapter service settings, enter:

F IHSAEVNT,SETTINGS,TASK=ALERTA

Response

You should see a response similar to the following:

IHS0181I <=*Current Alert Adapter Service Settings*=>
IHS0183I CFG file : NETVIEW.SCNMUXCL(IHSAACDS) (D)
IHS0185I ServerLocation 1 = my.ip.hostname.com (C)
IHS0185I ServerPort 1 = 0 (D)
IHS0185I ConnectionMode = connection_oriented (D)
IHS0185I TestMode = no (D)
IHS0185I RetryInterval = 120 (D)
IHS0185I BufferEvents = yes (D)
IHS0185I BufferFlushRate = 0 (D)
IHS0185I BufEvtPath = /etc/Tivoli/tec/cache_nv390alt (C)
IHS0185I BufferEventsLimit = 0 (D)
IHS0185I BufEvtMaxSize = 64 (D)
IHS0185I BufEvtShrinkSize = 8 (D)
IHS0185I BufEvtRdblkLen = 64 (D)
IHS0185I EventMaxSize = 4096 (D)
IHS0185I AdapterCdsFile = NETVIEW.SCNMUXCL(IHSAACDS) (D)
IHS0185I FilterMode = out (D)
IHS0186I Filter 1 slots:
IHS0187I Class=SNA_Equipment_Malfunction;
IHS0187I source=filtersource;
IHS0187I severity=WARNING;
The numerical value associated with Filter or FilterCache settings is equivalent to the position of the statement in the adapter configuration file, relative to the other Filter or FilterCache statements in the file.

**Example: Showing the Trap-to-Alert Service Settings**

To show the current trap-to-alert service settings, enter:

```
F IHSAEVNT,SETTINGS,TASK=TRAPALRT
```

**Response**

You should see a response similar to the following:

```
IHS0182I <==Current Trap to Alert Conversion Service Settings==>
IHS0183I CFG file : NETVIEW.SCNMUXCL(IHSATCFG) (D)
IHS0185I NetViewAlertReceiver = NETVALRT (D)
IHS0185I PortNumber = 162 (C)
IHS0185I AdapterCdsfile = NETVIEW.SCNMUXCL(IHSATCDS) (D)
```

**Example: Showing the Global Event/automation Service Settings**

To show the global event/automation service settings, enter:

```
F IHSAEVNT,SETTINGS,TASK=GLOBAL
```

**Response**

You should see a response similar to the following:

```
IHS0182I <==Current E/AS Global Service Settings==>
IHS0183I CFG file : NETVIEW.SCNMUXCL(IHSAINIT) (D)
IHS0185I PPI = IHSATEC (D)
IHS0185I OUTSIZE = 0 (D)
```
SHOW (GMFHS)

Syntax

```
SHOW
```

```
GMFHS SHOW
 DOMAIN domain_name
 NMG nmg_name
```

Purpose of Command

The SHOW command provides a report with an entry for a specified network management gateway (NMG) or domain, or all NMGs or domains, defined to the NetView GMFHS. The report includes the display name, type, and status of the NMG or domain it represents.

You can enter the SHOW command from the MVS console using the MVS MODIFY command or from a NetView terminal by using the GMFHS command list.

Operand Descriptions

**DOMAIN**

Specifies to provide a report with an entry for each network management domain defined to the GMFHS.

*domain_name*

Specifies the network management domain for which to provide a report. *domain_name* must be the MyName attribute value of an SNA_Domain_Class instance in the RODM data cache or the EMDomain attribute value of a Non_SNA_Domain_Class instance.

This is an optional operand.

**NMG**

Specifies to provide a report with an entry for each NMG defined to the GMFHS.

*nmg_name*

Specifies the NMG for which to provide a report. *nmg_name* must be the value of the MyName attribute of an NMG_Class instance.

This is an optional operand.

Examples

**Example: Displaying All Network Management Domains**

To display all network management domains, enter:

```
GMFHS SHOW DOMAIN
```

Response

You receive a response similar to the following:
For each domain, the displayed information includes:

- Name
- Type (SNA or non-SNA)
- State of domain configuration process
- Date and time that domain configuration started
- For non-SNA domains, whether a session exists with the service point application
- For non-SNA domains, the network management gateway to which the domain reports.

**Example: Displaying All Network Management Gateways**
To display all network management gateways, enter:

```
GMFHS SHOW NMG
```

**Response**

You receive a response similar to the following:

```
DUI4038I NETWORK MANAGEMENT GATEWAY DISPLAY
DUI4039I NMG = A0488PB4 STATUS = UNKNOWN TRAN = COS WINDOW = 1 OUT = 0 SENT = 0
DUI4039I NMG = A0488PB21 STATUS = UNKNOWN TRAN = COS WINDOW = 1 OUT = 0 SENT = 0
DUI4039I NMG = B3088P2 STATUS = UNKNOWN TRAN = COS WINDOW = 1 OUT = 0 SENT = 0
DUI4039I NMG = B3088P1 STATUS = UNKNOWN TRAN = COS WINDOW = 1 OUT = 0 SENT = 0
DUI4037I END
```

For each network management gateway (NMG) the displayed information includes:

- Name
- Status of the NMG
- Transport type
- Window size
- Number of commands outstanding and awaiting response
- Number of commands sent through the NMG

**Example: Obtaining a Report on a Specified NMG**
To obtain a report on the NMG named B3088P1, enter:

```
GMFHS SHOW NMG B3088P1
```

**Response**
A response similar to the following is displayed:

DUI4038I  NETWORK MANAGEMENT GATEWAY DISPLAY
DUI4039I  NMG = B3088P1  STATUS = UNKNOWN  TRAN = COS   WINDOW = 1
           OUT = 0  SENT = 0
DUI4037I  END
SMDR (NLDM)

Syntax

SMDR

QUERY

START

STOP

Purpose of Command

The SMDR command restarts, stops, or queries the status of session monitor data recording.

Operand Descriptions

QUERY

Indicates to display the current data recording status.

START

Indicates to restart session monitor data recording.

STOP

Indicates to stop session monitor data recording. All current and future sessions on the data recording queue are discarded without being recorded to the session monitor database. Explicit route data is no longer recorded to the session monitor database. Session data continues to be recorded to the external log.

Restrictions

The following restrictions apply to the SMDR command:

- If data recording is already active when you issue the SMDR START command, you receive message AAU274I. If data recording is not active when you issue the SMDR START command, message AAU273I is sent to the authorized receiver. This message indicates the number of sessions that were suppressed while data recording was inactive.
- Message AAU274I is sent in response to the SMDR STOP and SMDR QUERY commands. For SMDR STOP, the message tells you whether data recording has stopped or is already inactive. For SMDR QUERY, the message tells you whether data recording is active or inactive.

Examples

Example: Displaying the Status of Session Monitor Data Recording

To display the status of session monitor data recording, enter:

SMDR QUERY

Response

A message similar to one of the following is displayed:
AAU274I VSAM SESSION RECORDING IS ACTIVE

AAU274I VSAM SESSION RECORDING IS INACTIVE
SMENU (STATMON)

Syntax

SMENU

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMENU</td>
<td>SM</td>
</tr>
</tbody>
</table>

Purpose of Command

The SMENU command displays activity and analysis information for the selected resources displayed on the status monitor screen.

Examples

Example: Displaying Activity and Analysis Information from a Status Monitor Panel

If you are displaying a status monitor panel containing resources, you can display a menu from which you can select activity or analysis information for selected resources. To display the menu, enter:

smenu
SNMP (NCCF; CNMESNMP)

Syntax

```
SNMP request_type CommonOptions specific_options host
```

```
community_name specific_operands
```

CommonOptions:

```
-H HELP -V VERSION -v version -O OutputOptions
```

```
-P ParserOptions -m mibs +mibs -M mibpath +mibpath
```

```
-d -r retries -t timeout -p port -T type
```

```
-c community
```

OutputOptions:

```
-b -e -f -n -q -s -S -T -v -X
```

ParserOptions:

```
-w -W
```

Purpose of Command

The SNMP command is used to send an SNMP request to a network device to set or obtain information about that device.

Operand Descriptions

- **-h** Optionally specifies the destination IP host. When -h is specified for an IP host name, name server resolution to an IP address is performed in a separate process.

  *host*

  Specifies the destination IP host.
community_name
   Specifies the community name. When \texttt{-c} is specified, this value is considered a MIB variable.

request_type
   The type of SNMP command. Valid values are:
   \begin{itemize}
      \item BULKWALK
      \item GET
      \item GETBULK
      \item GETNEXT
      \item INFORM
      \item SET
      \item TRAP
      \item WALK
   \end{itemize}
   
   Each SNMP request has online help. For example, issuing HELP SNMP SET provides the syntax options and usage information specific to the SET request.

specific_operands
   Refer to the online help for a specific request type.

specific_options
   Refer to the online help for a specific request type.

The following are parameter descriptions for the common options:

\texttt{-c} Precedes the community name and is used as an alternative to \texttt{community_name}.

\texttt{-d} Specifies to include the contents of the input and output data packets with the output.

\texttt{-H} HELP
   Displays the SNMP Command Menu. If other options are specified, they are ignored.

\texttt{-m} Specifies the MIBs to parse for symbolic names. You can optionally specify a plus sign (\texttt{+}) to precede the specified values to the default values.

\texttt{-M} Specifies the directories in the UNIX System Services HFS, from where the NetView program is to search for MIB source files. You can optionally specify a plus sign (\texttt{+}) to precede the specified values to the default values.

\texttt{-O} Specifies the output options:
   \begin{itemize}
      \item \texttt{-b} Prevents attempts to resolve index elements to names.
      \item \texttt{-e} Removes any symbolic labels from values.
      \item \texttt{-f} Prints the complete OID.
      \item \texttt{-n} Prints the OID in its fully-specified numeric form.
      \item \texttt{-q} Removes the equal sign (\texttt{=}) and type information.
      \item \texttt{-s} Prints only the last symbolic part of the OID.
      \item \texttt{-S} Prints only the last symbolic part of the OID and precedes it with the name of the MIB which defines the object.
      \item \texttt{-T} Prints any printable characters enclosed in brackets [\texttt{]} after the hexadecimal encoding. The default is UDP.
      \item \texttt{-v} Prints only the value or values.
Indicates the index components of OIDs with brackets [].

-p Specifies the port on the SNMP agent to send this request. The default is 161 for all requests except INFORM and TRAP, which default to 162.

-P Specifies the parser options:
  -w Displays warning messages while parsing MIB source files.
  -W Displays additional warning messages while parsing MIB source files.
  -r Specifies the number of retries. The default is 5.
  -t Specifies the timeout value between retries. The default is 1 second.
  -T Specifies the transport type. Valid values are UDP or TCP. The default is UDP.
  -v Specifies which SNMP Protocol version to use. Valid values are 1, 2c, and 3. The default is 1.

Note: For SNMP BULKWALK, SNMP GETBULK, and SNMP INFORM, valid values are 2c and 3.

-V|VERSION Displays the NetView SNMP command version information. If other options are specified, they are ignored.

Usage Notes
Consider the following when using the SNMP command:
- The command line interface is case sensitive. Use the NETVASIS command or set OVERRIDE NETVASIS to YES.
- Do not run SNMP commands in NetView pre-initialization command lists.
- Various NetView SNMP defaults can be modified with the COMMON.CNMSNMP definitions in sample file CNMSTYLE. Refer to the instructions in CNMSTYLE for more information.
- Variable specifications are in the format of MIB variables, known as ASN.1. There are several methods of representation which are handled by the NetView SNMP command. MIB variables are represented by a series of subidentifiers, separated by periods. Each subidentifier is coded as an integer or a symbol (name) defined in the MIB. If there is no leading period in the variable name, the variable is considered partially specified and is processed as though it began with iso.org.dod.internet.mgmt.mib-2 (1.3.6.1.2.1). If the variable specification begins with a period, it is processed as though fully-specified. The following specifications, for example, are all equivalent:
  - 1.1.0
  - 1.sysDescr.0
  - .1.3.6.1.2.1.1.1.0
  - .1.3.6.1.2.1.1.sysDescr.0
  - iso.org.dod.internet.mgmt.mib-2.system.sysDescr.0

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Processing ended without errors.</td>
</tr>
<tr>
<td>1</td>
<td>Processing ended with fatal errors.</td>
</tr>
<tr>
<td>2</td>
<td>Processing ended with general errors.</td>
</tr>
</tbody>
</table>
Processing ended abnormally.
SNMP BULKWALK (NCCF; CNMESNMP)

Syntax

```
SNMP BULKWALK CommonOptions host community_name oid
```

CommonOptions:

```
-H HELP -V VERSION -v version -O OutputOptions
```

ParserOptions:

```
-P -m mibs +mibs -M mibpath +mibpath
```

```
-d -r retries -t timeout -p port -T type
```

```
-c community
```

OutputOptions:

```
-b -e -f -n -q -s -S -T -v -X
```

ParserOptions:

```
-w -W
```

Purpose of Command

The SNMP BULKWALK command enables you to walk a subtree of the specified MIB variable.

Operand Descriptions

- **-h** Optionally specifies the destination IP host. When -h is specified for an IP host name, name server resolution to an IP address is performed in a separate process.

  host

  Specifies the destination IP host.

- **community_name**

  Specifies the community name. When -c is specified, this value is considered a MIB variable.
oid  Specifies the object ID (OID) of the MIB variable.

The following are parameter descriptions for the common options:

- **c**  Precedes the community name and is used as an alternative to community_name.

- **d**  Specifies to include the contents of the input and output data packets with the output.

- **H | HELP**  Displays the SNMP Command Menu. If other options are specified, they are ignored.

- **m**  Specifies the MIBs to parse for symbolic names. You can optionally specify a plus sign (+) to precede the specified values to the default values.

- **M**  Specifies the directories in the UNIX System Services HFS, from where the NetView program is to search for MIB source files. You can optionally specify a plus sign (+) to precede the specified values to the default values.

- **O**  Specifies the output options:

  - **b**  Prevents attempts to resolve index elements to names.

  - **e**  Removes any symbolic labels from values.

  - **f**  Prints the complete OID.

  - **n**  Prints the OID in its fully-specified numeric form.

  - **q**  Removes the equal sign (=) and type information.

  - **s**  Prints only the last symbolic part of the OID.

  - **S**  Prints only the last symbolic part of the OID and precedes it with the name of the MIB which defines the object.

  - **T**  Prints any printable characters enclosed in brackets [] after the hexadecimal encoding. The default is UDP.

  - **v**  Prints only the value or values.

  - **X**  Indicates the index components of OIDs with brackets [].

- **p**  Specifies the port on the SNMP agent to send this request. The default is 161.

- **P**  Specifies the parser options:

  - **w**  Displays warning messages while parsing MIB source files.

  - **W**  Displays additional warning messages while parsing MIB source files.

- **r**  Specifies the number of retries. The default is 5.

- **t**  Specifies the timeout value between retries. The default is 1 second.

- **T**  Specifies the transport type. Valid values are UDP or TCP. The default is UDP.

- **v**  Specifies which SNMP Protocol version to use. Valid values are 2c and 3.

- **V | VERSION**  Displays the NetView SNMP command version information. If other options are specified, they are ignored.
Usage Notes

Consider the following when using the SNMP command:

- The command line interface is case sensitive. Use the NETVASIS command or set OVERRIDE NETVASIS to YES.
- Do not run SNMP commands in NetView pre-initialization command lists.
- Various NetView SNMP defaults can be modified with the COMMON.CNMSNMP definitions in sample file CNMSTYLE. Refer to the instructions in CNMSTYLE for more information.
- Variable specifications are in the format of MIB variables, known as ASN.1. There are several methods of representation which are handled by the NetView SNMP command. MIB variables are represented by a series of subidentifiers, separated by periods. Each subidentifier is coded as an integer or a symbol (name) defined in the MIB. If there is no leading period in the variable name, the variable is considered partially specified and is processed as though it began with iso.org.dod.internet.mgmt.mib-2 (1.3.6.1.2.1). If the variable specification begins with a period, it is processed as though fully-specified. The following specifications, for example, are all equivalent:
  - 1.1.0
  - 1.sysDescr.0
  - .1.3.6.1.2.1.1.1.0
  - .1.3.6.1.2.1.1.sysDescr.0
  - iso.org.dod.internet.mgmt.mib-2.system.sysDescr.0

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Processing ended without errors.</td>
</tr>
<tr>
<td>1</td>
<td>Processing ended with fatal errors.</td>
</tr>
<tr>
<td>2</td>
<td>Processing ended with general errors.</td>
</tr>
<tr>
<td>5</td>
<td>Processing ended abnormally.</td>
</tr>
</tbody>
</table>

Examples

Example: Sending a BULKWALK Request

The following example sends an SNMPv2c BULKWALK request to an SNMP agent to walk the system.sysORTable subtree:

```bash
snmp bulkwalk -v2c -c public -h nmpipl10 system.sysORTable
```

You receive a response similar to the following:

```bash
CNM005I system.sysORTable.sysOREntry.sysORID.1 = OID: enterprises.2.11.7.1
CNM005I system.sysORTable.sysOREntry.sysORID.2 = OID: enterprises.2.11.7.2
CNM005I system.sysORTable.sysOREntry.sysORDescr.1 = z/OS SNMP Agent
CNM005I system.sysORTable.sysOREntry.sysORDescr.2 = z/OS TCP/IP SNMP Subagent
CNM005I system.sysORTable.sysOREntry.sysORUpTime.1 = Timeticks: (0)
 0:00:00.00
CNM005I system.sysORTable.sysOREntry.sysORUpTime.2 = Timeticks: (500)
 0:00:05.00
```
SNMP GET (NCCF; CNMESNMP)

Syntax

```
SNMP GET [CommonOptions] [-h host -c community_name] oid
```

CommonOptions:

```
-H HELP -V VERSION -v version -O OutputOptions
-P ParserOptions -m mibs -M mibpath
-d -r retries -t timeout -p port -T type
-c community
```

OutputOptions:

```
-b -e -f -n -q -s -S -T -v -X
```

ParserOptions:

```
-w -W
```

Purpose of Command

The SNMP GET command enables you to retrieve the value of one or more MIB variables.

Operand Descriptions

-**-h**  Optionally specifies the destination IP host. When -h is specified for an IP host name, name server resolution to an IP address is performed in a separate process.

```
host
```

Specifies the destination IP host.
community_name

Specifies the community name. When -c is specified, this value is considered a
MIB variable.

oid Specifies the object ID (OID) of the MIB variable.

The following are parameter descriptions for the common options:

-c Precedes the community name and is used as an alternative to
community_name.

-d Specifies to include the contents of the input and output data packets with the
output.

-H | HELP
Displays the SNMP Command Menu. If other options are specified, they are
ignored.

-m Specifies the MIBs to parse for symbolic names. You can optionally specify a
plus sign (+) to precede the specified values to the default values.

-M Specifies the directories in the UNIX System Services HFS, from where the
NetView program is to search for MIB source files. You can optionally specify a
plus sign (+) to precede the specified values to the default values.

-O Specifies the output options:

-b Prevents attempts to resolve index elements to names.
-e Removes any symbolic labels from values.
-f Prints the complete OID.
-n Prints the OID in its fully-specified numeric form.
-q Removes the equal sign (=) and type information.
-s Prints only the last symbolic part of the OID.
-S Prints only the last symbolic part of the OID and precedes it with the
name of the MIB which defines the object.
-T Prints any printable characters enclosed in brackets [ ] after the hexadecimal
encoding. The default is UDP.
-v Prints only the value or values.
-X Indicates the index components of OIDs with brackets [ ].

-p Specifies the port on the SNMP agent to send this request. The default is 161.

-P Specifies the parser options:

-w Displays warning messages while parsing MIB source files.
-W Displays additional warning messages while parsing MIB source files.

-r Specifies the number of retries. The default is 5.

-t Specifies the timeout value between retries. The default is 1 second.

-T Specifies the transport type. Valid values are UDP or TCP. The default is UDP.

-v Specifies which SNMP Protocol version to use. Valid values are 1, 2c, and 3.
The default is 1.
-VERSION
Displays the NetView SNMP command version information. If other options
are specified, they are ignored.

Usage Notes
Consider the following when using the SNMP command:
- The command line interface is case sensitive. Use the NETVASIS command or
set OVERRIDE NETVASIS to YES.
- A maximum of 128 MIB variables is supported.
- Do not run SNMP commands in NetView pre-initialization command lists.
- Various NetView SNMP defaults can be modified with the
COMMON.CNMSNMP definitions in sample file CNMSTYLE. Refer to the
instructions in CNMSTYLE for more information.
- Variable specifications are in the format of MIB variables, known as ASN.1.
There are several methods of representation which are handled by the NetView
SNMP command. MIB variables are represented by a series of subidentifiers,
separated by periods. Each subidentifier is coded as an integer or a symbol
(name) defined in the MIB. If there is no leading period in the variable name,
the variable is considered partially specified and is processed as though it began
with iso.org.dod.internet.mgmt.mib-2 (1.3.6.1.2.1). If the variable specification
begins with a period, it is processed as though fully-specified. The following
specifications, for example, are all equivalent:
  1.1.0
  1.sysDescr.0
  .1.3.6.1.2.1.1.1.0
  .1.3.6.1.2.1.1.sysDescr.0
  iso.org.dod.internet.mgmt.mib-2.system.sysDescr.0

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Processing ended without errors.</td>
</tr>
<tr>
<td>1</td>
<td>Processing ended with fatal errors.</td>
</tr>
<tr>
<td>2</td>
<td>Processing ended with general errors.</td>
</tr>
<tr>
<td>5</td>
<td>Processing ended abnormally.</td>
</tr>
</tbody>
</table>

Examples

Sending an SNMP GET Request
The following example sends an SNMP GET request to 9.67.50.52 to retrieve the
values of MIB variables sysUpTime.0 and sysDescr.0:

```snmp
snmp get 9.67.50.52 public sysUpTime.0 sysDescr.0
```

You receive a response similar to the following:

```output
CNM0051 system.sysUpTime.0 = Timeticks: (18704800) 2 days, 3:57:28.00
CNM0051 system.sysDescr.0 = Sysname: OS/390 Node: NMP1PL10 Release:
 12.00 Version: 03 Machine: 9672
```
SNMP GETBULK (NCCF; CNMESNMP)

Syntax

```
SNMP GETBULK -B nonrep maxrep -h host

community_name oid

CommonOptions:

-H HELP -V VERSION -v version -O OutputOptions

-P ParserOptions -m mibs +mibs -M mibpath +mibpath

-d -r retries -t timeout -p port -T type

-c community

OutputOptions:

-b -e -f -n -q -s -S -T -v -X

ParserOptions:

-w -W
```

Purpose of Command

The SNMP GETBULK command enables you to get values for all of the MIB variables in a particular branch or in a single leaf node.

Operand Descriptions

- **B** Specifies the number of variables to be reported.

  `nonrep`

  The number of non-repeating variables. The default is 1.
maxrep
  The maximum number of repetitions of repeating variables. The default is 100.

-h  Optionally specifies the destination IP host. When -h is specified for an IP host name, name server resolution to an IP address is performed in a separate process.

host
  Specifies the destination IP host.

community_name
  Specifies the community name. When -c is specified, this value is considered a MIB variable.

oid  Specifies the object ID (OID) of the MIB variable.

The following are parameter descriptions for the common options:

-c  Precedes the community name and is used as an alternative to community_name.

-d  Specifies to include the contents of the input and output data packets with the output.

-H | HELP
  Displays the SNMP Command Menu. If other options are specified, they are ignored.

-m  Specifies the MIBs to parse for symbolic names. You can optionally specify a plus sign (+) to precede the specified values to the default values.

-M  Specifies the directories in the UNIX System Services HFS, from where the NetView program is to search for MIB source files. You can optionally specify a plus sign (+) to precede the specified values to the default values.

-O  Specifies the output options:

-b  Prevents attempts to resolve index elements to names.

-e  Removes any symbolic labels from values.

-f  Prints the complete OID.

-n  Prints the OID in its fully-specified numeric form.

-q  Removes the equal sign (=) and type information.

-s  Prints only the last symbolic part of the OID.

-S  Prints only the last symbolic part of the OID and precedes it with the name of the MIB which defines the object.

-T  Prints any printable characters enclosed in brackets [ ] after the hexadecimal encoding. The default is UDP.

-v  Prints only the value or values.

-X  Indicates the index components of OIDs with brackets [].

-p  Specifies the port on the SNMP agent to send this request. The default is 161.

-P  Specifies the parser options:

-w  Displays warning messages while parsing MIB source files.
Usage Notes
Consider the following when using the SNMP command:

- The command line interface is case sensitive. Use the NETVASIS command or set OVERRIDE NETVASIS to YES.
- A maximum of 128 MIB variables is supported.
- Do not run SNMP commands in NetView pre-initialization command lists.
- Various NetView SNMP defaults can be modified with the COMMON.CNMSNMP definitions in sample file CNMSTYLE. Refer to the instructions in CNMSTYLE for more information.
- Variable specifications are in the format of MIB variables, known as ASN.1. There are several methods of representation which are handled by the NetView SNMP command. MIB variables are represented by a series of subidentifiers, separated by periods. Each subidentifier is coded as an integer or a symbol (name) defined in the MIB. If there is no leading period in the variable name, the variable is considered partially specified and is processed as though it began with iso.org.dod.internet.mgmt.mib-2 (1.3.6.1.2.1). If the variable specification begins with a period, it is processed as though fully-specified. The following specifications, for example, are all equivalent:
  - 1.1.0
  - 1.sysDescr.0
  - 1.3.6.1.2.1.1.1.0
  - 1.3.6.1.2.1.1.sysDescr.0
  - iso.org.dod.internet.mgmt.mib-2.system.sysDescr.0

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Processing ended without errors.</td>
</tr>
<tr>
<td>1</td>
<td>Processing ended with fatal errors.</td>
</tr>
<tr>
<td>2</td>
<td>Processing ended with general errors.</td>
</tr>
<tr>
<td>5</td>
<td>Processing ended abnormally.</td>
</tr>
</tbody>
</table>

Examples

Sending an SNMP GETBULK Request
The following example sends an SNMPv2c GETBULK request to an SNMP agent at IP address 9.67.60.52 with a community string of public, limiting the output to 1 input variable that should not repeat, and a maximum of 10 repetitions of the rest of the variables:

```
SNMP GETBULK -v 2c -B 1 10 -0s -c public 9.67.50.52 system interfaces
```
You receive a response similar to the following:

```
CNM005I sysDescr.0 = Sysname: OS/390 Nodename: NMPIPL10 Release:
 12.00 Version: 03 Machine: 9672
CNM005I ifNumber.0 = 36
CNM005I ifIndex.1 = 1
CNM005I ifIndex.2 = 2
CNM005I ifIndex.3 = 3
CNM005I ifIndex.4 = 4
CNM005I ifIndex.5 = 5
CNM005I ifIndex.6 = 6
CNM005I ifIndex.7 = 7
CNM005I ifIndex.8 = 8
CNM005I ifIndex.9 = 9
```
SNMP GETNEXT (NCCF; CNMESNMP)

Syntax

```
SNMP GETNEXT CommonOptions [host community_name]
```

CommonOptions:

```
-H HELP -V VERSION -v version -O OutputOptions
```

```
-P ParserOptions [-m mibs +mibs] [-M mibpath +mibpath]
```

```
-d -r retries -t timeout -p port -T type
```

```
-c community
```

OutputOptions:

```
-b -e -f -n -q -s -S -T -v -X
```

ParserOptions:

```
-w -W
```

Purpose of Command

The SNMP GETNEXT command enables you to discover the value of the MIB variable after the one specified.

Operand Descriptions

- **-h** Optionally specifies the destination IP host. When -h is specified for an IP host name, name server resolution to an IP address is performed in a separate process.
**host**

Specifies the destination IP host.

**community_name**

Specifies the community name. When `-c` is specified, this value is considered a MIB variable.

**oid**

Specifies the object ID (OID) of the MIB variable.

The following are parameter descriptions for the common options:

- `-c`
  Precedes the community name and is used as an alternative to `community_name`.

- `-d`
  Specifies to include the contents of the input and output data packets with the output.

- `-H | HELP`
  Displays the SNMP Command Menu. If other options are specified, they are ignored.

- `-m`
  Specifies the MIBs to parse for symbolic names. You can optionally specify a plus sign (+) to precede the specified values to the default values.

- `-M`
  Specifies the directories in the UNIX System Services HFS, from where the NetView program is to search for MIB source files. You can optionally specify a plus sign (+) to precede the specified values to the default values.

- `-O`
  Specifies the output options:

  - `-b`
    Prevents attempts to resolve index elements to names.

  - `-e`
    Removes any symbolic labels from values.

  - `-f`
    Prints the complete OID.

  - `-n`
    Prints the OID in its fully-specified numeric form.

  - `-q`
    Removes the equal sign (=) and type information.

  - `-s`
    Prints only the last symbolic part of the OID.

  - `-S`
    Prints only the last symbolic part of the OID and precedes it with the name of the MIB which defines the object.

  - `-T`
    Prints any printable characters enclosed in brackets [] after the hexadecimal encoding. The default is UDP.

  - `-v`
    Prints only the value or values.

  - `-X`
    Indicates the index components of OIDs with brackets [].

- `-p`
  Specifies the port on the SNMP agent to send this request. The default is 161.

- `-P`
  Specifies the parser options:

  - `-w`
    Displays warning messages while parsing MIB source files.

  - `-W`
    Displays additional warning messages while parsing MIB source files.

- `-r`
  Specifies the number of retries. The default is 5.

- `-t`
  Specifies the timeout value between retries. The default is 1 second.

- `-T`
  Specifies the transport type. Valid values are UDP or TCP. The default is UDP.
-v Specifies which SNMP Protocol version to use. Valid values are 1, 2c, and 3. The default is 1.

-V | VERSION
Displays the NetView SNMP command version information. If other options are specified, they are ignored.

Usage Notes
Consider the following when using the SNMP command:

- The command line interface is case sensitive. Use the NETVASIS command or set OVERRIDE NETVASIS to YES.
- A maximum of 128 MIB variables is supported.
- Do not run SNMP commands in NetView pre-initialization command lists.
- Various NetView SNMP defaults can be modified with the COMMON.CNMSNMP definitions in sample file CNMSTYLE. Refer to the instructions in CNMSTYLE for more information.
- Variable specifications are in the format of MIB variables, known as ASN.1. There are several methods of representation which are handled by the NetView SNMP command. MIB variables are represented by a series of subidentifiers, separated by periods. Each subidentifier is coded as an integer or a symbol (name) defined in the MIB. If there is no leading period in the variable name, the variable is considered partially specified and is processed as though it began with iso.org.dod.internet.mgmt.mib-2 (1.3.6.1.2.1). If the variable specification begins with a period, it is processed as though fully-specified. The following specifications, for example, are all equivalent:
  - 1.1.0
  - 1.sysDescr.0
  - .1.3.6.1.2.1.1.0
  - .1.3.6.1.2.1.1.sysDescr.0
  - iso.org.dod.internet.mgmt.mib-2.system.sysDescr.0

Return Codes

Return Code	Meaning
0 | Processing ended without errors.
1 | Processing ended with fatal errors.
2 | Processing ended with general errors.
5 | Processing ended abnormally.

Examples

Sending an SNMP GETNEXT Request
The following example sends a GETBULK request to an SNMP agent to retrieve the MIB variable following sysName.0:

snmp getnext 9.67.50.52 public sysName.0

You receive a response similar to the following:

CNM005I system.sysLocation.0 = 1st Floor, Some Street, Some Place
SNMP INFORM (NCCF; CNMESNMP)

Syntax

```
SNMP INFORM CommonOptions
 -h host
 -community_name

- uptime
- trap_oid
- oid type value

CommonOptions:
-HELP
-VERSION
-v version
- O OutputOptions

-P ParserOptions
-m mibs
+ mibs
-M mibpath
+ mibpath

-d
-r retries
-t timeout
-p port
-T type

-c community

OutputOptions:
-b -e -f -n -q -s -S -T -v -X

ParserOptions:
-w -W
```

Purpose of Command

The SNMP INFORM command sends an INFORM request PDU to an SNMP agent or manager.

Operand Descriptions

- **-h** Optionally specifies the destination IP host. When -h is specified for an IP host name, name server resolution to an IP address is performed in a separate process.
host
   Specifies the destination IP host.

community_name
   Specifies the community name. When -c is specified, this value is considered a
   MIB variable.

uptime
   Indicates a time stamp representing the amount of time between the latest
   initialization of the agent and the trap.

trap_oid
   Specifies the assigned name for the notification.

oid
   Specifies the object ID (OID) of the MIB variable related to the event.

type
   The type variable can be as follows:
   i  Integer
   u  Unsigned Integer
   c  Counter32
   s  Character String
   x  Hexadecimal String
   d  Decimal String
   n  Null Object
   o  OID
   t  Timeticks
   a  IP Address
   b  Bits

value
   Specifies the value to be assigned to the given MIB variable.

The following are parameter descriptions for the common options:

-c  Precedes the community name and is used as an alternative to
    community_name.

-d  Specifies to include the contents of the input and output data packets with the
    output.

-H | HELP
   Displays the SNMP Command Menu. If other options are specified, they are
   ignored.

-m  Specifies the MIBs to parse for symbolic names. You can optionally specify a
    plus sign (+) to precede the specified values to the default values.

-M  Specifies the directories in the UNIX System Services HFS, from where the
    NetView program is to search for MIB source files. You can optionally specify a
    plus sign (+) to precede the specified values to the default values.

-O  Specifies the output options:
    -b  Prevents attempts to resolve index elements to names.
-e  Removes any symbolic labels from values.
-f  Prints the complete OID.
-n  Prints the OID in its fully-specified numeric form.
-q  Removes the equal sign (=) and type information.
-s  Prints only the last symbolic part of the OID.
-S  Prints only the last symbolic part of the OID and precedes it with the name of the MIB which defines the object.
-T  Prints any printable characters enclosed in brackets [ ] after the hexadecimal encoding. The default is UDP.
-v  Prints only the value or values.
-X  Indicates the index components of OIDs with brackets [].
-p  Specifies the port on the SNMP agent to send this request. The default is 162.
-P  Specifies the parser options:
-w  Displays warning messages while parsing MIB source files.
-W  Displays additional warning messages while parsing MIB source files.
-r  Specifies the number of retries. The default is 5.
-t  Specifies the timeout value between retries. The default is 1 second.
-T  Specifies the transport type. Valid values are UDP or TCP. The default is UDP.
-v  Specifies which SNMP Protocol version to use. Valid values are 2c and 3.
-V|VERSION  Displays the NetView SNMP command version information. If other options are specified, they are ignored.

Usage Notes

Consider the following when using the SNMP command:

- The command line interface is case sensitive. Use the NETVASIS command or set OVERRIDE NETVASIS to YES.
- A maximum of 128 MIB variables is supported.
- Do not run SNMP commands in NetView pre-initialization command lists.
- Values specified with INFORM that contain spaces must be enclosed in single or double quotation marks.
- Various NetView SNMP defaults can be modified with the COMMON.CNMSNMP definitions in sample file CNMSTYLE. Refer to the instructions in CNMSTYLE for more information.
- Variable specifications are in the format of MIB variables, known as ASN.1. There are several methods of representation which are handled by the NetView SNMP command. MIB variables are represented by a series of subidentifiers, separated by periods. Each subidentifier is coded as an integer or a symbol (name) defined in the MIB. If there is no leading period in the variable name, the variable is considered partially specified and is processed as though it began with iso.org.dod.internet.mgmt.mib-2 (1.3.6.1.2.1). If the variable specification begins with a period, it is processed as though fully-specified. The following specifications, for example, are all equivalent:
  - 1.1.0
Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Processing ended without errors.</td>
</tr>
<tr>
<td>1</td>
<td>Processing ended with fatal errors.</td>
</tr>
<tr>
<td>2</td>
<td>Processing ended with general errors.</td>
</tr>
<tr>
<td>5</td>
<td>Processing ended abnormally.</td>
</tr>
</tbody>
</table>

Examples

Example: Sending an SNMP INFORM Request

The following example sends an INFORM PDU request:

```bash
snmp inform -v2c -p 2005 tvt2010 public 99 1.3.6.1.3.6.1.2.1.1.6.0 s 'this is an inform2_pdu'
```

You receive a response similar to the following:

```bash
CNM007I SNMP INFORM request PDU sent successfully
```
SNMP SET (NCCF; CNMESNMP)

Syntax

```
SNMP SET CommonOptions -h host - community_name

oid type value
```

**CommonOptions:**

```
-H HELP -V VERSION -v version -O OutputOptions

-P ParserOptions -m mibs +mibs -M mibpath +mibpath

-d -r retries -t timeout -p port -T type

-c community
```

**OutputOptions:**

```
-b -e -f -n -q -s -S -T -v -X
```

**ParserOptions:**

```
-w -W
```

**Purpose of Command**

The SNMP SET command enables you to set one or more MIB variable values.

**Operand Descriptions**

- `-h` Optionally specifies the destination IP host. When `-h` is specified for an IP host name, name server resolution to an IP address is performed in a separate process.

`host`

Specifies the destination IP host.
community_name
   Specifies the community name. When -c is specified, this value is considered a MIB variable.

oid  Specifies the object ID (OID) of the MIB variable related to the event.

type
   The type variable can be as follows:
   i  Integer
   u  Unsigned Integer
   s  Character String
   x  Hexadecimal String
   d  Decimal String
   n  Null Object
   o  OID
   t  Timeticks
   a  IP Address
   b  Bits
   =  Use the type specified in the MIB file

value
   Specifies the value to be assigned to the given MIB variable.

The following are parameter descriptions for the common options:

-c  Precedes the community name and is used as an alternative to community_name.

-d  Specifies to include the contents of the input and output data packets with the output.

-H|HELP
   Displays the SNMP Command Menu. If other options are specified, they are ignored.

-m  Specifies the MIBs to parse for symbolic names. You can optionally specify a plus sign (+) to precede the specified values to the default values.

-M
   Specifies the directories in the UNIX System Services HFS, from where the NetView program is to search for MIB source files. You can optionally specify a plus sign (+) to precede the specified values to the default values.

-O  Specifies the output options:
   -b  Prevents attempts to resolve index elements to names.
   -e  Removes any symbolic labels from values.
   -f  Prints the complete OID.
   -n  Prints the OID in its fully-specified numeric form.
   -q  Removes the equal sign (=) and type information.
   -s  Prints only the last symbolic part of the OID.
-S Prints only the last symbolic part of the OID and precedes it with the name of the MIB which defines the object.

-T Prints any printable characters enclosed in brackets [ ] after the hexadecimal encoding. The default is UDP.

-v Prints only the value or values.

-X Indicates the index components of OIDs with brackets [ ].

-p Specifies the port on the SNMP agent to send this request. The default is 161.

-P Specifies the parser options:

-w Displays warning messages while parsing MIB source files.

-W Displays additional warning messages while parsing MIB source files.

-r Specifies the number of retries. The default is 5.

-t Specifies the timeout value between retries. The default is 1 second.

-T Specifies the transport type. Valid values are UDP or TCP. The default is UDP.

-v Specifies which SNMP Protocol version to use. Valid values are 1, 2c, and 3. The default is 1.

-V | VERSION Displays the NetView SNMP command version information. If other options are specified, they are ignored.

Usage Notes

Consider the following when using the SNMP command:

- The command line interface is case sensitive. Use the NETVASIS command or set OVERRIDE NETVASIS to YES.
- A maximum of 128 MIB variables is supported.
- Do not run SNMP commands in NetView pre-initialization command lists.
- Values specified with SET that contain spaces must be enclosed in single or double quotation marks.
- Various NetView SNMP defaults can be modified with the COMMON.CNMSNMP definitions in sample file CNMSTYLE. Refer to the instructions in CNMSTYLE for more information.
- Variable specifications are in the format of MIB variables, known as ASN.1. There are several methods of representation which are handled by the NetView SNMP command. MIB variables are represented by a series of subidentifiers, separated by periods. Each subidentifier is coded as an integer or a symbol (name) defined in the MIB. If there is no leading period in the variable name, the variable is considered partially specified and is processed as though it began with iso.org.dod.internet.mgmt.mib-2 (1.3.6.1.2.1). If the variable specification begins with a period, it is processed as though fully-specified. The following specifications, for example, are all equivalent:
  - 1.1.0
  - 1.sysDescr.0
  - .1.3.6.1.2.1.0
  - .1.3.6.1.2.1.1.sysDescr.0
  - iso.org.dod.internet.mgmt.mib-2.system.sysDescr.0
Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Processing ended without errors.</td>
</tr>
<tr>
<td>1</td>
<td>Processing ended with fatal errors.</td>
</tr>
<tr>
<td>2</td>
<td>Processing ended with general errors.</td>
</tr>
<tr>
<td>5</td>
<td>Processing ended abnormally.</td>
</tr>
</tbody>
</table>

Examples

Sending an SNMP SET Request
The following example sends a SET request to an SNMP agent to change the value of sysContact.0:

```plaintext
snmp set tvt2009.raleigh.tivoli.com public sysContact.0 s "Nino Culotta x1251"
```

You receive a response similar to the following:

```plaintext
CNM005I system.sysContact.0 = Nino Culotta x1251
```
SNMP TRAP (NCCF; CNMESNMP)

Syntax

```
SNMP TRAP CommonOptions (-Ci [host [community_name]])

(1) -Ci [-h] host [community_name]

(2) enterprise_oid [agent [generic_trap [specific_trap]]]

(1) uptime [trap_oid [oid type value]]
```

Notes:

1. This option is only valid for SNMP Version 2c and 3.
2. This option is only valid for SNMP Version 1.

CommonOptions:

```
-H HELP -V VERSION -v version -O OutputOptions

-P ParserOptions -m mibs -M mibpath +mibs +mibpath

-d -r retries -t timeout -p port -T type

-c [community]
```

OutputOptions:

```
-b -e -f -n -q -s -S -T -v -X
```

ParserOptions:

```
-w -W
```

Purpose of Command

The SNMP TRAP command sends a TRAP PDU to an SNMP agent.
Operand Descriptions

-Ci
  Specifies to send an INFORM request PDU to an SNMP agent or manager
  instead of a TRAP request PDU. This option is only valid for SNMP Version 2c
  and 3.

-h
  Optionally specifies the destination IP host. When -h is specified for an
  IP host name, name server resolution to an IP address is performed in a separate
  process.

host
  Specifies the destination IP host.

community_name
  Specifies the community name. When -c is specified, this value is considered a
  MIB variable.

enterprise_oid
  Identifies the management enterprise under whose registration authority the
  trap was defined. This option is only valid for SNMP Version 1.

agent
  Specifies the IP hostname or address of the SNMP agent. This option is only
  valid for SNMP Version 1.

generic_trap
  Specifies a generic event being reported. This option is only valid for SNMP
  Version 1. Possible events are listed as follows:

<table>
<thead>
<tr>
<th>Trap Type/Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/coldStart</td>
<td>Agent is starting</td>
</tr>
<tr>
<td>1/warmStart</td>
<td>Agent is restarting</td>
</tr>
<tr>
<td>2/linkDown</td>
<td>Status of an interface has changed from Up to Down</td>
</tr>
<tr>
<td>3/linkUp</td>
<td>Status of an interface has changed from Down to UP</td>
</tr>
<tr>
<td>4/authenticationFailure</td>
<td>Message received from an SNMP manager with an invalid community name specified</td>
</tr>
<tr>
<td>5/egpNeighborLoss</td>
<td>Status of an EGP peer changed to Down</td>
</tr>
<tr>
<td>6/enterpriseSpecific</td>
<td>Specific_trap defines the information for this TRAP</td>
</tr>
</tbody>
</table>

specific_trap
  Specifies a more specific indication of the event being reported. This option is
  only valid for SNMP Version 1.

uptime
  Indicates a time stamp representing the amount of time between the latest
  initialization of the agent and the trap.

trap_oid
  Specifies the assigned name for the notification. This option is only valid for
  SNMP Version 2c and 3.

oid
  Specifies the object ID (OID) of the MIB variable related to the event.

type
  The type variable can be as follows:
i  Integer
u  Unsigned Integer
c  Counter32
s  Character String
x  Hexadecimal String
d  Decimal String
n  Null Object
o  OID
t  Timeticks
a  IP Address
b  Bits

value
Specifies the value to be assigned to the given MIB variable.

The following are parameter descriptions for the common options:

-c  Precedes the community name and is used as an alternative to
    community_name.
-d  Specifies to include the contents of the input and output data packets with the
    output.
-H | HELP
    Displays the SNMP Command Menu. If other options are specified, they are
    ignored.
-m  Specifies the MIBs to parse for symbolic names. You can optionally specify a
    plus sign (+) to precede the specified values to the default values.
-M  Specifies the directories in the UNIX System Services HFS, from where the
    NetView program is to search for MIB source files. You can optionally specify a
    plus sign (+) to precede the specified values to the default values.
-O  Specifies the output options:
    -b  Prevents attempts to resolve index elements to names.
    -e  Removes any symbolic labels from values.
    -f  Prints the complete OID.
    -n  Prints the OID in its fully-specified numeric form.
    -q  Removes the equal sign (=) and type information.
    -s  Prints only the last symbolic part of the OID.
    -S  Prints only the last symbolic part of the OID and precedes it with the
        name of the MIB which defines the object.
    -T  Prints any printable characters enclosed in brackets [ ] after the hexadecimal
        encoding. The default is UDP.
    -v  Prints only the value or values.
    -X  Indicates the index components of OIDs with brackets [].
    -p  Specifies the port on the SNMP agent to send this request. The default is 162.
-P Specifies the parser options:
  -w Displays warning messages while parsing MIB source files.
  -W Displays additional warning messages while parsing MIB source files.
  -r Specifies the number of retries. The default is 5.
  -t Specifies the timeout value between retries. The default is 1 second.
  -T Specifies the transport type. Valid values are UDP or TCP. The default is UDP.
  -v Specifies which SNMP Protocol version to use. Valid values are 1, 2c, and 3.
    The default is 1.
  -V|VERSION Displays the NetView SNMP command version information. If other options are specified, they are ignored.

Usage Notes
Consider the following when using the SNMP command:
- The command line interface is case sensitive. Use the NETVASIS command or set OVERRIDE NETVASIS to YES.
- A maximum of 128 MIB variables is supported.
- Do not run SNMP commands in NetView pre-initialization command lists.
- Values specified with TRAP that contain spaces must be enclosed in single or double quotation marks.
- Various NetView SNMP defaults can be modified with the COMMON.CNMSNMP definitions in sample file CNMSTYLE. Refer to the instructions in CNMSTYLE for more information.
- Variable specifications are in the format of MIB variables, known as ASN.1. There are several methods of representation which are handled by the NetView SNMP command. MIB variables are represented by a series of subidentifiers, separated by periods. Each subidentifier is coded as an integer or a symbol (name) defined in the MIB. If there is no leading period in the variable name, the variable is considered partially specified and is processed as though it began with iso.org.dod.internet.mgmt.mib-2 (1.3.6.1.2.1). If the variable specification begins with a period, it is processed as though fully-specified. The following specifications, for example, are all equivalent:
  - 1.1.0
  - .1.sysDescr.0
  - .1.3.6.1.2.1.1.1.0
  - .1.3.6.1.2.1.1.sysDescr.0
  - iso.org.dod.internet.mgmt.mib-2.system.sysDescr.0

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Processing ended without errors.</td>
</tr>
<tr>
<td>1</td>
<td>Processing ended with fatal errors.</td>
</tr>
<tr>
<td>2</td>
<td>Processing ended with general errors.</td>
</tr>
<tr>
<td>5</td>
<td>Processing ended abnormally.</td>
</tr>
</tbody>
</table>
Examples

Example: Sending an SNMP TRAP Request
The following example sends a TRAP PDU request:

```sh
snmp trap -v2c -p 2005 tvt2010 public 99 1.3.6.1.3.6.1.2.1.1.6.0 s 'this is a trap2_pdu'
```

You receive a response similar to the following:

```
CNM007I SNMP TRAP request PDU sent successfully
```
SNMP WALK (NCCF; CNMESNMP)

Syntax

```
SNMP WALK CommonOptions -h host community_name oid
```

CommonOptions:

```
```

ParserOptions:

```
-P ParserOptions -m mibs +mibs -M mibpath +mibpath
```

```
-d -r retries -t timeout -p port -T type
```

```
-c community
```

OutputOptions:

```
-b -e -f -n -q -s -T -v -X
```

ParserOptions:

```
-w -W
```

Purpose of Command

The SNMP WALK command enables you to retrieve the values for all of the MIB variables in a specified branch.

Operand Descriptions

- **-h** Optionally specifies the destination IP host. When -h is specified for an IP host name, name server resolution to an IP address is performed in a separate process.

  **host**

  Specifies the destination IP host.

- **community_name**

  Specifies the community name. When -c is specified, this value is considered a MIB variable.
Specifies the object ID (OID) of the MIB variable.

The following are parameter descriptions for the common options:

- **-c** Precedes the community name and is used as an alternative to `community_name`.

- **-d** Specifies to include the contents of the input and output data packets with the output.

- **-H | HELP**
  Displays the SNMP Command Menu. If other options are specified, they are ignored.

- **-m** Specifies the MIBs to parse for symbolic names. You can optionally specify a plus sign (+) to precede the specified values to the default values.

- **-M**
  Specifies the directories in the UNIX System Services HFS, from where the NetView program is to search for MIB source files. You can optionally specify a plus sign (+) to precede the specified values to the default values.

- **-O** Specifies the output options:
  - **-b** Prevents attempts to resolve index elements to names.
  - **-e** Removes any symbolic labels from values.
  - **-f** Prints the complete OID.
  - **-n** Prints the OID in its fully-specified numeric form.
  - **-q** Removes the equal sign (=) and type information.
  - **-s** Prints only the last symbolic part of the OID.
  - **-S** Prints only the last symbolic part of the OID and precedes it with the name of the MIB which defines the object.
  - **-T** Prints any printable characters enclosed in brackets [] after the hexadecimal encoding. The default is UDP.
  - **-v** Prints only the value or values.
  - **-X** Indicates the index components of OIDs with brackets [].

- **-P** Specifies the port on the SNMP agent to send this request. The default is 161.

- **-P** Specifies the parser options:
  - **-w** Displays warning messages while parsing MIB source files.
  - **-W**
    Displays additional warning messages while parsing MIB source files.

- **-r** Specifies the number of retries. The default is 5.

- **-t** Specifies the timeout value between retries. The default is 1 second.

- **-T** Specifies the transport type. Valid values are UDP or TCP. The default is UDP.

- **-v** Specifies which SNMP Protocol version to use. Valid values are 1, 2c, and 3. The default is 1.

- **-V | VERSION**
  Displays the NetView SNMP command version information. If other options are specified, they are ignored.
Usage Notes

Consider the following when using the SNMP command:

- The command line interface is case sensitive. Use the NETVASIS command or set OVERRIDE NETVASIS to YES.
- Do not run SNMP commands in NetView pre-initialization command lists.
- Various NetView SNMP defaults can be modified with the COMMON.CNMSNMP definitions in sample file CNMSTYLE. Refer to the instructions in CNMSTYLE for more information.
- Variable specifications are in the format of MIB variables, known as ASN.1. There are several methods of representation which are handled by the NetView SNMP command. MIB variables are represented by a series of subidentifiers, separated by periods. Each subidentifier is coded as an integer or a symbol (name) defined in the MIB. If there is no leading period in the variable name, the variable is considered partially specified and is processed as though it began with iso.org.dod.internet.mgmt.mib-2 (1.3.6.1.2.1). If the variable specification begins with a period, it is processed as though fully-specified. The following specifications, for example, are all equivalent:
  - 1.1.0
  - 1.sysDescr.0
  - .1.3.6.1.2.1.1.1.0
  - .1.3.6.1.2.1.1.sysDescr.0
  - iso.org.dod.internet.mgmt.mib-2.system.sysDescr.0

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Processing ended without errors.</td>
</tr>
<tr>
<td>1</td>
<td>Processing ended with fatal errors.</td>
</tr>
<tr>
<td>2</td>
<td>Processing ended with general errors.</td>
</tr>
<tr>
<td>5</td>
<td>Processing ended abnormally.</td>
</tr>
</tbody>
</table>

Examples

Sending an SNMP WALK Request

The following example sends an SNMPv2c WALK system request to an IP host name (nmplnl25) with a community name of publicv2c, and returns the actual MIB in which the value is found and does not allow conversion of timeticks from raw data:

```
snmp walk -v2c -OSt -h nmplnl25 publicv2c system
```

You receive a response similar to the following:

```
CNM005I SNMPv2-MIB::sysDescr.0 = NMLPIPL25 - RALVR testID
CNM005I SNMPv2-MIB::sysObjectID.0 = OID: IBMTCPPMVS-MIB::ibm.3.13
CNM005I SNMPv2-MIB::sysUpTime.0 = 260100
CNM005I SNMPv2-MIB::sysContact.0 = JD Watson - 919-543-7458
CNM005I SNMPv2-MIB::sysName.0 = CS for OS/390 V2R8
CNM005I SNMPv2-MIB::sysLocation.0 = B/500 - HH-113
CNM005I SNMPv2-MIB::sysServices.0 = 76
CNM005I SNMPv2-MIB::sysORLastChange.0 = 200
CNM005I SNMPv2-MIB::sysORID.1 = OID: IBMTCPIPMVS-MIB::ibmAgentCaps.7.1
CNM005I SNMPv2-MIB::sysORID.2 = OID: IBMTCPIPMVS-MIB::ibmAgentCaps.7.2
```
SNMPv2-MIB::sysORDescr.1 = OS/390 SNMP Agent
SNMPv2-MIB::sysORDescr.2 = OS/390 TCP/IP SNMP Subagent
SNMPv2-MIB::sysORUpTime.1 = 0
SNMPv2-MIB::sysORUpTime.2 = 200
SOCKET (NCCF)

Syntax

SOCKET

AcceptOptions:

- SOCKID=value
- NEWSOCK=value

BindOptions:

- SOCKID=value ADDRESS=value
- PORT=0
- PORT=value

ConnectOptions:

- SOCKID=value ADDRESS=value
- PORT=value
GetSockOpt:

- SOCKID=value
- OPTNAME=SO_BROADCAST
- SO_ERROR
- SO_KEEPALIVE
- SO_LINGER
- SO_OOBINLINE
- SO_REUSEADDR
- SO_SNDBUF
- SO_TYPE

GiveSocketOptions:

- SOCKID=value
- JOBNAME=default
- JOBNAME=* 
- JOBNAME=value
- TASK=value

InitOptions:

- MAXSOCK=50
- TCPNAME=TCPIP
- TCPNAME=name

IoctlOptions:

- SOCKID=value
- OPTNAME=FIONREAD
- SIOCATMARK

ListenOptions:

- SOCKID=value
- BACKLOG=10
- BACKLOG=value

RecvOptions:

- SOCKID=value
- MAXLEN=16384
- MAXLEN=value
- FLAGS=normal Flow
- FLAGS=OOb
- FLAGS=PEEK

RecvFromOptions:
**Purpose of Command**

The SOCKET command is for requesting TCP/IP services, whether it is for information about the TCP/IP stack being used or for managing client and/or server applications. It begins with the TYPE keyword, which identifies the TCP/IP request, while the other keywords are used to provide additional information for carrying out the TCP/IP request.

**Operand Descriptions**

The TYPE keyword determines which TCP/IP service is being requested by the SOCKET command interface. This is a required keyword. Valid values are:

- **ACCEPT**
  Accepts a pending connection request.

- **ADDRESS**
  This keyword provides an internet address for the TCP/IP requests that require them. The value is in dotted decimal notation. This keyword is required when the value of TYPE is one of the following:
  - BIND
  - CONNECT
  - SENDTO
  - GETHOSTBYADDR
  This keyword cannot be specified when the TYPE keyword has any other value.

- **BACKLOG**
  This keyword provides the number of connection requests that can be outstanding for a passive socket. The value has the range of 0 – 10, inclusive. BACKLOG is only valid when the TYPE keyword has the value LISTEN. When the TYPE keyword has the value LISTEN and BACKLOG is not specified, then BACKLOG has the default value of 10.

- **BIND**
  Binds a socket to a specific address and port.

- **CANCEL**
  Cancels an outstanding asynchronous TCP/IP request.
CLOSE
Closes a socket.

CONNECT
Establish a connection between sockets.

EXCEPT
This keyword provides a list of one or more socket descriptors for which exception events are being tested. This keyword is valid only when the value of the TYPE keyword is SELECT, and this keyword is optional at that time. When more than one socket descriptor appears in the list, the list must be enclosed in parentheses, and each entry in the list must be separated by a blank or a comma.

FLAGS
This keyword provides options for sending or receiving out-of-band data, as well as peeking at available incoming data. The value can be one of the following:

- **OOB**  Send or receive out-of-band data
- **PEEK**  Receive data, but leave the data there for possible reception later

The FLAGS keyword can only be used when the TYPE keyword has one of the following values. Exactly which values of FLAGS are allowed with the chosen TYPE are shown in parentheses.

- `RECV (OOB PEEK)`
- `RECVFROM (OOB PEEK)`
- `SEND (OOB)`
- `SENDTO (OOB)`

When the FLAGS keyword is permitted, but has not been specified, it takes a default value of neither OOB nor PEEK (in other words, the user is sending or receiving data on the normal flow).

GETCLIENTID
Obtains identification of the SOCKET command interface from TCP/IP.

GETHOSTBYADDR
Given the address of a host, it returns information about that host.

GETHOSTBYNAME
Given the name of a host, it returns information about that host.

GETHOSTID
Obtains the host identifier from TCP/IP.

GETHOSTNAME
Obtains the host name from TCP/IP.

GETPEERNAME
Obtains address and port information for a socket’s connection peer.

GETSOCKNAME
Obtains address and port information for a socket.

GETSOCKOPT
Queries options for a socket.

GIVESOCKET
Gives a socket to another task or address space on the same TCP/IP stack.
**HOSTNAME**
This keyword provides the name of a TCP/IP host. This keyword is required when the TYPE keyword has the value GETHOSTBYNAME and cannot be specified when the TYPE keyword has any other value.

**HOW**
This keyword provides the option for terminating data transfer on a network connection. The value can be one of the following:

- **SEND** End further send operations
- **RECV** End further receive operations
- **BOTH** End further send and receive operations

HOW can only be specified when the TYPE keyword has the value SHUTDOWN. When the value of the TYPE keyword is SHUTDOWN and the HOW keyword is omitted, HOW has the default value of BOTH.

**INIT**
Initialization of the SOCKET command interface with TCP/IP.

**IOCTL**
Queries the operating characteristics for a socket. The IOCTL function in TCP/IP enables you to set and query a fairly wide range of information about a socket. The SOCKET command interface limits the choices to two query requests.

**JOBNAME**
This keyword provides the name of a job that either is giving or has given a socket to be taken by another task in the same or a different address space. The value can be from 1 – 8 characters in length, inclusive, and must be a valid z/OS job identifier. When the value of the TYPE keyword is GIVESOCKET, JOBNAME can also have the value "*" to signify that any address space using the same TCP/IP stack can take the socket that is being given. This keyword is valid only when the value of the TYPE keyword is GIVESOCKET or TAKESOCKET, and it is optional at those times. When the value of the TYPE keyword is GIVESOCKET or TAKESOCKET and JOBNAME is not specified, JOBNAME takes a default, which is the job name for the Tivoli NetView for z/OS address space using the SOCKET command.

**LISTEN**
Makes a socket passive, listening for connection requests.

**MAXLEN**
This keyword provides the number of bytes to be set aside for receiving data. The value can range from 1-1048576. This keyword can only be used when the TYPE keyword has the value of RECV or RECVFROM. If MAXLEN is not specified when the TYPE keyword has the value RECV or RECVFROM, then MAXLEN takes a default value of 16384.

**MAXSOCK**
This keyword provides the maximum number of sockets to be allocated for the socket interface on a given task. This keyword is valid only when the value of the TYPE keyword is INIT, and this keyword is optional at that time. The range of the value is 50-2000, inclusive. When the value of the TYPE keyword is INIT and MAXSOCK is not specified, MAXSOCK takes a default value of 50.
NEWSOCK
This keyword provides a specific socket descriptor to be used by requests that
obtain sockets. The requests that obtain sockets correspond to the following
values of the TYPE keyword:
- SOCKET
- ACCEPT
- TAKESOCKET

Because TCP/IP limits an address space to 2000 sockets, the absolute range of
values for NEWSOCK is 0-1999, inclusive. There’s also a limitation of the range
based upon the number of sockets requested by a task. For example, if
SOCKET TYPE=INIT MAXSOCK=100 is issued by a NetView task, then the
valid range for the NEWSOCK keyword becomes 0-99 (the number of sockets
requested minus one). The NEWSOCK keyword cannot be used with any other
value of the TYPE keyword. If the TYPE value is for a request that obtains a
socket and NEWSOCK is not specified, then the socket descriptor for the
newly obtained socket is assigned by TCP/IP.

OPTNAME
This keyword provides the name of an option that is to be set or queried for a
socket. The OPTNAME keyword can only be used (and is, in fact, required)
when the TYPE keyword has a value of SETSOCKOPT, GETSOCKOPT, or
IOCTL. The values that OPTNAME allow depends upon which value of the
TYPE keyword is being used, as shown in the following:
- When TYPE=SETSOCKOPT, the value of OPTNAME can be:
  - SO_BROADCAST
    Message broadcast option for a socket. Applies only to datagram sockets.
  - SO_KEEPALIVE
    Periodic sending of packets on an otherwise idle connection. Applies only
to stream sockets.
  - SO_LINGER
    Processing for data not yet transmitted when a socket has been closed.
    Applies only to stream sockets.
  - SO_OOBINLINE
    Ability to receive out-of-band data on a socket. Applies only to stream
    sockets.
  - SO_REUSEADDR
    Local address reuse option for a socket.
- When TYPE=GETSOCKOPT, the value of OPTNAME can be:
  - SO_BROADCAST
    Message broadcast option for a socket. Applies only to datagram sockets.
  - SO_KEEPALIVE
    Periodic sending of packets on an otherwise idle connection. Applies only
to stream sockets.
  - SO_LINGER
    Processing for data not yet transmitted when a socket has been closed.
    Applies only to stream sockets.
  - SO_OOBINLINE
    Ability to receive out-of-band data on a socket. Applies only to stream
    sockets.
  - SO_REUSEADDR
Local address reuse option for a socket.

- **SO_SNDBUF**
  Size of the data portion of the TCP/IP send buffer.

- **SO_ERROR**
  Pending errors on a socket (and clears the error status).

- **SO_TYPE**
  Socket type (stream, datagram, or raw).

- **OPTNAME**
  This keyword provides the new value for a socket option setting. This keyword can only be used when the value of the TYPE keyword is SETSOCKOPT and is required at that time. OPTVALUE can have one or two values, depending upon the socket option being set. When OPTVALUE has two values, they must be enclosed in parentheses and separated by either a blank or a comma. Here are the different values OPTVALUE can take, as determined by the socket option under consideration.

  - **When OPTNAME=SO_BROADCAST**, OPTVALUE can be:
    - **ON**
      Enables the ability to broadcast.
    - **OFF**
      Disables the ability to broadcast.

  - **When OPTNAME=SO_KEEPALIVE**, OPTVALUE can be:
    - **ON**
      Enable the use of the keep-alive packet sending mechanism.
    - **OFF**
      Disable the use of the keep-alive packet sending mechanism.

  - **When OPTNAME=SO-LINGER**, OPTVALUE can be:
    - **(ON,n)**
      Enable the blocking of a CLOSE request for unsent data, and block until the data is sent or n seconds elapses, where n can range between 0 – 2147483647, inclusive.
    - **OFF**
      Disable the blocking of a CLOSE request for unsent data.

  - **When OPTNAME=SO_OOBINLINE**, OPTVALUE can be:
    - **ON**
      Enable placement of out-of-band data in the normal data flow.
    - **OFF**
      Disable placement of out-of-band data in the normal data flow.

  - **When OPTNAME=SO_REUSEADDR**, OPTVALUE can be:

Refer to the EZASMI macro explanations for types SETSOCKOPT, GETSOCKOPT, and IOCTL in the appropriate manual in the TCP/IP for MVS library for more information regarding the options described above.
- ON
  Enable local address reuse.
- OFF
  Disable local address reuse.

PORT
This keyword provides the port number for a TCP/IP request. The value has
the range of 0-65535, inclusive. This keyword is required when
TYPE=CONNECT, and optional when TYPE=SENDTO or TYPE=BIND.
However, when TYPE=SENDTO is used with a socket that is not a raw socket,
then you must specify PORT with the appropriate port number.
PORT takes the default value of 0 if TYPE=BIND is specified and the PORT
keyword is omitted. If PORT=0 is specified or has become the default with
TYPE=BIND, then TCP/IP will assign a port number when binding the socket.
The assigned port number can be determined by use of the GETSOCKNAME
request for the socket.
PORT cannot be specified when the TYPE keyword has any other value.

PROTOCOL
This keyword provides the communication protocol number associated with a
raw socket. This keyword is only valid when SOCKET=RAW is specified. The
value of the PROTOCOL keyword is in the range of 0-2147483647, inclusive.
The default is 0.
Number assignments for IP-based protocols, such as the Internet Control
Message Protocol (ICMP), are configured within TCP/IP.

READ
This keyword provides a list of one or more socket descriptors for which read
events are being tested. This keyword is valid only when the value of the
TYPE keyword is SELECT, and this keyword is optional at that time. When
more than one socket descriptor appears in the list, the list must be enclosed in
parentheses, and each entry in the list must be separated by a blank or a
comma.

RECV
  Receives data.

RECVFROM
  Receives data (includes source address information).

SELECT
  Waits for events on zero or more sockets.

SEND
  Sends data.

SENDTO
  Sends data (includes destination address information).

SETSOCKOPT
  Changes options for a socket.

SHUTDOWN
  Terminates communication on a socket.

SOCKET
  Retrieves a socket from TCP/IP.
**SOCKID**
This keyword provides the identifier of a socket to which a TCP/IP request applies. It is required for the following values of TYPE:
- ACCEPT
- BIND
- CLOSE
- CONNECT
- GETPEERNAME
- GETSOCKNAME
- GETSOCKOPT
- GIVESOCKET
- IOCTL
- LISTEN
- RECV
- RECVFROM
- SEND
- SENDTO
- SETSOCKOPT
- SHUTDOWN
- TAKESOCKET

Because TCP/IP allows at most 2000 sockets to be obtained by an address space, the value range for SOCKID is 0-1999, inclusive. This keyword is optional for TYPE=CANCEL. When used with TYPE=CANCEL, it identifies the socket whose asynchronous request is to be cancelled. When omitted for TYPE=CANCEL, then the cancellation request is for an asynchronous request that is not specific to a socket. For TYPE=TAKESOCKET, this keyword provides the identifier of the socket that was used in a GIVESOCKET request by another task and/or address space on the same TCP/IP stack. This keyword cannot be specified when the TYPE keyword has any other values.

**SOCKTYPE**
This keyword provides the type of socket to be requested. This keyword is valid only when TYPE=SOCKET and is optional at that time. The SOCKTYPE can be one of the following:
- **DATAGRAM**
  The request is for a datagram socket.
- **RAW**
  The request is for a raw socket.
- **STREAM**
  The request is for a stream socket. This is the default.

**TAKESOCKET**
Takes a socket from another task or address space on the same TCP/IP stack.

**TASK**
This keyword provides identification for a task that might take or has given a socket. The value can be 1 – 8 characters in length, inclusive. This keyword is valid only with the GIVESOCKET and TAKESOCKET values of the TYPE keyword. It is required with the TAKESOCKET value of the TYPE keyword. If the value of the TYPE keyword is GIVESOCKET and the TASK keyword is not specified, then any task in the address space identified with the JOBNAME keyword can take the socket. If a socket is being given to or given by a user of
the SOCKET command interface, then SOCKET TYPE=GETCLIENTID can be used to obtain the identification of the task that will take or has given the socket.

**TCPNAME**
This keyword provides the name of the TCP/IP stack to be used by the socket interface on a given task. The value can be 1 – 8 characters in length, inclusive, and must be a valid z/OS job identifier. This keyword is valid only when the value of the TYPE keyword is INIT, and this keyword is optional at that time. When the value of the TYPE keyword is INIT and TCPNAME is not specified, TCPNAME takes a default value of "TCPIP".

**TERM**
Termination of the SOCKET command interface with TCP/IP.

**TIMEOUT**
This keyword provides the number of seconds that will elapse before a request times out. This keyword is valid only when the value of the TYPE keyword is SELECT, and this keyword is optional at that time. If not specified, then the applicable request will not time out. The value of TIMEOUT can range from 0 – 2147483647, inclusive.

**WRITE**
This keyword provides a list of one or more socket descriptors for which write events are being tested. This keyword is valid only when the value of the TYPE keyword is SELECT, and this keyword is optional at that time. When more than one socket descriptor appears in the list, the list must be enclosed in parentheses, and each entry in the list must be separated by a blank or a comma.

**Usage Notes**
- If a connection request was accepted and NetView security determined that the connection partner was not permitted to access NetView in this manner, messages BNH236E and BNH749I are issued and the socket associated with the connection (identified in BNH749I) is placed in suspended status.
- A security violation during a connection will result in the socket being placed in a suspended status. "Suspended status" means that while a connection still exists between this socket and the origin of the connection request, no communication requests involving the socket, other than SOCKET TYPE=CLOSE, will be allowed.

**Return Codes**

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No error encountered - synchronous TCP/IP request completed successfully or asynchronous TCP/IP request scheduled successfully</td>
</tr>
<tr>
<td>4</td>
<td>Syntax error, authorization error, or a keyword conflict was detected by command processing</td>
</tr>
</tbody>
</table>
| 8           | Command keywords and values are valid, but a failure occurred in TCP/IP request handling. The TCP/IP request failure is usually one of the following:  
  - The request was invalid given the current state of the socket or socket interface |
• The request was passed to TCP/IP and failed (either a synchronous request failed or an asynchronous request failed acceptance processing)
• A request was attempted for a socket in suspended status and was disallowed.

12 Insufficient virtual storage for processing the request

16 Logic error. Message DWO050E, with more details regarding the error, should be written to the network log.

Note that all of the above return codes are passed back immediately by SOCKET command processing. An asynchronous request which is accepted then fails has no mechanism for passing a command processing return code back to the SOCKET command user.

Examples

Example: Initializing the Socket Interface on a TCP/IP Stack
To initialize the socket interface on a TCP/IP stack with the job identifier of TCP32, enter:
SOCKET TYPE=INIT TCPNAME=TCP32

Response
You receive the following message:
BNH600I SOCKET INTERFACE INITIALIZED WITH 50 SOCKETS ON TCP/IP TCP32

Example: Requesting a Stream Socket
To request a stream socket, enter:
SOCKET TYPE=SOCKET SOCKTYPE=STREAM

Response
You receive the following message:
BNH606I SOCKET REQUEST COMPLETED SUCCESSFULLY. SOCKET 0 HAS BEEN ALLOCATED

Example: Requesting a Datagram Socket
To request a datagram socket, enter:
SOCKET TYPE=SOCKET SOCKTYPE=DATAGRAM

Response
You receive the following message:
BNH606I SOCKET REQUEST COMPLETED SUCCESSFULLY. SOCKET 1 HAS BEEN ALLOCATED

Example: Binding a Socket to a Host Address
To bind socket 0 to host 102.47.64.1 port 5000, enter:
SOCKET TYPE=BIND SOCKID=0 ADDRESS=102.47.64.1 PORT=5000

Response
You receive the following message:
BNH614I BIND REQUEST ON SOCKET 0 COMPLETED SUCCESSFULLY

**Example: Connecting a Socket to a Host Address**
To connect socket 0 to host 99.47.64.2 port 6000, enter:
SOCKET TYPE=CONNECT SOCKID=0 ADDRESS=99.47.64.2 PORT=6000

**Response**
You receive the following message:
BNH611I SOCKET 0 CONNECTED TO 99.47.64.2 PORT 6000

**Example: Sending a String over the Connection**
To send the string “ABC” over the connection that socket 0 has, enter:
PIPE LIT /ABC/
| NETV SOCKET TYPE=SEND SOCKID=0
| CORRWAIT 5
| CONS

**Response**
You receive the following message:
BNH617I SOCKET 0 SENT 3 BYTES OF DATA

This particular example illustrates some important points regarding the sending of data and use of the SOCKET command within a PIPE. It is necessary to perform SOCKET TYPE=SEND and SOCKET TYPE=SENDTO within a PIPE or with message automation, because of the way the SOCKET command collects and sends data. Also notice the use of CORRWAIT. When issuing the SOCKET command in a PIPE, it is usually necessary to use the CORRWAIT stage, because most of the TCP/IP requests performed by the SOCKET command are asynchronous. The exceptions (meaning synchronous requests) occur with the INIT, TERM, GETHOSTBYNAME, and GETHOSTBYADDR values of the TYPE keyword.

**Example: Sending Multiple Data Lines**
This example illustrates the method by which data lines can be collected and sent by the SOCKET command in a PIPE. Consider the following segment of REXX code:
```
data.0 = 4
data.1 = 'ABC'
data.2 = 'DE'
data.3 = 'F'
data.4 = 'GHI'
'PIPE STEM data.'
| COLLECT
| 'NETV SOCKET TYPE=SEND SOCKID=0'
| 'CORRWAIT 5'
| 'CONS'
```

**Response**
Assuming that all of the data are sent at once and the SOCKET command completes before the 5 second wait given by the CORRWAIT stage ends, you should see the following message:
BNH617I SOCKET 0 SENT 9 BYTES OF DATA

Note that the same data collection method applies to SOCKET TYPE=SENDTO.
Example: Waiting for Read and Exception Events and Timing Out
To wait for read and exception events on sockets 0 and 2 and time out after 10 seconds if neither socket becomes ready, enter:

```
SOCKET TYPE=SELECT READ=(0,2) EXCEPT=(0,2) TIMEOUT=10
```

Response

There’s no message until at least one of the sockets becomes ready with a read or exception event or the SELECT request times out. If socket 0 becomes ready for the read event before the SELECT times out, then you’ll see:

```
BNH610I SOCKET 0 READY FOR READ
```

If the SELECT request times out before any sockets become ready, then you’ll see:

```
BNH609I SELECT REQUEST HAS TIMED OUT
```

Example: Giving a Socket to a Task in the Address Space for a Specific Job
To give socket 2 to any task in the address space for job CNMPROC2, enter:

```
SOCKET TYPE=GIVESOCKET SOCKID=2 JOBNAME=CNMPROC2
```

Response

You receive the following message:

```
BNH614I GIVESOCKET REQUEST ON SOCKET 2 COMPLETED SUCCESSFULLY
```

Note that because the TASK keyword was not specified, any task on the same TCP/IP stack within the address space for CNMPROC2 would be able to take the socket.
SOLICIT (TARA)

Syntax

SOLICIT

SOLICIT ctrlname

,ERROR

,ALL

,BATCH

,RESP

,STAT

,NOTIFY

Purpose of Command

The SOLICIT command requests data and status from the Communications Network Management Controller Support in the specified 3600 or 4700 Controller.

Operand Descriptions

ctrlname

Specifies the PU name of the controller.

ERROR

Specifies loop error statistics. ERROR is the default.

ALL

Specifies RESP, STAT, and ERROR data.

BATCH

Specifies all basic counters, all extended statistical counters, and controller system log entries.

RESP

Specifies response time data.

STAT

Specifies loop status.

NONOTIFY

Specifies that you are not to receive a successful completion message. NONOTIFY is the default.

NOTIFY

Specifies that you are to receive a successful completion message.

Restrictions

The following restrictions apply to the SOLICIT command:

• The primary use of this command is in timer-initiated command lists running under the primary program operator interface task (PPT). Running a large command list containing this command under an operator station task (OST) can cause slow response time to other hardware monitor operators.

• You do not need to precede this command with TARA. You can enter it in command lists or directly from the command facility.

• This command does not have an associated panel; it is used solely for the collection and recording (with the exception of the BATCH operand) of CNM data in the 4700 Support Facility VSAM database.
• Do not use the BATCH operand unless the system programmer has provided the NetView installation exit DSIEX06 or XITCI to process this data.
• Whether you specify NOTIFY or NONOTIFY, you receive a message if the request was unsuccessful.

Examples

Example: Requesting Response Time Data for CTRL01
To request response time data for CTRL01, enter:
SOLICIT CTRL01, RESP

Example: Requesting Loop-Error Statistics for CTRL01
To request loop-error statistics for CTRL01, enter:
SOLICIT CTRL01

Example: Requesting Loop Status for CTRL01
To request loop status for CTRL01 with notification, enter:
SOLICIT CTRL01,STAT,NOTIFY
SRATIO (NPDA)

Syntax

```
SRATIO
 ON
 OFF
 ALL
 threshold
 N resname
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRATIO</td>
<td>SR</td>
</tr>
</tbody>
</table>

Purpose of Command

The SRATIO command:
- Enables or disables the generation of a performance event for a specified resource when an error-to-traffic (E/T) threshold is exceeded.
- Changes the threshold value that generates an alert for a specified resource.

Operand Descriptions

**ALL**

When specified in an environment other than an NPDA panel (such as a command list, autotask, PPT or NCCF console), specifies that the command is to take effect for all entries if multiple entries are found.

When specified from an NPDA panel, the ALL parameter has no effect.

**ON**

Specifies that the generation of performance events about the resource is to be enabled. This status is implied if you enter a threshold value. A default operand of ON is set for each threshold resource when it initially records data in the database. At the same time, if no threshold value for the resource was established during installation, the hardware monitor assigns the user-defined default error-to-traffic ratio to the resource. If the default error-to-traffic ratios are not user-defined, the hardware monitor assigns default error-to-traffic ratios as follows:
- Link-attached communications device, 3.0%
- Channel-attached communications device, 1.0%

**OFF**

Specifies that the generation of performance events about the resource is to be disabled.

**threshold**

Specifies the new threshold value. The value can have a range of 000–250 that is interpreted as 00.0–25.0 percent. The leading zeros are required.

**N**

Identifies the operand that follows as a resource name.

**resname**

Specifies the symbolic name of the resource. You can specify up to five
resource names to fully qualify the resource for which data is to be displayed. The resource names that you can use with this command must have resource types that conform to the following conditions:

- In a second-level resource hierarchy, the only valid resource type for the second-level resources are CBUS, FRLY, and LAN.
- In a third-level resource hierarchy, all resource types are valid.
- In a fourth-level resource hierarchy, the fourth-level resource cannot have a resource type of LINE.
- In a fifth-level resource hierarchy, all resource types are valid.

**Usage Notes**

This command can be entered from the hardware monitor menu panel, a command list, an automated operator, or any NetView component:

- If you are issuing the command from within the hardware monitor and the name of the resource specified is not a unique resource configuration on the database, a selection panel is displayed on which you can choose the relevant configuration.
- If you are issuing the command from within a command list and the name of the resource specified is not a unique configuration on the database, message BNJ1963I will be issued. Determine the unique resource and re-issue the command or use the ALL parameter to set all the configurations that match the specified resource.
- If you are issuing the command outside a command list in an environment other than the hardware monitor and the name of the resource specified is not a unique configuration on the database, the Hardware Monitor Multiple Entries panel will be displayed. From this panel, select one or more configurations to display.

You can set the default E/T threshold ratios for leased lines connected to IBM LPDA-2 modems using the IHTHRESH and LQTHRESH definitions in CNMSTYLE.

**Restrictions**

The following restrictions apply to the SRATIO command:

- No performance events are generated if the statistical record is the result of a permanent error or deactivation of a resource.
- This command cannot be run from a multiple-entries panel.

**Return Codes**

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The command issued from a command list was successful for all entries of a multiple-entries panel.</td>
</tr>
<tr>
<td>2</td>
<td>The command issued from a command list did not specify the ALL parameter, but multiple entries were found.</td>
</tr>
<tr>
<td>4</td>
<td>The command issued from a command list encountered multiple entries and failed for one or more of the resource hierarchies found.</td>
</tr>
</tbody>
</table>
Examples

Example: Enabling Error-to-Traffic Event Generation for a Specified PU
To enable error-to-traffic event generation for PU08, enter:
SRATIO ON N PU08
SREFRESH (STATMON)

Syntax

SREFRESH

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>SREFRESH</td>
<td>SR</td>
</tr>
</tbody>
</table>

Purpose of Command

The SREFRESH command switches the status monitor Domain Status Summary panel between dynamic and static states. The current setting of the SREFRESH state is indicated on the Domain Status Summary panel. In REFRESH=ON state, changes to the displayed resources are reflected dynamically on the panel as they occur. In REFRESH=OFF state, the panel is static.

Examples

Example: Switching the Status Monitor Domain Status Summary Panel Refresh State

If you are displaying the status monitor Domain Status Summary panel, the refresh state indicator is located on the panel title line. To switch the state from REFRESH=ON to REFRESH=OFF or from REFRESH=OFF to REFRESH=ON, enter:

srefresh
SRFILTER (NPDA)

Syntax

SRFILTER

SrTypes:

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRFILTER</td>
<td>SRF</td>
</tr>
<tr>
<td>ALARM</td>
<td>ALM</td>
</tr>
<tr>
<td>NOALARM</td>
<td>NOALM</td>
</tr>
<tr>
<td>HIGHINT</td>
<td>HIG</td>
</tr>
</tbody>
</table>
Purpose of Command
The SRFILTER command establishes the conditions governing the recording of data in the hardware monitor database, the generation of messages to the authorized operator, the forwarding of alert data to a NetView focal point or to the Tivoli Enterprise Console, and the coloring of alerts on the Alerts panel.

Operand Descriptions

AREC
Sets a filter that controls whether alerts are to be recorded in the hardware monitor database. For alerts forwarded from entry-point NetView programs over the LUC or LU 6.2 transports, the AREC filters are ignored and AREC is set to PASS. For additional information about recording filters and forwarded alerts, refer to Tivoli NetView for z/OS Automation Guide.

ESREC
Sets a filter that controls whether events and statistics are to be recorded to the hardware monitor database. For alerts forwarded from entry-point NetView programs over the LUC or LU 6.2 transports, the ESREC filters are ignored and ESREC is set to PASS. Alert-only recording is performed for these alerts, but no event or statistical data is recorded to the database.

OPER
Set a filter for transmitting messages BNJ030I and BNJ146I to an authorized operator.

ROUTE
Sets a filter for routing alerts to the alert focal point (providing a focal point exists). An alert must pass the ESREC and AREC filters before the ROUTE filter is applied to the alert.

TECROUTE
Sets a filter for converting alerts to Tivoli Enterprise Console events and forwarding the events to the Enterprise Console. An alert must pass the ESREC and AREC filters before the TECROUTE filter is applied to the alert.

TRAPROUT
Sets a filter for converting alerts to SNMP traps and forwarding them to a SNMP manager. An alert must pass the ESREC and AREC filters before the TRAPROUT filter is applied to the alert.

BLOCK
Specifies that the data matching the conditions expressed in this filter element is to be blocked from the hardware monitor database, from the network.

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNDERSCORE</td>
<td>UND</td>
</tr>
<tr>
<td>BLINK</td>
<td>BLI</td>
</tr>
<tr>
<td>REVERSE</td>
<td>REV</td>
</tr>
<tr>
<td>TURQUOISE</td>
<td>TUR</td>
</tr>
<tr>
<td>BLUE</td>
<td>BLU</td>
</tr>
<tr>
<td>GREEN</td>
<td>GRE</td>
</tr>
<tr>
<td>PINK</td>
<td>PIN</td>
</tr>
<tr>
<td>WHITE</td>
<td>WHI</td>
</tr>
<tr>
<td>YELLOW</td>
<td>YEL</td>
</tr>
</tbody>
</table>
operator, and from forwarding to the focal point or the Tivoli Enterprise Console, depending on the type of filter (AREC, ESREC, OPER, ROUTE, or TECROUTE).

DELETE
Specifies that a filter element in the filter table matching the conditions expressed in this filter element is to be deleted. You can specify the DELETE operand anywhere a BLOCK, PASS, or color_parms operand can be specified.

PASS
Specifies that the data matching the conditions expressed in this filter element is to be allowed through to the hardware monitor database and can also be passed to the network operator or forwarded to the focal point or the Tivoli Enterprise Console, depending on the type of filter (AREC, ESREC, OPER, ROUTE, or TECROUTE).

DEFAULT
Specifies that the default for the specified filter is to be overridden with a new default. Defaults are initially provided by the hardware monitor for each filter type. These defaults are effective when the specified filter elements fail to select a data record. You can change these defaults by setting a filter and specifying the DEFAULT keyword. You can specify the AREC, ESREC, OPER, ROUTE, and TECROUTE filter defaults as PASS or BLOCK.

The color filter default defines the color attributes for the first line of the rolling Alerts-Dynamic panel. The color default is initialized to ALARM HIGHTINT WHITE.

CLEAR
Specifies that all filter elements are to be removed and that the filters originally established by the NetView program will be created. You should not specify other operands, except the filter type, when using the CLEAR operand. The filters originally established by the NetView program are:

AREC filter
For alert recording filters, the following conditions are tested in the following order until a condition is satisfied:

BLOCK E HELD TREF CTRL
Blocks HELD event type records received from resources of type CTRL or from resources attached to a resource of type CTRL.

BLOCK E HELD TREF PUGW
Blocks HELD event type records received from resources of type PUGW or from resources attached to a resource of type PUGW.

BLOCK E HELD TREF LCTL
Blocks HELD event type records received from resources of type LCTL or from resources attached to a resource of type LCTL.

PASS E PERM TREF CTRL
Passes PERM event type records received from resources of type CTRL or from resources attached to a resource of type CTRL.

PASS E PERM TREF PUGW
Passes PERM event type records received from resources of type PUGW or from resources attached to a resource of type PUGW.

PASS E PERM TREF LCTL
Passes PERM event type records received from resources of type LCTL or from resources attached to a resource of type LCTL.
PASS E PERF TREF CTRL
  Passes PERF event type records received from resources of type CTRL or from resources attached to a resource of type CTRL.

PASS E PERF TREF PUGW
  Passes PERF event type records received from resources of type PUGW or from resources attached to a resource of type PUGW.

PASS E PERF TREF LCTL
  Passes PERF event type records received from resources of type LCTL or from resources attached to a resource of type LCTL.

BLOCK E HELD
  Blocks any HELD event type records.

PASS E INST
  Passes any INST event type records.

PASS E NTFY
  Passes any NTFY event type records.

PASS E PERF
  Passes any PERF event type records.

PASS E PERM
  Passes any PERM event type records.

PASS E RSLV
  Passes any RSLV event type records.

PASS E SCUR
  Passes any SCUR event type records.

PASS E UNKN
  Passes any UNKN event type records.

PASS E USER
  Passes any USER event type records.

BLOCK
  Blocks all records not satisfying any of the previous conditions. The DEFAULT operand of the SRFILTER command affects only this entry of the AREC filters.

ESREC filter
  For event and statistical recording filters, PASS passes all records to the events database.

OPER filter
  For operator alert filters, BLOCK blocks all alert records from being transmitted to the authorized operator.

ROUTE filter
  For route filters, PASS allows the alert to be transmitted to a focal point.

TECROUTE filter
  For Tivoli Enterprise Console route filters, PASS allows the alert to be converted into an Enterprise Console event and forwarded to the Enterprise Console.

TRAPROUT
  For traprout filters, PASS allows the alert to be converted into a SNMP trap and forwarded to a SNMP manager.
**COLOR filter**

For color filters, the default color (ALARM HIGHINT WHITE) is used for the first line of the Alerts-Dynamic panel. This is used only when an alert does not match a color filter. When an alert using the default color rolls to the second line of the Alerts-Dynamic panel, the color defined by the ALD color map is used to color the alert. The color is turquoise if the color map is not changed.

**Note:** If you clear a filter, the default for that filter is reset to its initial default, not the default prior to the one you cleared. For example, the initial default for the AREC filter is BLOCK. If you changed the default for the AREC filter to PASS by entering `SRFILTER AREC PASS DEFAULT`, and you enter `SRF AREC CLEAR`, the default for AREC is changed to BLOCK (the initial default).

**COLOR**

Sets a filter defining the color in which an alert is displayed when the alert is presented on the Alerts-Dynamic, Alerts-Static, or Alerts-History panels.

**color_parms**

Specifies from one to four parameters associated with COLOR. You can specify up to four parameters, but you can select only one from each of the four groups. The four groups of parameters are:

- **ALARM** | **NOALARM**
  Specifies whether an alarm is to sound when an alert is received. The default is ALARM. This parameter is ignored when the Alerts-History and Alerts-Static panels are built. It applies only when a new alert is rolled onto the Alerts-Dynamic panel.

- **HIGHINT**
  Specifies that text is to appear more intense on monochrome terminals.

- **UNDERSCORE** | **BLINK** | **REVERSE**
  Specifies whether the alert is to be underscored, to blink, or to be presented in reverse video.

- **TUR** | **BLUE** | **GREEN** | **PINK** | **RED** | **WHITE** | **YELLOW**
  Specifies whether the alert is to be presented in turquoise, blue, green, pink, red, white, or yellow. TUR (turquoise) is the default.

**A**

Identifies the operand that follows as an adapter address.

**adaptadr**

Specifies the variable adapter address (one address of 12 hexadecimal digits). The A (adapter) address is not a valid option for a resource type of CBUS.

**C**

Identifies the operand that follows as an event (alert) descriptor identifying code for a problem record in a format other than the generic network management vector transport (NMVT) or management services unit (MSU) format.

**code**

Specifies the code that identifies a particular event or alert. You can determine this code by entering the appropriate SEL number (nn) plus the character C (for nongeneric alerts) on the command line of the Alerts-History, Alerts-Static, or Most Recent Events panels. The following reply is displayed:

```
BNJ9621 AL/EV DESCRIPTION CODE FOR SELECTION nn IS bbbcc
```

where `bbb` is the block ID and `cc` is the action code.
E  Identifies the operand that follows as an event type.

e\textit{type}

Specifies the event type on which the filter item is based. Event types are:
- AVAL
- BYPS
- CUST
- DLRC
- ENV
- HELD
- IMPD
- IMR
- INST
- INTV
- NTFY
- PAFF
- PERF
- PERM
- PROC
- REDL
- RSLV
- RSNT
- SCUR
- SNA
- TEMP
- UNKN
- USER

N  Identifies the operand that follows as a resource name or resource names.

The \textit{N} keyword specifies that the resource names specified match the trailing names in the hierarchy. For example, if you enter:

\texttt{SRFILTER AREC PASS N RES1 RES2}

A record with the hierarchy \texttt{RES4 RES3 RES1 RES2} or \texttt{RES1 RES2} matches this filter. A record with the hierarchy \texttt{RES4 RES1 RES2 RES3} does not match this filter because the names \texttt{RES1} and \texttt{RES2} do not appear at the end of the resource hierarchy.

The special character \texttt{%} means that an exact hierarchy match must occur. For example, if you enter:

\texttt{SRFILTER AREC PASS N RES1 RES2 %}

A record with the hierarchy \texttt{RES1 RES2} would match this filter. A record with the hierarchy \texttt{RES4 RES1 RES2} would not match this filter. To have an exact match, the number of resource names in the record must match the number in the filter statement.

\textit{resname}

Specifies the symbolic name of the resource. You can specify up to five resource names to fully qualify the resource for which data is to be displayed.

You can use certain special characters (*, ?, and %) as part of the resource name and resource name hierarchy.

\texttt{NREF}

Identifies the operand that follows as a resource name or resource names.
The filter element is satisfied if the specified resource name or resource names are included in the resource hierarchy in the order stated. For example, if you enter:

SRFILTER AREC PASS NREF RES1 RES2

An alert with a hierarchy of RES4 RES1 RES2 RES3 matches this filter. Other hierarchies that match this filter are RES1 RES2, RES1 RES2 RES4, and RES3 RES1 RES2. A record with a resource hierarchy of RES1 RES3 RES2 does not match this filter. The requirement is that the names specified in the filter statement be in the hierarchy of the alert in the same order as specified in the filter.

You cannot use an asterisk by itself to represent a resource name that follows the NREF keyword.

P  Specifies the product and alert identifier pair for a problem record that is in generic NMVT or MSU format. You can determine the product set identifier and the alert ID by entering the appropriate SEL number (nn) plus the character C on the command line of the Alerts-History, Alerts-Dynamic, or Most Recent Events panels. The following message is returned:

BNJ378I SELECTION nn FILTER CODE; PRODUCT ID pi ALERT ID ac

Where pi is the product set identifier and ac is the alert ID. This information is also available on the last panel of the hardware monitor Event Detail panel.

prodid

Specifies the variable product identifier (hardware or software) of the alert or event sender.

alertid

Specifies the variable alert ID number representing a specific alert or event description.

R  Identifies the operand that follows as a fully qualified resource name. You can code the R parameter only after the ESREC and DELETE operands. The R type filter is set only by the hardware monitor RATE function. The R filter is the highest priority filter. The RATE function is described in the Tivoli NetView for z/OS Administration Reference.

T  Identifies the operand that follows as a resource type or resource types.

The T keyword specifies that the resource types specified match the trailing types in the hierarchy. For example, if you enter:

SRFILTER AREC PASS T TYP1 TYP2

A record with the hierarchy TYP4 TYP3 TYP1 TYP2 or TYP1 TYP2 matches this filter. A record with hierarchy TYP4 TYP1 TYP2 TYP3 does not match this filter because the types do not appear at the end of the types list.

The special character % specifies that an exact hierarchy match must occur. If you enter:

SRFILTER AREC PASS T TYP1 TYP2 %

A record with the hierarchy TYP1 TYP2 would match this filter. A record with TYP4 TYP1 TYP2 does not match this filter because it is not an exact match. To have an exact match, the number of resource types in the record must match the number in the filter statement.
**type**

Specifies the resource type. Examples of resource types are CHAN, COMC, CPU, and LCTL. You can specify up to five resource types to fully qualify the resource for which data is to be filtered.

You can use certain special characters (*) and (%) as part of the resource type and the resource type hierarchy.

**TREF**

Identifies the operand that follows as a resource type or resource types.

The filter element is satisfied if the specified resource type or resource types are included in the resource hierarchy in the order stated. For example, if you enter:

SRFILTER AREC PASS TREF TYP1 TYP2

An alert with a hierarchy of TYP4 TYP1 TYP2 TYP3 matches this filter. Other hierarchies that match this filter are TYP1 TYP2, TYP1 TYP2 TYP4, and TYP3 TYP1 TYP2. The requirement is that the types specified in the filter statement be in the hierarchy of the alert in the same order as specified in the filter.

Do not use an asterisk (*) by itself to represent a resource type that follows the TREF keyword.

**U**

Specifies that user data follows. This allows filtering on the user data field (subvector X'33', subfield X'30') in an NMVT or MSU. You can determine the user data for an alert or event by entering the appropriate selection number (SEL#) and the character U on the command line of the Alerts-History, Alerts-Static, or Most Recent Events panel. The following message is displayed:

BNJ980I SELECTION nn USER DATA: uuuuu

where uuuuu is the user data for the alert. The first five characters of user data are returned. For a generic alert, the entire user data field is displayed on the Event Detail panel.

**Note:** Regardless of the length, filtering is performed using only the first five characters of the data.

**userfield**

Specifies 1 to 5 characters of user data.

**Restrictions**

The following restrictions apply to the SRFILTER command:

- A record must pass both the ESREC and AREC recording filters to be recorded as an alert. Only alerts are processed by the ROUTE, TECROUTE, COLOR, TRAPROUT, and OPER filters. An alert which passes the ROUTE filter is processed by the hardware monitor for transmission to the alert focal point. An alert which passes the TECROUTE filter is converted to a Tivoli Enterprise Console event and forwarded to the Enterprise Console. An alert which passes the TRAPROUT filter is converted to a SNMP trap and sent to a SNMP manager. An alert passed by the OPER filter causes messages to be sent to the authorized operator.

- The complex nature of filter elements requires that certain items and combinations of items take priority over others. More specific items take precedence over less specific items. Elements of equal priority are processed in the order in which they are entered. Some examples include:
- Elements of equal priority:
  SRFILTER AREC PASS NREF LINENAM1
  SRFILTER AREC BLOCK NREF NCPNAM1

  This combination of filter elements passes records for the resource LINENAM1 and all attached resources. Records for NCPNAM1, and lines other than LINENAM1, are blocked. If the order of the two statements is reversed, all resources attached to the NCP are blocked.

- Elements of different priority:
  SRFILTER ESREC BLOCK N CRTLNAM1
  SRFILTER ESREC PASS E TEMP N CTRLNAM1

  These two elements pass only temporary records from the controller, and no statistical or event records other than temporary are passed. Because the second element is more detailed, and therefore of a higher priority, it makes no difference in which order the elements are entered.

- Elements that are identical except for PASS or BLOCK:
  SRFILTER AREC BLOCK NREF LINENAM1
  SRFILTER AREC BLOCK NREF NCPNAM1
  SRFILTER AREC PASS NREF LINENAM1

  This apparent conflict is resolved during the processing of the SRFILTER command. The hardware monitor searches for identical entries and simply changes PASS to BLOCK, or BLOCK to PASS, whichever was specified most recently. This example has the same result as the first example because the order of filter elements is not changed. Only the PASS or BLOCK status is changed.

  Although these examples show recording filter elements, the priority rules are the same for the viewing filter elements.

• Conditions are tested to determine whether a data record matches the filter. The conditions are tested in the following order:
  1. A specific resource blocked by the hardware monitor RATE function using the R keyword
  2. An event (alert) description code or user field (keyword P or C) and an adapter address
  3. An event (alert) description code or user field (keyword P or C) and a resource name
  4. An event (alert) description code or user field (keyword P or C)
  5. An event type or user data (keyword E or U) and an adapter address (keyword A)
  6. An adapter address (keyword A)
  7. An event type or user data (keyword E or U) and a resource name (keyword N)
  8. A resource name (keyword N)
  9. An event type or user data (keyword E or U) and a resource name reference (keyword NREF)
  10. A resource name reference (keyword NREF)
  11. An event type or user data (keyword E or U) and a resource type (keyword T)
  12. A resource type (keyword T)
13. An event type or user data (keyword E or U) and a resource type reference (keyword TREF)
14. A resource type reference (keyword TREF)
15. A user data (keyword U) and an event type (keyword E)
16. An event type or user field (keyword E or U).

If a match occurs, the matching filter element action (PASS or BLOCK) is processed and further testing is suspended.

If the record fails to match any of the previously listed conditions, the record is processed according to the filter defaults. Initial filter defaults could cause the record to be passed for recording as an event or statistic, and blocked for recording as an alert, creating a message, or routing to another NetView system.

- You can set alert color for the Alerts-Dynamic, Alerts-History, and Alerts-Static panels by the following means:
  - SVFILTER command with COLOR keyword
  - SRFILTER COLOR filter
  - Color map

If you do not set a COLOR filter for an alert, the alert is displayed based on its appropriate color map.

If you set a COLOR recording filter for an alert, it overrides the color set in the color map. The recording filter color stays with the alert once the alert is logged to the hardware monitor database. If you change the color of a recording filter, it does not affect the color assigned to a previously logged alert.

- If you set the ESREC, AREC, OPER, ROUTE, or TECROUTE recording filters with the NetView automation table SRF action, the SRFILTER settings are overridden. If you set the COLOR recording filter with the NetView automation table COLOR, XHILITE, or BEEP actions, the SRFILTER COLOR command and the color map are overridden. Refer to the Tivoli NetView for z/OS Automation Guide for more information.

- If you set a COLOR viewing filter with the SVFILTER command, it overrides both the SRFILTER COLOR command and the color map. This allows you to override the general setting of colors for alerts for each operator.

- If the alert does not match the specific color filter, the color attributes from the default color filter are used on the first line of the Alerts-Dynamic panel when the alert is rolled onto the panel. When the alert rolls off of the first line of the Alerts-Dynamic panel, the color map defines the color of the alert.

- If you forward an alert to a focal point, the alert color filters at the focal point determine its display color.

- In filtering, the hardware monitor treats the HELD event type as if it is a second alert or event type. This means a HELD event type is always associated with another event type. The HELD event type has the same priority as all other event types. Therefore, the order in which you set the HELD type filter and any other event type filter is important. For example, the default SRF AREC filters are set as follows:
  ```
 BLOCK E HELD
 PASS E PERM
  ```

Therefore, a permanent alert that is also a HELD alert is blocked because the BLOCK filter is the first matching filter encountered.
Whenever the owning domain and session domain do not match (distributed database retrieval is taking place), and selection SRF is a valid command from the current display, the command is processed in the owning domain, not the session domain. To clear the filters that were set, set up a cross-domain session with the owning domain using the SDOMAIN command and then issue the CLEAR command.

**Note:** Do not use the SRF option to control the routing of alerts to a focal point. If a routed alert is to be blocked, issue an SDOMAIN command and then enter the appropriate SRFILTER ROUTE command.

Pattern matching support is provided for resource names, resource types, and resource name and resource type hierarchies using the special characters *, ?, and %. This support consists of the following:

* When used by itself, this character represents any resource name or type. This usage applies to resource names and types associated with the keywords N and T.

  When appended to a resource name, this character can represent zero, one, or more characters. Characters following an asterisk (*) are not allowed. This usage applies to resource names associated with the keywords N and NREF.

  When you use an asterisk (*) by itself to represent a resource name, it does not count in processing priority. For example, if you use an asterisk (*) to represent resource names, the priority is the same as if you specified one resource name.

? A placeholder that represents exactly one character anywhere in a resource name. You can use multiple ? characters in a resource name. This usage applies to resource names associated with the keywords N and NREF.

% A trailing character indicating that an exact match on a hierarchy of resource levels and resource names or types is required. Specify this character last and following a resource name or type. This usage applies to resource names and types associated with the keywords N and T.

### Examples

**Example: Blocking Information for a Resource with an Event and Statistical Filter**

To block information for resource name PU3 with an event and statistical filter, enter:

```
SRFILTER ESREC BLOCK N PU3
```

**Response**

The usual response to an accepted command is as follows:

```
BNJ1341I SRF/SRFILTER COMMAND ACCEPTED
```

The following examples show the usage of * and ? characters in the SRFILTER command with specified resource names.

**Example: Blocking All Alerts for a Specified Resource**

To block all alerts for the resource named RTP or for any resource whose name begins with the letters RTP, enter:

```
SRFILTER AREC BLOCK N RTP*
```
Example: Passing Event or Statistical Information for Resources Beginning with the Letters RTP
To pass any event or statistical information for any resource name with exactly four characters, starting with RTP, enter:
SRFILTER ESREC PASS N RTP?

Example: Deleting a Previously Entered SRFILTER Command
To delete a previously entered SRFILTER command that was one of the following formats:
SRFILTER AREC PASS N RTP??*
SRFILTER ESREC BLOCK N RTP??*
Enter:
SRFILTER ESREC DELETE N RTP??*

Example: Blocking Alerts for a Resource
To block alerts for any resource name with exactly five characters, starting with RTP, followed by any single character and ending with 0, enter:
SRFILTER AREC BLOCK N RTP?0

The following examples show the usage of * by itself and % as a trailing character in the SRFILTER command with specified resource names or types.

Example: Recording Event or Statistical Information for a Resource
To record any event or statistical information for a resource that matches on any hierarchy list of three or more resource names, ending with resource name RTP, enter:
SRFILTER ESREC PASS N ** RTP

Example: Blocking Event or Statistical Information for a Resource
To block any event or statistical information for any resource that matches on a hierarchy list of exactly two resource types, with COMC as the level 1 resource type and LINE as the level 2 resource type, enter:
SRFILTER ESREC BLOCK T COMC LINE %

Example: Blocking Alerts for a Resource
To block alerts for a resource that matches on any hierarchy list of exactly three resource names, ending with resource name RTP3, enter:
SRFILTER AREC BLOCK N ** RTP3 %
SRVRNV (NCCF; CNME0054)

Syntax

```
SRVRNV
```

Purpose of Command

The SRVRNV command enables NetView to send a command to the NetView at the network node server for a CP or LU resource. SRVRNV is used typically in an APPN environment when a command (for example, `D NET,TOPO`) needs to be directed and the operator does not know the name of the intended server NetView.

Operand Descriptions

- `cplu` Specifies the CP or LU resource for which the server NetView is to be located. The resource name can be network-qualified.
- `nvtask` Specifies the NetView task on which the target command is to run. Use an asterisk (*) if the remote task name is to match the local task name.
- `cmd` Specifies the name of the command that is to run at the server NetView.

Restrictions

The VTAM command `D NET,DIRECTRY,ID=cplu,SCOPE=NS` is used to locate the server CP. The CPDOMAIN pipe stage is used to convert that CP name to a NetView domain name, which can then be used as a RMTCMD target. Therefore, SRVRNV is subject to the limitations and restrictions of these component commands. For example, the local VTAM must support APPN. The task name and the command must be valid at the target NetView.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>108</td>
<td>A timeout occurred.</td>
</tr>
<tr>
<td>112</td>
<td>An unexpected VTAM response was received.</td>
</tr>
<tr>
<td>116</td>
<td>The CPDOMAIN pipe stage returned a message other than DWO969I.</td>
</tr>
<tr>
<td>120</td>
<td>CP was not identified by VTAM.</td>
</tr>
<tr>
<td>other</td>
<td>A CPDOMAIN failure occurred. Refer to the CPDOMAIN return codes in the <em>Tivoli NetView for z/OS Customization: Using Pipes</em> for more information.</td>
</tr>
</tbody>
</table>
Examples

Example: Requesting Topology Information
The following example requests topology information from the server NetView for CD50SO01:

```
SRVRNV CD50SO01 * D NET,TOPO,LIST=EN,ID=S*
```

Response

If the SRVRNV command is successful, a response similar to the following is received:

```
- NTVAA DWO969I DOMAIN FOR DEGNO50N.DEGNO50C IS NTV50
NTV50
IST097I DISPLAY ACCEPTED
IST350I DISPLAY TYPE = TOPOLOGY
IST1295I CP NAME NODETYPE ROUTERES CONGESTION CP-CP WEIGHT
IST1296I USIBMNT.SMONROE EN *NA* *NA* YES *NA*
IST1296I USIBMNT.SIMON EN *NA* *NA* YES *NA*
IST1296I USIBMNT.STACEY EN *NA* *NA* YES *NA*
IST314I END
```
STACK (NCCF)

Syntax

STACK

Purpose of Command

The STACK command suspends a command procedure while it is in pause or wait status so that commands or command lists can be entered. This command also causes commands and command lists that were stacked because of the original command procedure to run immediately and in the order entered.

Restrictions

The following restrictions apply to the STACK command:

- When a command procedure wait is followed by a STACK command, messages are still intercepted by the wait processing. The processing of messages is deferred until the command procedure is reinstated by the UNSTACK command. GO commands are rejected.
- The STACK command does not work in the session monitor or hardware monitor; it only works in the command facility.

Examples

Example: Beginning a STACK Command
To begin a STACK command, enter:
STACK

Response

If the STACK command is successful, the following message is displayed:
DSI230I STACK STARTED

Example: Suspending a Command List Currently in a Pause or Wait State
To suspend a command list currently in a pause or wait state, enter:
STACK

Response

If the command is successful, the following message is displayed:
DSI230I STACK STARTED

If another command or command procedure is then issued, the newly entered command or command procedure then begins processing. Upon completion of the newly entered command, the following message is displayed:
DSI588I COMMAND PROCEDURE commandname STACKED, ISSUE 'UNSTACK' TO RESUME

That message serves as a reminder that you used a STACK command and that the command procedure you have suspended has not completed.
START (EAS)

Syntax

EAS START

MODIFY proname,START -TASK=(taskid)

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIFY</td>
<td>F</td>
</tr>
</tbody>
</table>

Purpose of Command

The START command starts any event/automation service task that is not already started.

Note: If an attempt is made to start a task that is already started, a warning console message will be issued.

Operand Descriptions

proname

Specifies the event/automation service job name.

TASK=taskid

Specifies the service tasks to be started. The taskid can have the following values:

- **ALERTA** The alert adapter service task
- **MESSAGEA** The message adapter service task
- **EVENTRCV** The event receiver service task
- **TRAPALRT** The trap to alert conversion task
- **ALRTTRAP** The alert to trap conversion task
- **ALL** All service tasks

Restrictions

The following restrictions apply to the START command:

- You can specify only one TASK operand for each START command. If you want to specify more than one service task, separate each taskid with a comma and enclose the taskids string within parentheses.
- This command cannot be used to start the entire event/automation service address space.
Examples

Example: Starting a Service Task
To start the alert adapter service task for the event/automation service job named IHSAEVNT, enter:
F IHSAEVNT,START,TASK=ALERTA

Response

You should receive the following response:
IHS0124I Alert Adapter task initialization complete.

Example: Starting Multiple Service Tasks
To start the alert adapter and message adapter service tasks for the event/automation service job named IHSAEVNT, enter:
F IHSAEVNT,START,TASK=(ALERTA,MESSAGEA)

Response

You should receive the following response:
IHS0124I Alert Adapter task initialization complete.
IHS0124I Message Adapter task initialization complete.
START (GMFHS)

Syntax
From an MVS console:

STARTGM

```
START procname,DOMAIN=domain
```

From a NetView console:

GMFHS START

```
GMFHS START domain_id
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIFY</td>
<td>F</td>
</tr>
<tr>
<td>START</td>
<td>S</td>
</tr>
</tbody>
</table>

Purpose of Command

The NetView GMFHS START command starts the GMFHS task. Use the MVS START command to start the GMFHS task from the MVS console.

You can enter the GMFHS START command from the MVS console or from a NetView terminal using the GMFHS command list.

Operand Descriptions

- `procname`
  Specifies the GMFHS MVS job name.

- `domain_id`
  Specifies the domain ID that GMFHS connects to when GMFHS starts. If `domain_id` is not specified, the default domain is determined by the domain specified in the GMFHS start up procedure.

Examples

**Example: Starting a Specified GMFHS Job**
To start a GMFHS job named GMFSBTSK.C from the MVS console, enter:

```
S GMFSBTSK.C
```

Response

A response similar to the following is displayed:
Example: Starting GMFHS from a NetView Terminal

To start GMFHS from a NetView terminal, enter:

GMFHS START

Response

A response similar to the following is displayed:

DSI013I COMMAND LIST GMFHS COMPLETE
START (MVS)

Syntax

From an MVS console:

**MVS START**

From a NetView terminal:

**MVS START**

**Purpose of Command**

Both the NetView program and the NetView subsystem are initiated as started tasks in the system.
Operand Descriptions

*pro-name*
   Specifies the NetView MVS job name.

*identifier*
   Specifies the MVS job name identifying the task to be started.

*BFSZ=buf-size*
   Specifies the buffer size, in kilobytes. The default is 24K.

*PROG=program*
   Specifies the program that starts the NetView program. The default is BNJLINTX.

*Q1=nvds-name*
   Specifies the high-level NetView data set name qualifier. The default is CNM.

*REG=reg-size*
   Specifies the region size, in kilobytes, for the main task. The default is 4096K.

*SA=sub-area*
   Specifies the subarea number. The default is 01.

*SLSZ=slot-size*
   Specifies the slot size, in kilobytes. The default is 200K.

*SOUTA=output*
   Specifies the defaulted printed output class. The default is A.

*SQ1=sysdsn*
   Specifies the high-level MVS data set name qualifier. The default is SYS1.

*VQ1=vsamdsn*
   Specifies the high-level VSAM data set name qualifier. The default is CNM.

*VTAMLST=vtamdsn*
   Specifies the high-level VTAM data set name qualifier. The default is NETA.VTAMLST.

These names can vary in your installation; contact your system programmer for the current names.

You can also start the NetView program automatically by using the COMMNDnn member of SYS1.PARMLIB.

Restrictions

This command can be issued from a NetView operator ID (using the MVS command) or an MVS console.
**START (NCCF)**

**Syntax**

NCCF START

- `DOMAIN=domainid`
- `HCL=hclname`
- `RESOURCE=rname`
- `SPAN=span_name`
- `TASK=taskname`
- `TSOSERV=tso_userid`
- `UNIXSERV=*`

**IBM-Defined Synonyms**

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEM</td>
<td>MEMBER, FILE</td>
</tr>
</tbody>
</table>

**Purpose of Command**

The NCCF START command enables you to start:

- A session between the entering operator and another domain
- A hardcopy log (printer)
- A resource within a span
- A span (add it to an operator’s span of control)
- An optional task and set the value of the definition member it uses
- A TSO command server task
- A z/OS UNIX command server task

The NCCF START command also enables you to dynamically start optional tasks and data services tasks without defining them in CNMSTYLE. You can also dynamically change the priority of active optional tasks or data services tasks using the PRI keyword. If you dynamically add these tasks, or if you dynamically change the priority of these tasks, it is not necessary to stop and restart the NetView program.
Operand Descriptions

**DOMAIN=**<br>domainid  <br>Starts a session between the entering operator and the named domain.

**HCL=**<br>hclname  <br>Starts a hardcopy log task with the specified name for the specified operator or operators.

**LOGMODE=**<br>logmode_name  <br>Indicates the logmode entry to be used when binding the session. If you do not specify this operand, the logmode name defaults to the logmode name on the DLOGMOD entry coded on the APPL statement. If used with the hardcopy log, the logmode_name is the printer logmode.

**MEM=**<br>For TASK, uses the member of DSIPARM as a definition member. This operand is valid only for data services tasks. If this is a new data services task and is not defined in CNMSTYLE, the MEM operand is required. This operand mimics the function of the MEM keyword in CNMSTYLE. If not specified, member defaults to the last value entered for the MEM keyword, either from a previous START for this task or from the TASK definition in CNMSTYLE. For more information about the MEM operand, see CNMSTYLE.

For TSOSERV, if the TSO server is to be started as a submitted job, the default is CNMSJTSO which is the name of the DSIPARM member that contains the JCL for the TSO server job. If the TSO server is to be started as a started task, the default is CNMSSTSO which is the name of the CNMSAMP member that contains the JCL for the TSO server job. CNMSSTSO must be installed in a system procedure library. Refer to the **Tivoli NetView for z/OS Installation: Configuring Additional Components** for more information about the installation of CNMSSTSO.

For UNIXSERV, if the UNIX server is to be started as a submitted job, the default is CNMSJUNX which is the name of the DSIPARM member that contains the JCL for the UNIX server job. If the UNIX server is to be started as a started task, the default is CNMSSUNX which is the name of the CNMSAMP member that contains the JCL for the UNIX server job. CNMSSUNX must be installed in a system procedure library. Refer to the **Tivoli NetView for z/OS Installation: Configuring Additional Components** for more information about the installation of CNMSSUNX.

For TSOSERV or UNIXSERV, refer to the DEFAULTS STRTSERV command for more information about starting the TSO and UNIX servers as started tasks or submitted batch jobs.

**MOD=**<br>module  <br>Specifies the load module name associated with the task that starts. If this is a new task and it is not defined in CNMSTYLE, the MOD keyword is required. If the task has previously been started in the NetView program, the MOD keyword can be used alone to change the module that is invoked when the task is started.

Note that the MOD keyword is not supported for the NetView System Services (NVSS) feature.

**OP=**<br>For HCL, specifies to start an operator’s hardcopy log.

"  Specifies to start a session with the named hardcopy log for your operator ID. This is the default.
**operid**

Specifies to start a session with the named hardcopy log for the specified operator.

**ALL**

Specifies to start a session with the named hardcopy log for all operators.

For TSOSERV, specifies a valid logged on NetView operator ID or " (quote quote), indicating the NetView operator for whom this server is to be started, or NONE indicating that this server is a global server not associated with any specific operator and will not be terminated as the result of any NetView operator logging off. " indicates that the ID of the NetView operator issuing the START command is to be used. A server that is not global will terminate when it is no longer associated with any NetView operators. Note that if the named server is already started, it will be associated with this NetView operator (or given additional global status) without being restarted. The default is ".

**PRI=taskpri**

Specifies the priority of the task. Valid values are 1–9.

If this is a new task and it is not defined in CNMSTYLE, the PRI keyword is optional; if it is not specified, it defaults to 9. If the task has previously been started in NetView, the PRI keyword can be used alone to change the priority of the task. Automated operator tasks run at priority 5 and other operator tasks run at priority 4. If you specify a priority from 1–4, you might impact other tasks. For more information about task priorities, refer to the *Tivoli NetView for z/OS Administration Reference*.

**RESOURCE=rname**

The named resource (such as a terminal) is made available to span of control checking in this NetView system. When the NetView program is first started, all defined resources are available to the system.

When a resource is started, the system does not implicitly route a command to another domain, even if the resource was also assigned to another domain during installation. You can use the START RESOURCE command to change implicit routing to your own domain after a STOP RESOURCE has changed the implicit routing to another domain.

For more information about implicit routing, refer to the RRD statement described in the *Tivoli NetView for z/OS Administration Reference*.

You can use the START RESOURCE command to start a resource within a span. Because all resources in a span are started when the system is started, use the START RESOURCE command only if you used the STOP RESOURCE command first. You cannot use wildcard characters in the resource name. The resource name must match a resource name in a span of control definition.

**SPAN=span_name**

The named span which is to become part of an operator's span of control. The spans that can be started by the START SPAN command are limited by either the SPAN or ISPAN statements in the operator profile or by the NETSPAN class in an SAF product, depending on the setting of the OPSPAN keyword on the OPTIONS statement or the last REFRESH command with the OPSPAN keyword. If you are logged on when a REFRESH command is issued to switch from OPSPAN=SAF to OPSPAN=NETV, you cannot start additional spans defined for your operator profile since NetView initialization until you log off and then log back on.
Note: Operators can start spans with OPSPAN=NETV only if they are logged on with OPSPAN=NETV. An operator can start any span that is defined in the operator’s profile. If an operator logs on with OPSPAN=SAF and if OPSPAN is currently set to NETV, no spans can be started.

The span is started at the highest access level to which the operator is permitted.

For more information about defining spans of control, refer to the [Tivoli NetView for z/OS Security Reference](#).

**TASK=**
taskname
Activate the named optional task. These are the reserved task names: ALL, DPR, DST, HCL, HCT, LOG, MNT, NNT, OPT, OST, PPT, SYSOP, TCT, and any VOST name. A VOST taskname is of the form DSI#nnnn, where nnnn is in the range of 0000–9999.

**TSOSERV=**
Specifies a valid TSO user ID or " (quote quote), indicating the NetView operator ID is to be used as the TSO user ID. This is the TSO user’s ID and authority under which the TSO server job will execute. The TSO server job will start as either a submitted batch job or a started task, depending upon the DEFAULTS STRTSERV command specification.

When specifying TSOSERV, you must have the CNMSSTSO sample installed if you have specified DEFAULTS STRTSERV=STRTPROC. Refer to the [Tivoli NetView for z/OS Installation: Configuring Additional Components](#) for more information about the installation of CNMSSTSO.

**UNIXSERV=**
Starts the UNIX server. The UNIX server job will start as either a submitted batch job or a started task, depending upon the DEFAULTS STRTSERV command specification.

When specifying UNIXSERV, you must have the CNMSSUNX sample installed if you have specified DEFAULTS STRTSERV=STRTPROC. Refer to the [Tivoli NetView for z/OS Installation: Configuring Additional Components](#) for more information about the installation of CNMSSUNX.

**Restrictions**

The following restrictions apply to the START command:

- If you start task AAUTSKLP using the START command, you must first start tasks DSIAAMLUT and AAUTCNMI. To avoid unnecessary steps, use the STARTCNM command instead of the START command.

- To dynamically change the initialization member used by the task, the load module associated with the task, or the priority of a task, first stop the task, then restart the task using the START TASK command with the MEM, MOD, or PRI keyword.

- A new copy of the load module specified on the MOD keyword is loaded only if the following conditions exist:
  - The module was not already loaded by another task
  - The module was not specified on any task definitions in CNMSTYLE at NetView initialization

- Starting a session with the domain that you are currently in can result in a loop. For example, issuing START DOMAIN=domainid, where domainid is your current domain, can cause looping.
- The MOD keyword is not supported for the NetView System Services (NVSS).
- The NetView-supplied optional tasks are meant to be run only under one task name. If you start a second task that uses the same load module as a currently running NetView-supplied optional task, unpredictable results might occur.
- The NetView-supplied DSTs and their individual initialization members are meant to be run under one task name. If you start a second DST that uses the same initialization member as a currently running NetView-supplied DST, unpredictable results might occur.
- You can define the NetView-supplied task and DST names as restricted values for the MOD keyword in DSICMD. You can apply this restriction to any task that you do not want to run under multiple task names.
- The following tasks run continuously, therefore you do not need to start them unless they reach the MAXABEND limit:
  - DSIDCBMT
  - DSIHLLMT
  - DSILogMNT
  - DSISTMMT
- The MAXABEND count for a task is reset to zero if the task has run for at least one hour since the last abend.
- START DOMAIN and START HCL are not supported on a virtual OST (VOST).
- If you are using the NetView 3270 management console, use the RMTCMD command instead of the START DOMAIN command. If you issue the START DOMAIN command, you will receive message DSI809A.

## Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful processing.</td>
</tr>
<tr>
<td>8</td>
<td>The command did not complete successfully. Check the accompanying messages for more information.</td>
</tr>
</tbody>
</table>

## Examples

### Example: Starting a Session
To start a session with DOM1, enter:

```
START DOMAIN=DOM1
```

### Example: Starting the Hardcopy Log for Yourself
To start the hardcopy log for yourself, enter:

```
START HCL=LOG1
```

### Example: Starting the Hardcopy Log for Operator OP01
To start the hardcopy log for operator OP01, enter:

```
START HCL=LOG1,OP=OP01
```

### Example: Activating the Network Log Task
To activate the network log task, enter:

```
START TASK=DSILog
```

### Example: Starting a Task and Using a Member as the Definition Member
To start task CNMTAMEL and use the member of DSIPARM called DUIISC as the definition member, enter:
Example: Starting a Data Services Task
To start a data services task (DST) that is not defined in CNMSTYLE, that has a priority of 7, and has an initialization member of MYINIT, enter:
START TASK=MYTASK,MOD=DSIZDST,MEM=MYINIT,PRI=7
START (RODM)

Syntax

From an MVS console:

START

```
START procname
 ,identifier
 ,CUST=EKGCUST
 ,CUST=member
 ,INIT=methodname

 ,NAME=task_name
 ,NAME=rodmname
 ,TYPE=WARM
 ,TYPE=COLD
 ,TYPE=COLDFORC
 ,CLRSSB=NO
 ,CLRSSB=YES
```

From a NetView terminal:

START

```
RODM START
 CUST=EKGCUST
 CUST=member
 INIT=methodname
 NAME=task_name
 NAME=rodmname

 TYPE=WARM
 TYPE=COLD
 TYPE=COLDFORC
 CLRSSB=NO
 CLRSSB=YES
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>START</td>
<td>S</td>
</tr>
<tr>
<td>COLD</td>
<td>C</td>
</tr>
<tr>
<td>WARM</td>
<td>W</td>
</tr>
</tbody>
</table>

Purpose of Command

RODM is initiated as a started task in the system. You can code the START operands in the job control language (JCL) or issue them with the RODM START command.

Operand Descriptions

`procname`

Specifies the name of the cataloged procedure that contains the JCL for RODM. The `procname` can also be the name of the started task.
identifier
Specifies the MVS job name identifying the task to be started. If you do not specify identifier, the procname is used as the name of your started task.

CUST=member
Specifies the name of the customization file to be loaded. This file must exist in the EKGCUST partitioned data set as specified in the RODM start JCL. The default is EKGCUST.

INIT=methodname
Specifies the name of the RODM INIT method to receive control after RODM is started. The value COLD or WARM is passed to the method when the method receives control.

Two IBM-supplied RODM INIT methods are provided:

EKGINIT
Specifies the sample PL/I initialization method.

EKGLISLM
Specifies the RODM load function INIT method.

NAME=rodmname
Specifies the name to be assigned to this RODM. This name is alphanumeric and can be up to 8 characters in length. The first character must be alphabetic. If you do not specify a name, the task name is assigned to this RODM.

TYPE
Indicates whether RODM is started warm or cold.

WARM
Indicates a warm start for RODM using data sets for which a checkpoint was previously taken. WARM is the default.

COLD
Indicates a cold start for RODM with an empty data cache. If you specify COLD, RODM prompts you to verify. If you indicate in the verification process that you do not want a cold start, RODM does not start. This happens to protect the checkpoint data from being overwritten in the event that you intended to specify a warm start.

COLDFORC
Specifies cold start without issuing message EKG1918D, which requires operator intervention.

CLRSSB
Specifies whether MVS clears the system status block (SSB) in the common storage area (CSA) for rodmname. Valid values are:

NO
Indicates the SSB for rodmname is not cleared in the event of a catastrophic system abend. NO is the default.

YES
Indicates the SSB for rodmname is cleared in the event of a catastrophic system abend. MVS does this because RODM was unable to recover sufficiently to clear the SSB itself.

Note: Use this parameter after a catastrophic RODM failure if you are unable to start a RODM with the same rodmname. If you specify YES, you clear the SSB for any active RODM with the same rodmname. After that, you will not be able to take a normal...
checkpoint for RODMs initialized with the same name. You might also have problems ending one of the RODMs.

Examples

Example: Cold-Starting RODM
To use the START command to cold-start RODM, enter the following from an MVS console:

```
$ EKGXRODM,TYPE=C
```

Response

A response similar to the following is displayed:

```
$HASP373 EKGXRODM STARTED
IEF403I EKGXRODM - STARTED - TIME=13.32.40
EKG1906I EKGXRODM: THE RODM NAME IS EKGXRODM.
EKG1901I EKGXRODM: NO INIT METHOD IS SPECIFIED.
04 EKG1918D EKGXRODM: RODM EKGXRODM WILL COLD START. ENTER '1' TO CONTINUE OR '2' TO TERMINATE.
```

```
r04,1
IEE600I REPLY TO 04 IS;1
```

```
EKG0002I EKGXRODM: THE CURRENT ACTIVE LOG FILE IS NOW EKGLOGP.
IEC161I 227-229,EKGXRODM,EKGXRODM,EKGD003
EKG5011I EKGXRODM: THE NUMBER OF CHECKPOINT FILES USED BY RODM IS 2.
IEC070I 203-204,EKGXRODM,EKGXRODM,EKGD001,231,CPDLB2,
IEC070I VSAM.DIV.CHKPT001,VSAM.DIV.CHKPT001.DATA,
IEC070I CATALOG.CNMICF1.VCPDLB2
EKG1900I EKGXRODM: RODM EKGXRODM INITIALIZATION IS COMPLETE WITH LE/370.
```

Example: Cold-Starting RODM and Assigning A Name
To use the START command to cold-start RODM and assign the name RODM1, enter the following from a NetView terminal:

```
RODM START TYPE=C,NAME=RODM1
```

Example: Starting a RODM Task
To use the START command to cold-start the RODM task RODM2, enter the following from an MVS console:

```
S EKGXRODM.RODM2,TYPE=C
```

Response

A response similar to the following is displayed:

```
$HASP373 EKGXRODM STARTED
IEF403I EKGXRODM - STARTED - TIME=13.38.18
EKG1906I RODM2: THE RODM NAME IS EKGXRODM.
EKG1901I RODM2: NO INIT METHOD IS SPECIFIED.
05 EKG1918D RODM2: RODM EKGXRODM WILL COLD START. ENTER '1' TO CONTINUE OR '2' TO TERMINATE.
```

```
r05,1
IEE600I REPLY TO 05 IS;1
EKG0002I RODM2: THE CURRENT ACTIVE LOG FILE IS NOW EKGLOGP.
IEC161I 227-229,EKGXRODM,RODM2,EKGD003
EKG5011I RODM2: THE NUMBER OF CHECKPOINT FILES USED BY RODM IS 2.
IEC070I 203-204,EKGXRODM,RODM2,EKGD001,231,CPDLB2,
IEC070I VSAM.DIV.CHKPT001,VSAM.DIV.CHKPT001.DATA,
IEC070I CATALOG.CNMICF1.VCPDLB2
EKG1900I RODM2: RODM EKGXRODM INITIALIZATION IS COMPLETE WITH LE/370.
```
Example: Cold-Starting the RODM Task RODM3 and Assigning A Name

To use the START command to cold-start the RODM task RODM3 and assign the name RODM4, enter the following from an MVS console:

S EKGXRODM.RODM3,TYPE=C,NAME=RODM4

Response

A response similar to the following is displayed:

$HASP373 EKGXRODM STARTED
IEF403I EKGXRODM - STARTED - TIME=13.41.21
EKG1901I RODM3: NO INIT METHOD IS SPECIFIED.
06 EKG1918D RODM3: RODM RODM4 WILL COLD START. ENTER '1' TO CONTINUE OR '2' TO TERMINATE.
r 6,1
IEE600I REPLY TO 06 IS;1
EKG0002I RODM3: THE CURRENT ACTIVE LOG FILE IS NOW EKGLOGP.
IEC161I 227-229,EKGXRODM,RODM3,EKGD003
EKG5011I RODM3: THE NUMBER OF CHECKPOINT FILES USED BY RODM IS 2.
IEC070I 203-204,EKGXRODM,RODM3,EKGD001,231,CPDLB2,VSAM.DIV.CHKPT001,
IEC070I VSAM.DIV.CHKPT001.DATA,CATALOG.CNMICF1.VCPDLB2
EKG1900I RODM3: RODM RODM4 INITIALIZATION IS COMPLETE WITH LE/370.

The following chart identifies the names in the preceding examples that become the RODM name and the MVS job name. An API request (such as connect) uses the RODM name, and the MVS MODIFY command uses the MVS job name.

<table>
<thead>
<tr>
<th>Example Number</th>
<th>Procname</th>
<th>Identifier</th>
<th>NAME= rodmname</th>
<th>RODM Name</th>
<th>MVS Job Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EKGXRODM</td>
<td></td>
<td>EKGXRODM</td>
<td>EKGXRODM</td>
<td>EKGXRODM</td>
</tr>
<tr>
<td>2</td>
<td>EKGXRODM</td>
<td>RODM1</td>
<td>RODM1</td>
<td>RODM1</td>
<td>EKGXRODM</td>
</tr>
<tr>
<td>3</td>
<td>EKGXRODM</td>
<td>RODM2</td>
<td>RODM2</td>
<td>RODM2</td>
<td>RODM2</td>
</tr>
<tr>
<td>4</td>
<td>EKGXRODM</td>
<td>RODM3</td>
<td>RODM4</td>
<td>RODM4</td>
<td>RODM3</td>
</tr>
</tbody>
</table>

A RODM warm start indicates that the data cache structure and the contents available to connected applications are initialized from whatever state is reflected in the checkpoint data sets. You can define these data sets to RODM through the DD statements EKGMAST, EKGMTRAN, and EKGD001 through EKGD512 in the RODM system start JCL.

A RODM cold start implies that RODM is not restored from a checkpoint data set and is reset to contain the following RODM system classes and objects:

- UniversalClass
- EKG_SystemDataParent
- EKG_System
- EKG_SystemObject
- EKG_NotificationQueue
- EKG_User
- EKG_Method

If the start operands specify an initialization method to be administered as part of the RODM initialization, that method can initialize the data cache structure and contents before the data cache becomes accessible to any application. The initialization method can issue a checkpoint request to cause the in-memory cache
to be written to a data set on DASD. When this process is complete, the rest of the initialization process can complete.
STARTCNM (NCCF; CNME1015)

Syntax

```
STARTCNM
```

Notes:

1. Depending upon the TOWERs you have enabled in CNMSTYLE, not all operands and related tasks may apply to your NetView. For example, NPDA and GRAPHICS only apply if those TOWERs are enabled. The ALL operand starts only those tasks which apply to your NetView.

Purpose of Command

The STARTCNM command list starts the following tasks:

- **AON** If Automated Operations Network (AON) is installed, the STARTEZL ALL command is issued
- **AAUTCNMI** Session monitor
- **AAUTSKLP** Session monitor
- **BNJDSE36** 4700 Support Facility
- **BNJDSERV** 4700 Support Facility and hardware monitor
- **BNJMNPD** Hardware monitor
- **CNMTAMEL** Communications between NetView and external components, for example, NMC and GMFHS
  - domid’VMT’ Status monitor
  - domid’BRW’ Log browse and status monitor
  - domid’LUC’ LUC communications (session monitor and hardware monitor)
- **DSI6DST** Management services transport task
Operand Descriptions

**ALL**
Starts all the tasks listed under the STARTCNM command. The default is ALL.
When starting AON, the policy file(s) that are loaded are determined by your CNMSTYLE policy definitions.

**AON**
Issues the STARTEZL ALL command if AON is installed. The policy file(s) that are loaded are determined by your CNMSTYLE policy definitions.

**AONCONFIG**
Issues the STARTEZL CONFIG command if AON is installed. The policy file(s) that are loaded are determined by your CNMSTYLE policy definitions.

**AONDDF**
Issues the STARTEZL DDF command if AON is installed.

**AONLOG**
Issues the STARTEZL LOG command if AON is installed.

**AONSTATUS**
Issues the STARTEZL STATUS command if AON is installed.

**GRAPHICS**
Starts the CNMAMEL, DUIDGHB, DUIFSSCO, DUIFCSGW, and FLBTOPO tasks.
For more information, refer to the Tivoli NetView for z/OS Installation.
Configuring Graphical Components.

**LBrowse**
Starts the log browse task ‘domid’BRW.

**NETLOG**
Starts the network log task DSILog.
NLDM
Starts the tasks necessary for session monitor: DSIAMLUT, AAUTCNMI, AAUTSKLP, DSICRTR, and ‘domid’LUC.

NPDA
Starts the tasks necessary for hardware monitor: BNJDSERV, BNJMPDA, DSICRTR, ‘domid’LUC, and DSI6DST.

OR
Starts the RODM task DSIQTSK.

SNATM
Starts the FLBTOPO task.

STATMON
Starts the task necessary for status monitor: ‘domid’VMT and ‘domid’BRW.

TARA
Starts the tasks necessary for the 4700 Support Facility: BNJDSE36 and BNJDSERV.

TRACELOG
Starts the trace log task DSITRACE.

Examples

Example: Starting Tasks
For a list of the tasks that can be started, see “Purpose of Command” on page 921.

Note: The STARTCNM ALL command checks if AON is installed. If it is installed, it starts AON by issuing the STARTEZL ALL command.

Example: Starting Hardware Monitor Tasks
To start hardware monitor tasks only (not including 4700 Support Facility tasks), enter:
STARTCNM NPDA
STARTDOM (NCCF; CNME7001)

Syntax

STARTDOM

```
STARTDOM domainid logmode
```

Purpose of Command

The STARTDOM command list starts cross-domain communication between the operator entering the command list and the domain entered. If you use STARTDOM to start a session over a switched line and the line has not been dialed, STARTDOM dials the domain before establishing the session.

Operand Descriptions

- **domainid**
  - Specifies the domain name with which to start a session.

- **logmode**
  - The logmode entry indicating the desired session bind operands. If you do not specify this operand, the logmode name defaults to the logmode name on the DLOGMOD entry coded on the APPL statement. If used with the hardcopy log, the logmode is the printer logmode.

Restrictions

The following restrictions apply to the STARTDOM command:

- The **domainid** must be a valid VTAM resource name.
- The **domainid** must be defined to the host at which the command list is run with a resource routing definition (RRD) statement.
- Provide the link station name and CDRM name as common global variables, if a dial is to be performed over a switched line. Use the SETADIAL command list, which must be run under the primary program operator interface task (PPT), to set these variables. The format of the SETADIAL command list is:

  ```
 SETADIAL domainid linkname cdrmname
  ```

  Refer to the [Tivoli NetView for z/OS Installation: Configuring Additional Components](#) for more information about SETADIAL.

Examples

**Example: Starting a Session Between Your Domain and Domain CNM02**

If you want to start a session between your domain and domain CNM02, enter:

```
STARTDOM CNM02
```
STATAPI (RODM)

Syntax
From an MVS console:

```
STATAPI
```

```
MODIFY name,STATAPI,CLEAR
```

From a NetView terminal:

```
STATAPI
```

```
RODM STATAPI,CLEAR
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIFY</td>
<td>F</td>
</tr>
</tbody>
</table>

Purpose of Command
The STATAPI command specifies that RODM writes the API statistics to the RODM log file as a type 8 record.

Operand Descriptions

- `name`
  Specifies the RODM MVS job name.

- `CLEAR`
  Clears the API statistics counters after writing the API statistics to the RODM log file as a type 8 record.

Restrictions
To write the API statistics to the RODM log, the RODM log must be active. You can query the RODM log with the RODM LOGQ command.

Examples

**Example: Writing API Statistics and Clearing Counters**
To write the API statistics to the RODM log file as a type 8 record and clear the API statistics counters, enter the following from a NetView terminal:

```
RODM STATAPI,CLEAR
```
**STATCELL (RODM)**

**Syntax**

From an MVS console:

```
STATCELL

MODIFY name,STATCELL,STATLOCK
```

From a NetView terminal:

```
STATCELL

RODM STATCELL,STATLOCK
```

**IBM-Defined Synonyms**

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIFY</td>
<td>F</td>
</tr>
</tbody>
</table>

**Purpose of Command**

The STATCELL command specifies that RODM writes the cell pool statistics to the RODM log file as a type 8 record.

**Operand Descriptions**

`name`

Specifies the RODM MVS job name

**Examples**

**Example: Writing Cell Pool Statistics to the RODM Log File**

To write the cell pool statistics to the RODM log file as a type 8 record, enter the following from a NetView terminal:

```
RODM STATCELL
```
STATIONS (NCCF; CNME0033)

Syntax

```plaintext
STATIONS

node

node,ALL

,ACT

,ACTONLY

,INACT

,INACTONLY

,CONCT

,PENDING

,RESET

(1)

,passthru
```

Notes:
1. If you do not specify a positional parameter, indicate the absence of the parameter by specifying a comma in its place.

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>A</td>
</tr>
<tr>
<td>INACT</td>
<td>I</td>
</tr>
</tbody>
</table>

Purpose of Command

The STATIONS command list displays the status of all cross-subarea link stations within each node or for a specific node.

Operand Descriptions

`node`

Specifies the name of a node. If you omit this operand, information is displayed about all link stations in every active node.

`ACT`

Specifies that information is to be displayed about all active, pending, and connectable link stations within each node or specific node.

`ACTONLY`

Specifies that information is to be displayed about all link stations in an active state within each node or specific node. The display does not include link stations in pending or connectable states.

`ALL`

Specifies that information is to be displayed about all link stations (regardless of their status) within each node or specific node. ALL is the default.

`CONCT`

Specifies that information is to be displayed about all link stations in a CONCT (connectable) state within each node or specific node.
INACT
  Specifies that information is to be displayed about all inactive link stations within each node or specific node.

INACTONLY
  Specifies that information is to be displayed about all inactive link stations within each node or specific node. Resources in a RESET state are not included in the display.

PENDING
  Specifies that information is to be displayed about all pending link stations within each node or specific node. A pending state is a transient state to or from the fully active state.

RESET
  Specifies that information is to be displayed about all link stations in a RESET state within each node or specific node.

passthru
  Specifies up to 6 parameters which are appended unchanged to the VTAM DISPLAY command issued by the STATIONS command. No validation for duplicate or conflicting parameters is performed.

Usage Notes
Consider the following when using the STATIONS command:

- If the status parameter (ALL, ACT, and so on) is omitted, and no passthru parameters are specified, then ALL is the default. However, if passthru parameters are specified and there is no status parameter specified, NetView does not include a SCOPE= keyword in the generated VTAM DISPLAY command. This enables you to include your own SCOPE= keyword using the passthru parameter.
- The valid values for the status parameter depend on the level of VTAM you are using.

Examples

Example: Displaying All the Link Stations
To display all the link stations, enter:

STATIONS

Response

A response similar to the following is displayed:

IST097I DISPLAY ACCEPTED
IST350I DISPLAY TYPE = STATIONS
IST393I PU T4/5 MAJOR NODE ISTPUS, SUBAREA=1
IST396I LNKSTA STATUS CTG GTG ADJNODE ADJSA NETID
IST397I 0CF-S ACTIV----I 1 1 NCPLOC1 107
IST610I LINE 0CF-L - STATUS ACTIV----I
IST314I END

The name of the physical unit is ISTPUS, the subarea address is 1, the link station name is 0CF-S, the status is ACTIV----I, the current transmission group (CTG) number is 1, and the defined transmission group number (GTG) is 1.
STATMON (STATMON)

Syntax

```
STATMON
```

Purpose of Command

The STATMON command invokes the status monitor full-screen mode. The status monitor dynamically collects information about SNA resources in the network and summarizes this information into a full-screen display. You can also use the status monitor to automatically reactivate specified failing resources and to browse the NetView log.

You can use the following commands while you are using the status monitor:

- BACK
- END
- FORWARD
- RETURN
- SCLIST
- SMENU
- SREFRESH
- SVTAM

Operand Descriptions

- `NETLOGA`
  The active network log.

- `NETLOGI`
  The inactive network log.

- `NETLOGP`
  The primary network log.

- `NETLOGS`
  The secondary network log.

- `nodename`
  The name of the node for which you want information.

Usage Notes

The following considerations apply to the STATMON command:

- For the STATMON command, if the common global variable CNMIMSTATMON contains a non-null value, the value is displayed at the bottom of the STATMON panel. This is useful for displaying the settings of your PF keys. You can set the
value of this common global variable using the PFKDEF command. For more information, refer to the Tivoli NetView for z/OS Customization Guide.

- If you specify only STATMON, the Domain Status Summary panel is displayed. If you enter a node name, the Node Status Detail panel is displayed for the specified node name.
- When you use this command, the status monitor component remains on the NetView component stack which is used with the ROLL command.
- The status monitor uses colors on color terminals or high and normal intensity on monochrome terminals to display information about different resource states. These states can be any of the following:

  **ACTIVE**
  - Nodes that are active (shown in green or normal intensity)

  **PENDING**
  - Nodes that are waiting to become active or inactive (shown in white or normal intensity)

  **INACT**
  - Nodes that have been inactivated (shown in red or high intensity)

  **MONIT**
  - Nodes that are inactive, but that the status monitor is automatically trying to reactivate (shown in turquoise or normal intensity)

  **NEVACT**
  - Nodes that have never been in an active state (shown in turquoise or normal intensity)

  **OTHER**
  - All other possible states (shown in turquoise or normal intensity)

When you first enter the status monitor, the status of the resources shown in the status monitor panels is refreshed automatically. You can then press the PF5 key to stop the resources from being refreshed automatically.
<table>
<thead>
<tr>
<th>VTAM Status Code</th>
<th>VTAM Status</th>
<th>Status Monitor Status</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>00xx</td>
<td>Inactive</td>
<td>Inactive (INACT)</td>
<td>The exceptions are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0000 (Reset) is mapped to OTHER. This is a substate of the VTAM Inactive status and is handled differently because of multiple ownership considerations.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0002 (Released) is mapped to OTHER. This is a substate of the VTAM Inactive status and is handled differently because of multiple ownership considerations.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• If the resource has been selected for re-activation by using the STATOPT statement, it is mapped to MONIT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• If the resource never reaches the active state since the resource has been known to VTAM, it is mapped to NEVACT. If the resource is released or reset, all the information associated with the resource is lost. Inactivating a major node causes all of the resources under it to be reset.</td>
</tr>
<tr>
<td>01xx</td>
<td>Pending Active</td>
<td>Pending (PENDING)</td>
<td></td>
</tr>
<tr>
<td>02xx</td>
<td>Connectable</td>
<td>Other (OTHER)</td>
<td></td>
</tr>
<tr>
<td>03xx</td>
<td>Reactivate</td>
<td></td>
<td>This VTAM status is changed to a VTAM Active or Inactive status after the resource it reactivated. Until then, this VTAM status is not mapped to a status monitor status.</td>
</tr>
<tr>
<td>04xx</td>
<td>Pending Active</td>
<td>Pending (PENDING)</td>
<td></td>
</tr>
<tr>
<td>05xx</td>
<td>Active</td>
<td>Active (ACTIVE)</td>
<td></td>
</tr>
<tr>
<td>06xx</td>
<td>Routable</td>
<td>Other (OTHER)</td>
<td></td>
</tr>
</tbody>
</table>
STATS (NPDA; CNME3005)

Syntax

STATS

Purpose of Command

The STATS command list displays a list of the most recent statistics for the specified resource.

Operand Descriptions

resname

Specifies the symbolic name of the resource. You can specify up to five resource names to fully qualify the resource for which data is to be displayed. For more information about specifying resource names in a hierarchy, refer to the Tivoli NetView for z/OS User's Guide.

Restrictions

The following restrictions apply to the STATS command:

• This command list generates the NPDA MRECENT ST command.

Examples

Example: Generating the Most Recent Statistics Panel for a Specified PU
To generate the Most Recent Statistics panel for PU08, enter:

STATS PU08
STATUS (GMFHS)

Syntax

GMFHS STATUS

Purpose of Command

The NetView GMFHS STATUS command provides a summary report showing the status of the GMFHS job.

You can enter the STATUS command from the MVS console using the MVS MODIFY command, or from a NetView terminal using the GMFHS command list.

Examples

Example: Displaying the Status of the GMFHS Job

To display the status of the GMFHS job, enter:

GMFHS STATUS

Response

A response similar to the following is displayed:

DUI4040I STATUS DISPLAY
DUI4041I RODM CONFIGURATION STATUS = COMPLETE
DUI4043I TYPE = GDS STATUS = ACTIVE SESSION = NTEFI016
DUI4042I TYPE = CNMTAMEL STATUS = ACTIVE SESSION = CNMTAMEL
PPIST = OK
DUI4042I TYPE = SCOPT STATUS = ACTIVE SESSION = DUIFSSCO
PPIST = OK
DUI4043I TYPE = RODM STATUS = ACTIVE SESSION = RODMNAME
DUI4037I END

This response contains the status of GMFHS sessions. For the graphic data server (GDS), this includes the logical unit (LU) name where the GDS resides. For CNMTAMEL and the scope checker (SCOPT), the response includes the status of the PPI.
STATUS (NCCF; CNME0034)

Syntax

```
NCCF STATUS
```

```status code```

Purpose of Command

The NCCF STATUS command list displays information about VTAM status codes and status modifiers.

Operand Descriptions

```
code
```

Is the status code, or optionally, the status modifier.

Examples

Example: Receiving an Explanation for Status Code

```
STATUS=PCTD1
```

To receive an explanation for the status code STATUS= PCTD1, enter:

```
STATUS PCTD1
```

Example: Receiving an Explanation for Status Code ACTIV-N---

```
STATUS ACTIV-N---
```

To receive an explanation for the status code ACTIV-N---, enter:

```
STATUS ACTIV-N---
```

where -N--- is a modifier. When the code explanation displays, press the Help key to display help for the modifier.
STOP (EAS)

Syntax

EAS STOP

MODIFY proclename,STOP -TASK=(taskid)

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIFY</td>
<td>F</td>
</tr>
</tbody>
</table>

Purpose of Command

The STOP command stops any event/automation service task that is not already stopped. Use the first form to stop only one service task and the second form to stop one or more service tasks.

Note: If an attempt is made to stop a task that is already stopped, a warning console message will be issued.

Operand Descriptions

proclename

Specifies the event/automation service job name.

TASK=taskid

Specifies the service tasks to be stopped. The taskid can have the following values:

- ALERTA: The alert adapter service task
- MESSAGEA: The message adapter service task
- EVENTRCV: The event receiver service task
- TRAPALRT: The trap to alert conversion task
- ALRTTRAP: The alert to trap conversion task
- ALL: All service tasks

Restrictions

The following restrictions apply to the STOP command:

- You can specify only one TASK operand for each STOP command. If you want to specify more than one service task, separate each taskid with a comma and enclose the taskids string within parentheses.
- This command cannot be used to stop the entire event/automation service address space. If you want to stop the entire address space, refer to the TERM (EAS) command help.
Examples

Example: Stopping a Service Task
To stop the alert adapter service task for the event/automation service job named IHSAEVNT, enter:
F IHSAEVNT,STOP,TASK=ALERTA

Response
You should receive the following response:
IHS0118I Alert Adapter task has terminated.

Example: Stopping Multiple Service Tasks
To stop the alert adapter and message adapter service tasks for the event/automation service job named IHSAEVNT, enter:
F IHSAEVNT,STOP,TASK=(ALERTA,MESSAGEA)

Response
You should receive the following response:
IHS0118I Alert Adapter task has terminated.
IHS0118I Message Adapter task has terminated.
STOP (NCCF)

Syntax

```
NCCF STOP
```

Purpose of Command

The NCCF STOP command stops:

- A session between the entering operator and another domain
- A hardcopy log (printer)
- Enabled PIPE PERSIST elements
- A resource within a span
- A span (deletes it from an operator’s span of control)
- A task
- A process running on the target task
- A TSO command server task
- A z/OS UNIX command server task
Operand Descriptions

DOMAIN=domainid

 Ends the cross-domain session between the specified domain and the local domain.

FORCE

 Use STOP FORCE to rescue a task that appears unable to process normally. To terminate a task, use STOP TASK. If a task hangs in termination processing, it can abend with a system code of X‘EC4’ and no dump. If the target task is not an optional task, and is found to be ready and waiting for work (not hung or currently processing a command), message DSI530I will be issued.

 STOP FORCE processing always uses the least intrusive interruption consistent with the state of the target task. If the problem at the target task does not clear up within a minute or so, then repeating the STOP FORCE command will result in more aggressive interruption.

Attention: Optional tasks do not recover and continue when their functions are abnormally interrupted. You will have to issue a START command to reactivate optional tasks.

 Optional tasks can take many minutes to terminate normally. When STOP FORCE is issued for a target task that is already in the process of terminating, the action of STOP FORCE can be delayed by up to a minute. Remember, when you issue STOP FORCE before I/O activity ends you can cause data sets to be corrupted.

 Valid parameters are:

 hclname

 Indicates which hardcopy log is to be deactivated.

 nntname

 Indicates which NetView-NetView task (NNT) is to be deactivated.

 taskname

 Indicates which task is to be deactivated.

 terminal_name

 Indicates which NetView terminal session is to be deactivated.

 HCL=hclog

 Is the current name of the hardcopy log task you want to end.

IMMED

 Unconditionally terminates a task, log, or session. The parameters are the same as those for the STOP FORCE command.

 The STOP IMMED command terminates a task, including all normal cleanup procedures, but will not reinstate the task. Before using STOP IMMED always exhaust all other options. Be sure to make a note of the cautions listed under STOP FORCE. Collect documentation for a problem report for Tivoli Customer Support before issuing STOP IMMED. STOP IMMED will immediately interrupt and terminate the target task. An X‘EC4’ abend will be reported.

 Attention: The target task will lose storage and possibly other resources. Data sets can be corrupted.

MEM=

 Specifies the name of the DSIPARM member that contains the JCL for the TSO
server job. If the TSOSERV was started as a submitted job, the default is CNMSJTSO. If the TSOSERV was started as a started task, the default is CNMSSTSO. Refer to the DEFAULTS STRTSERV command for more information.

OP=
For HCL, ends a session with a hardcopy log.

" " Specifies to end your hardcopy log session. This is the default.

ALL
Ends all connections with the named hardcopy log.

operid
Specifies to end a session with the hardcopy log and the specified operator.

For TSOSERV, specifies a valid NetView operator ID or " (quote quote), indicating the NetView operator for whom this server is to be stopped, or NONE indicating that this server will no longer be considered a global server. " indicates that the ID of the NetView operator issuing the STOP command is to be used. Note that the server is disassociated with the specified operator, but is not stopped as long as it is still associated with another operator or considered global. The default is ".

PERSIST=
Ends enabled PIPE PERSIST elements.

persist_name
Specifies the name of the PIPE enabling the PERSIST element. If more than one element has the same name, all the elements are ended. The name is case sensitive.

LRC_serial
Specifies the long running command serial number.

Note: You can use the LIST PERSIST command to identify the *persist_name* or *LRC_serial* number.

RESOURCE=*name*
The named resource (such as a terminal) is made unavailable to span of control checking in this NetView system. You cannot use wildcard characters in the resource name. The resource name must exactly match a resource name in a span of control definition. When a resource is stopped and an exact match is found for the resource name in a span of control definition, span of control checking stops and resource access is denied. The only exception is for operators with CTL=GLOBAL, which bypasses span of control checking.

When a resource in this domain is stopped, the system implicitly routes a command to another domain, even if the resource is also assigned to another domain during installation.

For more information about implicit routing, refer to the RRD statement described in the *Tivoli NetView for z/OS Administration Reference*.

SPAN=*span_name*
The span list (*span_name*) is taken out of an operator’s control.

TASK=*taskname*
Use STOP TASK to cause another task to end normally. However, you cannot stop the PPT or any of these tasks:

- DSIDCBMT
- DSIHLLMT
Using the STOP TASK command to stop individual tasks can cause communication failures between active tasks. For example, if you stop task AAUTSKLP while using the command facility, and then enter the NLDM command, you might not get a response to the NLDM command, if the communication with task DSIAMLUT had failed because task AAUTSKLP stopped. To prevent this situation from occurring, use the STOPCNM NLDM command so that all the NLDM tasks are stopped as one unit.

STOP TASK issues DSI660 when it initiates the stop process. You will receive DSI600 when the target task is detached. You will not be able to restart the task until after the DSI600 is received. If you issued STOP TASK in a pipeline, use CORRWAIT to cause the pipeline to wait until the stop process is complete.

Optional tasks can take many minutes to terminate normally. Other tasks should terminate promptly. For non-optional tasks only, if termination has not completed approximately one minute after the STOP TASK command, NetView will automatically issue STOP FORCE.

TSOSERV=

Specifies a valid TSO user ID or '' (quote quote), indicating the NetView operator ID is to be used as the TSO user ID.

UNCOND

Unconditionally deactivates a task, log, or session. The parameters are the same as those for the STOP FORCE command.

The STOP UNCOND command causes storage owned by the target task to be lost. Message BNH160 will be issued. Some definitions for the task will be lost.

Attention: You are strongly urged never to use STOP UNCOND because it destroys important task control information in NetView. You might not be able to restart NetView until the next IPL of MVS. If you do use STOP UNCOND, do the following:

1. Note the cautions listed in STOP IMMED
2. Issue STOP IMMED
3. Collect documentation for Tivoli Customer Support to determine the cause of the STOP IMMED failure
4. Be ready to close and restart NetView at your earliest opportunity.

UNIXSERV=

Stops the UNIX server.

Restrictions

The following restrictions apply to the STOP command:

- If you issue the STOP IMMED, or STOP UNCOND command, transactions in progress might not finish writing VSAM data. For STOP FORCE, the I/O in process at the time of the abend is completed.
Data services tasks are reinstated by ending any pending VSAM I/O and then terminating the data services task. You will receive DSI600 when the target task is detached. You will not be able to restart the task until after the DSI600 is received.

You can restart data services tasks and hardcopy tasks using the START command.

For data services tasks, you should issue STOP TASK so that the task can attempt normal termination. If the task has not terminated within a reasonable amount of time, issue STOP FORCE. Only as a last resort should you use STOP IMMED. The task hangs in termination processing, it can abend with a system abend of X'EC4' and no dump. Any transactions in progress might not finish writing VSAM data. Only the I/O in process at the time of the abend is completed.

If you stop task DSIAMLUT using STOP TASK, STOP FORCE, STOP IMMED, or STOP UNCOND, also stop task AAUTSKLP. Restart task AAUTSKLP after you restart task DSIAMLUT. You can issue STOP for AAUTSKLP followed by START for AAUTSKLP after DSIAMLUT ends if you want to recover AAUTSKLP. However, this procedure is not recommended. You should use STOPCNM NLDM and STARTCNM NLDM.

The following tasks run continuously, and are reinstated by the NetView program automatically if they fail, unless they reach the MAXABEND limit. If you attempt to stop them using the STOP TASK or STOP FORCE command, the tasks respond with message BNH110I and continue running. The tasks are:

- DSIDCBMT
- DSIHLLMT
- DSILogMT
- DSIMONIT
- DSISTMMT
- DSITIMMT

You can recycle these tasks by using STOP IMMED. If you use STOP IMMED, these tasks will abend and the NetView program will automatically restart them. This forced abend is counted against the MAXABEND limit for the task.

The MAXABEND count for a task will be reset to zero if the task has run for at least one hour since the last abend.

For STOP TASK, STOP FORCE, STOP IMMED, and STOP UNCOND taskname can be that of a virtual OST (VOST). VOST task names are of the form DSI#nnnn where nnnn is in the range of 0000–9999.

For STOP TASK and LOGOFF OST and NNT tasks only, either command initiates monitoring of the task. If approximately one minute elapses and the task has not completed termination, then the task suffers a system abend EC4.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Processing was successful.</td>
</tr>
<tr>
<td>8</td>
<td>An error occurred during processing.</td>
</tr>
</tbody>
</table>
Examples

Example: Stopping Your Hardcopy Logging Sessions
To stop your hardcopy logging sessions, enter:
STOP HCL=NRN1520A

Response

A message similar to the following is received.
DSI056I NRN1520A SESSION STOPPING FOR OPER1.
STOPCNM (NCCF; CNME1016)

Syntax

```
STOPCNM
```

Notes:

1. Depending upon the TOWERs you have enabled in CNMSTYLE, not all operands and related tasks may apply to your NetView. For example, NPDA and GRAPHICS only apply if those TOWERs are enabled. The ALL operand starts only those tasks which apply to your NetView.

Purpose of Command

The STOPCNM command list stops the following tasks:

- **AON** If Automated Operations Network (AON) is installed, the STOPEZL ALL command is issued
- **AAUTCNMI** Session monitor
- **AAUTSKLP** Session monitor
- **BNJDSE36** 4700 Support Facility
- **BNJDSERV** 4700 Support Facility and hardware monitor
- **BNJMNPD** hardware monitor
- **CNMTAMEL** Communications between NetView and external components, for example, NMC and GMFHS
- `domid"VMT'` Status monitor
- `domid"BRW'` Log browse and status monitor
- `domid"LUC'` LUC communications (session monitor and hardware monitor)
- **DSI6DST** Management services transport task
- **DSIAMLUT** Session monitor
| **DSIATOPT** | AUTOTEST command |
| **DSICRTR** | CNM router task |
| **DSIGDS** | Network product support |
| **DSIHPDST** | High performance transport task |
| **DSIKREM** | Central Site Control Facility (CSCF) |
| **DSILOG** | Network log task |
| **DSIQTSK** | RODM |
| **DSIROVS** | PNA downstream support task |
| **DSITRACE** | Trace log task |
| **DSIUDST** | RMTCMD command task |
| **DUIDGHB** | NETCONV IP connection |
| **DUIFCSGW** | COS gateway autotask |
| **DUIFSSCO** | Scope checker OPT task |
| **FLBTOPO** | SNA Topology Manager autotask |

Operand Descriptions

ALL

Stops all tasks previously started using the `STARTCNM` command. The default is `STOPCNM ALL`.

AON

Issues the `STOPEZL ALL` command if AON is installed.

AONCONFIG

Issues the `STOPEZL CONFIG` command if AON is installed.

AONDDF

Issues the `STOPEZL DDF` command if AON is installed.

AONLOG

Issues the `STOPEZL LOG` command if AON is installed.

AONSTATUS

Issues the `STOPEZL STATUS` command if AON is installed.

GRAPHICS

Stops the `CNMTAMEL, DUIDGHB, DUIFSSCO, DUIFCSGW, and FLBTOPO` tasks.

LBROWSE

Stops the log browse task `domid`'BRW.

NETLOG

Stops the network log task `DSILOG`.

NLDM

Stops the session monitor tasks `DSIAMLUT, AAUTCNMI, and AAUTSKLP`.

NPDA

Stops the hardware monitor tasks `BNJDSERV, BNJMNPD, and BNJDSE36`.

OR

Stops the RODM task `DSIQTSK`.
SNATM
Starts the SNATM task FLBTOPO.

STATMON
Stops the status monitor task `domid`VMT.

TARA
Stops the 4700 Support Facility task BNJDSE36.

TRACELOG
Stops the trace log task DSITRACE.

Restrictions

The following restrictions apply to the STOPCNM command:

- Check with your system programmer before using this command list.
- Use the STOPCNM command list when terminating a VSAM DST (NETLOG or TRACELOG).
- The CNM router task (DSICRTR) is not affected by STOPCNM.
- Wait until you receive the DST IS READY message to run this command list.
- If you stop task DSIAMLUT by using STOP FORCE or STOP TASK, also stop task AAUTSKLP. Restart task AAUTSKLP after you restart task DSIAMLUT. You should issue STOP for AAUTSKLP followed by START for AAUTSKLP after DSIAMLUT ends if you want to recover DSITSKLP. This procedure is not recommended. You should use STOPCNM NLDM and STARTCNM NLDM.
- The STOPCNM command list cannot run under the primary program operator interface task (PPT).

Examples

Example: Stopping All Tasks

Use the following command to stop the browse facility, hardware monitor, session monitor, status monitor, 4700 Support Facility, network log, trace log, network product support, NetView Management Console, SNA topology manager, management services transport, high performance transport, RMTCMD command, PNA downstream support tasks, RODM, CSCF, and AON (if installed):

```plaintext
STOPCNM ALL
```

Note: The STOPCNM ALL command checks whether AON is installed. If it is installed, it stops AON by issuing the STOPEZL ALL command.

Example: Stopping the Hardware Monitor and Support Facility Tasks

To stop the hardware monitor and 4700 Support Facility tasks (where the 4700 Support Facility is supported), enter:

```plaintext
STOPCNM NPDA
```
SUBMIT (NCCF)

Syntax

```
SUBMIT dataset_name
(dsiparm_member)
```

Purpose of Command

The SUBMIT command enters batch jobs into the system input stream to be processed.

Operand Descriptions

- **dataset_name**
 The name of the data set containing the jobs to be submitted. The data set must be cataloged. The data set can be sequential or a partitioned data set specified with a member. The data set name can be from 1–44 characters for sequential data sets and from 1–54 characters for a partitioned data set specified with a member.

- **(dsiparm_member)**
 The name of a member in the NetView DSIPARM data set. This member name must be in parentheses. The member name can be from 1 to 8 characters.

Restrictions

The following restrictions apply to the SUBMIT command:
- The SUBMIT command does not run on the primary program operator interface task (PPT).
- If you specify a data set name, the data set is dynamically allocated and then submitted to the internal reader.
- If a NetView DSIPARM member is submitted, the member is submitted to the internal reader.
- The SUBMIT command supports submitting batch jobs that have instream job control language (JCL), and the data set being submitted can have JCL DD data statements that have instream JCL. The SUBMIT command supports the JCL DLM operand.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful processing.</td>
</tr>
<tr>
<td>4</td>
<td>Not a valid command.</td>
</tr>
<tr>
<td>8</td>
<td>Error in processing. Check the accompanying DSI or CNM prefix message for more information.</td>
</tr>
</tbody>
</table>
Examples

Example: Submitting a Job from the NetView DSIPARM Data Set
To submit a job from the NetView DSIPARM data set, member name DUMPSMF, enter:
SUBMIT (DUMPSMF)

Response
CNM279I DUMPSMF (JOB00357) SUBMITTED

Example: Submitting a Job from a Sequential Data Set
To submit a job from a sequential data set named RESTSMF.BATCH, enter:
SUBMIT RESTSMF.BATCH

Response
CNM279I RESTSMF (JOB00358) SUBMITTED

Example: Submitting a Job from a Partitioned Data Set
To submit a job from a partitioned data set named SYS1.PROCLIB, with member name INSTALL, enter:
SUBMIT SYS1.PROCLIB (INSTALL)

Response
CNM279I INSTALL (JOB00359) SUBMITTED
SUSPNRM (NCCF; CNME8602)

Syntax

```
SUSPNRM
```

Purpose of Command

The SUSPNRM command suspends NetView Resource Manager (NRM) processing.
SVFILTER (NPDA)

Syntax

SVFILTER

SvTypes:

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVFILTER</td>
<td>SVF</td>
</tr>
<tr>
<td>ALARM</td>
<td>ALM</td>
</tr>
<tr>
<td>NOALARM</td>
<td>NOALM</td>
</tr>
<tr>
<td>HIGHINT</td>
<td>HIG</td>
</tr>
<tr>
<td>UNDERSCORE</td>
<td>UND</td>
</tr>
<tr>
<td>BLINK</td>
<td>BLI</td>
</tr>
<tr>
<td>REVERSE</td>
<td>REV</td>
</tr>
<tr>
<td>TURQUOISE</td>
<td>TUR</td>
</tr>
</tbody>
</table>
Purpose of Command

The SVFILTER command enables you to control which records are displayed at your terminal.

Operand Descriptions

CLEAR

Specifies that all viewing filter elements are to be removed and that the default condition for the viewing filter is to be reset to PASS. Do not specify other operands when using the CLEAR operand.

Note: If a filter is cleared, the default for that filter is reset to PASS, not to the default prior to clearing. For example, the initial default for the viewing filter is PASS. If the default was changed to BLOCK with the SVFILTER BLOCK DEFAULT command and you then enter the SVFILTER CLEAR command, the default for the viewing filter is changed to PASS (the initial default).

BLOCK

Specifies that the data matching the conditions expressed in this filter element is to be blocked from view.

PASS

Specifies that the data matching the conditions expressed in this filter element is to be allowed through viewing and displayed to the operator.

DEFAULT

Specifies that the current viewing filter default is to be overridden with a new default. Either PASS or BLOCK can be specified. If you specify BLOCK, no alerts are displayed. One or more SVFILTER PASS filters are required to display specific alerts.

BLOCK DOMAIN

Enables the focal point operator to block out alerts from specified distributed host domains. You can specify up to six domain names on one SVFILTER command. These domain names cannot be network-qualified; therefore, the BLOCK DOMAIN blocks alerts regardless of the network in which the alert originated.

Note: If you specify the DOMAIN keyword, you can only specify BLOCK. PASS is not allowed when you use the DOMAIN keyword.

TIME

Specifies that only the data recorded during the indicated time period, before the data request, is to be displayed. This specification is effective only while you are viewing the Total Events or Total Statistics panels. Also specify the PASS and time operands when you use the TIME operand.
time
Specifies the elapsed time in hours and minutes to be used with the TIME operand. The format of time is controlled by the setting of the time operands of the DEFAULTS and OVERRIDE commands.

COLOR
Sets a filter defining the color in which an alert is displayed when the alert is presented on the Alerts-Dynamic, Alerts-Static, or Alerts-History panels. COLOR cannot follow BLOCK.

color_parms
Specifies from one to four parameters associated with COLOR. You can specify up to four parameters, but only one from each of the four groups can be selected. The four groups of parameters are:

ALARM|NOALARM
Specifies whether an alarm is to sound when an alert is received. The default is ALARM. This parameter is ignored when the Alerts-History and Alerts-Static panels are built. It applies only when a new alert is rolled onto the Alerts-Dynamic panel.

HIGHINT
Specifies that text is to appear more intense on monochrome terminals.

UNDERSCORE|BLINK|REVERSE
Specifies whether the alert is to be underscored, to blink, or to be presented in reverse video.

TUR|BLUE|GREEN|PINK|RED|WHITE|YELLOW
Specifies whether the alert is to be presented in turquoise, blue, green, pink, red, white, or yellow. TUR (turquoise) is the default.

C
Identifies the operand that follows as an event (alert) descriptor identifying code for a problem record in a format other than the generic network management vector transport (NMVT) or management services unit (MSU) format.

code
Specifies the code that identifies a particular event or alert. You can determine this code by entering the appropriate SEL number (nn) plus the character C (for nongeneric alerts) on the command line of the Alerts-History, Alerts-Static, or Most Recent Events panels. The following reply is displayed:

BNJ962I AL/EV DESCRIPTION CODE FOR SELECTION nn IS bbbcc

where bbb is the block ID and cc is the action code.

E
Identifies the operand that follows as an event type.

etype
Specifies the event type on which the filter item is based. Event types are:

• AVAL
• BYPS
• CUST
• DLRC
• ENV
• HELD
• IMPD
• IMR
• INST
• INTV
• NTFY
Identifies the operand that follows as a resource name or resource names.

The N keyword specifies that the resource names specified match the trailing names in the hierarchy. For example, if you enter
SRFILTER AREC PASS N RES1 RES2, a record with the hierarchy
RES4 RES3 RES1 RES2 or RES1 RES2 matches this filter. A record with the
hierarchy RES4 RES1 RES2 RES3 does not match this filter because the names
RES1 and RES2 do not appear at the end of the resource hierarchy.

The special character % means that an exact hierarchy match must occur. For
example, if you enter
SRFILTER AREC PASS N RES1 RES2 %, a record with the
hierarchy RES1 RES2 would match this filter. A record with the hierarchy
RES4 RES1 RES2 would not match this filter. To have an exact match, the
number of resource names in the record must match the number in the filter
statement.

rename

Specifies the symbolic name of the resource. You can specify up to five
resource names to fully qualify the resource for which data is to be displayed.

You can use certain special characters (*, ?, and %) as part of the resource name
and resource name hierarchy.

NREF

Identifies the operand that follows as a resource name or resource names.

The filter element is satisfied if the specified resource name or resource names
are included in the resource hierarchy in the order stated. For example, if you
enter SRFILTER AREC PASS NREF RES1 RES2, an alert with a hierarchy of
RES4 RES1 RES2 RES3 matches this filter. Other hierarchies that match this
filter are RES1 RES2, RES1 RES2 RES4, and RES3 RES1 RES2. A record with a
resource hierarchy of RES1 RES3 RES2 does not match this filter. The
requirement is that the names specified in the filter statement be in the
hierarchy of the alert in the same order as specified in the filter.

You cannot use an asterisk by itself to represent a resource name that follows
the NREF keyword.

P

Specifies the product and alert identifier pair for a problem record that is in
generic NMVT or MSU format. You can determine the product set identifier
and the alert ID by entering the appropriate SEL number (nn) plus the
character C on the command line of the Alerts-History, Alerts-Dynamic, or
Most Recent Events panels. The following message is returned:

BNJ378I SELECTION nn FILTER CODE; PRODUCT ID pi
ALERT ID ac
Where \(pi \) is the product set identifier and \(ac \) is the alert ID. This information is also available on the last panel of the hardware monitor Event Detail panel.

prodid

Specifies the variable product identifier (hardware or software) of the alert or event sender.

alertid

Specifies the variable alert ID number representing a specific alert or event description.

T

Identifies the operand that follows as a resource type or resource types.

The T keyword specifies that the resource types specified match the trailing types in the hierarchy. For example, if you enter

\[\text{SRFILTER AREC PASS T TYP1 TYP2} \]

a record with the hierarchy TYP4 TYP3 TYP1 TYP2 or TYP1 TYP2 matches this filter. A record with hierarchy TYP4 TYP1 TYP2 TYP3 does not match this filter because the types do not appear at the end of the types list.

The special character % specifies that an exact hierarchy match must occur. If you enter

\[\text{SRFILTER AREC PASS T TYP1 TYP2 %} \]

a record with the hierarchy TYP1 TYP2 would match this filter. A record with TYP4 TYP1 TYP2 does not match this filter because it is not an exact match. To have an exact match, the number of resource types in the record must match the number in the filter statement.

type

Specifies the resource type. Examples of resource types are CHAN, COMC, CPU, and LCTL. You can specify up to five resource types to fully qualify the resource for which data is to be filtered.

You can use certain special characters (* and %) as part of the resource type and the resource type hierarchy.

TREF

Identifies the operand that follows as a resource type or resource types.

The filter element is satisfied if the specified resource type or resource types are included in the resource hierarchy in the order stated. For example, if you enter

\[\text{SRFILTER AREC PASS TREF TYP1 TYP2} \]

an alert with a hierarchy of TYP4 TYP1 TYP2 TYP3 matches this filter. Other hierarchies that match this filter are TYP1 TYP2, TYP1 TYP2 TYP4, and TYP3 TYP1 TYP2. The requirement is that the types specified in the filter statement be in the hierarchy of the alert in the same order as specified in the filter.

Do not use an asterisk (*) by itself to represent a resource type that follows the TREF keyword.

U

Specifies that user data follows. This allows filtering on the user data field (subvector X'33', subfield X'30') in an NMVT or MSU. You can determine the user data for an alert or event by entering the appropriate selection number (SEL#) and the character U on the command line of the Alerts-History, Alerts-Static, or Most Recent Events panel. The following message will be displayed:

\[\text{BNJ980I SELECTION nn USER DATA: uuuuu} \]

Where *uuuuu* is the user data for the alert. The first five characters of user data are returned. For a generic alert, the entire user data field is displayed on the Event Detail panel.
Note: Regardless of the length, filtering is performed using only the first five characters of the data.

userfield
Specifies one to five characters of user data.

Restrictions
The following restrictions apply to the SVFILTER command:

- The viewing filters are stored under the BNJDSERV task. If BNJDSERV is stopped, all viewing filters are cleared. If an operator logs off, the viewing filters for that operator are not cleared.
- Specify filter elements in the order shown in the syntax. Operators must specify their own viewing filters.
- With the exception of TIME, viewing filters apply only to the Alerts panels.
- You can use the SVFILTER command in a command list.
- The priority rules, as described for the SRFILTER command, also apply to the viewing filters for their common operands. The exception is the domain operand, which has the highest priority, and the R operand, which is not used.
- You can set alert color for the Alerts-Dynamic and Alerts-Static panels by the following means:
 - SVFILTER command with COLOR keyword
 - SRFILTER COLOR filter
 - Color map

If you do not set a COLOR filter for an alert, the alert is displayed based on its appropriate color map.

- Setting a COLOR recording filter for an alert overrides the color set in the color map. The recording filter color stays with the alert once the alert is logged to the hardware monitor database. If you change the color of a recording filter, it does not affect the color assigned to a previously logged alert.
- Setting a COLOR viewing filter with the SVFILTER command overrides both the SRFILTER COLOR command and the color map. This enables you to override the general setting of colors for alerts for each operator.
- If you set a default color filter, and if the alert does not match the specific color filter, the color attributes from the default color filter are used on the first line of the Alerts-Dynamic panel when the alert is rolled onto the screen. When the alert rolls off of the first line of the Alerts-Dynamic panel, the color map defines the color of the alert.
- In filtering, the hardware monitor treats the HELD event type as if it is a second alert or event type. This means a HELD event type is always associated with another event type. The HELD event type has the same priority as all other event types; therefore, the order in which you set the HELD type filter and other event type filters is important. For example, the default SVF AREC filters are set as follows:
 BLOCK E HELD
 PASS E PERM

Therefore, a permanent alert that is also a HELD alert is blocked because the BLOCK filter is the first matching filter encountered.
- Pattern matching support is provided for resource names, resource types, and resource name and resource type hierarchies using the special characters *, ?, and %. This support consists of the following:
* When used by itself, this character represents any resource name or type. This usage applies to resource names and types associated with the keywords N and T.

When appended to a resource or domain name, this character can represent any number of characters. Characters following an * are not allowed. This usage applies to resource names associated with the keywords N, NREF, and DOMAIN.

When you use * by itself to represent a resource name, it does not count in processing priority. For example, if you use * to represent resource names, the priority is the same as if you specified one resource name.

? A placeholder that represents exactly one character anywhere in a resource or domain name. You can use multiple ?s in a name. This usage applies to resource names associated with the keywords N, NREF, and DOMAIN.

% A trailing character that indicates that an exact match on a hierarchy of resource levels and resource names or types is required. Specify this character last, it must follow a resource name or type. This usage applies to resource names and types associated with the keywords N and T.

Examples

The format of times specified in the following examples assumes the default setting for time formats on the DEFAULTS and OVERRIDE commands.

Example: Setting a Filter to View Resources
To set a filter so only those resources with data less than 3 hours old, and those resources with attached resources less than 3 hours old, are viewed on the Total Events or Total Statistical Data panels, enter:

```
SVFILTER PASS TIME 3:00
```

Response

The usual response to an accepted command is as follows:

```
BNJ1355I SVF/SVFILTER COMMAND ACCEPTED
```

The following examples show the * and ? characters in the SVFILTER command with specified resource names or domain names.

Example: Blocking Alerts from a Resource
To block from view all alerts from any resource whose name begins with the letters RTP, enter:

```
SVFILTER BLOCK N RTP*
```

Example: Viewing Alerts from a Resource
To view all alerts from any resource name with exactly four characters, starting with RTP, enter:

```
SVFILTER PASS N RTP?
```

Example: Blocking Alerts from View
To block from view all alerts from any resource name with five or more characters, starting with RTP, enter:

```
SVFILTER BLOCK N RTP??*
```

Example: Blocking Alerts from View
To block from view all alerts meeting the following conditions:
• The name of the domain from which the alert was received is five characters in length.
• The first three characters of the domain name are CNM.
• The last character of the domain name is 1.
• The network in which the alert originated does not matter.

```
SVFILTER BLOCK DOMAIN CNM?1
```

The following examples show the usage of * by itself and % as a trailing character in the SVFILTER command with specified resource names or types.

Example: Viewing Alerts from Resources
To view all alerts from any resource name that matches on any hierarchy list of three or more resource names, ending with resource name RTP, enter:

```
SVFILTER PASS N * * RTP
```

Example: Blocking Alerts from Resources
To block any alerts from any resource that matches on a hierarchy list of exactly two resource types, with COMC as the level 1 resource type and LINE as the level 2 resource type, enter:

```
SVFILTER BLOCK T COMC LINE %
```

Example: Viewing Alerts from Resources
To view alerts for a resource that matches on any hierarchy list of exactly three resource names, ending with resource name RTP3, enter:

```
SVFILTER PASS N * * RTP3 %
```
SVTAM (STATMON)

Syntax

SVTAM

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVTAM</td>
<td>SV</td>
</tr>
</tbody>
</table>

Purpose of Command

The SVTAM command displays the VTAM commands that you can run against one or more of the displayed resources.

Examples

Example: Displaying Allowed VTAM Commands from a Status Monitor Panel
If you are displaying a status monitor panel containing resources, you can show a list of VTAM commands that you can run against one or more displayed resources by entering:

svtam
SWITCH (NCCF)

Syntax

```
SWITCH
```

```
SWITCH taskname P S T
```

```
RESET
```

Purpose of Command

The SWITCH command specifies or controls access to either the primary or the secondary network log, trace log, or AON automation logs, or switch control of the data services tasks (DSTs).

Operand Descriptions

`taskname`

The 1–8 character name of the DST. Use the LIST command to obtain this name.

`P`

Specifies that the primary VSAM file is to be active. For DSILOG and DSITRACE files, active requests are completed. New requests are sent to the primary file.

`S`

Specifies that the secondary VSAM file is to be active. For DSILOG and DSITRACE files, active requests are completed. New requests are sent to the secondary file.

`T`

Specifies that access to the currently active VSAM file, primary or secondary, is to end after the current requests are complete. New requests are rejected.

`RESET`

RESET causes the target file to be reset. It is optional, but when specified, it must follow either `P` or `S`. The RESET option is particularly useful for the AON automation log or a VSAM file associated with a user-written DST.

DSILOG or DSITRACE files are automatically reset whether or not RESET is specified.

Restrictions

The following restrictions apply to the SWITCH command:

- Do not specify RESET for VSAM files not defined with the REUSE option because OPEN errors can occur.
- The operator that issues the SWITCH command is notified of the VSAM data set OPEN or CLOSE completion by message DWO520I. The starter of the task or the authorized operator (if the starter of the task is not available) is notified of the VSAM data set OPEN or CLOSE completion by message DSI556I. It is possible to receive both DSI556I and DWO520I, which contain similar information.
- When you issue the SWITCH command within a NetView pipeline, message DWO520I will correlate to the pipeline.
- If you are operating in an environment, such as SMS, in which the database can be moved to a different volume as a result of deleting and redefining, you can
receive an open error in the form of message DSI556I with return code=X’08’ and
ACB error field=X’A8’. To delete and define a database in this type of
environment, free the database before deleting it and reallocate the database
after defining it. To do this, use the FREE command first and then the
ALLOCATE command.

- For the database associated with the hardware monitor, use task name
 BNJDSERV.
- For the database associated with the session monitor, use task name AAUTSKLP.
 Switching the session monitor database between the primary and secondary
 VSAM files could cause a session’s data to become divided between the two
 VSAM files. Dividing a session’s data can give unpredictable results when you
 try to display data that is not on the active VSAM file.
- If you specify T for the hardware monitor database, you will lose all incoming
 alerts.
- The SWITCH command issues the DSI545I, DSI546I, or DSI547I message to
 indicate which dataset is active. If these messages are specified HOLD(Y) in the
 Automation Table, they will be automatically removed from the NetView screen
 when no longer applicable.

Examples

Example: Switching to the Primary Network Log
To switch to the primary network log, enter:

SWITCH DSILOG,P
SWLD (NLDM; CNME2002)

Syntax

```
SWLD
```

Purpose of Command

The SWLD command list switches the files used by the session monitor to store data on a VSAM database.

Operand Descriptions

- **P** Specifies the primary VSAM database.
- **S** Specifies the secondary VSAM database.

Restrictions

The following restrictions apply to the SWLD command:

- The session monitor logs session data to VSAM at various times during a session. Switching the session monitor database between the primary and secondary VSAM databases can cause a session’s data to be divided between the two VSAM databases. Division of a session’s data can provide unpredictable results when you try to display data that is not on the active VSAM database.

- If you are operating in an environment, such as SMS, in which the database can be moved to a different volume as a result of deleting and redefining, you can receive an open error in the form of message DSI556I with return code=X’08’ and ACB error field=X’A8’. To delete and define a database in this type of environment, free the database before deleting it and reallocate the database after defining it. To do this, use the FREE command first and then the ALLOCATE command.

- If session recording has been suspended, possibly due to an I/O error, and you switched databases, recording might need to be resumed with the NLDM SMDR START command.

Examples

Example: Changing the Secondary Database

To change to the secondary database if you are encountering errors on the primary database, enter:

```
SWLD S
```

Response

A message similar to the following is displayed:

```
DSI547I AAUTSKLP: SECONDARY VSAM DATA SET IS NOW ACTIVE
```
SWPD (NPDA; CNME3006)

Syntax

```
SWPD
```

Purpose of Command
The SWPD command list switches the primary and secondary databases associated with the hardware monitor BNJDSERV task. The files are used to record hardware monitor data.

Operand Descriptions

- **P**: Specifies the primary database.
- **S**: Specifies the secondary database.

Restrictions
The following restrictions apply to the SWPD command:

- Use this command list to make the primary or secondary database active.
- You cannot run this command list from a multiple-entries panel.
- If you are operating in an environment, such as SMS, in which the database can be moved to a different volume as a result of deleting and redefining, you can receive an open error in the form of message DSI556I with return code=X’08’ and ACB error field=X’A8’. To delete and define a database in this type of environment, free the database before deleting it and reallocate the database after defining it. To do this, use the FREE command first and then the ALLOCATE command.

Examples

Example: Switching to the Primary Database
To switch to the primary database, enter:

```
SWPD P
```

Example: Switching to the Secondary Database
To switch to the secondary database, enter:

```
SWPD S
```
SWRAP (NPDA)

Syntax

```
SWRAP
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWRAP</td>
<td>SW</td>
</tr>
</tbody>
</table>

Purpose of Command

The SWRAP command establishes the number of event or statistical records to be retained for a specified resource or the total number of alert records to be retained on the hardware monitor database. This command can be entered from the hardware monitor menu panel, a command list, an automated operator, or any NetView component.

When this command indicates a reduction in the wrap count value, the oldest records are deleted immediately. If the wrap count is very low, it can appear that the oldest record is not being wrapped off because the new record fits on the screen without deleting the old record from the screen. Actually, the oldest record is wrapped off the permanent database and is maintained on a temporary database until you return to the hardware monitor menu or enter an explicit hardware monitor command.

The default wrap counts are:

<table>
<thead>
<tr>
<th>Record Type</th>
<th>Wrap Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event records per resource</td>
<td></td>
</tr>
<tr>
<td>- Per resource</td>
<td>25</td>
</tr>
<tr>
<td>- Per resource of type LAN or type RING</td>
<td>100</td>
</tr>
<tr>
<td>Statistical records per resource</td>
<td></td>
</tr>
<tr>
<td>- Per resource</td>
<td>25</td>
</tr>
<tr>
<td>- Per resource of type LAN or type RING</td>
<td>100</td>
</tr>
<tr>
<td>Alert records</td>
<td>100</td>
</tr>
<tr>
<td>SNA-unique data (RECFMS 01, 05) per resource (cannot be modified)</td>
<td>2</td>
</tr>
</tbody>
</table>

Operand Descriptions

AL

Specifies alert data.
ALL
When specified in an environment other than an NPDA panel (such as a command list, autotask, PPT or NCCF console), specifies that the command takes effect for all entries if multiple entries are found.

When specified from an NPDA panel, the ALL parameter has no effect.

\textit{wrapcount}
Specifies the wrap count value in the range of 0–9999 for alerts and 0–450 for events and statistics. Note that these ranges differ for pre-V3R2 NetView.

EV
Specifies event data.

N
Specifies the operand that follows as a resource name.

\textit{resname}
Specifies the symbolic name of the resource (for event and statistical data only). You can specify up to five resource names to fully qualify the resource for which data is to be displayed.

You can issue an SWRAP command only for resources against which data has been logged on the hardware monitor database.

ST
Specifies statistical data.

\textbf{Restrictions}
The following restrictions apply to the SWRAP command:

\begin{itemize}
 \item Use this command carefully because you can inadvertently destroy error data.
 \item You cannot run this command from a multiple-entries panel.
 \item If you are issuing the command from within NPDA and the name of the resource specified is not a unique resource configuration on the database, a selection panel is displayed on which you can choose the relevant configuration.
 \item If you are issuing the command from within a command list and the name of the resource specified is not a unique configuration on the database, message BNJ1963I will be issued. Determine the unique resource and reissue the command or use the ALL parameter to set all the configurations that match the specified resource.
 \item If you are issuing the command outside a command list in an environment other than NPDA and the name of the resource specified is not a unique configuration on the database, the Hardware Monitor Multiple Entries panel will be displayed. From this panel, select one or more configurations to set.
 \item When the value specified on the SWRAP command is smaller than the wrap count had been prior to the SWRAP command, then if necessary records are purged from the hardware monitor database so that the total number of records retained matches the specified SWRAP value. To reclaim the free space made available by these purged records, use the “DBAUTO NPDA,REORG” command. If the REORG is not done, the free space can not be reused.
\end{itemize}

\textbf{Return Codes}

\begin{center}
\begin{tabular}{|c|p{16cm}|}
\hline
\textbf{Return Code} & \textbf{Meaning} \\
\hline
0 & The command issued from a command list was successful for all entries of a multiple-entries panel. \\
\hline
\end{tabular}
\end{center}
The command issued from a command list did not specify the ALL parameter, but multiple-entries were found.

The command issued from a command list encountered multiple entries and failed for one or more of the resource hierarchies found.

Examples

Example: Setting the Event Wrap Count to 100 for Resource UNIT1
To set the event wrap count equal to 100 for the resource UNIT1, enter:

SWRAP EV 100 N UNIT1

Response
The usual response to this command is as follows:

BNJ325I WRAP EV COUNT IS 100 FOR UNIT1
SYSMON (TARA)

Syntax

SYSMON

|---
can be logged on to the system monitor at a time. The local 3600 or 4700
operator has priority and can log off a host network operator.

- You do not need to precede this command with TARA. You can enter it in
 command lists or directly from the command facility.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The command is forwarded to the data service task (DST).</td>
</tr>
<tr>
<td>4</td>
<td>The command is not forwarded to the DST.</td>
</tr>
</tbody>
</table>
TARA (TARA)

Syntax

TARA

Purpose of Command

The TARA command enters the 4700 Support Facility. TARA is also used to process a single 4700 Support Facility command from another NetView component.

When you use this command, the 4700 Support Facility remains on the NetView component stack, which is used with the ROLL command until the 4700 Support Facility ends.

Operand Descriptions

command

A 4700 Support Facility command that is to be processed by the 4700 Support Facility.
TASK (GMFHS)

Syntax

```
TASK
GMFHS TASK
```

Purpose of Command

The TASK command displays a NetView GMFHS subtask status report.

You can enter the TASK command from the MVS console using the MVS MODIFY command or from a NetView terminal by using the GMFHS command list.

Examples

Example: Displaying the Task Status Report for the GMFHS

To display the task status report for the GMFHS, enter:

```
GMFHS TASK
```

A response similar to the following is displayed:

```
DUI4044I  GMFHS TASK DISPLAY
DUI4013I  TASK = IPC    STATUS = WAIT  QUEUE DEPTH = 0
DUI4045I  TASK = OPERIF STATUS = ACTIVE QUEUE DEPTH = 0
DUI4013I  TASK = VIEWMGR STATUS = WAIT  QUEUE DEPTH = 0
DUI4013I  TASK = VSTATMGR STATUS = WAIT  QUEUE DEPTH = 0
DUI4013I  TASK = IRMGR  STATUS = WAIT  QUEUE DEPTH = 0
DUI4013I  TASK = RTMGR  STATUS = WAIT  QUEUE DEPTH = 0
DUI4013I  TASK = OBSERVER STATUS = WAIT  QUEUE DEPTH = 0
DUI4013I  TASK = EVENTMGR STATUS = WAIT  QUEUE DEPTH = 0
DUI4013I  TASK = NETCMD STATUS = WAIT  QUEUE DEPTH = 0
DUI4013I  TASK = NETCON STATUS = WAIT  QUEUE DEPTH = 0
DUI4037I  END
```

This example shows that all tasks, except the operator interface (OPERIF) task, are waiting and have no data queued. The operator interface task is active because it is processing the GMFHS TASK command.
Syntax

```
TASKMON
```

Purpose of Command

The TASKMON command is a REXX procedure which gives you color-coded monitoring of all NetView tasks. The output under each group is sorted by the severity index. The first percentage column on the left represents a percentage of the maximum value allowed or, if no limit applies, the maximum value measured for any task monitoring is as follows:

Color codes:
- **White** SLOWSTG limit exceeded
- **Yellow** 70% of limit for this line exceeded
- **Pink** 80% of limit for this line exceeded
- **Red** 90% of limit for this line exceeded

Operand Descriptions

- **ALL**
 Requests data about all task(s).

- **taskid**
 The name of the task for which statistics are requested.

- *****
 Is another way to say “all” the tasks.

- **ALL**
 Requests all statistics for selected task(s).

- **CPU**
 Requests CPU utilization statistics.

- **STG**
 Requests task storage managed by NetView.

- **I/O**
 Requests the NetView managed inputs and outputs of a task.

- **MQI**
 Requests the rate of messages coming into a task. This count will consist of only message queueing to task using NetView services DSIMQS, and only the buffers accounted for by DSIMQS.
MQO
Requests the rate of messages leaving a task. This count will consist of only message queueing to task using NetView services DSIMQS, and only the buffers accounted for by DSIMQS.

PEN
Request task penalty time statistics for all of the resource limits.

GET
Request statistics about the rate of storage obtained using the DSIGET macro (in kilobytes per minute).

FRE
Request statistics about the rate storage is released using the DSIFRE macro (in kilobytes per minute).

* Is another way to requests all statistics for all task(s).

Usage Notes
You can use the TASKMON command to illustrate how DSITSTAT data can be interpreted by an automation procedure.

TASKMON provides statistics based on CPU percentage relative to a single processor. TASKUTIL provides statistics based on CPU percentage relative to the sum of processors.

Examples

Note: If TASKMON is used with no operands, the syntax diagram is displayed. Asterisk (*) is an abbreviation for ALL. The left parenthesis is required if (TAKE nnn is used.

Example: Issuing a TASKMON Command
To issue a TASKMON command, enter:

```
TASKMON * *
```

A response similar to the following is displayed:

```
* NTV98 TASKMON * CPU PEN

<p>| NTV98 TASKMON ---- START OF REPORT ---- |
|-------------------------- -------------- |</p>
<table>
<thead>
<tr>
<th>Severity Index</th>
<th>OPID</th>
<th>Current</th>
<th>Session</th>
<th>Maximum</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>-----CPU------</td>
<td>--------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1.95 %</td>
<td>MAINTASK</td>
<td>1.85 % 2.18 %</td>
<td>10.15 %</td>
<td>95.00 %</td>
<td></td>
</tr>
<tr>
<td>0.67 %</td>
<td>OPER4</td>
<td>0.64 % 0.80 %</td>
<td>3.68 %</td>
<td>95.00 %</td>
<td></td>
</tr>
<tr>
<td>0.02 %</td>
<td>AAUTSKLP</td>
<td>0.02 % 0.36 %</td>
<td>2.83 %</td>
<td>95.00 %</td>
<td></td>
</tr>
<tr>
<td>0.02 %</td>
<td>DSIDCBMT</td>
<td>0.02 % 0.30 %</td>
<td>2.90 %</td>
<td>95.00 %</td>
<td></td>
</tr>
<tr>
<td>0.01 %</td>
<td>NTV98PPT</td>
<td>0.01 % 0.53 %</td>
<td>5.83 %</td>
<td>95.00 %</td>
<td></td>
</tr>
<tr>
<td>0.01 %</td>
<td>CNMTAMEL</td>
<td>0.01 % 0.32 %</td>
<td>1.60 %</td>
<td>95.00 %</td>
<td></td>
</tr>
<tr>
<td>0.01 %</td>
<td>FLBTOPO</td>
<td>0.01 % 0.27 %</td>
<td>1.84 %</td>
<td>95.00 %</td>
<td></td>
</tr>
<tr>
<td>0.01 %</td>
<td>DSIMONIT</td>
<td>0.01 % 0.02 %</td>
<td>0.04 %</td>
<td>95.00 %</td>
<td></td>
</tr>
<tr>
<td>0.01 %</td>
<td>DSITIMMT</td>
<td>0.01 % 0.01 %</td>
<td>0.04 %</td>
<td>95.00 %</td>
<td></td>
</tr>
</tbody>
</table>

| NTV98 TASKMON Task Causing CPU PEN - Penalty Time-
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OPID</td>
<td>Session</td>
<td>Seconds</td>
<td>Left</td>
<td>Total Seconds</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>NTV98</td>
<td>15.84 %</td>
<td>12.01 %</td>
<td>0.00 S</td>
<td>6.79 S</td>
<td></td>
</tr>
</tbody>
</table>

NTV98 TASKMON Severity Index Inbound Wait CPU PEN

Total Seconds-

---------
Notes:
1. Notice in the example that the output under each group is sorted by the Severity Index. The first percentage column on the left represents a percentage of the maximum value.
2. DSITIMMT is the task causing a penalty. DSITIMMT is causing other tasks to wait (Inbound Wait) because of the MAXMQIN limits.
3. WINDOW TASKMON ** (TAKE 4 produces a panel effect, and displays the top four tasks in each of the measured categories. The WINDOW refresh PF key can be used to see updated values.
4. TASKMON also illustrates how DSITSTAT data can be interpreted by an automation procedure.
TASKUTIL (NCCF)

Syntax

TASKUTIL

<table>
<thead>
<tr>
<th>TYPE=ALL</th>
<th>DURATION=2</th>
<th>SORT=CPUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE=tasktype</td>
<td>DURATION=seconds</td>
<td>SORT=sortfield</td>
</tr>
</tbody>
</table>

Purpose of Command

The TASKUTIL command displays central processing unit (CPU) utilization and storage use for NetView tasks.

Note: Use this command for NetView diagnosis and tuning purposes only.

If you do not specify parameters on the TASKUTIL command, information about all active NetView tasks is displayed in descending order by CPU utilization.

Trends in high CPU percentage utilization from repeatedly issuing the TASKUTIL command are more important than a high CPU percentage utilization for a particular task from a single issue of the TASKUTIL command. Similarly, constant growth in a task's message queue or storage use are more indicative of a problem than a high result from issuing a single TASKUTIL command.

By default, the output from the TASKUTIL command is placed in the network log and displayed on the operator's console. TASKUTIL output (message DWO022I) in the network log can be used for historical comparisons to help identify problem areas.

For more information about using the TASKUTIL command for tuning, refer to the Tivoli NetView for z/OS Tuning Guide for more information.

Operand Descriptions

TYPE=tasktype
The type of NetView task. Valid tasks are:

- **ALL**
  All active NetView tasks. ALL is the default.

- **AUTO**
  NetView automation operator station tasks started with the AUTOTASK command. This does not include operator station tasks (OSTs) or distributed automation tasks (DISTs).

- **DIST**
  NetView distributed automation tasks started with the RMTCMD command. This does not include OSTs or autotasks.

- **DST**
  NetView data services tasks (DSTs). This does not include optional tasks (OPTs).
HCT
NetView hardcopy log tasks.

MNT
NetView main task.

NNT
NetView-NetView tasks.

OPT
NetView optional tasks. This does not include DSTs.

OST
NetView operator station tasks. This does not include autotasks or DISTs.

PPT
NetView primary program operator interface task (PPT).

VOST
Virtual operator station tasks (VOSTs).

taskname
The name of the NetView task whose CPU utilization and storage use you want to display. For operator tasks, this is the operator ID. If you specify two single quotation marks (""") as the taskname, the task running the command is used.

DURATION=seconds
Specifies the length of the measurement (in seconds) over which utilizations are calculated. The valid range is 1–60 seconds. The default is 2 seconds.

Note: The task running the command is in a wait state for the measurement and is unable to process commands or messages until the TASKUTIL command completes.

SORT=sortfield
Specifies how the output should be sorted. The valid values for sortfield are:

CPUP
Specifies to sort tasks in descending order by CPU utilization during the measurement. CPUP is the default.

CMDL
Specifies to sort tasks alphanumerically by active command list.

CPUT
Specifies to sort tasks in descending order by total CPU time.

MQUE
Specifies to sort tasks in descending order by the number of buffers on the task’s public message queue or queues.

NAME
Specifies to sort tasks alphanumerically by task name.

PRTY
Specifies to sort tasks in descending order by MVS system dispatching priority.

STOR
Specifies to sort tasks in descending order by queued storage use (in kilobytes).
**TYPE**

Specifies to sort tasks alphabetically by task type.

**Restrictions**

The TASKUTIL command cannot be issued from the PPT.

**Return Codes**

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Processing was successful.</td>
</tr>
<tr>
<td>8</td>
<td>Not a valid parameter.</td>
</tr>
<tr>
<td>12</td>
<td>The task specified is not active.</td>
</tr>
<tr>
<td>16</td>
<td>Storage request failed.</td>
</tr>
<tr>
<td>20</td>
<td>TASKUTIL cannot run on the PPT.</td>
</tr>
<tr>
<td>24</td>
<td>Operator is not authorized to use a keyword or value.</td>
</tr>
</tbody>
</table>

**Examples**

**Example: Displaying CPU and Storage Use**

To display CPU utilization and storage use for the NetView tasks, enter:

```
TASKUTIL
```

**Response**

A response similar to the following is displayed:

```plaintext
 TASKNAME TYPE DPR CPU-TIME N-CPU% S-CPU% MESSAGEQ STORAGE-K CMD
--------- ---- ---- --------- ------- ------- --------- --------- ----
 NTV98PPT PPT 255 3.88 49.68 0.08 0 122 **NONE**
 OPER4 OST 251 0.42 31.65 0.05 0 80 **NONE**
 NTV98VMT OPT 250 1.38 8.19 0.01 0 56 N/A
 DSIHLLMT OPT 255 0.00 0.00 0.00 N/A 0 N/A
 DSISTMMT OPT 255 0.00 0.00 0.00 N/A 0 N/A
 SYSOP OPT 255 0.00 0.00 0.00 N/A 0 N/A
 NTV98 OPT 255 0.02 0.00 0.00 N/A 0 N/A
 DSILOGMT OPT 255 0.03 0.00 0.00 N/A 0 N/A
 DSILOG DST 254 0.23 0.00 0.00 0 12 N/A
 CNMCSVST OPT 249 0.15 0.00 0.00 N/A 0 N/A
 CNMCRSST OPT 253 0.07 0.00 0.00 0 107 N/A
 DSI#0094 VST 250 0.36 0.00 0.00 0 24 NLD
 SYSP MNT 255 0.01 0.00 0.00 0 764 N/A
 NTV988RWT OPT 250 0.09 0.00 0.00 0 4 N/A
 DSI#DCMNT OPT 255 0.25 0.00 0.00 N/A 0 N/A
 AUTO1 AUTO 250 0.51 0.00 0.00 0 48 **NONE**
 AUTO2 AUTO 250 0.22 0.00 0.00 0 36 **NONE**
 NETVIEW OTH N/A 1.89 10.49 0.02 N/A N/A N/A
 NETVIEW SRS N/A 1.89 10.49 0.02 N/A N/A N/A
 NETVIEW TOTL 33 14.46 100.00 0.15 0 1248 N/A
 SYSTEM TOTL N/A N/A 4.34 N/A N/A N/A N/A
 END DISPLAY
```

The meanings of the displayed operands are as follows:

**TASKNAME**

The name of the NetView task.
TYPE
The type of the NetView task.

In addition to the CPU utilization and storage use for the tasks specified, the following information is displayed:

NETVIEW OTHR
Specifies the task control block (TCB) utilization not attributable to active tasks. This includes processing for tasks that become inactive during the measurement.

NETVIEW SRB
Specifies the NetView address space system request block (SRB) total time and CPU utilization during the measurement.

NETVIEW TOTL
Specifies the NetView address space total CPU time, CPU utilization during the measurement, and storage use.

SYSTEM TOTL
Specifies the total system CPU utilization during the measurement.

DPR
Is the MVS task dispatching priority for the NetView task. This field is not applicable for NETVIEW OTHR, NETVIEW SRB, or SYSTEM TOTL.

CPU-TIME
Is the accumulated MVS task control block (TCB) time, in seconds, for the task from the time it was started. If a task is stopped and then restarted, the CPU time used by the task before the task was stopped is not included.

The CPU-TIME for NETVIEW TOTL can be larger than the total of all active tasks. It includes the TCB time of tasks which are currently inactive, but have been active since NetView was started.

This field is not applicable for NETVIEW OTHR or SYSTEM TOTL.

N-CPU%
Is the relative percentage of the task’s NetView CPU utilization, based upon a maximum of 100%. This field is not applicable for SYSTEM TOTL.

S-CPU%
Is the task’s contribution to the total system CPU utilization during the measurement, based on a maximum of 100%. The system CPU utilization is the average processor utilization percentage for all processors currently online.

MESSAGEQ
Is the number of messages currently backed up on the task’s public message queue or queues. For NETVIEW TOTL, this is the total number of messages currently backed up on the public message queues of all active NetView tasks.

This field is not applicable for NETVIEW OTHR, NETVIEW SRB, or SYSTEM TOTL, or type OPT when TVB374CT is off.

For information about TVB374CT, refer to the Tivoli NetView for z/OS Customization Guide.

STORAGE-K
Is the amount of pooled and non-pooled storage, in kilobytes, currently being used by the task. This is queued storage acquired by DSIGET Q=YES requests. For the MNT task (SYSOP), this storage includes the total queued and non-queued CPOOL as well as the queued and non-queued non-CPOOL storage.
For NETVIEW TOTL, this is the amount of pooled and non-pooled storage, in kilobytes, currently being used by the NetView program. This includes the total amount of queued storage acquired by the tasks (DSIGET Q=YES requests) and non-queued storage (DSIGET Q=NO) requests. The total might not reflect the totals of all the separate tasks. This total storage can be used as an estimate and not as an exact figure. This total does not include storage acquired by GETMAIN macros and storage used to contain NetView load modules. To display total virtual storage used by the NetView program, use the NetView RESOURCE command.

This field is not applicable for NETVIEW OTHR, NETVIEW SRB, or SYSTEM TOTL.

CMD

Is the current active command list running on the task, if any. If the task is an independent VOST, this is the name used on the ATTACH command that created the VOST. This field is not applicable for NETVIEW OTHR, NETVIEW SRB, NETVIEW TOTL, or SYSTEM TOTL.

Example: Displaying CPU Utilization and Storage Use

To display CPU utilization and storage use for all NetView tasks using a measurement duration of 8 seconds and sorting the output by total CPU time, enter:

```
TASKUTIL DURATION=8 SORT=CPUT
```

Response

A response similar to the following is displayed:

```
 TASKNAME TYPE DPR CPU-TIME N-CPU% S-CPU% MESSAGEQ STORAGE-K CMDLIST
 -------- ---- ------ ---------- ------ ------ --------- --------- -------
AUTONCCF AUTO 250 109.14 83.57 3.57 0 669 **NONE**
OPD3 OST 251 49.19 0.00 0.00 6 204 **NONE**
DSILOG DST 254 16.66 0.00 0.00 0 24 N/A
AUTO1 AUTO 250 7.93 0.00 0.00 0 545 **NONE**
AUTOVTAM AUTO 250 6.63 0.00 0.00 0 22 N/A
CNM01PPT PPT 255 2.50 0.00 0.00 0 87 **NONE**
SYSOP MNT 255 1.98 0.00 0.00 0 1188 N/A
AAUTSKLP DST 247 1.86 0.00 0.00 0 1388 N/A
BNJDSERV DST 249 1.42 0.00 0.00 0 101 N/A
CNMCSIR OPT 250 0.81 0.00 0.00 0 12 N/A
DSICPR AUTO 250 0.66 0.00 0.00 0 27 **NONE**
CNM01LUC DST 248 0.51 0.00 0.00 0 27 N/A
DSICRTR DST 249 0.39 0.00 0.00 0 31 N/A
CNM01VMT OPT 250 0.34 0.00 0.00 0 33 N/A
CNM01RW OPT 250 0.28 0.00 0.00 0 4 N/A
DS1#0094 VOST 250 0.36 0.00 0.00 0 24 NLDM
AUTOMVS AUTO 250 0.28 0.00 0.00 0 60 **NONE**
DSIAMLUT DST 248 0.24 0.00 0.00 0 26 N/A
DSIHPDST DST 250 0.20 0.00 0.00 0 32 N/A
MVSCONS AUTO 250 0.20 0.00 0.00 0 27 **NONE**
DSISVRT DST 253 0.08 0.00 0.00 0 95 N/A
DSIS6ST DST 253 0.05 0.00 0.00 0 26 N/A
AUTCNM1 DST 249 0.04 0.00 0.00 0 146 N/A
BRIGOPER AUTO 250 0.04 0.00 0.00 0 17 **NONE**
REMTBRIG AUTO 250 0.04 0.00 0.00 0 16 **NONE**
SOLGETSK DST 253 0.03 0.00 0.00 0 47 N/A
OPER1 OST 250 0.03 0.00 0.00 0 11 **NONE**
OPER2 OST 250 0.03 0.00 0.00 0 13 **NONE**
AUTO2 AUTO 250 0.03 0.00 0.00 0 11 **NONE**
CNMTAMEL DST 249 0.02 0.00 0.00 0 52 N/A
CNMCALRT OPT 250 0.00 0.00 0.00 0 0 N/A
NETVIEW OTHR N/A N/A 0.00 0.00 N/A N/A N/A
```
Example: Displaying CPU Utilization and Storage Use

To display CPU utilization and storage usage for all NetView automation tasks started with the AUTOTASK command, enter:

```
TASKUTIL TYPE=AUTO
```
TCTRL (TARA; CNME3007)

Syntax

```
TCTRL

```

Purpose of Command

The TCTRL command list displays a summary of the data and status associated with a specified 3600 or 4700 Controller and its resources.

This command list generates a CTRL command.

Operand Descriptions

```
ctrlname

```

Specifies the physical unit name of the controller.

Examples

**Example: Displaying Summary Data and Status for a Controller**

To display summary data and status for controller CTRL01, enter:

```
TCTRL CTRL01
```

978  Tivoli NetView for z/OS Command Reference Vol. 1
TE (NCCF)

Syntax

TE

Purpose of Command

The TE (trace end) command stops all tracing of a REXX command list started by the TS command.

You can enter TE from a terminal, a REXX command list, or a NetView command list language procedure. TE is an immediate command if it is entered from a terminal.

Restrictions

The TE command stops only tracing that was started by the TS command.
TERM (EAS)

Syntax

EAS TERM

MODIFY procname,TERM

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIFY</td>
<td>F</td>
</tr>
</tbody>
</table>

Purpose of Command

The TERM command causes the NetView event/automation service job to halt all activity and end normally.

Operand Descriptions

`procname`  
Specifies the event/automation service job name.

Usage Notes

The event/automation service might take a number of minutes to end if any of its services are delayed as a result of TCP/IP connection problems. Use the EAS FORCE command if you want to terminate the event/automation service without waiting for normal processing to complete.

Examples

**Example: Ending the Service Job**
To end the event/automation service job named IHSAEVNT, enter:

```
F IHSAEVNT,TERM
```

Response

The following response is displayed:

```
IHS0119I Event/automation service is terminating due to an operator request.
```
TERM (GMFHS)

Syntax
From an MVS console:

```
MVSTERM
-F procname,TERM
```

From a NetView terminal:

```
TERM
-GMFHS TERM
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIFY</td>
<td>F</td>
</tr>
</tbody>
</table>

Purpose of Command

The TERM command causes the NetView GMFHS job to halt all activity and end normally.

You can enter the TERM command from the MVS console or from a NetView terminal by using the GMFHS command list.

Operand Descriptions

`procname`

Specifies the GMFHS MVS job name.

Examples

**Example: Ending the GMFHS Job**

To end the GMFHS job, enter:

```
GMFHS TERM
```

Response

The following response is displayed:

```
DUI4031I GMFHS IS TERMINATING OR IS IN THE PROCESS OF TERMINATING DUE TO OPERATOR REQUEST
```
TERM (RODM)

Syntax

From an MVS console:

TERMRO

FROM MODIFY name,TERM,CHKPT

From a NetView terminal:

TERMRO

FROM RODM TERM,CHKPT

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIFY</td>
<td>F</td>
</tr>
</tbody>
</table>

Purpose of Command

The RODM TERM command ends RODM and takes an optional checkpoint, which enables a snapshot of RODM to be saved.

When stopping and restarting RODM, use the following steps:
1. Stop the NetView GMFHS.
2. Stop RODM.
3. Start RODM.
4. Start GMFHS.

Using this procedure prevents GMFHS from ending when it cannot find its data model in RODM. GMFHS is dependent on the data model being present, which is only when RODM is active.

Operand Descriptions

name Specifies the RODM MVS job name.

CHKPT Specifies that the RODM checkpoint is taken. Processing continues after the checkpoint is taken.

Restrictions

The following restrictions apply to the TERM (RODM) command:

- When taking a checkpoint of RODM, ensure that the checkpoint data sets are kept together with the translation and master window data sets. If you do not keep these data sets together, you might experience problems warm starting RODM.
You can use the MVS FORCE command in an MVS environment, although the
MODIFY command is recommended because RODM gets control and provides a
smooth stop.

In an MVS environment, RODM (under program control) makes its address
space non-cancelable. This prevents you from issuing a CANCEL command to stop RODM.

Examples

Example: Ending a Specified RODM without Taking a Checkpoint
To end RODM without taking a checkpoint, enter the following from a NetView
terminal console:

RODM TERM

Response

A response similar to the following is displayed:

EKG1916I EKGXRODM: RODM EKGXRODM TERMINATION IS IN PROGRESS.
EKG1310I EKGXRODM: THE LOG FLUSHING IS COMPLETED.
EKG1917I EKGXRODM: RODM EKGXRODM TERMINATION IS COMPLETE.

Example: Taking a Checkpoint and Ending a Specified RODM
To take a checkpoint and end RODM, enter the following from a NetView
terminal:

RODM TERM,CHKPT

Response

A response similar to the following is displayed:

EKG1302I EKGXRODM: RODM EKGXRODM IS NOW CHECKPOINTING.
EKG1115I EKGXRODM: THE TRANSLATION WINDOW CHECKPOINT IS COMPLETE.
EKG1303I EKGXRODM: RODM EKGXRODM HAS COMPLETED CHECKPOINTING.
EKG1916I EKGXRODM: RODM EKGXRODM TERMINATION IS IN PROGRESS.
EKG1310I EKGXRODM: THE LOG FLUSHING IS COMPLETED.
EKG1917I EKGXRODM: RODM EKGXRODM TERMINATION IS COMPLETE.

EKGXRODM START EKGTC000 0000
IEF404I EKGXRODM - ENDED - TIME=13.49.18
$HASP395 EKGXRODM ENDED
**TERMAMI**

**Syntax**

```
TERMAMI
```

**Purpose of Command**

Stops the application management interface (AMI) instrumentation running on NetView/390.
TERMAMON

Syntax

```
TERMAMON entry_point
```

Purpose of Command

The TERMAMON command terminates the VTAM ACB Monitor or a specific ACB Monitor entry point. This command can only be issued on the ACB Monitor focal point NetView.

If the entry point is specified, ACB status reporting is terminated for the VTAM associated with that NetView.

If the entry point is not specified, the DB2 database is cleaned up and ACB status reporting is turned off from the VTAM associated with this (focal point) NetView and from VTAMs associated with all of the ACB Monitor entry points.

Operand Descriptions

`entry_point`

Specifies the NetView domain name of an entry point to be terminated.
TERMS (NCCF; CNME0035)

Syntax

```
TERMS
```

Notes:

1. If you do not specify a positional parameter, you must indicate the absence of the parameter by specifying a comma in its place.

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>A</td>
</tr>
<tr>
<td>INACT</td>
<td>I</td>
</tr>
</tbody>
</table>

Purpose of Command

The TERMS command list displays the status of all device-type logical units (terminals) in active major nodes.

Operand Descriptions

ACT

Specifies that information is to be displayed about all active, pending, and connectable terminals within each major node.

ACTONLY

Specifies that information is to be displayed about all terminals in an active state within each major node. The display does not include terminals in pending or connectable states.

ALL

Specifies that information is to be displayed about all terminals (regardless of their status) within each major node. ALL is the default.

Note: Using the ALL operand (the default) in a domain that has many terminals results in an undesirably long display.

CONCT

Specifies that information is to be displayed about all terminals in a CONCT (connectable) state within each major node.
INACT
  Specifies that information is to be displayed about all inactive terminals within each major node.

INACTONLY
  Specifies that information is to be displayed about all inactive terminals within each major node. Resources in a RESET state are not included in the display.

PENDING
  Specifies that information is to be displayed about all pending terminals within each major node. A pending state is a transient state to or from the fully active state.

RESET
  Specifies that information is to be displayed about all terminals in a RESET state within each major node.

passthru
  Specifies up to 6 parameters which are appended unchanged to the VTAM DISPLAY command issued by the TERMS command. No validation for duplicate or conflicting parameters is performed.

Usage Notes
Consider the following when using the TERMS command:

• If the status parameter (ALL, ACT, and so on) is omitted, and no passthru parameters are specified, then ALL is the default. However, if passthru parameters are specified and there is no status parameter specified, then NetView does not include a SCOPE= keyword in the generated VTAM DISPLAY command. This enables you to include your own SCOPE= keyword using the passthru parameter.

• The valid values of the status parameter depend on the level of VTAM you are using.

Examples

Example: Displaying All the Inactive Terminals
To display all the inactive terminals, use the following command:

    TERMS INACT

Response

Information similar to the following is displayed:

IST350I DISPLAY TYPE = TERMS
IST354I PU T4/5 MAJOR NODE = ISTPUS
IST351I LOCAL 3270 MAJOR NODE = H21L
IST358I H21L420 TYPE = LOGICAL UNIT , NEVAC , CUA=420
IST358I H21L42B TYPE = LOGICAL UNIT , NEVAC , CUA=42B
IST352I LOCAL SNA MAJOR NODE = H21S

For each major node with terminals, the following is provided:

• The major node name (for example, ISTPUS, H21L, H21S)
• The line name and status (if the terminal is attached over a line)
• The name and status of the associated physical unit
• The name and status of the logical unit (for example, H21L420)
TERR (TARA; CNME3008)

Syntax

TERR

> TERR ctrlname,loopname

Purpose of Command

The TERR command list displays error data for a 3600 or 4700 loop.

Operand Descriptions

- **ctrlname**
  Specifies the physical unit name of the controller to which the loop is attached.

- **loopname**
  Specifies the name (LPnn) of the loop.

Examples

**Example: Displaying Loop Error Data**
To display loop error data for loop LP02, which is attached to controller CTRL1, enter:

TERR CTRL1,LP02
TEST (NPDA)

Syntax

TEST

Purpose of Command

The TEST command causes an LPDA test to be conducted on the data circuit-terminating equipment (DCE) and communication facilities of a specified resource.

Operand Descriptions

rename1

Specifies the name of the communication or network controller from which the command is to originate.

rename2

Specifies the name of the remote PU or link station on the link as defined by rename1.

DTE

Displays the current and transition states of the Electronics Industries Association (EIA) leads for name2.

LS

Conducts and displays the results of a link status test.

RST

Conducts a remote modem self test.

LSL1

Conducts the test on link segment level 1. LSL1 is the default.

LSL2

Conducts the test on link segment level 2.

TRT number

Causes a modem pair to exchange one or more sequences of predefined bit patterns over the line. The number default is 1.

LA

Displays the analog operands of a line.

MLS

Conducts the modem and line status test (MLT).

The operands DTE, LS, and RST work on lines specified as LPDA-1. The operands LSL1, LSL2, MLS, LA, and TRT work on lines specified as LPDA-2.
Restrictions

The following restrictions apply to the TEST command:

- The results of the test are not recorded in the hardware monitor database.
- If you enter an incomplete TEST command, you are prompted for missing operands. Non-hardware monitor commands (except NCCF) are taken as resource names.
- When issuing a TEST command to display the state of the EIA leads, the current state of the DTR, CTS, RD, or RLSD lead cannot be detected if it is tied to signal ground, because of isolation circuitry in the modem hardware.
- Several error situations are possible if you enter more than the information for which you are being prompted and if there is a mismatch between the line generation and the type of LPDA option you are entering:
  - If you entered a valid LPDA-1 option (DTE, RST, or LS) in addition to the requested resource names, and the line is generated for LPDA2, an SNA negative response results and the command panel NPDA-10AA is presented.
  - If you entered a valid LPDA-2 option (LA, TRT, or MLS) in addition to the requested resource names, and the line is generated for LPDA-1, the TEST prompting panel is redisplayed with error message BNJ1610I.

Examples

Example: Specifying LPDA-2
If the line specified is LPDA-2 and you enter TEST NMOD90 P08008A, the hardware monitor prompts you for MLS, LA, or TRT.

Example: Running a Link Status Test
To run a link status test on the link from the communication or network controller CTRL1 to the PU named RAL01, enter:

```
TEST CTRL1 RAL01 LS
```
THRESH (NCCF)

Syntax

```
THRESH

THRESH ID=resname,STATION=netname

```

Purpose of Command

The THRESH command displays or changes the threshold value for stations attached to communication controllers.

Operand Descriptions

**ID=resname**

The network name of the node to which the station attaches.

When you specify the ID name as an NCP name with a particular station name, you are setting or displaying the threshold values kept by the NCP for the station. When you specify the ID name as a 3710 name with a particular station name, you are setting or displaying the threshold values kept by the 3710 for the station.

**STATION=netname**

The network name of the station attached to the node identified by the value of the ID operand.

**QUERY**

Displays all thresholds for the specified station. QUERY is the default.

Use the following operands to specify a new threshold value for stations attached to an NCP.

**TDT=tdtvalue**

When the station is an SNA device attached to a communication controller, this number means total transmissions threshold.

For binary synchronous control (BSC) devices attached to a network control program (NCP), the number represents the traffic count threshold. This operand must be a decimal number in the range of 1–65535.

**TET=tetvalue**

For SNA stations attached to a communication controller, this number reflects a total retries threshold. This operand must be a decimal number in the range of 1–65535.

For BSC devices attached to an NCP, this threshold value represents an error count threshold. This operand must be a decimal number in the range of 1–255.
For the 3710, the specified threshold value must be a decimal integer in the range of 0–65535. If you specify a threshold value of 0, the 3710 stops counting and sending traffic statistics for the kind of threshold indicated. Use the following operands to specify a new threshold value for stations attached to a 3710:

**PT=ptvalue**
- Specifies a new poll threshold for a station. Poll threshold applies only to SNA devices attached to a communication controller.

**RDT=rdtvalue**
- Specifies a new receive data threshold for a station. (This operand is not supported by an NCP.)

**RET=retvalue**
- Specifies a new receive error threshold for a station.

**TDT=tdtvalue**
- Specifies a new transmit data threshold for a station.

**TET=tetvalue**
- Specifies a new transmit error threshold for a station.

**Restrictions**

The following restrictions apply to the THRESH command:

- You can change only one threshold value at a time.
- Modifications to the TDT or TET threshold values are lost when the session is lost. When this occurs, the threshold values default to the values specified on the SRT keyword of the NCP generation statement.

**Examples**

**Example: Displaying Threshold Values**
To display the threshold values for NYC3710 attached to NCP1, enter:

```
THRESH ID=NCP1,STATION=NYC3710,QUERY
```

**Response**

Information similar to the following is displayed:

```
DSI332I THRESHOLD DISPLAY FOR ID=NCP1 STATION=NYC3710
DSI334I TDT=number TET=number
DSI333I END OF THRESHOLD DISPLAY
```

The *number* is a decimal integer giving the threshold value. For all non-SNA devices, the PT value is displayed as an asterisk (*), because there is no poll threshold value for them.

**Example: Displaying NYC3710 Thresholds**
To display NYC3710 thresholds, enter:

```
THRESH ID=NCP3,STATION=NYC3710
```

To change the receive error threshold for station WYO3710 attached to NY3710, enter:

```
THRESH ID=NY3710,STATION=WYO3710,RET=100
```
**Syntax**

```
TIMER

```

**Remote System:**

```
TARGET=local_system
TARGET=netid.domain.target_system
TARGET=netid.domain
TARGET=opid

TOPID=your_id
TOPID=opid

TIPADDR=host_name
TIPADDR=IP_address
TIPADDR=port_number

TPORT=4022
```  

**IBM-Defined Synonyms**

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIMER</td>
<td>TIMR, TIMERS</td>
</tr>
</tbody>
</table>

**Purpose of Command**

The TIMER command is a panel synonym that displays the Timer Management panel, which you use to display, add, change, or delete all scheduled timers.

**Operand Descriptions**

- `filter_criteria`  
  Displays the timers that contain `filter_criteria` anywhere in the timer. If `filter_criteria` is not specified, all timers are displayed.

- `CATCHUP: YES`  
  Displays the timers that were defined in a control file with CATCHUP specified.

- `COMMAND: command`  
  Displays the timers that contain the command string beginning with `command`. 
EC: YES
Displays the timers that were set with EVERYCON=YES.

ID: timerid
Displays the timers that contain timerid in the timer ID.

INTERVAL: interval
Displays the timers that contain interval as part of the interval.

OP: opid
Displays the timers that contain opid as part of the operator ID.

SAVE: SAVED
Displays the timers that were set with the SAVE parameter.

TARGET
Specifies the target of the operations performed by TIMER. The default is the system of the user. The user can specify a remote domain by specifying a netid.domain, or, if "SA" is specified for the COMMON.EZLRMTTIMER keyword in CNMSTYLE, the user can specify a remote system by entering the name of the remote system.

TF: YES
Displays the timers that were set with TIMEFMSG=YES.

TIME: date_time
Displays the timers that are scheduled to run on the date and time that begin with date_time. The date and time are specified in the local NLS format separated by a space.

TIPADDR
Specifies the IP address or host name of the remote NetView program.

TOPID
Specifies the autotask to be used on the remote domain for processing the command. The default is your operator ID.

TPORT
Specifies the port number to be used for TCP/IP communications. The default is 4022.

TYPE: timertype
Displays the timers of type timertype. The valid types are EVERY, AT, AFTER, and CHRON.

Usage Notes
Consider the following when using the TIMER command:

• The TIMER command operates in fullscreen mode only.
• To define which interface to use when issuing timers on remote systems, use the COMMON.EZLRMTTIMER keyword in DSIPARM member CNMSTYLE. You can set the COMMON.EZLRMTTIMER keyword to the following values:
  NETV Specifies that the NetView program RMTCMD facilities are used to display and set timers on remote systems. This value enables the operator to update the following fields on the TIMER panels:
  – OPERID
  – IP ADDR
  – PORT

You can specify NETV even if System Automation for z/OS is available on your system.
SA 
Specifies to use System Automation for z/OS facilities to display and set
the timer commands on remote systems, if System Automation for z/OS
is active. The operator is not able to update the OPERID, IP ADDR, or
PORT fields on the TIMER panels.

If System Automation for z/OS is not available on your system and you
specify SA, the NetView program RMTCMD facilities is used.

### Examples

To display the Timer Management panel, type:

```
TIMER
```

To go directly to the Timer Display/Change panel for the timer ID, FKX0040, type:

```
TIMER ID: FKX0040
```

To display a list of active timers that contain OPER1 anywhere in the timer, type:

```
TIMER OPER1
```

To display a list of active timers that can run on OPER1, type:

```
TIMER OP: OPER1
```
TN3270 (NCCF)

Syntax

TN3270

host [-a port] [-r rollkey] [-e endkey]

Purpose of Command

The TN3270 command establishes a Telnet 3270 session with the specified host. Only Telnet 3270 protocol is supported. The resulting session is placed on the roll stack and can be rolled using the roll key specified on the command or using the default. The session can be terminated with the specified (or defaulted) endkey.

Operand Descriptions

host

Specifies the name of the remote host running the TN3270 server. It can be specified as a hostname, or in dotted IP address format.

port

Specifies the port to use on the remote host. The default is 23.

rollkey

Specifies the key used while in the telnet session to roll to another NetView component on the roll stack. It is a character string specifying the key (for example, "PF6").

endkey

Specifies the key used while in the telnet session to end the telnet session. It is a character string specifying the key (for example, "PF3").

The supported values for rollkey and endkey are:

- ENTER
- CLEAR
- PA1 (endkey default)
- PA01
- PA2 (rollkey default)
- PA02
- PA3
- PA03
- PF1
- PF01
- PF2
- PF02
- PF3
- PF4
- PF0
• PF5
• PF05
• PF6
• PF06
• PF7
• PF07
• PF8
• PF08
• PF9
• PF09
• PF10
• PF11
• PF12
• PF13
• PF14
• PF15
• PF16
• PF17
• PF18
• PF19
• PF20
• PF21
• PF22
• PF23
• PF24

**Note:** Be careful not to specify an *endkey or rollkey* that is needed for the telnet session. The default value for *rollkey* is PA2. The default value for *endkey* is PA1.

**Usage Notes**

The following restrictions apply to the TN3270 command:

• The keys selected for endkey and rollkey should not be needed for use by the application started with telnet. For example, if TN3270 is used to start a TSO session, selecting PF3 as the endkey would prevent the use of PF3 for navigating ISPF screens in TSO.

• If the operator rolls out of the telnet session, TCP/IP is no longer processing receives for data coming from the remote host. This could cause the TCP/IP connection to fail if the telnet session is not brought to the front soon enough.

• The command might hang due to TCP/IP not responding or a problem on the remote host. If that happens, RESET IMMED can be used to cancel the command. In some cases, it might be necessary to recycle the task.

• The TN3270 command is an interactive command and should not be scheduled to run via the TIMER command unless it runs on an operator’s task with an operator present.
Examples

**Example: Starting a TELNET Session on a VM System**
To telnet to a VM system with a TCP/IP hostname of RALVM14 while accepting defaults for port, rollkey and endkey, enter:

```
TN3270 RALVM14
```

**Example: Specifying a Different Port**
To telnet to a system whose telnet server is listening on port 623, enter:

```
TN3270 RALVM14 -a 623
```

**Example: Specifying a Different Endkey**
To telnet to a system and use PF20 as the endkey, enter:

```
TN3270 RALVM14 -e PF20
```

**Example: Specifying Rollkey and Endkey**
To telnet to a system and specify PF19 for rollkey and PF20 for endkey, enter:

```
TN3270 RALVM14 -r PF19 -e PF20
```
TNSTAT (NCCF; CNME0036)

Syntax

```
TNSTAT
```

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NO,10</td>
<td></td>
</tr>
<tr>
<td>NO, time,10</td>
<td></td>
</tr>
<tr>
<td>OFF, time,10</td>
<td></td>
</tr>
<tr>
<td>YES, time,10</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. If you do not specify a positional parameter, you must indicate the absence of the parameter by specifying a comma in its place.

Purpose of Command

The TNSTAT command list changes, restarts, or stops the recording of tuning statistics. You can use tuning statistics to gather data for adjusting VTAM and network control program (NCP) variables to improve performance.

To use the tuning statistics facility, specify the TNSTAT start option when you start VTAM.

Operand Descriptions

NO

Sends the tuning statistics to the system management facilities (SMF) log.

**time**

Specifies the number of minutes between tuning statistics recording events. This number can be in the range of 1–1440. The default is 10.

**passthru**

Specifies up to 6 parameters which are appended unchanged to the VTAM MODIFY command issued by the TNSTAT command. No validation for duplicate or conflicting parameters is performed.

Restrictions

If you omit a positional operand, indicate its absence with a comma. It is not necessary to specify trailing commas.

Examples

**Example: Sending Statistics to the SMF or External Log**

To send statistics from events recorded every 10 minutes to the SMF log enter:

```
TNSTAT
```
**Example: Stopping the Recording of Tuning Statistics**
To stop recording tuning statistics, enter:

TNSTAT OFF

**Example: Sending Statistics to the System Console**
To send statistics from events recorded every 10 minutes to the system console and to the log, enter:

TNSTAT YES

**Example: Sending Statistics to the Log**
To send statistics from events recorded every 20 minutes to the log only (not to the system console), enter:

TNSTAT,,20

**Example: Sending Statistics to the System Console and to the Log**
To send statistics from events recorded every 20 minutes to the system console and to the log, enter:

TNSTAT YES,20
## TOP

### Syntax

```
TOP
```

### IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOP</td>
<td>T</td>
</tr>
</tbody>
</table>

### Purpose of Command

The TOP command displays the first page of a multipage panel.

### Restrictions

If you enter this command for a single-page panel, no change occurs.

### Examples

**Example: Displaying the First Page of a Multipage Panel**

To display the first page of a multipage panel, enter either command:

```
TOP
T
```
TOPOSNA CRITICAL (TOPOSNA)

Syntax

TOPOSNA CRITICAL

LIST
STARTMON +resname
STOPMON $TYPE=LU
$TYPE=CDRSC

Purpose of Command

Ordinarily, when you use Locate Resource in NMC to request the SNA topology manager to locate and monitor a logical unit (LU) or cross domain resource (CDRSC), the SNA topology manager creates that resource in RODM and monitors it only while it is displayed in an NMC view. When the resource is no longer displayed in any view, the SNA topology manager stops monitoring it and removes it from RODM.

You can use the TOPOSNA CRITICAL command with the STARTMON keyword to monitor a critical LU or CDRSC continuously, regardless of its presence in an NMC view, and regardless of whether the SNA topology manager is monitoring it as part of an LU collection. Resources are created in RODM and are available for display in relevant views using a Locate Resource request or other navigation, but are not removed from RODM when you close the last view in which the resource is displayed. Monitoring continues until you issue the TOPOSNA CRITICAL command with the STOPMON keyword. You can also use the TOPOSNA CRITICAL command with the LIST keyword to list the LUs and CDRSCs that the SNA topology manager is currently monitoring continuously.

Operand Descriptions

LIST
Requests a list of the logical units (LUs) and cross domain resources (CDRSCs) currently being monitored continuously. Continuous monitoring of these resources can be requested in either of two ways:

• Using the TOPOSNA CRITICAL STARTMON command to start continuous monitoring of the resource immediately.
• Using RODM loader statements to create the resources directly in RODM with the monitorContinuously field set ON. In this case, continuous monitoring of the resource begins the next time SNA topology manager is warm started.

TYPE
Specifies the resource type.

LU
Indicates that the resource is a logical unit. This is the default.

CDRSC
Indicates that the resource is a cross domain resource.
STARTMON
Specifications that SNA topology manager is to begin the continuous monitoring of the specified resource.

STOPMON
Specifications that the SNA topology manager should stop individual monitoring of the specified resource, and if not also monitoring it as part of an LU collection, remove it from RODM. If the SNA topology manager is monitoring the resource, and it is not also being monitored as part of an LU collection, monitoring ends and the resource is deleted from RODM regardless of whether it is currently displayed in a view.

Note: The specified resource must be one that is being monitored continuously. You can use the TOPOSNA CRITICAL LIST command to display the resources that are being monitored continuously.

rename
Specifies the resource name as netid.cpname.resourceid where:

netid
Is a 1- to 8-character name specifying the network identifier of the resource.

cpname
Is a 1- to 8-character name specifying the control point of the target resource.

resourceid
Is a 1- to 17-character name, which is the resource name. The form of this name depends on the resource type as follows:

logical unit
The name must be of the form netid.luname.

cross domain resource
If it is not a predefined alias, the name must be of the form netid.cdrsname. If the resource is a predefined alias, the name must be of the form cdrsname (netid is omitted). For more information about the naming of cross domain resources, refer to the appropriate VTAM manuals.

Note: Authorization checking for rename is done by verifying the netid, cpname, and resourceid values separately. Each value within resourceid is also verified separately.

Usage Notes
Samples FLBS8001 and FLBS8002 are provided in CNMSAMP. When installed, these provide a REFRESHC command to enable multiple TOPOSNA CRITICAL commands to be issued against resources specified in a definition file. See the FLBS8001 sample for installation directions.

Examples

Example: Continuously Monitoring a Critical LU
To start continuously monitoring logical unit LUA on control point CP5 in network SNANET, enter:

TOPOSNA CRITICAL,STARTMON=SNANET.CP5.SNANET.LUA,TYPE=LU

Response
Example: Stopping the Monitoring of a Critical LU
For operator OPER1 to stop SNA topology manager’s continuous monitoring of critical logical unit LUA on control point CP5 in network SNANETA, enter:

TOPOSNA CRITICAL,STOPMON=SNANETA.CP5.SNANETA.LUA,TYPE=LU

Response

FLB597I OPERATOR OPER1 STOPPED MONITORING OF CRITICAL LU SNANETA.CP5.SNANETA

Example: Listing the LUs and CDRSCs which are being Monitored Continuously
To list the logical units and cross domain resources that SNA topology manager is currently continuously monitoring, enter:

TOPOSNA CRITICAL,LIST

Response

- NTVCB FLB590I SNA TOPOLOGY MANAGER CRITICAL LU LIST FOLLOWS:
  ' NTVCB
FLB591I RESOURCE NAME RESOURCE TYPE MONITOR STATUS
FLB592I ----------------------------------- ------------- --------------
FLB593I SNANETA.CP1.SNANETA.LU1 LU MONITORING
FLB593I SNANETB.CP2.SNANETB.CDRSC1 CDRSC REQUESTED
FLB593I SNANETA.CP2.SNANETA.LU2 LU FAILED
FLB593I SNANETA.CP3.SNANETA.CDRSC2 CDRSC INITIALIZED
FLB594I END OF CRITICAL LU LIST-----------------------------------------
- NTVCB FLB411I TOPOSNA CRITICAL COMMAND COMPLETED SUCCESSFULLY

where:

MONITORING
Indicates that the SNA topology manager issued the monitor request and has received data in response.

REQUESTED
Indicates that the SNA topology manager has issued the monitor request but has not received a response.

FAILED
Indicates that the SNA topology manager attempted to monitor the resource but failed.

INITIALIZED
Indicates that the SNA topology manager is in the process of issuing the monitor request.
TOPOSNA LISTPOOL (TOPOSNA)

Syntax

```
TOPOSNA LISTPOOL
```

Purpose of Command

TOPOSNA LISTPOOL displays SNA topology manager storage pool statistics.

Operand Descriptions

**LISTPOOL**

Displays a matrix of storage types versus storage usage and allocation. For each storage pool allocated, a percentage used number is given. Use this operand to check the usage and fragmentation of the SNA topology manager internal storage pool.

The TOPOSNA LISTPOOL command is more useful for diagnostic purposes, rather than periodic internal-storage-pool monitoring.

Examples

**Example: List SNA Topology Manager Storage Usage**

To list SNA topology manager storage pool statistics, enter:

```
TOPOSNA LISTPOOL
```

Response

Information similar to the following is displayed:

```
FLB553I SNA TOPOLOGY MANAGER STORAGE POOL STATISTICS FOLLOW
FLB554I STORAGE SIZE ALLOCATED USED ALLOCATED USED %
FLB555I TYPE IN BYTES COUNT COUNT STORAGE-K STORAGE-K USED
FLB556I ----------- --------- --------- --------- --------- --------- ----
FLB557I StatusEntry 228 642 542 143 121 84
FLB557I LU_Aset 116 210 107 24 13 50
FLB557I Node_Aset 84 485 404 40 34 83
FLB557I Port_Aset 124 98 36 12 5 36
FLB557I TG_Aset 114 214 178 24 20 83
FLB557I TGC_Aset 80 101 77 8 7 76
FLB557I Link_Aset 112 109 48 12 6 44
FLB557I AgentEntry00000 0
FLB557I Max_Aset 144 113 0 16 0 0
FLB557I NTEntry 72 339 232 24 17 68
FLB557I LUTEntry00000 0
FLB557I ActionLU 184 176 107 32 20 60
FLB557I CacheLU 136 180 107 24 15 59
FLB557I GraphOb 32 252 183 8 6 72
FLB557I LActLink 360 102 24 36 9 23
FLB557I LActNode 192 106 8 20 2 7
FLB557I LActPort 184 88 18 16 4 20
FLB557I LActTG 236 103 9 24 3 8
FLB557I NActCircuit 192 318 220 60 42 69
FLB557I NActNode 324 101 75 32 24 74
FLB557I CacheCirc 460 97 80 44 36 82
FLB557I CacheLink 172 95 24 16 5 25
```
<table>
<thead>
<tr>
<th>Description</th>
<th>Count</th>
<th>Count1</th>
<th>Count2</th>
<th>Count3</th>
<th>Count4</th>
<th>Count5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CacheNode</td>
<td>188</td>
<td>324</td>
<td>232</td>
<td>60</td>
<td>43</td>
<td>71</td>
</tr>
<tr>
<td>CachePort</td>
<td>124</td>
<td>98</td>
<td>18</td>
<td>12</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>HashEntry</td>
<td>12</td>
<td>2028</td>
<td>1971</td>
<td>24</td>
<td>24</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLB558I END OF STORAGE POOL STATISTICS-----------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TOPOSNA LISTREQS (TOPOSNA)

Syntax

TOPOSNA LISTREQS

Purpose of Command

TOPOSNA LISTREQS displays the status of pending topology manager requests to its agents.

Operand Descriptions

LISTREQS
Displays the status of pending topology manager requests to its agents. For nodes being monitored, the messages display:

• The name of the agent node.
• The type of topology being obtained (network, local, or LU collection).
• The type of monitoring (continuous or timed). For timed monitors, the time remaining is shown.
• The stage of the monitoring:
  – Before any data is received (REQUESTED)
  – Before initial topology transfer is complete (INCOMPLETE)
  – After initial topology transfer is complete (COMPLETE)
  – Retrying is currently underway (RETRY)
• The local name (at the agent node) of the logical link or port

The messages are grouped as follows:
1. Network topology monitor operations (including retries)
2. Local topology monitor operations (including retries)
3. LU collection monitor operations (including retries)
4. Port/link control operations (activate, inactivate, recycle)

There is no specific ordering within each of these groups.

Restrictions

This command cannot be issued until you receive the following message:
FLB440I SNA TOPOLOGY MANAGER INITIALIZATION IS COMPLETE.

Examples

Example: Listing Pending Requests
To list pending topology requests, issue:

TOPOSNA LISTREQS

Response

<table>
<thead>
<tr>
<th>FLB561I</th>
<th>NODE</th>
<th>LOCAL</th>
<th>MONITOR</th>
<th>MONITOR</th>
<th>MONITOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLB562I</td>
<td>NAME</td>
<td>TYPE</td>
<td>STATUS</td>
<td>TIME</td>
<td></td>
</tr>
<tr>
<td>FLB563I</td>
<td>-------</td>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>FLB564I</td>
<td>SNAETA.A55M</td>
<td>NETWORK</td>
<td>COMPLETE</td>
<td>CONTINUOUS</td>
<td></td>
</tr>
</tbody>
</table>
The example demonstrates all possible messages that can be issued. Note that messages can repeat.
TOPOSNA LISTRODM (TOPOSNA)

Syntax

TOPOSNA LISTRODM

Purpose of Command

TOPOSNA LISTRODM displays RODM activity and object counts.

Operand Descriptions

LISTRODM

Displays a matrix of object types versus activity and object counts.

Examples

Example: List RODM Activity and Object Counts

To list RODM activity and object counts, enter:

TOPOSNA LISTRODM

Response

Information similar to the following is displayed:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Create</th>
<th>Delete</th>
<th>Update</th>
<th>Query</th>
<th>Link/Unlink</th>
<th>Status</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDRM</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>DefG</td>
<td>18</td>
<td>0</td>
<td>36</td>
<td>0</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>EN</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>ICN</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>12</td>
<td>21</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>LEN</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MDH</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>NN</td>
<td>159</td>
<td>0</td>
<td>5</td>
<td>7</td>
<td>205</td>
<td>160</td>
<td>159</td>
</tr>
<tr>
<td>BrNN</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sna</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T2.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T4</td>
<td>12</td>
<td>0</td>
<td>13</td>
<td>3</td>
<td>34</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>T5</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>VRN</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Link</td>
<td>1344</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2804</td>
<td>1344</td>
<td>1344</td>
</tr>
<tr>
<td>CDRS</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LU</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>LUGr</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Port</td>
<td>262</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>576</td>
<td>262</td>
<td>262</td>
</tr>
<tr>
<td>TG</td>
<td>530</td>
<td>0</td>
<td>5</td>
<td>9</td>
<td>1060</td>
<td>530</td>
<td>530</td>
</tr>
<tr>
<td>ACir</td>
<td>424</td>
<td>0</td>
<td>3</td>
<td>7</td>
<td>2150</td>
<td>424</td>
<td>424</td>
</tr>
<tr>
<td>SCir</td>
<td>21</td>
<td>0</td>
<td>21</td>
<td>2</td>
<td>104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agg6</td>
<td>175</td>
<td>0</td>
<td>190</td>
<td>33</td>
<td>175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AggC</td>
<td>395</td>
<td>0</td>
<td>394</td>
<td>0</td>
<td>1223</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTL</td>
<td>3369</td>
<td>2</td>
<td>678</td>
<td>78</td>
<td>8403</td>
<td>2777</td>
<td>2775</td>
</tr>
</tbody>
</table>

The first column contains an abbreviation of the RODM class name to which the counts apply. The abbreviations are:
The remainder of the columns contain the following activity and object counts:

**CREATE**

The number of EKG_CreateObject calls issued against OBJ TYPE.

**DELETE**

The number of EKG_DeleteObject calls issued against OBJ TYPE.

**UPDATE**

The number of EKG_ChangeMultipleFields calls issued against OBJ TYPE.

**QUERY**

The number of EKG_QueryField and EKG_QueryMultipleSubfields calls issued against OBJ TYPE.

**LINK/UNLINK**

The number of EKG_LinkTrigger and EKG_UnlinkTrigger calls issued against OBJ TYPE.
FLBTRST(STATUS)
The number of times the FLBTRST method was invoked for OBJ TYPE (indicates a status change occurred). There can be other non-objectlink and non-objectlinklist fields changed at the same time as the status changed; however these changes are performed with the same MAPI (method API) RODM calls as for the status change. This column contains a blank entry for aggregate object classes (SCir, AggG, AggC, and SnaL).

RODM COUNT
The current number of object instances of OBJ TYPE currently or previously known to the SNA topology manager since the SNA topology manager was last initialized. The SNA topology manager must have received a status report on an object, through an ongoing or previous topology monitor, for the object to be reflected in this count. This column contains a blank entry for aggregate objects (SCir, AggG, AggC, and SnaL).
TOPOSNA LISTSTOR (TOPOSNA)

Syntax

TOPOSNA LISTSTOR

Purpose of Command

TOPOSNA LISTSTOR displays storage usage counts for the SNA topology manager. It is not the total storage usage information for the SNA topology manager task. Use the TASKMON FLBTOPO STG command or the TASKUTIL FLBTOPO command to display the total storage being used by the SNA topology manager task.

Operand Descriptions

LISTSTOR

Displays a matrix of object types versus internal storage usage.

Examples

Example: List SNA Topology Manager Storage Usage
To list SNA topology manager storage usage, enter:

TOPOSNA LISTSTOR

Response

Information similar to the following is received:

<table>
<thead>
<tr>
<th>TYPE</th>
<th>COUNT1 STORAGE-K</th>
<th>COUNT2 STORAGE-K</th>
<th>TOTAL STORAGE-K</th>
<th>MAXIMUM-K</th>
</tr>
</thead>
<tbody>
<tr>
<td>AttrSets</td>
<td>5170</td>
<td>859</td>
<td>859</td>
<td></td>
</tr>
<tr>
<td>X-AttrSets</td>
<td>20</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CritLUs</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>NodeTable</td>
<td>212</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>RodmMain</td>
<td>1</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>StatHist</td>
<td>2775</td>
<td>593</td>
<td>593</td>
<td></td>
</tr>
<tr>
<td>Heap</td>
<td>82</td>
<td>39</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>IntTrace</td>
<td>1</td>
<td>40</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>CORM</td>
<td>11</td>
<td>3</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>DefGroup</td>
<td>0 18</td>
<td>4</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>EN</td>
<td>3 12</td>
<td>1 2</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>ICN</td>
<td>7 4</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>LEN</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MDH</td>
<td>0 0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>NN</td>
<td>164 159</td>
<td>30</td>
<td>61</td>
<td>61</td>
</tr>
<tr>
<td>BrNN</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SnaNode</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T2.1</td>
<td>0 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T4</td>
<td>11 12</td>
<td>3</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>T5</td>
<td>0 2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>VRN</td>
<td>3 1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Link</td>
<td>1344 1344</td>
<td>216</td>
<td>684</td>
<td>684</td>
</tr>
<tr>
<td>LU</td>
<td>3 2</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>
The first column contains an abbreviation of either an SNA topology manager internal storage class, RODM class name, or role of an object within an RODM class to which the storage usage applies.

The first set of abbreviations are for SNA topology manager internal storage classes. Only the COUNT, TOTAL STORAGE-K, and TOTAL MAXIMUM-K columns contain counts. The abbreviations are:

- **AttrSets**
  Attribute Sets, an internal representation of the fields (attributes) of an RODM object. The COUNT column represents the current number of allocated Attribute Sets.

- **X-AttrSets**
  Extended Attribute Sets. Extra storage for fields, used when the standard (above) version of Attribute Sets is not large enough to hold all of an objects fields. The COUNT column represents the current number of allocated Extended Attribute Sets.

- **CritLUs**
  Critical LUs. The COUNT column represents the current number of Critical LUs being monitored.

- **NodeTable**
  Internal node lookup cache. The COUNT column represents the current number of node table entries.

- **RodmMain**
  RODM interface storage and is the size of the RODM response block. The COUNT column is always 1.

- **StatHist**
  Status History entries. The COUNT column indicates how many objects are currently maintaining a status history.

- **Heap**
  SNA topology manager C run-time heap utilization. The COUNT column indicates how many storage requests are currently allocated from the heap.

- **IntTrace**
  The amount of storage currently allocated to the internal trace buffer.

The second set of abbreviations are for RODM classes. Some entries represent multiple RODM classes. For example, the TG/Circuit entry represents TGs and circuits, both APPN and subarea versions. The abbreviations are:

- **CDRM**
  Cross Domain Resource Manager objects

- **DefGroup**
  Definition Group objects

- **EN**
  End node objects

FLB581I Port	262	47	262	31	78	78
FLB581I TG/Circuit	514	404	445	202	606	606
FLB581I IntDomCirc	0	0	387	11	11	11
FLB581I IntNetCirc	0	0	7	1	1	1
FLB581I nnDomain	0	0	166	5	5	5
FLB581I nnDomNet	0	0	8	1	1	1
FLB581I SnaLocal	0	0	1	1	1	1
FLB581I TOTAL	3044	3049				

FLB582I END OF SNA TOPOLOGY MANAGER STORAGE USAGE-----------------------

FLB411I TOPOSNA LISTSTOR COMMAND COMPLETED SUCCESSFULLY

---

Chapter 2. NetView Commands and Command Descriptions
ICN  Interchange Node objects
LEN  Low Entry Networking objects
MDH  Migration Data Host objects
NN   Network node objects
BrNN Branch Network Node objects
SnaNode  SNA Node objects
T2.1  T2.1 objects
T4   T4 objects
T5   T5 objects
VRN  Virtual Routing Node objects
Link Logical link objects
LU   Logical unit objects (includes Logical Unit, LU Group, and Cross Domain Resource RODM classes)
Port Port objects
TG/Circuit Transmission Group and Transmission Group Circuit objects (includes both Subarea and APPN flavors)
IntDomCirc InterDomain Circuit objects
IntNetCirc InterDomainNetwork Circuit objects
nnDomain nnDomain objects
nnDomNet nnDomainNetwork objects
SnaLocal SnaLocal Topology objects

The remainder of the columns contain storage class counts, as follows:

COUNT1
For resources that do not correspond to RODM objects, represents the total count of that resource type. For resources that do correspond to RODM objects, represents the total count of that object currently active in CACHE1 (note that this value can differ from the COUNT2 field).

CACHE1 STORAGE-K
Amount of storage (in kilobytes) currently utilized by the RESOURCE TYPE in CACHE1.

COUNT2
For resources that do not correspond to RODM objects, no entry is made. For resources that do correspond to RODM objects, represents the total count of that object currently active in CACHE2 (note that this value can differ from the COUNT1 field).
CACHE2 STORAGE-K
Amount of storage (in kilobytes) currently utilized by the RESOURCE TYPE in CACHE2.

TOTAL STORAGE-K
The total amount of storage currently utilized by the RESOURCE TYPE (note that for resources that have CACHE1 and CACHE2 entries, this value is the total of the CACHE1 and CACHE2 values).

TOTAL MAXIMUM-K
The maximum amount of storage that this RESOURCE TYPE has utilized (the highwater mark).

Notes:
1. Storage values are rounded up to the nearest kilobyte before displaying, and are close approximations of the actual storage utilized at the instant the LISTSTOR command was issued.
2. CACHE1 versus CACHE2 - For resource types that have corresponding RODM objects, the SNA topology manager maintains a two-stage internal cache. Because some intermediate (temporary) storage objects are maintained, these numbers do not directly correspond to the actual numbers of objects of a given class in RODM. Use the TOPOSNA LISTRODM command for RODM object counts.
TOPOSNA MONITOR (TOPOSNA)

Syntax

```
TOPOSNA MONITOR
```

```
TOPOSNA MONITOR
 NETWORK
 NODE=netid.cp
topology
 OBJECTID=rodmobjectid
 LOCAL
 NODE=netid.cp
 OBJECTID=rodmobjectid
 LUCOL
 NODE=netid.cp
 OBJECTID=rodmobjectid
 LCLNAME=localname
MONTIME=duration
```

Purpose of Command

TOPOSNA MONITOR starts the monitoring of local or network topology, or the collection of all LUs (including logical units, cross-domain resources, and LU groups) associated with a node. The agent at the monitored node first sends a copy of the appropriate data (such as network topology, local topology, or LU topology). As the data changes, the agent sends updates.

Operand Descriptions

**MONITOR**

Specifies that the topology manager is to begin monitoring the topology of an agent node.

**NETWORK**

Specifies network topology.

**LOCAL**

Specifies local topology.

**LUCOL**

Specifies monitoring of the collection of all LUs associated with the specified node.

**NODE**

Specifies the node, identified by network name, that the topology manager monitors.

```
netid.cp
```

The network qualified name of the control point of the agent node, where `netid` is the network identifier and `cp` is the control point name.

The `netid` and the `cp` name each have an 8-character maximum length; no blanks are included and the period between them is required.

Authorization checking of `netid` and `cp` is done separately; the 8-character authorization-checking limit is therefore not a limitation on checking the node name.
The control point name of the agent node. The name consists solely of the control point name: no network identifier or period is included.

**OBJECTID=rodmobjectid**

The 8-byte RODM object identifier for the node (or logical link when monitoring an LU collection). The format is 16 hexadecimal digits (0–9, A–F). This parameter is intended to be used primarily by programs or command lists that have access to RODM rather than by operators. Authorization checking of rodmobjectid is done only on the first 8 characters.

**LCLNAME=localname**

The local name of the logical link. The LU collection is monitored using the agent specified by the NODE parameter and includes all LUs that reside at the logical link.

**Note:** Only one monitor for the LU collection is allowed for a logicalLink that can be reported by more than one SSCP.

**MONTIME=duration**

Specifies the length of time (in minutes) for monitoring. The time limit does not include the time required for the agent node to transfer the initial copy of its topology, but is the amount of time that the manager receives topology updates from the agent node.

Timing begins when all the initial topology data has been transferred. A completed transfer is indicated by message FLB406I for network topology, message FLB423I for local topology, or message FLB552I for LU collection. If you do not specify MONTIME, monitoring continues until an operator issues a STOP or STOPMGR request. When you specify MONTIME, the topology manager stops monitoring after the number of minutes specified by duration.

When an operator issues successive monitoring requests for the same agent node, the request for the longest monitor (including a continuous monitor request) overrides other requests. For example, a timed-monitor request cannot change continuous monitoring; it can only reset the timing on a previous, shorter timed-monitor request. A request for continuous monitoring overrides a previous timed-monitor request.

There is no default MONTIME value. The minimum value for MONTIME is zero (0); the maximum is 32000.

**Restrictions**

Before issuing a MONITOR request, consider these restrictions:

- This command cannot be issued until you receive the following message:
  
  FLB440I SNA TOPOLOGY MANAGER INITIALIZATION IS COMPLETE.

If the topology manager was warm started, you do not receive this message until the topology manager has started all continuous monitor operations in effect at the time the last STOPMGR request was issued (or in effect at the time of the RODM checkpoint, if you load checkpoint data). Timed monitor commands are not restarted. The messages for restarted monitor operations are sent to the authorized receiver.

- You can have only one active local topology monitor for each agent node, one active network topology monitor for each agent node, and one active LU collection monitor for a single agent node’s entire LU collection. To have multiple, active, LU collection monitors for a single agent node, do the following:
Use the LCLNAME keyword to subset the agent node’s LU collection by logicalLink (PU) under which the LUs are defined.

When you monitor a host node’s LU collection, the VTAM agent does not include resources that are defined under major node ISTCDRDY in its initial topology report. However, the agent does subsequently send updates for dynamic real resources defined under this major node.

Use different values for the LCLNAME keyword to specify different subsets.

Even if several operators on the same NetView program issue monitor requests, they cannot have in effect monitor commands for different durations. Instead, the topology manager honors the request for the longest duration. However, operators on different NetView programs can issue monitor requests to an agent that differ in duration.

Multiple nodes can be monitored at the same time. The monitoring of local topology, network topology, and LU collection topology are independent of each other. For example, a STOP request or an end of a timed monitor for local topology at a node does not affect monitoring of network topology at that node.

- If you incorrectly request network topology from an end node other than a migration data host, an error message is not displayed; however, warning message FLB409W is displayed, indicating that the topology manager is retrying.
- Messages pertaining to each instance of the TOPOSNA MONITOR command are correlated with the command. This correlation continues until one of the following occurs:
  - The command completes successfully with no retry.
  - The command fails with no retry.
  - The command goes into retry after the default interval ends.

The time period after which the TOPOSNA MONITOR command goes into retry is determined by the default settings. You can display the default settings using the TOPOSNA QUERYDEF command. If the TOPOSNA START command goes into retry mode, you can issue the TOPOSNA LISTREQS command to see the status of the monitor. The MONITOR STATUS for the node the user tried to monitor will be shown as RETRY. If the command fails all retries, TOPOSNA LISTREQS will drop the node from the list of pending requests. If the command succeeds, TOPOSNA LISTREQS will show the MONITOR STATUS for that node as COMPLETE.

- You cannot change from continuous monitoring to timed monitoring. Use a STOP request to stop the continuous monitoring and then initiate the timed monitoring.
- You cannot reset a timed monitoring interval to a shorter interval. Use a STOP request to stop the timed monitoring and then initiate the timed monitoring with a shorter interval.

**Examples**

A representative subset of possible response messages are shown for the following examples.

**Example: Starting a Continuous Network Monitor**

To monitor network topology continuously from node APPNNet.NODE1, issue:

TOPOSNA MONITOR,NETWORK,NODE=APPNNet.NODE1

Response
Example: Starting a Timed Local Monitor
To start monitoring local topology at node APPNNET1.NODE1 for 10 minutes, after which time the monitoring automatically stops, enter:

```
TOPOSNA MONITOR,LOCAL,NODE=APPNNET1.NODE1,MONTIME=10
```  

Response
```
FLB420I REQUESTED MONITORING OF SNA LOCAL TOPOLOGY FROM NODE APPNNET1.NODE1
FLB423I INITIAL TRANSFER OF SNA LOCAL TOPOLOGY FROM NODE APPNNET1.NODE1 IS COMPLETE
(10 minutes later)
FLB421I COMPLETED MONITORING OF SNA LOCAL TOPOLOGY FROM NODE APPNNET1.NODE1
```

Example: Changing a Timed Monitor to a Continuous Monitor
To change the timed monitor from the previous example to a continuous monitor, enter:

```
TOPOSNA MONITOR,LOCAL,NODE=APPNNET1.NODE1
```

Response
```
FLB403I REQUESTED MONITORING OF SNA NETWORK TOPOLOGY FROM NODE APPNNET1.NODE1
FLB406I INITIAL TRANSFER OF SNA NETWORK TOPOLOGY FROM NODE APPNNET1.NODE1 IS COMPLETE
```

Example: Resetting a Timed Monitor to a Longer Time
If you have a timed monitor for node APPNNET1.NODE1 active with an interval of 5 minutes, you can change the interval to 10 minutes by entering:

```
TOPOSNA MONITOR,NETWORK,NODE=APPNNET1.NODE1,MONTIME=10
```

Response
```
FLB403I REQUESTED MONITORING OF SNA NETWORK TOPOLOGY FROM NODE APPNNET1.NODE1
FLB406I INITIAL TRANSFER OF SNA NETWORK TOPOLOGY FROM NODE APPNNET1.NODE1 IS COMPLETE
```

The timed monitor interval is lengthened by 10 minutes. The same or different operators can issue the original command and the command in this example. The elapsed time from the first request is not subtracted from the second request.

Example: Automating Monitoring
To specify the node with an RODM object identifier (intended for programs or command lists), use this form of the command:

```
TOPOSNA MONITOR,NETWORK,OBJECTID=0123456789ABCDEF,MONTIME=10
```

Example: Starting a Continuous LU Collection Monitor
To monitor the LU collection under node NTCBMVS, issue:

```
TOPOSNA MONITOR,LUCOL,NODE=NTCBMVS
```

Response:
```
FLB540I REQUESTED MONITORING OF LU COLLECTION FROM SNANET.NTCBMVS
FLB552I INITIAL TRANSFER OF LU COLLECTION DATA FROM NODE SNANET.NTCBMVS IS COMPLETE
```
Example: Starting a Timed LU Collection Monitor
To start a timed LU collection monitor at node NTCBMVS, enter:

TOPOSNA MONITOR,LUCOL,NODE=SNANET.NTCBMVS,MONTIME=10,LCLNAME=MVSLNK

Response:

FLB540I REQUESTED MONITORING OF LU COLLECTION FROM SNANET.NTCBMVS
FLB552I INITIAL TRANSFER OF LU COLLECTION DATA FROM NODE
SNANET.NTCBMVS IS COMPLETE

This starts monitoring of the node’s LU collection, which will continue for 10
minutes, after which time the monitoring automatically stops and message FLB584I
is issued.
TOPOSNA PURGE (TOPOSNA)

Syntax

TOPOSNA PURGE

\[ \text{PURGE, PURGDAYS=}nn \]

Purpose of Command

TOPOSNA PURGE deletes expired unreachable resources from the RODM data cache.

Operand Descriptions

PURGE
Deletes from the RODM data cache all topology manager objects whose status fields (states fields in RODM) have a time stamp older than the value of PURGDAYS, are not currently being monitored by the SNA topology manager, and have the FLB_Creator field containing a value of FLB.

PURGDAYS=nn
The number of days that the PURGE request should use when determining what objects to delete from the RODM data cache.

The default value is 15 for PURGDAYS; \( nn \) can be an integer value in the range of 0–32767. Values of 1–7 days should be used with caution; small values of PURGDAYS increase the likelihood that a deleted object will be created again soon after purging. Even if their status has not changed, APPN network nodes automatically refresh their status every 5 or 7 days to prevent them from being erroneously purged from the APPN network topology database.

Note: A value of 0 means the RODM data cache is purged of all resources that are not being monitored. Although a PURGE request with PURGDAYS=0 has the same effect as a cold start, use a cold start of the topology manager when the topology manager is stopped and later restarted. This provides better performance than starting the topology manager and then issuing the PURGE request.

Restrictions

Before issuing a PURGE request, consider these restrictions:

- A PURGE request does not delete resources unless these conditions are met:
  - The resource must not be currently monitored.
  - The resource must be at least the PURGDAYS value since its last update.
  - The FLB_Creator field contains a value of FLB.

Also, an aggregate object, such as nnDomain, is deleted when all its underlying objects are deleted.

For other objects that can be purged under specific conditions, refer to the Tivoli NetView for z/OS SNA Topology Manager Implementation Guide.

- This command cannot be issued until you receive the following message:
FLB440I SNA TOPOLOGY MANAGER INITIALIZATION IS COMPLETE.

- Non-critical LUs are not purged when they are contained in open views.

**Examples**

**Example: Purging Resources**
To remove resources from RODM that have not been updated for 12 days, enter:

```
TOPOSNA PURGE,PURGDAYS=12
```

**Response**

```
FLB411I TOPOSNA PURGE COMMAND COMPLETED SUCCESSFULLY
```

The purged resources will not be displayed in refreshed views.
TOPOSNA QUERYDEF (TOPOSNA)

Syntax

TOPOSNA QUERYDEF

Purpose of Command

TOPOSNA QUERYDEF displays the current settings for the topology manager values that can be set by a SETDEFS request.

Operand Descriptions

QUERYDEF

Requests that settings be displayed.

Restrictions

This command cannot be issued until you receive the following message:

FLB440I SNA TOPOLOGY MANAGER INITIALIZATION IS COMPLETE.

Examples

Example: Querying Default Values

The following example shows how the defaults are set to initial values, how some are reset to new values, and how the new set of defaults in effect are displayed.

TOPOSNA SETDEFS
TOPOSNA SETDEFS,AUTOMON=(NNLOCAL=YES),NETRETRY=(120),LCLRETRY=(NORETRY)
TOPOSNA QUERYDEF

Response

FLB494I SNA TOPOLOGY MANAGER DEFAULT SETTINGS FOLLOW:
FLB495I MONITOR SNA LOCAL TOPOLOGY FOR NEW NETWORK NODES : YES
FLB496I MONITOR SNA LOCAL TOPOLOGY FOR NEW END NODES : NO
FLB650I MONITOR SNA NETWORK TOPOLOGY FOR NEW T5 NODES : NO
FLB651I MONITOR SNA LOCAL TOPOLOGY FOR NEW T5 NODES : NO
FLB497I SNA NETWORK TOPOLOGY IMMEDIATE RETRY INTERVAL : 12
FLB498I SNA NETWORK TOPOLOGY IMMEDIATE RETRY LIMIT : 5
FLB499I SNA NETWORK TOPOLOGY LONG-TERM RETRY INTERVAL : 1800
FLB500I SNA NETWORK TOPOLOGY LONG-TERM RETRY LIMIT : 48
FLB501I SNA LOCAL TOPOLOGY IMMEDIATE RETRY INTERVAL : NORETRY
FLB502I SNA LOCAL TOPOLOGY IMMEDIATE RETRY LIMIT : 5
FLB503I SNA LOCAL TOPOLOGY LONG-TERM RETRY INTERVAL : 1800
FLB504I SNA LOCAL TOPOLOGY LONG-TERM RETRY LIMIT : 48
FLB546I SNA LU COLLECTION IMMEDIATE RETRY INTERVAL : 60
FLB547I SNA LU COLLECTION IMMEDIATE RETRY LIMIT : 5
FLB548I SNA LU COLLECTION LONG-TERM RETRY INTERVAL : 1800
FLB549I SNA LU COLLECTION LONG-TERM RETRY LIMIT : 48
FLB493I ERROR RETRY LIMIT : 1
FLB520I RODM RETRY INTERVAL : 30
FLB521I RODM RETRY LIMIT : 1000
FLB528I CMIP SERVICES RETRY INTERVAL : 30
FLB529I CMIP SERVICES RETRY LIMIT : 1000
FLB411I TOPOSNA QUERYDEF COMMAND COMPLETED SUCCESSFULLY
**TOPOSNA REFRESH (TOPOSNA)**

### Syntax

```
TOPOSNA REFRESH (TOPOSNA)
```

### Notes:

1. The parentheses are optional if only one class name is specified.

### Purpose of Command

The TOPOSNA REFRESH command changes the NetView-provided initial default values for the Status Resolution table, the OSI-Display status table, and the Exception View table. When the command is invoked to refresh the Status Resolution table, the OSI-Display status table, or the Exception View table, the entire table is read and the updates take affect for subsequent SNA topology manager processing. When the TOPOSNA command is invoked to refresh the Exception View table and the CLASS keyword is specified, the resources in RODM that belong to the object classes specified on the TOPOSNA REFRESH command are updated to change the ExceptionViewList field to reflect the changes made in the Exception View table. The topology manager resets the ExceptionViewList to the new value and does not append the new value to the existing value.

When refreshing the Exception View table and specifying the CLASS keyword, performance might be degraded because all of the resources in RODM for the object classes being refreshed are searched and modified according to the updates made in the table.

### Operand Descriptions

**REFRESH**

Specifies that one or more of the tables will be refreshed.

**ALLTABLES**

Specifies that all of the customization tables will be refreshed.

**RESOLVE**

Specifies that the Status Resolution table will be refreshed.
OSIDISP
Specifies that the OSI-Display Status table will be refreshed.

EXVIEW
Specifies that the Exception View table be refreshed and that existing views/methods be modified based on the updated table.

CLASS
The object class or classes whose ExceptionViewList field is to be updated in RODM. Object classes to be updated can be specified in either of two ways:

classname
One or more specific object class names, separated by commas. Following is a list of possible CLASS values and their corresponding OBJECTCL entry values in FLBEXV:

- "APPNBRNN" — appnBrNN
- "APPNEN" — appnEN
- "APPNNN" — appnNN
- "APPNTRANSMISSIONGROUP" — appnTransmissionGroup
- "APPNTRANSMISSIONGROUPCIRCUIT" — appnTransmissionGroupCircuit
- "CROSSDOMAINRESOURCE" — crossDomainResource
- "CROSSDOMAINRESOURCEMANAGER" — crossDomainResourceManager
- "DEFINITIONGROUP" — definitionGroup
- "INTERCHANGENODE" — interchangeNode
- "LENNODE" — lenNode
- "LOGICALLINK" — logicalLink
- "LOGICALUNIT" — logical Unit
- "MIGRATIONDATAHOST" — migrationDataHost
- "PORT" — port
- "T2–1NODE" — t2–1Node
- "T4NODE" — t4Node
- "T5NODE" — t5Node
- "VIRTUALROUTINGNODE" — virtualRoutingNode

ALL
The ExceptionViewList field for all object classes in the table will be updated in RODM.

Restrictions
This command cannot be issued until you receive the following message:

FLB440I SNA TOPOLOGY MANAGER INITIALIZATION IS COMPLETE.

Examples

Example: Refresh the Status Resolution Table
To refresh the status resolution table, enter:

TOPOSNA REFRESH,RESOLVE

Example: Refresh the OSI-Display Status Table
To refresh the OSI-display status table, enter:

TOPOSNA REFRESH,OSIDISP
Example: Refresh the Exception View Table
To refresh the exception view table, enter:
   TOPOSNA REFRESH,EXVIEW

Example: Refresh Both the OSI-Display Status Table and the Exception View Table
To refresh the OSI-display status table and the exception view table, enter:
   TOPOSNA REFRESH,OSIDISP,EXVIEW

Example: Refresh All Three of the Tables
To refresh all SNA topology manager tables, enter:
   TOPOSNA REFRESH,ALLTABLES

Example: Refresh the Exception View Table for Specific Object Classes
To update the ExceptionViewList field in RODM for all resources associated with the port and logicalLink object classes, enter:
   TOPOSNA REFRESH,EXVIEW,CLASS=(logicalLink,port)

Example: Refresh the Exception View Table for All Exception View Object Classes
To update the ExceptionViewList field in RODM for all resources associated with all of the object classes that can appear in exception views, enter:
   TOPOSNA REFRESH,EXVIEW,CLASS=(ALL)

Example: Refresh Specific Object Class for All Three Tables
To update all SNA topology manager tables for all resources associated with the port object class:
   TOPOSNA REFRESH,ALLTABLES,CLASS=(port)
TOPOSNA SETDEFS (TOPOSNA)

Syntax

TOPOSNA SETDEFS

InitDef

Automon

,NETRETRY= Retry
,LCRETRY= Retry
,LURETRY= Retry

,CMPRETRY=( , )

,CMPRETRY=( , cmplim)

,RDMRETRY=( , )

,RDMRETRY=( , rdmlim)

,ERRLIMIT= errlim

Chapter 2. NetView Commands and Command Descriptions
InitDef:

```
| AUTOMON=(ALL=NO), NETRETRY=(60,1800,48), LCLRETRY=(60,1800,48) |
| LURETRY=(60,1800,48), CMPRETRY=(30,1000), RDMRETRY=(30,1000) |
| ERRLIMIT=0 |
```

Notes:

1. At least one parameter must be specified, but a trailing comma (30,) is not allowed when the second value is omitted.
2. The parentheses are optional.
3. At least one parameter must be specified, but trailing commas (5,) are not allowed when omitting values.

**Purpose of Command**

The TOPOSNA SETDEFS command modifies the defaults for the automatic monitoring of local and network topology at newly-discovered nodes, for reconnection to RODM and CMIP Services, and for the retry policy of other TOPOSNA commands.

**Operand Descriptions**

**SETDEFS**

Specifies that the policy values used by the topology manager be modified. When you change an initial default value (shown in the table below) with a SETDEFS request, the new value becomes the default. Any value that you do not specify on the new SETDEFS request takes its value from the last SETDEFS that changed it, or by using the initial default.

The topology manager default values are saved in the RODM data cache and remain in effect across warm and cold starts of the topology manager. Issue a SETDEFS request with no parameters or cold start RODM to reset all defaults to the initial default values. The values in effect when the last STOPMGR request was issued or when the last RODM checkpoint was taken (if you have loaded RODM checkpoint data) are used when the topology manager is restarted. The parameter descriptions follow the table.

**Table 15. Initial Settings for Defaults Set by Topology SETDEFS**

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Parameter</th>
<th>Initial Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTOMON</td>
<td>NNLOCAL</td>
<td>NO</td>
</tr>
<tr>
<td>NETRETRY</td>
<td>rint1</td>
<td>60</td>
</tr>
<tr>
<td>LCLRETRY</td>
<td>rint1</td>
<td>60</td>
</tr>
<tr>
<td>LURETRY</td>
<td>rint1</td>
<td>60</td>
</tr>
<tr>
<td>CMPRETRY</td>
<td>cmpint</td>
<td>30</td>
</tr>
<tr>
<td>RDMRETRY</td>
<td>rdmint</td>
<td>30</td>
</tr>
<tr>
<td>ERRLIMIT</td>
<td>errlim</td>
<td>0</td>
</tr>
</tbody>
</table>
AUTOMON

Performs either of the following:

• Specifies the automatic network topology monitoring action when the topology manager discovers a new t5Node, interchangeNode, migrationDataHost, or VTAM nodes represented by an active crossDomainResourceManager when the network ID is reported by an agent.

• Specifies the automatic local topology monitoring action when the topology manager discovers a new appnNN, appnEN, t5Node, interchangeNode, migrationDataHost, or a VTAM node represented by an active crossDomainResourceManager when the network ID is reported by an agent.

Note: AUTOMON does not apply to monitoring of LU collections.

A newly-discovered node is:

• A node reported for the first time after a cold start (and is thus any node, including the node named in a network monitoring command)

• A node that is reported after being purged from the RODM data cache by a TOPOSNA PURGE command

• A network node that was connected for the first time to a sub-network whose network topology is being monitored

• A node that was connected for the first time to a node whose local topology is being monitored

Valid parameters are:

ALL

Performs either of the following:

• Specifies network topology monitoring for all newly-discovered t5Node, interchangeNode, migrationDataHost, or VTAM nodes represented by an active crossDomainResourceManager when the network ID is reported by an agent.

• Specifies local topology monitoring for all newly-discovered appnNN, appnEN, t5Node, interchangeNode, migrationDataHost, or a VTAM node represented by an active crossDomainResourceManager when the network ID is reported by an agent.

Note: Automatic monitoring will only be sent to nodes whose network IDs are in the list of network IDs in the FLBSYSD initialization file (in the NETID_LIST category, using the keyword SNA_NETID).

Also, if automatic monitoring is set to YES, and if the first entry in the list of network IDs in the FLBSYSD initialization file is null, no automatic monitoring of topology will occur and message FLB464I is issued to the NetView log. For more information about FLBSYSD, refer to the Tivoli NetView for z/OS SNA Topology Manager Implementation Guide.

ENLOCAL

Specifies local topology monitoring for newly-discovered end nodes.

NNLOCAL

Specifies local topology monitoring for newly-discovered network nodes.

SALOCAL

Specifies local topology monitoring for the following newly-discovered subarea resources:
SANET
Specifies network topology monitoring for the following newly-discovered subarea resources:

- t5Nodes,
- interchangeNodes
- migrationDataHosts
- VTAM nodes represented by an active crossDomainResourceManager when the network ID is reported by an agent

Valid values for each of the above parameters are:

**YES**
Start monitoring for the specified types of newly-discovered nodes.

**NO**
Do not start monitoring for the specified types of newly-discovered nodes.
This is the default.

**NETRETRY**
Sets the retry limits and intervals to use when attempting to initiate a new network topology MONITOR operation. These parameters modify the sub-values of NETRETRY. Only the specified sub-values are changed.

Note that LCLRETRY and NETRETRY each have a separate set of retry values. Unrecoverable errors are not retried.

After the failure of an active monitor, the topology manager immediately retries the monitor once (except for unrecoverable errors), no matter what retry values are specified. The retry values are used to control what happens next. A message is issued when the active monitor fails. A second message is issued when retrying using the retry values begins. No further messages are issued until all retries fail or the transaction succeeds. No transactions except for monitoring are retried.

Retrying will continue in most cases even if there is no agent active; the manager assumes the agent will eventually become active. There are two sets of retry values: set 1 (rint1 and rlimit1) and set 2 (rint2 and rlimit2). Although there are no fundamental differences between the two sets, set 1 is used first. Think of a value from set 1 as an immediate retry value and a value from set 2 as a long-term retry value.

The time intervals between immediate retries are usually short (for example, 60 seconds). Immediate retries attempt to re-establish the transaction while minimizing the disruption to normal operation.

Long-term retries are used after the immediate retries have been exhausted. The time intervals between long-term retries are typically longer (for example, 1800 seconds). Long-term retries attempt to re-establish the transaction while minimizing the retry overhead.

You can specify 1 to 4 values for controlling retries, but trailing commas (5,3,) are not allowed. Specifying (,,5,3,) leaves the immediate retry values unchanged; all commas are required in this example because they hold positions.
rint1
The interval in seconds between immediate retries. A valid value is a number in the range of 0–3600 or NORETRY, which specifies that the failed MONITOR operation should not be immediately retried.

rlimit1
The number of immediate retries. Specifies the initial number of times that the topology manager will retry a MONITOR operation. A valid value is a number in the range of 0–2147483647 \((2^{31}-1)\), or FOREVER, which specifies that there is no limit to the number of immediate retries.

rint2
The interval in seconds between secondary retries. Secondary retries are attempted only after the topology manager has exhausted the immediate limit. A valid value is a number in the range of 0–86400 or NORETRY, which specifies that the failed MONITOR operation should not be retried after the initial retries are exhausted.

rlimit2
The number of secondary retries. Specifies the initial number of times that the topology manager will retry a MONITOR operation after exhausting the immediate retry limit. A valid value is a number in the range of 0–2147483647 \((2^{31}-1)\) or FOREVER, which specifies that there is no limit to the number of immediate retries.

LCLRETRY
Sets the retry limits and intervals to use when attempting to initiate a new local topology MONITOR operation. These parameters modify the sub-values of LOCAL-RETRY. The same four values \((rint1, rlimit1, rint2, and rlimit2)\) as in NETRETRY are used, with the same rules and restrictions.

LURETRY
Sets the retry limits and intervals to use when attempting to initiate a new LU collection MONITOR operation. These parameters modify the sub-values of LU COLLECTION RETRY. The same four values \((rint1, rlimit1, rint2, and rlimit2)\) as in NETRETRY are used, with the same rules and restrictions.

CMPRETRY
Sets the retry limits and intervals that are used when the SNA topology manager cannot connect to CMIP Services during reinitialization processing. These values determine how often to attempt to connect to CMIP Services and when to end the SNA topology manager if the connect attempts fail.

The CMPRETRY values are only used after a successful SNA topology manager initialization and connection to VTAM CMIP services. The CMIP_RETRY_INTERVAL and CMIP_RETRY_LIMIT keywords in the FLBSYSD initialization file specify the retry values used during SNA topology manager initialization.

You can specify 1 or 2 values for controlling retries, but a trailing comma (30,) is not allowed.

cmpint
The interval in seconds between CMIP Services connect retries. A valid value is a number in the range of 0–86400 or NORETRY, which specifies that the failed CMIP Services connect should not be retried. When 0 (zero) or NORETRY is specified and the connection to CMIP services is lost, the SNA topology manager ends without trying to re-establish the connection. The shipped default is 30.
**cmplim**

The number of times the SNA topology manager will attempt to connect to CMIP Services before ending. A valid value is a number in the range of 0–2147483647 (2**31-1) or FOREVER, which specifies that there is no limit to the number of retries. The shipped default is 1000.

**RDMRETRY**

Sets the retry limits and intervals that are used when the SNA topology manager cannot connect to RODM during reinitialization processing. These values determine how often to attempt to connect to RODM and when to end the SNA topology manager if the RODM connect attempts fail.

The RDMRETRY values are only used after a successful SNA topology manager initialization and connection to RODM. The RODM_RETRY_INTERVAL and RODM_RETRY_LIMIT keywords in the FLBSYSD initialization file specify the retry values used during SNA topology manager initialization.

You can specify 1 or 2 values for controlling retries, but a trailing comma (30,) is not allowed.

**rdmint**

The interval in seconds between RODM connect retries. A valid value is a number in the range of 0–86400 or NORETRY, which specifies that the failed RODM connect should not be retried. When 0 (zero) or NORETRY is specified and the RODM connection is lost, the SNA topology manager ends without trying to re-establish the connection. The shipped default is 30.

**rdmlim**

The number of times the SNA topology manager will attempt connect to RODM before ending. A valid value is a number in the range of 0–2147483647 (2**31-1) or FOREVER, which specifies that there is no limit to the number of retries. The shipped default is 1000.

**ERRLIMIT**

Sets the error-retry limit for SNA topology manager monitor commands when there is a RODM request failure or internal failure. The command will be retried the number of times specified by the ERRLIMIT value. A valid value is a number in the range of 0–2147483647 (2**31-1) or NORETRY. When NORETRY or 0 (zero) is specified, the command will not be retried. The default value is 0.

**Restrictions**

Before issuing a SETDEFS request, consider these restrictions:

- When automatic monitoring is specified on the AUTOMON parameter using a value of YES for the ALL, ENLOCAL, NNLOCAL, SALOCAL, or SANET keyword, the network ID of the node must be present in the FLBSYSD initialization file. This network ID is specified in the NETID_LIST category using the SNA_NETID keyword. If the NETID_LIST category in the FLBSYSD file is null, no automatic monitoring of topology will occur regardless of the setting of AUTOMON.

- Values that you specify with SETDEFS become the new defaults, overwriting the existing defaults. SETDEFS values that you do not specify are unchanged and retained. Review the examples carefully.

- The initial default for the ENLOCAL, NNLOCAL, SALOCAL, and SANET parameters is NO. This is opposite to the parameter default (YES) that is used, for example, if you specify AUTOMON=ENLOCAL (without an =YES or =NO).
• Do not set ENLOCAL=YES unless you have agents on a significant percentage of the end nodes in the network. Local monitoring for any newly-discovered node that does not have the topology agent installed and active is retried according to the TOPOSNA SETDEFS LCLRETRY parameter values. Error messages are logged for each failed attempt. Setting AUTOMON=YES when you have only a few topology agents can generate a flood of error log entries.

• This command cannot be issued until you receive the following message:
  FLB4401 SNA TOPOLOGY MANAGER INITIALIZATION IS COMPLETE.

• Specify FOREVER as a retry limit cautiously. If you specify a numerical retry interval and FOREVER as a retry limit and if the retrying never succeeds, the operator only receives an initial message indicating the transaction is being retried. The operator will never receive messages FLB462E or FLB463E showing that the transaction failed, indicating a possible problem of obsolete or non-existent node names.

Examples

A representative subset of possible response messages are shown for the following examples.

Example: Resetting Defaults to Initial Values
To reset SNA topology manager defaults to their initial values, enter:
  TOPOSNA SETDEFS

Response
  FLB4901 SNA TOPOLOGY MANAGER STORED DEFAULT VALUES IN RODM
  FLB411I TOPOSNA SETDEFS COMMAND COMPLETED SUCCESSFULLY

Example: Setting End Node Monitoring Explicitly
To request end node monitoring for every newly-discovered end node, to retry all failed network topology transactions once a minute for the first five minutes, and then every five minutes thereafter, enter:
  TOPOSNA SETDEFS,AUTOMON=(ENLOCAL=YES),NETRETRY=(60,FOREVER),
  LCLRETRY=(60,5,300)

Example: No Default Monitoring
To specify that there is to be no automatic monitoring of local topology or network topology, to retry all failed network topology transactions every 30 seconds, and not to retry failed local topology transactions, enter:
  TOPOSNA SETDEFS,AUTOMON=(ALL=NO),NETRETRY=(30),LCLRETRY=(NORETRY)

Example: Setting Monitoring Using Default Parameter Values
To set the startup defaults to turn on local topology for every newly-discovered end node and network node, to retry all failed network topology transactions once a minute for five minutes, and then retry every five minutes, enter:
  TOPOSNA SETDEFS,AUTOMON=(ENLOCAL,NNLOCAL),NETRETRY=(60,5,300,FOREVER),
  LCLRETRY=(60,5,300,5),LURETRY=(60,5,300,5)

Example: Explicit and Default Parameter Values for Automatic Monitoring
To turn on local topology monitoring for every newly discovered end node, turn off local topology monitoring for every newly discovered network node and VTAM subarea node, turn off network topology monitoring for every newly-discovered VTAM subarea node, and explicitly set all retry values, enter:
  TOPOSNA SETDEFS,AUTOMON=(ENLOCAL,NNLOCAL=NO,SALOCAL=NO,SANET=NO),
  NETRETRY=(60,5,300,FOREVER),LCLRETRY=(60,5,300,5),
  LURETRY=(60,5,300,5)
**Example: Setting Network Retrying Off**
To specify that network retrying is off, and that local retrying will skip the first set of retry values and then try every 300 seconds for 5 times, enter:

```
TOPOSNA SETDEFS,NETRETRY=(NORETRY,,NORETRY),LCLRETRY=(NORETRY,60,300,5)
```

**Example: Setting Command Error Limits**
To set the SNA topology manager command error-retry limit to 3, enter:

```
TOPOSNA SETDEFS,ERRLIMIT=3
```

**Example: Setting RODM Connect Retry and Interval Limits**
To set the interval between failed RODM connect attempts to 40 seconds and to retry connects to RODM forever, enter:

```
TOPOSNA SETDEFS,RDMRETRY=(40,FOREVER)
```

**Example: Setting CMIP Services Connect Retry and Interval Limits**
To set the interval between failed CMIP Services connect attempts to 20 seconds and to set the number of retries to 1600, enter:

```
TOPOSNA SETDEFS,CMPRETRY=(20,1600)
```
TOPOSNA STOP (TOPOSNA)

Syntax

```
TOPOSNA STOP
```

Purpose of Command

TOPOSNA STOP stops the monitoring of local or network topology of an agent node, or of the collection of all LUs (including logical units, cross-domain resources, and LU groups) associated with the specified node.

A STOP request cancels both operator-issued monitor requests and monitor requests that are automatically issued during warm start of the topology manager.

Operand Descriptions

**STOP**

Specifies that the topology manager stop monitoring the topology of an agent.

Data already received is processed by the topology manager; later data is ignored. Because of the STOP, all affected resources have a status of unknown (default color=gray).

**NETWORK**

 Specifies network topology.

**LOCAL**

 Specifies local topology.

**LUCOL**

 Specifies that monitoring of the collection of all LUs associated with the specified node be stopped.

**NODE**

Specifies the node, identified by network name, at which monitoring is to stop.

```
 netid.cp
```

The network qualified name of the control point of the agent node, where `netid` is the network identifier and `cp` is the control point name.

The `netid` and the `cp` name each have an 8-character maximum length; no blanks are included and the period between them is required.

Authorization checking of `netid` and `cp` is done separately; the 8-character authorization-checking limit is therefore not a limitation on checking the node name.
The control point name of the agent node. The name consists solely of the control point name, no network identifier or period.

**OBJECTID=rodmobjectid**
The 8-byte identifier for the object in RODM representing the node or logical link. The format is the hexadecimal representation of the 8-byte object identifier in the form: 16 hexadecimal digits typed as characters (0 to 9, A to F). This parameter is intended to be used primarily by programs or command lists that have access to the RODM data cache, rather than by operators. Authorization checking of rodmobjectid is done only on the first 8 characters.

**LCLNAME=localname**
The local name of the logical link for which monitoring is stopped, and only applies to the LUCOL operand.

**Restrictions**
Before issuing a STOP request, consider these restrictions:

- A single command cannot stop all monitoring at all nodes and of all types. Individual nodes and types of monitoring (local, network, LU collection) must be specified.
- Monitor requests do not record which operator issued them. If operator A and operator B both request the same monitor (the same type of monitoring at the same node), there is no problem. However, if either operator issues a STOP request for that monitor, monitoring stops for all operators.
- This command cannot be issued until you receive the following message:

  FLB440I SNA TOPOLOGY MANAGER INITIALIZATION IS COMPLETE.

**Examples**

Note: Only a representative subset of possible response messages are shown for the following examples.

**Example: Stopping Network Monitoring**
To stop network monitoring at APPNNET1.NODE1, enter:

```
TOPOSNA STOP,NETWORK,NODE=APPNNET1.NODE1
```

**Response**

```
FLB405W OPERATOR 'OPER1' STOPPED MONITORING SNA NETWORK TOPOLOGY FROM NODE APPNNET1.NODE1
FLB411I TOPOSNA STOP COMMAND COMPLETED SUCCESSFULLY
```

Operators who started network monitoring at node APPNNET1.NODE1 receive message FLB405W, which identifies the operator ID that stopped the network monitoring. The operator issuing the stop request receives message FLB411I.

**Example: Stopping the Monitoring of an LU Collection**
To stop monitoring of an LU collection by node NTCBMVS, enter:

```
TOPOSNA STOP,LUCOL,NODE=NTCBMVS
```

**Response:**

```
FLB541I OPERATOR NETOP1 STOPPED MONITORING LU COLLECTION FROM SNANETA.NTCBMVS
FLB411I TOPOSNA STOP COMMAND COMPLETED SUCCESSFULLY
```

Any operators who had started monitoring of LU collection by node NTCBMVS receive message FLB541I, which identifies the operator ID that stopped the
monitoring. The operator who issued the stop request received message FLB411I.
TOPOSNA STOPMGR (TOPOSNA)

Syntax

TOPOSNA STOPMGR

Purpose of Command

TOPOSNA STOPMGR stops the topology manager task in an orderly fashion.

Operand Descriptions

STOPMGR

Specifies that the topology manager task shuts down in an orderly fashion, by stopping pending monitor requests, finishing updates to the RODM data cache, then logging off the autotask. This command can be issued any time the topology manager has been started, even if initialization is not complete. To restart the topology manager, issue AUTOTASK OPID=FLBTOPO at the command line. Any continuous monitors that are active when the STOPMGR request is issued are restarted if the topology manager is warm started.

Restrictions

If possible, avoid deleting the topology manager autotask. Use TOPOSNA STOPMGR instead. Deleting the autotask while an RODM update is in progress can leave the topology data in the RODM data cache corrupted and unusable. If the STOPMGR request fails, try to stop all other active monitoring; then delete the autotask. If deleting the autotask is necessary and your data is corrupted, cold start the topology manager.

Examples

Example: Stopping the Topology Manager
To stop the SNA topology manager, enter:

TOPOSNA STOPMGR

Response

FLB441I SNA TOPOLOGY MANAGER IS SHUTTING DOWN NORMALLY
FLB443I SNA TOPOLOGY MANAGER SHUTDOWN IS COMPLETE
FLB610I TASK FLBTOPO IS STARTING LOGOFF PROCESSING
FLB611I TASK FLBTOPO HAS COMPLETED ITS LOGOFF PROCESSING
TOPOSNA TRACE (TOPOSNA)

Syntax

TOPOSNA TRACE

```
TOPOSNA TRACE
 ,QUERY
 ,ON=(categories)
 ,OFF=(categories)
 ,MODE=(INT, EXT)
 ,SIZE=number
 ,CLASS=(obj_class)
```

Notes:
1. Parameter is not valid if MODE is EXT.
2. Specifies the object classes to trace for RODM, SIGNALS, and UPDATE trace categories.

Purpose of Command

TOPOSNA TRACE starts, stops, or lists tracing in the topology manager.

Operand Descriptions

TRACE
Requests tracing changes or information for the topology manager. Trace records can be written to the generalized trace facility (GTF) or to an internal buffer that wraps trace data when filled to capacity. The effects of multiple TRACE requests are cumulative. Therefore, if a TOPOSNA TRACE command is issued when tracing is already active, the trace categories that are not specified remain unchanged. Refer to the Tivoli NetView for z/OS Diagnosis Guide to decide which traces to use and how to interpret trace data.

QUERY
Lists all trace categories and object classes indicating for each whether it is turned on or off.

ON
Specifies the trace categories to be turned on. You can specify ALL to trace all categories of topology manager events, or you can specify one or more trace categories.

The trace categories are:
CMIP
Traces interactions between the SNA topology manager and CMIP services. This trace shows, for example, the CMIP data sent to and received from the agent nodes.

FSM
Traces finite state machine events.

LOG
Traces messages FLB600E, FLB601W, and FLB602I written to the NetView log by the topology manager.

MESSAGES
Traces messages issued by the SNA topology manager. These messages are also written to the NetView log. Placing them in the trace is sometimes useful when the sequence of events is important.

RODM
Traces interactions between the topology manager and the RODM data cache. This trace shows what RODM objects the topology manager created, referred to, updated, and deleted. See the CLASS keyword for added granularity of the RODM category trace information.

RODMDUMP
Traces interactions between the topology manager and the RODM data cache, but produces more information than when specifying the RODM trace category. Information, such as field values, is included.

RSM
Traces interactions between the SNA topology manager and the resource status manager. This trace shows requests to RSM to start or stop forwarding status updates for a resource.

SIGNALS
Traces the signals exchanged between the components within the topology manager. This category generates large amounts of trace information and is used primarily by Tivoli Customer Support representatives when analyzing a problem. See the CLASS keyword for added granularity of the SIGNALS category trace information.

STORAGE
Traces SNA topology manager heap and internal storage pool information.

UPDATE
Traces resource updates. See the CLASS keyword for added granularity of the UPDATE category trace information.

OFF
Specifies the trace categories to be turned off. One or more categories or ALL can be specified. See the examples for this command for an effective way to combine ON and OFF in one TOPOSNA TRACE command.

MODE
With this optional keyword, you can select whether you want internal tracing or external tracing using the following values:
INT Trace the data to an internal trace buffer.
EXT Trace the data to the generalized trace facility (GTF).

The default is INT,SIZE=10.

SIZE
This optional keyword, which is closely associated with MODE=INT, specifies
the size in pages of the internal trace buffer. MODE=INT is not explicitly required to be issued with the SIZE keyword. However, specifying SIZE=number without MODE=INT is only valid if the current MODE is INT.

The variable number is the number of pages (4096 bytes) of memory you want for the internal trace buffer. The allowable range is 10–999 pages with a default value of 10 pages. The SIZE keyword value cannot be set to a value that is less than 10, including 0 (zero).

CLASS
The CLASS keyword controls the object classes that are traced for the RODM, SIGNALS, and UPDATE trace categories. To add trace granularity for each of these categories, specify one or more of the following values for the variable obj_class.

CACHE
   Cache manager object
COMMAND
   Command objects and action handlers
DEFGROUP
   Definition group object processing
GRAPH
   Graph objects and View Manager
LINK
   Action handler and cache link objects
LU
   Action handler and cache LU objects
MISC
   Miscellaneous objects
NODE
   Action handler and cache node objects
NODETABL
   The node table object
PORT
   Action handler and cache port objects
RESOURCE
   Synonym for DEFGRP, LINK, LU, NODE, PORT, and TG.
RODM
   The RODM manager object
STACK
   The stack manager and supportive objects
STATHIST
   The Status history object
TG
   Action handler and cache TG and TG Circuit objects

The eligible obj_class values for each trace category is displayed in the following table.

Table 16. Trace Categories and obj_class Values

<table>
<thead>
<tr>
<th>obj_class</th>
<th>RODM</th>
<th>SIGNALS</th>
<th>UPDATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMAND</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEFGROUP</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRAPH</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LINK</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LU</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Table 16. Trace Categories and obj_class Values (continued)

<table>
<thead>
<tr>
<th>obj_class</th>
<th>Value</th>
<th>RODM</th>
<th>SIGNALS</th>
<th>UPDATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MISC</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NODE</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NODETABL</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PORT</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RESOURCE</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RODM</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>STACK</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>STATHIST</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>TG</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Do not specify the CLASS keyword, if you want to trace all the eligible object classes for the RODM, SIGNALS, or UPDATE trace category.

Restrictions

Before issuing a TRACE request, consider these restrictions:

- TRACE is the only TOPOSNA request you can issue before the topology manager task is started. Starting a trace before starting the topology manager task can help you diagnose problems in initialization. However, because tracing is independent of the topology manager task, stopping the topology manager does not stop tracing. If tracing is on when you stop the task, tracing resumes (with the same trace categories) when you start the task again.

- Before issuing a TRACE,MODE=EXT request, start the GTF and enable trace event X'5E8'.

- When tracing externally (MODE=EXT), stopping GTF stops logging of subsequent trace data, but tracing resumes with the same categories when GTF is started.

- The same trace category cannot be turned on and off in the same command. The ON and OFF parameters can be used once in each command.

- Specifying the CLASS keyword without the OFF or ON keyword, generates message FLB517I and no changes are made.

- The SIZE keyword is only valid when specified with MODE=INT or when the current trace mode is internal (INT). If the trace mode is external (EXT), message FLB525I is issued and the SIZE keyword is ignored.

- Using traces usually degrades performance, depending on which categories are enabled and the capacity of your system.

Examples

A representative subset of possible response messages are shown for the following examples.

Example: Setting Internal Trace with 200 Page Buffer

To set the trace mode to internal with a 200 page internal trace buffer, enter:

```
TOPOSNA TRACE,MODE=INT,SIZE=200
```

Response

```
FLB532I SNA TOPOLOGY MANAGER INTERNAL TRACE TABLE SIZE CHANGED TO 200 PAGES
FLB411I TOPOSNA TRACE COMMAND COMPLETED SUCCESSFULLY
```
Example: Tracing All Categories Except One
To start tracing for all categories except RODM, enter:

```
TOPOSNA TRACE, ON=(ALL), OFF=(RODM)
```

Response

```
FLB411I TOPOSNA TRACE COMMAND COMPLETED SUCCESSFULLY
```

Example: Trace Categories Are Cumulative
To start tracing for all categories except RODM, and then stop tracing miscellaneous objects and resource objects (DEFGRP, LINK, LU, NODE, PORT, and TG) in the SIGNALS category, enter:

```
TOPOSNA TRACE, ON=(ALL), OFF=(RODM)
TOPOSNA TRACE, OFF=(SIGNALS), CLASS=(MISC, RES)
```

The trace commands are cumulative, all traces except RODM and the specific object classes of SIGNALS are turned on. To verify this, see the following example.

Example: Querying Current Trace Settings
To query the status of the categories and classes being traced, enter:

```
TOPOSNA TRACE, QUERY
```

Response

```
FLB5051 SNA TOPOLOGY MANAGER TRACE MODE IS INTERNAL
FLB5061 SNA TOPOLOGY MANAGER INTERNAL TRACE BUFFER SIZE IS 200 PAGES
FLB5161 ---
FLB5091 SNA TOPOLOGY MANAGER TRACE CATEGORY SIGNALS IS ON
FLB5081 SNA TOPOLOGY MANAGER TRACE CLASS CACHE IS ON
FLB5081 SNA TOPOLOGY MANAGER TRACE CLASS COMMAND IS ON
FLB5081 SNA TOPOLOGY MANAGER TRACE CLASS DEFGROUP IS OFF
FLB5081 SNA TOPOLOGY MANAGER TRACE CLASS GRAPH IS ON
FLB5081 SNA TOPOLOGY MANAGER TRACE CLASS LINK IS OFF
FLB5081 SNA TOPOLOGY MANAGER TRACE CLASS LU IS OFF
FLB5081 SNA TOPOLOGY MANAGER TRACE CLASS MISC IS OFF
FLB5081 SNA TOPOLOGY MANAGER TRACE CLASS NODE IS OFF
FLB5081 SNA TOPOLOGY MANAGER TRACE CLASS NODETABL IS ON
FLB5081 SNA TOPOLOGY MANAGER TRACE CLASS PORT IS OFF
FLB5081 SNA TOPOLOGY MANAGER TRACE CLASS RODM IS ON
FLB5081 SNA TOPOLOGY MANAGER TRACE CLASS STACK IS ON
FLB5081 SNA TOPOLOGY MANAGER TRACE CLASS STATHIST IS ON
FLB5081 SNA TOPOLOGY MANAGER TRACE CLASS TG IS OFF
FLB5161 ---
FLB5091 SNA TOPOLOGY MANAGER TRACE CATEGORY UPDATE IS ON
FLB5081 SNA TOPOLOGY MANAGER TRACE CLASS DEFGROUP IS ON
FLB5081 SNA TOPOLOGY MANAGER TRACE CLASS LINK IS ON
FLB5081 SNA TOPOLOGY MANAGER TRACE CLASS LU IS ON
FLB5081 SNA TOPOLOGY MANAGER TRACE CLASS MISC IS ON
FLB5081 SNA TOPOLOGY MANAGER TRACE CLASS NODE IS ON
FLB5081 SNA TOPOLOGY MANAGER TRACE CLASS NODETABL IS ON
FLB5081 SNA TOPOLOGY MANAGER TRACE CLASS PORT IS ON
FLB5081 SNA TOPOLOGY MANAGER TRACE CLASS RODM IS OFF
FLB5081 SNA TOPOLOGY MANAGER TRACE CLASS STACK IS OFF
FLB5081 SNA TOPOLOGY MANAGER TRACE CLASS STATHIST IS OFF
FLB5081 SNA TOPOLOGY MANAGER TRACE CLASS TG IS OFF
FLB5161 ---
FLB5091 SNA TOPOLOGY MANAGER TRACE CATEGORY CMIP IS ON
FLB5091 SNA TOPOLOGY MANAGER TRACE CATEGORY FSM IS ON
FLB5091 SNA TOPOLOGY MANAGER TRACE CATEGORY LOG IS ON
FLB5091 SNA TOPOLOGY MANAGER TRACE CATEGORY MESSAGES IS ON
```
FLB509I SNA TOPOLOGY MANAGER TRACE CATEGORY RODMDUMP IS ON
FLB509I SNA TOPOLOGY MANAGER TRACE CATEGORY RSM IS ON
FLB509I SNA TOPOLOGY MANAGER TRACE CATEGORY STORAGE IS ON
FLB411I TOPOSNA TRACE COMMAND COMPLETED SUCCESSFULLY
TOTAL (NPDA)

Syntax

```
TOTAL
EV N resname
ST T type
A adapadr
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>TOT</td>
</tr>
</tbody>
</table>

Purpose of Command

The TOTAL command displays the count of event or statistical records for a specified resource or resource type. If you do not specify a resource name or type, a summary is displayed.

Operand Descriptions

- **EV**: Specifies event records.
- **ST**: Specifies statistical records.
- **N**: Identifies the operand that follows as a resource name.
  
  `resname`

  Specifies the symbolic name of the resource. You can specify up to five resource names to fully qualify the resource for which data is to be displayed.

- **T**: Identifies the operand that follows as a resource type.
  
  `type`

  Specifies resource type.

- **A**: Identifies the operand that follows as an adapter address.
  
  `adaptadr`

  Specifies the 12-hexadecimal-digit adapter address. The A (adapter) address is not a valid option for a resource type of CBUS.

Restrictions

The following restrictions apply to the TOTAL command:

- If the name of the resource is not associated with a unique resource configuration on the database, a selection panel is displayed on which you can choose which configuration is relevant.
Examples

Example: Displaying Total Statistical Records for a Unit
To display the total statistical records for UNIT1 enter:

TOTAL ST N UNIT1
TRACE (EAS)

Syntax

EAS TRACE

```plaintext
MODIFY procname,TRACE TASK=taskid

LEVEL= OFF
LOW
NORMAL
VERBOSE
IP= OFF
ON
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIFY</td>
<td>F</td>
</tr>
</tbody>
</table>

Purpose of Command

The TRACE command controls the level and content of the tracing performed by event/automation service tasks.

You can enter the TRACE command without any operands to display the current event/automation service trace parameters.

Operand Descriptions

- **procname**
  Specifies the event/automation service job name.

- **TASK=taskid**
  Specifies the service tasks to be traced. The `taskid` can have the following values:
  - **ALERTA** The alert adapter service task
  - **MESSAGEA** The message adapter service task
  - **EVENTRCV** The event receiver service task
  - **TRAPALRT** The trap to alert conversion task
  - **ALRTTRAP** Converts alerts to traps and sends them to SNMP
  - **ALL** All service tasks

- **LEVEL=level**
  Specifies the event/automation service data to be traced. LEVEL can have the following values:
  - **OFF** Disable tracing for the task.
LOW  The lowest level of detail. Typically, this specification traces entry/exit functions.

NORMAL  An intermediate level of detail. Typically, this specifies the LOW level and additional event flow information.

VERBOSE  The highest level of detail. Typically, this specifies the NORMAL level and hexadecimal control block information.

IP=ON/OFF  Specifies that the tracing of IP connection data should be enabled or disabled.

Examples

Example: Tracing a Service Task
To trace the message adapter task for the event/automation service job named IHSAEVNT at a VERBOSE tracing level, enter:

F  IHSAEVNT,TRACE,TASK=MESSAGEA,LEVEL=VERBOSE

Response

You should receive the following response:

IHS0076I TASK=MESSAGEA LEVEL=VERBOSE IP=OFF

Example: Displaying Trace Settings
To display the current trace settings for the event/automation service job named IHSAEVNT, enter:

F  IHSAEVNT,TRACE

Response

You should receive a response similar to the following:

IHS0076I TASK=CONTROL LEVEL=VERBOSE IP=OFF
IHS0076I TASK=ALERTA LEVEL=VERBOSE IP=OFF
IHS0076I TASK=MESSAGEA LEVEL=VERBOSE IP=OFF
IHS0076I TASK=EVENTRCV LEVEL=VERBOSE IP=OFF
IHS0076I TASK=ALRTTRAP LEVEL=VERBOSE IP=OFF
TRACE (GMFHS)

Syntax

To start or stop GMFHS tracing, display trace settings, or flush the GMFHS in-storage trace table:

```
GMFHS TRACE
 ON
 OFF
 FLUSH
```

To set GMFHS trace options before or during tracing:

```
GMFHS TRACE
 TASK= ALL
 TraceOptions
 API= ALL
 LEVEL= minlevel
 traceapi
 NONE
 PRINT= outputlog
 STORAGE= NO
 YES
 TYPE= ALL
 traceapi
 NONE
```

Purpose of Command

The NetView GMFHS TRACE command controls the level and content of the tracing performed by GMFHS tasks.

You can enter the GMFHS TRACE command without any operands to display the current GMFHS trace parameters.
You can enter the GMFHS TRACE command from the MVS console using the MVS MODIFY command or from a NetView terminal using the GMFHS command list.

**Operand Descriptions**

**ON**
If you do not specify any other parameters, tracing is activated only for those tasks for which tracing has been specified. When used with the TASK keyword, indicates that the specified tasks are to be traced if tracing is active.

**OFF**
If you do not specify any other parameters, GMFHS stops all tracing. When used with the TASK keyword, indicates that the specified tasks are not to be traced if tracing is active.

**Note:** Specifying OFF without any other parameters does not affect the trace settings of individual GMFHS components.

**TASK**
Indicates the host subsystem task or tasks for which you would like to change the trace options. TASK can be ALL or you can specify a *subtask*. If no other trace options are specified, the trace settings for the specified tasks are displayed.

**ALL**
Specifies all of the GMFHS tasks.

The *subtask* operand can have the following values:

**DBSERVER**
Specifies the database server task.

**EVENTMGR**
Specifies the event manager task.

**IPC**
Specifies the inter-process communications (IPC) task.

**MAINTASK**
Specifies the host subsystem main task.

**NETCMD**
Specifies the network command manager task.

**NETCON**
Specifies the network configuration manager task.

**OPERIF**
Specifies the operator interface task.

**VIEWMGR**
Specifies the view manager task.

**RCMGR**
Specifies the resource collection manager task.

**RTMGR**
Specifies the resource traits manager task.

**IRMGR**
Specifies the IPC-RODM manager task.

**VSTATMGR**
Specifies the view status manager task.
API
Specifies the application programming interfaces (APIs) to be traced.

ALL
Turns on all API tracing for the specified task or tasks.

NONE
Turns off all API tracing for the specified task or tasks.

If you do not want to turn on or off all API tracing for the specified task or tasks, you can specify one or more of the following values for `traceapi`:

IPC
Traces the IPC service requests for the specified tasks.

RODM
Traces the RODM user application programming interface (API) requests and responses.

PPI
Traces the requests made to the program-to-program interface for NetView by the IPC tasks that support program-to-program interface gateways only.

RCM
Traces the event flow of the Resource Collection Manager task.

LEVEL=minlevel
Specifies the level of tracing detail to be performed on the specified task or tasks. The valid range is from 0–99. In general, the `minlevel` value has the following meaning:

0–9
Specifies the least amount of detail.

10–19
Provides a trace of high-level program functions and events only.

20–29
Specifies a medium level of detail for functions and events.

30–59
Specifies a fine level of detail for functions and events.

60–69
Provides a method trace of high-level functions and events.

70–79
Provides a medium-level trace of functions and events.

80–89
Provides a fine-level method trace of functions and events.

90–99
Provides the most detailed trace.

Note: Method tracing is written to the RODM log.

PRINT
Specifies where trace entries for the specified task or tasks are issued. The `outputlog` operand can have the following values:
YES or FILE
Issued to the GMFHS output data sets. The output data sets are defined by GMFHS using the following DD statement in the GMFHS startup procedure:
- **CNMC**: Network command manager (NETCMD)
- **CNMD**: Database server (DBSERVER)
- **CNME**: Event manager (EVENTMGR)
- **CNMF**: Network configuration manager (NETCON)
- **CNMI**: Interprocessor communication (IPC)
- **CNMM**: GMFHS main (control) task (MAINTASK)
- **CNMN**: Resource Collection Manager (RCMGR)
- **CNMO**: Operator interface manager (OPERIF)
- **CNMP**: IPC-RODM event manager (IRMGR)
- **CNMR**: Resource traits manager (RTMGR)
- **CNMS**: View status manager (VSTATMGR)
- **CNMV**: View manager (VIEWMGR)

NO or INTERNAL
Issued to the GMFHS internal trace log.

GTF
Issued to GTF.
- The event identifier (EID) used for the TRACE records written to GTF is X'5E2'.
- For more information about GTF, refer to *MVS/ESA: Services Aids*.

STORAGE=NO|YES
Specifies whether get and free storage requests for specified task or tasks are to be traced.

TYPE
Specifies which IPC interfaces are traced. You can specify ALL, NONE, or tracetype.
- **ALL**: Specifies to turn on all IPC API trace types.
- **NONE**: Specifies to turn off all IPC API trace types.

If you do not want to turn on or off all IPC API trace types for the specified task or tasks, you can specify one or more of the following values for tracetype:

- **CNMTAMEL**: Specifies to trace the messages exchanged between the IPC and the NetView CNMTAMEL task.
GDS  
Specifies to trace the messages exchanged between the IPC and graphic data servers.

NOTIFY  
Specifies to trace the IPC retrieval of notification blocks from the RODM notification queues.

PDU  
Specifies to trace the protocol data units that are exchanged between GMFHS subtasks.

PPI  
Specifies to trace all IPC requests to the program-to-program interface.

SCO  
Specifies to trace the messages exchanged between the IPC and the scope checker optional task (DUIFSSCO) running in the NetView address space.

FLUSH  
Indicates that the content of the internal trace log is written to the data set specified by CNMT DDNAME in the GMFHS startup procedure. The internal trace log is then reinitialized.

To prevent losing data when issuing a GMFHS TRACE FLUSH command, GMFHS allocates an internal trace log before it prints and releases the current log. Refer to the [Tivoli NetView for z/OS Administration Reference](#) for more information about the internal trace log.

Restrictions
The following restrictions apply to the TRACE command:

- Issuing the GMFHS TRACE command with the ON or OFF keyword along with the TASK keyword sets the tracing options before or during tracing. Issuing the GMFHS TRACE command with only the ON or OFF keyword starts or stops GMFHS tracing.
- Refer to the [Tivoli NetView for z/OS Administration Reference](#) for information about TRACE and TRACEPAGES.
- Refer to the [Tivoli NetView for z/OS Diagnosis Guide](#) for more information about the GMFHS TRACE command.

Examples

Example: Setting Tracing Parameters and Starting the Trace  
To set the parameters for tracing the NETCMD and IPC tasks, and to start tracing, enter:

```
GMFHS TRACE TASK=(NETCMD,IPC),ON,LEVEL=30
GMFHS TRACE ON
```

Response
A response similar to the following is displayed:

```
DUI4060I CURRENT TRACE SETTINGS
DUI4060I TRACE COMMAND PROCESSED FOR NETCMD
DUI4091I NETCMD 1 LEVEL 30 PRINT F API = (RODM,IPC,PPI)
STORE 0 IPCAPI = (PDU,SCO,PPI,GDS,CNMTAMEL,NOTIFY)
DUI4060I TRACE COMMAND PROCESSED FOR IPC
DUI4091I IPC 1 LEVEL 30 PRINT F API = (RODM,IPC,PPI)
```
Example: Stopping the Tracing of All Tasks
To stop tracing of all tasks, enter:
GMFHS TRACE OFF

Response

A response similar to the following is displayed:
DUI4058I TRACE HAS BEEN DEACTIVATED

Example: Displaying Current Trace Settings
To display current trace settings, enter:
GMFHS TRACE

Response

A response similar to the following is displayed:
DUI4060I CURRENT TRACE SETTINGS
DUI4090I TRACING IS ON
DUI4091I MAIN 0 LEVEL 99 PRINT F API = (RODM,IPC,PPI) STORAGE 0
  IPCAPI = (PDU,SCO,PPI,GDS,CNMTAMEL,NOTIFY)
DUI4091I IPC 0 LEVEL 99 PRINT F API = (RODM,IPC,PPI) STORAGE 0
  IPCAPI = (PDU,SCO,PPI,GDS,CNMTAMEL,NOTIFY)
DUI4091I OPERIF 1 LEVEL 99 PRINT F API = (RODM,IPC,PPI) STORAGE 0
  IPCAPI = (PDU,SCO,PPI,GDS,CNMTAMEL,NOTIFY)
DUI4091I VIEWMGR 0 LEVEL 99 PRINT F API = (RODM,IPC,PPI) STORAGE 0
  IPCAPI = (PDU,SCO,PPI,GDS,CNMTAMEL,NOTIFY)
DUI4091I VSTATMGR 0 LEVEL 99 PRINT F API = (RODM,IPC,PPI) STORAGE 0
  IPCAPI = (PDU,SCO,PPI,GDS,CNMTAMEL,NOTIFY)
DUI4091I RCMGR 0 LEVEL 99 PRINT F API = (RODM,IPC,PPI) STORAGE 0
  IPCAPI = (PDU,SCO,PPI,GDS,CNMTAMEL,NOTIFY)
DUI4091I EVENTMGR 0 LEVEL 99 PRINT F API = (RODM,IPC,PPI) STORAGE 0
  IPCAPI = (PDU,SCO,PPI,GDS,CNMTAMEL,NOTIFY)
DUI4091I IRMGR 0 LEVEL 99 PRINT F API = (RODM,IPC,PPI) STORAGE 0
  IPCAPI = (PDU,SCO,PPI,GDS,CNMTAMEL,NOTIFY)
DUI4091I NETCMD 0 LEVEL 99 PRINT F API = (RODM,IPC,PPI) STORAGE 0
  IPCAPI = (PDU,SCO,PPI,GDS,CNMTAMEL,NOTIFY)
DUI4091I NETCON 0 LEVEL 99 PRINT F API = (RODM,IPC,PPI) STORAGE 0
  IPCAPI = (PDU,SCO,PPI,GDS,CNMTAMEL,NOTIFY)
DUI4091I DBSERVER 0 LEVEL 99 PRINT F API = (RODM,IPC,PPI) STORAGE 0
  IPCAPI = (PDU,SCO,PPI,GDS,CNMTAMEL,NOTIFY)
DUI4037I END
TRACE (NCCF)

Syntax

NCCF TRACE

TraceOn:

SafOpts:

Notes:

1. SAF must be included in the list of options before SAFA or SAFF can be specified.
IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTION</td>
<td>OPT</td>
</tr>
</tbody>
</table>

Purpose of Command

The NCCF TRACE command initiates a sequence trace that records in virtual storage, in the DSITRACE VSAM data set, or in GTF, a sequence of NetView processing steps. These can help you solve problems you might encounter using the NetView program.

You can use the LIST TRACE command to get a list of the current trace settings.

Operand Descriptions

END
Indicates that all tracing is to stop and internal trace storage is to be freed. You cannot specify other operands with the END operand. If you specify other operands, the command is rejected with an error message.

OFF
Turns the indicated options off.

OPTION
Indicates which options are to be traced. Each option identifies an internal event type that is to be traced.

The OPTION operand is optional.

If you do not specify OPTION on TRACE ON, the default options of QUE, PSS, DISP, STOR, and UEXIT are used.

If you do not specify OPTION on TRACE OFF, all the options that are currently being traced are turned off.

OPTION fields are not cumulative.

The options are as follows:

ALL
Indicates all options.

Attention: Using OPTION=ALL severely degrades the performance of the system.

DISP
Indicates dispatching of tasks including waiting (DSIWAT), post (DSIPOS), and dispatch from a wait (resumption of processing from DSIWAT).

MOD
Indicates module entry and exit trace of a subset of NetView modules.

Attention: Using MOD severely degrades the performance of the system, therefore use MOD only to trap specified data.

PSS
Indicates presentation services, which involves input from and output to the terminal screen using DSIPSS.
**QUE**
Indicates inter-task queueing of buffers using DSIMQS.

**STOR**
Indicates getting and freeing of storage.

**TCP**
Indicates IP services related calls.

**UEXIT**
Indicates installation exit calls for DSIEX01 through DSIEX19, plus resource status manager exit (XITST), CNM interface input exit (XITCI), CNM interface output exit (XITCO), DST initialization exit (XITDI), VSAM empty file exit (XITVN), VSAM input exit (XITVI), and VSAM output exit (XITVO).

**SAF**
Indicates calls made to an SAF product. The SAFA or SAFF keywords are used to specify the types of SAF requests to trace and when to trace them. If neither keyword is specified, SAFF=ALL is used as the default.

**ON**
Turns on the indicated options. ON is the only correct choice if the NetView trace is inactive.

**MODE**
Specifies in which area data is to be logged. Specify the MODE operand on the initial trace activation command only. If you specify MODE at other times, a warning or an error message is issued.

**INT**
Indicates to log the trace data in the internal table. INT is the default.

**SIZE=pages**
Indicates the number of pages of storage to allocate for in-storage trace table. This operand is optional. If MODE=INT, the default page size is 250 pages (page size is 4k). If SIZE is specified with MODE=EXT or MODE=GTF, SIZE is ignored.

**EXT**
Indicates to log the trace data on the trace log. MODE=EXT is rejected if the DSITRACE task is not active or if no VSAM clusters are active when the TRACE command is processed.

**Note:** Using MODE=EXT severely degrades the performance of the system.

**GTF**
Indicates to log the trace data to the generalized trace facility (GTF). MODE=GTF is rejected if GTF is not active.

The event records that are printed, such as MENT, MXIT, and PSS, will have the same format as specified in the *Tivoli NetView for z/OS Diagnosis Guide*. The event identifier (EID) used for the TRACE records written to GTF is X'5F6'. GTF also pads some records with zero (0) as needed.

**TASK=task_type**
Specifies a task name or a task type. Valid values for `task_type` are:
- ALL
- HCT
- MNT
The maximum number of task names or task types specified for one request is 25. TASK is allowed only for TRACE ON. The default is ALL.

**SAFA**=request_type

Indicates that all calls to an SAF product for the specified request type will be traced. This keyword is only valid when either SAF or ALL is specified on the OPTION statement. If you specify ALL, you cannot specify any other request types. Valid values for *request_type* are as follows:

- ALL
- AUTH
- EXTRACT
- FASTAUTH
- LIST
- STAT
- TOKENMAP
- TOKENXTR
- VERIFY

SAFA is valid only for TRACE ON.

**Attention:** Using SAFA can degrade the performance of the system.

**SAFF**=request_type

Specifies that unsuccessful calls to an SAF product for the specified request type will be traced. This keyword is only valid when either SAF or ALL is specified on the OPTION statement. If you specify ALL, you cannot specify any other request types. Valid values for *request_type* are as follows:

- ALL
- AUTH
- EXTRACT
- FASTAUTH
- LIST
- STAT
- TOKENMAP
- TOKENXTR
- VERIFY

SAFF is valid only for TRACE ON.

## Restrictions

The following restrictions apply to the TRACE command:

- You cannot use MODE=EXT or MODE=GTF and the SIZE operand together. SIZE is ignored if you specify MODE=EXT or MODE=GTF.
- Using OPTION=ALL or MODE=EXT severely degrades the performance of the system. Using OPTION=ALL and MODE=EXT together can cause the NetView program to abend. You can lessen the output for MODE=EXT by limiting the options. If you do not limit the options, you might run short of storage.
- When you specify the OFF operand, all active tracing ceases. However, the SIZE and MODE settings remain effective. You can change these options after issuing the TRACE END command.
When a trace is requested by specific task name, the termination of the task turns off the trace for that task. This task is not traced if it becomes active again.

When a trace is requested by task type (including ALL), the termination of a task in the same task type will not turn off the trace for that task. When any task with the same task type becomes active, it is traced.

## Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The TRACE command was successful.</td>
</tr>
<tr>
<td>4</td>
<td>The TRACE command was not successful.</td>
</tr>
</tbody>
</table>

## Examples

### Example: Turning On the Trace with Default Values

To turn on trace with the default values, enter:

```
TRACE ON
```

**Response**

Because no options are specified, options QUE, PSS, DISP, STOR and UEXIT are traced for all the tasks. MODE defaults to INT and SIZE defaults to 250 pages.

### Example: Turning Off Indicated Options

Assuming that trace was initially turned on with `OPTION=ALL`, to turn off certain options while continuing to trace all other active options, enter:

```
TRACE OFF OPT=(SAF,QUE,PSS)
```

**Response**

Trace continues for the remaining options DISP, MOD, STOR, UEXIT.

### Example: Ending All Tracing

To discontinue all tracing enter:

```
TRACE END
```

### Example: Tracing Non-zero Return Codes from Specified SAF Calls

To trace non-zero return codes from AUTH and VERIFY calls to SAF for all tasks, enter:

```
TRACE ON,OPTION=SAF,SAFF=(AUTH,VERIFY),TASK=ALL
```

### Example: Tracing All SAF Calls for One Operator

To trace all SAF calls on an active operator task OPER1 enter:

```
TRACE ON,OPTION=SAF,SAFA=ALL,TASK=OPER1
```

### Example: Tracing HCT and OST Tasks

To trace all HCT and OST tasks, including autotasks, with the QUE option enter:

```
TRACE ON,OPTION=QUE,TASK=(HCT,OST)
```
TRACE (NLDM)

Syntax

```
NLDM TRACE
```

```
<table>
<thead>
<tr>
<th>TRACE</th>
<th>DISP</th>
<th>DOMAIN domainid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>START</td>
<td>ALL — NET local</td>
</tr>
<tr>
<td></td>
<td>STOP</td>
<td>TraceResources</td>
</tr>
</tbody>
</table>
```

```
TraceResources:
```

```
| ALL | resname | NET netid | DOMAIN domainid |
```

Purpose of Command

The NLDM TRACE command starts or stops a session trace or displays resources that are being traced.

Operand Descriptions

- **DISP**
  Displays all traces that have been activated or deactivated explicitly.

- **DOMAIN domainid**
  Specifies the domain in which the TRACE command is processed.

- **START**
  Starts trace functions for specified resources.

- **STOP**
  Stops trace functions for specified resources.

- **ALL**
  Performs tracing for all network resources. ALL is the default.

- **PIU**
  Performs tracing for PIU trace data.
  The PIU trace option is not affected by the ALL parameter.

- **SAW**
  Performs tracing for session awareness data.
  The SAW trace option is not affected by the ALL parameter.

- **CPIU**
  Specifies that complete PIUs for a specified LU resource are to be received from VTAM and are not to be truncated. The CPIU parameter cannot be specified with the ALL, PIU, or SAW parameters.
If you specify CPIU when starting and then stopping a trace for the same resource, PIUs are traced, but they are truncated. This operand is ignored if the resource is not an LU.

The maximum length of PIUs for active sessions depends on the VTAM trace buffer size. You declare the trace buffer size at initialization in AAUPRMLP. The default is 4 kilobytes.

The maximum length of PIUs for inactive sessions is 921.

**Note:** The CPIU operand is valid only with VTAM Version 3 Release 4.1 or later releases.

**rename**

Specifies any valid network name (LU, PU, or SSCP name).

**NET netid**

Specifies the name of the network in which the specified resource resides. If you do not specify the netid, the operator’s local netid is used.

The NET keyword cannot be specified with the PIU or SAW keywords.

### Restrictions

The following restrictions apply to the TRACE command:

- PIU and SAW trace buffers are written to GTF. The event identifier (EID) used for the TRACE records written to GTF is X'5F4' for SAW and X'5F5' for PIU. GTF also pads some records with 0 as needed.
- The PIU and SAW keywords are for debugging NetView and VTAM problems and should only be used when directed by IBM programming services.
- If collecting trace data has not been automated, you might be instructed to start data collection for some resources. The TRACE START command starts a session trace. It starts collecting session formation parameters, PIU trace data, and NCP trace data.
- The system programmer can start gathering trace data following session monitor initialization, and start tracing all resources. If this is done, you might be instructed to stop data collection for some resources.
- You can learn which devices are being traced by using the TRACE DISP command, which invokes panel display trace. The TRACE DISP command displays a list of resource names. Interpretation of that list depends on how tracing was started.
- If TRACE is started for all resources, the global trace field indicates ON and any resources that are displayed have had trace stopped.
- If TRACE is stopped for all resources, the global trace field indicates OFF and any resources that are being traced are displayed.
- To issue the TRACE command as a line-mode command, precede the TRACE command with NLDM.
- Both VTAM and the NCP are notified when an operator issues the trace explicit command. If the trace to VTAM is successful but the trace to NCP is rejected, the trace display indicates that the resource is being traced, but it will have incomplete trace data.
Examples

Example: Displaying a List of Network Names Being Traced for Specific Resources
If tracing has been started for specific resources, enter:

```
TRACE DISP
```

to display a list of network names that are being traced.

Example: Starting a Trace on a Specific LU
To start tracing a specific LU, for example LCL3278A, which is in network A01M, enter:

```
TRACE START LCL3278A NET A01M
```

Example: Starting a Trace for IMS1 Sessions with Terminal LUs
To start tracing for IMS1 sessions with terminal LUs that have also had a trace started for them in NETA, enter:

```
TRACE START IMS1 NET NETA
```

Example: Stopping All Tracing in Domain DOM1
To stop all tracing in domain DOM1, enter:

```
TRACE STOP ALL DOMAIN DOM1
```

Example: Displaying Traces Started in DOM1
To display traces started in DOM1, enter:

```
TRACE DISP DOMAIN DOM1
```
TRACEPPI (NCCF)

Syntax

From an MVS console:

TRACEPPI

```
MODIFY ssiname,TRACEPPI
 ON
 SIZE=10
 BUFSIZE=100
 GTF
 OFF
 END
```

```
MODIFY BUFSIZE=n
```

```
ALL
RCVRID=receiver_id
```

From a NetView terminal:

TRACEPPI

```
MVS MODIFY ssiname,TRACEPPI
 ON
 SIZE=10
 BUFSIZE=100
 GTF
 OFF
 END
```

```
MODIFY BUFSIZE=n
```

```
ALL
RCVRID=receiver_id
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIFY</td>
<td>F</td>
</tr>
</tbody>
</table>

Purpose of Command

The TRACEPPI command starts, stops, modifies, or ends a trace for all program-to-program interface receivers or for a specified interface receiver.
This command can be issued from a NetView operator ID (using the MVS command) or an MVS console by using the modify function of the program-to-program interface. The system console operator receives a message indicating the success or failure of the command.

**Operand Descriptions**

- **ssiname**
  Specifies the MVS subsystem interface name.

- **ON**
  Turns on the program-to-program interface trace facility for all current and future program-to-program interface receivers or for the interface receiver specified in the RCVRID operand. If this is a new trace, the trace facility allocates the internal trace table. If you specify the Generalized Trace Facility (GTF) option, all program-to-program interface trace records are sent to GTF in a GTF user trace record.

- **MODIFY**
  Changes the BUFSIZE value for all current and future program-to-program interface receivers or for the receiver specified on the RCVRID operand.

- **OFF**
  Turns off the program-to-program interface trace facility for all current and future program-to-program interface receivers or for the receiver specified on the RCVRID operand, but does not free the trace table or clear any of the trace values.

- **END**
  Clears trace values and sets trace status to “not defined” for all program-to-program interface receivers or for the receiver specified on the RCVRID operand. If you specify END for all receivers, the trace facility also frees the trace table.

- **SIZE=n**
  Specifies the size in pages (4096 bytes) of the program-to-program interface internal trace table. The default value is 10 pages. This keyword is valid only with the ON keyword. This keyword is ignored if there is already a trace defined.

- **GTF**
  Sends the program-to-program interface trace records to GTF in a GTF user trace record. This keyword is valid only with the ON keyword. It is not valid with the SIZE keyword. If you specify GTF, the trace facility does not allocate a program-to-program interface internal trace table.

- **BUFSIZE=n**
  Specifies the number of bytes copied into a GTF or program-to-program interface trace record from a buffer being sent to a receiver. If you specify GTF, the buffer limit is 208 bytes. The BUFSIZE value cannot be larger than the program-to-program interface table; for example, if the trace table is defined as one page (4096 bytes), and the BUFSIZE is set at 5000 bytes, an error message will be sent to the console.

- **ALL**
  Specifies that the requested action applies to all current receivers as well as future receivers.

- **RCVRID =receiver_id**
  Identifies a single receiver to which the requested action applies.
Restrictions

If you turn the trace facility on, and then turn it off, the trace facility does not change any of the trace values. To change the BUFSIZE value of a particular receiver, issue a TRACEPPI MODIFY command for that receiver ID. To change the SIZE value, issue a TRACEPPI END command for all receivers, then issue a TRACEPPI ON command to start a new trace. The information in the last trace table is lost.

Examples

Example: Recording 256 Bytes of All Buffers
To record 256 bytes of all buffers being sent to or received from all receivers that are currently defined in the program-to-program interface, as well as all future receivers, enter either command:

F ssiname,TRACEPPI ON ALL SIZE=5 BUFSIZE=256
F ssiname,TRACEPPI ON SIZE=5 BUFSIZE=256

If no traces have been previously defined, the program-to-program interface trace facility allocates a 5-page trace table in the subsystem interface (SSI) address space. If a trace has been previously defined, the size parameter is ignored.

Example: Turning Off the Program-to-Program Interface Trace
To turn off the program-to-program interface trace for all receivers, enter either command:

F ssiname,TRACEPPI OFF ALL
F ssiname,TRACEPPI OFF

The program-to-program interface internal trace buffer is not freed, and receivers’ trace characteristics are not changed.

Example: Turning Off the Program-to-Program Interface Trace for All Receivers
To turn off the program-to-program interface trace for all receivers, free the program-to-program interface internal trace buffer, and clear all receivers’ trace characteristics, enter either command:

F ssiname,TRACEPPI END ALL
F ssiname,TRACEPPI END

Example: Tracing Activity for a Receiver
To trace activity for receiver MYRCVR and record 256 bytes of all buffers sent or received by MYRCVR, enter:

F ssiname,TRACEPPI ON RCVRID=MYRCVR SIZE=5 BUFSIZE=256

If no traces have been previously defined, the program-to-program interface trace facility allocates a five page trace table in the SSI address space. If a trace has been previously defined, the size parameter is ignored.

Example: Tracing Activity for a Receiver
To trace activity for receiver MYRCVR and record 100 bytes of all buffers sent or received by MYRCVR to GTF, enter:

F ssiname,TRACEPPI ON RCVRID=MYRCVR GTF BUFSIZE=100
TRANSMSG (NCCF)

Syntax

```plaintext
TRANSMSG MEMBER=membername
```

Purpose of Command

The TRANSMSG command loads a set of message translation rules, defined in a member or members of DSIMSG, into the NetView program. These rules are used for national language support, including the formats used for displaying dates and times. You can issue this command successfully only once at each NetView initialization. You should place this command in your NetView initial command list.

Operand Descriptions

**MEMBER=membername**

Is the name of the member of DSIMSG containing either message translation statements or %INCLUDE statements for members containing the translation statements.

Restrictions

The translation member the NetView program supplies is the CNMMSJPN member supplied for Japanese translations. Some English examples of translation are included in CNMSAMP members CNMMSENU and CNMTRXMP.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Successful processing.</td>
</tr>
<tr>
<td>4</td>
<td>Unsuccessful processing.</td>
</tr>
</tbody>
</table>

Examples

**Example: Loading the NetView-Supplied Translation Member CNMTRMSG**

To load translations specified by the NetView-supplied sample CNMTRMSG, enter:

```
TRANSMSG MEMBER=CNMTRMSG
```

Response

Message CNM257I, similar to the following, is displayed:

```
CNM257I MESSAGE TRANSLATIONS HAVE BEEN LOADED FROM DSIMSG MEMBER CNMTRMSG
```
Purpose of Command

The TS (TRACE START) command causes interactive tracing of a REXX command list the next time the REXX interpreter processes a REXX clause. You can use this command to debug a new REXX command list.

You can enter this command from a terminal, a REXX command list, or a NetView command list language procedure. TS is an immediate command if it is entered from a terminal.

When TS is active, a pause occurs after each executable statement. For example, if the first executable command in a REXX command list is:

```
SAY 'THIS IS THE FIRST EXECUTABLE COMMAND IN THE SOURCE'
```

The NetView program responds with message CNM431I:

```
CNM431I REXX INTERACTIVE TRACE. ENTER 'GO TRACE OFF' TO END TRACE, ENTER 'GO' TO CONTINUE.
```

To continue the trace, enter the GO command.

The trace ends when:

- You enter TRACE OFF prefixed with GO
- You enter TE
- The REXX command list finishes processing

Reissue TS to trace another REXX command list. While a REXX command list is being traced interactively, you can run any REXX statement prefixed with GO at a breakpoint. This enables you to perform tasks such as displaying variables, changing variables, branching to a label, or exiting. For example, if you want the change the value of X to 5, enter:

```
GO X=5
```
TSOUSER (NCCF; CNME0037)

Syntax

TSOUSER

```
TSOUSER id, passthru
```

Purpose of Command

The TSOUSER command list displays the status of a time-sharing option (TSO) user ID.

Operand Descriptions

`id` Specifies the TSO user ID about which information is to be displayed

`passthru` Specifies up to 6 parameters which are appended unchanged to the VTAM DISPLAY command issued by the TSOUSER command. No validation for duplicate or conflicting parameters is performed.

Examples

Example: Displaying the Status of a TSO User
To display the status of TSO user TSO21, enter:

```
TSOUSER TSO21
```

Response

Information similar to the following is displayed:

```
IST097I DISPLAY ACCEPTED
IST350I DISPLAY TYPE = TSOUSER
IST486I NAME= TSO21, STATUS= DSCNT, DESIRED STATE=N/A
IST576I TSO TRACE=OFF
IST262I APPLNAME = TSO0001, STATUS = ACTIV
IST262I LUNAME = L3E0, STATUS= ACT/S
IST314I END
```

This response shows the TSO user ID as TSO21 with a status of DSCNT. The TSO trace is not active, the application name associated with the TSO user space is TSO0001, and the logical unit being used is L3E0.

Note: Certain VTAM message IDs are release dependent.
TSTAT (TARA; CNME3009)

Syntax

TSTAT

TSTAT  ctriname,loopname

Purpose of Command

The TSTAT command list displays the most recent status data for a 3600 or 4700 loop and generates a LOOP command.

Operand Descriptions

ctriname
  Specifies the physical unit name of the controller to which the loop is attached.

loopname
  Specifies the name (LPnn) of the loop.

Examples

Example: Displaying Most Recent Status Data
To display the most recent status data for controller CTRL01 and loop LP02, enter:

TSTAT CTRL01,LP02
TTERR (TARA; CNME3010)

Syntax

TTERR

TTERR ctrlname

Purpose of Command

The TTERR command list displays current 4700 Support Facility threshold values for the loop basic counter 2 and extended counters for all loops attached to the specified 3600 or 4700 Controller.

Operand Descriptions

ctrlname

The controller for which you want current threshold values.

Restrictions

Use the DISPLAY command if you want to restrict data to a specific loop or workstation.

Examples

Example: Displaying the Current Threshold Value
To display the current threshold value for controller CTRL01, enter:

TTERR CTRL01
TTRESP (TARA; CNME3011)

Syntax

```
TTRESP

TTRESP ctrlname
```

Purpose of Command

The TTRESP command list displays 4700 Support Facility response time threshold values for all workstations attached to the specified controller.

Operand Descriptions

`ctrlname`

The controller for which you want current response time threshold values.

Restrictions

Use the DISPLAY command if you want to limit data to a specific loop or workstation.

Examples

**Example: Displaying the Current Response Time Threshold Value**

To display the current response time threshold value for controller CTRL01, enter:

```
TTRESP CTRL01
```
TUTOR (NCCF; CNME5003)

Syntax

TUTOR

TUTOR panelname

Purpose of Command

The TUTOR command list displays the panels that are in the CNMPNL1 library.

This command list is usually called from another command list to display online help panels.

Operand Descriptions

panelname

Specifies the panel to be displayed.

Return Codes

If you receive a nonzero return code, an error message is displayed.

Examples

Example: Viewing a Screen in a Library

If a system programmer has written a screen called CNMKNEE0 and placed it in the CNMPNL1 library, and you want to view the screen, enter:

TUTOR CNMKNEE0
TWERR (TARA; CNME3012)

Syntax

TWERR

TWERR ctrlname

Purpose of Command

The TWERR command list displays the error wrap count for all loops attached to the specified 3600 or 4700 Controller.

This command list generates a DISPLAY command. Use the DISPLAY command if you want to limit data to a specific loop or workstation.

Operand Descriptions

ctrlname

The controller for which you want error wrap counts.

Examples

Example: Displaying the Error Wrap Count for a Controller
To display the error wrap count for controller CTRL01, enter:

TWERR CTRL01
TWRESP (TARA; CNME3014)

Syntax

TWRESP

TWRESP ctrlname

Purpose of Command

The TWRESP command list displays response time wrap count for all workstations attached to the specified 3600 or 4700 Controller.

This command list generates a DISPLAY command.

Operand Descriptions

ctrlname
The controller for which you want response time wrap counts.

Restrictions

Use the DISPLAY command if you want to limit data to a specific loop or workstation.

Examples

Example: Displaying the Response Time Wrap Count for a Controller
To display the response time wrap count for controller CTRL01, enter:

TWRESP CTRL01
TWSTAT (TARA; CNME3015)

Syntax

TWSTAT

TWSTAT ctrlname

Purpose of Command

The TWSTAT command list displays the current status wrap count for all loops attached to the specified 3600 or 4700 Controller.

This command list generates a DISPLAY command.

Operand Descriptions

ctrlname

The controller for which you want current status wrap counts.

Restrictions

You should use the DISPLAY command if you want to limit data to a specific loop or workstation.

Examples

Example: Displaying the Status Wrap Counts for a Controller
To display the status wrap counts for controller CTRL01, enter:

  TWSTAT CTRL01

Example: Displaying the Loop Status Wrap Counts for a Controller
To display the loop status wrap counts for a controller, enter:

  TWSTAT CT02
UNSTACK (NCCF)

Syntax

```
UNSTACK
```

Purpose of Command

The UNSTACK command causes a command procedure suspended by STACK to continue processing in the wait or pause state.

Restrictions

When the STACK command is used for a command procedure in a timed wait, the timed wait continues. However, the command procedure cannot recognize a time-out and resume processing until the UNSTACK command is issued. If UNSTACK is issued before a timed wait expires, the timed wait continues as if it had never been interrupted. If UNSTACK is issued after a timed wait expires, the command procedure resumes processing as if the time-out had occurred at the time the UNSTACK command was issued.

Examples

**Example: Resuming a Command Procedure Suspended by the STACK Command**

To issue the UNSTACK command, enter:

```
UNSTACK
```

**Response**

If the UNSTACK command is successful, the following message is issued:

```
DSI586I COMMAND PROCEDURE clistname IS RESUMED
```

**Example: Entering an UNSTACK Command before Entering a STACK Command**

If you enter an UNSTACK command without first entering a STACK command, or if you enter the UNSTACK command at a different linkage level from the corresponding STACK command, one of the following error messages is issued:

```
DSI231I NO STACK IS ACTIVE
DSI233I STACK IS NOT ACTIVE AT THIS LEVEL
```

For example, suppose you enter a STACK command, and then enter another command procedure. Before you can enter an UNSTACK command, you might have to end the command procedure. If you are unsure of your level, enter UNSTACK anyway. If you are at the right level, the command is successful. If you are not at the right level, you get an error message. You can end the current command procedure and try again.

**Note:** The UNSTACK command works from all NetView-provided components.
UPDCGLOB (NCCF; CNME1080)

Syntax

```
UPDCGLOB
 varname BY increment MAX maxvalue
```

Purpose of Command

The UPDCGLOB command adds the value specified as `increment` to the current value of the common global variable, provided the result does not exceed the specified `maxvalue`. If the specified variable is not set (has a null value), it is treated as zero and the new value will be the value of the increment.

The UPDCGLOB command list serializes updates for common global variables by using PIPE VARLOAD to give the effect of a compare and swap logic. If serialization between tasks is not important, you can use the SETCGLOB command list instead.

Operand Descriptions

- **varname**: Specifies the common global variable for the value that is updated. The name of the variable is given here without using the initial ampersand (&).
- **BY increment**: Specifies a number added to the current value of the variable to determine a new value for the variable. If not specified, the `increment` defaults to 1.
- **MAX maxvalue**: Specifies the maximum value you allow for the variable. If not specified, there is no maximum.

Restrictions

The use of UPDCGLOB is limited to the command procedure and automation environments (command must originate in REXX, HLL, automation, or an optional task). Use of UPDCGLOB directly from the operator’s command line results in message DSI290I and return code 8.

The UPDCGLOB command list increments a common global variable that has a numeric or null value. UPDCGLOB increments in a serialized manner to function accurately even when a value is simultaneously incremented by several tasks. If serialization is not important, you can use the SETCGLOB command list.

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The common global variable was set as requested.</td>
</tr>
<tr>
<td>4</td>
<td>The updated value would exceed the specified maximum.</td>
</tr>
<tr>
<td>8</td>
<td>The operator who issued the command list is not authorized to use UPDCGLOB.</td>
</tr>
</tbody>
</table>
No variable name was specified or no value was specified.

Examples

Example: Updating a Common Global Variable
The following example requests the PPT to update the common global variable
TASKCOUNT by 1. If TASKCOUNT was formerly set to 20, it is changed to 21.

UPDCGLOB TASKCOUNT BY 1 MAX 55
VBVSERV (NCCF)

Syntax

```
VBVSERV QUIT
```

Purpose of Command

The VBVSERV command starts and stops the Visual BLDVIEWS TCP/IP host server. This server processes requests from Visual BLDVIEWS workstation clients.

Operand Descriptions

QUIT

Specifies to stop a currently running server.

Usage Notes

The Visual BLDVIEWS server is intended to be run on an autotask. It would generally be used in conjunction with the EXCMD command, for example EXCMD VBVAUTO VBVSERV, where VBVAUTO is a valid NetView autotask. When specifying the QUIT option, the command should be issued locally and not with EXCMD.

Examples

Starting the Visual BLDVIEWS Server

The following examples starts the BLDVIEWS server on the VBAUTO autotask:

```
EXCMD VBVAUTO VBVSERV
```

A local response similar to the following is received:

```
DSI2681 EXCMD COMPLETE
```

A response from the autotask similar to the following is logged:

```
EKGB0005 VBSERVER 1.3 STARTED ON TCP/IP HOSTNAME TVT2003 ON NETVIEW NV34
EKGB0001 VISUAL BLDVIEWS HOST SERVER STARTING.
EKGB0014 LISTENING FOR CONNECTIONS ON PORT 6767
```

Stopping the Visual BLDVIEWS Server

The following example stops the BLDVIEWS server:

```
VBVSERV QUIT
```

A response similar to the following is received:

```
EKGB0005 VBSERVER 1.3 STARTED ON TCP/IP HOSTNAME TVT2003 ON NETVIEW NV34
EKGB0036 QUIT MESSAGE SENT TO VBVSERV AT HOST TVT2003.
```
VPDALL (NCCF)

Syntax

```plaintext
VPDALL

CREATE ADD

EXECUTE OPER(operid)

REPLACE

NOERROR

CLIST(clist_name)

ADDDO
```

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXECUTE</td>
<td>EXEC</td>
</tr>
<tr>
<td>OPER</td>
<td>OPERATOR</td>
</tr>
</tbody>
</table>

Purpose of Command

The VPDALL command creates commands to collect vital product data (VPD) and write it to the external log for PUs and link segments defined in the user’s VTAM configuration definitions. The VPDALL command can either run these VPD commands as they are generated or create a command list containing the VPD commands that can be processed later.

The VPDALL command will perform system symbolic substitution on records read from the VTAM configuration member of the DSIVTAM data set. The NetView-supplied &DOMAIN symbolic is also included in the substitution process. The substitution is performed after comment removal but prior to record processing. This command also removes comments after substitution. Substitution is always performed on the &DOMAIN symbolic, unless substitution was disabled when NetView was started. For MVS and user-defined system symbolics, substitution is not performed if one of the following is true:

- You are not running on an MVS system
- You are running on an MVS system prior to MVS Version 5 Release 2
- Substitution was disabled when NetView was started
- You have not defined an MVS system symbolic on your MVS system.

Operand Descriptions

`CONFIG(vtam_config_member)`

 Specifies the VTAM configuration member. The VTAM configuration member must contain a list of all VTAM major node definitions for which you collect VPD.

The VTAM configuration and major node definitions must be contained in the NetView DSIVTAM data set.

The `vtam_config_member` must be in parentheses.
CREATE
Creates a command list that can be processed at a later time. This command list contains VPD commands to collect VPD for the PUs and link segments specified in the VTAM major node definition. When you specify the CREATE option, VPDALL creates a NetView command list containing the VPD commands. CREATE is the default.

CLIST(list_name)
Specifies the name of the command list to be created when you specify the CREATE option.
Specify a 1- to 8-character member name. The default is VPDACT.
The command list name must be in parentheses.

ADD
Specifies that the command list being created is to be added to the DSICLD data set. You can specify this operand as ADD or A. The default is ADD.

Note: If you attempt to add a command list that currently exists, the command list is not added, and message DWO029I is issued, indicating that the command list already exists. Reissue the command and specify either a different command list or the REPLACE option.

REPLACE
Specifies that the command list being created is to replace an existing command list in the DSICLD data set. You can specify this operand as REPLACE, REP, or R.

EXECUTE
Specifies that VPD commands are run as they are generated. The synonym for EXECUTE is EXEC.

OPER(operid)
Specifies the operator ID on which the VPD commands run when you specify the EXECUTE option. The operator ID must be in parentheses. The default is the invoking operator ID.

NOERROR
Specifies that a subtype record for errors is not written to the external logging facility. NOERROR is the default.

ERROR
Specifies that a subtype record for errors is written to the external logging facility. If you specify ERROR, a subtype record for errors is written to the log.

Restrictions
The following restrictions apply to the VPDALL command:
• You cannot specify CREATE and EXECUTE together. If you specify CLIST, the CREATE keyword is implied.
• Collect information about a network control program (NCP) directly from the primary host. However, you can indirectly obtain VPD from the secondary side by issuing the START DOMAIN command and then using the ROUTE command to route the VPD command to the host that owns the NCP on the primary side of the link. For more information, see the START and ROUTE commands.
• The VPDALL command generates VPD commands for resources specified in VTAM major node definitions for NCPs, local SNA devices, switched devices, and dynamic reconfiguration devices. If a major node other than these are
found, processing terminates and control is returned back to the VTAM configuration routine for another major node to process. Major nodes are recognized by the presence of the following keywords in the first non-comment statement:

```
PCCU (NCP MAJOR NODE)
VBUILD TYPE=DR (DYN RECONFIG MAJOR NODE)
VBUILD TYPE=LOCAL (LOCAL SNA MAJOR NODE)
VBUILD TYPE=SWITCHED (SWITCHED MAJOR NODE)
```

All other VTAM major node types are ignored. The VTAM configuration member VTAM uses to bring up the network should also be used for the VPDALL command. If that member does not contain all of the VTAM major nodes, or contains VTAM major nodes that you want VPDALL to ignore, you can create a different VTAM configuration member for VPDALL to use.

- VPD commands to collect PU data are generated for NCPs and all PU type-2 controllers. VPD commands to collect DCE data are generated for link segments that support IBM LPDA-2 (LPDATS=LPDA2 in NCP generation). VPDALL does not generate VPD commands to collect data circuit-terminating equipment (DCE) data for switched or dynamically reconfigured devices.
- The command list is placed in the NetView command list partitioned data set allocated to the DSICLD ddname. If the DSICLD file is a concatenation of partitioned data sets, the command list is placed in the first partitioned data set.

**Examples**

**Example: Reading and Parsing a VTAM Configuration**

To read and parse the VTAM configuration specified in member ATCCON01, enter:

```
VPDALL CONFIG(ATCCON01)
```

**Response**

This generates a command list called VPDACT that contains VPD commands for all PUs and link segments.

**Example: Reading and Parsing a VTAM Configuration, and Running VPD Commands**

To read and parse the VTAM configuration specified in member ATCCON02, and run VPD commands for all PUs and link segments on operator ID AUTO1, enter:

```
VPDALL CONFIG(ATCCON02) EXEC OPER(AUTO1)
```

**Example: Reading and Parsing a VTAM Configuration, and Generating a Command List**

To read and parse the VTAM configuration specified in member ATCCON01, and generate a command list called DOM1VPD that contains VPD commands for all PUs and link segments, enter:

```
VPDALL CONFIG(ATCCON01) CREATE CLIST(DOM1VPD)
```
VPDCMD (NCCF)

Syntax

```
VPDCMD
 ALL name2
 OWN
 DCE name1 name2
 OPTIONS
 SNAP ON OFF
```

Purpose of Command

The VPDCMD command retrieves vital product data (VPD) from supported devices. You can solicit data from the following devices:

- A specific PU
- A specific PU and its ports
- Data circuit-terminating equipment (DCE) between an NCP and a PU

To solicit data from a PU, network asset management uses the network management vector transport (NMVT) request/reply product set ID (PSID) mechanism. Only PUs that support NMVT request/reply PSID can be included in network asset management support. An attempt to solicit VPD from a device that does not support the request/supply PSID architecture can cause the keyboard to lock or extraneous data to appear on the screen. Manual intervention, such as pressing the Reset key or clearing the screen, is required. This does not affect VPD collection. For more information, refer to the Tivoli NetView for z/OS Customization Guide.

To retrieve data from DCEs, network asset management uses the IBM LPDA-2 read configuration and the IBM LPDA-2 modem-and-line-status command.

**Note:** Neither the NetView nor VTAM programs can predetermine whether a PU will respond correctly before a request is sent. The PU will either accept or reject the request.

Operand Descriptions

**OWN**

Indicates to solicit VPD from the specified PU only.

**ALL**

Indicates to solicit VPD from the specified PU and all the attached devices of the PU.

**Note:** The ALL option is not supported by NCP.

**DCE**

Indicates to solicit VPD from all the DCEs that exist in the path to the specified PU-pair.
name1
Indicates the name of an NCP.

name2
Indicates the name of a PU, including an NCP. For PU solicitation, this is the name of the PU being solicited for VPD. For DCE solicitation, this is the name of the PU just downstream from the link segments being solicited.

1|2
Specifies the starting link segment level (LSL) for which DCE data is being requested. If you specify a value of 1, the DCE data for LSL 1 and LSL 2 is displayed. If you specify a value of 2, only the DCE data for LSL 2 is displayed. Specifying a value is optional. The default is 1.

OPTIONS
Displays a list of initialization parameters of VPDTASK. Refer to the VPDINIT statement in the Tivoli NetView for z/OS Administration Reference for more details on the initialization parameters.

SNAP
Turns on a NetView trace with snap option. Use this operand when there is a problem with VPDCMD, and you want a problem determination aid. There is no default. Specify either ON or OFF. Issue the TRACE ON command for VPDTASK before issuing VPDCMD SNAP ON. If TRACE is off when VPDCMD SNAP ON is requested, an error message is issued. When TRACE for VPDTASK becomes active, the SNAP option is traced.

Restrictions
The following restrictions apply to the VPDCMD command:

- Collect information about a network control program (NCP) directly from the primary host. However, you can indirectly obtain VPD from the secondary side by issuing the START DOMAIN command and then using the ROUTE command to route the VPD command to the host that owns the NCP on the primary side of the link. Any attached devices in your network from which you want to collect VPD must have been turned on at least once. If the device has never been turned on before VPDCMD is issued, no VPD information about that device is stored in its PU. No VPD can be collected for that device.
- When this command is issued, the solicited VPD is displayed on your terminal and is not saved in storage. However, you can use a command list to automate the collection of VPD, and to write it to an external log.
- The command lists VPDDCE and VPDPU are IBM-provided command lists that are used to solicit and log VPD from the network. These command lists are provided in the NetView sample library.
- Refer to the Tivoli NetView for z/OS Administration Reference for information about interpreting VPD messages, and the appropriate SNA manual for network asset management information.

Examples

Example: Requesting VPD from a PU and Its Ports
To request VPD from a PU and its ports, enter:

```
VPDCMD ALL L1PU1
```

Response

```
DWO009I REQUEST 'ALL' ACCEPTED FOR L1PU1 , ID REQID = 0001
```
Example: Requesting Vital Product Data from a PU
To request vital product data from PU N051F52, enter:

VPDCMD OWN N051F52

Example: Requesting Vital Product Data from Modems
To request vital product data from all modems that exist between NCP N139F47 and PU P13008A, beginning at link segment level 2, enter:

VPDCMD DCE N139F47 P13008A 2

Example: Requesting Vital Product Data from a PU and Its Attached Devices
To request vital product data from PU H040PU and all devices attached to the PU, enter:

VPDCMD ALL H040PU
VPDDCE (NCCF; CNME0052)

Syntax

```
VPDDCE
```

```

Purpose of Command

The VPDDCE command list solicits and logs vital product data (VPD) from all the data circuit-terminating equipment (DCE) that is directly between a local communication controller and another PU.

This command list uses the VPDCMD command to solicit VPD, and the VPDLOG command to log the collected data to an external file. You can use this command list for a focal point collection of VPD in a distributed host environment.

VPD is collected from all the DCEs in the line that connects a communication controller and a PU, and is logged to an external file. Also, counters defined as task global variables are updated.

The VPDDCE command list builds a default record format that is written as a hardware monitor subrecord using the hardware monitor’s SMF number, 37. The record type number (SMFVPD) is set to 37 as a common global variable in CNMSTYLE. However, this logic allows a record number in a user-defined range for convenience during customization.

Operand Descriptions

```
ncpname
```
Indicates the name of the communication controller that connects a local DCE. The maximum number of characters allowed is eight.

```
puname
```
Indicates the name of the PU at the other end of the line. The maximum number of characters allowed is eight.

```
NODEBUG
```
Specifies to suppress the VPD messages from the screen. NODEBUG is the default.

```
DEBUG
```
Specifies to show the VPD messages on the screen.

```
NOERROR
```
Specifies that a subtype record for errors is not written to the external logging facility when soliciting data from the device. NOERROR is the default.

```
ERROR
```
Specifies that a subtype record for errors is written to the external logging facility when soliciting data from the device.
Restrictions

The following restrictions apply to the VPDDCE command:

- Collect information about a network control program (NCP) directly from the primary host. However, you can indirectly obtain VPD from the secondary side by issuing the START DOMAIN command and then using the ROUTE command to route the VPD command to the host that owns the NCP on the primary side of the link.

- If you specify two values for one operand, the last value for that operand is used. For example:

 VPDDCE ncpname puname DEBUG NODEBUG

 is equivalent to:

 VPDDCE ncpname puname NODEBUG
VPDLOG (NCCF)

Syntax

```
VPDLOG
```

```
recid, offset, string
```

Purpose of Command

The VPDLOG command requests an external logging facility to put the collected vital product data (VPD) into an external file.

Operand Descriptions

- **recid**
 Is a record identifier. If system management facilities (SMF) are used, this is the number that is assigned to the SMF record. This number must be 37 or in the range of 128–255.

 Note: If the IBM-provided default format is used, the record identifier is 37.

- **offset**
 Indicates a position where the following string must be placed in the record.

- **string**
 Indicates a string from VPD that must be written into the record. The maximum length of one string is 255 characters.

 Note: Strings within single quotes are supported.

Restrictions

The following restrictions apply to the VPDLOG command:

- Collect information about a network control program (NCP) directly from the primary host. However, you can indirectly obtain VPD from the secondary side by issuing the START DOMAIN command and then using the ROUTE command to route the VPD command to the host that owns the NCP on the primary side of the link.

- If DSIELTSK (external logging facility task) fails, it issues an error message only once, at the time of the first failure. On subsequent issuances of the command, you do not receive another failure message. Check the external file and make sure that the data is logged. If it is not found, check the network log for message DSI170I.

- The strings must not overlap each other and must be in ascending order. The total length of a single record to be logged cannot exceed 500 characters. The total length does not include the header length.

- If you plan to use your records with programs or command lists that always expect fields with the same length, always put the pair (position, string) with the same position and same length as the last pair.

- If you plan to restrict access to this command, the command lists VPDDCE, VPDLOGC, VPDPDU, and VPDXDOM also need to be restricted.
Examples

Example: Recording Fields in a Record
If you want to record *name1, name2, or linename* with the record ID 200, and the program that uses this record expects each of the fields to be eight characters long, enter:

```
VPDLOG 200 1 N1PU1 9 N1LINE1 17 NINCP1 25 anything
```

The string *anything* at position 25 guarantees that the NCP name field starting at position 17 will be eight characters long.

Example: Indicating a Quoted String from VPD with a Record ID
To indicate a quoted string from VPD with the record ID 130, enter:

```
VPDLOG 130 1 DATA 10 'IT'S A QUOTED STRING' 30 END
```
VPDPU (NCCF; CNME0051)

Syntax

```
VPDPU
```

```
OWN
```

```
ALL
```

```
puname
```

```
NODEBUG
```

```
ERROR
```

Purpose of Command

The VPDPU command list solicits and logs vital product data (VPD) from a specified PU and, if specified, from all of its ports. It uses the VPDCMD command to solicit VPD, and the VPDLOG command to log the collected data to an external file.

You can use this command list for a focal point collection of VPD in a distributed host environment.

VPD is collected from the PU (and optionally from its ports), and is logged to an external file. Also, counters defined as task global variables are updated.

The VPDPU command list builds a default record format that is written as a hardware monitor subrecord using hardware monitor’s SMF number, 37. The record type number (SMFVPD) is set to 37 as a common global variable in CNMSTYLE. However, this logic allows a record number in a user-defined range for convenience during customization.

Operand Descriptions

OWN

Solicits data from the node only.

ALL

Solicits data from the node and from all the attached devices.

puname

Indicates the name of the PU to be solicited. The maximum number of characters allowed is eight.

NODEBUG

Specifies to suppress the VPD messages from the screen. NODEBUG is the default.

DEBUG

Specifies to show the VPD messages on the screen.

NOERROR

Specifies that a subtype record for errors is not written to the external logging facility when soliciting data from the device. NOERROR is the default.

ERROR

Specifies that a subtype record for errors is written to the external logging facility when soliciting data from the device.
Restrictions

The following restrictions apply to the VPDPU command:

- Collect information about a network control program (NCP) directly from the primary host. However, you can indirectly obtain VPD from the secondary side by issuing the START DOMAIN command and then using the ROUTE command to route the VPD command to the host that owns the NCP on the primary side of the link.

- If you specify two values for one operand, the last value for that operand is used. For example:

 VPDPU OWN puname DEBUG NODEBUG

 is equivalent to:

 VPDPU OWN puname NODEBUG
VRST (NCCF; CNME0038)

Syntax

```
VRST

VRST status
```

Purpose of Command

The VRST command list displays the meaning of the virtual route status.

Operand Descriptions

`status`

Is the virtual route status code

Examples

Example: Displaying the Meaning of a Virtual Route Status

To display the meaning of virtual route status BLCKD, enter:

```
VRST BLCKD
```
Purpose of Command

The VSAMPOOL command displays statistics on NetView VSAM resource pool utilization when the NetView program has been defined to use local shared resources (LSRs) or deferred writing of records (DFRs).

The VSAMPOOL command displays statistics from the LSR resource pool. The LSR resource pool is subdivided into buffer pools determined by control interval sizes. You define the LSR resource pool and buffer pools with the DSIZVLSR module. The LSR resource pool can be further subdivided into DATA and INDEX buffer pools. The VSAMPOOL command displays the statistics for the DATA and INDEX buffer pools separately when separate INDEX buffers have been defined.

For more information about the DSIZVLSR module, refer to the Tivoli NetView for z/OS Installation: Getting Started.

The following information is displayed for each active buffer pool in the LSR resource pool:

- **CINV**
 - Control interval size of buffer pool
- **BUFNO**
 - Number of buffers in the buffer pool
- **BFRFND**
 - Number of VSAM retrieve requests that were satisfied by a record in a buffer
- **BUFRDS**
 - Number of VSAM retrieve requests that were not satisfied by a record in a buffer and that required I/O
- **NUIW**
 - Number of write I/Os that VSAM had to perform because there were no buffers available to do a read
- **UIW**
 - Number of write I/Os that were not deferred
- **ERCT**
 - The number of write errors that have occurred

The VSAMPOOL command is helpful in tuning NetView VSAM use. You can determine a more optimal number of VSAM LSR buffers to allocate. Underallocating or overallocating buffers can degrade performance by increasing storage use and paging. You can obtain additional information about VSAM data sets from the LISTCAT command.
For additional information about improving VSAM performance, refer to the *Tivoli NetView for z/OS Tuning Guide*.

Examples

Example: Displaying Information about Buffer Pools
To display information about all VSAM LSR or DFR buffer pools, enter:

```plaintext
VSAMPOOL
```

Response

Information similar to the following is displayed:

```plaintext
CNM260I VSAM LSR/DFR RESOURCE POOL STATISTICS
BNH091I BUFFER TYPE = DATA
CNM948I CINV BUFNO BFRFND BUFFRDS NUIW UIW ERCT
CNM261I 7168 4 17 32 0 29 0
CNM261I 8192 4 0 11 4 3 0
CNM261I 16384 4 0 0 0 0 0
CNM261I 18432 16 0 0 0 0 0
CNM261I 24576 13 0 0 0 0 0
BNH090I BUFFER TYPE = INDEX
CNM948I CINV BUFNO BFRFND BUFFRDS NUIW UIW ERCT
CNM261I 512 3 0 0 0 0 0
CNM261I 1536 5 0 0 0 0 0
CNM261I 2048 3 11 1 0 1 0
CNM261I 2560 10 0 0 0 0 0
CNM261I 4096 4 46 5 0 2 0
CNM262I END OF DISPLAY
```
WHO (NCCF; CNME1019)

Syntax

```
WHO
```

Purpose of Command

The WHO command list displays the status of all operator terminals, NetView-NetView task (NNT) sessions requested by other NetView systems, and information about your session.

After entering the WHO command list, you see information similar to the following:

```
* CNM01 WHO
  C CNM01 LIST STATUS=OPS
  - CNM01 OPERATOR: OPER1 TERM: A01A701 STATUS: ACTIVE
  - CNM01 OPERATOR: AUTO1 TERM: AUTO1 STATUS: ACTIVE
  - CNM01 OPERATOR: AUTO2 TERM: AUTO2 STATUS: ACTIVE
  - CNM01 END OF STATUS DISPLAY
C CNM01 LIST STATUS=NNT
  - CNM01 MAX SESS: 00000005
  - CNM01 NO ACTIVE NCCF TO NCCF SESSIONS FOUND
C CNM01 LIST OPER1
  - CNM01 STATION: OPER1 TERM: A01A701
  - CNM01 HCOPY: NOT ACTIVE PROFILE: DSIPROFA
  - CNM01 STATUS: ACTIVE
  - CNM01 AUTHRCVR: NO CONTROL: GLOBAL
  - CNM01 NGMFADMN: NO DEFAULT MVS CONSOLE NAME: NONE
  - CNM01 OP CLASS LIST: 2
  - CNM01 DOMAIN LIST: CNM01 (I) CNM02 (I) CNM99 (I) B0INV (I)
  - CNM01 ACTIVE SPAN LIST: NONE
  - CNM01 END OF STATUS DISPLAY
```
WINDOW (NCCF; CNME1505)

Syntax

```
WINDOW
```

```
<table>
<thead>
<tr>
<th>ProgOps</th>
<th>wait_time</th>
<th>label</th>
</tr>
</thead>
<tbody>
<tr>
<td>command</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
| SUBSYM SUBS     | <         |       |
| ddname.member   | INCL NOSUBS |
| 'dsname'        |           |
```

```
| TITLELINE       | COMPONENT |
| title_str       | applid    |
```

Notes:

1. These parameters are typically used by programmers.

IBM-Defined Synonyms

<table>
<thead>
<tr>
<th>Command or Operand</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBSYM</td>
<td>SUBS</td>
</tr>
<tr>
<td>WINDOW < args</td>
<td>< args</td>
</tr>
</tbody>
</table>

Purpose of Command

The WINDOW command is a full screen application that captures and displays data from other commands that would normally display messages. The WINDOW command facilitates searching the captured data and enables you to scroll forward and back, as well as left and right. WINDOW is also ROLLable.

Operand Descriptions

`wait_time`

Specifies the maximum time in seconds that WINDOW will wait for a response from `command`. Valid values are 1–10000000. Default value is taken from the CCDEF command definitions.
label

Specifies the target task or system where the command is to be run. Command prefix labels can also include a time-out value as part of the label syntax.

For more information about syntax and usage of labels, refer to the Tivoli NetView for z/OS User’s Guide.

EXPOSECMD

The delimited string `exp_cmd` consists of an external REXX subroutine name followed by one or more function names. Function names are used by the WINDOW command as subcommands and can override the existing WINDOW subcommands. This operand is generally used when WINDOW is invoked from within a command list. Sample CNME1096 contains an example of EXPOSECMD usage. Also, refer to sample CNMEXEC.

SELECTMSG

The delimited string `sel_msg` specifies a string that causes the WINDOW command to detect commands embedded in the data to be displayed. This operand is generally used when WINDOW is invoked from within a command list.

TITLELINE

The delimited string `title_str` specifies a string that is displayed as the title of the panel. The string has no effect on the operation of the WINDOW command or the function of any subcommand. If TITLELINE is not specified, the value used for the title is taken from the value of the `command` variable. This operand is generally used when WINDOW is invoked from within a command list.

COMPONENT

The variable `applid` is a 1- to 8-character component name. This name can be used to set or view the PF key definitions used with the panel displayed by WINDOW. When COMPONENT is specified, the application does not inherit the WINDOW PF key definitions.

command

The command for which WINDOW is to collect data. The output of this command will not be exposed.

WINDOW does not support sending commands other than PIPE to remote NetView domains running NetView Version 2 Release 3. You can enclose any command inside a PIPE command. Refer to the online help for additional information about PIPE NETVIEW, PIPE CORRWAIT, and PIPE CONSOLE.

< Indicates the < (From disk) PIPE stage.

Enter < member for a shorthand method of specifying the PIPE < (From disk) stage command. The WINDOW command automatically encloses your argument in an appropriate pipeline specification. It also appends the data set number and the member associated with each line, starting in column 81. The data set number is defined as -1 for operator data set members (refer to the OVERRIDE command), or 0 for INSTORE members. Otherwise, the data set number is defined as a positive integer correlating to the order of the LISTA output for the `ddname` in which the member was found.

You can also specify < as a synonym for the WINDOW command to obtain the same function and avoid extra keystrokes.

ddname

Specifies the `ddname` from where to read the member. When `ddname` is not
specified, the default is to search all DDs. When specifying \textit{ddname}, a period (.) is used to separate it from the member name. Do not use spaces before or after the period.

The supported \textit{ddnames} are those which the DSIDKS macro supports. Issue the \texttt{BR !} command for a list of supported data sets. To access dynamically allocated data sets, use \textit{dsname}.

\textbf{member}

Specifies the 1- to 8-character name of the member or file to be read (parameter synonyms are not supported). This is a member of the dataset concatenation associated with the \textit{ddname} being used.

\textbf{dsname}

Specifies the data set name to be read by the PIPE < stage. You can specify a member name in parentheses as part of the data set name. The \textit{dsname} must be enclosed in single quotation marks. Using \textit{dsname} enables you to browse data wider than 80 columns as well as data sets that are not included in the standard NetView DD names.

\textbf{INCL}

Specifies that \texttt{%INCLUDE} are expanded when the member or file is read.

\textbf{SUBSYM}

Specifies that if the \textit{membername} contains MVS system symbolics, the system symbolics are substituted in the statements before they are displayed. The NetView-supplied \texttt{&DOMAIN} symbolic is also included in the substitution process. Substitution is always performed on the \texttt{&DOMAIN} symbolic, unless substitution was disabled when NetView was started. For MVS and user-defined system symbolics, substitution is not performed if you are not running on an MVS system, you are running on an MVS system prior to MVS Version 5 Release 2, substitution was disabled when NetView was started, or you have not defined an MVS system symbolic on your MVS system. \textbf{SUBSYM} is the default.

\textbf{NOSUBS}

Specifies that if the \textit{membername} contains MVS system symbolics, the system symbolics are not substituted in the statements before they are displayed.

\section*{Usage Notes}

Consider the following when using the \texttt{WINDOW} command:

- For the \texttt{WINDOW} command, if the global variable \texttt{CNMIMWINDOW} contains a non-null value, the value is displayed at the bottom of the \texttt{WINDOW} panel. This is useful for displaying the settings of your PF keys. You can set the value of this global variable using the \texttt{PFKDEF} command.

For more information, refer to the \texttt{Tivoli NetView for z/OS Customization Guide}.

- You can use the following commands (or their associated PF keys) while you are using the \texttt{WINDOW} command:
 - ALL
 - BACK
 - BOTTOM
 - END
 - FIND
 - FORWARD
 - LEFT
 - REFRESH
Other subcommands can be defined using EXPOSECMD.

- To display the output of a mixed-case command you can prefix the WINDOW command with NETVASIS or you can enter OVERRIDE NETVASIS=YES. You can also use NETVASIS from the WINDOW command line.
- While using the WINDOW command, you can use the HELP function to display a list of functions and subcommands available to you.
- To use a data set with records longer than 80 characters, use the *dsname* form of the WINDOW command. This avoids the data wrapping and a data set being unreadable.

Examples

Example: Displaying a Data Set Wider than 80 Characters

To display member XYZ of data set USER.LISTING which is greater than 80 characters wide, enter:

```
WINDOW < 'USER.LISTING(XYZ)'
```

Example: Run a Command on a Remote NetView

To run a command on a remote NetView and display the response in a window, enter:

```
WINDOW CNM03/OPER1: D NET,CDRMS
```

WINDOW transmits the command to CNM03 for autotask OPER1. WINDOW automatically determines proper wait time both for the operation of the DISPLAY command at the remote site and for the RMTCMD transfer (assuming CNM03 is running NetView V2R4 or higher).

Example: Display Named Safe Contents with Title

To display the contents of a named PIPE SAFE in a window with a title of **My Title**, enter:

```
WINDOW TITLELINE %My Title% PIPE SAFE anyname | CONSOLE
```

The issuing application has issued WINDOW after collecting data from one or more sources into a named safe. WINDOW displays the data collected but shows a title that is more meaningful to the operator. Note that WINDOW’s REFRESH subcommand would not collect any new data in this case.
WKSTA (TARA)

Syntax

```
WKSTA

WKSTA ctrlname,wsname
```

Purpose of Command

The WKSTA command displays the most recent 4700 Support Facility workstation response-time data.

Data is displayed in reverse chronological order.

Operand Descriptions

- `ctrlname`
 Specifies the physical unit name of the controller to which the workstation is attached

- `wsname`
 Specifies the name of the workstation for which response time data is to be displayed

Examples

Example: Displaying the Most Recent Response Time Data

To display the most recent response time data for controller CTRL01 and workstation WS02, enter:

```
WKSTA CTRL01,WS02
```
WRAP (NCCF; CNME1020)

Syntax

WRAP

Purpose of Command

The WRAP command list changes the setting of AUTOWRAP. If AUTOWRAP is on, this command list turns it off. If AUTOWRAP is off, this command list turns it on.

Restrictions

If you use the WRAP command list more than once, it alternates between turning AUTOWRAP on and turning AUTOWRAP off. When AUTOWRAP is off, WRAP restores the on value for AUTOWRAP to the one that was used previously.
WRITESEC (NCCF)

Syntax

WRITESEC

Purpose of Command

The WRITESEC command checks an operator’s authority to write to a VSAM data set or DD name and optionally checks a member.

Operand Descriptions

ddname

Specifies the DD name against which the authority to write is checked. For VSAM DD names, WRITESEC converts *ddname* to its underlying data set name, then checks for authority to write to that data set name.

dsn

Specifies the data set name against which authority to write is checked.

Usage Notes

Consider the following when using the WRITESEC command:

- The WRITESEC command acts as a central point to control write access by DSIVSMX.
- When the WRITESEC command is entered by an operator, it results in one of the following messages:
 - DSI633I for successful write access
 - DSI213I for unsuccessful write access

 The data is not accessed nor its existence verified.
- When protecting specific data set names using CMDAUTH=TABLE or CMDAUTH=SAF, slashes (/) must be substituted for periods (.) in the data set name.

Restrictions

The following restrictions apply to the WRITESEC command:

- When the WRITESEC command is issued with a VSAM DD name, the command normally converts the DD name to the underlying data set name. However, WRITESEC cannot process VSAM DD names under the primary program operator interface task (PPT).

Return Codes

<table>
<thead>
<tr>
<th>Return Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The authorization check was successful.</td>
</tr>
<tr>
<td>4</td>
<td>The operator is not authorized to issue the command.</td>
</tr>
<tr>
<td>8</td>
<td>A syntax error occurred.</td>
</tr>
<tr>
<td>12</td>
<td>The DD name is unknown.</td>
</tr>
<tr>
<td>16</td>
<td>Dynamic names are not allowed under the PPT.</td>
</tr>
</tbody>
</table>
Examples

Example: Checking Write Access to VSAM Data Sets
To determine whether write access exists for a VSAM data set, enter:

```plaintext
WRITESEC DD=xxxVSAM
```

Where `xxx` are the first three characters in the VSAM data set name.

Response

If write access is allowed, the response is message DSI633I; otherwise, the response is message DSI213I.
Part 2. Appendixes
Appendix A. Event Types

Alerts are events (including resolutions) that you have decided require attention. As soon as an event record is created, the hardware monitor checks the current state of its recording filters to see if this event qualifies for alert status.

Events are classified by type. Table 17 provides a list of event types and their corresponding abbreviations and codes.

Table 17. Event Types with Abbreviations and Codes

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Event Type</th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVAL</td>
<td>Availability</td>
<td>The availability status of the reported resource has changed.</td>
<td>09</td>
</tr>
<tr>
<td>BYPS</td>
<td>Alert bypass</td>
<td>A loss of availability has been circumvented to allow the resource or an alternative resource to be used. The original problem still exists and you may not notice recovery. The recovery can be accomplished by intervention, either internal or external to the reporting product.</td>
<td>14</td>
</tr>
<tr>
<td>CUST</td>
<td>Customer application generated</td>
<td>A program that does not have an IBM order number generated the problem record.</td>
<td>05</td>
</tr>
<tr>
<td>DLRC</td>
<td>Delayed recovery</td>
<td>The sender is reporting a previously detected alertable condition that prevented reporting when detected, or the sender is reporting recovery from a condition that occurred earlier.</td>
<td>0F</td>
</tr>
<tr>
<td>ENV</td>
<td>Environment</td>
<td>A physical environmental problem has occurred.</td>
<td>0B</td>
</tr>
<tr>
<td>HELD</td>
<td>Held alert flag</td>
<td>An error condition was detected earlier, but the record was not sent at the time because there is no session available to send it. In filtering, the hardware monitor treats the HELD flag as if it was a second alert or event type. This means a HELD flag is always associated with another event type. The HELD event type has the same filter priority as all other event types.</td>
<td>--</td>
</tr>
<tr>
<td>IMPD</td>
<td>Impending problem</td>
<td>Availability to the user is about to be lost.</td>
<td>11</td>
</tr>
<tr>
<td>IMR</td>
<td>Intensive Mode Recording</td>
<td>An error record resulted from the user invoking intensive mode recording, a feature of the NCP. When IMR is invoked, an error record is generated each time the NCP goes through an error retry.</td>
<td>08</td>
</tr>
<tr>
<td>Abbr.</td>
<td>Event Type</td>
<td>Description</td>
<td>Code</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>INST</td>
<td>Installation</td>
<td>A system definition or an incompatibility between components has been reported.</td>
<td>0C</td>
</tr>
<tr>
<td>INTV</td>
<td>Intervention required</td>
<td>Intervention of a human operator is needed for corrective action.</td>
<td>04</td>
</tr>
<tr>
<td>NTFY</td>
<td>Notification of status change</td>
<td>Availability to the user is about to be lost. An important change of component or system/network status requiring operator notification is required.</td>
<td>0A</td>
</tr>
<tr>
<td>PAFF</td>
<td>Permanently affected resource</td>
<td>The originator of this alert has determined that the target resource is lost because of a persistent error in a resource other than the target.</td>
<td>10</td>
</tr>
<tr>
<td>PERF</td>
<td>Performance</td>
<td>A recognized measurement of performance, such as response time, has exceeded a determined threshold.</td>
<td>03</td>
</tr>
<tr>
<td>PERM</td>
<td>Permanent error</td>
<td>Availability to the user is lost unless there is external intervention to the reporting product.</td>
<td>01</td>
</tr>
<tr>
<td>PROC</td>
<td>Operation/procedure</td>
<td>A requested function cannot be performed due to an operational or procedural error.</td>
<td>0D</td>
</tr>
<tr>
<td>REDL</td>
<td>Redundancy lost</td>
<td>Redundant hardware or software is provided to ensure continued operation in the event of a failure or malfunction. As a result, failure of the remaining operational hardware or software results in a loss of corresponding services.</td>
<td>15</td>
</tr>
<tr>
<td>RSLV</td>
<td>Resolve major vector</td>
<td>The resolve major vector provides notification of the resolution of a previously reported problem. It contains an identification of the type of problem resolution and an identification of the failing resource.</td>
<td>--</td>
</tr>
<tr>
<td>RSNT</td>
<td>Resent alert flag</td>
<td>The alert has been resent, providing additional information about the original problem. In filtering, the hardware monitor treats the resent flag as if it were a second alert or event type.</td>
<td>--</td>
</tr>
<tr>
<td>SCUR</td>
<td>Security</td>
<td>A report of an incident that can indicate a possible security violation has been detected.</td>
<td>0E</td>
</tr>
<tr>
<td>SNA</td>
<td>SNA summary</td>
<td>A record containing SNA summary error counters. The record is normally the result of a NetView hardware monitor solicitation.</td>
<td>07</td>
</tr>
<tr>
<td>Abbr.</td>
<td>Event Type</td>
<td>Description</td>
<td>Code</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>TEMP</td>
<td>Temporary or recoverable error</td>
<td>A momentary loss of availability is noticeable by the user, but is recovered from without intervention external to the reporting product.</td>
<td>02</td>
</tr>
<tr>
<td>USER</td>
<td>End user generated</td>
<td>A problem record initiated by a terminal operator.</td>
<td>06</td>
</tr>
<tr>
<td>UNKN</td>
<td>Unknown</td>
<td>The severity of the alert cannot be assessed.</td>
<td>12</td>
</tr>
</tbody>
</table>

Note: BYPS, IMPD, PAFF, PERF, PERM, REDL, and TEMP are supported as part of the generic alert architecture.

In certain instances, the definitions of alert or event types used by nongeneric alert records differ from the current architected generic definitions.

You can use event types in filter-setting commands to control the types of data recorded in the hardware monitor’s database or viewed by a NetView operator. See the SRFILTER and SVFILTER commands for more information on filter setting.
Appendix B. Command List to Command Synonym Cross Reference

This section contains a cross-reference of the NetView-supplied command lists and their command synonyms. The cross-reference is listed first by command list name and then by command synonym name. This list does not include command lists that are part of the sample set for automation. The automation command lists are documented in [Tivoli NetView for z/OS Automation Guide](#).

The following list shows the names of the NetView-supplied command lists and their command synonyms.

<table>
<thead>
<tr>
<th>Command List</th>
<th>Command Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNME0001</td>
<td>ACQ</td>
</tr>
<tr>
<td>CNME0002</td>
<td>ACT</td>
</tr>
<tr>
<td>CNME0003</td>
<td>APPLS</td>
</tr>
<tr>
<td>CNME0005</td>
<td>APPLSPEN</td>
</tr>
<tr>
<td>CNMEAUTB</td>
<td>AUTBNABL</td>
</tr>
<tr>
<td>CNME0006</td>
<td>AUTOTR</td>
</tr>
<tr>
<td>CNME0007</td>
<td>BFRUSE</td>
</tr>
<tr>
<td>CNME0008</td>
<td>CDRMS</td>
</tr>
<tr>
<td>CNME0009</td>
<td>CDRSCS</td>
</tr>
<tr>
<td>CNME0010</td>
<td>CLSTRS</td>
</tr>
<tr>
<td>CNME0011</td>
<td>DRDS</td>
</tr>
<tr>
<td>CNME0012</td>
<td>DROUTE</td>
</tr>
<tr>
<td>CNME0013</td>
<td>NCPDUMP</td>
</tr>
<tr>
<td>CNME0014</td>
<td>ERST</td>
</tr>
<tr>
<td>CNME0015</td>
<td>FTRACE</td>
</tr>
<tr>
<td>CNME0016</td>
<td>IMR</td>
</tr>
<tr>
<td>CNME0017</td>
<td>INACT</td>
</tr>
<tr>
<td>CNME0018</td>
<td>INACTF</td>
</tr>
<tr>
<td>CNME0019</td>
<td>IOPD</td>
</tr>
<tr>
<td>CNME0020</td>
<td>LINES</td>
</tr>
<tr>
<td>CNME0021</td>
<td>LL2</td>
</tr>
<tr>
<td>CNME0022</td>
<td>MAJNODES</td>
</tr>
<tr>
<td>CNME0023</td>
<td>NCPSTOR</td>
</tr>
<tr>
<td>CNME0024</td>
<td>NODE</td>
</tr>
<tr>
<td>CNME0025</td>
<td>NOSTAT</td>
</tr>
<tr>
<td>CNME0026</td>
<td>PATHS</td>
</tr>
<tr>
<td>Identifier</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>CNME0028</td>
<td>PENDING</td>
</tr>
<tr>
<td>CNME0029</td>
<td>RCFB</td>
</tr>
<tr>
<td>CNME0030</td>
<td>RECYCLE</td>
</tr>
<tr>
<td>CNME0031</td>
<td>REDIAL</td>
</tr>
<tr>
<td>CNME0032</td>
<td>REL</td>
</tr>
<tr>
<td>CNME0033</td>
<td>STATIONS</td>
</tr>
<tr>
<td>CNME0034</td>
<td>STATUS</td>
</tr>
<tr>
<td>CNME0035</td>
<td>TERMS</td>
</tr>
<tr>
<td>CNME0036</td>
<td>TNSTAT</td>
</tr>
<tr>
<td>CNME0037</td>
<td>TSUSER</td>
</tr>
<tr>
<td>CNME0038</td>
<td>VRST</td>
</tr>
<tr>
<td>CNME0039</td>
<td>INITCNFG</td>
</tr>
<tr>
<td>CNME0040</td>
<td>ADDLINE</td>
</tr>
<tr>
<td>CNME0041</td>
<td>SPLOOKUP</td>
</tr>
<tr>
<td>CNME0042</td>
<td>FINDNCP</td>
</tr>
<tr>
<td>CNME0043</td>
<td>TESTSP</td>
</tr>
<tr>
<td>CNME0045</td>
<td>COS</td>
</tr>
<tr>
<td>CNME0046</td>
<td>DISK</td>
</tr>
<tr>
<td>CNME0047</td>
<td>GROUPS</td>
</tr>
<tr>
<td>CNME0048</td>
<td>SESSIONS</td>
</tr>
<tr>
<td>CNME0049</td>
<td>TESTRCMD</td>
</tr>
<tr>
<td>CNME0050</td>
<td>VPDLOGC</td>
</tr>
<tr>
<td>CNME0051</td>
<td>VPDPU</td>
</tr>
<tr>
<td>CNME0052</td>
<td>VPDDCE</td>
</tr>
<tr>
<td>CNME0053</td>
<td>VPDXDOM</td>
</tr>
<tr>
<td>CNME0054</td>
<td>SRVRNV</td>
</tr>
<tr>
<td>CNME1001</td>
<td>BFSESS</td>
</tr>
<tr>
<td>CNME1002</td>
<td>BOSESS</td>
</tr>
<tr>
<td>CNME1003</td>
<td>DATE</td>
</tr>
<tr>
<td>CNME1004</td>
<td>ESESS</td>
</tr>
<tr>
<td>CNME1006</td>
<td>LISTVAR</td>
</tr>
<tr>
<td>CNME1007</td>
<td>LSESS</td>
</tr>
<tr>
<td>CNME1008</td>
<td>NEWS</td>
</tr>
<tr>
<td>CNME1010</td>
<td>PFKDEF</td>
</tr>
<tr>
<td>CNME1011</td>
<td>QHCL</td>
</tr>
<tr>
<td>CNME1012</td>
<td>RSESS</td>
</tr>
<tr>
<td>CNME1015</td>
<td>STARTCNM</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>STOPCNM</td>
<td></td>
</tr>
<tr>
<td>WHO</td>
<td></td>
</tr>
<tr>
<td>WRAP</td>
<td></td>
</tr>
<tr>
<td>DELAY</td>
<td></td>
</tr>
<tr>
<td>DELAY2</td>
<td></td>
</tr>
<tr>
<td>DIS</td>
<td></td>
</tr>
<tr>
<td>INDEX</td>
<td></td>
</tr>
<tr>
<td>HELPDESK</td>
<td>or HD</td>
</tr>
<tr>
<td>HEXDEC</td>
<td></td>
</tr>
<tr>
<td>NUMVERFY</td>
<td></td>
</tr>
<tr>
<td>LOGPROF2</td>
<td></td>
</tr>
<tr>
<td>LOGPROF3</td>
<td></td>
</tr>
<tr>
<td>COMMAND</td>
<td>or C</td>
</tr>
<tr>
<td>DISPFK</td>
<td></td>
</tr>
<tr>
<td>LOGPROF1</td>
<td></td>
</tr>
<tr>
<td>MEMSTORE</td>
<td></td>
</tr>
<tr>
<td>IDLEOFF</td>
<td></td>
</tr>
<tr>
<td>MEMLIST</td>
<td></td>
</tr>
<tr>
<td>NETWORK</td>
<td></td>
</tr>
<tr>
<td>MAINMENU</td>
<td></td>
</tr>
<tr>
<td>DISG</td>
<td></td>
</tr>
<tr>
<td>UPDCGLOB</td>
<td></td>
</tr>
<tr>
<td>SETCGLOB</td>
<td></td>
</tr>
<tr>
<td>PPTUPDCG</td>
<td></td>
</tr>
<tr>
<td>PPTSETCG</td>
<td></td>
</tr>
<tr>
<td>MIGRATE</td>
<td></td>
</tr>
<tr>
<td>DSISAPDR</td>
<td></td>
</tr>
<tr>
<td>RECYCLET</td>
<td></td>
</tr>
<tr>
<td>RMTSESS</td>
<td></td>
</tr>
<tr>
<td>BLOG</td>
<td></td>
</tr>
<tr>
<td>TASKMON</td>
<td></td>
</tr>
<tr>
<td>LISTCMD</td>
<td></td>
</tr>
<tr>
<td>CCDEF</td>
<td></td>
</tr>
<tr>
<td>WINDOW</td>
<td></td>
</tr>
<tr>
<td>AUTOCOLL</td>
<td></td>
</tr>
<tr>
<td>SWLD</td>
<td></td>
</tr>
<tr>
<td>SENSE</td>
<td></td>
</tr>
</tbody>
</table>
CNME2004 SESS
CNME2005 AUTORECD
CNME2007 PURGEB
CNME2008 DBAUTO
CNME2009 DBINIT
CNME2010 DBFULL
CNME2011 SESMGET
CNME2012 SESC
CNME2101 GMFHS
CNME2103 CNVOSI
CNME2304 NVMAN
CNME3001 ACTION
CNME3003 EVENTS
CNME3004 PDFILTER
CNME3005 STATS
CNME3006 SWPD
CNME3007 TCTRL
CNME3008 TERR
CNME3009 TSTAT
CNME3010 TTERR
CNME3011 TTRESP
CNME3012 TWERR
CNME3013 TWKSTA
CNME3014 TWRESP
CNME3015 TWSTAT
CNME5001 BROWSE or BR
CNME5002 SHOWCODE
CNME5003 TUTOR
CNME6220 ASSISCMD
CNME6221 SAVECMD
CNME7001 STARTDOM
CNME7002 AUTOSTUN
CNME7003 AUTOSTDN
CNME7004 AUTOCHK
CNME7005 AUTOSEND
CNME7006 AUTONTFY
CNME7007 AUTOB146
<table>
<thead>
<tr>
<th>Command Synonym</th>
<th>Command List</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACQ</td>
<td>CNME0001</td>
</tr>
</tbody>
</table>

The following list shows the synonyms for the NetView-supplied command lists and the command list names.
<table>
<thead>
<tr>
<th>ACT</th>
<th>CNME0002</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTION</td>
<td>CNME3001</td>
</tr>
<tr>
<td>ADAPTER</td>
<td>CNME8501</td>
</tr>
<tr>
<td>ADDLINE</td>
<td>CNME0040</td>
</tr>
<tr>
<td>APERSIST</td>
<td>CNME7022</td>
</tr>
<tr>
<td>APPLS</td>
<td>CNME0003</td>
</tr>
<tr>
<td>APPLSPEN</td>
<td>CNME0005</td>
</tr>
<tr>
<td>ASSISCMD</td>
<td>CNME6220</td>
</tr>
<tr>
<td>AUTBNABL</td>
<td>CNMEAUTB</td>
</tr>
<tr>
<td>AUTOB146</td>
<td>CNME7007</td>
</tr>
<tr>
<td>AUTOCHFP</td>
<td>CNME7010</td>
</tr>
<tr>
<td>AUTOCHK</td>
<td>CNME7004</td>
</tr>
<tr>
<td>AUTOCOLL</td>
<td>CNME2001</td>
</tr>
<tr>
<td>AUTODMSG</td>
<td>CNME7008</td>
</tr>
<tr>
<td>AUTONEWF</td>
<td>CNME7011</td>
</tr>
<tr>
<td>AUTONTFY</td>
<td>CNME7006</td>
</tr>
<tr>
<td>AUTORECD</td>
<td>CNME2005</td>
</tr>
<tr>
<td>AUTOSEND</td>
<td>CNME7005</td>
</tr>
<tr>
<td>AUTOSTDN</td>
<td>CNME7003</td>
</tr>
<tr>
<td>AUTOSTUN</td>
<td>CNME7002</td>
</tr>
<tr>
<td>AUTOTR</td>
<td>CNME0006</td>
</tr>
<tr>
<td>BFRUSE</td>
<td>CNME0007</td>
</tr>
<tr>
<td>BFSESS</td>
<td>CNME1001</td>
</tr>
<tr>
<td>BOSESS</td>
<td>CNME1002</td>
</tr>
<tr>
<td>BR</td>
<td>CNME5001</td>
</tr>
<tr>
<td>BRIDGE</td>
<td>CNME8503</td>
</tr>
<tr>
<td>BROWSE</td>
<td>CNME5001</td>
</tr>
<tr>
<td>C</td>
<td>CNME1036</td>
</tr>
<tr>
<td>CALC</td>
<td>CNME8001</td>
</tr>
<tr>
<td>CCDEF</td>
<td>CNME1504</td>
</tr>
<tr>
<td>CDRMS</td>
<td>CNME0008</td>
</tr>
<tr>
<td>CDRSCS</td>
<td>CNME0009</td>
</tr>
<tr>
<td>CHANGEFP</td>
<td>CNME7009</td>
</tr>
<tr>
<td>CLSTRS</td>
<td>CNME0010</td>
</tr>
<tr>
<td>CNVOSI</td>
<td>CNME2103</td>
</tr>
<tr>
<td>COMMAND</td>
<td>CNME1036</td>
</tr>
<tr>
<td>COS</td>
<td>CNME0045</td>
</tr>
<tr>
<td>Command</td>
<td>Code</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>CURTIME</td>
<td>CNME7021</td>
</tr>
<tr>
<td>DATE</td>
<td>CNME1003</td>
</tr>
<tr>
<td>DBAUTO</td>
<td>CNME2008</td>
</tr>
<tr>
<td>DBFULL</td>
<td>CNME2010</td>
</tr>
<tr>
<td>DBINIT</td>
<td>CNME2009</td>
</tr>
<tr>
<td>DELAY</td>
<td>CNME1021</td>
</tr>
<tr>
<td>DELAY2</td>
<td>CNME1022</td>
</tr>
<tr>
<td>DIALCDRM</td>
<td>CNME7023</td>
</tr>
<tr>
<td>DIS</td>
<td>CNME1023</td>
</tr>
<tr>
<td>DISG</td>
<td>CNME1070</td>
</tr>
<tr>
<td>DISK</td>
<td>CNME0046</td>
</tr>
<tr>
<td>DISPFK</td>
<td>CNME1048</td>
</tr>
<tr>
<td>DNIC</td>
<td>CNME7015</td>
</tr>
<tr>
<td>DRDS</td>
<td>CNME0011</td>
</tr>
<tr>
<td>DROUTE</td>
<td>CNME0012</td>
</tr>
<tr>
<td>DSISAPDR</td>
<td>CNME1085</td>
</tr>
<tr>
<td>ERST</td>
<td>CNME0014</td>
</tr>
<tr>
<td>ESESS</td>
<td>CNME1004</td>
</tr>
<tr>
<td>EVENTS</td>
<td>CNME3003</td>
</tr>
<tr>
<td>FINDNCP</td>
<td>CNME0042</td>
</tr>
<tr>
<td>FPIC</td>
<td>CNME7013</td>
</tr>
<tr>
<td>FTRACE</td>
<td>CNME0015</td>
</tr>
<tr>
<td>GMFHS</td>
<td>CNME2101</td>
</tr>
<tr>
<td>GROUPS</td>
<td>CNME0047</td>
</tr>
<tr>
<td>HD</td>
<td>CNME1026</td>
</tr>
<tr>
<td>HELPDESK</td>
<td>CNME1026</td>
</tr>
<tr>
<td>HEXDEC</td>
<td>CNME1027</td>
</tr>
<tr>
<td>IDLEOFF</td>
<td>CNME1057</td>
</tr>
<tr>
<td>IMR</td>
<td>CNME0016</td>
</tr>
<tr>
<td>INACT</td>
<td>CNME0017</td>
</tr>
<tr>
<td>INACTF</td>
<td>CNME0018</td>
</tr>
<tr>
<td>INDEX</td>
<td>CNME1024</td>
</tr>
<tr>
<td>INIC</td>
<td>CNME7014</td>
</tr>
<tr>
<td>INITCNFG</td>
<td>CNME0039</td>
</tr>
<tr>
<td>INITNRM</td>
<td>CNME8601</td>
</tr>
<tr>
<td>IOPD</td>
<td>CNME0019</td>
</tr>
<tr>
<td>LAN</td>
<td>CNME8500</td>
</tr>
<tr>
<td>Command</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>LINES</td>
<td>CNME0020</td>
</tr>
<tr>
<td>LISTCMD</td>
<td>CNME1104</td>
</tr>
<tr>
<td>LISTVAR</td>
<td>CNME1006</td>
</tr>
<tr>
<td>LISTWLM</td>
<td>CNME1STW</td>
</tr>
<tr>
<td>LL2</td>
<td>CNME0021</td>
</tr>
<tr>
<td>LOGAUTOD</td>
<td>CNME7018</td>
</tr>
<tr>
<td>LOGAUTOF</td>
<td>CNME7016</td>
</tr>
<tr>
<td>LOGAUTOI</td>
<td>CNME7017</td>
</tr>
<tr>
<td>LOGPROF1</td>
<td>CNME1049</td>
</tr>
<tr>
<td>LOGPROF2</td>
<td>CNME1032</td>
</tr>
<tr>
<td>LOGPROF3</td>
<td>CNME1033</td>
</tr>
<tr>
<td>LSESS</td>
<td>CNME1007</td>
</tr>
<tr>
<td>MAINMENU</td>
<td>CNME1066</td>
</tr>
<tr>
<td>MAJNODES</td>
<td>CNME0022</td>
</tr>
<tr>
<td>MEMLIST</td>
<td>CNME1058</td>
</tr>
<tr>
<td>MEMSTORE</td>
<td>CNME1054</td>
</tr>
<tr>
<td>MEMSTOUT</td>
<td>CNMEOUTS</td>
</tr>
<tr>
<td>MIGRATE</td>
<td>CNME1084</td>
</tr>
<tr>
<td>MONOFF</td>
<td>CNME9001</td>
</tr>
<tr>
<td>MONON</td>
<td>CNME9002</td>
</tr>
<tr>
<td>MONOPERP</td>
<td>CNME7024</td>
</tr>
<tr>
<td>NCPDUMP</td>
<td>CNME0013</td>
</tr>
<tr>
<td>NCPSTOR</td>
<td>CNME0023</td>
</tr>
<tr>
<td>NETWORK</td>
<td>CNME1060</td>
</tr>
<tr>
<td>NEWS</td>
<td>CNME1008</td>
</tr>
<tr>
<td>NODE</td>
<td>CNME0024</td>
</tr>
<tr>
<td>NOSTAT</td>
<td>CNME0025</td>
</tr>
<tr>
<td>NUMVERFY</td>
<td>CNME1031</td>
</tr>
<tr>
<td>NVMAN</td>
<td>CNME2304</td>
</tr>
<tr>
<td>PATH</td>
<td>CNME8507</td>
</tr>
<tr>
<td>PATHS</td>
<td>CNME0026</td>
</tr>
<tr>
<td>PDFILTER</td>
<td>CNME3004</td>
</tr>
<tr>
<td>PENDING</td>
<td>CNME0028</td>
</tr>
<tr>
<td>PFKDEF</td>
<td>CNME1010</td>
</tr>
<tr>
<td>PPTSETCG</td>
<td>CNME1083</td>
</tr>
<tr>
<td>PPTUPDCG</td>
<td>CNME1082</td>
</tr>
<tr>
<td>PURGEDB</td>
<td>CNME2007</td>
</tr>
<tr>
<td>Command</td>
<td>Synonym</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>QHCL</td>
<td>CNME1011</td>
</tr>
<tr>
<td>QNETWORK</td>
<td>CNME8505</td>
</tr>
<tr>
<td>QREXX</td>
<td>CNME8002</td>
</tr>
<tr>
<td>RCFB</td>
<td>CNME0029</td>
</tr>
<tr>
<td>RECYCLE</td>
<td>CNME0030</td>
</tr>
<tr>
<td>RECYCLET</td>
<td>CNME1089</td>
</tr>
<tr>
<td>REDIAL</td>
<td>CNME0031</td>
</tr>
<tr>
<td>REL</td>
<td>CNME0032</td>
</tr>
<tr>
<td>RESETLAN</td>
<td>CNME8508</td>
</tr>
<tr>
<td>RMTSESS</td>
<td>CNME1092</td>
</tr>
<tr>
<td>RSESS</td>
<td>CNME1012</td>
</tr>
<tr>
<td>SAVECMD</td>
<td>CNME6221</td>
</tr>
<tr>
<td>SECMIGR</td>
<td>CNME8004</td>
</tr>
<tr>
<td>SEGMENT</td>
<td>CNME8506</td>
</tr>
<tr>
<td>SENSE</td>
<td>CNME2003</td>
</tr>
<tr>
<td>SESMGET</td>
<td>CNME2011</td>
</tr>
<tr>
<td>SESS</td>
<td>CNME2004</td>
</tr>
<tr>
<td>SESSC</td>
<td>CNME2012</td>
</tr>
<tr>
<td>SESSIONS</td>
<td>CNME0048</td>
</tr>
<tr>
<td>SETADIAL</td>
<td>CNME7012</td>
</tr>
<tr>
<td>SETCGLOB</td>
<td>CNME1081</td>
</tr>
<tr>
<td>SHOWCODE</td>
<td>CNME5002</td>
</tr>
<tr>
<td>SPLOOKUP</td>
<td>CNME0041</td>
</tr>
<tr>
<td>SRVRNV</td>
<td>CNME0054</td>
</tr>
<tr>
<td>STARTCNM</td>
<td>CNME1015</td>
</tr>
<tr>
<td>STARTDOM</td>
<td>CNME7001</td>
</tr>
<tr>
<td>STATIONS</td>
<td>CNME0033</td>
</tr>
<tr>
<td>STATS</td>
<td>CNME3005</td>
</tr>
<tr>
<td>STATUS</td>
<td>CNME0034</td>
</tr>
<tr>
<td>STOPCNM</td>
<td>CNME1016</td>
</tr>
<tr>
<td>STOPSESS</td>
<td>CNME7020</td>
</tr>
<tr>
<td>SUSPNRM</td>
<td>CNME8602</td>
</tr>
<tr>
<td>SWLD</td>
<td>CNME2002</td>
</tr>
<tr>
<td>SWPD</td>
<td>CNME3006</td>
</tr>
<tr>
<td>TCTRL</td>
<td>CNME3007</td>
</tr>
<tr>
<td>TERMS</td>
<td>CNME0035</td>
</tr>
<tr>
<td>TERR</td>
<td>CNME3008</td>
</tr>
<tr>
<td>Command</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>TESTRCMD</td>
<td>CNME0049</td>
</tr>
<tr>
<td>TESTSP</td>
<td>CNME0043</td>
</tr>
<tr>
<td>TNSTAT</td>
<td>CNME0036</td>
</tr>
<tr>
<td>TSOUSER</td>
<td>CNME0037</td>
</tr>
<tr>
<td>TSTAT</td>
<td>CNME3009</td>
</tr>
<tr>
<td>TERROR</td>
<td>CNME3010</td>
</tr>
<tr>
<td>TRESP</td>
<td>CNME3011</td>
</tr>
<tr>
<td>TUTOR</td>
<td>CNME5003</td>
</tr>
<tr>
<td>TWERR</td>
<td>CNME3012</td>
</tr>
<tr>
<td>TWKSTA</td>
<td>CNME3013</td>
</tr>
<tr>
<td>TWRSP</td>
<td>CNME3014</td>
</tr>
<tr>
<td>TWSTAT</td>
<td>CNME3015</td>
</tr>
<tr>
<td>UPDCGLOB</td>
<td>CNME1080</td>
</tr>
<tr>
<td>VPDDCE</td>
<td>CNME0052</td>
</tr>
<tr>
<td>VPDLOGC</td>
<td>CNME0050</td>
</tr>
<tr>
<td>VPDPU</td>
<td>CNME0051</td>
</tr>
<tr>
<td>VPDXDOM</td>
<td>CNME0053</td>
</tr>
<tr>
<td>VRST</td>
<td>CNME0038</td>
</tr>
<tr>
<td>WHO</td>
<td>CNME1019</td>
</tr>
<tr>
<td>WINDOW</td>
<td>CNME1505</td>
</tr>
<tr>
<td>WRAP</td>
<td>CNME1020</td>
</tr>
<tr>
<td>WRITE</td>
<td>CNME7019</td>
</tr>
</tbody>
</table>
Appendix C. Other Notices

CMU AND THE REGENTS OF THE UNIVERSITY OF CALIFORNIA DISCLAIM
ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT
SHALL CMU OR THE REGENTS OF THE UNIVERSITY OF CALIFORNIA BE
LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
ANY DAMAGES WHATSOEVER RESULTING FROM THE LOSS OF USE, DATA
OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH
THE USE OR PERFORMANCE OF THIS SOFTWARE.

Portions Copyright (c) 2001, Networks Associates Technology, Inc. All rights
reserved.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Portions copyright (c) 2001, Cambridge Broadband Ltd. All rights reserved.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.