i 251 TN Business Process Management

Version 6 Release 2

W

Using ILOG JRules in WebSphere Integration Developer

Table of Contents

Ta Lo Yo IV To] A o] o HN TP ORI 3
(CTo T | TP O TP P PP PPPPPPPP 3
LTSI (o T @] 4] 0] =] = PSP 3
L (T (= T0 UL £ PSSP 3
YT ST (=10 (IS T= LU] o PP TPPPTR 3
LTS LU] £ o= T 3

OVEBIVIBW ..ttt ettt ettt et oo oo oo oo e oo oo kbbb bbbttt e ettt et 4o a4 e 42 e e e e a4 e o4 4o a4 e e n bbb et e et e e r e ne e e e ee s 4
LI] o] o= U1 o] o PSPPI 4

BUITA T Y OUIS I e oottt e e e e e e e e et e et e bbb e e e e e e e eeeeebsbabann e e e eeaas 5
Task 1: Create the execution object model using WebSphere Integration Developer.............ccccceeeeeee. 5
Task 2: Create and author the rule project in ILOG RuUle StUAIOccvvviiiiiiiiiiiiei e 7
Task 3: Export and deploy the rule application in ILOG Rule Studiocccuiiiiiiiiiiiicieiici e 10
Task 4: Create the business process module and ILOG JRules component in WebSphere Integration
=Y (0] o 1= 11
Task 5: Create the business process in WebSphere Integration Developer..........cccoooovviiiiiiiiiiiinieena, 15

UL IR L= TEST= a1 o1 =TSP 20

[0 L0 X4 o = Vo 25

Introduction

A PDF version of this documentation, suitable for printing is available here.

Goal

To teach you how to use IBM® WebSphere® ILOG JRules within a business process created in
WebSphere Integration Developer.

Time to Complete
Approximately 2 hours, not including system setup.

Prerequisites

Before beginning this tutorial you should have
* A basic understanding of WebSphere ILOG JRules, as described in the Quick Start Tutorial found
in the ILOG JRules Documentation
* A basic understanding of WebSphere Integration Developer, as described in the Hello World Part
1: Getting Started and Hello World Part 2: Service Component and Web Interfaces samples. You
can find these samples in WebSphere Integration Developer by clicking Help > Samples and
Tutorials > IBM WebSphere Integration Developer 6.2.

System Setup
This sample requires WebSphere Integration Developer 6.2 and WebSphere ILOG JRules 6.7.3.

Configure your system as described in “Installing WebSphere Integration Developer with ILOG JRules,”
Ensure that your system passes the checks in Part 6 of this document.

Note: The tutorial details are accurate for WebSphere Integration Developer 6.2. There are some minor
differences in the user interface in versions 6.2.0.1 and 6.2.0.2, however either the correct action should
be obvious, or a note has been added in the tutorial steps.

Resources

ILOG JRules Quick Start Tutorial
http://docs.ilog.com/brms/documentation/jrules673/quickstart/quickst preface.html

Hello World Part 1: Getting Started
Available in WebSphere Integration Developer under Help > Samples and Tutorials > IBM
WebSphere Integration Developer 6.2

Hello World Part 2: Service Component and Web Interfaces
Available in WebSphere Integration Developer under Help > Samples and Tutorials > IBM
WebSphere Integration Developer 6.2

Overview

The Application

This application provides advice to parents about whether their children are old enough to eat popcorn.
These are the rules:

Children under 2 years old should not eat popcorn
Children ages 2 to 4 can eat popcorn under close supervision
Children older than 4 can eat popcorn unsupervised

The process flow is as follows:

1.
2.
3.

4.

The parent enters the child’s name and age into the system, triggering the business process.
The business process calls the business rules system and passes the relevant information.
The business rules system returns the data, now including a recommendation, to the business
process.

The business process extracts the recommendation from the data object and passes the
recommendation back to the parent.

The following diagram shows the overall process flow.

o]

v

Pareant

8 £ - 8 r
information Call rules information l

-’
i Set response Child's
Advice

Business Process Rules

Child’s Child's

Make decision

+—— information —
and advice

Build it Yourself

Task 1: Create the execution object model using WebSphere Integration
Developer

Recall that in ILOG Rule Studio, the first steps in creating a rules application involve defining the
execution object model (XOM) and the business object model (BOM). These object models define the
items that are necessary for writing and running the application and the attributes and data types that are
related to those items.

In the JRules Quick Start tutorial, the XOM is based on existing Java™ code. Java is one option for
defining the object models. The second option, the one that you will use in this tutorial, is to define the
XOM in XML as an XML Schema Definition (XSD) file.

You can create the XSD file with any XML editor, or even a text editor. However, another option is to
create the XSD graphically using WebSphere Integration Developer. In WebSphere Integration
Developer, any data type that you define is stored as an XSD file and can be used as a XOM in ILOG
Rule Studio.

To create the XOM using WebSphere Integration Developer, complete the following steps:

1. Open WebSphere Integration Developer in a new workspace.
Note the location and name of this workspace because you will need it later. We will refer to this full
path as <main workspace>.

2. Create a business integration module:
a. Close the Welcome page.

b. Inthe Business Integration view, click Click to add an integration project.
c. Select Create a module, and then click Next.
d. For the module name, enter Popcor nXSDMvbdul e, and then click Finish.

The following screen capture shows the module in your Business Integration view.
%= Business Integr &4 25! Phyysical Resaur | — O

EIERIEEN
Integration Solutions i

lick bo add an inkeqgration solution. ..

Projects B8

= '[5-"‘_| PopoornssDModule
| Assembly Diagram
[y] .
. Dependencies
=3 Inkteqration Logic
£ Data Tvpes

(T

Interfaces
& Mapping

3.

Create the XSD:
a.

Right-click Data Types and select New > Business Object.

b. Inthe Name field, enter Chi | d and then click Finish.

The following screen capture shows the Business Object editor open with your new business

object.

?ccﬁ PopcormxSDModule - Assembly Diagram

+Business object H+ I
- 8
] child
[
d Z]

"] child &2

Add the following fields to the Child business object.

C.
Field Name Field Type
Name string
Age int
Advice string
d. Save your changes. The following screen capture shows the completed business object.

") child &3

~Business object 5

r o

(=] child
|

[8] Mame string

[8] Age ink

[2] &dvice skring
L Z)

The file Child.xsd has now been created in <main workspace>\PopcornXSDModule.

You have now completed Task 1: Create the execution object model using WebSphere Integration
Developer. You can minimize or close WebSphere Integration Developer.

Task 2: Create and author the rule project in ILOG Rule Studio

The following high-level steps are needed to author a rule application in ILOG Rule Studio:
Create a new Rule Project.

Import the XOM.

Create the Business Object Model (BOM) based on the XOM.

Define application parameters.

Define the individual rules.

agprwONE

To create and author the rule project in ILOG Rule Studio, complete the following steps:
1. Open ILOG Rule Studio with a new workspace.

2. Create a Rule Project
a. Close the Welcome page.

b. Right-click in the Rule Explorer view and select New > Rule Project.

c. Inthe New Rule Project wizard, select the Standard Rule Project template, and then click
Next.

d. Inthe Project name field, enter Popcor nRul ePr oj ect, and then click Finish.

The following screen capture shows the project in your Rule Explorer view.

T2 Rule Explarer 2 = O
BES
= TER' PopcornRuleProject
== rules
2 bom
Lif; queries
[Eg kermplates

3. Import the Child.xsd file, which you created in WebSphere Integration Developer, as your Execution
Object Model (XOM).
a. Inthe Rule Project Map view, click Import XOM.

b. Select Dynamic Execution Object Model (XSD or WSDL), and then click OK.
c. Click Add External XSD.
d

Select the Child.xsd file:
<mai n wor kspace>\ Popcor nXSDModul e\ Chi | d. xsd, and then click OK.

The Rule Project Map editor now shows that you have imported one XOM, as you can see in the
following screen capture.

% Fule Praject Map &3 (51 Prok

PopcornRuleProject

Design
& Import 0M (1) (7)
iy Create BOM @
= @

The next step is to create a business object model (BOM). Recall that the BOM is based on the XOM and
provides the actions and entities, that is, the vocabulary required to author rules using natural language.

4. Create a BOM based on your XOM:
a. Inthe Rule Project Map view, click Create BOM.

In the Name field, enter Popcor nBOMV and then click Next.
Click Browse XOM and select the Child.xsd file as the base for the BOM.
Under Select classes, select the popcornxsdmodule class, and then click Next.

On the BOM Verbalization page, select All Methods and leave the others options checked
as well. Click Finish.

®oo0co

The following screen capture shows the BOM editor open with the PopcornBOM and the
popcornxsdmodule package.

4%, PopeornBOM 2

BOM Entry: PopcornBOM

+ Tasks

1 verbalize the elements of this BOM entry,
1 Update the dynamic domains of this BOM entry,

Business Object Model Entry

: PopcornBOM

5. Define the parameters for the ruleset.

Because you defined the XSD to have fields for both the input data (Name and Age) and the output
data (Advice), you can use one parameter for both input and output instead of creating two

parameters.

a. Inthe Rule Project Map, click Define parameters.
b. Click Add to create a parameter.
Change the parameter definition according to the items in the following table:

Column Value

Name theChild

Type Child

Direction IN_OUT

Default Value <leave blank>

Verbalization theChild
: Marne Tvpe Direction Defaulk Yalue Merbalization

theChild popoorresdmodule, Child. IN_QUT FheChild

d. Click OK.

At this point, according to the Rule Project Map, the next step is to create a rule package. However,
because this application is not complex, a rule package and a rule flow are not necessary, so you can
skip these steps and begin authoring the rules.

Recall the advice that you are implementing in this application
e Children under 2 years old should not eat popcorn.
« Children ages 2 to 4 can eat popcorn under close supervision
« Children older than 4 can eat popcorn unsupervised

6. Author the rules.
a. Inthe Rule Explorer view, right-click PopcornRuleProject and select New > Business
Rule.

b. Enter the rule name (see the following table), and then click Finish.
c. Enter the code for the rule (see the following table).
d. Save and close the rule editor.

Rule Name Rule Code

old enough if the age of theChild is at least 4
then set the advice of theChild to "This child can eat popcorn unsupervised";

too young if the age of theChild is less than 2
then set the advice of theChild to "This child should not eat popcorn”;
borderline if the age of theChild is between 2 and 4
then set the advice of theChild to "This child can eat popcorn under close
supervision™;

The following screen capture shows the rules that you created in the Rule Explorer view.

T Rule Explarer 52 =0

= TEP}- PopcornRuleProject
=22 rules
= % PopcornRulePackage
& borderline
@ old enough
i oo woung
£ bom
L§ queries

5 remplates

You have now completed Task 2: Create and author the rule project in ILOG Rule Studio and your
business rules are ready to run.

Task 3: Export and deploy the rule application in ILOG Rule Studio

To use JRules with a process that are authored in WebSphere Integration Developer and running on
WebSphere Process Server, you must both export and deploy your RuleApp.

You export the RuleApp as a project archive to create an artifact that WebSphere Integration Developer
can interpret and use to create the bridge between the process and the rules.

You deploy the RuleApp to the JRules Execution server running on the WebSphere Process Server as
the executable that will be called from within the process.

1. Create the RuleApp project:
a. Right-click in the Rule Explorer view and select New > Other > RuleApp Project, and then
click Next.

b. Inthe Project name field, enter Popcor nRul eApp, and then click Next.
c. Add PopcornRulePoject to the list of Rule Projects, and then click Finish.

You can now see the PopcornRuleApp in your Rule Explorer, as shown in the following screen
capture. It is also open in the RuleApp editor.

lf_ Rule Explorer &3 =0
LES~

R PopcornPulespp
+ TDR- PopcarnRuleProject

2. Export the RuleApp for use in WebSphere Integration Developer:

a. If you closed the RuleApp editor, reopen it by expanding PopcornRuleApp and double
clicking archive.xml.

b. Under Deployment, click Export a RuleApp archive.

Deployment
You can:

Export a Ruledpp archive,

Deploy & Ruledpp to one or more Rule Execution Servers,

c. Use the Browse button to select a local directory, and save the file as popcornRules.jar.

The Console view now shows a message similar to the following message:

The "PopcornRul eApp" Rul eApp project is exported to:
C.\t enp\ popcornRul es. j ar

Note this directory. You need it in the next task.

3. Deploy the RuleApp to the JRules Execution Server:
a. Under Deployment, click Deploy a RuleApp to one or more Rule Execution Servers.

b. Inthe wizard, leave Increment RuleApp major version selected, and click Next.

c. Inthe second screen, select Create a temporary Rule Execution Server configuration,
enter these values and then click Finish.

URL: http://1 ocal host: 9080/ bres

(Carefull The default is close but not the same: 8080)
Login: bres

Password: br es

The Console view now shows the following message:
The "PopcornRul eApp" Rul eApp project was successfully depl oyed on
the "tenporaryServer" configuration.
/ Popcor nRul eApp/ 1.0 -> / Popcor nRul eApp/ 1. 0: El enent added
/ Popcor nRul eApp/ 1. 0/ Popcor nRul eProject/1.0 ->
/ Popcor nRul eApp/ 1. 0/ Popcor nRul eProject/1.0: El enent added

Task 4: Create the business process module and ILOG JRules component in WebSphere
Integration Developer

Recall the overall process flow from the Overview section.

Business Process Rules

Child's A Child's

information Call rules information l
2
L JP Make decision

-
) Set responze Child's
Parent Advice +—— information —
and advice

You have now completed the Rules portion of this flow. In this task you will create the module used to
hold the Business Process and the artifacts necessary to connect the Business Process to the Rules.

3.

4,

Open WebSphere Integration Developer with the same workspace you used in Task 1: Create the
object model using WebSphere Integration Developer. The following steps will also work if you use a
different workspace; we are recommending one workspace for simplicity only.

Note: Close the PopcornXSDModule to avoid confusion between the two modules.

Create a business integration module:
a. Right-click in the Business Integration view and select New > Project > Module.

b. Inthe Module name field, enter Popcor nPr ocessMdul e. Click Finish.

You now have a second module in your Business Integration view as shown in the following screen
capture.

5 Business Integr 52 . 5! Phwsical Resowr | — O
A EREEN
Integration Solutions i

Click ko add an inteqration solution, .,

Projects 8

==

PopcornProcessModule
TE;I Assembly Diagram
& Dependencies
=3 Integration Logic
£ Data Tvpes
@ Interfaces
i Mapping

+ '[5-"‘_| Popcorns3Diodule

To gain access to the services provided by a JRules RuleApp, you must first add several artifacts to
this module that together specify how to connect to the JRules server and the specific service that is
running on the server. Fortunately, WebSphere Integration Developer provides a Decision Services

wizard that helps you create and add these artifacts.

In the Business Integration view, right-click PopcornProcessModule and select New > Other >
ILOG Rule Studio > SCA Component from RuleApp. Click Next.

Complete the RuleApp Selection page:
a. Ensure that the project is selected (PopcornProcessModule).

b. Click Archive to select the archive that you exported from Rules Studio, which is called
popcornRules.jar. Click Next.

The following screen shot shows the RuleApp Selection

&+ Decision Service Wizard

RuleApp Selection

Please select the rulesetis) you would like to incude,

Click. Project to select a Module Project

| | Project...

Click. Project or Archive to select Ruledpp

| CikempipopcornRules, jar | archive. ..

On the Set Up Object Model page, you see a warning in the Tasks section. The object model (XSD)
is not part of the archive. Therefore, you must add it directly to resolve references.

Click Add External XSDs and select the <main workspace>\PopcornXSDModule\Child.xsd file. The
XSD will now be listed in the XML Schemas section, as in the following image.

After you add this file, the warning disappears and you can click Next.

#ML Schemas to be included in the project:

#ML Schema Location [add External ®30s]
@ ChildInfo, xsd Chworkspaces\WID\0622_tutorial\Popcornixs, ..
| addweps.. |
[Remove]
Tasks:
Description Ruleset

You must create a name and package for the service. The package is used only for the underlying
Java implementation, not within the authoring tools. However, the service name is the name given to
the SCA component and the interface that is used to access this service. When authoring the
process in WebSphere Integration Developer, you will use this value; therefore, it should always be
descriptive.

Use these values, as shown in the following screen capture:
Package: i | og. popcor nadvi ce. servi ce
Name: Popcor nAdvi ceServi ce

&= Decision Service Wizard

ILOG Decision Service Settings

Enter the data bo generate W3DL and Java interfaces For the ILOG Decision Service,

Source Folder: | PopoornProcessMadule | [Browse, .,]
Package: | ilog. poprornadyice, service |
MName: | PopoornddviceService |

If you now expand your PopcornProcessModule, you can see the artifacts that were created.

Projects

= _3 PoprotnProcessModule

=] Assembly Diagram
& Dependencies
= ,'_? Inkegration Logic
=] .{5' Java Usages
== b
;- contrib-runkime. jar
'._;I jrules-bres-session-Was6, jar
';_:3‘_,-._| PopcarnAdyiceService
= Data Tvpes
(] child
Ij DecisionServiceException
ﬂ PopcornRuleProjeckExecutionResult
Interfaces
@;‘ PopcornfdviceService
e Mapping

1)

The following table gives a brief description of each artifact.

Artifact Description

contrib-runtime.jar

- - - Java libraries used by the service implementation
jrules-bres-session-WAS6.jar y P

PopcornAdviceService The SCA component, implemented in Java, which calls the
(Java usage) rule application

Child The data type or XSD that you defined in Task 1
DecisionServiceException The data type that the PopcornAdviceService component

returns if the service call fails

PopcornRuleProjectExecutionResult | The data type that the PopcornAdviceService component

returned if the service call succeeds. This data type contains
a single field of type Child, which represents the output
parameter that you defined for your RuleApp.

RuleApps can return more than one parameter. In that case,
the ExecutionResult data type has one field for each
parameter.

PopcornAdviceService (interface)

The interface for the PopcornAdviceService component

You might have noticed the warning icon on the PopcornAdviceService component.

7. Investigate any warnings:

a. Open the Problems view and expand Warnings. If you see warnings that are for ILOG
imports that are never used by our application, it is safe to suppress these warnings.

b. Right-click one warning and select Quick Fix.

Select Add @SuppressWarnings ‘unused’ to ‘PopcornAdviceService’. Click Finish. The Java
editor opens showing the affected file and the necessary change is made. You do not need
to edit the file manually.

d. Save and close the editor to clear the warnings.

Task 5: Create the business process in WebSphere Integration Developer

You will now create the business process portion of the sample application.

The business process does the following.
1. The process accepts information about the child: a data structure of type Child.

2. It passes this information to the RuleApp, which adds the advice to the Child data structure and

returns it to the process.

3. The process assigns the advice string to an output parameter.
4. It then passes the output parameter back to the user.

The process flow and data types are shown in the following image.

Business Process Bules

[ata Tope:

Child Call rules
o

v

ztring

-
Parent L Data Type: Set response Data Type: |

Data Type:
Child l

Make decision

Child

Before creating the business process, you need to create the interface that it will use. As you can see
from the process description, the process will take a Child variable as its input and pass back a string

variable as its output.

To create the business process in WebSphere Integration Developer, complete the following steps:

1. Create the interface for the business process:

f.

In the Business Integration view, under PopcornProcessModule, right-click Interfaces and
select New > Interface.

In the Name field, enter Popcor nPr ocess| F and then click Finish. The Interface editor
opens for your new interface.

Right-click within the editor and select Add Request Response Operation. This creates an
operation with default input and output parameters.

Change the name inputl to Chi | d_i nput and change the Type to Child, as shown in the
following screen capture.

Change the name outputl to Advi ce_out put and leave the type as string, as shown in
the following screen capture.

(1) x — 0
w0Operations %ff %}3- = : : i

Operations and their parameters

Marne Tvpe
7 operation1
L Inpuk(s) Child_input Child
[Cukput(s) Advice_oukput skring

Save and close the Interface editor.

2. Create the business process component:

a.

In the Business Integration view, under PopcornProcessModule, right-click Integration
Logic and select New > Business Process.

In the Name field, enter Popcor nPr ocess, and click Next.

Select Microflow (because there is no human interaction within the process) and then click
Next.

For Interface, use the Browse button to select the PopcornProcesslIF that you just created
and then click Finish.

The following screen capture shows the Business Process editor open with your new process.

2 PopcornProcess 57 = O

PopeorrProcessMadule ™ 22 PopcornProcess

<] L2 Palette &5 ’{ £ PoprormProcess }
[z & &), € @) L, fiT IntetfFace Partners o9 3
@ Basic Actions F PopcornProcessIF
& Invoke & | Receive G Reference Partners = 3
m=- ASsign ® variables |% o B R
& | Receive | Reply -

—)) Zhild_input
& Receive Chaoice
&]Reply Q Advice_output
(L) it & Correlation Sets 50 %

Ernnbyw &FFinn ECnrrelatiDn Proper,.. 50 3

S AN~ S S

You can also see you process highlighted in the Business Integration view.

Projects i

= '[5-"‘_| PopcornProcessModule
] Aszembly Diagram
& Dependencies
== Integration Logic
3 & Processes
,Q, PopcornProcess
+- O 1ayva Usages
+ '-f;:‘«‘ Daka Tyvpes
[§3]

Interfaces
@ PopornfdviceService
@ PopcarnProcessIF
& Mapping
+ '[5-"‘_| Popcarnsshiodule

3. Add the Business Rules service call to the process:
a. From the Business Integration view, drag the PopcornAdviceService Interface onto the
process editor.

Note: This drag and drop functionality is not available in all fixpack versions of WebSphere
Integration Developer. An alternate method is to click the green plus symbol next to
Reference Partners in the right column and then select the PopcornAdviceService interface.

This adds the interface as a reference partner, so that it can be called from within the
process. It is now listed in the right column of the editor as shown in the following screen
capture.

‘Q PopcarnProcess

i@ Inkerface Parkners 0 3
F PopcornProcessIF

& Reference Partners =0 &

| b PopoornddyviceService |

@ Yarishles |3, o %
Zhild_input

Advice_oukput
Correlation Sets 50 &
@ Correlation Proper... 5@ 3

b. To add the service call, drag PopcornAdviceService from this column to between the
Receive and Reply actions on the diagram. This creates the Invoke action that calls the
service, as shown in the following screen capture.

& | Receive

& Tnvoke

-

2| Reply
O

There are still a few more details necessary to make the service call. You still need to tell the
process what data to pass to the service and what to do with the data handed back.

c. With the Invoke action selected, open the Properties view (in the pane below the process
diagram) and select the Details tab on the left.

d. Inthe Input(s) row, under Read From Variable, click (none) and select Child_input:Child.
This is the variable that you defined as the input to the process, and it can be passed directly
to the PopcornAdviceService.

e. The output variable is a little bit more complicated because the service passes the data type
PopcornRuleProjectExecutionResult back to the process, and the string that the process

needs to return to the parent is within this data structure. You need to create a temporary
variable to handle this.

In the Output(s) row, under Store Into Variable, click (none) and select New. Name the
variable t enpResul t .

This completes the details for the Invoke action.

The last step in the process is to extract the advice string from the tempResult variable. You do this
with an Assign action.
a. Drag the Assign action from the palette to just below the Invoke action in the process
diagram, as shown in the following screen capture.

& | Receive

& Invoke

- -
= Assign

. 2 | Reply

O
b. With the Assign action selected, go to the Details tab of the Properties view, click Select
From, and select tempResult > theChild > Advice.

c. Click Select To and select Advice_output. Recall that Advice_output is the variable name
for the output of the PopcornProcessIF interface.

d. Save and close the PopcornProcess editor.

The component that you just created must now be added to the assembly diagram:
a. Double-click Assembly Diagram in the Business Integration view to open the Assembly
editor.

b. Drag PopcornProcess from the Business Integration view onto the assembly diagram.

c. Add a wire from the PopcornProcess to the PopcornAdviceService, as shown in the
following screen capture.

id) ,Q PopcornProcess (1.1 id) @F‘mern.ﬁ.dviceﬁervice

Note: Any of the methods for wiring works. One method is to right-click the PopcornProcess
component and select Wire to Existing.

d. Save and close the Assembly editor.

Run the sample

Before beginning this section, you must have either created the application by following the steps in the
Build-It-Yourself section or you must have downloaded and installed the completed sample from the
Download section.

Note: If you completed the Build-1t-Yourself section, you can skip the Deploy the RuleApp section and
begin at the Configure the workspace section because you already deployed the RuleApp.

Deploy the RuleApp
If you have not already deployed the RuleApp, complete the following steps:

1. InILOG Rule Studio, open the RuleApp editor by expanding PopcornRuleApp and double-clicking
archive.xml.

2. Under Deployment, click Deploy a RuleApp to one or more Rule Execution Servers, as shown in the
following screen capture.
Deployment
You can:

Export a Ruledpp archive.
Deploy a RuleApp bo one or mare Rule Execution Servers,

3. Inthe wizard, leave Increment RuleApp major version selected, and click Next.

4. On the second page, select Create a temporary Rule Execution Server configuration with the
following values and click Finish.
URL: http://1 ocal host: 9080/ br es
(Careful! The default is close but not the same: 8080)
Login: bres
Password: bres

The Console view shows the following message:
The "PopcornRul eApp" Rul eApp project was successfully depl oyed on the
"tenporaryServer" configuration.
/ Popcor nRul eApp/ 1. 0 -> / Popcor nRul eApp/ 1. 0: El enent added
/ Popcor nRul eApp/ 1. 0/ Popcor nRul eProject/ 1.0 ->
/ Popcor nRul eApp/ 1. 0/ Popcor nRul eProj ect/1.0: El ement added

Configure the workspace
The default WPS profile can not run JRules; therefore, you might need to add a server that is based on a
profile with ILOG capabilities.

5. Check if you have a suitable server in your workspace by completing the following steps for all
servers listed in the Servers view:
a. Inthe Servers view, double-click a server. The Server Overview editor opens.

b. Inthe Server section, check the WebSphere profile name. If it is ILOGSampleServer, as
shown in the following screen capture, you can use this server to run the sample. Skip step 2
and continue at Run the Application.

¥ Server
Enter settings for the server,

Web3phere praofile name:

6. If you do not have a server based on the ILOG profile, you need to add one:

a.

® oo T

Right-click in the Servers view and select New > Server.

For server type, expand IBM and select WebSphere Process Server v6.2.
In the Server name field, enter WPS and | LOG Click Next.

For the profile name, select ILOGSampleServer.

For server connection types and administrative ports, select Manually provide the
connection settings and under Connection Type, clear the RMI check box, leaving only
SOAP selected.

Enter the admin user ID and password (the default is admin for the user ID and admin for the
password). Click Finish.

The following screen capture shows the completed New Server window.

& New Server,

WebSphere Server Settings g

Input settings For connecting to an existing WebSphere Application Server,

WebSphere profile name: ILOGSampleServer * | Configure profiles. ..

Server conneckion types and administrative ports

() Aukamatically determine connection settings

(%) Manually provide connection settings

Connection Type Port Default port | Descripkion
|:| RMI 2809 Designed ko improve communical
S0P aas0 aae0 Designed ko be more firewall con
< [»

[]run server with resources within the workspace
Security is enabled on this server

Current active authentication settings:

Lser ID: | admin |
Password; | senne |
WebSphere server name; | serverl |

Test Connection

(2] < Back, ” Mext = H Finish H Cancel

Run the application
You will use the test client in WebSphere Integration Developer to run your application. Complete the
following steps:

1. Inthe Business Integration view, right-click PopcornProcessModule and select Test > Test
Module.

2. Enter the following properties, leaving the default values in all other fields, as shown in the following
screen capture:
Component: Popcor nProcess
Name: Sam
Age: 3

7.

¢ General Properties

+ Detailed Properties

Configurakion: | Default Module Test A
Module: PopcornProcessModule w
Component: PopcornProcess W
Interface: PopcornProcessIF W
| Cperation: operationl W

Initial request parameters

=
| Mame | Type Yalue
= 5. inputt v
T Mame ¥ 5am
T Age R
i Papcarn d

In the Events section, click the continue icon 0' to start the test.

If you are prompted for a server, select the server with the ILOG profile (from the Configure the
workspace section of this document). Click Finish.

If prompted, enter the user ID and password. The default user ID is admin and the default password
is admin.)

You now see a pop-up box with various messages while the modules are deployed and the process
runs. Subsequent runs of the process are faster than the first time because the process does not
have to re-load.

When the run is complete, you can see the resulting advice in the Detailed Properties section of the
test client, in this case “This child can eat popcorn under close supervision”

Return pararmetbers:

Etfix = B

| T , —— -
| Name | Type | Yalue

[autputl tring i . This

To run additional tests, click the invoke icon #* in the Events section and repeat steps 2-5.

Clean the server

After running any set of tests, clean the server before moving on to a new workspace. To clean the
server, complete the following steps:

1. Inthe Servers view, expand the server that you have been using.

2. Right-click PopcornProcessModuleApp and select Remove.

Use the component in a larger application

The steps above illustrated how to run the application in an isolated test environment. To use this
functionality as part of a larger application, you need to use the SCA Export component. This is covered
in the WebSphere Integration Developer Sample, Hello World Part 1: Getting Started.

Download

Instead of building the application yourself, you can download the complete application.

Note: There is one minor difference between the complete application and the application that is
described in the Build-It-Yourself section: the location of the Child.xsd file that is used as the JRules
XOM. In the complete application, it has been imported into the Rule Studio workspace to eliminate the
need for an absolute path and make the workspace portable.

Files:

JRulesWS.zip
WID_Pl.zip

Download and Import
To download and import the application into the tooling products, complete the following steps:

1. Install WebSphere Integration Developer 6.2 and WebSphere ILOG JRules 6.7.3.

Configure your system as described in “Installing WebSphere Integration Developer with ILOG
JRules.” Ensure that your system passes the checks in Part 6 of this document.

2. Save the following files in a convenient directory on the computer that is running the products:

« JRulesWS.zip
- WID Pl.zip

3. The JRulesWS.zip file contains the complete workspace for ILOG Rule Studio.
a. Extract the files from the JRulesWS.zip file. You now have a directory named JRulesSample.

b. Start ILOG Rule Studio using the JRulesSample directory as your workspace.

4. The WID_PIl.zip file is the project interchange file for WebSphere Integration Developer.
Start WebSphere Integration Developer with a new workspace.

Close the Welcome page.

From the menu select File > Import > Other > Project Interchange
For the zip file, browse to WID_Pl.zip.

Ensure that all projects are selected, and then click Finish.

® 20T

You can now explore the complete application in the two products, or you can continue to the Run the
Sample section.

