Installation: Configuring Graphical Components

Version 5 Release 1
Installation: Configuring Graphical Components

Version 5 Release 1
Tivoli NetView for z/OS Installation: Configuring Graphical Components

Copyright Notice

© Copyright IBM Corporation 2001, 2002. All rights reserved. May only be used pursuant to a Tivoli Systems Software License Agreement, an IBM Software License Agreement, or Addendum for Tivoli Products to IBM Customer or License Agreement. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without prior written permission of IBM Corporation. IBM Corporation grants you limited permission to make hardcopy or other reproductions of any machine-readable documentation for your own use, provided that each such reproduction shall carry the IBM Copyright notice. No other rights under copyright are granted without prior written permission of IBM Corporation. The document is not intended for production and is furnished “as is” without warranty of any kind. All warranties on this document are hereby disclaimed, including the warranties of merchantability and fitness for a particular purpose.

U.S. Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corporation.

Trademarks

IBM, the IBM logo, Tivoli, the Tivoli logo, Advanced Peer-to-Peer Networking, AIX, APPN, BookManager, DB2, IBMLink, Language Environment, MVS/ESA, NetView, OS/2, OS/390, RACF, SAA, SystemView, Tivoli Enterprise, VTAM, and z/OS are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Intel is a trademark of Intel Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

Notices

References in this publication to Tivoli Systems or IBM products, programs, or services do not imply that they will be available in all countries in which Tivoli Systems or IBM operates. Any reference to these products, programs, or services is not intended to imply that only Tivoli Systems or IBM products, programs, or services can be used. Subject to valid intellectual property or other legally protectable right of Tivoli Systems or IBM, any functionally equivalent product, program, or service can be used instead of the referenced product, program, or service. The evaluation and verification of operation in conjunction with other products, except those expressly designated by Tivoli Systems or IBM, are the responsibility of the user. Tivoli Systems or IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, New York 10504-1785, U.S.A.

Programming Interfaces

This publication documents information NOT intended to be used as Programming Interfaces of Tivoli NetView for z/OS.
Contents

Preface vii
Who Should Read This Document ... vii
What This Document Contains ... vii
Publications .. ix
- Prerequisite and Related Documents .. ix
- Accessing Publications Online ... ix
- Ordering Publications .. ix
- Providing Feedback about Publications .. x
Contacting Customer Support .. x
Accessibility Information .. x
- Keyboard Access .. x
Conventions Used in This Document .. xi
- Terminology .. xi
Reading Syntax Diagrams .. xii
 - Required Syntax .. xii
 - Optional Keywords and Variables ... xiii
 - Default Values .. xiii
 - Long Syntax Diagrams .. xiii
 - Syntax Fragments .. xiii
 - Commas and Parentheses .. xiv
 - Highlighting, Brackets, and Braces ... xv
 - Abbreviations ... xvi

Chapter 1. Introduction .. 1
Managing SNA Resources with the SNA Topology Manager 2
Managing Non-SNA Resources with MultiSystem Manager 2
Managing NetView Resources with the NetView Resource Manager 3
Planning the Installation Process .. 3

Chapter 2. Enabling Graphics Support ... 5
Enabling RODM ... 5
Enabling GMFHS ... 6
Enabling SNA Topology Manager .. 6
Enabling MultiSystem Manager .. 6
Enabling NetView Resource Manager .. 7

Chapter 3. Preparing and Activating RODM and GMFHS 9
Preparing RODM ... 9
 - Defining RODM as an MVS Subsystem ... 9
 - Allocating VSAM Clusters for RODM .. 9
 - Bypassing or Defining Security ... 11
 - Updating the RODM Start Procedure .. 15
 - Defining RODM Using the EKGCUST Member .. 16
 - Defining Initialization Values for RODM DSIQTSK Task 18
Preparing GMFHS ... 19
 - Updating the GMFHS Start Procedure .. 19
 - Defining Initialization Values for the GMFHS Main Task 20
 - Defining the COS Gateway Autotask .. 21
 - Defining the Event Manager Autotask .. 21
 - Defining the Scope Checker OPT ... 21
 - Defining the NMCSTATUS Policy Autotask ... 22
Starting RODM Using Job EKGXRODM ... 22
Verifying the RODM Installation .. 25
Loading the Data Models ... 26
Preface

This book is designed to help system programmers install Tivoli® NetView® for z/OS™ graphics.

Who Should Read This Document

This document is written for system programmers, network planners, and system designers who install NetView graphics.

What This Document Contains

This document is divided into the following sections:

• "Chapter 1. Introduction" on page 1
 Provides an overview of configuring components for NetView graphics.

• "Chapter 2. Enabling Graphics Support" on page 5
 Provides information for enabling various elements of the NetView graphics function, such as:
 – The Resource Object Data Manager (RODM)
 – The Graphic Monitor Facility host subsystem (GMFHS)
 – The SNA Topology Manager
 – The MultiSystem Manager
 – The NetView Resource Manager (NRM)

• "Chapter 3. Preparing and Activating RODM and GMFHS" on page 9
 Provides the following types of information about RODM and GMFHS:
 – Installing
 – Defining parameters
 – Bypassing or defining security
 – Verifying the installation

• "Chapter 4. Installing and Configuring the NetView Management Console for Graphics" on page 31
 Provides the following types of information about the NetView management console (NMC):
 – Setup of the NetView program
 – Workstation setup for the NMC
 – Verifying the installation

• "Chapter 5. Installing and Configuring SNA Topology Manager Agents" on page 45
 Provides information about implementing topology monitoring in your network using SNA topology manager agents.

• "Chapter 6. Preparing and Activating the SNA Topology Manager" on page 47
 Provides the steps for setting up VTAM® to enable the SNA topology manager.

• "Chapter 7. Installing and Configuring MultiSystem Manager Agents" on page 51
 Provides the steps for installing and configuring MultiSystem Manager agents:
 – Installing topology agents
 – Modifying the open environment
Preface

- Modifying the LAN network manager environment

• "Chapter 8. Preparing and Activating the MultiSystem Manager” on page 55
 Provides information about modifying or establishing elements of the MultiSystem Manager, including (but not limited to) the following:
 – MVS™ Environment
 – Event/automation service (EAS)
 – Security
 – NetView start procedure
 – Automation options
 – Assigning operator profiles to autotasks
 – Initialization
 – NetView Cross-Domain Environment
 – RUNCMD
 – NetView RATE and AUTORATE statements
 – Starting and verifying the installation

• "Chapter 9. Preparing and Activating the NetView Resource Manager” on page 63
 Provides information about configuring and installing the NetView Resource Manager, including the following:
 – Autotask AUTONRM
 – Security
 – Initialization
 – Startup of NetView Resource Manager
 – Verification of the installation

• "Chapter 10. Managing Views” on page 69
 Provides information about managing views, which are presented by the NetView management console (NMC) in a top-down, hierarchical perspective. This chapter discusses the types of views and addresses the following tasks:
 – Restricting access to views
 – Applying Policy to views
 – Initialization
 – Correlating views
 – Managing views

• "Appendix A. SNA Definitions for the NMC Topology Servers” on page 77
 Provides information about establishing LU 6.2 connectivity between your host and the NMC topology servers. This chapter includes the following information:
 – Ethernet LAN-Attached NMC Servers
 – Token-Ring LAN-Attached NMC Servers
 – SDLC-Attached NMC Servers
 – Defining the logical unit (LU) name

• "Appendix B. NetView Graphics Samples” on page 87
 Provides information about data samples for the following elements of NetView graphics:
 – GMFHS
 – MultiSystem Manager
 – NetView Management Console
This section lists prerequisite and related documents. It also describes how to access Tivoli publications online, how to order Tivoli publications, and how to make comments on Tivoli publications.

Prerequisite and Related Documents

To read about the new functions offered in this release, refer to the *Tivoli NetView for z/OS Installation: Migration Guide*.

You can find additional product information on these Internet sites:

<table>
<thead>
<tr>
<th>Table 1. Resource Web sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tivoli NetView for z/OS</td>
</tr>
</tbody>
</table>

The Tivoli NetView for z/OS Web site offers demonstrations of the NetView product, related products, and several free NetView applications you can download. These applications can help you with tasks such as:

- Getting statistics for your automation table and merging the statistics with a listing of the automation table
- Displaying the status of a JES job or cancelling a specified JES job
- Sending alerts to the NetView program using the program-to-program interface (PPI)
- Sending and receiving MVS commands using the PPI
- Sending TSO commands and receiving responses

Accessing Publications Online

You can access many Tivoli publications online using the Tivoli Information Center, which is available on the Tivoli Customer Support Web site:

These publications are available in PDF format. Translated documents are also available for some products.

Ordering Publications

You can order many Tivoli publications online at the following Web site:

You can also order by telephone by calling one of these numbers:

- In the United States: 800-879-2755
- In Canada: 800-426-4968
- In other countries, for a list of telephone numbers, see the following Web site:
Providing Feedback about Publications

We are very interested in hearing about your experience with Tivoli products and documentation, and we welcome your suggestions for improvements. If you have comments or suggestions about our products and documentation, contact us in one of the following ways:

- Send an e-mail to pubs@tivoli.com.
- Complete our customer feedback survey at the following Web site:

Contacting Customer Support

If you have a problem with any Tivoli product, you can contact Tivoli Customer Support. See the Tivoli Customer Support Handbook at the following Web site:

The handbook provides information about how to contact Tivoli Customer Support, depending on the severity of your problem, and the following information:

- Registration and eligibility
- Telephone numbers and e-mail addresses, depending on the country you are in
- What information you should gather before contacting support

Note: Additional support for Tivoli NetView for z/OS is available at the NetView for z/OS Web site:

http://www.tivoli.com/nv390

Under Related Documents, select **Other Online Sources**.

The page displayed contains a list of newsgroups, forums, and bulletin boards.

Accessibility Information

Refer to Tivoli NetView for z/OS User’s Guide for information about accessibility.

Keyboard Access

Standard shortcut and accelerator keys are used by the product and are documented by the operating system. Refer to the documentation provided by your operating system for more information.

Refer to Tivoli NetView for z/OS User’s Guide for more information about keyboard access.

Conventions Used in This Document

The document uses several typeface conventions for special terms and actions. These conventions have the following meaning:

- **Bold**
 - Commands, keywords, flags, and other information that you must use literally appear like **this**, in **bold**.
Variables and new terms appear like this, in italics. Words and phrases that are emphasized also appear like this, in italics.

Code examples, output, and system messages appear like this, in a monospace font.

Tivoli NetView for z/OS commands are in ALL CAPITAL letters.

Platform-specific Information

For more information about the hardware and software requirements for NetView components, refer to the Tivoli NetView for z/OS Licensed Program Specification.

Terminology

For a list of Tivoli NetView for z/OS terms and definitions, refer to http://www.networking.ibm.com/nsg/nsgmain.htm.

For brevity and readability, the following terms are used in this document:

NetView

- Tivoli NetView for z/OS Version 5 Release 1
- Tivoli NetView for OS/390® Version 1 Release 4
- Tivoli NetView for OS/390 Version 1 Release 3
- TME 10™ NetView for OS/390 Version 1 Release 2
- TME 10 NetView for OS/390 Version 1 Release 1
- IBM NetView for MVS Version 3
- IBM NetView for MVS Version 2 Release 4
- IBM NetView Version 2 Release 3

MVS

OS/390 or z/OS operating systems.

RACF®

RACF is a component of the SecureWay® Security Server for z/OS and OS/390, providing the functions of authentication and access control for OS/390 and z/OS resources and data, including the ability to control access to DB2® objects using RACF profiles. Refer to: http://www-1.ibm.com/servers/eserver/zseries/zos/security/racfss.html

Tivoli Enterprise™ software

Tivoli software that manages large business networks.

Tivoli environment

The Tivoli applications, based upon the Tivoli Management Framework, that are installed at a specific customer location and that address network computing management issues across many platforms. In a Tivoli environment, a system administrator can distribute software, manage user configurations, change access privileges, automate operations, monitor resources, and schedule jobs. You may have used TME 10 environment in the past.

TME 10

In most product names, TME 10 has been changed to Tivoli.

V and R

Specifies the version and release.
VTAM and TCP/IP

VTAM and TCP/IP are included in the IBM Communications Server element of the OS/390 and z/OS operating systems. Refer to http://www.ibm.com/software/network/commserver/about/.

Unless otherwise indicated, references to programs indicate the latest version and release of the programs. If only a version is indicated, the reference is to all releases within that version.

When a reference is made about using a personal computer or workstation, any programmable workstation can be used.

Reading Syntax Diagrams

Syntax diagrams start with double arrowheads on the left (▶) and move along the main line until they end with two arrowheads facing each other (◀). As shown in the following table, syntax diagrams use position to indicate the required, optional, and default values for keywords, variables, and operands.

<table>
<thead>
<tr>
<th>Element Position</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>On the command line</td>
<td>Required</td>
</tr>
<tr>
<td>Above the command line</td>
<td>Default</td>
</tr>
<tr>
<td>Below the command line</td>
<td>Optional</td>
</tr>
</tbody>
</table>

Table 2. How the Position of Syntax Diagram Elements Is Used

Required Syntax

The command name, required keywords, variables, and operands are always on the main syntax line. Figure 1 specifies that the resname variable must be used for the CCPLOADF command.

```
CCPLOADF

▶—CCPLOADF resname—▶
```

Figure 1. Required Syntax Elements

Keywords and operands are written in uppercase letters. Lowercase letters indicate variables such as values or names that you supply. In Figure 2, MEMBER is an operand and membername is a variable that defines the name of the data set member for that operand.

```
TRANSMSG

▶—TRANSMSG MEMBER=membername—▶
```

Figure 2. Syntax for Variables
Optional Keywords and Variables

Optional keywords, variables, and operands are below the main syntax line. Figure 3 specifies that the ID operand can be used for the DISPREG command, but is not required.

DISPREG

Figure 3. Optional Syntax Elements

Default Values

Default values are above the main syntax line. If the default is a keyword, it appears only above the main line. You can specify this keyword or allow it to default.

If an operand has a default value, the operand appears both above and below the main line. A value below the main line indicates that if you choose to specify the operand, you must also specify either the default value or another value shown. If you do not specify an operand, the default value above the main line is used.

Figure 4 shows the default keyword STEP above the main line and the rest of the optional keywords below the main line. It also shows the default values for operands MODNAME=* and OPTION=* above and below the main line.

RID

Figure 4. Sample of Defaults Syntax

Long Syntax Diagrams

When more than one line is needed for a syntax diagram, the continued lines end with a single arrowhead (▼). The following lines begin with a single arrowhead (▼), as shown in Figure 4.

Syntax Fragments

Commands that contain lengthy groups or a section that is used more than once in a command are shown as separate fragments following the main diagram. The fragment name is shown in mixed case. See Figure 5 on page xiv for a syntax with the fragments ReMote and FromTo.
Commas and Parentheses

Required commas and parentheses are included in the syntax diagram. When an operand has more than one value, the values are typically enclosed in parentheses and separated by commas. In Figure 6 on page xv, the OP operand, for example, contains commas to indicate that you can specify multiple values for the testop variable.

Figure 5. Sample Syntax Diagram with Fragments
If a command requires positional commas to separate keywords and variables, the commas are shown before the keyword or variable, as in Figure 4 on page xiii.

For example, to specify the BOSESS command with the *sessid* variable, enter:

```
NCCF BOSESS applid,,sessid
```

You do not need to specify the trailing positional commas. Positional and non-positional trailing commas either are ignored or cause the command to be rejected. Restrictions for each command state whether trailing commas cause the command to be rejected.

Highlighting, Brackets, and Braces

Syntax diagrams do not rely on highlighting, underscoring, brackets, or braces; variables are shown italicized in hardcopy or in a differentiating color for NetView help and BookManager® online books.

In parameter descriptions, the appearance of syntax elements in a diagram immediately tells you the type of element. See Table 3 for the appearance of syntax elements.

<table>
<thead>
<tr>
<th>This element...</th>
<th>Looks like this...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyword</td>
<td>CCLOADF</td>
</tr>
<tr>
<td>Variable</td>
<td>resname</td>
</tr>
<tr>
<td>Operand</td>
<td>MEMBER=membername</td>
</tr>
<tr>
<td>Default</td>
<td>today or INCL</td>
</tr>
</tbody>
</table>

Figure 6. Sample Syntax Diagram with Commas

If a command requires positional commas to separate keywords and variables, the commas are shown before the keyword or variable, as in Figure 4 on page xiii.

For example, to specify the BOSESS command with the *sessid* variable, enter:

```
NCCF BOSESS applid,,sessid
```

You do not need to specify the trailing positional commas. Positional and non-positional trailing commas either are ignored or cause the command to be rejected. Restrictions for each command state whether trailing commas cause the command to be rejected.
Abbreviations

Command and keyword abbreviations are described in synonym tables after each command description.
Chapter 1. Introduction

This manual describes installation and setup of NetView graphics, which provide the ability for you to monitor your system and network resources with a dynamic, color-coded graphical display. NetView graphical displays are based on the Resource Object Data Manager (RODM), which is an object-oriented data cache. Objects in RODM represent resources in your network. The data cache is located in the memory of the host processor. Many applications can interact with a single RODM, and more than one RODM can run on a host processor.

The Graphic Monitor Facility host subsystem (GMFHS) is the host program that works with RODM and the NetView management console (NMC) to manage resources. The NMC graphically displays the resources that represent a network, a portion of the network, or a group of networks at various levels of detail. GMFHS supports resources that can send status updates to NetView in a standard format. GMFHS works with the SNA topology manager component of NetView and the NMC to manage SNA resources. GMFHS works with the MultiSystem Manager component and the NMC to manage non-SNA resources. GMFHS works with the NetView Resource Manager component and NMC to manage NetView tasks.

Figure 7 shows the relationships of the graphical components.

![Diagram](image_url)

Figure 7. Graphical Components

This document describes the steps required to install and enable the graphical functions of NetView. Also included are workstation-based components that support graphical or other access.

<table>
<thead>
<tr>
<th>If you want information about...</th>
<th>Refer to...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installing RODM and GMFHS</td>
<td>Chapter 3, Preparing and Activating RODM and GMFHS on page 9</td>
</tr>
</tbody>
</table>
Managing SNA Resources with the SNA Topology Manager

The SNA topology manager functions for managing SNA and Advanced Peer-to-Peer Networking (APPN) network environments include collection of subarea and APPN network, local, and LU status and topology. These functions provide:

- Collection and storage of topology data, including real-time updates, in the RODM data cache
- Dynamic graphical display of topology and status

VTAM includes an agent that gathers topology information about APPN network nodes, APPN end nodes, and the subarea network. The SNA topology manager uses CMIP services to communicate with the VTAM topology agent when collecting this topology information. Communication between the manager and agent applications is over LU 6.2 sessions that are using:

- OSI common management information protocols (CMIP)
- SNA multiple-domain support (MDS)

The manager applications can retrieve information from multiple agent applications. In addition, the agent applications can forward data to multiple managers (for example, if there is another NetView system in the network with the SNA topology manager installed).

If you want information about... Refer to...

| Installing SNA topology manager | “Chapter 6. Preparing and Activating the SNA Topology Manager” on page 47 |
| Installing SNA topology manager agents | “Chapter 5. Installing and Configuring SNA Topology Manager Agents” on page 43 |

Managing Non-SNA Resources with MultiSystem Manager

MultiSystem Manager is a NetView application that provides dynamic topology and status data in RODM for management of non-SNA domains. Agents are supported for the following network environments:

- LAN Network Manager LANs
- Internet protocol (IP) networks managed by Tivoli NetView for UNIX®, NetView for Windows NT®, NetView for Solaris, HP OpenView on HP-UX, or HP OpenView on Solaris
- NetFinity networks
- Tivoli management regions
- Other types of networks using OPEN topology agents

MultiSystem Manager topology manager uses the GETTOPO command to request topology information and resource status from its agents. This topology and status information is stored in RODM. As topology and status changes occur, these agents notify the MultiSystem Manager topology manager, which updates RODM.

If you want information about... Refer to...

| Installing MultiSystem Manager | “Chapter 8. Preparing and Activating the MultiSystem Manager” on page 55 |
| Installing MultiSystem Manager agents | “Chapter 7. Installing and Configuring MultiSystem Manager Agents” on page 51 |
Managing NetView Resources with the NetView Resource Manager

The NetView Resource Manager (NRM) enables you to manage all NetView hosts in an enterprise from the NetView management console (NMC). NetView hosts are monitored at the task level using the resource utilization function of the NetView product.

NRM consists of NetView hosts that are either managers or agents. Those that are managers require RODM and NMC to use the full function of NRM. NetView hosts that are agents forward their local host information to a manager or managers.

The following information applies to NRM:
- Both managers and agents can forward their local host information to one or more managers.
- The ability to forward local host information is an agent function.
- You can use SNA or TCP/IP as your communication vehicle between managers and agents.

Planning the Installation Process

The following set of tasks is an overview of the installation process. This overview lists steps that are required and those that are optional, depending upon the types of resources to be managed graphically.

1. **Required:** Prepare RODM, which includes:
 - Updating CNMSTYLE
 - Preparing MVS for RODM
 - Allocating the RODM data sets
 - Preparing the security system for RODM
 - Updating the RODM procedure
 - Customizing RODM startup values in EKGCUST
 - Customizing the automated operations RODM task
 - Updating the RODM load utility job to include the GMFHS data model
 - Updating the RODM load utility job to include the MultiSystem Manager data model
 - Updating the RODM load utility job to include the SNA topology manager data model

2. **Required:** Prepare GMFHS, which includes:
 - Updating CNMSTYLE
 - Updating the GMFHS start procedure
 - Customizing GMFHS startup values in DUIGINIT
 - Defining GMFHS-related tasks

3. **Required:** Prepare the NetView management console, which includes:
 - Updating CNMSTYLE
 - Establishing a SNA LU 6.2 or TCP/IP session for the NETCONV command
 - Installing the NMC topology server
 - Installing NMC topology consoles
4. **Optional:** Prepare for managing non-SNA resources (for example IP resources), which includes:
 - Updating CNMSTYLE
 - Installing the appropriate MultiSystem Manager topology agents
 - Preparing the security system for the MultiSystem Manager
 - Preparing REXX for MultiSystem Manager
 - Preparing the MultiSystem Manager initialization file statements

5. **Optional:** Prepare for managing SNA resources, which includes:
 - Updating CNMSTYLE
 - Preparing VTAM for the SNA topology manager
 - Preparing the security system for the SNA topology manager
 - Preparing the SNA topology manager initialization file FLBSYSD

6. **Optional:** Prepare for managing NetView resources, which includes:
 - Updating CNMSTYLE
 - Defining AUTONRM to DSIOPF
 - Preparing the security system for the NetView Resource Manager
Chapter 2. Enabling Graphics Support

The base definitions in NetView that enable the graphics functions are contained in DSIIPARM member CNMSTYLE and the files that it includes. The CNMSTYLE statements are read during NetView initialization. Some changes to CNMSTYLE require a restart of the NetView program before they take effect. For this reason, make all CNMSTYLE updates at the same time for the graphics functions that you plan to use as part of this installation. The following sections provide details on the CNMSTYLE definitions for the various graphics functions.

Note: The actual member name for CNMSTYLE is controlled by the value of NV2I in the NetView start procedure.

The graphics components are activated with TOWER statements in CNMSTYLE. Uncomment the following components that you will be using:

<table>
<thead>
<tr>
<th>TOWER</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSM</td>
<td>Enables the MultiSystem Manager.</td>
</tr>
<tr>
<td>Graphics</td>
<td>Enables graphics.</td>
</tr>
</tbody>
</table>

An example TOWER statement follows:

```
TOWER = *SA *AON MSM Graphics MVScmdMgt NPDA *TARA NLD M *AMI
```

When the TOWER is enabled, various associated functions are also enabled during initialization. NetView must be recycled for the TOWER statements to take effect. For the MultiSystem Manager and the SNA topology manager, you must also enable the subtowers.

If you want information about... Refer to...

<table>
<thead>
<tr>
<th>CNMSTYLE statements</th>
<th>Tivoli NetView for z/OS Administration Reference and Tivoli NetView for z/OS Installation: Getting Started</th>
</tr>
</thead>
<tbody>
<tr>
<td>MultiSystem Manager</td>
<td>“Enabling MultiSystem Manager” on page 6</td>
</tr>
<tr>
<td>SNA topology manager</td>
<td>“Enabling SNA Topology Manager” on page 6</td>
</tr>
</tbody>
</table>

Enabling RODM

Many NetView processes require the Resource Object Data Manager (RODM) name to be specified. The RODMNAME statement sets the common global variable CNMSTYLE.RODMNAME.

If you set this name using the system symbolic &CNMRODM in SYS1.PARMLIB, you can use the following CNMSTYLE statement to define the RODM name:

```
RODMname = &CNMRODM
```

If you do not set the &CNMRODM system symbolic in SYS1.PARMLIB, substitute the correct RODM name for &CNMRODM.

The NetView-supplied member CNMSTYLE also contains the following global variables, which are used by the RODM command list (CNME1098):
Update these variables as follows:

COMMON.EKGHNAM = RODM

COMMON.EKGHPRC = EKGXRODM

EKGHPRC Change the EKGHPRC global variable to the name of your RODM procedure (if it is not the same as the NetView-supplied default).

EKGHNAM If you started the RODM procedure using an identifier, change the EKGHNAM global variable to this identifier (if it is not the same as the NetView-supplied default). If you are not using an identifier, the EKGHNAM global variable is not required.

Enabling GMFHS

The NetView-supplied member CNMSTYLE contains the following global variables, which are used by the Graphic Monitor Facility host subsystem (GMFHS) command list (CNME2101):

COMMON.DUIFHNAM = GMFHS

COMMON.DUIFHPRC = CNMGMFHS

Update these variables as follows:

DUIFHPHC Specify your system PROC name for starting GMFHS. DUIFHPHC must be defined to the same name as the GMFHS procedure.

DUIFHNNM Specify the identifier you use when starting GMFHS. If you do not use an identifier when starting the GMFHS procedure, do not specify the global variable DUIFHNNM.

Enabling SNA Topology Manager

When the TOWER statement is enabled for Graphics, the SNA topology manager is automatically enabled and instructions are issued to start communication with the local VTAM agent.

SNATM is a subtower to the Graphics tower. If you are not using the SNA topology manager, type an asterisk before SNATM to disable this function:

TOWER.Graphics = *SNATM

Enabling MultiSystem Manager

To enable the MultiSystem Manager agents, locate the following statement in CNMSTYLE:

TOWER.MSM = LNM IP OPN NTF TMR

Agent names preceded by an asterisk are disabled. Remove or add asterisks as necessary to enable the agents that you will use:

LNM LAN Network Manager agent

IP IP agent

OPN Open agent

NTF NetFinity agent

TMR Tivoli management regions agent

Note: When the TOWER.MSM statement is enabled, the %INCLUDE statement for FLCSOPF (used for operator profiles) is also enabled.
Enabling NetView Resource Manager

To enable NetView Resource Manager (NRM), perform the following steps:

1. Locate the following statement in CNMSTYLE:
 \[\text{INIT.NRM} = \text{No} \]
2. Change No to Yes.
 This starts NRM at NetView initialization.
 If you do not change parameters in CNMSTYLE, NRM defaults to type MGR (manager). No host destinations are defaulted.
3. If you want the NRM type to be agent, modify the following parameters in CNMSTYLE:
 • NRM.TYPE
 Change this parameter to NRM.TYPE = Agent.
 • NRM.HOSTDEST.x
 Code as many NRM.HOSTDEST.x statements as are applicable.
 Code CMODE and PORT statements as necessary (based on your HOSTDEST statements).
Chapter 3. Preparing and Activating RODM and GMFHS

NetView graphics are based on Resource Object Data Manager (RODM) and Graphic Monitor Facility host subsystem (GMFHS). Before you can define graphics, you must install and define parameters for RODM and GMFHS.

RODM and GMFHS require the Language Environment® for z/OS run time library. Refer to the Program Directory for Tivoli NetView for z/OS for more information.

Preparing RODM

Use the steps in this section to prepare RODM.

Defining RODM as an MVS Subsystem

Before RODM can be used, it must be defined as an MVS subsystem in SYS1.PARMLIB member IEFSSNx. For more information, refer to Tivoli NetView for z/OS Installation: Getting Started.

Allocating VSAM Clusters for RODM

Job EKGSJ004 defines the VSAM clusters for RODM. Table 4 lists the data set names associated with RODM, as well as the names of members containing VSAM cluster information for these data sets. Any sample members needed to run EKGSJ004 are located in either the NETVIEW.V5R1USER.INSTALL data set that was created when you ran job CNMSJBUP or in the NETVIEW.V5R1M0.CNMSAMP data set.

Note: CNMSJ004 is a sample job that is run during basic NetView installation and might already have been used to create the RODM VSAM clusters. In this case, EKGSJ004 does not need to be run.

Before allocating VSAM clusters:

1. Review EKGSID01 and each of the following VSAM allocate members in Table 4.

 These sample input members provide the name, volume, catalog, and password specifications for the VSAM clusters that get allocated and deleted.

 Ensure that the values specified in these input members are correct for your system.

Table 4. VSAM Clusters for the V5R1 Facilities

<table>
<thead>
<tr>
<th>V5R1 Facility</th>
<th>VSAM Allocate Member</th>
<th>Data Sets</th>
<th>VSAM Delete Member</th>
</tr>
</thead>
<tbody>
<tr>
<td>RODM log</td>
<td>EKGSI101</td>
<td>NETVIEW.CNM01.EKGLOGP NETVIEW.CNM01.EKGLOGS EKGSID01</td>
<td></td>
</tr>
<tr>
<td>RODM checkpoint</td>
<td>EKGSI201</td>
<td>NETVIEW.CNM01.EKGMAST EKGSID01 NETVIEW.CNM01.EKGTRAN NETVIEW.CNM01.EKGCCK001 NETVIEW.CNM01.EKGCCK002</td>
<td></td>
</tr>
</tbody>
</table>
The EKGI101 sample specifies VSAM SHAREOPTIONS(2) for performance reasons. However, with SHAREOPTIONS(2), the RODM logging function makes no provision for secondary allocations. The results of RODM logging with SHAREOPTIONS(2) using secondary allocations are unpredictable.

Note: The MVS MODIFY command enables you to specify RODM logging options.

2. Make sure that the VSAM cluster names match the names in your RODM startup procedure, EKGXRODM.

3. The checkpoint facility enables you to save a copy of the data cache to DASD. The data can then be read from DASD at RODM restart (warm start). Programs cannot access RODM data during checkpointing.

The following VSAM clusters are used by the RODM checkpoint facility:

- **NETVIEW.CNM01.EKGMAST** is the RODM master window checkpoint data set. This data set contains system information for RODM.
- **NETVIEW.CNM01.EKGTRAN** is the RODM translation window checkpoint data set. This data set contains the translation address information that allows for correct data mapping and addressing in the RODM data cache.
- **NETVIEW.CNM01.EKGCK001** and **NETVIEW.CNM01.EKGCK002** are RODM data window checkpoint data sets. These data sets contain the actual data in the RODM data cache. You can create additional data window checkpoint data sets. Define a new checkpoint dataset to RODM by adding a DD card to the RODM start procedure using a file name format of EKGCKxxx, where xxx is the next available 3-digit decimal number in the increasing sequence.

The size of the RODM checkpointing facility VSAM clusters that were defined to the RODM startup procedure, EKGXRODM, determines the number of objects and classes that you can add to RODM. Refer to *Tivoli NetView for z/OS Tuning Guide* for information on estimating the size of these data sets.

If you do not use the checkpoint facility, update the RODM procedure to remove the DD statements for the checkpoint data sets and code the following in EKGCUST:

```plaintext
CHECKPOINT_FUNCTION (NONE)
```

During initialization RODM looks for the checkpoint data sets. When it does not find them, you see one or more of the following messages:

```plaintext
EKG1123I EKGXRODM : THE CHECKPOINT FUNCTION IS NOW DISABLED
```

To allocate VSAM clusters:

1. The default volume specified in EKGI101 and EKGI201 is VOL(CPDLB2). If your volume is not CPDLB2, change CPDLB2 in these members to a valid volume.

Note: If you are deleting any of your existing VSAM clusters, uncomment //STEP1 and review EKGISID01 to make sure you delete the correct VSAM cluster names.

2. Run EKGSJ004.

3. Verify your return codes before continuing with the next step.
Note: If you need to allocate VSAM clusters for a second instance of RODM, you can run job EKGSLOG to allocate the RODM log data sets as defined in EKGSI102 and job EKGSCKPT to allocate the RODM checkpoint data sets as defined in EKGSI202.

If you want information about... Refer to...

RODM logging options Tivoli NetView for z/OS Diagnosis Guide

Using the RODM Log Formatter
The RODM log formatter (EKGRLOG) provides formatted output of the contents of the RODM log.

If you want information about... Refer to...

RODM log formatter Tivoli NetView for z/OS Diagnosis Guide

Using the RODM Dump Utility
The RODM dump utility is a service program that makes it possible to print data residing in the RODM data cache. The dump utility provides multiple formats for printing this information.

You can generate five types of reports to print the contents and structure of the RODM classes and objects. These reports include:

- Class listing
- Class index
- Object listing
- Object index
- Statistical report

If you want information about... Refer to...

The output for each of the RODM dump utility reports Tivoli NetView for z/OS Diagnosis Guide

Bypassing or Defining Security
The commands you issue to define RODM and the operators to the security class can vary, depending on whether you use RACF or another SAF product.

If you are using an SAF product, such as RACF, on your system, you can use one of the following methods to define RODM security:

- Bypass system security with *TSTRODM.
- Define the RODM task and authority level to the RODMMGR class of your SAF product, if it is available.
- Define the RODM task and resources that represent authority levels to a user-defined class in your SAF product.

If you want information about... Refer to...

RODM security Tivoli NetView for z/OS Security Reference

Bypassing RODM Security
To bypass RODM security, initialize RODM with *TSTRODM in the SEC_CLASS field in EKGCU00 when:

- Your system uses an SAF product, such as RACF, but you do not want to define RODM and operator tasks to the SAF product for security.
• Your system does not use an SAF product.
• The SAF product is not active on your system.

Note: You can now recycle the target system with the create link pack area (CLPA) option.

Defining RODM Security to the RODMMGR Class
If you are using an SAF product which provides a RODMMGR class, define security resource names to that product and authorize users to the correct SAF resources.

Defining RODM Security to a User-Defined Class
If you are using an SAF product for RODM security and if the SAF product does not provide the SAF RODMMGR class, these steps must be completed before RODM can initialize:
• Define a security class in the SAF product for RODM.
 For RACF, create a RACF router table for this security class, as described in the Tivoli NetView for z/OS Security Reference.
• Define security resource names for the class you define. For more information, see the Tivoli NetView for z/OS Administration Reference.

Defining the Resource Class to the RACF Class Descriptor Table
If you defined RODM security, the SEC_CLASS operand in EKGCUST in CNMSAMP enables you to specify the security class definition for your installed security system.

If you do not define the class name in the EKGCUST customization file, or if you do not include the EKGCUST DD statement in the JCL, the default security name is RODMMGR.

To use another class name as the default RACF security name, define the class_name to the RACF class descriptor table and the RACF router table. Locate the RFTABLE in the RACINSTL member in SYS1.SAMPLIB. RACINSTL contains sample RACF installation jobs.

If you want information about... Refer to...
RFTABLE job Tivoli NetView for z/OS Security Reference

Using RACF for RODM Security
If you use "Defining RODM Security to the RODMMGR Class" or "Defining RODM Security to a User-Defined Class", you must also perform the following operations:
• Define six RACF resource names under RODMMGR or your user-defined security class for the six user authority levels.
• Define user IDs for users who are connecting to RODM.
• Authorize user IDs to the appropriate RACF resource names.

Note: RODM only verifies security levels for API calls into RODM, and not on the MODIFY command interface. To implement security for the MODIFY command interface, refer to the SecureWay Security Server for z/OS library.

Defining RACF Resource Names: To define the RACF resource names under RODMMGR for the six user authority levels, complete the following steps from your RACF-authorized TSO ID.
1. To define the RODM resource names, if SEC_RNAME is RODM, enter:

 RDEFINE RODMMGR RODM1 UACC(NONE)
 RDEFINE RODMMGR RODM2 UACC(NONE)
 RDEFINE RODMMGR RODM3 UACC(NONE)
 RDEFINE RODMMGR RODM4 UACC(NONE)
 RDEFINE RODMMGR RODM5 UACC(NONE)
 RDEFINE RODMMGR RODM6 UACC(NONE)

 If you have your own user-defined class_name, replace RODMMGR with the
 security class name on the RDEFINE commands. The resource names used are
 an example.

 The RODM resource names consists of a prefix and a suffix. The suffix must
 have values of 1 through 6 for the different levels of security. The default
 resource name prefix is the RODM name specified in the RODM startup JCL.
 For example, the RODM name would be ZZRODM using either of the
 following start commands:

 $ EKGXRODM,NAME=ZZRODM
 $ EKGXRODM.ZZRODM

 It is recommended that your resources use the name of your RODM.

 If you specify your own RODM resource names, the resource name prefix must
 be specified in EKGCUST on the SEC_RNAME statement if the resource name
 prefix is not the name of your RODM.

 RODM restricts the length of resource names by requiring that the resource
 name be one less than the number you specify for MAXLNTH. For RODMMGR,
 MAXLNTH is 44, so the resource name must contain 43 characters or less. If you
 define your own security class, MAXLNTH is specified when you define the RACF
 class descriptor table. See "Defining the Resource Class to the RACF Class
 Descriptor Table" on page 12 for information on defining a security class.

2. To set the system-wide RACF options, enter:

 SETROPTS CLASSACT(RODMMGR)

 If you have your own user-defined class_name, replace RODMMGR with the
 security class name on the SETROPTS command. The resource class name used
 is an example.

Defining User IDs for Users Who Are Connecting to RODM: Typically, user IDs
are already defined. If the user ID is already defined to RACF (for example, for
normal logon), no additional registration is required. To define a user ID, locate the
RFTABLE job in the RACINSTL member in SYS1.SAMPLIB. RACINSTL contains
sample RACF installation jobs.

If you want information about... Refer to...

RFTABLE job Tivoli NetView for z/OS Security Reference

Authorizing User IDs to RACF Resource Names: To access RODM, enter the
following from your authorized TSO ID for each userid that requires access:

 PERMIT resourcename CLASS(RODMMGR) ID(userid)

Where:

resourcename
 Specifies the name of the RODM resource (such as RODM1 through
RODM6) that has the appropriate security level for the function that the
userid needs to be able to perform. Indicate the highest level RODM
resource name the userid needs to access. If you indicate a user is
authorized for RODM3, that user also has authorization for security level 1
(RODM1) and security level 2 (RODM2) capabilities.

For example:

PERMIT RODM3 CLASS(RODMMGR) ID(USER1)

Indicates that USER1 is authorized to perform the capabilities of RODM
security levels 1, 2, and 3. Table describes the RODM security levels.

userid Specifies the RACF user ID. You can list individual user IDs. You can also
use the PERMIT command to authorize a group to the authority level
resources, which enables you to connect or remove user IDs from the
group as their need for RODM capabilities changes.

There are three special user IDs for AON, MultiSystem Manager, and the
NetView Resource Manager. These user IDs consist of the domain ID
concatenated with the characters AON, MSM, and NRM respectively.

Note: If you have a user-defined class_name, replace RODM3 with the security
class name on the PERMIT commands.

Table shows how each level of access security includes those preceding it.

Table 5. RODM Access Security Levels

<table>
<thead>
<tr>
<th>Resource Name</th>
<th>Security Level</th>
<th>Capabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>rodm1</td>
<td>1</td>
<td>Connect and disconnect to RODM</td>
</tr>
<tr>
<td>rodm2</td>
<td>2</td>
<td>Query and list of functions (queries only)</td>
</tr>
<tr>
<td>rodm3</td>
<td>3</td>
<td>Action and list of functions (queries or actions) including triggering methods and change methods</td>
</tr>
<tr>
<td>rodm4</td>
<td>4</td>
<td>Checkpointing</td>
</tr>
<tr>
<td>rodm5</td>
<td>5</td>
<td>Administrative functions (adding or deleting from the RODM data cache) and adding managerial objects</td>
</tr>
<tr>
<td>rodm6</td>
<td>6</td>
<td>Stopping RODM</td>
</tr>
</tbody>
</table>

NetView operators require RODM security level 2 or higher to use the QRS
command to query whether they have span of control over resources.

Authorize the following:

- RODM load function
 The RODM load function requires a minimum of RODM security level 3. If your
 RODM loader job is run as a started procedure, you can define it to the
 STARTED class in the SAF product to enable it to run as a trusted user. You can
define the task in the started procedure table, ICHRIN03; however, using the
 STARTED class is preferred.
- GMFHS procedure
 The GMFHS procedure requires a minimum of RODM security level 5.
- NetView procedure (if NetView user code accesses RODM)
- SNA topology manager
The SNA topology manager requires a minimum of RODM security level 5. The user ID to authorize is APPNTM.

- **DSIQTSK task**
 The DSIQTSK task requires RODM security level 6. Define user ID DSIQTSK or the value of the ID keyword of the REP statement in the DSIQTSKI initialization member.

- Any user who submits or starts one of the following:
 - RODM load function
 - NetView procedure (if NetView user code accesses RODM)
 - SNA topology manager
 - DSIQTSK task

- Any user who manipulates RODM from NetView using either RODMVIEW panels or the RODMVIEW command processors.

A minimum of RODM security level 2 for the NetView domain name, if span of control is being applied to NetView management console (NMC) views and/or resources.

Connecting to RODM
When connecting to RODM, a user ID and password are part of the API request. A password is required, except when the program making the request is running in an APF-authorized library. The user ID can be specified on the connection request, or RODM can extract it from the SAF product.

You can connect to RODM with a blank user ID if the system on which RODM is installed has active RODM security. In this case, RODM extracts the user ID from the SAF product. Connecting to RODM is not allowed if you bypassed RODM security.

If you have RODM security active, the user ID that is associated with the connection request must be defined to your SAF security product.

For started procedures, you can define the started procedure name to the STARTED class of the SAF product. In RACF, this can also be accomplished by defining the task in the started procedure table, ICHRIN03; however, using the STARTED class is preferred.

Updating the RODM Start Procedure
NetView supplies a sample RODM start procedure EKGXRODM in CNMSAMP.
You can modify the RODM start procedure to match your environment. Items to consider include:

- **TYPE** of startup (C for cold, W for warm, or COLDFORC for cold force)
- **NAME** assigned to this RODM (default is the RODM procedure name)
 This name can be specified as a system symbolic.
- **INIT** to specify a method to run during RODM initialization (default is no initialization method)
- **CUST** to specify the customization member containing startup parameters
 EKGCUST is supplied as a sample.
- Correct data set names for STEPLIB, EKGLOGP, EKGLOGS, and EKGCUST data sets, as well as the checkpoint data sets if checkpointing is to be used
- Modification of the exit to accommodate the region size needed for RODM
If you have the IEFUSI exit on your system, modify the exit to accommodate the region size needed for RODM. The IEFUSI exit can be used to limit:

- The region size and region limit
- The size of data spaces and hiperspaces for jobs started on an MVS system

Because RODM allocates a 2-gigabyte data space at initialization, modify your IEFUSI exit to enable RODM to start. Note that IEFUSI is passed the address of the program name on input.

Defining RODM Using the EKGCUST Member

The EKGCUST member enables you to define values and tailor RODM to your installation’s needs. If you choose not to customize your RODM, the default values apply.

RODM looks for an optional EKGCUST DD statement in the jobstream. EKGCUST names the input customization member. If you have defined a customization member, RODM reads it in. If not, RODM provides defaults.

You can use symbols to represent operands, values, and comments in EKGCUST if symbolic substitution is enabled on your system. Ensure that the symbols are defined in member IEASYMxx of SYS1.PARMLIB. See "RODM Customization Member Guidelines" on page 17 for more information.

Note: You can specify each operand once.

After initialization is complete, you are prompted for instructions to continue with the default values or to stop the process of bringing up the RODM.

RODM Customization Member Format and Defaults

Figure 8 on page 17 is an example of the format and defaults for the RODM operands that you can specify in the customization member. Except for the CELL_POOLS statement, the values in EKGCUST are the default values that are assumed if a statement is not present in the member or if the EKGCUST member is not available.
RODM Customization Member Guidelines

You can code multiple operands in a single record (or line), separated by at least one blank, or you can code them individually in separate records. Blanks between the operands and the left parenthesis as well as blanks within the parentheses are ignored. For example,

\[
\text{CELL_POOLS} \ (8,12,16,20)
\]

reads the same as

\[
\text{CELL_POOLS} \ (8,12,16,20)
\]

You can specify operands in any order, and all operands are optional. You can use symbols to represent operands and values in EKGCUST if symbolic substitution is enabled on your system. Ensure that the symbols are defined in member IEASYMxx of SYS1.PARMLIB.

Besides the operands specified above, you can code comments in the customization member. The beginning and closing comment delimiters, /* and */, need not appear in the same record or line. Comments are ignored by RODM and can appear any place a blank space is allowed.

You can also use symbols to represent comments if symbolic substitution is enabled on your system. Ensure that the symbols are defined in member IEASYMxx of SYS1.PARMLIB. Code a symbol for the beginning comment delimiter and a symbol for the closing comment delimiter.

Note: Note that the symbols for the beginning and closing comment delimiters must be coded on the same line in EKGCUST.

If you do not supply customization values, RODM provides the defaults for all operands. These default values should be considered as guides.
RODM Customization Member Performance Considerations

Performance considerations differ depending upon your system environment and the other applications you have installed. You can make performance enhancements by modifying the following parameters in EKGCUST:

1. Set the following parameters to reduce the time spent acquiring and freeing storage:
 - PLI_ISA to 40K
 - PRIMARY_HEAP_SIZE to 64K
 - EXTEND_HEAP_SIZE to 32K

2. Set the CONCURRENT_USERS parameter to the maximum number of RODM user tasks you might have at the same time.
 If the number is too small, you cannot start all the RODM user applications you need. If the number is too large, you will have unused storage. Start with a value of 20 and increase or decrease as required.

3. Set the ASYNC_TASKS parameter to the number of concurrently running asynchronous tasks. This parameter controls the multiprogramming level of RODM and controls the asynchronous method API tasks.
 The default value of 5 asynchronous tasks is sufficient for most environments.

Defining Initialization Values for RODM DSIQTSK Task

DSIQTSKI contains the RODM initialization values for the DSIQTSK task.

The DSIQTSK task allocates storage, reads the DSIQTSKI initialization file, and carries out RODM connections, disconnections, and checkpoint requests. This task is defined to the NetView program through DSIPARM member CNMSTYLE.

To automatically start the DSIQTSK task during NetView initialization, change INIT=N to INIT=Y in the task statement in CNMSTYLE:

```
TASK.DSIQTSK.INIT=Y
```

For each RODM you specify in DSIQTSKI you can define an initialization command processor to be invoked when the DSIQTSK task successfully connects to RODM. Specify the name of this command processor in each RODM definition statement.

The following is an example of the DSIQTSKI initialization file:

```
CMDRCVR ID=DSIQTSK
  *
  REP &CNMRODM,CONN=N,AO=Y,T=30
  *
  TASK TASK001
```
Notice that you can specify the RODM name with a system symbolic (&CNMRODM).

You can define up to 64 RODMs and 64 NetView tasks in DSIQTSKI to be used for command routing.

The repository definition statements (REP) specify the object repository name, as well as:
• Whether DSIQTSK connects to the repository during initialization (CONN)
• Whether the repository is the current run time RODM (AO)
• The number of seconds that DSIQTSK waits to access the repository while it is being checkpointed (T)

If you want information about... Refer to...

| The RODM automation task definition statements | Tivoli NetView for z/OS Administration Reference |
| Using the DSIQTSK task to manage your RODMs. An example that illustrates using RODM to automate the recovery of a failed resource. | Tivoli NetView for z/OS Automation Guide |

Preparing GMFHS

Use the steps in this section to define GMFHS.

Updating the GMFHS Start Procedure

NetView supplies a sample GMFHS start procedure CNMGMFHS (distributed as CNMSJH10) in CNMSAMP. You can modify the GMFHS start procedure to match your environment.

To update the CNMGMFHS procedure for starting GMFHS, perform the following steps:

1. Change the domain name to match your NetView domain or invoke CNMGMFHS with DOMAIN=domain_name.
2. For an aggregation warm start, code the AGGRST=YES parameter.
 An object-independent method (DUIFFAWS) is invoked to start methods associated with the fields related to status aggregation in the real and aggregate objects in the RODM data cache.
 The default is that DUIFFAWS is not invoked and GMFHS starts normally.
3. For a resource status warm start, code the RESWS=YES parameter.
 This causes GMFHS to bypass the normal clearing and soliciting of the initial status for all domain resources and, instead, to use the existing status within RODM.
 The default is that a resource status warm start is not invoked and GMFHS starts normally.
4. Set the ARM parameter.
 The ARM parameter controls GMFHS registration with the MVS Automatic Restart Manager (ARM).
*ARM Register with ARM using the default name, which is NETVIEW@@
 concatenated with the domain ID.

name Register with ARM using a user-specified name. A valid name has the
 following characteristics:
 • Consists of 1–16 characters.
 • The first character cannot be numeric.
 • The remaining characters can be alphanumeric, or the following
 special characters: @, #, or $.
 • Alphabetic characters must be in uppercase.

*NOARM Do not register with ARM. This is the default.

You can also use the MVS Automatic Restart Manager to group applications
 together by element type. The GMFHS element type is SYSNETV4. The element
 type cannot be changed.

5. The SUBSYM parameter enables symbolic substitution for the dataset members
 that are read by GMFHS: DUIGINIT and DUIGPWLU.

*SUBSYM Enable symbolic substitution. This is the default.

*NOSUBSYM Disable symbolic substitution.

If you want information about... Refer to...
Aggregation and resource status warm starts (AGGRST=YES and RESWS=YES) Tivoli NetView for z/OS Resource Object Data
Manager and GMFHS Programmer’s Guide

Defining Initialization Values for the GMFHS Main Task

The GMFHS main task enables you to:
• Start the GMFHS host environment.
• Start and control the GMFHS host subcomponents.
• Provide an interface to the MVS operator.
• Provide reinitialization services on completion of a CONFIG NETWORK
 command.
• End the GMFHS host session.

The GMFHS main task initialization keywords are contained in DSIPARM member
DUIGINIT. Ensure that your RODM name and user ID are correct. DUIGINIT
contains the system symbolic &CNMRODM that can be used to set the RODM name.
Refer to sample DUIGINIT for parameters that can be changed for your
environment.

The NMC topology servers that are restricted from accessing GMFHS are listed in
DSIPARM member DUIGPWLU. If no names are specified, all NMC topology
servers can access GMFHS.

If you want information about... Refer to...
The GMFHS host main task initialization keywords Tivoli NetView for z/OS Administration
Referenced
Defining the COS Gateway Autotask

The common operations services (COS) gateway autotask uses the DUIFCSGW command processor to receive commands for service points from the GMFHS scope checker OPT. The command processor routes these commands to the appropriate COS gateway service point autotask. The command processor also receives the command responses from the service point autotasks, correlates these to the appropriate commands, and returns the correlated commands to the network command manager in the GMFHS host.

The COS gateway autotask supports the GMFHS command support. COS gateway uses RUNCMD to execute commands on a service point.

If you specified TOWER=Graphics in DSIPARM member CNMSTYLE, the COS gateway autotask (DUIFCSGW) is started at NetView initialization. Statements are coded in DSIPARM members CNMSTYLE and CNMSTASK to facilitate the starting of the task. Do not change these statements.

The STARTCNM Graphics command also starts the COS gateway autotask.

Defining the Event Manager Autotask

The event manager autotask DUIFEAUT receives and interprets alerts for GMFHS. The event manager posts resource status provided by alerts to the appropriate objects in the RODM data cache.

If you specified TOWER=Graphics in DSIPARM member CNMSTYLE, the event manager autotask is started at NetView initialization. Statements are coded in DSIPARM members CNMSTYLE and CNMSTASK to facilitate the starting of the task. Do not change these statements.

Defining the Scope Checker OPT

The GMFHS scope checker OPT (task DUIFSSCO) receives all workstation commands from the interprocess communications (IPC) task using the program-to-program interface (PPI).

The IPC component of GMFHS provides message routing both within the GMFHS address space and between the GMFHS address space (and other components). IPC does not perform application processing; but it is the originator of, and destination for, messages related to session establishment and release.

Some of the commands received by the scope checker OPT are:
- Activate, Deactivate, and Recycle commands
- Commands with NetView command model statements that might require command authorization
 For example:
 - Resource specific commands
 - Native commands
 - Generic commands

The scope checker OPT carries out NetView command authorization on these commands. Commands without proper authorization are sent with a command authorization failure reason code to the network command manager (NETCMD) in the GMFHS host.
The scope checker OPT receives NetView OST gateway and COS gateway command messages from the GMFHS NETCMD.

If you specified TOWER=Graphics in DSIPARM member CNMSTYLE, the scope checker OPT is started at NetView initialization. Statements are coded in DSIPARM members CNMSTYLE and CNMSTASK to facilitate the starting of the task. Do not change these statements.

<table>
<thead>
<tr>
<th>If you want information about...</th>
<th>Refer to...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protecting commands using scope of command authorization, the NetView command authorization table, or an SAF security product</td>
<td>Tivoli NetView for z/OS Security Reference</td>
</tr>
</tbody>
</table>

Defining the NMCSTATUS Policy Autotask

DUIFPOLI is the autotask used to process NMCSTATUS policy definitions.

You can automatically start the NMCSTATUS policy autotask and processing of the NMCSTATUS policy definitions at NetView initialization. To do this, verify that you made the following updates in CNMSTYLE (see "Chapter 2. Enabling Graphics Support" on page 5):

- Graphics is uncommented on the TOWER statement.
- RODM identifier is specified on the RODMname statement.

You can change the name of the DUIFPOLI autotask to another autotask name. To do this, edit the following CNMSTYLE statement:

```
(GRAPHICS)function.autotask.NMCpolicy = DUIFPOLI
```

Replace DUIFPOLI with your autotask name. The autotask name can be from 1–8 characters. When you do this, a common global variable CNMSTYLE.AUTO.NMCPOLICY is created with the new autotask name.

Note: Do not change the global variable CNMSTYLE.AUTO.NMCPOLICY in DSIPARM members CNMSTASK or DSITBL01.

<table>
<thead>
<tr>
<th>If you want information about...</th>
<th>Refer to...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creating and loading a policy file containing NMCSTATUS policy definitions</td>
<td>Tivoli NetView for z/OS Administration Reference</td>
</tr>
</tbody>
</table>

Starting RODM Using Job EKGXRODM

To start RODM, enter the following at the system console:

```
$ EKGXRODM,TYPE=C,NAME=rodmname
```

or

```
$ EKGXRODM.RODM,TYPE=C,NAME=rodmname
```

The syntax for the START EKGXRODM command follows.

START
The following are parameters for EKGXRODM:

TYPE Specifies whether to cold start or warm start RODM.

- **W** Specifies warm start. This is the default if you do not specify a type.

 Note: Because of the changes to DUIFSTRC, the first time you start RODM for the NetView program (after upgrading to V5R1), specify C to perform a cold start of RODM.

- **C** Specifies cold start.

COLDFORC

Specifies cold start without issuing message EKG1918D, which requires operator intervention.

NAME

Specifies the `rodmname` of the RODM program to be started. If you do not enter a value for `rodmname`, the NetView program defaults to the procedure name that you defined. The Tivoli-supplied samples use RODMNAME as the example RODM name.

INIT

Specifies the name of the initialization method to run. If you leave this parameter blank, no initialization method is run. Refer to the [Tivoli NetView for z/OS Resource Object Data Manager and GMFHS Programmer's Guide](https://www.ibm.com) for additional information on writing initialization methods.

CLRSSB

Specifies to clear MVS storage traces left by a RODM that has abended or has been forced off the system by the operator. This parameter should only be used after a RODM has been forced off the system in this manner, and then only after an attempt to restart RODM without the CLRSSB parameter has been unsuccessful.

- **NO** Specifies not to force a restart of a RODM with the same name. This is the default.

- **YES** Specifies to force a restart of a RODM with the same name.
Note: When using this parameter, specify YES only if, when you start RODM, you receive message EKG1912 EKGXRODM: THE RODM rodmname IS ALREADY ACTIVE, and are certain no RODM with the same name is active. The CLRSSB keyword has no effect on the number of SSBs that are stored in the CSA area.

CUST Specifies the member name in EKGCUST DD PDS to be used as the customization file.

ARM Controls RODM registration with the MVS Automatic Restart Manager (ARM).

 *ARM Register with ARM using a RODM-generated name, which is NETVIEW# concatenated with the RODM name.

 name Register with ARM using a user-specified name. A valid name has the following characteristics:

 • Consists of 1–16 characters.
 • The first character cannot be numeric.
 • The remaining characters can be alphanumeric, or the following special characters: @, #, or $.
 • Alphabetic characters must be in uppercase.

 *NOARM Do not register with ARM. This is the default.

You can also use the MVS Automatic Restart Manager to group applications together by element type. The RODM element type is SYSNETV3. The element type cannot be changed.

SUBSYM The SUBSYM parameter enables symbolic substitution for the RODM customization member.

 *SUBSYM Enable symbolic substitution. This is the default.

 *NOSUBSYM Disable symbolic substitution.

When you receive the following message:

EKG1918D EKGXRODM: RODM rodmname WILL COLD START.
ENTER '1' TO CONTINUE OR '2' TO TERMINATE.

Type 1 to continue.

You then receive the following two messages:

IEC161I 227-229,EKGXRODM,EKGXRODM,EKG5011I EKGXRODM : THE NUMBER OF CHECKPOINT FILES USED BY RODM IS 2.

The last parameter in the first message (EKGD003) changes, depending on the number of checkpoint files. It is always one more than the number of checkpoint files that you have specified in EKGXRODM. EKGXRODM is shipped with two checkpoint files defined.

If you are running RODM without checkpoint data sets, you receive the following message:
To start a second RODM:

- Allocate VSAM clusters by running job EKGLOG to allocate the RODM log data sets as defined in EKGDLOG and job EKGWIND to allocate the RODM checkpoint data sets as defined in EKGDWIND.
- Specify a second rodmname. You cannot use the same rodmname (for example, RODMNAME) for the second RODM.
- Create a second RODM start procedure and modify it to use the data set names you allocated with EKGLOG and EKGWIND.
- Keep the checkpoint data sets of a RODM with the translation data sets (EKGTRAN) and the master window data sets (EKGMAST) for each RODM. After you have performed a warm start on RODM, mixing the checkpoint data sets from one RODM with the translation and master window data sets of another RODM can corrupt the RODM data cache.

After RODM is initialized, you receive the following message:

EKG1900I EKGXRODM: RODM rodm INITIALIZATION IS COMPLETE WITH LE/370

Note: You cannot stop RODM by ending the current NetView program. To end RODM when started using only its PROC name, enter the following at the system console:

F procname,TERM

If you started RODM using an identifier, enter the following at the system console:

F identifier,TERM

If you are running GMFHS and need to end or recycle RODM, end the GMFHS application before ending RODM.

Note: GMFHS is dependent on the GMFHS data model being present in RODM and it is present only when RODM is active. If you start GMFHS before RODM is active, or if you end RODM while GMFHS is still active, GMFHS periodically checks to see if RODM has become active. If you then start RODM, and GMFHS reconnects to RODM before the GMFHS data model becomes active, then GMFHS ends.

Verifying the RODM Installation

Start RODM using the instructions in "Starting RODM Using Job EKGXRODM" on page 22. To verify the RODM installation using job EKGSVER:

1. Edit the PARM statement in job EKGSVER in the NETVIEW.V5R1USER.INSTALL data set to reflect the rodmname and userid for your system.

 Note: The rodmname and userid are required parameters. The password is not required with userid. You can specify a password to your TSO user ID, but this is not recommended because the JES output log displays this password. If you do specify a password, you might want to keep this verification job in a RACF authorized data set to prevent access to the user ID passwords.

2. Run job EKGSVER.

3. Ensure that the return code is 0.
If you specified the same user ID in DUIGINIT, you receive a return code of 8. Change the user ID in EKGSVER to fix this problem.

The following is an example of the output you receive after running EKGSVER:

RODM name from JCL --> <RODM name>
User_id from JCL --> <user id>
No Password Specified

```
Function ID --> 1101
Return code --> 0
Reason code --> 0
User ID --> <user id>
Trans ID --> 6205
```

```
Function ID --> 1501
Return code --> 0
Reason code --> 0
Trans ID --> 6206
Query EKG_Name field from EKG_System class
Response --> <RODM name>
```

```
Function ID --> 1501
Return code --> 0
Reason code --> 0
Trans ID --> 6207
Query EKG_Name field from EKG_System object
Response --> <RODM name>
```

```
Function ID --> 1501
Return code --> 0
Reason code --> 0
Trans ID --> 6208
Query EKG_ExternalLogState
Response --> 1
*** Log Enabled ***
```

```
Function ID --> 1102
Return code --> 0
Reason code --> 0
Trans ID --> 6209
```

Highest Return code --> 0

If you want information about... Refer to...
The parameters (FUNCTION ID, RETURN CODE, for example) listed in this output file Tivoli NetView for z/OS Resource Object Data Manager and GMFHS Programmer's Guide

Loading the Data Models

CNMSJH12 is a sample job provided with NetView that loads the GMFHS data model. It also loads RDOM with the SNA topology data model class and object definitions that are required for the dynamic definition of SNA objects, as well as the MultiSystem Manager data model class and object definitions that are required for dynamic definition of the non-SNA objects. Each class contains a set of fields describing the characteristics of an object. Classes also contain presentation fields from the GMFHS data model that determine how an object is displayed in views on the NetView management console.
Job CNMSJH12 calls JCL procedure EKGLOADP to load the RODM data cache with a set of RODM class definitions and methods and sample object definitions. To load the class and object definitions using job CNMSJH12:

1. Verify that RODM is active.
2. Verify that your TSO ID is authorized if you are using a security facility, such as RACF.
3. Ensure that job CNMSJ003 has been run to copy EKGLOADP into one of your system PROCLIB data sets, and that EKGLOADP has been modified to run on your system.
4. Edit job CNMSJH12:
 - In the PARM field of the EXEC statement, replace rodmname with the name by which RODM is known to the applications to which it connects.
 - You may need to specify a REGION parameter to ensure that the job step has adequate storage. This can be especially true in a JES3 environment. Specifying REGION=0M requests the maximum storage allowed by your operating system environment.

 Note: REGION=0M can be subject to JES definitions and to IEFUSI and IEALIMIT installation exits.
 - Ensure that the EKGIN1 DD statements include the data model members for the components you are using:
 - DUIFSTRC GMFHS data model (required)
 - DUIFNRMx NRM sample (uncomment to run)
 - FLBTRDMx SNA topology manager data model
 - FLCSDMx MultiSystem Manager data model (uncomment to run)
 - DUIFSNET Sample network member which can be loaded for test purposes (uncomment to run)

 For more information on the data model samples, see "Appendix B. NetView Graphics Samples" on page 87.
 - To install topology correlation, remove the comment before the load statement for FLCSDM8 in the EKGIN1 data set concatenation.
5. Run CNMSJH12:
 - As a batch job, your TSO user ID or USER on the job statement must be RACF-authorized if you are using RACF to protect RODM.
 - As a started procedure, you must update the RACF started procedure table, which assigns a RACF-authorized user ID for the RODM load utility procedure if you are using RACF.
6. Ensure that the return code is 0 before proceeding.

If you need to run this job more than once to receive a return code of 0, you need to delete the classes that were allocated during the previous running. You can delete these classes by stopping and then cold starting RODM.

Note: When you cold start RODM, you delete all information in RODM.

<table>
<thead>
<tr>
<th>If you want information about...</th>
<th>Refer to...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defining your network resources to RODM</td>
<td>Tivoli NetView for z/OS Resource Object Data Manager and GMFHS Programmer’s Guide</td>
</tr>
<tr>
<td>Authorizing user IDs for RACF</td>
<td>Tivoli NetView for z/OS Security Reference</td>
</tr>
</tbody>
</table>
Starting GMFHS Using Job CNMGMFHS

CNMGMFHS (CNMSJH10) is copied to PROCLIB when you load partitioned data sets during installation. The symbolics in CNMGMFHS must match the naming conventions for your system.

Complete the following before starting GMFHS:

1. Verify that RODM is active and the RODM data cache has been loaded with data models from CNMSJH12, as explained in "Loading the Data Models" on page 24.

2. Your host is designated as the focal point host on the CNMTAMEL statement in CNMSTASK. The member name is set to MEM=DUIISFP.

Notes:

a. Make sure the Graphics tower is enabled on the TOWER statement in CNMSTYLE.

b. If you updated the CNMTAMEL task statement before you started CNMPROC, you can make the change by stopping and starting CNMTAMEL. Enter the following from the NetView command facility:

 STOP TASK=CNMTAMEL
 START TASK=CNMTAMEL,MEM=DUIISFP

To start GMFHS, enter the following at the system console:

 S CNMGMFHS.GMFHS

You receive messages similar to the following:

 DUI4027I GMFHS MAIN TASK INITIALIZATION IS COMPLETE FOR DOMAIN = domainid
 DUI4003I GMFHS NETWORK CONFIGURATION INITIALIZED SUCCESSFULLY

The syntax for the START CNMGMFHS command follows:

```
START CNMGMFHS
   identifier
   ,DOMAIN=domain_name
   ,CLRSSB=YES
   ,CLRSSB=NO
   ,CUST=EKGCUST
   ,CUST=member
   ,ARM=*ARM
   ,ARM=*NOARM
   ,AGGRST=Y
   ,AGGRST=N
   ,RESWS=Y
   ,RESWS=N
   ,SUBSYM=*SUBSYM
   ,SUBSYM=*NOSUBSYM
```

where:

```
   DOMAIN=domain_name
```

Specifies the name of your NetView domain.
AGGRST=Y|N
Specifies whether to run AGG calculation. The default is no (N).

ARM=*NOARM|*ARM|name
Specifies whether to register with the Automatic Restart Manager (ARM). The default is *NOARM.

If the value is ARM, the name generated is NETVIEW@@ concatenated with the domain_name and the element type (SYSNETV4). This name cannot be changed.

You can register with ARM using a user-specified name. A valid name has the following characteristics:
• Consists of 1–16 characters.
• The first character cannot be numeric.
• The remaining characters can be alphanumeric, or the following special characters: @, #, or $.
• Alphabetic characters must be in uppercase.

RESWS=Y|N
Specifies whether to warm start the resource status. The default is no (N).

SUBSYM=*SUBSYM|*NOSUBSYM
Specifies whether to substitute system symbolics before they are displayed. The NetView-supplied &DOMAIN symbolic is also included in the substitution process. Substitution is always performed on the &DOMAIN symbol unless substitution was disabled when NetView was started. For MVS and user-defined system symbolics, substitution is not performed if substitution was disabled when NetView was started or you did not define an MVS system symbolic on your MVS system. *SUBSYM is the default.

Verifying the GMFHS Installation
To verify that the GMFHS functions are installed correctly, issue the GMFHS STATUS command at the NetView operator console. This verifies that the GMFHS is installed correctly at the host.

You receive a response similar to the example shown in Figure 9.

Figure 9. GMFHS Status Command Results
Chapter 4. Installing and Configuring the NetView Management Console for Graphics

The NetView management console (NMC) consists of topology servers and topology consoles that communicate with each other, as shown in Figure 10.

The NMC topology server provides information to NMC topology consoles for displaying network topology and status. This information is retrieved from RODM. The NMC server also provides the NMC topology console with a set of tasks applicable to each resource type. It communicates with NetView using either an SNA LU 6.2 (AIX® and Windows® only) or TCP/IP session that has been established using the NetView NETCONV command.

The NMC topology console graphically displays network topology and status. This includes system and network views, using color to show the status of resources. It receives this configuration and status from the NMC topology server and provides command facilities for managing monitored resources.

Installing and configuring the NMC for graphics requires definitions in NetView and the workstation environment.
NetView Setup for the NMC

NetView communicates with NMC servers using either TCP/IP or SNA LU 6.2.

For TCP/IP communication with NetView, TCP/IP must be enabled in member DUIFPMEM. The server workstation must be able to ping the NetView host.

For SNA LU 6.2 communication with NetView, the workstation PU and independent LUs must be defined to VTAM in a switched major node. The NMC LU 6.2 application must be defined to VTAM in a cross-domain resource major node. Refer to “Appendix A, SNA Definitions for the NMC Topology Servers” on page 77 for information on the VTAM definitions required.

Note: SNA LU 6.2 is only supported on the AIX and Windows platform of the topology server.

Defining the Status Focal Point

This section describes how to set up connectivity between the status focal point and the NMC topology server.

CNMSJ009

Ensure that the NetView start procedure CNMSJ009 includes a DD statement for SYSTCPD that specifies the TCP/IP configuration information data set. This might already have been included when NetView was installed and configured.

CNMSTYLE

In the CNMSTYLE member, if TOWER=Graphics, the CNMTAMEL task starts during NetView initialization. CNMTAMEL receives status changes for resources and forwards them to the NMC. You can change the values of the following keywords to meet the requirements of your network:

TAMEL.PORT

Specifies the port used by the status focal point host for TCP/IP communication. This is not a required keyword. The default is 4020.

Note: The value assigned to the PORT keyword on the NETCONV command overrides the value assigned to this keyword in the DUIFPMEM member.

TAMEL.SOCKETS

Specifies the maximum number of sockets that this status focal point host uses for connecting to NMC workstations. This is not a required keyword. The default is 50.

TAMEL.TCPANAME

Specifies the TCP/IP application procedure name that the status focal point host uses. This is a required keyword for the TCP/IP function.

The DUIDGHB task is used to resolve TCP/IP addresses and names including:

- Host names and addresses for establishing IP NETCONV sessions
- Host names for issuing IP RMTCMD commands
- Host names and addresses of host destinations for the NetView Resource Manager

You can change the value of the following keyword to meet the requirements of your network:
GHB.TCPANAME

Specifies the TCP/IP application procedure name that the status focal point host uses. This is a required keyword for the TCP/IP function.

Note: You can also set the TCP/IP name as follows:

- As a system symbolic (&CNMTCPN) in SYS1.PARMLIB
- On the TCPname statement in CNMSTYLE

If you want information about... Refer to...

<table>
<thead>
<tr>
<th>Keywords</th>
<th>Tivoli NetView for z/OS Administration Reference</th>
</tr>
</thead>
</table>

DUUISFP

This member defines the initialization values for the CNMTAMEL task. It contains the default values for each operand.

DUUGHGb

DUUGHGb is the initialization member for the DUIDGHB task.

Security Considerations

Signing onto the NMC console requires a valid NetView operator ID and password, which is validated by the NetView program.

You can prevent unauthorized users from logging on to the NMC by restricting access to the LOGON command used to connect to the NMC server. You can restrict access using either an SAF product or the NetView command authorization table. For more information, refer to [Tivoli NetView for z/OS Security Reference](#).

Using NGMFADMN

The NGMFADMN attribute can be used in NetView operator profiles and in the NETVIEW segment of the SAF product. It specifies whether operators are allowed to perform administrative functions for the NetView management console. Some examples of functions controlled by this keyword include:

- Using the command profile editor
- Adjusting aggregation for individual resources
- Customizing views
- Customizing settings and applying them to all topology consoles
- Creating custom views and aggregates using the RODM Collection Manager Wizard

NO

The operator does not have administrative authority for the NetView management console. This is the default.

YES

The operator has administrative authority for the NetView management console.

Using NGMFCMDS

The NGMFCMDS attribute can be used in a NetView operator profile only. It cannot be specified using the NETVIEW segment of the SAF product. It specifies whether operators are allowed to issue commands from the popup menus of the NetView management console. NGMFCMDS does not prevent operators from typing commands in a NetView command line window.
YES
The operator is allowed to issue commands from the popup menus on the NetView management console. This is the default.

NO
The operator is not allowed to issue commands from the popup menus on the NetView management console.

Using Spans to Protect Resources and Views
You can use span of control to protect access to particular resources and views. Operators access resources by:
- Issuing commands
- Opening an NMC view
- Selecting a resource in an NMC view and performing an action against that resource

When a resource is accessed, NetView verifies the operator’s authority to access the span that contains the resource. This resource protection is in addition to the normal command security checking. For more information, refer to Tivoli NetView for z/OS Security Reference.

Workstation Setup for the NMC
NetView can communicate with NMC servers using either TCP/IP or SNA LU 6.2.

Note: SNA LU 6.2 is only supported on the AIX and Windows platform of the NMC server.

After installing the workstation code, it must be configured to enable communication with the host components of the NMC.

Installing and Configuring the NMC Topology Server
The NMC topology server can be installed on a system running Windows NT, Windows 2000, AIX, or Linux for zSeries.

To install the NMC topology server, refer to the EGVREAD2.ME file on the product CD or on the Tivoli web site.

After the server is installed, do the following:
- If you are using TCP/IP sessions, see “Defining IP Socket Port Numbers for TCP/IP” on page 31. Otherwise see “Appendix A: SNA Definitions for the NMC Topology Servers” on page 73.
- See “Storing Topology Server Databases” on page 36.
- For AIX and Linux for zSeries server users, see “Configuring the Topology Server to Run as a UNIX Daemon” on page 39.

Enabling the Topology Display Subsystem View to Show NetView Components
NetView instrumentation must be enabled to monitor the status of the components that provide NMC views.
The Topology Display Subsystem view shows the status of the components that provide NMC views. To open this view from the Business tree, do the following:

1. Click the plus sign next to Business Systems.

The resulting view shows the topology consoles, topology servers, NETCONV connections, Graphic Monitor Facility host subsystem (GMFHS), RODM, and the RODM managers. Without NetView instrumentation, this view shows only one topology server, and the topology consoles signed onto that server.

If you want information about... Refer to...
Enabling NetView instrumentation
(INITAMI, DSIAMII, and DSIAMIAT).

Defining IP Socket Port Numbers for TCP/IP

Communication with the NetView environment is achieved through either TCP/IP or LU 6.2 for AIX and Windows (as described in “Defining the Logical Unit (LU) Name” on page 80). The topology server communicates through TCP/IP with the topology console. The topology server default uses the following IP socket ports:

- Port 4000 for NMC console communications
- Port 4020 for NetView communications

No action is required if these port numbers do not conflict with your current application settings. However, if there is a conflict, change the port number or numbers using these instructions:

1. On the topology server workstation, open a command window.
2. Change to one of the following directories:
 - For Windows NT/2000: %windir%\system32\drivers\etc
 Where %windir% is usually WINNT or WINNT40. You can display the value of %windir% by entering `set windir` from a command prompt.
 - For UNIX: /etc
3. Add the appropriate entry to the services file. Substitute your port number for the following default port number(s):

   ```
tserver_console 4000/tcp  # Port that NMC server listens for consoles
  tserver_390 4020/tcp  # Port that NMC server listens for NETCONV
  tserver_tbsm 4020/tcp  # Port that TBSM server listens for NETCONV
   ```

 The default for both the tserver_390 and the tserver_tbsm keywords is 4020. If either of the values are specified here, they must not be equal to the default.

 These keywords cannot both be specified in the services file with the same value.

Notes:

1. If you reassign the topology server console port, specify the port number on the NMC Sign On window each time you sign on. However, the topology console retains the server:port setting from the last sign on and uses it to pre-fill in the "Host Machine" entry field of the NMC Sign On window.
2. If you reassign the topology server 390 port, you must also customize the NetView PORT keyword in CNMSTYLE. Refer to the Tivoli NetView for z/OS Administration Reference for more information on the PORT keyword.
3. You do not need to reboot the workstation to activate the new PORT value.
Storing Topology Server Databases

Depending on your operating system, the topology server uses one of the following directories to store its databases:

- For Windows: %BINDIR%\TDS\server\db
- For UNIX: $BINDIR/TDS/server/db

Notes:

1. If you are running NMC in the Japanese AIX environment, the default locale is shift JIS with a locale value of Ja_JP.
 The EUC locale (ja_JP) is also supported. If you have configured your system on either locale and decide to change locales, you must convert the databases to the new locale. The JA_JP locale is not supported. Several database samples are provided to assist you if you would like to change locales. The following shell scripts are provided:

 - convert_ja_JP_databases.sh converts the databases from the Ja_JP to the ja_JP locale and preserves your databases.
 - convert_ja_JP_databases.sh converts the databases from the ja_JP to the Ja_JP locale and preserves your databases.
 - setup_ja_JP_databases.sh creates databases with the ja_JP locale and deletes any existing databases.
 - setup_Ja_JP_databases.sh creates databases with the Ja_JP locale and deletes any existing databases.

2. If your server and client do not have identical locales, some of the command set dialogs for specific resources may appear corrupted, as follows:

 - For AIX: If your client is Ja_JP or shift JIS and your server is ja_JP or EUC some of your command set dialogs for specific resources will appear corrupted. The same is true if your client is ja_JP and your server is Ja_JP.
 - For HP UX: Resources can appear corrupted if your locales are named ja_JP.SJIS and ja_JP.eucJP which correspond to the Ja_JP and ja_JP locales respectively.
 - For Solaris: Only a ja locale corresponds to an EUC locale.
 - For Windows: Only a shift JIS locales exists.

 To avoid problems with dialogs that appear to be corrupted, use servers and clients that run with the same locale settings.

No action is required if these directory locations are satisfactory. However, to use a different directory or disk for your databases, perform the following steps to change the directory structure:

1. Update the TSERVER_DB environment variable.
 - NT: Set the TSERVER_DB environment variable at the user ID level using the following steps:
 a. Log on to the ID where the topology server is running.
 b. Right-click on the My Computer icon.
 c. Select Properties.
 d. Select Advanced.
 e. Select the Environment Variables tab.
 f. Click on New in the User Variables section.
 g. Change the variable name to TSERVER_DB.
 h. Type the value of the new directory.
 i. Click OK.
j. Click OK.
k. Click OK.

- Windows 2000: Set the TSERVER_DB environment variable at the user ID level using the following steps:
a. Log on to the ID where the topology server is running.
b. Right-click the My Computer icon.
c. Select the Properties from the resulting pull-down window.
d. Select Advanced tab on the System Properties panel.
e. Select Environment Variables... button on the System Properties panel.
 The Environment Variables panel displays.
f. Click the New... button in the User Variables for Administrators section of the Environment Variables panel.
 The New User Variable panel displays.
g. Type TSERVER_DB in the Variable Name text field.
h. In the Variable Value field, type the name of the new directory where you want the topology server databases to reside.
i. Click OK.
j. Click OK.
k. Click OK.

- UNIX: Update the TSERVER_DB environment variable in the appropriate profile.

2. Under your new directory, create the same directory structure as the one that is presently under one of the following:
 - For Windows: %BINDIR%\TDS\server\db
 - For UNIX: $BINDIR/TDS/server/db

3. Ensure the topology server is stopped.

4. Run the tserver dbtransfer command. This copies the contents of the databases from the default installation subdirectories to the subdirectories set by the TSERVER_DB variable. The tserver dbtransfer command prompts you for a confirmation before overwriting files in each subdirectory.

Notes:

a. When the server is started for the first time and it detects the TSERVER_DB environment variable, but the command tserver dbtransfer was not run, the server shuts down and you receive a message to run tserver dbtransfer.
b. The tserver dbtransfer command does not erase or overwrite the files in the default installation database subdirectories.

Setting Security for Your Operating System

If you are using Windows NT or Windows 2000, additional security configuration steps are required. No additional security configuration is required for UNIX platforms.

For Windows NT or Windows 2000, add the following user rights to the user ID under which the topology server runs so that it does the following:

- Acts as part of the operating system.
- Logs on as a service.
This is optional and only needs to be set if the topology server is run as a service. See "Configuring the Topology Server to Run as an NT/2000 Service" for instructions.

Follow these instructions to set user rights for Windows NT:

1. Log on to an ID with administrator authority.
2. Select Start -> Programs -> Administrative Tools -> User Manager (or User Manager for Domains for NT servers).
4. Check the Show Advanced User Rights check box.
5. Scroll through the Right: list and select Act as part of the operating system.
6. If your target user ID is already listed in the Grant to: list, go to step 11; otherwise continue.
 The Grant To: list displays the groups and users that are presently granted this right.
7. Click Add.
8. Click Show Users.
9. Select the target user ID (the one under which the topology server will run) and click Add.
10. Click OK.
11. If the topology server is to run as a service, repeat steps 5 through 10 for Log on as a service.
12. Log off and log back on the target ID for the user rights to take effect.

Follow these instructions to set user rights for Windows 2000:

1. Log on to an ID with administrator authority.
3. Select Act as part of the operating system.
5. Add your target user ID under which the topology server will run.
6. Select OK twice.
7. If the topology server is going to be run as a service, repeat step 3 through step 6, and select Log on as a service.
8. Log off and log back on the target ID for the user rights to take effect.

Configuring the Topology Server to Run as an NT/2000 Service

To run the topology server as a Windows NT or Windows 2000 service, perform the following steps:

1. On the topology server machine, open a workstation command window.
2. Change to the following directory: %BINDIR%/TDS\server\bin.
3. Enter the following command to install the topology server as an NT service:
 tserver service account_name password

 Where:

 account_name
 An account name in the form DomainName\UserName. If the account belongs to the local domain, you can specify .\UserName.
password

The corresponding password for the specified account_name.

The topology server installs as two services: the topology server and the topology communications server, and the startup option will be manual.

4. To change the startup to automatic, use the NT/2000 Service control applet.
5. To delete the services, enter the ihsxsvr delete command from the same directory.

Configuring the Topology Server to Run as a UNIX Daemon

For UNIX, to start the topology server processes at system startup and have them run as daemons, issue the following command:

```
$BINDIR/TDS/server/bin/tsersver/config -d
```

The processes start the next time the machine is booted.

Note: You must be the root user to issue this command.

Installing the NMC Topology Console

The NMC topology console requires TCP/IP communication capability. You can run the NMC topology server and topology console code on the same machine. However, this is not recommended in a production environment.

For information on installing the NMC topology console, refer to the EGVREAD1.ME file on the product CD.

Configuring NMC for the NetView 3270 Management Console

The NetView 3270 management console enables you to access the NetView command facility and full-screen applications using a window on your NMC topology console.

The NetView 3270 management console code is shipped with the NetView management console.

Follow these instructions to configure the NetView 3270 management console:

1. The file FLBREAD1 (English) or FLBREAD2 (Japanese) contains information about configuring the NetView 3270 management console. You can find this file in one of the following places:
 - In the README folder under the ENU (for English) or JPN (for Japanese) subdirectories on the NetView CD-ROM
 - From the NetView Web page: http://www.tivoli.com/nv390_supported

Notes:

a. In order for NMC to launch the NetView 3270 management console, it must be installed on each topology console machine.

b. The NetView 3270 management console can only be accessed by operator IDs that, when they are defined, have the OPERID statement in member DSITCPRF (in DSIPRF).
 Each operator ID must be assigned a pair of encryption keys set to default to send and receive information between NetView and the console.

c. For the NetView 3270 management console to communicate with the OS/390 host running NetView, the NetView DSITCPIP task must be started. This NetView task manages TCP/IP communication.
2. Enable the menu item by right-clicking on the view background.

 • A command profile editor (CPE) response file, `ihssnv390cons.en_US.rsp`, is shipped with NMC to enable the NetView 3270 management console on view backgrounds.

 a. Edit the response file and follow the directions in this response file.

 Remember that the TCP/IP port number must match the port number in DSITCPCF in NetView; the default is 9999.

 b. After you edit the response file, run the CPE batch utility (once) to enable the NetView 3270 management console menus from NMC.

 For example, to run the CPE batch utility, perform the following steps:

 1) Change to one of the following directories:
 - For Windows: `%BINDIR%\TDS\server\bin`
 - For UNIX: `$BINDIR/TDS/server/bin`

 2) Enter one of the following commands:
 - For Windows: `cpebatch ..\sample\ihssnv390cons.en_US.rsp -i -g`
 - For UNIX: `cpebatch ../sample/ihssnv390cons.en_US.rsp -i -g`

 • Optional parameters can be specified for each NetView 3270 management console menu item. These include:

 - The home session (for example, NCCF and NPDA)
 - An HACL application that is automatically executed

 For more information, refer to the comments in the command profile editor (CPE) response file, `ihssnv390cons.en_US.rsp`, which is shipped with NMC. For information on coding HACL applications, refer to the Tivoli NetView for z/OS Customization Guide.

There are two ways to launch the NetView 3270 management console:

• Select a NetView resource in the Topology Display Subsystem view and then select **NetView 3270 Management Console** from the context menu.

 NMC launches the NetView 3270 management console application. The selected resource must represent a NetView host.

• Right-click on a view background, select **NetView 3270 Management Console** and then select the menu item corresponding to the NetView that you want to access.

In either case, if a session already exists with the target NetView 390 host, that session is automatically reused instead of starting an additional operator session.

If you do not have the NetView 3270 management console installed, you can remove the NetView 3270 Management Console from the context menu for resources in the Topology Display Subsystem view.

To disable this menu item, use the `ihssdisnv390cons.rsp` CPE response file, which is shipped with NMC.

To disable the NetView 3270 Management Console menu item, run the CPE batch utility (once) by performing the following steps:

1. Change to one of the following directories:
 • For Windows: `%BINDIR%\TDS\server\bin`
 • For UNIX: `$BINDIR/TDS/server/bin`
2. Enter one of the following commands:
 - For Windows: `cpebatch ..\sample\ihssdisnv390cons.rsp -i -m`
 - For UNIX: `cpebatch ../sample/ihssdisnv390cons.rsp -i -m`

 Configuring NMC for the Tivoli Business Systems Manager Console

 You can launch the Tivoli Business Systems Manager from NetView management console to view SNA topology manager resources.

 The Tivoli Business Systems Manager console code is not shipped with the NetView management console. It is a component of the Tivoli Business Systems Manager product. To configure the NMC menu item to launch to the Tivoli Business Systems Manager:

1. Change to one of the following directories:
 - For Windows: `%BINDIR%\TDS\server\bin`
 - For UNIX: `$BINDIR/TDS/server/bin`

2. Enter one of the following commands:
 - For Windows: `cpebatch ..\sample\ihsstbsm.en_US.rsp -i -g`
 - For UNIX: `cpebatch ../sample/ihsstbsm.en_US.rsp -i -g`

3. To display a view in the Tivoli Business Systems Manager, select a SNA topology manager resource in the NetView management console by right-clicking the resource and then selecting **TBSM Business Impact View** from the context menu.

 Notes:
 1. The NetView management console uses the file TBSMLauncher.dat for parameters to launch to the Tivoli Business Systems Manager. The file is located on the NMC topology server in:
 - For Windows: `%BINDIR%\TDS\server\db\current\settings`
 - For UNIX: `$BINDIR/TDS/server/db/current/settings`
 2. If the Tivoli Business Systems Manager console is not already active when a user clicks the menu item to launch the Tivoli Business Systems Manager, the PROGRAM_NAME field in TBSMLauncher.dat will be used to find TBSMConsole.exe on the client machine. To make sure that TBSMConsole.exe can be found, do one of the following:
 - Add the directory where the TBSMConsole.exe file is located to the PATH.
 - Modify the PROGRAM_NAME field in TBSMLauncher.dat file to fully qualify the location of the TBSMConsole.exe file.

Verifying the NetView Management Console Installation

To verify the NetView management console installation, start the NMC topology server and then start an NMC topology console as described in the following sections.

Starting the Topology Server

You can start the topology server in the following ways:
- Manually
- As a daemon when using UNIX
- As a Windows service when using Windows NT or Windows 2000
Note: This task is usually completed by a system administrator for all topology console operators. For specific information, refer to the Tivoli NetView for z/OS NetView Management Console User’s Guide.

Begin Communication with the NMC Topology Server
To begin communication between the NMC topology server and NetView, issue the NETCONV command from an autotask. For example, to start communication using TCP/IP, enter:

```
EXCMD AUTO1 NETCONV,ACTION=START,IP=hostname
```

To start communication using LU 6.2, enter:

```
EXCMD AUTO1 NETCONV,ACTION=START,LU=luname
```

Note: You can issue the NETCONV command from an OST, but the connection is cancelled when the OST logs off.

Starting the Topology Console
You can start the topology console from a desktop icon in Windows or by issuing the command in line mode. For specific information, refer to the Tivoli NetView for z/OS NetView Management Console User’s Guide.

Signing On to the NMC Topology Console
Sign on to the NMC topology console and do the following:
- Connect to the topology server
- Display views

If you want information about... Refer to...

| Signing on and using the NMC topology workstation | Tivoli NetView for z/OS NetView Management Console User’s Guide |
| Online help | NMC topology console help index |

Customizing the NMC
You can customize the NMC for your environment. You can add or change the following:
- Topology console icons
- Topology console views
 - This can include creating views and aggregate resources (RODM Collection Manager), changing the background image, and moving resources and text labels.
- Topology console help
- Server.properties configuration file for the topology server
- Time and date format

You can also use plug-ins and Java™ applications for additional customization.

If you want information about... Refer to...

| Customizing the NMC | Tivoli NetView for z/OS NetView Management Console User’s Guide |
| Java applications and plug-ins | Tivoli NetView for z/OS NetView Management Console User’s Guide |
Chapter 5. Installing and Configuring SNA Topology Manager Agents

The key to SNA topology management is the SNA Topology Manager communication with Common Management Information Protocol (CMIP) topology agents. Manager-to-agent communication is through LU 6.2 sessions using the CMIP services component of VTAM and SNA MDS (Multiple Domain Support).

The VTAM topology agent is a standard component of VTAM. The agent collects topology and status data for subarea and APPN resources.

VTAM Setup

Ensure that the VTAM procedure includes DD statements for ISTCMIP, ACYGDMO, and ISTASN1. In addition, the VTAM CMIP agent needs to be started prior to the manager applications. At a minimum, this requires the OSIMGMT start option in VTAM to be specified as YES. NetView issues the appropriate MODIFY command to VTAM to enable OSIMGMT if the SNATM subtower is enabled in CNMSTYLE.

VTAM agent local topology can report many switched logical lines and PUs. This can increase the network traffic and the manager-to-agent work load. CMIP filtering provides improved control. CMIP filtering allows an entire major node and all its subordinate lines and PUs to be suppressed (not reported in local topology). To enable filtering, VTAM definitions for XCA, NCP, and SWNET nodes must include the VTAMTOPO keyword.

Note: If an NCP major node is reported, its physical lines cannot be suppressed, but its switched logical lines can be suppressed.

If you specify the VTAM start option MSGMOD, turn it off while running NetView command lists and NetView automation.

If you want information about... Refer to...
VTAM requirements FLBSYSD initialization file (comments) or Tivoli NetView for z/OS SNA Topology Manager Implementation Guide
VTAM CMIP services VTAM library
ISTCMIP, ACYGDMO, and ISTASN1 statements VTAM library

Planning for Implementation of Topology Monitoring in Your Network

To plan for the implementation of topology monitoring in your network, perform the following steps:
1. Activate the SNA topology manager at focal points where RODM is installed.
2. Activate the VTAM topology agent on each VTAM node to manage SNA.
Chapter 6. Preparing and Activating the SNA Topology Manager

This section describes the necessary steps to enable the SNA topology manager:

- "VTAM Setup"
- "Security Considerations"
- "Automation Options"
- "Initialization File"

This chapter also describes how to start and verify the SNA topology manager.

VTAM Setup

VTAM needs APPL definitions for the SNA topology manager application. Sample definitions are included in member A01APPLS (CNMS0013). The APPL name for the SNA topology manager must match the APPLNAME specified in the VTAM section of the FLBSYSD initialization file used by the manager application.

<table>
<thead>
<tr>
<th>If you want information about...</th>
<th>Refer to...</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTAM requirements</td>
<td>FLBSYSD initialization file (comments) or Tivoli NetView for z/OS SNA Topology Manager Implementation Guide</td>
</tr>
</tbody>
</table>

Security Considerations

The SNA topology manager requires that a userid of APPNTM be defined to an SAF product, such as RACF, and authorized to use RODM. This requires the use of the RACF ADDUSER and PERMIT commands.

<table>
<thead>
<tr>
<th>If you want information about...</th>
<th>Refer to...</th>
</tr>
</thead>
<tbody>
<tr>
<td>RACF requirements</td>
<td>Tivoli NetView for z/OS Security Reference</td>
</tr>
</tbody>
</table>

Automation Options

The manager applications start automatically under standard NetView installation procedures. The VTAM CMIP agent starts upon initialization of NetView. The default automation table, DSITBL01, also starts automation for the managers (FLBAUT).

<table>
<thead>
<tr>
<th>If you want information about...</th>
<th>Refer to...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automation options</td>
<td>Tivoli NetView for z/OS SNA Topology Manager Implementation Guide</td>
</tr>
</tbody>
</table>

Initialization File

The SNA topology manager is shipped with an initialization file (FLBSYSD) that enables you to tailor it to your installation. This file contains the names of your RODM, the VTAM application names for the managers, values for controlling automatic topology gathering, message suppression options, and other
customization information. In addition, three other files (FLBOSIDS, FLBSRT, and FLBEXV) enable you to further customize SNA topology manager views.

The FLBSYSD initialization file is not refreshed until the topology manager is stopped and started again.

The FLBOSIDS, FLBSRT, and FLBEXV customization files can be refreshed using the TOPOSNA REFRESH command.

If symbolic substitution is enabled on your system, you can use symbols in the initialization and customization files. Ensure that the symbols are defined in member IEASYM:* of SYS1.PARMLIB.

Note: Data REXX is not supported in the initialization and customization files.

If you want information about... Refer to...

Customizing the initialization files Tivoli NetView for z/OS SNA Topology Manager Implementation Guide

Starting the SNA Topology Manager

If you updated CNMSTYLE as described in Chapter 1. Introduction on page 1, the SNA topology manager should automatically start when NetView is started. To verify this:

• The VTAM CMIP services must be active.
 To see if the agent is active, type:
 D NET,VTAMOPTS

 and search for:
 VTAMOPTS,OSIMGMT=YES

• The FLBTOPO autotask must be active.
 To see if it is active, type:
 LIST FLBTOPO

 If it is not active, enter:
 AUTOTASK OPID=FLBTOPO

 Note: You can also issue the STARTCNM SNATM, STARTCNM GRAPHICS, or the STARTCNM ALL command to start the SNA topology manager.

If you want information about... Refer to...

Enabling the SNA topology manager Tivoli NetView for z/OS SNA Topology Manager Implementation Guide

STARTCNM command HELP STARTCNM (online help)

Verifying the SNA Topology Manager Installation

The procedures in this section help you verify that the SNA topology manager functions are installed correctly. Certain commands can be issued even if the agents are not started; these commands verify that the manager code is properly installed.
Once the topology manager is active, you can use the following commands to control the collection of SNA subarea information.

<table>
<thead>
<tr>
<th>Command</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOPOSNA CRITICAL</td>
<td>Monitor critical LU or CDRSC</td>
</tr>
<tr>
<td>TOPOSNA LISTPOOL</td>
<td>Display internal storage pool statistics</td>
</tr>
<tr>
<td>TOPOSNA LISTREQS</td>
<td>Display status of pending requests</td>
</tr>
<tr>
<td>TOPOSNA LISTRODM</td>
<td>Display RODM activity and object counts</td>
</tr>
<tr>
<td>TOPOSNA LISTSTOR</td>
<td>Display storage usage counts</td>
</tr>
<tr>
<td>TOPOSNA MONITOR</td>
<td>Start monitoring topology</td>
</tr>
<tr>
<td>TOPOSNA PURGE</td>
<td>Delete expired unreachable resources from RODM</td>
</tr>
<tr>
<td>TOPOSNA QUERYDEF</td>
<td>Display current default settings</td>
</tr>
<tr>
<td>TOPOSNA REFRESH</td>
<td>Change NetView-provided defaults</td>
</tr>
<tr>
<td>TOPOSNA SETDEFS</td>
<td>Modify defaults</td>
</tr>
<tr>
<td>TOPOSNA STOP</td>
<td>Stop monitoring topology</td>
</tr>
<tr>
<td>TOPOSNA STOPMGR</td>
<td>Stop the topology manager</td>
</tr>
<tr>
<td>TOPOSNA TRACE</td>
<td>Control tracing</td>
</tr>
</tbody>
</table>

To begin verifying the topology manager host installation, issue the TOPOSNA QUERYDEF command. You will receive a response similar to that shown in Figure 11.

```
NCCF Tivoli NetView NTVE9 NETOP1 2/1/01 08:17:32
+ NTVE9 TOPOSNA QUERYDEF
  - NTVE9 FLB495I MONITOR SNA LOCAL TOPOLOGY FOR NEW NETWORK NODES : NO
  - NTVE9 FLB496I MONITOR SNA LOCAL TOPOLOGY FOR NEW END NODES : NO
  - NTVE9 FLB650I MONITOR SNA NETWORK TOPOLOGY FOR NEW T5 NODES : NO
  - NTVE9 FLB6511 MONITOR SNA LOCAL TOPOLOGY FOR NEW T5 NODES : NO
  - NTVE9 FLB497I SNA NETWORK TOPOLOGY IMMEDIATE RETRY INTERVAL : 60
  - NTVE9 FLB498I SNA NETWORK TOPOLOGY IMMEDIATE RETRY LIMIT : 5
  - NTVE9 FLB499I SNA NETWORK TOPOLOGY LONG-TERM RETRY INTERVAL : 1800
  - NTVE9 FLB500I SNA NETWORK TOPOLOGY LONG-TERM RETRY LIMIT : 48
  - NTVE9 FLB501I SNA LOCAL TOPOLOGY IMMEDIATE RETRY INTERVAL : 60
  - NTVE9 FLB502I SNA LOCAL TOPOLOGY IMMEDIATE RETRY LIMIT : 5
  - NTVE9 FLB503I SNA LOCAL TOPOLOGY LONG-TERM RETRY INTERVAL : 1800
  - NTVE9 FLB504I SNA LOCAL TOPOLOGY LONG-TERM RETRY LIMIT : 48
  - NTVE9 FLB546I SNA LU COLLECTION IMMEDIATE RETRY INTERVAL : 60
  - NTVE9 FLB547I SNA LU COLLECTION IMMEDIATE RETRY LIMIT : 5
  - NTVE9 FLB548I SNA LU COLLECTION LONG-TERM RETRY INTERVAL : 1800
  - NTVE9 FLB549I SNA LU COLLECTION LONG-TERM RETRY LIMIT : 48
  - NTVE9 FLB411I TOPOSNA QUERYDEF COMMAND COMPLETED SUCCESSFULLY
```

Figure 11. TOPOSNA QUERYDEF Command Results

If an agent is running in the network, issue the TOPOSNA MONITOR command to start monitoring at the agent node. This command verifies that communication between the manager and agent is working properly. Issue the TOPOSNA STOP command to stop monitoring at the agent node.

For detailed user scenarios for the topology function, refer to the *Tivoli NetView for z/OS SNA Topology Manager Implementation Guide*.

Chapter 6. Preparing and Activating the SNA Topology Manager
Access the first SNA topology manager view (from the NetView management console) to verify that RODM has been loaded correctly.

From the NMC tree view, select SuperclusterView. This opens a view of the NN domain network cluster object and verifies that the topology data model files is loaded correctly.

At this point, no further navigation is possible because RODM does not yet contain SNA resource objects for monitoring (unless you issued the TOPOSNA MONITOR command to start monitoring). You have two options for creating resources in RODM:

- Load the APPN sample network.
 This option provides you and your operators an opportunity to gain experience with the topology manager in a test environment. The sample network is designed so you can simulate dynamic addition of resources in the network and gain familiarity with APPN views. Command actions against resources (such as activating or recycling) are not available because it is a sample network.
 For scenarios describing how to load and use this sample network, refer to the Tivoli NetView for z/OS SNA Topology Manager Implementation Guide.

- Start monitoring the SNA topology from agents in your network.
 This option loads RODM with the actual resources from your network. See the NetView online help for instructions on using the TOPOSNA MONITOR command to start monitoring agents in your network.

If you want information about... Refer to...

| TOPOSNA command | HELP TOPOSNA (online help) |
Chapter 7. Installing and Configuring MultiSystem Manager Agents

Topology agents are supported for the following network environments:

- LAN Network Manager LANs
- Internet protocol (IP) networks managed by Tivoli NetView for UNIX, NetView for Windows NT, NetView for Solaris, HP OpenView on HP-UX, or HP OpenView on Solaris
- NetFinity networks
- Tivoli management regions
- Other types of networks using Open topology agents

If you are using MultiSystem Manager to manage workstations in your network, you need to install the topology agent on a service point workstation. A service point workstation can be any workstation in your distributed network that is running the topology agent and associated applications required for managing the distributed network.

The default MultiSystem Manager initialization file is shipped as FLCAINP. This sample file contains %INCLUDE statements for additional sample files, which contain examples of GETTOPO statements for each of the MultiSystem Manager agents.

Installing Topology Agents

Topology agents for MultiSystem Manager are available in a variety of formats:

CD-ROM
This format allows installation using platform-specific methods. These include:

- **Windows/NT**
 InstallShield to install and uninstall
- **AIX**
 Install format (SMIT) to install and uninstall
- **OS/2®**
 Software Installer format to install and uninstall
- **HP-UX and Solaris**
 Tape archive (TAR) format to install

The README documentation is located in the README\language subdirectory, where language specifies the language. For example, US-English is ENU.

Tivoli Web site
Contains the same data formats as the CD-ROM. This contains the latest version of the workstation-based code for downloading. The Web address is: http://www.tivoli.com/nv390_supported

The following table identifies README file names and installation methods associated with the workstation-based components.
<table>
<thead>
<tr>
<th>Component Name</th>
<th>CD-ROM</th>
<th>Tivoli Web</th>
<th>README</th>
</tr>
</thead>
<tbody>
<tr>
<td>MultiSystem Manager IP agent</td>
<td>x</td>
<td>x</td>
<td>msmip.me</td>
</tr>
<tr>
<td>MultiSystem Manager LAN Network Manager agent</td>
<td>x</td>
<td>x</td>
<td>See Modifying the LAN Network Manager Environment</td>
</tr>
<tr>
<td>MultiSystem Manager NetFinity agent</td>
<td>x</td>
<td>x</td>
<td>msmnf.me - included with the NetFinity product</td>
</tr>
<tr>
<td>MultiSystem Manager Open agent</td>
<td>x</td>
<td>x</td>
<td>Included with the vendor-supplied topology agent</td>
</tr>
<tr>
<td>MultiSystem Manager TMR agent</td>
<td>x</td>
<td>x</td>
<td>flctmr1.html</td>
</tr>
</tbody>
</table>

Install the topology agent on the service point workstation. Refer to the README files for specific installation instructions.

Open agents can be written by customers or provided by vendors.

Documentation and tools for building a MultiSystem Manager Open Topology Interface agent application can be downloaded from the following Web address: http://www.tivoli.com/nv390_tools

Select the downloads from the MSMTOOLK package.

<table>
<thead>
<tr>
<th>If you want information about...</th>
<th>Refer to...</th>
</tr>
</thead>
<tbody>
<tr>
<td>MultiSystem Manager agents</td>
<td>Tivoli NetView for z/OS MultiSystem Manager User's Guide</td>
</tr>
</tbody>
</table>

Modifying Your Open Environment

The modifications needed for a particular network of distributed resources depends on the requirements of the vendor-supplied topology agent managing that network. For information on topology agent requirements, refer to the documentation provided with your topology agent.

Modifying the LAN Network Manager Environment

The resource hierarchy list in the alerts and resolutions sent by the LAN Network Manager to NetView contains the OS/2 service point name as it is defined to the agent. This field must be defined correctly at the LAN Network Manager workstation to properly process topology and status alerts and resolutions that are sent by the agent.

If the LAN Network Manager is already set up as an OS/2 service point and is presently sending alerts to NetView, this step might already be complete. This step is performed at the agent workstation.

To set up the agent on the LAN Network Manager workstation:

1. Verify that the OS/2 service point name has been assigned at the agent workstation.
 • Select Host parameters on the System Parameters Actions pull-down menu.
• Select OS/2 as the Host connection if OS/2 is not already selected.
• Specify the OS/2 service point name to be the same as the PU name (for a SSCP-PU session) or the LU name (for an LU 6.2 session).
 This is the name specified on the SP parameter in the GETTOPO command for this agent.

2. Restart the LAN Network Manager if you modify the host parameters.

Using IP TN3270 Management

If you want to use the MultiSystem Manager IP TN3270 management feature, VTAM ACB Monitor must be installed. The Tivoli NetView for z/OS Customization Guide explains how to install and configure the VTAM ACB Monitor.
Chapter 8. Preparing and Activating the MultiSystem Manager

This chapter includes the following steps, which are necessary to enable MultiSystem Manager:

- "Modifying Your MVS Environment" on page 56
- "Modifying the Event/Automation Service" on page 56
- "Modifying Your NetView Start Procedure" on page 56
- "Security Considerations" on page 56
- "Automation Options" on page 58
- "Assigning Operator Profiles to Autotasks" on page 58
- "Initialization Files" on page 58
- "Setting Up Your NetView Cross-Domain Environment" on page 58
- "RUNCMD Considerations" on page 60
- "Modifying the NetView RATE and AUTORATE Statements" on page 61
- "Starting MultiSystem Manager" on page 62
- "Verifying the MultiSystem Manager Installation" on page 62

If you want information about... Refer to...
- Using MultiSystem Manager: Tivoli NetView for z/OS MultiSystem Manager User’s Guide

Modifying Your MVS Environment

All data sets in the NetView STEPLIB DD concatenation must be authorized for NetView initialization.

Use the Authorized Program Facility (APF) to authorize the REXX data set (SEAGLMD or SEAGALT). To be authorized, a library’s name must appear in the list of authorized libraries for the APF member (IEAAPFx) of SYS1.PARMLIB. Refer to the MVS library for more information on APF authorization.

If you previously ran MultiSystem Manager on this system, the REXX data set might already be authorized.

Changes to the APF member do not take effect until you restart MVS or dynamically update the APF member by using the MVS SETPROG command.

1. To authorize the REXX data set (SEAGLMD or SEAGALT), edit your APF member in SYS1.PARMLIB and add the REXX data set (SEAGLMD or SEAGALT).
2. Restart MVS, if necessary.
 If your system is set up to use dynamic APF services, you can avoid restarting MVS by using the SETPROG command to dynamically update the APF list.

Modifying the Event/Automation Service

This section is applicable only if the following statements are true:

- You are using the MultiSystem Manager Tivoli Management Region agent or the MultiSystem Manager IP agent.
• You are using TCP/IP to communicate between Tivoli NetView for z/OS and the MultiSystem Manager agent.

To communicate using TCP/IP, the event/automation service must be installed and a port number must be specifically assigned using the PortNumber and UsePortMapper keywords in member IHSAECFG. To explicitly assign a port, specify a value (other than zero) to the PortNumber keyword and ensure that UsePortMapper is set to NO in member IHSAECFG.

The MultiSystem Manager IP agent uses the trap-to-alert function. Update the PortNumber and AlertReceiver keywords in member IHSATCFG.

If you want information about... Refer to...

| Event/automation service | Tivoli NetView for z/OS Installation: Configuring Additional Components |

Modifying Your NetView Start Procedure

If you are using TCP/IP to communicate between Tivoli NetView for z/OS and MultiSystem Manager agent, refer to *Tivoli NetView for z/OS Installation: Getting Started*.

The REXX programs for MultiSystem Manager have been compiled with the ALTERNATE option.

If you access the REXX runtime library from NetView, MultiSystem Manager REXX programs run in compiled mode. Otherwise, the REXX alternate library is used and MultiSystem Manager REXX programs run in interpreted mode.

If the REXX runtime library or REXX alternate library is not accessible from the pageable link pack area (PLPA), you need to modify the NetView start procedure to access one of these libraries.

Security Considerations

You can add to your network security by authorizing access to RODM. Defining the application ID to an SAF product, such as RACF, allows you to verify security levels for API calls into RODM. A security level of 3 enables you to connect, disconnect, query, create objects, delete objects, change fields, and so on. It does not enable you to create classes, create fields, delete classes, delete fields, and so on.

Add the RODM user application ID to RACF or another security system with a security level of 3. The RODM user application ID is specified by the common.FLC_RODMAPPL statement in CNMSTYLE. The default value for MultiSystem Manager is your NetView domain ID concatenated with the letters MSM, for example, CNM01MSM.

If you want information about... Refer to...

| Using RACF for RODM security | Using RACF for RODM Security on page 12 |
Command Authorization

The command model statements in DSICMENT define the MultiSystem Manager command procedures.

Note: If you modify member DSICMD or any of the members included by DSICMD, restart NetView so the changes take effect.

To implement command authorization checking:

1. To restrict the use of MultiSystem Manager commands to specific operators, modify the command authorization as described in [Tivoli NetView for z/OS Administration Reference](#).

 The command model statements that specify MOD=DSICCP represent REXX command lists. NetView command authorization checking for REXX command lists does not apply to keyword and keyword values.

2. Ensure that the following commands can be issued by the same operators who can issue GETTOPO commands:

 - EXCMD
 - RUNCMD or RMTCMD, depending on your system

3. You can have command authorization performed on the keywords and values of the FLCARODM command.

 If you are using the CMDAUTH table or the System Authorization Facility (SAF), use the NetView command, SECMIGR, to migrate these definitions. Refer to the [Tivoli NetView for z/OS Administration Reference](#) for more information.

<table>
<thead>
<tr>
<th>If you want information about...</th>
<th>Refer to...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command authorization</td>
<td>Tivoli NetView for z/OS Security Reference</td>
</tr>
</tbody>
</table>

Implementing Span of Control

Span of control provides a means to control access to particular resources and views. Use the NetView span table to implement span of control. MultiSystem Manager fills in the UserSpanName field in RODM whenever a viewable object is created. The UserSpanName is composed, when available, of the following parts (in order):

- service point
- application
- element (if any)
- object specific data

To modify the operator profiles, edit member FLCSPRFB, which is shipped in the CNMSAMP data set. Specify CTL=SPECIFIC or CTL=GENERAL on the AUTH statement.

The following example shows how operator profile FLCSPRFB can be modified for span of control:

```
FLCSPRFB PROFILE
AUTH MSGRECVR=NO,CTL=GENERAL
ISPAN SPAN1,SPAN2
END
```

<table>
<thead>
<tr>
<th>If you want information about...</th>
<th>Refer to...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator profiles</td>
<td>Tivoli NetView for z/OS Security Reference</td>
</tr>
</tbody>
</table>
Automation Options

MultiSystem Manager provides automation statements for each of its features. These statements allow for automation of alerts and resolutions sent to NetView by the topology agent. MultiSystem Manager automation statements are included before any GMFHS automation statements and are controlled by the MSM tower and MSM subtower statements specified in CNMSTYLE.

The following automation statement is controlled by the GRAPHICS tower specification in CNMSTYLE:

```
IF (MSUSEG(0000) = ' ' | MSUSEG(0002) = ' ') & HIER = ' '
THEN EXEC(CMD('DUIFECMV') ROUTE(ONE DUIFEAUT)) CONTINUE(Y);
```

During GMFHS initialization, the topology agent can send alerts to NetView before GMFHS has completed initialization. If these alerts arrive before GMFHS is initialized, they are not processed by GMFHS. As a result, the status of MultiSystem Manager objects is not automatically updated during this period. The automation statements provided in DSITBL01 generate a message when GMFHS is initialized.

Assigning Operator Profiles to Autotasks

Autotasks are driven by the NetView automation table when processing alerts and resolutions from the topology agents.

Autotasks must be created for each of the MultiSystem Manager agents to distribute the SNA and TCP/IP work load across different tasks in NetView. These autotasks can be specified on the AUTOTASK parameter on GETTOPO commands or on the GETTOPO statements in the initialization file.

If you modify the operator profile or member DSIOPF, restart NetView or issue the REFRESH OPERS command from the NetView command line to activate the changes.

1. Add autotasks to FLCSOPF as needed to distribute the workload across tasks.

 Note: FLCSPRFB in CNMSAMP is the sample operator profile used by the autotasks that are added for each MultiSystem Manager agent.

2. Change the passwords shipped in the sample file.

Initialization Files

There are two categories of MultiSystem Manager initialization file statements:

- General
- Agent-specific

General statements define various aspects of your system and network environment to MultiSystem Manager. They define system defaults, information about the RODM used, and information about your networking environment. General statements are specified in CNMSTYLE.
GETTOPO RES and ONLY statements are agent-specific. They are used to define service points to MultiSystem Manager during initialization. GETTOPO statements are specified in the MultiSystem Manager initialization file.

If you do not include other general statements, default values are used.

If you do not include GETTOPO statements in the initialization file, MultiSystem Manager is enabled, but topology and status information is not initially stored in RODM when you issue an INITTOPO command. Topology and status information is retrieved only when GETTOPO commands are later issued or when alerts are received.

If you include GETTOPO statements in the initialization file, MultiSystem Manager is enabled and topology and status information is retrieved from the specified service points and added to RODM during MultiSystem Manager initialization.

MultiSystem Manager provides a sample initialization file which resides in the DSIPARM data set. The name of this file is FLCAINP and contains %INCLUDE statements for each of the MultiSystem Manager, shown in Table 7.

Table 7. MultiSystem Manager Agent and Sample Initialization File

<table>
<thead>
<tr>
<th>MultiSystem Manager Agent</th>
<th>Sample Initialization File</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet Protocol</td>
<td>FLCSIIP</td>
</tr>
<tr>
<td>Internet Protocol TN3270</td>
<td>FLCS3270</td>
</tr>
<tr>
<td>LNM</td>
<td>FLCSILNM</td>
</tr>
<tr>
<td>NetFinity</td>
<td>FLCSINF</td>
</tr>
<tr>
<td>Open Topology Interface</td>
<td>FLCSIOPN</td>
</tr>
<tr>
<td>TMR</td>
<td>FLCSITME</td>
</tr>
</tbody>
</table>

Use the DISPTOPO command to display some of the general information that is defined by the statements in CNMSTYLE. If you change a CNMSTYLE statement, issue the RESTYLE COMMON command, followed by the INITTOPO command, to inform MultiSystem Manager of the changes.

If you want information about... Refer to...

| Initialization file statements | Tivoli NetView for z/OS MultiSystem Manager User’s Guide |
| GETTOPO command | NetView online help or Tivoli NetView for z/OS Command Reference |

Setting Up Your NetView Cross-Domain Environment

Note: This step is for MultiSystem Manager agents that use SNA to communicate with the topology agent.

Perform this step only if you have service points that are not in the same domain as the NetView running MultiSystem Manager. Your cross-domain environment affects:

- Alerts and resolutions
- RMTCMDs
- RUNCMDs
Setting up your cross-domain environment enables MultiSystem Manager to send RUNCMDs to, and receive alerts and resolutions from, service points in other SNA domains.

1. If alerts from a service point are sent to a NetView in a different domain, forward these alerts to the NetView running MultiSystem Manager.
 You can forward all alerts and resolutions from one NetView to another by issuing the following command from the NetView running MultiSystem Manager:

   ```
   FOCALPT CHANGE FPCAT=ALERT TARGET=remote_domain
   TARGNET=remote_netid
   ```

 Specify the same values for `remote_domain` and `remote_netid` as specified for the REMOTE keyword in the GETTOPO command. If `remote_netid` is not specified on the REMOTE keyword in the GETTOPO command, then the TARGNET keyword can be omitted.

2. To ensure RMTCMDs work between the NetView running MultiSystem Manager and remote NetViews, define dedicated autotasks at your remote NetViews specifically for this purpose.

 The RMTCMDs issued from MultiSystem Manager specify OPERID=* Refer to [Tivoli NetView for z/OS Command Reference](#) for more information about the RMTCMD command.

3. If the REMOTE parameter is used on the GETTOPO command for a service point, allocate additional NetView DSRBs at the remote NetView domain.

4. If the REMOTE parameter is used on the GETTOPO command for a service point (meaning a RMTCMD command is used to forward the RUNCMD command to another NetView domain), ensure that RMTCMDs work from the NetView domain running MultiSystem Manager to the destination NetView domain as specified in the REMOTE parameter of the GETTOPO command.

5. You might need to define the topology agent LU in a VTAM cross-domain resource (CDRSC) definition in the domain running MultiSystem Manager. If you are using cross-network sessions, the CDRSC definition might be needed in both networks.

RUNCMD Considerations

Note: This section is for MultiSystem Manager agents that use SNA to communicate with the topology agent.

MultiSystem Manager uses RUNCMDs to gather initial topology and status from topology agents that use SNA to communicate with NetView.

Setting the RUNCMD Time-Out Value

The RUNCMD time-out value specifies the amount of time to wait before a RUNCMD is cancelled. To prevent RUNCMDs from prematurely timing out, increase the time-out value.

The default value for RUNCMD time-out is stored in DSICTMOD. This value is assigned each time that NetView is initialized. If you modify member DSICTMOD, restart NetView for the changes to take effect.

If you previously installed a MultiSystem Manager topology agent on this system, the RUNCMD time-out value might already be set to an appropriate value for your site.
1. Edit DSICTMOD and set the RUNCMD time-out value.
2. Assemble and link-edit DSICTMOD using job CNMS0055.
3. Restart NetView for these changes to take effect.

If you do not want to restart NetView at this time, specify the RUNCMD time-out value by using the COSTIME keyword of the DEFAULTS command.

Allocating Additional NetView DSRBs

Note: This step is for MultiSystem Manager agents that use SNA to communicate with Tivoli NetView for z/OS.

DSRBs are used to store information about each RUNCMD request, and RUNCMD processing is managed by NetView task DSIGDS. If a RUNCMD request is made and there are no DSRBs available to task DSIGDS, the RUNCMD request is queued.

Allocate additional DSRBs to minimize the queuing of these requests.

If your connection between the MultiSystem Manager topology manager and its topology agents is over an SSCP-PU session, you might need to modify the NetView DSRB count for task DSIGDS:

1. Determine the DSRB allocation for task DSIGDS.
2. Edit the DSTINIT statement in NetView initialization member DSICPINT and modify the current DSRBO value with the value that is appropriate for your site.
3. Stop and restart task DSIGDS.

Notes:

1. Allocating additional DSRBs is not necessary if all of your sessions are LU 6.2 sessions.
2. If you have previously installed a MultiSystem Manager topology agent on this system, the DSRB count for task DSIGDS might already be modified.

Modifying the NetView RATE and AUTORATE Statements

It is possible for several to send numerous alerts to NetView that could overload the NetView hardware monitor database. Update the NetView RATE and AUTORATE statements with an appropriate value to prevent overloading the NetView hardware monitor database.

The RATE statement enables you to set the maximum rate at which alerts and resolutions can be logged into the NetView hardware monitor database. If an alert is blocked by a recording filter set by the RATE statement, it is not sent to
Tuning the REXX Environment

One of the most powerful features of the NetView program is the ability to run REXX code in the NetView environment. Several of the NetView components, as well as base NetView functions, exercise code that has been written in REXX.

MultiSystem Manager uses REXX command lists to acquire topology and status and to update objects in RODM. Tuning the number and size of REXX environments can improve performance.

Starting MultiSystem Manager

To start MultiSystem Manager, issue the INITTOPO command. By default, this command uses an initialization file named FLCAINP. If your initialization file has a different name, specify this name immediately following the INITTOPO command. If your initialization member includes GETTOPO commands, they will be processed after the general statements specified in CNMSTYLE have been verified.

Verifying the MultiSystem Manager Installation

Once the MultiSystem Manager is active, you can use the following commands to control the collection of topology information:

<table>
<thead>
<tr>
<th>Command</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>GETTOPO IPxxxx</td>
<td>Get topology and initial status for IP resources</td>
</tr>
<tr>
<td>GETTOPO LNMxxxx</td>
<td>Get topology and initial status for LNM resources</td>
</tr>
<tr>
<td>GETTOPO NFxxxx</td>
<td>Get topology and initial status for NetFinity resources</td>
</tr>
<tr>
<td>GETTOPO OPENRES</td>
<td>Get topology and initial status for OPEN resources</td>
</tr>
<tr>
<td>GETTOPO TMExxxx</td>
<td>Get topology and initial status for Tivoli Management Region resources</td>
</tr>
</tbody>
</table>

If you want information about... Refer to...

Using MultiSystem Manager Tivoli NetView for z/OS MultiSystem Manager User's Guide

GETTOPO command NetView online help
Chapter 9. Preparing and Activating the NetView Resource Manager

This chapter addresses the following technical considerations:

- “Defining Autotask AUTONRM”
- “Security Considerations”
- “Initialization Considerations” on page 65
- “RMTCMD Considerations” on page 66
- “Starting the NetView Resource Manager” on page 66
- “Verifying the NetView Resource Manager Installation” on page 66

Defining Autotask AUTONRM

AUTONRM is the autotask used by the NetView Resource Manager (NRM) for processing. This is defined, as follows, in DSIOPF:

```
AUTONRM OPERATOR PASSWORD=AUTONRM
PROFILEN DSIPROFC
```

If you modify member DSIOPF, either restart NetView or issue the REFRESH OPERS command from the NetView command line to activate the changes.

Note: The autotask name for the NRM function must be AUTONRM.

Security Considerations

You can add to your network security by authorizing access to RODM.

Defining the RODM user application ID to an SAF product, such as RACF, allows you to verify security levels for API calls into RODM. For example, a security level of 3 enables you to connect, disconnect, query, create objects, delete objects, change fields, and so on. It prevents you from activities which include (but are not limited to): creating classes and fields, deleting classes and fields.

Add the RODM user application ID (for NRM) to RACF or other security system with a security level of 3. The RODM user application ID for NRM is your NetView domain ID concatenated with the letters NRM (for example, CNM01NRM).

Note: Authorizing access to RODM is necessary only for manager hosts.

If you want information about... Refer to...

| Using RACF for RODM security | “Using RACF for RODM Security” on page 12 |

Command Authorization

The command model statements in DSICMD (%INCLUDE member DSICMENT) define the NetView Resource Manager command procedures.

| CNME8600 CMDMDL MOD=DSICCP,TYPE=R,RES=Y,ECHO=N |
| CNME8601 CMDMDL MOD=DSICCP,TYPE=R,RES=Y |
| CMDSYN INITNRM |

63
If you modify the member DSICMD or any of the members included by DSICMD, use the ADDCMD command to dynamically add the command without restarting the NetView program. The command definition remains in effect until you restart the NetView program.

To implement command authorization checking:

1. Restrict the use of NetView Resource Manager commands to specific operators by modifying the command authorizations of NetView Resource Manager commands as described in Tivoli NetView for z/OS Security Reference.

 The command model statements that specify MOD=DSICCP represent REXX command lists. NetView command authorization checking for REXX command lists does not apply to keyword and keyword values.

 Note: CNME8600 runs on autotask AUTONRM, and should not be issued by other operators.

2. Ensure that the SOCKET command can be issued by the same operators who can issue INITNRM and SUSPNRM commands.

3. Ensure that the SOCKET command can be issued by AUTONRM.

4. You can have command authorization performed on the keywords and values of the NRMCTL command.

5. NetView Resource Manager uses FLCARODM. You can have command authorization performed on the keywords and values of the FLCARODM command.

6. Commands are available on the NetView management console for all NetView Resource Manager objects. Some of these commands are protected by the default security (CNMSCAT2 or CNMSAF2) of the NetView program. Refer to the Tivoli NetView for z/OS Resource Object Data Manager and GMFHS Programmer’s Guide for more information on the commands that are available for NetView Resource Manager objects. This book also identifies which of these commands are protected.

 If you want to enable the protected commands to be issued for the local domain, authorize the NetView operators to log on to the NetView management console client for the appropriate commands. If you want to enable the protected commands to be issued for a remote domain, then authorize autotask AUTONRM, on the remote domain, for the appropriate commands.

 All other commands for NetView Resource Manager objects are not protected by the default security of the NetView program. You can protect or authorize those commands with your installation.

<table>
<thead>
<tr>
<th>If you want information about...</th>
<th>Refer to...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command authorization</td>
<td>Tivoli NetView for z/OS Security Reference</td>
</tr>
</tbody>
</table>
Initialization Considerations

You can start the NRM at NetView initialization by specifying INIT.NRM = Yes in CNMSTYLE.

You can also start the NRM at a later time by issuing the INITNRM command.

Note: Before starting the NRM, review the initialization parameters in CNMSTYLE, and customize them as necessary.

You can override all parameters except the DISPLAY STATUS values on the INITNRM command.

You can also use the RESTYLE NRM command to stop the NRM and restart it (if INIT.NRM is Yes) after customizing parameters for it in CNMSTYLE.

Sampling

NRM detects RODM failures when an NRM request fails. NRM continues trying to connect to RODM until either a connection is established or the NRM is shut down.

When the connection is reestablished, it requests status from all the agents NRM was monitoring at the time of the failure.

You may want to specify a value for sampling in order for the NRM to detect RODM failures, especially if the status of your NRM objects does not change very often.

If you want sampling to occur, either modify NRM.SAMPLERATE in CNMSTYLE or specify the SAMPLE keyword on the INITNRM command.

Display Status Defaults

NRM uses the following DisplayStatus values for its real objects:

<table>
<thead>
<tr>
<th>Status</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>Inactive</td>
<td>Unknown</td>
</tr>
<tr>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>Threshold 1 met or exceeded</td>
<td>Intermediate</td>
</tr>
<tr>
<td>Threshold 2 met or exceeded</td>
<td>Medium Unsatisfactory</td>
</tr>
<tr>
<td>Threshold 3 met or exceeded</td>
<td>Unsatisfactory</td>
</tr>
<tr>
<td>RESET</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

Monitoring Remote NetView Systems

To monitor a remote NetView system, perform the following steps:

1. Code a HOSTDEST parameter at the remote system.

 Note: For the following reasons, do *not* code multiple HOSTDESTs for the same destination host (For example, an SNA HOSTDEST for CNM01, and an IP HOSTDEST for CNM01).

 • Coding multiple HOSTDESTs for the same target host causes unpredictable behavior.
 • NRM does not support backup host destinations.

2. If you code HOSTDEST statements, you must also code the CMODE and PORT parameters, if applicable. Examples are provided in CNMSTYLE.
The DUIDGHB task is required for any IP HOSTDEST that uses a hostname instead of an IP address.

3. Activate other NetView functions that are required to monitor remote NetViews:
 - The manager that is receiving remote host data uses the following functions:
 - RMTCMD
 - Hardware Monitor
 - LU 6.2 transport
 - TCP/IP Alert Receiver (if your communication method is TCP/IP)
 - The agent sending its data to a manager uses the following functions:
 - LU 6.2 transport (if your communication method is SNA)
 - TCP/IP (if your communication method is IP)
 - RMTCMD

 Note: The agent can be a NetView host with NRM.TYPE=MGR. It is the agent function that uses the above listed items.

RMTCMD Considerations

NRM uses RMTCMD to communicate between NetView hosts.

Ensure that RMTCMD capability exists for each mode of communication (SNA or IP) to be used for transporting data between manager(s) and agent(s). For example, if an agent is reporting to a manager using TCP/IP, TCP/IP-based remote operations must be enabled at the agent and manager hosts.

Starting the NetView Resource Manager

To start the NRM, specify INIT.NRM = Yes in CNMSTYLE or issue the INITNRM command.

If you issue the INITNRM command with no parameters, the parameter values in CNMSTYLE are used to initialize the Resource Manager.

Verifying the NetView Resource Manager Installation

After the NRM is active, you can issue NRMCTL LISTPARM to verify your initialization parameters.

You can verify domains that are being monitored from a manager host with the NRMCTL LISTMON command.

Access the NRM view (from the NetView management console) to verify that RODM has been populated correctly. From the NMC tree view, select **NetViewTasks**.

This opens a view of the NRM domain aggregate objects and verifies that NRM data has been stored in RODM. You can right-click on this object and select a command(s) to execute.

You can then navigate from the NRM domain aggregate object to the NRM task aggregate objects.

From the NRM task aggregate objects, you can navigate to the NRM real statistical objects.
Commands are available at both of these levels.

<table>
<thead>
<tr>
<th>If you want information about...</th>
<th>Refer to...</th>
</tr>
</thead>
<tbody>
<tr>
<td>INITNRM command</td>
<td>NetView online help</td>
</tr>
<tr>
<td>NRMCTL command</td>
<td>NetView online help</td>
</tr>
<tr>
<td>RESTYLE command</td>
<td>NetView online help</td>
</tr>
</tbody>
</table>
Chapter 10. Managing Views

As SNA topology manager and MultiSystem Manager agents gather network topology information, they store that information in RODM.

By default, this information is presented by the NetView management console (NMC) in a top-down, hierarchical perspective. You can change these default views in NMC to customize the graphical representation of your network to accomplish the following goals:

- Better meet the needs of your organization
- Customize the graphical representation of your network

The list of views including access to individual objects within those views can be granted on a per-operator basis.

Types of Views

An NMC operator can view the following:

- Network views
- Exception views

Network views are created by gathering topology and status from topology agents or by using tools, such as the RODM collection manager (from the NMC console) or BLDVIEWS. Network views are capable of displaying objects as they relate to other objects, by showing relationships or links between them.

The current state of each device within the view is represented by a color scheme. For example, by default the colors used are: Green for satisfactory status; red for unsatisfactory status.

Exception views are special types of views which show objects that are in an exception state and that might require operator attention.

For example, as a network device becomes inoperable, its state might change from satisfactory to unsatisfactory. If an exception view is defined to display this type of device, an object representing that device appears within this exception view, alerting an operator about the unsatisfactory state. When the device becomes operable again, it disappears from the exception view.

Because the RODM collection manager is capable of creating views that actively track changes in RODM, you can use the RODM collection manager to create a network view with characteristics that are similar to an exception view. For example, you can create a RODM collection that specifies all IP Routers that are not in satisfactory state; this becomes a network view that resembles the functionality of an exception view.

Exception views and RODM collection manager views with similar characteristics have a few differences that might make one a more appropriate choice than the other in a given situation.

- Advantages of exception views:
 1. Exception views use less CPU resource on the host system.
They are only created and maintained when an NMC user has an exception view open.

2. Exception views can be opened at NMC by default in Details mode while network views are still opened by default in Topology mode.

- Advantages of RODM collection manager views with similar characteristics:
 1. RODM collection manager views are easier to define and maintain than exception views.
 2. The status that constitutes an exception can easily be defined on an object-by-object basis.
 3. RODM collection manager views provide more flexible options.
 For example, more criteria (than just status) can be applied.
 4. When two objects in a RODM collection manager view are connected, that connection is displayed.

These two view types appear as expandable branches of the view tree in NMC:

![Figure 12. Collapsed View Tree](image)

As the operator clicks on the plus sign, the tree is expanded to show the available views:

![Figure 13. Expanded View Tree](image)

The operator can then double-click on a selection to open the view.
Restricting Access to Views

If necessary, operator access can be restricted to:

- Views
- Individual resources within views

This is done using span of control.

To implement span of control use the:

- NGMFVSPN attribute to specify if operators are to be subject to span checking
- NetView span table to define views and resources within views to spans
- CTL attribute to specify that span checking is to be done for an operator

If you want information about... Refer to...
Using spans to protect resources and views Tivoli NetView for z/OS Resource Object Data Manager and GMFHS Programmer’s Guide and Tivoli NetView for z/OS Security Reference

Applying Policy to Views

Using NMCSTATUS policy definitions, you can define time schedules for resources in NMC views. With these schedules, policy can be applied to views to specify when:

- The status for one or more resources in a view is disabled at the NMC console
- One or more resources in a view is suspended from aggregation

Creating and loading a policy file containing NMCSTATUS policy definitions Tivoli NetView for z/OS Administration Reference

Correlating Views

The NetView program uses topology correlation to automatically tie together resources managed by different types of topology agents, such as IP and TMR.

Topology correlation is provided for all MultiSystem Manager topology agents, the SNA topology manager, and customer or vendor applications that use the GMFHS data model.

Most managed resources participate in more than one network or system. For example, a workstation can serve as a station in a token ring LAN network, have a presence in the IP environment, and in a Windows 95 platform.

Most management agents recognize only one type of network or system, as opposed to every resource running in the system. For example, the IP agent recognizes resources with IP addresses. Therefore, an IP view of the example workstation contains information related to IP, but not the token ring adapter and Windows 95 platform.

Topology correlation overcomes the agent-specific perspective of management agents and enables a graphic monitor view to contain all components of a network device. This single view includes the current status of all components.
Object correlation is enabled by loading input file FLCSDM8 into RODM. To load FLCSDM8, uncomment the following line in job CNMSJH12:

```c
// * DD DSN=NETVIEW.V5R1M0.CNMSAMP(FLCSDM8),DISP=SHR <-CORRELATE SAMPL
```

Correlation occurs when an application sets a valid value in a field of a RODM object that is enabled for correlation. Objects are enabled for correlation by loading file FLCSDM8.

MultiSystem Manager and SNA topology manager automatically set the value of these fields, which results in correlation.

Views are displayed on a NetView management console.

<table>
<thead>
<tr>
<th>If you want information about...</th>
<th>Refer to...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlating views</td>
<td>Tivoli NetView for z/OS Resource Object Data</td>
</tr>
<tr>
<td></td>
<td>Manager and GMFHS Programmer’s Guide</td>
</tr>
</tbody>
</table>

Enabling MultiSystem Manager Object Correlation

To optimize navigation and storage for resources managed by the NetFinity and TMR agents, issue the GETTOPO commands in the following order:

1. GETTOPO NFRES
2. GETTOPO TMERES
3. Any other GETTOPO commands

Enabling SNA Topology Manager Object Correlation

SNA correlation occurs on PU resources for which SNA topology manager discovers a LAN MAC address. PU resources are excluded from TOPOSNA commands that do not include the LOCAL parameter. Use the LOCAL parameter on any TOPOSNA command issued to resources you want included in correlation. Correlation also occurs for LU resources which support a telnet 3270 (tn3270) server or requester.

Communications Server/390 Release 10 is required for correlation of LU resources and any PU resources other than PU 2.1 OS/2 workstations.

Enabling Object Correlation for Additional SNA Topology Manager and GMFHS Resources

If you have SNA topology manager or GMFHS resources that do not correlate to any LAN or IP resources, this indicates that the management agent did not discover a LAN MAC address or IP address that could be used for correlation.

If you know that some of these resources do participate in LAN or IP networks and if you have the MAC addresses and IP addresses for those resources, you can include them in correlation. This is done by setting those address values in the managed objects in RODM.

To set these values, you can write a NetView CLIST that uses MultiSystem Manager access through RODMVIEW or Visual BLDVIEWS.
Managing Views

This section describes the tools you can use to manage RODM views. These tools include:

- **RODM Collection Manager**
- **BLDVIEWS**
- **Visual BLDVIEWS** on page 74
- **DELVIEWS** on page 75
- **RODMVIEW** on page 75
- **RODM Unloader** on page 75

RODM Collection Manager

The RODM collection manager actively manages the contents of views based on criteria set by the user. These criteria can be a naming convention, a set of statuses, or both. A view managed by the RODM collection manager can have characteristics of both network and exception views. NMC administrators have access to the RODM collection manager on their desktops. You can also manage views with complex criteria beyond names and statuses.

If you want information about... Refer to...

<table>
<thead>
<tr>
<th>Tool</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>RODM collection manager</td>
<td>NMC online help or to the Visual NetView for z/OS Resource Object Data Manager and GMFHS Programmer's Guide</td>
</tr>
</tbody>
</table>

BLDVIEWS

BLDVIEWS can gather a set of objects based on a naming convention. You can use BLDVIEWS to:

- Create either a network or an exception view out of that set of objects.
- Manipulate a field on that set of objects.

BLDVIEWS is controlled by an input file.

Network views created by BLDVIEWS are snapshots in time. As network topology changes occur, it might be necessary to recreate the views by rerunning BLDVIEWS. For this reason, it is advisable to migrate BLDVIEWS-based views to RODM collection manager views. The FLCV2RCM command can be used to do this.

For more information about FLCV2RCM, see NetView online help.

BLDVIEWS can also be used to:

- Create aggregate objects
- Link and unlink objects to and from views and aggregates

Views or aggregates can be grouped by:

- Networks
- Regions
- Locations
- Sites
- Plants
- Buildings
• Floors
• Individual operator responsibilities

You can set or change fields such as DisplayResourceOtherData.

Using the GMFHS data model, you can create objects in these classes:
• Various view object classes
• GMFHS_Aggregate_Objects_Class
• GMFHS_Managed_Real_Objects_Class

You cannot use BLDVIEWS to delete objects, classes, or fields, but you can modify certain fields of objects.

For the SNA topology manager and MultiSystem Manager data models, objects cannot be created or deleted using BLDVIEWS. However, views can be created to include objects of these classes. BLDVIEWS supports real and aggregate objects created in RODM by the MultiSystem Manager and SNA topology manager.

Views and aggregates created by BLDVIEWS are static. Only the objects that are in RODM at the time you run BLDVIEWS are processed. If new objects are added to RODM, you must rerun BLDVIEWS. BLDVIEWS changes to the RODM data cache are not part of any RODM loader file and are lost if RODM is cold-started.

Views that are created with BLDVIEWS might need to be recreated because they can become out-of-date as system and network resources change.

You can use BLDVIEWS to enable generic command support (for example activate and deactivate) from the NMC on MultiSystem Manager-discovered network resource objects. BLDVIEWS provides a way to map a default set of commands to these generic commands for key MultiSystem Manager resources.

If you want information about... Refer to...
BLDVIEWS
Tivoli NetView for z/OS Resource Object Data Manager and GMFHS Programmer’s Guide

Visual BLDVIEWS

Visual BLDVIEWS (VBV) is a graphical front end to BLDVIEWS; it simplifies the use of BLDVIEWS by eliminating the need to know the syntax of the BLDVIEWS input file language.

Visual BLDVIEWS provides a way to gather a set of objects (based on a naming convention) and to modify a field for each of these objects. This is useful for making batch updates to many objects. With Visual BLDVIEWS, you can query and display objects as they appear in RODM by double-clicking on them. Immediate updates can be made to individual objects.

VBV consists of host and workstation applications communicating through TCP/IP.

To enable the VBV server on the NetView host, perform the following steps:
1. Uncomment the AUTOTASK.AUTOVBV statement in CNMSTYLE.
2. Ensure that the TOWER MSM statement is uncommented.
DELVIEWS

You can use DELVIEWS to delete the following customized views from RODM:

- Network views
- Configuration peer views
- Configuration backbone views
- Exception views

For example, to delete a specific exception view (NET_EX_VIEW), type:

```
DELVIEWS NETA_EX_VIEW TYPE=EXCP
```

You can also use an asterisk (*) as a wildcard at the end of a view name. For example, to delete all network views with names starting with LAN, enter:

```
DELVIEWS LAN*
```

An optional parameter is RODM=rodmname. This is not necessary if MultiSystem Manager is initialized and connected to RODM.

RODMVIEW

RODMVIEW is a menu-driven tool that enables you to display and manipulate RODM objects from the NetView command facility. It requires more knowledge of GMFHS and other data models than the graphical Visual BLDVIEWS. It does not require a separate workstation installation.

RODM Unloader

As data is dynamically added to RODM, you might want to periodically use the RODM Unloader to create text files that represent the current contents of RODM. This is a slightly different archival method than checkpointing. A checkpoint data set is a binary representation of the current contents of RODM, which can be used to restart RODM. The RODM Unloader utility takes the contents of RODM and creates RODM Loader language statements that can be reloaded later.
Appendix A. SNA Definitions for the NMC Topology Servers

To establish LU 6.2 connectivity between your host and the NMC topology servers, define the workstation-to-host connections in your VTAM and NCP definitions. You can define your workstation connections to the host using any type of connection that allows parallel LU 6.2 conversion.

Note: LU 6.2 connectivity is only available on the AIX and Windows platform of the NMC topology server.

Ethernet LAN-Attached NMC Servers

To define NMC topology servers to an ethernet LAN, add definitions for NCP and VTAM. In the NCP generation, where the ethernet is attached, define a GROUP set that defines the physical ethernet adapter.

If you want information about... Refer to...
The details of the parameters in the following example NCP, SSP, and EP Resource Definition Guide and the NCP, SSP, and EP Resource Definition Reference

<table>
<thead>
<tr>
<th>Group</th>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A03ETH</td>
<td>GROUP</td>
<td>ETHERNET=PHYSICAL, DIAL=NO, ISTATUS=ACTIVE, LNCTL=SDLC, VIRTUAL=NO</td>
</tr>
<tr>
<td>A03E170</td>
<td>LINE</td>
<td>ADDRESS=(1070,FULL), ANS=CONT, FRAMECNT=(100000,5000), INTERFACE=ETH2, LANTYPE=DYNAMIC</td>
</tr>
<tr>
<td>A03P170</td>
<td>PU</td>
<td>ANS=CONT, ARPTAB=(2000,20), INNPORT=YES, PUTYPE=1, IPLOCAL LADDR=96.0.0.99, INTERFACE=ETH2, METRIC=1, PROTOCOL=RIP</td>
</tr>
</tbody>
</table>

Because LAN-attached workstations appear as switched nodes to VTAM, they must be defined in a switched major node. In the following example, the LOCADDR=00 LU is the independent LU that the NMC topology server uses. The four other LUs are the dependent LUs that are used as the 3270 emulation screens.

Note: The LU names that you specify here must also be specified when you define the NMC topology server profile configurations.

If you want information about... Refer to...
The following example The VTAM library

<table>
<thead>
<tr>
<th>Group</th>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A03LETH</td>
<td>VBUILD</td>
<td>TYPE=SWNET, MAXGRP=25, MAXNO=25</td>
</tr>
<tr>
<td>A03L021</td>
<td>PU</td>
<td>ADDR=01, IDBLK=05D, IDNUM=00001, MAXPATH=0, IRETRY=NO, MAXDATA=256, PUTYPE=2, DISCNT=NO, ISTATUS=ACTIVE, MAXOUT=7, PASSLIM=7</td>
</tr>
<tr>
<td>A03L0210</td>
<td>LU</td>
<td>LOCADDR=00, DLOGMOD=DSIL6MOD, MODETAB=AMODETAB</td>
</tr>
</tbody>
</table>
Because the server workstation uses LU 6.2 parallel session support, you must update the ADDSESSION, MAXSESSION, and AUXADDR keywords specified on the build macro to support this configuration.

To update these keywords, perform the following tasks:
1. Verify that you specified the correct keywords and values on the LUDRPOOL macro.
2. If you already modified these keywords, verify that you defined them correctly for the configuration you are defining.
3. Perform the changes to these keywords on every NCP that has a server workstation.

Token-Ring LAN-Attached NMC Servers

To define NMC topology servers to a token-ring local area network (LAN), add definitions for NCP and VTAM. In the NCP generation, where the token ring is attached, define two GROUP sets. The first GROUP set defines the physical NTRI connection. The second GROUP defines the logical switched lines that are mapped onto the ring. The AUTOGEN parameter defines the number of lines created. There must be at least one line for each workstation.

If you want information about... Refer to...
The details of the parameters in the following example NCP, SSP, and EP Resource Definition Guide and the NCP, SSP, and EP Resource Definition Reference

N3PGRP1 GROUP ECLTYPE=(PHYSICAL,PER),	X
USSTAB=AUSSTAB,	X
ANS=CONTINUE,	X
ISTATUS=ACTIVE,	X
XID=NO	

| N3N1088 LINE ADDRESS=(1088,FULL), | X |
| PORTADD=1, | X |
| LOCADD=40000311088 |

| N3P8821 PU MAXOUT=7 |

| N3881D0 LU ISTATUS=INACTIVE |

* *

N3BNNG1 GROUP ECLTYPE=LOGICAL,	X
AUTGEN=32,	X
CALL=INOUT,	X
MODETAB=AMODETAB,	X
USSTAB=AUSSTAB,	X
ANS=CONTINUE,	X
PHYPORT=1,	X
ISTATUS=ACTIVE,	X
XMITDLY=NONE	

Because LAN-attached workstations appear as switched nodes to VTAM, they must be defined in a switched major node. In the following example, the LOCADDR=00 LU is the independent LU that the NMC topology server uses. The four other LUs are the dependent LUs that are used as the 3270 emulation screens.
Note: The LU names that you specify here must also be specified when you define the NMC topology server profile configurations.

If you want information about... Refer to...
The following example The VTAM library

```
N3L0211 VBUILD TYPE=SWNET, MAXGRP=25, MAXNO=25
N3L0211 PU ADDR=01, IDBLK=05D, IDNUM=00001, MAXPATH=0, IRETRY=NO, X
    MAXDATA=256, PUTYPE=2, DISCNT=NO, ISTATUS=ACTIVE, X
    MAXOUT=7, PASSLIM=7
N3L0210 LU LOCADDR=00, DLOGMOD=DSIL6MOD, MODETAB=AMODETAB
N3L0212 LU LOCADDR=02, DLOGMOD=M2SDLQC, MODETAB=AMODETAB
N3L0213 LU LOCADDR=03, DLOGMOD=M2SDLQC, MODETAB=AMODETAB
N3L0214 LU LOCADDR=04, DLOGMOD=M2SDLQC, MODETAB=AMODETAB
N3L0215 LU LOCADDR=05, DLOGMOD=M2SDLQC, MODETAB=AMODETAB
```

Because the server workstation uses LU 6.2 parallel session support, you must update the ADDSESS, MAXSESS, and AUXADDR keywords specified on the build macro to support this configuration. Verify that you have specified the correct keywords and values on the LUDRPOOL macro. If you already modified these keywords, ensure that you defined them correctly for the configuration you are defining. Perform the changes to these keywords on every NCP that has a server workstation.

SDLC-Attached NMC Servers

When defining workstations with an SDLC connection, update only the NCP generation. In the following example, the LOCADDR=00 LU is the independent LU that the NMC topology server uses. The four other LUs are the dependent LUs that are used as the 3270 emulation screens.

Note: The LU names that you specify here must also be specified when you define the NMC topology server profile configurations.

```
N3L0211 VBUILD TYPE=SWNET, MAXGRP=25, MAXNO=25
N3L0211 PU ADDR=01, IDBLK=05D, IDNUM=00001, MAXPATH=0, IRETRY=NO, X
    MAXDATA=256, PUTYPE=2, DISCNT=NO, ISTATUS=ACTIVE, X
    MAXOUT=7, PASSLIM=7
N3L0210 LU LOCADDR=00, DLOGMOD=DSIL6MOD, MODETAB=AMODETAB
N3L0212 LU LOCADDR=02, DLOGMOD=M2SDLQC, MODETAB=AMODETAB
N3L0213 LU LOCADDR=03, DLOGMOD=M2SDLQC, MODETAB=AMODETAB
N3L0214 LU LOCADDR=04, DLOGMOD=M2SDLQC, MODETAB=AMODETAB
N3L0215 LU LOCADDR=05, DLOGMOD=M2SDLQC, MODETAB=AMODETAB
```

Appendix A. SNA Definitions for the NMC Topology Servers 79
Because the server workstation uses LU 6.2 parallel session support, you must update the ADDSESS, MAXSESS, and AUXADDR keywords specified on the build macro to support this configuration. If you have already modified these keywords, ensure that you have defined them correctly for the configuration you are defining. Perform the changes to these keywords on every NCP that has an NMC topology server.

Defining the Logical Unit (LU) Name

The topology server can communicate with the NetView environment through an LU 6.2 conversation. To communicate with the NetView environment through an LU 6.2 conversation, define the LU name for the topology server that will be used.

To define the LU name of the topology server on the topology server workstation, use the sample ts.acg configuration file in one of the following directories:

- For Windows: %BINDIR%\TDS\server\sample
- For UNIX: $BINDIR/TDS/server/sample

This file is shipped with NMC and represents a sample communications server configuration file for the topology server LU 6.2 communications. Use the configuration file as a guide to tailor the configuration to fit your environment. See the appropriate communications server documentation for more information about LU 6.2 connections.

Configuring Your Workstation for SNA

Before using NMC to monitor your network, define your workstation network configuration. This section outlines how to configure SNA on your topology server workstation.

Configuring Communications Server

To configure SNA LU 6.2 support for your workstation network, use the information in this section.

NCP should be channel-attached to the host, with token-ring connections between the NCP and server.

The topology communications server provides communications between the server workstation and the host. In a multi-workstation configuration, the topology server also handles communications between the server workstation and the client workstations.

The topology server uses a topology communications server to establish and communicate through LU 6.2 sessions. The topology communication server supports LU 6.2 sessions through any medium that supports LU 6.2 communication. The server workstation is directly connected to a status focal point host through an LU 6.2 session.

This type of workstation serves the client workstation by storing views and status and by distributing this data to the client workstations. The client workstation acts as a graphic operator console that retrieves data from the server workstation. An example of this is a topology server workstation communicating with topology console workstations over a LAN.

SNA requires an IBM SNA communications product to be properly configured. Although there are numerous products that support the NMC requirements for
communications over SNA, they share certain parameters that must be configured. Before you configure your workstation for SNA, define the following:

Data Link Control (DLC)
Defines the underlying communications hardware to use. This includes token-ring and SDLC modems.

Local Node Definition
Defines the workstation control point name and ID to the hardware.

Connections
Specifies the link between the workstation and the host.

Local LU
Specifies the logical name that the topology communications server uses for communications.

Transaction Program
Specifies the attributes for the topology communications server.

Modes
Specifies the attributes of the communication session between the topology communications server and the host.

Note: Workstations can have additional local LU profiles and partner LU profiles that define LUs that are used by other applications. These profiles must not specify the same LU names that are used by the topology server.

To define the LU name of the topology server on the topology server workstation on Windows NT, use the sample `ts.acg` configuration file in one of the following directories:
- For Windows: `%BINDIR%\TDS\server\sample`
- For UNIX: `$BINDIR/TDS/server/sample`

This file is shipped with NMC and represents a sample communications server configuration file for the topology server LU 6.2 communications. Use the configuration file as a guide to tailor the configuration to fit your environment. See the appropriate communications server documentation for more information about LU 6.2 connections.

Using Communications Server to Configure your Workstation Network

The tables in this section provide examples of how to define the LU 6.2 sessions between the host and the server workstation.

The fields provided in the tables are fields that, typically, are in the configuration panel for each area. Because each SNA communications program is slightly different, the fields in the tables might not be available in all products or they might be labeled slightly differently.

Data Link Control Profile for SDLC: Table 8 on page 83 shows an example of the topology server workstation configuration for the data link control profile for SDLC.
Table 8. Data Link Control Profile for SDLC

<table>
<thead>
<tr>
<th>Communications Server Field Name</th>
<th>Example Field Value</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adapter</td>
<td>0</td>
<td>The SLDC adapter used for this communication.</td>
</tr>
<tr>
<td>Line Type</td>
<td>Non-switched</td>
<td>This will be non-switched unless you are using a modem that must be dialed.</td>
</tr>
<tr>
<td>Link Station Role</td>
<td>Secondary</td>
<td>A link station role of secondary is required when connecting to a host through a boundary function.</td>
</tr>
<tr>
<td>Maximum I-Field Size</td>
<td>2048</td>
<td>The maximum RU size must be coordinated with the MAXDATA parameter in the NCP definition for the non-switched line.</td>
</tr>
<tr>
<td>Free Unused Links</td>
<td>No</td>
<td>This box should not be selected for non-switched communications.</td>
</tr>
<tr>
<td>Local Station Address</td>
<td>C1</td>
<td>The SDLC station address of this node. It must match the ADDR parameter in the NCP definition for this node.</td>
</tr>
<tr>
<td>Line Mode</td>
<td>Full-duplex</td>
<td>This parameter must be coordinated with the DUPLEX parameter in the NCP definition for the non-switched line.</td>
</tr>
<tr>
<td>Modem Speed</td>
<td>Full speed</td>
<td>Set the modem rate at full speed unless line noise is a problem. Half speed provides more reliable operation if line noise is a problem.</td>
</tr>
<tr>
<td>Use NRZI Data Encoding</td>
<td>No</td>
<td>This parameter must match the NRZI parameter in the NCP definition for the non-switched line. If you select NRZI, the communication hardware between the workstation and the host must support NRZI.</td>
</tr>
<tr>
<td>Send Window Count</td>
<td>7</td>
<td>The send window count must match the MAXOUT parameter in the NCP definition for the non-switched line.</td>
</tr>
<tr>
<td>Receive Window Count</td>
<td>7</td>
<td>The receive window count must match the MAXOUT parameter in the NCP definition for the non-switched line.</td>
</tr>
</tbody>
</table>

Data Link Control Profile for LAN: Table 9 shows an example of the topology server workstation configuration for the data link control profile for LAN.

Table 9. APPC APIs over Token Ring

<table>
<thead>
<tr>
<th>Communications Server Field Name</th>
<th>Example Field Value</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adapter</td>
<td>0</td>
<td>The LAN adapter used for this communication.</td>
</tr>
<tr>
<td>Free Unused Link</td>
<td>No</td>
<td>No indicates that the host connection should not be dropped when the last application is logged off.</td>
</tr>
</tbody>
</table>
Table 9. APPC APIs over Token Ring (continued)

<table>
<thead>
<tr>
<th>Communications Server Field Name</th>
<th>Example Field Value</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Node Name</td>
<td>A19SRVCP</td>
<td>The 8-character name of the local control point. The name must match the CP name parameter in the host definition for this workstation.</td>
</tr>
<tr>
<td>Maximum I-field Size</td>
<td>2048</td>
<td>Specifies the maximum I-field size that the station can receive. This number must be greater than, or equal to, the maximum I-field size in the transmission service mode profile. For the host connection only, this number must coordinate with the MAXDATA value on the PU definition statement.</td>
</tr>
<tr>
<td>Maximum Number of Link Stations</td>
<td>16</td>
<td>One link is used to allocate sessions to another workstation. This parameter sets the maximum number of link stations that LU 6.2 communication uses.</td>
</tr>
<tr>
<td>Network ID</td>
<td>NETA</td>
<td>The 8-character name for the network containing this PU.</td>
</tr>
<tr>
<td>Receive Window Count</td>
<td>1</td>
<td>The receive window count specifies the number of frames that the station can receive before sending an acknowledgment.</td>
</tr>
<tr>
<td>Send Window Count</td>
<td>7</td>
<td>The send window count specifies the number of frames that the station can send before receiving an acknowledgment. For the host connection, this number must match the MAXOUT parameter on the PU definition statement.</td>
</tr>
</tbody>
</table>

Local Node Characteristics for SDLC or LAN: Table 10 shows an example of a topology server workstation configuration for the local node characteristics. Modify this profile for either an SDLC or LAN configuration.

Table 10. Local Node Characteristics for SDLC or LAN (Communications Server)

<table>
<thead>
<tr>
<th>Communications Server Field Name</th>
<th>Example Field Value</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network ID</td>
<td>NETA</td>
<td>The 8-character name of the network containing this PU.</td>
</tr>
<tr>
<td>Local Node Name (CP name)</td>
<td>A19SRVCP</td>
<td>The 8-character name of the local control point. The name must match the CP name parameter in the host definition for this workstation.</td>
</tr>
<tr>
<td>Local Node Type</td>
<td>Network node</td>
<td>The topology server can work with any node type. This example, however, assumes that the node type of the server is network node.</td>
</tr>
</tbody>
</table>
Table 10. Local Node Characteristics for SDLC or LAN (Communications Server) (continued)

<table>
<thead>
<tr>
<th>Communications Server Field Name</th>
<th>Example Field Value</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Node ID (in hexadecimal)</td>
<td>(05D) 00001</td>
<td>Used to determine which link station is primary for negotiable link stations. The node with the higher value becomes the primary link station. For a LAN connection, the first 3 hexadecimal digits are typically '05D'; the last 5 hexadecimal digits must match the IDNUM parameter in the switched major node PU definition.</td>
</tr>
</tbody>
</table>

Local LU Profile: Table 11 shows an example of the topology server workstation configuration for the logical unit profile you have specified.

Table 11. Local LU Profile (Communications Server)

<table>
<thead>
<tr>
<th>Communications Server Field Name</th>
<th>Example Field Value</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LU Name</td>
<td>A19SRVLO</td>
<td>Specifies the name of the LU as it is known externally to the SNA network. The value must match the host definition for this workstation. This value is unique for each workstation.</td>
</tr>
<tr>
<td>LU Alias</td>
<td>EGVPC</td>
<td>The name of the local LU profile. Create a local LU profile with the name EGVPC. The topology server requires the value EGVPC. The topology server also requires the LU alias to be specified in uppercase.</td>
</tr>
<tr>
<td>NAU Address</td>
<td>Independent LU</td>
<td>The topology server requires that an independent LU be selected.</td>
</tr>
</tbody>
</table>

Modes Profile: Table 12 is an example of the topology server workstation configuration for the transmission service mode profile.

Table 12. Modes Profile (Communications Server)

<table>
<thead>
<tr>
<th>Communications Server Field Name</th>
<th>Example Field Value</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode Name</td>
<td>DSIL6MOD</td>
<td>Specifies the mode name profile. Create a mode name profile with the name DSIL6MOD. The topology server requires this value.</td>
</tr>
<tr>
<td>Class of Service</td>
<td>#CONNECT</td>
<td>Specifies the class of service name. Use the system default for this value.</td>
</tr>
<tr>
<td>Mode Session Limit</td>
<td>3</td>
<td>Specifies the mode session limit. The topology server requires a minimum of 3. The sum of the mode session limits for a partner LU must be equal to or less than the partner LU session limit in the partner LU profile.</td>
</tr>
<tr>
<td>Minimum Contention Winners</td>
<td>1</td>
<td>The topology server requires 1 contention winner source session.</td>
</tr>
</tbody>
</table>
Table 12. Modes Profile (Communications Server) (continued)

<table>
<thead>
<tr>
<th>Communications Server Field Name</th>
<th>Example Field Value</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receive Pacing Window</td>
<td>1</td>
<td>Should be coordinated with the PACING parameter in the NCP definition for this LU and the SSNDPAC and ARCVPAC parameter in the VTAM logmode entry table for DSIL6MOD. Pacing prevents a session from flooding a node with data and using all the available buffers.</td>
</tr>
<tr>
<td>RU Size</td>
<td>Default RU</td>
<td>Enables Communications Server to select the most appropriate maximum RU size. If Maximum RU size is selected, the maximum RU size must be smaller than or equal to the maximum RU size in the appropriate DLC profile.</td>
</tr>
</tbody>
</table>

Transaction Program Definitions:

Transaction Program Definitions: Table 13 shows an example of the topology server workstation configuration for the transaction program profile.

Table 13. Transaction Program Definitions

<table>
<thead>
<tr>
<th>Communications Server Field Name</th>
<th>Example Field Value</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service TP</td>
<td>No</td>
<td>The topology server transaction program is not a service TP.</td>
</tr>
<tr>
<td>Transaction Program (TP) Name</td>
<td>30F0F4F4</td>
<td>The required name of the topology server transaction program. This value is case-sensitive and the topology server requires the TP name to be specified in upper case.</td>
</tr>
<tr>
<td>Transaction Program (TP) File Name</td>
<td>ihscftp.exe</td>
<td>The TP executable file which enables the host and server to communicate.</td>
</tr>
<tr>
<td>Conversation Security</td>
<td>No</td>
<td>The topology server does not support conversation security.</td>
</tr>
<tr>
<td>Program Parameter String</td>
<td></td>
<td>The topology server does not require this field.</td>
</tr>
</tbody>
</table>

Connections for SDLC or LAN:

If you have an SDLC or LAN connection, configure a connection to the host.

Note: Define the connection to the host if you do not have a 3270 emulator session to that host.

Then configure a connection by performing the following steps:

1. Select the adapter type.
2. Verify that the appropriate adapter number is in the entry field.
3. Click **Continue**.

Table 14. Connections for SDLC or LAN

<table>
<thead>
<tr>
<th>Communications Server Field Name</th>
<th>Example Field Value</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link name</td>
<td>LINK0001</td>
<td>Specifies the user default.</td>
</tr>
</tbody>
</table>
Table 14. Connections for SDLC or LAN (continued)

<table>
<thead>
<tr>
<th>Communications Server Field Name</th>
<th>Example Field Value</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjacent Node ID</td>
<td>Blank</td>
<td>Specifies the XID used by the partner node. Leave this value blank for the topology server.</td>
</tr>
<tr>
<td>Partner Network ID</td>
<td>NETID</td>
<td>Use the NETID in the VTAM ATCSTR\texttt{xx} member.</td>
</tr>
<tr>
<td>Partner Node Name</td>
<td>SSCPNAME</td>
<td>Use SSCPNAME in the VTAMATCSTR\texttt{xx} member. This field and the Partner Network ID may be left blank.</td>
</tr>
<tr>
<td>LAN Destination Address (LAN only)</td>
<td></td>
<td>The 12–character, hexadecimal LAN address of the computer to which you are defining the connection.</td>
</tr>
<tr>
<td>Address Format</td>
<td>Token-ring</td>
<td>This value should match the type of LAN connection you are using: token-ring or ethernet.</td>
</tr>
<tr>
<td>Remote SAP</td>
<td>04</td>
<td>Defines the address of the service access point (SAP) of the host with which you are communicating.</td>
</tr>
</tbody>
</table>
Appendix B. NetView Graphics Samples

This appendix contains the following:

- “GMFHS Samples”
- “MultiSystem Manager Samples” on page 88
- “NetView Management Console (NMC) Samples” on page 97
- “NetView Resource Manager Samples” on page 97
- “RODM Samples” on page 98
- “SNA Topology Manager Samples” on page 106

Other NetView samples are described in Tivoli NetView for z/OS Installation: Getting Started.

Note: Although the samples have been tested and are supported by Tivoli, you are responsible for making the proper modifications to the samples for your operating environment.

GMFHS Samples

Table 15 lists the samples and includes a brief description of each GMFHS sample and the data set name where each member resides once installation is complete.

Table 15. List of GMFHS Samples

<table>
<thead>
<tr>
<th>Distributed As</th>
<th>Name</th>
<th>Description</th>
<th>Data Set Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNMS4402</td>
<td>CNMSNIFF</td>
<td>GMFHS automation example</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>CNMS4403</td>
<td>EKGSNIFF</td>
<td>GMFHS automation example</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>CNMSJH10</td>
<td>CNMGMFHS</td>
<td>GMFHS start procedure</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>CNMSJH13</td>
<td></td>
<td>Relink - edits the assembler table, DUIFSMT</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>CNMSTYLE</td>
<td></td>
<td>This sample defines many of the NetView initialization parameters. Refer to</td>
<td>DSIPARM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CNMSTYLE for more information.</td>
<td></td>
</tr>
<tr>
<td>DSICMENT</td>
<td></td>
<td>NetView command model statements including those for GMFHS.</td>
<td>DSIPARM</td>
</tr>
<tr>
<td>DUIFCUX2</td>
<td></td>
<td>Sample RODM method (for exception views) that is driven as an installation</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>exit by GMFHS if the USRXMETH keyword is set in the DisplayStatus mapping</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>table. For more information on DUIFCUX2, DUIFCUXM, USRXMETH, and the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DisplayStatus mapping table, refer to the Tivoli NetView for z/OS Resource</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Object Data Manager and GMFHS Programmer’s Guide</td>
<td></td>
</tr>
</tbody>
</table>
Table 15. List of GMFHS Samples (continued)

<table>
<thead>
<tr>
<th>Distributed As</th>
<th>Name</th>
<th>Description</th>
<th>Data Set Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DUIFCUXM same</td>
<td>Sample RODM method (for exception views) that is driven as an installation exit by GMFHS if the USRXMETH keyword is set in the DisplayStatus mapping table. For more information on DUIFCUXM, refer to the Tivoli NetView for z/OS Resource Object Data Manager and GMFHS Programmer’s Guide for information on DUIFCUXM, USRXMETH, and the DisplayStatus mapping table.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td>DUIFDEXV same</td>
<td>Sample exception views object and exception views candidate definitions</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td>DUIFEDEF same</td>
<td>Non-SNA resource alert processor</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td>DUIFEMDY same</td>
<td>NETCENTER migration sample</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td>DUIFEUSR same</td>
<td>Provides alert translation constants for GMFHS event management</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td>DUIFSNET same</td>
<td>Sample load file</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td>DUIFSTRC same</td>
<td>GMFHS data model</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td>DUIDGINIT same</td>
<td>GMFHS initialization parameters</td>
<td>DSIPARM</td>
</tr>
<tr>
<td></td>
<td>DUIGPWLU same</td>
<td>Provides graphic data server LU names to GMFHS that are not to be allowed to acquire a session</td>
<td>DSIPARM</td>
</tr>
<tr>
<td></td>
<td>DUIGHB same</td>
<td>Initialization values for the DUIDGHB task</td>
<td>DSIPARM</td>
</tr>
</tbody>
</table>

MultiSystem Manager Samples

Table 16 lists the samples and includes a brief description of each MultiSystem Manager sample and the data set name where each member resides once installation is complete.

Table 16. List of MultiSystem Manager Samples

<table>
<thead>
<tr>
<th>Distributed As</th>
<th>Name</th>
<th>Description</th>
<th>Data Set Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CNMSTYLE same</td>
<td>This sample defines some of the NetView initialization parameters. Refer to CNMSTYLE for more information.</td>
<td>DSIPARM</td>
</tr>
<tr>
<td></td>
<td>DSICMENT same</td>
<td>NetView command model statements including those for MultiSystem Manager.</td>
<td>DSIPARM</td>
</tr>
<tr>
<td>Distributed As</td>
<td>Name</td>
<td>Description</td>
<td>Data Set Name</td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>FLCAINP same</td>
<td>Sample initialization file. This file can be used as a template when creating the MultiSystem Manager initialization file (or files) for your site. If you rename this file, specify that file name when issuing the INITTOPO command. FLCAINP contains an example of how to use the %INCLUDE statement to include other MultiSystem Manager initialization files.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td>FLCSCCHK same</td>
<td>Authorization checking for MultiSystem Manager commands sent using the TCP/IP transport. REXX command list FLCACCHK is called when processing a MultiSystem Manager command that uses TCP/IP to communicate between Tivoli NetView for z/OS and the MultiSystem Manager agent. As shipped, FLCACCHK does not do any authorization checking and all commands are processed. Sample FLCSCCHK contains the REXX source code from FLCACCHK. FLCSCCHK resides in the CNMSAMP dataset and is provided in sample format to allow you to add authorization checking and all commands are processed. Refer to the sample’s prolog for instructions on replacing the existing REXX command list with your modified sample.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td>FLCSDM1 same</td>
<td>MultiSystem Manager data model — part 1. This file contains the class and field definitions of the MultiSystem Manager data model that are SystemView®-compliant. This file contains the SystemView classes used to create view objects.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td>FLCSDM2 same</td>
<td>MultiSystem Manager data model — part 2. This file contains the class and field definitions of the MultiSystem Manager data model that are private extensions to the data model. This file contains the private classes used to create view objects.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>Distributed As</td>
<td>Name</td>
<td>Description</td>
<td>Data Set Name</td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>FLCSDM3</td>
<td>same</td>
<td>MultiSystem Manager data model — part 3. This file sets default status aggregation on both real and aggregate objects. This file also sets some default values for fields previously created. This file can be rerun with changed defaults.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLCSDM4</td>
<td>same</td>
<td>MultiSystem Manager data model — part 4. This file creates objects and sets fields used to graphically display objects.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLCSDM5</td>
<td>same</td>
<td>MultiSystem Manager data model — part 5. This file contains the default values for view change notification. This file can be customized.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLCSDM6</td>
<td>same</td>
<td>MultiSystem Manager data model — part 6. This file creates the default exception view definitions. The Exception view classes that are created by this sample are the same as those referenced in sample FLCSEXV.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLCSDM8</td>
<td>same</td>
<td>MultiSystem Manager data model — part 8. This file enables the use of RODM methods for dynamic topology correlation. The file loads the methods FLCMCON and FLCMCOR into RODM.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLCSDM9</td>
<td>same</td>
<td>MultiSystem Manager data model — part 9. This file enables the use of RODM methods for linking TN3270 resources to IP resources.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLCSEXV</td>
<td>same</td>
<td>Exception view file. This file contains sample statements for MultiSystem Manager Exception view processing. It contains exception view statements for the real RODM classes that are supported by the MultiSystem Manager data model. Remove the comments from those statements you want to use. The prolog of this file describes the usage and syntax of the Exception view statements.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLCSOPF</td>
<td>same</td>
<td>Operator definitions for MultiSystem Manager autotasks. This file contains the operator definition statements for the MultiSystem Manager autotasks. You can add additional autotasks for processing topology requests.</td>
<td>CNMSAMP</td>
</tr>
</tbody>
</table>
Table 16. List of MultiSystem Manager Samples (continued)

<table>
<thead>
<tr>
<th>Distributed As</th>
<th>Name</th>
<th>Description</th>
<th>Data Set Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FLCSPRFB</td>
<td>same Operator profile for MultiSystem Manager autotasks.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This file contains a sample profile for MultiSystem Manager autotasks.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FLCSSMT</td>
<td>same MultiSystem Manager Status Mapping Table required for Exception View processing.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This file contains sample statements for MultiSystem Manager exception view processing. The statements in this sample MUST be included in your existing NetView Status Mapping Table (DUIFSMT) if you want to implement exception view processing for MultiSystem Manager resources in RODM. The prolog of this file describes the usage and syntax of the NetView Status Mapping Table statements.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FLCVBLDS</td>
<td>same Sample BLDVIEWS control cards.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td>FLCVCARD</td>
<td>same This is the Visual BLDVIEWS language support file. It is generated by machine and should not be edited.</td>
<td>DSIPARM</td>
</tr>
</tbody>
</table>

IP Topology Samples

The following samples are specific to the MultiSystem Manager IP topology feature.

Table 17. List of MultiSystem Manager IP Topology Samples

<table>
<thead>
<tr>
<th>Distributed As</th>
<th>Name</th>
<th>Description</th>
<th>Data Set Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FLC3270</td>
<td>same Sample for support of TN3270 Manager (server/client).</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sample FLCS3270 enables management of TN3270 resources, both servers and clients.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FLCSDM6I</td>
<td>same Sample file for IP Exception_View_Classes.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This data model sample loads sample instances of Exception_View_Class for the IP topology agent. The exception view classes that are created by this sample are the same as those referenced in sample FLCSEXV. Both FLCSDM6I and FLCSEXV can be customized.</td>
<td></td>
</tr>
</tbody>
</table>
Table 17. List of MultiSystem Manager IP Topology Samples (continued)

<table>
<thead>
<tr>
<th>Distributed As</th>
<th>Name</th>
<th>Description</th>
<th>Data Set Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLCSIAUT</td>
<td>same</td>
<td>Sample REXX alert processor. REXX command list FLCAIAUT is called from the NetView automation table to process alerts generated by Tivoli NetView. Sample FLCSIAUT contains the REXX source code from FLCAIAUT. FLCSIAUT resides in the CNMSAMP data set and is provided in sample format to enable you to modify the automated alert processing. Refer to the sample’s prolog for instructions on replacing the existing REXX command list with your modified sample.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLCSIIP</td>
<td>same</td>
<td>Sample GETTOPO initialization statement for IP. Sample FLCSIIP is included by MultiSystem Manager initialization file sample FLCAINP. FLCSIIP contains a sample GETTOPO statement for IP. Each of the keywords on the GETTOPO command are described briefly.</td>
<td>CNMSAMP</td>
</tr>
</tbody>
</table>

LAN Network Manager Topology Samples

The following samples are specific to the MultiSystem Manager LAN Network Manager topology feature.

Table 18. List of MultiSystem Manager LNM Topology Samples

<table>
<thead>
<tr>
<th>Distributed As</th>
<th>Name</th>
<th>Description</th>
<th>Data Set Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLCSDM6L</td>
<td>same</td>
<td>Sample file for LNM Exception_View_Classes. This data model sample loads sample instances of Exception_View_Class for the LNM topology agent. The exception view classes that are created by this sample are the same as those referenced in sample FLCSEXV. Both FLCSDM6L and FLCSEXV can be customized.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLCSILNM</td>
<td>same</td>
<td>Sample GETTOPO initialization statement for LNM. Sample FLCSILNM is included by MultiSystem Manager initialization file sample FLCAINP. FLCSILNM contains a sample GETTOPO statement for LNM. Each of the keywords on the GETTOPO command are described briefly.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>Distributed As</td>
<td>Name</td>
<td>Description</td>
<td>Data Set Name</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>FLCSLALH</td>
<td>same</td>
<td>Sample REXX alert processor. REXX command list FLCALALH is called from the NetView automation table to process alerts generated by LNM. Sample FLCSLALH contains the REXX source code from FLCALALH. FLCSLALH is provided in sample format to allow you to modify the automated alert processing. Refer to the sample’s prolog for instructions on replacing the existing REXX command list with your modified sample.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLCSLAUT</td>
<td>same</td>
<td>Sample REXX alert and resolution processor. REXX command list FLCALAUT is called from the NetView automation table to process alerts and resolutions generated by LNM. Sample FLCSLAUT contains the REXX source code from FLCALAUT. FLCSLAUT is provided in sample format to allow you to modify the automated alert processing. Refer to the sample’s prolog for instructions on replacing the existing REXX command list with your modified sample.</td>
<td>CNMSAMP</td>
</tr>
</tbody>
</table>

NetFinity Topology Samples

The following samples are specific to the MultiSystem Manager NetFinity topology feature.

<table>
<thead>
<tr>
<th>Distributed As</th>
<th>Name</th>
<th>Description</th>
<th>Data Set Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLCSDM6H</td>
<td>same</td>
<td>Sample file for NetFinity Exception_View_Classes. This data model sample loads sample instances of Exception_View_Class for the NetFinity topology agent. The exception view classes that are created by this sample are the same as those referenced in sample FLCSEXV. Both FLCSDM6H and FLCSEXV can be customized.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>Distributed As</td>
<td>Name</td>
<td>Description</td>
<td>Data Set Name</td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>FLCHALH</td>
<td>same</td>
<td>Sample REXX alert processor.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REXX command list FLCHALH is called from the NetView automation table to process alerts generated by NetFinity.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sample FLCHALH contains the REXX source code from FLCHALH. FLCHALH is provided in sample format to allow you to modify the automated alert processing. Refer to the sample’s prolog for instructions on replacing the existing REXX command list with your modified sample.</td>
<td></td>
</tr>
<tr>
<td>FLCSHAT2</td>
<td>same</td>
<td>Sample REXX alert processor.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REXX command list FLCSHAT2 is called from the NetView automation table to process alerts generated by NetFinity.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sample FLCSHAT2 contains the REXX source code from FLCSHAT2. FLCSHAT2 is provided in sample format to allow you to modify the automated alert processing. Refer to the sample’s prolog for instructions on replacing the existing REXX command list with your modified sample.</td>
<td></td>
</tr>
<tr>
<td>FLCSHAUT</td>
<td>same</td>
<td>Sample REXX alert processor.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REXX command list FLCSHAUT is called from the NetView automation table to process alerts generated by NetFinity.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sample FLCSHAUT contains the REXX source code from FLCSHAUT. FLCSHAUT is provided in sample format to allow you to modify the automated alert processing. Refer to the sample’s prolog for instructions on replacing the existing REXX command list with your modified sample.</td>
<td></td>
</tr>
<tr>
<td>FLCINF</td>
<td>same</td>
<td>Sample GETTOPO initialization statement for NetFinity.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sample FLCINF is included by MultiSystem Manager initialization file sample FLCAINF. FLCINF contains a sample GETTOPO statement for NetFinity. Each of the keywords on the GETTOPO command are described briefly.</td>
<td></td>
</tr>
</tbody>
</table>

Open Topology Samples

The following samples are specific to the MultiSystem Manager Open topology feature.
<table>
<thead>
<tr>
<th>Distributed Name</th>
<th>Name</th>
<th>Description</th>
<th>Data Set Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLCSDM6O</td>
<td>same</td>
<td>Sample file for Open topology Exception_View_Classes.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This data model sample loads sample instances of Exception_View_Class for the Open topology agent. The exception view classes that are created by this sample are the same as those referenced in sample FLCSEXV. Both FLCSDM6O and FLCSEXV can be customized.</td>
<td></td>
</tr>
<tr>
<td>FLCSIOPN</td>
<td>same</td>
<td>Sample GETTOPO initialization statement for Open.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sample FLCSIOPN is included by MultiSystem Manager initialization file sample FLCAINP. FLCSIOPN contains a sample GETTOPO statement for the Open topology interface. Each of the keywords on the GETTOPO command are described briefly.</td>
<td></td>
</tr>
<tr>
<td>FLCSOALH</td>
<td>same</td>
<td>Sample REXX alert processor.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REXX command list FLCSOALH is called from the NetView automation table to process alerts generated by Open topology agents.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sample FLCSOALH contains the REXX source code from FLCAOALH. FLCSOALH is provided in sample format to allow you to modify the automated alert processing. Refer to the sample’s prolog for instructions on replacing the existing REXX command list with your modified sample.</td>
<td></td>
</tr>
<tr>
<td>FLCSOAUT</td>
<td>same</td>
<td>Sample REXX alert processor.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REXX command list FLCSOAUT is called from the NetView automation table to process alerts generated by Open topology agents.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sample FLCSOAUT contains the REXX source code from FLCAOAUT. FLCSOAUT is provided in sample format to allow you to modify the automated alert processing. Refer to the sample’s prolog for instructions on replacing the existing REXX command list with your modified sample.</td>
<td></td>
</tr>
<tr>
<td>FLCSOX01</td>
<td>same</td>
<td>Sample REXX creation of RODM views, using MultiSystem Manager Access (FLCARODM command) and the open data model.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This file also demonstrates topology correlation between different resources.</td>
<td></td>
</tr>
</tbody>
</table>

Table 20. List of MultiSystem Manager Open Topology Samples
Tivoli Management Region Topology Samples

The following samples are specific to the MultiSystem Manager TMR topology feature.

Table 21. List of MultiSystem Manager TMR Topology Samples

<table>
<thead>
<tr>
<th>Distributed As</th>
<th>Name</th>
<th>Description</th>
<th>Data Set Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FLCSDM6T</td>
<td>Sample file for TMR Exception_View_Classes.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This data model sample loads sample instances of Exception_View_Class for the TMR topology agent. The exception view classes that are created by this sample are the same as those referenced in sample FLCSEXV. Both FLCSDM6T and FLCSEXV can be customized.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FLCSITME</td>
<td>Sample GETTOPO initialization statement for TMR.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sample FLCSITME is included by MultiSystem Manager initialization file sample FLCAINP. FLCSITME contains a sample GETTOPO statement for TMR. Each of the keywords on the GETTOPO command are briefly described.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FLCSTALH</td>
<td>Sample REXX alert processor.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REXX command list FLCATALH is called from the NetView automation table to process alerts generated by TMR. Sample FLCSTALH contains the REXX source code from FLCATALH. FLCSTALH is provided in sample format to allow you to modify the automated alert processing. Refer to the sample’s prolog for instructions on replacing the existing REXX command list with your modified sample.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FLCSTAUT</td>
<td>Sample REXX alert processor.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REXX command list FLCATAUT is called from the NetView automation table to process alerts generated by TMR. Sample FLCSTAUT contains the REXX source code from FLCATAUT. FLCSTAUT enables you to modify the automated alert processing. Refer to the sample’s prolog for instructions on replacing the existing REXX command list with your modified sample.</td>
<td></td>
</tr>
</tbody>
</table>
NetView Management Console (NMC) Samples

Table 22 lists the samples and includes a brief description of each NMC sample and the data set name where each member resides after installation is complete.

<table>
<thead>
<tr>
<th>Distributed As</th>
<th>Name</th>
<th>Description</th>
<th>Data Set Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CNMSAF2</td>
<td>This sample includes RACF definition statements for restricting access to the NMC.</td>
<td>DSIPARM</td>
</tr>
<tr>
<td></td>
<td>CNMSCAT2</td>
<td>This sample includes command authorization table statements for restricting access to the NMC.</td>
<td>DSIPARM</td>
</tr>
<tr>
<td></td>
<td>CNMSTYLE</td>
<td>This sample defines many of the NetView initialization parameters. Refer to CNMSTYLE for more information.</td>
<td>DSIPARM</td>
</tr>
<tr>
<td></td>
<td>DUIFPMEM</td>
<td>Defines CNMTAMEL task definition statements</td>
<td>DSIPARM</td>
</tr>
<tr>
<td></td>
<td>DUIFSMT</td>
<td>Default DisplayStatus mapping table</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td>DUIISFP</td>
<td>Defines initialization values for the CNMTAMEL task</td>
<td>DSIPARM</td>
</tr>
<tr>
<td></td>
<td>DUIIPOLCY</td>
<td>Define NMCSTATUS policy definitions</td>
<td>DSIPARM</td>
</tr>
</tbody>
</table>

NetView Resource Manager Samples

Table 23 lists the samples and includes a brief description of each NetView Resource Manager (NRM) sample and the data set name where each member resides after installation.

<table>
<thead>
<tr>
<th>Distributed As</th>
<th>Name</th>
<th>Description</th>
<th>Data Set Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CNMSTYLE</td>
<td>This sample defines many of the NetView initialization parameters. All of the NRM initialization parameters are in CNMSTYLE. Refer to CNMSTYLE for more information.</td>
<td>DSIPARM</td>
</tr>
<tr>
<td></td>
<td>DUIFNRMM</td>
<td>This file contains a group of RODM Collection Manager collections. The contents of the collections are various NRM objects from ALL monitored NetViews.</td>
<td>CNMSAMP</td>
</tr>
</tbody>
</table>
Table 23. List of NetView Resource Manager Samples (continued)

<table>
<thead>
<tr>
<th>Distributed As</th>
<th>Name</th>
<th>Description</th>
<th>Data Set Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUIFNRM2</td>
<td>same</td>
<td>This file contains a group of RODM Collection Manager collections. The contents of the collections are various NRM objects from a single NetView.</td>
<td>CNMSAMP</td>
</tr>
</tbody>
</table>

RODM Samples

Table 24 lists the RODM samples found in the NETVIEW.V5R1M0.CNMSAMP library. The table includes a brief description of each sample and the data set name into which each member is copied.

All required JCL and definitions can be found in the NETVIEW.V5R1M0.CNMSAMP library under the distributed sample name.

Table 24. List of RODM Samples

<table>
<thead>
<tr>
<th>Distributed As</th>
<th>Name</th>
<th>Description</th>
<th>Data Set Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNMS4290</td>
<td>ARODMCON</td>
<td>Activates the assembler DSINOR that connects to RODM</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>CNMSJ004</td>
<td>same</td>
<td>Allocates logs and VSAM databases for base NetView and RODM</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>CNMSJH12</td>
<td>same</td>
<td>Loads the RODM data cache for GMFHS</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>CNMSJ118</td>
<td>same</td>
<td>IEBCOPY RODM procedure to PROCLIB</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>CNMSTYLE</td>
<td>same</td>
<td>This sample defines some of the NetView initialization parameters. Refer to CNMSTYLE for more information.</td>
<td>DSIPARM</td>
</tr>
<tr>
<td>DSICMENT</td>
<td>same</td>
<td>NetView command model statements for RODM</td>
<td>DSIPARM</td>
</tr>
<tr>
<td>DSIQTSKI</td>
<td>same</td>
<td>Defines RODM tasks to the RODM access and control subtask (DSIQTSK)</td>
<td>DSIPARM</td>
</tr>
<tr>
<td>EKG51101</td>
<td>same</td>
<td>PL/I Sample - Function EKG_Connect</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>EKG51102</td>
<td>same</td>
<td>PL/I Sample - Function EKG_Disconnect</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>EKG51201</td>
<td>same</td>
<td>PL/I Sample - Function EKG_Checkpoint</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>EKG51202</td>
<td>same</td>
<td>PL/I Sample - Function EKG_Stop</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>EKG51302</td>
<td>same</td>
<td>PL/I Sample - Function EKG_CreateClass</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>EKG51303</td>
<td>same</td>
<td>PL/I Sample - Function EKG_DeleteClass</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>EKG51304</td>
<td>same</td>
<td>PL/I Sample - Function EKG_CreateField</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>EKG51305</td>
<td>same</td>
<td>PL/I Sample - Function EKG_DeleteField</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>Distributed As</td>
<td>Name</td>
<td>Description</td>
<td>Data Set Name</td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
<td>------------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>EKG51306</td>
<td>EKG51306</td>
<td>same PL/I Sample - Function EKG_CreateSubfield</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG51307</td>
<td>EKG51307</td>
<td>same PL/I Sample - Function EKG_DeleteSubfield</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG51401</td>
<td>EKG51401</td>
<td>same PL/I Sample - Function EKG_ChangeField</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG51402</td>
<td>EKG51402</td>
<td>same PL/I Sample - Function EKG_SwapField</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG51403</td>
<td>EKG51403</td>
<td>same PL/I Sample - Function EKG_ChangeSubfield</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG51404</td>
<td>EKG51404</td>
<td>same PL/I Sample - Function EKG_SwapSubfield</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG51405</td>
<td>EKG51405</td>
<td>same PL/I Sample - Function EKG_LinkTrigger</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG51406</td>
<td>EKG51406</td>
<td>same PL/I Sample - Function EKG_LinkNoTrigger</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG51407</td>
<td>EKG51407</td>
<td>same PL/I Sample - Function EKG_UnLinkTrigger</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG51408</td>
<td>EKG51408</td>
<td>same PL/I Sample - Function EKG_UnLinkNoTrigger</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG51409</td>
<td>EKG51409</td>
<td>same PL/I Sample - Function EKG_CreateObject</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG51410</td>
<td>EKG51410</td>
<td>same PL/I Sample - Function EKG_DeleteObject</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG51411</td>
<td>EKG51411</td>
<td>same PL/I Sample - Function EKG_RevertToInherited</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG51412</td>
<td>EKG51412</td>
<td>same PL/I Sample - Function EKG_AddNotifySubscription</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG51413</td>
<td>EKG51413</td>
<td>same PL/I Sample - Function EKG_DeleteNotifySubscription</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG51415</td>
<td>EKG51415</td>
<td>same PL/I Sample - Function EKG_TriggerNamedMethod</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG51416</td>
<td>EKG51416</td>
<td>same PL/I Sample - Function EKG_TriggerOIMethod</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG51417</td>
<td>EKG51417</td>
<td>same PL/I Sample - Function EKG_AddObjDelNotifySubs</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG51418</td>
<td>EKG51418</td>
<td>same PL/I Sample - Function EKG_DelObjDelNotifySubs</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG51419</td>
<td>EKG51419</td>
<td>same PL/I Sample - Function EKG_ChangeMultipleFields</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG51501</td>
<td>EKG51501</td>
<td>same PL/I Sample - Function EKG_QueryField</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG51502</td>
<td>EKG51502</td>
<td>same PL/I Sample - Function EKG_QuerySubfield</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG51503</td>
<td>EKG51503</td>
<td>same PL/I Sample - Function EKG_QueryEntityStructure</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>Distributed As</td>
<td>Name</td>
<td>Description</td>
<td>Data Set Name</td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>EKG51504</td>
<td>same</td>
<td>PL/I Sample - Function EKG_QueryFieldStructure</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG51505</td>
<td>same</td>
<td>PL/I Sample - Function EKG_QueryFieldID</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG51506</td>
<td>same</td>
<td>PL/I Sample - Function EKG_QueryFieldName</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG51507</td>
<td>same</td>
<td>PL/I Sample - Function EKG_QueryNotifyQueue</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG51508</td>
<td>same</td>
<td>PL/I Sample - Function EKG_QueryMultipleSubfields</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG51509</td>
<td>same</td>
<td>PL/I Sample - Function EKG_Locate</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG51510</td>
<td>same</td>
<td>PL/I Sample - Function EKG_QueryResponseBlockOverflow</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG51600</td>
<td>same</td>
<td>PL/I Sample - Function EKG_ExecuteFunctionList</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG52001</td>
<td>same</td>
<td>PL/I Sample - Function EKG_QueryFunctionBlockContents</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG52002</td>
<td>same</td>
<td>PL/I Sample - Function EKG_LockObjectList</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG52003</td>
<td>same</td>
<td>PL/I Sample - Function EKG_UnlockAll</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG52004</td>
<td>same</td>
<td>PL/I Sample - Function EKG_ResponseBlock</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG52005</td>
<td>same</td>
<td>PL/I Sample - Function EKG_SendNotification</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG52006</td>
<td>same</td>
<td>PL/I Sample - Function EKG_SetReturnCode</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG52007</td>
<td>same</td>
<td>PL/I Sample - Function EKG_WakeAmi</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG52008</td>
<td>same</td>
<td>PL/I Sample - Function EKG_OutputToLog</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG52009</td>
<td>same</td>
<td>PL/I Sample - Function EKG_MessageTriggeredAction</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG52011</td>
<td>same</td>
<td>PL/I Sample - Function EKG_QueryObjectName</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG5VDCL</td>
<td>same</td>
<td>PL/I sample that declares RODM data types</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG5WAIT</td>
<td>same</td>
<td>PL/I sample to invoke RODM EKGWAIT</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG61101</td>
<td>same</td>
<td>C Sample - Function EKG_Connect</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG61102</td>
<td>same</td>
<td>C Sample - Function EKG_Disconnect</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG61201</td>
<td>same</td>
<td>C Sample - Function EKG_Checkpoint</td>
<td>CNMSAMP^1</td>
</tr>
</tbody>
</table>
Table 24. List of RODM Samples (continued)

<table>
<thead>
<tr>
<th>Distributed</th>
<th>Name</th>
<th>Description</th>
<th>Data Set Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>EKG61202</td>
<td>same</td>
<td>C Sample - Function EKG_Stop</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG61302</td>
<td>same</td>
<td>C Sample - Function EKG_CreateClass</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG61303</td>
<td>same</td>
<td>C Sample - Function EKG_DeleteClass</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG61304</td>
<td>same</td>
<td>C Sample - Function EKG_CreateField</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG61305</td>
<td>same</td>
<td>C Sample - Function EKG_DeleteField</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG61306</td>
<td>same</td>
<td>C Sample - Function EKG_CreateSubfield</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG61307</td>
<td>same</td>
<td>C Sample - Function EKG_DeleteSubfield</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG61401</td>
<td>same</td>
<td>C Sample - Function EKG_ChangeField</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG61402</td>
<td>same</td>
<td>C Sample - Function EKG_SwapField</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG61403</td>
<td>same</td>
<td>C Sample - Function EKG_ChangeSubfield</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG61404</td>
<td>same</td>
<td>C Sample - Function EKG_SwapSubfield</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG61405</td>
<td>same</td>
<td>C Sample - Function EKG_LinkTrigger</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG61406</td>
<td>same</td>
<td>C Sample - Function EKG_LinkNoTrigger</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG61407</td>
<td>same</td>
<td>C Sample - Function EKG_UnLinkTrigger</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG61408</td>
<td>same</td>
<td>C Sample - Function EKG_UnLinkNoTrigger</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG61409</td>
<td>same</td>
<td>C Sample - Function EKG_CreateObject</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG61410</td>
<td>same</td>
<td>C Sample - Function EKG_DeleteObject</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG61411</td>
<td>same</td>
<td>C Sample - Function EKG_RevertToInherited</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG61412</td>
<td>same</td>
<td>C Sample - Function EKG_AddNotifySubscription</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG61413</td>
<td>same</td>
<td>C Sample - Function EKG_DeleteNotifySubscription</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG61415</td>
<td>same</td>
<td>C Sample - Function EKG_TriggerNamedMethod</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG61416</td>
<td>same</td>
<td>C Sample - Function EKG_TriggerOIMethod</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>EKG61417</td>
<td>same</td>
<td>C Sample - Function EKG_AddObjDelNotifySubs</td>
<td>CNMSAMP^1</td>
</tr>
<tr>
<td>Distributed</td>
<td>Name</td>
<td>Description</td>
<td>Data Set Name</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>EKG61418</td>
<td>same C Sample - Function EKG_DelObjDelNotifySubs</td>
<td>CNMSAMP1</td>
<td></td>
</tr>
<tr>
<td>EKG61419</td>
<td>same C Sample - Function EKG_ChangeMultipleFields</td>
<td>CNMSAMP1</td>
<td></td>
</tr>
<tr>
<td>EKG61501</td>
<td>same C Sample - Function EKG_QueryField</td>
<td>CNMSAMP1</td>
<td></td>
</tr>
<tr>
<td>EKG61502</td>
<td>same C Sample - Function EKG_QuerySubfield</td>
<td>CNMSAMP1</td>
<td></td>
</tr>
<tr>
<td>EKG61503</td>
<td>same C Sample - Function EKG_QueryEntityStructure</td>
<td>CNMSAMP1</td>
<td></td>
</tr>
<tr>
<td>EKG61504</td>
<td>same C Sample - Function EKG_QueryFieldStructure</td>
<td>CNMSAMP1</td>
<td></td>
</tr>
<tr>
<td>EKG61505</td>
<td>same C Sample - Function EKG_QueryFieldID</td>
<td>CNMSAMP1</td>
<td></td>
</tr>
<tr>
<td>EKG61506</td>
<td>same C Sample - Function EKG_QueryFieldName</td>
<td>CNMSAMP1</td>
<td></td>
</tr>
<tr>
<td>EKG61507</td>
<td>same C Sample - Function EKG_QueryNotifyQueue</td>
<td>CNMSAMP1</td>
<td></td>
</tr>
<tr>
<td>EKG61508</td>
<td>same C Sample - Function EKG_QueryMultipleSubfields</td>
<td>CNMSAMP1</td>
<td></td>
</tr>
<tr>
<td>EKG61509</td>
<td>same C Sample - Function EKG_Locate</td>
<td>CNMSAMP1</td>
<td></td>
</tr>
<tr>
<td>EKG61510</td>
<td>same C Sample - Function EKG_QueryResponseBlockOverflow</td>
<td>CNMSAMP1</td>
<td></td>
</tr>
<tr>
<td>EKG61600</td>
<td>same C Sample - Function EKG_ExecuteFunctionList</td>
<td>CNMSAMP1</td>
<td></td>
</tr>
<tr>
<td>EKG62001</td>
<td>same C Sample - Function EKG_QueryFunctionBlockContents</td>
<td>CNMSAMP1</td>
<td></td>
</tr>
<tr>
<td>EKG62002</td>
<td>same C Sample - Function EKG_LockObjectList</td>
<td>CNMSAMP1</td>
<td></td>
</tr>
<tr>
<td>EKG62003</td>
<td>same C Sample - Function EKG_UnlockAll</td>
<td>CNMSAMP1</td>
<td></td>
</tr>
<tr>
<td>EKG62004</td>
<td>same C Sample - Function EKG_ResponseBlock</td>
<td>CNMSAMP1</td>
<td></td>
</tr>
<tr>
<td>EKG62005</td>
<td>same C Sample - Function EKG_SendNotification</td>
<td>CNMSAMP1</td>
<td></td>
</tr>
<tr>
<td>EKG62006</td>
<td>same C Sample - Function EKG_SetReturnCode</td>
<td>CNMSAMP1</td>
<td></td>
</tr>
<tr>
<td>EKG62007</td>
<td>same C Sample - Function EKG_WhereAmI</td>
<td>CNMSAMP1</td>
<td></td>
</tr>
<tr>
<td>EKG62008</td>
<td>same C Sample - Function EKG_OutputToLog</td>
<td>CNMSAMP1</td>
<td></td>
</tr>
<tr>
<td>EKG62009</td>
<td>same C Sample - Function EKG_MessageTriggeredAction</td>
<td>CNMSAMP1</td>
<td></td>
</tr>
<tr>
<td>EKG62011</td>
<td>same C Sample - Function EKG_QueryObjectName</td>
<td>CNMSAMP1</td>
<td></td>
</tr>
<tr>
<td>Distributed As</td>
<td>Name</td>
<td>Description</td>
<td>Data Set Name</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>EKG6VDCL same</td>
<td>C sample that declares RODM data types CNMSAMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EKG6WAIT same</td>
<td>C sample to invoke RODM EKGWAIT CNMSAMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EKGCMIMV same</td>
<td>C sample that increments the value of a specified field CNMSAMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EKGCPI same</td>
<td>Sample change method to invoke EKGSPI CNMSAMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EKCTABL same</td>
<td>Sample loader control file CNMSAMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EKCTIM same</td>
<td>Sample change method source CNMSAMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EKCUST same</td>
<td>Sample RODM customization file CNMSAMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EKGCVER same</td>
<td>C sample verification routine source CNMSAMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGGIN1 same</td>
<td>Sample RODM structure load input CNMSAMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGGIN3 same</td>
<td>Sample RODM object load input CNMSAMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGGINIT same</td>
<td>Sample initialization method CNMSAMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGGINMTB same</td>
<td>Sample loader install method table CNMSAMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGIVER same</td>
<td>PL/1 sample verification routine source CNMSAMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EKGUCDS same</td>
<td>Sample that allocates output data sets used by RODMUNLD to store RODM loader statements CNMSAMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGKUJCL same</td>
<td>Sample that invokes the RODM unload function CNMSAMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EKGLG000 same</td>
<td>Sample log formatter procedure CNMSAMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EKGLINK same</td>
<td>Sample JCL to link edit user modules that load structure and object definitions to RODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EKLLOAD same</td>
<td>Sample RODM JCL procedure to load RODM data cache CNMSAMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EKLOADP same</td>
<td>Sample RODM JCL procedure to load RODM data cache PROCLIB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGGLUSER same</td>
<td>Sample JCL for structure or object load of RODM through a user module CNMSAMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EKGMIMV same</td>
<td>Sample named method source CNMSAMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EKGNEQL same</td>
<td>Sample notification method 4 CNMSAMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EKGNLST same</td>
<td>Sample notification method 3 CNMSAMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EKGNOTF same</td>
<td>Sample notification method 1 CNMSAMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EKGNTHD same</td>
<td>Sample notification method 2 CNMSAMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EKGOPPI same</td>
<td>Sample object independent method to invoke EKGSPI CNMSAMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EKPTENU same</td>
<td>Sample load parameter mapping table CNMSAMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EKGRDUMP same</td>
<td>Sample JCL to run the RODM dump utility CNMSAMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EKGRLOG same</td>
<td>Sample JCL to submit log formatter procedure CNMSAMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGSCUCKPT same</td>
<td>Sample JCL to allocate VSAM checkpoint data sets for a second instance of RODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EKSI101 same</td>
<td>Allocates the RODM log VSAM databases CNMSAMP</td>
<td></td>
</tr>
</tbody>
</table>
Table 24. List of RODM Samples (continued)

<table>
<thead>
<tr>
<th>Distributed As</th>
<th>Name</th>
<th>Description</th>
<th>Data Set Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EKGSI102 same</td>
<td>Allocates the RODM log VSAM databases for a second instance of RODM</td>
<td>CNMSAMP1</td>
</tr>
<tr>
<td></td>
<td>EKGSI201 same</td>
<td>Allocates the RODM master, transaction, and check point VSAM databases</td>
<td>CNMSAMP1</td>
</tr>
<tr>
<td></td>
<td>EKGSI202 same</td>
<td>Allocates the RODM master, transaction, and check point VSAM databases for a second instance of RODM</td>
<td>CNMSAMP1</td>
</tr>
<tr>
<td></td>
<td>EKGSID01 same</td>
<td>Deletes RODM VSAM databases</td>
<td>CNMSAMP1</td>
</tr>
<tr>
<td></td>
<td>EKGSID02 same</td>
<td>Deletes the RODM log VSAM databases for a second instance of RODM</td>
<td>CNMSAMP1</td>
</tr>
<tr>
<td></td>
<td>EKGSID03 same</td>
<td>Deletes the RODM master, transaction, and check point VSAM databases for a second instance of RODM</td>
<td>CNMSAMP1</td>
</tr>
<tr>
<td></td>
<td>EKGSJ004 same</td>
<td>Allocates logs and VSAM databases for RODM</td>
<td>CNMSAMP1</td>
</tr>
<tr>
<td></td>
<td>EKGSLOG same</td>
<td>Sample JCL to allocate VSAM data sets used for logging for a second instance of RODM</td>
<td>CNMSAMP1</td>
</tr>
<tr>
<td></td>
<td>EKGSVER same</td>
<td>Sample JCL to run the installation verification routine</td>
<td>CNMSAMP1</td>
</tr>
<tr>
<td></td>
<td>EKGXRODM same</td>
<td>Sample JCL to start RODM</td>
<td>PROCLIB</td>
</tr>
</tbody>
</table>

Notes:
1. Sample is not copied.

FLCARODM Samples

The following samples are specific to FLCARODM which provides an external REXX interface for the manipulation of RODM objects.

Table 25. List of FLCARODM Samples

<table>
<thead>
<tr>
<th>Distributed As</th>
<th>Name</th>
<th>Description</th>
<th>Data Set Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FLCSBX1 same</td>
<td>Sample REXX example for FLCARODM</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td>FLCSBX2 same</td>
<td>Sample REXX example for FLCARODM</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td>FLCSBX3 same</td>
<td>Sample REXX example for FLCARODM</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td>FLCSBX4 same</td>
<td>Sample REXX example for FLCARODM</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td>FLCSBX5 same</td>
<td>Sample REXX example for FLCARODM</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td>FLCSBX6 same</td>
<td>Sample REXX example for FLCARODM</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td>FLCSBX7 same</td>
<td>Sample REXX example for FLCARODM</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td>FLCSBX8 same</td>
<td>Sample REXX example for FLCARODM</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td>FLCSDX1 same</td>
<td>Sample REXX example for FLCARODM</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td>FLCSDX2 same</td>
<td>Sample REXX example for FLCARODM</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td>FLCSDX3 same</td>
<td>Sample REXX example for FLCARODM</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td></td>
<td>FLCSPX1 same</td>
<td>Sample REXX example for FLCARODM</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>Distributed As</td>
<td>Name</td>
<td>Description</td>
<td>Data Set Name</td>
</tr>
<tr>
<td>----------------</td>
<td>------------</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>FLCSPX2</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCSQX1</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCSQX2</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCSQX3</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCSQX4</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCSQX5</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCSTSTEM</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCSX10</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCSX11</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCSX12</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCSX13</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCSX14</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCSX15</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCSX16</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCSX17</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCSX18</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCSX19</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCSX1</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCSX20</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCSX21</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCSX22</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCSX2</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCSX3</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCSX4</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCSX5</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCSX6</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCSX7</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCSX8</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCSX9</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCXF1</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCXL01</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCXL02</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCXQ1</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCXQ2</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCXQ3</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCXS01</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCXS02</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCXS03</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
<tr>
<td>FLCXS04</td>
<td>same</td>
<td>Sample REXX example for FLCARODM CNMSAMP</td>
<td></td>
</tr>
</tbody>
</table>
Table 25. List of FLCARODM Samples (continued)

<table>
<thead>
<tr>
<th>Distributed As</th>
<th>Name</th>
<th>Description</th>
<th>Data Set Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLCSXS05</td>
<td>same</td>
<td>Sample REXX example for FLCARODM</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLCSXS06</td>
<td>same</td>
<td>Sample REXX example for FLCARODM</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLCSXS07</td>
<td>same</td>
<td>Sample REXX example for FLCARODM</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLCSXS08</td>
<td>same</td>
<td>Sample REXX example for FLCARODM</td>
<td>CNMSAMP</td>
</tr>
</tbody>
</table>

SNA Topology Manager Samples

Table 26 lists the samples and includes a brief description of each SNA Topology Manager sample and the data set name where each member resides once installation is complete.

Table 26. List of SNA Topology Manager Samples

<table>
<thead>
<tr>
<th>Distributed As</th>
<th>Name</th>
<th>Description</th>
<th>Data Set Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNMSTYLE</td>
<td>same</td>
<td>This sample defines many of the NetView initialization parameters. Refer to CNMSTYLE for more information.</td>
<td>DSIPARM</td>
</tr>
<tr>
<td>CNMSXENT</td>
<td>same</td>
<td>Sample used to show that the SNA topology manager is installed</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>DSICMENT</td>
<td>same</td>
<td>NetView command model statements for the SNA topology manager.</td>
<td>DSIPARM</td>
</tr>
<tr>
<td>FLBAUT</td>
<td>same</td>
<td>Automation Table Entries for SNA topology manager</td>
<td>DSIPARM</td>
</tr>
<tr>
<td>FLBEXV</td>
<td>same</td>
<td>SNA topology manager Exception View Table</td>
<td>DSIPARM</td>
</tr>
<tr>
<td>FLBEXVU</td>
<td>same</td>
<td>SNA topology manager Exception View Table user entry. This is a sample INCLUDE file that is included from SNA topology manager initialization file FLBEXV.</td>
<td>DSIPARM</td>
</tr>
<tr>
<td>FLBOSIDS</td>
<td>same</td>
<td>SNA topology manager OSI/Display Status Table. Maps the OSI status values to DisplayStatus values.</td>
<td>DSIPARM</td>
</tr>
<tr>
<td>FLBOSIDU</td>
<td>same</td>
<td>SNA topology manager OSI/Display Status Table user entry. This is a sample INCLUDE file that is included from SNA topology manager initialization file FLBOSIDS.</td>
<td>DSIPARM</td>
</tr>
<tr>
<td>FLBS8001</td>
<td>same</td>
<td>Sample REXX exec named REFRESHC. This exec executes a TOPOSNA CRITICAL command against a list of resources specified in a member of the DSIOPEN dataset.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLBS8002</td>
<td>same</td>
<td>Sample used by the FLBS8001 sample to provide a table of LUs for the REFRESHC command.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>Distributed As</td>
<td>Name</td>
<td>Description</td>
<td>Data Set Name</td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>FLBSRT</td>
<td>same</td>
<td>SNA topology manager Status Resolution Table. This table contains the hierarchy of OSI status entries used to resolve the status of a multiply-owned resource.</td>
<td>DSIPARM</td>
</tr>
<tr>
<td>FLBSRTU</td>
<td>same</td>
<td>SNA topology manager Status Resolution Table user entry. This is a sample INCLUDE file that is included from SNA topology manager initialization file FLBSRT.</td>
<td>DSIPARM</td>
</tr>
<tr>
<td>FLBSYSD</td>
<td>same</td>
<td>SNA topology manager initialization file</td>
<td>DSIPARM</td>
</tr>
<tr>
<td>FLBTPROF</td>
<td>same</td>
<td>Sample operator profile statements for NetView SNA topology manager Function</td>
<td>DSIPRF</td>
</tr>
<tr>
<td>FLBTRDM1</td>
<td>same</td>
<td>SNA Topology Data Model loader file that creates the generic managed object classes</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLBTRDM2</td>
<td>same</td>
<td>SNA Topology Data Model loader file that creates the APPN and Subarea managed object classes</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLBTRDM3</td>
<td>same</td>
<td>SNA Topology Data Model loader file that creates a SNA topology manager specific class for operational defaults</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLBTRDM4</td>
<td>same</td>
<td>SNA Topology Data Model loader file that creates RODM method objects</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLBTRDM5</td>
<td>same</td>
<td>SNA Topology Data Model loader file that sets default values for the generic managed object classes</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLBTRDM6</td>
<td>same</td>
<td>SNA Topology Data Model loader file that sets default values for the APPN and Subarea object classes</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLBTRDM7</td>
<td>same</td>
<td>SNA Topology Data Model loader file that sets GMFHS-navigation values</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLBTRDM8</td>
<td>same</td>
<td>SNA Topology Data Model loader file that creates View_Information_Reference_Class objects</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLBTRDM9</td>
<td>same</td>
<td>SNA Topology Data Model loader file that is reserved for Tivoli use</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLBTRDMA</td>
<td>same</td>
<td>SNA Topology Data Model loader file for Predefined Network_View_Class view object</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLBTRDMB</td>
<td>same</td>
<td>SNA Topology Data Model loader file for View Information Object Class Instances</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLBTRDMC</td>
<td>same</td>
<td>SNA Topology Data Model loader that sets links between VIROs and DRTs</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLBTRDMD</td>
<td>same</td>
<td>SNA Topology Data Model loader file that creates Exception Views</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLBTRDME</td>
<td>same</td>
<td>View Notification Granularity loader file that installs notification methods</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLBTRDMG</td>
<td>same</td>
<td>SNA Topology Data Model loader file that takes the netid from DisplayResourceName</td>
<td>CNMSAMP</td>
</tr>
</tbody>
</table>
Table 26. List of SNA Topology Manager Samples (continued)

<table>
<thead>
<tr>
<th>Distributed As</th>
<th>Name</th>
<th>Description</th>
<th>Data Set Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLBTRDMH</td>
<td>same</td>
<td>SNA Topology Data Model loader file that creates a SNA_Backbone_View</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLBTRDMI</td>
<td>same</td>
<td>SNA Topology Data Model loader file that produces a grid layout for More Detail views</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLBTRDMJ</td>
<td>same</td>
<td>SNA Topology Data Model loader file that creates port aggregate objects and suppresses logical links</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLBTRDMZ</td>
<td>same</td>
<td>SNA Topology Data Model loader file that creates the Topology_Manager class</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLBTFREU</td>
<td>same</td>
<td>A method that is a sample exception view customization method that can be invoked from the SNA topology manager method exception view table is refreshed.</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLBTRSC1</td>
<td>same</td>
<td>SNATM APPN Sample Network JCL for the initial scene</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLBTRSC2</td>
<td>same</td>
<td>SNATM APPN Sample Network JCL for scene 2</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLBTRSC3</td>
<td>same</td>
<td>SNATM APPN Sample Network JCL for scene 3</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLBTRSC4</td>
<td>same</td>
<td>SNATM APPN Sample Network JCL for scene 4</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLBTRSC5</td>
<td>same</td>
<td>SNATM APPN Sample Network JCL for scene 5</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLBTRSC6</td>
<td>same</td>
<td>SNATM APPN Sample Network JCL for scene 6</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLBTRSN1</td>
<td>same</td>
<td>SNATM APPN Sample Network loader file for the initial scene</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLBTRSN2</td>
<td>same</td>
<td>SNATM APPN Sample Network loader file for scene 2</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLBTRSN3</td>
<td>same</td>
<td>SNATM APPN Sample Network loader file for scene 3</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLBTRSN4</td>
<td>same</td>
<td>SNATM APPN Sample Network loader file for scene 4</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLBTRSN5</td>
<td>same</td>
<td>SNATM APPN Sample Network loader file for scene 5</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLBTRSN6</td>
<td>same</td>
<td>SNATM APPN Sample Network loader file for scene 6</td>
<td>CNMSAMP</td>
</tr>
<tr>
<td>FLBTRUM</td>
<td>same</td>
<td>A method that is a sample status customization method that can be invoked from the SNA topology manager method FLBTRST when the manager is processing a status update for an object in RODM</td>
<td>CNMSAMP</td>
</tr>
</tbody>
</table>
Index

A
A01APPLS 47
accessibility information x
activating
NetView Resource Manager 63
AUTONRM 63
initialization 65
initialization, display status defaults 65
initialization, monitoring remote systems 65
initialization, sampling 65
security 63
security, command authorization 63
agent
installing 45
placement 45
SNA topology manager 45
SNATM 45
VTAM topology 45
agents
installing 51
IP agent 52
LAN Network Manager agent 52
LN agent 52
NetFinity agent 52
open agent 52
open topology interface 52
TMR agent 52
MultiSystem Manager 51
allocating
VSAM clusters for RODM 9
allocating VSAM clusters for RODM EKGSID01 9
APPN networks
managing 2
APPNMT user 47
AUTH statement
NGMFCADMN keyword usage 33
NGMFCDM5S keyword usage 33
AUTOMSMD autotask 58
AUTONRM
NetView Resource Manager 63
AUTORATE statement 61
autotasks
AUTOMSMD 58
event manager 21
FLBTOP0 48
C
characteristics
local node
LAN 83
SDLC 83
checkpoint data sets
RODM 9
CMIP
agent 45
filtering 45
services, starting 48
CNME2101, GMFHS command list 6
CNMGMFHS 19, 28
CNMHELPR
hdfmap 98
CNMS0013 47
CNMS4290 98
CNMSID01
delete VSAM databases 98
CNMSJ004 9
allocate logs and databases 98
job
allocating VSAM clusters for RODM 9
CNMSJH10 19, 28
CNMSJH12 26
load RODM data cache 98
CNMSJH13 87
CNMSJH18
EIBCOPY 98
CNMSNIFF 87
CNMSTYLE
event manager autotask 21
GMFHS global variables 6
MultiSystem Manager, enabling 6
RODM global variables 5
status focal point 32
TCP/IP 32
CNMSXENT 106
CNMTAMEL
task definitions 97
CNMTAMEL task 32
collection manager
RODM 73
command authorization
NetView Resource Manager 63
security 63
command model statements
GMFHS 87
Communications Server
configuring for SNA, NMC 80
local LU profile 84
local modes profile 84
transaction program definitions 85
Communications Server, using
to configure for SNA LU 6.2
workstation network 81
configuring
communications server
configuring for SNA LU 6.2 80
configuring (continued)
for the NetView 3270 management console 39
for the Tivoli Business Systems Manager console 41
for user rights for Windows 2000 38
for user rights for Windows NT 38
topology server 34
workstation network, NMC configuring for SNA 80
configuring for SNA LU 6.2
workstation network, NMC using Communications Server 81
connecting to RODM 15
connections
for LAN 85
for SDLC 85
control profile, data link
for LAN 82
for SDLC 81
correlating
views 71
correlating objects
enabling
MultiSystem Manager 72
SNA topology manager 72
COS gateway autotask 21
CPLDLE volume 10
cross-domain environment
MultiSystem Manager 59
Customer Support x
customization
RODM 16
D
data link
control profile
for LAN 82
for SDLC 81
data link control profile
for SDLC 81
data models
loading GMFHS 27
loading MultiSystem Manager 27
loading SNA topology manager 27
defining
VSAM clusters
for RODM 9
defining IP socket port numbers 35
defining resources
RACF 12
defining the LU name 80
DELVIEWS
RODM 75
disability information x
distributed NetView servers, topology agent 51
DSICMENT 87, 88, 106
command model statements 98
DSIGDS task 61
books
feedback ix
online ix
ordering ix
DSISQSK task 18
DSISKTSKI 18, 98
DUIDGHB task 32
DUIFC5GW
command processor 21
DUIFCUX2 87
DUIFCUXM, exception views 88
DUIFDEXV 88
DUIFDEF 88
DUIFEMDY 88
DUIFEURS 88
DUIFHNNAM global variable 6
DUIFHPRC global variable 6
DUIFPMEM 97
DUIFSMT 97
DUIFSNET 88
command processor 21
DUIFCUX2 87
DUIFCUXM, exception views 88
DUIFDEXV 88
DUIFDEF 88
DUIFEMDY 88
DUIFEURS 88
DUIFHNNAM global variable 6
DUIFHPRC global variable 6
DUIFPMEM 97
DUIFSMT 97
DUIFSNET 88
non-SNA network 27
DUIFSSCO 21
DUIFSTCR 88
GMFHS data model 27
DUIGINIT 20, 88
DUIGPWL1 20, 88
DUIHHB 33, 88
DUIHSFP 18, 33, 97
DUIPOICY 97
dump utility, RODM 11
E
e-mail contact x
EDGXRODM
start procedure 15
EGVREAD1.ME 39
EGVREAD2.ME 34
EKGCUST 103
sample customization member 16
EKGHNNAM global variable 5
EKGHPRC global variable 5
EKGGKJCL 103
EKGMMIV
named method 103
EKGNLQEL
notification method 103
EKGNLST
notification method 103
EKGNNOTF
notification method 103
EKGNTND
notification method 103
EKGOPPI
object independent method 103
EKGPENTU 103
EKGRDUMP 103
EKGRLOG 103
log formatter JCL 11
EKGS101 103
RODM logs 9
EKGS201
RODM checkpoint data set 9
EKGS202 104
EKGSID01 9
EKGSJ004
allocate logs and databases 104
job 9
EKGSN1FF 87
EKGSVER
verification member 25
EKGXRODM
sample start job 22
enabling
NetView Resource Manager 7
object correlation
for additional SNA topology
manager 72
MultiSystem Manager 72
SNA topology tager 72
ethernet LAN-attached workstation,
defining 77
event/automation service 55
event manager 21
exception views
implementing 71
F
feedback about publications x
FLBBAUT, automation manager 47
FLBBAUT automation table entries 106
FLBEXV
view customization 47
FLBEXV exception view table 106
FLBEXVU exception view table, user
entry 106
FLBOSIDS 106
view customization 47
FLBOSIDU 106
FLBS8001 106
FLBS8002 106
FLBSRT 107
view customization 47
FLBSRTU 107
FLBSYSD 71, 107
initialization 47
FLBTPROF 107
FLBTRDM*
SNA topology manager data
models 27
FLBTRDM1 107
FLBTRDM2 107
FLBTRDM3 107
FLBTRDM4 107
FLBTRDM5 107
FLBTRDM6 107
FLBTRDM7 107
FLBTRDM8 107
FLBTRDM9 107
FLBTRDMA 107
FLBTRDMB 107
FLBTRDMC 107
FLBTRDMD 107
FLBTRDEME 107
FLBTRDMG 107
FLBTRDMH 108
FLBTRDMI 108
FLBTRDMJ 108
FLBTRDMZ 108
FLBTREU 108
FLBTRSC1 108
FLBTRSC2 108
FLBTRSC3 108
FLBTRSC4 108
FLBTRSC5 108
FLBTRSC6 108
FLBTRSN1 108
FLBTRSN2 108
FLBTRSN3 108
FLBTRSN4 108
FLBTRSN5 108
FLBTRSN6 108
FLBTRUM 108
FLCAINP initialization file 58
FLCAINP initialization sample 89
FLCARODM 57
samples 104
FLCCCHK 89
FLCS3270 91
FLCSDM*
MultiSystem Manager data
models 27
FLCSDM1
data model definition 89
FLCSDM2
data model definition 89
FLCSDM3
data model definition 90
FLCSDM4
data model definition 90
FLCSDM5
data model definition 90
FLCSDM6
data model definition 90
FLCSDM6H 93
FLCSDM6L 91
FLCSDM6O 95
FLCSDM6T 96
FLCSDM8 71
data model definition 90
FLCSDM9
data model definition 90
FLCSEXV exception view file 90
FLCSHALH 94
FLCSHAT2 94
FLCSHAUT 94
FLCSIAUT 92
FLCSIIP 59, 92
FLCSILNM 59, 92
FLCSINF 59, 94
FLCSIOPN 59, 95
FLCSITME 59, 96
FLCSITN 59
FLCSILAH 93
FLCSLUALH 93
FLCSLAUT 93
FLCSOALH 95
FLCSOAUT 95
FLCSOPF
operator definitions 90
FLCSEXO1 95
FLCSPRFB
operator profiles 91
FLCSPRFB operator profile 57
FLCSIALH 96
FLCSIAUT 96
FLCSBLT 96
flctmr1 readme 52
G
GETTOPO commands 62
GHBTCPANAME keyword 33
global variables
 DUIFHNMAM 6
 DUIFHPNRC 6
 GMFHS 6
 RODM 5
GMFHS
 automation example 87
 CNMSTYLE updates 6
 command model statements 87
 COS gateway autotask 21
 data model, loading 27
 defining event manager autotask 21
 description 1
 global variables 6
 initialization 87
 initialization parameters
 DUIGNINIT 88
 initialization values 20
 installing 19
 main task 20
 message routing 21
 restricting server access 20
 samples 87
 scope checker OPT 21
 start procedure 19, 87
 starting 28
 verifying installation 29
GMFHS resources, additional
 enabling object correlation 72
GMFHS STATUS 29

H
hardware monitor data base
 alerts, overloading 61
 HP OpenView servers, topology agent 51

I
IHSACFG 56
IHSATCFG 56
 information, accessibility x
 information, disability x
 initialization
 for NetView Resource Manager 65
 display status defaults 65
 monitoring remote systems 65
 sampling 65
 initialization file
 MultiSystem Manager 58
 initialization file, sample
 FLCSIIP 59
 FLCSILNM 59
 FLCSINF 59
 FLCSIOPN 59
 FLCSITME 59
INITTOPO command 62
 installation
 verifying for NetView Resource Manager 66
 installing
 GMFHS 19
 MultiSystem Manager 55
 NMC 31
 RODM 9
installing (continued)
 SNA topology manager 47
 Internet Protocol
 samples 91
 Internet protocol (IP) networks 51
 IP TN3270 management 53

J
 job EKGSJ004 9

K
keyboard, shortcut keys x

L
LAN
 connections 85
 data link control profile 82
 local node characteristics 83
 LAN-attached workstation
 definitions 77, 78, 79
 LAN Network Manager, topology agent 51
 LAN Network Manager Entry LANS, topology agent 51
 LNM
 samples 92
 local LU profile 84
 local modes profile 84
 local node characteristics
 LAN 83
 SDLC 83
 log formatter
 RODM 11
 LU, local profile 84
 LU 6.2 connectivity 77
 LU 6.2 sessions
 configuring Communications Server workstation network, NMC 80
 configuring workstation network using Communications Server 81
MultiSystem Manager
 agents 2
 alerts, repetitive 61
 CNMSTYLE updates 6
 command authorization 57
 command model statements
 DSCMMENT 88
 FLCSCHK 89
 correlating objects
 enabling 72
 correlating views 71
 cross-domain environment 59
 data model, loading 27
 data model definition
 FLCSDM1 89
 FLCSDM2 89
 FLCSDM3 90
 FLCSDM4 90
 FLCSDM5 90
 FLCSDM6 90
 FLCSDM8 90
 FLCSDM9 90
 exception view file 90
 GETTOPO commands 62
 initialization 88
 initialization file
 sample FLCAINP 89
 installation verification 62
 installing 55
 MSMTOLK package 52
 operator definitions 90
 operator profiles 58, 91
 overview 2
 RMTCMDS 60
 RUNCMD, DSRBs 61
 RUNCMD, time-out value 60
 RUNCMDs 60
 samples 88
 security considerations 56
 span of control 57
 starting 62
 topology, controlling collection 62
 topology agents 51
 MVS subsystem
 RODM 9
NetView Resource Manager (continued)

AUTONRM 63
initialization 65
initialization, display status defaults 65
initialization, monitoring remote systems 65
initialization, sampling 65
security 63
security, command authorization 63
enabling 7
preparing 63
AUTONRM 63
initialization 65
initialization, display status defaults 65
initialization, monitoring remote systems 65
initialization, sampling 65
security 63
security, command authorization 63
starting 66
verifying installation 66
NGMFADMN keyword, AUTH statement 33
NGMFCMDS keyword, AUTH statement 33
NMC
configuring for the NetView 3270 management console 39
configuring for the Tivoli Business Systems Manager console 41
configuring the server 34
installation verification 41
installing 31
LAN definitions 77, 78
NMSTATUS autotask 22
resource time schedules 71
SDLC definitions 79
security 33
topology console, installing 39
topology server communication, starting 42
configuring 34
installing 34
topology workstation
signing on 42
NMSTATUS autotask 22
NMSTATUS policy definitions 71
node characteristics, local
LAN 83
SDLC 83
notification method 103
NRM
enabling 7
preparing
initialization 65
initialization, display status defaults 65
initialization, monitoring remote systems 65
initialization, sampling 65
security 63
security, command authorization 63

O
object class definitions
RODM 26
object correlation
enabling
for additional SNA topology manager 72
MultiSystem Manager 72
SNA topology manager 72
enabling for additional SNA topology manager 72
online publications ix
OPEN topology agents 51
Open Topology Interface
samples 95
ordering publications ix
OSI
status entries 107
OSIMGMT 45

P
port numbers, reassigning 35
preparing
NetView Resource Manager 63
AUTONRM 63
initialization 65
initialization, display status defaults 65
initialization, monitoring remote systems 65
initialization, sampling 65
security 63
security, command authorization 63
profile
local LU 84
local modes 84
profile, control
data link for LAN 82
for SDLC 81
publications
feedback ix
online ix
ordering ix

R
RACF
RODM security 11
SNA topology manager 47
RACF security
defining resources 12
RATE statement 61
readme files
EGVREAD1.ME 39
EGVREAD2.ME 34
flctmr1 52
msmip.me 52
msmnf.me 52
reassigning port numbers 35
Resource Manager, NetView
enabling 7
resource object data manager
using RODM dump utility 11
resources
access, controlling 57
REXX environment
tuning 62
RMTCMD considerations
monitoring remote NetView systems 66
RODM
allocate log using CNMSJ004 98
allocate log using EKGSJ004 104
allocating VSAM clusters 9
allocating VSAM clusters for EKGSID01 9
BLDVIEWS 73, 74
checkpoint data set 104
custom command model statements 98
customization file, sample 103
customization parameters 16
data model, sample 88
defining security
to RODMMGR class 12
to user-defined class 12
defining the checkpoint data sets 9
definition statement
MAXLTH 13
delete VSAM databases, using CNMSID01 98
DELVIEWS 75
description 1
DSIQTSK 18
dump utility 103
ending 25
exception views 88
global variables 5
helpmap 98
initialization method
sample 103
initialization values 18
installation verification
EKGSVER 104
installing 9
load file, sample 88
load RODM data cache CNMSJH12 98
loading the data cache 26
log 103, 104
log formatter 103
MVS subsystem, defining 9
object load 103
RODM Unloader 75
RODMVIEW 75
samples 98
SEC_CLASS field 12
SEC_RNAME field 12
security 11
start procedure 15
start with EKGXRODM 104
starting 22
structure load 103
tasks 98
tools
BLDVIEWS 73, 74
DELVIEWS 75
RODM collection manager 73
RODM Unloader 75
RODMVIEW 75
using dump utility 11
RODM (continued)
 verifying using EKGSVER 25
 views
 customizing 73, 74
 deleting 75
 Visual BLDVIEWS 74
RODM collection manager 73
RODM connection 15
RODM tools 73
RODM Unloader 75
RODMVIEW
 RODM 75
RUNCMD
 DSRBs 61
 time-out value 60

S
 samples
 A01APPLS 47
 CNMGMFHS 19, 28
 CNMHELPW 97
 CNMS0013 47
 CNMSAF 97
 CNMSCAT2 97
 CNMSJH10 28
 CNMSJH12 26
 DUFSNET 27
 DUIGINIT 20
 EKGCCUST 15
 EKGS101 9
 EKGS201 9
 FLCAINP 58
 FLCSPRFB 57
 GMFHS 87
 IP topology feature 91
 LNM topology feature 92
 MultiSystem Manager 88
 Netfinity
 FLCSDM6H 93
 Netfinity topology feature 94
 open topology feature 95
 RODM 98
 SNA topology manager 106
 TMR topology feature 96
 sampling
 NetView Resource Manager 65
 scope checker OPT 21
SDLC
 connections 85
 data link control profile 81
 local node characteristics 83
 SDLCA-attached workstation, defining 79
SEC_CLASS
 field in RODM 12
SEC_RNAME field in RODM 12
security
 for NetView Resource Manager 63
 command authorization 63
 service points
 cross-domain 59
 receiving commands 21
shortcut keys, keyboard x
SNA LU 6.2 sessions
 configuring Communications Server
 workstation network, NMC 80
 SNA LU 6.2 sessions (continued)
 configuring workstation network
 using Communications Server 81
SNA networks
 managing 2
SNA topology manager
 agent 2, 45
 agent placement 45
 automation, FLBAUT 47
 automation table entries 106
 command model statements 106
 commands 48
 controlling topology gathering 47
 correlating objects
 enabling 72
 customizing views 47
 data model, loading 27
 description 2
 exception view table 106
 initialization file 47, 107
 installation verification 48
 loader file 107
 message suppression options 47
 operator profile statements 107
 OSI display status table 106
 samples 106
 security requirements 47
 starting 48
 status resolution table 107
 VTAM requirement 47
 span of control 34, 57
 resources 71
 views 71
 starting
 GMFHS 28
 NetView Resource Manager 66
 RODM 22
 status defaults
 displaying for NetView Resource Manager 65
 storing topology server databases 36
 SWNET node 45
 system authorization facility product
 RODMMGR class 12
 TOPOSNA commands 48
 transaction program definitions 85
 TSERVER_DB variable 36
 tuning
 REXX environment 62

T
 TAMEL.PORT keyword 32
 TAMEL.SOCKETS keyword 32
 TAMEL.TCPNAME keyword 32
 tasks
 CNMTAMEL 28
 DSIQDS 61
 DSIQTSK 18
 TCP/IP 32
 Tivoli Business Systems Manager console
 configuring 41
 Tivoli Customer Support x
 Tivoli Management Regions, topology agent 51
 TMR
 samples 96
 token-ring
 LAN-attached workstation
 defining 78
 topology
 correlation 71
 topology agents 51
 topology console, installing 39
 topology manager, SNA
 correlating objects
 enabling 72
 topology server
 configuring 34
 configuring as a UNIX daemon 39
 configuring as an NT service 38
 defining IP socket port numbers 35
 defining the LU name 80
 NMC, installing 34
 reassigning port numbers 35
 setting security 37
 storing databases 36
 updating the TSERVER_DB variable 36
 topology server running as a UNIX daemon 39
 topology server running as an NT service 38
 topology servers
 defining to
 token-ring LAN-attached 78
 TOPOSNA commands 48
 transaction program definitions 85
 TSERVER_DB variable 36
 tserver dbtransfer command 37
 tuning
 REXX environment 62

U
 Unloader
 RODM 75
 updating the TSERVER_DB variable 36

V
 verifying
 CNMSXENT 106
 installation
 NetView Resource Manager 66
 RODM installation 25
 SNA topology manager 106
 views
 access, controlling 57
 correlating 71
 customizing 73
 deleting 75
 managing 69, 73
 resource time schedules 71
 restricting access 71
Visual BLDVIEWS
 RODM 74
VSAM
 allocating
 for RODM 9
 VSAM clusters for RODM, allocating
 EKGSID01 9
VTAM
 APPL names, SNA topology manager 45, 47
 CMIP agent 45
 CMIP filtering 47

Index 113
VTAM (continued)
definitions
NMC 77
VTAM ACB monitor 53
VTAM agent 45
VTAM CMIP agent 47

W
workstation
defining
ethernet LAN-attached 77
SDLC-attached 79
token-ring LAN-attached 78
workstation configuration
configuring for SNA, NMC 80
workstation network, NMC
configuring Communications Server
for SNA LU 6.2 80
configuring for SNA 80

X
XCA node 45
XITCM operand on DSTINIT
statement 33