
z/OS

XL C/C++
Programming Guide

SC09-4765-07

���

z/OS

XL C/C++
Programming Guide

SC09-4765-07

���

Note

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

961.

Eighth Edition, September 2006

This is a major revision of SC09-4765-06.

This edition applies to Version 1 Release 8 of z/OS XL C/C++ (5694-A01), Version 1 Release 8 of z/OS.e C/C++

(5655-G52), and to all subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are

not stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or you

may address your comments to the following address:

 International Business Machines Corporation

 Department 55JA, Mail Station P384

 2455 South Road

 Poughkeepsie, NY 12601-5400

 United States of America

 FAX (United States & Canada): 1+845+432-9405

 FAX (Other Countries):

 Your International Access Code +1+845+432-9405

 IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)

 Internet e-mail: mhvrcfs@us.ibm.com

 World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

v Title and order number of this book

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this document . xxiii

How to read syntax diagrams xxiii

Symbols . xxiii

Syntax items . xxiii

Syntax examples . xxiv

z/OS XL C/C++ and related documents xxv

Softcopy documents . xxx

Softcopy examples . xxx

z/OS XL C/C++ on the World Wide Web xxxi

Where to find more information xxxi

Part 1. Introduction . 1

Chapter 1. About IBM z/OS XL C/C++ 3

Changes for z/OS V1R8 . 3

The XL C/C++ compilers . 6

The C language . 6

The C++ language . 6

Common features of the z/OS XL C and XL C++ compilers 6

z/OS XL C compiler-specific features 8

z/OS XL C++ compiler-specific features 8

Class libraries . 8

Utilities . 9

dbx . 9

z/OS Language Environment . 9

z/OS Language Environment downward compatibility 10

About prelinking, linking, and binding 11

Notes on the prelinking process 12

File format considerations . 13

The program management binder 13

z/OS UNIX System Services . 13

z/OS XL C/C++ applications with z/OS UNIX System Services C functions . . . 15

Input and output . 15

I/O interfaces . 15

File types . 16

Additional I/O features . 17

The System Programming C facility 17

Interaction with other IBM products 18

Additional features of z/OS XL C/C++ 20

Part 2. Input and Output . 23

Chapter 2. Introduction to C and C++ input and output 25

Types of C and C++ input and output 25

Text streams . 25

Binary streams . 26

Record I/O . 26

Chapter 3. Understanding models of C I/O 27

The record model for C I/O . 27

Record formats . 27

The byte stream model for C I/O 36

© Copyright IBM Corp. 1996, 2006 iii

||

Mapping the C types of I/O to the byte stream model 36

Chapter 4. Using the Standard C++ Library I/O Stream Classes 39

Advantages to using the C++ I/O stream classes 39

Predefined streams for C++ . 40

How C++ I/O streams relate to C I/O streams 40

Mixing the Standard C++ I/O stream classes, USL I/O stream class library, and

C I/O library functions . 40

Specifying file attributes . 41

Chapter 5. Opening files . 43

Prototypes of functions . 43

Categories of I/O . 44

Specifying what kind of file to use 46

OS files . 46

HFS files . 46

VSAM data sets . 46

Terminal files . 46

Memory files and hiperspace memory files 47

CICS data queues . 48

z/OS Language Environment Message file 48

How to specify RECFM, LRECL, and BLKSIZE 48

fopen() defaults . 50

DDnames . 52

Avoiding Undesirable Results when Using I/O 53

How z/OS XL C/C++ determines what kind of file to open 53

MAP 0010: Under TSO, MVS batch, IMS — POSIX(ON) 54

MAP 0020: Under TSO, MVS batch, IMS — POSIX(OFF) 58

MAP 0030: Under CICS . 61

Chapter 6. Buffering of C streams 63

Chapter 7. Using ASA text files 65

Example of writing to an ASA file 65

CCNGAS1 . 65

ASA file control . 66

Chapter 8. z/OS XL C Support for the double-byte character set 69

Opening files . 70

Reading streams and files . 70

Writing streams and files . 71

Writing text streams . 72

Writing binary streams . 73

Flushing buffers . 73

Flushing text streams . 74

Flushing binary streams . 74

ungetwc() considerations . 74

Setting positions within files . 75

Repositioning within text streams 75

Repositioning within binary streams 75

ungetwc() considerations . 76

Closing files . 76

Manipulating wide character array functions 76

Chapter 9. Using C and C++ standard streams and redirection 79

Default open modes . 80

iv z/OS V1R8.0 XL C/C++ Programming Guide

Interleaving the standard streams with sync_with_stdio() 81

Interleaving the standard streams without sync_with_stdio() 83

Redirecting standard streams 85

Redirecting streams from the command line 85

Using the redirection symbols 86

Assigning the standard streams 87

Using the freopen() library function 87

Redirecting streams with the MSGFILE option 87

MSGFILE considerations . 87

Redirecting streams under z/OS 89

Under MVS batch . 89

Under TSO . 91

Under IMS . 91

Under CICS . 91

Passing C and C++ standard streams across a system() call 92

Passing binary streams . 92

Passing text streams . 93

Passing record I/O streams 94

Using global standard streams 95

Command line redirection . 96

Direct assignment . 98

freopen() . 98

MSGFILE() run-time option 98

fclose() . 98

File position and visible data 98

C++ I/O stream library . 98

Chapter 10. Performing OS I/O operations 99

Opening files . 99

Using fopen() or freopen() . 99

Generation data group I/O 102

Regular and extended partitioned data sets 106

Partitioned and sequential concatenated data sets 107

In-stream data sets . 109

SYSOUT data sets . 109

Tapes . 110

Multivolume data sets . 110

Striped data sets . 111

Large format sequential data sets 111

Other devices . 112

Access method selection . 113

fopen() and freopen() parameters 114

Buffering . 117

Multiple buffering . 118

DCB (Data Control Block) attributes 118

Reading from files . 121

Reading from binary files . 121

Reading from text files . 121

Reading from record I/O files 122

Writing to files . 122

Writing to binary files . 123

Writing to text files . 123

Writing to record I/O files . 126

Flushing buffers . 127

Updating existing records 127

Reading updated records 127

Contents v

||

||

Writing new records . 128

ungetc() considerations . 129

Repositioning within files . 130

ungetc() considerations . 131

How long fgetpos() and ftell() values last 131

Using fseek() and ftell() in binary files 131

Using fseek() and ftell() in text files (ASA and Non-ASA) 132

Using fseek() and ftell() in record files 133

Porting old C code that uses fseek() or ftell() 133

Closing files . 133

CCNGOS4 . 135

Renaming and removing files 136

fldata() behavior . 136

Chapter 11. Performing UNIX file system I/O operations 139

Creating files . 139

Regular files . 139

Link and symbolic link files 140

Directory files . 140

Character special files . 140

FIFO files . 140

Opening files . 140

Using fopen() or freopen() 141

Reading from HFS files . 145

Opening and reading from HFS directory files 145

Writing to HFS files . 145

Flushing records . 146

Setting positions within files . 146

Closing files . 147

Deleting files . 147

Pipe I/O . 147

Using unnamed pipes . 147

Using named pipes . 149

Character special file I/O . 153

Low-level z/OS UNIX System Services I/O 153

Example of HFS I/O functions 153

CCNGHF3 . 154

CCNGHF4 . 157

fldata() behavior . 159

File tagging and conversion . 160

Access Control Lists (ACLs) 161

Chapter 12. Performing VSAM I/O operations 163

VSAM types (data set organization) 164

Access method services . 165

Choosing VSAM data set types 165

Keys, RBAs and RRNs . 167

Summary of VSAM I/O operations 168

Opening VSAM data sets . 170

Using fopen() or freopen() 170

Buffering . 174

Record I/O in VSAM . 174

RRDS record structure . 175

Reading record I/O files . 175

Writing to record I/O files . 176

Updating record I/O files . 177

vi z/OS V1R8.0 XL C/C++ Programming Guide

||

Deleting records . 178

Repositioning within record I/O files 179

Flushing buffers . 181

Summary of VSAM record I/O operations 181

VSAM record level sharing and transactional VSAM 182

Error reporting . 183

VSAM extended addressability 184

Text and binary I/O in VSAM 185

Reading from text and binary I/O files 185

Writing to and updating text and binary I/O files 185

Deleting records in text and binary I/O files 186

Repositioning within text and binary I/O files 186

Flushing buffers . 188

Summary of VSAM text I/O operations 188

Summary of VSAM binary I/O operations 189

Closing VSAM data sets . 191

VSAM return codes . 191

VSAM examples . 192

KSDS example . 192

RRDS example . 200

fldata() behavior . 203

Chapter 13. Performing terminal I/O operations 207

Opening files . 207

Using fopen() and freopen() 207

Buffering . 209

Reading from files . 210

Reading from binary files . 210

Reading from text files . 211

Reading from record I/O files 211

Writing to files . 212

Writing to binary files . 212

Writing to text files . 212

Writing to record I/O files . 213

Flushing records . 213

Text streams . 213

Binary streams . 214

Record I/O . 214

Repositioning within files . 214

Closing files . 214

fldata() behavior . 214

Chapter 14. Performing memory file and hiperspace I/O operations . . . 217

Using hiperspace operations 217

Opening files . 218

Using fopen() or freopen() 218

Simulating partitioned data sets 222

Buffering . 224

Reading from files . 225

Writing to files . 226

Flushing records . 226

ungetc() considerations . 226

Repositioning within files . 227

Closing files . 227

Performance tips . 227

Removing memory files . 228

Contents vii

||

fldata() behavior . 228

Example program . 229

CCNGMF3 . 229

CCNGMF4 . 230

Chapter 15. Performing CICS Transaction Server I/O operations 231

Chapter 16. Language Environment Message file operations 233

Opening files . 233

Reading from files . 233

Writing to files . 234

Flushing buffers . 234

Repositioning within files . 234

Closing files . 234

Chapter 17. Debugging I/O programs 235

Using the __amrc structure . 235

CCNGDI1 . 238

Using the __amrc2 structure 239

Using __last_op codes . 240

Using the SIGIOERR signal . 243

CCNGDI2 . 243

Part 3. Interlanguage Calls with z/OS XL C/C++ 247

Chapter 18. Using Linkage Specifications in C or C++ 249

Syntax for Linkage in C or C++ 249

Syntax for Linkage in C . 249

Syntax for Linkage in C++ 250

Kinds of Linkage used by C or C++ Interlanguage Programs 250

Using Linkage Specifications in C++ 252

Chapter 19. Combining C or C++ and Assembler 255

Establishing the z/OS XL C/C++ environment 255

Specifying linkage for C or C++ to Assembler 256

Parameter lists for OS linkage 257

XPLINK Assembler . 257

Using standard macros . 259

Non-XPLINK assembler prolog 260

Non-XPLINK assembler epilog 260

XPLINK Assembler prolog 260

XPLINK Call . 262

XPLINK Assembler epilog 264

Accessing automatic memory in the non-XPLINK stack 264

Calling C code from Assembler — C example 265

CCNGCA4 . 265

CCNGCA2 . 266

CCNGCA5 . 266

Calling run-time library routines from Assembler — C++ example 266

CCNGCA1 . 267

CCNGCA2 . 267

CCNGCA3 . 268

Register content at entry to a non-XPLINK ASM routine using OS linkage 268

Register content at exit from a non-XPLINK ASM routine to z/OS XL C/C++ 268

Retaining the C environment using preinitialization 269

Setting up the interface for preinitializable programs 270

viii z/OS V1R8.0 XL C/C++ Programming Guide

Preinitializing a C program 273

Multiple preinitialization compatibility interface C environments 280

Using the service vector and associated routines 283

Part 4. Coding: Advanced Topics . 289

Chapter 20. Building and using Dynamic Link Libraries (DLLs) 291

Support for DLLs . 292

DLL concepts and terms . 292

Loading a DLL . 293

Loading a DLL implicitly . 293

Loading a DLL explicitly . 294

Managing the use of DLLs when running DLL applications 298

Loading DLLs . 298

Sharing DLLs . 300

Freeing DLLs . 300

Creating a DLL or a DLL application 300

Building a simple DLL . 301

Example of building a simple C DLL 301

Example of building a simple C++ DLL 302

Compiling your code . 303

Binding your code . 303

Building a simple DLL application 304

Steps for using an implicitly loaded DLL in your simple DLL application 304

Creating and using DLLs . 305

DLL restrictions . 307

Improving performance . 308

Chapter 21. Building complex DLLs 311

Rules for compiling source code with XPLINK 312

XPLINK applications . 312

Non-XPLINK applications 313

Compatibility issues between DLL and non-DLL code 315

Pointer assignment . 317

Function pointers . 317

DLL function pointer call in non-DLL code 319

C example . 320

Non-DLL function pointer call in DLL(CBA) code 322

Non-DLL function pointer call in DLL code 324

Function pointer comparison in non-DLL code 325

Function pointer comparison in DLL code 328

Using DLLs that call each other 330

Chapter 22. The z/OS 64-bit environment 337

Overview . 337

Differences between the ILP32 and LP64 environments 337

ILP32 and LP64 addressing capabilities 337

ILP32 and LP64 data models and data type sizes 337

Advantages and disadvantages of the LP64 environment 338

LP64 application performance and program size 338

LP64 restrictions . 339

Migrating applications from ILP32 to LP64 340

When to migrate applications to LP64 340

Checklist for ILP32-to-LP64 pre-migration activities 340

Checklist for ILP32-to-LP64 post-migration activities 341

Using compiler diagnostics to ensure portability of code 341

Contents ix

Using the INFO option to ensure that numbers are suffixed 341

Using the WARN64 option to identify potential portability problems 342

ILP32-to-LP64 portability issues 343

The IPA(LINK) option and exploitation of 64-bit virtual memory 344

Availability of suboptions . 344

Potential changes in structure size and alignment 345

Data type assignment differences under ILP32 and LP64 349

Pointer declarations when 32-bit and 64-bit applications share header files 353

Potential pointer corruption 354

Potential loss of data in constant expressions 355

Data alignment problems when structures are shared 356

Portability issues with unsuffixed numbers 358

Using a LONG_MAX macro in a printf subroutine 359

Programming for portability between ILP32 and LP64 360

Using header files to provide type definitions 360

Using suffixes and explicit types to prevent unexpected behavior 360

Defining pad members to avoid data alignment problems 361

Using prototypes to avoid debugging problems 362

Using a conditional compiler directive for preprocessor macro selection 363

Using converters under ILP32 or LP64 363

Using locales under ILP32 or LP64 363

Chapter 23. Using threads in z/OS UNIX System Services applications 365

Models and requirements . 365

Functions . 365

Creating a thread . 365

Synchronization primitives 366

Thread-specific data . 370

Signals . 372

Generating a signal . 373

Thread cancellation . 374

Cleanup for threads . 375

Behaviors and restrictions in z/OS UNIX System Services applications 376

Using threads with MVS files 376

Multithreaded I/O . 377

Thread-scoped functions . 378

Unsafe thread functions . 378

Fetched functions and writable statics 378

MTF and z/OS UNIX System Services threading 378

Thread queuing function . 378

Thread scheduling . 379

iconv() family of functions 379

Chapter 24. Reentrancy in z/OS XL C/C++ 381

Natural or constructed reentrancy 382

Limitations of constructed reentrancy for C programs 382

Controlling external static in C programs 382

Controlling writable strings 383

Controlling the memory area in C++ 384

Controlling where string literals exist in C++ code 385

Example of how to make string literals modifiable (CCNGRE2) 385

Using writable static in Assembler code 385

Example of referencing objects in the writeable static-area, Part 1

(CCNGRE3) . 386

Example of referencing objects in the writeable static-area, Part 2

(CCNGRE4) . 387

x z/OS V1R8.0 XL C/C++ Programming Guide

||

||

||

||

Chapter 25. Using the decimal data type in C 389

Declaring decimal types . 389

Declaring fixed-point decimal constants 390

Declaring decimal variables 390

Defining decimal-related constants 391

Using operators . 391

Arithmetic operators . 392

Assignment operators . 395

Unary operators . 395

Cast operator . 396

Summary of operators used with decimal types 396

Converting decimal types . 396

Converting decimal types to decimal types 396

Converting decimal types to and from integer types 398

Converting decimal types to and from floating types 399

Calling functions . 400

Using library functions . 400

Using variable arguments with decimal types 400

Formatting input and output operations 400

Validating values . 401

Fix sign . 401

Decimal absolute value . 402

Programming example . 403

Example 1 of use of decimal type (CCNGDC3) 403

Example 1 of output from programming 404

Example 2 of use of decimal type (CCNGDC4) 405

Example 2 of output from programming 405

Decimal exception handling . 405

System programming calls restrictions 406

printf() and scanf() restrictions 406

Additional considerations . 406

Error messages . 406

Chapter 26. IEEE Floating-Point 409

Floating-point numbers . 409

C/C++ compiler support . 410

Using IEEE floating-point . 410

Chapter 27. Handling error conditions, exceptions, and signals 413

Handling C software exceptions under C++ 413

Handling hardware exceptions under C++ 414

Tracebacks under C++ . 414

CCNGCH1 . 415

CCNGCH2 . 417

AMODE 64 exception handlers 418

Scope and nesting of exception handlers 418

Handling exceptions . 419

Signal handlers . 419

Handling signals with POSIX(OFF) using signal() and raise() 420

Handling signals using Language Environment callable services 420

Handling signals using z/OS UNIX System Services with POSIX(ON) . . . 421

Asynchronous signal delivery under z/OS UNIX System Services 423

C signal handling features under z/OS XL C/C++ 424

Chapter 28. Network communications under UNIX System Services . . . 435

Understanding z/OS UNIX System Services sockets and internetworking 435

Contents xi

The basics of network communication 436

Transport protocols for sockets 436

What is a socket? . 437

z/OS UNIX System Services Socket families 438

z/OS UNIX System Services Socket types 438

Guidelines for using socket types 439

Addressing within sockets 439

The conversation . 442

The server perspective . 442

The client perspective . 444

A typical TCP socket session 445

A typical UDP socket session 446

A typical datagram socket session 447

Locating the server’s port . 447

Network application example 447

Using common INET . 453

Compiling and binding . 454

Using TCP/IP APIs . 455

Restrictions for using z/OS TCP/IP API with z/OS UNIX System Services 455

Using z/OS UNIX System Services sockets 457

Compiling under MVS batch for Berkeley sockets 458

Compiling under MVS batch for X/Open sockets 459

Understanding the X/Open Transport Interface (XTI) 460

Transport endpoints . 460

Transport providers for X/Open Transport Interface 461

General restrictions for z/OS UNIX System Services 461

Chapter 29. Interprocess communication using z/OS UNIX System

Services . 463

Message queues . 463

Semaphores . 464

Shared memory . 464

Memory mapping . 464

TSO commands from a shell 465

Chapter 30. Using templates in C++ programs 467

Using the TEMPINC compiler option 467

TEMPINC example . 468

Regenerating the template instantiation file 470

TEMPINC considerations for shared libraries 470

Using the TEMPLATEREGISTRY compiler option 471

Recompiling related compilation units 471

Switching from TEMPINC to TEMPLATEREGISTRY 471

Chapter 31. Using environment variables 473

Working with environment variables 479

Naming conventions . 480

Environment variables specific to the z/OS XL C/C++ library 481

_CEE_DLLLOAD_XPCOMPAT 482

_CEE_DMPTARG . 483

_CEE_ENVFILE . 483

_CEE_ENVFILE_S . 484

_CEE_HEAP_MANAGER 484

_CEE_RUNOPTS . 485

_EDC_ADD_ERRNO2 . 487

_EDC_ANSI_OPEN_DEFAULT 487

xii z/OS V1R8.0 XL C/C++ Programming Guide

||

||

_EDC_AUTOCVT_BINARY 487

_EDC_BYTE_SEEK . 488

_EDC_CLEAR_SCREEN . 488

_EDC_COMPAT . 488

_EDC_C99_NAN . 489

_EDC_ERRNO_DIAG . 489

_EDC_GLOBAL_STREAMS 490

_EDC_POPEN . 491

_EDC_PUTENV_COPY . 491

_EDC_RRDS_HIDE_KEY 492

_EDC_STOR_INCREMENT 492

_EDC_STOR_INCREMENT_B 492

_EDC_STOR_INITIAL . 493

_EDC_STOR_INITIAL_B . 493

_EDC_ZERO_RECLEN . 494

Example . 494

CCNGEV1 . 495

CCNGEV2 . 496

Chapter 32. Using hardware built-in functions 497

General instructions . 497

Floating-point support instructions 499

Hexadecimal floating-point instructions 499

Binary floating-Point instructions 500

Chapter 33. ANSI C/C++ 98 applications and C99 503

Obtaining C99 behavior with XL C 503

Using C99 functions in XL C++ applications 503

Feature test macros that control C99 interfaces in XL C++ applications 503

Using C99 functions in C++ applications when ambiguous definitions exist 504

Part 5. Performance optimization . 505

Chapter 34. Improving program performance 507

Writing code for performance 507

Using C++ constructs in performance-critical code 507

ANSI aliasing rules . 509

Using ANSI aliasing rules . 512

Using variables . 513

Passing function arguments . 514

Coding expressions . 515

Coding conversions . 515

Example of numeric conversions (CCNGOP3) 516

Arithmetical considerations . 516

Using loops and control constructs 516

Choosing a data type . 517

Using built-in library functions and macros 518

Using library extensions . 520

Using pragmas . 521

#pragma disjoint . 521

#pragma export . 521

#pragma inline (C only) . 522

#pragma isolated_call . 522

#pragma leaves . 522

#pragma noinline . 522

#pragma option_override . 522

Contents xiii

||

||

#pragma reachable . 522

#pragma strings . 522

#pragma unroll . 523

#pragma variable . 523

Chapter 35. Using built-in functions to improve performance 525

Platform-specific functions . 526

Chapter 36. I/O Performance considerations 527

Accessing MVS data sets . 527

Accessing HFS files . 528

Using memory files . 529

Using the C++ I/O stream libraries 529

Chapter 37. Improving performance with compiler options 531

Using the OPTIMIZE option . 531

Optimizations performed by the compiler 531

Aggressive optimizations with OPTIMIZE(3) 532

Additional options that affect performance 533

ANSIALIAS . 533

ARCHITECTURE and TUNE 533

COMPRESS . 533

COMPACT . 534

CVFT (C++ only) . 534

EXH (C++ only) . 534

EXPORTALL . 534

IGNERRNO . 534

IPA . 534

LIBANSI . 534

OBJECTMODEL . 535

ROCONST . 535

ROSTRING . 535

RTTI . 535

SPILL . 535

STRICT_INDUCTION . 536

UNROLL . 536

Inlining . 536

Example of optimization (CCNGOP1) 537

Example of optimization (CCNGOP2) 537

Selectively marking code to inline 537

Automatically choosing functions to inline 538

Modifying automatic inlining choices 538

Overriding inlining defaults 539

Inlining under IPA . 539

Using the XPLINK option . 539

When you should not use XPLINK 540

Using the IPA option . 540

Types of procedural analysis 541

Program-directed feedback 542

Compiler processing flow . 543

Chapter 38. Optimizing the system and Language Environment 549

Improving the performance of the Language Environment 549

Storing libraries and modules in system memory 549

Optimizing memory and storage 549

Optimizing run-time options 550

xiv z/OS V1R8.0 XL C/C++ Programming Guide

Tuning the system for efficient execution 551

Link pack areas . 551

Library lookasides . 551

Virtual lookasides . 551

Filecaches . 551

Chapter 39. Balancing compilation time and application performance 553

General tips . 553

Programmer tips . 554

System programmer tips . 555

Part 6. z/OS XL C/C++ Environments . 557

Chapter 40. Using the system programming C facilities 559

Using functions in the system programming C environment 560

System programming C facility considerations and restrictions 561

Creating freestanding applications 562

Creating modules without CEESTART 563

Including an alternative initialization routine under z/OS 563

Initializing a freestanding application without Language Environment. . . . 563

Initializing a freestanding application using C functions 564

Setting up a C environment with preallocated stack and heap 564

Determining ISA requirements 565

Building freestanding applications to run under z/OS 565

Parts used for freestanding applications 568

Creating system exit routines 568

Building system exit routines under z/OS 569

An example of a system exit 569

Creating and using persistent C environments 572

Building applications that use persistent C environments 573

An example of persistent C environments 573

Developing services in the service routine environment 577

Using application service routine control flow 578

Understanding the stub perspective 584

Establishing a server environment 593

Initiating a server request 593

Accepting a request for service 594

Returning control from service 594

Constructing user-server stub routines 594

Building user-server environments 594

Tailoring the system programming C environment 595

Generating abends . 595

Getting storage . 596

Getting page-aligned storage 597

Freeing storage . 598

Loading a module . 599

Deleting a module . 599

Including a run-time message file 599

Additional library routines . 600

Summary of application types 601

Chapter 41. Library functions for system programming C 603

__xhotc() — Set Up a Persistent C Environment (No Library) 603

Format . 603

Description . 603

Returned value . 603

Contents xv

Example . 604

__xhotl() — Set Up a Persistent C Environment (With Library) 604

__xhott() — Terminate a Persistent C Environment 604

__xhotu() — Run a Function in a Persistent C Environment 605

__xregs() — Get Registers on Entry 605

__xsacc() — Accept Request for Service 606

__xsrvc() — Return Control from Service 606

__xusr() - __xusr2() — Get Address of User Word 607

__24malc() — Allocate Storage below 16MB Line 607

__4kmalc() — Allocate Page-Aligned Storage 607

Chapter 42. Using run-time user exits 609

Using run-time user exits in z/OS Language Environment 609

Understanding the basics 609

PL/I and C/370 compatibility 609

User exits supported under z/OS Language Environment 610

Order of processing of user exits 610

Using installation-wide or application-specific user exits 611

Using the Assembler user exit 612

Using sample Assembler user exits 612

Assembler user exit interface 614

Parameter values in the Assembler user exit 618

PL/I and C/370 compatibility 622

High level language user exit interface 623

Chapter 43. Using the z/OS XL C MultiTasking Facility 627

Organizing a program with MTF 627

Ensuring computational independence 628

Running a C program without MTF 629

Running a C program with MTF 630

Running a C program with one parallel function 630

Running a C program with two different parallel functions 632

z/OS XL C with multiple instances of the same parallel function 633

Designing and coding applications for MTF 635

Step 1: Identifying computationally-independent code 635

Step 2: Creating parallel functions 635

Step 3: Inserting calls to parallel functions 639

Changing an application to use MTF 639

Compiling and linking programs that use MTF 644

Creating the main task program load module 644

Creating the parallel functions load module 645

Specifying the linkage-editor option 646

Modifying run-time options 646

Running programs that use MTF 646

STEPLIB DD statement . 646

DD statements for standard streams 646

Example of JCL . 647

Debugging programs that use MTF 647

Avoiding undesirable results when using MTF 647

Part 7. Programming with Other Products 649

Chapter 44. Using the CICS Transaction Server (CICS TS) 651

Developing XL C/C++ programs for the CICS environment 651

Preparing CICS for use with z/OS Language Environment 651

Designing and coding for CICS 652

xvi z/OS V1R8.0 XL C/C++ Programming Guide

||

Using the CICS command-level interface 652

Using input and output . 656

Using z/OS XL C/C++ library support 658

Storage management . 660

Using ILC support . 661

Exception handling . 661

MAP 0050: Error handling in CICS 662

Example of error handling in CICS 662

ABEND codes and error messages under z/OS XL C/C++ 665

Coding hints and tips . 665

Translating and compiling for reentrancy 666

Options for translating CICS statements 666

Compiling XL C/C++ programs that were preprocessed by the standalone

CICS translator . 671

Prelinking and linking all object modules 672

Defining and running the CICS program 673

Program processing . 673

Link considerations for C programs 673

CSD considerations . 674

Sample JCL to install z/OS XL C/C++ application programs 674

Chapter 45. Using Cross System Product (CSP) 675

Common data types . 675

Passing control . 675

Running CSP under MVS . 676

Calling CSP applications from z/OS XL C 676

Examples . 676

Calling z/OS XL C from CSP 679

Examples . 679

Running under CICS control 683

Examples . 683

Chapter 46. Using Data Window Services (DWS) 689

CCNGDW2 . 689

Example . 690

CCNGDW1 . 690

Chapter 47. Using DB2 Universal Database 691

Preparing an XL C/C++ application to request DB2 services 691

Using the XL C/C++ DB2 coprocessor 691

Using the DB2 C/C++ precompiler 692

Using DB2 services and stored procedures with XPLINK 692

Examples of how to use XL C/C++ programs to request DB2 services 692

C sample with embedded SQL statements 693

C++ code example with embedded SQL statements 694

Chapter 48. Using Graphical Data Display Manager (GDDM) 699

Example . 699

CCNGGD1 . 700

CCNGGD2 . 702

Chapter 49. Using the Information Management System (IMS) 705

Handling errors . 706

Other considerations . 706

Examples . 707

Contents xvii

||

||
|
||

||
||
||
||
||
||
||
||

Chapter 50. Using the Interactive System Productivity Facility (ISPF) 715

Examples . 715

CCNGIS1 . 716

CCNGIS2 . 716

CCNGIS3 . 716

CCNGIS4 . 717

CCNGIS5 . 717

CCNGIS6 . 718

CCNGIS7 . 718

CCNGIS8 . 719

CCNGIS9 . 719

CCNGISA . 719

CCNGISB . 720

Chapter 51. Using the Query Management Facility (QMF) 721

Example . 721

CCNGQM1 . 721

CCNGQM2 . 724

CCNGQM3 . 725

Part 8. Internationalization: Locales and Character Sets 729

Chapter 52. Introduction to locale 731

Internationalization in programming languages 731

Elements of internationalization 731

z/OS XL C/C++ Support for internationalization 732

Locales and localization . 732

Locale-sensitive interfaces 732

Chapter 53. Building a locale 735

Limitations of enhanced ASCII 735

Using the charmap file . 736

The CHARMAP section . 741

The CHARSETID section 742

Locale source files . 744

LC_CTYPE category . 747

LC_COLLATE category . 750

LC_MONETARY category 757

LC_NUMERIC category . 761

LC_TIME category . 761

LC_MESSAGES category 764

LC_TOD category . 764

LC_SYNTAX category . 767

Method files . 769

Using the localedef utility . 772

Locale naming conventions 774

Chapter 54. Customizing a locale 785

Using the customized locale 787

Referring explicitly to a customized locale 787

CCNGCL1 . 788

Referring implicitly to a customized locale 789

CCNGCL2 . 789

Chapter 55. Customizing a time zone 791

Using the TZ or _TZ environment variable to specify time zone 791

xviii z/OS V1R8.0 XL C/C++ Programming Guide

Relationship between TZ or _TZ and LC_TOD 792

Chapter 56. Definition of S370 C, SAA C, and POSIX C locales 793

Differences between SAA C and POSIX C locales 799

CCNGDL1 . 799

Chapter 57. Code set conversion utilities 801

The genxlt utility . 801

The iconv utility . 801

Code conversion functions . 802

Code set converters supplied 802

Universal coded character set converters 826

Codeset conversion using UCS-2 832

UCMAP source format . 833

Chapter 58. Coded character set considerations with locale functions 837

Variant character detail . 837

Mappings of 13 PPCS variant characters 838

Mappings of Hex encoding of 13 PPCS variant characters 838

Alternate code points . 839

Coding without locale support by using a hybrid coded character set 839

Example of hybrid coded character set (CCNGCC1) 840

Writing code using a hybrid coded character set 841

Converting hybrid code . 841

Coded character set independence in developing applications 841

Coded character set in source code and header files 843

Converting coded character sets at compile time 846

Writing source code in coded character set IBM-1047 851

Exporting source code to other sites 851

Converting existing work . 853

Considerations with other products and tools 853

Chapter 59. Bidirectional language support 855

Bidirectional languages . 855

Overview of the layout functions 856

Using the layout functions 859

CCNGBID1 . 862

Part 9. Appendixes . 865

Appendix A. POSIX character set 867

Appendix B. Mapping variant characters for z/OS XL C/C++ 871

Displaying hexadecimal values 871

Example of displaying hexadecimal values 872

CCNGMV1 . 872

Using pragma filetag to specify code page in C 874

Displaying square brackets when using ISPF 874

Example of ISPF macro for displaying square brackets (CCNGMV2) 875

Using the CCNGMV2 macro 875

Procedure for mapping on 3279 876

Appendix C. z/OS XL C/C++ Code Point Mappings 877

Appendix D. Locales supplied with z/OS XL C/C++ 879

Compiled locales . 879

Contents xix

Locale source files . 895

Appendix E. Charmap files supplied with z/OS XL C/C++ 901

Appendix F. Examples of charmap and locale definition source 905

Charmap file . 905

Locale definition source file . 912

Locale method source file . 917

Appendix G. Converting code from coded character set IBM-1047 919

Example of converting hybrid code to a specific character set (CCNGHC1) 919

Appendix H. Additional Examples 929

Memory Management . 929

CCNGMI1 . 929

CCNGMI2 . 930

Calling MVS WTO routines from C 939

CCNGWT1 . 940

CCNGWT2 . 941

Listing Partitioned Data Set Members 941

CCNGIP1 . 942

CCNGIP2 . 947

Appendix I. Application considerations for z/OS UNIX System Services XL

C/C++ . 949

Relationship to DB2 universal database 949

Application programming environments not supported 949

Support for the Curses library 949

Appendix J. External variables 951

errno . 951

daylight . 951

getdate_err . 952

h_errno . 952

__loc1 . 952

loc1 . 952

loc2 . 952

locs . 952

optarg . 953

opterr . 953

optind . 953

optopt . 953

signgam . 953

stdin . 953

stderr . 953

stdout . 953

t_errno . 953

timezone . 954

tzname . 954

Appendix K. Packaging considerations 955

Compiler options . 955

Libraries . 955

Prelinking . 956

Linking . 956

++MOD . 956

xx z/OS V1R8.0 XL C/C++ Programming Guide

++PROGRAM . 957

Appendix L. Accessibility . 959

Using assistive technologies 959

Keyboard navigation of the user interface 959

z/OS information . 959

Notices . 961

Programming Interface Information 963

Trademarks . 963

Standards . 963

Glossary . 965

Bibliography . 993

z/OS . 993

z/OS XL C/C++ . 993

z/OS Run-Time Library Extensions 993

Debug Tool . 993

z/OS Language Environment 994

Assembler . 994

COBOL . 994

PL/I . 994

VS FORTRAN . 994

CICS Transaction Server for z/OS 994

DB2 . 994

IMS/ESA . 995

MVS . 995

QMF . 995

DFSMS . 995

INDEX . 997

Contents xxi

xxii z/OS V1R8.0 XL C/C++ Programming Guide

About this document

This document provides information about implementing programs that are written

in C and C++. It contains advanced guidelines and information for developing C and

C++ programs to run under z/OS® and z/OS.e. References to z/OS in the document

refer to both z/OS and z/OS.e.

Note: As of z/OS V1R7, the z/OS C/C++ compiler has been rebranded to z/OS XL

C/C++.

This document contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical line (|) to

the left of the change.

You may notice changes in the style and structure of some of the contents in this

document; for example, headings that use uppercase for the first letter of initial

words only, and procedures that have a different look and format. The changes are

ongoing improvements to the consistency and retrievability of information in our

documents.

How to read syntax diagrams

This section describes how to read syntax diagrams. It defines syntax diagram

symbols, items that may be contained within the diagrams (keywords, variables,

delimiters, operators, fragment references, operands) and provides syntax examples

that contain these items.

Syntax diagrams pictorially display the order and parts (options and arguments) that

comprise a command statement. They are read from left to right and from top to

bottom, following the main path of the horizontal line.

Symbols

The following symbols may be displayed in syntax diagrams:

Symbol Definition

��─── Indicates the beginning of the syntax diagram.

───� Indicates that the syntax diagram is continued to the next line.

�─── Indicates that the syntax is continued from the previous line.

───�� Indicates the end of the syntax diagram.

Syntax items

Syntax diagrams contain many different items. Syntax items include:

v Keywords - a command name or any other literal information.

v Variables - variables are italicized, appear in lowercase, and represent the name

of values you can supply.

v Delimiters - delimiters indicate the start or end of keywords, variables, or

operators. For example, a left parenthesis is a delimiter.

v Operators - operators include add (+), subtract (-), multiply (*), divide (/), equal

(=), and other mathematical operations that may need to be performed.

v Fragment references - a part of a syntax diagram, separated from the diagram to

show greater detail.

© Copyright IBM Corp. 1996, 2006 xxiii

v Separators - a separator separates keywords, variables or operators. For

example, a comma (,) is a separator.

Note: If a syntax diagram shows a character that is not alphanumeric (for example,

parentheses, periods, commas, equal signs, a blank space), enter the

character as part of the syntax.

Keywords, variables, and operators may be displayed as required, optional, or

default. Fragments, separators, and delimiters may be displayed as required or

optional.

Item type Definition

Required Required items are displayed on the main path of the horizontal

line.

Optional Optional items are displayed below the main path of the horizontal

line.

Default Default items are displayed above the main path of the horizontal

line.

Syntax examples

The following table provides syntax examples.

 Table 1. Syntax examples

Item Syntax example

Required item.

Required items appear on the main path of the horizontal line.

You must specify these items.

�� KEYWORD required_item ��

Required choice.

A required choice (two or more items) appears in a vertical stack

on the main path of the horizontal line. You must choose one of

the items in the stack.

�� KEYWORD required_choice1

required_choice2
 ��

Optional item.

Optional items appear below the main path of the horizontal line.

�� KEYWORD

optional_item
 ��

Optional choice.

An optional choice (two or more items) appears in a vertical stack

below the main path of the horizontal line. You may choose one

of the items in the stack.

�� KEYWORD

optional_choice1

optional_choice2

 ��

Default.

Default items appear above the main path of the horizontal line.

The remaining items (required or optional) appear on (required)

or below (optional) the main path of the horizontal line. The

following example displays a default with optional items.

��
 default_choice1

KEYWORD

optional_choice2

optional_choice3

��

Variable.

Variables appear in lowercase italics. They represent names or

values.

�� KEYWORD variable ��

xxiv z/OS V1R8.0 XL C/C++ Programming Guide

Table 1. Syntax examples (continued)

Item Syntax example

Repeatable item.

An arrow returning to the left above the main path of the

horizontal line indicates an item that can be repeated.

A character within the arrow means you must separate repeated

items with that character.

An arrow returning to the left above a group of repeatable items

indicates that one of the items can be selected, or a single item

can be repeated.

��

�

KEYWORD

repeatable_item

��

��

�

 ,

KEYWORD

repeatable_item

��

Fragment.

The ─┤ fragment ├─ symbol indicates that a labelled group is

described below the main syntax diagram. Syntax is occasionally

broken into fragments if the inclusion of the fragment would

overly complicate the main syntax diagram.

�� KEYWORD fragment ��

fragment:

 ,required_choice1

,default_choice

,required_choice2

,optional_choice

z/OS XL C/C++ and related documents

This section summarizes the content of the z/OS XL C/C++ documents and shows

where to find related information in other documents.

About this document xxv

Table 2. z/OS XL C/C++ and related documents

Document Title and Number Key Sections/Chapters in the Document

z/OS XL C/C++ Programming Guide,

SC09-4765

Guidance information for:

v XL C/C++ input and output

v Debugging z/OS XL C programs that use input/output

v Using linkage specifications in C++

v Combining C and assembler

v Creating and using DLLs

v Using threads in z/OS UNIX® System Services applications

v Reentrancy

v Handling exceptions, error conditions, and signals

v Performance optimization

v Network communications under z/OS UNIX System Services

v Interprocess communications using z/OS UNIX System Services

v Structuring a program that uses C++ templates

v Using environment variables

v Using System Programming C facilities

v Library functions for the System Programming C facilities

v Using run-time user exits

v Using the z/OS XL C multitasking facility

v Using other IBM® products with z/OS XL C/C++ (CICS® Transaction Server

for z/OS, CSP, DWS, DB2®, GDDM®, IMS™, ISPF, QMF™)

v Internationalization: locales and character sets, code set conversion

utilities, mapping variant characters

v POSIX® character set

v Code point mappings

v Locales supplied with z/OS XL C/C++

v Charmap files supplied with z/OS XL C/C++

v Examples of charmap and locale definition source files

v Converting code from coded character set IBM-1047

v Using built-in functions

v Programming considerations for z/OS UNIX System Services C/C++

z/OS XL C/C++ User’s Guide,

SC09-4767

Guidance information for:

v z/OS XL C/C++ examples

v Compiler options

v Binder options and control statements

v Specifying Language Environment® run-time options

v Compiling, IPA Linking, binding, and running z/OS XL C/C++ programs

v Utilities (Object Library, CXXFILT, DSECT Conversion, Code Set and

Locale, ar and make, BPXBATCH, c89, xlc)

v Diagnosing problems

v Cataloged procedures and REXX EXECs supplied by IBM

v Customizing default options for the z/OS XL C/C++ compiler

z/OS XL C/C++ Language Reference,

SC09-4815

Reference information for:

v The C and C++ languages

v Lexical elements of z/OS XL C and C++

v Declarations, expressions, and operators

v Implicit type conversions

v Functions and statements

v Preprocessor directives

v C++ classes, class members, and friends

v C++ overloading, special member functions, and inheritance

v C++ templates and exception handling

v z/OS XL C and C++ compatibility

xxvi z/OS V1R8.0 XL C/C++ Programming Guide

Table 2. z/OS XL C/C++ and related documents (continued)

Document Title and Number Key Sections/Chapters in the Document

z/OS XL C/C++ Messages,

GC09-4819

Provides error messages and return codes for the compiler, and its related

application interface libraries and utilities. For the XL C/C++ run-time library

messages, refer to z/OS Language Environment Run-Time Messages,

SA22-7566. For the c89 and xlc utility messages, refer to z/OS UNIX System

Services Messages and Codes, SA22-7807.

z/OS XL C/C++ Run-Time Library

Reference, SA22-7821

Reference information for:

v header files

v library functions

z/OS C Curses, SA22-7820 Reference information for:

v Curses concepts

v Key data types

v General rules for characters, renditions, and window properties

v General rules of operations and operating modes

v Use of macros

v Restrictions on block-mode terminals

v Curses functional interface

v Contents of headers

v The terminfo database

z/OS XL C/C++ Compiler and

Run-Time Migration Guide for the

Application Programmer, GC09-4913

Guidance and reference information for:

v Common migration questions

v Application executable program compatibility

v Source program compatibility

v Input and output operations compatibility

v Class library migration considerations

v Changes between releases of z/OS

v Pre-z/OS C and C++ compilers to current compiler migration

v Other migration considerations

Standard C++ Library Reference,

SC09-4949

The documentation describes how to use the following three main

components of the Standard C++ Library to write portable C/C++ code that

complies with the ISO standards:

v ISO Standard C Library

v ISO Standard C++ Library

v Standard Template Library (C++)

The ISO Standard C++ library consists of 51 required headers. These 51 C++

library headers (along with the additional 18 Standard C headers) constitute a

hosted implementation of the C++ library. Of these 51 headers, 13 constitute

the Standard Template Library, or STL.

C/C++ Legacy Class Libraries

Reference, SC09-7652

Reference information for:

v UNIX System Laboratories (USL) I/O Stream Library

v USL Complex Mathematics Library

This reference is part of the Run-Time Library Extensions documentation.

IBM Open Class Library Transition

Guide, SC09-4948

The documentation explains the various options to application owners and

users for migrating from the IBM Open Class® library to the Standard C++

Library.

z/OS Common Debug Architecture

User’s Guide, SC09-7653

This documentation is the user’s guide for IBM’s libddpi library. It includes:

v Overview of the architecture

v Information on the order and purpose of API calls for model user

applications and for accessing DWARF information

v Information on using the Common Debug Architecture with C/C++ source

This user’s guide is part of the Run-Time Library Extensions documentation.

About this document xxvii

|

Table 2. z/OS XL C/C++ and related documents (continued)

Document Title and Number Key Sections/Chapters in the Document

z/OS Common Debug Architecture

Library Reference, SC09-7654

This documentation is the reference for IBM’s libddpi library. It includes:

v General discussion of Common Debug Architecture

v Description of APIs and data types related to stacks, processes, operating

systems, machine state, storage, and formatting

This reference is part of the Run-Time Library Extensions documentation.

DWARF/ELF Extensions Library

Reference, SC09-7655

This documentation is the reference for IBM’s extensions to the libdwarf and

libelf libraries. It includes information on:

v Consumer APIs

v Producer APIs

This reference is part of the Run-Time Library Extensions documentation.

Debug Tool documentation, available

on the Debug Tool for z/OS library

page on the World Wide Web

The documentation, which is available at www.ibm.com/software/awdtools/
debugtool/library/, provides guidance and reference information for debugging

programs, using Debug Tool in different environments, and language-specific

information.

APAR and BOOKS files (Shipped with

Program materials)

Partitioned data set CBC.SCCNDOC on the product tape contains the

members, APAR and BOOKS, which provide additional information for using

the z/OS XL C/C++ licensed program, including:

v Isolating reportable problems

v Keywords

v Preparing an Authorized Program Analysis Report (APAR)

v Problem identification worksheet

v Maintenance on z/OS

v Late changes to z/OS XL C/C++ publications

Note: For complete and detailed information on linking and running with Language Environment and using the

Language Environment run-time options, refer to z/OS Language Environment Programming Guide, SA22-7561. For

complete and detailed information on using interlanguage calls, refer to z/OS Language Environment Writing

Interlanguage Communication Applications, SA22-7563.

The following table lists the z/OS XL C/C++ and related documents. The table

groups the documents according to the tasks they describe.

 Table 3. Documents by task

Tasks Documents

Planning, preparing, and migrating to z/OS XL

C/C++

v z/OS XL C/C++ Compiler and Run-Time Migration Guide for the

Application Programmer, GC09-4913

v z/OS Language Environment Customization, SA22-7564

v z/OS Language Environment Run-Time Application Migration

Guide, GA22-7565

v z/OS UNIX System Services Planning, GA22-7800

v z/OS and z/OS.e Planning for Installation, GA22-7504

Installing v z/OS Program Directory

v z/OS and z/OS.e Planning for Installation, GA22-7504

v z/OS Language Environment Customization, SA22-7564

Option customization v z/OS XL C/C++ User’s Guide, SC09-4767

Coding programs v z/OS XL C/C++ Run-Time Library Reference, SA22-7821

v z/OS XL C/C++ Language Reference, SC09-4815

v z/OS XL C/C++ Programming Guide, SC09-4765

v z/OS Language Environment Concepts Guide, SA22-7567

v z/OS Language Environment Programming Guide, SA22-7561

v z/OS Language Environment Programming Reference, SA22-7562

xxviii z/OS V1R8.0 XL C/C++ Programming Guide

||

http://www.ibm.com/software/awdtools/debugtool/library/
http://www.ibm.com/software/awdtools/debugtool/library/

Table 3. Documents by task (continued)

Tasks Documents

Coding and binding programs with

interlanguage calls

v z/OS XL C/C++ Programming Guide, SC09-4765

v z/OS XL C/C++ Language Reference, SC09-4815

v z/OS Language Environment Programming Guide, SA22-7561

v z/OS Language Environment Writing Interlanguage Communication

Applications, SA22-7563

v z/OS MVS Program Management: User’s Guide and Reference,

SA22-7643

v z/OS MVS Program Management: Advanced Facilities, SA22-7644

Compiling, binding, and running programs v z/OS XL C/C++ User’s Guide, SC09-4767

v z/OS Language Environment Programming Guide, SA22-7561

v z/OS Language Environment Debugging Guide, GA22-7560

v z/OS MVS Program Management: User’s Guide and Reference,

SA22-7643

v z/OS MVS Program Management: Advanced Facilities, SA22-7644

Compiling and binding applications in the z/OS

UNIX System Services (z/OS UNIX)

environment

v z/OS XL C/C++ User’s Guide, SC09-4767

v z/OS UNIX System Services User’s Guide, SA22-7801

v z/OS UNIX System Services Command Reference, SA22-7802

v z/OS MVS Program Management: User’s Guide and Reference,

SA22-7643

v z/OS MVS Program Management: Advanced Facilities, SA22-7644

Debugging programs v README file

v z/OS XL C/C++ User’s Guide, SC09-4767

v z/OS XL C/C++ Messages, GC09-4819

v z/OS XL C/C++ Programming Guide, SC09-4765

v z/OS Language Environment Programming Guide, SA22-7561

v z/OS Language Environment Debugging Guide, GA22-7560

v z/OS Language Environment Run-Time Messages, SA22-7566

v z/OS UNIX System Services Messages and Codes, SA22-7807

v z/OS UNIX System Services User’s Guide, SA22-7801

v z/OS UNIX System Services Command Reference, SA22-7802

v z/OS UNIX System Services Programming Tools, SA22-7805

v Debug Tool documentation, available on the Debug Tool Library

page on the World Wide Web (www.ibm.com/software/awdtools/
debugtool/library/)

v z/OS messages database, available on the z/OS Library page at

www.ibm.com/servers/eserver/zseries/zos/bkserv/ through the

LookAt Internet message search utility.

Developing debuggers and profilers v z/OS Common Debug Architecture User’s Guide, SC09-7653

v z/OS Common Debug Architecture Library Reference, SC09-7654

v DWARF/ELF Extensions Library Reference, SC09-7655

Packaging XL C/C++ applications v z/OS XL C/C++ Programming Guide, SC09-4765

v z/OS XL C/C++ User’s Guide, SC09-4767

Using shells and utilities in the z/OS UNIX

System Services environment

v z/OS XL C/C++ User’s Guide, SC09-4767

v z/OS UNIX System Services Command Reference, SA22-7802

v z/OS UNIX System Services Messages and Codes, SA22-7807

Using sockets library functions in the z/OS

UNIX System Services environment

v z/OS XL C/C++ Run-Time Library Reference, SA22-7821

Using the ISO Standard C++ Library to write

portable C/C++ code that complies with ISO

standards

v Standard C++ Library Reference, SC09-4949

Migrating from the IBM Open Class Library to

the Standard C++ Library

v IBM Open Class Library Transition Guide, SC09-4948

About this document xxix

|

||
|

http://www.ibm.com/software/awdtools/debugtool/library/
http://www.ibm.com/software/awdtools/debugtool/library/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

Table 3. Documents by task (continued)

Tasks Documents

Porting a z/OS UNIX System Services

application to z/OS

v z/OS UNIX System Services Porting Guide

This guide contains useful information about supported header files

and C functions, sockets in z/OS UNIX System Services, process

management, compiler optimization tips, and suggestions for

improving the application’s performance after it has been ported.

The Porting Guide is available as a PDF file which you can

download, or as web pages which you can browse, at the following

web address: www.ibm.com/servers/eserver/zseries/zos/unix/
bpxa1por.html

Working in the z/OS UNIX System Services

Parallel Environment

v z/OS UNIX System Services Parallel Environment: Operation and

Use, SA22-7810

v z/OS UNIX System Services Parallel Environment: MPI

Programming and Subroutine Reference, SA22-7812

Performing diagnosis and submitting an

Authorized Program Analysis Report (APAR)

v z/OS XL C/C++ User’s Guide, SC09-4767

v CBC.SCCNDOC(APAR) on z/OS XL C/C++ product tape

Tuning Large C/C++ Applications on OS/390®

UNIX System Services

v IBM Redbook called Tuning Large C/C++ Applications on OS/390

UNIX System Services, which is available at:

www.redbooks.ibm.com/abstracts/sg245606.html

C/C++ Applications on z/OS and OS/390 UNIX v IBM Redbook called C/C++ Applications on z/OS and OS/390

UNIX, which is available at: www.redbooks.ibm.com/abstracts/
sg245992.html

Performance considerations for XPLINK v IBM Redbook called XPLink: OS/390 Extra Performance Linkage,

which is available at: www.redbooks.ibm.com/abstracts/
sg245991.html

Note: For information on using the prelinker, see the appendix on prelinking and linking z/OS XL C/C++ programs in

z/OS XL C/C++ User’s Guide.

Softcopy documents

The z/OS XL C/C++ publications are supplied in PDF and BookMaster® formats on

the following CD: z/OS Collection, SK3T-4269. They are also available at

www.ibm.com/software/awdtools/czos/library/.

To read a PDF file, use the Adobe® Reader®. If you do not have the Adobe Reader,

you can download it for free from the Adobe Web site at www.adobe.com.

You can also browse the documents on the World Wide Web by visiting the z/OS

library at www.ibm.com/servers/eserver/zseries/zos/bkserv/.

Note: For further information on viewing and printing softcopy documents and

using BookManager®, see z/OS Information Roadmap.

Softcopy examples

Most of the larger examples in the following documents are available in

machine-readable form:

v z/OS XL C/C++ Language Reference, SC09-4815

v z/OS XL C/C++ User’s Guide, SC09-4767

v z/OS XL C/C++ Programming Guide, SC09-4765

xxx z/OS V1R8.0 XL C/C++ Programming Guide

|

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1por.html
http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1por.html
http://www.redbooks.ibm.com/abstracts/sg245606.html
http://www.redbooks.ibm.com/abstracts/sg245992.html
http://www.redbooks.ibm.com/abstracts/sg245992.html
http://www.redbooks.ibm.com/abstracts/sg245991.html
http://www.redbooks.ibm.com/abstracts/sg245991.html
http://www.ibm.com/software/awdtools/czos/library/
http://www.adobe.com
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

In the following documents, a label on an example indicates that the example is

distributed as a softcopy file:

v z/OS XL C/C++ Language Reference, SC09-4815

v z/OS XL C/C++ Programming Guide, SC09-4765

v z/OS XL C/C++ User’s Guide, SC09-4767

The label is the name of a member in the CBC.SCCNSAM data set. The labels

begin with the form CCN or CLB. Examples labelled as CLB appear only in the

z/OS XL C/C++ User’s Guide, while examples labelled as CCN appear in all three

documents, and are further distinguished by x following CCN, where x represents

one of the following:

v R and X refer to z/OS XL C/C++ Language Reference, SC09-4815

v G refers to z/OS XL C/C++ Programming Guide, SC09-4765

v U refers to z/OS XL C/C++ User’s Guide, SC09-4767

z/OS XL C/C++ on the World Wide Web

Additional information on z/OS XL C/C++ is available on the World Wide Web on

the z/OS XL C/C++ home page at: www.ibm.com/software/awdtools/czos/

This page contains late-breaking information about the z/OS XL C/C++ product,

including the compiler, the C/C++ libraries, and utilities. There are links to other

useful information, such as the z/OS XL C/C++ information library and the libraries

of other z/OS elements that are available on the Web. The z/OS XL C/C++ home

page also contains links to other related Web sites.

Where to find more information

Please see z/OS Information Roadmap for an overview of the documentation

associated with z/OS, including the documentation available for z/OS Language

Environment.

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM

messages you encounter, as well as for some system abends and codes. Using

LookAt to find information is faster than a conventional search because in most

cases LookAt goes directly to the message explanation.

You can use LookAt from these locations to find IBM message explanations for

z/OS elements and features, z/VM®, VSE/ESA™, and Clusters for AIX® and Linux™:

v The Internet. You can access IBM message explanations directly from the LookAt

Web site at www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/.

v Your z/OS TSO/E host system. You can install code on your z/OS or z/OS.e

systems to access IBM message explanations using LookAt from a TSO/E

command line (for example: TSO/E prompt, ISPF, or z/OS UNIX System

Services).

v Your Microsoft® Windows® workstation. You can install LookAt directly from the

z/OS Collection (SK3T-4269) or the z/OS and Software Products DVD Collection

(SK3T-4271) and use it from the resulting Windows graphical user interface

(GUI). The command prompt (also known as the DOS > command line) version

can still be used from the directory in which you install the Windows version of

LookAt.

v Your wireless handheld device. You can use the LookAt Mobile Edition from

www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html with a

About this document xxxi

|

http://www.ibm.com/software/awdtools/czos/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html

handheld device that has wireless access and an Internet browser (for example:

Internet Explorer for Pocket PCs, Blazer or Eudora for Palm OS, or Opera for

Linux handheld devices).

You can obtain code to install LookAt on your host system or Microsoft Windows

workstation from:

v A CD-ROM in the z/OS Collection (SK3T-4269).

v The z/OS and Software Products DVD Collection (SK3T-4271).

v The LookAt Web site (click Download and then select the platform, release,

collection, and location that suit your needs). More information is available in the

LOOKAT.ME files available during the download process.

Using IBM Health Checker for z/OS

IBM Health Checker for z/OS is a z/OS component that installations can use to

gather information about their system environment and system parameters to help

identify potential configuration problems before they impact availability or cause

outages. Individual products, z/OS components, or ISV software can provide checks

that take advantage of the IBM Health Checker for z/OS framework. This book

refers to checks or messages associated with this component.

For additional information about checks and about IBM Health Checker for z/OS,

see IBM Health Checker for z/OS: User’s Guide. Starting with z/OS V1R4, z/OS

users can obtain the IBM Health Checker for z/OS from the z/OS Downloads page

at www.ibm.com/servers/eserver/zseries/zos/downloads/.

SDSF also provides functions to simplify the management of checks. See z/OS

SDSF Operation and Customization for additional information.

Information updates on the web

For the latest information updates that have been provided in PTF cover letters and

Documentation APARs for z/OS and z/OS.e, see the online document at:

publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS

This document is updated weekly and lists documentation changes before they are

incorporated into z/OS publications.

xxxii z/OS V1R8.0 XL C/C++ Programming Guide

http://www.ibm.com/servers/eserver/zseries/zos/downloads/
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS

Part 1. Introduction

This part discusses presents introductory concepts on the z/OS XL C/C++ product.

Specifically, it discusses the following:

v Chapter 1, “About IBM z/OS XL C/C++,” on page 3

v “About prelinking, linking, and binding” on page 11

© Copyright IBM Corp. 1996, 2006 1

2 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 1. About IBM z/OS XL C/C++

The XL C/C++ feature of the IBM z/OS licensed program provides support for C

and C++ application development on the z/OS platform.

z/OS XL C/C++ includes:

v A C compiler (referred to as the z/OS XL C compiler)

v A C++ compiler (referred to as the z/OS XL C++ compiler)

v Performance Analyzer host component, which supports the IBM C/C++

Productivity Tools for OS/390 product

v A set of utilities for C/C++ application development

Notes:

1. The Run-Time Library Extensions base element was introduced in z/OS V1R5.

It includes the Common Debug Architecture (CDA) Libraries, the c89 utility, and,

as of z/OS V1R6, the xlc utility. The Common Debug Architecture provides a

consistent and common format for debugging information across the various

languages and operating systems that are supported on the IBM System z™

platform. Run-Time Library Extensions also includes legacy libraries to support

existing programs. These are the UNIX System Laboratories (USL) I/O Stream

Library, USL Complex Mathematics Library, and IBM Open Class DLLs.

Application development using the IBM Open Class Library is not supported.

2. The Standard C++ Library is included with Language Environment.

3. The z/OS XL C/C++ compiler works with the mainframe interactive Debug Tool

product.

IBM offers the C and C++ compilers on other platforms, such as the AIX, Linux,

OS/400®, and z/VM operating systems. The C compiler is also available on the

VSE/ESA platform.

Changes for z/OS V1R8

z/OS XL C/C++ has made the following performance and usability enhancements

for the z/OS V1R8 release:

z/OS XL C++ support for C99 (ISO/IEC 9899:1999) standard features

z/OS V1R8 XL C++ supports the following set of C99 features:

v restrict qualifier

v valid universal character name ranges

v __func__ identifier for debugging assistance

z/OS XL C++ GNU enablement

z/OS V1R8 XL C++ supports the #include_next directive.

New compiler options

z/OS V1R8 XL C/C++ introduces the following new compiler

options:

v HGPR

v HOT

v SPLITLIST

New compiler suboptions

z/OS V1R8 XL C/C++ introduces the following new compiler

suboptions:

v LANGLVL(C99__FUNC__) (C++ only)

© Copyright IBM Corp. 1996, 2006 3

|

|

|
|

|
|

|

|

|

|
|

|
|
|

|

|

|

|
|
|

|

v TARGET(zOSV1R8)

Stabilization of the prelinker

The prelinker was designed to process long names and support

constructed reentrancy in earlier versions of the C compiler on the

MVS™ and OS/390 operating systems. The prelinker, shipped with

z/OS Language Environment, provides output that is compatible

with the linkage editor that is shipped with the binder. The binder is

designed to include the functions of the prelinker, the linkage editor,

the loader, and a number of APIs to manipulate the program object.

Its functionality provides a high level of compatibility with the

prelinker and linkage editor, but provides additional functionality in

some areas. IBM has stabilized the prelinker. Further

enhancements will not be made to the prelinker. IBM recommends

that you use the binder instead of the prelinker and linker, since

only the binder will continue to be enhanced in future releases.

GONUMBER supports 64-bit applications

The GONUMBER compiler option generates line number tables for

both 31-bit and 64-bit applications.

Integrated CICS translator support

Integrated CICS translation is supported for use with CICS

Transaction Server for z/OS V3R1 and above. The integrated CICS

translator enables users to embed CICS statements in C/C++

source and pass them through the compiler without the need for an

explicit preprocessing step. This permits a more seamless operation

of C/C++ within the CICS environment.

Storage limitations removed when optimizing complex applications using IPA

The IPA optimizer is running in the 64-bit address space and no

longer exhibits the storage limitations that restricted the use of the

IPA optimizer during previous releases.

as command for High Level Assembler (HLASM) invocation

The as command enables the user to process assembler source

files and invoke the HLASM assembler to produce object files.

 For z/OS V1R8, Language Environment provides the following:

I/O changes The z/OS XL C/C++ run-time library:

v Is enhanced to provide support for VSAM data sets with

extended addressability. This support is for key-sequenced

(KSDS), entry-sequenced (ESDS), and relative-record data sets

(RRDS).

v Provides full support of QSAM (opened with NOSEEK in C/C++)

for large-format sequential DASD data sets that were introduced

by DFSMSdfp™ in z/OS V1R7, removing the constraint of 65535

tracks per volume for sequential data sets.

v Provides enhancements to the C run-time library functions

fgetpos(), fsetpos(), and fseek(). This is intended to generally

improve the performance of repositioning operations within

multivolume data sets.

Migration aid The capability of the STORAGE run-time option has been expanded

to include CLEAR as an acceptable value for the third suboption.

This new value causes the unused portion of the initial stack

segment to be cleared to binary zeroes, just prior to invoking the

4 z/OS V1R8.0 XL C/C++ Programming Guide

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|

|

||

|
|
|
|

|
|
|
|

|
|
|
|

||
|
|
|

main procedure, as it is done by the pre-Language Environment

PL/I run-time library. This support was rolled back to z/OS V1R4

with APAR PK02614.

 For more information, see z/OS Language Environment

Customization and z/OS Language Environment Programming

Reference.

Application enablement

The z/OS XL C/C++ run-time library is enhanced to provide the

flockfile() family of common UNIX functions, as found within the

SUSV3 standards.

 For more information, see z/OS XL C/C++ Run-Time Library

Reference.

Language Environment-conforming assembler routines in CICS

Customer Information Control System (CICS) Transaction Server for

z/OS V3R1 now supports Language Environment-conforming

assembler MAIN routines. This support was rolled back to z/OS

V1R4 with documentation APAR PK02368.

 For more information, see z/OS Language Environment

Programming Guide.

XPLINK Language Environment provides a tracing capability that can be

customized on or off to trace the transitions between upward

(non-XPLINK) and downward (XPLINK) growing stacks and more

easily diagnose the performance bottlenecks in the mixed

XPLINK/non-XPLINK applications. This support is controlled by the

TRACE run-time option.

 For more information, see z/OS Language Environment

Customization, z/OS Language Environment Programming

Reference, and z/OS Language Environment Debugging Guide.

Callable services

Language Environment provides support for:

v A new service CEE3PR2, an enhancement to CEE3PRM,

supports longer parameter lists.

v A new service CEE3AB2, an enhancement to CEE3ABD,

supports the addition of a reason code to the ABEND. Both

CEE3AB2 and CEE3ABD now allow for more control of

diagnostic information collection.

v A new service, CEE3INF, provides current Language

Environment information about the enclave.

v A new service, CEEENV, allows for querying, setting, and

deleting of environment variables.

For more information, see z/OS Language Environment

Programming Reference.

Reliability, availability, and serviceability

Language Environment is enhanced to provide the following:

v Displaying source line numbers in the AMODE 64 virtual

Language Environment dump (CEEDUMP) traceback for C/C++

applications.

Chapter 1. About IBM z/OS XL C/C++ 5

|
|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|

||
|
|
|
|
|

|
|
|

|
|

|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|
|

v Providing a way for the user to instruct Language Environment to

capture an IPCS readable dump when no SYSMDUMP DD card

is available.

For more information, see z/OS Language Environment Debugging

Guide.

Additional Euro and locale support

Language Environment provides locale support for the Euro

currency symbol for countries that have recently joined the

European Union. This function is also available with APAR

PQ99282 for z/OS V1R4 and higher.

Removal of msys for Setup for Language Environment

Support for msys for Setup for Language Environment is removed.

The XL C/C++ compilers

The following sections describe the C and C++ languages and the z/OS XL C/C++

compilers.

The C language

The C language is a general purpose, versatile, and functional programming

language that allows a programmer to create applications quickly and easily. C

provides high-level control statements and data types as do other structured

programming languages. It also provides many of the benefits of a low-level

language.

The C++ language

The C++ language is based on the C language and includes all of the advantages

of C listed above. In addition, C++ also supports object-oriented concepts, generic

types or templates, and an extensive library. For a detailed description of the

differences between z/OS XL C++ and z/OS XL C, refer to z/OS XL C/C++

Language Reference.

The C++ language introduces classes, which are user-defined data types that may

contain data definitions and function definitions. You can use classes from

established class libraries, develop your own classes, or derive new classes from

existing classes by adding data descriptions and functions. New classes can inherit

properties from one or more classes. Not only do classes describe the data types

and functions available, but they can also hide (encapsulate) the implementation

details from user programs. An object is an instance of a class.

The C++ language also provides templates and other features that include access

control to data and functions, and better type checking and exception handling. It

also supports polymorphism and the overloading of operators.

Common features of the z/OS XL C and XL C++ compilers

The XL C and XL C++ compilers, when used with z/OS Language Environment,

offer many features to increase your productivity and improve program execution

times:

v Optimization support:

– Extra Performance Linkage (XPLINK) function calling convention, which has

the potential for a significant performance increase when used in an

6 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|

|
|

|
|
|
|
|

|
|

environment of frequent calls between small functions. XPLINK makes

subroutine calls more efficient by removing non-essential instructions from the

main path.

– Algorithms to take advantage of the z/Series architecture to achieve improved

optimization and memory usage through the OPTIMIZE and IPA compiler

options.

– The OPTIMIZE compiler option, which instructs the compiler to optimize the

machine instructions it generates to produce faster-running object code, which

improves application performance at run time.

– Interprocedural Analysis (IPA), to perform optimizations across procedural and

compilation unit boundaries, thereby optimizing application performance at run

time.

– Additional optimization capabilities are available with the INLINE compiler

option.

v DLLs (dynamic link libraries) to share parts among applications or parts of

applications, and dynamically link to exported variables and functions at run time.

DLLs allow a function reference or a variable reference in one executable to use

a definition located in another executable at run time.

You can use DLLs to split applications into smaller modules and improve system

memory usage. DLLs also offer more flexibility for building, packaging, and

redistributing applications.

v Full program reentrancy

With reentrancy, many users can simultaneously run a program. A reentrant

program uses less storage if it is stored in the Link Pack Area (LPA) or the

Extended Link Pack Area (ELPA) and simultaneously run by multiple users. It

also reduces processor I/O when the program starts up, and improves program

performance by reducing the transfer of data to auxiliary storage. z/OS XL C

programmers can design programs that are naturally reentrant. For those

programs that are not naturally reentrant, z/OS XL C programmers can use

constructed reentrancy. To do this, compile programs with the RENT option and

use the program management binder supplied with z/OS or the z/OS Language

Environment prelinker and program management binder. The z/OS XL C++

compiler always uses the constructed reentrancy algorithms.

v Locale-based internationalization support derived from IEEE POSIX 1003.2-1992

standard. Also derived from X/Open CAE Specification, System Interface

Definitions, Issue 4 and Issue 4 Version 2. This allows you to use locales to

specify language/country characteristics for their applications.

v The ability to call and be called by other languages such as assembler, COBOL,

PL/1, compiled Java™, and Fortran, to enable you to integrate z/OS XL C/C++

code with existing applications.

v Exploitation of z/OS and z/OS UNIX System Services technology.

z/OS UNIX System Services is the IBM implementation of the open operating

system environment, as defined in the XPG4 and POSIX standards.

v Support for the following standards at the system level:

– A subset of ISO/IEC 9899:1999

– ISO/IEC 9945-1:1990 (POSIX-1)/IEEE POSIX 1003.1-1990

– A subset of IEEE POSIX 1003.1a, Draft 6, July 1991

– IEEE Portable Operating System Interface (POSIX) Part 2, P1003.2

– A subset of IEEE POSIX 1003.4a, Draft 6, February 1992 (the IEEE POSIX

committee has renumbered POSIX.4a to POSIX.1c)

– X/Open CAE Specification, System Interfaces and Headers, Issue 4 Version 2

Chapter 1. About IBM z/OS XL C/C++ 7

– A subset of IEEE 754-1985 (R1990) IEEE Standard for Binary Floating-Point

Arithmetic (ANSI), as applicable to the IBM System z environment.

– X/Open CAE Specification, Networking Services, Issue 4

v Support for the Euro currency

z/OS XL C compiler-specific features

In addition to the features common to z/OS XL C and XL C++, the z/OS XL C

compiler provides you with the following capabilities:

v The ability to write portable code that supports the following standards:

– ISO/IEC 9899:1999

– ANSI/ISO 9899:1990[1992] (formerly ANSI X3.159-1989 C)

– X/Open Specification Programming Languages, Issue 3, Common Usage C

– FIPS-160

v System programming capabilities, which allow you to use z/OS XL C in place of

assembler

v Extensions of the standard definitions of the C language to provide you with

support for the z/OS environment, such as fixed-point (packed) decimal data

support

z/OS XL C++ compiler-specific features

In addition to the features common to z/OS XL C and XL C++, the z/OS XL C++

compiler supports the Programming languages - C++ (ISO/IEC 14882:1998)

standard. Also, it further conforms to the Programming languages - C++ (ISO/IEC

14882:2003(E)) standard, which incorporates the latest Technical Corrigendum 1.

Class libraries

z/OS V1R8 XL C/C++ uses the following thread-safe class libraries:

v Standard C++ Library, including the Standard Template Library (STL), and other

library features of Programming languages - C++ (ISO/IEC 14882:1998) and

Programming languages - C++ (ISO/IEC 14882:2003(E))

v UNIX System Laboratories (USL) C++ Language System Release I/O Stream

and Complex Mathematics Class Libraries

Note: As of z/OS V1R5, all application development using the C/C++ IBM Open

Class Library (Application Support Class and Collection Class Libraries) is

not supported. Run-time support for the execution of existing applications,

which use the IBM Open Class, is provided with z/OS V1R8 but is planned

to be removed in a future release. For additional information, see IBM Open

Class Library Transition Guide.

For new code and enhancements to existing applications, the Standard C++ Library

should be used. The Standard C++ Library includes the following:

v Stream classes for performing input and output (I/O) operations

v The Standard C++ Complex Mathematics Library for manipulating complex

numbers

v The Standard Template Library (STL) which is composed of C++ template-based

algorithms, container classes, iterators, localization objects, and the string class

8 z/OS V1R8.0 XL C/C++ Programming Guide

|

Utilities

The z/OS XL C/C++ compilers provide the following utilities:

v The xlc utility to invoke the compiler using a customizable configuration file.

v The c89 utility to invoke the compiler using host environment variables.

v The CXXFILT utility to map z/OS XL C++ mangled names to their original

function names.

v The DSECT conversion utility to convert descriptive assembler DSECTs into

z/OS XL C/C++ data structures.

v The makedepend utility to derive all dependencies in the source code and write

these into the makefile. The make command will determine which source files to

recompile, whenever a dependency has changed. This frees the user from

manually monitoring such changes in the source code.

z/OS Language Environment provides the following utilities:

v The object library utility (C370LIB; also known as EDCALIAS) to update

partitioned data set (PDS and PDSE) libraries of object modules. The object

library utility supports XPLINK, IPA, and LP64 compiled objects.

v The prelinker which combines object modules that comprise a z/OS XL C/C++

application to produce a single object module. The prelinker supports only object

and extended object format input files, and does not support GOFF.

Note: IBM has stabilized the prelinker. Further enhancements will not be made

to the prelinker utility. IBM recommends that you use the binder instead of

the prelinker and linker.

dbx

You can use the dbx shell command to debug programs, as described in z/OS

UNIX System Services Programming Tools and z/OS UNIX System Services

Command Reference.

Refer to www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1dbx.html for further

information on dbx.

z/OS Language Environment

z/OS XL C/C++ exploits the C/C++ run-time environment and library of run-time

services available with z/OS Language Environment (formerly OS/390 Language

Environment, Language Environment for MVS & VM, Language Environment/370

and LE/370).

z/OS Language Environment consists of four language-specific run-time libraries,

and Base Routines and Common Services, as shown below. z/OS Language

Environment establishes a common run-time environment and common run-time

services for language products, user programs, and other products.

Chapter 1. About IBM z/OS XL C/C++ 9

|
|
|

|
|
|

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1dbx.html

The common execution environment is composed of data items and services that

are included in library routines available to an application that runs in the

environment. z/OS Language Environment provides a variety of services:

v Services that satisfy basic requirements common to most applications. These

include support for the initialization and termination of applications, allocation of

storage, interlanguage communication (ILC), and condition handling.

v Extended services that are often needed by applications. z/OS XL C/C++

contains these functions within a library of callable routines, and includes

interfaces to operating system functions and a variety of other commonly used

functions.

v Run-time options that help in the execution, performance, and diagnosis of your

application.

v Access to operating system services; z/OS UNIX System Services is available to

you or your program through the z/OS XL C/C++ language bindings.

v Access to language-specific library routines, such as the z/OS XL C/C++ library

functions.

Note: The z/OS Language Environment run-time option TRAP(ON) should be set

when using z/OS XL C/C++. Refer to z/OS Language Environment

Programming Reference for details on the z/OS Language Environment

run-time options.

z/OS Language Environment downward compatibility

z/OS Language Environment provides downward compatibility support. Assuming

that you have met the required programming guidelines and restrictions, described

in z/OS Language Environment Programming Guide, this support enables you to

develop applications on higher release levels of z/OS for use on platforms that are

running lower release levels of z/OS. In XL C and XL C++, downward compatibility

support is provided through the XL C/C++ TARGET compiler option. See TARGET

in z/OS XL C/C++ User’s Guide for details on this compiler option.

For example, a company may use z/OS V1R8 with Language Environment on a

development system where applications are coded, link-edited, and tested, while

using any supported lower release of z/OS Language Environment on their

production systems where the finished application modules are used.

Downward compatibility support is not the roll-back of new function to prior releases

of the operating system. Applications developed that exploit the downward

C/C++
Language
Specific
Library

COBOL
Language
Specific
Library

PL/I
Language
Specific
Library

FORTRAN
Language
Specific
Library

Language Environment Base Routines and Common Services

Figure 1. Libraries in z/OS Language Environment

10 z/OS V1R8.0 XL C/C++ Programming Guide

compatibility support must not use any Language Environment function that is

unavailable on the lower release of z/OS where the application will be used.

The downward compatibility support includes toleration PTFs for lower releases of

z/OS to assist in diagnosing applications that do not meet the programming

requirements for this support. (Specific PTF numbers can be found in the PSP

buckets.)

The diagnosis assistance that will be provided by the toleration PTFs includes

detection of an unsupported program object format. If the program object format is

at a level which is not supported by the target deployment system, then the

deployment system will produce an abend when trying to load the application

program. The abend will indicate that DFSMS was unable to find or load the

application program. Correcting this problem does not require the installation of any

toleration PTFs. Instead, you will need to recreate the program object that is

compatible with the older deployment system.

The downward compatibility support that is provided by z/OS Language

Environment and by the toleration PTFs does not change upward compatibility. That

is, applications coded and link-edited with one release of z/OS Language

Environment will continue to run on later releases of z/OS Language Environment

without the need to recompile or re-link edit the application, independent of the

downward compatibility support.

The current z/OS level header files and SYSLIB can be used (the user no longer

has to copy header files and SYSLIB data sets from the deployment release).

Note: As of z/OS V1R3, the executables produced with the binder’s

COMPAT=CURRENT setting will not run on lower levels of z/OS. You will

have to explicitly override to a particular program object level, or use the

COMPAT=MIN setting introduced in z/OS V1R3.

About prelinking, linking, and binding

When describing the process to build an application, this document refers to the

bind step.

Normally, the program management binder is used to perform the bind step.

However, in many cases the prelink and link steps can be used in place of the bind

step. When they cannot be substituted, and the program management binder alone

must be used, it will be stated. For more information, refer to Prelinking and linking

z/OS XL C/C++ programs and Binding z/OS XL C/C++ programs in z/OS XL C/C++

User’s Guide.

The terms bind and link have multiple meanings.

v With respect to building an application:

In both instances, the program management binder is performing the actual

processing of converting the object file(s) into the application executable module.

Object files with longname symbols, reentrant writable static symbols, and

DLL-style function calls require additional processing to build global data for the

application.

The term link refers to the case where the binder does not perform this additional

processing, due to one of the following:

– The processing is not required, because none of the object files in the

application use constructed reentrancy, use long names, are DLL or are C++.

Chapter 1. About IBM z/OS XL C/C++ 11

– The processing is handled by executing the prelinker step before running the

binder.

The term bind refers to the case where the binder is required to perform this

processing.

v With respect to executing code in an application:

The linkage definition refers to the program call linkage between program

functions and methods. This includes the passing of control and parameters.

Refer to "Program Linkage" in z/OS XL C/C++ Language Reference for more

information on linkage specification.

Some platforms have a single linkage convention. z/OS has a number of linkage

conventions, including standard operating system linkage, Extra Performance

Linkage (XPLINK), and different non-XPLINK linkage conventions for C and C++.

Notes on the prelinking process

You cannot use the prelinker if you are using the XPLINK, GOFF, or LP64 compiler

options. IBM recommends using the binder instead of the prelinker whenever

possible.

The prelinker was designed to process long names and support constructed

reentrancy in earlier versions of the C compiler on the MVS and OS/390 operating

systems. The prelinker, which is shipped with z/OS Language Environment,

provides output that is compatible with the linkage editor, which is shipped with the

binder.

The binder is designed to include the functions of the prelinker, the linkage editor,

the loader, and a number of APIs to manipulate the program object. Thus, the

binder is a superset of the linkage editor. Its functionality provides a high level of

compatibility with the prelinker and linkage editor, but provides additional

functionality in some areas. Generally, the terms binding and linking are

interchangeable. In particular, the binder supports:

v Inputs from the object module

v XOBJ, GOFF, load module and program object

v Auto call resolutions from z/OS UNIX archives and C370LIB object directories

v Long external names

v All prelinker control statements

Notes:

1. You need to use the binder for 64-bit objects.

2. As of z/OS V1R7, the Hierarchical File System (HFS) functionality has been

stabilized and zSeries® File System (zFS) is the strategic file system for z/OS

UNIX System Services. The term z/OS UNIX file system includes both HFS and

zFS.

For more information on the compatibility between the binder, and the linker and

prelinker, see z/OS MVS Program Management: User’s Guide and Reference.

Updates to the prelinking, linkage-editing, and loading functions that are performed

by the binder are delivered through the binder. If you use the prelinker shipped with

z/OS Language Environment, and the linkage editor (supplied through the binder),

you have to apply the latest maintenance for the Language Environment as well as

the binder.

12 z/OS V1R8.0 XL C/C++ Programming Guide

|

|

|
|
|
|

|

If you still need to use the prelinker and linkage editor, see Prelinker and linkage

editor options in z/OS XL C/C++ User’s Guide.

File format considerations

You can use the binder in place of the prelinker and linkage editor but there are

exceptions, which are file format considerations. For further information, on when

you cannot use the binder, see Binding z/OS XL C/C++ programs in z/OS XL

C/C++ User’s Guide.

The program management binder

The binder provided with z/OS combines the object modules, load modules, and

program objects comprising an application. It produces a single z/OS output

program object or load module that you can load for execution. The binder supports

all C and C++ code, provided that you store the output program in a PDSE member

or a z/OS UNIX System Services file.

If you cannot use a PDSE member or z/OS UNIX file, and your program contains

C++ code, or C code that is compiled with any of the RENT, LONGNAME, DLL or

IPA compiler options, you must use the prelinker. C and C++ code compiled with

the GOFF or XPLINK compiler options cannot be processed by the prelinker.

Using the binder without using the prelinker has the following advantages:

v Faster rebinds when recompiling and rebinding a few of your source files

v Rebinding at the single compile unit level of granularity (except when you use the

IPA compile-time option)

v Input of object modules, load modules, and program objects

v Improved long name support:

– Long names do not get converted into prelinker generated names

– Long names appear in the binder maps, enabling full cross-referencing

– Variables do not disappear after prelink

– Fewer steps in the process of producing your executable program

The prelinker provided with z/OS Language Environment combines the object

modules comprising a z/OS XL C/C++ application and produces a single object

module. You can link-edit the object module into a load module (which is stored in a

PDS), or bind it into a load module or a program object (which is stored in a PDS,

PDSE, or z/OS UNIX file).

z/OS UNIX System Services

z/OS UNIX System Services provides capabilities under z/OS to make it easier to

implement or port applications in an open, distributed environment. z/OS UNIX is

available to z/OS XL C/C++ application programs through the C/C++ language

bindings available with z/OS Language Environment.

Together, z/OS UNIX, z/OS Language Environment, and the z/OS XL C/C++

compilers provide an application programming interface that supports industry

standards.

z/OS UNIX provides support for both existing z/OS applications and new z/OS

UNIX applications through the following:

v C programming language support as defined by ISO C

v C++ programming language support as defined by ISO C++

Chapter 1. About IBM z/OS XL C/C++ 13

|

|

|

|

|

|
|

v C language bindings as defined in the IEEE 1003.1 and 1003.2 standards;

subsets of the draft 1003.1a and 1003.4a standards; X/Open CAE Specification:

System Interfaces and Headers, Issue 4, Version 2, which provides standard

interfaces for better source code portability with other conforming systems; and

X/Open CAE Specification, Network Services, Issue 4, which defines the X/Open

UNIX descriptions of sockets and X/Open Transport Interface (XTI)

v z/OS UNIX extensions that provide z/OS-specific support beyond the defined

standards

v The z/OS UNIX Shell and Utilities feature, which provides:

– A shell, based on the Korn Shell and compatible with the Bourne Shell

– A shell, tcsh, based on the C shell, csh

– Tools and utilities that support the X/Open Single UNIX Specification, also

known as X/Open Portability Guide (XPG) Version 4, Issue 2, and provide

z/OS support. The following is a partial list of utilities that are included:

ar Creates and maintains library archives

as Invokes HLASM to create assembler applications

BPXBATCH Allows you to submit batch jobs that run shell commands,

scripts, or z/OS XL C/C++ executable files in z/OS UNIX files

from a shell session

c89 Uses host environment variables to compile, assemble, and

bind z/OS UNIX, C/C++ and assembler applications

dbx Provides an environment to debug and run programs

gencat Merges the message text source files (usually *.msg) into a

formatted message catalog file (usually *.cat)

iconv Converts characters from one code set to another

lex Automatically writes large parts of a lexical analyzer based on

a description that is supplied by the programmer

localedef Creates a compiled locale object

make Helps you manage projects containing a set of interdependent

files, such as a program with many z/OS source and object

files, keeping all such files up to date with one another

xlc Allows you to invoke the compiler using a customizable

configuration file

yacc Allows you to write compilers and other programs that parse

input according to strict grammar rules

– Support for other utilities such as:

dspcat Displays all or part of a message catalog

dspmsg Displays a selected message from a message catalog

mkcatdefs Preprocesses a message source file for input to the gencat

utility

runcat Invokes mkcatdefs and pipes the message catalog source

data (the output from mkcatdefs) to gencat

v Access to the Hierarchical File System (HFS), with support for the POSIX.1 and

XPG4 standards

v Access to the zSeries File System (zFS), which provides performance

improvements over HFS, and also supports the POSIX.1 and XPG4 standards

14 z/OS V1R8.0 XL C/C++ Programming Guide

|

|

||

|

|

|
|

|
|

v z/OS XL C/C++ I/O routines, which support using z/OS UNIX files, standard z/OS

data sets, or a mixture of both

v Application threads (with support for a subset of POSIX.4a)

v Support for z/OS XL C/C++ DLLs

z/OS UNIX System Services offers program portability across multivendor operating

systems, with support for POSIX.1, POSIX.1a (draft 6), POSIX.2, POSIX.4a (draft

6), and XPG4.2.

For application developers who have worked with other UNIX environments, the

z/OS UNIX Shell and Utilities is a familiar environment for XL C/C++ application

development. If you are familiar with existing MVS development environments, you

may find that the z/OS UNIX System Services environment can enhance your

productivity. Refer to z/OS UNIX System Services User’s Guide for more

information on the Shell and Utilities.

z/OS XL C/C++ applications with z/OS UNIX System Services C

functions

All z/OS UNIX System Services C functions are available at all times. In some

situations, you must specify the POSIX(ON) run-time option. This is required for the

POSIX.4a threading functions, the POSIX system() function, and signal handling

functions where the behavior is different between POSIX/XPG4 and ISO. Refer to

z/OS XL C/C++ Run-Time Library Reference for more information about

requirements for each function.

You can invoke a z/OS XL C/C++ program that uses z/OS UNIX C functions using

the following methods:

v Directly from a shell.

v From another program, or from a shell, using one of the exec family of functions,

or the BPXBATCH utility from TSO or MVS batch.

v Using the POSIX system() call.

v Directly through TSO or MVS batch without the use of the intermediate

BPXBATCH utility. In some cases, you may require the POSIX(ON) run-time

option.

Input and output

The z/OS XL C/C++ run-time library that supports the z/OS XL C/C++ compiler

supports different input and output (I/O) interfaces, file types, and access methods.

The Standard C++ Library provides additional support.

I/O interfaces

The z/OS XL C/C++ run-time library supports the following I/O interfaces:

C Stream I/O

This is the default and the ISO-defined I/O method. This method processes

all input and output on a per-character basis.

Record I/O

The library can also process your input and output by record. A record is a

set of data that is treated as a unit. It can also process VSAM data sets by

record. Record I/O is a z/OS XL C/C++ extension to the ISO standard.

Chapter 1. About IBM z/OS XL C/C++ 15

|

|

|

TCP/IP Sockets I/O

z/OS UNIX System Services provides support for an enhanced version of

an industry-accepted protocol for client/server communication that is known

as sockets. A set of C language functions provides support for z/OS UNIX

sockets. z/OS UNIX sockets correspond closely to the sockets used by

UNIX applications that use the Berkeley Software Distribution (BSD) 4.3

standard (also known as Berkeley sockets). The slightly different interface

of the X/Open CAE Specification, Networking Services, Issue 4, is supplied

as an additional choice. This interface is known as X/Open Sockets.

 The z/OS UNIX socket application program interface (API) provides support

for both UNIX domain sockets and Internet domain sockets. UNIX domain

sockets, or local sockets, allow interprocess communication within z/OS,

independent of TCP/IP. Local sockets behave like traditional UNIX sockets

and allow processes to communicate with one another on a single system.

With Internet sockets, application programs can communicate with each

other in the network using TCP/IP.

In addition, the Standard C++ Library provides stream classes, which support

formatted I/O in C++. You can code sophisticated I/O statements easily and clearly,

and define input and output for your own data types. This helps improve the

maintainability of programs that use input and output.

File types

In addition to conventional files, such as sequential files and partitioned data sets,

the z/OS XL C/C++ run-time library supports the following file types:

Virtual Storage Access Method (VSAM) data sets

z/OS XL C/C++ has native support for the following VSAM data sets:

v Key-Sequenced Data Sets (KSDS). Use KSDS to access a record

through a key within the record. A key is one or more consecutive

characters that are taken from a data record that identifies the record.

v Entry-Sequenced Data Sets (ESDS). Use ESDS to access data in the

order it was created (or in reverse order).

v Relative-Record Data Sets (RRDS). Use RRDS for data in which each

item has a particular number (for example, a telephone system where a

record is associated with each telephone number).

For more information on how to perform I/O operations on these VSAM file

types, see Chapter 12, “Performing VSAM I/O operations,” on page 163.

Hierarchical File System files

z/OS XL C/C++ recognizes Hierarchical File System (HFS) file names. The

name specified on the fopen() or freopen() call has to conform to certain

rules. See Chapter 11, “Performing UNIX file system I/O operations,” on

page 139 for the details of these rules. You can create regular HFS files,

special character HFS files, or FIFO HFS files. You can also create links or

directories.

Note: As of z/OS V1R7, the Hierarchical File System (HFS) functionality

has been stabilized and zSeries File System (zFS) is the strategic

UNIX System Services file system for z/OS.

Memory files

Memory files are temporary files that reside in memory. For improved

performance, you can direct input and output to memory files rather than to

devices. Since memory files reside in main storage and only exist while the

16 z/OS V1R8.0 XL C/C++ Programming Guide

|
|

|

|
|
|

program is executing, you primarily use them as work files. You can access

memory files across load modules through calls to non-POSIX system()

and C fetch(); they exist for the life of the root program. Standard streams

can be redirected to memory files on a non-POSIX system() call using

command line redirection.

Hiperspace™ expanded storage

Large memory files can be placed in Hiperspace expanded storage to free

up some of your home address space for other uses. Hiperspace expanded

storage or high performance space is a range of up to 2 GB of contiguous

virtual storage space. A program can use this storage as a buffer

(1 gigabyte(GB) = 230 bytes).

zSeries File System

zSeries File System (zFS) is a z/OS UNIX file system that can be used in

addition to the Hierarchical File System (HFS). zFS may provide

performance gains in accessing files that are frequently accessed and

updated. The I/O functions in the z/OS XL C/C++ run-time library support

zFS.

Additional I/O features

z/OS XL C/C++ provides additional I/O support through the following features:

v Large file support, which enables I/O to and from z/OS UNIX System Services

files that are larger than 2 GB (see "large file support" in z/OS XL C/C++

Language Reference)

v User error handling for serious I/O failures (SIGIOERR)

v Improved sequential data access performance through enablement of the

DFSMS support for 31-bit sequential data buffers and sequential data striping on

extended format data sets

v Full support of PDSEs on z/OS (including support for multiple members opened

for write)

v Overlapped I/O support under z/OS (NCP, BUFNO)

v Multibyte character I/O functions

v Fixed-point (packed) decimal data type support in formatted I/O functions

v Support for multiple volume data sets that span more than one volume of DASD

or tape

v Support for Generation Data Group I/O

The System Programming C facility

The System Programming C (SPC) facility allows you to build applications that do

not require dynamic loading of z/OS Language Environment libraries. It also allows

you to tailor your application for better utilization of the low-level services available

on your operating system. SPC offers a number of advantages:

v You can develop applications that can be executed in a customized environment

rather than with z/OS Language Environment services. Note that if you do not

use z/OS Language Environment services, only some built-in functions and a

limited set of z/OS XL C/C++ run-time library functions are available to you.

v You can substitute the z/OS XL C language in place of assembler language

when writing system exit routines by using the interfaces that are provided by

SPC.

Chapter 1. About IBM z/OS XL C/C++ 17

|

v SPC lets you develop applications featuring a user-controlled environment in

which a z/OS XL C environment is created once and used repeatedly for C

function execution from other languages.

v You can utilize co-routines by using a two-stack model to write application service

routines. In this model, the application calls on the service routine to perform

services independent of the user. The application is then suspended when

control is returned to the user application.

Interaction with other IBM products

When you use z/OS XL C/C++, you can write programs that utilize the power of

other IBM products and subsystems:

v CICS Transaction Server for z/OS

You can use the CICS Command-Level Interface to write C/C++ application

programs. The CICS Command-Level Interface provides data, job, and task

management facilities that are normally provided by the operating system.

v DB2 Universal Database™ (UDB) for z/OS

DB2 programs manage data that is stored in relational databases. You can

access the data by using a structured set of queries that are written in Structured

Query Language (SQL).

A DB2 program uses SQL statements that are embedded in the application

program. The SQL translator (DB2 preprocessor) translates the embedded SQL

into host language statements, which are then compiled by the z/OS XL C/C++

compilers. Alternatively, use the SQL compiler option to compile a DB2 program

with embedded SQL without using the DB2 preprocessor. The DB2 program

processes requests, then returns control to the application program.

v Debug Tool

z/OS XL C/C++ supports program development by using the Debug Tool. This

tool allows you to debug applications in their native host environment, such as

CICS Transaction Server for z/OS, IMS, and DB2. Debug Tool provides the

following support and function:

– Step mode

– Breakpoints

– Monitor

– Frequency analysis

– Dynamic patching

You can record the debug session in a log file, and replay the session. You can

also use Debug Tool to help capture test cases for future program validation, or

to further isolate a problem within an application.

You can specify either data sets or z/OS UNIX System Services files as source

files.

For further information, see www.ibm.com/software/awdtools/debugtool/.

v IBM C/C++ Productivity Tools for OS/390

Note: Starting with z/OS V1R5, both the C/C++ compiler optional feature and

the Debug Tool product will need to be installed if you wish to use IBM

C/C++ Productivity Tools for OS/390. For more information on Debug Tool,

refer to www.ibm.com/software/awdtools/debugtool/.

With the IBM C/C++ Productivity Tools for OS/390 product, you can expand your

z/OS application development environment out to the workstation, while

remaining close to your familiar host environment. IBM C/C++ Productivity Tools

for OS/390 includes the following workstation-based tools to increase your

productivity and code quality:

18 z/OS V1R8.0 XL C/C++ Programming Guide

|

http://www.ibm.com/software/awdtools/debugtool/
http://www.ibm.com/software/awdtools/debugtool/

– Performance Analyzer to help you analyze, understand, and tune your C and

C++ applications for improved performance

– Distributed Debugger that allows you to debug C or C++ programs from the

convenience of the workstation

– Workstation-based editor to improve the productivity of your C and C++

source entry

– Advanced online help, with full text search and hypertext topics as well as

printable, viewable, and searchable Portable Document Format (PDF)

documents

Note: References to Performance Analyzer in this document refer to the IBM

OS/390 Performance Analyzer included in the IBM C/C++ Productivity

Tools for OS/390 product.

In addition, IBM C/C++ Productivity Tools for OS/390 includes the following host

components:

– Debug Tool

– Host Performance Analyzer

Use the Performance Analyzer on your workstation to graphically display and

analyze a profile of the execution of your host z/OS XL C or C++ application. Use

this information to time and tune your code so that you can increase the

performance of your application.

Use the Distributed Debugger to debug your z/OS XL C or C++ application

remotely from your workstation. Set a breakpoint with the simple click of the

mouse. Use the windowing capabilities of your workstation to view multiple

segments of your source and your storage, while monitoring a variable at the

same time.

Use the workstation-based editor to quickly develop C and C++ application code

that runs on z/OS. Context-sensitive help information is available to you when

you need it.

v IBM Fault Analyzer for z/OS

The IBM Fault Analyzer helps developers analyze and fix application and system

failures. It gathers information about an application and the surrounding

environment at the time of the abend, providing the developer with valuable

information needed for developing and testing new and existing applications. For

more information, refer to: www.ibm.com/software/awdtools/faultanalyzer/.

v Application Performance Analyzer for z/OS

The Application Performance Analyzer for z/OS is an application program

performance analysis tool that helps you to:

– Optimize the performance of your existing application

– Improve the response time of your online transactions and batch turnaround

times

– Isolate performance problems in applications

For more information, refer to: www.ibm.com/software/awdtools/apa/.

v ISPF Software Configuration and Library Manager facility (SCLM)

The ISPF Software Configuration and Library Manager facility (SCLM) maintains

information about the source code, objects and load modules. It also keeps track

of other relationships in your application, such as test cases, JCL, and

publications. The SCLM Build function translates input to output, managing not

only compilation and linking, but all associating processes required to build an

application. This facility helps to ensure that your production load modules match

Chapter 1. About IBM z/OS XL C/C++ 19

|

|
|

|

|
|

|

|

http://www.ibm.com/software/awdtools/faultanalyzer/
http://www.ibm.com/software/awdtools/apa/

the source in your production source libraries. For more information, refer to:

www.ibm.com/software/awdtools/ispf/features/sclm-ov.html.

v Graphical Data Display Manager (GDDM)

GDDM provides a comprehensive set of functions to display and print

applications most effectively:

– A windowing system that the user can tailor to display selected information

– Support for presentation and keyboard interaction

– Comprehensive graphics support

– Fonts (including support for the double-byte character set)

– Business image support

– Saving and restoring graphic pictures

– Support for many types of display terminals, printers, and plotters

For more information, refer to: www.ibm.com/software/applications/gddm/.

v Query Management Facility (QMF)

z/OS XL C supports the Query Management Facility (QMF), a query and report

writing facility, which allows you to write applications through a callable interface.

You can create applications to perform a variety of tasks, such as data entry,

query building, administration aids, and report analysis. For more information,

refer to: www.ibm.com/software/data/qmf/.

v z/OS Java support

The Java language supports the Java Native Interface (JNI) for making calls to

and from C/C++. These calls do not use ILC support but rather the Java-defined

JNI, which is supported by both compiled and interpreted Java code. Calls to C

or C++ do not distinguish between these two.

Additional features of z/OS XL C/C++

 Feature Description

long long Data Type z/OS XL C/C++ supports long long as a native data type when the compiler option

LANGLVL(LONGLONG) is turned on. This option is turned on by default by the

compiler option LANGLVL(EXTENDED). As of z/OS V1R7, the XL C compiler supports

long long as a native data type (according to the ISO/IEC 9899:1999 standard), when

the LANGLVL(STDC99) option or LANGLVL(EXTC99) option is in effect.

Multibyte Character Support z/OS XL C/C++ supports multibyte characters for those national languages such as

Japanese whose characters cannot be represented by a single byte.

Wide Character Support Multibyte characters can be normalized by z/OS XL C library functions and encoded in

units of one length. These normalized characters are called wide characters.

Conversions between multibyte and wide characters can be performed by string

conversion functions such as wcstombs(), mbstowcs(), wcsrtombs(), and mbsrtowcs(),

as well as the family of wide-character I/O functions. Wide-character data can be

represented by the wchar_t data type.

20 z/OS V1R8.0 XL C/C++ Programming Guide

|
|

|

|
|

http://www.ibm.com/software/awdtools/ispf/features/sclm-ov.html
http://www.ibm.com/software/applications/gddm/
http://www.ibm.com/software/data/qmf/

Feature Description

Extended Precision

Floating-Point Numbers

z/OS XL C/C++ provides three z/Architecture™ floating-point number data types: single

precision (32 bits), declared as float; double precision (64 bits), declared as double;

and extended precision (128 bits), declared as long double.

Extended precision floating-point numbers give greater accuracy to mathematical

calculations.

As of OS/390 V2R6, C/C++ also supports IEEE 754 floating-point representation. By

default, float, double, and long double values are represented in z/Architecture

floating point format. However, the IEEE 754 floating-point representation is used if you

specify the FLOAT(IEEE754) compiler option. For details on this support, see the

description of the FLOAT option in z/OS XL C/C++ User’s Guide.

Command Line Redirection You can redirect the standard streams stdin, stderr, and stdout from the command

line or when calling programs using the system() function.

National Language Support z/OS XL C/C++ provides message text in either American English or Japanese. You

can dynamically switch between these two languages.

Coded Character Set (Code

Page) Support

The z/OS XL C/C++ compiler can compile C/C++ source written in different EBCDIC

code pages. In addition, the iconv utility converts data or source from one code page to

another.

Selected Built-in Library

Functions

For selected library functions, the compiler generates an instruction sequence directly

into the object code during optimization to improve execution performance. String and

character functions are examples of these built-in functions. No actual calls to the

library are generated when built-in functions are used.

Multi-threading Threads are efficient in applications that allow them to take advantage of any

underlying parallelism available in the host environment. This underlying parallelism in

the host can be exploited either by forking a process and creating a new address

space, or by using multiple threads within a single process. For more information, refer

to Chapter 23, “Using threads in z/OS UNIX System Services applications,” on page

365.

Packed Structures and

Unions

z/OS XL C provides support for packed structures and unions. Structures and unions

may be packed to reduce the storage requirements of a z/OS XL C program or to

define structures that are laid out according to COBOL or PL/I structure alignment rules.

Fixed-point (Packed)

Decimal Data

z/OS XL C supports fixed-point (packed) decimal as a native data type for use in

business applications. The packed data type is similar to the COBOL data type COMP-3

or the PL/I data type FIXED DEC, with up to 31 digits of precision.

Long Name Support For portability, external names can be mixed case and up to 32 K - 1 characters in

length. For C++, the limit applies to the mangled version of the name.

System Calls You can call commands or executable modules using the system() function under

z/OS, z/OS UNIX System Services, and TSO. You can also use the system() function

to call EXECs on z/OS and TSO, or shell scripts using z/OS UNIX System Services.

Exploitation of Hardware Use the ARCHITECTURE compiler option to select the minimum level of machine

architecture on which your program will run. Note that certain features provided by the

compiler require a minimum architecture level. For more information, refer to the

ARCHITECTURE compiler option in z/OS XL C/C++ User’s Guide.

Use the TUNE compiler option to optimize your application for a specific machine

architecture within the constraints imposed by the ARCHITECTURE option. The TUNE

level must not be lower than the setting in the ARCHITECTURE option. For more

information, refer to the TUNE compiler option in z/OS XL C/C++ User’s Guide.

Built-in Functions for

Floating-Point and Other

Hardware Instructions

Use built-in functions for floating-point and other hardware instructions that are

otherwise inaccessible to XL C/C++ programs. For more information, see Chapter 32,

“Using hardware built-in functions,” on page 497

Chapter 1. About IBM z/OS XL C/C++ 21

|

|

22 z/OS V1R8.0 XL C/C++ Programming Guide

Part 2. Input and Output

This part describes the models of input and output available with IBM z/OS XL

C/C++.

The C run-time functions are available if the corresponding C header files are used.

C I/O can be used by C++ when the C run-time library functions are used.

The following references provide a description and examples of I/O streams:

v Chapter 2, “Introduction to C and C++ input and output,” on page 25

v Chapter 3, “Understanding models of C I/O,” on page 27

v Chapter 4, “Using the Standard C++ Library I/O Stream Classes,” on page 39

v Chapter 5, “Opening files,” on page 43

v Chapter 6, “Buffering of C streams,” on page 63

v Chapter 7, “Using ASA text files,” on page 65

v Chapter 8, “z/OS XL C Support for the double-byte character set,” on page 69

v Chapter 9, “Using C and C++ standard streams and redirection,” on page 79

v Chapter 10, “Performing OS I/O operations,” on page 99

v Chapter 11, “Performing UNIX file system I/O operations,” on page 139

v Chapter 12, “Performing VSAM I/O operations,” on page 163

v Chapter 13, “Performing terminal I/O operations,” on page 207

v Chapter 14, “Performing memory file and hiperspace I/O operations,” on page

217

v Chapter 15, “Performing CICS Transaction Server I/O operations,” on page 231

v Chapter 16, “Language Environment Message file operations,” on page 233

v Chapter 17, “Debugging I/O programs,” on page 235

© Copyright IBM Corp. 1996, 2006 23

|

24 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 2. Introduction to C and C++ input and output

This chapter provides you with a general introduction to C and C++ input and

output (I/O). Three types of C and C++ input and output are discussed in this

chapter:

v text streams

v binary streams

v record I/O

Types of C and C++ input and output

A stream is a flow of data elements that are transmitted or intended for transmission

in a defined format. A record is a set of data elements treated as a unit, and a file

(or data set) is a named set of records that is stored or processed as a unit.

The z/OS XL C/C++ compiler supports three types of input and output: text streams,

binary streams, and record I/O. Text and binary streams are both ANSI standards;

record I/O is an extension for z/OS XL C. Record I/O is not supported by either the

USL I/O Stream Class Library or the Standard C++ I/O stream classes.

Note: If you have written data in one of these three types and try to read it as

another type (for example, reading a binary file in text mode), you may not

get the behavior that you expect.

Text streams

Text streams contain printable characters and, depending on the type of file, control

characters. Text streams are organized into lines. Each line ends with a control

character, usually a new-line. The last record in a text file may or may not end with

a control character, depending on what kind of file you are using. Text files

recognize the following control characters:

\a Alarm.

\b Backspace.

\f Form feed.

\n New-line.

\r Carriage return.

\t Horizontal tab character.

\v Vertical tab character.

\x0E DBCS shift-out character. Indicates the beginning of a DBCS string, if

>MB_CUR_MAX 1 in the definition of the locale that is in effect. For more

information about __MBCURMAX, see Chapter 8, “z/OS XL C Support for the

double-byte character set,” on page 69.

\x0F DBCS shift-in character. Indicates the end of a DBCS string, if

>MB_CUR_MAX 1 in the definition of the locale that is in effect. For more

information about __MBCURMAX, see Chapter 8, “z/OS XL C Support for the

double-byte character set,” on page 69.

Control characters behave differently in terminal files (see Chapter 13, “Performing

terminal I/O operations,” on page 207) and ASA files (see Chapter 7, “Using ASA

text files,” on page 65).

© Copyright IBM Corp. 1996, 2006 25

Binary streams

Binary streams contain a sequence of bytes. For binary streams, the library does

not translate any characters on input or output. It treats them as a continuous

stream of bytes, and ignores any record boundaries. When data is written out to a

record-oriented file, it fills one record before it starts filling the next. HFS streams

follow the binary model, regardless of whether they are opened for text, binary, or

record I/O. You can simulate record I/O by using new-line characters as record

boundaries.

Record I/O

Record I/O is an extension to the ISO standard. For files opened in record format,

z/OS XL C/C++ reads and writes one record at a time. If you try to write more data

to a record than the record can hold, the data is truncated. For record I/O, z/OS XL

C/C++ allows only the use of fread() and fwrite() to read and write to files. Any

other functions (such as fprintf(), fscanf(), getc(), and putc()) will fail. For

record-oriented files, records do not change size when you update them. If the new

record has fewer characters than the original record, the new data fills the first n

characters, where n is the number of characters of the new data. The record will

remain the same size, and the old characters (those after n) are left unchanged. A

subsequent update begins at the next boundary. For example, if you have the string

"abcdefgh":

 and you overwrite it with the string "1234", the record will look like this:

 z/OS XL C/C++ record I/O is binary. That is, it does not interpret any of the data in

a record file and therefore does not recognize control characters. The only

exception is for file categories that do not support records, such as the Hierarchical

File System (also known as POSIX I/O). For these files, z/OS XL C/C++ uses

new-line characters as record boundaries.

a b c d e f g h

1 2 3 4 e f g h

26 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 3. Understanding models of C I/O

This chapter describes z/OS XL C/C++ support for the major models of C I/O:

v The record model

v The byte stream model

The next chapter (Chapter 4, “Using the Standard C++ Library I/O Stream Classes,”

on page 39) describes a third major model, the object-oriented model.

The record model for C I/O

Almost all the kinds of I/O that z/OS XL C/C++ supports use this model. The only

ones that do not are HFS, memory file, and Hiperspace I/O.

The record model consists of the following:

v A record, which is the unit of data transmitted to and from a program.

v A block, which is the unit of data transmitted to and from a device. Each block

may contain one or more records.

In the record model of I/O, records and blocks have the following attributes:

RECFM Specifies the format of the data or how the data is organized on the

physical device.

LRECL Specifies the length of logical records (as opposed to physical

ones). Variable length records include a count field that is normally

not available to the programmer.

BLKSIZE Specifies the length of physical records (blocks on the physical

device).

Record formats

Use the RECFM attribute to specify the record format. The records in a file using the

record model have one of the following formats:

v Fixed-length (F)

v Variable-length (V)

v Undefined-length (U)

Note: z/OS XL C/C++ does not support Format-D files.

These formats support the following additional options for RECFM:

A Specifies that the file contains ASA control characters.

B Specifies that a file is blocked. A blocked file can have more than one

record in each block.

M Specifies that the file contains machine control characters.

S Specifies that a file is either in standard format (if it is fixed) or spanned (if it

is variable). In a standard file, every block must be full before another one

starts. In a spanned file, a record can be longer than a block. If it is, the

record is divided into segments and stored in consecutive blocks.

The record formats and the additional options associated with them are discussed

in the following sections.

© Copyright IBM Corp. 1996, 2006 27

Not all the I/O categories (listed in Table 5 on page 45) support all of these

attributes. Depending on what category you are using, z/OS XL C/C++ ignores or

simulates attributes that do not apply. For more information, on the record formats

and the options supported for each I/O category, see Chapter 5, “Opening files,” on

page 43.

Fixed-format records

Record format (RECFM)

These are the formats you can specify for RECFM if you want to use a fixed-format

file:

F Fixed-length, unblocked

FA Fixed-length, ASA print-control characters

FB Fixed-length, blocked

FM Fixed-length, machine print-control codes

FS Fixed-length, unblocked, standard

FBA Fixed-length, blocked, ASA print-control characters

FBM Fixed-length, blocked, machine print-control codes

FBS Fixed-length, blocked, standard

FSA Fixed-length, unblocked, standard, ASA print-control characters

FSM Fixed-length, unblocked, standard, machine print-control codes

FBSM Fixed-length, blocked, standard, machine print-control codes

FBSA Fixed-length, blocked, standard, ASA print-control characters.

Note: In general, all references in this guide to files with record format FB also refer

to FBM and FBA. The specific behavior of ASA files (such as FBA) is explained

in Chapter 7, “Using ASA text files,” on page 65.

Attention: z/OS XL C/C++ distinguishes between FB and FBS formats, because an

FBS file contains no embedded short blocks (the last block may be

short). FBS files give you much better performance. The use of standard

(S) blocks optimizes the sequential processing of a file on a

direct-access device. With a standard format file, the file pointer can be

directly repositioned by calculating the exact position in that file of a

given record rather than reading through the entire file.

If the records are FB, some blocks may contain fewer records than others, as shown

in Figure 2 on page 29.

28 z/OS V1R8.0 XL C/C++ Programming Guide

Mapping C types to fixed format: The following formats are discussed in this

section:

v Binary

v Text (non-ASA)

v Text (ASA)

v Record

Binary

On binary input and output, data flows over record boundaries. Because all

fixed-format records must be full, z/OS XL C/C++ completes any incomplete

output record by padding it with nulls ('\0') when you close the file.

Incomplete blocks are not padded. On input, nulls are visible and are

treated as data.

 For example, if record length is set to 10 and you are writing 25 characters

of data, z/OS XL C/C++ will write two full records, each containing 10

characters, and then an incomplete record containing 5 characters. If you

then close the file, z/OS XL C/C++ will complete the last record with 5 nulls.

If you open the file for reading, z/OS XL C/C++ will read the records in

order. z/OS XL C/C++ will not strip off the nulls at the end of the last record.

Text (non-ASA)

When writing in a text stream, you indicate the end of the data for a record

by writing a new-line ('\n') or carriage return ('\r') to the stream. In a

fixed-format file, the new-line or carriage return will not appear in the

external file, and the record will be padded with blanks from the position of

the new-line or carriage return to LRECL. (A carriage return is considered

the same as a new-line because the '\r' is not written to the file.)

 For example, if you have set LRECL to 10, and you write the string "ABC\n"

to a fixed-format text file, z/OS XL C/C++ will write this to the physical file:

Record Record Record Record Record Record Record

Record Record Record Record Record Record

Record Record Record Record Record Record Record

Record Record Record Record Record Record

Record Record Record Record Record Record

F-Format FB-Format FBS-Format

Block Block

.

Figure 2. Blocking fixed-length records

Chapter 3. Understanding models of C I/O 29

A B C

A record containing only a new-line is written to the file as LRECL blanks.

 When reading in a text stream, the I/O functions place a new-line character

('\n') in the buffer to indicate the end of data for the record. In a fixed-format

file, the new-line character is placed at the start of the blank padding at the

end of the data.

 For example, if your file position points to the start of the following record in

a fixed-format file opened as a text stream

A B C

file pointer

and you call fgets() to read the line of text, fgets() places the string

"ABC\n" in your input buffer.

Attention: Any blanks written immediately before a new-line or carriage

return will be considered blank padding when the record is read

back from the file. You cannot change the padding character.

 When you are updating a fixed-format file opened as a text stream, you can

update the amount of data in a record. The maximum length of the updated

data is LRECL bytes plus the new-line character; the minimum length is

zero data bytes plus the new-line character. Writing new data into an

existing record replaces the old data. If the new data is longer or shorter

than the old data, the number of blank padding characters in the record in

the external file is changed. When you extend a record, thereby writing over

the old new-line, there will be a new-line character implied after the new

characters. For instance, if you were to overwrite the record mentioned in

the previous example with the string "123456", the records in the physical

file would then look like this:

1 2 3

file pointer

4 5 6

The blanks at the end of the record imply a new-line at position 7. You can

see this new-line by calling fflush() and then performing a read. The

implied new-line is the first character returned from this read.

 A fixed record can hold only LRECL characters. If you try to write more than

that, z/OS XL C/C++ truncates the data unless you are using a standard

30 z/OS V1R8.0 XL C/C++ Programming Guide

stream or a terminal file. In this case, the output is split across multiple

records. If truncation occurs, z/OS XL C/C++ raises SIGIOERR and sets both

errno and the error flag.

Text (ASA)

For ASA files, the first character of each record is reserved for the ASA

control character that represents a new-line, a carriage return, or a form

feed. This control character represents what should happen before the

record is written.

 Table 4. C control to ASA characters

C Control Character ASA Character Description

\n ' ' skip one line

\n\n '0' skip two lines

\n\n\n '-' skip three lines

\f '1' new page

\r '+' overstrike

A control character that ends a logical record is represented at the

beginning of the following record in the external file. Since the ASA control

character is in the first byte of each record, a record can hold only LRECL -

1 bytes of data. As with non-ASA text files described above, z/OS XL C/C++

adds blank padding to complete any record shorter than LRECL - 1 when it

writes the record to the file. On input, z/OS XL C/C++ removes all trailing

blanks. For example, if LRECL is 10, and you enter the string:

 \nABC\nDEF

the record in the physical file will look like this:

 On input, this string is read as follows:

 \nABC\nDEF

You can lengthen and shorten records the same way as you can for

non-ASA files. For more information about ASA, refer to Chapter 7, “Using

ASA text files,” on page 65.

Record

As with fixed-format text files, a record can hold LRECL characters. Every

call to fwrite() is considered to be writing a full record. If you write fewer

than LRECL characters, z/OS XL C/C++ completes the record with enough

nulls to make it LRECL characters long. If you try to write more than that,

z/OS XL C/C++ truncates the data.

Variable-format records

In a file with variable-length records, each record may be a different length. The

variable length formats permit both variable-length records and variable-length

blocks. The first 4 bytes of each block are reserved for the Block Descriptor Word

(BDW); the first 4 bytes of each record are reserved for the Record Descriptor Word

A B C D E F ...

Chapter 3. Understanding models of C I/O 31

(RDW), or, if you are using spanned files, the Segment Descriptor Word (SDW).

Illustrations of variable-length records are shown in Figure 3 on page 33.

Once you have set the LRECL for a variable-format file, you can write up to LRECL

minus 4 characters in each record. z/OS XL C/C++ does not let you see RDWs,

BDWs, or SDWs when you open a file as variable-format. To see the RDWs or

SDWs and BDWs, open the variable file as undefined-format, as described in

“Undefined-format records” on page 34.

The value of LRECL must be greater than 4 to accommodate the RDW or SDW.

The value of BLKSIZE must be greater than or equal to the value of LRECL plus 4.

You should not use a BLKSIZE greater than LRECL plus 4 for an unblocked data

set. Doing so results in buffers that are larger than they need to be. The largest

amount of data that any one record can hold is LRECL bytes minus 4.

For striped data sets, a block is padded out to its full BLKSIZE. This makes

specifying an unnecessarily large BLKSIZE very inefficient.

Record format (RECFM): You can specify the following formats for variable-length

records:

V Variable-length, unblocked

VA Variable-length, ASA print control characters, unblocked

VB Variable-length, blocked

VM Variable-length, machine print-control codes, unblocked

VS Variable-length, unblocked, spanned

VBA Variable-length, blocked, ASA print control characters

VBM Variable-length, blocked, machine print-control codes

VBS Variable-length, blocked, spanned

VSA Variable-length, spanned, ASA print control characters

VSM Variable-length, spanned, machine print-control codes

VBSA Variable-length, blocked, spanned, ASA print control characters

VBSM Variable-length, blocked, spanned, machine print-control codes

Note: In general, all references in this guide to files with record format VB also refer

to VBM and VBA. The specific behavior of ASA files (such as VBA) is explained

in Chapter 7, “Using ASA text files,” on page 65.

V-format signifies unblocked variable-length records. Each record is treated as a

block containing only one record.

VB-format signifies blocked variable-length records. Each block contains as many

complete records as it can accommodate.

Spanned records: A spanned record is opened using both V and S in the format

specifier. A spanned record is a variable-length record in which the length of the

record can exceed the size of a block. If it does, the record is divided into segments

and accommodated in two or more consecutive blocks. The use of spanned records

allows you to select a block size, independent of record length, that will combine

optimum use of auxiliary storage with the maximum efficiency of transmission.

32 z/OS V1R8.0 XL C/C++ Programming Guide

VS-format specifies that each block contains only one record or segment of a

record. The first 4 bytes of a block describe the block control information. The

second 4 bytes contain record or segment control information, including an

indication of whether the record is complete or is a first, intermediate, or last

segment.

VBS-format differs from VS-format in that each block in VBS-format contains as many

complete records or segments as it can accommodate, while each block in

VS-format contains at most one record per block.

Mapping C types to variable format:

Binary

On input and output, data flows over record boundaries. Any record will

hold up to LRECL minus 4 characters of data. If you try to write more than

that, your data will go to the next record, after the RDW or SDW. You will

not be able to see the descriptor words when you read the file.

Note: If you need to see the BDWs, RDWs, or SDWs, you can open and

read a V-format file as a U-format file. See “Undefined-format

records” on page 34 for more information.

z/OS XL C/C++ never creates empty binary records for files opened in

V-format. See “Writing to binary files” on page 123 for more information. An

empty binary record is one that contains only an RDW, which is 4 bytes

long. On input, empty records are ignored.

C1 C1 C1C2 C2 C2Record 1 Record 2

C1 C1C2 C2 C2Record 1 Record 2 Record 3

Record 3

C1 C1 C1C2 C2 C2

C2

Record 1
(entire)

Record 2
(first segment)

Record 2
(first segment)

Record 2
(next segment)

C1 C1C2 C2 C2
Record 1
(entire)

Record 2
(last segment)

V-format:

VB-format:

VS-format:

VBS-format:

C1
C2

: Block control information
: Record or segment control information

Block

Spanned Record

Spanned Record

Figure 3. Variable-length records on z/OS

Chapter 3. Understanding models of C I/O 33

Text (non-ASA)

Record boundaries are used in the physical file to represent the position of

the new-line character. You can indicate the end of a record by including a

new-line or carriage return character in your data. In variable-format files,

z/OS XL C/C++ treats the carriage return character as if it were a new-line.

z/OS XL C/C++ does not write either of these characters to the physical file;

instead, it creates a record boundary. When you read the file back,

boundaries are read as new-lines.

 If a record only contains a new-line character, the default behavior of z/OS

XL C/C++ is to write a record containing a single blank to the file.

Therefore, the string “ \n” is treated the same way as the string “\n”; both

are read back as “\n”. All other blanks in your output are read back as is.

Any empty (zero-length) record is ignored on input. However, if the

environment variable _EDC_ZERO_RECLEN was set to Y at the time the file was

opened, a single new-line is written to the file as an empty record, and a

single blank represents “ \n”. On input, an empty record is treated as a

single new-line and is not ignored.

 After a record has been written to a file, you cannot change its length. If

you try to shorten a logical record by writing a new, smaller amount of data

into it, the C I/O library will add blank characters until the record is full.

Writing more data to a record than it can hold causes your data to be

truncated unless you are writing to a standard stream or a terminal file. In

this case, your output is split across multiple records. If truncation occurs,

z/OS XL C/C++ raises SIGIOERR and sets both errno and the error flag.

Note: If you did not explicitly set the _EDC_ZERO_RECLEN environment

variable when you opened the file, you can update a record that

contains a single blank to contain a non-blank character, thereby

lengthening the logical record from '\n' to 'x\n'), where x is the

non-blank character.

Text (ASA)

z/OS XL C/C++ treats variable-format ASA text files similarly to the way it

treats fixed-format ones. Empty records are always ignored in ASA

variable-format files; for a record to be recognized, it must contain at least

one character as the ASA control character.

 For more information about ASA, refer to Chapter 7, “Using ASA text files,”

on page 65.

Record

Each call to fwrite() creates a record that must be shorter than or equal to

the size established by LRECL. If you try to write more than LRECL bytes

on one call to fwrite(), z/OS XL C/C++ will truncate your data. z/OS XL

C/C++ never creates empty records using record I/O. On input, empty

records are ignored unless you have set the _EDC_ZERO_RECLEN environment

variable to Y. In this case, empty records are treated as records with length

0.

 If your application sets _EDC_ZERO_RECLEN to Y, bear in mind that fread()

returns back 0 bytes read, but does not set errno, and that both feof() and

ferror() return 0 as well.

Undefined-format records

Everything in an undefined-format file is treated as data, including control

characters and record boundaries. Blocks in undefined-format records are

variable-length; each block is considered a record.

34 z/OS V1R8.0 XL C/C++ Programming Guide

It is impossible to have an empty record. Whatever you specify for LRECL has no

effect on your data, but the value of LRECL must be less than or equal to the value

you specify for BLKSIZE. Regardless of what you specify, z/OS XL C/C++ sets

LRECL to zero when it creates an undefined-format file.

Reading a file in U-format enables you to read an entire block at once.

Record format (RECFM): You can specify the following formats for

undefined-length records:

U Undefined-length

UA Undefined-length, ASA print control characters

UM Undefined-length, machine print-control codes

U, UA, and UM formats permit the processing of records that do not conform to F- and

V-formats. The operating system treats each block as a record; your program must

perform any additional blocking or deblocking.

You can read any file in U-format. This is useful if, for example, you want to see the

BDWs and RDWs of a file that you have written in V-format.

Mapping C types to undefined format:

Binary

When you are writing to an undefined-format file, binary data fills a block

and then begins a new block.

Text (non-ASA)

Record boundaries (that is, block boundaries) are used in the physical file

to represent the position of the new-line character. You can indicate the end

of a record by including a new-line or carriage return character in your data.

In undefined-format files, z/OS XL C/C++ treats the carriage return

character as if it were a new-line. z/OS XL C/C++ does not write either of

these characters to the physical file; instead, it creates a record boundary.

When you read the file back, these boundaries are read as new-lines.

 If a record contains only a new-line character, z/OS XL C/C++ writes a

record containing a single blank to the file regardless of the setting of the

_EDC_ZERO_RECLEN environment variable. Therefore, the string ' \n' (a

single blank followed by a new-line character) is treated the same way as

'\n'; both are written out as a single blank. On input, both are read as

'\n'. All other blank characters are written and read as you intended.

 After a record has been written to a file, you cannot change its length. If

you try to shorten a logical record by writing a new, smaller amount of data

into it, the C I/O library adds blank characters until the record is full. Writing

more data to a record than it can hold will cause your data to be truncated

unless you are writing to a standard stream or a terminal file. In these

cases, your output is split across multiple records. If truncation occurs, z/OS

XL C/C++ raises SIGIOERR and sets both errno and the error flag.

Note: You can update a record that contains a single blank to contain a

non-blank character, thereby lengthening the logical record from '\n'

to 'x\n'), where x is the non-blank character.

Text (ASA)

For a record to be recognized, it must contain at least one character as the

ASA control character.

Chapter 3. Understanding models of C I/O 35

For more information about ASA, refer to Chapter 7, “Using ASA text files,”

on page 65.

Record

Each call to fwrite() creates a record that must be shorter than or equal to

the size established by BLKSIZE. If you try to write more than BLKSIZE

bytes on one call to fwrite(), z/OS XL C/C++ truncates your data.

The byte stream model for C I/O

The byte stream model differs from the record I/O model. In the byte stream model,

a file is just a stream of bytes, with no record boundaries. New-line characters

written to the stream appear in the external file.

If the file is opened in binary mode, any new-line characters previously written to

the file are visible on input. z/OS XL C/C++ memory file I/O and Hiperspace

memory file I/O are based on the byte stream model (see Chapter 14, “Performing

memory file and hiperspace I/O operations,” on page 217 for more information).

Hierarchical File System (HFS) I/O, defined by POSIX, is also based on the byte

stream model. Refer to Chapter 11, “Performing UNIX file system I/O operations,”

on page 139 for information about I/O with HFS.

Mapping the C types of I/O to the byte stream model

Binary

In the byte stream model, files opened in binary mode do not contain any

record boundaries. Data is written as is to the file.

Text The byte stream model does not support ASA. New-lines, carriage returns,

and other control characters are written as-is to the file.

Record

If record I/O is supported by the kind of file you are using, z/OS XL C/C++

simulates it by treating new-line characters as record boundaries. New-lines

are not treated as part of the record. A record written out with a new-line

inside it is not read back as it was written, because z/OS XL C/C++ treats

the new-line as a record boundary instead of data.

 HFS files support record I/O, but memory files do not.

 As with all other record I/O, you can use only fread() and fwrite() to read

from and write to files. Each call to fwrite() inserts a new-line in the byte

stream; each call to fread() strips it off. For example, if you use one

fwrite() statement to write the string ABC and the next to write DEF, the

byte stream will look like this:

A B C \n D E F \n ...

There are no limitations on lengthening and shortening records. If you then

rewind the file and write new data into it, z/OS XL C/C++ will replace the

old data. For example, if you used the rewind() function on the stream in

the previous example and then called fwrite() to place the string 12345

into it, the stream would look like this:

36 z/OS V1R8.0 XL C/C++ Programming Guide

1 2 3 4 5 \n F \n ...

If you are using files with this model, do not use new-line characters in your

output. If you do, they will create extra record boundaries. If you are unsure

about the data being written or are writing numeric data, use binary instead

of text to avoid writing a byte that has the hex value of a new-line.

Chapter 3. Understanding models of C I/O 37

38 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 4. Using the Standard C++ Library I/O Stream Classes

The object-oriented model for input and output (I/O) is a set of classes and header

files that are provided by the Standard C++ Library. These classes implement and

manage the stream buffers and the data held in the buffers. Stream buffers hold

data sent to the program (input) and from the program (output), enabling the

program to manipulate and format the data.

There are two base classes, ios and streambuf, from which all other I/O stream

classes are derived. The ios class and its derivative classes are used to implement

formatting of I/O and maintain error state information of stream buffers implemented

with the streambuf class.

There are two shipped versions of the I/O stream classes:

v The UNIX Systems Laboratories C++ Language System Release (USL) I/O

Stream Class Library

v The Standard C++ I/O stream classes

The UNIX Systems Laboratories C++ Language System Release (USL) I/O Stream

Class Library is declared in the iostream.h header file. This version does not

support ASCII and large files. For more information, see C/C++ Legacy Class

Libraries Reference.

The Standard C++ I/O stream classes are declared in the iostream header file. This

version supports ASCII and large files. For more detailed information on the I/O

stream classes provided by the Standard C++ Library, see _LARGE_FILES in z/OS

XL C/C++ Language Reference.

The I/O stream classes use OBJECTMODEL(COMPAT). They cannot be used with

other classes that use OBJECTMODEL(IBM), within the same inheritance hierarchy.

For more information, see OBJECTMODEL in z/OS XL C/C++ User’s Guide.

This chapter includes the following topics:

v Advantages to using the C++ I/O Stream Library

v Predefined Streams for C++

v How C++ I/O Streams Relate to C Streams

v Specifying File Attributes

Advantages to using the C++ I/O stream classes

Although input and output are implemented with streams for both C and C++, the

C++ I/O stream classes provide the same facilities for input and output as C

stdio.h. The I/O stream classes in the Standard C++ Library have the following

advantages:

v The input (>>) operator and output (<<) operator are typesafe. These operators

are easier to use than scanf() and printf().

v You can overload the input and output operators to define input and output for

your own types and classes. This makes input and output across types, including

your own, uniform.

© Copyright IBM Corp. 1996, 2006 39

Predefined streams for C++

z/OS XL C++ provides the following predefined streams:

cin The standard input stream

cout The standard output stream

cerr The standard error stream, unit-buffered such that characters sent to this

stream are flushed on each output operation

clog The buffered error stream

All predefined streams are tied to cout. When you use cin, cerr, or clog, cout gets

flushed sending the contents of cout to the ultimate consumer.

z/OS C standard streams create all I/O to I/O streams:

v Input to cin comes from stdin (unless cin is redirected)

v cout output goes to stdout (unless cout is redirected)

v cerr output goes to stderr (unit-buffered) (unless cerr is redirected)

v clog output goes to stderr (unless clog is redirected)

When redirecting or intercepting a C standard stream, the corresponding C++

standard stream becomes redirected. This applies unless you redirect an I/O

stream. See Chapter 9, “Using C and C++ standard streams and redirection,” on

page 79 for more information.

How C++ I/O streams relate to C I/O streams

Typically, USL I/O Stream Class Library file I/O is implemented in terms of z/OS XL

C file I/O, and is buffered from it.

Note: The only exception is that cerr is unit-buffered (that is, ios::unitbuf is set).

A filebuf object is associated with each ifstream, ofstream, and fstream object.

When the filebuf is flushed, it writes to the underlying C stream, which has its own

buffer. The filebuf object follows every fwrite() to the underlying C stream with

an fflush().

Mixing the Standard C++ I/O stream classes, USL I/O stream class

library, and C I/O library functions

It is not recommended to mix the usage of the Standard C++ I/O stream classes,

USL I/O Stream Class Library, and C I/O library functions.

The USL I/O stream class library uses a separate buffer, which means that you

would need to flush the buffer after each call to cout either by setting ios::unitbuf

or by calling sync_with_stdio().

You should avoid switching between the formatted extraction functions of the C++

I/O stream classes and C stdio library functions whenever possible. You should

also avoid switching between versions of these classes.

For more information on mixing the I/O stream classes refer to “Interleaving the

standard streams with sync_with_stdio()” on page 81 and “Interleaving the standard

streams without sync_with_stdio()” on page 83.

40 z/OS V1R8.0 XL C/C++ Programming Guide

Specifying file attributes

The fstream, ifstream, and ofstream classes specialize stream input and output

for files.

For z/OS XL C++, overloaded fstream, ifstream, and ofstream constructors, and

open() member functions, with an additional parameter, are provided so you can

specify z/OS XL C fopen() mode values. You can use this additional parameter to

specify any z/OS XL C fopen() mode value except type=record. If you choose to

use a constructor without this additional parameter, you will get the default z/OS XL

C fopen() file characteristics. Table 7 on page 51 describes the default fopen()

characteristics.

Chapter 4. Using the Standard C++ Library I/O Stream Classes 41

42 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 5. Opening files

This chapter describes how to open I/O files. You can open files using the Standard

C fopen() and freopen() library functions. Alternatively, if you want to use the C++

I/O stream classes, you can use the constructors for the ifstream, ofstream or

fstream classes, or the open() member functions of the filebuf, ifstream,

ofstream or fstream classes.

To open a file stream with a previously opened HFS file descriptor, use the

fdopen() function.

To open files with HFS low-level I/O, use the open() function. For more information

about opening HFS files, see Chapter 11, “Performing UNIX file system I/O

operations,” on page 139.

Prototypes of functions

The prototypes of these functions are:

C Library Functions:

 FILE *fopen(const char *filename, const char *mode);

 FILE *freopen(const char *filename, const char *mode, FILE *stream);

 FILE *fdopen(int filedes, char *mode);

USL I/O stream library functions:

 // ifstream constructor

 ifstream(const char* fname, int mode=ios::in,

 int prot=filebuf::openprot);

 // ifstream constructor; z/OS C++ extension

 ifstream(const char* fname, const char* fattr,

 int mode=ios::in, int prot=filebuf::openprot);

 // ifstream::open()

 void open(const char* fname, int mode=ios::in,

 int prot=filebuf::openprot);

 // z/OS C++ extension

 void open(const char* fname, const char* fattr,

 int mode=ios::in, int prot=filebuf::openprot);

 // ofstream constructor

 ofstream(const char* fname, int mode=ios::out,

 int prot=filebuf::openprot);

 // ofstream constructor; z/OS C++ extension

 ofstream(const char* fname, const char* fattr,

 int mode=ios::out, int prot=filebuf::openprot);

 // ofstream::open()

 void open(const char* fname, int mode=ios::out,

 int prot=filebuf::openprot);

 // z/OS C++ extension

 void open(const char* fname, const char* fattr,

 int mode=ios::out, int prot=filebuf::openprot);

 // fstream constructor

© Copyright IBM Corp. 1996, 2006 43

fstream(const char* fname, int mode,

 int prot=filebuf::openprot);

 // fstream constructor; z/OS C++ extension

 fstream(const char* fname, const char* fattr,

 int mode, int prot=filebuf::openprot);

 // fstream::open()

 void open(const char* fname, int mode,

 int prot=filebuf::openprot);

 // z/OS C++ extension

 void open(const char* fname, const char* fattr,

 int mode, int prot=filebuf::openprot);

 // filebuf::open()

 filebuf* open(const char* fname, int mode,

 int prot=filebuf::openprot);

 // z/OS C++ extension

 filebuf* open(const char* fname, const char* fattr,

 int mode, int prot=filebuf::openprot);

Standard C++ I/O stream functions:

 // z/OS C++ Standard Library ifstream constructor

 ifstream(const char *, ios_base::openmode, const char * _A)

 // z/OS C++ Standard Library ifstream::open

 void ifstream::open(const char *, ios_base::openmode, const char * _A)

 void ifstream::open(const char *, ios_base::open_mode, const char * _A)

 // z/OS C++ Standard Library ofstream constructor

 ofstream(const char *, ios_base::openmode, const char * _A)

 // z/OS C++ Standard Library ofstream::open

 void ofstream::open(const char *, ios_base::openmode, const char * _A)

 void ofstream::open(const char *, ios_base::open_mode, const char * _A)

 // z/OS C++ Standard Library fstream constructor

 fstream(const char *, ios_base::openmode, const char * _A)

 // z/OS C++ Standard Library fstream::open

 void fstream::open(const char *, ios_base::openmode, const char * _A)

 void fstream::open(const char *, ios_base::open_mode, const char * _A)

 // C++ Standard Library filebuf::open

 filebuf::open(const char *, ios_base::openmode, const char * _A)

 filebuf::open(const char *, ios_base::open_mode, const char * _A)

For more detailed information about the C I/O stream functions, see z/OS XL C/C++

Run-Time Library Reference. For more detailed information about the C++ I/O

stream classes, see:

v Standard C++ Library Reference discusses the Standard C++ I/O stream classes

v C/C++ Legacy Class Libraries Reference discusses the UNIX Systems

Laboratories C++ Language System Release (USL) I/O Stream Library.

Categories of I/O

The following table lists the categories of I/O that z/OS XL C/C++ supports and

points to the section where each category is described.

Note: CICS Data Queues and z/OS Language Environment Message File do not

apply in AMODE 64 applications. Hiperspace Memory Files are opened as

44 z/OS V1R8.0 XL C/C++ Programming Guide

(regular) Memory Files since the size of a (regular) Memory File can exceed

2GB in AMODE 64 applications.

 Table 5. Kinds of I/O supported by z/OS XL C/C++

Type of I/O Suggested Uses and Supported Devices Model Page

OS I/O Used for dealing with the following kinds of files:

v Generation data group

v MVS sequential DASD files

v Regular and extended partitioned data sets

v Tapes

v Printers

v Punch data sets

v Card reader data sets

v MVS inline JCL data sets

v MVS spool data sets

v Striped data sets

v Optical readers

Record 99

Hierarchical File

System (HFS) I/O

Used under z/OS UNIX System Services (z/OS

UNIX System Services) to support HFS data

sets, and access the byte-oriented HFS files

according to POSIX .1 and XPG 4.2 interfaces.

This increases the portability of applications

written on UNIX-based systems to z/OS XL

C/C++ systems.

Byte

stream

139

VSAM I/O Used for working with VSAM data sets.

Supports direct access to records by key,

relative record number, or relative byte address.

Supports entry-sequenced, relative record, and

key-sequenced data sets.

Record 163

Terminal I/O Used to perform interactive input and output

operations with a terminal.

Record 207

Memory Files Used for applications requiring temporary I/O

files without the overhead of system data sets.

Fast and efficient.

Byte

stream

217

Hiperspace

Memory Files

Used to deal with memory files as large as 2

gigabytes.

Byte

stream

217

CICS Data Queues Used under the Customer Information Control

System (CICS). CICS data queues are

automatically selected under CICS for the

standard streams stdout and stderr for C, or

cout and cerr for C++. The CICS I/O

commands are supported through the Command

Level interface. The standard stream stdin

under C (or cin under C++) is treated as an

empty file under CICS.

Record 231

z/OS Language

Environment

Message File

Used when you are running with z/OS Language

Environment. The message file is automatically

selected for stderr under z/OS Language

Environment. For C++, automatic selection is of

cerr.

Record 233

The following table lists the environments that z/OS XL C/C++ supports, and which

categories of I/O work in which environment.

Chapter 5. Opening files 45

Table 6. I/O categories and environments that support them

Type of I/O MVS

batch

IMS online TSO TSO

batch

CICS

OS I/O Yes Yes Yes Yes No

HFS I/O Yes Yes Yes Yes No

VSAM I/O Yes Yes Yes Yes No

Terminal I/O No No Yes No No

Memory Files Yes Yes Yes Yes Yes

Hiperspace Memory Files Yes Yes Yes Yes No

CICS Data Queues No No No No Yes

z/OS Language Environment

Message File

Yes Yes Yes Yes No

Note: MVS batch includes IMS batch. TSO is interactive. TSO batch indicates an

environment set up by a batch call to IKJEFT01. Programs run in such an environment

behave more like a TSO interactive program than an MVS batch program.

Specifying what kind of file to use

This section discusses:

v the kinds of files you can use

v how to specify RECFM, LRECL, and BLKSIZE

v how to specify DDnames

OS files

z/OS XL C/C++ treats a file as an OS file, provided that it is not a CICS data

queue, or an HFS, VSAM, memory, terminal, or Hiperspace file.

HFS files

When you are running under MVS, TSO (batch and interactive), or IMS, z/OS XL

C/C++ recognizes an HFS I/O file as such if the name specified on the fopen() or

freopen() call conforms to certain rules. These rules are described in “How z/OS

XL C/C++ determines what kind of file to open” on page 53.

VSAM data sets

z/OS XL C/C++ recognizes a VSAM data set if the file exists and has been defined

as a VSAM cluster before the call to fopen().

Terminal files

When you are running with the run-time option POSIX(OFF) under interactive TSO,

z/OS XL C/C++ associates streams to the terminal. You can also call fopen() to

open the terminal directly if you are running under TSO (interactive or batch), and

either the file name you specify begins with an asterisk (*), or the ddname has been

allocated with a DSN of *.

When running with POSIX(ON), z/OS XL C/C++ associates streams to the terminal

under TSO and a shell if the file name you have specified fits one of the following

criteria:

v Under TSO (interactive and batch), the name must begin with the sequence

//*, or the ddname must have been allocated with a DSN of *.

46 z/OS V1R8.0 XL C/C++ Programming Guide

v Under a shell, the name specified on fopen() or freopen() must be the

character string returned by ttyname().

Interactive IMS and CICS behave differently from what is described here. For more

information about terminal files with interactive IMS and CICS see Chapter 9, “Using

C and C++ standard streams and redirection,” on page 79.

If you are running with POSIX(ON) outside a shell, you must use the regular z/OS XL

C/C++ I/O functions for terminal I/O. If you are running with POSIX(ON) from a shell,

you can use the regular z/OS XL C/C++ I/O functions or the POSIX low-level

functions (such as read()) for terminal I/O.

Memory files and hiperspace memory files

You can use regular memory files on all the systems that z/OS XL C/C++ supports.

To create one, specify type=memory on the fopen() or freopen() call that creates

the file. A memory file, once created, exists until either of the following happens:

v You explicitly remove it with remove() or clrmemf()

v The root program is terminated

While a memory file exists, you can just use another fopen() or freopen() that

specifies the memory file’s name; you do not have to specify type=memory. For

example:

CCNGOF1

 A valid memory file name will match current file restrictions on a real file. Thus, a

memory file name that is classified as HFS can have more characters than can one

classified as an MVS file name.

If you are not running under CICS, you can open a Hiperspace memory file as

follows:

 fp = fopen("a.b", "w, type=memory(hiperspace)");

If you specify hiperspace and you are running in a CICS environment, z/OS XL

C/C++ opens a regular memory file. If you are running with the run-time options

/* this example shows how fopen() may be used with memory files */

#include <stdio.h>

char text[3], *result;

FILE * fp;

int main(void)

 {

 fp = fopen("a.b", "w, type=memory"); /* Opens a memory file */

 fprintf(fp, "%d\n",10); /* Writes to the file */

 fclose(fp); /* Closes the file */

 fp = fopen("a.b", "r"); /* Reopens the same */

 /* file (already */

 /* a memory file) */

 if ((result=fgets(text,3,fp)) !=NULL) /* Retrieves results */

 printf("value retrieved is %s\n",result);

 fclose(fp); /* Closes the file */

 return(0);

 }

Figure 4. Memory file example

Chapter 5. Opening files 47

POSIX(ON) and TRAP(OFF), specifying hiperspace has no effect; z/OS XL C/C++ will

open a regular memory file. You must specify TRAP(ON) to be able to create

Hiperspace files.

Restriction: Hiperspace is not supported in AMODE 64 applications. If you specify

hiperspace in AMODE 64 applications, z/OS XL C/C++ opens a regular memory

file.

CICS data queues

A CICS transient data queue is a pathway to a single predefined destination. The

destination can be a ddname, another transient data queue, a VSAM file, a

terminal, or another CICS environment. The CICS system administrator defines the

queues that are active during execution of CICS. All users who direct data to a

given queue will be placing data in the same location, in order of occurrence.

You cannot use fopen() or freopen() to specify this kind of I/O. It is the category

selected automatically when you call any ANSI functions that reference stdout and

stderr under CICS. If you reference either of these in a C or C++ program under

CICS, z/OS XL C/C++ attempts to open the CESO (stdout) or CESE (stderr)

queue. If you want to write to any other queue, you should use the CICS-provided

interface.

z/OS Language Environment Message file

The z/OS Language Environment message file is managed by z/OS Language

Environment and may not be directly opened or closed with fopen(), freopen() or

fclose() within a C or C++ application. In z/OS Language Environment, output

from stderr is directed to the z/OS Language Environment message file by default.

You can use freopen() and fclose() to manage stderr, or you can redirect it to

another destination. There are application writer interfaces (AWIs) that enable you

to access the z/OS Language Environment message file directly. These are

documented in z/OS Language Environment Programming Guide.

See Chapter 16, “Language Environment Message file operations,” on page 233 for

more information on z/OS Language Environment message files.

How to specify RECFM, LRECL, and BLKSIZE

For OS files and terminal files, the values of RECFM, LRECL, and BLKSIZE are

significant. When you open a file, z/OS XL C/C++ searches for the RECFM,

LRECL, and BLKSIZE values in the following places:

1. The fopen() or freopen() statement that opens the file

2. The DD statement (described in “DDnames” on page 52)

3. The values set in the existing file

4. The default values for fopen() or freopen().

When you call fopen() and specify a write mode (w, wb, w+, wb+, w+b) for an

existing file, z/OS XL C/C++ uses the default values for fopen() if:

v the data set is opened by the data set name or

v the data set is opened by ddname and the DD statement does not have any

attributes filled in.

These defaults are listed in Table 7 on page 51. To force z/OS XL C/C++ to use

existing attributes when you are opening a file, specify recfm=* (or recfm=+) on the

fopen() or freopen() call.

48 z/OS V1R8.0 XL C/C++ Programming Guide

recfm=* (or recfm=+) is valid only for existing DASD data sets. It is ignored in all

other cases.

recfm=+ is identical to recfm=* with the following exceptions:

v If there is no record format for the existing DASD data set, the defaults are

assigned as if the data set did not exist.

v When append mode is used, the fopen() fails.

Notes:

1. When specifying a ddname on fopen() or freopen() you should be aware of

the following when opening the ddname using one of the write modes:

2. If the ddname is allocated to an already existing file and that ddname has not

yet been opened, then the DD statement will not contain the recfm, lrecl, or

blksize. That information is not filled in until the ddname is opened for the first

time. If the first open uses one of the write modes (w,wb, w+, wb+, w+b) and

recfm=* (or recfm=+) is not specified, then the existing file attributes are not

considered. Therefore, since the DD statement has not yet been filled in, the

fopen() defaults are used.

3. If the ddname is allocated at the same time the file is created, then the DD

statement will contain the same recfm, lrecl, and blksize specified for the

file. If the first open uses one of the write modes (w, wb, w+, wb+, w+b) and

recfm=* (or recfm=+) is not specified, then z/OS XL C/C++ picks up the existing

file attributes from the DD statement since they were placed there at the time of

allocation.

You can specify the record format in

v The RECFM parameter of the JCL DD statement under MVS

v The RECFM parameter of the ALLOCATE statement under TSO

v The __recfm field of the __dyn_t structure passed to the dynalloc() library

function under MVS

v The RECFM parameter on the call to the fopen() or freopen() library function

v The __S99TXTPP text unit field on an SVC99 parameter list passed to the svc99()

library function under MVS

v The ISPF data set utility under MVS

Certain categories of I/O may ignore or simulate some attributes such as BLKSIZE

or RECFM that are not physically supported on the device. Table 5 on page 45 lists

all the categories of I/O that z/OS XL C/C++ supports and directs you to where you

can find more information about them.

You can specify the logical record length in

v The LRECL parameter of the JCL DD statement under MVS

v The LRECL parameter of the ALLOCATE statement under TSO

v The __lrecl field of the __dyn_t structure passed to the dynalloc() library

function under MVS

v The LRECL parameter on the call to the fopen() or freopen() library function

v The __S99TXTPP text unit field on an SVC99 parameter list passed to the svc99()

library function under MVS

v The ISPF data set utility

If you are creating a file and you do not select a record size, z/OS XL C/C++ uses a

default. See “fopen() defaults” on page 50 for details on how defaults are

calculated.

Chapter 5. Opening files 49

You can specify the block size in

v The BLKSIZE parameter of the JCL DD statement

v The BLKSIZE parameter of the ALLOCATE statement under TSO

v The __blksize field of the __dyn_t structure passed to the dynalloc() library

function under MVS

v The BLKSIZE parameter on a call to the fopen() or freopen() library function

v The __S99TXTPP text unit field on an SVC99 parameter list passed to the svc99()

library function under MVS

v The ISPF data set utility

If you are creating a file and do not select a block size, z/OS XL C/C++ uses a

default. The defaults are listed in Table 7 on page 51.

fopen() defaults

You cannot specify a file attribute more than once on a call to fopen() or freopen().

If you do, the function call fails. If the file attributes specified on the call to fopen()

differ from the actual file attributes, fopen() usually fails. However, fopen() does

not fail if:

v The file is opened for w, w+, wb, or wb+, and the file is neither an existing PDS or

PDSE nor an existing file opened by a ddname that specifies DISP=MOD. In such

instances, fopen() attributes override the actual file attributes. However, if

recfm=* (or recfm=+) is specified on the fopen(), any attributes that are not

specified either on the fopen() or for the ddname will be retrieved from the

existing file. If the final combination of attributes is invalid, the fopen() will fail.

v The file is opened for reading (r or rb) with recfm=U. Any other specified

attributes should be compatible with those of the existing data set.

In calls to fopen(), the LRECL, BLKSIZE, and RECFM parameters are optional. (If

you are opening a file for read or append, any attributes that you specify must

match the existing attributes.)

If you do not specify file attributes for fopen() (or for an I/O stream object), you get

the following defaults.

RECFM defaults

If recfm is not specified in a fopen() call for an output binary file, recfm defaults to:

v recfm=VB for spool (printer) files

v recfm=FB otherwise

If recfm is not specified in a fopen() call for an output text file, recfm defaults to:

v recfm=F if _EDC_ANSI_OPEN_DEFAULT is set to Y and no LRECL or BLKSIZE

specified. In this case, LRECL and BLKSIZE are both defaulted to 254.

v recfm=VBA for spool (printer) files.

v recfm=U for terminal files.

v recfm=VB for MVS files.

v recfm=VB for all other OS files.

If recfm is not specified for a record I/O file, you will get the default of recfm=VB.

LRECL and BLKSIZE defaults

The following table shows the defaults for LRECL and BLKSIZE when z/OS XL

C/C++ is creating a file, not appending or updating it. The table assumes that z/OS

50 z/OS V1R8.0 XL C/C++ Programming Guide

XL C/C++ has already processed any information from the fopen() statement or

ddname. The defaults provide a basis for fopen() to select values for unspecified

attributes when you create a file.

 Table 7. fopen() defaults for LRECL and BLKSIZE when creating OS files

lrecl specified? blksize specified? RECFM LRECL BLKSIZE

no no All F 80 80

All FB 80 maximum integral multiple of

80 less than or equal to max

All V, VB,

VS, or

VBS

minimum of 1028 or max–4 max

All U 0 max

yes no All F lrecl lrecl

All FB lrecl maximum integral multiple of

lrecl less than or equal to max

All V lrecl lrecl+4

All U 0 lrecl

no yes All F or

FB

blksize blksize

All V, VB,

VS, or

VBS

minimum of 1028 or blksize–4 blksize

All U 0 blksize

Note: “All” includes the standard (S) specifier for fixed formats, the ASA (A) specifier, and the machine control

character (M) specifier.

In the preceding table, the value max represents the maximum block size for the

device. These are the current default maximum block sizes for several devices that

z/OS XL C/C++ supports:

Device Block Size

DASD 6144

3203 Printer 132

3211 Printer 132

4245 Printer 132

2540 Reader 80

2540 Punch 80

2501 Reader 80

3890 Document Processor 80

TAPE 32760

For more information about specific default block sizes, as returned by the DEVTYPE

macro, refer to z/OS DFSMS Using Data Sets.

For DASD files that do not have recfm=U, if you specify blksize=0 on the call to

fopen() or freopen() and you have DFP Release 3.1 or higher, the system

determines the optimal block size for your file. If you do not have the correct level

Chapter 5. Opening files 51

of DFP or you specify blksize=0 for a ddname instead of specifying it on the

fopen() or freopen() call, z/OS XL C/C++ behaves as if you had not specified the

blksize parameter at all.

For information about block sizes for different categories of I/O, see the chapters

listed in Table 5 on page 45.

You do not have to specify the LRECL and BLKSIZE attributes; however, it is

possible to have conflicting attributes when you do specify them. The restrictions

are:

v For a V file, the LRECL must be greater than 4 bytes and must be at least 4

bytes smaller than the BLKSIZE.

v For an F file, the LRECL must be equal to the BLKSIZE, and must be at least 1.

v For an FB file, the BLKSIZE must be an integer multiple of the LRECL.

v For a U file, the LRECL must be less than or equal to the BLKSIZE and must be

greater than or equal to 0. The BLKSIZE must be at least 1.

v In spanned files, the LRECL and the BLKSIZE attributes must be greater than 4.

v If you specify LRECL=X, the BLKSIZE attribute must be less than or equal to the

maximum block size allowed on the device.

To determine the maximum LRECL and BLKSIZE values for the various file types

and devices available on your operating system, refer to the chapters listed in

Table 5 on page 45.

DDnames

DD names are specified by prefixing the DD name with DD:. All the following forms

of the prefix are supported:

v DD:

v dd:

v dD:

v Dd:

The DD statement enables you to write C source programs that are independent of

the files and input/output devices they will use. You can modify the parameters of a

file (such as LRECL, BLKSIZE, and RECFM) or process different files without

recompiling your program.

How to create a DDname under MVS batch

To create a ddname under MVS batch, you must write a JCL DD statement.

For the C file PARTS.INSTOCK, you would write a JCL DD statement similar to

the following:

 //STOCK DD DSN=PARTS.INSTOCK, . . .

HFS files can be allocated with a DD card. For example:

 //STOCK DD PATH=’/u/parts.instock’,

 // PATHOPTS=(OWRONLY,OCREAT,OTRUNC),

 // PATHMODE=(SIRWXU,SIRWXO,SIRWXG)

When defining DD, do not use DD ... FREE=CLOSE for unallocating DD

statements. The C library may close files to perform some file operations

such as freopen(), and the DD statement will be unallocated.

52 z/OS V1R8.0 XL C/C++ Programming Guide

For more information on writing DD statements, refer to the JCL manuals

listed in z/OS Information Roadmap.

How to create a DDname under TSO

To create a ddname under TSO, you must write an ALLOCATE command. For

the declaration shown above for the C file STOCK, you should write a TSO

ALLOCATE statement similar to the following:

 ALLOCATE FILE(STOCK) DATASET('PARTS.INSTOCK')

You can also allocate HFS files with TSO ALLOCATE commands. For

example:

 ALLOC FI(stock) PATH(’/used/parts.stock’) PATHOPTS(OWRONLY,OCREAT)

 PATHMODE(sirwxu,sirwxo,sirwxg)

See z/OS Information Roadmap for more information on TSO ALLOCATE.

How to create a DDname in source code

You can also use the z/OS XL C/C++ library functions svc99() and

dynalloc() to allocate ddnames. See z/OS XL C/C++ Run-Time Library

Reference for more information about these functions.

 You do not always need to describe the characteristics of the data in files both

within the program and outside it. There are, in fact, advantages to describing the

characteristics of your data in only one place.

Opening a file by ddname may require the merging of information internal and

external to the program. If any conflict is detected that will prevent the opening of a

file, fopen() returns a NULL pointer to indicate that the file cannot be opened. See

z/OS XL C/C++ Run-Time Library Reference for more information on fopen().

If DISP=MOD is specified on a DD statement and if the file is opened in w or wb mode,

the DISP=MOD causes the file to be opened in append mode rather than in write

mode.

Note: You can open a ddname only with fopen() or freopen(). open() does not

interpret ddnames as such.

Avoiding Undesirable Results when Using I/O

File serialization is not provided for different tasks attempting to access the same

file. When a C/C++ application is run on one task, and the same application or

another C/C++ application is run on a different task, any attempts for both

applications to access the same file is the responsibility of the application.

How z/OS XL C/C++ determines what kind of file to open

This section describes the criteria that z/OS XL C/C++ uses to determine what kind

of file it is opening. z/OS XL C/C++ goes through the categories listed in Table 5 on

page 45 in the order that follows. If a category applies to a file, z/OS XL C/C++

stops searching.

Note: Files cannot be opened under CICS when you have specified the POSIX(ON)

run-time option.

The following chart shows how z/OS XL C/C++ determines what type of file to open

under TSO, MVS batch, and interactive IMS with POSIX(ON). For information on the

types of files shown in the chart see the appropriate chapter in the I/O section.

Chapter 5. Opening files 53

MAP 0010: Under TSO, MVS batch, IMS — POSIX(ON)

001

Is type=memory specified?

Yes No

 002

Does the name begin with // but NOT ///?

Yes No

 003

Continue at Step 017 on page 55.

 004

Continue at Step 008.

 005

Is hiperspace specified?

Yes No

 006

z/OS XL C/C++ opens a regular memory file.

 007

z/OS XL C/C++ opens a memory file in Hiperspace.

 008

Is the next character an asterisk?

Yes No

 009

Is name of form DDname?

Yes No

 010

Does the name specified match that of an existing memory file?

Yes No

 011

z/OS XL C/C++ opens an OS file.

 012

z/OS XL C/C++ opens the existing memory file.

MAP 0010 (continued)

54 z/OS V1R8.0 XL C/C++ Programming Guide

013

Continue to Step 032 on page 56.

 014

Are you running under TSO interactive?

Yes No

 015

z/OS XL C/C++ removes the asterisk from the name unless the asterisk is

the only character, and proceeds to Step 028 on page 56.

 016

z/OS XL C/C++ opens a terminal file.

 017

Is the name of the form *DD:ddname or DD:ddname?

Yes No

 018

Does the name specified match that of an existing memory file?

Yes No

 019

z/OS XL C/C++ opens an HFS file.

 020

z/OS XL C/C++ opens the existing memory file.

 021

Does ddname exist?

Yes No

 022

Does a memory file exist?

Yes No

 023

z/OS XL C/C++ opens an HFS file called either *DD:ddname or

DD:ddname.

 024

z/OS XL C/C++ opens the existing memory file.

MAP 0010 (continued)

Chapter 5. Opening files 55

025

Is a path specified in ddname?

Yes No

 026

z/OS XL C/C++ opens an OS file.

 027

z/OS XL C/C++ opens an HFS file.

 028

Is the name of the form *DD:ddname or DD:ddname?

Yes No

 029

Does the name specified match that of an existing memory file?

Yes No

 030

z/OS XL C/C++ opens an OS file.

 031

z/OS XL C/C++ opens the existing memory file.

 032

Does ddname exist?

Yes No

 033

Does a memory file exist?

Yes No

 034

ERROR

 035

z/OS XL C/C++ opens the existing memory file.

 036

Is a path specified in ddname?

Yes No

 037

z/OS XL C/C++ opens an OS file.

MAP 0010 (continued)

56 z/OS V1R8.0 XL C/C++ Programming Guide

038

z/OS XL C/C++ opens an HFS file.

 The following chart shows how z/OS XL C/C++ determines what type of file to open

under TSO, MVS batch, and interactive IMS with POSIX(OFF). For information on the

types of files shown in the chart see the appropriate chapter in the I/O section.

MAP 0010 (continued)

Chapter 5. Opening files 57

MAP 0020: Under TSO, MVS batch, IMS — POSIX(OFF)

001

Is type=memory specified?

Yes No

 002

Does the name begin with // but NOT ///?

Yes No

 003

Continue at Step 017 on page 59.

 004

Continue at Step 008.

 005

Is hiperspace specified?

Yes No

 006

z/OS XL C/C++ opens a regular memory file.

 007

z/OS XL C/C++ opens a memory file in Hiperspace.

 008

Is the next character an asterisk?

Yes No

 009

Is name of form DDname?

Yes No

 010

Does the name specified match that of an existing memory file?

Yes No

 011

z/OS XL C/C++ opens an OS file.

 012

z/OS XL C/C++ opens the existing memory file.

58 z/OS V1R8.0 XL C/C++ Programming Guide

013

Continue at Step 021.

 014

Are you running under TSO interactive?

Yes No

 015

z/OS XL C/C++ removes the asterisk from the name unless the asterisk is

the only character, and proceeds to Step 017.

 016

z/OS XL C/C++ opens a terminal file.

 017

Is the name of the form *DD:ddname or DD:ddname?

Yes No

 018

Does the name specified match that of an existing memory file?

Yes No

 019

z/OS XL C/C++ opens an OS file.

 020

z/OS XL C/C++ opens the existing memory file.

 021

Does ddname exist?

Yes No

 022

Does a memory file exist?

Yes No

 023

ERROR

 024

z/OS XL C/C++ opens the existing memory file.

MAP 0020 (continued)

Chapter 5. Opening files 59

025

Is a path specified in ddname?

Yes No

 026

z/OS XL C/C++ opens an OS file.

 027

z/OS XL C/C++ opens an HFS file.

 The following chart shows how z/OS XL C/C++ determines what type of file to open

under CICS. For information on the types of files shown in the chart see the

appropriate chapter in the I/O section.

MAP 0020 (continued)

60 z/OS V1R8.0 XL C/C++ Programming Guide

MAP 0030: Under CICS

001

Is type=memory specified?

Yes No

 002

Does the name specified match that of an existing memory file?

Yes No

 003

The fopen() call fails.

 004

z/OS XL C/C++ opens that memory file.

 005

Is hiperspace specified?

Yes No

 006

z/OS XL C/C++ opens the specified memory file.

 007

The fopen() call ignores the hiperspace specification and opens the memory file.

Chapter 5. Opening files 61

MAP 0030 (continued)

62 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 6. Buffering of C streams

This chapter describes buffering modes used by z/OS XL C/C++ library functions

available to control buffering and methods of flushing buffers.

z/OS XL C/C++ uses buffers to map C I/O to system-level I/O. When z/OS XL

C/C++ performs I/O operations, it uses one of the following buffering modes:

v Line buffering - characters are transmitted to the system as a block when a

new-line character is encountered. Line buffering is meaningful only for text

streams and HFS files.

v Full buffering - characters are transmitted to the system as a block when a buffer

is filled.

v No buffering - characters are transmitted to the system as they are written. Only

regular memory files and HFS files support the no buffering mode.

The buffer mode affects the way the buffer is flushed. You can use the setvbuf()

and setbuf() library functions to control buffering, but you cannot change the

buffering mode after an I/O operation has used the buffer, as all read, write, and

reposition operations do. In some circumstances, repositioning alters the contents of

the buffer. It is strongly recommended that you only use setbuf() and setvbuf()

before any I/O, to conform with ANSI, and to avoid any dependency on the current

implementation. If you use setvbuf(), z/OS XL C/C++ may or may not accept your

buffer for its internal use. For a hiperspace memory file, if the size of the buffer

specified to setvbuf() is 8K or more, it will affect the number of hiperspace blocks

read or written on each call to the operating system; the size is rounded down to

the nearest multiple of 4K.

Full buffering is the default except in the following cases:

v If you are using an interactive terminal, z/OS XL C/C++ uses line buffering.

v If you are running under CICS, z/OS XL C/C++ also uses line buffering.

v stderr is line-buffered by default.

v If you are using a memory file, z/OS XL C/C++ does not use any buffering.

For terminals, because I/O is always unblocked, line buffering is equivalent to full

buffering.

For record I/O files, buffering is meaningful only for blocked files or for record I/O

HFS files using full buffering. For unblocked files, the buffer is full after every write

and is therefore written immediately, leaving nothing to flush. For blocked files or

fully-buffered HFS files, however, the buffer can contain one or more records that

have not been flushed and that require a flush operation for them to go to the

system.

You can flush buffers to the system in several different ways.

v If you are using full buffering, z/OS XL C/C++ automatically flushes a buffer when

it is filled.

v If you are using line buffering for a text file or an HFS file, z/OS XL C/C++

flushes a buffer when you complete it with a control character. Except for HFS

files, specifying line buffering for a record I/O or binary file has no effect; z/OS XL

C/C++ treats the file as if you had specified full buffering.

v z/OS XL C/C++ flushes buffers to the system when you close a file or end a

program.

© Copyright IBM Corp. 1996, 2006 63

v z/OS XL C/C++ flushes buffers to the system when you call the fflush() library

function, with the following restrictions:

– A file opened in text mode does not flush data if a record has not been

completed with a new-line.

– A file opened in fixed format does not flush incomplete records to the file.

– An FBS file does not flush out a short block unless it is a DISK file opened

without the NOSEEK parameter.

v All streams are flushed across non-POSIX system() calls. Streams are not

flushed across POSIX system() calls. For a POSIX system call, we recommend

that you do a fflush() before the system() call.

If you are reading a record that another user is writing to at the same time, you can

see the new data if you call fflush() to refresh the contents of the input buffer.

Note: This is not supported for VSAM files.

You may not see output if a program that is using input and output fails, and the

error handling routines cannot close all the open files.

64 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 7. Using ASA text files

This chapter describes the American Standards Association (ASA) text files, the

control characters used in ASA files, how z/OS XL C/C++ translates the control

characters, and how z/OS XL C/C++ treats ASA files during input and output. The

first column of each record in an ASA file contains a control character (' ', '0', '−', '1',

or '+') when it appears in the external medium.

z/OS XL C/C++ translates control characters in ASA files opened for text processing

(r, w, a, r+, w+, a+ functions). On input, z/OS XL C/C++ translates ASA

characters to sequences of control characters, as shown in Table 8. On output,

z/OS XL C/C++ performs the reverse translation. The following sequences of control

characters are translated, and the resultant ASA character becomes the first

character of the following record:

 Table 8. C control to ASA characters translation table

C Control Character

Sequence

ASA Character Description

\n ’ ’ skip one line

\n\n ’0’ skip two lines

\n\n\n ’-’ skip three lines

\f ’1’ new page

\r ’+’ overstrike

If you are writing to the first record or byte of the file and the output data does not

start with a translatable sequence of C control characters, the ' ' ASA control

character is written to the file before the specified data.

z/OS XL C/C++ does not translate or verify control characters when you open an

ASA file for binary or record I/O.

Example of writing to an ASA file

CCNGAS1

/* this example shows how to write to an ASA file */

#include <stdio.h>

#define MAX_LEN 80

int main(void) {

 FILE *fp;

 int i;

 char s[MAX_LEN+1];

Figure 5. ASA Example (Part 1 of 2)

© Copyright IBM Corp. 1996, 2006 65

This program writes five records to the file asa.file, as follows:

0abcdef

1

+345

-

 9034

Note that the last record is 9034. The last single '\n' does not create a record with a

single control character (' '). If this same file is opened for read, and the getc()

function is called to read the file 1 byte at a time, the same characters as those that

were written out by fputs() in the first program are read.

ASA file control

ASA files are treated as follows:

v If the first record written does not begin with a control character, then a single

new-line is written and then followed by data; that is, the ASA character defaults

to a space when none is specified.

v In ASA files, control characters are treated the same way that they are treated in

other text files, with the following exceptions:

'\f' — form feed

Defines a record boundary and determines the ASA character of the

following record. Refer to Table 8 on page 65.

'\n' — new-line

Does either of these:

– Define a record boundary and determines the ASA character of the

following record (see translation table above).

– Modify the preceding ASA character if the current position is directly

after an ASA character of ' ' or '0' (see translation table above).

'\r' — carriage return

Defines a record boundary and determines the ASA character of the

following record (see translation table above).

v Records are terminated by writing a new-line ('\n'), carriage return ('\r'), or

form feed ('\f') character.

v An ASA character can be updated to any other ASA character.

Updates made to any of the C control characters that make up an ASA character

cause the ASA character to change.

 fp = fopen("asa.file", "w, recfm=fba");

 if (fp != NULL) {

 fputs("\n\nabcdef\f\r345\n\n", fp);

 fputs("\n\n9034\n", fp);

 fclose(fp);

 return(0);

 }

 fp = fopen("asa.file", "r");

 for (i = 0; i < 5; i++) {

 fscanf(fp, "%s", s[0]);

 printf("string = %s\n",s);

 }

}

Figure 5. ASA Example (Part 2 of 2)

66 z/OS V1R8.0 XL C/C++ Programming Guide

If the file is positioned directly after a ' ' or '0' ASA character, writing a '\n'

character changes the ASA character to a '0' or '-' respectively. However, if the

ASA character is a '-', '1' or '+', the '\n' truncates the record (that is, it adds blank

padding to the end of the record), and causes the following record's ASA

character to be written as a ' '. Writing a '\f' or '\r' terminates the record and

start a new one, but writing a normal data character simply overwrites the first

data character of the record.

v You cannot overwrite the ASA character with a normal data character. The

position at the start of a record (at the ASA character) is the logical end of the

previous record. If you write normal data there, you are writing to the end of the

previous record. z/OS XL C/C++ truncates data for the following files, except

when they are standard streams:

– Variable-format files

– Undefined-format files

– Fixed-format files in which the previous record is full of data

When truncation occurs, z/OS XL C/C++ raises SIGIOERR and sets both errno

and the error flag.

v Even when you update an ASA control character, seeking to a previously

recorded position still succeeds. If the recorded position was at a control

character that no longer exists (because of an update), the reposition is to the

next character. Often, this is the first data character of the record. For example, if

you have the following string:

 you have saved the position of the third new-line. If you then update the ASA

character to a form feed ('\f'), the logical ASA position x no longer exists:

 \fHELLO WORLD

If you call fseek() with the logical position x, it repositions to the next valid

character, which is the letter 'H':

v If you try to shorten a record when you are updating it, z/OS XL C/C++ adds

enough blank padding to fill the record.

v The ASA character can represent up to three new-lines, which can increase the

logical record length by 1 or 2 bytes.

v Extending a fixed logical record on update implies that the logical end of the line

follows the last written non-blank character.

v If an undefined text record is updated, the length of the physical records does not

change. If the replacement record is:

\n\n\nHELLO WORLD

x = ftell()

\fHELLO WORLD

fseek() to pos x

Chapter 7. Using ASA text files 67

– Longer - data characters beyond the record boundary are truncated. At the

point of truncation, the User error flag is set and SIGIOERR is raised (if the

signal is not set up to be ignored). Truncation continues until you do one of

these:

1. Write a new-line character, carriage return, or form feed to complete the

current record

2. Close the file explicitly or implicitly at termination

3. Reposition to another position in the file.

– Shorter - the blank character is used to overwrite the rest of the record.

v If you close an ASA file that has a new-line as its last character, z/OS XL C/C++

does not write the new-line to the physical file. The next time you read from the

file or update it, z/OS XL C/C++ returns the new-line to the end of the file. An

exception to this rule happens when you write only a new-line to a new file. In

this case, z/OS XL C/C++ does not truncate the new-line; it writes a single blank

to the file. On input, however, you will read two new-lines.

v Using ASA format to read a file that contains zero-length records results in

undefined behavior.

v You may have trouble updating a file if two ASA characters are next to each

other in the file. For example, if there is a single-byte record (containing only an

ASA character) immediately followed by the ASA character of the next record,

you are positioned at or within the first ASA character. If you then write a

sequence of '\n' characters intended to update both ASA characters, the '\n's

will be absorbed by the first ASA character before overflowing to the next record.

This absorption may affect the crossing of record boundaries and cause

truncation or corruption of data.

At least one normal intervening data character (for example, a space) is required

between '\n' and '\n' to differentiate record boundaries.

Note: Be careful when you update an ASA file with data containing more than

one consecutive new-line: the result of the update depends on how the

original ASA records were structured.

v If you are writing data to a non-blocked file without intervening flush or reposition

requests, each record is written to the system on completion (that is, when a

'\n', '\r' or '\f' character is written or when the file is closed).

If you are writing data to a blocked file without intervening flush or reposition

requests, and the file is opened in full buffering mode, the block is written to the

system on completion of the record that fills the block. If the blocked file is line

buffered, each record is written to the system on completion.

If you are writing data to a spanned file without intervening flush or reposition

requests, and the record spans multiple blocks, each block is written to the

system once it is full and the user writes an additional byte of data.

v If a flush occurs while an ASA character indicating more than one new-line is

being updated, the remaining new-lines will be discarded and a read will continue

at the first data character. For example, if '\n\n\n' is updated to be '\n\n' and

a flush occurs, then a '0' will be written out in the ASA character position.

68 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 8. z/OS XL C Support for the double-byte character

set

The number of characters in some languages such as Japanese or Korean is larger

than 256, the number of distinct values that can be encoded in a single byte. The

characters in such languages are represented in computers by a sequence of

bytes, and are called multibyte characters. This chapter explains how the z/OS XL

C compiler supports multibyte characters.

Note: The z/OS XL C++ compiler does not have native support for multibyte

characters. The support described here is what z/OS XL C provides; for C++,

you can take advantage of this support by using interlanguage calls to C

code. Please refer to Chapter 18, “Using Linkage Specifications in C or

C++,” on page 249 for more information.

The z/OS XL C compiler supports the IBM EBCDIC encoding of multibyte

characters, in which each natural language character is uniquely represented by

one to four bytes. The number of bytes that encode a single character depends on

the global shift state information. If a stream is in initial shift state, one multibyte

character is represented by a byte or sequence of bytes that has the following

characteristics:

v It starts with the byte containing the shift-out (0x0e) character.

v The shift-out character is followed by 2 bytes that encode the value of the

character.

v These bytes may be followed by a byte containing the shift-in (0x0f) character.

If the sequence of bytes ends with the shift-in character, the state remains initial,

making this sequence represent a 4-byte multibyte character. Multibyte characters

of various lengths can be normalized by the set of z/OS XL C library functions and

encoded in units of one length. Such normalized characters are called wide

characters; in z/OS XL C they are represented by two bytes. Conversions between

multibyte format and wide character format can be performed by string conversion

functions such as wcstombs(), mbstowcs(), wcsrtombs(), and mbsrtowcs(), as well

by the family of the wide character I/O functions. MB_CUR_MAX is defined in the

stdlib.h header file. Depending on its value, either of the following happens:

v When MB_CUR_MAX is 1, all bytes are considered single-byte characters; shift-out

and shift-in characters are treated as data as well.

v When MB_CUR_MAX is 4:

– On input, the wide character I/O functions read the multibyte character from

the streams, and convert them to the wide characters.

– On output, they convert wide characters to multibyte characters and write

them to the output streams.

Both binary and text streams have orientation. Streams opened with type=record

do not. There are three possible orientations of a stream:

Non-oriented

A stream that has been associated with an open file before any I/O

operation is performed. The first I/O operation on a non-oriented stream will

set the orientation of the stream. The fwide() function may be used to set

the orientation of a stream before any I/O operation is performed. You can

use the setbuf() and setvbuf() functions only when I/O has not yet been

performed on a stream. When you use these functions, the orientation of

© Copyright IBM Corp. 1996, 2006 69

the stream is not affected. When you perform one of the wide character

input/output operations on a non-oriented stream, the stream becomes

wide-oriented. When you perform one of the byte input/output operations on

a non-oriented stream, the stream becomes byte-oriented.

Wide-oriented

A stream on which any wide character input/output functions are

guaranteed to operate correctly. Conceptually, wide-oriented streams are

sequences of wide characters. The external file associated with a

wide-oriented stream is a sequence of multibyte characters. Using byte I/O

functions on a wide-oriented stream results in undefined behavior. A stream

opened for record I/O cannot be wide-oriented.

Byte-oriented

A stream on which any byte input/output functions are guaranteed to

operate properly. Using wide character I/O functions on a byte input/output

stream results in undefined behavior. Byte-oriented streams have minimal

support for multibyte characters.

Calls to the clearerr(), feof(), ferror(), fflush(), fgetpos(), or ftell()

functions do not change the orientation. Other functions that do not change the

orientation are ftello(), fsetpos(), fseek(), fseeko(), rewind(), fldata(), and

fileno(). Also, the perror() function does not affect the orientation of the stderr

stream.

Once you have established a stream’s orientation, the only way to change it is to

make a successful call to the freopen() function, which removes a stream’s

orientation.

The wchar.h header file declares the WEOF macro and the functions that support

wide character input and output. The macro expands to a constant expression of

type wint_t. Certain functions return WEOF type when the end-of-file is reached on

the stream.

Note: The behavior of the wide character I/O functions is affected by the LC_CTYPE

category of the current locale, and the setting of MB_CUR_MAX. Wide-character

input and output should be performed under the same LC_CTYPE setting. If

you change the setting between when you read from a file and when you

write to it, or vice versa, you may get undefined behavior. If you change it

back to the original setting, however, you will get the behavior that is

documented. See the introduction of this chapter for a discussion of the

effects of MB_CUR_MAX.

Opening files

You can use the fopen() or freopen() library functions to open I/O files that contain

multibyte characters. You do not need to specify any special parameters on these

functions for wide character I/O.

Reading streams and files

Wide character input functions read multibyte characters from the stream and

convert them to wide characters. The conversion process is performed in the same

way that the mbrtowc() function performs conversions.

The following z/OS XL C library functions support wide character input:

v fgetwc()

70 z/OS V1R8.0 XL C/C++ Programming Guide

v fgetws()

v fwscanf()

v getwc()

v getwchar()

v vfwscanf()

v vwscanf()

v wscanf()

In addition, the following byte-oriented functions support handling multibyte

characters by providing conversion specifiers to handle the wchar_t data type:

v fscanf()

v scanf()

v vfscanf()

v vscanf()

All other byte-oriented input functions treat input as single-byte.

For a detailed description of unformatted and formatted I/O functions, refer to the

z/OS XL C/C++ Run-Time Library Reference.

The wide-character input/output functions maintain global shift state for multibyte

character streams they read or write. For each multibyte character they read,

wide-character input functions change global shift state as the mbrtowc() function

would do. Similarly, for each multibyte character they write, wide-character output

functions change global shift state as the wcrtomb() function would do.

When you are using wide-oriented input functions, multibyte characters are

converted to wide characters according to the current shift state. Invalid double-byte

character sequences cause conversion errors on input. As z/OS XL C uses

wide-oriented functions to read a stream, it updates the shift state when it

encounters shift-out and shift-in characters. Wide-oriented functions always read

complete multibyte characters. Byte-oriented functions do not check for complete

multibyte characters, nor do they maintain information about the shift state.

Therefore, they should not be used to read multibyte streams.

For binary streams, no validation is performed to ensure that records start or end in

initial shift state. For text streams, however, all records must start and end in initial

shift state.

Writing streams and files

Wide character output functions convert wide characters to multibyte characters and

write the result to the stream. The conversion process is performed in the same

way that the wcrtomb() function performs conversions.

The following z/OS XL C functions support wide character output:

v fputwc()

v fputws()

v fwprintf()

v putwc()

v putwchar()

v vfwprintf()

Chapter 8. z/OS XL C Support for the double-byte character set 71

v vwprintf()

v wprintf()

In addition, the following byte-oriented functions support handling multibyte

characters by providing conversion specifiers to handle the wchar_t data type:

v fprintf()

v printf()

v vfprintf()

v vprintf()

All other output functions do not support the wchar_t data type. However, all of the

output functions support multibyte character output for text streams if MB_CUR_MAX is

4.

For a detailed description of unformatted and formatted I/O functions, refer to the

z/OS XL C/C++ Run-Time Library Reference.

Writing text streams

When you are using wide-oriented output functions, wide characters are converted

to multibyte characters. For text streams, all records must start and end in initial

shift state. The wide-character functions add shift-out and shift-in characters as they

are needed. When the file is closed, a shift-out character may be added to

complete the file in initial shift state.

When you are using byte-oriented functions to write out multibyte data, z/OS XL C

starts each record in initial shift state and makes sure you complete each record in

initial shift state before moving to the next record. When a string starts with a

shift-out, all data written is treated as multibyte, not single-byte. This means that

you cannot write a single-byte control character (such as a new-line) until you

complete the multibyte string with a shift-in character.

Attempting to write a second shift-out character before a shift-in is not allowed.

z/OS XL C truncates the second shift-out and raises SIGIOERR if SIGIOERR is not set

to SIG_IGN.

When you write a shift-in character to an incomplete multibyte character, z/OS XL C

completes the multibyte character with a padding character (0xfe) before it writes

the shift-in. The padding character is not counted as an output character in the total

returned by the output function; you will never get a return code indicating that you

wrote more characters than you provided. If z/OS XL C adds a padding character,

however, it does raise SIGIOERR, if SIGIOERR is not set to SIG_IGN.

Control characters written before the shift-in are treated as multibyte data and are

not interpreted or validated.

When you close the file, z/OS XL C ensures that the file ends in initial shift state.

This may require adding a shift-in and possibly a padding character to complete the

last multibyte character, if it is not already complete. If padding is needed in this

case, z/OS XL C does not raise SIGIOERR.

Multibyte characters are never split across record boundaries. In addition, all

records end and start in initial shift state. When a shift-out is written to the file,

either directly or indirectly by wide-oriented functions, z/OS XL C calculates the

maximum number of complete multibyte characters that can be contained in the

72 z/OS V1R8.0 XL C/C++ Programming Guide

record with the accompanying shift-in. If multibyte output (including any required

shift-out and shift-in characters) does not fit within the current record, the behavior

depends on what type of file it is (a memory file has no record boundaries and so

never has this particular problem). For a standard stream or terminal file, data is

wrapped from one record to the next. Shift characters may be added to ensure that

the first record ends in initial shift state and that the second record starts in the

required shift state.

For files that are not standard streams, terminal files, or memory files, any attempt

to write data that does not fit into the current record results in data truncation. In

such a case, the output function returns an error code, raises SIGIOERR, and sets

errno and the error flag. Truncation continues until initial state is reached and a

new-line is written to the file. An entire multibyte stream may be truncated, including

the shift-out and shift-in, if there are not at least two bytes in the record. For a

wide-oriented stream, truncation stops when a wchar_t new-line character is written

out.

Updating a wide-oriented file or a file containing multibyte characters is strongly

discouraged, because your update may overwrite part of a multibyte string or

character, thereby invalidating subsequent data. For example, you could

inadvertently add data that overwrites a shift-out. The data after the shift-out is

meaningless when it is treated in initial shift state. Appending new data to the end

of the file is safe.

Writing binary streams

When you are using wide-oriented output functions, wide characters are converted

to multibyte characters. No validation is performed to ensure that records start or

end in initial shift state. When the file is closed, any appends are completed with a

shift-in character, if it is needed to end the stream in initial shift state. If you are

updating a record when the stream is closed, the stream is flushed. See “Flushing

buffers” for more information.

Byte-oriented output functions do not interpret binary data. If you use them for

writing multibyte data, ensure that your data is correct and ends in initial shift state.

Updating a wide-oriented file or a file containing multibyte characters is strongly

discouraged, because your update may overwrite part of a multibyte string or

character, thereby invalidating subsequent data. For example, you could

inadvertently add data that overwrites a shift-out. The data after the shift-out is

meaningless when it is treated in initial shift state. Appending new data to the end

of the file is safe for a wide-oriented file.

If you update a record after you call fgetpos(), the shift state may change. Using

the fpos_t value with the fsetpos() function may cause the shift state to be set

incorrectly.

Flushing buffers

You can use the library function fflush() to flush streams to the system. For more

information about fflush(), see the z/OS XL C/C++ Run-Time Library Reference.

The action taken by the fflush() library function depends on the buffering mode

associated with the stream and the type of stream. If you call one z/OS XL C

program from another z/OS XL C program by using the ANSI system() function, all

open streams are flushed before control is passed to the callee. A call to the POSIX

Chapter 8. z/OS XL C Support for the double-byte character set 73

system() function does not flush any streams to the system. For a POSIX system

call, we recommend that you do a fflush() before the system call.

Flushing text streams

When you call fflush() after updating a text stream, fflush() calculates your

current shift state. If you are not in initial shift state, z/OS XL C looks forward in the

record to see whether a shift-in character occurs before the end of the record or

any shift-out. If not, z/OS XL C adds a shift-in to the data if it will not overwrite a

shift-out character. The shift-in is placed such that there are complete multibyte

characters between it and the shift-out that took the data out of initial state. z/OS

XL C may accomplish this by skipping over the next byte in order to leave an even

number of bytes between the shift-out and the added shift-in.

Updating a wide-oriented or byte-oriented multibyte stream is strongly discouraged.

In a byte-oriented stream, you may have written only half of a multibyte character

when you call fflush(). In such a case, z/OS XL C adds a padding byte before the

shift-out. For both wide-oriented and byte-oriented streams, the addition of any shift

or padding character does not move the current file position.

Calling fflush() has no effect on the current record when you are writing new data

to a wide-oriented or byte-oriented multibyte stream, because the record is

incomplete.

Flushing binary streams

In a wide-oriented stream, calling fflush() causes z/OS XL C to add a shift-in

character if the stream does not already end in initial shift state. In a byte-oriented

stream, calling fflush() causes no special behavior beyond what a call to fflush()

usually does.

ungetwc() considerations

ungetwc() pushes wide characters back onto the input stream for binary and text

files. You can use it to push one wide character onto the ungetwc() buffer. Never

use ungetc() on a wide-oriented file. After you call ungetwc(), calling fflush()

backs up the file position by one wide character and clears the pushed-back wide

character from the stream. Backing up by one wide character skips over shift

characters and backs up to the start of the previous character (whether single-byte

or double-byte). For text files, z/OS XL C counts the new-lines added to the records

as single-byte characters when it calculates the file position. For example, if you

have the following stream: you can run the following code fragment:

A B C

fp

SO SIX'FE' X'7F'

74 z/OS V1R8.0 XL C/C++ Programming Guide

You can set the _EDC_COMPAT environment variable before you open the file, so that

fflush() ignores any character pushed back with ungetwc() or ungetc(), and leaves

the file position where it was when ungetwc() or ungetc() was first issued. Any

characters pushed back are still cleared. For more information about _EDC_COMPAT,

see Chapter 31, “Using environment variables,” on page 473.

Setting positions within files

The following conditions apply to text streams and binary streams.

Repositioning within text streams

When you use the fseek() or fsetpos() function to reposition within files, z/OS XL

C recalculates the shift state.

If you update a record after a successful call to the fseek() function or the

fsetpos() function, a partial multibyte character can be overwritten. Calling a wide

character function for data after the written character can result in undefined

behavior.

Use the fseek() or fsetpos() functions to reposition only to the start of a multibyte

character. If you reposition to the middle of a multibyte character, undefined

behavior can occur.

Repositioning within binary streams

When you are working with a wide-oriented file, keep in mind the state of the file

position that you are repositioning to. If you call ftell(), you can seek with

SEEK_SET and the state will be reset correctly. You cannot use such an ftell()

value across a program boundary unless the stream has been marked

wide-oriented. A seek specifying a relative offset (SEEK_CUR or SEEK_END) will

change the state to initial state. Using relative offsets is strongly discouraged,

because you may be seeking to a point that is not in initial state, or you may end

up in the middle of a multibyte character, causing wide-oriented functions to give

you undefined behavior. These functions expect you to be at the beginning or end

of a multibyte character in the correct state. Using your own offset with SEEK_SET

also does the same. For a wide-oriented file, the number of valid bytes or records

that ftell() supports is cut in half.

When you use the fsetpos() function to reposition within a file, the shift state is set

to the state saved by the function. Use this function to reposition to a wide

character that is not in the initial state.

 fgetwc(fp); /* Returns X'00C1' (the hexadecimal */

 /* wchar representation of A) */

 fgetwc(fp); /* Returns X'00C2' (the hexadecimal */

 /* wchar representation of B) */

 fgetwc(fp); /* Returns X'7FFE' (the hexadecimal */

 /* wchar representation of the DBCS */

 /* character) between the SO and SI */

 /* characters; leaves file position at C */

 ungetwc(’Z’,fp); /* Logically inserts Z before SI character */

 fflush(fp); /* Backs up one wchar, leaving position at */

 /* beginning of X'7FFE' DBCS char */

 /* and DBCS state in double-byte mode; */

 /* clears Z from the logical stream */

Figure 6. ungetwc() Example

Chapter 8. z/OS XL C Support for the double-byte character set 75

ungetwc() considerations

For text files, the library functions fgetpos() and ftell() take into account the

character you have pushed back onto the input stream with ungetwc(), and move

the file position back by one wide character. The starting position for an fseek() call

with a whence value of SEEK_CUR also takes into account this pushed-back wide

character. Backing up one wide character means backing up either a single-byte

character or a multibyte character, depending on the type of the preceding

character. The implicit new-lines at the end of each record are counted as wide

characters.

For binary files, the library functions fgetpos() and ftell() also take into account

the character you have pushed back onto the input stream with ungetwc(), and

adjust the file position accordingly. However, the ungetwc() must push back the

same type of character just read by fgetwc(), so that ftell() and fgetpos() can

save the state correctly. An fseek() with an offset of SEEK_CUR also accounts for

the pushed-back character. Again, the ungetwc() must unget the same type of

character for this to work properly. If the ungetwc() pushes back a character in the

opposite state, you will get undefined behavior.

You can make only one call to ungetwc(). If the current logical file position is

already at or before the first wchar in the file, a call to ftell() or fgetpos() after

ungetwc() fails.

When you are using fseek() with a whence value of SEEK_CUR, the starting point

for the reposition also accounts for the presence of ungetwc() characters and

compensates as ftell() and fgetpos() do. Specifying a relative offset other than 0

is not supported and results in undefined behavior.

You can set the _EDC_COMPAT environment variable to specify that ungetwc() should

not affect fgetpos() or fseek(). (It will still affect ftell().) If the environment

variable is set, fgetpos() and fseek() ignore any pushed-back wide character. See

Chapter 31, “Using environment variables,” on page 473 for more information about

_EDC_COMPAT.

If a repositioning operation fails, z/OS XL C attempts to restore the original file

position by treating the operation as a call to fflush(). It does not account for the

presence of ungetwc() characters, which are lost.

Closing files

z/OS XL C expects files to end in initial shift state. For binary byte-oriented files,

you must ensure that the ending state of the file is initial state. Failure to do so

results in undefined behavior if you reaccess the file again. For wide-oriented

streams and byte-oriented text streams, z/OS XL C tracks new data that you add. If

necessary, z/OS XL C adds a padding byte to complete any incomplete multibyte

character and a shift-in to end the file in initial state.

Manipulating wide character array functions

In order to manipulate wide character arrays in your program, the following

functions can be used:

 Table 9. Manipulating wide character arrays

Function Purpose

wmemcmp() Compare wide character

76 z/OS V1R8.0 XL C/C++ Programming Guide

Table 9. Manipulating wide character arrays (continued)

Function Purpose

wmemchr() Locate wide character

wmemcpy() Copy wide character

wmemmove() Move wide character

wmemset() Set wide character

wcrtomb() Convert a wide character to a multibyte

character

wcscat() Append to wide-character string

wcschr() Search for wide-character substring

wcscmp() Compare wide-character strings

For more information about these functions, refer to the z/OS XL C/C++ Run-Time

Library Reference.

Chapter 8. z/OS XL C Support for the double-byte character set 77

78 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 9. Using C and C++ standard streams and redirection

The standard streams are declared in the C header file stdio.h or in the C++

header files iostream.h or iostream. Table 10 below shows the C standard streams

and the functions that use them, as well as the C++ standard streams and the

operators typically used to perform I/O with them.

By default, the standard streams are opened implicitly the first time they are

referenced. You do not have to declare them or call their open() member functions

to open them. For example, with no preceding declaration or open() call, the

following statement writes the decimal number n to the cout stream.

cout << n << endl;

For more detailed information about C++ I/O streaming see the following:

v z/OS XL C/C++ Run-Time Library Reference discusses the C I/O stream

functions

v Standard C++ Library Reference discusses the Standard C++ I/O stream classes

v C/C++ Legacy Class Libraries Reference discusses the UNIX Systems

Laboratories C++ Language System Release (USL) I/O Stream Library.

 Table 10. Standard C and C++ streams

C standard streams and their related functions

Name of

stream

Purpose Functions that use it

stdin The input device from which your C program

usually retrieves its data.

getchar()

gets()

scanf()

vscanf()

wscanf()

vwscanf()

stdout The output device to which your C program

normally directs its output.

printf()

puts()

putchar()

vprintf()

wprintf()

vwprintf()

stderr The output device to which your C program directs

its diagnostic messages. z/OS XL C/C++ uses

stderr to collect error messages about exceptions

that occur.

perror()

C++ standard streams and the operators typically used with them

Name of

stream

Purpose Common usage

cin The object from which your C++ program usually

retrieves its data. In z/OS XL C++, input from cin

comes from stdin by default.

>>, the input (extraction)

operator

cout The object to which your C++ program normally

directs its output. In z/OS XL C++, output to cout

goes to stdout by default.

<<, the output (insertion)

operator

© Copyright IBM Corp. 1996, 2006 79

|
|
|
|
|
|

|
|
|
|
|
|

Table 10. Standard C and C++ streams (continued)

cerr The object to which your C++ program normally

directs its diagnostic messages. In z/OS XL C++,

output to cerr goes to stderr by default. cerr is

unbuffered, so each character is flushed as you

write it.

<<, the output (insertion)

operator

clog Another object intended for error messages. In

z/OS XL C++, output to clog goes to stderr by

default. Unlike cerr, clog is buffered.

<<, the output (insertion)

operator

On I/O operations requiring a file pointer, you can use stdin, stdout, or stderr in

the same manner as you would any other file pointer.

If you are running with POSIX(ON), standard streams are opened during initialization

of the process, before the application receives control. With POSIX(OFF), the default

behavior is for the C standard streams to open automatically on first reference. You

do not have to call fopen() to open them. For example:

 printf("%d\n",n);

with no preceding fopen() statement writes the decimal number n to the stdout

stream.

By default, stdin interprets the character sequence /* as indicating that the end of

the file has been reached. See Chapter 13, “Performing terminal I/O operations,” on

page 207 for more information.

Default open modes

The default open modes for the C standard streams are:

stdin r

stdout w

stderr w

Where the streams go depends on what kind of environment you are running under.

These are the defaults:

v Under interactive TSO, all three standard streams go to the terminal.

v Under MVS batch, TSO batch, and IMS (batch and interactive):

– stdin goes to dd:sysin. If dd:sysin does not exist, all read operations from

stdin will fail.

– stdout goes first to dd:sysprint. If dd:sysprint does not exist, stdout looks

for dd:systerm and then dd:syserr. If neither of these files exists, z/OS XL

C/C++ opens a sysout=* data set and sends the stdout stream to it.

– stderr will go to the z/OS Language Environment message file. In AMODE 64

applications, stderr goes to dd:sysout.

Note: When a standard stream is allocated to a large format sequential data set,

the stream will be opened without repositioning (noseek). In this situation,

the open is initially attempted with repositioning (seek), fails with an

ABEND 213-14 or 213-16, and the stream is then opened without

repositioning. For more information on large format sequential data sets,

see “Large format sequential data sets” on page 111.

80 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|
|
|
|

v Under CICS, stdout and stderr are assigned to transient data queues, allocated

during CICS initialization. The CICS standard streams can be redirected only to

or from memory files. You can do this by using freopen().

v Under z/OS UNIX System Services, if you are running in one of the z/OS UNIX

System Services shells, the shell controls redirection. See z/OS UNIX System

Services User’s Guide and z/OS UNIX System Services Command Reference for

information.

You can also redirect the standard streams to other files. See Redirecting standard

streams and sections following.

Interleaving the standard streams with sync_with_stdio()

The sync_with_stdio() function allows you to interleave C standard streams with

standard streams from either the Standard C++ Library or the USL I/O Stream

Class Library. A call to sync_with_stdio() does the following:

v cin, cout, cerr, and clog are initialized with stdiobuf objects associated with

stdin, stdout, and stderr.

v The flags unitbuf and stdio are set for cout, cerr, and clog.

This ensures that subsequent standard streams may be mixed on a per-character

basis. However, a run-time performance penalty is incurred to ensure this

synchronization.

Chapter 9. Using C and C++ standard streams and redirection 81

//

// Example of interleaving USL I/O with sync_with_stdio()

//

// tsyncws.cxx

#include <stdio.h>

#include <fstream.h>

int main() {

 ios::sync_with_stdio();

 cout << "object: to show that sync_with_stdio() allows interleaving\n "

 " standard input and output on a per character basis\n" << endl;

 printf("line 1 ");

 cout << "rest of line 1\n";

 cout << "line 2 ";

 printf("rest of line 2\n\n");

 char string1[80] = "";

 char string2[80] = "";

 char string3[80] = "";

 char* rc = NULL;

 cout << "type the following 2 lines:\n"

 "hello world, here I am\n"

 "again\n" << endl;

 cin.get(string1[0]);

 string1[1] = getchar();

 cin.get(string1[2]);

 cout << "\nstring1[0] is \’" << string1[0] << "\’\n"

 << "string1[1] is \’" << string1[1] << "\’\n"

 << "string1[2] is \’" << string1[2] << "\’\n" << endl;

 cin >> &string1[3];

 rc = gets(string2); // note: reads to end of line, so

 cin >> string3; // this line waits for more input

 cout << "\nstring1 is \"" << string1 << "\"\n"

 << "string2 is \"" << string2 << "\"\n"

 << "string3 is \"" << string3 << "\"\n" << flush;

}

Figure 7. Interleaving I/O with sync_with_stdio() (Part 1 of 2)

82 z/OS V1R8.0 XL C/C++ Programming Guide

Interleaving the standard streams without sync_with_stdio()

Output can be interleaved without sync_with_stdio(), since the C++ standard

streams are based on z/OS XL C I/O. That is, cout can be interleaved with stdout,

and clog can be interleaved with stderr. This is done by explicitly flushing cout or

clog before calling the z/OS XL C output function. Results of attempting to

interleave these streams without explicitly flushing, are undefined. Output to cerr

doesn’t have to be explicitly flushed, since cerr is unit-buffered.

Input to cin may be interleaved with input to stdin, without sync_with_stdio(), on

a line-by-line basis. Results of attempting to interleave on a per-character basis are

undefined.

// sample output (with user input shown underlined):

//

// object: to show that sync_with_stdio() allows interleaving

// standard input and output on a per character basis

//

// line 1 rest of line 1

// line 2 rest of line 2

//

// type the following 2 lines:

// hello world, here I am

// again

//

// hello world, here I am

//

// string1[0] is ’h’

// string1[1] is ’e’

// string1[2] is ’l’

//

// again

//

// string1 is "hello"

// string2 is "world, here I am"

// string3 is "again"

Figure 7. Interleaving I/O with sync_with_stdio() (Part 2 of 2)

Chapter 9. Using C and C++ standard streams and redirection 83

// Example of interleaving I/O without sync_with_stdio()

//

// tsyncwos.cxx

#include <stdio.h>

#include <fstream.h>

int main() {

 cout << "object: to illustrate interleaving input and output\n "

 " without sync_with_stdio()\n" << endl;

 printf("interleaving output ");

 cout << "works with an (end of line 1) \n" << flush;

 cout << "explicit flush of cout " << flush;

 printf("(end of line 2)\n\n");

 char string1[80] = "";

 char string2[80] = "";

 char string3[80] = "";

 char* rc = NULL;

 cout << "type the following 3 lines:\n"

 "interleaving input\n"

 "on a per-line basis\n"

 "is supported\n" << endl;

 cin.getline(string1, 80);

 rc = gets(string2);

 cin.getline(string3, 80);

 cout << "\nstring1 is \"" << string1 << "\"\n"

 << "string2 is \"" << string2 << "\"\n"

 << "string3 is \"" << string3 << "\"\n" << endl;

 // The endl manipulator inserts a newline

 // character and calls flush().

 char char1 = ’\0’;

 char char2 = ’\0’;

 char char3 = ’\0’;

 cout << "type the following 2 lines:\n"

 "results of interleaving input on a per-\n"

 "character basis are not defined\n" << endl;

 cin >> char1;

 char2 = (char) getchar();

 cin >> char3;

 cout << "\nchar1 is \’" << char1 << "\’\n"

 << "char2 is \’" << char2 << "\’\n"

 << "char3 is \’" << char3 << "\’\n" << flush;

}

Figure 8. Interleaving I/O without sync_with_stdio() (Part 1 of 2)

84 z/OS V1R8.0 XL C/C++ Programming Guide

Redirecting standard streams

This section describes redirection of standard streams:

v From the command line

v By assignment

v With freopen()

v With the MSGFILE run-time option

Note that, C++ standard streams are implemented in terms of C standard streams.

Therefore, cin, cout, cerr, and clog are implicitly redirected when the

corresponding C standard streams are redirected. These streams can be redirected

by assignment, as described in “Assigning the standard streams” on page 87. If

freopen() is applied to a C standard stream, creating a binary stream or one with

"type=record", then behavior of the related stream is undefined.

Redirecting streams from the command line

To redirect a standard stream to a file from the command line, invoke your program

by entering the following:

1. Program name

2. Any parameters your program requires (these may be specified before and after

the redirection)

3. A redirection symbol followed by the name of the file that is to be used in place

of the standard stream

// sample output (with user input shown underlined):

//

// object: to illustrate interleaving input and output

// without sync_with_stdio()

//

// interleaving output works with an (end of line 1)

// explicit flush of cout (end of line 2)

//

// type the following 3 lines:

// interleaving input

// on a per-line basis

// is supported

//

// interleaving-input

// on a per-line basis

// is supported

//

// string1 is "interleaving input"

// string2 is "on a per-line basis"

// string3 is "is supported"

//

// type the following 2 lines:

// results of interleaving input on a per-

// character basis are not defined

//

// results of interleaving input on a per-

// character basis are not defined

//

// char1 is ’r’

// char2 is ’c’

// char3 is ’e’

Figure 8. Interleaving I/O without sync_with_stdio() (Part 2 of 2)

Chapter 9. Using C and C++ standard streams and redirection 85

Note: If you specify a redirection in a system() call, after system() returns, the

streams are redirected back to those at the time of the system() call.

Using the redirection symbols

The following table lists the redirection symbols supported by z/OS XL C/C++ (when

not running under one of the z/OS UNIX System Services shells) for redirection of

C standard streams from the command line or from a system() call. 0, 1, and 2

represent stdin, stdout, and stderr, respectively.

 Table 11. z/OS XL C/C++ Redirection symbols

Symbol Description

<fn associates the file specified as fn with stdin; reopens fn in mode r.

0<fn associates the file specified as fn with stdin; reopens fn in mode r.

>fn associates the file specified as fn with stdout; reopens fn in mode w.

1>fn associates the file specified as fn with stdout; reopens fn in mode w.

>>fn associates the file specified as fn with stdout; reopens fn in mode a.

2>fn associates the file specified as fn with stderr; reopens fn in mode w.

2>>fn associates the file specified as fn with stderr; reopens fn in mode a.

2>&1 associate stderr with stdout; same file and mode.

1>&2 associate stdout with stderr; same file and mode.

Notes:

1. If you use the NOREDIR option on a #pragma runopts directive, or the

NOREDIR compile-time option, you cannot redirect standard streams on the

command line using the preceding list of symbols.

2. If you want to pass one of the redirection symbols as an argument, you can

enclose it in double quotation marks. For example, the following passes the

string "here are the args including a <" to prog and redirects stdout to

redir1 output a.

 prog "here are args including a <" >"redir1 output a"

3. TSO (batch and online) and MVS batch support command line arguments. CICS

and IMS do not.

4. When two options specifying redirection conflict with each other, or when you

redirect a standard stream more than once, the redirection fails. If you do the

latter, you will get an abend. For example, if you specify

 2>&1

and then

 1>&2

z/OS XL C/C++ uses the first redirection and ignores any subsequent ones. If

you specify

 >a.out

and then

 1>&2

the redirection fails and the program abends.

5. A failed attempt to redirect a standard stream causes your program to fail in

initialization.

6. The C standard streams can be redirected to large format sequential data sets.

If this occurs, the stream will be reopened without repositioning (noseek). In this

86 z/OS V1R8.0 XL C/C++ Programming Guide

|
|

situation, the reopen is initially attempted with repositioning (seek), fails with an

ABEND 213-14 or 213-16, and the stream is then reopened without

repositioning.

Assigning the standard streams

This method of redirecting streams is known as direct assignment. You can redirect

a C standard stream by assigning a valid file pointer to it, as follows:

 FILE *stream;

 stream = fopen("new.file", "w+");

 stdout = stream;

You must ensure that the streams are appropriate; for example, do not assign a

stream opened for w to stdin. Doing so would cause a function such as getchar()

called for the stream to fail, because getchar() expects a stream to be opened for

read access.

Similarly, you can redirect a standard stream under C++ by assignment:

ofstream myfile("myfile.data");

cout = myfile;

Again, you must ensure that the assigned stream is appropriate; for example, do

not assign an fstream opened for ios::out only to cin. This will cause a

subsequent read operation to fail.

Using the freopen() library function

You can use the freopen() C library function to redirect C standard streams in all

environments.

Redirecting streams with the MSGFILE option

Restriction: This section does not apply to AMODE 64.

You can redirect stderr by specifying a ddname on the MSGFILE run-time option and

not redirecting stderr elsewhere (such as on the command line). The default

ddname for the z/OS Language Environment MSGFILE is SYSOUT. See z/OS

Language Environment Programming Guide for more information on MSGFILE.

MSGFILE considerations

z/OS XL C/C++ makes a distinction between types of error output according to

whether the output is directed to the MSGFILE, to stderr, or to stdout:

 Table 12. Output destinations under z/OS XL C/C++

Destination of

Output Type of Message Produced by Default Destination

MSGFILE output z/OS Language

Environment

messages (CEExxxx)

z/OS Language

Environment

conditions

MSGFILE ddname

z/OS XL C/C++

language messages

(EDCxxxx)

z/OS XL C/C++

unhandled conditions

MSGFILE ddname

Chapter 9. Using C and C++ standard streams and redirection 87

|
|
|

Table 12. Output destinations under z/OS XL C/C++ (continued)

Destination of

Output Type of Message Produced by Default Destination

stderr messages perror() messages

(EDCxxxx)

Issued by a call, for

example, to: perror()

MSGFILE ddname

1

User output sent

explicitly to stderr

Issued by a call to

fprintf()

MSGFILE ddname

stdout messages User output sent

explicitly to stdout

Issued by a call, for

example, to: printf()

stdout

2

All stderr output is by default sent to the MSGFILE destination, while stdout output

is sent to its own destination. When stderr is redirected to stdout, both share the

stdout destination. When stdout is redirected to stderr, both share the stderr

destination.

If you specified one of the DDs used in the stdout open search order as the DD for

the MSGFILE option, then that DD will be ignored in the stdout open search.

Table 13 describes the destination of output to stderr and stdout after redirection

has occurred. Whenever stdout and stderr share a common destination, the

output is interleaved. The default case is the one where stdout and stderr have

not been redirected.

 Table 13. z/OS XL C/C++ Interleaved output

stderr not

redirected

stderr redirected to

destination other

than stdout

stderr redirected to

stdout

stdout not

redirected

stdout to itself stderr

to MSGFILE

stdout to itself stderr

to its other destination

Both to stdout

stdout redirected to

destination other

than stderr

stdout to its other

destination stderr to

MSGFILE

stdout to its other

destination stderr to

its other destination

Both to the new

stdout destination

stdout redirected to

stderr

Both to MSGFILE Both to the new

stderr destination

stdout to stderr

stderr to stdout

z/OS XL C/C++ routes error output as follows:

v MSGFILE output

– z/OS Language Environment messages (messages prefixed with CEE)

– Language messages (messages prefixed with EDC)

v stderr output

– perror messages (messages prefixed with EDC and issued by a call to

perror())

– Output explicitly sent to stderr (for example, by a call to fprintf())

By default, z/OS XL C/C++ sends all stderr output to the MSGFILE destination

and stdout output to its own destination. You can change this by using z/OS XL

C/C++ redirection, which enables you to redirect stdout and stderr to a ddname,

1. When you are using one of the z/OS UNIX System Services shells, stderr will go to file descriptor 2, which is typically the

terminal. See Chapter 16, “Language Environment Message file operations,” on page 233 for more information about z/OS

Language Environment message files.

2. When you are using one of the z/OS UNIX System Services shells, stdout will go to file descriptor 1, which is typically the

terminal.

88 z/OS V1R8.0 XL C/C++ Programming Guide

file name, or each other. Unless you have redirected stderr, it always uses the

MSGFILE destination. When you redirect stderr to stdout, stderr and stdout

share the stdout destination. When you redirect stdout to stderr, they share the

stderr destination.

Redirecting streams under z/OS

This section describes how to redirect C standard streams under MVS batch and

under TSO.

Restrictions: The following restrictions apply to AMODE 64 applications:

v IMS and CICS environments are not supported in AMODE 64 applications

v The Language Environment Message File (MSGFILE) is not supported in

AMODE 64 applications

v The stderr stream goes to the ddname SYSOUT in AMODE 64 applications

Under MVS batch

You can redirect standard streams in the following ways:

v From the freopen() library function call

v On the PARM parameter of the EXEC used to invoke your C or C++ program

v Using DD statements

Because the topic of JCL statements goes beyond the scope of this book, only

simple examples will be shown here.

Using the PARM parameter of the EXEC statement

The following example shows an excerpt taken from a job stream. It demonstrates

both the redirection of stdout using the PARM parameter of the EXEC statement, and

the way to redirect to a fully qualified data set. You can use the redirection symbols

described in Table 11 on page 86.

Suppose you have a program called BATCHPGM. with 1 required parameter ’DEBUG’.

The output from BATCHPGM is to be directed to a sequential data set called

’MAINT.LOG.LISTING’. You can use the following JCL statements:

 The following JCL redirects output to an unqualified data set using the same

program name, parameter and output data set as the example above:

 If your userid were TSOU812, stdout would be sent to TSOU812.LOG.LISTING.

Using DD statements

When you use DD statements to redirect standard streams, the standard streams

will be associated with ddnames as follows:

v stdin will be associated with the SYSIN ddname. If SYSIN is not defined, no

characters can be read in from stdin.

v stdout will be associated with the SYSPRINT ddname. If SYSPRINT is not defined,

the C library will try to associate stdout with SYSTERM, and if SYSTERM is also not

 //JOBname JOB...

 //STEP01 EXEC PGM=BATCHPGM,PARM=’DEBUG >’’MAINT.LOG.LISTING’’’ ...

 //STEP01 EXEC PGM=BATCHPGM,PARM=’DEBUG >LOG.LISTING’

Chapter 9. Using C and C++ standard streams and redirection 89

defined, the C library will try to associate stdout with SYSERR. If any of the above

DD statements are used as the MSGFILE DD, then that DD statement will not be

considered for use as the stdout DD.

Restriction: The reference to the MSGFILE does not apply to AMODE 64

applications.

v stderr will be associated with the MSGFILE, which defaults to SYSOUT. See z/OS

Language Environment Programming Guide for more information on MSGFILE.

Restriction: The reference to the MSGFILE does not apply to AMODE 64

applications.

v If you are running with the run-time option POSIX(ON), you can redirect standard

streams with ddnames only for MVS data sets, not for HFS files.

v If the ddname for stdout is not allocated to a device or data set, it is dynamically

allocated to the terminal in an interactive environment or to SYSOUT=* in an MVS

batch environment.

The following table summarizes the association of streams with ddnames:

 Table 14. Association of standard streams with ddnames

Standard stream ddname Alternate ddname

stdin SYSIN none

stdout SYSPRINT SYSTERM, SYSERR

stderr DD associated with MSGFILE. For AMODE 64

applications stderr is SYSOUT, and there is

no alternate ddname.

None

The following MVS example shows an excerpt taken from a job stream

demonstrating the redirection of the three standard streams by using ddnames.

In the example, your program name is MONITOR and the input to MONITOR is to be

retrieved from a sequential data set called ’SAFETY.CHEM.LIST’. The output of

MONITOR is to be directed to a partitioned data set member called

’YEAREND.ACTION(CHEM)’, and any errors generated by MONITOR are to be written to

a sequential data set called ’YEAREND.MONITOR.ERRLIST’. To redirect the standard

streams using DD statements you could use the following JCL statements:

 The following example shows how to get stdout and stderr to share the same file

where: the program name is HOCKEY and the input to HOCKEY is to be retrieved from

a sequential data set called ’HOCKEY.PLAYER.LIST’. The output of HOCKEY is to be

directed to a sequential data set called ’HOCKEY.OUTPUT’ and any errors generated

by HOCKEY are also to be written to the sequential data set ’HOCKEY.OUTPUT’. You

could use the following JCL statements:

 //JOBname JOB...

 //STEP01 EXEC PGM=MONITOR,PARM=’MSGFILE(SYSERR)/’ ...
 //SYSIN DD DSN=SAFETY.CHEM.LIST,DISP=OLD

 //SYSERR DD DSN=YEAREND.MONITOR.ERRLIST,DISP=MOD

 //SYSPRINT DD DSN=YEAREND.ACTION(CHEM),DISP=OLD ...

 //JOBname JOB...

 //STEP01 EXEC PGM=HOCKEY,PARM=’/ 2>&1’

 //SYSIN DD DSN=HOCKEY.PLAYER.LIST,DISP=SHR

 //SYSPRINT DD DSN=HOCKEY.OUTPUT,DISP=(OLD),DCB=...

90 z/OS V1R8.0 XL C/C++ Programming Guide

stderr shares stdout because of the 2>&1 redirection statement.

If you want to redirect to an HFS file, you can modify the above examples to use

the PATH and PATHOPT options described in “DDnames” on page 52.

Under TSO

You can redirect standard streams in the following ways:

v From the freopen() library function call

v From the command line

v Using the parameter list in a CALL command

From the command line

The following example illustrates the redirection of stdin under TSO. The program

in this example is called BUILD and it has 2 required parameters, ’PLAN’ and

’JOHNSTON’. The input to BUILD is to be retrieved from a partitioned data set

member called ’CONDO(SPRING)’. To redirect stdin in this example under TSO you

can use the following command:

 BUILD PLAN JOHNSTON <’CONDO(SPRING)’

Notes:

1. If the data set name is not enclosed in quotation marks, your user prefix will be

appended to the data set name specified.

2. If you specify a redirection in a system() call, after system() returns, the

streams are redirected back to those at the time of the system() call.

Using the parameter list in a CALL command

You can also redirect the output to a file with a ddname in TSO by specifying the

output file in the parameter list like the following:

 CALL ’PREFIX.PROGRAM’ ’>DD:OUTFILE’

The ddname can be created by an ALLOCATE command.

Under IMS

Under IMS online and batch, you can redirect the C standard streams in any of the

following ways:

v with direct assignment

v with the freopen() function

v with ddnames

For details on ddnames, see “Using DD statements” on page 89.

Under CICS

There are several ways to redirect C standard streams under CICS:

v You can assign a memory file to the stream (for example, stdout=myfile).

v You can use freopen() to open a standard stream as a memory file.

v You can use CICS facilities to direct where the stream output goes.

If you assign a file pointer to a stream or use freopen() on it, you will not be able

to use C functions to direct the information outside or elsewhere in the CICS

environment. Once access to a CICS transient data queue has been removed,

either by a call to freopen() or fclose(), or by the assignment of another file

Chapter 9. Using C and C++ standard streams and redirection 91

pointer to the stream, z/OS XL C/C++ does not provide a way to regain access.

Once C functions have lost access to the transient data queues, you must use the

CICS-provided facilities to regain it.

CICS provides a facility that enables you to direct where a given transient data

queue, the default standard stream implementation, will go, but you must configure

this facility before a CICS cold start.

Passing C and C++ standard streams across a system() call

Restriction: ANSI system() is not supported in AMODE 64, but references to POSIX

system() apply to all applications.

A system() call occurs when one z/OS XL C/C++ program calls another z/OS XL

C/C++ program by using the ANSI system() function, which z/OS XL C/C++ uses if

you are not running with POSIX(ON). Standard streams are inherited across calls to

the ANSI system() function. With a POSIX system() function, file descriptors 0, 1,

and 2 will be mapped to standard streams stdin, stdout and stderr in the child

process. The behavior of these streams is similar to binary streams called with the

ANSI system() function.

Inheritance includes any redirection of the stream as well as the open mode of the

stream. For example, if program A reopens stdout as "A.B" for "wb" and then calls

program B, program B inherits the definition of stdout. If program B reopens stdout

as "C.D" for "ab" and then uses system() to call program C, program C inherits

stdout opened to "C.D" for append. Once control returns to the calling program, the

definitions of the standard streams from the time of the system() call are restored.

For example, when program B finally returns control to program A, stdout is

restored to "A.B" opened for "wb".

The file position and the amount of data that is visible in the called and calling

programs depend on whether the standard streams are opened for binary, text, or

record I/O.

The behavior of the C standard streams across a system() call indicates the

behavior of all standard streams since they are implemented in terms of the C

standard streams.

Passing binary streams

If the standard stream being passed across a system() call is opened in binary

mode, any reads or writes issued in the called program occur at the next byte in the

file. On return, the position of the file is wherever the called program is positioned.

This includes any possible repositions made by the called program if the file is

enabled for positioning. Because output to binary files is done byte by byte, all

bytes are written to stdout and stderr in the order they are written. This is shown

in the following example:

printf("123");

printf("456");

system("CHILD"); ------> int main(void) { putc(’7’,stdout);}

printf("89");

The output from this example is:

 123456789

Memory files are always opened in binary mode, even if you specify text. Any

standard streams redirected to memory files and passed across system() calls will

92 z/OS V1R8.0 XL C/C++ Programming Guide

be treated as binary files. HFS files are also treated as binary files, because they

do not contain any real record boundaries. Memory files are not passed across calls

to the POSIX system() function.

If freopen() is applied to a C standard stream, thereby creating a binary stream,

then the results of I/O to the associated standard stream across a system() call are

undefined.

Passing text streams

If the C standard stream being passed across a system() call is opened in text

mode (the default), the file position in the called program is placed at the next

record boundary, if it is not already at the start of a record. Any data in the current

record that is unread is skipped. Here is an example:

 When you write to a spanned file, the file position moves to the beginning of the

next record, if that record exists. If not, the position moves to the end of the

incomplete record.

For non-spanned standard streams opened for output, if the caller has created a

text record missing an ending control character, the last record is hidden from the

called program. The called program can append new data if the stream is open in

append mode. Any appends made by the called program will be after the last

record that was complete at the time of the system() call.

When the called program terminates, it completes any new unfinished text record

with a new-line; the addition of the new-line does not move the file position. Once

any incomplete record is completed, the file position moves to the next record

boundary, if it is not already on a record boundary or at EOF.

When control returns to the original caller, any incomplete record hidden at the time

of the system() call is restored to the end of the file. If the called program is at EOF

when it is terminated and the caller was within an incomplete record at the time of

the system() call, the position upon return is restored to the original record offset at

the time of the system() call. This position is usually the end of the incomplete

record. Generally, if the caller is writing to a standard stream and does not complete

the last record before it calls system(), writes continue to add to the last record

when control returns to the caller. For example:

INPUT FILE ROOT C PROGRAM CHILD PROGRAM

---------- int main() { int main() {

abcdefghijklm char c[4]; char d[2];

nopqrstuvwxyz c[0] = getchar(); d[0] = getchar();

0123456789ABC c[1] = getchar(); d[1] = getchar();

DEFGHIJKLMNOP system("CHILD"); printf("%.2s\n",

 c[2] = getchar(); d);

 c[3] = getchar(); }

 printf("%.4s\n",c);

 }

OUTPUT

no ---> from the child

ab01 ---> from root

printf("test");

printf("abc");

system("hello"); ------> int main(void) { printf("hello world\n");}

printf("def\n");

Chapter 9. Using C and C++ standard streams and redirection 93

The output from this example is as follows:

 test

 hello world

 abcdef

If stdout had been opened for "w+" in this example, and a reposition had been

made to the character 'b' before the system() call, upon return, the incomplete

record "abc" would have been restored and the position would have been at the

'b'. The subsequent write of def would have performed an update to give test

hello world adef.

C++ standard streams considerations

The following sections are considerations for C++ standard streams.

Output with sync_with_stdio(): When a standard output stream is open in text

mode (the default), and sync_with_stdio() has been called, the output across a

system() call behaves the same as a C standard stream:

v If the parent program writes a newline character, the line will be flushed before

the child program is invoked;

v Otherwise, the output from the parent will be held in a buffer until the child

returns.

Output without sync_with_stdio(): When a standard output stream is open in

text mode, and sync_with_stdio() has not been called, the behavior is as follows:

v If the parent program writes a newline character, and explicitly flushes it, the line

will be written out before the child program is invoked;

v Otherwise, the behavior is undefined.

Input with sync_with_stdio(): When cin is open in text mode (the default), and

sync_with_stdio() has been called, the input across a system() call behaves the

same as stdin:

v The child program begins reading at the next record boundary, that is, unread

data in the current record in the parent is hidden.

v When the child program returns, the parent program begins reading at the next

record boundary, that is, unread data in the current record in the child is lost.

Input without sync_with_stdio(): When cin is open in text mode, and

sync_with_stdio() has not been called, the behavior is as follows:

v The parent program must either not read from cin before calling the child, or

must read to the end of a complete record.

v The child program begins reading at the next record boundary, that is, unread

data in the current record in the parent is hidden.

v When the child program returns, the parent program begins reading at the next

record boundary, that is, unread data in the current record in the child is lost.

v If the parent program read only part of a record before calling the child, the

behavior upon returning from the child is undefined.

Passing record I/O streams

For record I/O, all reads and writes made by the called program occur at the next

record boundary. Since complete records are always read and written, there is no

change in the file position across a system() call boundary.

In the following example, stdout is a variable-length record I/O file.

94 z/OS V1R8.0 XL C/C++ Programming Guide

The output from this code fragment is as follows:

 test

 abc

 hello world

 def

If freopen() is applied to a C standard stream, creating a stream with

"type=record", then behavior of the associated I/O stream is undefined across a

system() call.

Using global standard streams

Restriction: This section does not apply to AMODE 64.

In the default inheritance model, the behavior of C standard streams is such that a

child main() function cannot affect the standard streams of the parent. The child

can use the parent’s definition or redirect a standard stream to a new location, but

when control returns to the parent, the standard stream reverts back to the

definition of the parent. In the global model, the C standard streams, stdin, stdout,

and stderr, can be redirected to a different location while running in a child main()

function and have that redirection stay in effect when control returns to the parent.

You can use the _EDC_GLOBAL_STREAMS environment variable to set standard

stream behavior to the global model. For more information, see

“_EDC_GLOBAL_STREAMS” on page 490.

Table 15 highlights the standard stream behavior differences between the default

inheritance model and the global model.

 Table 15. Standard stream behavior differences

Behavior Default Inheritance Model Global Model

POSIX(OFF) Standard streams are opened automatically on

first reference.

(Same)

POSIX(ON) Standard streams are opened during initialization

of the process, before the application receives

control.

Not supported.

default open modes As currently described in “Default open modes” on

page 80.

(Same)

default locations As currently described in this chapter. (Same)

command line redirection Changes the location for the main being called

and subsequent child programs.

Changes the location for the entire C

environment.

direct assignment Affects the current main and subsequent child

programs.

Affects the current main only. This

definition is not passed on to a

subsequent child program. The child

gets the current global definition, if

there is one defined.

freopen() Changes location for the main from which it is

called and affects any subsequent child programs.

Changes location for the entire C

environment.

fwrite("test",1,4,stdout);

fwrite("abc",1,3,stdout);

system("hello"); ------> int main(void) {

fwrite("def",1,3,stdout); fwrite("hello world",1,11,stdout)

 }

Chapter 9. Using C and C++ standard streams and redirection 95

Table 15. Standard stream behavior differences (continued)

Behavior Default Inheritance Model Global Model

MSGFILE() run-time

option

Redirects stderr for the main being invoked and

affects any subsequent child programs. When

control returns to a parent program, stderr reverts

back to the definition of the parent. If stderr is

also redirected on the command line, that

redirection takes precedence.

(Same)

fclose() Closes the standard stream in current main only. Closes the standard stream for the

entire C environment. The standard

stream cannot be global anymore.

Only direct assignment can be used

to use the standard stream, and that

would only be for the main in which it

is assigned.

file position and visible

data

As currently described in this chapter. File position and visible data across

mains are as if there were only one

main. No special processing occurs

during the ANSI system() call. The

standard streams are left untouched.

When either entering or returning

from a child program, reading or

writing to the standard streams begin

where previously left off,

C++ I/O Stream cin defaults to stdin

cout defaults to stdout

cerr defaults to stderr (unbuffered)

clog defaults to stderr (buffered)

(Same)

Notes:

1. The following environments do not allow global standard stream behavior as an

option:

v POSIX(ON)

v CICS

v SPC

v AMODE 64

2. You must identify the behavior of the standard streams to the C run-time library

before initialization of the first C main in the environment. The default behavior

uses the inheritance model. Once you set the standard stream behavior, it

cannot be changed. Attempts to change the behavior after the first C main has

been initialized are ignored.

3. The value of the environment variable, when queried, does not necessarily

reflect the standard stream behavior being used. This is because the value of

the environment variable can be changed after the standard stream behavior

has been set.

4. The behaviors described in Table 15 on page 95 only apply to the standard

streams that use the global behavior.

Command line redirection

In the C standard stream global model, command line redirection of the standard

streams is supported, but has much different behavior than the C standard stream

inheritance model.

96 z/OS V1R8.0 XL C/C++ Programming Guide

The most important difference is that when redirection is done at system() call time,

the redirection takes effect for the entire C environment. When the child program

terminates, the standard stream definitions do not revert back to what they were

before the system() call.

Redirection of any of the standard streams, except when stderr is redirected to

stdout or vice versa, causes the standard stream to be flushed. This is because an

freopen() is done under the covers, which first closes the stream before reopening

it. Since the standard stream is global, the close causes the flush.

Redirecting stderr to stdout, or stdout to stderr, does not flush the redirected

stream. Any data in the buffer remains there until the stream is redirected again, to

something other than stdout or stderr. Only then is the buffer flushed.

Consider the following example:

When run from TSO terminal using the following command:

parent ENVAR(_EDC_GLOBAL_STREAMS=7)/

the output will be as follows:

(terminal) stdout.file stderr.file

line 1 line 7 line 10

line 3 line 8 line 6

line 2 line 9

line 4 line 5

Attention: If the stdout or stderr stream has data in its buffer and it is redirected

to stderr or stdout, then the data is lost if stdout or stderr is not redirected again.

Note: If either stdout or stderr is using global behavior, but not both, then any

redirection of stdout or stderr to stderr or stdout is ignored.

#include <stdio.h>

#include <stdlib.h>

main() {

 int rc;

 printf("line 1\n");

 printf("line 2");

 fprintf(stderr,"line 3\n");

 fprintf(stderr,"line 4");

 rc=system("PGM=CHILD,PARM=’/ >stdout.file 2>&1;’")

 printf("line 5\n");

 fprintf(stderr,"line 6\n");

}

Figure 9. PARENT.C

#include <stdio.h>

main() {

 printf("line 7\n");

 fprintf(stderr,"line 8\n");

 stderr = freopen("stderr.file","w",stderr);

 printf("line 9\n");

 fprintf(stderr,"line 10\n");

}

Figure 10. CHILD.C

Chapter 9. Using C and C++ standard streams and redirection 97

Direct assignment

You can directly assign the C standard streams in any main program. This

assignment does not have any effect on the global standard stream. No flush is

done and the new definition is not passed on to a child program nor back to a

parent program. Once you directly assign a standard stream, there is no way to

re-associate it with the global standard stream.

freopen()

When you use freopen() to redirect a standard stream, the stream is closed,

causing a flush, and then redirected. The new definition affects all C mains currently

using the global stream.

MSGFILE() run-time option

The MSGFILE() run-time option redirects the stderr stream similar to command line

redirection. However, this redirection is controlled by the Common Execution Library

and does not apply to all C mains in the environment. When control returns to a

parent program, stderr reverts back to the definition of the parent.

fclose()

When a global standard stream is closed, only direct assignment can be used to

begin using the standard stream again. That use would only be for the main

performing the direct assignment. There is no way to get back global behavior for

the standard stream that was closed.

File position and visible data

The file position and amount of visible data in the called and calling program is as if

there is only one program. There is no data hidden from a called program. A child

program continues where the parent program left off. This is true for all types of I/O:

binary, text, and record.

C++ I/O stream library

Since cin, cout, cerr and clog are initially based on stdin, stdout and stderr, they

continue to be in the global model. For example, if stdout is redirected using

freopen() in a child program, then both stdout and cout retain that redirection

when control returns to the parent.

98 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 10. Performing OS I/O operations

This chapter describes using OS I/O , which includes support for the following:

v Regular sequential DASD (including striped data sets)

v Partitioned DASD (PDS and PDSE)

v Tapes

v SYSOUT

v Printers

v In-stream JCL

Notes:

1. z/OS XL C/C++ does not support BDAM or ISAM data sets.

2. As of z/OS V1R8, z/OS XL C/C++ provides complete read and write support for

large format sequential data sets when noseek is requested and honored. The

existing support for reading a large format data set that has no more than

65535 tracks of data on each volume under seek is unchanged. Also, the

existing support for reading or reading/updating concatenated large format data

sets that have no more than 65535 tracks of data on each volume under seek is

unchanged. See “Large format sequential data sets” on page 111 for details on

the support of large format data sets. See “Access method selection” on page

113 for more information on situations when noseek is requested but not

honored.

OS I/O supports text, binary, and record I/O, in three record formats: fixed (F),

variable (V), and undefined (U). For information about using wide-character I/O with

z/OS XL C/C++, see Chapter 8, “z/OS XL C Support for the double-byte character

set,” on page 69.

This chapter describes C I/O stream functions as they can be used within C++

programs. If you want to use the C++ I/O stream classes instead, see Chapter 4,

“Using the Standard C++ Library I/O Stream Classes,” on page 39 for general

information. For more detailed information, see:

v Standard C++ Library Reference discusses the Standard C++ I/O stream classes

v C/C++ Legacy Class Libraries Reference discusses the UNIX Systems

Laboratories C++ Language System Release (USL) I/O Stream Library.

Opening files

To open an OS file, you can use the Standard C functions fopen() or freopen().

These are described in general terms in z/OS XL C/C++ Run-Time Library

Reference. Details about them specific to all z/OS XL C/C++ I/O are discussed in

the ″Opening Files″ section. This section describes considerations for using fopen()

and freopen() with OS files.

Using fopen() or freopen()

When you open a file using fopen() or freopen(), you must specify the filename (a

data set name) or a ddname. Restriction: It is not possible to open a file for writing

if there is already an open file with the same data set name on a different volume

© Copyright IBM Corp. 1996, 2006 99

|
|
|
|
|
|
|
|
|
|

Using a data set name

Files are opened with a call to fopen() or freopen() in the format

fopen("filename", "mode"). The following diagram shows the syntax for the

filename argument on your fopen() or freopen() call:

��

//

'

�

 .

qualifier

(

member

)

+

number

−

0

&

qualifier

&&

'

��

Note: The single quotation marks in the filename syntax diagram must be matched;

if you use one, you must use the other.

A sample construct is:

 'qualifier1.qualifier2(member)'

// Specifying these slashes indicates that the filename refers to a non-POSIX file

or data set.

qualifier

Each qualifier is a 1- to 8-character name. These characters may be

alphanumeric, national ($, #, @), or the hyphen. The first character should be

either alphabetic or national. Do not use hyphens in names for RACF-protected

data sets.

 You can join qualifiers with periods. The maximum length of a data set name is

as follows:

v Generally, 44 characters, including periods.

v For a generation data group, 35 characters, including periods.

 These numbers do not include a member name or GDG number and

accompanying parentheses.

 Specifying one or two ampersands before a single qualifier opens a temporary

data set. Multiple qualifiers are not valid after ampersands, because the system

generates additional qualifiers. Opening two temporary data sets with the same

name creates two distinct files. If you open a second temporary data set using

the same name as the first, you get a distinct data set. For example, the

following statements open two temporary data sets:

 fp = fopen("//&&myfile","wb+");

 fp2 = fopen("//&&myfile","wb+");

You cannot fully qualify a temporary data set name. The file is created at open

time and is empty. When you close a temporary data set, the system removes

it.

(member)

If you specify a member, the data set you are opening must be a PDS or a

PDSE. For more information about PDSs and PDSEs, see “Regular and

extended partitioned data sets” on page 106. For members, the member name

(including trailing blanks) can be up to 8 characters long. A member name

cannot begin with leading blanks. The characters in a member name may be

100 z/OS V1R8.0 XL C/C++ Programming Guide

alphanumeric, national ($, #, @), the hyphen, or the character X'C0'. The first

character should be either alphabetic or national.

+number

−number

0 You specify a Generation Data Group (GDG) by using a plus (+) or minus (−) to

precede the version number, or by using a 0. For more information about

GDGs, see “Generation data group I/O” on page 102.

 The Resource Access Control Facility (RACF) expects the data set name to have a

high-level qualifier that is defined to RACF. RACF uses the entire data set name

when it protects a tape data set.

When you enclose a name in single quotation marks, the name is fully qualified.

The file opened is the one specified by the name inside the quotation marks. If the

name is not fully qualified, z/OS XL C/C++ does one of the following:

v If your system does not use RACF, z/OS XL C/C++ does not add a high-level

qualifier to the name you specified.

v If you are running under TSO (batch or interactive), z/OS XL C/C++ appends the

TSO user prefix to the front of the name. For example, the statement

fopen("a.b","w"); opens a data set tsoid.A.B, where tsoid is the user prefix. If

the name is fully qualified, z/OS XL C/C++ does not append a user prefix. You

can set the user prefix by using the TSO PROFILE command with the PREFIX

parameter.

v If you are running under z/OS batch or IMS (batch or online), z/OS XL C/C++

appends the RACF user ID to the front of the name.

If you want your code to be portable between the VM/CMS and z/OS systems and

between memory files and disk files, use a name of the format name1.name2, where

name1 and name2 are up to 8 characters and are delimited by a period, or use a

ddname. You can also add a member name.

For example, the following piece of code can run under Language Environment for

VM and z/OS Language Environment:

 FILE *stream;

 stream = fopen("parts.instock", "r");

Using a DDname

The DD statement enables you to write C or C++ source programs that are

independent of the files and input/output devices they use. You can modify the

parameters of a file or process different files without recompiling your program.

Use ddnames if you want to use non-DASD devices.

If you specify DISP=MOD on a DD statement and w or wb mode on the fopen() call,

z/OS XL C/C++ treats the file as if you had opened it in append mode instead of

write mode.

To open a file by ddname under z/OS batch, you must define the ddname first. You

can do this in any of the following ways:

v In batch (z/OS, TSO, or IMS), you can write a JCL DD statement. For the

declaration shown above for the C or C++ file PARTS.INSTOCK, you write a JCL

DD statement similar to the following:

 //STOCK DD DSN=USERID.PARTS.INSTOCK,DISP=SHR

Chapter 10. Performing OS I/O operations 101

When defining DD, do not use DD ... FREE=CLOSE for unallocating DD

statements. The C library may close files to perform some file operations such as

freopen(), and the DD statement will be unallocated.

If you use SPACE=RLSE on a DD statement, z/OS XL C/C++ releases space only if

all of the following are true:

– The file is open in w, wb, a, or ab mode

– It is not simultaneously open for read

– No positioning functions (fseek(), ftell(), rewind(), fgetpos(), fsetpos())

have been performed.

For more information on writing DD statements, refer to the job control language

(JCL) manuals listed in z/OS Information Roadmap.

v Under TSO (interactive and batch), you can issue an ALLOCATE command. The

DD definition shown above for the C file STOCK has an equivalent TSO ALLOCATE

command, as follows:

 ALLOCATE FILE(STOCK) DATASET(PARTS.INSTOCK) SHR

See z/OS Information Roadmap for manuals containing information on TSO

ALLOCATE.

v In the z/OS environment, you can use the svc99() or dynalloc() library functions

to define ddnames. For information about these functions, refer to z/OS XL

C/C++ Run-Time Library Reference.

DCB parameter: The DCB (data control block) parameter of the DD statement

allows you to describe the characteristics of the data in a file and the way it will be

processed at run time. The other parameters of the DD statement deal chiefly with

the identity, location, and disposition of the file. The DCB parameter specifies

information required for the processing of the records themselves. The

subparameters of the DCB parameter are described in z/OS MVS JCL User’s Guide.

The DCB parameter contains subparameters that describe:

v The organization of the file and how it will be accessed. Parameters supplied on

fopen() override those specified in DCB.

v Device-dependent information such as the recording technique for magnetic tape

or the line spacing for a printer (for example: CODE, DEN, FUNC, MODE, OPTCD=J,

PRTSP, STACK, SPACE, UNIT and TRTCH subparameters).

v The data set format (for example: BLKSIZE, LRECL, and RECFM

subparameters).

You cannot use the DCB parameter to override information already established for

the file in your C or C++ program (by the file attributes declared and the other

attributes that are implied by them). DCB subparameters that attempt to change

information already supplied by fopen() or freopen() are ignored.

An example of the DCB parameter is:

 DCB=(RECFM=FB,BLKSIZE=400,LRECL=40)

It specifies that fixed-length records, 40 bytes in length, are to be grouped in a

block 400 bytes long. You can copy attributes from another data set by either

setting the DCB parameter to DCB=(dsname) or using the SVC 99 services provided

by the svc99() and dynalloc() library functions.

Generation data group I/O

A Generation Data Group (GDG) is a group of related cataloged data sets. Each

data set within a generation data group is called a generation data set. Generation

102 z/OS V1R8.0 XL C/C++ Programming Guide

data sets have sequentially ordered absolute and relative names that represent

their age. The absolute generation name is the representation used by the catalog

management routines in the catalog. The relative name is a signed integer used to

refer to the latest (0), the next to the latest (-1), and so forth, generation. The

relative number can also be used to catalog a new generation (+1). For more

information on GDGs, see z/OS DFSMS Using Data Sets.

If you want to open a generation data set by data set name with fopen() or

freopen(), you will require a model. This model specifies parameters for the group,

including the maximum number of generations (the generation index). You can

define such a model by using the Access Method Services DEFINE command. For

more information on the DEFINE command, see z/OS DFSMS Access Method

Services for Catalogs. Note also that fopen() does not support a DCB= parameter. If

you want to change the parameters, alter the JCL that describes the model and

open it in w mode.

z/OS uses an absolute generation and version number to catalog each generation.

The generation and version numbers are in the form GxxxxVyy, where xxxx is an

unsigned 4-digit decimal generation number (0001 through 9999) and yy is an

unsigned 2-digit decimal version number (00 through 99). For example:

v A.B.C.G0001V00 is generation data set 1, version 0, in generation data group

A.B.C.

v A.B.C.G0009V01 is generation data set 9, version 1, in generation data group

A.B.C.

The number of generations kept depends on the size of the generation index.

When you open a GDG by relative number, z/OS XL C/C++ returns the relative

generation in the __dsname field of the structure returned by the fldata() function.

You cannot use the rename() library function to rename GDGs by relative

generation number; rename GDG data sets by using their absolute names.

The following example defines a GDG. The fopen() fails because it tries to change

the RECFM of the data set.

Chapter 10. Performing OS I/O operations 103

CCNGOS1

This example is valid only for C:

//*---

//* This example demonstrates GDG I/O

//*---

//* Create GDG model MYGDG.MODEL and GDG name MYGDG

//*---

//MODEL EXEC PGM=IDCAMS

//DD1 DD DSN=userid.MYGDG.MODEL,DISP=(NEW,CATLG),

// UNIT=SYSDA,SPACE=(TRK,(0)),

// DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB)

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 DEFINE GDG -

 (NAME(userid.MYGDG) -

 EMPTY -

 SCRATCH -

 LIMIT(255))

/*

//*---

//* Create GDG data set MYGDG(+1)

//*---

//DATASET EXEC PGM=IEFBR14

//DD1 DD DSN=userid.MYGDG(+1),DISP=(NEW,CATLG),

// SPACE=(CYL,(1,1)),UNIT=SYSDA,

// DCB=userid.MYGDG.MODEL

//SYSPRINT DD SYSOUT=*

//SYSIN DD DUMMY

//*---

//* Compile, link, and run an inlined C program.

//* This program attempts to open the GDG data set MYGDG(+1) but

//* should fail as it is opening the data set with a RECFM that is

//* different from that of the GDG model (F versus FB).

//*---

//C EXEC EDCCLG,

// CPARM=’NOSEQ,NOMARGINS’

//COMPILE.SYSIN DD DATA,DLM=’/>’

#include <stdio.h>

#include <errno.h>

int main(void)

{

 FILE *fp;

 fp = fopen("MYGDG(+1)", "a,recfm=F");

 if (fp == NULL)

 {

 printf("Error...Unable to open file\n");

 printf("errno ... %d\n",errno);

 perror("perror ... ");

 }

 printf("Finished\n");

}

/>

Figure 11. Generation data group example for C

104 z/OS V1R8.0 XL C/C++ Programming Guide

CCNGOS2

This example is valid for C++:

A relative number used in the JCL refers to the same generation throughout a job.

The (+1) used in the example above exists for the life of the entire job and not just

the step, so that fopen()’s reference to (+1) did not create another new data set

but accessed the same data set as in previous steps.

//*---

//* This example demonstrates GDG I/O

//*---

//* Create GDG model MYGDG.MODEL and GDG name MYGDG

//*---

//MODEL EXEC PGM=IDCAMS

//DD1 DD DSN=userid.MYGDG.MODEL,DISP=(NEW,CATLG),

// UNIT=SYSDA,SPACE=(TRK,(0)),

// DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB)

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 DEFINE GDG -

 (NAME(userid.MYGDG) -

 EMPTY -

 SCRATCH -

 LIMIT(255))

/*

//*---

//* Create GDG data set MYGDG(+1)

//*---

//DATASET EXEC PGM=IEFBR14

//DD1 DD DSN=userid.MYGDG(+1),DISP=(NEW,CATLG),

// SPACE=(CYL,(1,1)),UNIT=SYSDA,

// DCB=userid.MYGDG.MODEL

//SYSPRINT DD SYSOUT=*

//SYSIN DD DUMMY

//*---

//* Compile, bind, and run an inlined C++ program.

//* This program attempts to open the GDG data set MYGDG(+1) but

//* should fail as it is opening the data set with a RECFM that is

//* different from that of the GDG model (F versus FB).

//*---

//*

//DOCLG1 EXEC CBCCBG,

// CPARM=’NOSEQ,NOMARGINS’

//COMPILE.SYSIN DD DATA,DLM=’<>’

#include <stdio.h>

#include <errno.h>

int main(void)

{

 FILE *fp;

 fp = fopen("MYGDG(+1)", "a,recfm=F");

 if (fp == NULL)

 {

 printf("Error...Unable to open file\n");

 printf("errno ... %d\n",errno);

 perror("perror ... ");

 }

 printf("Finished\n");

}

<>

Figure 12. Generation data group example for C++

Chapter 10. Performing OS I/O operations 105

Note: You cannot use fopen() to create another generation data set because

fopen() does not fully support the DCB parameter.

Regular and extended partitioned data sets

Partitioned data sets (PDS) and partitioned data sets extended (PDSE) are DASD

data sets divided into sections known as members. Each member can be accessed

individually by its unique 1- to 8-character name.

PDSEs are similar to PDSs, but contain a number of enhancements.

 Table 16. PDSE and PDS differences

PDSE Characteristics PDS Characteristics

Data set has a 123-extent limit Data set has a 16-extent limit

Directory is open-ended and indexed by

member name; faster to search directory

Fixed-size directory is searched sequentially

PDSEs are device-independent: records are

reblockable

Block sizes are device-dependent

Uses dynamic space allocation and

reclamation

Must use IEBCOPY COMPRESS to reclaim

space

Supports creation of more than one member

at a time*

Supports creation of only one member at a

time

Note: *z/OS XL C/C++ allows you to open two separate members of a PDSE for writing at

the same time. However, you cannot open a single member for writing more than once.

You specify a member by enclosing its name in parentheses and placing it after the

data set name. For example, the following JCL refers to member A of the data set

MY.DATA:

 //MYDD DD DSN=userid.MY.DATA(A),DISP=SHR

You can specify members on calls to fopen() and freopen(). You can specify

members when you are opening a data set by its data set name or by a ddname.

When you use a ddname and a member name, the definition of the ddname must

not also specify a member. For example, using the DD statement above, the

following will fail:

 fp = fopen("dd:MYDD(B)","r");

You cannot open a PDS or PDSE member using the modes a, ab, a+, a+b, w+, w+b,

or wb+. If you want to perform the equivalent of the w+ or wb+ mode, you must first

open the file as w or wb, write to it, and then close it. Then you can perform updates

by reopening the file in r+ or rb+ mode. You can use the C library functions ftell()

or fgetpos() to obtain file positions for later updates to the member. Normally,

opening a file in r+ or rb+ mode enables you to extend a file by writing to the end;

however, with these modes you cannot extend a member. To do so, you must copy

the contents of the old member plus any extensions to a new member. You can

remove the old member by using the remove() function and then rename the new

member to the old name by using rename().

All members have identical attributes for RECFM, LRECL, and BLKSIZE. For PDSs,

you cannot add a member with different attributes or specify a RECFM of FBS, FBSA,

or FBSM. z/OS XL C/C++ verifies any attributes you specify.

For PDSEs, z/OS XL C/C++ checks to make sure that any attributes you specify

are compatible with those of the existing data set. Compatible attributes are those

106 z/OS V1R8.0 XL C/C++ Programming Guide

that specify the same record format (F, V, or U) and the same LRECL. Compatibility

of attributes enables you to choose whether to specify blocked or unblocked format,

because PDSEs reblock all the records. For example, you can create a PDSE as FB

LRECL=40 BLKSIZE=80, and later open it for read as FB LRECL=40 BLKSIZE=1600 or F

LRECL=40 BLKSIZE=40. The LRECL cannot change, and the BLKSIZE must be

compatible with the RECFM and LRECL. Also, you cannot change the basic format

of the PDSE from F to V or vice versa. If the PDS or PDSE already exists, you do

not need to specify any attributes, because z/OS XL C/C++ uses the previously

existing ones as its defaults.

At the start of each partitioned data set is its directory, a series of records that

contain the member names and starting locations for each member within the data

set. You can access the directory by specifying the PDS or PDSE name without

specifying a member. You can open the directory only for read; update and write

modes are not allowed. The only RECFM that you can specify for reading the

directory is RECFM=U. However, you do not need to specify the RECFM, because

z/OS XL C/C++ uses U as the default.

z/OS DFSMS Using Data Sets contains more detailed explanations about how to

use PDSs and PDSEs.

Partitioned and sequential concatenated data sets

There are two forms of concatenated data sets: partitioned and sequential. You can

open concatenated data sets only by ddname, and only for read or update.

Specifying any of the write, or append modes fails. As with PDS members, you

cannot extend a concatenated data set.

Partitioned concatenation consists of specifying multiple PDSs or PDSEs under

one ddname. When you access the concatenation, it acts as one large PDS or

PDSE, from which you can access any member. If two or more partitioned data sets

in the concatenation contain a member with the same name, using the

concatenation ddname to specify that member refers to the first member with that

name found in the entire concatenation. You cannot use the ddname to access

subsequent members. For example, if you have a PDS named PDS1, with members

A, B, and C, and a second PDS named PDS2, with members C, D, and E, and you

concatenate the two data sets as follows:

 //MYDD DD userid.PDS1,DISP=SHR

 // DD userid.PDS2,DISP=SHR

and perform the following:

 fp = fopen("DD:MYDD(C)","r");

 fp2 = fopen("DD:MYDD(D)","r");

the first call to fopen() finds member C from PDS1, even though there is also a

member C in PDS2. The second call finds member D from PDS2, because PDS2 is the

first PDS in the concatenation that contains this member. The member C in PDS2 is

inaccessible.

When you are concatenating partitioned data sets, be aware of the DCB attributes

for them. The concatenation is treated as a single data set with the following

attributes:

v RECFM= the RECFM of the first data set in the concatenation

v LRECL= the LRECL of the first data set in the concatenation

v BLKSIZE= the largest BLKSIZE of any data set in the concatenation

Chapter 10. Performing OS I/O operations 107

These are the rules for compatible concatenations:

 Table 17. Rules for possible concatenations

RECFM of first

data set RECFM of subsequent data sets LRECL of subsequent data sets

RECFM=F RECFM=F Same as that of first one

RECFM=FB RECFM=F or RECFM=FB Same as that of first one

RECFM=V RECFM=V Less than or equal to that of first

one

RECFM=VS RECFM=V or RECFM=VS Less than or equal to that of first

one

RECFM=VB RECFM=V or RECFM=VB Less than or equal to that of first

one

RECFM=VBS RECFM=V, RECFM=VB,

RECFM=VS, or RECFM=VBS

Less than or equal to that of first

one

RECFM=U RECFM=U or RECFM=F (see note

below)

Note: You can use a data set in V-format, but when you read it, you will see all of the

BDWs and RDWs or SDWs with the data.

If the first data set is in ASA format, all subsequent data sets must be ASA as well.

The preceding rules apply to ASA files if you add an A to the RECFMs specified.

If you do not follow these rules, undefined behavior occurs. For example, trying to

read a fixed-format member as RECFM=V could cause an exception or abend.

Repositioning is supported as it is for regular PDSs and PDSEs. If you try to read

the directory, you will be able to read only the first one.

Sequential concatenation consists of treating multiple sequential data sets or

partitioned data set members as one long sequential data set. For example,

 //MYDD DD userid.PDS1(A),DISP=SHR

 // DD userid.PDS2(E),DISP=SHR

 // DD userid.DATA,DISP=SHR

creates a concatenation that contains two members and a regular sequential data

set. You can read or update all of these in order. In partitioned concatenations, you

can read only one member at a time.

z/OS XL C/C++ does not support concatenating data sets that do not have

compatible DCB attributes. The rules for compatibility are the same as those for

partitioned concatenations.

If all the data sets in the concatenation support repositioning, you can reposition

within a concatenation by using the functions fseek(), ftell(), fgetpos(),

fsetpos(), and rewind(). If the first one does not, all of the repositioning functions

except rewind() fail for the entire concatenation. If the first data set supports

repositioning but a subsequent one does not, you must specify the noseek

parameter on the fopen() or freopen() call. If you do not, fopen() or freopen()

opens the file successfully; however, an error occurs when the read position gets to

the data set that does not support repositioning.

Note: Concatenated and multivolume data sets only tolerate single buffering mode.

108 z/OS V1R8.0 XL C/C++ Programming Guide

|

In-stream data sets

An in-stream data set is a data set contained within a set of JCL statements.

In-stream data sets (also called inline data sets) begin with a DD * or DD DATA

statement. These DD statements can have any valid ddname, including SYSIN. If

you omit a DD statement before the input data, the system provides a DD *

statement with the ddname of SYSIN. This example shows you how to indicate an

in-stream data set:

 //MYDD DD *

 record 1

 record 2

 record 3

 /*

The // at the beginning of the data set starts in column 1. The statement

fopen("DD:MYDD","rb"); opens a data set with lrecl=80, blksize=80, and

recfm=FB. In this example, the delimiter indicating the end of the data set is /*. In

some cases, your data may contain this string. For example, if you are using C

source code that contains comments, z/OS XL C/C++ treats the beginning of the

first comment as the end of the in-stream data set. To avoid this occurrence, you

can change the delimiter by specifying DLM=nn, where nn is a two-character

delimiter, on the DD statement that identifies the file. For example:

 //MYDD DD *,DLM=¢¢

 #include <stdio.h>

 /* Hello, world program */

 int main() {printf("Hello, world\n"); }

 @@

For more information about in-stream data sets, see z/OS MVS JCL User’s Guide.

To open an in-stream data set, call the fopen() or freopen() library function and

specify the ddname of the data set. You can open an in-stream data set only for

reading. Specifying any of the update, write, or append modes fails. Once you have

opened an in-stream data set, you cannot acquire or change the file position except

by rewinding. This means that calls to the fseek(), ftell(), fgetpos(), and

fsetpos() for in-stream data sets fail. Calling rewind() causes z/OS XL C/C++ to

reopen the file, leaving the file position at the beginning.

You can concatenate regular sequential data sets and in-stream data sets. If you do

so, note the following:

v If the first data set is in-stream, you cannot acquire or change the file position for

the entire concatenation.

v If the first data set is not in-stream and supports repositioning, you must specify

the noseek parameter on the fopen() or freopen() call that opens the

concatenation. If you do not, fopen() or freopen() opens the file successfully;

however, an error occurs when the read position gets to the in-stream.

v The in-stream data set is treated as FB 80 and the concatenation rules for

sequential concatenation apply.

SYSOUT data sets

You can specify a SYSOUT data set by using the SYSOUT parameter on a DD

statement. z/OS XL C/C++ supports opening SYSOUT data sets in two ways:

1. Specifying a ddname that has the SYSOUT parameter. For information about

defining ddnames, see “Using a DDname” on page 101.

2. Specifying a data set name of * on a call to fopen() or freopen() while you are

running under z/OS batch or IMS online or batch.

Chapter 10. Performing OS I/O operations 109

On a DD statement, you specify SYSOUT=x, where x is the output class. If the class

matches the JOB statement MSGCLASS, the output appears with the job log. You can

specify a SYSOUT data set and get the job MSGCLASS by specifying SYSOUT=*. If you

want to create a job stream within your program, you can specify INTRDR on the DD

statement. This sends your SYSOUT data set to the internal reader to be read as

an input job stream. For example,

 //MYDD DD SYSOUT=(A,INTRDR)

For more details about the SYSOUT parameter, refer to z/OS MVS JCL User’s

Guide.

You can specify DCB attributes for a SYSOUT data set on a DD statement or a call

to fopen() or freopen(). If you do not, z/OS XL C/C++ uses the following defaults:

Binary or Record I/O

RECFM=VB LRECL=137 BLKSIZE=882

Text I/O

RECFM=VBA LRECL=137 BLKSIZE=882

Tapes

z/OS XL C/C++ supports standard label (SL) tapes. If you are creating tape files,

you can only open them by ddname. z/OS XL C/C++ provides support for opening

tapes in read, write, or append mode, but not update. When you open a tape for

read or append, any data set control block (DCB) characteristics you specify must

match those of the existing data set exactly. The repositioning functions are

available only when you have opened a tape for read. For tapes opened for write or

append, calling rewind() has no effect; calls to any of the other repositioning

functions fail. To open a tape file for write, you must open it by ddname.

Opening FBS-format tape files with append-only mode is not supported.

When you open a tape file for output, the data set name you specify in the JCL

must match the data set name specified in the tape label, even if the existing tape

file is empty. If this is not the case, you must either change the JCL to specify the

correct data set name or write to another tape file, or reinitialize the tape to remove

the tape label and the data. You can use IEBGENER with the following JCL to create

an empty tape file before passing it to the subsequent steps:

//ALLOC EXEC PGM=IEBGENER

//SYSUT1 DD *

/*

//SYSUT2 DD DSN=name-of-OUTPUT-tape-file,UNIT=xxxx,LABEL=(x,SL),

// DISP=(NEW,PASS),(DCB=LRECL=xx,BLKSIZE=xx,RECFM=xx),

// VOL=SER=xxx

//SYSIN DD DUMMY

//SYSPRINT DD SYSOUT=*

Note: For tapes, the value for UNIT= can be TAPE or CART.

Because the C library does not create tape files, you can append only to a tape file

that already exists. Attempting to append to a file that does not already exist on a

tape will cause an error. You can create an empty data set on a tape by using the

utility IEBGENER.

Multivolume data sets

z/OS XL C/C++ supports data sets that span more than one volume of DASD or

tape. You can open multivolume DASD data sets for read (r,rb), write (w,wb),

110 z/OS V1R8.0 XL C/C++ Programming Guide

|
|

update (r+,rb+,w+,wb+), or append (a,a+,ab,ab+) by dsname and ddname.

Multivolume data sets can be extended in read/update mode (r+,rb+).

The repositioning functions are available when you have opened a multivolume data

set for r,r+,rb,rb+,w+,wb+,a+,ab+. Repositioning multivolume data sets opened for

w,wb,a,ab is not allowed because it would be meaningless. For multivolume data

sets opened for write, calling rewind() has no effect; calls to any of the other

repositioning functions fail.

Here is an example of a multivolume data set declaration:

 //MYDD DD DSNAME=TEST.TWO,DISP=(NEW,CATLG),

 // VOLUME=(,,,3,SER=(333001,333002,333003)),

 // SPACE=(TRK,(9,10)),UNIT=(3390,P)

This creates a data set that may span up to three volumes. For more information

about the VOLUME parameter on DD statements, refer to z/OS MVS JCL User’s

Guide.

d

Notes:

1. Simultaneous readers (files that can support sharing by a writer and one or

more readers) are not supported for multivolume data sets.

2. Concatenated and multivolume data sets only tolerate single buffering mode.

Striped data sets

z/OS XL C/C++ supports extended format sequential data sets. Extended format

data sets must be SMS-managed. Optionally, extended format data sets can be

striped. Striping spreads a data set over a specified number of volumes such that

I/O parallelism can be exploited. Unlike a multivolume data set in which physical

record n follows record n-1, a striped data set has physical records n and n-1 on

separate volumes. This enables asynchronous I/O to perform parallel operations,

making requests for multiple reads and writes faster.

Striped data sets also facilitate repositioning once the relative block number is

known. z/OS XL C/C++ exploits this capability when it uses fseek() to reposition.

This can result in substantial savings for applications that use ftell() and fseek()

with data sets that have RECFMs of V, U, and FB (not FBS). data sets. When a data

set is striped, an fseek() can seek directly to the specified block just as an

fsetpos() or rewind() can. For a normal data set with the aforementioned

RECFMs, z/OS XL C/C++ has to read forward or rewind the data set to get to the

desired position. Depending on how large the data set is, this can be quite

inefficient compared to a direct reposition. Note that for such data sets, striping

pads blocks to their maximum size. Therefore, you may be wasting space if you

have short records.

Large format sequential data sets

z/OS V1R7 introduced support for large format sequential data sets. A large format

sequential data set is a modification to traditional sequential data sets that allows

for more than 65535 tracks of data per volume. Large format sequential data sets

can be single or multivolume, and can reside on SMS managed or non-SMS

managed direct access storage devices.

Chapter 10. Performing OS I/O operations 111

|
|

|
|
|
|
|

|
|

|

|

|
|
|
|
|

A large format sequential data set is specified using the DSNTYPE=LARGE keyword on

a JCL DD statement or using the dynamic allocation equivalent. z/OS XL C/C++

does not support the allocation of a large format sequential data set using fopen()

or freopen().

As of z/OS V1R7, z/OS XL C/C++ supports processing of large format sequential

data sets opened for read (r, rb), and concatenated large format sequential data

sets opened for read (r, rb) or read/update (r+, rb+), provided that the data sets

have no more than 65535 tracks of data on each volume.

As of z/OS V1R8, z/OS XL C/C++ provides complete read and write support for

large format sequential data sets when noseek is requested and honored. See

“Access method selection” on page 113 for more information on when noseek is

requested but not honored.

Within the same C process, attempting to open a large format sequential data set

for read with repositioning (not specifying the noseek keyword), while the data set is

already opened for write (or append) with noseek, is not supported. The fopen() or

freopen() will fail. This failure occurs because the writer could extend the data set

beyond 65535 tracks, but the reader is restricted to data sets no larger than 65535

tracks.

When a C standard stream is allocated to a large format sequential data set, the

stream will be opened without repositioning (noseek). The C standard streams can

also be redirected to large format sequential data sets. If this occurs, the stream will

be reopened without repositioning (noseek). In both of these situations, the open (or

reopen) is initially attempted with repositioning (seek), fails with an ABEND 213-14

or 213-16, and the stream is then opened (or reopened) without repositioning.

Note:

Restrictions associated with traditional sequential single and multivolume data sets,

or concatenations of such data sets, continue to apply when the data set is large

format.

Other devices

z/OS XL C/C++ supports several other devices for input and output. You can open

these devices only by ddname. The following table lists a number of these devices

and tells you which record formats are valid for them.

 Table 18. Other devices supported for input and output

Device Valid open modes Repositioning? fldata()__device

Printer w, wb, a, ab No __PRINTER

Card reader r, rb rewind() only __OTHER

Card punch w, wb, a, ab No __OTHER

Optical reader r, rb rewind() only __OTHER

DUMMY data set r, rb, r+, rb+, r+b, w,

wb, w+, wb+ w+b, a,

ab, a+, ab+, a+b

rewind() only __DUMMY

SUBSYS= r, rb No __OTHER

Note: For all devices above that support open modes a or ab, the modes are treated as if

you had specified w or wb.

112 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|

|
|
|

None of the devices listed above can be opened for update except the DUMMY data

set.

z/OS XL C/C++ queries each device to find out its maximum BLKSIZE.

The DUMMY data set is not truly a device, although z/OS XL C/C++ treats it as one.

To use the DUMMY data set, specify DD DUMMY in your JCL. On input, the DUMMY data

set always returns EOF; on output, it is always successful. This is the way to specify

a DUMMY data set:

 //MYDD DD DUMMY

For more information on DUMMY data sets, see z/OS MVS JCL User’s Guide.

z/OS XL C/C++ provides minimal support for subsystem (SUBSYS=) managed data

sets. Support is limited to opening for read using the dd:ddname(member) syntax

with the fopen() filename. The ddname in the JCL stream must specify the SUBSYS=

parameter. In this case, fopen() will open the DCB as DSORG=PS, required for

subsystem managed data sets, but will perform the BLDL/FIND sequence to allow

the subsystem to manage processing of the desired member.

Access method selection

The fopen() and freopen() keyword noseek requests QSAM (queued sequential

access method) be used to process the data set. This request also indicates that

the repositioning functions will not be used by the application. This access method

generally provides the best performance. Omitting the keyword noseek selects

BSAM (basic sequential access method) with NOTE and POINT macros requested,

allowing repositioning functions to be used (where applicable) on the stream.

The following scenarios exist where QSAM (noseek) is requested, but the z/OS XL

C/C++ Run-Time Library switches to BSAM with NOTE and POINT macros requested

(seek):

v The data set is opened for update (r+, rb+, w+, wb+, a+, ab+)

v The data set is already opened for write (or update) in the same C process

v The data set is RECFM=FBS opened for append (a, ab, a+, ab+)

v The data set is LRECL=X

v The data set is the directory of a partitioned data set (PDS or PDSE)

v The data set is a member of a partitioned data set where the member was not

specified at allocation, but rather specified at fopen() or freopen()

Note: Repositioning is not allowed when noseek is requested, even if there was a

switch to seek.

As of z/OS V1R8, it is now important to understand these scenarios, since complete

read and write support for large format sequential data sets (DSNTYPE=LARGE) is

limited to when noseek is requested and honored. Note that the scenarios referring

to partitioned data sets are mutually exclusive with large format sequential data

sets.

When seek is used, the z/OS XL C/C++ Run-Time Library cannot always handle

processing of a large format sequential data set. The system responds with an

ABEND during OPEN/CLOSE/EOV processing, except when the data set contains

no more than 65535 tracks on the current volume, and either the data set is open

for read (r, rb), or the data set is concatenated and open for read (r, rb) or

read/update (r+, rb+). The library intercepts the ABEND using a DCB ABEND exit,

Chapter 10. Performing OS I/O operations 113

|

|
|
|
|
|
|

|
|
|

|

|

|

|

|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

updates the __amrc structure with the system abend code and return code, and

requests the system to ignore the ABEND. The system honors the request to

ignore, writes a message to the log, closes the DCB, and then fails the macro

processing. The library sees the failure, prevents further use of the stream, and

returns unsuccessfully back to the application. The application program can now

interrogate the __amrc structure to help determine the reason for the failure. See

“Using the __amrc structure” on page 235 for detailed information on how to use

the __amrc structure when debugging I/O programs.

fopen() and freopen() parameters

The following table lists the parameters that are available on the fopen() and

freopen() functions, tells you which ones are allowed and applicable for OS I/O,

and lists the option values that are valid for the applicable ones. Detailed

descriptions of these options follow the table.

 Table 19. Parameters for the fopen() and freopen() functions for z/OS OS I/O

Parameter Allowed? Applicable? Notes

recfm= Yes Yes Any of the 27 record formats available

under z/OS XL C/C++, plus * and A are

valid.

lrecl= Yes Yes 0, any positive integer up to 32760, or X is

valid. See the parameter list below.

blksize= Yes Yes 0 or any positive integer up to 32760 is

valid.

space= Yes Yes Valid only if you are opening a new data set

by its data set name. See the parameter list

below.

type= Yes Yes May be omitted. If you do specify it,

type=record is the only valid value.

acc= Yes No Not used for OS I/O.

password= Yes No Not used for OS I/O.

asis Yes No Used to specify mixed-case filenames. Not

recommended.

byteseek Yes Yes Used for binary files to specify that the

seeking functions should use relative byte

offsets instead of encoded offsets.

noseek Yes Yes Used to disable seeking functions for

improved performance.

OS Yes No Ignored.

recfm=

z/OS XL C/C++ allows you to specify any of the 27 possible RECFM types

(listed in “Fixed-format records” on page 28, “Variable-format records” on page

31, and “Undefined-format records” on page 34), as well as the z/OS XL C/C++

RECFMs * and A.

 When you are opening an existing file for read or append (or for write, if you

have specified DISP=MOD), any RECFM that you specify must match that of the

existing file, except that you may specify recfm=U to open any file for read, and

you may specify recfm=FBS for a file created as recfm=FB. Specifying recfm=FBS

indicates to z/OS XL C/C++ that there are no short blocks within the file. If there

are, undefined behavior results.

114 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|
|
|
|
|
|

For variable-format OS files, the RDW, SDW, and BDW contain the length of

the record, segment, and block as well as their own lengths. If you open a file

for read with recfm=U, z/OS XL C/C++ treats each physical block as an

undefined-format record. For files created with recfm=V, z/OS XL C/C++ does

not strip off block descriptor words (BDWs) or record descriptor words (RDWs),

and for blocked files, it does not deblock records. Using recfm=U is helpful for

viewing variable-format files or seeing how records are blocked in the file.

 When you are opening an existing PDS or PDSE for write and you specify a

RECFM, it must be compatible with the RECFM of the existing data set. FS and

FBS formats are invalid for PDS members. For PDSs, you must use exactly the

same RECFM. For PDSEs, you may choose to change the blocked attribute (B),

because PDSEs perform their own blocking. If you want to read a PDS or

PDSE directory and you specify a RECFM, it must be recfm=U.

 Specifying recfm=A indicates that the file contains ASA control characters. If you

are opening an existing file and you specify that ASA characters exist

(>recfm=A) when they do not, the call to fopen() or freopen() fails. If you create

a file by opening it for write or append, the A attribute is added to the default

RECFM. For more information about ASA, see Chapter 7, “Using ASA text files,”

on page 65.

 Specifying recfm=* causes z/OS XL C/C++ to fill in any attributes that you do

not specify, taking the attributes from the existing data set. This is useful if you

want to create a new version of a data set with the same attributes as the

previous version. If you open a data set for write and the data set does not

exist, z/OS XL C/C++ uses the default attributes specified in “fopen() defaults”

on page 50. This parameter has no effect when you are opening for read or

append, and when you use it for non-DASD files.

 recfm=+ is identical to recfm=* with the following exceptions:

v If there is no record format for the existing DASD data set, the defaults are

assigned as if the data set did not exist.

v When append mode is used, the fopen() fails.

lrecl= and blksize=

The LRECL that you specify on the fopen() call defines the maximum record

length that the C library allows. Records longer than the maximum record length

are not written to the file. The first 4 bytes of each block and the first 4 bytes of

each record of variable-format files are used for control information. For more

information, see “Variable-format records” on page 31.

 The maximum LRECL supported for fixed, undefined, or variable-blocked-
spanned format sequential disk files is 32760. For other variable-length format

disk files the maximum LRECL is 32756. Sequential disk files for any format

have a maximum BLKSIZE of 32760. The record length can be any size when

opening a spanned file and specifying lrecl=X. You can now specify lrecl=X on

the fopen() or freopen() call for spanned files. If you are updating an existing

file, the file must have been originally opened with lrecl=X for the open to

succeed. lrecl=X is useful only for text and record I/O.

 When you are opening an existing file for read or append (or for write, if you

have specified DISP=MOD), any LRECL or BLKSIZE that you specify must match

that of the existing file, except when you open an F or FB format file on a disk

device without specifying the noseek parameter. In this case, you can specify

the S attribute to indicate to z/OS XL C/C++ that the file has no imbedded short

blocks. Files without short blocks improve z/OS XL C/C++’s performance.

 BLKSIZE=0 will be ignored for an existing data set opened for read or append.

Chapter 10. Performing OS I/O operations 115

When you are opening an existing PDS or PDSE for write and you specify an

LRECL or BLKSIZE, it must be compatible with the LRECL or BLKSIZE of the

existing data set. For PDSs, you must use exactly the same values. For

PDSEs, the LRECL must be the same, but the BLKSIZE may be different if you

have changed the blocking attribute as described under the RECFM parameter

above. You can change the blocking attribute, because PDSEs perform their

own blocking. The BLKSIZE you choose should be compatible with the RECFM

and LRECL. When you open the directory of a PDS or PDSE, do not specify

LRECL or BLKSIZE; z/OS XL C/C++ uses the defaults. See Table 20 on page

120 for more information.

space=(units,(primary,secondary,directory))

This keyword enables you to specify the space parameters for the allocation of

a z/OS data set. It applies only to z/OS data sets that you open by filename

and do not already exist. If you open a data set by ddname, this parameter has

no effect. You cannot specify any whitespace inside the value for the space

keyword. You must specify at least one value with this parameter. Any

parameter that you specify will be validated for syntax. If that validation fails,

then the fopen() or freopen() will fail even if the parameter would have been

ignored.

 The supported values for units are as follows:

v Any positive integer indicating BLKSIZE

v CYL (mixed case)

v TRK (mixed case)

 The primary quantity, the secondary quantity, and the directory quantity all must

be positive integers. The primary quantity is always required.

 If you specify values only for units and primary, you do not have to specify the

inside set of parentheses. You can use a comma to indicate a quantity is to

take the default value. For example:

 space=(cyl,(100,,10)) - default secondary value

 space=(trk,(100,,)) - default secondary and directory value

 space=(500,(100,)) - default secondary, no directory

You can specify only the values indicated on this parameter. If you specify any

other values, fopen() or freopen() fails.

 Any values not specified are omitted on the allocation. These values are filled

by the system during SVC 99 processing.

type=

You can omit this parameter. If you specify it, the only valid value for OS I/O is

type=record, which opens a file for record I/O.

acc=

This parameter is not valid for OS I/O. If you specify it, z/OS XL C/C++ ignores

it.

password=

This parameter is not valid for OS I/O. If you specify it, z/OS XL C/C++ ignores

it.

asis

If you use this parameter, z/OS XL C/C++ does not convert your filenames to

upper case. The use of the asis parameter is strongly discouraged, because

most of the I/O services used by z/OS XL C/C++ require uppercase filenames.

116 z/OS V1R8.0 XL C/C++ Programming Guide

|
|

byteseek

When you specify this parameter and open a file in binary mode, all

repositioning functions (such as fseek() and ftell()) use relative byte offsets

from the beginning of the file instead of encoded offsets. In previous releases of

z/OS XL C/C++, byteseeking was performed only for fixed format binary files. To

have the byteseek parameter set as the default for all your calls to fopen() or

freopen(), you can set the environment variable _EDC_BYTE_SEEK to Y. See

Chapter 31, “Using environment variables,” on page 473 for more information.

noseek

Specifying this parameter on the fopen() call disables the repositioning

functions ftell(), fseek(), fgetpos(), and fsetpos() for as long as the file is

open. When you have specified NOSEEK and have opened a disk file for read

only, the only repositioning function allowed on the file is rewind(), if the device

supports rewinding. Otherwise, a call to rewind() sets errno and raises

SIGIOERR, if SIGIOERR is not set to SIG_IGN. Calls to ftell(), fseek(),

fsetpos(), or fgetpos() return EOF, set errno, and set the stream error flag on.

 The use of the noseek parameter may improve performance when you are

reading and writing data sets.

Note: If you specify the NOSEEK parameter when you open a file for writing, you

must specify NOSEEK on any subsequent fopen() call that simultaneously

opens the file for reading; otherwise, you will get undefined behavior.

OS

If you specify this parameter, z/OS XL C/C++ ignores it.

Buffering

z/OS XL C/C++ uses buffers to map C I/O to system-level I/O.

When z/OS XL C/C++ performs I/O operations, it uses one of the following buffering

modes:

v Line buffering — characters are transmitted to the system when a new-line

character is encountered. Line buffering is meaningless for binary and record I/O

files.

v Full buffering — characters are transmitted to the system when a buffer is filled.

C/C++ provides a third buffering mode, unbuffered I/O, which is not supported for

OS files.

You can use the setvbuf() and setbuf() library functions to set the buffering mode

before you perform any I/O operation to the file. setvbuf() fails if you specify

unbuffered I/O. It also fails if you try to specify line buffering for an FBS data set

opened in text mode, where the device does not support repositioning. This failure

happens because z/OS XL C/C++ cannot deliver records at line boundaries without

violating FBS format. Do not try to change the buffering mode after you have

performed any I/O operation to the file.

For all files except stderr, full buffering is the default, but you can use setvbuf() to

specify line buffering. For binary files, record I/O files, and unblocked text files, a

block is written out as soon as it is full, regardless of whether you have specified

line buffering or full buffering. Line buffering is different from full buffering only for

blocked text files.

Chapter 10. Performing OS I/O operations 117

Multiple buffering

Multiple buffering (or asynchronous I/O) is supported for z/OS data sets. Multiple

buffering is not supported for a data set opened for read at the same time that

another file pointer has it opened for write or append. When you open files for

multiple buffering, blocks are read into buffers before they are needed, eliminating

the delay caused by waiting for I/O to complete. Multiple buffering may make I/O

less efficient if you are seeking within or writing to a file, because seeking or writing

may discard blocks that were read into buffers but never used.

To specify multiple buffering, code either the NCP=xx or BUFNO=yy subparameter of

the DCB parameter on the JCL DD statement (or allocation), where xx is an integer

number between 02 and 99, and yy is an integer number normally between 02 and

255. Whether z/OS XL C/C++ uses NCP or BUFNO depends on whether you are using

BSAM or QSAM, respectively. NCP is supported under BSAM; BUFNO is supported

under QSAM. BSAM and QSAM are documented in z/OS DFSMS Using Data Sets.

If you specify noseek, z/OS XL C/C++ uses QSAM if possible. If z/OS XL C/C++ is

using BSAM and you specify a value for BUFNO, z/OS XL C/C++ maps this value to

NCP. If z/OS XL C/C++ is using QSAM and you specify a value for NCP, z/OS XL

C/C++ maps this value to BUFNO.

If you specify both NCP and BUFNO, z/OS XL C/C++ takes the greater of the two

values, up to the maximum for the applicable value. For example, if you specify a

BUFNO of 120 and you are using BSAM, which uses NCP instead, z/OS XL C/C++ will

use NCP=99.

If you do not specify either, z/OS XL C/C++ defaults to single buffering, except in

the following cases, where z/OS XL C/C++ uses the system’s default BUFNO and

performs multiple buffering for both reading and writing:

v If you open a device that does not support repositioning, and specify read-only or

write-only mode (r, rb, w, wb, a, ab).

v If you specify the NOSEEK parameter on the call to fopen() or freopen(), and

specify read-only or write-only mode. When you specify NOSEEK, you get multiple

buffering for both reads and writes.

Here is an example of how to specify BUFNO:

 //DD5 DD DSNAME=TORONTO.BLUEJAYS,DISP=SHR,DCB=(BUFNO=5)

You may need to update code from previous releases that relies on z/OS XL C/C++

ignoring NCP or BUFNO parameters.

Note: Multiple buffering is ignored for concatenated and multivolume data sets.

DCB (Data Control Block) attributes

For OS files, the C run-time library creates a skeleton data control block (DCB) for

the file when you open it. File attributes are determined from the following sources

in this order:

1. The fopen() or freopen() function call

2. Attributes for a ddname specified previously (if you are opening by ddname)

3. Existing file attributes (if you specify recfm=* or you are opening an existing file

for read or append)

4. Defaults from fopen() or freopen() for creating a new file.

118 z/OS V1R8.0 XL C/C++ Programming Guide

|

If you do not specify RECFM when you are creating a new file, z/OS XL C/C++

uses the following defaults:

If recfm is not specified in a fopen() call for an output binary file, recfm defaults to:

v recfm=VB for spool (printer) files,

v recfm=FB otherwise.

If recfm is not specified in a fopen() call for an output text file, recfm defaults to:

v recfm=F if _EDC_ANSI_OPEN_DEFAULT is set to Y and no LRECL or BLKSIZE

specified. In this case, LRECL and BLKSIZE are both defaulted to 254.

v recfm=VBA for spool (printer) files.

v recfm=U for terminal files

v recfm=V if the LRECL or BLKSIZE is specified

v recfm=VB for all other OS files.

If recfm is not specified for a record I/O file, you will get the default of recfm=VB.

The following table shows the defaults for LRECL and BLKSIZE when the z/OS XL

C/C++ compiler creates an OS file.

C OR C++
PROGRAM

DD STATEMENT

TAPE LABEL

file *f;

f = fopen("dd:master","r,
blksize=400, recfm=FB")

//MASTER DD UNIT=3480,
VOLUME=SER=1791
DSNAME=LIST,
DCB=(...,
RECFM=FB,
BLKSIZE=400,
LRECL=100)

Record format=FB
Record length=100
Block size=400
Recording density=1600

DATA CONTROL BOX

Record format

Block size

Record length

Device type

Recording density

FB

400

100

3480

1600

Figure 13. How the operating system completes the DCB. Information from the C or C++

program overrides that from the DD statement and the tape label. Information from the DD

statement overrides that from the data set label.

Chapter 10. Performing OS I/O operations 119

Table 20. fopen() defaults for LRECL and BLKSIZE when creating OS files

lrecl specified? blksize specified? RECFM LRECL BLKSIZE

no no All F 80 80

All FB 80 maximum integral

multiple of 80 less

than or equal to max

All V, VB, VS, or VBS minimum of 1028 or

max–4

max

All U 0 max

yes no All F lrecl lrecl

All FB lrecl maximum integral

multiple of lrecl less

than or equal to max

All V lrecl lrecl+4

All U 0 lrecl

no yes All F or FB blksize blksize

All V, VB, VS, or VBS minimum of 1028 or

blksize–4

blksize

All U 0 blksize

Note: All includes the standard (S) specifier for fixed formats, the ASA (A) specifier, and the machine control character

(M) specifier.

In Table 20, the value max represents the maximum reasonable block size for the

device. These are the current default maximum block sizes for several devices that

z/OS XL C/C++ supports:

Device Default maximum block size

DASD 6144

3203 Printer 132

3211 Printer 132

4245 Printer 132

2540 Reader 80

2540 Punch 80

2501 Reader 80

3890 Document Processor 80

TAPE 32760

For more information about specific default block sizes as returned by the DEVTYPE

macro, refer to z/OS DFSMS Using Data Sets.

You can perform multiple buffering under z/OS. See “Multiple buffering” on page 118

for details.

120 z/OS V1R8.0 XL C/C++ Programming Guide

Reading from files

You can use the following library functions to read from a file:

v fread()

v fgetc()

v fgets()

v fscanf()

v getc()

v getc_unlocked()

v gets()

v getchar()

v getchar_unlocked()

v scanf()

v vfscanf()

v vscanf()

fread() is the only interface allowed for reading record I/O files. A read operation

directly after a write operation without an intervening call to fflush(), fsetpos(),

fseek(), or rewind() fails. z/OS XL C/C++ treats the following as read operations:

v Calls to read functions that request 0 bytes

v Read requests that fail because of a system error

v Calls to the ungetc() function

z/OS XL C/C++ does not consider a read to be at EOF until you try to read past the

last byte visible in the file. For example, in a file containing three bytes, the feof()

function returns FALSE after three calls to fgetc(). Calling fgetc() one more time

causes feof() to return TRUE.

You can set up a SIGIOERR handler to catch read or write system errors. See the

debugging section in this book for more details.

Reading from binary files

z/OS XL C/C++ reads binary records in the order that they were written to the file.

Any null padding is visible and treated as data. Record boundaries are

meaningless.

Reading from text files

For non-ASA variable text files, the default for z/OS XL C/C++ is to ignore any

empty physical records in the file. If a physical record contains a single blank, z/OS

XL C/C++ reads in a logical record containing only a new-line. However, if the

environment variable _EDC_ZERO_RECLEN was set to Y, z/OS XL C/C++ reads an

empty physical record as a logical record containing a new-line, and a physical

record containing a single blank as a logical record containing a blank and a

new-line. z/OS XL C/C++ differentiates between empty records and records

containing single blanks, and does not ignore either of them. For more information

about how z/OS XL C/C++ treats empty records in variable format, see “Mapping C

types to variable format” on page 33.

For ASA variable text files, if a file was created without a control character as its

first byte, the first byte defaults to the ' ' character. When the file is read back, the

first character is read as a new-line.

Chapter 10. Performing OS I/O operations 121

|

|

On input, ASA characters are translated to the corresponding sequence of control

characters. For more information about using ASA files, refer to Chapter 7, “Using

ASA text files,” on page 65.

For undefined format text files, reading a file causes a new-line character to be

inserted at the end of each record. On input, a record containing a single blank

character is considered an empty record and is translated to a new-line character.

Trailing blanks are preserved for each record.

For files opened in fixed text format, rightmost blanks are stripped off a record at

input, and a new-line character is placed in the logical record. This means that a

record consisting of a single new-line character is represented by a fixed-length

record made entirely of blanks.

Reading from record I/O files

For files opened in record format, fread() is the only interface that supports

reading. Each time you call fread() for a record I/O file, fread() reads one record.

If you call fread() with a request for less than a complete record, the requested

bytes are copied to your buffer, and the file position is set to the start of the next

record. If the request is for more bytes than are in the record, one record is read

and the position is set to the start of the next record. z/OS XL C/C++ does not strip

any blank characters or interpret any data.

fread() returns the number of items read successfully, so if you pass a size

argument equal to 1 and a count argument equal to the maximum expected length

of the record, fread() returns the length, in bytes, of the record read. If you pass a

size argument equal to the maximum expected length of the record, and a count

argument equal to 1, fread() returns either 0 or 1, indicating whether a record of

length size read. If a record is read successfully but is less than size bytes long,

fread() returns 0.

A failed read operation may lead to undefined behavior until you reposition

successfully.

Writing to files

You can use the following library functions to write to a file:

v fwrite()

v printf()

v fprintf()

v vprintf()

v vfprintf()

v puts()

v fputc()

v fputs()

v putc()

v putc_unlocked()

v putchar()

v putchar_unlocked()

fwrite() is the only interface allowed for writing to record I/O files. See z/OS XL

C/C++ Run-Time Library Reference for more information on these library functions.

122 z/OS V1R8.0 XL C/C++ Programming Guide

|

|

A write operation directly after a read operation without an intervening call to

fflush(), fsetpos(), fseek(), or rewind() fails unless the read operation has

reached EOF. The file pointer does not reach EOF until after you have tried to read

past the last byte of the file.

z/OS XL C/C++ counts a call to a write function writing 0 bytes or a write request

that fails because of a system error as a write operation.

If you are updating a file and a system failure occurs, z/OS XL C/C++ tries to set

the file position to the end of the last record updated successfully. For a

fully-buffered file, this is at the end of the last record in a block. For a line-buffered

file, this may be any record in the current block. If you are writing new data at the

time of a system failure, z/OS XL C/C++ puts the file position at the end of the last

block of the file. In files opened for blocked output, you may lose data written by

other writes to that block before the system failure. The contents of a file after a

system write failure are indeterminate.

If one user opens a file for writing, and another later opens the same file for

reading, the user who is reading the file can check for records that may have been

written past the end of the file by the other user. If the file is a spanned variable text

file, the reader can read part of a spanned record and reach the end of the file

before reading in the last segment of the spanned record.

Writing to binary files

Data flows over record boundaries in binary files. Writes or updates past the end of

a record go to the next record. When you are writing to files and not making any

intervening calls to fflush(), blocks are written to the system as they are filled. If a

fixed record is incomplete when you close the file, z/OS XL C/C++ completes it with

nulls. You cannot change the length of existing records in a file by updating them.

If you are using variable binary files, note the following:

v On input and on update, records that have no length are ignored; you will not be

notified. On output, zero-length records are not written. However, in spanned

files, if the first segment of a record has been written to the system, and the user

flushes or closes the file, a zero-length last segment may be written to the file.

v If you are writing new data in a data set that has variable-length records

(RECFM=V, VB, VBM, etc.), z/OS XL C/C++ may split a record between two blocks

to fill the first block out to the maximum block size. This means that when you

read them, the record boundaries will not necessarily be the same.

v If your file is spanned, records are written up to length LRECL, spanning multiple

blocks if necessary. You can create a spanned file by specifying a RECFM

containing V and S on the fopen() call.

Writing to text files

z/OS XL C/C++ treats the control characters as follows when you are writing to a

non-ASA text file:

\a Alarm. Placed directly into the file; z/OS XL C/C++ does not interpret it.

\b Backspace. Placed directly into the file; z/OS XL C/C++ does not interpret

it.

\f Form feed. Placed directly into the file; z/OS XL C/C++ does not interpret it.

\n New-line. Defines a record boundary; z/OS XL C/C++ does not place it in

the file.

Chapter 10. Performing OS I/O operations 123

\r Carriage return. Defines a record boundary; z/OS XL C/C++ does not place

it in the file. Treated like a new-line character.

\t Horizontal tab character. Placed directly into the file; z/OS XL C/C++ does

not interpret it.

\v Vertical tab character. Placed directly into the file; z/OS XL C/C++ does not

interpret it.

\x0E DBCS shift-out character. Indicates the beginning of a DBCS string, if

MB_CUR_MAX > 1. Placed into the file.

\x0F DBCS shift-in character. Indicates the end of a DBCS string, if MB_CUR_MAX

> 1. Placed into the file. See Chapter 8, “z/OS XL C Support for the

double-byte character set,” on page 69 for more information about

MB_CUR_MAX.

The way z/OS XL C/C++ treats text files depends on whether they are in fixed,

variable, or undefined format, and whether they use ASA.

As with ASA files in other environments, the first character of each record is

reserved for the ASA control character that represents a new-line, a carriage return,

or a form feed.

 Table 21. C control to ASA characters

C Control Character

Sequence

ASA Character Description

\n ' ' skip one line

\n\n '0' skip two lines

\n\n\n '-' skip three lines

\f '1' new page

\r '+' overstrike

See Chapter 7, “Using ASA text files,” on page 65 for more information.

Writing to fixed-format text files

Records in fixed-format files are all the same length. You complete each record with

a new-line or carriage return character. For fixed text files, the new-line character is

not written to the file. Blank padding is inserted to the LRECL of each record of the

block, and the block, when full, is written. For a more complete description of the

way fixed-format files are handled, see “Fixed-format records” on page 28.

A logical record can be shortened to be an empty record (containing just a new-line)

or extended to a record containing LRECL bytes of data plus a new-line. Because

the physical record represents the new-line position by using padding blanks, the

new-line position can be changed on an update as long as it is within the physical

record.

Note: Using ftell() or fgetpos() values for positions that do not exist after you

have shortened records results in undefined behavior.

When you are updating a file, writing new data into an existing record replaces the

old data and, if the new data is longer or shorter than the old data, changes the

size of the logical record by changing the number of blank characters in the

physical record. When you extend a record, thereby writing over the old new-line, a

new-line character is implied after the last character of the update. Calling fflush()

124 z/OS V1R8.0 XL C/C++ Programming Guide

flushes the data out to the file and inserts blank padding between the last data

character and the end of the record. Once you have called fflush(), you can call

any of the read functions, which begin reading at the new-line. Once the new-line is

read, reading continues at the beginning of the next record.

Writing to variable-format text files

In a file with variable-length records, each record may be a different length. The

variable length formats permit both variable-length records and variable-length

blocks. The first 4 bytes of each block are reserved for the Block Descriptor Word

(BDW); the first 4 bytes of each record are reserved for the Record Descriptor Word

(RDW).

For ASA and non-ASA, the '\n' (new-line) character implies a record boundary. On

output, the new-line is not written to the physical file; instead, it is assumed to follow

the data of the record.

If you have not set _EDC_ZERO_RECLEN, z/OS XL C/C++ writes out a record

containing a single blank character to represent a single new-line. On input, a

record containing a single blank character is considered an empty record and is

translated to a new-line character. Note that a single blank followed by a new-line is

written out as a single blank, and is treated as just a new-line on input. When

_EDC_ZERO_RECLEN is set, writing a record containing only a new-line results in a

zero-length variable record.

For more information about environment variables, refer to Chapter 31, “Using

environment variables,” on page 473. For more information about how z/OS XL

C/C++ treats empty records in variable format, see “Mapping C types to variable

format” on page 33.

Attempting to shorten a record on update by specifying less data before the

new-line causes the record to be padded with blanks to the original record size. For

spanned records, updating a record to a shorter length results in the same blank

padding to the original record length, over multiple blocks, if applicable.

Attempts to lengthen a record on update generally result in truncation. The

exception to this rule is extending an empty record to a 1-byte record when the

environment variable _EDC_ZERO_RECLEN is not set. Because the physical

representation for an empty record is a record containing one blank character, it is

possible to extend the logical record to a single non-blank character followed by a

new-line character. For standard streams, truncation in text files does not occur;

data is wrapped automatically to the next record as if you had added a new-line.

When you are writing data to a non-blocked file without intervening flush or

reposition requests, each record is written to the system when a new-line or

carriage return character is written or when the file is closed.

When you are writing data to a blocked file without intervening flush or reposition

requests, if the file is opened in full buffering mode, the block is written to the

system on completion of the record that fills the block. If the blocked file is line

buffered, each record is written to the system when it is completed. If you are using

full buffering for a VB format file, a write may not fill a block completely. The data

does not go to the system unless a block is full; you can complete the block with

another write. If the subsequent write contains more data than is needed to fill the

block, it flushes the current block to the system and starts writing your data to a

new block.

Chapter 10. Performing OS I/O operations 125

When you are writing data to a spanned file without intervening flush or reposition

requests, if the record spans multiple blocks, each block is written to the system

once it is full and the user writes an additional byte of data.

For ASA variable text files, if a file was created without a control character as its

first byte or record (after the RDW and BDW), the first byte defaults to the ' '

character. When the file is read back, the first character is read as a new-line.

Writing to undefined-format text files

In an undefined-format file, there is only one record per block. Each record may be

a different length, up to a maximum length of BLKSIZE. Each record is completed

with a new-line or carriage return character. The new-line character is not written to

the physical file; it is assumed to follow the data of the record. However, if a record

contains only a new-line character, z/OS XL C/C++ writes a record containing a

single blank to the file to represent an empty record. On input, the blank is read in

as a new-line.

Once a record has been written, you cannot change its length. If you try to shorten

a logical record by updating it with a shorter record, z/OS XL C/C++ completes the

record with blank padding. If you try to lengthen a record by updating it with more

data than it can hold, z/OS XL C/C++ truncates the new data. The only instance in

which this does not happen is when you extend an empty record so that it contains

a single byte. Any data beyond the single byte is truncated.

Truncation versus splitting

If you try to write more data to a record than z/OS XL C/C++ allows, and the file

you are writing to is not one of the standard streams (the defaults, or those

redirected by freopen() or command-level redirection), output is cut off at the

record boundary and the remaining bytes are discarded. z/OS XL C/C++ does not

count the discarded characters as characters that have been written out

successfully.

In all truncation cases, the SIGIOERR signal is raised if the action for SIGIOERR is not

SIG_IGN. The user error flag is set so that ferror() will return TRUE. For more

information about SIGIOERR, ferror(), and other I/O-related debugging tools, see

Chapter 17, “Debugging I/O programs,” on page 235. z/OS XL C/C++ continues to

discard new output until you complete the current record by writing a new-line or

carriage return character, close the file, or change the file position.

If you are writing to one of the standard streams, attempting to write more data than

a record can hold results in the data being split across multiple records.

Writing to record I/O files

fwrite() is the only interface allowed for writing to a file opened for record I/O.

Only one record is written at a time. If you attempt to write more new data than a

full record can hold or you try to update a record with more data than it currently

has, z/OS XL C/C++ truncates your output at the record boundary. When z/OS XL

C/C++ performs a truncation, it sets errno and raises SIGIOERR, if SIGIOERR is not

set to SIG_IGN.

When you update a record, you can update less than the full record. The remaining

data that you do not update is left untouched in the file.

When you are writing new records to a fixed-record I/O file, if you try to write a

short record, z/OS XL C/C++ pads the record with nulls out to LRECL.

126 z/OS V1R8.0 XL C/C++ Programming Guide

At the completion of an fwrite(), the file position is at the start of the next record.

For new data, the block is flushed out to the system as soon as it is full.

Flushing buffers

You can use the library function fflush() to flush streams to the system. For more

information about fflush(), see z/OS XL C/C++ Run-Time Library Reference.

The action taken by the fflush() library function depends on the buffering mode

associated with the stream and the type of streams. If you call one z/OS XL C/C++

program from another z/OS XL C/C++ program by using the ANSI system()

function, all open streams are flushed before control is passed to the callee, and

again before control is returned to the caller. If you are running with POSIX(ON), a

call to the POSIX system() function does not flush any streams to the system.

Updating existing records

Calling fflush() while you are updating flushes the updates out to the system. If

you call fflush() when you are in the middle of updating a record, z/OS XL C/C++

writes the partially updated record out to the system. A subsequent write continues

to update the current record.

Reading updated records

If you have a file open for read at the same time that the file is open for write in the

same application, you will be able to see the new data if you call fflush() to

refresh the contents of the input buffer, as in the following example:

Chapter 10. Performing OS I/O operations 127

CCNGOS3

Writing new records

Writing new records is handled differently for:

v Binary streams

v Text streams

v Record I/O

Binary streams

z/OS XL C/C++ treats line buffering and full buffering the same way for binary files.

If the file has a variable length or undefined record format, fflush() writes the

current record out. This may result in short records. In blocked files, this means that

the block is written to disk, and subsequent writes are to a new block. For fixed

files, no incomplete records are flushed.

For single-volume disk files in FBS format, fflush() flushes complete records in an

incomplete block out to the file. For all other types of FBS files, fflush() does not

flush an incomplete block out to the file.

/* this example demonstrates how updated records are read */

#include <stdio.h>

int main(void)

{

 FILE * fp, * fp2;

 int rc, rc2, rc3, rc4;

 fp = fopen("a.b","w+");

 fprintf(fp,"first record");

 fp2 = fopen("a.b","r"); /* Simultaneous Reader */

 /* following gets EOF since fp has not completed first line

 * of output so nothing will be flushed to file yet */

 rc = fgetc(fp2);

 printf("return code is %i\n", rc);

 fputc(’\n’, fp); /* this will complete first line */

 fflush(fp); /* ensures data is flushed to file */

 rc2 = fgetc(fp2); /* this gets ’f’ from first record */

 printf("value is now %c\n", rc2);

 rewind(fp);

 fprintf(fp, "some updates\n");

 rc3 = fgetc(fp2); /* gets ’i’ ..doesn’t know about update */

 printf("value is now %c\n", rc3);

 fflush(fp); /* ensure update makes it to file */

 fflush(fp2); /* this updates reader’s buffer */

 rc4 = fgetc(fp2); /* gets ’m’, 3rd char of updated record */

 printf("value is now %c\n", rc4);

 return(0);

}

Figure 14. Example of reading updated records

128 z/OS V1R8.0 XL C/C++ Programming Guide

For files in FB format, fflush() always flushes out all complete records in the

current block. For sequential DASD files, new completed records are added to the

end of the flushed block if it is short. For non-DASD or non-sequential files, any

new record will start a new block.

Text streams

v Line-Buffered Streams

fflush() has no effect on line-buffered text files, because z/OS XL C/C++ writes

all records to the system as they are completed. All incomplete new records

remain in the buffer.

v Fully Buffered Streams

Calling fflush() flushes all completed records in the buffer, that is, all records

ending with a new-line or carriage return (or form feed character, if you are using

ASA), to the system. z/OS XL C/C++ holds any incomplete record in the buffer

until you complete the record or close the file.

For ASA text files, if a flush occurs while an ASA character that indicates more than

one new-line is being updated, the remaining new-lines will be discarded and a

read will continue at the first data character. For example, if '\n\n\n' is updated to

be '\n\n' and a flush occurs, then a '0' will be written out in the ASA character

position.

Record I/O

z/OS XL C/C++ treats line buffering and full buffering the same way for record I/O.

For files in FB format, calling fflush() writes all records in the buffer to the system.

For single-volume disk files in FBS format, fflush() will flush complete records in an

incomplete block out to the file. For all other types of FBS files, fflush() will not

flush an incomplete block out to the file. For all other formats, calling fflush() has

no effect, because fwrite() has already written the records to disk.

ungetc() considerations

ungetc() pushes characters back onto the input stream for binary and text files.

ungetc() handles only single-byte characters. You can use it to push back as many

as four characters onto the ungetc() buffer. For every character pushed back with

ungetc(), fflush() backs up the file position by one character and clears all the

pushed-back characters from the stream. Backing up the file position may end up

going across a record boundary. Remember that for text files, z/OS XL C/C++

counts the new-lines added to the records as single-byte characters when it

calculates the file position.

For example, given the stream you can run the following code fragment:

 fgetc(fp); /* Returns A and puts the file position at */

 /* the beginning of the character B */

 ungetc(’Z’,fp); /* Logically inserts Z ahead of B */

 fflush(fp); /* Moves the file position back by one to A, */

 /* removes Z from the logical stream */

A B C D

file pointer

Chapter 10. Performing OS I/O operations 129

If you want fflush() to ignore ungetc() characters, you can set the _EDC_COMPAT

environment variable. See Chapter 31, “Using environment variables,” on page 473

for more information.

Repositioning within files

You can use the following library functions to help you position within an OS file:

v fseek()

v fseeko()

v ftell()

v ftello()

v fgetpos()

v fsetpos()

v rewind()

See z/OS XL C/C++ Run-Time Library Reference for more information on these

library functions.

Opening a file with fopen() and specifying the NOSEEK parameter disables all of

these library functions except rewind(). A call to rewind() causes the file to be

reopened, unless the file is a non-disk file opened for write-only. In this case,

rewind() sets errno and raises SIGIOERR (if SIGIOERR is not set to SIG_IGN, which is

its default).

Calling any of these functions flushes all complete and updated records out to the

system. If a repositioning operation fails, z/OS XL C/C++ attempts to restore the

original file position and treats the operation as a call to fflush(), except that it

does not account for the presence of ungetc() or ungetwc() characters, which are

lost. After a successful repositioning operation, feof() always returns 0, even if the

position is just after the last byte of data in the file.

The fsetpos() and fgetpos() library functions are generally more efficient than ftell()

and fseek(). The fgetpos() function can encode the current position into a structure

that provides enough room to hold the system position as well as position data

specific to C or C++. The ftell() function must encode the position into a single

word of storage, which it returns. This compaction forces fseek() to calculate

certain position information specific to C or C++ at the time of repositioning. For

variable-format binary files, you can choose to have ftell() return relative byte

offsets. In previous releases, ftell() returned only encoded offsets, which

contained the relative block number. Since you cannot calculate the block number

from a relative byte offset in a variable-format file, fseek() may have to read

through the file to get to the new position. fsetpos() has system position

information available within the the fpos_t structure and can generally reposition

directly to the desired location.

You can use the ftell() and fseek() functions to set the current position within all

types of files except for the following:

v Files on non-seekable devices (for example, printers)

v Partitioned data sets opened in w or wb mode.

Although repositioning within files opened for write mode is not available, you can

use fgetpos() and ftell() to save the current position, and this position can later

be used to reposition within the same file if opened in one of the modes where

reposition is allowed.

130 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|
|

ungetc() considerations

For binary and text files, the library functions fgetpos() and ftell() take into

account the number of characters you have pushed back onto the input stream with

ungetc(), and adjust the file position accordingly. ungetc() backs up the file position

by a single byte each time you call it. For text files, z/OS XL C/C++ counts the

new-lines added to the records as single-byte characters when it calculates the file

position.

If you make so many calls to ungetc() that the logical file position is before the

beginning of the file, the next call to ftell() or fgetpos() fails.

When you are using fseek() with a whence value of SEEK_CUR, the starting point

for the reposition also accounts for the presence of ungetc() characters and

compensates as ftell() and fgetpos() do.

If you want fgetpos() and fseek() to ignore ungetc() characters, you can set the

_EDC_COMPAT environment variable. See Chapter 31, “Using environment variables,”

on page 473 for details. ftell() is not affected by the setting of _EDC_COMPAT.

How long fgetpos() and ftell() values last

As long as you do not re-create a file or shorten logical records, you can rely on the

values returned by ftell() and fgetpos(), even across program boundaries and

calls to fclose(). (Calling fopen() or freopen() with any of the w modes re-creates

a file.) Using ftell() and fgetpos() values that point to information deleted or

re-created results in undefined behavior. For more information about shortening

records, see “Writing to variable-format text files” on page 125.

Using fseek() and ftell() in binary files

With binary files, ftell() returns two types of positions:

v Relative byte offsets

v Encoded offsets

Relative byte offsets

You get byte offsets by default when you are seeking or positioning in fixed-format

binary files. You can also use byte offsets on a variable or undefined format file

opened in binary mode with the BYTESEEK parameter specified on the fopen() or

freopen() function call. You can specify BYTESEEK to be the default for fopen()

calls by setting the environment variable _EDC_BYTE_SEEK to Y. See Chapter 31,

“Using environment variables,” on page 473 for information on how to set

environment variables.

You do not need to acquire an offset from ftell() to seek to a relative position; you

may specify a relative offset to fseek() with a whence value of SEEK_SET.

However, you cannot specify a negative offset to fseek() when you have specified

SEEK_SET, because a negative offset would indicate a position before the

beginning of the file. Also, you cannot specify a negative offset with whence values

of SEEK_CUR or SEEK_END such that the resulting file position would be before

the beginning of the file. If you specify such an offset, fseek() fails.

If your file is not opened read-only, you can specify a position that is beyond the

current EOF. In such cases, a new end-of-file position is created; null characters are

automatically added between the old EOF and the new EOF.

fseek() support of byte offsets in variable-format files generally requires reading all

records from the whence value to the new position. The impact on performance is

Chapter 10. Performing OS I/O operations 131

|

|
|
|
|
|
|

greatest if you open an existing file for append in BYTESEEK mode and then call

ftell(). In this case, ftell() has to read from the beginning of the file to the

current position to calculate the required byte offset. Support for byteseeking is

intended to ease portability from other platforms. If you need better performance,

consider using ftell()-encoded offsets, discussed in the next section.

Encoded offsets

If you do not specify the BYTESEEK parameter and you set the _EDC_BYTE_SEEK

variable to N, any variable- or undefined-format binary file gets encoded offsets from

ftell(). This keeps this release of z/OS XL C/C++ compatible with code generated

by old releases of C/370.

Encoded offsets are values representing the block number and the relative byte

within that block, all within one long int. Because z/OS XL C/C++ does not

document its encoding scheme, you cannot rely on any encoded offset not returned

by ftell(), except 0, which is the beginning of the file. This includes encoded

offsets that you adjust yourself (for example, with addition or subtraction). When

you call fseek() with the whence value SEEK_SET, you must use either 0 or an

encoded offset returned from ftell(). For whence values of SEEK_CUR and

SEEK_END, however, you specify relative byte offsets. If you want to seek to a

certain relative byte offset, you can use SEEK_SET with an offset of 0 to rewind the

file to the beginning, and then you can use SEEK_CUR to specify the desired

relative byte offset.

In earlier releases, ftell() could determine position only for files with no more than

131,071 blocks. In the new design, this number increases depending on the block

size. From a maximum block size of 32,760, every time this number decreases by

half, the number of blocks that can be represented doubles.

If your file is not opened read-only, you can use SEEK_CUR or SEEK_END to

specify a position that is beyond the current EOF. In such cases, a new end-of-file

position is created; null characters are automatically added between the old EOF and

the new EOF. This does not apply to PDS members, as they cannot be extended.

For SEEK_SET, because you are restricted to using offsets returned by ftell(),

any offset that indicates a position outside the current file is invalid and causes

fseek() to fail.

Using fseek() and ftell() in text files (ASA and Non-ASA)

In text files, ftell() produces only encoded offsets. It returns a long int, in which

the block number and the byte offset within the block are encoded. You cannot rely

on any encoded offset not returned by ftell() except 0. This includes encoded

offsets that you adjust yourself (for example, with addition or subtraction).

When you call fseek() with the whence value SEEK_SET, you must use an encoded

offset returned from ftell(). For whence values of SEEK_CUR and SEEK_END,

however, you specify relative byte offsets. If you want to seek to a certain relative

byte offset, you can use SEEK_SET with an offset of 0 to rewind the file to the

beginning, and then you can use SEEK_CUR to specify the desired relative byte

offset. z/OS XL C/C++ counts new-line characters and skips to the next record each

time it reads one.

Unlike binary files you cannot specify offsets for SEEK_CUR and SEEK_END that

set the file position past the end of the file. Any offset that indicates a position

outside the current file is invalid and causes fseek() to fail.

132 z/OS V1R8.0 XL C/C++ Programming Guide

In earlier releases, ftell() could determine position only for files with no more than

131071 blocks. In the new design, this number increases depending on the block

size. From a maximum block size of 32760, every time this number decreases by

half, the number of blocks that can be represented doubles.

Repositioning flushes all updates before changing position. An invalid call to

fseek() is now always treated as a flush. It flushes all updated records or all

complete new records in the block, and leaves the file position unchanged. If the

flush fails, any characters in the ungetc() buffer are lost. If a block contains an

incomplete new record, the block is saved and will be completed by another write or

by closing the file.

Using fseek() and ftell() in record files

For files opened with type=record, ftell() returns relative record numbers. The

behavior of fseek() and ftell() is similar to that when you use relative byte offsets

for binary files, except that the unit is a record rather than a byte. For example,

 fseek(fp,-2,SEEK_CUR);

seeks backward two records from the current position.

 fseek(fp,6,SEEK_SET);

seeks to relative record 6. You do not need to get an offset from ftell().

You cannot seek past the end or before the beginning of a file.

The first record of a file is relative record 0.

Porting old C code that uses fseek() or ftell()

The encoding scheme used by ftell() in non-BYTESEEK mode in the z/OS XL

C/C++ RTL is different from that used in the XL C/C++ run-time library prior to

C/370 Release 2.2 and Language Environment prior to release 1.3.

v If your code obtains ftell() values and passes them to fseek(), the change to

the encoding scheme should not affect your application. On the other hand, your

application may not work if you have saved encoded ftell() values in a file and

your application reads in these encoded values to pass to fseek(). For

non-record I/O files, you can set the environment variable _EDC_COMPAT with the

ftell() encoding set to tell z/OS XL C/C++ that you have old ftell() values.

Files opened for record I/O do not support old ftell() values saved across the

program boundary.

v In previous versions, the fseek() support for the ftell() encoding scheme

inadvertently supported seeking from SEEK_SET with a byte offset up to 32K.

This is no longer be supported. Users of this support must change to BYTESEEK

mode. You can do this without changing your source code; just use the

_EDC_BYTE_SEEK environment variable.

Closing files

Use the fclose() library function to close a file. z/OS XL C/C++ automatically

closes files on normal program termination and attempts to do so under abnormal

program termination or abend. See z/OS XL C/C++ Run-Time Library Reference for

more information on this library function.

For files opened in fixed binary mode, incomplete records will be padded with null

characters when you close the file.

Chapter 10. Performing OS I/O operations 133

For files opened in variable binary mode, incomplete records are flushed to the

system. In a spanned file, closing a file can cause a zero-length segment to be

written. This segment will still be part of the non-zero-length record. For files

opened in undefined binary mode, any incomplete output is flushed on close.

Closing files opened in text mode causes any incomplete new record to be

completed with a new-line character. All records not yet flushed to the file are

written out when the file is closed.

For files opened for record I/O, closing causes all records not yet flushed to the file

to be written out.

Note: If an application has locked a (FILE *) object (with flockfile() or

ftrylockfile()), it is responsible for relinquishing the locked (FILE *) object

(with funlockfile()) before calling fclose(). Failure to relinquish a locked

(FILE *) object may cause deadlock or looping.

When fclose() is used to close a stream associated with a z/OS data set, some

failures may be unrecoverable, and will result in an ABEND. These ABENDs may

include I/O ABENDs of the form x14 and x37. Control will not be returned to the

caller of fclose() to report the error. To process these types of errors, applications

need to use z/OS Language Environment condition handling to receive control (see

z/OS Language Environment Programming Guide), or register a signal handler for

SIGABND (see Chapter 27, “Handling error conditions, exceptions, and signals,” on

page 413).

If an application fails during fclose() with a x37 abend, and the application would

like to recover and use the same file again, the following technique can be used:

1. Register a signal handler for SIGABND and SIGIOERR.

2. fopen() the file. The NOSEEK option cannot be specified.

3. Manipulate the file as needed by the application.

4. When the application is done with the file, fflush() the file, before any fclose() is

issued. This will ensure, if an x37 is going to occur during fflush() or fclose()

processing, that the x37 occurs in the fflush(), before the fclose() occurs.

5. An x37 abend occurs during fflush().

6. The signal handler will receive control.

7. Once inside the signal handler, fclose() the file.

8. The application can now continue and manipulate the file again if desired.

For example:

134 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|
|

CCNGOS4

/* example of signal handler */

#include <stdio.h>

#include <stdlib.h>

#include <dynit.h>

#include <signal.h>

#include <setjmp.h>

void sighandler();

jmp_buf env;

FILE *f;

int main()

{

 int rc;

 int s=80;

 int w;

 char buff 80 ="data";

 __dyn_t ip;

 redo:

 dyninit(&ip);

 ip.__dsname="MY.DATASET";

 ip.__status=__DISP_OLD;

 ip.__ddname="NAMEDD";

 ip.__conddisp=__DISP_CATLG;

 rc=dynalloc(&ip);

 f=fopen("DD:NAMEDD","wb");

 if (f==0)

 { perror("open error");

 return 12;

 }

 signal(SIGABND,sighandler);

 signal(SIGIOERR,sighandler);

 while (1)

 {

 if (setjmp(env))

 {

 dyninit(&ip);

 ip.__ddname="NAMEDD";

 ip.__conddisp=__DISP_CATLG;

 rc= dynfree(&ip);

 goto retry;

 }

 w=fwrite(buff,1,s,f);

 }

 fflush(f);

 fclose(f);

 retry:

 goto redo;

}

void sighandler() {

 fclose(f);

 longjmp(env,1);

}

Figure 15. Example of signal handler

Chapter 10. Performing OS I/O operations 135

Note: When an abend condition occurs, a write-to-programmer message about the

abend is issued and your DCB abend exit is given control, provided there is

an active DCB abend exit routine address in the exit list contained in the

DCB being processed. If STOW called the end-of-volume routines to get

secondary space to write an end-of-file mark for a PDS, or if the DCB being

processed is for an indexed sequential data set, the DCB abend exit routine

is not given control if an abend condition occurs. If the situation described

above is encountered, the Language Environment DCB abend exit will not

receive control, and therefore the signal handler routine in an application will

not receive control for the x37 abend.

Renaming and removing files

You can remove or rename a z/OS data set that has an uppercase filename by

using the remove() or rename() library functions, respectively. rename() and

remove() both accept data set names. rename() does not accept ddnames, but

remove() does. You can use remove() or rename() on individual members or entire

PDSs or PDSEs. If you use rename() for a member, you can change only the name

of the member, not the name of the entire data set. To rename both the member

and the data set, make two calls to rename(), one for the member and one for the

whole PDS or PDSE.

fldata() behavior

The format of the fldata() function is as follows:

int fldata(FILE *file, char *filename,

fldata_t *info);

The fldata() function is used to retrieve information about an open stream. The

name of the file is returned in filename and other information is returned in the

fldata_t structure, shown in the figure below. Values specific to this category of I/O

are shown in the comment beside the structure element. Additional notes pertaining

to this category of I/O follow the figure.

For more information on the fldata() function, refer to z/OS XL C/C++ Run-Time

Library Reference.

136 z/OS V1R8.0 XL C/C++ Programming Guide

Notes:

 1. If you have opened the file by its data set name, filename is fully qualified,

including quotation marks. If you have opened the file by ddname, filename is

dd:ddname, without any quotation marks. The ddname is uppercase. If you

specified a member on the fopen() or freopen() function call, the member is

returned as part of filename.

struct __fileData {

 unsigned int __recfmF : 1, /* */

 __recfmV : 1, /* */

 __recfmU : 1, /* */

 __recfmS : 1, /* */

 __recfmBlk : 1, /* */

 __recfmASA : 1, /* */

 __recfmM : 1, /* */

 __dsorgPO : 1, /* */

 __dsorgPDSmem : 1, /* */

 __dsorgPDSdir : 1, /* */

 __dsorgPS : 1, /* */

 __dsorgConcat : 1, /* */

 __dsorgMem : 1, /* N/A -- always off */

 __dsorgHiper : 1, /* N/A -- always off */

 __dsorgTemp: 1, /* */

 __dsorgVSAM: 1, /* N/A -- always off */

 __dsorgHFS : 1, /* N/A -- always off */

 __openmode : 2, /* one of: */

 /* __TEXT */

 /* __BINARY */

 /* __RECORD */

 __modeflag : 4, /* combination of: */

 /* __READ */

 /* __WRITE */

 /* __APPEND */

 /* __UPDATE */

 __dsorgPDSE: 1, /* */

 __reserve2 : 8; /* */

 __device_t __device; /* one of: */

 /* __DISK */

 /* __TAPE */

 /* __PRINTER */

 /* __DUMMY */

 /* __OTHER */

 unsigned long __blksize, /* */

 __maxreclen; /* */

 union { /* */

 struct { /* */

 unsigned short __vsam_type; /* N/A */

 unsigned long __vsam_keylen; /* N/A */

 unsigned long __vsam_RKP; /* N/A */

 } __vsam; /* */

 struct { /* */

 unsigned short __disk_vsam_type; /* */

 unsigned char __disk_access_method; /* */

 unsigned char __disk_noseek_to_seek; /* */

 long __disk_reserve[2]; /* */

 } __disk; /* */

 } __device_specific; /* */

 char * __dsname; /* */

 unsigned int __reserve4; /* */

};

typedef struct __fileData fldata_t;

Figure 16. fldata() Structure

Chapter 10. Performing OS I/O operations 137

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

2. Any of the __recfm bits may be set on for OS files.

 3. The __dsorgPO bit will be set on only if you are reading a directory or member

of a partitioned data set, either regular or extended, regardless of whether the

member is specified on a DD statement or on the fopen() or freopen()

function call. The __dsorgPS bit will be set on for all other OS files.

 4. The __dsorgPDSE bit will be set when processing an extended partitioned data

set (PDSE).

 5. The __dsorgConcat bit will be set on for a concatenation of sequential data

sets, but not for a concatenation of partitioned data sets.

 6. The __dsorgTemp bit will be set on only if the file was created using the

tmpfile() function.

 7. The __blksize value may include BDW and RDWs.

 8. The __maxreclen value may include the ASA character.

 9. The __recfm bits and the __blksize and __maxreclen values correspond to the

attributes of the open stream. They do not necessarily reflect the attributes of

the existing data set.

10. The __dsname field is filled in for __DISK files with the data set name. The

member name is added if the file is a member of a partitioned data set, either

regular or extended. The __dsname value is uppercase unless the asis option

was specified on the fopen() or freopen() function call. The __dsname field is

set to NULL for all other OS files.

138 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 11. Performing UNIX file system I/O operations

You can create the following HFS file types:

v Regular

v Link

v Directory

v Character special

v FIFO

The Single UNIX Specification defines another type of file called STREAMS. Even

though the system interfaces are provided, it is impossible to have a valid STREAMS

file descriptor. These interfaces will always return a return code of -1 with errno set

to indicate an error such as, EBADF, EINVAL, or ENOTTY.

HFS streams follow the binary model, regardless of whether they are opened for

text, binary, or record I/O. You can simulate record I/O by using new-line characters

as record boundaries.

For information on the hierarchical file system and access to files within it from

other than the C or C++ language, see z/OS UNIX System Services User’s Guide.

For an introduction to and description of the behavior of a POSIX-defined file

system, see Zlotnick, Fred, The POSIX.1 Standard: A Programmer’s

Guide,,Redwood City, CA: The Benjamin/Cummings Publishing Company, Inc.,

1991.

This chapter describes C I/O stream functions as they can be used within C++

programs. If you want to use the C++ I/O stream classes instead, see Chapter 4,

“Using the Standard C++ Library I/O Stream Classes,” on page 39. For more

detailed information, see Standard C++ Library Reference. For information about

using wide-character I/O with z/OS XL C/C++, see Chapter 8, “z/OS XL C Support

for the double-byte character set,” on page 69.

Creating files

You can use library functions to create the following types of HFS files.

v Regular Files

v Link and Symbolic Link Files

v Directory Files

v Character Special Files

v FIFO Files

Regular files

Use any of the following C functions to create HFS regular files:

v creat()

v fopen()

v freopen()

v open()

For a description of these and other I/O functions, see z/OS XL C/C++ Run-Time

Library Reference.

© Copyright IBM Corp. 1996, 2006 139

Link and symbolic link files

Use either of the following C functions to create HFS link or symbolic link files:

v link()

v symlink()

Directory files

Use the following C function to create an HFS directory file:

v mkdir()

Character special files

Use the following C function to create an HFS character special file:

v mknod()

You must have superuser authority to create a character special file.

Other functions used for character special files are:

v ptsname()

v grantpt()

v unlockpt()

v tcgetsid()

v ttyname()

v isatty()

FIFO files

Use the following C function to create an HFS FIFO file (named pipe):

v mkfifo()

To create an unnamed pipe, use the following C function:

v pipe()

Opening files

This section discusses the use of the fopen() or freopen() library functions to open

Hierarchical File System (HFS) I/O files. You can also access HFS files using

low-level I/O open() function. See “Low-level z/OS UNIX System Services I/O” on

page 153 for information about low-level I/O, and z/OS XL C/C++ Run-Time Library

Reference for information about any of the functions listed above.

The name of an HFS file can include characters chosen from the complete set of

character values, except for null characters. If you want a portable filename, then

choose characters from the POSIX .1 portable filename character set.

The complete pathname can begin with a slash and be followed by zero, one, or

more filenames, each separated by a slash. If a directory is included within the

pathname, it may have one or more trailing slashes. Multiple slashes following one

another are interpreted as one slash.

If your program is running under POSIX(ON), all valid POSIX names are passed with

the asis fopen() parameter to the POSIX open() function.

140 z/OS V1R8.0 XL C/C++ Programming Guide

You can access either HFS files or MVS data sets from programs. Programs

accessing files or data sets can be executed with either the POSIX(OFF) or

POSIX(ON) run-time options. There are basic file naming rules that apply for HFS

files and MVS data sets. However, there are also special z/OS XL C/C++ naming

considerations that depend on how you execute your program.

The POSIX run-time option determines the type of z/OS XL C/C++ services and I/O

available to your program. (See z/OS XL C/C++ User’s Guide for a discussion of

the z/OS UNIX System Services programming environment and overview of binding

z/OS UNIX System Services XL C/C++ applications.)

Both the basic and special z/OS XL C/C++ file naming rules for HFS files are

described in the sections that follow. Examples are provided. All examples must be

run with the POSIX(ON) option. For information about MVS data sets, see

Chapter 10, “Performing OS I/O operations,” on page 99.

Using fopen() or freopen()

When you open a file with fopen() or freopen(), you must specify the data set

name, file name, or ddname.

File naming considerations

Files are opened with a call to fopen() or freopen() in the format

fopen("filename", "mode").

HFS Files: The following is the format for the pathname argument on the fopen()

or freopen() function:

�� pathname

"

/

.

dd:

ddname

//

DD:

(

member

)

"

 ��

The POSIX.1 standard defines pathname as the information that identifies a file. For

the z/OS UNIX System Services implementation of the POSIX.1 standard, a

pathname can be up to 1024 characters—including the null-terminating character.

Optionally, it can begin with a slash character (/) followed by directory names

separated by slash characters and a filename. For the pathname, each directory

name or the filename can be up to 255 characters long.

Note: Regardless of whether your program is run under z/OS UNIX System

Services or as a traditional MVS application, if the pathname that you

attempt to open using fopen() or freopen() contains a slash character but

does not begin with exactly two slashes, an HFS file is opened. For

example, if you code:

fopen("tradnsell/parts.order", "w+")

the HFS file tradnsell/parts.order from the working directory is opened.

If you begin the pathname value with ./, the specified HFS file in the

working directory is opened:

fopen("./parts.order", "w+")

Likewise, if you begin the pathname value with /, the specified HFS file in

the root directory is opened:

Chapter 11. Performing UNIX file system I/O operations 141

fopen("/parts.order", "w+")

If you specify more than two consecutive slash characters anywhere in a pathname,

all but the first slash character is ignored, as in the following examples:

"//a.b" MVS data set prefix.a.b

"///a.b" HFS file /a.b

"////a.b" HFS file /a.b

"a////b.c" HFS file a/b.c

"/a.b" HFS file /a.b

"/a///b.c" HFS file /a/b.c

If you specify /dd:pathname or ./dd:pathname, a file named dd:pathname is opened

in the file system root directory or your working directory, respectively. For example,

if you code:

fopen("/dd:parder", "w+")

the file dd:parder is opened in the root directory.

For HFS files, leading and trailing white spaces are significant.

Opening a file by name

Which type of file (HFS or MVS data set) you open may depend on whether the

z/OS XL C/C++ application program is running under POSIX(ON).

For an application program that is to be run under POSIX(ON), you can include in

your program statements similar to the following to open the HFS file parts.instock

for reading in the working directory:

FILE *stream;

stream = fopen("parts.instock", "r");

To open the MVS data set user-prefix.PARTS.INSTOCK for reading, include statements

similar to the following in your program:

FILE *stream;

stream = fopen("//parts.instock", "r");

For an application program that is to be run as a traditional z/OS XL C/C++

application program, with POSIX(OFF), to open the MVS data set

user-prefix.PARTS.INSTOCK for reading, include statements similar to the following in

your program:

FILE *stream;

stream = fopen("parts.instock", "r");

To open the HFS file parts.instock in the working directory for reading, include

statements similar to the following in your program:

FILE *stream;

stream = fopen("./parts.instock", "r");

142 z/OS V1R8.0 XL C/C++ Programming Guide

Opening a file by DDname

The DD statement enables you to write z/OS XL C/C++ source programs that are

independent of the files and I/O devices they will use. You can modify the

parameters of a file or process different files without recompiling your program.

When dd:ddname is specified to fopen() or freopen(), the z/OS XL C/C++ library

looks to find and resolve the data definition information for the filename to open. If

the data definition information points to an MVS data set, MVS data set naming

rules are followed. If an HFS file is indicated using the PATH parameter on the data

definition statement, a ddname is resolved to the associated pathname.

Note: Use of the z/OS XL C/C++ fork() library function from an application

program under z/OS UNIX System Services does not replicate the data

definition information of the parent process in the child process. Use of any

of the exec() library functions deallocates the data definition information for

the application process.

For the declaration just shown for the HFS file parts.instock, you should write a

JCL DD statement similar to the following:

//PSTOCK DD PATH=’/u/parts.instock’,...

For more information on writing DD statements, you should refer to the job control

language (JCL) manual z/OS MVS JCL Reference.

To open the file by DD name under TSO/E, you must write an ALLOCATE command.

For the declaration of an HFS file parts.instock, you should write a TSO/E

ALLOCATE command similar to the following:

ALLOCATE DDNAME(PSTOCK) PATH(’/u/parts.instock’)...

See z/OS TSO/E Command Reference for more information on TSO ALLOCATE.

fopen() and freopen() parameters

The following table lists the parameters that are available on the fopen() and

freopen() functions, tells you which ones are useful for HFS I/O, and lists the

values that are valid for the applicable ones.

 Table 22. Parameters for the fopen() and freopen() functions for HFS I/O

Parameter Allowed? Applicable? Notes

recfm= Yes No HFS I/O uses a continuous stream of data

as its file format.

lrecl= Yes No HFS I/O uses a continuous stream of data

as its file format.

blksize= Yes No HFS I/O uses a continuous stream of data

as its file format.

space= Yes No Not used for HFS I/O.

type= Yes Yes May be omitted. If you do specify it,

type=record is the only valid value.

acc= Yes No Not used for HFS I/O.

password= Yes No Not used for HFS I/O.

asis Yes No Not used for HFS I/O.

byteseek Yes No Not used for HFS I/O.

Chapter 11. Performing UNIX file system I/O operations 143

Table 22. Parameters for the fopen() and freopen() functions for HFS I/O (continued)

Parameter Allowed? Applicable? Notes

noseek Yes No Not used for HFS I/O.

OS Yes No Not used for HFS I/O.

recfm=

Ignored for HFS I/O.

lrecl= and blksize=

Ignored for HFS I/O, except that lrecl affects the value returned in the

__maxreclen field of fldata() as described below.

acc=

Ignored for HFS I/O.

password

Ignored for HFS I/O.

space=

Ignored for HFS I/O.

type=

The only valid value for this parameter under HFS is type=record. If you specify

this, your file follows the HFS record I/O rules:

1. One record is defined to be the data up to the next new-line character.

2. When an fread() is done the data will be copied into the user buffer as if

an fgets(buf, size_item*num_items, stream) were issued. Data is read

into the user buffer up to the number of bytes specified on the fread(), or

until a new-line character or EOF is found. The new-line character is not

included.

3. When an fwrite() is done the data will be written from the user buffer with

a new-line character added by the RTL code. Data is written up to the

number of bytes specified on the fwrite(); the new-line is added by the

RTL and is not included in the return value from fwrite().

4. If you have specified an lrecl and type=record, fldata() of this stream will

return the lrecl you specified, in the __maxreclen field of the __fileData

return structure of stdio.h. If you specified type=record but no lrecl, the

__maxreclen field will contain 1024.

If type=record is not in effect, a call to fldata() of this stream will return 0 in

the __maxreclen field of the __fileData return structure of stdio.h.

asis

Ignored for HFS I/O.

byteseek

Ignored for HFS I/O.

noseek

Ignored for HFS I/O.

OS Ignored for HFS I/O.

144 z/OS V1R8.0 XL C/C++ Programming Guide

Reading from HFS files

You can use the following library functions to read in information from HFS files:

v fread()

v fgets()

v gets()

v fgetc()

v getc()

v getc_unlocked()

v getchar()

v getchar_unlocked()

v scanf()

v fscanf()

v read()

v pread()

v vscanf()

v vfscanf()

fread() is the only interface allowed for reading record I/O files. See z/OS XL

C/C++ Run-Time Library Reference for more information on all of the above library

functions.

For z/OS UNIX System Services low-level I/O, you can use the read() and readv()

function.

See “Low-level z/OS UNIX System Services I/O” on page 153.

Opening and reading from HFS directory files

To open an HFS directory, you can use the opendir() function.

You can use the following library functions to read from and position within HFS

directories:

v readdir()

v seekdir()

v telldir()

To close a directory, use the closedir() function.

Writing to HFS files

You can use the following library functions to write to HFS files:

v fwrite()

v printf()

v fprintf()

v vprintf()

v vfprintf()

v puts()

v fputs()

Chapter 11. Performing UNIX file system I/O operations 145

|

|

v fputc()

v putc()

v putc_unlocked()

v putchar()

v putchar_unlocked()

v write()

v pwrite()

fwrite() is the only interface allowed for writing to record I/O files. See z/OS XL

C/C++ Run-Time Library Reference for more information on all of the above library

functions. For z/OS UNIX System Services low-level I/O, you can use the write()

and writev() function.

Flushing records

You can use the library function fflush() to flush streams to the system. For more

information about fflush(), see z/OS XL C/C++ Run-Time Library Reference.

The action taken by the fflush() library function depends on the buffering mode

associated with the stream and the type of streams. If you call one z/OS XL C/C++

program from another z/OS XL C/C++ program by using the ANSI system()

function, all open streams are flushed before control is passed to the callee, and

again before control is returned to the caller. A call to the POSIX system() function

does not flush any streams.

For HFS files, the fflush() function copies the data from the run-time buffer to the

file system. The fsync() function copies the data from the file system buffer to the

storage device.

Setting positions within files

You can use the following library functions to help you reposition within a regular

file:

v fseek()

v fseeko()

v ftell()

v ftello()

v fgetpos()

v fsetpos()

v rewind()

v lseek()

With Large Files support in 31-bit applications, you can use the following library

functions for 64-bit offset and file sizes.

v fseeko()

v ftello()

v lseek()

In AMODE 64 applications, large file offsets and sizes are automatically available

through the LP64 programming model. All of the above functions can be used with

64-bit offsets and file sizes.

146 z/OS V1R8.0 XL C/C++ Programming Guide

|

|

See z/OS XL C/C++ Run-Time Library Reference for more information on these

library functions.

Closing files

You can use fclose(), freopen(), or close() to close a file. z/OS XL C/C++

automatically closes files on normal program termination, and attempts to do so

under abnormal program termination or abend. See z/OS XL C/C++ Run-Time

Library Reference for more information on these library functions. For z/OS UNIX

System Services low-level I/O, you can use the close() function. When you use

any exec() or fork() function, files defined as “marked to be closed” are closed

before control is returned.

Deleting files

Use the unlink() or remove() z/OS XL C/C++ function to delete the following types

of HFS files:

v Regular

v Character special

v FIFO

v Link files

Use the rmdir() z/OS XL C/C++ function to delete an HFS directory file. See z/OS

XL C/C++ Run-Time Library Reference for more information about these functions.

Pipe I/O

POSIX.1 pipes represent an I/O channel that processes can use to communicate

with other processes. Pipes are conceptually like HFS files. One process can write

data into a pipe, and another process can read data from the pipe.

z/OS UNIX System Services XL C/C++ supports two types of POSIX.1-defined

pipes: unnamed pipes and named pipes (FIFO files).

An unnamed pipe is accessible only by the process that created the pipe and its

child processes. An unnamed pipe does not have to be opened before it can be

used. It is a temporary file that lasts only until the last file descriptor that references

it is closed. You can create an unnamed pipe by calling the pipe() function.

A named pipe can be used by independent processes and must be explicitly

opened and closed. Named pipes are also referred to as first-in, first-out (FIFO)

files, or FIFOs. You can create a named pipe by calling the mkfifo() function. If you

want to stream I/O after a pipe() function, call the fdopen() function to build a

stream on one of the file descriptors returned by pipe(). If you want to stream I/O

on a FIFO file, open the file with fdopen() together with one of fopen(), freopen(),

or open(). When the stream is built, you can then use Standard C I/O functions,

such as fgets() or printf(), to carry out input and output.

Using unnamed pipes

If your z/OS UNIX System Services XL C/C++ application program forks processes

that need to communicate among themselves for work to be done, you can take

advantage of POSIX.1-defined unnamed pipes. If your application program’s

processes need to communicate with other processes that it did not fork, you

Chapter 11. Performing UNIX file system I/O operations 147

should use the POSIX.1-defined named pipe (FIFO special file) support. See “Using

named pipes” on page 149 for more information.

When you code the pipe() function to create a pipe, you pass a pointer to a

two-element integer array where pipe() puts the file descriptors it creates. One

descriptor is for the input end of the pipe, and the other is for the output end of the

pipe. You can code your application so that one process writes data to the input

end of the pipe and another process reads from the output end on a first-in-first-out

basis. You can also build a stream on the pipe by using fdopen(), and use buffered

I/O functions. The result is that you can communicate data between a parent

process and any of its child processes.

The opened pipe is assigned the two lowest-numbered file descriptors available.

z/OS UNIX System Services provide no security checks for unnamed pipes,

because such a pipe is accessible only by the parent process that creates the pipe

and any of the parent process’s descendent processes. When the parent process

ends, an unnamed pipe created by the process can still be used, if needed, by any

existing descendant process that has an open file descriptor for the pipe.

Consider the following example, where you open a pipe, do a write operation, and

later do a read operation from the pipe.

148 z/OS V1R8.0 XL C/C++ Programming Guide

CCNGHF1

 For more information on the pipe() function and the file I/O functions, see z/OS XL

C/C++ Run-Time Library Reference.

Using named pipes

If the z/OS UNIX System Services XL C/C++ application program you are

developing requires its active processes to communicate with other processes that

are active but may not be from the same program, code your application program to

create a named pipe (FIFO file). Named pipes allow transfer of data between

processes in a FIFO manner and synchronization of process execution. Use of a

named pipe allows processes to communicate even though they do not know what

processes are on the other end of the pipe. Named pipes differ from standard

unnamed pipes, created using the pipe() function, in that they involve the creation

of a real file that is available for I/O operations to properly authorized processes.

Within the application program, you create a named pipe by coding a mkfifo() or

mknod() function. You give the FIFO a name and an access mode when you create

/* this example shows how unnamed pipes may be used */

#include <unistd.h>

#include <stdio.h>

#include <errno.h>

int main() {

int ret_val;

int pfd[2];

char buff[32];

char string1[]="String for pipe I/O";

ret_val = pipe(pfd); /* Create pipe */

if (ret_val != 0) { /* Test for success */

 printf("Unable to create a pipe; errno=%d\n",errno);

 exit(1); /* Print error message and exit */

}

if (fork() == 0) {

 /* child program */

 close(pfd[0]); /* close the read end */

 ret_val = write(pfd[1],string1,strlen(string1)); /*Write to pipe*/

 if (ret_val != strlen(string1)) {

 printf("Write did not return expected value\n");

 exit(2); /* Print error message and exit */

 }

}

else {

 /* parent program */

 close(pfd[1]); /* close the write end of pipe */

 ret_val = read(pfd[0],buff,strlen(string1)); /* Read from pipe */

 if (ret_val != strlen(string1)) {

 printf("Read did not return expected value\n");

 exit(3); /* Print error message and exit */

 }

 printf("parent read %s from the child program\n",buff);

}

exit(0);

}

Figure 17. Unnamed pipes example

Chapter 11. Performing UNIX file system I/O operations 149

it. If the access mode allows all users read and write access to the named pipe,

any process that knows its name can use it to send or receive data.

Processes can use the open() function to access named pipes and then use the

regular I/O functions for files, such as read(), write(), and close(), when

manipulating named pipes. Buffered I/O functions can also be used to access and

manipulate named pipes. For more information on the mkfifo() and mknod()

functions and the file I/O functions, see z/OS XL C/C++ Run-Time Library

Reference.

Restriction: If fopen() is used to open named pipes in a multi-threaded

environment, a deadlock will occur. This deadlock is caused by a named pipe

waiting for the other end of the pipe to be opened, while still holding the fopen()

multi-thread mutex. To prevent this deadlock, use open() to open the named pipe,

instead of fopen().

z/OS UNIX System Services does security checks on named pipes.

The following steps outline how to use a named pipe from z/OS UNIX System

Services XL C/C++ application programs:

1. Create a named pipe using the mkfifo() function. Only one of the processes

that use the named pipe needs to do this.

2. Access the named pipe using the appropriate I/O method.

3. Communicate through the pipe with another process using file I/O functions:

a. Write data to the named pipe.

b. Read data from the named pipe.

4. Close the named pipe.

5. If the process created the named pipe and the named pipe is no longer needed,

remove that named pipe using the unlink() function.

A process running the following simple example program creates a new named pipe

with the file pathname pointed to by the path value coded in the mkfifo() function.

The access mode of the new named pipe is initialized from the mode value coded in

the mkfifo() function. The file permission bits of the mode argument are modified

by the process file creation mask.

As an example, a process running the following program code creates a child

process and then creates a named pipe called fifo.test. The child process then

writes a data string to the pipe file. The parent process reads from the pipe file and

verifies that the data string it reads is the expected one.

Note: The two processes are related and have agreed to communicate through the

named pipe. They need not be related, however. Other authorized users can

run the same program and participate in (or interfere with) the process

communication.

150 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|
|
|

CCNGHF2

/* this example shows how named pipes may be used */

 #define _OPEN_SYS

 #include <stdio.h>

 #include <unistd.h>

 #include <errno.h>

 #include <fcntl.h>

 #include <wait.h>

/* *

 * Sample use of mkfifo() *

 * */

main()

{ /* start of program */

 int flags, ret_value, c_status;

 pid_t pid;

 size_t n_elements;

 char char_ptr[32];

 char str[] = "string for fifo ";

 char fifoname[] = "temp.fifo";

 FILE *rd_stream,*wr_stream;

 if ((mkfifo(fifoname,S_IRWXU)) != 0) {

 printf("Unable to create a fifo; errno=%d\n",errno);

 exit(1); /* Print error message and return */

 }

 if ((pid = fork()) < 0) {

 perror("fork failed");

 exit(2);

 }

 if (pid == (pid_t)0) { /* CHILD process */

 /* issue fopen for write end of the fifo */

 wr_stream = fopen(fifoname,"w");

 if (wr_stream == (FILE *) NULL) {

 printf("In child process\n");

 printf("fopen returned a NULL, expected valid stream\n");

 exit(100);

 }

 /* perform a write */

 n_elements = fwrite(str,1,strlen(str),wr_stream);

 if (n_elements != (size_t) strlen(str)) {

 printf("Fwrite returned %d, expected %d\n",

 (int)n_elements,strlen(str));

 exit(101);

 }

 exit(0); /* return success to parent */

 }

Figure 18. Named pipes example (Part 1 of 3)

Chapter 11. Performing UNIX file system I/O operations 151

else { /* PARENT process */

 /* issue fopen for read */

 rd_stream = fopen(fifoname,"r");

 if (rd_stream == (FILE *) NULL) {

 printf("In parent process\n");

 printf("fopen returned a NULL, expected valid pointer\n");

 exit(2);

 }

 /* get current flag settings of file */

 if ((flags = fcntl(fileno(rd_stream),F_GETFL)) == -1) {

 printf("fcntl returned -1 for %s\n",fifoname);

 exit(3);

 }

 /* clear O_NONBLOCK and reset file flags */

 flags &= (O_NONBLOCK);

 if ((fcntl(fileno(rd_stream),F_SETFL,flags)) == -1) {

 printf("\nfcntl returned -1 for %s",fifoname);

 exit(4);

 }

 /* try to read the string */

 ret_value = fread(char_ptr,sizeof(char),strlen(str),rd_stream);

 if (ret_value != strlen(str)) {

 printf("\nFread did not read %d elements as expected ",

 strlen(str));

 printf("\nret_value is %d ",ret_value);

 exit(6);

 }

 if (strncmp(char_ptr,str,strlen(str))) {

 printf("\ncontents of char_ptr are %s ",

 char_ptr);

 printf("\ncontents of str are %s ",

 str);

 printf("\nThese should be equal");

 exit(7);

 }

 ret_value = fclose(rd_stream);

 if (ret_value != 0) {

 printf("\nFclose failed for %s",fifoname);

 printf("\nerrno is %d",errno);

 exit(8);

 }

Figure 18. Named pipes example (Part 2 of 3)

152 z/OS V1R8.0 XL C/C++ Programming Guide

Character special file I/O

A named pipe (FIFO file) is a type of character special file. Therefore, it obeys the

I/O rules for character special files rather than the rules for regular files:

v It cannot be opened in read/write mode. A process must open a named pipe in

either write-only or read-only mode.

v It must be opened in read mode by a process before it can be opened in write

mode by another process. Otherwise, the file is blocked from use for I/O by

processes. Blocked processes can cause an application program to hang.

A single process intending to access a named pipe can use an open() function

with O_NONBLOCK to open the read end of the named pipe. It can then open the

named pipe in write mode.

Note: The fopen() function cannot be used to accomplish this.

Low-level z/OS UNIX System Services I/O

Low-level z/OS UNIX System Services I/O is the POSIX.1-defined I/O method. All

input and output is processed using the defined read(), readv(), write(), and

writev() functions.

For application programmers used to a UNIX environment, z/OS UNIX System

Services behaves in familiar and predictable ways. Standard UNIX programming

practices for shared resources, along with designing applications to respect locks

put on files by multiple threads running in a process, will ensure that data is

handled predictably.

For a discussion of POSIX.1-defined low-level I/O and some of the practical

considerations to take into account when designing an application, see The

POSIX.1 Standard: A Programmer’s Guide, by Fred Zlotnick (Redwood City, CA:

The Benjamin/Cummings Publishing Company, Inc., 1991).

Example of HFS I/O functions

The following example demonstrates the use of z/OS UNIX System Services stream

input/output by writing streams to a file, reading the input lines, and replacing a line.

 ret_value = remove(fifoname);

 if (ret_value != 0) {

 printf("\nremove failed for %s",fifoname);

 printf("\nerrno is %d",errno);

 exit(9);

 }

 pid = wait(c_status);

 if ((WIFEXITED(c_status) !=0) &&; (WEXITSTATUS(c_status) !=0)) {

 printf("\nchild exited with code %d",WEXITSTATUS(c_status));

 exit(10);

 }

 } /* end of else clause */

 printf("About to issue exit(0), \

processing completed successfully\n");

 exit(0);

}

Figure 18. Named pipes example (Part 3 of 3)

Chapter 11. Performing UNIX file system I/O operations 153

CCNGHF3

/* this example uses HFS stream I/O */

#define _OPEN_SYS

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

#include <unistd.h>

#include <fcntl.h>

#include <sys/types.h>

#undef _OPEN_SYS

FILE *stream;

char string1[] = "A line of text."; /* NOTE: There are actually 16 */

char string2[] = "Find this line."; /* characters in each line of */

char string3[] = "Another stream."; /* text. The 16th is a null */

char string4[16]; /* terminator on each string. */

long position, strpos; /* Since the null character */

int i, result, fd; /* is not being written to */

int rc; /* the file, 15 is used as */

 /* the data stream length. */

ssize_t x;

char buffer[16];

int main(void)

{

 /* Write continuous streams to file */

 if ((stream = fopen("./myfile.data","wb"))==NULL) {

 perror("Error opening file");

 exit(0);

 }

 for(i=0; i<12;i++) {

 int len1 = strlen(string1);

 rc = fwrite(string1, 1, len1, stream);

 if (rc != len1) {

 perror("fwrite failed");

 printf("i = %d\n", i);

 exit(99);

 }

 }

Figure 19. Example of HFS stream input and output functions (Part 1 of 3)

154 z/OS V1R8.0 XL C/C++ Programming Guide

rc = fwrite(string2,1,sizeof(string2)-1,stream);

 if (rc != sizeof(string2)-1) {

 perror("fwrite failed");

 exit(99);

 }

 for(i=0;i<12;i++) {

 rc = fwrite(string1,1,sizeof(string1)-1,stream);

 if (rc != sizeof(string1)-1) {

 perror("fwrite failed");

 printf("i = %d\n", i);

 exit(99);

 }

 }

 fclose(stream);

 /* Read data stream and search for location of string2. */

 /* EOF is not set until an attempt is made to read past the */

 /* end-of-file, thus the fread is at the end of the while loop */

 stream = fopen("./myfile.data", "rb");

 if ((position = ftell(stream)) == -1L)

 perror("Error saving file position.");

 rc = fread(string4, 1, sizeof(string2)-1, stream);

 while(!feof(stream)) {

 if (rc != sizeof(string2)-1) {

 perror("fread failed");

 exit(99);

 }

 if (strstr(string4,string2) != NULL) /* If string2 is found */

 strpos = position ; /* then save position. */

 if ((position=ftell(stream)) == -1L)

 perror("Error saving file position.");

 rc = fread(string4, 1, sizeof(string2)-1, stream);

 }

Figure 19. Example of HFS stream input and output functions (Part 2 of 3)

Chapter 11. Performing UNIX file system I/O operations 155

To use 64-bit offset and file sizes, you must make the following changes in your

code:

1. Change any variables used for offsets in fseek() or ftell() that are int

or long to the off_t data type.

2. Define the _LARGE_FILES 1 feature test macro.

3. Replace fseek()/ftell() with fseeko()/ftello(). See z/OS XL C/C++

Run-Time Library Reference for descriptions of these functions.

4. Compile with the LANGLVL(LONGLONG) compiler option.

Notes:

1. These changes are compatible with your older files.

2. Large Files support (64–bit offset and file sizes) is automatic in the LP64

programming model that is used in 64–bit. The long data type is widened to

64–bits. This enables fseek() and ftell() to work with the larger offsets with

no code change. The fseeko() and ftello() functions also work with 64–bit

offsets since off_t is typedef’d as a long int.

The following example provides the same function as CCNGHF3, but it uses 64-bit

offsets. The changed lines are marked in a bold font.

 fclose(stream);

 /* Replace line containing string2 with string3 */

 fd = open("test.data",O_RDWR);

 if (fd < 0){

 perror("open failed\n");

 }

 x = write(fd,"a record",8);

 if (x < 8){

 perror("write failed\n");

 }

 rc = lseek(fd,0,SEEK_SET);

 x = read(fd,buffer,8);

 if (x < 8){

 perror("read failed\n");

 }

 printf("data read is %.8s\n",buffer);

 close(fd);

}

Figure 19. Example of HFS stream input and output functions (Part 3 of 3)

156 z/OS V1R8.0 XL C/C++ Programming Guide

CCNGHF4

/* this example uses HFS stream I/O and 64-bit offsets*/

#define _OPEN_SYS

#define _LARGE_FILES 1

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

#include <unistd.h>

#include <fcntl.h>

#include <sys/types.h>

#undef _OPEN_SYS

FILE *stream;

char string1[] = "A line of text."; /* NOTE: There are actually 16 */

char string2[] = "Find this line."; /* characters in each line of */

char string3[] = "Another stream."; /* text. The 16th is a null */

char string4[16]; /* terminator on each string. */

off_t position,strpos; /* Since the null character */

int i, result, fd; /* is not being written to */

int rc; /* the file, 15 is used as */

 /* the data stream length. */

ssize_t x;

char buffer[16];

int main(void)

{

 /* Write continuous streams to file */

 if ((stream = fopen("./myfile.data","wb"))==NULL) {

 perror("Error opening file");

 exit(0);

 }

 for(i=0; i<12;i++) {

 int len1 = strlen(string1);

 rc = fwrite(string1, 1, len1, stream);

 if (rc != len1) {

 perror("fwrite failed");

 printf("i = %d\n", i);

 exit(99);

 }

 }

Figure 20. Example of HFS stream input and output functions (Part 1 of 3)

Chapter 11. Performing UNIX file system I/O operations 157

rc = fwrite(string2,1,sizeof(string2)-1,stream);

 if (rc != sizeof(string2)-1) {

 perror("fwrite failed");

 exit(99);

 }

 for(i=0;i<12;i++) {

 rc = fwrite(string1,1,sizeof(string1)-1,stream);

 if (rc != sizeof(string1)-1) {

 perror("fwrite failed");

 printf("i = %d\n", i);

 exit(99);

 }

 }

 fclose(stream);

 /* Read data stream and search for location of string2. */

 /* EOF is not set until an attempt is made to read past the */

 /* end-of-file, thus the fread is at the end of the while loop */

 stream = fopen("./myfile.data", "rb");

 if ((position=ftello(stream)) == -1LL)

 perror("Error saving file position.");

 rc = fread(string4, 1, sizeof(string2)-1, stream);

 while(!feof(stream)) {

 if (rc != sizeof(string2)-1) {

 perror("fread failed");

 exit(99);

 }

 if (strstr(string4,string2) != NULL) /* If string2 is found */

 strpos = position ; /* then save position. */

 if ((position=ftello(stream)) == -1LL)

 perror("Error saving file position.");

 rc = fread(string4, 1, sizeof(string2)-1, stream);

 }

Figure 20. Example of HFS stream input and output functions (Part 2 of 3)

158 z/OS V1R8.0 XL C/C++ Programming Guide

fldata() behavior

The format of the fldata() function is as follows:

int fldata(FILE *file, char *filename,

fldata_t

*info);

The fldata() function is used to retrieve information about an open stream. The

name of the file is returned in filename and other information is returned in the

fldata_t structure, shown in the figure below. Values specific to this category of I/O

are shown in the comment beside the structure element. Additional notes pertaining

to this category of I/O follow the figure.

For more information on the fldata() function, refer to z/OS XL C/C++ Run-Time

Library Reference.

 fclose(stream);

 /* Replace line containing string2 with string3 */

 fd = open("test.data",O_RDWR);

 if (fd < 0){

 perror("open failed\n");

 }

 x = write(fd,"a record",8);

 if (x < 8){

 perror("write failed\n");

 }

 strpos = lseek(fd,0LL,SEEK_SET); /* Note off_t is 64bits with _LARGE_FILES */

 /* set and the off_t variable */

 /* needs a 64bit constant of 0LL */

 x = read(fd,buffer,8);

 if (x < 8){

 perror("read failed\n");

 }

 printf("data read is %.8s\n",buffer);

 close(fd);

}

Figure 20. Example of HFS stream input and output functions (Part 3 of 3)

Chapter 11. Performing UNIX file system I/O operations 159

Notes:

1. The filename is the same as specified on the fopen() or freopen() function call.

2. The __maxreclen value is 0 for regular I/O (binary). For record I/O the value is

lrecl or the default of 1024 when lrecl is not specified.

3. The __dsname value is the real POSIX pathname.

File tagging and conversion

In general, the file system knows the contents of a file only as a set of bytes.

Applications which create and process bytes in a file know whether these bytes

represent binary data, text (character) data, or a mixture of both. File tags are file

metadata fields which describe the contents of a file. Enhanced ASCII includes the

following file tag fields:

txtflag A flag indicating whether or not a file consists solely of character data

encoded by a single coded character set ID (CCSID).

file ccsid

A 16 bit field specifying the CCSID of characters in the file.

Applications can explicitly tag files via new open() or fcntl() options, or

applications can allow the logical file system (LFS) to tag new files on first write,

struct __fileData {

 unsigned int __recfmF : 1, /* always off */

 __recfmV : 1, /* always off */

 __recfmU : 1, /* always on */

 __recfmS : 1, /* always off */

 __recfmBlk : 1, /* always off */

 __recfmASA : 1, /* always off */

 __recfmM : 1, /* always off */

 __dsorgPO : 1, /* N/A -- always off */

 __dsorgPDSmem : 1, /* N/A -- always off */

 __dsorgPDSdir : 1, /* N/A -- always off */

 __dsorgPS : 1, /* N/A -- always off */

 __dsorgConcat : 1, /* N/A -- always off */

 __dsorgMem : 1, /* N/A -- always off */

 __dsorgHiper : 1, /* N/A -- always off */

 __dsorgTemp: 1, /* N/A -- always off */

 __dsorgVSAM: 1, /* N/A -- always off */

 __dsorgHFS : 1, /* always on */

 __openmode : 2, /* one of: */

 /* __BINARY */

 /* __RECORD */

 __modeflag : 4, /* combination of: */

 /* __READ */

 /* __WRITE */

 /* __APPEND */

 /* __UPDATE */

 __dsorgPDSE: 1, /* N/A -- always off */

 __reserve2 : 8; /* */

 __device_t __device; /* __HFS */

 unsigned long __blksize, /* 0 */

 __maxreclen; /* */

 unsigned short __vsamtype; /* N/A */

 unsigned long __vsamkeylen; /* N/A */

 unsigned long __vsamRKP; /* N/A */

 char * __dsname; /* */

 unsigned int __reserve4; /* */

};

typedef struct __fileData fldata_t;

Figure 21. fldata() structure

160 z/OS V1R8.0 XL C/C++ Programming Guide

fopen(). A new environment variable, _BPXK_CCSID, is used to assign a program

CCSID to an application, which LFS will use to tag new files on first write. LFS also

uses the program CCSID derived from _BPXK_CCSID to set up auto-conversion of

pure text datastreams. LFS attempts to set up auto-conversion when:

v Auto-conversion is enabled for an application by the _BPXK_AUTOCVT environment

variable

v The file txtflag flag is set indicating a pure text file

v The file and program CCSIDs do not match.

Automatic file conversion and file tagging include the following facilities:

v _OPEN_SYS_FILE_EXT feature test macro. For more information, see z/OS XL

C/C++ Run-Time Library Reference .

v _BPXK_AUTOCVT and _BPXK_CCSIDS environment variables. For more information,

see Chapter 31, “Using environment variables,” on page 473.

v z/OS Language Environment FILETAG run-time option. For more information, see

z/OS Language Environment Programming Reference.

v __chattr() and __fchattr() functions; F_SETTAG and F_CONTROL_CVT

arguments for the fcntl() function; options for the fopen(), popen(), stat(),

fstat(), and lstat() functions. For more information, see z/OS XL C/C++

Run-Time Library Reference.

Access Control Lists (ACLs)

Access control lists (ACLs) enable you to control access to files and directories by

individual user (UID) and group (GID). ACLs are used in conjunction with

permission bits. You can create, modify, and delete ACLs using the following

functions:

v acl_create_entry()

v acl_delete_entry()

v acl_delete_fd()

v acl_delete_file()

v acl_first_entry()

v acl_free()

v acl_from_text()

v acl_get_entry()

v acl_get_fd()

v acl_get_file()

v acl_init()

v acl_set_fd()

v acl_set_file()

v acl_sort()

v acl_to_text()

v acl_update_entry()

v acl_valid()

For descriptions of these functions see z/OS XL C/C++ Run-Time Library

Reference. For more information on using ACLs to protect file system resources

see z/OS UNIX System Services Planning and z/OS Security Server RACF Security

Administrator’s Guide.

Chapter 11. Performing UNIX file system I/O operations 161

162 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 12. Performing VSAM I/O operations

VSAM types (data set organization) 164

Access method services . 165

Choosing VSAM data set types 165

Keys, RBAs and RRNs . 167

Keys for indexed VSAM data sets 167

Relative byte addresses 167

CCNGVS1 . 168

Relative record numbers 168

Summary of VSAM I/O operations 168

Opening VSAM data sets . 170

Using fopen() or freopen() 170

File names for MVS data sets: Using a data set name 170

File names for MVS data sets: Using a DDname 171

Specifying fopen() and freopen() keywords 171

fopen() and freopen() keywords 172

Keyword descriptions . 172

Buffering . 174

Record I/O in VSAM . 174

RRDS record structure . 175

Reading record I/O files . 175

Writing to record I/O files . 176

Updating record I/O files . 177

Deleting records . 178

Repositioning within record I/O files 179

flocate() . 179

fgetpos() and fsetpos() 180

ftell() and fseek() . 180

rewind() . 181

Flushing buffers . 181

Summary of VSAM record I/O operations 181

VSAM record level sharing and transactional VSAM 182

Error reporting . 183

VSAM extended addressability 184

Text and binary I/O in VSAM 185

Reading from text and binary I/O files 185

Writing to and updating text and binary I/O files 185

Deleting records in text and binary I/O files 186

Repositioning within text and binary I/O files 186

flocate() . 186

fgetpos() and fsetpos() 187

ftell() and fseek() . 187

Flushing buffers . 188

Summary of VSAM text I/O operations 188

Summary of VSAM binary I/O operations 189

Closing VSAM data sets . 191

VSAM return codes . 191

VSAM examples . 192

KSDS example . 192

CCNGVS2 . 193

CCNGVS3 . 198

RRDS example . 200

CCNGVS4 . 201

© Copyright IBM Corp. 1996, 2006 163

||

fldata() behavior . 203

This chapter outlines the use of Virtual Storage Access Method (VSAM) data sets in

z/OS XL C/C++. Three I/O processing modes for VSAM data sets are available in

z/OS XL C/C++:

v Record

v Text Stream

v Binary Stream

Because VSAM is a record-based access method, record mode is the logical

processing mode and is specified by coding the type=record keyword parameter on

the fopen() function call. z/OS XL C/C++ also provides limited support for VSAM

text streams and binary streams. Because of the record-based nature of VSAM, this

chapter is organized differently from the other chapters in this section. The focus of

this chapter is on record I/O, and only those aspects of text and binary I/O that are

specific to VSAM are also discussed.

For more information about the facilities of VSAM, see the list of “DFSMS” on page

995 publications.

See Chapter 8, “z/OS XL C Support for the double-byte character set,” on page 69

for information about using wide-character I/O with z/OS XL C/C++.

Notes:

1. This chapter describes C I/O as it can be used within C++ programs.

2. The C++ I/O stream libraries cannot be used for VSAM I/O because these do

not support the record processing mode (where type=record is specified).

VSAM types (data set organization)

There are three types of VSAM data sets supported by z/OS XL C/C++, all of which

are held on direct-access storage devices.

v Key-Sequenced Data Set (KSDS) is used when a record is accessed through a

key field within the record (for example, an employee directory file where the

employee number can be used to access the record). KSDS also supports

sequential access. Each record in a KSDS must have a unique key value.

v Entry-Sequenced Data Set (ESDS) is used for data that is primarily accessed in

the order it was created (or the reverse order). It supports direct access by

Relative Byte Address (RBA), and sequential access.

v Relative Record Data Set (RRDS) is used for data in which each item has a

particular number, and the relevant record is accessed by that number (for

example, a telephone system with a record associated with each number). It

supports direct access by Relative Record Number (RRN), and sequential

access.

In addition to the primary VSAM access described above, for KSDS and ESDS,

there is also direct access by one or more additional key fields within each record.

These additional keys can be unique or nonunique; they are called an alternate

index (AIX).

Notes:

1. VSAM Linear Data Sets are not supported in z/OS XL C/C++ I/O.

164 z/OS V1R8.0 XL C/C++ Programming Guide

2. z/OS XL C/C++ supports extended addressable KSDS, ESDS, and RRDS data

sets, but does not support extended addressable KSDS and ESDS alternate

indexes.

Access method services

Access Method Services are generally known by the name IDCAMS on MVS. For

more information, see z/OS DFSMS Access Method Services for Catalogs.

Before a VSAM data set is used for the first time, its structure is defined to the

system by the Access Method Services DEFINE CLUSTER command. This command

defines the type of VSAM data set, its structure, and the space it requires.

Before a VSAM alternate index is used for the first time, its structure is defined to

the system by the Access Method Services DEFINE ALTERNATEINDEX command. To

enable access to the base cluster records through the alternate index, use the

DEFINE PATH command. Finally, to build the alternate index, use the BLDINDEX

command.

When you have built the alternate index, you call fopen() and specify the PATH in

order to access the base cluster through the alternate index. Do not use fopen() to

access the alternate index itself.

Note: You cannot use the BLDINDEX command on an empty base cluster.

Choosing VSAM data set types

When you plan your program, you must first decide the type of data set to use.

Figure 22 on page 166 shows you the possibilities available with the types of VSAM

data sets.

Chapter 12. Performing VSAM I/O operations 165

|
|
|

When choosing the VSAM data set type, you should base your choice on the most

common sequence in which you require data. You should follow a procedure similar

to the one suggested below to help ensure a combination of data sets and indexes

that provide the function you require.

The diagrams show how the information contained in the family tree below could be held in VSAM data sets of different types.

VALERIE SUZIE ANN MORGAN (1967)

FRED (1969) ANDY (1970) SUZAN (1972) JANE (1975)

Key-Sequenced Data Set

Entry-Sequenced Data Set

Relative Record Data Set

ANDY

FRED

JANE

SUZAN

Prime
Index

Alternate Indexes
By Birthdate (unique)

69

70

72

75

F

M

empty space

ANDY

FRED

empty space

empty space

JANE

SUZAN

70 M

69 M

75 F

72 F

Alternate Indexes

Alphabetically by name

(unique)

ANDY

FRED

JANE

SUZAN

F

M

FRED 69 M

By sex (non-unique)

By sex (non-unique)

No Alternate IndexesRelative record numbers

can be accessed and

used as keys

Each slot corresponds to a year

ANDY

SUZAN

JANE

70 M

72 F

75 F

FRED

ANDY

empty space for 71

SUZAN

empty space for 73

empty space for 74

JANE

empty space for 76

69 M

70 M

72 F

75 F

1

2

3

4

5

6

7

8

Slot

Data component

Data component

Data component

Relative byte addresses

can be accessed and

used as keys

ANDREW M SMITH &

Figure 22. Types and advantages of VSAM data sets

166 z/OS V1R8.0 XL C/C++ Programming Guide

1. Determine the type of data and its primary access.

v sequentially — favors ESDS

v by key — favors KSDS

v by number — favors RRDS

2. Determine whether you require access through an alternate index path. These

are only supported on KSDS and ESDS. If you do, determine whether the

alternate index is to have unique or nonunique keys. You should keep in mind

that making an assumption that all future records will have unique keys may not

be practical, and an attempt to insert a record with a nonunique key in an index

that has been created for unique keys causes an error.

3. When you have determined the data sets and paths that you require, ensure

that the operations you have in mind are supported.

Keys, RBAs and RRNs

All VSAM data sets have keys associated with their records. For KSDS, KSDS AIX,

and ESDS AIX, the key is a defined field within the logical record. For ESDS, the

key is the relative byte address (RBA) of the record. For RRDS, the key is a relative

record number (RRN).

Keys for indexed VSAM data sets

For KSDS, KSDS AIX, and ESDS AIX, keys are part of the logical records recorded

on the data set. For KSDS, the length and location of the keys are defined by the

DEFINE CLUSTER command of Access Method Services. For KSDS AIX and ESDS

AIX, the keys are defined by the DEFINE ALTERNATEINDEX command.

Relative byte addresses

Relative byte addresses (RBAs) enable you to access ESDS files directly. The

RBAs are either 4 or 8 byte fields, depending on the usage, and their values are

computed by VSAM. The 4 byte RBA can only be used when accessing within the

first 4GB of a VSAM data set. The 8 byte RBA can be used to access beyond 4GB

in an extended addressable VSAM data set.

Notes:

1. KSDS can also use RBAs. However, because the RBA of a KSDS record can

change if an insert, delete or update operation is performed elsewhere in the

file, it is not recommended.

2. You can call flocate() with RBA values in an RRDS cluster, but flocate() with

RBA values does not work across control intervals. Therefore, using RBAs with

RRDS clusters is not recommended. The RRDS access method does not

support RBAs. z/OS XL C/C++ supports the use of RBAs in an RRDS cluster by

translating the RBA value to an RRN. It does this by dividing the RBA value by

the LRECL.

3. Alternate indexes do not allow positioning by RBA.

The RBA value is stored in the C structure __amrc, which is defined in the C

<stdio.h> header file. The __amrc->__RBA field is defined as an unsigned int, and

therefore will contain only a 4-byte RBA value. The __amrc->__XRBA field is 8 bytes

(unsigned long long in AMODE 31 applications, and unsigned long in AMODE 64

applications), and therefore can hold the RBA for all locations within an extended

addressable VSAM data set.

You can access the field __amrc->__RBA as shown in the following example.

Chapter 12. Performing VSAM I/O operations 167

|
|
|
|
|

|

|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|

CCNGVS1

 The above example can be converted to use __amrc->__XRBA with just a few

modifications.

For more information about the __amrc structure, refer to Chapter 17, “Debugging

I/O programs,” on page 235.

Relative record numbers

Records in an RRDS are identified by a relative record number that starts at 1 and

is incremented by 1 for each succeeding record position. Only RRDS files support

accessing a record by its relative record number.

Summary of VSAM I/O operations

Table 23 summarizes VSAM data set characteristics and the allowable I/O

operations on them.

 Table 23. Summary of VSAM data set characteristics and allowable I/O operations

KSDS ESDS RRDS

Record Length Variable. Length can

be changed by

update.

Variable. Length

cannot be changed

by update.

Fixed.

/* this example shows how to access the __amrc->__RBA field */

/* it assumes that an ESDS has already been defined, and has been */

/* assigned the ddname ESDSCLUS */

#include <stdio.h>

#include <stdlib.h>

main() {

 FILE *ESDSfile;

 unsigned int myRBA;

 char recbuff[100]="This is record one.";

 int w_retcd;

 int l_retcd;

 int r_retcd;

 printf("calling fopen(\"dd:esdsclus\",\"rb+,type=record\");\n");

 ESDSfile = fopen("dd:esdsclus", "rb+,type=record");

 printf("fopen() returned 0X%.8x\n",ESDSfile);

 if (ESDSfile==NULL) exit;

 w_retcd = fwrite(recbuff, 1, sizeof(recbuff), ESDSfile);

 printf("fwrite() returned %d\n",w_retcd);

 if (w_retcd != sizeof(recbuff)) exit;

 myRBA = __amrc->__RBA;

 l_retcd = flocate(ESDSfile, &myRBA, sizeof(myRBA), __RBA_EQ);

 printf("flocate() returned %d\n",l_retcd);

 if (l_retcd !=0) exit;

 r_retcd = fread(recbuff, 1, sizeof(recbuff), ESDSfile);

 printf("fread() returned %d\n",r_retcd);

 if (l_retcd !=0) exit;

 return(0);

}

Figure 23. VSAM example

168 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

Table 23. Summary of VSAM data set characteristics and allowable I/O

operations (continued)

KSDS ESDS RRDS

Alternate index

Note: z/OS XL

C/C++ does not

support extended

addressable KSDS

and ESDS alternate

indexes.

Allows access using

unique or nonunique

keys.

Allows access using

unique or nonunique

keys.

Not supported by

VSAM.

Record Read

(Sequential)

The order is

determined by the

VSAM key

By entry sequence.

Reads proceed in key

sequence for the key

of reference.

By relative record

number.

Record Write (Direct) Position determined

by the value in the

field designated as

the key.

Record written at the

end of the file.

By relative record

number.

Positioning for

Record Read

By key or by RBA

value. Positioning by

RBA value is not

recommended

because changes to

the file change the

RBA.

By RBA value.

Alternate index allows

use by key.

By relative record

number.

Delete (Record) If not already in

correct position,

reposition the file

pointer; read the

record using fread();

delete the record

using fdelrec().

fread() must

immediately precede

fdelrec().

Not supported by

VSAM.

If not already in

correct position,

position the file

pointer; read the

record using fread();

delete the record

using fdelrec().

fread() must

immediately precede

fdelrec().

Update (Record) If not already in

correct position,

reposition the file

pointer; read the

record using fread();

update the record

using fupdate().

fread() must

immediately precede

fupdate().

If not already in

correct position,

reposition the file

pointer; read the

record using fread();

update the record

using fupdate().

fread() must

immediately precede

fupdate().

If not already in

correct position,

reposition the file

pointer; read the

record using fread();

update the record

using fupdate().

fread() must

immediately precede

fupdate().

Empty the file Define the file as

reusable using the

DEFINE CLUSTER

command, and then

open the data set in

write

("wb,type=record" or

"wb+,type=record")

mode. Not supported

for alternate indexes.

Define the file as

reusable using the

DEFINE CLUSTER

command, and then

open the data set in

write

("wb,type=record" or

"wb+,type=record")

mode. Not supported

for alternate indexes.

Define the file as

reusable using the

DEFINE CLUSTER

command, and then

open the data set in

write

("wb,type=record" or

"wb+,type=record")

mode.

Chapter 12. Performing VSAM I/O operations 169

|
|
|
|
|
|

||
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

||
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

||
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

Table 23. Summary of VSAM data set characteristics and allowable I/O

operations (continued)

KSDS ESDS RRDS

Stream Read Supported by z/OS

XL C/C++.

Supported by z/OS

XL C/C++.

Supported by z/OS

XL C/C++.

Stream Write/Update Not supported by

z/OS XL C/C++.

Supported by z/OS

XL C/C++.

Supported by z/OS

XL C/C++.

Stream Repositioning Supported by z/OS

XL C/C++.

Supported by z/OS

XL C/C++.

Supported by z/OS

XL C/C++.

Opening VSAM data sets

To open a VSAM data set, use the Standard C library functions fopen() and

freopen() just as you would for opening non-VSAM data sets. The fopen() and

freopen() functions are described in z/OS XL C/C++ Run-Time Library Reference.

This section describes considerations for using fopen() and freopen() with VSAM

files. Remember that a VSAM file must exist and be defined as a VSAM cluster

before you call fopen().

Using fopen() or freopen()

This section covers using file names for MVS data sets, specifying fopen() and

freopen() keywords, and buffering.

File names for MVS data sets: Using a data set name

The following diagram shows the syntax for the filename argument on your fopen()

or freopen() call:

��

//

'

�

 .

qualifier

'

��

The following is a sample construct:

 'qualifier1.qualifier2'

’ Single quotation marks indicate that you are passing a fully-qualified data set

name, that is, one which includes the high-level qualifier. If you pass a data set

name without single quotation marks, the z/OS XL C/C++ compiler prefixes the

high-level qualifier (usually the user ID) to the name. See Chapter 10,

“Performing OS I/O operations,” on page 99 for information on fully qualified

data set names.

// Specifying these slashes indicates that the file names refer to MVS data sets.

qualifier

Each qualifier is a 1- to 8-character name. These characters may be

alphanumeric, national ($, #, @), the hyphen, or the character \xC0. The first

character should be either alphabetic or national. Do not use hyphens in names

for RACF-protected data sets.

 You can join qualifiers with periods. The maximum length of a data set name is

generally 44 characters, including periods.

170 z/OS V1R8.0 XL C/C++ Programming Guide

To open a data set by its name, you can code something like the following in your

C or C++ program:

 infile=fopen("VSAM.CLUSTER1", "ab+, type=record");

File names for MVS data sets: Using a DDname

To access a cluster or path by ddname, you can write the required DD statement

and call fopen() as shown in the following example.

If your data set is VSAM.CLUSTER1, your C or C++ program refers to this data set by

the ddname CFILE, and you want exclusive control of the data set for update, you

can write the DD statement:

 //CFILE DD DSNAME=VSAM.CLUSTER1,DISP=OLD

and code the following in your C or C++ source program:

 #include <stdio.h>

 FILE *infile;

 main()

 {

 infile=fopen("DD:CFILE", "ab+, type=record"); ...
 }

To share your data set, use DISP=SHR on the DD statement. DISP=SHR is the default

for fopen() calls that use a data set name and specify any of the r,rb, rb+, and

r+b open modes.

Note: z/OS XL C/C++ does not check the value of shareoptions at fopen() time,

and does not provide support for read-integrity and write-integrity, as

required to share files under shareoptions 3 and 4.

For more information on shareoptions, see the information on DEFINE CLUSTER in

the books listed in “DFSMS” on page 995.

Specifying fopen() and freopen() keywords

The mode argument is a character string specifying the type of access requested

for the file.

The mode argument contains one positional parameter (access mode) followed by

keyword parameters. A description of these parameters, along with an explanation

of how they apply to VSAM data sets is given the following sections.

Specifying access mode: The access mode is specified by the positional

parameter of the fopen() function call. The possible record I/O and binary modes

you can specify are:

rb Open for reading. If the file is empty, fopen() fails.

wb Open for writing. If the cluster is defined as reusable, the existing

contents of the cluster are destroyed. If the cluster is defined as not

reusable (clusters with paths are, by definition, not reusable),

fopen() fails. However, if the cluster has been defined but not

loaded, this mode can be used to do the initial load of both

reusable and non reusable clusters.

ab Open for writing.

rb+ or r+b Open for reading, writing, and/or updating.

Chapter 12. Performing VSAM I/O operations 171

wb+ or w+b Open for reading, writing, and/or updating. If the cluster is defined

as reusable, the existing contents of the cluster are destroyed. If

the cluster is defined as not reusable (clusters with paths are, by

definition, not reusable), the fopen() fails. However, if the cluster

has been defined but not loaded, this mode can be used to do the

initial load of both reusable and non reusable clusters.

ab+ or a+b Open for reading, writing, and/or updating.

For text files, you can specify the following modes: r, w, a, r+, w+, and a+.

Note: For KSDS, KSDS AIX and ESDS AIX in text and binary I/O, the only valid

modes are r and rb, respectively.

fopen() and freopen() keywords

The following table lists the keywords that are available on the fopen() and

freopen() functions, tells you which ones are useful for VSAM I/O, and lists the

values that are valid for the applicable ones.

 Table 24. Keywords for the fopen() and freopen() functions for VSAM data sets

Keyword Allowed? Applicable? Notes

recfm= Yes No Ignored.

lrecl= Yes No Ignored.

blksize= Yes No Ignored.

space= Yes No Ignored.

type= Yes Yes May be omitted. If you do specify it,

type=record is the only valid value.

acc= Yes Yes Specifies the access direction for VSAM

data sets. Valid values are BWD and FWD.

password= Yes Yes Specifies the password for a VSAM data

set.

asis Yes No Enables the use of mixed-case file names.

Not supported for VSAM.

byteseek Yes Yes Used for binary stream files to specify that

the seeking functions should use relative

byte offsets instead of encoded offsets.

This is the default setting.

noseek Yes No Ignored.

OS Yes No Ignored.

rls= Yes Yes Indicates the VSAM RLS/TVS access mode

in which a VSAM file is to be opened.

Keyword descriptions

recfm=

Any values passed into fopen() are ignored.

lrecl= and blksize=

These keywords are set to the maximum record size of the cluster as initialized

in the cluster definition. Any values passed into fopen() are ignored.

space=

This keyword is not supported under VSAM.

172 z/OS V1R8.0 XL C/C++ Programming Guide

type=

If you use the type= keyword, the only valid value for VSAM data sets is

type=record. This opens a file for record I/O.

acc=

For VSAM files opened with the keyword type=record, you can specify the

direction by using the acc=access_type keyword on the fopen() function call.

For text and binary files, the access direction is always forward. Attempts to

open a VSAM data set with acc=BWD for either binary or text stream I/O will fail.

 The access_type can be one of the following:

FWD The acc=FWD keyword specifies that the file be processed in a forward

direction. When the file is opened, it will be positioned at the beginning

of the first physical record, and any subsequent read operations sets

the file position indicator to the beginning of the next record.

 The default value for the access keyword is acc=FWD.

BWD The acc=BWD keyword specifies that the file be processed in a backward

direction. When the file is opened, it is positioned at the beginning of

the last physical record and any subsequent read operation sets the file

position indicator to the beginning of the preceding record.

 You can change the direction of sequential processing (from forward to

backward or from backward to forward) by using the flocate() library function.

For more information about flocate(), see “Repositioning within record I/O

files” on page 179.

Note: When opening paths, records with duplicate alternate index keys are

processed in order of arrival time (oldest to newest) regardless of the

current processing direction.

password=

VSAM facilities provide password protection for your data sets. You access a

data set that has password protection by specifying the password on the

password keyword parameter of the fopen() function call; the password resides

in the VSAM catalog entry for the named file. There can be more than one

password in the VSAM catalog entry; data sets can have different passwords

for different levels of authorization such as reading, writing, updating, inserting,

or deleting. For a complete description of password protection on VSAM files,

see the list of publications given on “DFSMS” on page 995.

 The password keyword has the form:

 password=nx

where x is a 1- to 8-character password, and n is the exact number of

characters in the password. The password can contain special characters such

as blanks and commas.

 If a required password is not supplied, or if an incorrect password is given,

fopen() fails.

asis

This keyword is not supported for VSAM.

byteseek

When you specify this keyword and open a file in binary stream mode, fseek()

and ftell() use relative byte offsets from the beginning of the file. This is the

default setting.

Chapter 12. Performing VSAM I/O operations 173

noseek

This keyword is ignored for VSAM data sets.

OS

This keyword is ignored for VSAM data sets.

rls=

Indicates the VSAM RLS/TVS access mode in which a VSAM file is to be

opened. This keyword is ignored for non-VSAM files. The following values are

valid:

v nri — No Read Integrity

v cr — Consistent Read

v cre — Consistent Read Explicit

Note: When the RLS keyword is specified, DISP is changed to default to SHR

when dynamic allocation of the data set is performed. In the rare case

when a batch job must use RLS without sharing the data set with other

tasks, DISP should be OLD. To set DISP to OLD, the application must

specify DISP=OLD in the DD statement and start the application using

JCL. You cannot specify DISP in the fopen() mode argument.

Buffering

Full buffering is the default. You can specify line buffering, but z/OS XL C/C++

treats line buffering as full buffering for VSAM data sets. Unbuffered I/O is not

supported under VSAM; if you specify it, your setvbuf() call fails.

To find out how to optimize VSAM performance by controlling the number of VSAM

buffers used for your data set, refer to z/OS DFSMS Access Method Services for

Catalogs.

Record I/O in VSAM

This section describes how to use record I/O in VSAM. The following topics are

covered:

v RRDS Record Structure

v RRDS Record Structure

v Reading Record I/O Files

v Writing to Record I/O Files

v Updating Record I/O Files

v Deleting Records

v Repositioning within Record I/O Files

v Flushing Buffers

v Summary of VSAM Record I/O Operations

v Reading from Text and Binary I/O Files

v Writing to and Updating Text and Binary I/O Files

v Deleting Records in Text and Binary I/O Files

v Repositioning within Text and Binary I/O Files

v Flushing Buffers

v Summary of VSAM Text I/O Operations

v Summary of VSAM Binary I/O Operations

174 z/OS V1R8.0 XL C/C++ Programming Guide

RRDS record structure

For RRDS files opened in record mode, z/OS XL C/C++ defines the following key

structure in the C header file <stdio.h>:

typedef struct {

#ifndef _LP64

unsigned int __fill, /* version: either 0 or 1 */

 __recnum; /* the key, starting at 1 */

#else

unsigned long __fill, /* version: either 0 or 1 */

 __recnum; /* the key, starting at 1 */

#endif /* not _LP64 */

} __rrds_key_type;

In your source program, you can define an RRDS record structure as either:

 struct {

 __rrds_key_type rrds_key; /* __fill value always 0 */

 char data[MY_REC_SIZE];

 } rrds_rec_0;

or:

 struct {

 __rrds_key_type rrds_key; /* __fill value always 1 */

 char *data;

 } rrds_rec_1;

The z/OS XL C/C++ library recognizes which type of record structures you have

used by the value of rrds_key.__fill. Zero indicates that the data is contiguous

with rrds_key and 1 indicates that a pointer to the data follows rrds_key.

Reading record I/O files

To read from a VSAM data set opened with type=record, use the Standard C

fread() library function. If you set the size argument to 1 and the count argument

to the maximum record size, fread() returns the number of bytes read successfully.

For more information on fread(), see z/OS XL C/C++ Run-Time Library Reference.

fread() reads one record from the system from the current file position. Thus, if

you want to read a certain record, you can call flocate() to position the file pointer

to point to it; the subsequent call to fread() reads in that record.

If you use an fread() call to request more bytes than the record about to be read

contains, fread() reads the entire record and returns the number of bytes read. If

you use fread() to request fewer bytes than the record about to read contains,

fread() reads the number of bytes that you specified and returns your request.

z/OS XL C/C++ VSAM Record I/O does not allow a read operation to immediately

follow a write operation without an intervening reposition. z/OS XL C/C++ treats the

following as read operations:

v Calls to read functions that request 0 bytes

v Read requests that fail because of a system error

v Calls to the ungetc() function

Calling fread() several times in succession, with no other operations on this file in

between, reads several records in sequence (sequential processing), which can be

forward or backward, depending on the access direction, as described in the

following.

v KSDS, KSDS AIX and ESDS AIX

Chapter 12. Performing VSAM I/O operations 175

The records are retrieved according to the sequence of the key of reference, or

in reverse key sequence.

Note: Records with duplicate alternate index keys are processed in order of

arrival time (oldest to newest) regardless of the current processing

direction.

v ESDS

The records are retrieved according to the sequence they were written to the file

(entry sequence), or in reverse entry sequence.

v RRDS

The records are retrieved according to relative record number sequence or

reverse relative record number sequence.

When records are being read, RRNs without an associated record are ignored.

For example, if a file has relative records of 1, 2, and 5, the nonexistent records

3 and 4 are ignored.

By default, in record mode, fread() must be called with a pointer to an RRDS

record structure. The field __rrds_key_type.__fill must be set to either 0 or 1

indicating the type of the structure, and the count argument must include the

length of the __rrds_key_type. fread() returns the RRN number in the __recnum

field, and includes the length of the __rrds_key_type in the return value. You can

override these operations by setting the _EDC_RRDS_HIDE_KEY environment

variable to Y. Once this variable is set, fread() is called with a data buffer and

not an RRDS data structure. The return value of fread() is now only the length

of the data read. In this case, fread() cannot return the RRN. For information on

setting environment variables, see Chapter 31, “Using environment variables,” on

page 473.

Writing to record I/O files

To write new records to a VSAM data set opened with type=record, use the

Standard C fwrite() library function. If you set size to 1 and count to the desired

record size, fwrite() returns the number of bytes written successfully. For more

information on fwrite() and the type=record parameter, see z/OS XL C/C++

Run-Time Library Reference.

In general, C I/O does not allow a write operation to follow a read operation without

an intervening reposition or fflush(). z/OS XL C/C++ counts a call to a write

function writing 0 bytes or a write request that fails because of a system error as a

write operation. However, z/OS XL C/C++ VSAM record I/O allows a write to directly

follow a read. This feature has been provided for compatibility with earlier releases.

The process of writing to a data set for the first time is known as initial loading.

Using the fwrite() function, you can write to a new VSAM file in initial load mode

just as you would to a file not in initial load mode. Writing to a KSDS PATH or an

ESDS PATH in initial load mode is not supported.

If your fwrite() call does not try to write more bytes than the maximum record

size, fwrite() writes a record of the length you asked for and returns your request.

If your fwrite() call asks for more than the maximum record size, fwrite() writes

the maximum record size, sets errno, and returns the maximum record size. In

either case, the next call to fwrite() writes to the following record.

Note: If an fwrite() fails, you must reposition the file before you try to read or

write again.

v KSDS, KSDS AIX

176 z/OS V1R8.0 XL C/C++ Programming Guide

Records are written to the cluster according to the value stored in the field

designated as the prime key.

You can load a KSDS in any key order but it is most efficient to perform the

fwrite() operations in key sequence.

v ESDS, ESDS AIX

Records are written to the end of the file.

v RRDS

Records are written according to the value stored in the relative record number

field.

fwrite() is called with the RRDS record structure.

By default, in record mode, fwrite() and fupdate() must be called with a pointer

to an RRDS record structure. The __rrds_key_type fields __fill and __recnum

must be set. __fill is set to 0 or 1 to indicate the type of the structure. The

__recnum field specifies the RRN to write, and is required for fwrite() but not

fupdate(). The count argument must include the length of the __rrds_key_type.

fwrite() and fupdate() include the length of the __rrds_key_type in the return

value.

Updating record I/O files

The fupdate() function, a z/OS XL C/C++ extension to the SAA C library, is used to

update records in a VSAM file. For more information on this function, see z/OS XL

C/C++ Run-Time Library Reference.

v KSDS, ESDS, and RRDS

To update a record in a VSAM file, you must perform the following operations:

1. Open the VSAM file in update mode (rb+/r+b, wb+/w+b, or ab+/a+b specified

as the required positional parameter of the fopen() function call and

type=record).

2. If the file is not already positioned at the record you want to update,

reposition to that record.

3. Read in the record using fread().

Once the record you want to update has been read in, you must ensure that

no reading, writing, or repositioning operations are performed before

fupdate().

4. Make the necessary changes to the copy of the record in your buffer area.

5. Update the record from your local buffer area using the fupdate() function.

If an fupdate() fails, you must reposition using flocate() before trying to

read or write.

Notes:

1. If a file is opened in update mode, a read operation can result in the locking

of control intervals, depending on shareoptions specification of the VSAM

file. If after reading a record, you decide not to update it, you may need to

unlock a control interval by performing a file positioning operation to the same

record, such as an flocate() using the same key.

2. If fupdate() wrote out a record the file position is the start of the next record.

If the fupdate() call did not write out a record, the file position remains the

same.

v KSDS and KSDS PATH

You can change the length of the record being updated. If your request does not

exceed the maximum record size of the file, fupdate() writes a record of the

length requested and returns the request. If your request exceeds the maximum

Chapter 12. Performing VSAM I/O operations 177

record size of the file, fupdate() writes a record that is the maximum record size,

sets errno, and returns the maximum record size.

You cannot change the prime key field of the record, and in KSDS AIX, you

cannot change the key of reference of the record.

v ESDS

You cannot change the length of the record being updated. If the size of the

record being updated is less than the current record size, fupdate() updates the

amount you specify and does not alter the data remaining in the record. If your

request exceeds the length of the record that was read, fupdate() writes a

record that is the length of the record that was read, sets errno, and returns the

length of the record that was read.

v ESDS PATH

You cannot change the length of the record being updated or the key of

reference of the record. If the size of the record being updated is less than the

current record size, fupdate() updates the amount you specify and does not

alter the data remaining in the record. If your request exceeds the length of the

record that was read, fupdate() writes a record that is the length of the record

that was read, sets errno, and returns the length of the record that was read.

v RRDS

RRDS files have fixed record length. If you update the record with less than the

record size, only those characters specified are updated, and the remaining data

is not altered. If your request exceeds the record size of the file, fupdate() writes

a record that is the record size, sets errno, and returns the length of the record

that was read.

Deleting records

To delete records, use the library function fdelrec(), a z/OS XL C/C++ extension to

the SAA C library. For more information on this function, see z/OS XL C/C++

Run-Time Library Reference.

v KSDS, KSDS PATH, and RRDS

To delete records, you must perform the following operations:

1. Open the VSAM file in update mode (rb+/r+b, ab+/a+b, or wb+/w+b specified

as the required positional parameter of the fopen() function call and

type=record).

2. If the file is not already positioned at the record you want to delete, reposition

to that record.

3. Read the record using the fread() function.

Once the record you want to delete has been read in, you must ensure that

no reading, writing, or repositioning operations are performed before

fdelrec().

4. Delete the record using the fdelrec() function.

Note: If the data set was opened with an access mode of rb+ or r+b, a read

operation can result in the locking of control intervals, depending on

shareoptions specification of the VSAM file. If after reading a record, you

decide not to delete it, you may need to unlock a control interval by

performing a file-positioning operation to the same record, such as an

flocate() using the same key.

v ESDS and ESDS PATH

VSAM does not support deletion of records in ESDS files.

178 z/OS V1R8.0 XL C/C++ Programming Guide

Repositioning within record I/O files

You can use the following functions to locate a record within a VSAM data set:

v flocate()

v ftell(), ftello() and fseek(), fseeko()

v fgetpos() and fsetpos()

v rewind()

For complete details on these library functions, see z/OS XL C/C++ Run-Time

Library Reference.

flocate()

The flocate() C library function can be used to locate a specific record within a

VSAM data set given the key, relative byte address, or the relative record number.

The flocate() function also sets the access direction.

VSAM extended addressability support includes an 8 byte RBA for use with

positioning functions such as flocate(). flocate() supports RBA lengths of 4 and

8 bytes. Existing applications that use flocate() with a 4 byte RBA will continue

unaffected, but must use a key length of 8 to locate an RBA beyond 4GB.

The following flocate() parameters set the access direction to forward:

v __KEY_FIRST (the key and key_len parameters are ignored)

v __KEY_EQ

v __KEY_GE

v __RBA_EQ

The following flocate() parameters all set the access direction to backward and are

only valid for record I/O:

v __KEY_LAST (the key and key_len parameters are ignored)

v __KEY_EQ_BWD

v __RBA_EQ_BWD

Note: The __RBA_EQ and __RBA_EQ_BWD parameters are not valid for paths and are

not recommended for KSDS and RRDS data sets.

You can use the rewind() library function instead of calling flocate() with

__KEY_FIRST.

v KSDS, KSDS AIX, and ESDS AIX

The key parameter of flocate() for the options __KEY_EQ, __KEY_GE, and

__KEY_EQ_BWD is a pointer to the key of reference of the data set. The key_len

parameter is the key length as defined for the data set for a full key search, or

less than the defined key length for a generic key search (a partial key match).

For KSDSs, __RBA_EQ and __RBA_EQ_BWD are supported, but are not

recommended.

For __KEY_EQ_BWD the key_len parameter must be equal to the key length as

defined for the data set for a full key search.

Alternate indexes do not allow positioning by RBA.

v ESDS

The key parameter of flocate() is a pointer to the specified RBA value. The

key_len parameter is either 4 or 8 depending on the size of the RBA.

v RRDS

Chapter 12. Performing VSAM I/O operations 179

|

|
|
|
|

|
|

|

|
|

|

For __KEY_EQ, __KEY_GE, and __KEY_EQ_BWD, the key parameter of flocate() is a

pointer to an unsigned long integer containing the specified relative record

number. The key_len parameter is sizeof(unsigned long). For __RBA_EQ and

__RBA_EQ_BWD, the key parameter of flocate() is a pointer to the specified RBA.

However, seeking to RBA values is not recommended, because it is not

supported across control intervals. The key_len parameter is either 4 or 8

depending on the size of the RBA.

fgetpos() and fsetpos()

fgetpos() is used to store the current file position and access direction. fsetpos()

is used to relocate to a file position stored by fgetpos() and restore the saved

access direction.

v KSDS

fgetpos() stores the RBA value. This RBA value may be invalidated by

subsequent insertions, deletions, or updates.

v KSDS AIX and ESDS AIX

fgetpos() and fsetpos() are not supported for PATHs.

v ESDS and RRDS

There are no special considerations.

ftell() and fseek()

ftell() is used to store the current file position. fseek() is used to relocate to one

of the following:

v A file position stored by ftell()

v A calculated record number (SEEK_SET)

v A position relative to the current position (SEEK_CUR)

v A position relative to the end of the file (SEEK_END).

ftell() and fseek() offsets in record mode I/O are relative record offsets. For

example, the following call moves the file position to the start of the previous

record:

 fseek(fp, -1L, SEEK_CUR);

You cannot use fseek() to reposition to a file position before the beginning of the

file or to a position beyond the end of the file.

Note: In general, the performance of this method is inferior to flocate().

The access direction is unchanged by the repositioning.

v KSDS and RRDS

There are no special considerations.

v KSDS AIX and ESDS AIX

ftell() and fseek() are not supported.

v ESDS

ftell() is not supported.

v RRDS

fseek() seeks to a relative position in the file, and not to an RRN value. For

example, in a file consisting of RRNs 1, 3, 5 and 7, fseek(fp, 3L, SEEK_SET);

followed by an fread() would read in RRN 7, which is at offset 3 in the file.

180 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|
|
|
|
|

rewind()

The rewind() function repositions the file position to the beginning of the file, and

clears the error setting for the file.

rewind() does not reset the file access direction. For example, a call to flocate()

with __KEY_LAST sets the file pointer to the end of the file and sets the access

direction to backwards. A subsequent call to rewind() sets the file pointer to the

beginning of the file, but the access direction remains backwards.

Flushing buffers

You can use the C library function fflush() to flush buffers. However, fflush()

writes nothing to the system, because all records have already been written there

by fwrite().

fflush() after a read operation does not refresh the contents of the buffer.

For more information on fflush(), see z/OS XL C/C++ Run-Time Library

Reference.

Summary of VSAM record I/O operations

 Table 25. Summary of VSAM record I/O operations

KSDS ESDS RRDS PATH

fopen(),

freopen()

rb, rb+, ab, ab+,

wb, wb+ (empty

cluster or reuse

specified for wb

& wb+)

rb, rb+, ab, ab+,

wb, wb+ (empty

cluster or reuse

specified for wb

& wb+)

rb, rb+, ab, ab+,

wb, wb+ (empty

cluster or reuse

specified for wb

& wb+)

rb, rb+, ab, ab+

fwrite() rb+, ab, ab+, wb,

wb+

rb+, ab, ab+, wb,

wb+

rb+, ab, ab+, wb,

wb+

rb+, ab, ab+

fread() rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb, rb+, ab+

ftell() rb, rb+, ab, ab+,

wb, wb+

3

rb, rb+, ab, ab+,

wb, wb+

ftello() rb, rb+, ab, ab+,

wb, wb+

3

rb, rb+, ab, ab+,

wb, wb+

fseek() rb, rb+, ab, ab+,

wb, wb+

3

rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+,

wb, wb+

fseeko() rb, rb+, ab, ab+,

wb, wb+

3

rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+,

wb, wb+

fgetpos() rb, rb+, ab, ab+,

wb, wb+

4

rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+,

wb, wb+

fsetpos() rb, rb+, ab, ab+,

wb, wb+

4

rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+,

wb, wb+

flocate() rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb, rb+, ab+

rewind() rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+

fflush() rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+

fdelrec() rb+, ab+, wb+ rb+, ab+, wb+ rb+, ab+ (not

ESDS)

fupdate() rb+, ab+, wb+ rb+, ab+, wb+ rb+, ab+, wb+ rb+, ab+

Chapter 12. Performing VSAM I/O operations 181

Table 25. Summary of VSAM record I/O operations (continued)

KSDS ESDS RRDS PATH

ferror() rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+

feof() rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+

clearerr() rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+

fclose() rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+

fldata() rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+

VSAM record level sharing and transactional VSAM

VSAM Record Level Sharing (RLS) and Transactional VSAM (VSAM RLS/TVS)

provide for the sharing of VSAM data at the record level, using the locking and

caching functions of the coupling facility hardware. For more information on Record

Level Sharing, see z/OS DFSMS Introduction.

The C/C++ run-time library provides the following support for VSAM RLS/TVS:

v Specification of RLS/TVS-related keywords in the mode string of fopen() and

freopen().

v Specification of RLS/TVS-related text unit key values in the __dyn_t structure,

which is used as input to the dynalloc() function.

v Provides the application with VSAM return and reason codes for VSAM I/O

errors.

v Performs implicit positioning for files opened for RLS/TVS access.

VSAM RLS/TVS has three read integrity file access modes. These modes tell

VSAM the level of locking to perform when records are accessed within a file that

has not been opened in update mode. The access modes are:

nri No Read Integrity indicates that requests performed by the application are

not to be serialized with updates or erases of the records by other calling

programs. VSAM accesses the records without obtaining a lock on the

record.

cr Consistent Read indicates that requests performed by the application are to

be serialized with updates or erases of the records by other calling

programs. VSAM obtains a share lock when accessing the record. This lock

is released once the record has been returned to the caller.

cre Consistent Read Explicit indicates that requests performed by the

application are to be serialized with updates or erases of the records by

other requestors.VSAM obtains a share lock when accessing the record.

This lock is held until the application commits its changes. This ensures that

records read by the application are not changed by other requestors until

3. The saved position is based on the relative position of the record within the data set. Subsequent insertions or deletions may

invalidate the saved position.

4. The saved position is based on the RBA of the record. Subsequent insertions, deletions or updates may invalidate the saved

position.

182 z/OS V1R8.0 XL C/C++ Programming Guide

the application commits or aborts its changes. Consistent Read Explicit is

for use only by commit protocol applications.

VSAM RLS locks records to support record integrity. An application may wait for an

exclusive record lock if another user has the record locked. The application is also

subject to new locking errors such as deadlock or timeout errors.

If the file has been opened in update mode, and RLS=CR or RLS=CRE is specified,

VSAM also serializes access to the records within the file. However, the type of

serialization differs from non-update mode in the following ways:

v A reposition within the file causes VSAM to obtain a share lock for the record.

v A read of a record causes VSAM to obtain an exclusive lock for the record. The

lock is held until the record is updated in the file, or another record is read. If

RLS=CRE is specified (for commit protocol applications), the lock is held until the

application commits or aborts its changes.

Notes:

1. When a file is opened, it is implicitly positioned to the first record to be

accessed.

2. You can also specify the RLS/TVS keyword on the JCL DD statement. When

specified on both the JCL DD statement and in the mode string on fopen() or

freopen(), the read integrity options specified in the mode string override those

specified on the JCL DD statement.

3. VSAM RLS/TVS access is supported for the 3 types of VSAM files that the

C/C++ run-time library supports: Key-Sequenced (KSDS), Entry-Sequenced

(ESDS), and Relative Record (RRDS) data sets.

4. VSAM RLS/TVS functions require the use of a Coupling Facility. For more

information on using the Coupling Facility, see z/OS DFSMS Introduction, and

z/OS Parallel Sysplex Overview.

5. In an environment where one thread opens and another thread issues record

management requests, VSAM RLS/TVS requires that record management

requests be issued from a thread whose Task Control Block (TCB) is

subordinate to the TCB of the thread which opened the file.

6. VSAM RLS/TVS does not support the following:

v Key range data sets

v Direct open of an AIX cluster as a KSDS

v Access to individual components of a cluster

v OS Checkpoint and Restart

Error reporting

Errors are reported through the __amrc structure and the SIGIOERR signal. The

following are additional considerations for error reporting in a VSAM RLS

application:

v VSAM RLS/TVS uses the SMSVSAM server address space. When a file open

fails because the server is not available, the C run-time library places the error

return code and error value in the __amrc structure, and returns a null file

descriptor. Record management requests return specific error return/reason

codes, if the SMSVSAM server is not available. The server address space is

automatically restarted. To recover from this type of error, an application should

first close the file to clean up the file status, and then open the file prior to

attempting record management requests. The close for the file returns a return

code of 4, and an error code of 170(X’AA’). This is the expected result. It is not

an error.

Chapter 12. Performing VSAM I/O operations 183

v Opening a recoverable file for output is not supported. If you attempt to do so,

the open will fail with error return code 255 in the __amrc structure.

v Some of the VSAM errors, that are reported in the __amrc structure, are

situations from which an application can recover. These are problems that can

occur unpredictably in a sharing environment. Usually, the application can

recover by simply accessing another record. Examples of such errors are the

following:

– RC 8, 21(X’15’): Request cancelled as part of deadlock resolution.

– RC 8, 22(X’16’): Request cancelled as part of timeout resolution.

– RC 8, 24(X’18’): Request cancelled because transaction backout is pending

on the requested record.

– RC 8, 29(X’14’): Intra-luwid contention between threads under a given TCB.

The application can intercept errors by registering a condition handler for the

SIGIOERR condition. Within the condition handler, the application can examine

the information in the __amrc structure and determine how to recover from each

specific situation.

Refer to z/OS DFSMS Macro Instructions for Data Sets for a complete list of

return and reason codes.

VSAM extended addressability

DFSMS supports VSAM data sets greater than 4GB in size through extended

addressability (XADDR) support. XADDR support is an extension to DFSMS

extended-format data set support. VSAM XADDR supports key sequenced data

sets (KSDS), entry sequenced data sets (ESDS), and relative-record data set

(RRDS).

Restriction: z/OS XL C/C++ does not support XADDR for KSDS and ESDS

alternate indexes.

VSAM XADDR support includes an 8 byte relative byte address for use with

positioning functions such as flocate(). flocate() supports key lengths of 4 and 8

bytes. Existing applications that use flocate() to locate with a 4 byte relative byte

address will continue unaffected, but must use a key length of 8 to locate a record

within XADDR addresses.

The RBA field in the __amrc structure is set to -1 when applications access beyond

the addresses that can be represented by the 4 byte value, effectively appearing to

be EOF to any 4 byte RBA positioning (flocate()) calls. The __XRBA field will always

be updated with the address, and must be used in these cases.

For AMODE 31 applications repositioning within a VSAM data set, users of ftell()

and fseek() that need to access XADDR addresses, must use the large file version

of ftello() and fseeko() .

XADDR support for AMODE 31 applications is listed in the following table::

 Table 26. AMODE31 application XADDR support

Function XADDR support

fgetpos() Yes

fsetpos() Yes

ftell() No

184 z/OS V1R8.0 XL C/C++ Programming Guide

|

|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|

|
|
|

|

||

||

||

||

||

Table 26. AMODE31 application XADDR support (continued)

Function XADDR support

fseek() No

ftello() non-large files version No

fseeko() non-large files version No

ftello() large files version Yes

fseeko() large files version Yes

flocate() Yes

fldata() Yes

Note: AMODE 64 applications also have the above restrictions on XADDR support.

Text and binary I/O in VSAM

Because VSAM is primarily record-based, this section only discusses those aspects

of text and binary I/O that are specific to VSAM. For general information on text and

binary I/O, refer to the respective sections in Chapter 10, “Performing OS I/O

operations,” on page 99.

Reading from text and binary I/O files

v RRDS

All the read functions support reading from text and binary RRDS files. fread() is

called with a character buffer instead of an RRDS record structure.

Writing to and updating text and binary I/O files

v KSDS, KSDS AIX, and ESDS AIX

z/OS XL C/C++ VSAM support for streams does not provide for writing and

updating these types of data sets opened for text or binary stream I/O.

v ESDS

Writes are supported for ESDSs opened as binary or text streams. Updating data

in an ESDS stream cannot change the length of the record in the external file.

Therefore, in a binary stream:

– updates for less than the existing record length leave existing data beyond the

updated length unchanged;

– updates for longer than the existing record length flow over the record

boundary and update the start of the next record.

In text streams:

– updates that specify records shorter than the original record pad the updated

record to the existing record length with blanks;

– updates for longer than the existing record length result in truncation, unless

the original record contained only a new-line character, in which case it may

be updated to contain one byte of data plus a new-line character.

v RRDS

fwrite() is called with a character buffer instead of an RRDS record structure.

Records are treated as contiguous. Once the current record is filled, the next

record in the file is written to. For example, if the file consisted of only record 1,

record 5, and record 28, a write would complete record 1 and then go directly to

record 5.

Chapter 12. Performing VSAM I/O operations 185

|

||

||

||

||

||

||

||

||
|

|

|

Writing past the last record in the file is allowed, up to the maximum size of the

RRDS data set. For example, if the last record in the file is record 28, the next

record to be written is record 29.

Insertion of records is not supported. For example, in a file of records 1, 5, and

28, you cannot insert record 3 into the file.

Deleting records in text and binary I/O files

fdelrec() is not supported for text and binary I/O in VSAM.

Repositioning within text and binary I/O files

You can use the following functions to locate a record within a VSAM data set:

v flocate()

v ftell(), ftello(), fseek(), and fseeko()

v fgetpos() and fsetpos()

v rewind()

For complete details on these library functions, see z/OS XL C/C++ Run-Time

Library Reference.

flocate()

The flocate() C library function can be used to reposition to the beginning of a

specific record within a VSAM data set given the key, relative byte address, or the

relative record number. For more information on this function, see z/OS XL C/C++

Run-Time Library Reference.

VSAM extended addressability support includes an 8 byte RBA for use with

positioning functions such as flocate(). flocate() supports RBA lengths of 4 and

8 bytes. Existing applications that use flocate() with a 4 byte RBA will continue

unaffected, but must use a key length of 8 to locate an RBA beyond 4GB.

The following flocate() parameters set the direction access to forward:

v __KEY_FIRST (the key and key_len parameters are ignored)

v __KEY_EQ

v __KEY_GE

v __RBA_EQ

The following flocate() parameters all set the access direction to backward and are

not valid for text and binary I/O, because backwards access is not supported:

v __KEY_LAST (the key and key_len parameters are ignored)

v __KEY_EQ_BWD

v __RBA_EQ_BWD

You can use the rewind() library function instead of calling flocate() with

__KEY_FIRST.

v KSDS, KSDS AIX, and ESDS AIX

The key parameter of flocate() for the options __KEY_EQ and __KEY_GE is a

pointer to the key of reference of the data set. The key_len parameter is the key

length as defined for the data set for a full key search, or less than the defined

key length for a generic key search (a partial key match).

Alternate indexes do not allow positioning by RBA.

186 z/OS V1R8.0 XL C/C++ Programming Guide

|

|
|
|
|

Note: The __RBA_EQ parameter is not valid for paths and is not recommended.

v ESDS

The key parameter of flocate() is a pointer to the specified RBA value. The

key_len parameter is either 4 or 8 depending on the size of the RBA.

v RRDS

For __KEY_EQ and __KEY_GE, the key parameter of flocate() is a pointer to an

unsigned long integer containing the specified relative record number. The

key_len parameter is sizeof(unsigned long). For __RBA_EQ, the key parameter of

flocate() is a pointer to the specified RBA. However, seeking to RBA values is

not recommended, because it is not supported across control intervals. The

key_len parameter is either 4 or 8 depending on the size of the RBA.

fgetpos() and fsetpos()

fgetpos() saves the access direction, an RBA value, and the file position, and

fsetpos() restores the saved access direction.

fgetpos() accounts for the presence of characters in the ungetc() buffer unless you

have set the _EDC_COMPAT variable. See Chapter 31, “Using environment variables,”

on page 473 for information about _EDC_COMPAT. If ungetc() characters back the file

position up to before the start of the file, calls to fgetpos() fail.

v KSDS

fgetpos() stores the RBA value. This RBA value may be invalidated by

subsequent insertions, deletions or updates.

v KSDS PATH and ESDS PATH

fgetpos() and fsetpos() are not supported for PATHs.

v ESDS and RRDS

There are no special considerations.

ftell() and fseek()

Using fseek() to seek beyond the current end of file in a writable ESDS or RRDS

binary file results in the file being extended with nulls to the new position. An

incomplete last record is completed with nulls, records of length lrecl are added as

required, and the current record is filled with the remaining number of nulls and left

in the current buffer. This is supported for relative byte offset from SEEK_SET,

SEEK_CUR and SEEK_END.

For AMODE 31 applications repositioning within a VSAM data set, users of ftell()

and fseek() that need to access positions beyond 4GB, must use the large file

version of ftello() and fseeko() .

Table 27 on page 188 provides a summary of the fseek() and ftell() parameters

in binary and text.

Chapter 12. Performing VSAM I/O operations 187

|

|
|

|

|
|
|
|
|
|

|
|
|

Table 27. Summary of fseek() and ftell() parameters in text and binary

Type Mode

ftell() return

values

fseek()

SEEK_SET SEEK_CUR SEEK_END

KSDS Binary relative byte offset relative byte offset relative byte offset relative byte offset

Text not supported zero only relative byte offset relative byte offset

ESDS Binary relative byte offset relative byte offset relative byte offset relative byte offset

Text not supported zero only relative byte offset relative byte offset

RRDS Binary encoded byte

offset

encoded byte

offset

relative byte offset relative byte offset

Text encoded byte

offset

encoded byte

offset

relative byte offset relative byte offset

PATH Binary not supported not supported not supported not supported

Text not supported not supported not supported not supported

Flushing buffers

You can use the C library function fflush() to flush data.

For text files, calling fflush() to flush an update to a record causes the new data

to be written to the file.

If you call fflush() while you are updating, the updates are flushed out to VSAM.

For more information on fflush(), see z/OS XL C/C++ Run-Time Library

Reference.

Summary of VSAM text I/O operations

 Table 28. Summary of VSAM text I/O operations

KSDS ESDS RRDS PATH

fopen(),

freopen()

r r, r+, a, a+, w,

w+ (empty

cluster or reuse

specified for w &

w+)

r, r+, a, a+, w,

w+ (empty

cluster or reuse

specified for w &

w+)

r

fwrite() r+, a, a+, w, w+ r+, a, a+, w, w+

fprintf() r+, a, a+, w, w+ r+, a, a+, w, w+

fputs() r+, a, a+, w, w+ r+, a, a+, w, w+

fputc() r+, a, a+, w, w+ r+, a, a+, w, w+

putc() r+, a, a+, w, w+ r+, a, a+, w, w+

putc_unlocked() r+, a, a+, w, w+ r+, a, a+, w, w+

vfprintf() r+, a, a+, w, w+ r+, a, a+, w, w+

vprintf() r+, a, a+, w, w+ r+, a, a+, w, w+

fread() r r, r+, a+, w+ r, r+, a+, w+ r

fscanf() r r, r+, a+, w+ r, r+, a+, w+ r

vfscanf() r r, r+, a+, w+ r, r+, a+, w+ r

fgets() r r, r+, a+, w+ r, r+, a+, w+ r

fgetc() r r, r+, a+, w+ r, r+, a+, w+ r

188 z/OS V1R8.0 XL C/C++ Programming Guide

|

Table 28. Summary of VSAM text I/O operations (continued)

KSDS ESDS RRDS PATH

getc() r r, r+, a+, w+ r, r+, a+, w+ r

getc_unlocked() r r, r+, a+, w+ r, r+, a+, w+ r

ungetc() r r, r+, a+, w+ r, r+, a+, w+ r

ftell() r, r+, a, a+, w,

w+

ftello() r, r+, a, a+, w,

w+

fseek() r r, r+, a, a+, w,

w+

r, r+, a, a+, w,

w+

fseeko() r r, r+, a, a+, w,

w+

r, r+, a, a+, w,

w+

fgetpos() r r, r+, a, a+, w,

w+

r, r+, a, a+, w,

w+

fsetpos() r r, r+, a, a+, w,

w+

r, r+, a, a+, w,

w+

flocate() r r, r+, a+, w+ r, r+, a+, w+ r

rewind() r r, r+, a, a+, w,

w+

r, r+, a, a+, w,

w+

r

fflush() r r, r+, a, a+, w,

w+

r, r+, a, a+, w,

w+

r

ferror() r r, r+, a, a+, w,

w+

r, r+, a, a+, w,

w+

r

fdelrec()

fupdate()

feof() r r, r+, a, a+, w,

w+

r, r+, a, a+, w,

w+

r

clearerr() r r, r+, a, a+, w,

w+

r, r+, a, a+, w,

w+

r

fclose() r r, r+, a, a+, w,

w+

r, r+, a, a+, w,

w+

r

fldata() r r, r+, a, a+, w,

w+

r, r+, a, a+, w,

w+

r

Summary of VSAM binary I/O operations

 Table 29. Summary of VSAM binary I/O operations

KSDS ESDS RRDS PATH

fopen(),

freopen()

rb rb, rb+, ab, ab+,

wb, wb+ (empty

cluster or reuse

specified for wb

& wb+)

rb, rb+, ab, ab+,

wb, wb+ (empty

cluster or reuse

specified for wb

& wb+)

rb

fwrite() rb+, ab, ab+, wb,

wb+

rb+, ab, ab+, wb,

wb+

fprintf() rb+, ab, ab+, wb,

wb+

rb+, ab, ab+, wb,

wb+

Chapter 12. Performing VSAM I/O operations 189

|||||

Table 29. Summary of VSAM binary I/O operations (continued)

KSDS ESDS RRDS PATH

fputs() rb+, ab, ab+, wb,

wb+

rb+, ab, ab+, wb,

wb+

fputc() rb+, ab, ab+, wb,

wb+

rb+, ab, ab+, wb,

wb+

putc() rb+, ab, ab+, wb,

wb+

rb+, ab, ab+, wb,

wb+

putc_unlocked() rb+, ab, ab+, wb,

wb+

rb+, ab, ab+, wb,

wb+

vfprintf() rb+, ab, ab+, wb,

wb+

rb+, ab, ab+, wb,

wb+

vprintf() rb+, ab, ab+, wb,

wb+

rb+, ab, ab+, wb,

wb+

fread() rb rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb

fscanf() rb rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb

vfscanf() rb rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb

fgets() rb rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb

fgetc() rb rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb

getc() rb rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb

getc_unlocked() rb rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb

ungetc() rb rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb

ftell() rb rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+,

wb, wb+

ftello() rb rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+,

wb, wb+

fseek() rb rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+,

wb, wb+

fseeko() rb rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+,

wb, wb+

fgetpos() rb rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+,

wb, wb+

fsetpos() rb rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+,

wb, wb+

flocate() rb rb, rb+, ab+, wb+ rb, rb+, ab+, wb+ rb

rewind() rb rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+,

wb, wb+

rb

fflush() rb rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+,

wb, wb+

rb

ferror() rb rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+,

wb, wb+

rb

fdelrec()

fupdate()

feof() rb rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+,

wb, wb+

rb

clearerr() rb rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+,

wb, wb+

rb

190 z/OS V1R8.0 XL C/C++ Programming Guide

|||
|
|
|
|

|||||

Table 29. Summary of VSAM binary I/O operations (continued)

KSDS ESDS RRDS PATH

fclose() rb rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+,

wb, wb+

rb

fldata() rb rb, rb+, ab, ab+,

wb, wb+

rb, rb+, ab, ab+,

wb, wb+

rb

Closing VSAM data sets

To close a VSAM data set, use the Standard C fclose() library function as you

would for closing non-VSAM files. See z/OS XL C/C++ Run-Time Library Reference

for more details on the fclose() library function.

For ESDS binary files, if fclose() is called and there is a new record in the buffer

that is less than the maximum record size, this record is written to the file at its

current size. A new RRDS binary record that is incomplete when the file is closed is

filled with null characters to the record size.

A new ESDS or RRDS text record that is incomplete when the file is closed is

completed with a new-line.

VSAM return codes

When failing return codes are received from z/OS XL C/C++ VSAM I/O functions,

you can access the __amrc structure to help you diagnose errors. The __amrc_type

structure is defined in the header file stdio.h (when the compiler option

LANGLVL(LIBEXT) is used).

Note: The __amrc struct is global and can be reset by another I/O operation (such

as printf()).

The following fields of the structure are important to VSAM users:

__amrc.__code.__feedback.__rc

Stores the VSAM R15.

__amrc.__code.__feedback.__fdbk

Stores the VSAM error code or reason code.

__amrc.__RBA

Stores the RBA after some operations. The __amrc.__RBA field is defined as

an unsigned int, and therefore will only contain a 4-byte RBA value. This

field will be set to -1 when the RBA is beyond 4GB in an extended

addressable VSAM data set. In this case, the __XRBA field should be used.

__amrc.__XRBA

The 8 byte relative byte address returned by VSAM after an ESDS or

KSDS record is written out. For an RRDS, it is the calculated value from the

record number. It may be used in subsequent calls to flocate().

__amrc.__last_op

Stores a code for the last operation. The codes are defined in the header

file stdio.h.

__amrc.__rplfdbwd

Stores the feedback code from the IFGRPL control block.

Chapter 12. Performing VSAM I/O operations 191

|
|
|
|
|

|
|
|
|

For definitions of these return codes and feedback codes, refer to the publications

listed in “DFSMS” on page 995.

You can set up a SIGIOERR handler to catch read or write system errors. See

Chapter 17, “Debugging I/O programs,” on page 235 for more information.

VSAM examples

This section provides several examples of using I/O under VSAM.

KSDS example

The example below shows two functions from an employee record entry system

with a mainline driver to process selected options (display, display next, update,

delete, create).

The update routine is an example of KSDS clusters, and the display routine is an

example of both KSDS clusters and alternate indexes.

For these examples, the clusters and alternate indexes should be defined as

follows:

v The KSDS cluster has a record size of 150 with a key length of 4 with offset 0.

v The unique KSDS AIX has a key length of 20 with an offset of 10.

v The non-unique KSDS AIX has a key length of 40 with an offset of 30.

The update routine is passed the following:

v data_ptr, which points to the information that is to be updated

v orig_data_ptr, which points to the information that was originally displayed using

the display option

v A file pointer to the KSDS cluster

The display routine is passed the following:

v data_ptr, which points to the information that was entered on the screen for the

search query

v orig_data_ptr, which is returned with the information for the record to be

displayed if it exists

v File pointers for the primary cluster, unique alternate index and non-unique

alternate index

By definition, the primary key is unique and therefore the employee number was

chosen for this key. The user_id is also a unique key; therefore, it was chosen as

the unique alternate index key. The name field may not be unique; therefore, it was

chosen as the non-unique alternate index key.

192 z/OS V1R8.0 XL C/C++ Programming Guide

CCNGVS2

/* this example demonstrates the use of a KSDS file */

/* part 1 of 2-other file is CCNGVS3 */

#include <stdio.h>

#include <string.h>

/* global definitions */

struct data_struct {

 char emp_number[4];

 char user_id[8];

 char name[20];

 char pers_info[37];

};

#define REC_SIZE 69

#define CLUS_KEY_SIZE 4

#define AIX_UNIQUE_KEY_SIZE 8

#define AIX_NONUNIQUE_KEY_SIZE 20

static void print_amrc() {

 __amrc_type currErr = *__amrc; /* copy contents of __amrc */

 /* structure so that values */

 /* don’t get jumbled by printf */

 printf("R15 value = %d\n", currErr.__code.__feedback.__rc);

 printf("Reason code = %d\n", currErr.__code.__feedback.__fdbk);

 printf("RBA = %d\n", currErr.__RBA);

 printf("Last op = %d\n", currErr.__last_op);

 return;

}

Figure 24. KSDS example (Part 1 of 6)

Chapter 12. Performing VSAM I/O operations 193

/* update_emp_rec() function definition */

int update_emp_rec (struct data_struct *data_ptr,

 struct data_struct *orig_data_ptr,

 FILE *fp)

{

 int rc;

 char buffer[REC_SIZE+1];

 /* Check to see if update will change primary key (emp_number) */

 if (memcmp(data_ptr->emp_number,orig_data_ptr->emp_number,4) != 0) {

 /* Check to see if changed primary key exists */

 rc = flocate(fp,&(data_ptr->emp_number),CLUS_KEY_SIZE,__KEY_EQ);

 if (rc == 0) {

 print_amrc();

 printf("Error: new employee number already exists\n");

 return 10;

 }

 clearerr(fp);

 /* Write out new record */

 rc = fwrite(data_ptr,1,REC_SIZE,fp);

 if (rc != REC_SIZE || ferror(fp)) {

 print_amrc();

 printf("Error: write with new employee number failed\n");

 return 20;

 }

 /* Locate to old employee record so it can be deleted */

 rc = flocate(fp,&(orig_data_ptr->emp_number),CLUS_KEY_SIZE,

 __KEY_EQ);

 if (rc != 0) {

 print_amrc();

 printf("Error: flocate to original employee number failed\n");

 return 30;

 }

 rc = fread(buffer,1,REC_SIZE,fp);

 if (rc != REC_SIZE || ferror(fp)) {

 print_amrc();

 printf("Error: reading old employee record failed\n");

 return 40;

 }

 rc = fdelrec(fp);

 if (rc != 0) {

 print_amrc();

 printf("Error: deleting old employee record failed\n");

 return 50;

 }

Figure 24. KSDS example (Part 2 of 6)

194 z/OS V1R8.0 XL C/C++ Programming Guide

} /* end of checking for change in primary key */

 else { /* Locate to current employee record */

 rc = flocate(fp,&(data_ptr->emp_number),CLUS_KEY_SIZE,__KEY_EQ);

 if (rc == 0) {

 /* record exists, so update it */

 rc = fread(buffer,1,REC_SIZE,fp);

 if (rc != REC_SIZE || ferror(fp)) {

 print_amrc();

 printf("Error: reading old employee record failed\n");

 return 60;

 }

 rc = fupdate(data_ptr,REC_SIZE,fp);

 if (rc == 0) {

 print_amrc();

 printf("Error: updating new employee record failed\n");

 return 70;

 }

 }

 else { /* record doesn’t exist so write out new record */

 clearerr(fp);

 printf("Warning: record previously displayed no longer\n");

 printf(" : exists, new record being created\n");

 rc = fwrite(data_ptr,1,REC_SIZE,fp);

 if (rc != REC_SIZE || ferror(fp)) {

 print_amrc();

 printf("Error: write with new employee number failed\n");

 return 80;

 }

 }

 }

 return 0;

}

/* display_emp_rec() function definition */

int display_emp_rec (struct data_struct *data_ptr,

 struct data_struct *orig_data_ptr,

 FILE *clus_fp, FILE *aix_unique_fp,

 FILE *aix_non_unique_fp)

{

 int rc = 0;

 char buffer[REC_SIZE+1];

 /* Primary Key Search */

 if (memcmp(data_ptr->emp_number, "\0\0\0\0", 4) != 0) {

 rc = flocate(clus_fp,&(data_ptr->emp_number),CLUS_KEY_SIZE,

 __KEY_EQ);

 if (rc != 0) {

 printf("Error: flocate with primary key failed\n");

 return 10;

 }

 /* Read record for display */

 rc = fread(orig_data_ptr,1,REC_SIZE,clus_fp);

 if (rc != REC_SIZE || ferror(clus_fp)) {

 printf("Error: reading employee record failed\n");

 return 15;

 }

 }

Figure 24. KSDS example (Part 3 of 6)

Chapter 12. Performing VSAM I/O operations 195

/* Unique Alternate Index Search */

 else if (data_ptr->user_id[0] != ’\0’) {

 rc = flocate(aix_unique_fp,data_ptr->user_id,AIX_UNIQUE_KEY_SIZE,

 __KEY_EQ);

 if (rc != 0) {

 printf("Error: flocate with user id failed\n");

 return 20;

 }

 /* Read record for display */

 rc = fread(orig_data_ptr,1,REC_SIZE,aix_unique_fp);

 if (rc != REC_SIZE || ferror(aix_unique_fp)) {

 printf("Error: reading employee record failed\n");

 return 25;

 }

 }

 /* Non-unique Alternate Index Search */

 else if (data_ptr->name[0] != ’\0’) {

 rc = flocate(aix_non_unique_fp,data_ptr->name,

 AIX_NONUNIQUE_KEY_SIZE,__KEY_GE);

 if (rc != 0) {

 printf("Error: flocate with name failed\n");

 return 30;

 }

 /* Read record for display */

 rc = fread(orig_data_ptr,1,REC_SIZE,aix_non_unique_fp);

 if (rc != REC_SIZE || ferror(aix_non_unique_fp)) {

 printf("Error: reading employee record failed\n");

 return 35;

 }

 }

 else {

 printf("Error: invalid search argument; valid search arguments\n"

 " : are either employee number, user id, or name\n");

 return 40;

 }

 /* display record data */

 printf("Employee Number: %.4s\n", orig_data_ptr->emp_number);

 printf("Employee Userid: %.8s\n", orig_data_ptr->user_id);

 printf("Employee Name: %.20s\n", orig_data_ptr->name);

 printf("Employee Info: %.37s\n", orig_data_ptr->pers_info);

 return 0;

}

Figure 24. KSDS example (Part 4 of 6)

196 z/OS V1R8.0 XL C/C++ Programming Guide

/* main() function definition */

int main() {

 FILE* clus_fp;

 FILE* aix_ufp;

 FILE* aix_nufp;

 int i;

 struct data_struct buf1, buf2;

 char data[3][REC_SIZE+1] = {

" 1LARRY LARRY HI, I’M LARRY, ",

" 2DARRYL1 DARRYL AND THIS IS MY BROTHER DARRYL, ",

" 3DARRYL2 DARRYL "

 };

 /* open file three ways */

 clus_fp = fopen("dd:cluster", "rb+,type=record");

 if (clus_fp == NULL) {

 print_amrc();

 printf("Error: fopen(\"dd:cluster\"...) failed\n");

 return 5;

 }

 /* assume base cluster was loaded with at least one dummy record */

 /* so aix could be defined */

 aix_ufp = fopen("dd:aixuniq", "rb,type=record");

 if (aix_ufp == NULL) {

 print_amrc();

 printf("Error: fopen(\"dd:aixuniq\"...) failed\n");

 return 10;

 }

 /* assume base cluster was loaded with at least one dummy record */

 /* so aix could be defined */

 aix_nufp = fopen("dd:aixnuniq", "rb,type=record");

 if (aix_nufp == NULL) {

 print_amrc();

 printf("Error: fopen(\"dd:aixnuniq\"...) failed\n");

 return 15;

 }

 /* load sample records */

 for (i = 0; i < 3; ++i) {

 if (fwrite(data[i],1,REC_SIZE,clus_fp) != REC_SIZE) {

 print_amrc();

 printf("Error: fwrite(data[%d]...) failed\n", i);

 return 66+i;

 }

 }

Figure 24. KSDS example (Part 5 of 6)

Chapter 12. Performing VSAM I/O operations 197

The following JCL can be used to test the previous example.

CCNGVS3

 /* display sample record by primary key */

 memcpy(buf1.emp_number, " 1", 4);

 if (display_emp_rec(&buf1, &buf2, clus_fp, aix_ufp, aix_nufp) != 0)

 return 69;

 /* display sample record by nonunique aix key */

 memset(buf1.emp_number, ’\0’, 4);

 buf1.user_id[0] = ’\0’;

 memcpy(buf1.name, "DARRYL ", 20);

 if (display_emp_rec(&buf1, &buf2, clus_fp, aix_ufp, aix_nufp) != 0)

 return 70;

 /* display sample record by unique aix key */

 memcpy(buf1.user_id, "DARRYL2 ", 8);

 if (display_emp_rec(&buf1, &buf2, clus_fp, aix_ufp, aix_nufp) != 0)

 return 71;

 /* update record just read with new personal info */

 memcpy(&buf1, &buf2, REC_SIZE);

 memcpy(buf1.pers_info, "AND THIS IS MY OTHER BROTHER DARRYL. ", 37);

 if (update_emp_rec(&buf1, &buf2, clus_fp) != 0) return 72;

 /* display sample record by unique aix key */

 if (display_emp_rec(&buf1, &buf2, clus_fp, aix_ufp, aix_nufp) != 0)

 return 73;

 return 0;

}

Figure 24. KSDS example (Part 6 of 6)

//* this example illustrates the use of a KSDS file

//* part 2 of 2-other file is CCNGVS2

//*--

//* Delete cluster, and AIX and PATH

//*--

//DELETEC EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 DELETE -

 userid.KSDS.CLUSTER -

 CLUSTER -

 PURGE -

 ERASE

Figure 25. KSDS example (Part 1 of 3)

198 z/OS V1R8.0 XL C/C++ Programming Guide

/*

//*--

//* Define KSDS

//*--

//DEFINE EXEC PGM=IDCAMS

//VOLUME DD UNIT=SYSDA,DISP=SHR,VOL=SER=(XXXXXX)

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 DEFINE CLUSTER -

 (NAME(userid.KSDS.CLUSTER) -

 FILE(VOLUME) -

 VOL(XXXXXX) -

 TRK(4 4) -

 RECSZ(69 100) -

 INDEXED -

 NOREUSE -

 KEYS(4 0) -

 OWNER(userid)) -

 DATA -

 (NAME(userid.KSDS.DA)) -

 INDEX -

 (NAME(userid.KSDS.IX))

/*

//*--

//* Repro data into KSDS

//*--

//REPRO EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 REPRO INDATASET(userid.DUMMY.DATA) -

 OUTDATASET(userid.KSDS.CLUSTER)

/*

//*--

//* Define unique AIX, define and build PATH

//*--

//DEFAIX EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 DEFINE AIX -

 (NAME(userid.KSDS.UAIX) -

 RECORDS(25) -

 KEYS(8,4) -

 VOL(XXXXXX) -

 UNIQUEKEY -

 RELATE(userid.KSDS.CLUSTER)) -

 DATA -

 (NAME(userid.KSDS.UAIXDA)) -

 INDEX -

 (NAME(userid.KSDS.UAIXIX))

 DEFINE PATH -

 (NAME(userid.KSDS.UPATH) -

 PATHENTRY(userid.KSDS.UAIX))

 BLDINDEX -

 INDATASET(userid.KSDS.CLUSTER) -

 OUTDATASET(userid.KSDS.UAIX)

/*

Figure 25. KSDS example (Part 2 of 3)

Chapter 12. Performing VSAM I/O operations 199

RRDS example

The following program illustrates the use of an RRDS file. It performs the following

operations:

 1. Opens an RRDS file in record mode (the cluster must be defined)

 2. Writes three records (RRN 2, RRN 10, and RRN 32)

 3. Sets the file position to the first record

 4. Reads the first record in the file

 5. Deletes it

 6. Locates the last record in the file and sets the access direction to backwards

/*

//*--

//* Define nonunique AIX, define and build PATH

//*--

//DEFAIX EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 DEFINE AIX -

 (NAME(userid.KSDS.NUAIX) -

 RECORDS(25) -

 KEYS(20, 12) -

 VOL(XXXXXX) -

 NONUNIQUEKEY -

 RELATE(userid.KSDS.CLUSTER)) -

 DATA -

 (NAME(userid.KSDS.NUAIXDA)) -

 INDEX -

 (NAME(userid.KSDS.NUAIXIX))

 DEFINE PATH -

 (NAME(userid.KSDS.NUPATH) -

 PATHENTRY(userid.KSDS.NUAIX))

 BLDINDEX -

 INDATASET(userid.KSDS.CLUSTER) -

 OUTDATASET(userid.KSDS.NUAIX)

/*

//*--

//* Run the testcase

//*--

//GO EXEC PGM=CCNGVS2,REGION=5M

//STEPLIB DD DSN=userid.TEST.LOAD,DISP=SHR

// DD DSN=CEE.SCEERUN,DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSTERM DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//PLIDUMP DD SYSOUT=*

//SYSABEND DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//CLUSTER DD DSN=userid.KSDS.CLUSTER,DISP=SHR

//AIXUNIQ DD DSN=userid.KSDS.UPATH,DISP=SHR

//AIXNUNIQ DD DSN=userid.KSDS.NUPATH,DISP=SHR

//*--

//* Print out the cluster

//*--

//PRINTF EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 PRINT -

 INDATASET(userid.KSDS.CLUSTER) CHAR

/*

Figure 25. KSDS example (Part 3 of 3)

200 z/OS V1R8.0 XL C/C++ Programming Guide

7. Reads the record

 8. Updates the record

 9. Sets the _EDC_RRDS_HIDE_KEY environment variable

10. Reads the next record in sequence (RRN 10) into a character string

CCNGVS4

/* this example illustrates the use of an RRDS file */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <env.h>

struct rrds_struct {

__

rrds_key_type rrds_key;

 char *rrds_buf;

};

typedef struct rrds_struct RRDS_STRUCT;

main() {

FILE *fileptr;

RRDS_STRUCT RRDSstruct;

RRDS_STRUCT *rrds_rec = &RRDSstruct;

char buffer1[80] =

 "THIS IS THE FIRST RECORD IN THE FILE. I"

 "T WILL BE WRITTEN AT RRN POSITION 2. ";

char buffer2[80] =

 "THIS IS THE SECOND RECORD IN THE FILE. I"

 "T WILL BE WRITTEN AT RRN POSITION 10. ";

char buffer3[80] =

 "THIS IS THE THIRD RECORD IN THE FILE. I"

 "T WILL BE WRITTEN AT RRN POSITION 32. ";

char outputbuf[80];

unsigned long flocate_key = 0;

Figure 26. RRDS example (Part 1 of 3)

Chapter 12. Performing VSAM I/O operations 201

/*--*/

/*| select RRDS record structure 2 by setting __fill to 1 */

/*| */

/*| 1. open an RRDS file record mode (the cluster must be defined) */

/*| 2. write three records (RRN 2, RRN 10, RRN 32) */

/*--*/

 rrds_rec->rrds_key.__fill = 1;

 fileptr = fopen("DD:RRDSFILE", "wb+,type=record");

 if (fileptr == NULL) {

 perror("fopen");

 exit(99);

 }

 rrds_rec->rrds_key.__recnum = 2;

 rrds_rec->rrds_buf = buffer1;

 fwrite(rrds_rec,1,88, fileptr);

 rrds_rec->rrds_key.__recnum = 10;

 rrds_rec->rrds_buf = buffer2;

 fwrite(rrds_rec,1,88, fileptr);

 rrds_rec->rrds_key.__recnum = 32;

 rrds_rec->rrds_buf = buffer3;

 fwrite(rrds_rec,1,88, fileptr);

/*--*/

/*| 3. set file position to the first record */

/*| 4. read the first record in the file */

/*| 5. delete it */

/*--*/

 flocate(fileptr, &flocate_key,; sizeof(unsigned long), __KEY_FIRST);

 memset(outputbuf,0x00,80);

 rrds_rec->rrds_buf = outputbuf;

 fread(rrds_rec,1, 88, fileptr);

 printf("The first record in the file (this will be deleted):\n");

 printf("RRN %d: %s\n\n",rrds_rec->rrds_key.__recnum,outputbuf);

 fdelrec(fileptr);

Figure 26. RRDS example (Part 2 of 3)

202 z/OS V1R8.0 XL C/C++ Programming Guide

fldata() behavior

The format of the fldata() function is as follows:

int fldata(FILE *file, char *filename, fldata_t *info);

The fldata() function is used to retrieve information about an open stream. The

name of the file is returned in filename and other information is returned in the

fldata_t structure, shown in the figure below. Values specific to this category of I/O

are shown in the comment beside the structure element. Additional notes pertaining

to this category of I/O follow the figure.

For more information on the fldata() function, refer to z/OS XL C/C++ Run-Time

Library Reference.

/*--*/

/*| 6. locate last record in file and set access direction backwards*/

/*| 7. read the record */

/*| 8. update the record */

/*--*/

 flocate(fileptr, &flocate_key,; sizeof(unsigned long), __KEY_LAST);

 memset(outputbuf,0x00,80);

 rrds_rec->rrds_buf = outputbuf;

 fread(rrds_rec,1, 88, fileptr);

 printf("The last record in the file (this one will be updated):\n");

 printf("RRN %d: %s\n\n",rrds_rec->rrds_key.__recnum,outputbuf);

 memset(outputbuf,0x00,80);

 memcpy(outputbuf,"THIS IS THE UPDATED STRING... ",30);

 fupdate(rrds_rec,88,fileptr);

/*--*/

/*| 9. set _EDC_RRDS_HIDE_KEY environment variable */

/*|10. read the next record in sequence (ie. RRN 10) into a */

/*| + character string */

/*--*/

 setenv("_EDC_RRDS_HIDE_KEY","Y",1);

 memset(outputbuf,0x00,80);

 fread(outputbuf, 1, 80, fileptr);

 printf("The middle record in the file (read into char string):\n");

 printf("%80s\n\n",outputbuf);

 fclose(fileptr);

}

Figure 26. RRDS example (Part 3 of 3)

Chapter 12. Performing VSAM I/O operations 203

struct __fileData {

 unsigned int __recfmF : 1, /* */

 __recfmV : 1, /* */

 __recfmU : 1, /* */

 __recfmS : 1, /* always off */

 __recfmBlk : 1, /* always off */

 __recfmASA : 1, /* always off */

 __recfmM : 1, /* always off */

 __dsorgPO : 1, /* N/A -- always off */

 __dsorgPDSmem : 1, /* N/A -- always off */

 __dsorgPDSdir : 1, /* N/A -- always off */

 __dsorgPS : 1, /* N/A -- always off */

 __dsorgConcat : 1, /* N/A -- always off */

 __dsorgMem : 1, /* N/A -- always off */

 __dsorgHiper : 1, /* N/A -- always off */

 __dsorgTemp: 1, /* N/A -- always off */

 __dsorgVSAM: 1, /* always on */

 #if __TARGET_LIB__ >= __EDC_LE /* */

 __dsorgHFS : 1, /* */

 #else

 __reserve1 : 1, /* */

 #endif

 __openmode : 2, /* one of: */

 /* __TEXT */

 /* __BINARY */

 /* __RECORD */

 __modeflag : 4, /* combination of: */

 /* __READ */

 /* __WRITE */

 /* __APPEND */

 /* __UPDATE */

 __dsorgPDSE: 1, /* N/A -- always off */

 __vsamRLS : 3, /* One of: */

 /* __NORLS */

 /* __RLS */

 #if __EDC_TARGET >= 0x41080000 /* */

 __vsamEA : 1, /* */

 __reserve2 : 4; /* */

 #else

 __reserve3 : 5; /* */

 #endif

 __device_t __device; /* */

 unsigned long __blksize, /* */

 __maxreclen; /* */

 union { /* */

 struct { /* */

 unsigned short __vsam_type; /* */

 unsigned long __vsam_keylen; /* */

 unsigned long __vsam_RKP; /* */

 } __vsam; /* */

 #if __EDC_TARGET >= 0x41080000 /* */

 struct { /* */

 unsigned char __disk_access_method; /* */

 unsigned char __disk_noseek_to_seek; /* */

 long __disk_reserve[2]; /* */

 } __disk;

 #endif

 } __device_specific;

 char * __dsname; /* */

 unsigned int __reserve4; /* */

};

typedef struct __fileData fldata_t;

Figure 27. fldata() structure

204 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Notes:

1. If you have opened the file by its data set name, the filename is fully qualified,

including quotation marks. If you have opened the file by ddname, filename is

dd:ddname, without any quotation marks. The ddname is uppercase.

2. The __dsname field is filled in with the data set name. The __dsname value is

uppercase unless the asis option was specified on the fopen() or freopen()

function call.

Chapter 12. Performing VSAM I/O operations 205

206 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 13. Performing terminal I/O operations

This chapter describes how to use input and output interactively with a terminal

(using TSO or z/OS UNIX System Services).

Terminal I/O supports text, binary, and record I/O, in undefined, variable and

fixed-length formats, except that ASA format is not valid for any text terminal files.

Note: You cannot use the z/OS XL C/C++ I/O functions for terminal I/O under

either IMS or CICS. Terminal I/O under CICS is supported through the CICS

command level interface.

This chapter describes C I/O stream functions as they can be used within C++

programs. If you want to use the C++ I/O stream classes instead, see Chapter 4,

“Using the Standard C++ Library I/O Stream Classes,” on page 39 for general

information. For more detailed information, see:

v Standard C++ Library Reference discusses the Standard C++ I/O stream classes

v C/C++ Legacy Class Libraries Reference discusses the UNIX Systems

Laboratories C++ Language System Release (USL) I/O Stream Library.

Opening files

You can use the library functions fopen() or freopen() to open a file.

Using fopen() and freopen()

This section covers:

v Opening a file by data set name

v Opening a file by DD name

v fopen() and freopen() keywords

v Opening a terminal file under a shell

Opening a file by data set name

Files are opened with a call to fopen() or freopen() in the format

fopen("filename", "mode"). The first character of the filename must be an asterisk

(*).

z/OS UNIX System Services Considerations: If you have specified POSIX(ON),

fopen("*file.data","r"); does not open a terminal file. Instead, it opens a file

called *file.data in the HFS file system. To open a terminal file under POSIX, you

must specify two slashes before the asterisk, as follows:

 fopen("//*file.data","r"):

Terminal files cannot be opened in update mode.

Terminal files opened in append mode are treated as if they were opened in write

mode.

Opening a file by DDname

The data set name that is associated with the DD statement must be an asterisk(*).

For example:

TSO ALLOC f(ddname) DA(*)

fopen("dd:ddname", "mode");

© Copyright IBM Corp. 1996, 2006 207

fopen() and freopen() keywords

The following table lists the keywords that are available on the fopen() and

freopen() functions, tells you which ones are useful for terminal I/O, and lists the

values that are valid for the applicable ones.

 Table 30. Keywords for the fopen() and freopen() functions for terminal I/O

Parameter Allowed? Applicable? Notes

recfm= Yes Yes F, V, U and additional keywords A, B, S,

M are the valid values. A, B, S, and M are

ignored.

lrecl= Yes Yes See below.

blksize= Yes Yes See below.

space= Yes No Has no effect for terminal I/O.

type= Yes Yes May be omitted. If you do specify it,

type=record is the only valid value.

acc= No No Not used for terminal I/O.

password= No No Not used for terminal I/O.

asis Yes No Has no effect for terminal I/O.

byteseek Yes No Has no effect for terminal I/O.

noseek Yes No Has no effect for terminal I/O.

OS Yes No Not used for terminal I/O.

recfm=

z/OS XL C/C++ allows you to specify any of the 27 possible RECFM types

(listed in “Fixed-format records” on page 28, “Variable-format records” on page

31, and “Undefined-format records” on page 34). The default is recfm=U.

 Any specification of ASA for the record format is ignored.

 lrecl= and blksize=

The lrecl and blksize parameters allow you to set the record size and block

size, respectively.

 The maximum limits on lrecl values are as follows:

32771 For input z/OS variable terminals (data length of 32767)

32767 For input z/OS fixed and undefined terminals

32770 For output z/OS variable terminals (data length of 32766)

32766 For output z/OS fixed and undefined terminals

 In fixed and undefined terminal files, blksize is always the size of lrecl. In

variable terminal files, blksize is always the size of lrecl plus 4 bytes. It is not

necessary to specify values for lrecl and blksize. If neither is specified, the

default values are used. The default lrecl sizes (not including the extra 4 bytes

in the lrecl of variable length types) are as follows:

v Screen width for output terminals

v 1000 for input z/OS text terminals

v 254 for all other input terminals

space=

This parameter is accepted as an option for terminal I/O, but it is ignored. It

does not generate an error.

208 z/OS V1R8.0 XL C/C++ Programming Guide

type=

type=record specifies that the file is to be opened for sequential record I/O. The

file must be opened as a binary file.

acc=

This parameter is not valid for terminal I/O. If you specify it, your fopen() call

fails.

password=

This parameter is not valid for terminal I/O. If you specify it, your fopen() call

fails.

asis

This parameter is accepted as an option for terminal I/O, but it is ignored. It

does not generate an error.

byteseek

This parameter is accepted as an option for terminal I/O, but it is ignored. It

does not generate an error.

noseek

This parameter is accepted as an option for terminal I/O, but it is ignored. It

does not generate an error.

OS

This parameter is not valid for terminal I/O. If you specify it, your fopen() call

fails.

 When you perform input and output in an interactive mode with the terminal, all

standard streams and all files with * as the first character of their names are

associated with the terminal. Output goes to the screen; input comes from the

keyboard.

An input EOF can be generated by a /* if you open a stream in text mode. If you

open the stream in binary or record mode, you can generate an EOF by entering a

null string.

ASA characters are not interpreted in terminal I/O.

Opening a terminal file under a shell

Files are opened with a call to fopen() in the format fopen("/dev/tty", "mode").

Buffering

z/OS XL C/C++ uses buffers to map byte-level I/O (data stored in records and

blocks) to system-level C I/O.

In terminal I/O, line buffering is always in effect.

The setvbuf() and setbuf() functions can be used to control buffering before any

read or write operation to the file. If you want to reset the buffering mode, you must

call setvbuf() or setbuf() before any other operation occurs on a file, because you

cannot change the buffering mode after an I/O operation to the file.

Chapter 13. Performing terminal I/O operations 209

Reading from files

You can use the following library functions to read in information from terminal files:

v fread()

v fgets()

v gets()

v fgetc()

v getc()

v getc_unlocked()

v getchar()

v getchar_unlocked()

v scanf()

v fscanf()

v vscanf()

v vfscanf()

See z/OS XL C/C++ Run-Time Library Reference for more information on these

library functions.

You can set up a SIGIOERR handler to catch read or write system errors. See

Chapter 17, “Debugging I/O programs,” on page 235 for more information.

A call to the rewind() function clears unread input data in the terminal buffer so that

on the next read request, the system waits for more user input.

With z/OS Language Environment, an empty record is considered EOF in binary

mode or record mode. This remains in effect until a rewind() or clearerr() is

issued. When the rewind() is issued, the buffer is cleared and reading can

continue.

Under TSO, the virtual line size of the terminal is used to determine the line length.

When reading from the terminal and the RECFM has been set to be F (for example,

by an ALLOCATE under TSO) in binary or record mode, the input is padded with

blanks to the record length.

On input, all terminal files opened for output flush their output, no matter what type

of file they are and whether a record is complete or not. This includes fixed terminal

files that would normally withhold output until a record is completed, as well as text

records that normally wait until a new-line or carriage return. In all cases, the data

is placed into one line with a blank added to separate output from different terminal

files. Fixed terminal files do not pad the output with blanks when flushing this way.

Note: This flush is not the same as a call to fflush(), because fixed terminal files

do not have incomplete records and text terminal files do not output until the

new-line or carriage return. This flush occurs only when actual input is

required from the terminal. When data is still in the buffer, that data is read

without flushing output terminal files.

Reading from binary files

This discussion includes reading from fixed binary files and from variable or

undefined binary files.

210 z/OS V1R8.0 XL C/C++ Programming Guide

|

|

Reading from fixed binary files

v Any input that is smaller than the record length is padded with blanks to the

record length. The default record length is 254 bytes.

v The carriage return or new-line is not included as part of the data.

v An input line longer than the record length is returned to the calling program on

subsequent system reads.

For example, suppose a program requests 30 bytes of user input from an input

fixed binary terminal with record length 25. The full 30 bytes of user input returns

to satisfy the request, so that you do not need to enter a second line of input.

v An empty input line indicates EOF.

Reading from variable or undefined binary files

These files behave like fixed-length binary files, except that no padding is

performed if the input is smaller than the record length.

Reading from text files

This discussion includes reading from fixed text files and from variable or undefined

text files.

Reading from fixed text files

v The carriage return indicates the end of the record.

v A new-line character is added as part of the data to indicate the end of an input

line.

v If the input is larger than the record length, it is truncated to the record length.

The truncation causes SIGIOERR to be raised, if the default action for SIGIOERR is

not SIG_IGN.

v When an input line is smaller than the record length, it is not padded with blanks.

v The character sequence /* indicates that the end of the file has been reached.

Reading from variable or undefined text files

These files behave like fixed-length text files.

Reading from record I/O files

This discussion includes reading from fixed record I/O files and from variable or

undefined record I/O files.

Reading from fixed record I/O files

v Records smaller than the record length are padded with blanks up to the record

length. The default record length is 254 bytes.

v Input record terminal records have an implicit logical record boundary at the

record length if the input size exceeds the record length.

If you enter input data larger than the record length, each subsequent block of

record-length bytes from the user input satisfies successive read requests.

v The carriage return or new-line is not included as part of the data.

v An empty line indicates an EOF.

Reading from variable or undefined record I/O files

These files behave like fixed-length record files, except that no padding is

performed.

Chapter 13. Performing terminal I/O operations 211

Writing to files

You can use the following library functions to write to a terminal file:

v fwrite()

v printf()

v fprintf()

v vprintf()

v vfprintf()

v puts()

v fputs()

v fputc()

v putc()

v putc_unlocked()

v putchar()

v purchar_unlocked()

See z/OS XL C/C++ Run-Time Library Reference for more information on these

library functions.

If no record length is specified for the output terminal file, it defaults to the virtual

line size of the terminal.

On output, records are written one line at a time up to the record length. For all

output terminal files, records are not truncated. If you are printing a long string, it

wraps around to another line.

Writing to binary files

This discussion includes writing to fixed binary files and to variable or undefined

binary files.

Writing to fixed binary files

v Output data is sent to the terminal when the last character of a record is written.

v When closing an output terminal, any unwritten data is padded to the record

length with blanks before it is flushed.

Writing to variable or undefined binary files

These files behave the same as fixed-length binary files, except that no padding

occurs for output that is smaller than the record length.

Writing to text files

The following control characters are supported:

\a Alarm. Causes the terminal to generate an audible beep.

\b Backspace. Backs up the output position by one byte. If you are at the start

of the record, you cannot back up to previous record, and backspace is

ignored.

\f Form feed. Sends any unwritten data to the terminal and clears the screen

if the environment variable _EDC_CLEAR_SCREEN is set. If the variable is not

set, the \f character is written to the screen.

\n New-line. Sends the preceding unwritten character to the terminal. If no

preceding data exists, it sends a single blank character.

\t Horizontal tab. Pads the output record with blanks up to the next tab stop

(set at eight characters).

212 z/OS V1R8.0 XL C/C++ Programming Guide

|

|

\v Vertical tab. Placed in the output as is.

\r Carriage return. Treated as a new-line, sends preceding unwritten data to

the terminal.

Writing to fixed text files

v Lines that are longer than the record length are not truncated. They are split

across multiple lines, each LRECL bytes long. Subsequent writes begin on a new

line.

v Output data is sent to the terminal when one character more than the record

length is written, or when a \r, \n, or \f character is written. In the case of \f,

output is displayed only if the _EDC_CLEAR_SCREEN environment variable is set.

v No padding occurs on output when a record is smaller than the record length.

Writing to variable or undefined text files

These terminal files behave like fixed-length terminal files.

Writing to record I/O files

This discussion includes writing to fixed record I/O files and to variable or undefined

record I/O files.

Writing to fixed record I/O files

v Any output record that is smaller than the record length is padded to the record

length with blanks, and trailing blanks are displayed.

v If a record is longer than the record length, all data is written to the terminal,

wrapping at the record length.

v Output data is sent to the terminal with every record write.

Writing to variable or undefined record I/O files

These files behave like fixed-length record files except that no padding occurs when

the output record is smaller than the record length.

Flushing records

The action taken by the fflush() library function depends on the file mode. The

fflush() function only flushes buffers in binary files with Variable or Undefined

record format.

If you call one z/OS XL C/C++ program from another z/OS XL C/C++ program by

using the ANSI system() function, all open streams are flushed before control is

passed to the callee, and again before control is returned to the caller. If you are

running with POSIX(ON), a call to the POSIX system() function does not flush any

streams to the system.

Text streams

v Writing a new record:

Because a new-line character has not been encountered to indicate the

end-of-line, fflush() takes no action. The record is written as a new record

when one of the following takes place:

– A new-line character is written.

– The file is closed.

v Reading a record:

fflush() clears a previous ungetc() character.

Chapter 13. Performing terminal I/O operations 213

Binary streams

v Writing a new record:

If the file is variable or undefined length in record format, fflush() causes the

current record to be written out, which in turn causes a new record to be created

for subsequent writes. If the file is of fixed record length, no action is taken.

v Reading a record:

fflush() clears a previous ungetc() character.

Record I/O

v Writing a new record: fflush() takes no action.

v Reading a record: fflush() takes no action.

Repositioning within files

In terminal I/O, rewind() is the only positioning library function available. Using the

library functions fseek(), fgetpos(), fsetpos(), and ftell() generates an error.

See z/OS XL C/C++ Run-Time Library Reference for more information on these

library functions.

When an input terminal reaches an EOF, the rewind() function:

1. Clears the EOF condition.

2. Enables the terminal to read again.

You can also use rewind() when reading from the terminal to flush out your record

buffer for that stream.

Closing files

Use the fclose() library function to close a file. z/OS XL C/C++ automatically

closes files on normal program termination and attempts to do so under abnormal

program termination or abend. When closing a fixed binary terminal, z/OS XL

C/C++ pads the last record with blanks if it is incomplete.

See z/OS XL C/C++ Run-Time Library Reference for more information on this

library function.

fldata() behavior

The format of the fldata() function is as follows:

int fldata(FILE *file, char *filename, fldata_t *info);

The fldata() function is used to retrieve information about an open stream. The

name of the file is returned in filename and other information is returned in the

fldata_t structure, shown in the figure below. Values specific to this category of I/O

are shown in the comment beside the structure element. Additional notes pertaining

to this category of I/O follow the figure.

For more information on the fldata() function, refer to z/OS XL C/C++ Run-Time

Library Reference.

214 z/OS V1R8.0 XL C/C++ Programming Guide

Notes:

1. The filename value is dd:ddname if the file is opened by ddname; otherwise, the

value is *. The ddname is uppercase.

2. Either __recfmF, __recfmV, or __recfmU will be set according to the recfm

parameter specified on the fopen() or freopen() function call.

struct __fileData {

 unsigned int __recfmF : 1, /* */

 __recfmV : 1, /* */

 __recfmU : 1, /* */

 __recfmS : 1, /* always off */

 __recfmBlk : 1, /* always off */

 __recfmASA : 1, /* always off */

 __recfmM : 1, /* always off */

 __dsorgPO : 1, /* N/A -- always off */

 __dsorgPDSmem : 1, /* N/A -- always off */

 __dsorgPDSdir : 1, /* N/A -- always off */

 __dsorgPS : 1, /* N/A -- always off */

 __dsorgConcat : 1, /* N/A -- always off */

 __dsorgMem : 1, /* N/A -- always off */

 __dsorgHiper : 1, /* N/A -- always off */

 __dsorgTemp: 1, /* N/A -- always off */

 __dsorgVSAM: 1, /* N/A -- always off */

 __dsorgHFS : 1, /* N/A -- always off */

 __openmode : 2, /* one of: */

 /* __TEXT */

 /* __BINARY */

 /* __RECORD */

 __modeflag : 4, /* combination of: */

 /* __READ */

 /* __WRITE */

 /* __APPEND */

 __dsorgPDSE: 1, /* N/A -- always off */

 __reserve2 : 8; /* */

 __device_t __device; /* __TERMINAL */

 unsigned long __blksize, /* */

 __maxreclen; /* */

 unsigned short __vsamtype; /* N/A */

 unsigned long __vsamkeylen; /* N/A */

 unsigned long __vsamRKP; /* N/A */

 char * __dsname; /* N/A -- always NULL */

 unsigned int __reserve4; /* */

};

typedef struct __fileData fldata_t;

Figure 28. fldata() structure

Chapter 13. Performing terminal I/O operations 215

216 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 14. Performing memory file and hiperspace I/O

operations

This chapter describes how to perform memory file and hiperspace I/O operations.

z/OS XL C/C++ supports files known as memory files. Memory files are temporary

work files that are stored in main memory rather than in external storage.

There are two types of memory files:

v Regular memory files, which exist in your virtual storage

v Hiperspace memory files, which use special storage areas called hiperspaces.

Restriction: Hiperspace memory files are not supported in AMODE 64

applications. In AMODE 64 applications, regular memory files can be extremely

large as they will reside in 64-bit addressable storage. Attempts to open a

memory file with type=memory(hiperspace) will be converted to a regular memory

file. All behaviors for regular memory files, identified throughout this chapter, will

apply.

Memory files can be written to, read from, and repositioned within like any other

type of file. Memory files exist for the life of your root program, unless you explicitly

delete them by using the remove() or clrmemf() functions. The root program is the

first main() to be invoked. Any main() program called by a system() call is known

as a child program. When the root program terminates, z/OS XL C/C++ removes

memory files automatically. Memory files may give you better performance than

other types of files.

Note: There may not be a one-to-one correspondence between the bytes in a

memory file and the bytes in some other external representation of the file,

such as a disk file. Applications that mix open modes on a file (for example,

writing a file as text file and reading it back as binary) may not port readily

from external I/O to memory file I/O.

This chapter describes C I/O streams as they can be used within C++ programs. If

you want to use the C++ I/O stream classes instead, see Chapter 4, “Using the

Standard C++ Library I/O Stream Classes,” on page 39 for general information. For

more detailed information, see:

v Standard C++ Library Reference discusses the Standard C++ I/O stream classes

v C/C++ Legacy Class Libraries Reference discusses the UNIX Systems

Laboratories C++ Language System Release (USL) I/O Stream Library.

Using hiperspace operations

Restriction: Hiperspace memory files are not supported in AMODE 64 applications.

In AMODE 64 applications, regular memory files can be extremely large as they will

reside in 64-bit addressable storage. Attempts to open a memory file with

type=memory(hiperspace) will be converted to a regular memory file. All behaviors

for regular memory files, identified throughout this chapter, will apply.

On MVS/ESA systems that support hiperspaces, large memory files can be placed

in hiperspaces to reduce memory requirements within your address space.

If your installation is MVS/ESA and supports hiperspaces, and you are not using

CICS, you can use hiperspace memory files (see the appropriate book as listed in

© Copyright IBM Corp. 1996, 2006 217

|
|

z/OS Information Roadmap for more information on hiperspaces). Whereas a

regular memory file stores all the file data in your address space, a hiperspace

memory file uses one buffer in your address space, and keeps the rest of the data

in the hiperspace. Therefore, a hiperspace memory file requires only a certain

amount of storage in your address space, regardless of how large the file is. If you

use setvbuf(), z/OS XL C/C++ may or may not accept your buffer for its internal

use. For a hiperspace memory file, if the size of the buffer specified to setvbuf() is

greater than 4K, then only the first 4K of the user buffer will be used.

Hiperspace memory files may not be shared by multiple threads. A Hiperspace

memory file that is created on one thread can only be read/written/closed by the

same thread.

Opening files

Use the Standard C fopen() or freopen() library functions to open a memory file.

Details about these functions that apply to all z/OS XL C/C++ I/O operations are

discussed in Chapter 5, “Opening files,” on page 43.

Using fopen() or freopen()

This section describes considerations for using fopen() and freopen() with memory

files. Memory files are always treated as binary streams of bytes, regardless of the

parameters you specify on the function call that opens them.

File-naming considerations

When you open a file using fopen() or freopen(), you must specify the filename (a

data set name) or the ddname.

Using a data set name: Files are opened with a call to fopen() or freopen() in

the format fopen("filename", "mode"). The following diagram shows the syntax for

the filename argument on your fopen() or freopen() call:

��

//

'

�

 .

qualifier

(

member

)

'

��

The following is a sample construct:

 'qualifier1.qualifier2(member)'

// Ignored for memory files.

qualifier

There is no restriction on the length of each qualifier. All characters are

considered valid. The total number of characters for all of the qualifiers,

including periods and a TSO prefix, cannot exceed 44 characers when running

POSIX(OFF). Under POSIX(ON), the TSO prefix is not added, and the total

number of characters is not limited, except that the full file name, including the

member, cannot exceed the limit for a POSIX pathname, currently 1024

characters.

(member)

If you specify a member, the data set you are opening is considered to be a

simulated PDS or a PDSE. For more information about PDSs and PDSEs, see

218 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|
|
|
|
|
|

“Simulating partitioned data sets” on page 222. For members, the member

name (including trailing blanks) can be up to 8 characters long. A member

name cannot begin with leading blanks.

When you enclose a name in single quotation marks, the name is fully qualified.

The file opened is the one specified by the name inside the quotation marks. If the

name is not fully qualified, z/OS XL C/C++ does one of the following:

v If your system does not use RACF, z/OS XL C/C++ does not add a high-level

qualifier to the name you specified.

v If you are running under TSO (batch or interactive), z/OS XL C/C++ appends the

TSO user prefix to the front of the name. For example, the statement

fopen("a.b","w"); opens a data set tsopref.A.B, where tsopref is the user

prefix. You can set the user prefix by using the TSO PROFILE command with the

PREFIX parameter.

Note: The TSO prefix is not added when running POSIX(ON).

v If you are running under MVS batch or IMS (batch or online), z/OS XL C/C++

appends the RACF user ID to the front of the name.

Using a DDname: You can specify names that begin with dd:, but z/OS XL C/C++

treats the dd: as part of the file name.

z/OS UNIX System Services Considerations: Using the fork() library function

from z/OS UNIX System Services application programs causes the memory file to

be copied into the child process. The memory file data in the child is identical to

that of the parent at the time of the fork(). The memory file can be used in either

the child or the parent, but the data is not visible in the other process.

fopen() and freopen() keywords

The following table lists the keywords that are available on the fopen() and

freopen() functions, tells you which ones are useful for memory file I/O, and lists

the values that are valid for the applicable ones.

 Table 31. Keywords for the fopen() and freopen() functions for memory file I/O

Keyword Allowed? Applicable? Notes

recfm= Yes No This parameter is ignored for memory file

and hiperspace I/O. If you specify a

RECFM, it must have correct syntax.

Otherwise the fopen() call fails.

lrecl= Yes No This parameter is ignored for memory file

and hiperspace I/O. If you specify an

LRECL, it must have correct syntax.

Otherwise fopen() call fails.

blksize= Yes No This parameter is ignored for memory file

and hiperspace I/O. If you specify a

BLKSIZE, it must have correct syntax.

Otherwise fopen() call fails.

acc= Yes No This parameter is ignored for memory file

and hiperspace I/O. If you specify an ACC,

it must have correct syntax. Otherwise

fopen() fails.

password= No No Ignored for memory files.

Chapter 14. Performing memory file and hiperspace I/O operations 219

Table 31. Keywords for the fopen() and freopen() functions for memory file I/O (continued)

Keyword Allowed? Applicable? Notes

space= Yes No This parameter is ignored for memory file

and hiperspace I/O. If you specify a

SPACE, it must have correct syntax.

Otherwise, fopen() call fails.

type= Yes Yes Valid values are memory and

memory(hiperspace). See the parameter list

below.

asis Yes Yes Enables the use of mixed-case file names.

byteseek Yes No Ignored for memory files, as they use

byteseeking by default.

noseek Yes No This parameter is ignored for memory file

and hiperspace I/O.

OS No No This parameter is not valid for memory file

and hiperspace I/O. If you specify OS, your

fopen() call fails.

recfm=

z/OS XL C/C++ parses your specification for these values. If they do not have

the correct syntax, your function call fails. If they do, z/OS XL C/C++ ignores

their values and continues.

 lrecl= and blksize=

z/OS XL C/C++ parses your specification for these values. If they do not have

the correct syntax, your function call fails. If they do, z/OS XL C/C++ ignores

their values and continues.

acc=

z/OS XL C/C++ parses your specification for these values. If they do not have

the correct syntax, your function call fails. If they do, z/OS XL C/C++ ignores

their values and continues.

password=

This parameter is not valid for memory file and hiperspace I/O. If you specify

PASSWORD, your fopen() call fails.

space=

z/OS XL C/C++ parses your specification for these values. If they do not have

the correct syntax, your function call fails. If they do, z/OS XL C/C++ ignores

their values and continues.

type=

To create a memory file, you must specify type=memory. You cannot specify

type=record; if you do, fopen() or freopen() fails.

 To create a hiperspace memory file, you must specify

type=memory(hiperspace).

asis

If you use this parameter, you can specify mixed-case filenames such as JaMeS

dAtA or pErCy.FILE. If you are running with POSIX(ON), asis is the default.

byteseek

This parameter is ignored for memory file and hiperspace I/O.

noseek

This parameter is ignored for memory file and hiperspace I/O.

220 z/OS V1R8.0 XL C/C++ Programming Guide

OS

This parameter is not allowed for memory file and hiperspace I/O. If you specify

OS, your fopen() call fails.

Once a memory file has been created, it can be accessed by the module that

created it as well as by any function or module that is subsequently invoked

(including modules that are called using the system() library function), and by any

modules in the current chain of system() calls, if you are running with POSIX(OFF). If

you are running with POSIX(ON), the system() function is the POSIX one, not the

ANSI one, and it does not propagate memory files to a child program. Once the file

has been created, you can open it with the same name, without specifying the

type=memory parameter. You cannot specify type=record for a memory file.

This is how z/OS XL C/C++ searches for memory files:

1. fopen("my.file","w....,type=memory"); z/OS XL C/C++ checks the open files

to see whether a file with that name is already open. If not, it creates a memory

file.

2. fopen("my.file","w......"); z/OS XL C/C++ checks the open files to see

whether a file with that name is already open. If not, it then checks to see

whether a memory file exists with that name. If so, it opens the memory file; if

not, it creates a disk file.

3. fopen("my.file","a.....,type=memory"); z/OS XL C/C++ checks the open files

to see whether a file with that name is already open. If not, it searches the

existing memory files to see whether a memory file exists with that name. If so,

z/OS XL C/C++ opens it; if not, it creates a new memory file.

4. fopen("my.file","a...."); z/OS XL C/C++ checks the open files to see

whether a file with that name is already open. If not, z/OS XL C/C++ searches

existing files (both disk and memory) according to file mode, and opens the first

file that has that name. If there is no such file, z/OS XL C/C++ creates a disk

file.

5. fopen("my.file","r....,type=memory"); z/OS XL C/C++ searches the memory

files to see whether a file with that name exists. If one does, z/OS XL C/C++

opens it. Otherwise, the fopen() call fails.

6. fopen("my.file","r...."); z/OS XL C/C++ searches first through memory

files. If it does not find the specified one, it then tries to open a disk file.

If you specify a memory file name that has an asterisk (*) as the first character, a

name is created for that file. (You can acquire this name by using fldata().) For

example, you can specify fopen("*","type=memory");. Opening a memory file this

way is faster than using the tmpnam() function.

You cannot have any blanks or periods in the member name of a memory file.

Otherwise, all valid data set names are accepted for memory files. Note that if

invalid disk file names are used for memory files, difficulties could occur when you

try to port memory file applications to disk-file applications.

Memory files are always opened in fixed binary mode regardless of the open mode.

There is no blank padding, and control characters such as the new line are written

directly into the file (even if the fopen() specifies text mode).

Opening hiperspace files

To create a memory file in hiperspace, specify type=memory(hiperspace) on the

fopen() call that creates the file. If hiperspace is not available, you get a regular

memory file. Under systems that do not support hiperspaces, as well as when you

Chapter 14. Performing memory file and hiperspace I/O operations 221

are running with POSIX(ON) and TRAP(OFF), a specification of

type=memory(hiperspace) is treated as type=memory. Use of TRAP(OFF) is not

recommended.

You must decide whether a file is to be a hiperspace memory file before you create

it. You cannot change a memory file to a hiperspace memory file by specifying

type=memory(hiperspace) on a subsequent call to fopen() or freopen(). If the

hiperspace to store the file cannot be created, the fopen() or freopen() call fails.

Once you have created a hiperspace memory file, you do not have to specify

type=memory(hiperspace) on subsequent function calls that open the file.

If you open a hiperspace memory file for read at the same time that it is opened for

write, you can attempt to read extensions made by the writer, even after the EOF

flag has been set on by a previous read. If such a read succeeds, the EOF flag is

set off until the new EOF is reached. If you have opened a file once for write and

one or more times for read, a reader can now read past the original EOF.

Simulating partitioned data sets

You can create memory files that are conceptually grouped as a partitioned data set

(PDS). Grouping the files in this way offers the following advantages:

v You can remove all the members of a PDS by stating the data set name.

v You can rename the qualifiers of a PDS without renaming each member

individually.

Once you have established that a memory file has members, you can rename and

remove all the members by specifying the file name and no members, just as with a

PDS or PDSE. None of the members can be open for you to perform this action.

Once a memory file is created with or without a member, another memory file with

the same name (with or without a member) cannot be created as well. For example,

if you open memory file a.b and write to it, z/OS XL C/C++ does not allow a

memory file named a.b(c) until you close and remove a.b. Also, if you create a

memory file named a.b(mbr1), you cannot open a file named a.b until you close

and remove a.b(mbr1).

The following example demonstrates the removal of all the members of the data set

a.b. After the call to remove(), neither a.b(mbr1) nor a.b(mbr2) exists.

222 z/OS V1R8.0 XL C/C++ Programming Guide

CCNGMF1

 The following example demonstrates the renaming of a PDS from a.b to c.d.

/* this example shows how to remove members of a PDS */

#include <stdio.h>

int main(void)

{

 FILE * fp1, * fp2;

 fp1=fopen("a.b(mbr1)","w,type=memory");

 fp2=fopen("a.b(mbr2)","w,type=memory");

 fwrite("hello, world\n", 1, 13, fp1);

 fwrite("hello, world\n", 1, 13, fp2);

 fclose(fp1);

 fclose(fp2);

 remove("a.b");

 fp1=fopen("a.b(mbr1)","r,type=memory");

 if (fp1 == NULL) {

 perror("fopen():");

 printf("fopen(\"a.b(mbr1)\"...) failed as expected: "

 "the file has been removed\n");

 }

 else {

 printf("fopen() should have failed\n");

 }

 return(0);

}

Figure 29. Removing members of a PDS

Chapter 14. Performing memory file and hiperspace I/O operations 223

CCNGMF2

 Note: If you are using simulated PDSs, you can change either the name of the

PDS, or the member name. You cannot rename a.b(mbr1) to either

c.d(mbr2) or c.d, but you can rename a.b(mbr1) to a.b(mbr2), and a.b to

c.d.

Memory files that are open as a sequential data set cannot be opened again with a

member name specified. Also, if a data set is already open with a member name,

the sequential data set version with only the data set name cannot be opened.

These operations result in fopen() returning NULL. For example, fopen() returns

NULL in the second line of the following:

 fp = fopen("a.b","w,type=memory");

 fp1 = fopen("a.b(m1)","w,type=memory");

You cannot use the rename() or remove() functions on open files.

Buffering

Regular memory files are not buffered. Any parameters passed to setvbuf() are

ignored. Each character that you write is written directly to the memory file.

/* this example shows how to rename a PDS */

#include <stdio.h>

int main(void)

{

 FILE * fp1, * fp2;

 fp1=fopen("a.b(mbr1)","w,type=memory");

 fp2=fopen("a.b(mbr2)","w,type=memory");

 fclose(fp1);

 fclose(fp2);

 rename("a.b","c.d");

/* after renaming, you cannot access members of PDS a.b */

 fp1=fopen("a.b(mbr1)","r,type=memory");

 if (fp1 == NULL) {

 perror("fopen():");

 printf("fopen(\"a.b(mbr1)\"...) failed as expected: "

 "the file has been renamed\n");

 }

 else {

 printf("fopen() should have failed\n");

 }

 fp2=fopen("c.d(mbr2)","r,type=memory");

 if (fp2 != NULL) {

 printf("fopen(\"c.c(mbr1)\"...) worked as expected: "

 "the file has been renamed\n");

 }

 else {

 perror("fopen():");

 printf("fopen() should have worked\n");

 }

 return(0);

}

Figure 30. Renaming members of a PDS

224 z/OS V1R8.0 XL C/C++ Programming Guide

Hiperspace memory files are fully buffered. The size of the I/O buffer in your own

address space is 4KB.

If you call setvbuf() for a hiperspace memory file:

v If the size value is greater than or equal to 4K, it will be set to 4K, and this buffer

size will be used. Otherwise, the size value is ignored, and z/OS XL C/C++ will

allocate a buffer.

v If a pointer to a buffer is passed, the buffer must be aligned on a 4K boundary.

Otherwise, z/OS XL C/C++ will allocate a buffer.

Reading from files

You can use the following library functions to read information from memory files:

v fread()

v fgets()

v gets()

v fgetc()

v getc()

v getc_unlocked()

v getchar()

v getchar_unlocked()

v scanf()

v fscanf()

v vscanf()

v vfscanf()

See z/OS XL C/C++ Run-Time Library Reference for more information on these

library functions.

The gets(), getchar(), scanf(), and vscanf() functions read from stdin, which

can be redirected to a memory or hiperspace memory file.

You can open an existing file for read one or more times, even if it is already open

for write. You cannot open a file for write if it is already open (for either read or

write). If you want to update or truncate a file or append to a file that is already

open for reading, you must first close all the other streams that refer to that file.

For memory files, a read operation directly after a write operation without an

intervening call to fflush(), fsetpos(), fseek(), or rewind() fails. z/OS XL C/C++

treats the following as read operations:

v Calls to read functions that request 0 bytes

v Read requests that fail because of a system error

v Calls to the ungetc() function

You can set up a SIGIOERR handler to catch read or write system errors that happen

when you are using hiperspace memory files. See Chapter 17, “Debugging I/O

programs,” on page 235 for more information.

Chapter 14. Performing memory file and hiperspace I/O operations 225

|
|

|
|
|

|
|

|

|

Writing to files

You can use the following library functions to write to a file:

v fwrite()

v printf()

v fprintf()

v vprintf()

v vfprintf()

v puts()

v fputs()

v fputc()

v putc()

v putc_unlocked()

v putchar()

v putchar_unlocked()

See z/OS XL C/C++ Run-Time Library Reference for more information on these

library functions.

The printf(), puts(), putchar(), and vprintf() functions write to stdout, which

can be redirected to a memory or hiperspace memory file.

In hiperspace memory files, each library function causes your data to be moved into

the buffer in your address space. The buffer is written to hiperspace each time it is

filled, or each time you call the fflush() library function.

z/OS XL C/C++ counts a call to a write function writing 0 bytes or or a write request

that fails because of a system error as a write operation. For regular memory files,

the only possible system error that can occur is an error in acquiring storage.

Flushing records

fflush() does not move data from an internal buffer to a memory file, because the

data is written to the memory file as it is generated. However, fflush() does make

the data visible to readers who have a regular or hiperspace memory file open for

reading while a user has it open for writing.

Hiperspace memory files are fully buffered. The fflush() function writes data from

the internal buffer to the hiperspace.

Any repositioning operation writes data to the hiperspace.

The fclose() function also invokes fflush() when it detects an incomplete buffer

for a file that is open for writing or appending.

ungetc() considerations

ungetc() pushes characters back onto the input stream for memory files. ungetc()

handles only single-byte characters. You can use it to push back as many as four

characters onto the ungetc() buffer. For every character pushed back with ungetc(),

fflush() backs up the file position by one character and clears all the pushed-back

characters from the stream. Backing up the file position may end up going across a

record boundary.

226 z/OS V1R8.0 XL C/C++ Programming Guide

|

|

If you want fflush() to ignore ungetc() characters, you can set the _EDC_COMPAT

environment variable. See Chapter 31, “Using environment variables,” on page 473

for more information.

Repositioning within files

You can use the following library functions to help you position within a memory or

hiperspace memory file:

v fgetpos()

v fsetpos()

v fseek()

v ftell()

v rewind()

See z/OS XL C/C++ Run-Time Library Reference for more information on these

library functions.

Using fseek() to seek past the end of a memory file extends the file using null

characters. This may cause z/OS XL C/C++ to attempt to allocate more storage

than is available as it tries to extend the memory file.

When you use the fseek() function with memory files, it supports byte offsets from

SEEK_SET, SEEK_CUR, and SEEK_END.

All file positions from ftell() are relative byte offsets from the beginning of the file.

fseek() supports these values as offsets from SEEK_SET.

fgetpos(), fseek() with an offset of SEEK_CUR, and and ftell() handle ungetc()

characters unless you have set the _EDC_COMPAT environment variable, in which

case fgetpos() and fseek() do not. See Chapter 31, “Using environment

variables,” on page 473 for more information about _EDC_COMPAT. If in handling

these characters, if the current position goes beyond the start of the file, fgetpos()

returns the EOF value, and ftell() returns -1.

fgetpos() values generated by code from previous releases of the z/OS XL C/C++

compiler are not supported by fsetpos().

Closing files

Use the fclose() library function to close a regular or hiperspace memory file. See

z/OS XL C/C++ Run-Time Library Reference for more information on this library

function. z/OS XL C/C++ automatically closes memory files at the termination of the

C root main environment.

Performance tips

You should use hiperspace memory files instead of regular memory files when they

will be large (1MB or greater).

Regular memory files perform more efficiently if large amounts of data (10K or

more) are written in one request (that is, if you pass 10K or more of data to the

fwrite() function). You should use fopen("*", "type=memory") both to generate a

name for a memory file and to open the file instead of calling fopen() with a name

returned by tmpnam(). You can acquire the file’s generated name by using fldata().

Chapter 14. Performing memory file and hiperspace I/O operations 227

Removing memory files

The memory file remains accessible until the file is removed by the remove() or

clrmemf() library functions or until the root program has terminated. You cannot

remove an open memory file, except when you use clrmemf(). See z/OS XL C/C++

Run-Time Library Reference for more information on these library functions.

fldata() behavior

The format of the fldata() function is as follows:

int fldata(FILE *file, char *filename, fldata_t *info);

The fldata() function is used to retrieve information about an open stream. The

name of the file is returned in filename and other information is returned in the

fldata_t structure, shown in the figure below. Values specific to this category of I/O

are shown in the comment beside the structure element. Additional notes pertaining

to this category of I/O follow the figure. For more information on the fldata()

function, refer to z/OS XL C/C++ Run-Time Library Reference.

struct __fileData {

 unsigned int __recfmF : 1, /* always on */

 __recfmV : 1, /* always off */

 __recfmU : 1, /* always off */

 __recfmS : 1, /* always off */

 __recfmBlk : 1, /* always off */

 __recfmASA : 1, /* always off */

 __recfmM : 1, /* always off */

 __dsorgPO : 1, /* N/A -- always off */

 __dsorgPDSmem : 1, /* N/A -- always off */

 __dsorgPDSdir : 1, /* N/A -- always off */

 __dsorgPS : 1, /* N/A -- always off */

 __dsorgConcat : 1, /* N/A -- always off */

 __dsorgMem : 1, /* */

 __dsorgHiper : 1, /* */

 __dsorgTemp: 1, /* N/A -- always off */

 __dsorgVSAM: 1, /* N/A -- always off */

 __dsorgHFS : 1, /* N/A -- always off */

 __openmode : 2, /* __BINARY */

 __modeflag : 4, /* combination of: */

 /* __READ */

 /* __WRITE */

 /* __APPEND */

 /* __UPDATE */

 __dsorgPDSE: 1, /* N/A -- always off */

 __reserve2 : 8; /* */

 __device_t __device; /* one of: */

 /* __MEMORY */

 /* __HIPERSPACE */

 unsigned long __blksize, /* */

 __maxreclen; /* */

 unsigned short __vsamtype; /* N/A */

 unsigned long __vsamkeylen; /* N/A */

 unsigned long __vsamRKP; /* N/A */

 char * __dsname; /* */

 unsigned int __reserve4; /* */

};

typedef struct __fileData fldata_t;

Figure 31. fldata() structure

228 z/OS V1R8.0 XL C/C++ Programming Guide

Notes:

1. The filename is the fully qualified version of the filename specified on the

fopen() or freopen() function call. There are no quotation marks. However, if

the filename specified on the fopen() or freopen() function call begins with an

*, a unique filename is generated in the format ((n)), where n is an integer.

2. The __dsorgMem bit will be set on only for regular memory files.

3. The __dsorgHiper bit will be set on only for hiperspace memory files.

4. The __dsname is identical to the filename value.

Example program

The following example shows the use of a memory file. The program PROGA creates

a memory file, calls program PROGB, and redirects the output of the called program

to the memory file. When control returns to the first program, the program reads

and prints the string in the memory file.

For more information on the system() library function, see z/OS XL C/C++

Run-Time Library Reference.

CCNGMF3

/* this example demonstrates the use of a memory file */

/* part 1 of 2-other file is CCNGMF4 */

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

int main(void)

{

 FILE *fp;

 char buffer[20];

 char *rc;

/* Open the memory file to create it */

 if ((fp = fopen("PROG.DAT","wb+,type=memory")) != NULL)

 {

 /* Close the memory file so that it can be used as stdout */

 fclose(fp);

 /* Call CCNGMF4 and redirect its output to memory file */

 /* CCNGMF4 must be an executable MODULE */

 system("CCNGMF4 >PROG.DAT");

/* Now print the string contained in the file */

 fp = fopen("PROG.DAT","rb");

 rc = fgets(buffer,sizeof(buffer),fp);

 if (rc == NULL)

 {

 perror(" Error reading from file ");

 exit(99);

 }

 printf("%s", buffer);

 }

 return(0);

}

Figure 32. Memory file example

Chapter 14. Performing memory file and hiperspace I/O operations 229

CCNGMF4

/* this example demonstrates the use of a memory file */

/* part 2 of 2-other file is CCNGMF3 */

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

 char item1[] = "Hello World\n";

 int rc;

/* Write the data to the stdout which, at this point, has been

 redirected to the memory file */

 rc = fputs(item1,stdout);

 if (rc == EOF) {

 perror("Error putting to file ");

 exit(99);

 }

 return(0);

}

Figure 33. Memory file example

230 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|
|
|
|
|
|
|
|
|

Chapter 15. Performing CICS Transaction Server I/O

operations

Restriction: This chapter does not apply to AMODE 64.

z/OS XL C/C++ under CICS Transaction Server for z/OS (CICS TS) supports only

three kinds of I/O:

CICS I/O

z/OS XL C/C++ applications can access the CICS I/O commands through the

CICS command level interface. CICS Application Programming Guide,

SC34-6231 and CICS Application Programming Reference, SC34-6232 discuss

this interface in detail.

 Files

Memory files are the only type of file that z/OS XL C/C++ supports under CICS.

Hiperspace files are not supported.

 VSAM files can be accessed through the CICS command level interface.

CICS data queues

Under CICS, z/OS XL C/C++ implements the standard output (stdout) and

standard error (stderr) streams as CICS transient data queues. These data

queues must be defined in the CICS Destination Control table (DCT) by the

CICS system administrator before the CICS cold start. Output from all users’

transactions that use stdout (or stderr) is written to the queue in the order of

occurrence. To help differentiate the output, place a user’s terminal name, the

CICS transaction identifier, and the time at the beginning of each line printed to

the queue.

 The queues are as follows:

 Stream Queue

stdout CESO

stderr CESE

stdin Not supported

To access any other queues, you must use the command level interface.

Note: If you are using the C++ I/O stream classes, the standard stream cout maps

to stdout, which maps to CESO. The standard stream cerr and clog both

map to stderr, which maps to CESE. The standard stream cin is not

supported under CICS.

For more general information about C++ I/O streaming, see Chapter 4, “Using the

Standard C++ Library I/O Stream Classes,” on page 39. For more detailed

information, see:

v Standard C++ Library Reference discusses the Standard C++ I/O stream classes

v C/C++ Legacy Class Libraries Reference discusses the UNIX Systems

Laboratories C++ Language System Release (USL) I/O Stream Library.

For complete information about using z/OS XL C/C++ and z/OS XL C/C++ under

CICS TS, see Chapter 44, “Using the CICS Transaction Server (CICS TS),” on page

651.

© Copyright IBM Corp. 1996, 2006 231

For information on using wide characters in the CICS TS environment, see

Chapter 8, “z/OS XL C Support for the double-byte character set,” on page 69.

232 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 16. Language Environment Message file operations

This chapter describes input and output with the z/OS Language Environment

message file. This file is write-only. That is, it is nonreadable and nonseekable.

Restriction: This chapter does not apply to AMODE 64. There is no MSGFILE

run-time option in AMODE 64. In AMODE 64, the stderr stream does not get

directed to the Language Environment message file. Anything that would normally

go to the Language Environment message file is now directed to the C stderr

stream, including when stderr is directed to stdout. For more information on

AMODE 64 see Chapter 22, “The z/OS 64-bit environment,” on page 337.

The default open mode for the z/OS Language Environment message file is text.

Binary and record I/O modes are not supported.

This chapter also describes C I/O streams as they can be used within C++

programs. If you want to use the C++ I/O stream classes instead, see Chapter 4,

“Using the Standard C++ Library I/O Stream Classes,” on page 39 for general

information. For more detailed information, see:

v Standard C++ Library Reference discusses the Standard C++ I/O stream classes

v C/C++ Legacy Class Libraries Reference discusses the UNIX Systems

Laboratories C++ Language System Release (USL) I/O Stream Library.

The standard stream stderr defaults to using the z/OS Language Environment

message file. stderr will be directed to file descriptor 2, which is typically your

terminal if you are running under one of the z/OS UNIX System Services shells.

There are some exceptions, however:

v If the application has allocated the ddname in the MSGFILE(ddname) run-time

parameter, your output will go there. The default is MSGFILE(SYSOUT).

v If the application has issued one of the POSIX exec() functions, or it is running

in an address space created by the POSIX fork() function and the application

has not dynamically allocated a ddname for MSGFILE, then the default is to use

file descriptor 2, if one exists. If it doesn’t, then the default is to create a

message file in the user’s current working directory. The message file will have

the name that is specified on the message file run-time option, the default being

SYSOUT.

Opening files

The default is for stderr to go to the message file automatically. The message file

is available only as stderr; you cannot use the fopen() or freopen() library

function to open it.

v freopen() with the null string (″″) as filename string will fail.

v Record format (RECFM) is always treated as undefined (U). Logical record

length (LRECL) is always treated as 255 (the maximum length defined by z/OS

Language Environment message file system write interface).

Reading from files

The z/OS Language Environment message file is non-readable.

© Copyright IBM Corp. 1996, 2006 233

Writing to files

v Data written to the z/OS Language Environment message file is always

appended to the end of the file.

v When the data written is longer than 255 bytes, it is written to the z/OS

Language Environment message file 255 bytes at a time, with the last write

possibly less than 255 bytes. No truncation will occur.

v When the output data is shorter than the actual LRECL of the z/OS Language

Environment message file, it is padded with blank characters by the z/OS

Language Environment system write interface.

v When the output data is longer than the actual LRECL of the z/OS Language

Environment message file, it is split into multiple records by the z/OS Language

Environment system write interface. The z/OS Language Environment system

write interface splits the output data at the last blank before the LRECL-th byte,

and begins writing the next record with the first non-blank character. Note that if

there are no blanks in the first LRECL bytes (DBCS for instance), the z/OS

Language Environment system write interface splits the output data at the

LRECL-th byte. It also closes off any DBCS string on the first record with a X'0F'

character, and begins the DBCS string on the next record with a X'0E' character.

v The hex characters X'0E' and X'0F' have special meaning to the z/OS Language

Environment system write interface. The z/OS Language Environment system

write interface removes adjacent pairs of these characters (normalization).

v You can set up a SIGIOERR handler to catch system write errors. See Chapter 17,

“Debugging I/O programs,” on page 235 for more information.

Flushing buffers

The fflush() function has no effect on the z/OS Language Environment message

file.

Repositioning within files

The ftell(), fgetpos(), fseek(), and fsetpos() functions are not allowed,

because z/OS Language Environment message file is a non-seekable file. The

rewind() function only resets error flags.

You cannot call fseek() on stderr when it is mapped to MSGFILE (the default routing

of stderr).

Closing files

Do not use the fclose() library function to close the z/OS Language Environment

message file. z/OS XL C/C++ automatically closes files on normal program

termination and attempts to do so under abnormal program termination or abend.

234 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 17. Debugging I/O programs

This chapter will help you locate and diagnose problems in programs that use input

and output. It discusses several diagnostic methods specific to I/O. Diagnostic

methods for I/O errors include:

v Using return codes from I/O functions

v Using errno values and the associated perror() message

v Using the __amrc structure

v Using the __amrc2 structure

The information provided with the return code of I/O functions and with the perror()

message associated with errno values may help you locate the source of errors and

the reason for program failure. Because return codes and errno values do not exist

for every possible system I/O failure, return codes and errno values are not useful

for diagnosing all I/O errors. This chapter discusses the use of the __amrc structure

and the __amrc2 structure. For information on return codes from I/O functions see

z/OS XL C/C++ Run-Time Library Reference. For information on errno values and

the associated perror() message see z/OS Language Environment Debugging

Guide.

Using the __amrc structure

__amrc is a structure defined in stdio.h (when the compile-time option

LANGLVL(EXTENDED) or LANGLVL(LIBEXT) is in effect) to help you determine errors

resulting from an I/O operation. This structure is changed during system I/O and

some C specific error situations.

Note: __amrc is not used to record I/O errors in HFS files.

When looking at __amrc, be sure to copy the structure into a temporary structure of

__amrctype since any I/O function calls will change the value of __amrc.

Figure 34 shows the __amrc structure as it appears in stdio.h.

#if __TARGET_LIB__ >= __EDC_LE

 typedef struct __amrctype {

#else

 typedef struct {

#endif

 /* The error or warning value from

 * an I/O operation is in __error,

 * __abend, __feedback or __alloc.

 * Look at the value in __last_op

 * to determine how to interpret

 * the __code union.

 */

Figure 34. __amrc structure (Part 1 of 2)

© Copyright IBM Corp. 1996, 2006 235

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

�1� union { ... } __code

The error or warning value from an I/O operation is in either __error,

__abend, __feedback, or __alloc. You must look at __last_op to determine

how to interpret the __code union.

 union { �1�

 int __error; /* error from OPEN/CLOSE, �2�

 * GENCB/MODCB/TESTCB/SHOWCB

 */

 struct { /* abend code when errno set to EABEND */

 unsigned short __syscode, /* system abend code */

 __rc; /* return code */

 } __abend; �3�

 struct {

 unsigned char __fdbk_fill,

 __rc, /* reg 15 */

 __ftncd, /* function code */

 __fdbk; /* feedback code */

 } __feedback; �4�

 struct {

 unsigned short __svc99_info,

 __svc99_error;

 } __alloc; �5�

 } __code;

 unsigned int __RBA; �6�

 /* RBA value returned by VSAM after *

 * an ESDS or KSDS record is written *

 * out; for RRDS it is a calculated *

 * value from the record number. *

 * It may be used in a subsequent *

 * call to flocate. */

 unsigned int __last_op; �7�

 /* #defined below */

 struct {

 unsigned int __len_fill; /* __len + 4 */

 unsigned int __len; /* length of msg in __str */

 char __str[120]; /* the actual data */

 unsigned int __parmr0; /* parameter save area (R0) */

 unsigned int __parmr1; /* parameter save area (R1) */

 unsigned int __fill2[2]; /* non-printable bytes */

 char __str2[64]; /* the actual data */

 } __msg; �8�

 /* error message */

 #if __EDC_TARGET >= 0x22080000

 unsigned char __rplfdbwd[4]; �9� /* rpl feedback word */

 #endif /* __EDC_TARGET >= 0x22080000 */

 #if __EDC_TARGET >= 0x41080000

 #ifdef __LP64 �10�

 unsigned long __XRBA; /* 8 byte RBA */

 #elif defined(__LL)

 unsigned long long __XRBA; /* 8 byte RBA */

 #else

 unsigned int __XRBA1;/* high half of 8 byte RBA */

 unsigned int __XRBA2;/* low half of 8 byte RBA */

 #endif

 /* QSAM to BSAM switch reason */

 unsigned char __amrc_noseek_to_seek; �11�

 /* padding to make amrc 256 bytes */

 char __amrc_pad[23];

 #endif

} __amrc_type;

Figure 34. __amrc structure (Part 2 of 2)

236 z/OS V1R8.0 XL C/C++ Programming Guide

�2� __error

__error contains the return code from the system macro or utility. Refer to

Table 32 on page 240 for further information.

�3� __abend

This struct contains the abend code when errno is set to indicate a

recoverable I/O abend. __syscode is the system abend code and __rc is

the return code. For more information on the abend codes, see the System

Codes manual as listed in z/OS Information Roadmap. The macros

__abendcode() and __rsncode() may be set to the abend code and reason

code of a TSO CLIST or command when invoked with system().

�4� __feedback

This struct is used for VSAM only. The __rc stores the VSAM register 15,

__fdbk stores the VSAM error code or reason code, and __RBA stores the

RBA after some operations.

�5� __alloc

This struct contains errors during fopen() or freopen() calls when defining

files to the system using SVC 99. See the Systems Macros manual, as listed

in z/OS Information Roadmap, for more information on these fields as set

by SVC 99.

�6� __RBA

This is the RBA value returned by VSAM after an ESDS or KSDS record is

written out. For a RRDS, it is the calculated value from the record number.

It may be used in subsequent calls to flocate(). The __amrc.__RBA field is

defined as an unsigned int, and therefore will only contain a 4-byte RBA

value. This field will be set to -1 when the RBA is beyond 4GB in an

extended addressable VSAM data set. In this case, the __XRBA field should

be used.

�7� __last_op

This field contains a value that indicates the last I/O operation being

performed by z/OS XL C/C++ at the time the error occurred. These values

are shown in Table 32 on page 240.

�8� __msg

This may contain the system error messages from read or write operations

emitted from the BSAM SYNADAF macro instruction. This field will not always

be filled. If you print this field using the %s format, you should print the string

starting at the sixth position because of possible null characters found in the

first 6 characters. Special messages for PDSEs are contained in the

positions 136 through 184. See the Data Administration manual as listed in

z/OS Information Roadmap for more information.

 This field is used by the SIGIOERR handler.

�9� __rplfdbwd

This field contains feedback information related to a VSAM RLS failure. This

is the feedback code from the IFGRPL control block.

�10� __XRBA

This is the 8 byte relative byte address returned by VSAM after an ESDS or

KSDS record is written out. For an RRDS, it is the calculated value from the

record number. It may be used in subsequent calls to flocate().

�11� __amrc_noseek_to_seek

This field contains the reason for the switch from QSAM (noseek) to BSAM

with NOTE and POINT macros requested (seek) by the XL C/C++ Run-Time

Library. This field is set when system-level I/O macro processing triggers an

Chapter 17. Debugging I/O programs 237

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

ABEND condition. The macro name values (defined in stdio.h) for this field

are as follows:

 Macro Definition

__AM_BSAM_NOSWITCH No switch was made.

__AM_BSAM_UPDATE The data set is open for update

__AM_BSAM_BSAMWRITE The data set is already open for write (or

update) in the same C process.

__AM_BSAM_FBS_APPEND The data set is recfm=FBS and open for

append

__AM_BSAM_LRECLX The data set is recfm=LRECLX (used for

VBS data sets where records span the

largest blocksize allowed on the device)

__AM_BSAM_PARTITIONED_DIRECTORY The data set is the directory for a regular or

extended partitioned data set

__AM_BSAM_PARTITIONED_INDIRECT The data set is a member of a partitioned

data set, and the member name was not

specified at allocation

 Figure 35 demonstrates how to print the __amrc structure after an error has

occurred to get information that may help you to diagnose an I/O error.

CCNGDI1

/* this example demonstrates how to print the __amrc structure */

#include <stdio.h>

#include <errno.h>

#include <stdlib.h>

#include <string.h>

int main(void) {

 FILE *fp;

 __amrc_type save_amrc;

 char buffer[80];

 int i = 0;

 /* open an MVS binary file */

 fp = fopen("testfull.file","wb, recfm=F, lrecl=80");

 if (fp == NULL) exit(99);

 memset(buffer, ’A’, 80);

Figure 35. Example of printing the __amrc structure (Part 1 of 2)

238 z/OS V1R8.0 XL C/C++ Programming Guide

|
|

|||

||

||

||
|

||
|

||
|
|

||
|

||
|
|
|

|

The program writes to a file until it is full. When the file is full, the program fails.

Following the I/O failure the program makes a copy of the __amrc structure, and

prints the number of successful writes to the file, the errno, the __last_op code, the

abend system code and the return code.

Using the __amrc2 structure

The __amrc2 structure is an extension of __amrc. Only 2 fields are defined for

__amrc2. Like the __amrc structure, __amrc2 is changed during system I/O and

some C specific error situations.

Note: See “Using the SIGIOERR signal” on page 243 for information on restrictions

that exist when comparing file pointers if you are using the __amrc2

structure.

Figure 36 shows the __amrc2 structure as it appears in stdio.h.

�1� This field is a secondary error code that is used to store the reason code

from specific macros. The __last_op codes that can be returned to

__amrc2 are __BSAM_STOW, __BSAM_BLDL, __IO_LOCATE, __IO_RENAME,

__IO_CATALOG and __IO_UNCATALOG. For information on the macros

associated with these codes see Table 32 on page 240.

 For further information about the macros see z/OS DFSMSdfp Diagnosis.

�2� This field, __fileptr, of the __amrc2 structure is used by the signal

SIGIOERR to pass back a FILE pointer that can then be passed to fldata() to

get the name of the file causing the error. The __amrc2__fileptr will be

NULL if a SIGIOERR is raised before the file has been successfully opened.

 /* write to MVS file until it runs out of extents */

 while (fwrite(buffer, 1, 80, fp) == 80)

 ++i;

 save_amrc = *__amrc; /* need copy of __amrc structure */

 printf("number of successful fwrites of 80 bytes = %d\n", i);

 printf("last fwrite errno=%d lastop=%d syscode=%X rc=%d\n",

 errno,

 save_amrc.__last_op,

 save_amrc.__code.__abend.__syscode,

 save_amrc.__code.__abend.__rc);

 return 0;

}

Figure 35. Example of printing the __amrc structure (Part 2 of 2)

 struct {

 int __error2; �1� */

 FILE *__fileptr; �2� */

 int __reserved[6];

 }

Figure 36. __amrc2 structure

Chapter 17. Debugging I/O programs 239

Using __last_op codes

The __last_op field is the most important of the __amrc fields. It defines the last I/O

operation z/OS XL C/C++ was performing at the time of the I/O error. You should

note that the structure is neither cleared nor set by non-I/O operations so querying

this field outside of a SIGIOERR handler should only be done immediately after I/O

operations. Table 32 lists __last_op codes you may receive and where to look for

further information.

 Table 32. __last_op codes and diagnosis information

Code Further Information

__BSAM_BLDL Sets __error with return code from OS BLDL macro.

__BSAM_CLOSE Sets __error with return code from OS CLOSE macro.

__BSAM_CLOSE_T Sets __error with return code from OS CLOSE TYPE=T.

__BSAM_NOTE NOTE returned 0 unexpectedly, no return code.

__BSAM_OPEN Sets __error with return code from OS OPEN macro.

__BSAM_POINT This will not appear as an error lastop.

__BSAM_READ No return code (either __abend (errno == 92) or __msg

(errno == 66) filled in).

__BSAM_STOW Sets __error with return code from OS STOW macro.

__BSAM_WRITE No return code (either __abend (errno == 92) or __msg

(errno == 65) filled in).

__C_CANNOT_EXTEND This occurs when an attempt is made to extend a file that

allows writing, but cannot be extended. Typically this is a

member of a partitioned data set being opened for update.

__C_DBCS_SI_TRUNCATE This occurs only when there was not enough room to start a

DBCS string and data was written anyway, with an SI to end

it. Cannot happen if MB_CUR_MAX is 1.

__C_DBCS_SO_TRUNCATE This occurs when there is not enough room in a record to

start any DBCS string or else when a redundant SO is

written to the file before an SI. Cannot happen if MB_CUR_MAX

is 1.

__C_DBCS_TRUNCATE This occurs when writing DBCS data to a text file and there

is no room left in a physical record for anymore double byte

characters. A new-line is not acceptable at this point.

Truncation will continue to occur until an SI is written or the

file position is moved. Cannot happen if MB_CUR_MAX is 1.

__C_DBCS_UNEVEN This occurs when an SI is written before the last double

byte character is completed, thereby forcing z/OS XL C/C++

to fill in the last byte of the DBCS string with a padding byte

X'FE'. Cannot happen if MB_CUR_MAX is 1.

__C_FCBCHECK Set when z/OS XL C/C++ FCB is corrupted. This is due to a

pointer corruption somewhere. File cannot be used after

this.

__CICS_WRITEQ_TD Sets __error with error code from EXEC CICS WRITEQ

TD.

__C_TRUNCATE Set when z/OS XL C/C++ truncates output data. Usually this

is data written to a text file with no newline such that the

record fills up to capacity and subsequent characters cannot

be written. For a record I/O file this refers to an fwrite()

writing more data than the record can hold. Truncation is

always of rightmost data. There is no return code.

240 z/OS V1R8.0 XL C/C++ Programming Guide

Table 32. __last_op codes and diagnosis information (continued)

Code Further Information

__HSP_CREATE Indicates last op was a DSPSERV CREATE to create a

hiperspace for a hiperspace memory file. If CREATE fails,

stores abend code in __amrc.__code.__abend.__syscode,

reason code in __amrc.__code.__abend.__rc.

__HSP_DELETE Indicates last op was a DSPSERV DELETE to delete a

hiperspace for a hiperspace memory file during termination.

If DELETE fails, stores abend code in

__amrc.__code.__abend.__syscode, reason code in

__amrc.__code.__abend.__rc.

__HSP_EXTEND Indicates last op was a HSPSERV EXTEND during a write

to a hiperspace. If EXTEND fails, stores abend code in

__amrc.__code.__abend.__syscode, reason code in

__amrc.__code.__abend.__rc.

__HSP_READ Indicates last op was a HSPSERV READ from a

hiperspace. If READ fails, stores abend code in

__amrc.__code.__abend.__syscode, reason code in

__amrc.__code.__abend.__rc.

__HSP_WRITE Indicates last op was a HSPSERV WRITE to a hiperspace.

If WRITE fails, stores abend code in

__amrc.__code.__abend.__syscode, reason code in

__amrc.__code.__abend.__rc.

__IO_CATALOG Sets __error with return code from I/O CAMLST CAT. The

associated macro is CATALOG.

__IO_DEVTYPE Sets __error with return code from I/O DEVTYPE macro.

__IO_INIT Will never be seen by SIGIOERR exit value given at

initialization.

__IO_LOCATE Sets __error with return code from I/O CAMLST LOCATE.

__IO_OBTAIN Sets __error with return code from I/O CAMLST OBTAIN.

__IO_RDJFCB Sets __error with return code from I/O RDJFCB macro.

__IO_RENAME Sets __error with return code from I/O CAMLST RENAME.

__IO_TRKCALC Sets __error with return code from I/O TRKCALC macro.

__IO_UNCATALOG Sets __error with return code from I/O CAMLST UNCAT.

The associated macro is CATALOG.

__LFS_CLOSE Sets __error with reason code from HFS services. Reason

code from HFS services must be broken up. The low order

2 bytes can be looked up in z/OS UNIX System Services

Programming: Assembler Callable Services Reference.

__LFS_FSTAT Sets __error with reason code from HFS services. Reason

code from HFS services must be broken up. The low order

2 bytes can be looked up in z/OS UNIX System Services

Programming: Assembler Callable Services Reference.

__LFS_LSEEK Sets __error with reason code from HFS services. Reason

code from HFS services must be broken up. The low order

2 bytes can be looked up in z/OS UNIX System Services

Programming: Assembler Callable Services Reference.

__LFS_OPEN Sets __error with reason code from HFS services. Reason

code from HFS services must be broken up. The low order

2 bytes can be looked up in z/OS UNIX System Services

Programming: Assembler Callable Services Reference.

Chapter 17. Debugging I/O programs 241

Table 32. __last_op codes and diagnosis information (continued)

Code Further Information

__LFS_READ Sets __error with reason code from HFS services. Reason

code from HFS services must be broken up. The low order

2 bytes can be looked up in z/OS UNIX System Services

Programming: Assembler Callable Services Reference.

__LFS_STAT Sets __error with reason code from HFS services. Reason

code from HFS services must be broken up. The low order

2 bytes can be looked up in z/OS UNIX System Services

Programming: Assembler Callable Services Reference.

__LFS_WRITE Sets __error with reason code from HFS services. Reason

code from HFS services must be broken up. The low order

2 bytes can be looked up in z/OS UNIX System Services

Programming: Assembler Callable Services Reference.

__OS_CLOSE Sets __error to result of OS CLOSE macro.

__OS_OPEN Sets __error to result of OS OPEN macro.

__QSAM_FREEPOOL This is an intermediate operation. You will only see this if an

I/O abend occurred.

__QSAM_GET __error is not set (if abend (errno == 92), __abend is set,

otherwise if read error (errno == 66), look at __msg.

__QSAM_PUT __error is not set (if abend (errno == 92), __abend is set,

otherwise if write error (errno == 65), look at __msg.

__QSAM_TRUNC This is an intermediate operation. You will only see this if an

I/O abend occurred.

__SVC99_ALLOC Sets __alloc structure with info and error codes from SVC 99

allocation.

__SVC99_ALLOC_NEW Sets __alloc structure with info and error codes from SVC 99

allocation of NEW file.

__SVC99_UNALLOC Sets __alloc structure with info and error codes from SVC 99

unallocation. The __QSAM_CLOSE and __QSAM_OPEN codes do

not exist. They should be __OS_CLOSE and __OS_OPEN

instead.

__TGET_READ Sets __error with return code from TSO TGET macro.

__TPUT_WRITE Sets __error with return code from TSO TPUT macro.

__VSAM_CLOSE Set when the last op was a low level VSAM CLOSE; if the

CLOSE fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_ENDREQ Set when the last op was a low level VSAM ENDREQ; if the

ENDREQ fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_ERASE Set when the last op was a low level VSAM ERASE; if the

ERASE fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_GENCB Set when a low level VSAM GENCB macro fails, sets __rc

and __fdbk fields in the __amrc struct.

__VSAM_GET Set when the last op was a low level VSAM GET; if the GET

fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_MODCB Set when a low level VSAM MODCB macro fails, sets __rc

and __fdbk fields in the __amrc struct.

__VSAM_OPEN_ESDS Does not indicate an error; set when the low level VSAM

OPEN succeeds, and the file type is ESDS.

__VSAM_OPEN_ESDS_PATH Does not indicate an error; set when the low level VSAM

OPEN succeeds, and the file type is ESDS.

242 z/OS V1R8.0 XL C/C++ Programming Guide

Table 32. __last_op codes and diagnosis information (continued)

Code Further Information

__VSAM_OPEN_FAIL Set when a low level VSAM OPEN fails, sets __rc and

__fdbk fields in the __amrc struct.

__VSAM_OPEN_KSDS Does not indicate an error; set when the low level VSAM

OPEN succeeds, and the file type is ESDS.

__VSAM_OPEN_KSDS_PATH Does not indicate an error; set when the low level VSAM

OPEN succeeds, and the file type is ESDS.

__VSAM_OPEN_RRDS Does not indicate an error; set when the low level VSAM

OPEN succeeds, and the file type is ESDS.

__VSAM_POINT Set when the last op was a low level VSAM POINT; if the

POINT fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_PUT Set when the last op was a low level VSAM PUT; if the PUT

fails, sets __rc and __fdbk in the __amrc struct.

__VSAM_SHOWCB Set when a low level VSAM SHOWCB macro fails, sets

__rc and __fdbk fields in the __amrc struct.

__VSAM_TESTCB Set when a low level VSAM TESTCB macro fails, sets __rc

and __fdbk fields in the __amrc struct.

Using the SIGIOERR signal

SIGIOERR is a signal used by the library to pass control to an error handler when an

I/O error occurs. The default action for this signal is SIG_IGN. Setting up a SIGIOERR

handler is like setting up any other error handler. The example in Figure 37 adds a

SIGIOERR handler to the example shown in Figure 35 on page 238. Note the way

fldata() and the __amrc2 field __fileptr are used to get the name of the file that

caused the error.

CCNGDI2

#include <stdio.h>

#include <signal.h>

#include <errno.h>

#include <stdlib.h>

#include <string.h>

#ifdef __cplusplus

 extern "C" {

#endif

Figure 37. Example of using SIGIOERR (Part 1 of 2)

Chapter 17. Debugging I/O programs 243

When control is given to a SIGIOERR handler, the __amrc2 structure field __fileptr

will be filled in with a file pointer. The __amrc2__fileptr will be NULL if a SIGIOERR

is raised before the file has been successfully opened. The only operation permitted

on the file pointer is fldata(). This operation can be used to extract information

about the file that caused the error. Other than freopen() and fclose(), all I/O

operations will fail since the file pointer is marked invalid. Do not issue freopen() or

fclose() in a SIGIOERR handler that returns control. This will result in unpredictable

behavior, likely an abend.

If you choose not to return from the handler, the file is still locked from all

operations except fldata(), freopen(), or fclose(). The file is considered open and

void iohdlr(int);

#ifdef __cplusplus

 }

#endif

int main(void) {

 FILE *fp;

 char buffer[80];

 int i = 0;

 signal(SIGIOERR, iohdlr);

 /* open an MVS binary file */

 fp = fopen("testfull.file","wb, recfm=F, lrecl=80");

 if (fp == NULL) exit(99);

 memset(buffer, ’A’, 80);

 /* write to MVS file until it runs out of extents */

 while (fwrite(buffer, 1, 80, fp) == 80)

 ++i;

 printf("number of successful fwrites of 80 bytes = %d\n", i);

 return 0;

}

void iohdlr (int signum) {

 __amrc_type save_amrc;

 __amrc2_type save_amrc2;

 char filename[FILENAME_MAX];

 fldata_t info;

 save_amrc = *__amrc; /* need copy of __amrc structure */

 save_amrc2 = *__amrc2; /* need copy of __amrc2 structure */

 /* get name of file causing error from fldata */

 if (fldata(save_amrc2.__fileptr, filename, &info) == 0)

 printf("error on file %s\n",filename);

 perror("io handler"); /* give errno message */

 printf("lastop=%d syscode=%X rc=%d\n",

 save_amrc.__last_op,

 save_amrc.__code.__abend.__syscode,

 save_amrc.__code.__abend.__rc);

 signal(SIGIOERR, iohdlr);

}

Figure 37. Example of using SIGIOERR (Part 2 of 2)

244 z/OS V1R8.0 XL C/C++ Programming Guide

can prevent other incorrect access, such as an MVS sequential file opened more

than once for a write. Like all other files, the file is closed automatically at program

termination if it has not been closed explicitly already.

When you exit a SIGIOERR handler and do not return, the state of the file at closing

is indeterminate. The state of the file is indeterminate because certain control block

fields are not set correctly at the point of error and they do not get corrected unless

you return from the handler.

For example, if your handler were invoked due to a truncation error and you

performed a longjmp() out of your SIGIOERR handler, the file in error would remain

open, yet inaccessible to all I/O functions other than fldata(), fclose(), and

freopen(). If you were to close the file or it was closed at termination of the

program, it is still likely that the record that was truncated will not appear in the final

file.

You should be aware that for a standard stream passed across a system() call, the

state of the file will be indeterminate even after you return to the parent program.

For this reason, you should not jump out of a SIGIOERR handler. For further

information on system() calls and standard streams, see Chapter 9, “Using C and

C++ standard streams and redirection,” on page 79.

I/O with files other than the file causing the error is perfectly valid within a SIGIOERR

handler. For example, it is valid to call printf() in your SIGIOERR handler if the file

causing the error is not stdout. Comparing the incoming file pointer to the standard

streams is not a reliable mechanism of detecting whether any of the standard

streams are in error. This is because the file pointer in some cases is only a pointer

to a file structure that points to the same __file as the stream supplied by you. The

FILE pointers will not be equal if compared, but a comparison of the __file fields of

the corresponding FILE pointers will be. See the stdio.h header file for details of

type FILE.

If stdout or stderr are the originating files of a SIGIOERR, you should open a special

log file in your handler to issue messages about the error.

Chapter 17. Debugging I/O programs 245

246 z/OS V1R8.0 XL C/C++ Programming Guide

Part 3. Interlanguage Calls with z/OS XL C/C++

This part describes z/OS XL C/C++ considerations about interlanguage calls in the

z/OS Language Environment. For complete information about interlanguage calls

(ILC) with z/OS XL C/C++ and z/OS Language Environment, refer to z/OS

Language Environment Writing Interlanguage Communication Applications.

v Chapter 18, “Using Linkage Specifications in C or C++,” on page 249

v Chapter 19, “Combining C or C++ and Assembler,” on page 255

© Copyright IBM Corp. 1996, 2006 247

248 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 18. Using Linkage Specifications in C or C++

This section describes how you can make calls between C or C++ programs and

assembler, COBOL, PL/I, or FORTRAN programs, or other C or C++ programs. For

complete information on making interlanguage calls to and from C or C++, see

z/OS Language Environment Writing Interlanguage Communication Applications.

With XPLINK compilation, the linkage and parameter passing mechanisms for C

and C++ are identical. If you link to a C function from a C++ program, you should

still specify extern "C" to avoid name mangling. For more information about

XPLINK, see z/OS Language Environment Programming Guide.

Syntax for Linkage in C or C++

You can specify one of the following linkage types:

C C linkage (C++ only)

C++ C++ linkage (C++ only, the default for C++)

COBOL Previously used for linkage to COBOL routines. Maintained for

compatibility with COBOL/370 and VS COBOL II. With newer

COBOL products, use the REFERENCE, OS, or C linkage type

instead.

FORTRAN FORTRAN linkage

OS Operating System linkage

OS_DOWNSTACK

XPLINK-enabled operating system linkage

OS_NOSTACK

Minimal operating system linkage (for use with XPLINK)

OS_UPSTACK

Complete operating system linkage (for use with XPLINK)

OS31_NOSTACK

Same as OS_NOSTACK

PLI Maintained for compatibility with PL/I products prior to the

Enterprise PL/I for z/OS product. With newer PL/I products use the

C linkage type instead.

REFERENCE A Language Environment reference linkage that has the same

syntax and semantics with and without XPLINK. Unlike OS linkage,

REFERENCE linkage is not affected by the OSCALL suboption of

XPLINK. It is equivalent to OS_DOWNSTACK in XPLINK mode and

OS_UPSTACK in non-XPLINK mode.

Syntax for Linkage in C

You can create linkages between C and other languages by using linkage

specifications with the following #pragma linkage directive:

#pragma linkage(identifier,linkage)

where identifier specifies the name of the function and linkage specifies the linkage

associated with the function.

© Copyright IBM Corp. 1996, 2006 249

Syntax for Linkage in C++

You can create linkages between C++ and other languages by using linkage

specifications with the following syntax:

extern "linkage" { [declaration-list] }

extern "linkage" declaration

declaration-list:

 declaration

 declaration-list declaration

where linkage specifies the linkage associated with the function. If z/OS XL C++

does not recognize the linkage type, it uses C linkage.

Kinds of Linkage used by C or C++ Interlanguage Programs

The following table describes the kinds of linkage used by C++ interlanguage

programs.

 What calls or is called by a

C or C++ program

Kind of linkage

used Description of linkage C++ Example

GDDM, ISPF, or

non-Language Environment

conforming assembler

OS Basic linkage defined by the

operating system. OS Linkage

allows integer, pointer, and floating

point return types. Use of OS

linkage with assembler is detailed in

“Specifying linkage for C or C++ to

Assembler” on page 256.

extern "OS" { ... }

Language Environment

conforming assembler,

NOXPLINK-compiled C or

C++ declared with OS

linkage (or C linkage, passing

each parameter as a pointer)

is to be called from

XPLINK-compiled C or C++.

Cannot be used on a function

definition in XPLINK-compiled

code.

OS_UPSTACK This is the same as OS linkage in

NOXPLINK-compiled programs. It is

declared this way by the caller when

the caller is XPLINK-compiled. The

compiler will call glue code to

transition from the XPLINK caller to

the non-XPLINK callee. Also see the

OSCALL suboption of the XPLINK

option in z/OS XL C/C++ User’s

Guide.

extern "OS_UPSTACK"

{ ... }

Assembler which does not

follow Language Environment

conventions.

OS_NOSTACK,

OS31_NOSTACK

The compiler does not generate any

glue code for this call. It provides

the called program with a 72-byte

save area pointed to by Register 13,

as does OS_UPSTACK, but the

save area may not be initialized. In

particular, the Language

Environment Next Available Byte

(NAB) field may not be present. On

entry to the called function, Register

15 contains the entry point address

and Register 14 contains the return

address. Register 1 points to an

OS-style argument list. Typically a

program would declare an operating

system or subsystem assembler

routine with this linkage, where such

a routine was not Language

Environment enabled.

extern "OS31_NOSTACK"

{ ... }

250 z/OS V1R8.0 XL C/C++ Programming Guide

What calls or is called by a

C or C++ program

Kind of linkage

used Description of linkage C++ Example

XPLINK-compiled C or C++

using OS_DOWNSTACK

linkage, or XPLINK-enabled

assembler.

OS_DOWNSTACK As with OS linkage in

NOXPLINK-compiled C or C++, the

parameters are passed by reference

rather than by value. However,

parameter and stack management

use XPLINK conventions. Also see

the OSCALL suboption of the

XPLINK option in z/OS XL C/C++

User’s Guide.

extern "OS_DOWNSTACK"

{ ... }

The following programs,

using by-reference parameter

passing:

v XPLINK-compiled C/C++

programs calling XPLINK

functions (C, C++, or

Language Environment

conforming assembler)

v NOXPLINK-compiled

C/C++ programs calling

NOXPLINK functions (C,

C++, or Language

Environment conforming

assembler)

A Language Environment

conforming stack frame is

always provided. This is not

affected by the OSCALL

suboption of XPLINK.

REFERENCE This is the same as

OS_DOWNSTACK linkage in

XPLINK-compiled programs and

OS_UPSTACK in

NOXPLINK-compiled programs. Use

this for Language

Environment-conforming assembler

linkage.

extern "REFERENCE"

{ ... }

PL/I PLI Modification of OS linkage. It forces

the compiler to read and write

parameter lists using PL/I linkage

conventions. This linkage type

extends OS linkage by allowing

structures as return types. (When

the return type is a structure, the

caller allocates a buffer large

enough to receive the returned

structure and passes it, by

reference, as a hidden final

argument.)

This linkage type is maintained for

compatibility with PL/I products prior

to the Enterprise PL/I for z/OS

product. With newer PL/I products

use the C linkage type instead.

extern "PLI" { ... }

Chapter 18. Using Linkage Specifications in C or C++ 251

What calls or is called by a

C or C++ program

Kind of linkage

used Description of linkage C++ Example

COBOL COBOL Forces the compiler to read and

write parameter lists using COBOL

linkage conventions. All calls from

C++ to COBOL must be void

functions.

This linkage type is maintained for

compatibility with COBOL/370 and

VS COBOL II. With newer COBOL

products, you can call COBOL

functions with the REFERENCE and

OS linkage types, which allow

integer return types. If the COBOL

routine receives parameters by

value (a pragmaless call), you can

use the C linkage type.

extern "COBOL" { ... }

FORTRAN FORTRAN Forces the compiler to read and

write parameter lists using

FORTRAN linkage conventions.

extern "FORTRAN" { ... }

C C Use in C++ to force the compiler to

read and write parameter lists using

C linkage conventions. C code and

the Data Window Services (DWS)

product both use C linkage.

With XPLINK, C and C++ use the

same linkage conventions. When

this linkage is specified in C++

code, the specified function is

known by its function name alone

rather than its name and argument

types. It cannot be overloaded.

extern "C" { ... }

Using Linkage Specifications in C++

In the following example, a function is prototyped in a piece of C++ code and uses,

by default, C++ linkage.

void CXX_FUNC (int); // C++ linkage

Note that C++ is case-sensitive, but PL/I, COBOL, assembler, and FORTRAN are

not. In these languages, external names are mapped to uppercase. To ensure that

external names match across interlanguage calls, code the names in uppercase in

the C++ program, supply an appropriate #pragma map specification, or use the

NOLONGNAME compiler option. This will truncate and uppercase names for functions

without C++ linkage.

To reference functions defined in other languages, you should use a linkage

specification with a literal string that is one of the following:

v C

v COBOL

v FORTRAN

v OS

v OS_DOWNSTACK

v OS_NOSTACK

252 z/OS V1R8.0 XL C/C++ Programming Guide

v OS_UPSTACK

v OS31_NOSTACK

v PLI

v REFERENCE

For example:

 extern "OS" {

 int ASMFUNC1(void);

 int ASMFUNC2(int);

 }

This specification declares the two functions ASMFUNC1 and ASMFUNC2 to have

operating system linkage. The function names are case-sensitive and must match

the definition exactly. You should also limit identifiers to 8 or fewer characters.

Use the reference type parameter (type&) in C++ prototypes if the called language

does not support pass-by-value parameters or if the called routine expects a

parameter to be passed by reference.

Note: To have your program be callable by any of these other languages, include

an extern declaration for the function that the other language will call.

Chapter 18. Using Linkage Specifications in C or C++ 253

254 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 19. Combining C or C++ and Assembler

This chapter describes how to communicate between z/OS XL C/C++ and

assembler programs.

To write assembler code that can be called from z/OS XL C/C++, use the prolog

and epilog macros described in this chapter. For more information on how the z/OS

Language Environment works with assembler, see z/OS Language Environment

Programming Guide, and z/OS Language Environment Writing Interlanguage

Communication Applications.

z/OS Language Environment provides a set of assembler macros for use with

64–bit assembler programs. For information on writing 64–bit assembler programs

see z/OS Language Environment Programming Guide for 64-bit Virtual Addressing

Mode.

Access to z/OS UNIX System Services is intended to be through the z/OS UNIX

System Services XL C/C++ run–time library only. The z/OS XL C/C++ compiler

does not support the direct use of z/OS UNIX System Services callable services

such as the assembler interfaces. You should not directly use z/OS UNIX System

Services callable services from your z/OS XL C/C++ application programs, because

problems can occur with the processing of the following:

v Signals

v Library transfers

v fork()

v exec()

v Threads

There are comparable z/OS XL C/C++ run–time library functions for most z/OS

UNIX System Services callable services, and you should use those instead. Do not

call assembler programs that access z/OS UNIX System Services callable services.

Establishing the z/OS XL C/C++ environment

Before you can call a C or C++ function from assembler, you must establish a

suitable environment. To establish the environment, do one of the following:

v Call the assembler program from within the C or C++ program (from main() or

another function). Since the assembler call is from within the C or C++ program,

the environment has already been established. It is often simplest to call the

assembler using OS linkage conventions.

Note: In this chapter, ″OS linkages″ and ″OS linkage″ conventions refer to the

following group of specifications: OS, OS_UPSTACK, OS_DOWNSTACK,

OS_NOSTACK, OS31_NOSTACK and REFERENCE. ″OS″ is used in

syntax diagrams and examples as a representative specification. These

specifications use different stack conventions. For more information on

these specifications, see Chapter 18, “Using Linkage Specifications in C or

C++,” on page 249.

v Use preinitialization to set up the z/OS Language Environment. See “Retaining

the C environment using preinitialization” on page 269 for information.

v Use the Language Environment CEEENTRY prolog macro with MAIN=YES

specified so that z/OS Language Environment is initialized.

© Copyright IBM Corp. 1996, 2006 255

Once you are in the assembler program you can call other C or C++ programs from

the assembler.

Specifying linkage for C or C++ to Assembler

The process for specifying the linkage to assembler differs for C and for C++. In C,

a #pragma linkage directive is used, while in C++ a linkage specifier is used.

v Under C, a #pragma linkage directive enables the compiler to generate and

accept parameter lists, using a linkage convention known as OS linkage.

Although functionally different, both calling an assembler routine and being called

by one are handled by the same #pragma. Its format is:

#pragma linkage(identifier, OS)

where identifier is the name of the assembler function to be called from C or the

C function to be called from assembler. The #pragma linkage directive must

occur before the call to the entry point.

v Under C++, a linkage specifier enables the compiler to generate and accept

parameter lists, using a linkage convention known as OS linkage. Although

functionally different, both calling an assembler routine and being called by one

are handled by the same linkage specifier. The format of the linkage specifier is:

extern "OS" {

 fn1 desc;

 fn2 desc; ...
}

where fnx desc is the name of the OS entry point.

For C and C++: In XPLINK compiled code, the OS_UPSTACK and OS_NOSTACK (or

OS31_NOSTACK) linkages are used for declaring the linkage

convention of a routine that the C or C++ code is calling. You

cannot define C or C++ entry points as having OS_NOSTACK

linkage. You define C or C++ entry points with OS_UPSTACK

linkage by compiling the translation units containing them with

the NOXPLINK compiler option. In NOXPLINK compiled code,

the OS_DOWNSTACK linkage is used to declare the linkage

convention for a routine that the C or C++ code is calling. You

define C or C++ entry points with OS_DOWNSTACK linkage by

compiling the translation units containing them with the XPLINK

compiler option.

Just as C (or C++) linkage programs can call OS linkage programs, OS linkage

programs can call C linkage programs. An example of C linkage calling OS linkage,

which in turn calls C linkage (in this case, one of the z/OS XL C/C++ library

functions) is shown in Figure 42 on page 265.

In general, any type that can be passed between C and assembler can also be

passed between C++ and assembler. However, if a C++ class that uses features

not available to assembler (such as virtual functions, virtual base classes, private

and protected data, or static data members) is passed to assembler, the results will

be undefined.

Note: In C++, a structure is just a class declared with the keyword struct. Its

members and base classes are public by default. A union is a class declared

with the keyword union its members are public by default, and it holds only

one member at a time.

256 z/OS V1R8.0 XL C/C++ Programming Guide

Parameter lists for OS linkage

A parameter list for OS linkage is a list of pointers. The most significant bit of the

last parameter in the parameter list is turned on by the compiler when the list is

created.

If a parameter is an address-type parameter, the address itself is directly stored into

the parameter list. Otherwise, a copy is created for a value parameter and the

address of this copy is stored into the parameter list.

The type of a parameter is specified by the prototype of a function. In the absence

of a prototype, the creation of a parameter list is determined by the types of the

actual parameters passed to the function. Figure 38 shows an example of the

parameter list for OS linkage.

In the list, the first and third parameters are value parameters, and the second is an

address parameter.

XPLINK Assembler

The XPLINK support provided by the assembler macros EDCXPRLG and

EDCXEPLG allows XPLINK C and C++ code to call routines that can be coded for

performance, or to perform a function that can not be readily done in C/C++. The

EDCXCALL macro allows XPLINK assembler to call routines in the same program

object, or in a DLL. The following z/OS Language Environment books provide more

information on XPLINK that may be useful to assembler programmers:

v z/OS Language Environment Programming Guide — provides an overview of

XPLINK and what it means to the application programmer. It also describes the

Language Environment assembler support, including the CEEPDDA and

CEEPLDA macros, which can be used to define and reference data from

assembler.

v z/OS Language Environment Writing Interlanguage Communication Applications

— provides information on how assembler routines interact with routines coded in

other high level languages.

v z/OS Language Environment Debugging Guide — provides details on XPLINK,

including information on building parameter lists for calling other XPLINK

routines.

Coding XPLINK assembler routines differs from traditional non-XPLINK assembler

in the following ways:

ptr of P1 copy

R1

ptr of P1 copy P2 ptr of P3 copy ...

copy of P1 copy of P3

Figure 38. Example of parameter lists For OS linkages

Chapter 19. Combining C or C++ and Assembler 257

v You use the EDCXPRLG and EDCXEPLG macros for entry/exit code, and the

EDCXCALL macro to call other routines. These are documented in the section

“Using standard macros” on page 259.

v You use the following XPLINK register conventions within the XPLINK assembler

routine:

– XPLINK parameter passing conventions: Registers 1, 2, and 3 are used to

pass up to the first 3 integral values, and floating point registers will be used

to pass floating point parameters.

– XPLINK DSA format: Note that the stack register (reg 4) is ″biased″. This

means that you must add 2K (2048) to the stack register to get the actual

start of the current routine’s DSA. The z/OS Language Environment mapping

macro CEEDSA contains a mapping of the XPLINK DSA, including the 2K

bias (CEEDSAHP_BIAS). The caller’s registers are saved in the DSA obtained

by the callee. The callee’s parameters (other than those passed in registers, if

any), are built in the argument list in the callers DSA, and addressed there

directly by the callee. There is no indirect access to the parameters via

Register 1 as in OS linkage.

v While EDCXPRLG and EDCXEPLG allow Language Environment conforming

XPLINK assembler routines to be written, another alternative for XPLINK C/C++

callers is to designate the linkage as OS31_NOSTACK. For more information on

OS31_NOSTACK see Chapter 18, “Using Linkage Specifications in C or C++,” on

page 249. When the C/C++ caller designates the assembler routine as

OS31_NOSTACK linkage, the assembler code can be written without using

EDCXPRLG or EDCXEPLG (or any other Language Environment prolog or

epilog macros). This can only be done when the assembler code has no dynamic

stack storage requirements. With OS31_NOSTACK, standard OS linkage rules

apply:

– Register 1 will be used to point to the parameter list.

– Register 13 will point to an 18 word savearea, provided to the callee for

saving and restoring registers.

– Register 14 will be the return address for branching back to the caller.

– Register 15 will contain the address of the callee.

Table 33 shows the layout of the XPLINK interface.

 Table 33. Comparison of non-XPLINK and XPLINK register conventions

Non-XPLINK XPLINK

Stack Pointer Reg 13 Reg 4 (biased)

Return Address Reg 14 Reg 7

Entry point on entry Reg 15 Reg 6 (not guaranteed; a routine may be

called via branch relative)

Environment Reg 0 (writeable static) Reg 5

CAA Address Reg 12 Reg 12

Input Parameter List address in R1 Located at fixed offset 64 (’40’x) into the

caller’s stack frame (remember the 2K bias

on R4). Additionally, any of General Registers

1, 2, and 3, and Floating Point Registers 0, 2,

4, and 6, may be used to pass parameters

instead of the caller’s stack frame.

Return code Reg 15 R3 (extended return value in R1,R2)

Start address of

callee’s stack frame

Caller’s NAB value Caller’s Reg 4 - DSA size

258 z/OS V1R8.0 XL C/C++ Programming Guide

Table 33. Comparison of non-XPLINK and XPLINK register conventions (continued)

Non-XPLINK XPLINK

End address of

callee’s stack frame

Caller’s NAB value + DSA size Caller’s Reg 4

Where caller’s

registers are saved

R0-R12 saved in caller’s stack frame

R13 saved in callee’s stack frame

R14-R15 saved in caller’s stack frame

R0 not saved, not preserved

R1-R3 not saved, not preserved

R4 not saved, recalculated

(or saved, restored)

R5 not saved, not preserved

R6 saved in callee’s stack frame,

not restored

R7-R15 saved in callee’s stack frame

(R7 is the return register and is

not guaranteed to be restored)

See z/OS Language Environment Vendor Interfaces for additional information about

register usage and conventions, especially for details about passing parameters

with XPLINK. For information on the registers which are saved in the register

savearea of the XPLINK stack frame see z/OS Language Environment

Programming Guide.

Using standard macros

To communicate properly, assembler routines must preserve the use of certain

registers and particular storage areas, in a way that is consistent with code from the

C or C++ compiler. z/OS XL C/C++ provides macros for use with assembler

routines. These macros are in CEE.SCEEMAC. The High-Level Assembler for MVS &

VM & VSE must be used when assembling with these macros. The macros are:

EDCPRLG Generates the prolog for non-XPLINK assembler code

EDCEPIL Generates the epilog for non-XPLINK assembler code

EDCXPRLG Generates the prolog for XPLINK assembler code

EDCXCALL Generates a call from XPLINK assembler code

EDCXEPLG Generates the epilog for XPLINK assembler code

EDCDSAD Accesses automatic memory in the non-XPLINK stack. For the

XPLINK stack, use the CEEDSA macro, described in z/OS Language

Environment Programming Guide.

EDCPROL, the old version of EDCPRLG, is shipped for compatibility with Version 1 of

C/370 and is unchanged. However, you should use EDCPRLG if you can.

The advantage of writing assembler code using these macros is that the assembler

routine will then participate fully in the z/OS XL C/C++ environment, enabling the

assembler routine to call z/OS XL C/C++ functions. The macros also manage

automatic storage, and make the assembler code easier to debug because the

z/OS Language Environment control blocks for the assembler function will be

displayed in a formatted traceback or dump. See the Debug Tool documentation,

which is available at http://www.ibm.com/software/ad/debugtool/library/, for

further information on z/OS Language Environment tracebacks and dumps.

Chapter 19. Combining C or C++ and Assembler 259

Non-XPLINK assembler prolog

Use the EDCPRLG macro to generate non-XPLINK assembler prolog code at the start

of assembler routines.

�� EDCPRLG

name

USRDSAL=ulen

BASEREG=register

DSALEN=dlen

 ��

name Is inserted in the prolog. It is used in the processing of certain

exception conditions and is useful in debugging and in reading

memory dumps. If name is absent, the name of the current CSECT

is used.

USRDSAL=ulen Is used only when automatic storage (in bytes) is needed. To

address this storage, see the EDCDSAD macro description. The ulen

value is the requested length of the user space in the DSA.

BASEREG=register

Designates the required base register. The macro generates code

needed for setting the value of the register and for establishing

addressability. The default is Register 3. If register equals NONE, no

code is generated for establishing addressability.

DSALEN=dlen Is the total requested length of the DSA. The default is 120. If fewer

than 120 bytes are requested, 120 bytes are allocated. If both dlen

and ulen are specified, then the greater of dlen or ulen+120 is

allocated. If DSALEN=NONE is specified, no code is generated for DSA

storage allocation, and R13 will still point to the caller’s DSA.

Therefore, you should not use the EDCEPIL macro to terminate the

assembler routine. Instead, you have to restore the registers

yourself from the current DSA. To do this, you can use an

assembler instruction such as

LM 14,12,12(R13)

BR 14

You should not use EDCDSAD to access automatic memory if you

have specified DSALEN=NONE, since DSECT is addressable using R13.

Non-XPLINK assembler epilog

Use the EDCEPIL macro to generate non-XPLINK assembler epilog code at the end

of assembler routines. Do not use this macro in conjunction with an EDCPRLG macro

that specifies DSALEN=NONE.

�� EDCEPIL

name
 ��

name Is the optional name operand, which then becomes the label on the

exit from this code. The name does not have to match the prolog.

XPLINK Assembler prolog

Use the EDCXPRLG macro to generate XPLINK assembler prolog code at the start

of assembler routines.

260 z/OS V1R8.0 XL C/C++ Programming Guide

�� EDCXPRLG DSASIZE=len

name

PARMWRDS=numwrds

ENTNAME=epname

BASEREG=register

PSECT=pname

GT2KSTK=YES

EXPORT=NO

 ��

name If ENTNAME=epname is specified then name is used as the name of

the XPLINK entry marker, else name is the name of the entry point

and name#C is used as the name of the XPLINK entry marker.

DSASIZE=len Specifies automatic storage requirements (in bytes). Specify a len

of 0 if the XPLINK assembler routine is a leaf routine with no

automatic storage requirements. XPLINK leaf routines must

preserve registers 4,6, and 7 throughout their execution. This is a

required parameter, the minimum size of an XPLINK DSA (80

bytes) or more must be specified if DSASIZE is not zero. The length

will be rounded up, if necessary, to a multiple of 32-bytes.

PARMWRDS=numwrds

Specifies the number of 4-byte words in the input parameter list. If

this is omitted, then the routine will be treated as vararg, and it will

adversely affect performance if the call to this routine results in a

stack overflow. This parameter is required if mixing XPLINK and

non-XPLINK routines so that the glue code that switches between

linkage conventions on a call can correctly pass the parameters. If

this is omitted, then a call from a non-XPLINK caller to an XPLINK

Assembler routine will abend with message CEE3584E.

ENTNAME=epname

Is the optional name of the XPLINK assembler routine entry point.

BASEREG=register

Designates the required base register. The macro generates code

needed for setting the value of the register and for establishing

addressability. The default is register 8. If register equals NONE, no

code is generated for establishing addressability.

PSECT=pname Is the name to be assigned to the XPLINK assembler routine

PSECT area. For more information about the PSECT area see

HLASM Language Reference.

GT2KSTK=YES If GT2KSTK=YES is specified, then an unconditional ″large stack

frame″ prolog will be used that checks for the XPLINK stack floor in

the CAA, instead of depending on the write-protected guard page.

This parameter must be specified if the len on the DSASIZE

parameter is greater than 2048 (ie. 2K).

EXPORT=NO If EXPORT=NO is specified, then this function is not exported. In this

case, this function can be called only from other functions that are

link-edited in the same program object with this function.

 If EXPORT=YES is specified, then this function is to be exported when

link-edited into a DLL. With this function exported from the DLL, it

can be called from functions outside of the containing program

object. If you want the exported name to be a long name and/or

mixed case, follow the EDCXPRLG macro with an ALIAS

statement. For example:

Chapter 19. Combining C or C++ and Assembler 261

Note: If you specify EXPORT=YES, then you must use the GOFF

assembler option. For the entry point to be available as an

exported DLL function, you must specify the DYNAM(DLL)

binder option, and the resulting program object must reside

in a PDSE or the HFS.

XPLINK Call

Use the EDCXCALL macro to pass control from an XPLINK assembler program to

a control section at a specified entry point. It is meant to be used in conjunction

with the EDCXPRLG and EDCXEPLG macros. The target of EDCXCALL can be

resolved either statically (link-edited with the same program object) or dynamically

(imported from a DLL).

The EDCXCALL macro does not generate any return codes. Return information

may be placed in GPR 3 (and possibly GPRs 2 and 1, or the Floating Point

Registers) by the called program, as specified by XPLINK linkage conventions. The

EDCXCALL macro does not support extended return types. For more information,

refer to z/OS Language Environment Vendor Interfaces .

GPRs 0, 1, 2, 3, 5, 6, and 7 are not preserved by this macro.

�� EDCXCALL entry-name [, (parm1, ...)] WORKREG=reg

name
 ��

name Optional label beginning in column 1.

entry-name= Specifies the entry name of the program to be given control. This

entry name can reside in the same program object, or can be an

exported DLL function.

[, (parm1, ...)] One or more parameters to be passed to the called program. The

parameters are copied to the argument area in the calling

program’s DSA, and then GPRs 1, 2, and 3 are loaded with the first

three words of this argument area. Sufficient space must be

reserved in the caller’s argument area to contain the largest

possible parameter list. A minimum of 4 words (16 bytes) must

always be allocated for the argument area. Use the DSASIZE=

parameter on the EDCXPRLG prolog macro to ensure that the

calling program’s DSA is large enough. At this time, the EDCXCALL

macro only supports passing parameters by reference.

WORKREG= A numeric value representing a general purpose register between 8

* EDCXPRLG macro with an ALIAS statement

ASMDLLEP EDCXPRLG DSASIZE=0,BASEREG=8,EXPORT=YES

ASMDLLEP ALIAS C’dllfunx’

* Symbolic Register Definitions and Usage

R3 EQU 3 Return value

*

 WTO ’ADLLXEF1: Exported function dllfunx entered’,ROUTCDE=11

*

RETURN DS 0H

 SR R3,R3

 EDCXEPLG

 END ASMDLLEP

Figure 39. EDCXPRLG macro with an ALIAS statement

262 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|
|
|
|
|
|
|
|
|
|

and 15, inclusive, that can be used as a work register by this

macro. Its contents will not be preserved.

Notes:

1. This macro requires that the calling routine’s XPLINK environment address is in

register 5 (as it was when the routine was first invoked).

2. This macro requires that a PSECT was defined by the EDCXPRLG prolog

macro.

3. This macro requires the GOFF assembler option.

4. This macro requires the binder to link-edit, and the RENT and DYNAM(DLL)

binder options. You will also need the CASE(MIXED) binder option if the

entry-name is mixed case.

5. The output from the binder must be a PM3 (or higher) format program object,

and therefore must reside in either a PDSE or the HFS.

The following XPLINK assembler example shows a call to an XPLINK routine

named Xif1 where no parameters are passed.

CCNGCA9

 The following XPLINK assembler example calls a function with 5 parameters.

* Call to an XPLINK routine with no parameters

ADLAXIF1 EDCXPRLG DSASIZE=DSASZ,PSECT=ADLAXIFP

*

R3 EQU 3 RETURN VALUE

*

 WTO ’ADLAXIF1: Calling imported XPLINK function Xif1’, X

 ROUTCDE=11

*

 EDCXCALL Xif1,WORKREG=10

*

 SR R3,R3

RETURN DS 0H

 EDCXEPLG

*

 LTORG

CEEDSAHP CEEDSA SECTYPE=XPLINK

MINARGA DS 4F

DSASZ EQU *-CEEDSAHP_FIXED

 END ADLAXIF1

Figure 40. Call to an XPLINK routine with no parameters

Chapter 19. Combining C or C++ and Assembler 263

CCNGCA10

XPLINK Assembler epilog

Use the EDCXEPLG macro to generate XPLINK assembler epilog code at the end

of assembler routines. This macro must always be used with a matching

EDCXPRLG macro, even if the EDCXPRLG macro specified DSASIZE=0.

�� EDCXEPLG

name
 ��

name Is the optional name operand, which then becomes the label on the

exit from this code. The name does not have to match the prolog.

Accessing automatic memory in the non-XPLINK stack

Use the EDCDSAD macro to access automatic memory in the non-XPLINK stack..

Automatic memory is reserved using the USRDSAL, or the DSALEN operand of the

EDCPRLG macro. The length of the allocated area is derived from the ulen and/or

dlen values specified on the EDCPRLG macro. EDCDSAD generates a DSECT, which

reserves space for the stack frame needed for the C or C++ environment.

�� EDCDSAD

name
 ��

name Is the optional name operand, which then becomes the name of the

generated DSECT.

 The DSECT is addressable using Register 13. Register 13 is initialized by the

prolog code. If you have specified DSALEN=NONE with EDCPRLG you should not use

EDCDSAD.

* Call to an XPLINK routine with 5 parameters

ADLAXIF7 EDCXPRLG DSASIZE=DSASZ,PSECT=ADLAXIFP

*

R3 EQU 3 RETURN VALUE

*

 WTO ’ADLAXIF7: Calling imported XPLINK function Xif7 passingX

 parmeters (15,33,"Hello world",45.2,9)’, X

 ROUTCDE=11

*

 EDCXCALL Xif7,(PARM1,PARM2,PARM3,PARM4,PARM5),WORKREG=10

*

 SR R3,R3

RETURN DS 0H

 EDCXEPLG

*

 LTORG

PARM1 DC FL4’15’

PARM2 DC FL2’33’

PARM3 DC C’Hello world’

 DC X’00’

PARM4 DC D’45.2’

PARM5 DC FL4’9’

CEEDSAHP CEEDSA SECTYPE=XPLINK

ARGAREA DS 5F

DSASZ EQU *-CEEDSAHP_FIXED

 END ADLAXIF7

Figure 41. Call to an XPLINK routine with 5 parameters

264 z/OS V1R8.0 XL C/C++ Programming Guide

The Language Environment mapping macro CEEDSA can be used to map a DSA,

either non-XPLINK or XPLINK or both.

�� CEEDSA SECTYPE=XPLINK

name
 ��

There are other SECTYPE operands. SECTYPE=XPLINK will only produce an XPLINK

DSA mapping. For more information on CEEDSA see z/OS Language Environment

Programming Guide.

Calling C code from Assembler — C example

The following C example shows how to call C code from assembler. There are

three parts to this example. The first part, shown in Figure 42, is a trivial C routine

that establishes the C run-time environment.

CCNGCA4

 The second part of the example, shown in Figure 43 on page 266, is the assembler

routine. It calls an intermediate C function that invokes a run-time library function.

/* this example demonstrates C/Assembler ILC */

/* part 1 of 3 (other files are CCNGCA2, CCNGCA5) */

/* in this example, the code in CCNGCA4 invokes CCNGCA2, */

/* which in turn invokes CCNGCA5 */

/* you can use EDCCBG to do the compile and bind, but */

/* you must include the objects from CCNGCA2 and CCNGCA5 */

#pragma linkage(CALLPRTF, OS)

int main(void) {

 CALLPRTF();

 return(0);

}

Figure 42. Establishing the C run-time environment

Chapter 19. Combining C or C++ and Assembler 265

CCNGCA2

 Finally in this example, the intermediate C routine calls a run-time library function as

shown in Figure 44.

CCNGCA5

Calling run-time library routines from Assembler — C++ example

The following C++ example shows how to call library routines from assembler.

There are three parts to this example. The first part shown in Figure 45 on page

267, is a trivial XL C/C++ routine that establishes the XL C/C++ run-time

environment. It uses extern OS to indicate the OS linkage and calls the assembler

routine.

* this example demonstrates ILC with Assembler-part 2 of 3

CALLPRTF CSECT

 EDCPRLG

 LA 1,ADDR_BLK parameter address block in r1

 L 15,=V(@PRINTF4) address of routine

 BALR 14,15 call @PRINTF4

 EDCEPIL

ADDR_BLK DC A(FMTSTR) parameter address block with..

 DC A(X'80000000'+INTVAL) ..high bit on the last address

FMTSTR DC C'Sample formatting string'

 DC C' which includes an int -- %d --'

 DC AL1(NEWLINE,NEWLINE)

 DC C'and two newline characters'

 DC AL1(NULL)

*

INTVAL DC F'222' The integer value displayed

*

NULL EQU X'00' C NULL character

NEWLINE EQU X'15' C \n character

 END

Figure 43. Calling an intermediate C function from Assembler OS linkage

/* this example demonstrates C/Assembler ILC */

/* part 3 of 3 (other files are CCNGCA2, CCNGCA4) */

/***\

 * This routine is an interface between assembler code *

 * and the C/C++ library function printf(). *

 * OS linkage will not tolerate C-style variable length *

 * parameter lists, so this routine is specific to a *

 * formatting string and a single 4-byte substitution *

 * parameter. It’s specified as an int here. *

 * This object wil be named @PRINTF4. *

/***/

#pragma linkage(_printf4,OS) /*function will be called from assembler*/

#include <stdio.h>

#pragma map(_printf4,“@PRINTF4”)

int _printf4(char *str,int i) {

 return printf(str,i); /* call run-time library function */

}

Figure 44. Intermediate C routine calling a run-time library function

266 z/OS V1R8.0 XL C/C++ Programming Guide

CCNGCA1

 The second part of this example, shown in Figure 46 is the assembler routine. It

calls an intermediate XL C/C++ routine that invokes a run-time library function.

CCNGCA2

 The third part of the example, shown in Figure 47 on page 268, is an intermediate

XL C/C++ routine that calls a run-time library function.

// this example demonstrates C++/Assembler ILC

// part 1 of 3 (other files are CCNGCA2, CCNGCA3)

extern "OS" int CALLPRTF(void);

int main(void) {

 CALLPRTF();

}

Figure 45. Establishing the XL C/C++ run-time environment

* this example demonstrates ILC with Assembler (part 2 of 3)

CALLPRTF CSECT

 EDCPRLG

 LA 1,ADDR_BLK parameter address block in r1

 L 15,=V(@PRINTF4) address of routine

 BALR 14,15 call it

 EDCEPIL

ADDR_BLK DC A(FMTSTR) parameter address block with..

 DC A(X'80000000'+INTVAL) ..high bit on the last address

FMTSTR DC C'Sample formatting string'

 DC C' which includes an int -- %d --'

 DC AL1(NEWLINE,NEWLINE)

 DC C'and two newline characters'

 DC AL1(NULL)

*

INTVAL DC F'222' The integer value displayed

*

NULL EQU X'00' C NULL character

NEWLINE EQU X'15' C \n character

 END

Figure 46. Calling an intermediate XL C/C++ function from Assembler using OS linkage

Chapter 19. Combining C or C++ and Assembler 267

CCNGCA3

Register content at entry to a non-XPLINK ASM routine using OS

linkage

When control is passed to an assembler routine that uses OS linkage, the contents

of the registers are as follows:

Register Contents

R0 Undefined.

R1 Points to the parameter list. The parameter list consists of a vector

of addresses, each of which points to an actual parameter. The

address of the last parameter has its high-order bit set on, to

indicate the end of the list.

R2 to R11 Undefined.

R12 Points to an internal control block. It can be used by the called

routine but must be restored to its entry value if it calls a routine

that expects z/OS Language Environment.

R13 Points to the caller’s DSA. Part of the DSA is used by EDCPRLG and

EDCEPIL to save and restore registers. EDCPRLG can change R13 so

that it points to the called routine’s DSA from the caller’s DSA.

R14 The return address.

R15 The address of the entry point being called.

Register content at exit from a non-XPLINK ASM routine to z/OS XL

C/C++

Registers have the following content when control returns to the point of call:

Register Contents

R0 Undefined.

R1 Undefined.

R2 to R13 Must be restored to entry values. This is done by EDCEPIL and

EDCPRLG.

// this example demonstrates XL C/C++/Assembler ILC

// part 3 of 3 (other files are CCNGCA1, CCNGCA2)

// This routine is an interface between assembler code

// and the Run-time library function printf(). OS linkage

// will not tolerate C-style variable length parameter lists,

// so this routine is specific to a formatting string

// and a single 4-byte substitution parameter. It’s

// specified as an int here.

#include <stdio.h>

#pragma map(_printf4,"@PRINTF4")

extern "OS" int _printf4(char *str,int i) {

 //function will be called from assembler

 return printf(str,i); // call Run-time library function

}

Figure 47. Intermediate XL C/C++ routine calling a run-time library function

268 z/OS V1R8.0 XL C/C++ Programming Guide

R14 Return address.

R15 Return value for integer types (long int, short int, char) and

pointer types. Otherwise set to 0.

FP0 Returns value for float or double parameters.

FP0 Returns value if long double is passed.

FP2 Returns value if long double is passed.

Note: When in FLOAT(AFP) mode the callee must save and restore FPR’s 8 through

15.

All other floating point registers are undefined.

Retaining the C environment using preinitialization

If an assembler routine called the same C or C++ program repeatedly, the creation

and termination of the C/C++ environment for each call would be inefficient. The

solution is to create the C/C++ environment only once by preinitializing the C or

C++ program. The Language Environment preinitialization (CEEPIPI) services are

the strategic form of preinitialization. For information on the Language Environment

preinitialization (CEEPIPI) services, see z/OS Language Environment Programming

Guide. This section discusses the z/OS XL C preinitialization interface only for

reasons of compatibility.

Notes:

1. This information pertains only to users of C programs.

2. XPLINK applications are not supported under Preinitialized Compatibility

Interface (PICI) environments.

3. POSIX(ON) is not supported under PICI environments.

4. AMODE 64 applications are not supported under PICI environments.

If you are calling a C program multiple times from an assembler program, you can

establish the C environment and then repeatedly invoke the C program using the

already established C environment. You incur the overhead of initializing and

terminating the C environment only once instead of every time you invoke the C

program.

Because C detects programs that can be preinitialized dynamically during

initialization, you do not have to recompile the program or link-edit it again.

To maintain the C environment, you start the program with the C entry CEESTART,

and pass a special Extended Parameter List that indicates that the program is to be

preinitialized.

When you use preinitialization, you are initializing the library yourself with the INIT

call and terminating it yourself with the TERM call. In a non-preinitialized program, the

library closes any files you left open and releases storage. It does not do this in a

preinitialized program. Therefore, for every invocation of your preinitialized program,

you must release all allocated resources as follows:

v Close all files that were opened

v Free all allocated storage

v Release all fetched modules

If you do not release all allocated resources, you will waste memory.

Chapter 19. Combining C or C++ and Assembler 269

Setting up the interface for preinitializable programs

The interface for preinitializing programs is shown in Figure 48.

The LL field is a halfword containing the value of 16. The halfword that follows must

contain 0 (zero).

The Request field is 8 characters that can contain:

R1
X'80000000' +

address

X'80000000' +

address

LL

LL

00 Request
Extended plist

address

Length of EPL

Token 1

Token 2

0

address

request modifier

address

address

Runtime Options

argc

pointer to

argv vector

pointer to

argv [0]

count of fields

defined

address of get-

storage routine

pointer to

argv [1]

user-defined

word

address of free-

storage routine

. . .

address of work

area for DSAS etc.

address of

exception router

. . .

pointer to

argv [argc-1]

address of

load routine

address of

attention router

0

address of

delete routine

address of

message router

argv [0]

(program name)

argv [1]

argv [argc-1]

Figure 48. Interface for preinitializable programs

270 z/OS V1R8.0 XL C/C++ Programming Guide

'INIT '

Initializes the C environment and, returns two tokens that represent the

environment, but does not run the program. Token 1 and token 2 must both

have the value of zero on an INIT call; otherwise, preinitialization fails.

 You can initialize only one C environment at a time. However, you can make

the sequence of calls to INIT, CALL, and TERM more than once.

'CALL '

Runs the C program using the environment established by the INIT request,

and exits from the environment when the program completes. The CALL request

uses the two tokens that were returned by the INIT request so that C can

recognize the proper environment.

 You can also initialize and call a C program by passing the CALL parameter with

two zero tokens. The C program processes this request as an INIT followed by

a CALL. You can still call the program repeatedly, but you should pass the two

zero tokens only on the first call. Once the C environment is initialized, the

values of the tokens are changed, and must not be modified on any subsequent

calls.

 Calling a C program other than the one used to initialize the C environment is

not supported, especially if write-able static is needed by the program being

called. This is because write-able static was allocated and initialized based

upon the program used to initialize the C environment.

'TERM '

Terminates the C environment but does not run the program.

 The program used to terminate the C environment should be the same as the

program used to initialize the C environment. Usage of a different program to

terminate the C environment is unsupported.

'EXECUTE '

Performs INIT, CALL, and TERM in succession.

No other value is valid.

The Extended PLIST address field is a pointer to the Extended Parameter List

(EPL). The EPL is a vector of fullwords that consists of:

Length of extended parameter list

The length includes the 4 bytes for the length field. Valid decimal values are

20, 28, and 32.

First and second C environment tokens

These tokens are automatically returned during initialization; or, you can

use zeros for them when requesting a preinitialized CALL, and the effect is

that both an INIT and a CALL are performed.

Pointer to your program parameters

The layout of the parameters is shown in Figure 48 on page 270, Interface

for Preinitialization Programs. If no parameter is specified, use a fullword of

zeros.

Pointer to your run-time options

To point to the character string of run-time options, refer to Figure 48. The

character string consists of a halfword LL field that contains the length of

the list of run-time options, followed by the actual list of run-time options.

Chapter 19. Combining C or C++ and Assembler 271

Pointer to an alternative main

This field is not supported in C. However, if you want to use the seventh or

eighth fields, use a full word of zeros as a place holder.

Pointer to the service vector

If you want certain services (such as load and delete) to be carried out by

other code supplied by you (instead of, for example, by the LOAD and DELETE

macros), use this field to point to the service vector. See Figure 48 on page

270.

Request modifier code

When your request is INIT, CALL, or EXECUTE, you can specify any of the

following request modifier codes:

0 Does not change the request.

1 Loads all common library modules as part of the preinitialized

environment.

2 Loads all common and C library modules as part of the

preinitialized environment.

3 Reinitializes the environment. If the environment is already

established, frees all HEAP storage and any ISA overflow segments.

 Do not use this code if subsequent calls depend on storage that is

still being allocated by previous calls.

4 Allows you to create more than one environment. The new

environment is chained with existing request modifier 4

environments or a batch environment, where possible, so that C

memory file sharing among the environments is possible. Details on

chaining and C memory file sharing support are covered in “Multiple

preinitialization compatibility interface C environments” on page

280.

 The user-supplied service routine vector is not supported when you

use request modifier value 4 in the extended parameter list. Do not

code this if you are using the service routine vector. If you do, an

abnormal end will occur.

5 Allows you to create more than one environment. The new

environment is separated from other environments which may

already exist. This environment does not support sharing of C

memory files with other preinitialization compatibility interface

environments.

When your request is TERM, you can specify either of the following request

modifier codes:

0 Does not change the request.

1 Forces termination. Ends the C environment without any of the

usual checks.

 Code this field only when you cannot request normal termination.

You must ensure that the environment you are forcing to end is not

in use.

The length you specify in the first field of the extended parameter list makes it

known whether you have specified a request modifier code or not.

272 z/OS V1R8.0 XL C/C++ Programming Guide

Run-Time options are applied only at initialization and remain until termination. You

must code PLIST(MVS) in the called C program in order for the preinitialization to

work.

The options ARGPARSE|NOARGPARSE have no effect on preinitialized programs. The

assembler program has to provide parameters in the form expected by the C

program. Thus, if the C program is coded for the NOARGPARSE option, the argc

should be set to 2, and parameters passed as a single string.

Preinitializing a C program

A preinitialized C program is displayed in Figure 49 on page 274 which shows how

to:

v Establish the C environment using an INIT request

v Pass run-time parameters to the C initialization routine

v Set up a parameter to the C program

v Repeatedly call a C program using the CALL request

v Communicate from the C program to the driving program using a return code

v End the C program using the TERM request

The example C program is very simple. The parameters it expects are the file name

in argv[1] and the return code in argv[2]. The C program printf()s the value of

the return code, writes a record to the file name, and decrements the value in return

code.

The assembler program that drives the C program establishes the C environment

and repeatedly invokes the C program, initially passing a value of 5 in the return

code. When the return code set by the C program is zero, the assembler program

terminates the C environment and exits.

The program in Figure 49 on page 274 does not include the logic that would verify

the correctness of any of the invocations. Such logic is imperative for proper

operations.

Chapter 19. Combining C or C++ and Assembler 273

CCNGCA6

CCNGCA6 TITLE ’TESTING PREINITIALIZED C PROGRAMS’

***---

*** this example shows how to preinitialize a C program

*** part 1 of 3 (other files are CCNGCA7 and CCNGCA8)

*** Function: Demonstrate the use of Preinitialized C programs

*** Requests used: INIT, CALL, TERM

*** Parameters to C program: FILE_NAME, RUN_INDEX

*** Return from C Program: RUN_INDEX

***---

CCNGCA6 CSECT

CCNGCA6 RMODE ANY

CCNGCA6 AMODE ANY

 EXTRN CEESTART C Program Entry

 STM R14,R12,12(R13) Save registers

 BALR R3,0 Set base register

 USING *,R3 Establish addressability

 ST R13,SVAR+4 Set back chain

 LA R13,SVAR Set this module’s save area

***---

*** Initialize

***---

P_INIT DS 0H

 MVC P_RQ,INIT Set INIT as the request

 LA R1,PALIPT Load Parameter pointer

 L R15,CEP Load C Entry Point

 BALR R14,R15 Invoke C Program

***---

*** The C environment has been established.

*** Parameters include RUN_INDEX which will be counted down

*** by the C program. When the RUN_INDEX is zero, termination

*** will be requested.

*** The following code will set up C program parameters and

*** CALL request, invoke the C program and test for termination.

***---

 LA R1,PGPAPT Pointer to C program parameters

 ST R1,EP_PGPA ... to extended parameter list

DO_CALL DS 0H

 MVC P_RQ,CALL set up CALL request

 LA R1,PALIPT set parameter pointer

 L R15,CEP set entry point

 BALR R14,R15 invoke C program

 L R0,RUN_INDEX Test Return Code

 LTR R0,R0

 BNZ DO_CALL Repeat CALL

Figure 49. Preinitializing a C program (CCNGCA6) (Part 1 of 3)

274 z/OS V1R8.0 XL C/C++ Programming Guide

***---

*** C requested termination.

*** Set up TERM request and terminate the environment

***---

DO_TERM DS 0H

 MVC P_RQ,TERM set up TERM request

 SR R1,R1 mark no parameters

 ST R1,EP_PGPA

 LA R1,PALIPT set parameter pointer

 L R15,CEP set entry point

 BALR R14,R15 invoke termination

***---

*** Return to system

***---

XIT DS 0H

 L R13,4(13)

 LM R14,R12,12(13)

 BR R14

***---

*** Constants and work areas

***---

VARCON DS 0D

PALIPT DC A(X’80000000’+PALI) Address of Parameter list

CEP DC A(CEESTART) Entry point address

***---

PALI DS 0F Parameter list

P_LG DC H’16’ Length of the list

 DC H’0’ Must be zero

P_RQ DC CL8’ ’ Request - INIT,CALL,TERM,EXECUTE

P_EP_PT DC A(EPALI) Address of extended plist

***---

EPALI DS 0F Extended Parameter list

 DC A(EP_LG) Length of this list

EP_TCA DC A(0) First token

EP_PRV DC A(0) Second token

EP_PGPA DC A(PGPAPT) Address of C program plist

EP_XOPT DC A(XOPTPT) Address of run-time options

EP_LG EQU *-EPALI Length of this list

***---

*** C program plist in argc, argv format

***---

PGPAPT DC F’3’ Number of parameters (argc)

 DC A(PGVTPT) parameter vector pter (argv)

PGVTPT DS 0A Parameter Vector

 DC A(PGNM) Program name pointer (argv1)

 DC A(FILE_NAME) File name pointer (argv2)

 DC A(RUN_INDEX) Run index pointer (argv3)

 DC XL4’00000000’ NULL pointer

Figure 49. Preinitializing a C program (CCNGCA6) (Part 2 of 3)

Chapter 19. Combining C or C++ and Assembler 275

The program shown in Figure 50 on page 277 shows how to use the preinitializable

program.

***---

*** Run-Time options

***---

XOPTPT DC A(X’80000000’+XOPTLG) Run-Time options pter

XOPTLG DC AL2(XOPTSQ) Run-Time option list length

XOPTS DC C’STACK(4K) RPTSTG(ON)’ Run-Time options list

XOPTSQ EQU *-XOPTS Run-Time options length

***---

PGNM DC C’CCNGCA7’,X’00’ C program name

FILE_NAME DC C’PREINIT.DATA’,X’00’ File name for C program

RUN_INDEX DC F’5’,X’00’ changed by C Program

***---

*** Request strings for preinitialization

***---

INIT DC CL8’INIT’

CALL DC CL8’CALL’

TERM DC CL8’TERM’

EXEC DC CL8’EXECUTE’

***---

*** Assembler program’s register save area

***---

SVAR DC 18F’0’

 LTORG

***---

*** Register definitions

***---

R0 EQU 0

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R10 EQU 10

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

 END

Figure 49. Preinitializing a C program (CCNGCA6) (Part 3 of 3)

276 z/OS V1R8.0 XL C/C++ Programming Guide

CCNGCA7

/* this example shows how to use a preinitializable program */

/* part 2 of 3 (other files are CCNGCA6 and CCNGCA8) */

#pragma runopts(PLIST(MVS))

#include <stdio.h>

#include <stdlib.h>

#define MAX_MSG 50

#define MAX_FNAME 8

typedef int (*f_ptr)(int, char*);/* pointer to function returning int*/

int main(int argc, char **argv)

{

 FILE *fp; /* File to be written to */

 int *ptr_run; /* Pointer to the "run index" */

 char *ffmsg; /* a pointer to the "fetched function msg"*/

 char fname[MAX_FNAME+1]; /* name of the function to be fetched */

 int fetch_rc; /* Return value of function invocation */

 f_ptr fetch_ptr; /* Function pointer to fetched function */

 /* Get the pointer to the "run index" */

 ptr_run = (int *)argv[2];

 if ((fp = fopen(argv[1],"a")) == NULL)

 {

 printf("Cannot open file %s\n",argv[1]);

 ptr_run = 0; / Set to zero so it won’t be called again */

 return(0); /* Return to Assembler program */

 }

 /* Write the record to the file */

 fprintf(fp,"Run index was %d.\n",*ptr_run);

 /* Allocate the message returned from the fetched function */

 if ((ffmsg=(char *)malloc(MAX_MSG + 1)) == NULL)

 printf("ERROR -- malloc returned NULL\n");

 /* fetch the function */

 fetch_ptr = (f_ptr) fetch("MYFUNC");

 if (fetch_ptr == NULL)

 printf("ERROR - Fetch returned a null pointer\n");

 /* execute the function */

 fetch_rc = fetch_ptr(*ptr_run, ffmsg);

Figure 50. Using the preinitializable program (CCNGCA7) (Part 1 of 2)

Chapter 19. Combining C or C++ and Assembler 277

CCNGCA8

Return codes

Preinitialized programs do not put their return codes in R15. If the address of the

return code is required, specify a parameter. Figure 49 on page 274 shows how you

can use the RUN_INDEX parameter to evaluate the address of a return code.

User exits in preinitializable programs

C invokes user exits when initialization and termination are actually performed. That

is, the initialization user exit is invoked during the INIT request or the CALL with the

zero token request. Similarly, the termination user exit is called only during the TERM

request.

Run-time options

If run-time options are specified in the assembler program, the C program must be

compiled with EXECOPS in effect. EXECOPS is the default.

Calling a preinitializable program

Figure 52 on page 279 shows sample JCL to run a preinitializable program in the

z/OS environment.

 /* Write the function msg to file */

 fprintf(fp,"%s\n",ffmsg);

 /* Tell the user the value of the "run index" */

 printf("Run index was %d.\n",*ptr_run);

 /* Decrement the "run index" */

 (*ptr_run)--;

 /* Remember to close all opened files */

 fclose(fp);

 /* Remember to free all allocated storage */

 free(fname);

 /* Remember to release all fetched modules */

 release((void(*)())fetch_ptr);

 /* Return to Assembler program */

 return(0);

}

Figure 50. Using the preinitializable program (CCNGCA7) (Part 2 of 2)

/* this example shows how to use a preinitializable program */

/* part 3 of 3 (other files are CCNGCA6 & CCNGCA7) */

#include <string.h>

#pragma linkage(fetched, fetchable)

int fetched(int run_index, char *ffmsg) {

 sprintf(ffmsg,"Welcome to myfunc: Run index was %d.",run_index);

 return(0);

}

Figure 51. Using the preinitializable program (CCNGCA8)

278 z/OS V1R8.0 XL C/C++ Programming Guide

//youridA JOB

//*

// SET LIB=’CEE’

// SET CMP=’CBC’

//*

//PROCLIB JCLLIB ORDER=(&CMP..SCCNPRC)

//*===

//*--

//* ASSEMBLE THE DRIVING ASSEMBLER PROGRAM

//*--

//HLASM EXEC PGM=ASMA90,

// PARM=’NODECK,OBJECT,LIST,ALIGN’

//SYSPRINT DD SYSOUT=*

//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR

//SYSUT1 DD UNIT=VIO,DISP=(NEW,DELETE),SPACE=(32000,(30,30))

//SYSUT2 DD UNIT=VIO,DISP=(NEW,DELETE),SPACE=(32000,(30,30))

//SYSUT3 DD UNIT=VIO,DISP=(NEW,DELETE),SPACE=(32000,(30,30))

//SYSPUNCH DD DUMMY

//SYSLIN DD DSN=&&OBJECT(ASSEM),SPACE=(80,(400,400,5)),

// DISP=(,PASS),UNIT=VIO,DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)

//SYSIN DD DSN=yourid.CCNGCA6.ASM,DISP=SHR

//*===

//*---

//* COMPILE THE MAIN C PROGRAM

//*--

//COMP EXEC EDCC,INFILE=’yourid.CCNGCA7.C’,

// OUTFILE=’&&OBJECT(CMAIN),DISP=(OLD,PASS)’,

// CPARM=’NOOPT,NOSEQ,NOMAR’,

// LIBPRFX=&LIB.,LNGPRFX=&CMP.

//*===

//*---

//* COMPILE AND LINK THE FETCHED C PROGRAM

//*--

//CMPLK EXEC EDCCL,INFILE=’yourid.CCNGCA8.C’,

// CPARM=’NOOPT,NOSEQ,NOMAR’,

// LIBPRFX=&LIB.,LNGPRFX=&CMP.

//LKED.SYSLMOD DD DSN=&&LOAD(MYFUNC),DISP=(,PASS),

// UNIT=VIO,SPACE=(TRK,(1,1,5))

Figure 52. JCL for running a preinitializable C program (Part 1 of 2)

Chapter 19. Combining C or C++ and Assembler 279

Multiple preinitialization compatibility interface C environments

To establish multiple Preinitialized Compatibility Interface (PICI) environments, you

must specify either request modifier 4 or request modifier 5 in the extended

parameter list (EPL) at environment initialization.

Request modifier 4 environment characteristics

Use request modifier 4 to establish an environment which is tolerant of an existing

environment. When a request modifier 4 environment is dormant, it is immune to

creation or termination of other environments.

Environments created using request modifier 4 normally intend to share C memory

files, but it is not required for the application to take advantage of this support. A

new environment of this type is chained to the currently active environment that

supports chaining, or it will set up a dummy environment which supports chaining.

This allows for C memory files to be shared.

The sharing of C memory files across request modifier 4 environments is only

supported within the boundary of the application. There are really only two types of

applications where request modifier 4 environments are involved. The first type is a

set of pure request modifier 4 environments; there are no batch environments. The

second type allows a single batch environment. In the second type, the batch

environment must be the first initialized and the last terminated.

If starting with non z/OS Language Environment enabled assembler, the first

request modifier 4 environment creates a dummy environment (z/OS Language

Environment region-level control blocks) in addition to its own. The dummy

environment remains pointed to by the TCB when the initialization is complete. The

//*===

//*--

//* LINK THE ASSEMBLER DRIVER AND MAIN C PROGRAM

//*--

//LKED EXEC PGM=IEWL,PARM=’MAP,XREF,LIST’,

// COND=((4,LT,HLASM),(4,LT,COMP.COMPILE),(4,LT,CMPLK.LKED))

//OBJECT DD DSN=&&OBJECT,DISP=(OLD,PASS)

//SYSLIN DD *

 INCLUDE OBJECT(ASSEM)

 INCLUDE OBJECT(CMAIN)

 ENTRY CCNGCA6

/*

//SYSLIB DD DISP=SHR,DSN=&LIB..SCEELKED

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD DSN=&&SYSUT1,UNIT=VIO,SPACE=(CYL,(1,1))

//SYSLMOD DD DSN=&&LOAD(PREINIT),DISP=(OLD,PASS)

//*===

//*--

//* RUN

//*--

//GO EXEC PGM=*.LKED.SYSLMOD,

// COND=(4,LT,LKED)

//STEPLIB DD DISP=OLD,DSN=&&LOAD

// DD DISP=SHR,DSN=&LIB..SCEERUN

//STDIN DD SYSOUT=*

//STDOUT DD SYSOUT=*

//STDERR DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

Figure 52. JCL for running a preinitializable C program (Part 2 of 2)

280 z/OS V1R8.0 XL C/C++ Programming Guide

next initialization using request modifier 4 recognizes an existing environment that

supports chaining and the new environment will be chained. This permits the two

environments to share C memory files. Request modifier 4 environments in this

model can be initialized and terminated in any order.

If starting with a batch environment (for example, COBOL, PL/I or C), which

supports chaining by default, and during execution within that environment a call is

made to an assembler routine which initializes a request modifier 4 environment,

the z/OS Language Environment batch environment is recognized and the new

environment will be chained. This allows an initial batch environment to share C

memory files with the request modifier 4 environment. Request modifier 4

environments in this model can be initialized and terminated in any order, but all

request modifier environments must be terminated before the batch environment is

terminated.

Notes:

1. When a batch environment is chained with request modifier 4 environments, the

z/OS Language Environment batch environment must be the first environment

that is initialized and the last environment that is terminated. All request modifier

4 environments initialized within the scope of a batch environment must be

terminated prior to exiting the batch environment. Failure to do so will leave the

request modifier 4 environments in a state such that attempted call or

termination requests will result in unpredictable behavior.

2. Initialization of a request modifier 4 environment while running in a non-sharable

environment, such as a request modifier 5 environment, causes the new request

modifier 4 environment to be non-sharable.

Sharing C memory files with request modifier 4 environments: You can use

request modifier 4 to create multiple Preinitialized Compatibility Interface (PICI) C

environments. When you create a new request modifier 4 environment, it is chained

under certain circumstances to the current environment.

The following list identifies the specific features that are or are not supported in the

multiple PICI C environment scenario:

v C memory files will be shared across all C environments (as long as at least one

C environment exists) that are on the chain. This includes all PICI C

environments that are initialized and possibly an initial batch C environment.

v Because the PICI C environments are chained, initialization and termination of

these PICI C environments can be performed in any order. The chaining also

requires that the C run-time library treat each PICI C environment as equal. In C

run-time library terms, each PICI C environment is considered a root enclave

(depth=0).

v Because there can be multiple C root enclaves, sharing of C standard streams

across the C root enclaves exhibits a special behavior. When a C standard

stream is referenced for the first time, its definition is made available to each of

the C root enclaves.

v C standard streams are inherited across the system() call boundary. When a

PICI C environment is initialized from a nested enclave, it does not inherit the

standard streams of the nested enclave. Instead, it shares the C standard stream

definitions at the root level.

v C regular (nonmemory, nonstandard stream) files are also shared across the

PICI C environments.

v Nested C enclaves are created using the system() call. The depth is relative to

the root enclave that owns the system() call chain. You can have two C

Chapter 19. Combining C or C++ and Assembler 281

enclaves, other than the C root enclaves, with the same depth. You can do this

by calling one of the PICI C environments from a nested enclave and then using

system() in the PICI C environment.

v C regular (nonmemory, nonstandard stream) files opened in a system() call

enclave are closed automatically when the enclave ends.

v C regular (nonmemory, nonstandard stream) files that are opened in a PICI C

environment root enclave are not closed automatically until the PICI C

environment ends. Before returning to the caller, you should close streams that

are opened by the PICI C environment. If you do not, undefined behavior can

occur.

v C memory files are not removed until the last PICI C environment is ended.

v The clrmemf() function will only remove C memory files created within the scope

of the C root enclave from which the function is called.

v When a PICI C environment is called, flushing of open streams is not performed

automatically as it is when you use the system() call.

v This function is not supported under CICS.

v This function is not supported under System Programming C (SP C).

v Use of POSIX(ON) is not supported with this feature.

Request modifier 5 environment characteristics

Use request modifier 5 to establish an environment which is tolerant of an existing

environment. When a request modifier 5 environment is dormant, it is immune to

creation or termination of other environments.

Request modifier 5 environments cannot share C memory files with other

environments. Each environment of this type is created as a separate entity, not

connected to any other environment. Request modifier 5 environments can be

initialized and terminated in any order.

Restrictions on using batch environments with preinitialization

compatibility interface C environments

If a batch environment is to participate in C memory file sharing, such as with a

request modifier 4 environment, then the batch environment must be the first

environment created and the last one terminated. All PICI environments initialized

within the scope of the batch environment must be terminated before the batch

environment is terminated. This is required because the PICI environment shares

control blocks that belong to the batch environment. If the batch environment is

terminated, storage for those control blocks is released. Attempts to use or

terminate a PICI environment after the batch environment has terminated will result

in unpredictable behavior.

Behaviors when mixing request modifier 4 and request modifier

5

While running in a request modifier 5 environment, initializing another environment

with request modifier 4 creates a new environment that is separated from the rest.

The new environment will not be able to share C memory files with any other

request modifier 4 environment that may already exist.

While running in a request modifier 4 environment, initialization of a request

modifier 5 environment creates a new environment that is separated from the rest.

If the new request modifier 5 environment is within the scope of a batch

environment, this new environment does not need to be terminated before the batch

environment is terminated.

282 z/OS V1R8.0 XL C/C++ Programming Guide

Using the service vector and associated routines

The service vector is a list of addresses of user-supplied service routines. The

interface requirements for each of the service routines that you can supply,

including sample routines for some of the services, are provided in the following

sections.

Using the service vector

If you want certain services like load and delete to be carried out by other programs

supplied by you (instead of, for example, by the LOAD and DELETE macros), you must

place the address of your service vector in the seventh fullword field of the

extended parameter list. Define the service vector according to the pattern shown in

the following example:

SRV_COUNT DS F Count of fields defined

SRV_USER_WORD DS F User-defined word

SRV_WORKAREA DS A Addr of work area for DSAs etc

SRV_LOAD DS A Addr of load routine

SRV_DELETE DS A Addr of delete routine

SRV_GETSTOR DS A Addr of get-storage routine

SRV_FREESTOR DS A Addr of free-storage routine

SRV_EXCEP_RTR DS A Addr of exception router

SRV_ATTN_RTR DS A Addr of attention router

SRV_MSG_RTR DS A Addr of message router

Although you need not use labels identical to those above, you must use the same

order. The address of your load routine is ″fourth″, and the address of your

free-storage routine is ″seventh″.

Some other constraints apply:

v You cannot omit any fields on the template that precede the last one you specify

from your definition of the service vector. You can supply zeros for the ones you

want ignored.

v The field count does not count itself. The maximum value is therefore 9.

v You must specify an address in the work area field if you specify addresses in

any of the subsequent fields.

v This work area must begin on a doubleword boundary and start with a fullword

that specifies its length. This length must be at least 256 bytes.

v For the load and delete routines, you cannot specify one of the pair without the

other; if one of these two fields contains a value of zero, the other is

automatically ignored. The same is true for the get-storage and free-storage pair.

v If you specify the get-storage and free-storage services, you must also specify

the load and delete services.

You must supply any service routines pointed to in your service vector. When

called, these service routines require the following:

v Register 13 points to a standard 18–fullword save area.

v Register 1 points to a list of addresses of parameters available to the routine.

v The third parameter in the list must be the address of the user word you

specified in the second field of the service vector.

The parameters available to each routine, and the return and reason codes that

each routine uses, are shown in the following section. The parameter addresses are

passed in the same order in which the parameters are listed.

Chapter 19. Combining C or C++ and Assembler 283

Load service routine

The load routine loads named modules. The LOAD macro usually provides this

service.

The parameters passed to the load routine are shown in Table 34.

 Table 34. Load service routine parameters

Parameter ASM Attributes Type

Address of module name DS A Input

Length of name DS F Input

User word DS A Input

(Reserved field) DS F Input

Address of load point DS A Output

Size of module DS F Output

Return code DS F Output

Reason code DS F Output

The name length must not be zero. You can ignore the reserved field. It will contain

zeros.

The load routine can set the following return/reason codes:

0/0 successful

4/4 unsuccessful — module loaded above line when in AMODE 24

8/4 unsuccessful — load failed

16/4 unrecoverable error occurred

Delete service routine

The delete routine deletes named modules. The DELETE macro usually provides this

service.

The parameters passed to the delete routine are shown in Table 35.

 Table 35. Delete service routine parameters

Parameter ASM Attributes Type

Address of module name DS A Input

Length of name DS F Input

User word DS A Input

(Reserved field) DS F Input

Return code DS F Output

Reason code DS F Output

The name length must not be zero. You can ignore the reserved field. It will contain

zeros. Every delete action must have a corresponding load action, and the task that

does the load must also do the delete. Counts of deletes and loads performed must

be maintained by the service routines.

The delete routine can set the following return/reason codes:

284 z/OS V1R8.0 XL C/C++ Programming Guide

0/0 successful

8/4 unsuccessful — delete failed

16/4 unrecoverable error occurred

Get-storage service routine

The get-storage routine obtains storage. The GETMAIN macro usually provides this

service.

The parameters passed to the get-storage routine are shown in Table 36.

 Table 36. Get-storage service routine parameters

Parameter ASM Attributes Type

Amount desired DS F Input

Subpool number DS F Input

User word DS A Input

Flags DS F Input

Address of obtained storage DS A Output

Amount obtained DS F Output

Return code DS F Output

Reason code DS F Output

The get-storage routine can set the following return/reason codes:

0/0 successful

4/4 unsuccessful — the storage could not be obtained

16/4 unrecoverable error occurred.

Free-storage service routine

The free-storage routine frees storage. The FREEMAIN macro usually provides this

service.

The parameters passed to the free-storage routine are shown in Table 37.

 Table 37. Free-storage service routine parameters

Parameter ASM Attributes Type

Amount to be freed DS F Input

Subpool number DS F Input

User word DS A Input

Address of storage DS A Input

Return code DS F Output

Reason code DS F Output

The free-storage routine can set the following return/reason codes:

0/0 successful

16/4 unrecoverable error occurred

Chapter 19. Combining C or C++ and Assembler 285

Exception router service routine

The exception router traps and routes exceptions. The ESTAE and ESPIE macros

usually provide this service.

The parameters passed to the exception router are shown in Table 38.

 Table 38. Exception router service routine parameters

Parameter ASM Attributes Type

Address of exception handler DS A Input

Environment token DS A Input

User word DS A Input

Abend flags DS F Input

Check flags DS F Input

Return code DS F Output

Reason code DS F Output

During initialization, if the ESTAE and/or ESPIE options are in effect, the common

library puts the address of the common library exception handler in the first field of

the above parameter list, and sets the environment token field to a value that is

passed on to the exception handler. It also sets abend and check flags as

appropriate, and then calls your exception router to establish an exception handler.

The meaning of the bits in the abend flags are given by the following structure:

struct {

 struct {

 unsigned short abends : 1, /*control for system abends*/

 reserved : 15;

 } system;

 struct {

 unsigned short abends : 1, /*control for user abends*/

 reserved : 15;

 } user;

} abendflags;

The meaning of the bits in the check flags are given by the following structure:

struct {

 struct {

 unsigned short reserved : 1,

 operation : 1,

 privileged_operation : 1,

 execute : 1,

 protection : 1,

 addressing : 1,

 specification : 1,

 data : 1,

 fixed_overflow : 1,

 fixed_divide : 1,

 decimal_overflow : 1,

 decimal_divide : 1,

 exponent_overflow : 1,

 exponent_divide : 1,

 significance : 1,

 float_divide : 1;

 } type;

 unsigned short reserved;

} checkflags;

286 z/OS V1R8.0 XL C/C++ Programming Guide

The exception router service routine can set the following return/reason codes:

0/0 successful

4/4 unsuccessful — the exit could not be (de)-established

16/4 unrecoverable error occurred

Attention router service routine

The attention router traps and routes attention interrupts. The STAX macro usually

provides this service.

The parameters passed to the attention router are shown in Table 39.

 Table 39. Attention router service routine parameters

Parameter ASM Attributes Type

Address of attention router DS A Input

Environmental token DS A Input

User word DS A Input

Return code DS F Output

Reason code DS F Output

The attention router routine can set the following return/reason codes:

0/0 successful

4/4 unsuccessful — the exit could not be (de)-established

16/4 unrecoverable error occurred

When an attention interrupt occurs, your attention router must invoke the attention

handler. Use the address in the attention handler field passing the parameters

shown in Table 40.

 Table 40. Attention handler parameters

Parameter ASM Attributes Type

Environment token DS A Input

Return code DS F Output

Reason code DS F Output

The return/reason codes upon return from the attention handler are:

0/0 The attention interrupt has been or will be handled

If an attention interrupt occurs in the attention handler or when an attention handler

is not started, your attention router should ignore the attention interrupt.

Message router service routine

The message router routes messages written by the run-time library. These

messages are normally written to the Language Environment Message File.

Chapter 19. Combining C or C++ and Assembler 287

The parameters passed to the message router are shown in Table 41.

 Table 41. Message router service routine parameters

Parameter ASM Attributes Type

Address of message DS A Input

Message length in bytes DS F Input

User word DS A Input

Line length DS F Input

Return code DS F Output

Reason code DS F Output

If the address of the message is zero, your message router is expected to return

the size of the line to which messages are written (in the length field). The length

field allows messages to be formatted correctly, for example, broken at blanks.

The message routine must use the following return/reason codes:

0/0 successful

16/4 unrecoverable error occurred

288 z/OS V1R8.0 XL C/C++ Programming Guide

Part 4. Coding: Advanced Topics

This part contains the following coding topics:

v Chapter 20, “Building and using Dynamic Link Libraries (DLLs),” on page 291

v Chapter 21, “Building complex DLLs,” on page 311

v Chapter 22, “The z/OS 64-bit environment,” on page 337

v Chapter 23, “Using threads in z/OS UNIX System Services applications,” on page

365

v Chapter 24, “Reentrancy in z/OS XL C/C++,” on page 381

v Chapter 25, “Using the decimal data type in C,” on page 389

v Chapter 27, “Handling error conditions, exceptions, and signals,” on page 413

v Chapter 28, “Network communications under UNIX System Services,” on page

435

v Chapter 29, “Interprocess communication using z/OS UNIX System Services,” on

page 463

v Chapter 30, “Using templates in C++ programs,” on page 467

v Chapter 32, “Using hardware built-in functions,” on page 497

v Chapter 31, “Using environment variables,” on page 473

© Copyright IBM Corp. 1996, 2006 289

|

290 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 20. Building and using Dynamic Link Libraries (DLLs)

A dynamic link library (DLL) is a collection of one or more functions or variables in

an executable module that is executable or accessible from a separate application

module. In an application without DLLs, all external function and variable references

are resolved statically at bind time. In a DLL application, external function and

variable references are resolved dynamically at run-time.

This chapter defines DLL concepts and shows how to build simple DLLs.

Chapter 21, “Building complex DLLs,” on page 311 shows how to build complex

DLLs and discusses some of the compatibility issues of DLLs.

There are two types of DLLs: simple and complex. A simple DLL contains only DLL

code in which special code sequences are generated by the compiler for

referencing functions and external variables, and using function pointers. With these

code sequences, a DLL application can reference imported functions and imported

variables from a DLL as easily as it can non-imported ones.

A complex DLL contains mixed code, that is, some DLL code and some non-DLL

code. A typical complex DLL would contain some C++ code, which is always DLL

code, and some C object modules compiled with the NODLL compiler option bound

together.

The object code generated by the z/OS XL C++ compiler is always DLL code. Also,

the object code generated by the z/OS XL C compiler with either the DLL compiler

option or the XPLINK compiler option is DLL code. Other types of object code are

non-DLL code. For more information about compiler options for DLLs, see the z/OS

XL C/C++ User’s Guide.

XPLINK compiled code and non-XPLINK compiled code cannot be statically mixed

(with the exception of OS_UPSTACK and OS_NOSTACK (or OS31_NOSTACK)

linkages). The XPLINK compiled code can only be bound together with other

XPLINK-compiled code. You can mix non-XPLINK compiled DLLs with XPLINK

compiled DLLs (the same is true for routines which you load with fetch()). The

z/OS XL C++ run-time library manages the transitions between the two different

linkage styles across the DLL and fetch() boundaries.

Notes:

1. There is inherent performance degradation when the z/OS XL C++ run-time

library transitions across these boundaries. In order for your application to

perform well, these transitions should be made infrequently. When using

XPLINK, recompile all parts of the application with the XPLINK compiler option

wherever possible.

2. As of OS/390 Version 2, the C/C++ IBM Open Class Library is licensed with the

base operating system and enables access to the C/C++ Class Library by

applications that require the library at execution time. This eliminates the need

to license the C/C++ Compiler features or to use the DLL Rename Utility.

Provided you use the base operating system, the DLL Rename Utility discussed

in this chapter is not applicable.

© Copyright IBM Corp. 1996, 2006 291

Support for DLLs

DLL support is available for applications running under the following systems:

v z/OS batch

v CICS

v IMS

v TSO

v z/OS UNIX System Services

It is not available for applications running under SPC, CSP or MTF.

Note: All potential DLL executable modules are registered in the CICS PPT control

table in the CICS environment and are invoked at run time.

DLL concepts and terms

Application

All the code executed from the time an executable program module is

invoked until that program, and any programs it directly or indirectly calls, is

terminated.

DLL An executable module that exports functions, variable definitions, or both, to

other DLLs or DLL applications.

DLL application

An application that references imported functions, imported variables, or

both, from other DLLs.

DLL code

Object code resulting when C source code is compiled with the DLL or

XPLINK compiler options. C++ code is always DLL code.

Executable program (or executable module)

A file which can be loaded and executed on the computer. z/OS supports

two types:

Load module

An executable residing in a PDS.

Program object

An executable residing in a PDSE or in the HFS.

Exported functions or variables

Functions or variables that are defined in one executable module and can

be referenced from another executable module. When an exported function

or variable is referenced within the executable module that defines it, the

exported function or variable is also non-imported.

Function descriptor

An internal control block containing information needed by compiled code to

call a function.

Imported functions and variables

Functions and variables that are not defined in the executable module

where the reference is made, but are defined in a referenced DLL.

Non-imported functions and variables

Functions and variables that are defined in the same executable module

where a reference to them is made.

292 z/OS V1R8.0 XL C/C++ Programming Guide

Object code (or object module)

A file output from a compiler after processing a source code module, which

can subsequently be used to build an executable program module.

Source code (or source module)

A file containing a program written in a programming language.

Variable descriptor

An internal control block containing information about the variable needed

by compiled code.

Writable Static Area (WSA)

An area of memory that is modifiable during program execution. Typically,

this area contains global variables and function and variable descriptors for

DLLs.

XPLINK application

An application that is made up of C and/or C++ object modules that were

compiled with the XPLINK compiler option. XPLINK applications are always

DLL applications. Since the C/C++ run-time library for XPLINK is packaged

as a DLL, any XPLINK executable module that calls a C/C++ run-time

library is also importing from a DLL.

XPLINK code

Object code resulting when C or C++ source code is compiled with the

XPLINK compiler option. XPLINK code is always DLL code.

Loading a DLL

A DLL is loaded implicitly when an application references an imported variable or

calls an imported function. DLLs can be explicitly loaded by calling dllload() or

dlopen(). Due to optimizations performed, the DLL implicit load point may be

moved and the DLL will be loaded only if the actual reference occurs.

Loading a DLL implicitly

When an application uses functions or variables defined in a DLL, the compiled

code loads the DLL. This implicit load is transparent to the application. The load

establishes the required references to functions and variables in the DLL by

updating the control information contained in function and variable descriptors.

If the DLL contains static classes, constructors are run when the DLL is loaded.

This loading may occur before main(); in this case, the corresponding destructors

are run once when main() returns.

To implicitly load a DLL, do one of the following:

1. Statically initialize a variable pointer to the address of an exported DLL variable.

2. Reference a function pointer that points to an exported function.

3. Call an exported function.

4. Reference (use, modify, or take the address of) an exported variable.

5. Call through a function pointer that points to an exported function.

In the first situation, the DLL is loaded before main() is invoked, and if the DLL

contains C++ code, constructors are run before main() is invoked. In the other

situations, the DLL loading may be delayed until the time of the implicit call,

although optimization may move this load earlier.

Chapter 20. Building and using Dynamic Link Libraries (DLLs) 293

If the DLL application references (imports) an exported DLL variable, that DLL may

be implicitly loaded before that DLL application is invoked (not necessarily before

main() is invoked). With XPLINK, the DLL will always be implicitly loaded before

invoking the DLL application that references (imports) a DLL variable or takes the

address of a DLL function.

Note: When a DLL is loaded, its writable static is initialized. If the DLL load module

contains C++ code, static constructors are run once at initial load time, and

static destructors are run once at program termination. Static destructors are

run in the reverse order of the static constructors.

Loading a DLL explicitly

The use of DLLs can also be explicitly controlled by the application code at the

source level. The application uses explicit source-level calls to one or more run-time

services to connect the reference to the definition. The connections for the

reference and the definition are made at run-time.

The DLL application writer can explicitly call the following run-time services:

v dllload(), which loads the DLL and returns a handle to be used in future

references to this DLL

v dllqueryfn(), which obtains a pointer to a DLL function

v dllqueryvar(), which obtains a pointer to a DLL variable

v dllfree(), which frees a DLL loaded with dllload()

The following run-time services are also available as part of the Single UNIX

Specification, Version 3:

v dlopen(), which loads the DLL and returns a handle to be used in future

references to this DLL

v dlsym(), which obtains a pointer to an exported function or exported variable

v dlclose(), which frees a DLL that was loaded with dlopen()

v dlerror(), which returns information about the last DLL failure on this thread that

occurred in one of the dlopen() family of functions

While you can use both families of explicit DLL services in a single application, you

cannot mix usage across those families. So a handle returned by dllload() can

only be used with dllqueryfn(), dllqueryvar(), or dllfree(). And a handle

returned by dlopen() can only be used with dlsym() and dlclose().

Because the dlopen() family of functions is part of the Single UNIX Specification,

Version 3, it should be used in new applications whenever cross-platform portability

is a concern.

For more information about the run-time services, see z/OS XL C/C++ Run-Time

Library Reference.

To explicitly call a DLL in your application:

v Determine the names of the exported functions and variables that you want to

use. You can get this information from the DLL provider’s documentation or by

looking at the definition side-deck file that came with the DLL. A definition

side-deck is a directive file that contains an IMPORT control statement for each

function and variable exported by that DLL.

294 z/OS V1R8.0 XL C/C++ Programming Guide

v If you are using the dllload() family of functions, include the DLL header file

<dll.h> in your application. If you are using the dlopen() family of functions,

include the DLL header file <dlfcn.h> in your application.

v Compile your source as usual.

v Bind your object with the binder using the same AMODE value as the DLL.

Note: You do not need to bind with the definition side-deck if you are calling the

DLL explicitly with the run-time services, since there are no references

from the source code to function or variable names in the DLL, for the

binder to resolve. Therefore the DLL will not be loaded until you explicitly

load it with the dllload() or dlopen() run-time service.

Examples of explicit use of a DLL in an application

The following examples show explicit use of a DLL in an application. The first

example uses the dllload() family of functions.

#include <dll.h>

#include <stdio.h>

#include <string.h>

#ifdef __cplusplus

 extern "C" {

#endif

 typedef int (DLL_FN)(void);

#ifdef __cplusplus

 }

#endif

#define FUNCTION "FUNCTION"

#define VARIABLE "VARIABLE"

static void Syntax(const char* progName) {

 fprintf(stderr, "Syntax: %s <DLL-name> <type> <identifier>\n"

 " where\n"

 " <DLL-name> is the DLL to load,\n"

 " <type> can be one of FUNCTION or VARIABLE\n"

 " and <identifier> is the function or variable\n"

 " to reference\n", progName);

 return;

}

main(int argc, char* argv[]) {

 int value;

 int* varPtr;

 char* dll;

 char* type;

 char* id;

 dllhandle* dllHandle;

 if (argc != 4) {

 Syntax(argv[0]);

 return(4);

 }

Figure 53. Explicit use of a DLL in an application using the dllload() family of functions (Part 1

of 2)

Chapter 20. Building and using Dynamic Link Libraries (DLLs) 295

The following example uses the dlopen() family of functions.

 dll = argv[1];

 type = argv[2];

 id = argv[3];

 dllHandle = dllload(dll);

 if (dllHandle == NULL) {

 perror("DLL-Load");

 fprintf(stderr, "Load of DLL %s failed\n", dll);

 return(8);

 }

 if (strcmp(type, FUNCTION)) {

 if (strcmp(type, VARIABLE)) {

 fprintf(stderr,

 "Type specified was not " FUNCTION " or " VARIABLE "\n");

 Syntax(argv[0]);

 return(8);

 }

 /*

 * variable request, so get address of variable

 */

 varPtr = (int*)(dllqueryvar(dllHandle, id));

 if (varPtr == NULL) {

 perror("DLL-Query-Var");

 fprintf(stderr, "Variable %s not exported from %s\n", id, dll);

 return(8);

 }

 value = *varPtr;

 printf("Variable %s has a value of %d\n", id, value);

 }

 else {

 /*

 * function request, so get function descriptor and call it

 */

 DLL_FN* fn = (DLL_FN*) (dllqueryfn(dllHandle, id));

 if (fn == NULL) {

 perror("DLL-Query-Fn");

 fprintf(stderr, "Function %s() not exported from %s\n", id, dll);

 return(8);

 }

 value = fn();

 printf("Result of call to %s() is %d\n", id, value);

 }

 dllfree(dllHandle);

 return(0);

}

Figure 53. Explicit use of a DLL in an application using the dllload() family of functions (Part 2

of 2)

296 z/OS V1R8.0 XL C/C++ Programming Guide

#define _UNIX03_SOURCE

 #include <dlfcn.h>

 #include <stdio.h>

 #include <string.h>

 #ifdef __cplusplus

 extern "C" {

 #endif

 typedef int (DLL_FN)(void);

 #ifdef __cplusplus

 }

 #endif

 #define FUNCTION "FUNCTION"

 #define VARIABLE "VARIABLE"

 static void Syntax(const char* progName) {

 fprintf(stderr, "Syntax: %s <DLL-name> <type> <identifier>\n"

 " where\n"

 " <DLL-name> is the DLL to open,\n"

 " <type> can be one of FUNCTION or VARIABLE,\n"

 " and <identifier> is the symbol to reference\n"

 " (either a function or variable, as determined by"

 " <type>)\n", progName);

 return;

 }

 main(int argc, char* argv[]) {

 int value;

 void* symPtr;

 char* dll;

 char* type;

 char* id;

 void* dllHandle;

Figure 54. Explicit use of a DLL in an application using the dlopen() family of functions (Part 1 of 2)

Chapter 20. Building and using Dynamic Link Libraries (DLLs) 297

Managing the use of DLLs when running DLL applications

This section describes how z/OS XL C/C++ manages loading, sharing and freeing

DLLs when you run a DLL application.

Loading DLLs

When you load a DLL for the first time, either implicitly or via an explicit dllload()

or dlopen(), writable static is initialized. If the DLL is written in C++ and contains

static objects, then their constructors are run.

 if (argc != 4) {

 Syntax(argv[0]);

 return(4);

 }

 dll = argv[1];

 type = argv[2];

 id = argv[3];

 dllHandle = dlopen(dll, 0);

 if (dllHandle == NULL) {

 fprintf(stderr, "dlopen() of DLL %s failed: %s\n", dll, dlerror());

 return(8);

 }

 /*

 * get address of symbol (may be either function or variable)

 */

 symPtr = (int*)(dlsym(dllHandle, id));

 if (symPtr == NULL) {

 fprintf(stderr, "dlsym() error: symbol %s not exported from %s: %s\n"

 , id, dll, dlerror());

 return(8);

 }

 if (strcmp(type, FUNCTION)) {

 if (strcmp(type, VARIABLE)) {

 fprintf(stderr,

 "Type specified was not " FUNCTION " or " VARIABLE "\n");

 Syntax(argv[0]);

 return(8);

 }

 /*

 * variable request, so display its value

 */

 value = *(int *)symPtr;

 printf("Variable %s has a value of %d\n", id, value);

 }

 else {

 /*

 * function request, so call it and display its return value

 */

 value = ((DLL_FN *)symPtr)();

 printf("Result of call to %s() is %d\n", id, value);

 }

 dlclose(dllHandle);

 return(0);

 }

Figure 54. Explicit use of a DLL in an application using the dlopen() family of functions (Part 2 of 2)

298 z/OS V1R8.0 XL C/C++ Programming Guide

You can load DLLs from an HFS as well as from conventional data sets. The

following list specifies the order of a search for unambiguous and ambiguous file

names.

v Unambiguous file names

– If the file has an unambiguous z/OS UNIX System Services HFS name (it

starts with a ./ or contains a /), the file is searched for only in the HFS.

– If the file has an unambiguous MVS name, and starts with two slashes (//),

the file is only searched for in MVS.

v Ambiguous file names

For ambiguous cases, the settings for POSIX are checked.

– When specifying the POSIX(ON) run-time option, the run-time library attempts

to load the DLL as follows:

1. An attempt is made to load the DLL from the HFS. This is done using the

system service BPX1LOD. For more information on this service, see z/OS

UNIX System Services Programming: Assembler Callable Services

Reference.

If the environment variable LIBPATH is set, each directory listed will be

searched for the DLL. See Chapter 31, “Using environment variables,” on

page 473 for information on LIBPATH. Otherwise the current directory will

be searched for the DLL. Note that a search for the DLL in the HFS is

case-sensitive.

- If the DLL is found and contains an external link name of eight

characters or less, the uppercase external link name is used to attempt

a LOAD from the caller’s MVS load library search order. If the DLL is

not found or the external link name is more than eight characters, then

the load fails.

- If the DLL is found and its sticky bit is on, any suffix is stripped off.

Next, the name is converted to uppercase, and the base DLL name is

used to attempt a LOAD from the caller’s MVS load library search

order. If the DLL is not found or the base DLL name is more than eight

characters, the version of the DLL in the HFS is loaded.

- If the DLL is found and does not fall into one of the previous two cases,

a load from the HFS is attempted.

2. If the DLL could not be loaded from the HFS, an attempt is made to load

the DLL from the caller’s MVS load library search order. This is done by

calling the LOAD service with the DLL name, which must be eight

characters or less (it will be converted to uppercase). LOAD searches for it

in the following sequence:

a. Run-time library services (if active)

b. Job Pack Area (JPA)

c. TASKLIB

d. STEPLIB or JOBLIB. If both are allocated, the system searches

STEPLIB and ignores JOBLIB.

e. LPA

f. Libraries in the linklist

For more information, see z/OS MVS Initialization and Tuning Guide.

v When POSIX(OFF) is specified the sequence is reversed.

– An attempt to load the DLL is made from the caller’s MVS load library search

order.

Chapter 20. Building and using Dynamic Link Libraries (DLLs) 299

– If the DLL could not be loaded from the caller’s MVS load library then an

attempt is made to load the DLL from the HFS.

Recommendation: All DLLs used by an application should be referred to by unique

names, whether ambiguous or not. Using multiple names for the same DLL (eg.

aliases or symlinks) may result in a decrease in DLL load performance. The use of

HFS symbolic links by themselves will not degrade performance, as long as the

application refers to the DLL solely through the symbolic link name. To help ensure

this, when building an application with implicit DLL references always use the same

side deck for each DLL. Also, make sure that explicit DLL references with dllload()

or dlopen() specify the same DLL name (case matters for HFS loads).

Changing the search order for DLLs while the application is running (eg. changing

LIBPATH) may result in errors if ambiguous file names are used.

Sharing DLLs

DLLs are shared at the enclave level (as defined by the z/OS Language

Environment). A referenced DLL is loaded only once per enclave and only one copy

of the writable static is created or maintained per DLL per enclave. Thus, one copy

of a DLL serves all modules in an enclave regardless of whether the DLL is loaded

implicitly or explicitly. You can access the same DLL within an enclave both

implicitly and by explicit run-time services.

All accesses to a variable in a DLL in an enclave refer to the only copy of that

variable. All accesses to a function in a DLL in an enclave refer to the only copy of

that function.

Although only one copy of a DLL is maintained per enclave, multiple logical loads

are counted and used to determine when the DLL can be deleted. For a given DLL

in a given enclave, there is one logical load for each explicit dllload() or dlopen()

request. DLLs that are referenced implicitly may be logically loaded at application

initialization time if the application references any data exported by the DLL, or the

logical load may occur during the first implicit call to a function exported by the DLL.

DLLs are not shared in a nested enclave environment. Only the enclave that loaded

the DLL can access functions and variables.

Freeing DLLs

You can free explicitly loaded DLLs with a dllfree() or dlclose() request. This

request is optional because the DLLs are automatically deleted by the run-time

library when the enclave is terminated.

Implicitly loaded DLLs cannot be deleted from the DLL application code. They are

deleted by the run-time library at enclave termination. Therefore, if a DLL has been

both explicitly and implicitly loaded, the DLL can only be deleted by the run-time

when the enclave is terminated.

Creating a DLL or a DLL application

Building a DLL or a DLL application is similar to creating a C or C++ application. It

involves the following steps:

1. Writing your source code

2. Compiling your source code

3. Binding your object modules

300 z/OS V1R8.0 XL C/C++ Programming Guide

Building a simple DLL

This section shows how to build a simple DLL in C and C++, using techniques that

export externally-linked functions and variables to DLL users.

These techniques include:

v The #pragma export directive

v The _Export keyword

v The EXPORTALL compiler option

Both the _Export keyword and the export directive are used to specify functions

and variables.

The EXPORTALL compiler option is used to export all defined functions and variables.

Using the EXPORTALL compiler option means that all defined functions and variables

are accessible by all users of the given DLL.

Notes:

1. If the EXPORTALL compiler option is used, then neither #pragma export nor

_Export is required in your code.

2. Exporting all functions and variables has a performance penalty, especially

when the IPA compiler option is used to build the DLL.

For more information, see:

v The EXPORTALL compiler option in z/OS XL C/C++ User’s Guide

v The _Export keyword in z/OS XL C/C++ Language Reference

v The export directive in z/OS XL C/C++ User’s Guide

Example of building a simple C DLL

To build a simple C DLL, use the #pragma export directive to export specific

external functions and variables as shown in Figure 55.

 This example exports the functions bopen(), bclose(), bread(), bwrite(), and the

variable berror. The variable buffer is not exported.

 #pragma export(bopen)

 #pragma export(bclose)

 #pragma export(bread)

 #pragma export(bwrite)

 int bopen(const char* file, const char* mode) {

 ...

 }

 int bclose(int) {

 ...

 }

 int bread(int bytes) {

 ...

 }

 int bwrite(int bytes) {

 ...

 }

 #pragma export(berror)

 int berror;

 char buffer[1024];

 ...

Figure 55. Using #pragma export to create a DLL executable module named BASICIO

Chapter 20. Building and using Dynamic Link Libraries (DLLs) 301

Compiling with the EXPORTALL compiler option would export all the functions and the

buffer variable.

Example of building a simple C++ DLL

To build a simple C++ DLL, use the _Export keyword or the #pragma export

directive to export specific external functions and variables. Ensure that classes and

class members are exported correctly, especially if they use templates.

For example, Figure 56 shows how to create a DLL executable module named

triangle using the #pragma export directive:

 This example exports the functions getarea(), getperim(), the static member

objectCount, and the constructor for class triangle.

Similarly, Figure 57 shows how to create a DLL executable module named triangle

using the _Export keyword:

 There are some restrictions when using the _Export keyword.

v Do not inline the function if you apply the _Export keyword to the function

declaration, as in Figure 57

v Always export constructors and destructors

If you apply the _Export keyword to a class, then it automatically exports the static

members, defined functions, constructors, and destructors of that class, as in the

following example:

 class triangle

 {

 public:

 static int objectCount;

 double getarea();

 double getperim();

 triangle(void);

 };

This behavior is the same as using the EXPORTALL compiler option.

 class triangle

 {

 public:

 static int objectCount;

 getarea();

 getperim();

 triangle(void);

 };

 #pragma export(triangle::objectCount)

 #pragma export(triangle::getarea())

 #pragma export(triangle::getperim())

 #pragma export(triangle::triangle(void))

Figure 56. Using #pragma export to create the triangle DLL executable module

 {

 public:

 static int _Export objectCount;

 double _Export getarea();

 double _Export getperim();

 _Export triangle::triangle(void);

 };

Figure 57. Using _Export to create the triangle DLL executable module

302 z/OS V1R8.0 XL C/C++ Programming Guide

Compiling your code

For C source code compiled without using the DLL or XPLINK compiler options, that

code cannot reference (import) functions or variables that are exported by a DLL.

NODLL is the default when compiling C source code, and the XPLINK compiler option

is not used. C source code compiled with the DLL or XPLINK compiler options, and

all C++ source code, can reference exported functions and variables. Source code

that can reference exported functions and variables is called DLL application code.

It need not itself be a DLL, in that it may not itself export any functions or variables.

When compiling DLL application source code, the compiler generates object code in

such a way that references to external functions and variables can be resolved

statically or dynamically (that is, resolved to a DLL). If you are uncertain whether

non-XPLINK C source code references a DLL, you should specify the DLL or XPLINK

compiler options. Compiling source code as DLL application code eliminates the

potential compatibility problems that may occur when binding DLL application code

with non-DLL application code. See Chapter 21, “Building complex DLLs,” on page

311 for more information on compatibility issues.

The decision to use XPLINK needs to be made independently from the decision to

build a DLL application. While XPLINK compiled code is always DLL application

code, the XPLINK and non-XPLINK function call linkages are different. There is DLL

compatibility for XPLINK and non-XPLINK at the DLL boundary, but XPLINK and

non-XPLINK object modules cannot be mixed in the same DLL. Also, there is a

performance penalty when transitioning between XPLINK and non-XPLINK DLLs

(and vice versa). It is best to have a DLL application made up of all XPLINK or all

non-XPLINK executable modules to the extent that is possible. For more

information on XPLINK, see “Using the XPLINK option” on page 539.

Binding your code

When creating a DLL, the binder automatically creates a definition side-deck that

describes the functions and the variables that can be imported by DLL applications.

You must provide the generated definition side-deck to all users of the DLL. Any

DLL application that implicitly loads the DLL must include the definition side-deck

when they bind.

Note: You can choose to store your DLL in a PDS load library, but only if it is

non-XPLINK. Otherwise, it must be stored in a PDSE load library or in the

HFS. To target a PDS load library, prelink and link your code rather than

using the binder. For information on prelinking and linking, see the appendix

on the Prelinker in z/OS XL C/C++ User’s Guide.

When binding the C object module as shown in Figure 55 on page 301, the binder

generates the following definition side-deck:

IMPORT CODE,BASICIO,’bopen’

IMPORT DATA,BASICIO,’bclose’

IMPORT DATA,BASICIO,’bread’

IMPORT DATA,BASICIO,’bwrite’

IMPORT DATA,BASICIO,’berror’

Note: You should also provide a header file containing the prototypes for exported

functions and external variable declarations for exported variables.

When binding the C++ object modules shown in Figure 56 on page 302, the binder

generates the following definition side-deck.

Chapter 20. Building and using Dynamic Link Libraries (DLLs) 303

IMPORT CODE,TRIANGLE,’getarea__8triangleFv’

IMPORT CODE,TRIANGLE,’getperim__8triangleFv’

IMPORT CODE,TRIANGLE,’__ct__8triangleFv’

You can edit the definition side-deck to remove any functions and variables that you

do not want to export. You must maintain the file as a binary file with fixed format

and a record length of 80 bytes. Also, use proper binder continuation rules if the

IMPORT statement spans multiple lines, and you change the length of the statement.

In the above example, if you do not want to expose getperim(), remove the control

statement IMPORT CODE ,TRIANGLE, getperim__8triangleFv from the definition

side-deck.

Notes:

1. Removing functions and variables from the definition side-deck does not

minimize the performance impact caused by specifying the EXPORTALL compiler

option.

2. Editing the side-deck is not recommended. If the DLL name needs to be

changed, you should bind using the appropriate name. Instead of using the

EXPORTALL compiler option, you should remove unnecessary IMPORT

statements by using explicit #pragma export statements or _Export directives.

The definition side-deck contains mangled names of exported C++ functions, such

as getarea__8triangleFv. To find the original function or variable name in your

source module, review the compiler listing, the binder map, or use the CXXFILT

utility, if you do not have access to the listings. This will permit you to see both the

mangled and demangled names. For more information, see filter utility in z/OS XL

C/C++ User’s Guide.

Building a simple DLL application

A simple DLL application contains object modules that are made up of only

DLL-code. The application may consist of multiple source modules. Some of the

source modules may contain references to imported functions, imported variables,

or both.

Steps for using an implicitly loaded DLL in your simple DLL

application

Perform the following steps to use an implicitly loaded DLL (sometimes called a

load-on-call DLL) in your simple DLL application:

1. Write your code as you would if the functions were statically bound.

2. Compile as follows:

v Compile your non-XPLINK application C source files with the following

compiler options:

– DLL

– RENT

– LONGNAME

These options instruct the compiler to generate special code when calling

functions and referencing external variables. If you are using z/OS UNIX

System Services, RENT and LONGNAME are already the defaults, so compile as:

c89 -W c,DLL ...

304 z/OS V1R8.0 XL C/C++ Programming Guide

v Compile your C++ source files normally. A C++ application is always DLL

code.

v For XPLINK, compile your C and C++ source files with the XPLINK compiler

option. XPLINK compiled C and C++ source is always DLL code.

3. Bind your object modules as follows.

v If you are using z/OS Batch, use the IBM-supplied procedure when you bind

your object modules. You must chose the appropriate procedures for

XPLINK or non-XPLINK.

v If you are not using the IBM-supplied procedure, specify the RENT,

DYNAM(DLL), and CASE(MIXED) binder options when you bind your object

modules.

Note: XPLINK and non-XPLINK use different z/OS Language Environment

libraries, and XPLINK requires the C run-time library side-deck for

resolution of C run-time library function calls. For more information,

see ″Planning to Link-Edit and Run″ in z/OS Language Environment

Programming Guide.

v If you are using z/OS UNIX System Services specify the following option for

the bind step for c89 or c++.

c89 -W l,DLL

If you are using XPLINK, also add the XPLINK option, so that c89 will use the

correct z/OS Language Environment libraries and side-decks:

 c89 -W l,DLL,XPLINK ...

v Include the definition side-deck from the DLL provider in the set of object

modules to bind. The binder uses the definition side-deck to resolve

references to functions and variables defined in the DLL. If you are

referencing multiple DLLs, you must include multiple definition side-decks.

Note: Definition side-decks can not be resolved by automatic library call

(autocall) processing, so you must specify an INCLUDE statement to

explicitly include a definition side-deck for each referenced DLL.

The following is a code fragment illustrating how an application can use the DLL

described previously. Compile normally and bind with the definition side-deck

provided with the TRIANGLE DLL.

 See Figure 58 on page 306 for a summary of the processing steps required for the

application (and related DLLs).

Creating and using DLLs

Figure 58 on page 306 summarizes the use of DLLs for both the DLL provider and

for the writer of applications that use them. In this example, application ABC is

referencing functions and variables from two DLLs, XYZ and PQR. The connection

between DLL preparation and application preparation is shown. Each DLL shown

 extern int getarea(); /* function prototype */

 main () {

 ...

 getarea(); /* imported function reference */

 ...

 }

Chapter 20. Building and using Dynamic Link Libraries (DLLs) 305

contains a single compilation unit. The same general scheme applies for DLLs

composed of multiple compilation units, except that they have multiple compiles and

a single bind for each DLL. For simplicity, this example assumes the following:

v ABC does not export variables or functions.

v XYZ and PQR do not use other DLLs.

v The application is completely non-XPLINK and written in C.

DLL DLLAPPLICATION

DLL Source:

hooVar definition
kooVar definition
foo() definition
goo() definition

DLL Source:

rooVar definition
sooVar definition
boo() definition
soo() definition

XYZ.c

XYZ.obj

XYZ.objdef

ABC.c

ABC.obj

PQR.c

PQR.obj

PQR.objdef

Compile with
EXPORTALL, DLL

Compile
with
DLL

Compile with
EXPORTALL, DLL

DLL TEXT DLL TEXTAPPL TEXT

Import code 'XYZ' foo
Import code 'XYZ' goo
Import data 'XYZ hooVar
Import data 'XYZ' kooVar

Import code 'PQR' boo
Import code 'PQR' soo
Import data 'PQR' rooVar
Import data 'PQR' sooVar

Link

Bind

XYZ.pobj ABC.pobj PQR.pobj

DLL program DLL programApplication program

foo() ref
goo() ref
boo() ref
hooVar ref
kooVar ref
rooVar ref

Application Source:

Bind Bind

Figure 58. Summary of DLL and DLL application preparation and usage

306 z/OS V1R8.0 XL C/C++ Programming Guide

DLL restrictions

Consider the following restrictions when creating DLLs and DLL applications:

v The entry point for a DLL must be either z/OS XL C/C++ or Language

Environment conforming. An entry point is considered Language Environment

conforming if it includes CEESTART or if it was compiled using a Language

Environment conforming compiler.

Note: If the entry point for a DLL does not meet either of the above conditions,

Language Environment issues an error and terminates the application.

v In a DLL application that contains main(), main() cannot be exported.

v The AMODE of a DLL application must be the same as the AMODE of the DLL

that it calls.

v DLL facilities are not available:

– Under MTF, CSP or SPC

– To application programs with main() written in PL/I that dynamically call z/OS

XL C functions

v You cannot implicitly or explicitly perform a physical load of a DLL while running

C++ static destructors. However, a logical load of a DLL (meaning that the DLL

has previously been loaded into the enclave) is allowed from a static destructor.

In this case, references from the load module containing the static destructor to

the previously-loaded DLL are resolved.

v If a DLL contains static objects, the constructors are called during DLL load. ISO

C++ requires that the global objects must be defined within the same compilation

unit, but does not specify any order for these to be called; hence the objects are

constructed in the order that they are defined. z/OS XL C/C++ enhances the

standard behavior by providing #pragma priority to control the construction

order for all global objects within the same execution load module. For more

information, see the priority pragma in z/OS XL C/C++ Language Reference for

the details of this pragma. A DLL is one execution load module and the #pragma

priority allows you to control global object construction within a single DLL. On

the other hand, you still have no control over the initialization order across

different DLLs, or across a DLL application and the DLLs it references. If such

order is important, the DLL provider has to define a protocol for applications to

follow so that the interaction between the DLL and the applications happens in

the required manner. The protocol must be part of the DLL interface design. Take

note of the restriction in the previous bullet when defining such a protocol. A

simple example would be requiring an application to call a setup() function,

which is exported by a DLL, before any other references to the same DLL are

made. More elaborate designs are possible. The techniques for controlling static

initialization are well-discussed in C++ literature; you can reference, for example,

Item 47 of Scott Meyers’s Effective C++, 50 Specific Ways to Improve Your

Programs and Designs.

v You cannot use the functions set_new_handler() or set_unexpected() in a DLL if

the DLL application is expected to invoke the new handler or unexpected function

routines.

v When using the explicit DLL functions in a multithreaded environment, avoid any

situation where one thread frees a DLL while another thread calls any of the DLL

functions. For example, this situation occurs when a main() function uses

dllload() or dlopen() to load a DLL, and then creates a thread that uses the

ftw() function. The ftw() target function routine is in the DLL. If the main()

function uses dllfree() or dlclose() to free the DLL, but the created thread

uses ftw() at any point, you will get an abend.

Chapter 20. Building and using Dynamic Link Libraries (DLLs) 307

To avoid a situation where one thread frees a DLL while another thread calls a

DLL function, do either of the following:

– Do not free any DLLs by using dllfree() or dlclose() (the z/OS Language

Environment will free them when the enclave is terminated).

– Have the main() function call dllfree() or dlclose() only after all threads

have been terminated.

v For DLLs to be processed by IPA, they must contain at least one function or

method. Data-only DLLs will result in a compilation error.

v Use of circular DLLs may result in unpredictable behavior related to the

initialization of non-local static objects. For example, if a static constructor (being

run as part of loading DLL ″A″) causes another DLL ″B″ to be loaded, then DLL

″B″ (or any other DLLs that ″B″ causes to be loaded before static constructors

for DLL ″A″ have completed) cannot expect non-local static objects in ″A″ to be

initialized (that is what static constructors do). You should ensure that non-local

static objects are initialized before they are used, by coding techniques such as

counters or by placing the static objects inside functions.

v DLLs are enclave-level resources and, when opening and closing DLLs in a

multithreaded environment, an application must control DLL load ordering with its

own serialization mechanism to avoid unpredictable results.

Example: Unless the application controls the order of DLL loads, unpredictable

results can occur when different threads perform the following operations at the

same time:

– One thread uses a global symbol object handle, obtained via dlopen(), to

search for a symbol whose name has been defined in various DLLs with

different values.

– Another thread closes the DLL that defines the symbol whose value is being

sought.

Improving performance

This section contains some hints on using DLLs efficiently. Effective use of DLLs

may improve the performance of your application. Following are some suggestions

that may improve performance:

v If you are using a particular DLL frequently across multiple address spaces, the

DLL can be installed in the LPA or ELPA. When the DLL resides in a PDSE, the

dynamic LPA services should be used (this will always be the case for XPLINK

applications). Installing in the LPA/ELPA may give you the performance benefits

of a single rather than multiple load of the DLL

v When writing XPLINK applications, avoid frequent calls from XPLINK to

non-XPLINK DLLs, and vice-versa. These transitions are expensive, so you

should build as much of the application as possible as either XPLINK or

non-XPLINK. When there is a relatively large amount of function calls compared

to the rest of the code, the performance of an XPLINK application can be

significantly better than non-XPLINK. It is acceptable to make calls between

XPLINK and non-XPLINK, when a relatively large amount of processing will be

done once the call is made.

v Be sure to specify the RENT option when you bind your code. Otherwise, each

load of a DLL results in a separately loaded DLL with its own writable static.

Besides the performance implications of this, you are likely to get incorrect

results if the DLL exports variables (data).

v Group external variables into one external structure.

v When using z/OS UNIX System Services avoid unnecessary load attempts.

308 z/OS V1R8.0 XL C/C++ Programming Guide

z/OS Language Environment supports loading a DLL residing in the HFS or a

data set. However, the location from which it tries to load the DLL first varies

depending whether your application runs with the run-time option POSIX(ON) or

POSIX(OFF).

If your application runs with POSIX(ON), z/OS Language Environment tries to load

the DLL from the HFS first. If your DLL is a data set member, you can avoid

searching the HFS directories. To direct a DLL search to a data set, prefix the

DLL name with two slashes (//) as is in the following example.

//MYDLL

If your application runs with POSIX(OFF), z/OS Language Environment tries to

load your DLL from a data set. If your DLL is an HFS file, you can avoid

searching a data set. To direct a DLL search to the HFS, prefix the DLL name

with a period and slash (./) as is done in the following example.

./mydll

Note: DLL names are case sensitive in the HFS. If you specify the wrong case

for your DLL that resides in the HFS, it will not be found in the HFS.

v For IPA, you should only export subprograms (functions and C++ methods) or

variables that you need for the interface to the final DLL. If you export

subprograms or variables unnecessarily (for example, by using the EXPORTALL

option), you severely limit IPA optimization. In this case, global variable

coalescing and pruning of unreachable or 100% inlined code does not occur. To

be processed by IPA, DLLs must contain at least one subprogram. Attempts to

process a data-only DLL will result in a compilation error.

v The suboption NOCALLBACKANY of the compiler option DLL is more efficient

than the CALLBACKANY suboption. The CALLBACKANY option calls z/OS

Language Environment at run-time. This run-time service enables direct function

calls. Direct function calls are function calls through function pointers that point to

actual function entry points rather than function descriptors. The use of

CALLBACKANY will result in extra overhead at every occurrence of a call

through a function pointer. This is unnecessary if the calls are not direct function

calls.

Chapter 20. Building and using Dynamic Link Libraries (DLLs) 309

310 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 21. Building complex DLLs

Before you attempt to build complex DLLs, it is important to understand the

differences between the terms DLL, DLL code, and DLL application.

A DLL (Dynamic Link Library) is a file containing executable code and data bound

to a program at run time. The code and data in a DLL can be shared by several

applications simultaneously. It is important to note that compiling code with the DLL

option does not mean that the produced executable will be a DLL. To create a DLL,

you must use the #pragma export or EXPORTALL compiler option.

DLL code is code that can use a DLL. The following are DLL code:

v C++ code

v C code compiled using the DLL or XPLINK option

Code written in languages other than C++ and compiled without the DLL or XPLINK

option is non-DLL code.

A DLL application is an application that can use exported functions or variables

that are bound with DLL code. All of the source files that make up a DLL application

do not need to be compiled with the DLL or XPLINK option, only the source files that

reference exported functions and exported global variables.

If you link DLL code with non-DLL code, the resulting DLL or DLL application is

called complex. You might compile your code as non-DLL for the following reasons:

v Source modules do not use C or C++.

v To prevent problems which occur when a non-DLL function pointer call uses DLL

code. This problem takes place when a function makes a call through a function

pointer that points to a function entry rather than a function descriptor.

For complex DLLs and DLL applications that you compile without XPLINK, you can

use the CBA suboption of the DLL|NODLL compiler option. With this suboption, a call

is made, through a function pointer, to the z/OS Language Environment, for each

function call, at run time. This call eliminates the error that would occur when a

non-DLL function pointer passes a value to DLL code.

Note: In this book, unless otherwise specified, all references to the DLL|NODLL

compiler option assume suboption NOCBA. For more information, see the

DLL compiler option in z/OS XL C/C++ User’s Guide.

If you specify the XPLINK compiler option, the CBA and NOCBA suboptions of

DLL|NODLL are ignored.

There are two ways to combine XPLINK and non-XPLINK code in the same

application:

v Compile each entire DLL with XPLINK or without XPLINK. The only interaction

between XPLINK and non-XPLINK code occurs at a DLL or fetch() boundary.

v Use the OS_UPSTACK, OS_NOSTACK, and OS31_NOSTACK linkage directive. For more

information, see the description of the linkage pragma in z/OS XL C/C++

Language Reference.

The steps for creating a complex DLL or DLL application are:

1. Determining how to compile your source modules.

2. Modifying the source modules that do not meet all the DLL rules.

© Copyright IBM Corp. 1996, 2006 311

3. Compiling the source modules to produce DLL code and non-DLL code as

determined in the previous steps.

4. Binding your DLL or DLL application.

The focus of this chapter is step 1 and step 2. You perform step 3 the same way

you would for any other C or C++ application. “Binding your code” on page 303

explains step 4.

Rules for compiling source code with XPLINK

This section provides guidelines for compiling with the XPLINK and NOXPLINK

compiler options. See XPLINK in z/OS XL C/C++ User’s Guide for the details of this

option.

XPLINK applications

XPLINK provides compatibility with non-XPLINK functions when calls are made

across executable modules, using either the DLL or fetch() call mechanism. You

should make a reference from XPLINK code into non-XPLINK code only if the

reference is by an imported function or variable, or the function pointer is a

parameter into the XPLINK code. This prevents incompatible references to a

non-XPLINK function entry point.

Non-XPLINK code can expose a function entry point directly to the XPLINK code:

v as a global variable

v as part of a structure that is passed as a parameter

v by passing an explicit return value

A function pointer from a non-XPLINK application can be used as a callback by

passing it as an argument into the XPLINK function, or as a member of a structure

that is itself an argument to the XPLINK function

Note: Prior to z/OS V1R8, a function entry point from a non-XPLINK application

only could be passed explicitly as an argument into a XPLINK function. This

restriction did not apply if you used the compiler option XPLINK(CALLBACK) or

the __callback qualifier where any such function pointers were used .

Existing DLLs compiled using one of these options do not need to be

recompiled. The use of these options can only be discontinued if the owner

of the XPLink-compiled DLL is certain that any non-XPLink-compiled DLL

callers have been recompiled with z/OS XL C/C++ V1R8 targetting z/OS

Language Environment V1R8 or later, and those applications are targetted

for and running on z/OS Language Environment V1R8 or later.

Restrictions: <stem sentence>:

v DLLs must be created using the binder

v C/C++ source modules must be compiled code using the DLL and GOFF

options without the XPLink or LP64 option

v Non-XPLink assembler DLLs are not supported

Modifying noncompliant source

For each function pointer, make sure that one of the following is true:

v The function pointer is passed as a parameter to the XPLINK code.

v The indirectly-referenced function pointer was imported by this DLL.

312 z/OS V1R8.0 XL C/C++ Programming Guide

|

|

|

|

|
|
|

|
|

v The indirectly-referenced function pointer was imported by another XPLINK or

non-XPLINK DLL.

Non-XPLINK applications

To create a complex DLL or DLL application, you must comply with the following

rules that dictate how you compile source modules. The first decision you must

make is how you should compile your code. You determine whether to compile with

either the DLL or NODLL compiler option based on whether or not your code

references any other DLLs. Even if your code is a DLL, it is safe to compile your

code with the NODLL compiler option if your code does not reference other DLLs.

The second decision you must make is whether to compile with the default compiler

suboption for DLL|NODLL, which is NOCBA, or use the alternative suboption CBA.

This decision is based upon your knowledge of the code you reference. If you are

sure that you do not reference any function calls through function pointers that point

to a function entry rather than a function descriptor, use the NOCBA suboption.

Otherwise, you should use the CBA suboption.

As of V2R4 of OS/390 C/C++, use the following options to ensure that you do not

have undefined results as a result of the function pointer pointing to a function entry

rather than a function descriptor:

1. Compile your source module with the CBA suboption of DLL|NODLL. This option

inserts extra code whenever you have a function call through a function pointer.

The inserted code invokes a run-time service of z/OS Language Environment

which enables direct function calls through C/C++ function pointers. Direct

function calls are function calls through function pointers that point to actual

function entry points rather than function descriptors. The drawback of this

method is that your code will run slower. This occurs because whenever you

have function calls through function pointers z/OS Language Environment is

called at run time to enable direct function calls. See Figure 69 on page 323 for

an example of the CBA suboption and an explanation of what the called z/OS

Language Environment routine does at run-time when using the CBA suboption.

2. Compile your C source module with the NOCBA suboption of DLL|NODLL. This

option has the benefit of faster running but with more restrictions placed on your

coding style. If you do not follow the restrictions, your code may behave

unpredictably. See “DLL restrictions” on page 307 for more information.

Compile your C source modules as DLL when:

1. Your source module calls imported functions or imported variables by name.

2. Your source module contains a comparison of function pointers that may be DLL

function pointers.

The comparisons shown in “Function pointer comparison in non-DLL code” on

page 325 are undefined. To obtain valid comparisons, compile the source

modules as DLL code.

3. Your source module may pass a function pointer to DLL code through a

parameter or a return value.

If the sort() routine in Figure 68 on page 322 is compiled as DLL code instead

of non-DLL code, non-DLL applications can no longer call it. To be able to call

the DLL code version of sort(), the original non-DLL application must be

recompiled as DLL code.

4. Your source module may define a global function pointer and another source

module changes it.

Chapter 21. Building complex DLLs 313

Consider Figure 59 and Figure 60. You have the following two options when

compiling them.

a. If source module 1 is compiled as DLL code, source module 2 must also be

compiled as DLL code.

b. Alternately, you can compile source module 1 as DLL and source module 2

as NODLL(CBA).

Example: Source module 1
 Example: Source module 2

The following table summarizes some of the ways that you could compile the

two source modules and lists the results. Both modules are linked into a single

executable.

 How Modules Were Compiled Result

Source module 1 NODLL(NOCBA)

source module 2 DLL(NOCBA)

fp contains a function descriptor. Execution of fp will

succeed because it is valid to the address of a

function descriptor.

Source module 1 DLL(NOCBA)

Source module 2 NODLL(NOCBA)

fp contains the address of hello. The execution of

fp would abend because source module 1 expects

fp to contain a function descriptor for hello.

Source module 1 DLL(CBA)

Source module 2 DLL(NOCBA)

fp contains a function descriptor. The generated

code will function correctly. It will run slower than if

the source modules were compiled as DLL(NOCBA)

because it will use Language Environment to make

the function call.

Source module 1 NODLL(CBA)

Source module 2 DLL(NOCBA)

A call to Language Environment made by the

function call through the function pointer prevents a

problem that would have occurred had a direct

function call been made.

If you do not use the DLL compiler option, and your source module calls

imported functions or imported variables by name, there will be unresolved

references to these variables and functions at bind time. A DLL or DLL

application that does not comply with these rules may produce undefined

run-time behavior. For a detailed explanation of incompatibilities between DLL

and non-DLL code, see “Compatibility issues between DLL and non-DLL code”

on page 315.

void (*fp)(void);

extern void goo (void);

void main() {

 goo();

 (*fp)(); /* call hello function */

}

Figure 59. Source module 1

#include <stdio.h>

extern void (*fp)(void);

void hello(void) {

 printf("hello\n");

}

void goo(void) {

 fp = hello;

}

Figure 60. Source module 2

314 z/OS V1R8.0 XL C/C++ Programming Guide

Modifying noncompliant source

Sometimes source modules of a complex DLL or DLL application do not

simultaneously meet all the DLL rules. These rules are documented in the section

“Rules for compiling source code with XPLINK” on page 312. When these situations

occur, you can use the following methods to solve the problem:

v Use the CBA suboption.

v Rewrite the source in C. Only C source can be compiled as either DLL or

non-DLL code. C++ source code is always DLL code.

v Split a C source module in two so that one of the new files is compiled as DLL

code and the other is compiled as non-DLL code.

Note: In rare cases, you may have to split a function into two functions before

you can successfully split the file.

An example of noncompliant source is a C++ source module that contains a

function call through a pointer that may be either a DLL pointer to a function

descriptor or a direct function pointer. Convert it to C code and compile as non-DLL

code or, preferably, as DLL(CBA) and recompile.

Compatibility issues between DLL and non-DLL code

This section describes the differences between DLL code and non-DLL code, and

discusses the related compatibility issues for linking them to create complex DLLs.

Note: This section does not apply to XPLINK applications. XPLINK code is always

DLL code.

The following table and Figure 61 on page 316 illustrate DLL code referencing

functions and variables.

Chapter 21. Building complex DLLs 315

Table 42. Referencing functions and external variables

DLL

Imported Functions A function descriptor is created by the binder.

The descriptor is in the WSA class and contains

the address of the function and the address of

the writable static area associated with that

function. The function address and the address

of the WSA associated with the function is

resolved when the DLL is loaded. �1�

Nonimported Functions Also called through the function descriptor but

the function address is resolved at link time. �3�

Imported Variables A variable descriptor is created in the WSA by

the binder. It contains addressing information

for accessing an imported variable. The

address is resolved when the DLL is loaded.

�2�

Nonimported Variables Direct access �4�

DLL Application

DLL Code

. . .

. . .

. . .

. . .

. . .

. . .

Data

Func Des

Func Des

Var Des

Data

.

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

}

}
f();

x = 1;

g();

y = 2;

int g(void) {

2

addr(f)

addr(g)

addr(x)

1y x

1

2

3

4

DLL Code

DLL

extern int f(void);
int g(void);
extern int x;
int y;

int f(void);
int x;

int f(void); {

Figure 61. Referencing functions and external variables in DLL code

316 z/OS V1R8.0 XL C/C++ Programming Guide

Pointer assignment

In DLL code and non-DLL code, the actual address of a variable is assigned to a

variable pointer. A valid variable pointer always points to the variable itself and

causes no compatibility problems.

Function pointers

In non-DLL code, the actual address of a nonimported function is assigned to a

function pointer. In DLL code, the address of a function descriptor is assigned to a

function pointer.

If you assign the address of an imported function to a pointer in non-DLL code, the

link step will fail with an unresolved reference. In a complex DLL or DLL application,

a pointer to a function descriptor may be passed to non-DLL code. A direct function

pointer (pointer to a function entry point) may be passed to DLL code.

5

In a complex DLL or DLL application, a function pointer may point either to a

function descriptor or to a function entry, depending on the origin of the code. The

different ways of dereferencing a function pointer causes the compatibility problem

in linking DLL code with non-DLL code.

In Figure 62 on page 318, �1� assigns the address of the descriptor for the

imported function f to fp. �2� assigns the address of the imported variable x to xp.

�3� assigns the address of the descriptor for the nonimported function g to gp. �4�

assigns the address of the non-imported variable y to yp.

5. A parameter, a return value, or an external variable can pass a function pointer or an external variable.

Chapter 21. Building complex DLLs 317

In Figure 63 on page 319, �1� causes a bind error because the assignment to fp is

undefined. �2� causes a binder error because the assignment to xp is undefined.

�3� assigns gp to the address of the nonimported function, g. �4� assigns the

address of the nonimported variable y to yp.

DLL Application

DLL Code

. . .

. . .

. . .

. . .

. . .

. . .

Data

Func Des

Func Des

Var Des

Data

.

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

}

}

fp = f;

xp = &x;

gp = g;

yp = &y;

int g(void) {

xxxxx

addr(f)

addr(g)

addr(x)

1y x

1

2

3

4

DLL Code

DLL

extern int f(void);
int (*fp) ();
int g(void);
int (*gp)();
extern int x;
int y, *xp, *yp;

int f(void);
int x;

int f(void) {

Figure 62. Pointer Assignment in DLL code

318 z/OS V1R8.0 XL C/C++ Programming Guide

DLL function pointer call in non-DLL code

Because z/OS XL C/C++ supports a DLL function pointer call in non-DLL code, you

are able to create a DLL to support both DLL and non-DLL applications. The z/OS

XL C/C++ compiler inserts glue code at the beginning of a function descriptor to

allow branching to a function descriptor. Glue code is special code that enables

function pointer calls from non-DLL code to DLL code, including XPLINK code.

A function pointer in non-DLL code points to the function entry and a function

pointer call branches to the function address. However, a DLL function pointer

points to a function descriptor. A call made through this pointer in non-DLL code

results in branching to the descriptor.

z/OS XL C/C++ executes a DLL function pointer call in non-DLL code by branching

to the descriptor and executing the glue code that invokes the actual function.

Application

non-DLL Code

. . .

. . .

. . .

. . .

. . .

. . .

Data Data

.

.

. . .

. . .

. . .

. . .

}

}

fp = f;

xp = &x;

gp = g;

yp = &y;

int g(void) {

xxxxx 1y x

Bind
1

2

3

4

DLL Code

DLL

extern int f(void);
int (*fp) ();
int g(void);
int (*gp)();
extern int x;
int y, *xp, *yp;

int f(void);
int x;

int f(void) {

Bind

Figure 63. Pointer assignment in non-DLL code

Chapter 21. Building complex DLLs 319

The following examples and Figure 68 on page 322 show a DLL function pointer

call in non-DLL code, where a simplified sort() routine is used. Note that the

sort() routine compiled as non-DLL code can be called from both a DLL

application and a non-DLL application.

C example

File 1 and File 2 are bound together to create application A. File 1 is compiled with

the NODLL option. File 2 is compiled with the DLL option (so that it can call the DLL

function sort()). File 3 is compiled as DLL to create application B. Application A

and B can both call the imported function sort() from the DLL in file 4.

Example: The following example shows how a file (File 1) of a complex DLL

application is compiled with the NODLL option

 Example: The following example shows how a file (File 2) of a complex DLL

application is compiled with the DLL option.

typedef int CmpFP(int, int);

void sort(int* arr, int size, CmpFP*); /* sort routine in DLL */

void callsort(int* arr, int size, CmpFP* fp); /* routine compiled as DLL */

 /* which can call DLL */

 /* routine sort() */

int comp(int e1, int e2) {

 if (e1 == e2) {

 return(0);

 }

 else if (e1 < e2) {

 return(-1);

 }

 else {

 return(1);

 }

}

main() {

 CmpFP* fp = comp;

 int a[2] = {2,1};

 callsort(a, 2, fp);

 return(0);

}

Figure 64. File 1. Application A.

typedef int CmpFP(int, int);

void sort(int* arr, int size, CmpFP*); /* sort routine in DLL */

void callsort(int* arr, int size, CmpFP* fp) {

 sort(arr, size, fp);

}

Figure 65. File 2. Application A

320 z/OS V1R8.0 XL C/C++ Programming Guide

Example: The following example shows how a simple DLL application is compiled

with the DLL option.

 File 4 is compiled as NODLL and bound into a DLL. The function sort() will be

exported to users of the DLL.

Example: The following example shows how a DLL is compiled with the NODLL

option.

Note: Non-DLL function pointers can only safely be passed to a DLL if the function

referenced is naturally reentrant, that is, it is C code compiled with the

NORENT compiler option, or is C code with no global or static variables. See

the discussion on the CBA option to see how to make a DLL that can be

called by applications that pass constructed reentrant function pointers.

int comp(int e1, int e2) {

 if (e1 == e2)

 return(0);

 else if (e1 < e2)

 return(-1);

 else

 return(1); }

int (*fp)(int e1, int e2);

main()

{

 int a[2] = { 2, 1 };

 fp = comp; /* assign function address */

 sort(a, 2, fp); /* call sort */

}

Figure 66. File 3. Application B

typedef int CmpFP(int, int);

int sort(int* arr, int size, CmpFP* fp) {

 int i,j,temp,rc;

 for (i=0; i<size; ++i) {

 for (j=1; j<size-1; ++j) {

 rc = fp(arr[j-1], arr[j]); /* call ’fp’ which may be DLL or no-DLL code */

 if (rc > 0) {

 temp = arr[j];

 arr[j] = arr[j-1];

 arr[j-1] = temp;

 }

 }

 }

 return(0);

}

#pragma export(sort)

Figure 67. File 4. DLL

Chapter 21. Building complex DLLs 321

Non-DLL function pointer call in DLL(CBA) code

The following figure illustrates one situation where you could use the CBA suboption.

In the example, the DLL provider provides stub routines which the application

programmer can bind with their applications. These stub routines allow an

application programmer to use a DLL without recompiling the application with the

DLL option. This is an important consideration for library providers that want to move

from a static version of a library to a dynamic one. Stub routines are not mandatory,

however if they are provided, the application programmer only needs to rebind, but

not recompile the application. If stub routines are not provided by the DLL provider,

the application programmer must recompile the application.

DLL Application in C DLL in C

non-DLL Application in C

DLL Code Data Non-DLL Code

DLL Code

. . .

int comp (int e1, int e2)
{
. . .
}

branch to comp

func des

glue code
. . .

void sort (
int *a, int num,
int (*comp)(int el, int e2)

{
. . .
if ((*comp)(. . .) <0)
. . .

}

branch to des

. . .

int comp (int e1, int e2)
{

. . .
}
main ()
{

. . .
/* point to des */
fp = comp;
sort (a, 2, fp);

}

branch to
func entry

. . .

/* point to des */
fp = comp;
sort (a, 2, fp);
}

main ()
{

Figure 68. DLL function pointer call in non-DLL code

322 z/OS V1R8.0 XL C/C++ Programming Guide

In the previous example, the DLL provider:

v Compiles the DLL parts as either DLL(CBA) or NODLL(CBA).

v Exports function dllsort() for use by other applications.

v Binds the DLL to produce a DLL executable module and a DLL definition

side-deck.

v Creates a stub function for every function exported from the DLL. The stub

function calls a corresponding function in the DLL.This routine is compiled with

the DLL option. The stub functions are provided to the application programmer in

a static library to be bound with the application.

The Application Programmer:

v Codes the program using any of the following compiler options;

– DLL

– NODLL

– RENT

– NORENT

v Calls the stub routines, not the exported functions.

Note: The stub routines must be called because the application programmer

may have compiled his code with the NODLL compiler option. Otherwise,

references to the DLL functions will be unresolved at bind time. Providing

the stub routines allows an application programmer to use a DLL without

recompiling the application with the DLL option. This is an important

consideration for library providers that want to move from a static version

Compare

int compare (int el, int e2) {
. . .
. . .

}

Main

typedev void (CMP_FP) (int, int);
void main(void)
int x [10];
CMP_FP* fp=&compare;
stubsort (fp, x, l0) ;

Stub

typedef void (CMP_FP) (int, int);
void dllsort (CMP_FP*, int*, int);
stubsort (CMP_FP* fp, int* arr, int len)
dllsort (fp, arr, len);) ;

IMPORT CODE DLL DLLSORT

DLL

#pragma export (dllsort)
typedef void (CMP_FP) (int, int);
void dllsort (CMP_FP* fp, int* arr, int len)
. . .

rc = fp(arr[i], arr[i+i]);

Language Environment

APPLICATION

Definition Side Deck

1

2

3

4

5

Figure 69. DLL function pointer call in non-DLL code

Chapter 21. Building complex DLLs 323

of a library to a dynamic one. Providing stub routines requires the

application programmer to rebind but not recompile the application.

v Statically binds the definition side-deck, provided by the DLL provider, and the

stub routines with their program.

v Binds the DLL to produce a DLL executable module and a DLL definition

side-deck

v Creates a stub function for every function exported from the DLL. The stub

function calls the DLL directly

The reference keys in Figure 69 on page 323 illustrate the sequence of events.

Note that in �3�, the user does not explicitly make a call to Language Environment.

The generated code for the fp function call makes the call to z/OS Language

Environment. z/OS Language Environment does the following at point�4� in the

figure:

v Saves the DLL environment

v Establishes the application environment

v Branches to the user’s function

v Reestablishes the DLL environment after execution of the function

v Returns control to the DLL.

Non-DLL function pointer call in DLL code

In DLL code, it is assumed that a function pointer points to a function descriptor. A

function pointer call is made by first obtaining the function address through

dereferencing the pointer; and then, branching to the function entry. When a

non-DLL function pointer is passed to DLL code, it points directly to the function

entry. An attempt to dereference through such a pointer produces an undefined

function address. The subsequent branching to the undefined address may result in

an exception. The following is an example of passing a non-DLL function pointer to

DLL code via an external variable. Its behavior is undefined as shown in the

following example:

Example of passing a non-DLL function point to DLL code using

C and C++

 Example: The following example shows how dereferencing through a pointer

produces an undefined function address in C.

#include <stdio.h>

extern void (*fp)(void);

void hello(void) {

 printf("hello\n");

}

void goo(void) {

 fp = hello; /* assign address of hello, to fp */

 /* (refer to

Figure 63 on page 319). */

}

Figure 70. C non-DLL code

324 z/OS V1R8.0 XL C/C++ Programming Guide

Example: The following example shows how dereferencing through a pointer

produces an undefined function address in C++.

 Example: In the following example, a non-DLL function pointer call to an assembler

function is resolved.

Function pointer comparison in non-DLL code

In non-DLL code, the results of the following function pointer comparisons are

undefined:

v Comparing a DLL function pointer to a non-DLL function pointer

v Comparing a DLL function pointer to another DLL function pointer

v Comparing a DLL function pointer to a constant function address

Comparing a DLL function pointer to a non-DLL function pointer

 In Figure 76 on page 326, both the DLL function pointer and the non-DLL

function pointer point to the same function, but the pointers when compared are

unequal.

extern void goo(void);

void (*fp)(void);

void main (void) {

 goo();

 (*fp)(); /* Expect a descriptor, but get a function address, */

 /* so it dereferences to an undefined address and */

 /* call fails */

}

Figure 71. C DLL code

extern "C" void goo(void);

void (*fp)(void);

void main (void) {

 goo();

 (*fp)(); /* Expect a descriptor, but get a function address, */

 /* so it dereferences to an undefined address and */

 /* call fails */

}

Figure 72. C++ DLL code

/*

 * This function must be compiled as DLL(CBA)

 */

extern "OS" {

 typedef void OS_FP(char *, int *);

}

extern "OS" OS_FP* ASMFN(char*);

int CXXFN(char* p1, int* p2) {

 OS_FP* fptr;

 fptr = ASMFN("ASM FN"); /* returns pointer to address of function */

 if (fptr) {

 fptr(p1, p2); /* call asm function through fn pointer */

 }

 return(0);

}

Figure 73. C++ DLL code calling an Assembler function

Chapter 21. Building complex DLLs 325

Example of comparing a DLL function pointer to a non-DLL

function pointer using C

In the preceding examples, DLL code and non-DLL code can reside either in the

same executable file or in different executable files.

Comparing a DLL function pointer to another DLL function

pointer

 The example in Figure 80 on page 327 compares addresses of function

descriptors. In the following examples, both of the DLL function pointers point to

the same function, but they compare unequal.

Comparison of two DLL function pointers in non-DLL code

The following example shows a comparison of two DLL function pointers in non-DLL

code. In this example, File 1 and file 2 reside in different executable modules. File 3

can reside in the same executable module as file 1 or file 2 or it can reside in a

different executable module. In all cases, the addresses of the function descriptors

will not compare equally.

Example of comparison of two DLL function pointers in non-DLL code using

C:

#include <stdio.h>

extern int foo(int (*fp1)(const char *, ...));

main ()

{

 int (*fp)(const char *, ...);

 fp = printf; /* assign address of a descriptor that */

 /* points to printf. */

 if (foo(fp))

 printf("Test result is undefined\n");

}

Figure 74. C DLL code

int foo(int (*fp1)(const char *, ...))

{

 int (*fp2)(const char *, ...);

 fp2 = printf; /* assign the address of printf. */

 if (fp1 == fp2) /* comparing address of descriptor to */

 /* address of printf results in unequal.*/

 return(0);

 else

 return(1);

}

Figure 75. C non-DLL code

non-DLL code

...

if (fp1 == fp2)
...

Func Descriptor

...

func addr
...

C Library

int printf(...
}

...
}

Figure 76. Comparison of function pointers in non-DLL code

326 z/OS V1R8.0 XL C/C++ Programming Guide

Comparing a DLL function pointer to a constant function

address other than NULL

 Here, you are comparing the constant function address to an address of a

function descriptor.

#include <stdio.h>

extern int goo(int (*fp1)(const char *, ...));

main ()

{

 int (*fp)(const char *, ...);

 fp = printf; /* assign address of a descriptor that */

 /* points to printf. */

 if (goo(fp))

 printf("Test result is undefined\n");

}

Figure 77. File 1 C DLL code

#include <stdio.h>

extern int foo(int (*fp1)(const char *, ...),

 int (*fp2)(const char *, ...));

int goo(int (*fp1)(const char *, ...))

{

 int (*fp2)(const char *, ...);

 fp2 = printf; /* assign address of a different */

 /* descriptor that points to printf. */

 return (foo(fp1, fp2));

}

Figure 78. File 2 C DLL code

int foo(int (*fp1)(const char *, ...),

 int (*fp2)(const char *, ...))

{

 if (fp1 == fp2) /* comparing the addresses of two */

 /* descriptors results in unequal. */

 return(0);

 else

 return(1);

}

Figure 79. File 3 C non-DLL code

non-DLL code

...

if (fp1== fp2)
...

...

func addr
...

int printf(...
}

...
}

...

func addr
...

Func Des1

C Library

Func Des2

Figure 80. Comparison of two DLL function pointers in non-DLL code

Chapter 21. Building complex DLLs 327

Note: Comparing a DLL function pointer to NULL is well defined, because when

a pointer variable is initialized to NULL in DLL code, it has a value zero.

Function pointer comparison in DLL code

In XPLINK code, function pointers are compared using the address of the

descriptor. No special considerations, such as dereferencing, are required to

initialize the function pointer prior to comparison. Function descriptors are

guaranteed to be unique throughout the XPLINK application for a particular function,

so this comparison of function descriptor addresses will yield the correct results

even if the function pointer is passed between executable modules within the

XPLINK application. The remainder of this section does not apply to XPLINK

applications.

In non-XPLINK DLL code, a function pointer must be NULL before it is compared.

For a non-NULL pointer, the pointer is further dereferenced to obtain the function

address that is used for the comparison. For an uninitialized function pointer that

has a non-zero value, the dereference can cause an exception to occur. This

happens if the storage that the uninitialized pointer points to is read-protected.

Usually, comparing uninitialized function pointers results in undefined behavior. You

must initialize a function pointer to NULL or the function address (from source view).

Two examples follow.

Example: The following example shows undefined comparison in DLL code (C or

C++).

328 z/OS V1R8.0 XL C/C++ Programming Guide

Figure 82 shows that, when fp1 points to a read-protected memory block, an

exception occurs.

 Example: Following is an example of valid comparisons in DLL code:

#include <stdio.h>

int (*fp2)(const char *, ...) /* Initialize to point to the */

 = printf; /* descriptor for printf */

int goo(void);

int (*fp2)(void) = goo;

int goo(void) {

 int (*fp1)(void);

 if (fp1 == fp2)

 return (0);

 else

 return (1);

}

 void check_fp(void (*fp)()) {

 /* exception likely when -1 is dereferenced below */

 if (fp == (void (*)())-1)

 printf("Found terminator\n");

 else

 fp();

 }

 void dummy() {

 printf("In function\n");

 }

 main() {

 void (*fa[2])();

 int i;

 fa[0] = dummy;

 fa[1] = (void (*)())-1;

 for(i=0;i<2;i++)

 check_fp(fa[i]);

 }

Figure 81. Undefined comparison in DLL code (C or C++)

...

if (fp1 == fp2)
...

read-protected memory

...

...

A memory block
being accessed
as if a descriptor

A read attempt to access

read-protected memory
will cause an exception

DLL code

Figure 82. Comparison of function pointers in DLL code (C or C++)

Chapter 21. Building complex DLLs 329

Using DLLs that call each other

An application can use DLLs that call each other. There are two methods for

building these applications, as illustrated in the examples that follow:

v In the first method, the loop is broken by manually creating IMPORT statements

for the referenced DLLs, when binding one of the DLLs (APPL2D3).

v In the second method, an initial bind is done on APPL2D3 using the binder NCAL

parameter, which will be done again after the referenced DLLs are built.

In both cases, the result is that the side-deck is produced for APPL2D3, so that the

DLLs that reference APPL2D3 can be built.

Example: The APPL2 application (Figure 84 on page 331) imports functions and

variables from three DLLs: (Figure 85 on page 331, Figure 86 on page 332, and

Figure 87 on page 332). It is an example of an application that uses DLLs that call

each other.

#include <stdio.h>

int (*fp1)(const char *, ...); /* An extern variable is implicitly*/

 /* initialized to zero */

 /* if it has not been explicitly */

 /* initialized in source. */

int (*fp2)(const char *, ...) /* Initialize to point to the */

 = printf; /* descriptor for printf */

int foo(void) {

 if (fp1 != fp2)

 return (0);

 else

 return (1);

}

Figure 83. Valid comparisons in DLL code (C or C++)

330 z/OS V1R8.0 XL C/C++ Programming Guide

Example: The following application APPL2D1 imports functions from Figure 86 on

page 332 and Figure 87 on page 332.

 Example: The following application APPL2D2 imports a function from Figure 87 on

page 332.

#include <stdlib.h>

extern int var1_d1; /*imported from APPL2D1 */

extern int func1_d1(int); /*imported from APPL2D1 */

extern int var1_d2; /*imported from APPL2D2 */

extern int func1_d2(int); /*imported from APPL2D2 */

extern int var1_d3; /*imported from APPL2D3 */

extern int func1_d3(int); /*imported from APPL2D3 */

int main() {

 int rc = 0;

 printf("+-APPL2::main() starting \n");

/* ref DLL1 */

 if (var1_d1 == 100) {

 printf("| var1_d1=<%d>\n",var1_d1++);

 func1_d1(var1_d1);

 }

/* ref DLL2 */

 if (var1_d2 == 200) {

 printf("| var1_d2=<%d>\n",var1_d2++);

 func1_d2(var1_d2);

 }

/* ref DLL3 */

 if (var1_d3 == 300) {

 printf("| var1_d3=<%d>\n",var1_d3++);

 func1_d3(var1_d3);

 }

 printf("+-APPL2::main() Ending \n");

}

Figure 84. Application APPL2

#include <stdio.h>

int func1_d1(); /* A function to be externalized */

int var1_d1 = 100; /* export this variable */

extern int func1_d2(int); /*imported from APPL2D2 */

extern int func1_d3(int); /*imported from APPL2D3 */

int func1_d1 (int input)

{

 int rc2 = 0;

 int rc3 = 0;

 printf("| +-APPL2D1() func1_d1() starting. Input is %d\n", input);

 rc2 = func1_d2(200);

 rc3 = func1_d3(300);

 printf("| | func1_d1() dll1 - rc2=<%d> rc3=<%d>\n", rc2,

rc3);

 printf("| +-APPL2D1() func1_d1() ending. \n");

}

Figure 85. Application APPL2D1

Chapter 21. Building complex DLLs 331

Example: The following application APPL2D3 imports variables from Figure 85 on

page 331 and Figure 86.

 Example: The first method uses the JCL in Figure 88 on page 333. The following

processing occurs:

1. APPL2D3 is compiled and bound to create a DLL. The binder uses the control

cards supplied through SYSIN to import variables from APPL2D1 and APPL2D2.

The binder also generates a side-deck APPL2D3 that is used in the following

steps.

2. APPL2D2 is compiled and bound to create a DLL. The binder uses the control

cards supplied through SYSIN to include the side-deck from APPL2D3. The

following steps use the binder which generates the side-deck APPL2D2.

3. APPL2D1 is compiled and bound to create a DLL. The binder uses the control

cards supplied through SYSIN to include the side-decks from APPL2D2 and

APPL2D3. The following steps show the binder generating the side-deck

APPL2D1.

4. APPL2 is compiled, bound, and run. The binder uses the control statements

supplied through SYSIN to include the side-decks from APPL2D1, APPL2D2,

and APPL2D3.

#include <stdio.h>

int func1_d2(); /* A function to be externalized */

int var1_d2 = 200;

extern int func1_d3(int); /* import this function */

int func1_d2 (int input)

{

 int rc3 =0;

 printf("| | +-APPL2D2() func1_d2() starting. Input is %d\n",

input);

 rc3 = func1_d3(300);

 printf("| | | func1_d2() dll2 - rc3=<%d>\n", rc3);

 printf("| | +-APPL2D2() func1_d2() ending\n");

}

Figure 86. Application APPL2D2

#include <stdio.h>

int func1_d3(); /* A function to be externalized */

int var1_d3 = 300;

extern int var1_d1; /* imported variable from appl2D1 */

extern int var1_d2; /* imported variable from appl2D2 */

int func1_d3 (int input)

{

 printf("| | | +-APPL2D3()-func1_d3() starting. Input is %d\n",

 input);

 printf("| | | | value of var1_d1=%d var1_d2=%d\n",

 var1_d1, var1_d2);

 printf("| | | +-APPL2D3()-func1_d3() ending\n");

}

Figure 87. Application APPL2D3

332 z/OS V1R8.0 XL C/C++ Programming Guide

Example: The second method uses the JCL in Figure 89 on page 334. The

following processing occurs:

1. Once compiled, the object module APPL2D2 is saved for the following steps.

//jobcard information...

//*

//* CBDLL3: -Compile and bind APPL2D3

//* -Explicit import of variables from APPL2D1 and APPL2D2

//* -Generate the side-deck APPL2D3

//*

//CBDLL3 EXEC EDCCB,INFILE=’myid.SOURCE(APPL2D3)’,

// CPARM=’SO,LIST,DLL,EXPO,RENT,LONG’,

// OUTFILE=’myid.LOAD,DISP=SHR’

//BIND.SYSIN DD *

IMPORT DATA APPL2D1 var1_d1

IMPORT DATA APPL2D2 var1_d2

NAME APPL2D3(R)

/*

//BIND.SYSDEFSD DD DSN=myid.IMPORT(APPL2D3),DISP=SHR

//*

//*CDDLL2: -Compile and bind APPL2D2

//* -Include the side-deck APPL2D3

//* -Generate the side-deck APPL2D2

//*

//CBDLL2 EXEC EDCCB,INFILE=’myid.SOURCE(APPL2D2)’,

// CPARM=’SO,LIST,DLL,EXPO,RENT,LONG’,

// OUTFILE=’myid.LOAD,DISP=SHR’

//BIND.SYSIN DD *

INCLUDE DSD(APPL2D3)

NAME APPL2D2(R)

/*

//BIND.SYSDEFSD DD DSN=myid.IMPORT(APPL2D2),DISP=SHR

//BIND.DSD DD DSN=myid.IMPORT,DISP=SHR

//*

//* CBDLL1: -Compile and bind APPL2D1

//* -Include the side-deck APPL2D2 and APPL2D3

//* -Generate the side-deck APPL2D1

//*

//CBDLL1 EXEC EDCCB,INFILE=’myid.SOURCE(APPL2D1)’,

// CPARM=’SO,LIST,DLL,EXPO,RENT,LONG’,

// OUTFILE=’myid.LOAD,DISP=SHR’

//BIND.SYSIN DD *

INCLUDE DSD(APPL2D2)

INCLUDE DSD(APPL2D3)

NAME APPL2D1(R)

/*

//BIND.SYSDEFSD DD DSN=myid.IMPORT(APPL2D1),DISP=SHR

//BIND.DSD DD DSN=myid.IMPORT,DISP=SHR

//*

//* CBAPP2: -Compile, bind and run APPL2

//* -Include the side-deck APPL2D1, APPL2D2 and APPL2D3

//*

//CBAPP2 EXEC EDCCBG,INFILE=’myid.SOURCE(APPL2)’,

// CPARM=’SO,LIST,DLL,RENT,LONG’,

// OUTFILE=’myid.LOAD(APPL2),DISP=SHR’

//BIND.SYSIN DD *

INCLUDE DSD(APPL2D1)

INCLUDE DSD(APPL2D2)

INCLUDE DSD(APPL2D3)

NAME APPL2(R)

/*

//BIND.DSD DD DSN=myid.IMPORT,DISP=SHR

//GO.STEPLIB DD

// DD DSN=myid.LOAD,DISP=SHR

Figure 88. Method 1 JCL

Chapter 21. Building complex DLLs 333

2. APPL2D1 is compiled, the object module is saved for the following steps.

3. APPL2D3 is compiled and bound to generate the side-deck and the object

module is not used in the following steps. The load module for this step is not

saved, as it is not being used. The load module for APPL2D3 is generated at a

later step.

4. APPL2D2 is bound to create a DLL. The binder takes as input the object

module APPL2D2 and the side-deck APPL2D3. It also generates the side-deck

APPL2D2 that is used in the following steps.

5. APPL2D1 is bound to create a DLL. The binder takes as input the object

module APPL2D1 and the side-decks APPL2D3 and APPL2D2. It also

generates the side-deck APPL2D1 that is used in the following steps.

6. APPL2D3 is bound to create a DLL. The binder takes as input the object

module APPL2D3 and the side-decks APPL2D1 and APPL2D2. It also

generates the side-deck APPL2D3 that is used in the following step.

7. APPL2 is compiled, bound, and run. The binder takes as input the object

module APPL2 and the side-decks APPL2D1, APPL2D2, and APPL2D3.

//jobcard information...

//* CDLL2: -Compile APPL2D2

//*

//CDLL2 EXEC EDCC,INFILE=’myid.SOURCE(APPL2D2)’,

// OUTFILE=’myid.OBJ(APPL2D2),DISP=SHR’,

// CPARM=’SO,LIST,DLL,EXPO,RENT,LONG’

//*

//* CDLL1: -Compile APPL2D1

//*

//CDLL1 EXEC EDCC,INFILE=’myid.SOURCE(APPL2D1)’,

// OUTFILE=’myid.OBJ(APPL2D1),DISP=SHR’,

// CPARM=’SO,LIST,DLL,EXPO,RENT,LONG’

//*

//* CBDLL3: -Compile and bind APPL2D3 with NCAL

//* -Generate the side-deck APPL2D3

//* -The load module will not be kept, as it will not be

//* used

//*

//CBDLL3 EXEC EDCCB,INFILE=’myid.SOURCE(APPL2D3)’,

// CPARM=’SO,LIST,DLL,EXPO,RENT,LONG’,

// BPARM=’NCAL’

//COMPILE.SYSLIN DD DSN=myid.OBJ(APPL2D3),DISP=SHR

//BIND.SYSLIN DD DSN=myid.OBJ(APPL2D3),DISP=SHR

//BIND.SYSIN DD *

INCLUDE OBJ(APPL2D2)

INCLUDE OBJ(APPL2D1)

NAME APPL2D3(R)

/*

//BIND.SYSDEFSD DD DSN=myid.IMPORT(APPL2D3),DISP=SHR

//BIND.OBJ DD DSN=myid.OBJ,DISP=SHR

//*

Figure 89. Method 2 JCL (Part 1 of 2)

334 z/OS V1R8.0 XL C/C++ Programming Guide

//*

//* BDLL2: -Bind APPL2D2

//* -Generate the side-deck APPL2D2

//*

//*

//BDLL2 EXEC CBCB,INFILE=’myid.OBJ(APPL2D2)’,

// BPARM=’CALL’,

// OUTFILE=’myid.LOAD(APPL2D2),DISP=SHR’

//BIND.SYSIN DD DSN=myid.IMPORT(APPL2D3),DISP=SHR

//BIND.SYSDEFSD DD DSN=myid.IMPORT(APPL2D2),DISP=SHR

//*

//*

//* BDLL1: -Bind APPL2D1

//* -Generate the side-deck APPL2D1

//*

//BDLL1 EXEC CBCB,INFILE=’myid.OBJ(APPL2D1)’,

// BPARM=’CALL’,

// OUTFILE=’myid.LOAD(APPL2D1),DISP=SHR’

//BIND.SYSIN DD *

INCLUDE DSD(APPL2D2)

INCLUDE DSD(APPL2D3)

/*

//BIND.SYSDEFSD DD DSN=myid.IMPORT(APPL2D1),DISP=SHR

//BIND.DSD DD DSN=myid.IMPORT,DISP=SHR

//*

//* BDLL3: -Bind APPL2D3

//* -Generate the side-deck APPL2D3

//*

//BDLL3 EXEC CBCB,INFILE=’myid.OBJ(APPL2D3)’,

// BPARM=’CALL’,

// OUTFILE=’myid.LOAD(APPL2D3),DISP=SHR’

//BIND.SYSIN DD *

INCLUDE DSD(APPL2D1)

INCLUDE DSD(APPL2D2)

NAME APPL2D3(R)

/*

//BIND.SYSDEFSD DD DSN=myid.IMPORT(APPL2D3),DISP=SHR

//BIND.DSD DD DSN=myid.IMPORT,DISP=SHR

//*

//* CBAPP2: -Compile, bind and run APPL2

//* -Input the side-decks APPL2D1, APPL2D2 and APPL2D3

//*

//CBAPP2 EXEC EDCCBG,INFILE=’myid.SOURCE(APPL2)’,

// CPARM=’SO,LIST,DLL,RENT,LONG’,

// OUTFILE=’myid.LOAD(APPL2),DISP=SHR’

//BIND.SYSIN DD *

INCLUDE DSD(APPL2D1)

INCLUDE DSD(APPL2D2)

INCLUDE DSD(APPL2D3)

NAME APPL2(R)

/*

//BIND.DSD DD DSN=myid.IMPORT,DISP=SHR

//GO.STEPLIB DD

// DD DSN=myid.LOAD,DISP=SHR

Figure 89. Method 2 JCL (Part 2 of 2)

Chapter 21. Building complex DLLs 335

336 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 22. The z/OS 64-bit environment

Overview

Implementation of the 64-bit environment has not changed the default behavior of

the compiler; the default compilation environment is 32-bit, which is specified by the

ILP32 compiler option.

The compiler changes the behavior of code only when compiling for the 64-bit

environment, which is specified by the LP64 compiler option.

This chapter describes:

v Differences between the ILP32 and LP64 environments

v Advantages and disadvantages of the LP64 environment

v Migrating applications from ILP32 to LP64

v Using compiler diagnostics to ensure portability of code

v ILP32–to-LP64 portability issues

v Programming for portability between ILP32 and LP64

Differences between the ILP32 and LP64 environments

The ILP32 and LP64 environments are differentiated by:

v Addressing capability

v Data model

ILP32 and LP64 addressing capabilities

The following table shows the differences in addressing capabilities that are

available in each environment.

 Table 43. Comparison of ILP32 and LP64 ddressing capabilities

ILP32 (32-bit environment) LP64 (64-bit environment)

2 GB of address space 1 million TB of address space

31-bit execution mode�1� 64-bit execution mode

Notes:

1. 31-bit refers to the addressing mode, or AMODE. In z/OS XL C/C++, pointer

sizes in this mode are always 4 bytes. In AMODE 31, 31 bits of the pointer are

used to form the address, which is defined by the term “31-bit addressing

mode”. Occasionally, we also use the term “32-bit mode”. Strictly speaking,

31-bit is an architectural characteristic referring to the addressing capability,

while 32-bit is a programming language aspect referring to the data model. The

latter is also referred to as ILP32 (int-long-pointer 32). When there is no

ambiguity, we use the term “32-bit mode”.

ILP32 and LP64 data models and data type sizes

 Table 44. Comparison of ILP32 and LP64 data models

ILP32 (32-bit environment) LP64 (64-bit environment)

Data model ILP32 (32-bit pointer) Data model LP64 (64-bit pointer)

© Copyright IBM Corp. 1996, 2006 337

Table 44. Comparison of ILP32 and LP64 data models (continued)

ILP32 (32-bit environment) LP64 (64-bit environment)

int, long, ptr, and off_t are all 32 bits (4

bytes) in size.

int is 32 bits in size. long, ptr, and off_t

are all 64 bits (8 bytes) in size.

The 32-bit data model for z/OS XL C/C++ compilers is ILP32 plus long long. This

data model uses the 4/4/4 data type size model and includes a long long type. The

following table compares the type sizes for the different models.

LP64 is the 64-bit data model chosen by the Aspen working group (formed by

X/OPEN and a consortium of hardware vendors). LP64 is short for long-pointer 64.

It is commonly referred to as the 4/8/8 data type size model and includes the

integer/long/pointer type sizes, measured in bytes.

 Table 45. ILP32 and LP64 type size comparisons for signed and unsigned data types

Data Type 32-bit sizes (in

bytes)

64-bit sizes (in

bytes)

Remarks

char 1 1

short 2 2

int 4 4

long 4 8

long long 8 8

float 4 4

double 8 8

long double 16 16

pointer 4 8

wchar_t 2 4 Other UNIX platforms usually have

wchar_t 4 bytes for both 32-bit and

64-bit mode.

size_t 4 8 This is an unsigned type.

ptrdiff_t 4 8 This is a signed type.

Advantages and disadvantages of the LP64 environment

A major advantage of using a 64-bit environment is the increase in the virtual

addressing space. A 64-bit program can handle large tables as arrays without

putting temporary files in secondary storage.

LP64 provides:

v 64-bit addressing with 8-byte pointers

v Large object support (8-byte longs)

v Backward compatibility (4-byte integers)

Note: Integers are the same size under the ILP32 and LP64 data models.

LP64 application performance and program size

You can use the 64-bit address space to dramatically improve the performance of

applications that manipulate large amounts of data, whether the data is be created

within the application or obtained from files. Generally, the performance gain comes

338 z/OS V1R8.0 XL C/C++ Programming Guide

from the fact that the 64-bit application can contain the data in its 64-bit address

space (either created in data structures or mapped into memory), when it would not

have fit into a 32-bit address space. The data would need to be multiple GBs in

size or larger to show this benefit.

If the same source code is used to create a 32-bit and a 64-bit application, the

64-bit application will typically be larger than the 32-bit application. The 64-bit

application is unlikely to run faster than the 32-bit application unless it makes use of

the larger 64-bit addressability. Because most C programs are pointer-intensive, a

64-bit application can be close to twice as large as a 32–bit application, depending

on how many global pointers and longs are declared. A 64-bit C++ program uses

almost twice the data as a 32-bit C++ program, due to the large number of pointers

the compiler uses to implement virtual function tables, objects, templates, and so

on. That is why the appropriate choice is to create a 32-bit application, unless 64-bit

addressability is required by the application or can be used to dramatically improve

its performance.

 Attention:

Even though the address space is increased significantly, the amount of hardware

physical memory is still limited by your installation. Data that is not immediately

required by the program is subject to system paging. Programs that use large data

tables therefore require a large amount of paging space. For example, if a program

requires 3 GB of address space, the system must have 3 GB of paging space.

64-bit applications might require paging I/O tuning to accommodate the large data

handling benefit.

LP64 restrictions

The following restrictions apply under LP64:

v The ILP32 statement type=memory(hiperspace) is treated as type=memory under

LP64.

Hiperspace memory files are treated as regular memory files in a 64-bit

environment. All behavior is the same as for regular memory files.

v The ANSI system() function is not supported under LP64.

From an I/O perspective in a 64-bit environment, there is only the root program;

there are no child programs. This restriction affects at least the following types of

information:

– Inheritance of standard streams

– Sharing of memory files across enclaves

v The IMS and CICS environments are not supported under LP64.

References to these environments are valid under ILP32 only.

v User-supplied buffers are ignored for all but HFS files under LP64.

References to user-supplied buffers are valid under ILP32 only.

v Under 64-bit data models, pointer sizes are always 64 bits.

The C Standard does not provide a mechanism for specifying mixed pointer size.

However, it might be necessary to specify the size of a pointer type to help

migrate a 32-bit application (for example, when libraries share a common header

between 32-bit and 64-bit applications).

Chapter 22. The z/OS 64-bit environment 339

Migrating applications from ILP32 to LP64

This section describes:

v When to migrate applications to LP64

v Pre-migration checklist

v Post-migration checklist

When to migrate applications to LP64

The LP64 strategy is to strike a balance between maximizing the robustness of

64-bit capabilities while minimizing the effort of migrating many programs.

Typically, a 32-bit application should be ported only if either of the following is true:

v It is required by a DLL or a supporting utility

v It must have 64-bit addressability

This is because:

v Porting programs to a 64-bit environment presents a modest technical effort

where good coding practices are used. Poor coding practices greatly increase

the programming effort.

v There is no clear performance advantage to recompiling an existing 32-bit

program in 64-bit mode. In fact, a small slowdown is possible. This is due to:

– An increase in module size because instructions are larger

– An increase in size of the writable static area (WSA) and the stack because

pointers and longs are larger

– Issues related to run-time requirements (for example, when you port a

program that is compiled with NORENT and NODLL to a 64-bit environment, you

must code the program to use the RENT and DLL options, which are required in

the 64-bit environment)

Checklist for ILP32-to-LP64 pre-migration activities

Use the following checklist prior to migrating an application from ILP32 to LP64.

__ 1. Search the source code for patterns that might indicate migration issues.

These include:

v printf specifiers that involve long data types

v 0xffffffff

v 2147483647

__ 2. Verify that all functions are properly prototyped.

Note: The C compiler assumes that an unprototyped function returns the

int type. This could cause undesirable behavior under LP64 while

remaining undetectable under ILP32.

__ 3. Examine all types to determine whether the types should be 4-byte or 8-byte.

v For system types, the type will be the appropriate size for use with

library/system calls.

v For user-defined types:

– 4-byte types should be defined based upon int or unsigned int or some

system type that is 4 bytes long under LP64.

– 8-byte types should be defined based upon long or unsigned long or

some system type that is 8 bytes long.

__ 4. Change all types to the chosen type.

340 z/OS V1R8.0 XL C/C++ Programming Guide

Note: When doing so, examine all arithmetic calculations to make sure that

expansion and truncation of data values is done appropriately. Make

sure that no assumption is made that pointer values will fit into integer

types.

__ 5. Use the INFO diagnostic to identify the following potential problems:

v Functions not prototyped - Function prototypes allow the compiler to check

for mismatched parameters.

v Functions not prototyped - Return parameter mis-matched, especially

when the code expects a pointer. (For example, malloc and family)

v Assignment of a long or a pointer to an int - This type of assignment could

cause truncation. Even assignments with an explicit cast will be flagged.

v Assignment of an int to a pointer - If the pointer is referenced it might be

invalid.

After migration, test the code and confirm that its behavior is the same under LP64

as it was under ILP32. If you see any difference, debug the code and use the

checklist again.

Checklist for ILP32-to-LP64 post-migration activities

After migrating a program, test the code and confirm that its behavior is the same

under LP64 as it was under ILP32.

Use the following checklist to test the code:

__ 1. Verify that all output produced is contained in the 4-byte range.

Note: If this is not possible, then any other application using this data needs

to be ported to LP64 or, at least, be made 8-byte-aware.

__ 2. Verify that any user-provided process containing the wchar_t type definition

did not produce unexpected results.

Note: UNIX wchar_t data types are typically defined as four bytes under

both 32-bit and 64-bit environments. The size difference applies to the

ILP32 model, not the LP64 model. The new environment was an

opportunity to increase the size for future development. Because

wchar_t is a type definition, user-provided methods are a likely

problem area. A carefully-written application should not require

changes.

If you see any difference, debug the code and use the pre-migration checklist

again.

Using compiler diagnostics to ensure portability of code

This section describes:

v Using the INFO option to ensure that numbers are suffixed

v Using the WARN64 option to identify potential portability problems

Using the INFO option to ensure that numbers are suffixed

The INFO C and C++ option provides general diagnostics about program code and

is not specific to migrations from ILP32 to LP64.

Before migrating, use the appropriate option to ensure that the following items have

been expunged from the code:

Chapter 22. The z/OS 64-bit environment 341

|

|
|

|
|

|
|

|
|

|

|
|

v Functions not prototyped - Function prototypes allow the compiler to check for

mismatched parameters.

v Functions not prototyped - Return parameter mis-matched, especially when the

code expects a pointer. (For example, malloc and family)

v Assignment of a long or a pointer to an int - This type of assignment could cause

truncation. Even assignments with an explicit cast will be flagged.

v Assignment of an int to a pointer - If the pointer is referenced it might be invalid.

 Table 46. Example of diagnostic messages generated from code that is not ready to be

migrated from ILP32 to LP64

Source: 1 #include <stdio.h>

2 #include <limits.h>

3

4 void main(void) {

5 int foo_i;

6 long foo_l;

7 int *foo_pt;

8

9 foo_l = boo(1);

10 foo_l = foo_l << 1;

11 foo_l = 0xFFFFFFFF;

12 foo_l = (foo_l & 0xFFFFFFFF);

13 foo_l = LONG_MAX;

14 foo_l = (long)foo_i;

15 foo_i = (int) &foo_l;

16 foo_pt = (int *)foo_i;

17 }

18

19 long boo(long boo_l) {

20 return(boo_l);

21 }

�1�

Output: WARNING CCN3304 sample.c:9 No function prototype was

 given for boo.

INFORMATIONAL CCN3419 sample.c:11 Converting 4294967295

 to type long int does not preserve its value.

INFORMATIONAL CCN3438 sample.c:14 The value of the

 variable foo_i may be used before being set.

INFORMATIONAL CCN3491 sample.c:17 The automatic

 variable foo_pt is set but never referenced.

WARNING CCN3343 sample.c:19 Redeclaration of boo

 differs from the declaration on line 9 of

 /home/ts43218/sample2.c.

INFORMATIONAL CCN3050 sample.c:19 Return type long

 in the redeclaration is not compatible with the

 previous return type int.

INFORMATIONAL CCN3470 sample.c:21 Function main should

 return int, not void.

Note: Lines 9,11 and 14 are affected by porting the code to LP64.

Using the WARN64 option to identify potential portability problems

Under ILP32, both int and long data types are 32 bits in size. Because of this

coincidence, these types might have been used interchangeably. As shown in

Table 45 on page 338, the data type long is 8 bytes in length under LP64.

342 z/OS V1R8.0 XL C/C++ Programming Guide

A general guideline is to review the existing use of long data types throughout the

source code. If the values to be held in such variables, fields, and parameters will fit

in the range of [-231...231-1] or [0...232-1], then it is probably best to use int or

unsigned int instead. Also, review the use of the size_t type (used in many

subroutines), since its type is defined as unsigned long.

When you migrate a program from ILP32 to LP64, the data model differences might

result in unexpected behavior at execution time. Under LP64, the size of pointers

and long data types are 8 bytes, which can lead to conversion or truncation

problems. The WARN64 option can be used to detect these portability errors.

The WARN64 option provides general diagnostics about program code that might

behave differently under ILP32 and LP64. However the checking is not exhaustive.

Use it to look for potential migration problems, such as the following common

problems:

v Truncation due to explicit or implicit conversion of long types into int types

v Unexpected results due to explicit or implicit conversion of int types into long

types

v Invalid memory references due to explicit conversion by cast operations of

pointer types into int types

v Invalid memory references due to explicit conversion by cast operations of int

types into pointer types

v Problems due to explicit or implicit conversion of constants into long types

v Problems due to explicit or implicit conversion by cast operations of constants

into pointer types

There are a few problems that WARN64 cannot find:

v Unions that use longs or pointers that work under ILP32 might not work under

LP64.

Example 1:

union {

 int *p; /* 32 bits / 64 bits */

 int i; /* 32 bits / 32 bits */

};

Example 2:

union {

 double d; /* 64 bits / 64 bits */

 long l[2]; /* 64 bits / 128 bits */

};

ILP32-to-LP64 portability issues

Before migrating applications, consider the following:

v The sizes of the long, pointer and wchar_t types are different under LP64 than

they are under ILP32. You must check application behavior, especially if the logic

depends on data size.

v Data model differences can result in unexpected behavior at execution time.

Under LP64, the size of pointers and long data type are 8 bytes long. This can

lead to conversion or truncation problems.

Note: You can us the WARN64 option to help detect these portability errors. See

“Using the WARN64 option to identify potential portability problems” on

page 342.

Chapter 22. The z/OS 64-bit environment 343

v A migration issue can exist if the program assumes that int, long and pointer

type are all the same size. The number of cases where program logic relies on

this assumption varies from application to application, depending on the coding

style and functionality of the application.

Note: Most unexpected behaviors occur at the limits of a type’s value range.

v 32-bit applications that rely implicitly on internal data representations (for

example, those that cast a float pointer to an integer pointer, then manipulate the

bit patterns directly and encode such knowledge directly into the program logic)

can be difficult to migrate. In this case, certain assumptions are made about the

internal structure of a float representation and the size of int.

v Code must be checked to ensure that any shifting and masking operations that

manipulate long integers still work properly with a 64-bit long.

v Input and output file dependencies are relevant when you migrate an application

that is in the middle of a pipeline of applications, where each application reads

the previous application’s output as input, and then passes its output to the next

application in the pipe. Before migrating one of these applications to a 64-bit

environment, you must verify that the output will not produce values outside of

the 32-bit range. Typically, once an application is ported to a 64-bit environment,

all downstream applications (that is, any application that depends on output from

the ported application) must be ported to a 64-bit environment.

v Extending functions is sometimes included as part of a migration project to

exploit the benefit and to justify the cost of migrating to a 64-bit environment. You

might have to change code for using expanded limits after extending functions.

v You cannot mix 32-bit and 64-bit object files during binding. The only object file

format supported under LP64 bit is GOFF, and the only linkage convention is

XPLINK.

The IPA(LINK) option and exploitation of 64-bit virtual memory

As of z/OS V1R8 XL C/C++, IPA(LINK) makes use of 64-bit virtual memory, which

will cause an XL C/C++ compiler ABEND if there is insufficient storage. The default

MEMLIMIT system parameter size in the SMFPRMx parmlib member should be at

least 3000 MB. The default MEMLIMIT value takes effect whenever the job does

not specify one of the following:

v MEMLIMIT in the JCL JOB or EXEC statement

v REGION=0 in the JCL

Note: The MEMLIMIT value specified in an IEFUSI exit routine overrides all other

MEMLIMIT settings.

The z/OS UNIX System Services ulimit command can be used to set the

MEMLIMIT default. For information, see z/OS UNIX System Services Command

Reference. For additional information about the MEMLIMIT system parameter, see

z/OS MVS Programming: Extended Addressability Guide.

As of z/OS V1R8 XL C/C++, the EDCI, EDCXI, EDCQI, CBCI, CBCXI, and CBCQI

cataloged procedures, which are used for IPA Link, contain the variable IMEMLIM,

which can be used to override the default MEMLIMIT value.

Availability of suboptions

The following table shows a comparison of the compiler and run-time options that

are available in each environment. For example, if you are developing a program to

344 z/OS V1R8.0 XL C/C++ Programming Guide

|

|
|
|
|
|

|

|

|
|

|
|
|
|

|
|
|

run in either a 32–bit or a 64–bit environment, you must code it to ensure that the

high-performance linkage (XPLINK) option is in effect regardless of whether the

program is running under ILP32 or LP64.

 Table 47. Comparison of ILP32 and LP64 processing and run-time options

ILP32 (32-bit environment) LP64 (64-bit environment)

XPLINK or non-XPLINK XPLINK only

32-bit dynamic linked libraries (DLLs) 64-bit DLLs

Potential changes in structure size and alignment

The LP64 specification changes the size and alignment of certain structure

elements, which affects the size of the structure itself. In general, all structures that

use long integers and pointers must be checked for size and alignment

dependencies.

It is not possible to share a data structure between 32-bit and 64-bit processes,

unless the structure is devoid of pointer and long types. Unions that attempt to

share long and int types (or overlay pointers onto int types) will be aligned

differently or will be corrupted. For example, the virtual function table pointer,

inherent in many C++ objects, is a pointer and will change the size and alignment

of many C++ objects. In addition, the size and composition of the

compiler-generated virtual function table will change.

Note: The issue of changing structure size and alignment should not be a problem

unless the program makes assumptions about the size and/or composition of

structures.

z/OS basic rule of alignment

The basic rule of alignment in z/OS is that a data structure is aligned in accordance

with its size and the strictest alignment requirement for its largest member. An

8-byte alignment is more stringent than a 4-byte alignment. In other words,

members that can be placed on a 4-byte boundary can also be placed on an 8-byte

boundary, but not vice versa.

Note: The only exception is a long double, which is always aligned on an 8-byte

boundary.

You can satisfy the rule of alignment by inserting pad members both between

members and at the end of a structure, so that the overall size of the structure is a

multiple of the structure’s alignment.

Examples of structure alignment differences under ILP32 and

LP64

This section provides examples of three structures that illustrate the impact of the

ILP32 and LP64 programming environments on structure size and alignment.

In accordance with the z/OS rule of alignment (see “z/OS basic rule of alignment”),

the length of each data member produced by the source code depends on the

run-time environment, as shown in the following table:

Chapter 22. The z/OS 64-bit environment 345

Table 48. Comparison of data structure member lengths produced from the same code

Source: #include <stdio.h>

int main(void) {

 struct li{

 long la;

 int ia;

 } li;

 struct lii{

 long la;

 int ia;

 int ib;

 } lii;

 struct ili{

 int ia;

 long la;

 int ib;

 } ili;

 printf("length li = %d\n",sizeof(li));

 printf("length lii = %d\n",sizeof(lii));

 printf("length ili = %d\n",sizeof(ili));

}

ILP32 member

lengths:

length li = 8 �1�

length lii = 12 �3�

length ili = 12 �3�

LP64 member

lengths:

length li = 16 �2�

length lii = 16 �3�

length ili = 24 �3�

Notes:

1. In a 32-bit environment, both int and long int have 4-byte alignments, so each

of these members is aligned on 4-byte boundary. In accordance with the z/OS

rule of alignment, the structure as a whole has a 4-byte alignment. The size of

struct li is 8 bytes. See Figure 90 on page 347.

2. In a 64-bit environment, int has a 4-byte alignment and long int has an 8-byte

alignment. In accordance with the z/OS rule of alignment, the structure as a

whole has an 8-byte alignment. See Figure 90 on page 347.

3. The struct lii and the struct ili have the same members, but in a different

member order. See Figure 91 on page 348 and Figure 92 on page 349.

Because of the padding differences in each environment:

v Under ILP32:

– The size of struct lii is 12 bytes (4-byte long + 4-byte int + 4-byte int)

– The size of struct ili is 12 bytes (4-byte int + 4-byte long + 4-byte int)

v Under LP64:

– The size of struct lii is 16 bytes (8-byte long + 4-byte int + 4-byte int)

– The size of struct ili is 24 bytes (4-byte int + 4-byte pad + 8-byte long

+ 4-byte int + 4-byte pad)

The ILP32 and LP64 alignments for the structs defined by the code shown in

Table 48 are compared in Figure 90 on page 347, Figure 91 on page 348, and

Figure 92 on page 349.

Figure 90 on page 347 compares how struct li is aligned under ILP32 and LP64.

The structure has two members:

v The first (member la) is of type long

v The second (member ia) is of type int

346 z/OS V1R8.0 XL C/C++ Programming Guide

Under ILP32, each member is 4 bytes long and is aligned on a 4-byte boundary,

making the structure 8 bytes long. Under LP64, member la is 8 bytes long and is

aligned on an 8-byte boundary. Member ia is 4 bytes long, so the compiler inserts

4 padding bytes to ensure that the structure is aligned to the strictest alignment

requirement for its largest member. Then, the structure can be used as part of an

array under LP64.

 Figure 91 on page 348 and Figure 92 on page 349 show structures that have the

same members, but in a different order. Compare these figures to see how the

order of the members impacts the size of the structures in each environment.

Figure 91 on page 348 compares how struct lii is aligned under ILP32 versus

LP64.

struct lii has three members:

v The first (member la) is of type long

v The second (member ia) and third (member ib) are of type int

Under ILP32, each member is 4 bytes long and is aligned on a 4-byte boundary,

making the structure 12 bytes long. Under LP64, member la is 8 bytes long and is

aligned on an 8-byte boundary. Member ia and member ib are each 4 bytes long,

so the structure is 16 bytes long and can align on an 8-byte boundary without

padding.

Member iaMember la

Member ia

00

00

04

08

4-byte

8-byte 8-byte

4-byte

Boundary

Boundary

Struct li

Struct li

ILP32

LP64

Member la Compiler inserted
padding

Figure 90. Comparison of struct li, alignments under ILP32 and LP64

Chapter 22. The z/OS 64-bit environment 347

Figure 92 on page 349 compares how struct ili is aligned under ILP32 and

LP64. struct ili has three members:

v The first (member ia) is of type int

v The second (member la) is of type long

v The third (member ib) is of type int

Under ILP32, each member is 4 bytes long and is aligned on a 4-byte boundary,

making the structure 12 bytes long. Under LP64, the compiler inserts paddings after

both member ia and member ib, so that each member with padding is 8 bytes long

(member la is already 8 bytes long) and are aligned on 8-byte boundaries. The

structure is 24 bytes long.

08

4-byte

Member ia

Member ib

Member la

Member ia

00

00

04

08

4-byte

8-byte 8-byte

4-byte

Boundary

Boundary

Struct lii

Struct lii

ILP32

LP64

Member la

Member ib

Figure 91. Comparison of struct lii alignments under ILP32 and LP64

348 z/OS V1R8.0 XL C/C++ Programming Guide

Data type assignment differences under ILP32 and LP64

Under ILP32, int, long and pointer types have the same size and can be freely

assigned to one another.

Under LP64, all pointer types are 8 bytes in size. Assigning pointers to int types

and back again can result in a invalid address, and passing pointers to a function

that expects an int type will result in truncation.

Example: Incorrect assignment

int i;

int *p;

i = (int)p;

Note: The problem is harder to detect when casts are used. Although there is no

warning message, the problem still exists.

Avoid making any of the following assumptions:

v A pointer type or a C long type can fit into a C integer type.

v A type that is derived from a pointer type can fit into a type derived from an

integer type.

v The number of bits in a C long type object is assumed, especially when shifting

bits or doing bitwise operations.

v A C integer can be passed to an unprototyped long or pointer parameter.

v A function that is not a prototype can return a pointer or long.

Portability issues with data types long and int

Under LP64, types long and int are not interchangeable. The long type (and types

derived from it) is 64 bits in size.

Compiler-inserted
padding

Compiler-inserted
padding

Member ia

Member ia

Member la Member ib

Member ibMember la

00

00

04 08

08 16

4-byte

8-byte 8-byte 8-byte

4-byte 4-byte

Boundary

Boundary

Struct ili

Struct ili

ILP32

LP64

Figure 92. Comparison of struct ili alignments under ILP32 and LP64

Chapter 22. The z/OS 64-bit environment 349

|

You should consider all types related to the long and unsigned long types. For

example, size_t, used in many subroutines, is defined under LP64 as unsigned

long.

Because of the difference in size for int and long under LP64, conversions to long

from other integral types might be executed differently that it was under ILP32.

Example of possible change of result after conversion from signed number to

unsigned long: When a signed char, signed short, or signed int is converted to

unsigned long, sign extension might result in a different unsigned value in 64-bit

mode.

This example will yield 4294967295 (0xffffffff) under ILP32 but

18446744073709551615 (0xffffffffffffffff) under LP64, because of sign extension.

 Table 49. Example of possible change of result after conversion from signed number to

unsigned long

Source: #include<stdio.h>

void foo(int i)

{

 unsigned long l = i;

 printf("%lu (0x%lx)\n", l, l);

}

void main()

{

 foo(-1);

}

Compiler

options:

cc -Wc,"flag(i),warn64" -c warn2.c

Output: INFORMATIONAL CCN3743 ./warn2.c:4 64-bit portability:

 possible change of result through conversion of int

 type into unsigned long int type.

Example of possible change of result after conversion from unsigned int

variable to signed long: When an unsigned int variable with values greater than

INT_MAX is converted to signed long, the results depend on whether the application

is executed under ILP32 or under LP64.

In the following example:

v Under ILP32, the value INT_MAX+1 will wrap around and yield -2147483648

(0x80000000)

v Under LP64, the value INT_MAX+1 can be represented by an 8-byte signed long

and will result in the correct value 2147483648 (0x80000000)

 Table 50. Example of possible change of result after conversion from unsigned int variable

to signed long

Source: #include<stdio.h>

#include<limits.h>

void foo(unsigned int i)

{

 long l = i;

 printf("%ld (0x%lx)\n", l, l);

}

void main()

{

 foo(INT_MAX + 1);

}

350 z/OS V1R8.0 XL C/C++ Programming Guide

Table 50. Example of possible change of result after conversion from unsigned int variable

to signed long (continued)

Compiler

options:

cc -Wc,"flag(i),warn64" -c warn3.c

Output: INFORMATIONAL CCN3743 ./warn3.c:5 64-bit portability:

 possible change of result through conversion of

 unsigned int type into long int type.

Example of possible change of result after conversion from signed long long

variable to signed long: When a signed long long variable with values either

greater than UINT_MAX or less than 0 is converted to unsigned long, truncation will

not occur under LP64.

This example will yield:

v 4294967295 (0xffffffff) 0 (0x0) under ILP32

v 18446744073709551615 (0xffffffffffffffff) 4294967296 (0x100000000) under LP64

 Table 51. Example of possible change of result after conversion from signed long long

variable to signed long

Source: #include<stdio.h>

#include<limits.h>

void foo(signed long long ll)

{

 unsigned long l = ll;

 printf("%lu (0x%lx)\n", l, l);

}

void main()

{

 foo(-1);

 foo(UINT_MA X+ 1ll);

}

Compiler

options:

cc -Wc,"flag(i),warn64" -c warn4.c

Output: INFORMATIONAL CCN3743 ./warn4.c:564-bit portability:

 possible change of result through conversion of long

 long int type into unsigned long int type.

Example of possible change of result after conversion from unsigned long

long variable to unsigned long: Under LP64, when an unsigned long long

variable with values greater than UINT_MAX is converted to unsigned long, truncation

will not occur.

 Table 52. Example of possible change of result after conversion from unsigned long long variable to unsigned long

Source: #include<stdio.h>

#include<limits.h>

void foo(unsigned long long ll)

{

 unsigned long l = ll;

 printf("%ld (0x%lx)\n", l, l);

}

void main()

{

 foo(UINT_MAX + 1ull);

}

Chapter 22. The z/OS 64-bit environment 351

Table 52. Example of possible change of result after conversion from unsigned long long variable to unsigned

long (continued)

ILP32 output: 0 (0x0)

Note: The higher order word is truncated.

LP64 output: 4294967296 (0x100000000)

Note: There is no truncation.

Example of possible change of result after conversion from signed long long

variable to signed long: Under LP64, when a signed long long variable with

values less than INT_MIN or greater than INT_MAX is converted to signed long,

truncation does not occur.

 Table 53. Example of possible change of result after conversion from signed long long variable to signed long

Source: #include<stdio.h>

#include<limits.h>

void foo(signed long long ll)

{

 signed long l = ll;

 printf("%ld (0x%lx)\n", l, l);

}

void main()

{

 foo(INT_MIN - 1ll);

 foo(INT_MAX + 1ll);

}

Compiler options: cc -Wc,"flag(i),warn64" -c warn5.c

ILP32 output: INFORMATIONAL CCN3743 ./warn5.c:5 64-bit portability:

 possible change of result through conversion of long

 long int type into long int type.

2147483647 (0x7fffffff)

-2147483648 (0x80000000)

Note: The higher order word is truncated.

LP64 output: INFORMATIONAL CCN3743 ./warn5.c:5 64-bit portability:

 possible change of result through conversion of long

 long int type into long int type.

-2147483649 (0xffffffff7fffffff)

2147483648 (0x80000000)

Note: There is no truncation.

Example of possible change of result after conversion from unsigned long

long variable to signed long: Under LP64, when an usigned long long variable

with values greater than INT_MAX is converted to signed long, truncation does not

occur.

352 z/OS V1R8.0 XL C/C++ Programming Guide

Table 54. Example of possible change of result after conversion from unsigned long long variable to signed long

Source: #include<stdio.h>

#include<limits.h>

void foo(unsigned long long ll)

{

 signed long l = ll;

 printf("%ld (0x%lx)\n", l, l);

}

void main()

{

 foo(INT_MAX + 1ull);

}

Compiler options: cc -Wc,"flag(i),warn64" -c warn6.c

ILP32 output: INFORMATIONAL CCN3743 ./warn6.c:5 64-bit portability: possible

 change of result through conversion of unsigned long long int type

 into long int type.

-2147483648 (0x80000000)

Note: The value INT_MAX+1ull will wrap around.

LP64 output: INFORMATIONAL CCN3743 ./warn6.c:5 64-bit portability: possible

 change of result through conversion of unsigned long long int type

 into long int type.

2147483648 (0x80000000)

Note: The value INT_MAX+1ull can be represented by an 8-byte signed long and will result

in the correct value.

Pointer declarations when 32-bit and 64-bit applications share header

files

In 64-bit data models, pointer sizes are always 64 bits. There is no standard

language syntax for specifying mixed pointer size. However, it might be necessary

to specify the size of a pointer type to help migrate a 32-bit application (for

example, when libraries share a common header between 32-bit and 64-bit

applications).

The z/OS XL C/C++ compiler reserves two pointer size qualifiers:

v __ptr32

v __ptr64

The size qualifier __ptr64 is not currently used; it is reserved so that a program

cannot use it. The size qualifier __ptr32 declares a pointer to be 32 bits in size.

This is ignored under ILP32.

 Table 55. Examples of pointer declarations that can be made under LP64

int * __ptr32 p; /* 32-bit pointer */

�1�, �3�

int * r; /* 64-bit pointer, default to the

 model’s size */

�4�

int * __ptr32 const q; /* 32-bit const pointer */

�1�, �2�, �3�

Chapter 22. The z/OS 64-bit environment 353

Notes:

1. The qualifier qualifies the ’*’ before it.

2. q is a 32-bit constant pointer to an integer.

3. When __ptr32 is used, the program expects that the address of the pointer

variable is less than or equal to 31 bits. You might need to ensure this by calling

a special run-time function, such as the Language Environment run-time

function __malloc31. You can call __malloc31 whenever you use your own

assembler routine to get storage, and want to keep the addresses in structures

and unions to a length of four bytes.

4. If a pointer declaration does not have the size qualifier, it defaults to the size of

the data model.

Potential pointer corruption

When porting a program from ILP32 to LP64, be aware of the following potential

problems:

v An invalid address might be the result of either of the following actions:

– Assigning an integer (4 bytes) or a 4-byte hexadecimal constant to a pointer

type variable (8 bytes)

– Casting a pointer to an integer type

Note: An invalid address causes errors when the pointer is dereferenced.

v If you compare an integer to a pointer, you might get unexpected results.

v Data truncation might result if you convert pointers to signed or unsigned integers

with the expectation that the pointer value will be preserved.

v If return values of functions that return pointers are assigned to an integer type,

those return values will be truncated.

v If code assumes that pointers and integers are the same size (in an arithmetic

context), there will be problems. Pointer arithmetic is often a source of problems

when migrating code. The ISO C and C++ standards dictate that incrementing a

pointer adds the size of the data type to which it points to the pointer value. For

example, if the variable p is a pointer to long, the operation (p+1) increments the

value of p by 4 bytes (in 32-bit mode) or by 8 bytes (in 64-bit mode). Therefore,

casts between long* and int* are problematic because of the size differences

between pointer objects (32 bits versus 64 bits).

Potentially incorrect pointer-to-int and int-to-pointer conversions

Before porting code, It is important to test the ILP32 code to determine if any code

paths would have incorrect results under LP64.

For example:

v When a pointer is explicitly converted to an integer, truncation of the high-order

word occurs.

v When an integer is explicitly converted to a pointer, the pointer might not be

correct, which could result in invalid memory access when the pointer is

dereferenced.

354 z/OS V1R8.0 XL C/C++ Programming Guide

Table 56. Example of source code that explicitly converts an integer to a pointer

Source: 1 #include <stdio.h>

2 #include <stdlib.h>

3 int main()

4 {

5 int i, *p, *q;

6 p = (int*)malloc(sizeof(int));

7 i = (int)p;

8 q = (int*)i;

9 p[0] = 55;

10 printf("p = %p q = %p\n", p, q);

11 printf("p[0] = %d q[0] = %d\n", p[0], q[0]);

12 }

Compiler

options:

c89 -Wc,"flag(i),warn64" -c warn7.c

Output: INFORMATIONAL CCN3744 ./warn7.c:7 64-bit portability:

 possible truncation of pointer through conversion of

 pointer type into int type.

INFORMATIONAL CCN3745 ./warn7.c:8 64-bit portability:

 possible incorrect pointer through conversion of int

 type into pointer.

Notes:

1. Under ILP32, the pointers p and q are pointing to the same memory location.

2. Under LP64, the pointer q is likely pointing to an invalid address, which could

result in a segmentation fault when q is dereferenced.

3. Warning messages are generated for invalid conversions.

Potential truncation problem with a pointer cast conversion

Truncation problems can occur when converting between 64-bit and 32-bit data

objects. Because int and long are both 32 bits under ILP32, a mixed assignment

or conversion between these data types did not represent any problem. However,

under LP64, a mixed assignment or conversion does present problems because

long is larger in size than int. Without an explicit cast, the compiler is unable to

determine whether the narrowing of assignment is intended. If the value l is always

within the range representable by an int, or if the truncation is intended by design,

use an explicit cast to silent the WARN64 message that you will receive for this code.

 Table 57. Example of truncation problem with a pointer cast conversion

Source: void foo(long l)

 {

 int i = l;

 }

Compiler

options:

cc -Wc,"flag(i),warn64" -c warn1.c

Output: WARNING CCN3742 ./warn1.c:3 64-bit portability:

 possible loss of digits through conversion of long

 int type into int type.

Potential loss of data in constant expressions

A loss of data can occur in some constant expressions because of lack of precision.

These types of problems are very hard to find and might be unnoticed. It is possible

to write data-neutral code that can be compiled under both ILP32 and LP64.

Chapter 22. The z/OS 64-bit environment 355

When coding constant expressions, you must be very explicit about specifying types

and use the constant suffixes {u,U,l,L,ll,LL} to specify types, as shown in Table 58.

You could also use casts to specify the type of a constant expression.

It is especially important to code constant expressions carefully when you are

porting programs to a 64-bit environment because integer constants might have

different types when compiled in 64-bit mode. The ISO C and C++ standards state

that the type of an integer constant, depending on its format and suffix, is the first

(that is, smallest) type in the corresponding list that will hold the value. The number

of leading zeros does not influence the type selection.

The following table describes the type of an integer constant according to the ISO

standards.

 Table 58. Type of an integer constant

Suffix Decimal constant Octal or hexadecimal

constant

unsuffixed int

long

unsigned long

int

unsigned int

long

unsigned long

u or U unsigned int

unsigned long

unsigned int

unsigned long

l or L long

unsigned long

long

unsigned long

Both u or U and l or L unsigned long unsigned long

ll or LL long long long long

unsigned long long

Both u or U and ll or LL unsigned long long unsigned long long

Note: Under LP64, a change in the type of a constant in an expression might

cause unexpected results because long is equal to long long. For example,

an unsuffixed hexadecimal constant that can be represented only by an

unsigned long in 32-bit mode can fit within a long in 64-bit mode.

Data alignment problems when structures are shared

Modern processor designs usually require data in memory to be aligned to their

natural boundaries, in order to gain the best possible performance. In most cases,

the compiler ensures proper alignment by inserting padding bytes immediately in

front of the misaligned data. Although the padding bytes do not affect the integrity of

the data, they might result in an unexpected layout, which affects the size of

structures and unions.

Because both pointer size and long size are doubled in 64-bit mode, structures and

unions containing them as members are larger than they are in 32-bit mode.

 Attention: The following example is for illustrative purposes only. Sharing pointers

between 32-bit and 64-bit processes is not recommended and will likely yield

incorrect results.

356 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|
|
|
|

Table 59. An attempt to share pointers between 32-bit and 64-bit processes

Attention:

Source:

#include <stdio.h>

#include <stddef.h>

int main()

{

 struct T {

 char c;

 int *p;

 short s;

 } t;

 printf("sizeof(t) = %d\n", sizeof(t));

 printf("offsetof(t, c) = %d sizeof(c) = %d\n",

 offsetof(struct T, c), sizeof(t.c));

 printf("offsetof(t, p) = %d sizeof(p) = %d\n",

 offsetof(struct T, p), sizeof(t.p));

 printf("offsetof(t, s) = %d sizeof(s) = %d\n",

 offsetof(struct T, s), sizeof(t.s));

}

ILP32 output: sizeof(t) = 12

offsetof(t, c) = 0 sizeof(c) = 1

offsetof(t, p) = 4 sizeof(p) = 4

offsetof(t, s) = 8 sizeof(s) = 2

LP64 output: sizeof(t) = 24

offsetof(t, c) = 0 sizeof(c) = 1

offsetof(t, p) = 8 sizeof(p) = 8

offsetof(t, s) = 16 sizeof(s) = 2

Notes:

1. When the source is compiled and executed under ILP32, the result indicates

that paddings have been inserted before the member p, and after the member

s. Three padding bytes have been inserted before the member p to ensure that

p is aligned to its natural 4-byte boundary. The alignment of the structure itself is

the alignment of its strictest member. In this example, it is a 4-byte alignment

because the member p has the strictest alignment. Two padding bytes are

inserted at the end of the structure to make the total size of the structure a

multiple of 4 bytes. This is required so that if you declare an array of this

structure, each element of the array will be aligned properly.

2. When the source is compiled and executed under LP64, the size of the

structure doubles because additional padding is required to force the member p

to fall on a natural alignment boundary of 8-bytes.

Figure 93 on page 358 illustrates how the compiler treats the source code shown in

Table 59 under ILP32 and LP64. Because the pointer is a different size in each

environment, they are aligned on different boundaries. This means that if the code

is compiled under both ILP32 and LP64, there are likely to be alignment problems.

Figure 94 on page 362 illustrates the solution, which is to define pad members of

type character that prevent the possibility of data misalignment. Table 62 on page

361 shows the necessary modifications to the code in Table 59.

If the structure in Table 59 is shared or exchanged among 32-bit and 64-bit

processes, the data fields (and padding) of one environment will not match the

expectations of the other, as shown in the following figure:

Chapter 22. The z/OS 64-bit environment 357

Portability issues with unsuffixed numbers

When porting code, be aware that:

v Unsuffixed constants are more likely to become 8 bytes long if they are in

hexadecimal.

v All constants that can impact any constant assignment must be explicitly suffixed.

Example of unexpected behavior resulting from use of

unsuffixed numbers

This causes some operations, such as one that compares sizeof(4294967295) to

another value, to return 8. If you add the suffix U to the number (4294967295U), the

compiler can parse it as unsigned int.

 Table 60. Example of unexpected behavior resulting from use of unsuffixed numbers

Source: #include <stdio.h>

#include <limits.h>

void main(void) {

 long l = LONG_MAX;

 printf("size(2147483647) = %d\n",sizeof(2147483647));

 printf("size(2147483648) = %d\n",sizeof(2147483648));

 printf("size(4294967295U) = %d\n",sizeof(4294967295U));

 printf("size(-1) = %d\n",sizeof(-1));

 printf("size(-1L) = %d\n",sizeof(-1L));

 printf("LONG_MAX = %d\n",l);

}

Member s

Member c Member s

Member c

Compiler
inserted
padding

Compiler
inserted
padding

Member p

Member p

00

00

04 08

08 16

4-byte

8-byte 8-byte 8-byte

4-byte 4-byte

Boundary

Boundary

Struct T

Struct T

ILP32

LP64

Compiler-inserted padding Compiler-inserted padding

Figure 93. Example of potential alignment problems when a struct is shared or exchanged among 32-bit and 64-bit

processes.

358 z/OS V1R8.0 XL C/C++ Programming Guide

|

Table 60. Example of unexpected behavior resulting from use of unsuffixed numbers (continued)

ILP32 output: size(2147483647) = 4

size(2147483648) = 4

size(4294967295U) = 4

size(-1) = 4

size(-1L) = 4

LONG_MAX = 2147483647

LP64 output: size(2147483647) = 4

size(2147483648) = 8

size(4294967295U) = 4

size(-1) = 4

size(-1L) = 8

LONG_MAX = -1�1�

Example of how a suffix causes the compiler to parse the

number differently under ILP32 than under LP64

Example: A number like 4294967295 (UINT_MAX), when parsed by the compiler, will

be

v An unsigned long under ILP32

v A signed long under LP64

Using a LONG_MAX macro in a printf subroutine

The printf subroutine format string for a 64-bit integer is different than the string

used for a 32-bit integer. Programs that do these conversions must use the proper

format specifier.

Under LP64, you must also consider the maximum number of digits of the long and

unsigned long types. The ULONG_MAX is twenty digits long, and the LONG_MAX is

nineteen digits.

In the following example, the code assumes that the long type is the same size as

the int type (as it would be under ILP32). That is, %d is used instead of %ld.

 Table 61. Example of using LONG_MAX macros in a printf subroutine

Source: #include <stdio.h>

int main(void) {

 printf("LONG_MAX(d) = %d\n",LONG_MAX);

 printf("LONG_MAX(x) = %x\n",LONG_MAX);

 printf("LONG_MAX(lu) = %lu\n",LONG_MAX);

 printf("LONG_MAX(lx) = %lx\n",LONG_MAX);

}

LONG_MAX value: 9,223,372,036,854,775,807

Output: LONG_MAX(d) = -1

LONG_MAX(x) = ffffffff

LONG_MAX(lu) = 9223372036854775807

LONG_MAX(lx) = 7fffffffffffffff

Notes:

1. Under LP64:

v %ld must be used

v %x will give incorrect results and must be replaced by %p or %lx

2. A similar example would produce the same results for an unsigned long with a

ULONG_MAX value of 18,446,744,073,709,551,615.

Chapter 22. The z/OS 64-bit environment 359

Programming for portability between ILP32 and LP64

When you want to program for portability between the ILP32 and LP64

environments, you can use the following strategies:

v Header files to provide type definitions

v Suffixes and explicit types to prevent unexpected behavior

v Defining pad members to avoid data alignment problems

v Prototypes to avoid debugging problems

v Conditional compiler directive for preprocessor macro selection

v Converters

v Locales

Using header files to provide type definitions

The header file inttypes.h provides type definitions for integer types that are

guaranteed to have a specific size (for example, int32_t and int64_t, and their

unsigned variations). Consider using those type definitions if your program code

relies on types with specific sizes.

There are many ways to use headers to handle code that is portable between

ILP32 and LP64. You can minimize the amount of conditional compilation code and

avoid having totally different sections of code for a ILP32 and LP64 structure

definitions if you adopt a coding convention that suits your environment.

If you provide a library to your application users and ship header files that define

the application programming interface of the library, consider shipping a single set

of headers that can support both 32–bit and 64-bit versions of your library. You can

use the type definitions in inttypes.h. For example, if you are currently shipping

32-bit versions of your header files, you could:

v Replace all fields of type long with type int32_t (or another 32-bit type)

v Similarly replace all fields for the unsigned variation

v If you cannot let a 64-bit application use a 64-bit pointer for a field, use the

__ptr32 qualifier.

Using suffixes and explicit types to prevent unexpected behavior

The C language limit (in limits.h) is different under LP64 than it is under ILP32.

You can prevent unexpected behavior by an application by using suffixes and

explicit types with all numbers.

Examples:

#ifdef _LP64

#define LONG_MAX (9223372036854775807L)

#define LONG_MIN (-LONG_MAX - 1)

#define ULONG_MAX (18446744073709551615U)

#else

#define LONG_MAX INT_MAX

#define LONG_MIN INT_MIN

#define ULONG_MAX (UINT_MAX)

#endif /* _LP64 */

Notes:

1. The output for LONG_MAX is not really -1. The reason for the -1 is that:

v The printf subroutine handles it as an integer

v (LONG_MAX == (int)LONG_MAX) returns a negative value

360 z/OS V1R8.0 XL C/C++ Programming Guide

Defining pad members to avoid data alignment problems

If you want to allow the structure to be shared, you might be able to reorder the

fields in the data structure to get the alignments in both 32-bit and 64-bit

environments to match (as shown in Table 48 on page 346), depending on the data

types used in the structure and the way in which the structure as a whole is used

(for example, whether the structure is used as a member of another structure or as

an array).

If you are unable to reorder the members of a structure, or if reordering alone

cannot provide correct alignment, you can define paddings that force the members

of the structure to fall on their natural boundaries regardless of whether it is

compiled under ILP32 or LP64. A conditional compilation section is required

whenever a structure uses data types that have different sizes in 32-bit and 64-bit

environments.

The following example shows how the source code in Table 59 on page 357 can be

modified to avoid the data alignment problem.

 Table 62. Example of source code that successfully shares pointers between ILP32 and

LP64 programs

Source: struct T {

 char c;

 short s;

 #if !defined(_LP64)

 char pad1[4];

 #endif

 int *p;

 #if !defined(_LP64)

 char pad2[4];

 #endif

} t;

ILP32/ LP64 size and member

layout:

sizeof(t) = 16

offsetof(t, c) = 0 sizeof(c) = 1

offsetof(t, s) = 2 sizeof(s) = 2

offsetof(t, p) = 8 sizeof(p) = 4

The following figure shows the member layout of the structure with user-defined

padding.

Chapter 22. The z/OS 64-bit environment 361

Note: When inserting paddings into structures, use an array of characters. The

natural alignment of a character is 1-byte, which means that it can reside

anywhere in memory.

Using prototypes to avoid debugging problems

You can avoid complex debugging problems by ensuring that all functions are

prototyped.

The C language provides a default prototype. If a function is not prototyped, it

defaults to a function which returns an integer and has no information about the

parameters.

The C++ language does not provide a default and always requires a prototype.

However, C++ has an implicit integer return type extension for legacy code.

A common problem is that the default return type of int might not remain the same

size as an associated pointer. For example, the function malloc() can cause

truncation when an unprototyped function returns a pointer. This is because an

unprototyped function is assumed to return an int (4 bytes).

Member c

Member c

Compiler-inserted
padding

Compiler-inserted
padding

Compiler-inserted
padding

Member s Member pMember pad1 Member pad2

Member p

00

00

04 08 12

08

4-byte

8-byte 8-byte

4-byte 4-byte 4-byte

Boundary

Boundary

Struct T

Struct T

ILP32

LP64

Member s

Figure 94. Example of user-defined data padding for a structure that is shared or exchanged among 32-bit and 64-bit

processes.

362 z/OS V1R8.0 XL C/C++ Programming Guide

Using a conditional compiler directive for preprocessor macro

selection

When the compiler is invoked with the LP64 option, the preprocessor macro _LP64 is

defined. When the compiler is invoked with the ILP32 option, the macro _ILP32 is

defined.

You can use a conditional compiler directive such as #if defined _LP64 or #ifdef

_LP64 to select lines of code (such as printf statements) that are appropriate for

the data model that is invoked.

Using converters under ILP32 or LP64

Both table-driven converters (such as EDCGNXLT proc) and indirect UCS-2

converters (such as the uconvdefUNIX System Services utility) function the same in

both 32-bit and 64–bit environments.

The naming convention requires that dataset member names must begin with CEQ.

Notes:

1. GENXLT converters are shipped only in datasets.

2. The converter objects that are shipped with z/OS V1R8 allow existing

applications to work at a basic level only. You might need to build customized

objects.

Using locales under ILP32 or LP64

The locale objects that are shipped with z/OS V1R8 allow existing applications to

work at a basic level only. You might need to build customized objects.

Customized 64-bit locales

If you need to create 64-bit locales, you must use the UNIX System Services

localedef utility with the new -6 compiler option.

v If the locales are dataset members, they must have the CEQ prefix.

v If the locales are zFS-resident or HFS-resident, they must have the .lp64 suffix.

Note: There is no batch or TSO LOCALDEF support for 64-bit locales.

Old SAA locales

Old SAA locales (such as EDC$FRAN) are not supported by the LP64 model.

Chapter 22. The z/OS 64-bit environment 363

|

364 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 23. Using threads in z/OS UNIX System Services

applications

A thread is a single flow of control within a process. The following section describes

some of the advantages of using multiple threads within a single process, and

functions that can be used to maintain this environment.

Models and requirements

Threads are efficient in applications that allow them to take advantage of any

underlying parallelism available in the host environment. This underlying parallelism

in the host can be exploited either by forking a process and creating a new address

space, or by using multiple threads within a single process. There are advantages

and disadvantages to both techniques, but it primarily comes down to a

compromise between the efficiency of using multiple threads versus the security of

working in separate address spaces. The POSIX(ON) run-time option must be

specified to use threads.

Functions

The following table lists the functions provided to implement a multi-threaded

application:

 Table 63. Functions used in creating multi-threaded applications

Function Purpose

pthread_create() Create a thread

pthread_join() Wait for thread termination

pthread_exit() Terminate a thread normally

pthread_detach() Detach a thread

pthread_self() Get your thread ID

pthread_equal() Compare thread IDs

pthread_once() Run a function once per process

pthread_yield() Yield the processor

Creating a thread

To use a thread you must first create a thread attribute object with the

pthread_attr_init() function. A thread attribute object defines the modifiable

characteristics that a thread may have. Refer to the description of

pthead_attr_init() in z/OS XL C/C++ Run-Time Library Reference for a list of the

attributes and their default values. When the thread attribute object has been

created, you may use the following functions to change the default attributes.

 Table 64. Functions to change default attributes

Function Purpose

pthread_attr_init() Initialize a thread attribute object

pthread_attr_destroy() Delete a thread attribute object

pthread_attr_getstacksize() Gets the stacksize for thread attribute object

pthread_attr_setstacksize() Sets the stacksize for thread attribute object

© Copyright IBM Corp. 1996, 2006 365

Table 64. Functions to change default attributes (continued)

Function Purpose

pthread_attr_getdetachstate() Returns current value of detachstate for

thread attribute object

pthread_attr_setdetachstate() Alters the current detachstate of thread

attribute object

pthread_attr_getweight_np() Obtains the current weight of thread setting

pthread_attr_setweight_np() Alters the current weight of thread setting

pthread_attr_getsynctype_np() Returns the current synctype setting of

thread attribute object

pthread_attr_setsynctype_np() Alters the synctype setting of thread attribute

object

The attribute object is only used when the thread is created. You can reuse it to

create other threads with the same attributes, or you can modify it to create threads

with other attributes. You can delete the attribute object with the

pthread_attr_destroy() function.

After you create the thread attribute object, you can then create the thread with the

pthread_create() function.

When a daughter thread is created, the function specified on the pthread_create()

as the start routine begins to execute concurrently with the thread that issued the

pthread_create(). It may use the pthread_self() function to determine its thread

ID. The daughter thread will continue to execute until a pthread_exit() is issued, or

the start routine ends. The function that issued the pthread_create() resumes as

soon as the daughter thread is created. The daughter thread ID is returned on a

successful pthread_create(). This thread ID, for example, can be used to send a

signal to the daughter thread using pthread_kill() or it can be used in

pthread_join() to cause the initiating thread to wait for the daughter thread to end.

The following functions can be used to control the behavior of the individual threads

in a multi-threaded application.

 Table 65. Functions used to control individual threads in a multi-threaded environment

Function Purpose

pthread_equal() Compares two thread IDs

pthread_yield() Allows threads to give up control

Refer to z/OS XL C/C++ Run-Time Library Reference for more information on these

functions.

Synchronization primitives

This section covers the control of multiple threads that may share resources. In

order to maintain the integrity of these resources, a method must exist for the

threads to communicate their use of, or need to use, a resource. The threads can

be within a common process or in different processes.

366 z/OS V1R8.0 XL C/C++ Programming Guide

Models

Mutexes, condition variables, and read-write locks are used to communicate

between threads. These constructs may be used to synchronize the threads

themselves, or they can also be used to serialize access to common data objects

shared by the threads.

v The mutex, which is the simple type of lock, is exclusive. If a thread has a mutex

locked, the next thread that tries to acquire the same mutex is put in a wait state.

This is beneficial when you want to serialize access to a resource. This might

cause contention however if several threads are waiting for a thread to unlock a

mutex. Therefore, this form of locking is used more for short durations. If the

mutex is a shared mutex, it must be obtained in shared memory accessable

among the cooperating processes.

A thread in mutex wait will not be interrupted by a signal.

v A condition variable provides a mechanism by which a thread can suspend

execution when it finds some condition untrue, and wait until another thread

makes the condition true. For example, threads could use a condition variable to

insure that only one thread at a time had write access to a data set.

Threads in condition wait can be interrupted by signals.

v A read-write lock can allow many threads to have simultaneous read-only access

to data while allowing only one thread at a time to have write access. The

read-write lock must be allocated in memory that is writable. If the read-write lock

is a shared read-write lock, it must be obtained in shared memory accessable

among the cooperating processes.

Functions

The following functions allow for synchronization between threads:

 Table 66. Functions that allow for synchronization between threads

Function Purpose

pthread_mutex_init() Initialize a Mutex

pthread_mutex_destroy() Destroy a Mutex

pthread_mutexattr_init() Initialize Default Attribute Object for a Mutex

pthread_mutexattr_destroy() Destroy Attribute Object for a Mutex

pthread_mutexattr_getkind_np() Get Kind Attribute for a Mutex

pthread_mutexattr_setkind_np() Set Kind Attribute for a Mutex

pthread_mutexattr_gettype() Get Type Attribute for a Mutex

pthread_mutexattr_settype() Set Type Attribute for a Mutex

pthread_mutexattr_getpshared() Get Process-shared Attribute for a Mutex

pthread_mutexattr_setpshared() Set Process-shared Attribute for a Mutex

pthread_mutex_lock() Acquire a Mutex Lock

pthread_mutex_unlock() Release a Mutex Lock

pthread_mutex_trylock() Allows lock to be tested

pthread_cond_init() Initialize a Condition Variable

pthread_cond_destroy() Destroy a Condition Variable

pthread_condattr_init() Initialize Default Attribute Object

for a Condition Variable

pthread_condattr_destroy() Destroy Attributes Object for a Condition Variable

pthread_condattr_getkind_np() Get Attribute for Condition Variable object

Chapter 23. Using threads in z/OS UNIX System Services applications 367

Table 66. Functions that allow for synchronization between threads (continued)

Function Purpose

pthread_condattr_setkind_np() Set Attribute for Condition Variable object

pthread_condattr_getpshared() Get the Process-shared Condition Variable Attribute

pthread_condattr_setpshared() Set the Process-shared Condition Variable Attribute

pthread_cond_wait() Wait for a Condition Variable

pthread_cond_timedwait() Timed wait for a Condition Variable

pthread_cond_signal() Signal a Condition Variable

pthread_cond_broadcast() Broadcast a Condition Variable

pthread_rwlock_init() Initialize a Read-Write Lock

pthread_rwlock_destroy() Destroy a Read-Write Lock

pthread_rwlock_rdlock() Wait for a Read Lock

pthread_rwlock_tryrdlock() Allows Read Lock to be Tested

pthread_rwlock_trywrlock() Allows Read-Write Lock to be Tested

pthread_rwlock_unlock() Release a Read-Write Lock

pthread_rwlock_wrlock() Wait for a Read-Write Lock

pthread_rwlockattr_init() Initialize Default Attribute Object

for a Read-Write Lock

pthread_rwlockattr_destroy() Destroy Attribute Object for a Read-Write Lock

pthread_rwlockattr_getpshared() Get Process-shared Attribute

for a Read-Write Lock

pthread_rwlockattr_setpshared() Set Process-shared Attribute

for a Read-Write Lock

Creating a mutex

To use the mutex lock you must first create a mutex attribute object with the

pthread_mutexattr_init() function. A mutex attribute object defines the modifiable

characteristics that a mutex may have. Refer to the description of

pthread_mutexattr_init() in z/OS XL C/C++ Run-Time Library Reference for a list

of these attributes and their defaults.

After the mutex attribute object has been created, you can use the following

functions to change the default attributes.

v pthread_mutexattr_getkind_np()

v pthread_mutexattr_setkind_np()

v pthread_mutexattr_gettype()

v pthread_mutexattr_settype()

v pthread_mutexattr_getpshared()

v pthread_mutexattr_setpshared()

The mutex attribute object is used only when creating the mutex. It can be used to

create other mutexes with the same attributes or modified to create mutexes with

different attributes. You can delete a mutex attribute object with the

pthread_mutexattr_destroy() function.

After the mutex attribute object has been created, the mutex can be created with

the pthread_mutex_init() function.

While using mutexes as the locking device, the following functions can be used:

368 z/OS V1R8.0 XL C/C++ Programming Guide

pthread_mutex_lock()

 pthread_mutex_unlock()

 pthread_mutex_trylock()

To remove the mutex, use the pthread_mutex_destroy() function.

Creating a condition variable

Before creating a condition variable, you need to create a mutex (as shown above),

then you must use the pthread_condattr_init() function to create a condition

variable attribute object. This attribute object, like the mutex attribute object, defines

the modifiable characteristics that a condition variable may have. Refer to the

description of pthread_condattr_init() in z/OS XL C/C++ Run-Time Library

Reference for a list of these attributes and their defaults.

After the condition variable attribute object has been created, you may use the

following functions to change the default attributes:

 pthread_condattr_getkind_np()

 pthread_condattr_setkind_np()

 pthread_condattr_getpshared()

 pthread_condattr_setpshared()

The condition variable attribute object is used only when creating the condition

variable. It can be used to create other condition variables with the same attributes

or modified to create condition variables with different attributes. You can delete a

condition variable attribute object with the pthread_condattr_destroy() function.

After a condition variable attribute object has been created, the condition variable

itself can be created with the pthread_cond_init() function.

Condition variables can then be used as a synchronization primitive using the

following functions:

 pthread_cond_wait()

 pthread_cond_timedwait()

 pthread_cond_signal()

 pthread_cond_broadcast()

The condition variable can be removed with the pthread_cond_destroy() function.

Creating a read-write lock

To use a read-write lock you must first create a read-write attribute object with the

pthread_rwlockattr_init() function. A read-write attribute object defines the

modifiable characteristics that a read-write lock may have. Refer to the description

of pthread_rwlockattr_init() in z/OS XL C/C++ Run-Time Library Reference for a

list of these attributes and their defaults.

After the read-write lock attribute object has been created, you can use the

following functions to change the default attributes.

v pthread_rwlockattr_getpshared()

v pthread_rwlockattr_setpshared()

The read-write lock attribute object is used only when creating the read-write lock. It

can be used to create other read-write locks with the same attributes or modified to

Chapter 23. Using threads in z/OS UNIX System Services applications 369

create read-write locks with different attributes. You can delete a read-write attribute

object with the pthread_rwlockattr_destroy() function.

After the read-write attribute has been created, the read-write lock can be created

with the pthread_rwlock_init() function.

While using read-write locks as the locking device, the following functions can be

used:

v pthread_rwlock_rdlock()

v pthread_rwlock_tryrdlock()

v pthread_rwlock_wrlock()

v pthread_rwlock_trywrlock()

v pthread_rwlock_unlock()

To remove the read-write lock, use the pthread_rwlock_destroy() function.

Thread-specific data

While all threads can access the same memory, it is sometimes desirable to have

data that is (logically) local to a specific thread. The key/value mechanism provides

for global (process-wide) keys with value bindings that are unique to a thread.

You can also use the pthread_tag_np() function to set and query 65 bytes of thread

tag data associated with the caller’s thread.

Model

The key/value mechanism associates a data key with each data item. When the

association is made, the key identifies the data item with a particular thread. This

data key is a transparent data object of type pthread_key_t. The contents of this

key are not exposed to the user.

The user gets a key by issuing the pthread_key_create() function. One of the

arguments on the pthread_key_create() function is a pointer to a local variable of

type pthread_key_t. This variable is then used with the pthread_setspecific()

function to establish a unique key value.

pthread_key_create() creates a unique identifier (a key) that is visible to all of the

threads in a process. This data key is returned to the caller of

pthread_key_create(). Threads can associate a thread unique data item with this

key using the pthread_setspecific() call. A thread can get its unique data value

for a key using the pthread_getspecific() call. In addition, a key can have an

optional ″destructor″ routine associated with it. This routine is executed during

thread termination and is passed the value of the key for the thread being

terminated. A typical use of a key and destructor is to have storage obtained by a

thread using malloc() and returned within the destructor at thread termination by

using free().

pthread_key_delete() deletes a thread-specific data key. Once a key has been

deleted, it may not be passed to pthread_getspecific() or pthread_setspecific().

Any destructor function associated with the key when it was created will no longer

be called. The application must perform any cleanup needed for values associated

with the key.

370 z/OS V1R8.0 XL C/C++ Programming Guide

Functions

The following functions are used with thread-specific data:

 Table 67. Functions used with thread-specific data

Function Purpose

pthread_key_create() Create a thread-specific data key

pthread_key_delete() Delete a thread-specific data key

pthread_getspecific() Retrieve the value associated

with a thread-specific key

pthread_setspecific() Associate a value with a

thread-specific key

pthread_tag_np() Set and query the contents of the calling thread’s

tag data

Creating thread-specific data

The following example uses thread-specific data to insure that storage acquired by

a specific thread is freed when the thread ends.

Chapter 23. Using threads in z/OS UNIX System Services applications 371

CCNGTH1:

Signals

Each thread has an associated signal mask. The signal mask contains a flag for

each signal defined by the system. The flag determines which signals are to be

blocked from being delivered to a particular thread.

Unlike the signal mask, there is one signal action per signal for all of the threads in

the process. Some signal functions work on the process level, having an impact on

multiple threads, while others work on the thread level, and only affect one

particular thread. For example, the function kill() operates at the process level,

whereas the functions pthread_kill() and sigwait() operate at the thread level.

The following are some other signal functions that operate on the process level and

can influence multiple threads:

 alarm()

 bsd_signal()

 kill()

 #define _OPEN_THREADS

 #include <stdio.h>

 #include <pthread.h>

 pthread_key_t mykey; /* A place to get the key */

 void mydestruct(void *value); /* My destructor routine */

 main()

 {

 char * thddataptr;

 /* Create a key, getting back the key from pthread_key_create(),

 and associate a function to be executed at thread termination

 for this key

 */

 (void)pthread_key_create(&mykey,&mydestruct);

 /*

 Obtain some storage which this thread will manage (remember,

 the main is also a thread), which we want freed by our

 destructor upon thread termination. Associate the storage

 pointer with the key using pthread_setspecific.

 */

 thddataptr = (char *) malloc(100);

 (void)pthread_setspecific(mykey,thddataptr);

 /* the body of the function

 /* now, the thread exits, causing the thread termination

 key data destructor to be executed.

 */

 pthread_exit((void *)0);

 }

 /*

 The key data destructor function

*/

 void mydestruct(void * value) {

 /* value is the value in the key/value binding that is unique

 to the thread being terminated. Thus, in the example,

 it represents the pointer to the storage needing freed.

 */

 free(value);

 }

Figure 95. Referring to thread-specific data

372 z/OS V1R8.0 XL C/C++ Programming Guide

killpg()

 raise()

 sigaction()

 siginterrupt()

 signal()

 sigset()

Generating a signal

A signal can be generated explicitly with the raise(), kill(), killpg(), or

pthread_kill() functions or implicitly with functions such as alarm() or by the

system when certain events occur. In all cases, the signal will be directed to a

specific thread running in a process.

The two primary functions for controlling signals are sigaction() and

sigprocmask(). sigaction() also includes bsd_signal(), signal(), and sigset().

sigaction()

sigaction() specifies the action when a signal is processed by the system. This

function is process-scoped instead of thread-specific. When a signal is generated

for a process, the state of each thread within that process determines which thread

is affected.

The three types of signal actions are:

catcher

Specifies the address of a function that will get control when the signal is

delivered

SIG_DFL

Specifies that the system should perform default processing when this

signal type is generated

SIG_IGN

Specifies that the system should ignore all signals of this type.

Attention: If a signal whose default action is to terminate is delivered to a thread

running in a process where there are multiple threads running, and no

signal catcher is designated for the signal, the entire process is

terminated. You can avoid this by blocking each of the terminating

signals, or by establishing a signal catcher for each of them.

In a multi-threaded application, when a signal is generated by a function or action

that is not thread specific, and the process has some threads set up for signals and

some threads that are not set up for signals, then the kernel’s signal processing

determines which thread has the most interest in the signal.

The following is a list of signal interest rules in their order of priority:

1. When threads are found in a sigwait() for this signal type, the signal is

delivered to the first thread found in a sigwait().

2. When all threads are blocking this signal type, the signal is left pending in the

kernel at the process level. The sigpending function moves blocked pending

signals at the process level to the thread level.

3. When all of the following are true:

v One or more threads are set up for signals

v All threads set up for signals have the signal blocked

Chapter 23. Using threads in z/OS UNIX System Services applications 373

v A thread not set up for signals has not blocked the signal

The signal is left pending in the kernel on the first thread set up for signals. The

signal remains pending on that thread until the thread unblocks the signal.

4. When the signal action is to catch, the signal is delivered to one of the threads

that has the signal unblocked.

sigprocmask()

sigprocmask() specifies a way to control which set of signals interrupt a specific

thread. Because sigprocmask() is thread-scoped, it blocks the signal for only the

thread that issues the function.

Thread cancellation

When multiple threads are running in a process, thread cancellation permits one

thread to cancel another thread in that process. This is done with the

pthread_cancel() function, which causes the system to generate a cancel interrupt

and direct it to the thread specified on the pthread_cancel(). Each thread can

control how the system generates this cancel interrupt by altering the interrupt state

and type.

A thread may have the following interrupt states, in descending order of control:

disabled

For short code sequences, the entire code sequence can be disabled to

prevent cancel interrupts. The pthread_setintr() and

pthread_setcancelstate() functions enable or disable cancel interrupts in

this manner.

controlled

For larger code sequences where you want some control over the interrupts

but cannot be entirely disabled, set the interrupt type to controlled/deferred

and the interrupt state to enabled. The pthread_setintrtype() and

pthread_setcanceltype() functions allow for this type of managed interrupt

delivery by introducing the concept of cancellation points.

 Cancellation points consist of calls to a limited set of library functions,

documented below.

 The user program can implicitly or explicitly solicit interrupts by invoking one

of the library functions in the set of cancellation points, thus allowing the

user to control the points within their application where a cancel may occur.

asynchronous

For code sequences where you do not need any control over the interrupt,

set pthread_setintr()/pthread_setcancelstate() to enable and

pthread_setintrtype()/pthread_setcanceltype() to asynchronous. This

will allow cancel interrupts to occur at any point within your program.

For example, if you have a critical code section (a sequence of code that needs to

complete), you would turn cancel off or prevent the sequence from being

interrupted. If the code is relatively long, consider running using the control

interrupt and as long as the critical code section doesn’t contain any of the

functions that are considered cancellation points, it will not be unexpectedly

canceled.

For C++, destructors for automatic objects on the stack are run when a thread is

cancelled. The stack is unwound and the destructors are run in reverse order.

374 z/OS V1R8.0 XL C/C++ Programming Guide

Cancellation Points

The following library functions and any of their callers will introduce cancellation

points into a thread’s execution:

 accept() aio_suspend() close() connect()

creat() fcntl() fsync() getmsg()

getpmsg() lockf() msync() open()

pause() poll() pread() putpmsg()

pwrite() read() readv() recv()

recvfrom() recvmsg() select() send()

sendmsg() sendto() sigpause() sigsuspend()

sigtimedwait() sigwait() tcdrain() usleep()

wait() waitid() waitpid() write()

writev()

Functions

 Table 68. Functions used to control cancellability

Function Purpose

pthread_cancel() Cancel a thread

pthread_setintr() Set thread cancellability state

pthread_setintrtype() Set thread cancellability type

pthread_testintr() Establish a cancellabilty point

pthread_setcancelstate() Set thread cancellability state

pthread_setcanceltype() Set thread cancellability type

pthread_testcancel() Establish a cancellability point

Cancelling a thread

Three possible scenarios may cancel a thread, one for each of the interrupt states

of the thread being canceled.

v One thread issues pthread_cancel() to another thread whose cancellability state

is enabled and controlled. In this case the thread being canceled continues to run

until it reaches an appropriate cancellation point. When the thread is eventually

cancelled, just prior to termination of the thread, any cleanup handlers which

have been pushed and not yet popped will be executed. Then if the thread has

any thread-specific data, the destructor functions associated with this data will be

executed.

v One thread issues pthread_cancel() to another thread whose interruption state

is enabled and asynchronous. In this case the thread being canceled is

terminated immediately, after any cleanup handlers and thread-specific data

destructor functions are executed, as in the first scenario.

v One thread issues pthread_cancel() to another thread whose interruption state

is disabled. In this case the cancel request is ignored and the thread being

canceled continues to run normally.

In the first two interrupt states above, the caller of pthread_cancel() may get

control back before the thread is actually canceled.

Cleanup for threads

Cleanup handlers are routines written by the user that include any special

processing the user finds necessary for termination of a thread. As the user’s

Chapter 23. Using threads in z/OS UNIX System Services applications 375

routine executes, it pushes cleanup handlers on to a stack. As the thread continues

to run and the routine progresses, these cleanup handlers can be taken off of the

stack by the user’s routine.

A list or stack of cleanup handlers is maintained for each thread. When the thread

ends, all pushed but not yet popped cleanup routines are popped from the cleanup

stack and executed in last-in-first-out (LIFO) order. This occurs when the thread:

v Calls pthread_exit()

v Does a return from or reaches the end of the start routine (that gets controls as a

result of a pthread_create())

v Is canceled because of a pthread_cancel().

The first thread in a process to call pthread_create() becomes the initial

pthread-creating task (IPT). When exiting back to the operating system from the

IPT, the caller may receive an A03 abend if any pthread_created tasks are still

running. These tasks may still be running even if the IPT has called pthread_join()

for all the threads that it created. To avoid the A03 abend, the IPT should call _exit()

when it is ready to return to the operating system. _exit() ends the IPT and all of its

pthread_created subtasks without causing an A03 abend to occur.

Functions

 Table 69. Functions used for cleanup purposes

Function Purpose

pthread_cleanup_push() Establish a cleanup handler

pthread_cleanup_pop() Remove a cleanup

handler

Behaviors and restrictions in z/OS UNIX System Services applications

The following are implementation-specified behaviors and restrictions that apply to

the XL C/C++ library functions when running a multi-threaded z/OS UNIX System

Services application.

Using threads with MVS files

MVS files that are opened by data-set names or ddnames are thread-specific in the

following ways:

Note: These restrictions specifically do not apply to Hierarchical File System (HFS)

files.

All opens and closes by the C library that result in calls to an underlying access

method for a given MVS file must occur on the same thread. Apart from this

requirement, file pointers can be freely used for any type of file access (reading,

writing, repositioning, and so forth) from any thread. Therefore, the following specific

functions are prohibited from any thread except the owning thread (the one that

does the initial fopen()) of the file:

v fclose()

v freopen()

v rewind()

376 z/OS V1R8.0 XL C/C++ Programming Guide

Multivolume data sets and files that are part of a concatenated ddname are further

restricted in multithreaded applications. All I/O operations are restricted to the

thread on which the file is opened.

The above thread affinity restrictions on the use of MVS files apply to hiperspace

memory files but not to regular memory files.

When standard streams are directed to MVS files, they are governed by the above

restrictions. Standard streams are directed to MVS files in one of two ways:

v By default when a main() program is run from the TSO ready prompt or by a

JCL EXEC PGM= statement, that is, whenever it is not initiated by the exec()

function. This is regardless of whether you are running with POSIX(ON) or

POSIX(OFF). In these cases, the owning thread is the initial processing thread

(IPT), the thread on which main() is executed.

v By explicit action when the user redirects the streams by using command line

redirection, fopen(), or freopen(). The thread that is redirected (the IPT, if you

are using command line redirection) becomes the owning thread of the particular

standard stream. The usual MVS file thread affinity restrictions outlined above

apply until the end of program or until the stream is redirected to the HFS.

Any operation that violates these restrictions causes SIGIOERR to be raised and

errno to be set with the following associated message:

EDC5024I: An attempt was made to close a file that had been

opened on another thread.

All MVS files opened from a given thread and still open when the thread is

terminated are closed automatically by the library during thread termination.

Having more than one writer use separate file pointers to a single data set or

ddname is prohibited as always, regardless of whether the file pointers are used

from multiple threads or a single thread.

Multithreaded I/O

The getc(), getchar(), putc(), and putchar() functions have two versions, one

that is defined in the header file, stdio.h, which is a macro and the other which is

an actual library routine. The macros have better performance than their respective

function versions, but these macros are not thread safe, so in a multithreaded

application where _OPEN_THREADS feature test macro is defined, the macro version of

these functions are not exposed. Instead, the library functions are used. This is

done to ensure thread safety while multiple threads are executing.

The getc_unlocked(), getchar_unlocked(), putc_unlocked(), and

putchar_unlocked() functions and macros are functionally equivalent to the getc(),

getchar(), putc(), and putchar() functions and macros. These functions and

macros can safely be used in a multi-thread environment if and only if called from a

thread that owns the FILE* object, such as after a successful call to flockfile() or

ftrylockfile().

Use of the getc_unlocked(), getchar_unlocked(), putc_unlocked(), or

putchar_unlocked() functions can have unpredictable behavior when used on a

thread that has not locked the file.

It is the application’s responsibility to prevent deadlocks or looping. For example,

deadlock or looping may occur if a FILE* object is closed, or a thread is terminated,

before relinquishing all locked FILE* objects

Chapter 23. Using threads in z/OS UNIX System Services applications 377

|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

Thread-scoped functions

Thread-scoped functions are functions that execute independently on each thread

without sharing intermediate state information across threads. For example,

strtok() preserves pointers to tokens independently on each thread, regardless of

the fact that multiple threads may be examining the same string in a strtok()

operation. Some examples of thread-scoped functions are:

v strtok()

v rand(), srand()

v mblen(), mbtowc()

v strerror()

v asctime(), ctime(), gmtime(), localtime()

v clock()

The following are examples of process-scoped functions, which means that a call to

these functions on one thread influences the results of calls to the same function on

another thread. For example, tmpnam() is required to return a unique name for

every invocation during the life of the process, regardless of which thread issues

the call.

v tmpnam()

v getenv()

v setenv()

v clearenv()

v putenv()

Unsafe thread functions

The following functions are not thread-safe. In a multithreaded application,

therefore, they should only be used before the first invocation of pthread_create().

v setlocale() - (returns NULL if issued after pthread_create())

v tzset()

Fetched functions and writable statics

Fetched functions are recorded globally at the process level. Therefore a function

fetched from one thread can be executed from any thread.

Module boundary crossings are thread-scoped. Writable statics have a scope

between process and thread. They are process-scoped except that module

crossings are thread-scoped. This means that:

v All threads initially inherit the writable statics of the creating thread at the time of

the creation.

v When any thread executes a function pointer supplied by the fetch() function

and crosses a module boundary, only that thread has access to the writable

statics of the fetched module.

MTF and z/OS UNIX System Services threading

MTF is not supported from applications running under POSIX(ON). A return value of

EWRONGOS is issued when running in a POSIX(ON) environment. An application that

requires multithreading must either use MTF with POSIX(OFF) or pthread_create()

with POSIX(ON).

Thread queuing function

The thread queuing function allows you to control whether or not threads should be

queued up while waiting for TCBs to become available. You can accomplish this by

switching the synctype attribute of a thread between synchronous and

378 z/OS V1R8.0 XL C/C++ Programming Guide

asynchronous mode. With synchronous mode for example, if a process can only

have 50 TCBs active at any one time, then only 50 threads can be created. The

51st thread create results in an error. With asynchronous mode, however, you can

set the synctype attribute for a thread such that the 51st thread is created. This

thread will not start until one of the other threads finishes and releases a TCB.

Functions that relate to the ability to control thread queuing are:

v pthread_set_limit_np()

v pthread_attr_getsynctype_np()

v pthread_attr_setsynctype_np()

Thread scheduling

You can use the pthread_attr_setweight_np() and

pthread_attr_setsynctype_np() functions to establish priorities for threads. The

pthread_attr_setweight_np() threadweight variable can be set to the following:

__MEDIUM_WEIGHT

Each thread runs on a task. When the current thread exits, the task waits

for another thread to do a pthread_create(). The new thread runs on that

task.

__HEAVY_WEIGHT

The task is attached on pthread_create() and terminates when the thread

exits. When the thread exits, the associated task can no longer request

threads to process, and full MVS EOT resource manager cleanup occurs.

You can use the pthread_addt_setsynctype_np() function to set the

__PTATASYNCHRONOUS value. This enables you to create more threads than there are

TCBs available. For example, you could run 50 TCBs and create hundreds of

threads. The kernel queues the threads until a task is available. This frees your

application from managing the work. While a thread is queued and not executing on

an MVS task, you can still interact with the thread via pthread functions, such as

pthread_join() and pthread_kill().

iconv() family of functions

The conversion descriptor returned from a successful iconv_open() may be used

safely within a single thread for conversion purposes. It may, however, be opened

on one thread (iconv_open()), closed on another thread (iconv_close()), and used

on a third thread (iconv()). However, it is the user’s responsibility to ensure

operations are synchronized if they are used across multiple threads.

Chapter 23. Using threads in z/OS UNIX System Services applications 379

380 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 24. Reentrancy in z/OS XL C/C++

This chapter describes the concept of reentrancy. It tells you how to use reentrancy

in C programs to help make your programs more efficient, and how C++ achieves

constructed reentrancy.

Reentrant programs are structured to allow multiple users to share a single copy of

an executable module or to use an executable module repeatedly without reloading.

C and C++ achieve reentrancy by splitting your program into two parts, which are

maintained in separate areas of memory until the program terminates:

v The first part, which consists of executable code and constant data, does not

change during program execution.

v The second part contains persistent data that can be altered. This part includes

the dynamic storage area (DSA) and a piece of storage known as the writable

static area.

For XPLINK, the writable static area is further logically subdivided into areas

called environments. Environments are optional, and each function can have its

own environment. When an XPLINK function is called, the caller must load

general purpose register 5 with the address of the environment of the called

function before control is given to the entry point of the called function.

If the program is installed in the Link Pack Area (LPA) or Extended Link Pack Area

(ELPA) of your operating system, only a single copy of the first (constant or

reentrant) part exists within a single address space. This occurs regardless of the

number of users that are running the program simultaneously. This reentrant part

may be shared across address spaces or across sessions. In this case, the

executable module is loaded only once. Separate concurrent invocations of the

program share or reenter the same copy of the write-protected executable module.

If the program is not installed in the LPA or ELPA area, each invocation receives a

private copy of the code part, but this copy may not be write-protected.

The modifiable writable static part of the program contains:

v All program variables with the static storage class

v All program variables receiving the extern storage class

v All writable strings

v All function linkage descriptors for all referenced DLL functions

v Function linkage descriptors for all referenced DLL functions that are used by

multiple compilation units in the program, but are not imported (XPLINK, RENT)

v All variable pointers for imported variables (non-XPLINK)

v All function pointers for imported functions (XPLINK, RENT)

v All variable linkage descriptors to reference imported variables (non-XPLINK)

Each user running the program receives a private copy of the second (data or

non-reentrant) part. This part, the data area, is modifiable by each user.

The code part of the program contains:

v Executable instructions

v Read-only constants

v Global objects compiled with the #pragma variable(identifier, NORENT)

© Copyright IBM Corp. 1996, 2006 381

Note: The ROCONST compiler option implicitly inserts a #pragma

variable(identifier, NORENT) for const qualified variables.

Natural or constructed reentrancy

Natural reentrancy

C programs that contain no references to the writable static objects listed in

the previous section have natural reentrancy. You do not need to compile

naturally reentrant C programs with the RENT compiler option or bind them

with the binder.

Constructed reentrancy

C++ programs, and C programs that contain references to writable static

objects, can have constructed reentrancy. You must bind these programs

with the binder. For C programs, you must use the RENT compiler option.

 If you use the XPLINK option, RENT is the default. If you override this default by

specifying NORENT, any parts of the program that are normally stored in the writable

static area go instead into a static area. If this static area is write-protected, you will

get a run-time failure because the function pointers for imported functions cannot be

modified to point to the function when the DLL containing the function is loaded and

the function address determined. For programs that are both XPLINK and NORENT,

all functions must be statically bound or explicitly loaded (dllload(), or fetch()).

Limitations of constructed reentrancy for C programs

Even if a C program is large and will have more than one user at the same time,

there are also these limitations to consider:

v The binder is required for code that you compile with XPLINK.

v If the prelinker, rather than the binder, will process code that is compiled with

NOXPLINK, RENT:

– The resultant load module referring to the writable area cannot be

reprocessed.

– The resultant program may reside in a PDS.

v If the binder is used, and not the prelinker, the resultant program must reside in a

PDSE or HFS. If a PDSE member should be installed into LPA or ELPA, it can

only be installed into dynamic LPA.

v A system programmer can install only the shared portion of your program in the

LPA or ELPA of your operating system.

Controlling external static in C programs

Certain program variables with the extern storage class may be constant and never

written. If this is the case, every user does not need to have a separate copy of

these variables. In addition, there may be a need to share constant program

variables between C and another language.

Example:You can force an external variable to be the part of the program that

includes executable code and constant data by using the #pragma

variable(varname, NORENT) directive. The following program fragment illustrates

how this is accomplished:

382 z/OS V1R8.0 XL C/C++ Programming Guide

In this example, the source file is compiled with the RENT option. The external

variable rates are included in the executable code because #pragma

variable(rates, NORENT) is specified. The variable totals are included with the

writable static. Each user has a copy of the array totals, and the array rates are

shared among all users of the program.

The #pragma variable(varname, NORENT) does not apply to, and has no effect on,

program variables with the static storage class. Program variables with the static

storage class are always included in the writable static. An informational message

will appear if you do try to write to a non-reentrant variable when you specify the

CHECKOUT compiler option.

When specifying #pragma variable(varname, NORENT), ensure that this variable is

never written; if it is written, program exceptions or unpredictable program behavior

may result. In addition, you must include #pragma variable(varname, NORENT) in

every source file where the variable is referenced or defined. It is good practice to

put these pragmas in a common header file.

Note: You can also use the keyword const to ensure that a variable is not written.

See the const type qualifier in z/OS XL C/C++ Language Reference for more

information.

The ROCONST compiler option has the same effect as specifying the #pragma

variable (var_name, NORENT) for all constant variables (i.e. const qualified

variables). The option gives the compiler the choice of allocating const variables

outside of the Writable Static Area (WSA). For more information, see ROCONST |

NORCONST in z/OS XL C/C++ User’s Guide.

Controlling writable strings

In a large number of C programs, character strings may be constant and never

written to. If this is the case, every user does not need a separate copy of these

strings.

You can force all strings in a given source file to be the part of the program that

includes executable code and constant data by using #pragma strings(readonly)

or the ROSTRING compiler option. “Example of making strings constant (CCNGRE1)”

on page 384 illustrates one way to make the strings constant.

#pragma options(RENT)

#pragma variable(rates, NORENT)

extern float rates[5] = { 3.2, 83.3, 13.4, 3.6, 5.0 };

extern float totals[5];

int main(void) {

 /* ... */

}

Figure 96. Controlling external static

Chapter 24. Reentrancy in z/OS XL C/C++ 383

Example of making strings constant (CCNGRE1)

 In this example, the string "hello world\n" is included with the executable code

because #pragma strings(readonly) is specified. This can yield a performance and

storage benefit.

Ensure that you do not write to read-only strings. The following code tries to

overwrite the literal string ″abcd″ because ’chrs’ is just a pointer:

char chrs[]= "abcd";

memcpy(chrs,"ABCD",4);

Program exceptions or unpredictable program behavior may result if you attempt to

write to a string constant.

The ROSTRING compiler option has the same effect as #pragma strings(readonly) in

the program source. For more information, see ROSTRING | NOROSTRING in z/OS XL

C/C++ User’s Guide.

Controlling the memory area in C++

In C++, some objects may be constant and never modified. If your program is

reentrant, having such objects exist in the code part is a storage and performance

benefit.

As a programmer, you control where objects with global names and string literals

exist. You can use the #pragma variable(objname, NORENT) directive to specify that

the memory for an object with a global name is to be in the code area. You can use

the ROCONST compiler option to specify that all const variables go into the code area.

Example:In the following example, the variable RATES exists in the executable code

area because #pragma variable(RATES,NORENT) has been specified. The variable

totals exists in writable static area. All users have their own copies of the array

totals, but the array RATES is shared among all users of the program.

/*--*/

/* RATES is constant and in code area */

#pragma variable(RATES, NORENT)

const float RATES[5] = { 1.0, 1.5, 2.25, 3.375, 5.0625 };

float totals[5];

/*--*/

When you specify #pragma variable(objname,NORENT) for an object, and the

program is to be reentrant, you must ensure that this object is never modified, even

by constructors or destructors. Program exceptions or unpredictable behavior may

result. Also, you must include #pragma variable(objname,NORENT) in every source

/* this example demonstrates how to make strings constant */

#pragma strings(readonly)

#include <stdio.h>

int main(void)

{

 printf("hello world\n");

 return(0);

}

Figure 97. Making strings constant

384 z/OS V1R8.0 XL C/C++ Programming Guide

file where the object is referenced or defined. Otherwise, the compiler will generate

inconsistent addressing for the object, sometimes in the code area and sometimes

in the writable static area.

Controlling where string literals exist in C++ code

In z/OS XL C/C++, the string literals exist in the code part by default, and are not

modifiable if the code is reentrant. In a large number of programs, string literals

may be constant. In this case, every user does not need a separate copy of these

strings.

By using the #pragma strings(writable) directive, you can ensure that the string

literals for that compilation unit will exist in the writable static area and be

modifiable.

“Example of how to make string literals modifiable (CCNGRE2)” illustrates how to

make the string literals modifiable.

Example of how to make string literals modifiable (CCNGRE2)

 In this example, the string "wall\n" will exist in the writable static area because

#pragma strings(writable) is specified. This modifies the fourth character.

Using writable static in Assembler code

Programming in C or C++ can eliminate most of the need to code in assembler.

However, in cases where you must code in assembler, you may have a need to

modify data in the writable static area of a C or C++ program, from within an

assembler program.

Notes:

1. To call assembler from C++, you must use extern "OS" as documented in

Chapter 18, “Using Linkage Specifications in C or C++,” on page 249.

2. The following macros, and access to writable static data from assembler are not

supported for XPLINK programs.

One way to modify data in the writable static area is to pass the address of the

writable static data item as a parameter to the assembler program. This may be

difficult in some cases. The following assembler macros makes this easier:

v EDCDXD

v EDCLA

v EDCDPLNK

/* this example demonstrates how to make string literals modifiable */

#pragma strings(writable)

#include <iostream.h>

int main(void)

{

 char * s;

 s = "wall\n"; // point to string literal

 *(s+3) = ’k’; // modify string literal

 cout << s; // output "walk\n"

}

Figure 98. How to Make String Literals Modifiable

Chapter 24. Reentrancy in z/OS XL C/C++ 385

These are in CEE.SCEEMAC(EDCDXD,EDCLA,EDCDPLNK). The restriction on the names of

writable static objects accessible in assembler code is that they are S-names. This

means that they may be at most 8 characters long and may contain only characters

allowed in external names by the assembler code.

The macro EDCDXD declares a writable static data item. EDCLA loads the address

of the writable static data item into a register. Using the EDCLA macro in assembler

code necessitates coding EDCDXD as well.

The EDCDPLNK macro defines reference writable static data with the z/OS binder.

This macro must appear before the first executable control section is initiated in the

assembler source module. If there is more than one assembler source program in

the input file, EDCDPLNK must precede every assembler source program in any input

file that defines or references writable static data.

Example:“Example of referencing objects in the writeable static-area, Part 1

(CCNGRE3)” illustrates their use:

Example of referencing objects in the writeable static-area, Part 1

(CCNGRE3)

 In this example, the external variable TBLDSA is declared using the EDCDXD macro.

The size value of 0F (zero fullwords) indicates that DSA will be treated as an extern

declaration in C or C++. Because TBLDSA is an extern declaration and not a

definition, DSA must be defined in another C, C++, or assembler program. The

EDCLA macro loads the general purpose register 1 with the address of DSA, which

exists in the writable static area.

The external variable TBDLSA is declared using the EDCDXD macro. It is defined

because its size is 20F (20 fullwords or 80 bytes) and corresponds to an external

data definition in C or C++. When the program starts, TBDLSA is initialized to zero.

Because TBDLSA is an external data definition, there should not be another definition

of it in a C++, C, or assembler program.

* this example shows how to reference objects in the writable *

* static area, from assembler code *

* part 1 of 2(other file is CCNGRE4) *

* *

* parameters: none *

* return: none *

* action: store contents of register 13 (callers dynamic *

* storage area) in variable DSA which exists in *

* the writable static area *

* *

* Macros: EDCPRLG, EDCEPIL, EDCDXD, EDCLA in CEE.SCEEMAC *

XOBJHDR EDCDPLNK ;generate an XOBJ header

GETDSA CSECT

GETDSA AMODE ANY

GETDSA RMODE ANY

 EDCPRLG ;prolog (save registers etc.)

 EDCLA 1,DSA ;load register 1 with address of DSA

 ST 13,0(,1) ;store contents of reg 13 in DSA

 EDCEPIL ;epilog (restore registers etc.)

DSA EDCDXD 0F ;declaration of DSA in writable static

TBLDSA EDCDXD 20F ;definition of TBLDSA in writable static

END

Figure 99. Referencing objects in the writable static area, Part 1

386 z/OS V1R8.0 XL C/C++ Programming Guide

When these macros are used, these pseudo-registers cannot be used within the

same assembler program.

There are no assembler macros for static initialization of a variable with a nonzero

value. You can do this by defining and initializing the variable in C or C++ and

making an extern declaration for it in the assembler program. In the example

assembler program, DSA is declared this way.

“Example of referencing objects in the writeable static-area, Part 2 (CCNGRE4)”

illustrates how to call the above assembler program.

Example of referencing objects in the writeable static-area, Part 2

(CCNGRE4)

/* this example shows how to reference objects in the writable */

/* static area, from assembler code */

/* part 2 of 2 (other file is CCNGRE3) */

#include <stdio.h>

#ifdef __cplusplus

 extern "OS" {

#endif

void GETDSA(void); /* assembler routine modifies DSA */

#ifdef __cplusplus

 }

#endif

const int sz = 20; /* maximum call depth */

extern void * TBLDSA[sz]; /* defined in assembler program */

void * DSA; /* define it here, source name */

 /* same as assembler name */

/* call yourself deeper and deeper */

/* save DSA pointers as you go */

void deeper(int i)

{

 if (i >= sz) /* if deep enough just return */

 return;

 GETDSA(); /* assign value to DSA */

 TBLDSA[i] = DSA; /* save value in table */

 deeper(i+1); /* go deeper in call chain */

}

int main(void) {

 int i;

 deeper(0);

 for(i=0; i<sz; i++)

 printf("depth %3d, DSA was at %p\n", i, TBLDSA[i]);

 return 0;

}

Figure 100. Referencing objects in the writable static area, Part 2

Chapter 24. Reentrancy in z/OS XL C/C++ 387

388 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 25. Using the decimal data type in C

This chapter refers to fixed-point decimal data types as “decimal types”. The

decimal type is an extension of the ANSI C language definition. You can use

decimal types to represent large numbers accurately, especially in business and

commercial applications for financial calculations. Decimal types are available only if

the LANGLVL is EXTENDED by specifying the LANGLVL(EXTENDED) compiler option.

For more information, see LANGLVL in z/OS XL C/C++ User’s Guide.

The decimal types allow expressions of up to DEC_DIG significant digits including

integral and fractional parts. The header file <decimal.h> specifies the value of

DEC_DIG.

You can pass decimal arguments in function calls and define macros. You can also

declare decimal variables, typedefs, arrays, structures, and unions having decimal

members. The following operators apply on decimal variables:

v Arithmetic

v Relational

v Assignment

v Comma

v Conditional

v Equality

v Logical

v Primary

v Unary

When using the decimal types, you must include the decimal.h header file in your

source code.

Declaring decimal types

Use the type specifier decimal(n,p) to declare decimal variables and to initialize

them with fixed-point decimal constants. The decimal() macro is defined in

<decimal.h>.

The decimal(n,p) type specifier designates a decimal number with n digits and p

decimal places. In this specifier, n is the total number of digits for the integral and

decimal parts combined and p is the number of digits for the decimal part only. For

example, decimal(5,2) represents a number, such as 123.45, where n=5 and p=2.

Specifying the value for p is optional. If omitted, p has a default value of 0.

n and p have a range of allowed values according to the following rules:

p ≤ n

1 ≤ n ≤ DEC_DIG

0 ≤ p ≤ DEC_PRECISION

Note: The header file <decimal.h> defines DEC_DIG (the maximum number of digits

n) and DEC_PRECISION (the maximum precision p). Currently, there is a limit

of a maximum of 31 digits.

© Copyright IBM Corp. 1996, 2006 389

Declaring fixed-point decimal constants

The syntax for fixed-point decimal constants is:

fixed-point-decimal-constant:

 fractional-constant fixed-point-decimal-suffix

fractional-constant (use any one of the following formats):

 digit-sequence . digit-sequence

 . digit-sequence

 digit-sequence .

 digit-sequence

digit-sequence (use any one of the following formats):

 digit

 digit-sequence digit

fixed-point-decimal-suffix (use any one of the following formats):

 D

 d

A fixed-point decimal constant has a numeric part and a suffix that specifies its

type. The components of the numeric part may include a digit sequence

representing the integral part, followed by a decimal point (.), followed by a digit

sequence representing the fractional part. Either the integral part, the fractional part,

or both are present.

Each fixed-point decimal constant has the attributes number of digits (digits) and

number of decimal places (precision). Leading or trailing zeros are not discarded

when the digits and the precision are determined.

Examples: The following table gives examples of fixed-point decimal constants and

their corresponding attributes:

 Table 70. Fixed-Point decimal constants and their attributes

Fixed-Point Decimal Constant (digits, precision)

1234567890123456D (16, 0)

12345678.12345678D (16, 8)

12345678.d (8, 0)

.1234567890d (10, 10)

12345.99d (7, 2)

000123.990d (9, 3)

0.00D (3, 2)

Declaring decimal variables

Example: The following example shows how you can declare a variable as a

decimal type:

decimal(10,2) x;

decimal(5,0) y;

decimal(5) z;

decimal(18,10) *ptr;

decimal(8,2) arr[100];

In the previous example:

390 z/OS V1R8.0 XL C/C++ Programming Guide

v x can have values between -99999999.99D and +99999999.99D.

v y and z can have values between -99999D and +99999D.

v ptr is a pointer to type decimal(18,10).

v arr is an array of 100 elements, where each element is of type decimal(8,2).

The syntax for the decimal type specifier is as follows:

�� decimal (constant-expression

, constant-expression
) ��

The constant-expression is evaluated as a positive integral constant expression.

Specifying a second constant-expression is optional. If left out, the default value is

0. Decimal variables decimal(n,0) and decimal(n) are type compatible.

Defining decimal-related constants

Use the following numerical limits to define the decimal value in assignments and

expressions. <decimal.h> contains these predefined values.

v The smallest number in a decimal type

DEC_MIN

-9999999999999999999999999999999D

v The largest positive number in a decimal type

DEC_MAX

+9999999999999999999999999999999D

v The smallest number greater than zero in a decimal type

DEC_EPSILON

.0000000000000000000000000000001D

v Maximum number of significant digits that decimal types can hold

DEC_DIG

31

v Maximum number of decimal places that decimal types can hold

DEC_PRECISION

31

Using operators

You can use arithmetic, relational, assignment, comma, conditional, equality, logical,

primary, and unary cast operators on a decimal data type. Conversions follow these

arithmetic conversion rules:

v First, if the type of either operand is long double, the other operand becomes

long double.

v Otherwise, if the type of either operand is double, the other operand becomes

double.

v Otherwise, if the type of either operand is float, the other operand becomes float.

v Otherwise, if the type of either operand is decimal, the other operand becomes

decimal.

v Otherwise, the integral promotions are performed on both operands. Then the

following rules are applied:

Chapter 25. Using the decimal data type in C 391

– If the type of either operand is unsigned long int, the other operand becomes

unsigned long int.

– Otherwise, if the type of one operand is long int and the other is unsigned int,

the operand of type unsigned int is converted to long int, if the long int can

represent all values of an unsigned int. If a long int cannot represent all the

values of an unsigned int, both operands become unsigned long int.

– Otherwise, if the type of either operand is long int, the other operand becomes

long int.

– Otherwise, if the type of either operand is unsigned int, the other operand

becomes unsigned int.

– Otherwise, the type of both operands is int.

Arithmetic operators

Figure 101 shows how to use arithmetic operators, and then describes certain

arithmetic, assignment, unary, and cast operators in more detail. It summarizes how

to add, subtract, multiply and divide decimal variables.

Example of arithmetic operators (CCNGDC1)

Additive operators

Additive and multiplicative operators follow the arithmetic conversion rules defined

in “Using operators” on page 391.

Note: For performance reasons, generating negative zero is possible.

/*this example demonstrates arithmetic operations on decimal variables*/

#include <decimal.h> /* decimal header file */

#include <stdio.h>

int main(void)

{

decimal(10,2) op_1 = 12d;

decimal(5,5) op_2 = -.12345d;

decimal(24,12) op_3 = 12.34d;

decimal(20,5) op_4 = 11.01d;

decimal(14,5) res_add;

decimal(25,2) res_sub;

decimal(15,7) res_mul;

decimal(31,14) res_div;

res_add = op_1 + op_2;

res_sub = op_3 - op_1;

res_mul = op_2 * op_1;

res_div = op_3 / op_4;

printf("res_add =%D(*,*)\n",digitsof(res_add),

 precisionof(res_add),res_add);

printf("res_sub =%D(*,*)\n",digitsof(res_sub),

 precisionof(res_sub),res_sub);

printf("res_mul =%D(*,*)\n",digitsof(res_mul),

 precisionof(res_mul),res_mul);

printf("res_div =%D(*,*)\n",digitsof(res_div),

 precisionof(res_div), res_div);

return(0);

}

Figure 101. Arithmetic operators example

392 z/OS V1R8.0 XL C/C++ Programming Guide

Refer to “Intermediate results” on page 394 for details on how to get the conversion

type during alignment of the decimal point.

Relational operators

Relational operators follow the arithmetic conversion rules defined in “Using

operators” on page 391.

Figure 102 shows you how to use a relational expression less than (<) for decimals.

In this example, decimal types are compared with other arithmetic types (integer,

float, double, long double). In addition, the implicit conversion of the decimal types

is performed using the arithmetic conversion rules in “Converting decimal types” on

page 396. Leading zeros in the example are shown to indicate the number of digits

in the decimal type. You do not need to enter leading zeros in your decimal type

variable initialization.

Example of relational operators (CCNGDC2)

 Refer to “Intermediate results” on page 394 for details on how to get the conversion

type during alignment of the decimal point.

Equality operators

Equality operators follow the arithmetic conversions defined in “Using operators” on

page 391. Where the operands have types and values suitable for the relational

operators, the semantics for relational operators applies.

Note: Positive zero and negative zero compare equal. In the following example, the

expression always evaluates to TRUE:

(-0.00d == +0.00000d)

Refer to “Intermediate results” on page 394 for details on how to get the convert

type during alignment of the decimal point.

/* this example shows how to use a relational expression with the */

/* decimal type */

#include <decimal.h>

decimal(10,3) pdval = 0000023.423d; /* Decimal declaration*/

int ival = 1233; /* Integer declaration*/

float fval = 1234.34; /* Float declaration*/

double dval = 251.5832; /* Double declaration*/

long double lval = 37486.234; /* Long double declaration*/

int main(void)

{

 decimal(15,6) value = 000485860.085999d;

/*Perform relational operation between other data types and decimal*/

 if (pdval < ival) printf("pdval is the smallest !\n");

 if (pdval < fval) printf("pdval is the smallest !\n");

 if (pdval < dval) printf("pdval is the smallest !\n");

 if (pdval < lval) printf("pdval is the smallest !\n");

 if (pdval < value) printf("pdval is the smallest !\n");

 return(0);

}

Figure 102. Relational operators example

Chapter 25. Using the decimal data type in C 393

Conditional operators

Conditional operators follow the arithmetic conversions defined in “Using operators”

on page 391. If both the second and third operands have an arithmetic type, the

usual arithmetic conversions are performed to bring them to a common type. If both

operands are decimal types, the operands are converted to the convert type and

the result has that type.

Refer to “Intermediate results” for details on how to get the convert type during

alignment of the decimal point.

Intermediate results

Use one of the following tables to calculate the size of the result. The tables

summarize the intermediate expression results with the four basic arithmetic

operators and conditional operators when applied to the decimal types. Most of the

time, you can use Table 71 to calculate the size of the result. It assumes no

overflow. If overflow occurs, use Table 72 to determine the resulting type.

Both tables assume the following:

v x has type decimal(n₁, p₁)

v y has type decimal(n₂, p₂)

v decimal(n,p) is the resulting type

 Table 71. Intermediate results (without overflow in n or p)

Expression (n, p)

x * y n = n₁ + n₂ p = p₁ + p₂

x / y n = DEC_DIG p = DEC_DIG - ((n₁ - p₁) + p₂)

x + y p = max(p₁, p₂) n = max(n₁ - p₁, n₂ - p₂) + p + 1

x − y same rule as addition

z ? x : y p = max(p₁, p₂) n = max(n₁ - p₁, n₂ - p₂) + p

You can use Table 72 to calculate the size of the result, whether there is an

overflow or not.

 Table 72. Intermediate results (in the general form)

Expression (n, p)

x * y n = min(n₁ + n₂, DEC_DIG)

p = min(p₁ + p₂, DEC_DIG - min((n₁ - p₁)

+ (n₂ - p₂), DEC_DIG))

x / y n = DEC_DIG

p = max(DEC_DIG - ((n₁ - p₁) + p₂), 0)

x + y ir = min(max(n₁ - p₁, n₂ - p₂) + 1, DEC_DIG)

p = min(max(p₁, p₂), DEC_DIG - ir)

n = ir + p

x − y same rule as addition

z ? x : y ir = max(n₁ - p₁, n₂ - p₂)

p = min(max(p₁, p₂), DEC_DIG - ir)

n = ir + p

If overflow occurs in n or p, a compile-time warning message is issued and the

decimal places are truncated. As much of the integral part is reserved as possible.

If the integral part is truncated as an expression in the static or extern initialization,

394 z/OS V1R8.0 XL C/C++ Programming Guide

an error message is issued. If the integral part is truncated inside the block scope,

a warning is issued. On each operation, the complete result is calculated before

truncation occurs.

Assignment operators

Assignment operators follow the arithmetic conversion rules defined in “Using

operators” on page 391.

When values are assigned, an SIGFPE exception may be raised if the operands

contain values that are not valid.

Unary operators

Use the following unary operators to determine the digits in a decimal type:

sizeof Determines the total number of bytes occupied by the decimal type

digitsof Determines the number of digits (n)

precisionof Determines the number of decimal digits (p)

sizeof operator

When you use the sizeof operator with decimal(n,p), the result is an integer

constant. The sizeof operator returns the total number of bytes occupied by the

decimal type.

Each decimal digit occupies a halfbyte. In addition, a halfbyte represents the sign.

The number of bytes used by decimal(n,p) is the smallest whole number greater

than or equal to (n + 1)/2, that is, sizeof(decimal(n,p)) = ceil((n + 1)/2). The

sizeof result is calculated using this method because the z/OS XL C compiler uses

packed decimal to implement decimal types.

Example: The following example shows you how to determine the total number of

bytes occupied by the decimal type:

int y;

decimal (5, 2) x;

y = sizeof x; /* This would be calculated to be 3 bytes*/

 /* (5+1)/2 = 3. */

digitsof operator

When you use the digitsof operator with a decimal type, the result is an integer

constant. The digitsof operator returns the number of significant digits (n) in a

decimal type.

Example:This example gives you the number of digits (n) in a decimal type.

decimal (5, 2) x;

int n;

n = digitsof x; /* the result is n=5 */

Note: Apply digitsof only to a decimal type.

precisionof operator

When you use the precisionof operator with a decimal type, the result is an integer

constant. The precisionof operator tells you the number of decimal digits (p) of the

decimal type.

Example: This example gives you the number of decimal digits (p) of the decimal

type.

Chapter 25. Using the decimal data type in C 395

decimal (5, 2) x;

int p;

p = precisionof x; /* the result is p=2 */

Note: Apply precisionof only to a decimal type.

Cast operator

You can convert the following types explicitly:

v Decimal types to decimal types

v Decimal types to and from floating types

v Decimal types to and from integer types

Notes:

1. When you are explicitly casting to a decimal type, the discarding of the leading

nonzero digits does not cause an exception at run-time. For more information

about suppressing compiler messages and run-time exceptions, refer to

“Converting decimal types” on page 396.

2. An implicit conversion to a decimal type with an even number of digits may not

clear the pad digit, but an explicit cast will clear the pad digit.

Summary of operators used with decimal types

Table 73 summarizes all of the operators to be used with decimal types.

 Table 73. Operators used with decimal types

Operator Name Associativity Operators

Primary left to right ()

Unary right to left ++ −− + − ! & (typename)

sizeof digitsof precisionof

Multiplicative left to right * /

Additive left to right + −

Relational left to right < > <= >=

Equality left to right == !=

Conditional right to left ? :

Assignment right to left = += −= *= /=

Comma left to right ,

Converting decimal types

The z/OS XL C compiler implicitly converts the following types:

v Decimal types to decimal types

v Decimal types to and from floating types

v Decimal types to and from integer types

Converting decimal types to decimal types

If the value of the decimal type to be converted is within the range of values that

can be represented exactly, the value of the decimal type is not changed.

If the value of the decimal type to be converted is outside the range of values that

can be represented, the value of the decimal type is truncated. Truncation may

occur on either the integral part or the fractional part or both.

396 z/OS V1R8.0 XL C/C++ Programming Guide

When truncation occurs on the fraction part, no compile-time message or a run-time

exception occurs.

When truncation occurs on the integral part, a compile-time message, a run-time

exception or both are generated as follows:

v In the initialization of static or external variables

– Compile-time error if nonzero digits are truncated in the integral part

v In the initialization of automatic variables, an assignment or function call with

prototype

– Checkout warning at compile time

– Run-time exception SIGFPE may occur if nonzero digits are truncated in the

integral part at run time.

Note: An explicit cast is used to suppress compile-time messages and run-time

exceptions. A run-time exception may occur if any leading nonzero digits are

discarded and the operation is not an explicit cast operation.

Examples

In the following examples, message represents a compile-time message and

exception represents a run-time exception (that is, SIGFPE is raised).

Example of fractional part that cannot be represented: Conversion of one

decimal object to another decimal object with smaller precision involves truncation

on the right of the decimal point.

 Example of integral part that cannot be represented: Conversion of one

decimal object to another decimal object with fewer digits involves truncation on the

left of the decimal point.

#include <decimal.h>

void func(void);

void dec_func(decimal(7, 1));

decimal(7, 4) x = 123.4567D;

decimal(7, 1) y;

decimal(7, 1) z = 123.4567D; /* z = 000123.4D <-- No message, */

 /* No exception */

void func(void) {

 decimal(7, 1) a = 123.4567D; /* a = 000123.4D <-- No message, */

 /* No exception */

 y = x; /* y = 000123.4D <-- No message, No exception */

 y = 123.4567D; /* y = 000123.4D <-- No message, No exception */

 dec_func(x); /* <-- No message, No exception */

}

Figure 103. Fractional part cannot be represented

Chapter 25. Using the decimal data type in C 397

Converting decimal types to and from integer types

Conversion to integer types

When a value of decimal type is converted to integer type, the fractional part is

discarded. If the value of the integral part cannot be represented by the integer

type, the behavior is undefined.

When a negative decimal type is converted to an unsigned integer type, the

conversion proceeds as though these steps are followed:

1. The decimal type is converted to a signed integer type with the same size as

the unsigned integer type.

2. The signed integer type is converted to the unsigned integer type.

Example of conversion to integer type

Conversion from integer types

When a value of integer type is implicitly converted to decimal type, the integer type

is converted to type decimal(10,0).

When a value of integer type is explicitly converted to decimal type, the conversion

proceeds as though these two steps are followed:

void func(void);

void dec_func(decimal(5, 2));

decimal(8, 2) w = 000456.78D;

decimal(8, 2) x = 123456.78D;

decimal(5, 2) y;

decimal(5, 2) z = 123456.78D; /* <-- Compile-time error */

decimal(5, 2) z1 = (decimal(5, 2)) 123456.78D;

 /* z1 = 456.78D <-- No message, */

 /* No exception */

void func(void) {

 decimal(5, 2) a = 123456.78D; /* <-- Checkout warning */

 /* and exception */

 decimal(5, 2) a1 = (decimal(5, 2)) 123456.78D;

 /* a1 = 456.78D <-- No message, */

 /* No exception */

 y = w; /* y = 456.78D <-- Checkout warning, No exception */

 y = x; /* <-- Checkout warning and exception */

 y = 123456.78D; /* <-- Checkout warning and exception */

 dec_func(x); /* <-- Checkout warning and exception */

 y = (decimal(5, 2)) w;

 /* y = 456.78D <-- No message, No exception */

 y = (decimal(5, 2)) x;

 /* y = 456.78D <-- No message, No exception */

 y = (decimal(5, 2)) 123456.78D;

 /* y = 456.78D <-- No message, No exception */

 dec_func((decimal(5, 2)) x);

 /* <-- No message, No exception */

}

Figure 104. Integral part cannot be represented

 int i = 1234.5678d; /* i = 1234 */

 int j = -789d; /* j = -789 */

 int k = 9876543210d; /* k is undefined */

Figure 105. Conversion to integer type

398 z/OS V1R8.0 XL C/C++ Programming Guide

1. The integer type is converted to type decimal(10,0). A run-time exception can

never occur in this step.

2. Type decimal(10,0) is then converted to decimal(n,p). All rules for decimal

type to decimal type conversion apply in this step.

An unsigned integer type is converted to a positive decimal value.

If the value of the integral part cannot be represented by the decimal type, the

behavior is undefined.

Example of conversion from integer type

Converting decimal types to and from floating types

Conversion to floating types

The result of the conversion might not be exact due to:

v The limitations of significant digits in different floating types

v The degree to which a value can be stored exactly in a floating type

v The loss of precision during conversion

Example: In the following example, the content of each floating type variable

depends on their limitation of significant digits that are specified in <float.h>.

Conversion from floating types

When a value of floating type is converted to decimal type and the value being

converted cannot be represented by the decimal type, the result is rounded towards

zero. If the value of the floating type to be converted is within the range of values

that can be represented, but cannot be represented exactly, the result is also

rounded towards zero. The result retains as much value as possible. When any

leading nonzero digits are suppressed and the operation is not an explicit cast

operation, a decimal overflow exception occurs at run time and an SIGFPE

exception is raised.

When a conversion from a floating type is made with static or external variable

initialization, a compile-time error message is issued.

 #include <decimal.h>

 decimal(10,2) pd01 = 1234; /* pd01 = 00001234.00d */

 decimal(5,0) pd02 = 987654; /* compile-time error */

 int main(void) {

 decimal(5,0) pd03 = 987654; /* run-time exception */

 decimal(13,4) pd04;

 /* The number 321 is converted to decimal(10,0) before the */

 /* addition is performed. */

 pd04 = 1234.56d + 321; /* pd04 = 000001555.5600d */

 }

Figure 106. Conversion from integral type

 float a = 12345678901234567890.1234567890d;

 double b = 12345678901234567890.1234567890d;

 long double c = 12345678901234567890.1234567890d;

Figure 107. Conversion to floating type

Chapter 25. Using the decimal data type in C 399

The result of the conversion may not be exact because the internal representation

of System/370 floating-point instructions is hexadecimal based if FLOAT(HEX) mode

is used. The mapping between the two representations is not one-to-one, even

when the value of a float type is within the range of the decimal type.

Example of conversion from floating type

Calling functions

There are no default argument promotions on arguments that have type decimal

when the called function does not include a prototype. If the expression for the

called function has a type that includes a prototype, the behavior is as documented

in ANSI, with the exception of prototype with an ellipsis (...). If the prototype ends

with an ellipsis (...), default argument promotions are not performed on arguments

with decimal types.

A function may change the values of its parameters, but these changes cannot

affect the values of the arguments. However, it is possible to pass a pointer to a

decimal object, and the function may change the value of the decimal object to

which it points.

Using library functions

You can use variable arguments and I/O operations with decimals.

Using variable arguments with decimal types

You can use the va_arg macro with a decimal type decimal(n,p).

var_type va_arg(va_list arg_ptr, var_type);

Each invocation of va_arg modifies arg_ptr so that the values of successive

arguments are returned in turn.

Formatting input and output operations

Use the following functions to print the value of a decimal type:

v fprintf()

v printf()

v sprintf()

v vfprintf()

v vprintf()

v vsprintf()

Use the following functions to read the value of a decimal type:

v fscanf()

 #include <decimal.h>

 decimal(10,2) pd11 = 1234.0; /* pd11 = 00001234.00d */

 decimal(5,0) pd12 = 987654.0; /* compile-time error */

 int main(void) {

 decimal(5,0) pd13 = 987654.0; /* run-time exception */

 decimal(13,4) pd14 = 12.34567890; /* fractional part is truncated */

 }

Figure 108. Conversion from floating type

400 z/OS V1R8.0 XL C/C++ Programming Guide

v scanf()

v sscanf()

The conversion specifier for decimal types is one of the following:

 %D(n,p)

 %D(n)

For more information about these functions and their keywords, see the z/OS XL

C/C++ Run-Time Library Reference.

Validating values

It is possible to have nonvalid representation of decimal value stored in memory,

such as input from file or overlay memory. If the nonvalid decimal value is used in

an operation or assignment, the result may not be as expected. A built-in function

can be used to report whether the decimal representation is valid or not. The

function call can be in the following form:

status = decchk (x);

The built-in function decchk() accepts a decimal-type expression as argument and

returns a status value of type int.

The status can be interpreted as follows:

0 Valid decimal representation value (including nonpreferred but valid sign,

A-F)

1 Leftmost halfbyte is not zero in a decimal-type number that has an even

number of digits (for example, 123 is stored in decimal(2,0))

2 Incorrect digits (not 0-9)

4 Incorrect sign (not A-F)

Macro define names for function return status (in <decimal.h>):

 #define DEC_VALUE_OK 0

 #define DEC_BAD_NIBBLE 1

 #define DEC_BAD_DIGIT 2

 #define DEC_BAD_SIGN 4

The function return status is the OR of all errors that were detected.

Fix sign

A built-in function can be used to fix nonpreferred sign variables. The function call

can be in the following form:

x = decfix (x);

The built-in function decfix() accepts a decimal-type expression as argument and

returns a decimal value that has the same size (that is, same decimal types) and

same value as the argument, but with the correct preferred sign. The function does

not change the content of the argument.

Chapter 25. Using the decimal data type in C 401

Decimal absolute value

The built-in function decabs() accepts a decimal-type expression as argument and

returns the absolute value of the decimal argument (the same decimal type as the

argument, and the same magnitude, but positive). The function does not change the

content of the argument. The function call can be in the following form:

y = decabs (x);

See the z/OS XL C/C++ Run-Time Library Reference for more information on the

decabs(), decchk(), and decfix() library functions.

402 z/OS V1R8.0 XL C/C++ Programming Guide

Programming example

Example 1 of use of decimal type (CCNGDC3)

/* this example demonstrates the use of the decimal type */

/* always include decimal.h when decimal type is used */

#include <decimal.h>

/* Declares a decimal(10,2) variable */

decimal(10,2) pd01;

/* Declares a decimal(15,4) variable and initializes it with the */

/* value 1234.56d */

decimal(15,4) pd02 = 1234.56d;

/* Structure that has decimal-related members */

struct pdec

 { /* members’ data types */

 int m; /* - integer */

 decimal(23,10) pd03; /* - decimal(23,10) */

 decimal(10,2) pd04[3]; /* - array of decimal(10,2) */

 decimal(10,2) *pd05; /* - pointer to decimal(10,2) */

 } pd06,

 pd07 = &pd06; / pd07 points to pd06 */

/* Array of decimal(31,30) */

decimal(31,30) pd08[2];

/* Prototype for function that accepts decimal(10,2) and int as */

/* arguments and has return type decimal(25,5) */

decimal(25,5) product(decimal(10,2), int);

decimal(5,2) PdCnt; /* decimal loop counter */

int i;

int main(void)

{

 pd01 = -789.45d; /* simple assignment */

 pd06.m = digitsof(pd06.pd03) + precisionof(pd02); /* 23 + 4 */

 pd06.pd03 = sizeof(pd01);

 pd06.pd04[0] = pd02 + pd01; /* decimal addition */

 *(pd06.pd04 + 1) = (decimal(10,2)) product(pd07->pd04[0], pd07->m);

 pd07->pd04[2] = product(pd07->pd04[0], pd07->pd04[1]);

 pd07->pd05 = &pd01; /* taking the address of a */

 /* decimal variable */

 /* These two statements are different */

 pd08[0] = 1 / 3d;

 pd08[1] = 1d / 3d;

 printf("pd01 = %D(10,2)\n", pd01);

 printf("pd02 = %*.*D(*,*)\n",

 20, 5, digitsof(pd02), precisionof(pd02), pd02);

 printf("pd06.m = %d, pd07->m = %d\n", pd06.m, pd07->m);

 printf("pd06.pd03 = %D(23,10), pd07->pd03 = %D(23,10)\n",

 pd06.pd03, pd07->pd03);

Figure 109. Decimal type — Example 1 (Part 1 of 2)

Chapter 25. Using the decimal data type in C 403

Example 1 of output from programming

pd01 = -789.45

pd02 = 1234.56000

pd06.m = 27, pd07->m = 27

pd06.pd03 = 6.0000000000, pd07->pd03 = 6.0000000000

pd06.pd04[0] = 445.11, pd07->pd04[0] = 445.11

pd06.pd04[1] = 12017.97, pd07->pd04[1] = 12017.97

pd06.pd04[2] = 5348886.87, pd07->pd04[2] = 5348886.87

*(pd06.pd05) = -789.45, *(pd07->pd05) = -789.45

pd08[0] = 0.333333333333333333333000000000

pd08[1] = 0.333333333333333333333333333333

 /* You will get an infinite loop if floating type is */

 /* used instead of the decimal types. */

 for (PdCnt = 0.0d; PdCnt != 3.6d; PdCnt += 1.2d)

 {

 i = PdCnt / 1.2d;

 printf("pd06.pd04[%d] = %D(10,2), \

 pd07->pd04[%d] = %D(10,2)\n",

 i, pd06.pd04[i], i, pd07->pd04[i]);

 }

 printf("*(pd06.pd05) = %D(10,2), *(pd07->pd05) = %D(10,2)\n",

 *(pd06.pd05), *(pd07->pd05));

 printf("pd08[0] = %D(31,30)\n", pd08[0]);

 printf("pd08[1] = %D(31,30)\n", pd08[1]);

 return(0);

}

/* Function definition for product() */

decimal(25,5) product(decimal(10,2) v1, int v2)

{

 /* The following happens in the return statement */

 /* - v2 is converted to decimal(10,0) */

 /* - after the multiplication, the expression has resulting */

 /* type decimal(20,2) (i.e. (10,2) * (10,0) ==> (20,2)) */

 /* - the result is then converted implicitly to decimal(25,5) */

 /* before it is returned */

 return(v1 * v2);

}

Figure 109. Decimal type — Example 1 (Part 2 of 2)

404 z/OS V1R8.0 XL C/C++ Programming Guide

Example 2 of use of decimal type (CCNGDC4)

Note: See “Intermediate results” on page 394 to understand the output from this

example and to see why decimal variables with size 31 should be used with

caution in arithmetic operations.

Example 2 of output from programming

pd01 = 1235.5670

pd02 = 1235.5678

Decimal exception handling

z/OS XL C decimal instructions produce the following exceptions that are unique to

decimal operations:

v Data exception (interrupt code hex ’7’)

This may be caused by nonvalid sign or digit codes in a packed decimal number

operated on by packed decimal instructions, for example, ADD DECIMAL or COMPARE

DECIMAL.

When an operation is performed on decimal operands and the assignment is not

through an explicit cast operation, the following situations cause run-time

exceptions at execution time and SIGFPE is raised.

v Decimal-overflow exception (interrupt code hex ’A’)

This exception may be caused when nonzero digits are lost because the

destination field in a decimal operation is too short to contain the result.

Note: The following unhandled decimal overflow message is the same for both

decimal overflow and fixed overflow conditions:

CEE3210S The system detected a Decimal-overflow exception.

However, because the fixed overflow condition is normally disabled

(masked) and is ignored at run time, fixed overflow conditions should not

occur.

/* this example demonstrates the use of the decimal type */

#include <decimal.h>

decimal(31,4) pd01 = 1234.5678d;

decimal(29,4) pd02 = 1234.5678d;

int main(void)

{

 /* The results are different in the next two statements */

 pd01 = pd01 + 1d;

 pd02 = pd02 + 1d;

 printf("pd01 = %D(31,4)\n", pd01);

 printf("pd02 = %D(29,4)\n", pd02);

 /* Warning: The decimal variable with size 31 should not be */

 /* used in arithmetic operation. */

 /* In the above example: (31,4) + (1,0) ==> (31,3) */

 /* (29,4) + (1,0) ==> (30,4) */

 return(0);

}

Figure 110. Decimal type — example 2

Chapter 25. Using the decimal data type in C 405

v Decimal-divide exception (interrupt code hex ’B’)

This exception may be caused when, in decimal division, the divisor is zero, or

the quotient exceeds the specified data-field size. The decimal divide is indicated

if the sign codes of both the divisor and dividend are valid, and if the digit or

digits used in establishing the exception are valid.

Note: The following unhandled divide message does not distinguish between a

decimal-divide condition and a fixed divide-by-zero condition:

CEE3211S The system detected a Decimal-divide exception.

Both are mapped into the same error message.

v A decimal exception may be produced by the printf() family when processing

an nonvalid decimal operand. This may result in abnormal termination of your

program with the run-time message: Under z/OS:

CEE3207S The system detected a Data exception.

Under CICS:

EDCK007 ABEND=8097 Data Exception

Other exceptions indicated by the decimal instruction set are not unique.

System programming calls restrictions

Decimal overflow conditions are supported for System Programming Calls only with

the run-time library.

printf() and scanf() restrictions

You must ensure that valid packed decimal data is present when attempting to use

it with run-time library decimal routines. No additional validation is performed on

decimal to ensure format correctness. Use the decchk() routine to validate decimal

data operands in such circumstances.

Additional considerations

v When the operands of a decimal operation contain nonvalid digits, the result is

undefined, and a run-time exception can occur. To validate a decimal number,

call the decchk() built-in function in your code.

v Code should be written in a manner that does not depend on the ability of the

run-time library to recover from a decimal overflow exception.

v In a multiprocessor configuration, decimal operations cannot be used safely to

update a shared storage location when the possibility exists that another

processor may also be updating that location. This possibility arises because the

bytes of a decimal operand are not necessarily accessed concurrently.

v If a decimal exception occurs in user code or library routines, the expected

results of the instruction causing the exception or the library routine where the

exception occurred are undefined. The results produced by the library routine’s

execution are also undefined.

v If a SIGFPE handler is coded to handle decimal exceptions, it should reenable

itself before resuming normal execution or recovery from the error. This

reestablishes the exception environment and is consistent with good

programming practice.

Error messages

If an overflow occurs at run time, the exception handler issues the following

run-time error messages:

406 z/OS V1R8.0 XL C/C++ Programming Guide

IBM482I ’ONCODE’=0310 ’FIXEDOVERFLOW’ CONDITION RAISED

Unhandled exception. This result may be produced in a C-only environment only for

decimal overflow conditions. Fixed-point overflow exception is not allowed in the

Program Mask.

Note: The Program Mask in the Program Status Word (PSW) is enabled for

decimal overflow exceptions.
IBM301I ’ONCODE’=0320 ’ZERODIVIDE’ CONDITION RAISED

Unhandled decimal or fixed overflow. Fixed overflow is normally masked and

ignored at C run time, but it may occur in interlanguage calls.

IBM537I ’ONCODE’=8097 DATA EXCEPTION

Unhandled data exception

The error messages for FIXEDOVERFLOW and ZERODIVIDE mean that either the

fixed-point overflow condition or the decimal overflow condition has caused the

condition reported.

Under CICS

Decimal overflow condition exceptions are supported in CICS with C and the

following run-time message is produced:

EDCK017 ABEND=0320 Fixed or Decimal Overflow

Decimal exceptions and Assembler interlanguage calls

Calls to an assembler language procedure or function assume that the called

routine will save and restore the value of the Program Mask if the routine alters it.

Ensure that the Program Mask is preserved across an assembler language

interface. If it is not preserved, the recognition of subsequent decimal overflow

exceptions in C code will be unpredictable.

Chapter 25. Using the decimal data type in C 407

408 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 26. IEEE Floating-Point

Starting with OS/390 V2R6 (including the Language Environment and C/C++

components), support was added for IEEE binary floating-point (IEEE floating-point)

as defined by the ANSI/IEEE Standard 754-1985, IEEE Standard for Binary

Floating-Point Arithmetic.

For more information on floating-point support see:

v z/Architecture Principles of Operation

v z/OS XL C/C++ User’s Guide

v z/OS XL C/C++ Language Reference

v z/OS XL C/C++ Run-Time Library Reference

v z/OS Language Environment Vendor Interfaces

Floating-point numbers

The format of floating-point numbers can be either base 16 S/390 hexadecimal

format, or base 2 IEEE-754 binary format. The formats are also based on three

operand lengths: short (32 bits), long (64 bits), and extended (128 bits).

A floating-point operand may be numeric or, for binary floating-point only,

nonnumeric (Not a Number, or NaN). A floating-point number, has three

components: a sign bit, a signed binary exponent, and a significand. The significand

consists of an implicit unit digit to the left of an implied radix point, and an explicit

fraction field to the right. The significand digits are based on the radix, 2 (for binary

floating-point) or 16 (for hexadecimal floating-point). The magnitude (an unsigned

value) of the number is the product of the significand and the radix raised to the

power of the exponent. The number is positive or negative depending on whether

the sign bit is zero or one, respectively. A nonnumeric binary floating-point operand

also has a sign bit, signed exponent, and fraction field.

Hexadecimal floating-point operands have formats which provide for exponents that

specify powers of the radix 16 and significands that are hexadecimal numbers. The

exponent range is the same for the short, long, and extended formats. The results

of most operations on hexadecimal floating-point data are truncated to fit into the

target format, but there are instructions available to round the result when

converting to a narrower format. For hexadecimal floating-point operands, the

implicit unit digit of the significand is always zero. Since the value if the significand

and fraction are the same, hexadecimal floating-point operations are described in

terms of the fraction, and the term significand is not used.

Binary floating-point operands have formats which provide for exponents that

specify powers of the radix 2 and significands that are binary numbers. The

exponent range differs for different formats, the range being greater for the longer

formats. In the long and extended formats, the exponent range is significantly

greater for binary floating-point data than for hexadecimal floating-point data. The

results of operations performed on binary floating-point data are rounded

automatically to fit into the target format; the manner of rounding is determined by a

program-settable rounding mode.

© Copyright IBM Corp. 1996, 2006 409

C/C++ compiler support

The C/C++ compiler provides a FLOAT option to select the format of floating-point

numbers produced in a compile unit. The FLOAT option allows you to select either

IEEE floating-point or hexadecimal floating-point format. For details on the z/OS XL

C/C++ support, see the description of the FLOAT option in z/OS XL C/C++ User’s

Guide. In addition, two related sub-options, ARCH(3) and TUNE(3), support IEEE

binary floating-point data. Refer to the ARCHITECTURE and TUNE compiler

options in z/OS XL C/C++ User’s Guide for details.

The z/OS XL C/C++ Language Reference contains additional information on

floating-point in the following sections:

v Floating Point Literals

v Floating-Point Variables

v Floating-Point Conversions

v Floating-Point Standards

Notes:

1. You must have OS/390 Release 6 or higher to use the IEEE floating-point

instructions. In Release 6, the base control program (BCP) is enhanced to

support the new IEEE floating-point hardware in the IBM S/390 Generation 5

Server. This enables programs running on OS/390 Release 6 to use the IEEE

floating-point instructions and 16 floating-point registers. In addition, the BCP

provides simulation support for all the new floating-point hardware instructions.

This enables applications that make light use of IEEE floating-point, and can

tolerate the overhead of software simulation, to execute on OS/390 V2R6

without requiring an IBM S/390 Generation 5 Server.

2. The terms binary floating-point and IEEE floating-point are used

interchangeably. The abbreviations BFP and HFP, which are used in some

function names, refer to binary floating-point and hexadecimal floating-point

respectively.

3. Under hexadecimal floating-point format, the rounding mode is set to round

toward 0. Under IEEE floating-point format, the rounding mode is set to round

toward the nearest integer.

Using IEEE floating-point

IEEE floating-point is provided on IBM zSeries 900 primarily to enhance

interoperability and portability between IBM zSeries 900 and other platforms. It is

anticipated that IEEE floating-point will be most commonly used for new and ported

applications. Customers should not migrate existing applications that use

hexadecimal floating-point to IEEE floating-point, unless there is a specific reason

(such as a need to interoperate with a non- IBM zSeries 900 platform).

IBM does not recommend mixing floating-point formats in an application. However,

for applications which must handle both formats, the C/C++ run-time library does

offer some support. Reference information for IEEE floating-point can also be found

in z/OS XL C/C++ Language Reference.

You should use IEEE floating-point in the following situations:

v You deal with data that are already in IEEE floating-point format

v You need the increased exponent range (see z/OS XL C/C++ Language

Reference for information on exponent ranges with IEEE-754 floating-point)

410 z/OS V1R8.0 XL C/C++ Programming Guide

v You want the changes in programming paradigm provided by infinities and NaN

(Not a Number)

For more information about the IEEE format, refer to the IEEE 754-1985 IEEE

Standard for Binary Floating-Point Arithmetic.

When you use IEEE floating-point, make sure that you are in the same rounding

mode at compile time (specified by the ROUND(mode) option), as at run time. Entire

compilation units will be compiled with the same rounding mode throughout the

compilation. If you switch run-time rounding modes inside a function, your results

may vary depending upon the optimization level used and other characteristics of

your code; switch rounding mode inside functions with caution.

If you have existing data in hexadecimal floating-point (the original base 16 S/390

hexadecimal floating-point format), and have no need to communicate these data to

platforms that do not support this format, there is no reason for you to change to

IEEE floating-point format.

Applications that mix the two formats are not supported.

For information on the C/C++ functions that support floating-point, see the following:

v z/OS XL C/C++ Run-Time Library Reference provides information on the

following functions:

 absf() absl() acos() acosf()

acosh() acoshf() acoshl() acosl()

asin() asinf() asinh() asinhf()

asinhl() asinl() atan() atanf()

atanh() atanhf() atanhl() atanl()

atan2() atan2f() atan2l() cabs()

cabsf() cabsl() cacos() cacosf()

cacosh() cacoshf() cacoshl() cacosl()

carg() cargf() cargl() casin()

casinf() casinh() casinhf() casinhl()

casinl() catan() catanf() catanh()

catanhf() catanhl() catanl() cbrt()

cbrtf() cbrtl() ccos() ccosf()

ccosh() ccoshf() ccoshl() ccosl()

ceil() ceilf() ceill() cexp()

cexpf() cexpl() cimag() cimagf()

cimagl() clog() clogf() clogl()

conj() conjf() conjl() copysign()

copysignf() copysignl() cos() cosf()

cosh() coshf() coshl() cosl()

cotan() cotanf() cotanl() cpow()

cpowf() cpowl() cproj() cprojf()

cprojl() creal() crealf() creall()

csin() csinf() csinh() csinhf()

csinhl() csinl() csqrt() csqrtf()

csqrtl() ctan() ctanf() ctanh()

ctanhf() ctanhl() ctanl() erf()

erfc() erfcf() erfcl() erff()

erfl() exp() expf() expl()

expm1() expm1f() expm1l() exp2()

exp2f() exp2l() fabs() fabsf()

fabsl() fdim() fdimf() fdiml()

Chapter 26. IEEE Floating-Point 411

feclearexcept() fegetenv() fegetexceptflag() fegetround()

feholdexcept() feraiseexcept() fesetenv() fesetexceptflag()

fesetround() fetestexcept() feupdateenv() finite()

floor() floorf() floorl() fma()

fmaf() fmal() fmax() fmaxf()

fmaxl() fmin() fminf() fminl()

fmod() fmodf() fmodl() frexp()

frexpf() frexpl() gamma() gamma_r()

hypot() hypotf() hypotl() ilogb()

ilogbf() ilogbl() isnan() jn()

j0() j1() ldexp() ldexpf()

ldexpl() lgamma() lgammaf() lgammal()

lgamma_r() llrint() llrintf() llrintl()

llround() llroundf() llroundl() log()

logb() logbf() logbl() logf()

logl() log10() log10f() log10l()

log1p() log1pf() log1pl() log2()

log2f() log2l() lrint() lrintf()

lrintl() lround() lroundf() lroundl()

matherr() modf() modff() modfl()

nan() nanf() nanl() nearbyint()

nearbyintf() nearbyintl() nextafter() nextafterf()

nextafterl() nexttoward() nexttowardf() nexttowardl()

pow() powf() powl() remainder()

remainderf() remainderl() remquo() remquof()

remquol() rint() rintf() rintl()

round() roundf() roundl() scalb()

scalbln() scalblnf() scalblnl() scalbn()

scalbnf() scalbnl() significand() sin()

sinf() sinh() sinhf() sinhl()

sinl() sqrt() sqrtf() sqrtl()

tan() tanf() tanl() tanh()

tanhf() tanhl() tgamma() tgammaf()

tgammal() trunc() truncf() truncl()

yn() y0() y1()

v z/OS Language Environment Vendor Interfaces, the chapter on C/C++ Special

Purpose Interfaces for IEEE Floating-Point provides information on the following

functions:

 __chkbfp() __fp_btoh() __fp_cast() __fp_htob()

__fp_level() __fp_read_rnd() __fp_setmode() __fp_swapmod()

__fp_swap_rnd() __fpc_rd() __fpc_rs() __fpc_rw()

__fpc_sm() __fpc_wr() __isBFP()

412 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 27. Handling error conditions, exceptions, and

signals

This chapter discusses how to handle error conditions, exceptions, and signals with

z/OS XL C/C++. It describes how to establish, enable and raise a signal, and

provides a list of signals supported by z/OS XL C/C++.

In 31-bit applications, there are two basic ways to handle program checks and

ABENDs:

v POSIX or ANSI signals (SIGABND, SIGFPE, SIGILL, SIGSEGV)

v User condition handlers registered using CEEHDLR interface or the USRHDLR

runtime option.

In 31-bit applications, z/OS Language Environment uses a stack-based model to

handle error conditions. This environment establishes a last-in, first-out (LIFO)

queue of 0 or more user condition handlers for each stack frame. The z/OS

Language Environment condition handler calls the user condition handler at each

stack frame to handle error conditions when they are detected. For more

information about the callable services in z/OS Language Environment, refer to

“Handling signals using Language Environment callable services” on page 420.

In AMODE 64 applications, user condition handlers are not available. The basic

ways to handle program checks and ABENDs in AMODE 64 applications are:

v POSIX or ANSI signals (SIGABND, SIGFPE, SIGILL, SIGSEGV)

v Exception handlers registered using the __set_exception_handler() C runtime

library function. See “AMODE 64 exception handlers” on page 418 for more

information.

The C error handling approach using signals is supported in a z/OS XL C++

program, but there are some restrictions (refer to “Handling C software exceptions

under C++”). See “Signal handlers” on page 419 for more information.

C++ exception handling is supported in all z/OS environments that are supported by

C++ (including CICS and IMS); you must run your application with the TRAP(ON)

run-time option. To turn off C++ exception handling, use the compiler option NOEXH.

For more information on this compiler option, see z/OS XL C/C++ User’s Guide.

Note: If C++ exception handling is turned off you will get code which runs faster

but is not ANSI conformant.

This chapter also describes some aspects of C++ object-oriented exception

handling. The object-oriented approach uses the try, throw, and catch mechanism.

Refer to z/OS XL C/C++ Language Reference for a complete description. Some

library functions (abort(), atexit(), exit(), setjmp() and longjmp()) are affected

by C++ exception handling; refer to z/OS XL C/C++ Run-Time Library Reference for

more information.

Handling C software exceptions under C++

Using the C and C++ condition handling schemes together in a C++ program may

result in undefined behavior. This applies to the use of try, throw and catch with

signal() and raise(), with z/OS Language Environment condition handlers such

as CEEHDLR, or with CICS HANDLE ABEND under CICS in 31-bit mode. The behavior

© Copyright IBM Corp. 1996, 2006 413

with respect to running destructors for automatic objects is undefined, due to control

being transferred to non-C++ exception handlers (such as signal handlers) and

stacks being collapsed. If a C software exception is not handled and results in

program termination, the behavior for destructors for static non-local objects will

also be undefined.

With z/OS UNIX System Services, in a multithreaded environment, z/OS XL C++

exception stacks are managed on a per-thread basis. This means an exception

thrown on one thread cannot be caught on another thread, including the IPT where

main() was started. If the exception is not handled by the thread from which it was

thrown, then the terminate() function is called.

Handling hardware exceptions under C++

You cannot use try, throw, and catch to handle hardware exceptions.

If a hardware exception resulting in abnormal termination occurs in a z/OS XL C++

program, destructors for static and automatic objects are not run. If a hardware

exception occurs, and a handler was registered for the exception using signal(),

the behavior of destructors for automatic objects is undefined.

Tracebacks under C++

A traceback is not produced if a thrown object was caught and handled.

If an object is thrown, and no catch clauses exist that will handle the thrown object,

the program will call terminate(). By default, terminate() calls abort(), and the

traceback produced will show that this has occurred. The traceback will not show

the point from which the object was originally thrown. Instead, it will show that the

object was thrown from the last encountered catch clause.

In the following example, sub1() throws object a. Because sub1() does not have

any catch clauses to handle a, C++ attempts to find a suitable catch clause in the

calling sub function, and then in the main function. Because no catch clauses can

be found to handle object a, the traceback will show that object a was thrown from

main().

414 z/OS V1R8.0 XL C/C++ Programming Guide

CCNGCH1

If an object is thrown and a catch clause catches but then rethrows that object, or

throws another object, and no catch clauses exist for the rethrown or subsequently

thrown object, the traceback starts at the point from which the rethrow or

subsequent throw occurred. The first object thrown is considered to have been

caught and handled.

/* example of C++ exception handling */

#include <iostream.h>

#include <stdlib.h>

class A {

 int i;

 public:

 A(int j) { i = j; cout << "A ctor: i= " << i << ’\n’; }

 A() { cout << "A dtor: i= " << i << ’\n’; }

};

class B {

 char c;

 public:

 B(char d) { c = d; cout << "B ctor: c= " << c << ’\n’; }

 B() { cout << "B dtor: c= " << c << ’\n’; }

};

void sub(void);

void sub1(void);

main() {

 try {

 sub();

 }

 //traceback will show that the thrown object was from here because

 //no catch clauses match the thrown object and the last rethrow

 //occurred here.

 catch(int i) { cout << "caught an integer" << ’\n’; }

 catch(char c) { cout << "caught a character" << ’\n’; }

 exit(55);

}

void sub() {

 try {

 sub1();

 }

 //neither catch clause will catch object a, so again a will be

 //rethrown

 catch(double d) { cout << "caught a double" << ’\n’; }

 catch(float f) { cout << "caught a float" << ’\n’; }

 return;

}

void sub1() {

 A a(3001);

 try {

 throw(a);

 }

 //neither catch clause will catch object a, so a will be rethrown

 catch(B b) { cout << "caught a B object" << ’\n’; }

 catch(short s) { cout << "caught a short" << ’\n’; }

 return;

}

Figure 111. Example illustrating C++ exception handling/traceback

Chapter 27. Handling error conditions, exceptions, and signals 415

In the following example, the traceback would show that the testeh function

rethrows an integer. Because there is no catch clause to handle the rethrown

integer, the traceback will also show that terminate() and then abort() were

called.

416 z/OS V1R8.0 XL C/C++ Programming Guide

CCNGCH2

/* example of C++ exception handling */

#include <iostream.h>

#include <stdlib.h>

int testeh(void);

class A {

 int i;

 public:

 A(int j) { i = j; cout << "A ctor: i= " << i << ’\n’; }

 A() { cout << "A dtor: i= " << i << ’\n’; }

};

class B {

 char c;

 public:

 B(char d) { c = d; cout << "B ctor: c= " << c << ’\n’; }

 B() { cout << "B dtor: c= " << c << ’\n’; }

};

A staticA(333);

B staticB(’z’);

void sub();

main() {

 sub();

 return(55);

}

void sub()

{

 A c(3001);

 try {

 cout << "calling testeh" << ’\n’;

 testeh(); // int will be rethrown from testeh()

 }

 // no catch clauses for the rethrown int

 catch(char c) { cout << "caught char" << ’\n’; }

 catch(short s) { cout << "caught short s = " << s << ’\n’; }

 cout << "this line should not be printed" << ’\n’;

 return;

}

testeh()

{

 A a(2001),a1(1001);

 B b(’k’);

 short k=12;

 int j=0,l=0;

 try {

 cout << "testeh running" << ’\n’;

 throw (6); // first throw: an int

 }

 catch(char c) { cout << "testeh caught char" << ’\n’;}

 catch(int j) { cout << "testeh caught int j = " << j << ’\n’;

 try { // int should be caught here

 cout << "testeh again rethrowing" << ’\n’;

 throw; // rethrow the int

 }

 catch(char d) { cout << "char d caught" << ’\n’; }

 }

 cout << "this line should not be printed" << ’\n’;

 return(0);

}

Figure 112. Example illustrating C++ exception handling/traceback

Chapter 27. Handling error conditions, exceptions, and signals 417

AMODE 64 exception handlers

In AMODE 64 applications, exception handlers are registered using the

__set_exception_handler() C runtime library function. When no exception handler is

registered, program checks and ABENDs cause POSIX/ANSI signals to be raised.

These signals can be caught by user-written signal catchers, where suitable

recovery can be done. When an exception handler is registered, no signal is

generated when a program check or ABEND occurs. Instead, the active exception

handler is invoked. Since program checks and ABENDs do not generate signals,

the blocked/unblocked/ignored/caught settings for SIGABND, SIGFPE, SIGILL, and

SIGSEGV make no difference. When an exception handler is active, all

non-program-check and non-ABEND signal processing still occurs as described by

POSIX or ANSI. Only signals normally generated by program checks or ABENDs

are suppressed.

Scope and nesting of exception handlers

Exceptions handlers apply only to the thread they are registered on. In a

multi-threaded application, it is possible to have a mixture of threads, some with

exception handlers registered, and some without. Program checks and ABENDs

occurring on threads without active exception handlers cause the usual

ANSI/POSIX signal generation. Program checks and ABENDs occurring on threads

with active exception handlers will bypass signal generation and will cause the

active exception handler to be invoked.

Exception handlers are are also stack-frame based, much like 31-bit user condition

handlers. If function a() registers an exception handler, future program checks and

ABENDs will drive that handler, until the handler is de-registered. This includes

program checks occurring in a() (after the registration), and in any called functions.

Function a() can deregister the handler using __reset_exception_handler(). After

this is done, program checks and ABENDs once again cause signals to be raised. If

function a() returns without calling __reset_exception_handler() to deregister its

handler, the handler will be automatically removed when a() returns.

If function a() registers handler ah(), and calls function b(), program checks and

ABENDs in b() will also go to ah(). However, b() can register its own handler, bh(),

in which case any program checks and ABENDs in b() or any functions it calls will

go to bh(). Exception handlers can be nested in this way as deep as required. If

they are not explicitly deregistered by calling __reset_exception_handler(), they are

automatically removed when the registering function returns. They are also

removed, whenever a longjump-type function (longjmp(), _longjmp(), siglongjmp(),

setcontext(), or C++ throw) causes control to jump back past the function that

registered the handler. (Example: a() registers handler ah(), and calls b(), which

registers handler bh(), and calls c(). Function c() longjumps back into a(). In this

case, bh() will be removed, but ah() will remain.)

Note: Whenever a program check or ABEND occurs, no more than one exception

handler will ever be driven, even when several nested handlers have been

registered. The active handler is the one that was most recently registered,

and not de-registered/removed. It will usually be the handler registered by

the most deeply-nested routine at the time of the program check or ABEND.

During C++ throw processing, as the Language Environment stack is unwound and

destructors for automatic C++ object are invoked, handlers registered by

more-deeply nested functions are temporarily bypassed, in case program checks or

ABENDs occur in the destructors. Example: a() registers handler ah(), and calls b().

418 z/OS V1R8.0 XL C/C++ Programming Guide

Function b() has a dynamic object with destructor bd(). Function b() calls c(), which

has a dynamic object with destructor cd(), and it registers handler ch(). Function c()

then calls d(), which registers handler dh(), and then throws a C++ exception that

will eventually get caught back in a(). As the C++ destructors are run, program

checks/ABENDs in cd() go to handler ch(), and program checks/ABENDs in bd() go

to ah(). By the time control resumes in the catch clause in a(), dh() and ch() are

gone, and ah() is the active exception handler. This same type of exception handler

scoping occurs after pthread_exit() is called and all outstanding C++ dynamic

destructors still left on the stack are run.

If a program does pthread_exit() while an exception handler is active, that exception

handler remains active while any pthread_keycreate() destructor routines and any

pthread_cleanup_push() routines are invoked. These routines can register their own

exception handlers, too, if required.

When atexit() routines or C++ static destructors are run, any active exception

handlers at the time of the exit() or pthread_exit() have already been removed. If

these routines need recovery, thay can register their own exception handlers.

Handling exceptions

When the active exception handler is called after a program check or ABEND, it

receives a pointer to the CIB (Condition Information Block) for the error. It can

examine the CIB and associated MCH (Machine Check Handler record) to

determine what the error is. The handler can fix up whatever is required or take

dumps, etc. When it is finished, the only valid things it can do are:

v Long jump back to some earlier pre-defined recovery point (any of the several

longjump-type functions may be used -- longjmp(), _longjmp(), siglongjmp(),

setcontext(), or C++ throw.)

v Issue exit() or _exit()

v Issue pthread_exit()

v Issue __cabend(), abort(), etc

What it cannot do is return. If it returns, the system will automatically do

pthread_exit(-1) if POSIX(ON) is in effect, or exit(-1) if not.

When the active exception handler is given control, the handler is suspended, along

with all other handlers already registered. This means that any future program

checks/ABENDs will cause the usual signal processing to occur. The active handler

is re-enabled once it longjumps back. If it exits or returns, it is not re-activated, and

termination starts with no active exception handler. If an exception handler needs

exception handling recovery for its own program checks or ABENDs, it must register

its own exception handler. As usual, this new handler will become active, and will

get control for any program checks/ABENDs occurring in the outer exception

handler or any routines it calls.

Signal handlers

The basis for error handling in z/OS UNIX System Services XL C/C++ application

programs is the generation, delivery, and handling of signals. Signals can be

generated and delivered as a result of system events or application programming.

You can code your application program to generate and send signals and to handle

and respond to signals delivered to it.

Two types of signal handling are supported for catching signals: ANSI C and

POSIX.1. Each of these has standard signal delivery rules, which are discussed in

Chapter 27. Handling error conditions, exceptions, and signals 419

this chapter. Asynchronous signal delivery under z/OS UNIX System Services is

also discussed. For additional information on the subject of POSIX-conforming

signals, see The POSIX.1 Standard: A Programmer’s Guide, by Fred Zlotnick,

(Redwood City, CA: The Benjamin/Cummings Publishing Company, Inc., 1991).

Handling signals with POSIX(OFF) using signal() and raise()

The z/OS XL C environment provides two functions that alter the signal handling

capabilities available in the run-time environment: signal() and raise(). The

signal() function registers a condition handler and the raise() function raises the

condition.

In general, for C++ programs you are encouraged to use try, throw, and catch to

perform exception handling. However, you can also use the z/OS XL C signal()

and raise() functions.

You can use the signal() function to perform one of the following actions:

v Ignore the condition. For example, use the SIG_IGN condition to specify

signal(SIGFPE,SIG_IGN).

v Reset the Global Error Table for default handling. For example, use the SIG_DFL

condition to specify signal(SIGSEGV,SIG_DFL).

v Register a function to handle the specific condition. For example, pass a pointer

to a function for the specific condition with signal(SIGILL,cfunc1). The function

registered for signal() must be declared with C linkage.

Handling signals using Language Environment callable services

In 31-bit mode, you can set up user signal handlers with the z/OS Language

Environment condition handling services. Some of the z/OS Language Environment

callable services available for condition handling are:

CEEHDLR

Register a user-written condition handler.

CEEHDLU

Remove a registered user-written condition handler.

CEESGL

Raise z/OS Language Environment condition.

In addition, with z/OS Language Environment, when an exception occurs after an

interlanguage call, the exception may be handled where it occurs, or percolated to

its caller (written in any z/OS Language Environment-conforming language), or

promoted. For more information on how to handle exceptions under the z/OS

Language Environment condition handling model, refer to z/OS Language

Environment Programming Guide.

Specific considerations for C and C++ under z/OS Language Environment:

1. The TRAP run-time option (equivalent to the former C/370™ run-time options

SPIE and STAE) determines how the z/OS Language Environment condition

manager is to act upon error conditions and program interrupts. If the TRAP(OFF)

run-time option is in effect, conditions detected by the operating system, often

due to machine interrupts, will not be handled by the z/OS Language

Environment environment and thus cannot be handled by a z/OS XL C/C++

program.

Note: TRAP(OFF) only blocks the handling of hardware (program checks) and

operating system (abend) conditions. It does not block software

420 z/OS V1R8.0 XL C/C++ Programming Guide

conditions such those that are associated with a raise or CEESGL (31-bit

mode). Any conditions that are blocked because of TRAP(OFF) are not

presented to any handlers (whether registered by a signal or by CEEHDLR).

In particular, even for TRAP(OFF), conditions that are initiated by a signal

or by CEESGL (31-bit mode) are presented to handlers registered by either

signal() or CEEHDLR.

The use of the TRAP(OFF) option is not recommended; refer to z/OS Language

Environment Programming Reference for more information.

2. You can use the ERRCOUNT run-time option to specify how many errors are to be

tolerated during the execution of your program before an abend occurs. The

counter is incremented by one for every severity 2, 3, or 4 condition that occurs.

Both hardware-generated and software-generated signals increment the counter.

If your C++ program uses try, throw, and catch, it is recommended that you

specify either ERRCOUNT(0) (31-bit mode), which allows an unlimited number of

errors, or ERRCOUNT(n) (31-bit mode), where n is a fairly high number. This is

because z/OS XL C++ generates a severity 3 condition for each thrown object.

In addition, each catch clause has the potential to rethrow an object or to throw

a new object. In a large C++ program, many conditions can be generated as a

result of objects being thrown, and thus the ERRCOUNT can be exceeded if the

value used for it is too low. The installation default used for ERRCOUNT is usually

a low number.

Note: The z/OS XL C/C++ registered condition handlers (those registered by

signal() and raise()), are activated after the z/OS Language Environment

registered condition handlers for the current stack frame are activated. This

means that if there are condition handlers for both z/OS XL C/C++ and z/OS

Language Environment, the z/OS Language Environment handlers are

activated first.

Combining C++ condition handling (using try, throw, and catch), with z/OS

Language Environment condition handling may result in undefined behavior.

Handling signals using z/OS UNIX System Services with POSIX(ON)

z/OS UNIX System Services signal processing allows flags to control the behavior

of signal processing. Using these flags, you can simulate these signals and a wide

variety of other signals such as ANSI, POSIX.1, and BSD.

ANSI C has the following standard signal delivery rules:

v Traditionally, signal actions are established only through the signal().

v During signal delivery, the signal action is reset to SIG_DFL before the user signal

action catcher function receives control.

v During signal delivery to a user signal catcher function, the signal mask is not

changed.

POSIX.1 has the following standard signal delivery rules:

v Signal actions are typically established through the sigaction() function. With

the addition of XPG4 support, there are a number of new flags that have been

defined for sigaction() that extend its flexibility.

v During signal delivery, the signal action is not changed.

v During signal delivery to a user signal catcher function, the signal mask is

changed to the union of:

– The signal mask at the time of the interruption

– A signal mask that blocks the signal type being delivered

Chapter 27. Handling error conditions, exceptions, and signals 421

The signal mask is restored when the signal catcher function returns.

BSD signals for the most part are consistent with the POSIX rules above except for

the following:

v BSD signal mask is a 31-bit mask whereas the z/OS UNIX System Services

signal mask is a AMODE 64 mask. The relationship of the bits to specific signals

is not the same. Therefore, we recommend you change to use the sigset

manipulation functions, such as, sigadd(), sigdelete(), sigempty().

v Traditionally, for BSD to generate a signal action, the signal() function was

used. However, because the signal() function is used in ANSI, BSD applications

should be changed to use the bsd_signal() function.

v During signal delivery, the signal action is not changed.

v During signal delivery to a user signal catcher function, the signal mask is

changed to the union of:

– The signal mask at the time of the interruption

– The signal mask specified in the sa_mask field of the sigaction() function

The signal mask is restored once the signal catcher function returns.

For compatibility, z/OS XL C/C++ supports the three standards listed above, and

additional functions provided by XPG4.

Under z/OS XL C/C++, the primary function for establishing signal action is the

sigaction() function. However, there are a number of other functions that you can

use to effect signal processing. All signal types are accessible regardless of the

function used to establish the signal action.

The following list includes functions that will establish a signal handler for a signal

action:

 BSD Function Purpose

bsd_signal() BSD version of signal()

sigaction() Examine and/or change a signal action

sigignore() Set disposition to ignore a signal

sigset() Change a signal action and/or a thread’s signal mask

signal() Specify signal handling

The following is a list of other signal related functions:

 Other Signal Related

Functions Purpose

abort() Stop a program

kill() Send a signal to a process

pthread_kill() Send a signal to a thread

raise() Send a signal to yourself

sigaddset() Add a signal to a signal set

sigdelset() Delete a signal from a signal set

sigemptyset() Initialize a signal set to exclude all signals

sigfillset() Initialize a signal set to include all signals

sighold() Add a signal to a thread’s signal mask

422 z/OS V1R8.0 XL C/C++ Programming Guide

Other Signal Related

Functions Purpose

siginterrupt() Allow signals to interrupt functions

sigismember() Test if a signal is in a signal set

sigpause() Unblock a signal and wait for a signal

sigprocmask() Examine and/or change a thread’s signal mask

sigqueue() Queue a signal to a process

sigrelse() Remove a signal from a thread’s signal mask

sigstack() Set and/or get signal stack context

sigaltstack() Set and/or get signal alternate stack context

sigsuspend() Change mask and suspend the thread

sigwait() Wait for asynchronous signal

sigpending() Examine pending signals

sigtimedwait() Wait for queued signals

sigwaitinfo() Wait for queued signals

Asynchronous signal delivery under z/OS UNIX System Services

Your z/OS UNIX System Services application program might require its active

processes to be able to react and respond to events occurring in the system or

resulting from the actions of other processes communicating with its processes.

One way of accomplishing such interprocess communication is for you to code your

application program to identify signal conditions and determine how to react or

respond when a signal condition is received from another application process.

Before you attempt to code your z/OS UNIX System Services C/C++ application

program to deliver and handle signals, you should identify all the processes that

might cause signal conditions to be received by your application program’s

processes. You also need to know which signal condition codes are valid for your

z/OS UNIX System Services C/C++ application program and where the signal.h

header file will be located and available to your application program. Your system

programmer or the application program’s designer should provide this information.

Note: Signal condition codes are defined in the signal.h include file.

A signal is a mechanism by which a process can be notified of, or affected by, an

event occurring in the system. Examples of such events include hardware

exceptions and specific actions by processes. The term signal also refers to an

event itself.

The POSIX.1-defined sigaction() function allows a calling application process to

examine a specific signal condition and specify the processing action to be

associated with it.

You can code your application program to use the sigaction() function in different

ways. Two simplistic examples of using signals within z/OS UNIX System Services

C/C++ application programs follow:

1. A process is forked but the process is aborted if the signal handler receives an

incorrect value.

2. A request is received from a client process to provide information from a

database. The server process is a single point of access to the database.

Chapter 27. Handling error conditions, exceptions, and signals 423

If coded properly for handling and delivering interprocess signals, your application

program can receive signals from other processes and interpret those signals such

that the appropriate processing procedure occurs for each specific signal condition

received. Your application program also can send signals and wait for responses to

signal handling events from other application processes. Note that signals are not

the best method of interprocess communication, because they can easily be lost if

more than one is delivered at the same time. You may want to use other methods

of interprocess communication, such as pipes, message queues, shared memory,

or semaphores.

For descriptions of the supported z/OS XL C/C++ signal handling functions, see

z/OS XL C/C++ Run-Time Library Reference.

Note: If your z/OS UNIX System Services C/C++ application program calls a

program written in a high-level language other than z/OS UNIX System

Services C/C++, you need to disable signal handling to block all signals from

the z/OS UNIX System Services C/C++ application program. If the called

program encounters a program interrupt check situation, the results are

unpredictable.

C signal handling features under z/OS XL C/C++

The terms used to describe implementation features and concepts are:

v Establishing a signal handler

v Enabling a signal

v Interrupting a program

v Raising a signal

Establishing a signal handler

A signal handler for a signal, sig_num, becomes established when signal(sig_num,

sig_handler) is executed. (Two values of sig_handler are reserved: SIG_IGN and

SIG_DFL. They are special values that establish the action taken.) sig_handler is a

pointer to a function to be called when the signal is raised. This function is also

known as a signal handler. Under C++, the signal handler function must have C

linkage, by declaring it as extern "C". Under C, the function must be written in C

with the default linkage in effect. That is, sig_handler cannot have OS, PLI, C++, or

COBOL linkage. The signal handler for the signal ceases to be established when:

v The signal is explicitly reset to the system default by using signal(sig_num,

SIG_DFL).

v You indicate that a signal is to be ignored by using signal(sig_num, SIG_IGN).

v The signal is implicitly reset to the system default when the signal is raised.

When sig_handler is called, signal handling is reset to the default as if an

implicit signal(sig_num, SIG_DFL) had been executed. Depending on the

purpose of the signal handler, you may want to reestablish the signal from within

the signal handler.

v Under C, a loaded executable is deleted using the release() function and a

signal handler for the signal resides in the executable. In this case, default

handling will be reset for all the affected signals.

v A DLL module is explicitly loaded using dllload(), a function pointer in that

module is obtained using dllqueryfn(), a signal handler is establishing using

that function, and the DLL module is then explicitly deleted using dllfree().

Default handling will be reset for the affected signal.

424 z/OS V1R8.0 XL C/C++ Programming Guide

Note: A C signal handler can be written in C, or can be written in C++ and

declared as extern "C" so that it has C linkage.

Enabling a signal

A signal is enabled when the occurrence of the condition will result in either the

execution of an established signal handler or the default system response. The

signal is disabled when the occurrence is to be ignored, such as, when the signal

action is SIG_IGN. This can be done by making the call signal(sig_num, SIG_IGN).

Using z/OS UNIX System Services with POSIX(ON), SIG_IGN may be set with

several other functions, such as, sigaction(). In addition to changing the signal

action to SIG_IGN, the signal can be enabled or disabled (blocked) using the

sigprocmask() function.

Interrupting a program

Program interrupts or errors detected by the hardware and identified to the program

by operating system mechanisms are known as hardware signals. For example, the

hardware can detect a divide by zero and this result can be raised to the program.

Raising a signal

Signals that are explicitly raised by the user, by using the raise() function or using

z/OS UNIX System Services with POSIX(ON) using the kill(), killpg(), or

pthread_kill() functions, are known as software signals.

Identifying hardware and software signals

The following is a list of signals supported with z/OS XL C/C++ with POSIX(OFF):

SIGABND System abend.

SIGABRT Abnormal termination (software only).

SIGDANGER Shutdown imminent.

SIGDUMP Take a SYSMDUMP.

SIGFPE Erroneous arithmetic operation (hardware and software).

SIGILL Invalid object module (hardware and software).

SIGINT Interactive attention interrupt by raise() (software only).

SIGIOERR Serious software error such as a system read or write. You can

assign a signal handler to determine the file in which the error

occurs or whether the condition is an abort or abend. This

minimizes the time required to locate the source of a serious error.

SIGSEGV Invalid access to memory (hardware and software).

SIGTERM Termination request sent to program (software only).

SIGUSR1 Reserved for user (software only).

SIGUSR2 Reserved for user (software only).

The following is a list of the z/OS XL C/C++ supported signals (when running on

z/OS UNIX System Services with POSIX(ON)):

SIGABND System abend.

SIGABRT Abnormal termination (software only).

SIGALRM Asynchronous timeout signal generated as a result of an alarm().

SIGBUS Bus error.

SIGCHLD Child process terminated or stopped.

Chapter 27. Handling error conditions, exceptions, and signals 425

SIGCONT Continue execution, if stopped.

SIGDANGER Shutdown imminent.

SIGDCE DCE event.

SIGDUMP Take a SYSMDUMP.

SIGFPE Erroneous arithmetic operation (hardware and software).

SIGHUP Hangup, when a controlling terminal is suspended or the controlling

process ended.

SIGILL Invalid object module (hardware and software).

SIGINT Asynchronous CNTL-C from one of the z/OS UNIX System

Services shells or a software generated signal.

SIGIO Completion of input or output.

SIGIOERR Serious software error such as a system read or write. Assign a

signal handler to determine the file in which the error occurs or

whether the condition is an abort or abend. Minimize the time

required to locate the source of a system error.

SIGKILL An unconditional terminating signal.

SIGPIPE Write on a pipe with no one to read it.

SIGPOLL Pollable event.

SIGPROF Profiling timer expired.

SIGQUIT Terminal quit signal.

SIGSEGV Invalid access to memory (hardware and software).

SIGSTOP The process is stopped.

SIGSYS Bad system call.

SIGTERM Termination request sent to program (software only).

SIGTHCONT The specific thread is resumed.

SIGTHSTOP The specific thread is stopped.

SIGTRAP Debugger event.

SIGTSTP Terminal stop signal.

SIGTTIN Background process attempting read.

SIGTTOU Background process attempting write.

SIGURG High bandwidth is available at a socket.

SIGUSR1 Reserved for user (software only).

SIGUSR2 Reserved for user (software only).

SIGVTALRM Virtual timer expired.

SIGXCPU CPU time limit exceeded.

SIGXFSZ File size limit exceeded.

The applicable hardware signals or exceptions are listed in Table 74 on page 427. It

also lists those hardware exceptions that are not supported (for example, fixed-point

overflow) and are masked.

426 z/OS V1R8.0 XL C/C++ Programming Guide

The applicable software signals or exceptions that are supported with POSIX(OFF)

are listed in Table 75 (see Table 76 on page 429 for the POSIX(ON) signals).

 Table 74. Hardware exceptions - Default run-time messages and system actions

C Signal Hardware Exception

Default Run-Time

Message with z/OS

Language

Environment

Default System Action with

z/OS Language Environment

Library

SIGILL Operation exception CEE3201 Abnormal termination MVS

rc=3000 Privileged operation

exception

CEE3202

Execute exception CEE3203

SIGSEGV Protection exception CEE3204 Abnormal termination MVS

rc=3000 Addressing exception CEE3205

Specification

exception

CEE3206

SIGFPE Data exception CEE3207 Abnormal termination MVS

rc=3000 Fixed-point divide CEE3209

Decimal overflow (for

C only)

CEE3210

Decimal divide CEE3211

Exponent overflow CEE3212

Floating point divide CEE3215

Note: Under TSO, SIGINT will not be raised if you press the attention key. It must be raised

using raise().

The default run-time program mask is enabled for decimal overflow exceptions.

Table 75 shows software signals with POSIX(OFF) or exceptions, their origin,

default run-time messages and default system actions.

 Table 75. Software exceptions - Default run-time messages and system actions with

POSIX(OFF)

C Signal Software Exception

Default Run-Time

Message with z/OS

Language

Environment

Default System Action with

z/OS Language Environment

Library

SIGILL raise(SIGILL) EDC6001 Abnormal Termination MVS

rc=3000

SIGSEGV raise(SIGSEGV) EDC6002 Abnormal Termination MVS

rc=3000

SIGFPE raise(SIGFPE) EDC6002 Abnormal Termination MVS

rc=3000

SIGABND raise(SIGABND) EDC6003 Abnormal Termination MVS

rc=3000

SIGTERM raise(SIGTERM) EDC6004 Abnormal Termination MVS

rc=3000

SIGINT raise(SIGINT) EDC6005 Abnormal Termination MVS

rc=3000

Chapter 27. Handling error conditions, exceptions, and signals 427

Table 75. Software exceptions - Default run-time messages and system actions with

POSIX(OFF) (continued)

C Signal Software Exception

Default Run-Time

Message with z/OS

Language

Environment

Default System Action with

z/OS Language Environment

Library

SIGABRT raise(SIGABRT) EDC6006 Abnormal Termination MVS

rc=2000

SIGUSR1 raise(SIGUSR1) EDC6007 Abnormal Termination MVS

rc=3000

SIGUSR2 raise(SIGUSR2) EDC6008 Abnormal Termination MVS

rc=3000

SIGIOERR raise(SIGIOERR) EDC6009 Signal is ignored

SIGABND considerations

When the SIGABND signal is registered with an address of a C handler using the

signal() function, control cannot resume at the instruction following the abend or

the invocation of raise() with SIGABND. If the C signal handler is returned, the

abend is percolated and the default behavior occurs. The longjmp() or exit()

function can be invoked from the handler to control the behavior.

If SIG_IGN is the specified action for SIGABND and an abend occurs (or SIGABND was

raised), the abend will not be ignored because a resume cannot occur. The abend

will percolate and the default action will occur.

Two macros are available in signal.h header file that provide information about an

abend. The __abendcode() macro returns the abend that occurred and __rsncode()

returns the corresponding reason code for the abend. These values are available in

a C signal handler that has been registered with the SIGABND signal. If you are

looking for the abend and reason codes, using these macros, they should only be

checked when in a signal handler. The values returned by the __abendcode() and

__rsncode() macros are undefined if the macros are used outside a registered

signal handler.

SIGIOERR considerations

When the SIGIOERR signal is raised, codes for the last operation will be set in the

__amrc structure to aid you in error diagnosis.

Default handling of signals

The run-time environment will perform default handling of a given signal unless the

signal is established (signal(sig_num, sig_handler)) or the signal is disabled

(signal(sig_num, SIG_IGN)). A user can also set or reset default handling by

coding:

signal(sig_num, SIG_DFL);

The default handling depends upon the signal that was raised. Refer to the two

preceding tables for information on the default handling of a given signal.

Note: When using the atexit() library function, the atexit list will not be run if the

application is abnormally terminated.

Using z/OS UNIX System Services: The following table describes the default

actions for signals that may be delivered to z/OS UNIX System Services XL C/C++

application programs:

428 z/OS V1R8.0 XL C/C++ Programming Guide

Table 76. Default signal processing with POSIX(ON)

Signal Default Action

SIGABND Clean up the z/OS XL C/C++ run-time library, issue message CEE5204, and end the process.

The signal exit status is returned to the parent process if it is waiting for a child process to end.

If the program is not running in a forked process, so that no parent process exists to return the

signal status to, the return code 3000 is returned to the system. If the signal is generated as a

result of an abend condition, as opposed to being software generated by a raise(), kill(), or

pthread_kill() function, the CEE5204 message is issued along with a trace-back message

indicating a user function was in control when the abend occurred.

SIGABRT Clean up the z/OS XL C/C++ run-time library, issue message CEE5207 and end the process.

The signal exit status is returned to the parent process if it is waiting for a child process to end.

If the program is not running in a forked process, so that no parent process exists to return the

signal status to, the return code 3000 is returned to the system.

SIGALRM Clean up the z/OS XL C/C++ run-time library, issue message CEE5214 and end the process.

The signal exit status is returned to the parent process if it is waiting for a child process to end.

If the program is not running in a forked process, so that no parent process exists to return the

signal status to, the return code 3000 is returned to the system.

SIGCHLD The signal is ignored.

SIGCONT The process is continued if it was stopped. Otherwise, the signal is ignored.

SIGDCE The signal is ignored.

SIGFPE Clean up the z/OS XL C/C++ run-time library, issue message CEE5201, and end the process.

The signal exit status is returned to the parent process if it is waiting for a child process to end.

If the program is not running in a forked process, so that no parent process exists to return the

signal status to, the return code 3000 is returned to the system. If the signal is generated as a

result of an abend condition, as opposed to being software generated by a raise(), kill(), or

pthread_kill() function, the CEE5201 message is issued along with a trace-back message

indicating a user function was in control when the abend occurred.

SIGHUP Clean up the z/OS XL C/C++ run-time library, issue message CEE5210 and end the process.

The signal exit status is returned to the parent process if it is waiting for a child process to end.

If the program is not running in a forked process, so that no parent process exists to return the

signal status to, the return code 3000 is returned to the system.

SIGILL Clean up the z/OS XL C/C++ run-time library, issue message CEE5202, and end the process.

The signal exit status is returned to the parent process if it is waiting for a child process to end.

If the program is not running in a forked process, so that no parent process exists to return the

signal status to, the return code 3000 is returned to the system. If the signal is generated as a

result of an abend condition, as opposed to being software generated by a raise(), kill(), or

pthread_kill() function, the CEE5202 message is issued along with a trace-back message

indicating a user function was in control when the abend occurred.

SIGINT Clean up the z/OS XL C/C++ run-time library, issue message CEE5206 and end the process.

The signal exit status is returned to the parent process if it is waiting for a child process to end.

If the program is not running in a forked process, so that no parent process exists to return the

signal status to, the return code 3000 is returned to the system. In past releases, the default

action for this signal was to ignore the signal.

SIGIO The signal is ignored.

SIGIOERR The signal is ignored. In a POSIX application running on z/OS UNIX System Services

SIGIOERR is not supported directly by the kernel. Instead, z/OS XL C/C++ maps SIGIOERR to

SIGIO. Any application using SIGIOERR should not also use SIGIO.

SIGKILL End the process with no z/OS XL C/C++ run-time cleanup.

SIGPIPE Clean up the z/OS XL C/C++ run-time library, issue message CEE5213 and end the process.

The signal exit status is returned to the parent process if it is waiting for a child process to end.

If the program is not running in a forked process, so that no parent process exists to return the

signal status to, the return code 3000 is returned to the system.

Chapter 27. Handling error conditions, exceptions, and signals 429

Table 76. Default signal processing with POSIX(ON) (continued)

Signal Default Action

SIGQUIT Clean up the z/OS XL C/C++ run-time library, issue message CEE5220 and end the process.

The signal exit status is returned to the parent process if it is waiting for a child process to end.

If the program is not running in a forked process, so that no parent process exists to return the

signal status to, the return code 3000 is returned to the system.

SIGSEGV Clean up the z/OS XL C/C++ run-time library, issue message CEE5203 and end the process.

The signal exit status is returned to the parent process if it is waiting for a child process to end.

If the program is not running in a forked process, so that no parent process exists to return the

signal status to, the return code 3000 is returned to the system.

SIGSTOP The process is stopped.

SIGTERM Clean up the z/OS XL C/C++ run-time library, issue message CEE5205 and end the process.

The signal exit status is returned to the parent process if it is waiting for a child process to end.

If the program is not running in a forked process, so that no parent process exists to return the

signal status to, the return code 3000 is returned to the system.

SIGTHCONT The specific thread is resumed.

SIGTHSTOP The specific thread is stopped.

SIGTRAP Clean up the z/OS XL C/C++ run-time library, issue message CEE5222 and end the process.

The signal exit status is returned to the parent process if it is waiting for a child process to end.

If the program is not running in a forked process, so that no parent process exists to return the

signal status to, the return code 3000 is returned to the system.

SIGTSTP The process is stopped.

SIGTTIN The process is stopped.

SIGTTOU The process is stopped.

SIGUSR1 Clean up the z/OS XL C/C++ run-time library, issue message CEE5208 and end the process.

The signal exit status is returned to the parent process if it is waiting for a child process to end.

If the program is not running in a forked process, so that no parent process exists to return the

signal status to, the return code 3000 is returned to the system. In past releases, the default

action for this signal was to ignore the signal.

SIGUSR2 Clean up the z/OS XL C/C++ run-time library, issue message CEE5209 and end the process.

The signal exit status is returned to the parent process if it is waiting for a child process to end.

If the program is not running in a forked process, so that no parent process exists to return the

signal status to, the return code 3000 is returned to the system. In past releases, the default

action for this signal was to ignore the signal.

SIGPOLL Clean up the z/OS XL C/C++ run-time library, issue message CEE5225 and end the process.

The signal exit status is returned to the parent process if it is waiting for a child process to end.

If the program is not running in a forked process, so that no parent process exists to return the

signal status to, the return code 3000 is returned to the system.

SIGURG The signal is ignored.

SIGBUS Clean up the z/OS XL C/C++ run-time library, issue message CEE5227 and end the process.

The signal exit status is returned to the parent process if it is waiting for a child process to end.

If the program is not running in a forked process, so that no parent process exists to return the

signal status to, the return code 3000 is returned to the system.

SIGSYS Clean up the z/OS XL C/C++ run-time library, issue message CEE5228 and end the process.

The signal exit status is returned to the parent process if it is waiting for a child process to end.

If the program is not running in a forked process, so that no parent process exists to return the

signal status to, the return code 3000 is returned to the system.

SIGWINCH The signal is ignored.

SIGXCPU Clean up the z/OS XL C/C++ run-time library, issue message CEE5230 and end the process.

The signal exit status is returned to the parent process if it is waiting for a child process to end.

If the program is not running in a forked process, so that no parent process exists to return the

signal status to, the return code 3000 is returned to the system.

430 z/OS V1R8.0 XL C/C++ Programming Guide

Table 76. Default signal processing with POSIX(ON) (continued)

Signal Default Action

SIGXFSZ Clean up the z/OS XL C/C++ run-time library, issue message CEE5231 and end the process.

The signal exit status is returned to the parent process if it is waiting for a child process to end.

If the program is not running in a forked process, so that no parent process exists to return the

signal status to, the return code 3000 is returned to the system.

SIGVTALRM Clean up the z/OS XL C/C++ run-time library, issue message CEE5232 and end the process.

The signal exit status is returned to the parent process if it is waiting for a child process to end.

If the program is not running in a forked process, so that no parent process exists to return the

signal status to, the return code 3000 is returned to the system.

SIGPROF Clean up the z/OS XL C/C++ run-time library, issue message CEE5233 and end the process.

The signal exit status is returned to the parent process if it is waiting for a child process to end.

If the program is not running in a forked process, so that no parent process exists to return the

signal status to, the return code 3000 is returned to the system.

Dubbed Process: A process that is not from a call to a fork() function or to a program main() function through an

exec() function.

The following chart shows how the C and z/OS Language Environment error

handling approaches interact.

Chapter 27. Handling error conditions, exceptions, and signals 431

MAP 0040: Summary of C error handling

001

Signal is raised. Is SIG_IGN set for the signal? Or is the signal blocked?

Yes No

 002

Continue at Step 006.

 003

Is the signal for a SIGABND?

Yes No

 004

Resume at the next instruction.

 005

Condition is percolated for default behavior.

 006

Is the signal asynchronous (or previously blocked)?

Yes No

 007

Is z/OS Language Environment user handler registered?

Yes No

 008

Is a C handler established for the signal by signal() or

sigaction() with the SA_OLD_STYLE or SA_RESETHAND flag

set?

Yes No

 009

Continue at Step 017 on page 433.

 010

Run C handler using ANSI rules and resume at the next instruction.

 011

Run z/OS Language Environment user handler. The handler can resume,

percolate or promote the signal. See z/OS Language Environment

Programming Guide for more details.

MAP 0040 (continued)

432 z/OS V1R8.0 XL C/C++ Programming Guide

012

Is a C handler established for the signal?

Yes No

 013

Perform default processing.

 014

Was the C handler established by signal() or sigaction() with the

SA_OLD_STYLE or SA_RESETHAND flag set?

Yes No

 015

Run C handler using POSIX rules and transfer control to the next instruction

following the asynchronous interrupt.

 016

Run C handler using ANSI rules and transfer control to the next instruction following

asynchronous interrupt.

 017

At stack frame 0?

Yes No

 018

Default handling for the signal and percolate to next stack frame.

 019

Was a C handler established?

Yes No

 020

Perform default processing.

 021

Run C handler using POSIX signal delivery rules and resume at next instruction.

Signal considerations using z/OS UNIX System Services: The following

restrictions and inconsistencies exist for z/OS UNIX System Services XL C/C++

application program signal handling:

v Signal processing is blocked by the kernel when an application program is

running on a request block (RB) other than the one the main() routine was

started on.

v An application program should not use the longjmp() function to exit from a

signal catcher established through the use of sigaction(). The sigsetjmp() and

siglongjmp() functions should be used instead of setjmp() and longjmp(). The

longjmp() function can be used if the signal() function was used to established

the signal catcher.

MAP 0040 (continued)

Chapter 27. Handling error conditions, exceptions, and signals 433

v An application program must not use the macro versions of the getc(), putc(),

getchar(), and putchar() functions to perform I/O to the same file from an

asynchronous signal catcher function.

v Floating point registers are saved before a call to the signal catcher function and

restored when the signal catcher returns. This is done for all signals.

v For z/OS UNIX System Services XL C/C++ application programs, the errno value

is saved before a call to the signal catcher function and restored when the signal

catcher returns.

Example of C signal handling under z/OS XL C or z/OS XL C++

In the following example, the call to signal() in main() establishes the function

signal handler to process the interrupt signal when it occurs. An error value

returned from this call to signal() causes the program to end with a printed error

message. The signal handler function asks you to enter a y or Y from the

keyboard if you want to halt the program. Entering any other character causes the

program to resume operation.

CCNGEC1:

/* this example demonstrates signal handling */

#include <stdio.h>

#include <signal.h>

#include <stdlib.h>

#ifdef __cplusplus /* __cplusplus is implicitly defined when */

 extern "C" { /* the program is compiled with the z/OS C++ */

#endif /* compiler */

void handler(int);

#ifdef __cplusplus

 }

#endif

int main(void) {

 if (signal(SIGINT,handler) == SIG_ERR) {

 perror("Could not set SIGINT");

 abort();

 }

/* add code here if desired */

 raise(SIGINT);

/* add code here if desired */

 return(0);

}

void handler(int sig_num) {

 char ch;

 signal(SIGINT, handler);

 printf("End processing?\n");

 ch = getchar();

 if (ch == 'y' ││ ch == 'Y')

 exit(0);

}

Figure 113. Example illustrating signal handling

434 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 28. Network communications under UNIX System

Services

This chapter discusses interprocess communication, including MVS Sockets for

z/OS UNIX System Services and the X/Open Transport Interface (XTI) for z/OS

UNIX System Services and the internetworking involved.

Many products today supply a socket interface. The three types of application

programming interfaces(API) for the sockets which will be covered in this chapter

are:

v X/Open Socket

v Berkeley Socket

If you are running with some other socket API, this material will not necessarily

apply.

Your z/OS UNIX System Services XL C/C++ application program can take

advantage of sockets or XTI to communicate with a related application (server or

client).

The X/Open Transport Interface (XTI) defines an independent transport service

interface that allows multiple users to communicate at the transport level of the OSI

reference model. More information can be found at the end of this chapter.

Understanding z/OS UNIX System Services sockets and

internetworking

z/OS UNIX System Services provides support for an enhanced version of an

industry-accepted protocol for client/server communication known as sockets. The

three types of application programming interfaces(API), for the sockets which will be

covered in this chapter are:

v X/Open Socket: The API type of socket as defined by X/Open in XPG4.2.

v Berkeley Socket: The socket API that represents a migration path for programs

coded under the HOT1120 and HOT1130 elements. It allows use of the BSD4.3

interface and function in the X/Open environment. Its purpose is to expedite the

porting of existing BSD4.3 applications.

The z/OS UNIX System Services socket API provides support for both UNIX

domain sockets and Internet domain sockets. UNIX domain sockets, or local

sockets, allow interprocess communication within MVS independent of TCP/IP.

Local sockets behave like traditional UNIX-domain sockets and allow processes to

communicate with one another on a single system. Internet sockets allow

application programs to communicate with others in the network using TCP/IP.

This chapter provides some background information about z/OS UNIX System

Services sockets and about network communication in general. It is intended to

provide an overview of the programming concepts associated with using z/OS UNIX

System Services sockets and network communication.

For information about using the socket API, see z/OS XL C/C++ Run-Time Library

Reference.

© Copyright IBM Corp. 1996, 2006 435

The basics of network communication

This section takes a look at network communication from a very high level and

defines some terms used throughout the book. For more detailed information on

z/OS network communication and TCP/IP sockets, see z/OS Communications

Server: IP Configuration Guide and z/OS Communications Server: IP Programmer’s

Guide and Reference. For more detailed information on IPv6 network

communication and AF_INET6 sockets, see z/OS Communications Server: IPv6

Network and Application Design Guide.

Network communication, or internetworking, defines a set of protocols (that is, rules

and standards) that allow application programs to talk with each other without

regard to the hardware and operating systems where they are run. Internetworking

allows application programs to communicate independently of their physical network

connections.

The internetworking technology called TCP/IP is named after its two main protocols:

Transmission Control Protocol (TCP) and Internet Protocol (IP). To understand

TCP/IP, you should be familiar with the following terms:

client A process that requests services on the network.

server A process that responds to a request for service from a client.

datagram The basic unit of information, consisting of one or more data

packets, which are passed across an Internet at the transport level.

packet The unit or block of a data transaction between a computer and its

network. A packet usually contains a network header, at least one

high-level protocol header, and data blocks. Generally, the format of

data blocks does not affect how packets are handled. Packets are

the exchange medium used at the Internetwork layer to send data

through the network.

Transport protocols for sockets

A protocol is a set of rules or standards that each host must follow to allow other

hosts to receive and interpret messages sent to them. There are two general types

of transport protocols:

v A connectionless protocol is a protocol that treats each datagram as independent

from all others. Each datagram must contain all the information required for its

delivery.

An example of such a protocol is User Datagram Protocol (UDP). UDP is a

datagram-level protocol built directly on the IP layer and used for

application-to-application programs on a TCP/IP host. UDP does not guarantee

data delivery, and is therefore considered unreliable. Application programs that

require reliable delivery of streams of data should use TCP.

v A connection-oriented protocol requires that hosts establish a logical connection

with each other before communication can take place. This connection is

sometimes called a virtual circuit, although the actual data flow uses a

packet-switching network. A connection-oriented exchange includes three phases:

1. Start the connection

2. Transfer data

3. End the connection

An example of such a protocol is Transmission Control Protocol (TCP). TCP

provides a reliable vehicle for delivering packets between hosts on an Internet.

TCP breaks a stream of data into datagrams, sends each one individually using

436 z/OS V1R8.0 XL C/C++ Programming Guide

IP, and reassembles the datagrams at the destination node. If any datagrams are

lost or damaged during transmission, TCP detects this and retransmits the

missing datagrams. The data stream that is received is therefore a reliable copy

of the original.

These types of protocols are illustrated in Figure 115 on page 446, and in

Figure 116 on page 447.

What is a socket?

A socket can be thought of as an endpoint in a two-way communication channel.

Socket routines create the communication channel, and the channel is used to send

data between application programs either locally or over networks. Each socket

within the network has a unique name associated with it called a socket

descriptor—a fullword integer that designates a socket and allows application

programs to refer to it when needed.

Using an electrical analogy, you can think of the communication channel as the

electrical wire with its plug and think of the port, or socket, as the electrical socket

or outlet, as shown in Figure 114.

 This figure shows many application programs running on a client and many

application programs on a server. When the client starts a socket call, a socket

connection is made between an application on the client and an application on the

server.

Another analogy used to describe socket communication is a telephone

conversation. Dialing a phone number from your telephone is similar to starting a

socket call. The telephone switching unit knows where to logically make the correct

switch to complete the call at the remote location. During your telephone

conversation, this connection is present and information is exchanged. After you

hang up, the connection is broken and you must start it again. The client uses the

socket() function call to start the logical switch mechanism to connect to the server.

Application
A

Application
A

Application
B

Application
B

Application
C

Application
C

Application
D

Application
D

Application
E

Application
E

Application
F

Application
F

System
Software

System
Software

TCP

I P

TCP

I P

Figure 114. An electrical analogy showing the socket concept

Chapter 28. Network communications under UNIX System Services 437

As with file access, user processes ask the operating system to create a socket

when one is needed. The system returns an integer, the socket descriptor (sd), that

the application uses every time it wants to refer to that socket. The main difference

between sockets and files is that the operating system binds file descriptors to a file

or device when the open() call creates the file descriptor. With sockets, application

programs can choose to either specify the destination each time they use the

socket—for example, when sending datagrams—or to bind the destination address

to the socket.

Sockets behave in some respects like UNIX files or devices, so they can be used

with such traditional operations as read() or write(). For example, after two

application programs create sockets and open a connection between them, one

program can use write() to send a stream of data, and the other can use read()

to receive it. Because each file or socket has a unique descriptor, the system knows

exactly where to send and to receive the data.

You can wait on a socket using the following asynchronous I/O functions:

v aio_read() - Asynchronous read from a socket

v aio_write() - Asynchronous write to a socket

v aio_cancel() - Cancel an asynchronous I/O request

v aio_suspend() - Wait for an asynchronous I/O request

v aio_error() - Retrieve error status for an asynchronous I/O operation

v aio_return() - Retrieve return status for an asynchronous I/O operation

You can suspend the invoking thread until a specified asynchronous I/O event,

timeout, or signal occurs. These functions are described in z/OS XL C/C++

Run-Time Library Reference.

z/OS UNIX System Services Socket families

In z/OS UNIX, the following socket families are supported :

v UNIX Domain Sockets, known as local sockets, which are part of the UNIX

Address Family (AF_UNIX)

v Internet Protocol Sockets, which are part of the Internet Address Family

(AF_INET for IPv4 and AF_INET6 for IPv6)

AF_UNIX sockets provide communication between processes on a single system.

This socket family supports two types of sockets—stream and datagram sockets.

These socket types are described in the next section.

AF_INET and AF_INET6 sockets provide a means of communicating between

application programs that are on different systems using the Transport Control

Protocol provided by a TCP/IP product. This socket family supports both stream and

datagram sockets. Each of these socket types is described in the next section.

z/OS UNIX System Services Socket types

The z/OS UNIX System Services socket API provides application programs with a

network interface that hides the details of the physical network. The socket API

supports both stream sockets and datagram sockets, each providing different

services for application programs. Stream and datagram sockets interface to the

transport layer protocols, UDP and TCP. You choose the appropriate interface for an

application.

438 z/OS V1R8.0 XL C/C++ Programming Guide

Stream sockets

Stream sockets act like streams of information. There are no boundaries between

data, so communicating processes must agree on their own mechanism to

distinguish information. Usually, the process sending information sends the length of

the data, followed by the data itself. The process receiving information reads the

length and then loops, accepting data until all of it has been transferred. Stream

sockets guarantee delivery of the data in the order it was sent and without

duplication. The stream socket interface defines a reliable connection-oriented

service. Data is sent without errors or duplication and is received in the same order

as it is sent. Flow control is built in, to avoid data overruns. No boundaries are

imposed on the data; the data is considered to be a stream of bytes.

Stream sockets are more common, because the burden of transferring the data

reliably is handled by the system rather than by the application.

Datagram sockets

The datagram socket interface defines a connectionless service. Datagrams are

sent as independent packets. The service provides no guarantees; data can be lost

or duplicated, and datagrams can arrive out of order. The size of a datagram is

limited to the size that can be sent in a single transaction. No disassembly and

reassembly of packets is performed.

Guidelines for using socket types

This section describes criteria to help you choose the appropriate socket type for an

application program.

If you are communicating with an existing application program, you must use the

same protocols as the existing application program. For example, if you

communicate with an application that uses TCP, you must use stream sockets. For

other application programs, you should consider the following factors:

v Reliability. Stream sockets provide the most reliable connection. Datagram

sockets are unreliable, because packets can be discarded, corrupted, or

duplicated during transmission. This may be acceptable if the application

program does not require reliability, or if the application program implements the

reliability on top of the sockets interface. The trade-off is the increased

performance available with datagram sockets.

v Performance. The overhead associated with reliability, flow control, packet

reassembly, and connection maintenance degrade the performance of stream

sockets in comparison with datagram sockets.

v Data transfer. Datagram sockets impose a limit on the amount of data

transferred in a single transaction. If you send less than 2048 bytes at a time,

use datagram sockets. As the amount of data in a single transaction increases,

use stream sockets.

Addressing within sockets

The following sections describe the different ways to address within the socket API.

Address families

Address families define different styles of addressing. All hosts in the same address

family use the same scheme for addressing socket endpoints. z/OS UNIX System

Services supports three address families—AF_INET, AF_INET6, and AF_UNIX. The

AF_INET and AF_INET6 address families define addressing in the IP domain. The

AF_UNIX address family defines addressing in the z/OS UNIX System Services

Chapter 28. Network communications under UNIX System Services 439

domain. In the z/OS UNIX System Services domain, address spaces can use the

socket interface to communicate with other address spaces on the same host.

Note: In this case, the z/OS UNIX System Services domain is used in much the

same way as the UNIX domain on other UNIX-type systems.

Socket address

A socket address is defined by the sockaddr structure in the sys/socket.h include

file. The structure has three fields, as shown in the following example:

struct sockaddr {

 unsigned char sa_len;

 unsigned char sa_family;

 char sa_data[14]; /* variable length data */

};

The sa_len field contains the length of the sa_data field. The sa_family field

contains the address family. It is AF_INET or AF_INET6 for the Internet domain and

AF_UNIX for the UNIX domain. The sa_data field is different for each address

family. Each address family defines its own structure, which can be overlaid on the

sockaddr structure. See “Addressing within the AF_INET domain” on page 441 and

“Addressing within the AF_INET6 domain” on page 441 for more information about

the Internet domain, and “Addressing within the AF_UNIX domain” on page 442 for

more information about the UNIX domain.

Internet addresses

Internet addresses represent a network interface. Every Internet address within an

administered AF_INET domain must be unique. On the other hand, it is not

necessary that every host have a unique Internet address; in fact, a host has as

many Internet addresses as it has network interfaces.

Ports

A port is used to distinguish between different application programs using the same

network interface. It is an additional qualifier used by the system software to get

data to the correct application program. Physically, a port is a 16-bit integer. Some

ports are reserved for particular application programs or protocols and are called

well-known ports.

Network byte order

Ports and addresses are usually specified to calls using the network byte ordering

convention. This convention is a method of sorting bytes under specific machine

architectures. There are two common methods:

v Big-endian byte ordering places the most significant byte first. This method is

used in IBM mainframe processors and Motorola

6microprocessors.

v Little-endian byte ordering places the least significant byte first. This method is

used in Intel microprocessors.

Using network byte ordering for data exchanged between hosts allows hosts using

different architectures to exchange address information. See references in figures

Figure 118 on page 448, Figure 119 on page 449, and Figure 121 on page 449 for

examples of using the htons() call to put ports into network byte order. For more

information about network byte order, see z/OS XL C/C++ Run-Time Library

Reference.

6. Motorola is a trademark of Motorola Corporation.

440 z/OS V1R8.0 XL C/C++ Programming Guide

Note: The socket interface does not handle application program data byte ordering

differences. Application program writers must handle byte order differences

themselves.

Addressing within the AF_INET domain

A socket address in the Internet address family comprises the following fields: the

address family (AF_INET), an Internet address, the length of that Internet address,

a port, and a character array. The structure of the Internet socket address is defined

by the following sockaddr_in structure, which is found in the netinet/in.h include

file:

 struct in_addr {

 ip_addr_t s_addr;

 struct sockaddr_in {

 unsigned char sin_len;

 unsigned char sin_family;

 unsigned short sin_port;

 struct in_addr sin_addr;

 unsigned char sin_zero[8];

};

The sin_len field is set to the length of the sockaddr_in structure.

The sin_family field is set to AF_INET. The sin_port field is the port used by the

application program, in network byte order. The sin_zero field should be set to all

zeros.

Addressing within the AF_INET6 domain

A socket address in the Internet address family comprises the following fields: the

address family (AF_INET6), an Internet address, the length of that Internet address,

a port, flow information, and scope information. The structure of the Internet socket

address is defined by the following sockaddr_in6 structure, which is found in the

netinet/in.h include file:

 struct in6_addr {

 union {

 uint8_t _S6_u8[16];

 uint32_t _S6_u32[4];

 } _S6_un;

 };

 #define s6_addr _S6_un._S6_u8

struct sockaddr_in6 {

 uint8_t sin6_len;

 sa_family_t sin6_family;

 in_port_t sin6_port;

 uint32_t sin6_flowinfo;

 struct in6_addr sin6_addr;

 uint32_t sin6_scope_id;

 };

The sin6_len field is set to the length of the sockaddr_in6 structure.

The sin6_family field is set to AF_INET.

The sin6_port field is the port used by the application program, in network byte

order.

The sin6_flowinfo field is a 32–bit field that contains the traffic class and the flow

label.

Chapter 28. Network communications under UNIX System Services 441

Thesin6_addr field is a single in6_addr structure. This field holds one 128–bit IPv6

address stored in network byte order.

The sin6_scope_id field is a 32 bit integer that identifies a set of interfaces as

appropriate for the scope of the address carried in the sin6_addr field.

Note: IPv6 structures are exposed by defining the _OPEN_SYS_SOCK_IPV6

feature test macro.

Addressing within the AF_UNIX domain

A socket address in the AF_UNIX address family is comprised of three fields: the

length of the following pathname, the address family (AF_UNIX), and the pathname

itself. The structure of an AF_UNIX socket address is defined as follows:

 struct sockaddr_un {

 unsigned char sun_len;

 unsigned char sun_family;

 char sun_path[108]; /* pathname */

};

This structure is defined in the sockaddr_un structure found in sys/un.h include file.

The sun_len contains the length of the pathname in sun_path; sun_family field is

set to AF_UNIX; and sun_path contains the null-terminated pathname.

The conversation

The client and server exchange data using a number of functions. They can send

data using send(), sendto(), sendmsg(), write(), or writev(). They can receive

data using recv(), recvfrom(), recvmsg(), read(), or readv(). The following is an

example of the send() and recv() call:

send(s, addr_of_data, len_of_data, 0);

recv(s, addr_of_buffer, len_of_buffer, 0);

The send() and recv() function calls specify the sockets on which to communicate,

the address in memory of the buffer that contains, or will contain, the data

(addr_of_data, addr_of_buffer), the size of this buffer (len_of_data, len_of_buffer),

and a flag that tells how the data is to be sent. Using the flag 0 tells TCP/IP to

transfer the data normally. The server uses the socket that is returned from the

accept() call.

These functions return the amount of data that was either sent or received.

Because stream sockets send and receive information in streams of data, it can

take more than one call to send() or recv() to transfer all the data. It is up to the

client and server to agree on some mechanism of signaling that all the data has

been transferred.

When the conversation is over, both the client and server call the close() function

to end the connection. The close() function also deallocates the socket, freeing its

space in the table of connections. To end a connection with a specific client, the

server closes the socket returned by accept(). If the server closes its original

socket, it can no longer accept new connections, but it can still converse with the

clients it is connected to. The following is an example of the close() call:

close(s);

The server perspective

Before the server can accept any connections with clients, it must register itself with

TCP/IP and “listen” for client requests on a specific port.

442 z/OS V1R8.0 XL C/C++ Programming Guide

Allocation with socket()

The server must first allocate a socket. This socket provides an endpoint that clients

connect to.

A socket is actually an index into a table of connections, so socket numbers are

usually assigned in ascending order. In the C language, the programmer calls the

socket() function to allocate a new socket, as shown in the following example:

s = socket(AF_INET, SOCK_STREAM, 0);

The socket() function requires the address family (AF_INET), the type of socket

(SOCK_STREAM), and the particular networking protocol to use (when 0 is

specified, the system automatically uses the appropriate protocol for the specified

socket type). A new socket is allocated and returned.

bind()

At this point, an entry in the table of communications has been reserved for your

application program. However, the socket has no port or IP address associated with

it until you use the bind() function, which requires the following:

v The socket the server was just given

v The number of the port on which the server wishes to provide its service

v The IP address of the network connection on which the server is listening (to

understand what is meant by “listening”, see “listen()”)

In C language, the server puts the port number and IP address into a sockaddr_in

structure, passing it and the socket to the bind() function. For example:

bind(s, (struct sockaddr *)&server, sizeof(struct sockaddr_in));

listen()

After the bind, the server has specified a particular IP address and port. Now it

must notify the system that it intends to listen for connections on this socket. In C,

the listen() function puts the socket into passive open mode and allocates a

backlog queue of pending connections. In passive open mode, the socket is open

for clients to contact. For example:

listen(s, backlog_number);

The server gives the socket on which it will be listening and the number of requests

that can be queued (known as the backlog_number). If a connection request arrives

before the server can process it, the request is queued until the server is ready.

accept()

Up to this point, the server has allocated a socket, bound the socket to an IP

address and port, and issued a passive open. The next step is for the server

actually to establish a connection with a client. The accept() call blocks the server

until a connection request arrives, or, if there are connection requests in the backlog

queue, until a connection is established with the first client in the queue. The

following is an example of the accept() call:

client_sock = accept(s, &clientaddr, &addrlen);

The server passes its socket to the accept() call. When the connection is

established, the accept() call returns a new socket representing the connection

with the client. When the server wishes to communicate with the client or end the

connection, it uses this new socket, client_sock. The original socket s is now ready

to accept connections with other clients. The original socket is still allocated, bound,

Chapter 28. Network communications under UNIX System Services 443

and opened passively. To accept another connection, the server calls accept()

again. By repeatedly calling accept(), the server can establish almost any number

of connections at once.

select()

The server is now ready to start handling requests on this port from any client with

the server’s IP address and port number. Up to this point, it has been assumed that

the server will be handling only one socket. However, an application program is not

limited to one socket. Typically, a server listens for clients on a particular socket but

allocates a new socket for each client it handles. For maximum performance, a

server should operate only on those sockets that are ready for communication. The

select() call allows an application program to test for activity on a group of

sockets.

Note: The select() function can also be used with other descriptors, such as file

descriptors, pipes, or character special files.

To allow you to test any number of sockets with just a single call to select(), place

the sockets to test into a bit set, passing the bit set to the select() call. A bit set is

a string of bits where each possible member of the set is represented by a 0 or a 1.

If the member’s bit is 0, the member is not in the set. If the member’s bit is 1, the

member is in the set. Sockets are actually small integers. If socket 3 is a member

of a bit set, then the bit that represents it is set to 1 (on).

In C, the functions to manipulate the bit sets are the following:

FD_SET Sets the bit corresponding to a socket

FD_ISSET Tests whether the bit corresponding to a socket is set or cleared

FD_ZERO Clears the whole bit set

FD_CLR Clears a bit within the bit set

To be active, a socket is ready for reading data or for writing data, or an exceptional

condition may have occurred. Therefore, the server can specify three bit sets of

sockets in its call to the select() function: one bit set for sockets on which to

receive data; another for sockets on which to write data; and any sockets with

exception conditions. The select() call tests each socket in each bit set for activity

and returns only those sockets that are active.

A server that processes many clients at the same time can easily be written so that

it processes only those clients that are ready for activity.

The client perspective

The client first issues the socket() function call to allocate a socket on which to

communicate:

s = socket(AF_INET, SOCK_STREAM, 0);

To connect to the server, the client places the port number and the IP address of

the server into a sockaddr_in structure. If the client does not know the server’s IP

address, but does know the server’s host name, the gethostbyname() function or

the getaddrinfo() function is called to translate the host name into its IP address.

The client then calls connect(). The following is an example of the connect() call:

connect(s, (struct sockaddr *)&server, sizeof(struct sockaddr_in));

444 z/OS V1R8.0 XL C/C++ Programming Guide

When the connection is established, the client uses its socket to communicate with

the server.

A typical TCP socket session

You can use TCP sockets for both passive (server) and active (client) processes.

Whereas some functions are necessary for both types, some are role-specific. After

you make a connection, it exists until one of the following has occurred:

v The socket is closed by client or server

v A shutdown is performed by client or server for both read and write

v The socket is unconnected using a blank sockaddr structure with another

connect() call to the socket

During the connection, data is either delivered or an error code is returned by

TCP/IP.

See Figure 115 on page 446 for the general sequence of calls to be followed for

most socket routines using TCP, or stream sockets.

Chapter 28. Network communications under UNIX System Services 445

A typical UDP socket session

User Datagram Protocol (UDP) socket processes, unlike TCP socket processes, are

not clearly distinguished by server and client roles. The distinction is between

connected and unconnected sockets. An unconnected socket can be used to

communicate with any host; but a connected socket, because it has a dedicated

destination, can send data to, and receive data from, only one host.

Both connected and unconnected sockets send their data over the network without

verification. Consequently, after a packet has been accepted by the UDP interface,

the arrival and integrity of the packet cannot be guaranteed.

See Figure 116 for the general sequence of calls to be followed for most socket

routines using UDP, or datagram, sockets.

Create a stream socket with the
call.

s
socket()

Create a stream socket with the
call.socket()

s

Client Server

Connect socket to a foreign host with the
call.connect()

s

Close socket and end the TCP/IP session
with the call.close()

s Close socket with the call.close()s

Accept another connection form a client,
or close the orginal socket with the

call.close()
s

Read and write data on socket
using the and calls,
until all the data has been exchanged.

send() recv()
s

For the server, socket remains available
to accept new connections. Socket
is dedicated to the client.

ns
s

Bind socket to a local address with the
call.bind()

s

With the call, alert the TCP/IP
machine of your willingness to accept
connections.

listen()

Accept the connection and receive a second
socket-for example, with the

call.
ns

accept()

Read and write data on socket
using the and calls,
until all the data has been exchanged.

ns
send() recv()

(Optional)
Bind socket to a local address with the

call.
s

bind()

Figure 115. A typical stream socket session

446 z/OS V1R8.0 XL C/C++ Programming Guide

A typical datagram socket session

Locating the server’s port

In the client/server model, the server provides a resource by listening for clients on

a particular port. Such application programs as FTP, SMTP, and Telnet listen on a

well-known port—a port assigned for use to a specific application program or

protocol. However, for your own client/server application programs, you need a

method of assigning port numbers to represent the services you intend to provide.

An easy method of defining services and their ports is to enter them into the

/etc/services file or the tcpip.ETC.SERVICES data set. In C, the programmer uses

the getservbyname() function or getaddrinfo() function to determine the port for a

particular service. If the port number for a particular service changes, only the

/etc/services file or the tcpip.ETC.SERVICES data set must be modified.

Note: TCP/IP is shipped with a tcpip.ETC.SERVICES file containing such

well-known services as FTP, SMTP, and Telnet.

Network application example

The following example illustrates using socket functions in a network application

program. The steps are written using many of the basic socket functions, C socket

syntax, and conventions described in this book.

Client Server

Create a datagram socket
with the call.

s
socket()

Create a datagram socket
with the call.

s
socket()

Bind socket to a local address with the
call.bind()

s Bind socket to a local address with the
call.bind()

s

Close socket and end the session
with the call.close()

s Close socket and end the session
with the call.close()

s

(Optional)
Connect socket using the
call to associate with the server address.

connect()s
s

(Optional)
Connect socket using the
call to associate with the server address.

connect()s
s

Send and receive data on socket ,
using the and calls,
until all the data has been exchanged.
Use the and calls if
was called.

s
sendto() recvfrom()

send() recv() connect()

Send and receive data on socket ,
using the and calls,
until all the data has been exchanged.
Use the and calls if
was called.

s
sendto() recvfrom()

send() recv() connect()

Figure 116. A typical datagram socket session

Chapter 28. Network communications under UNIX System Services 447

1. First, an application program must get a socket descriptor using the socket()

call, as in the example listed in Figure 117. For a complete description, see

z/OS XL C/C++ Run-Time Library Reference.

The code fragment in Figure 117 allocates a socket descriptor s in the Internet

address family. The domain parameter is a constant that specifies the domain

where the communication is taking place. A domain is the collection of

application programs using the same addressing convention. z/OS UNIX

System Services supports three domains: AF_INET, AF_INET6, and AF_UNIX.

The type parameter is a constant that specifies the type of socket, which can

be SOCK_STREAM, or SOCK_DGRAM.

The protocol parameter is a constant that specifies the protocol to use. For

AF_INET, it can be set to IPPROTO_UDP for SOCK_DGRAM and

IPPROTO_TCP for SOCK_STREAM. Passing 0 chooses the default protocol. If

successful, the socket() call returns a positive integer socket descriptor. For

AF_UNIX, the protocol parameter must be 0. These values are defined in the

netinet/in.h include file.

 2. After an application program has a socket descriptor, it can explicitly bind a

unique address to the socket, as in the example listed in Figure 118. For a

complete description, see z/OS XL C/C++ Run-Time Library Reference.

This example binds socket descriptor s to the address 129.5.24.1 and port

1024 in the Internet domain. Servers must bind to an address and port to

become accessible to the network. The example in Figure 118 shows two

useful utility routines:

v inet_addr() takes an IPv4 Internet address in dotted-decimal form and

returns it in network byte order. Note that the inet_pton() function can take

either an IPv4 or IPv6 Internet address in its standard text presentation form

and return it in its numeric binary form. For a complete description, see

z/OS XL C/C++ Run-Time Library Reference.

v htons() takes a port number in host byte order and returns the port in

network byte order. For a complete description, see z/OS XL C/C++

Run-Time Library Reference.

#include <sys/socket.h> ...
int s; ...
s = socket(AF_INET, SOCK_STREAM, 0);

Figure 117. An application using socket()

int bind(int s, struct sockaddr *name, int namelen); ...
int rc;

int s;

struct sockaddr_in myname;

 /* clear the structure to be sure that the sin_zero field is clear */

 memset(&myname, 0, sizeof(myname));

 myname.sin_family = AF_INET;

 myname.sin_addr = inet_addr("129.5.24.1");

/* specific interface */

 myname.sin_port = htons(1024); ...
 rc = bind(s, (struct sockaddr *) &myname,

sizeof(myname));

Figure 118. An application using bind()

448 z/OS V1R8.0 XL C/C++ Programming Guide

Figure 119 shows another example of the bind() call. It uses the utility routine

gethostbyname() to find the Internet address of the host, rather than using

inet_addr() with a specific address.

 3. After binding to a socket, a server that uses stream sockets must indicate its

readiness to accept connections from clients. The server does this with the

listen() call, as illustrated in the example in Figure 120.

The listen() call tells the TCP/IP address space that the server is ready to

begin accepting connections, and that a maximum of five connection requests

can be queued for the server. Additional requests are ignored. For a complete

description, see z/OS XL C/C++ Run-Time Library Reference.

 4. Clients using stream sockets begin a connection request by calling connect(),

as shown in the following example.

int bind(int s, struct sockaddr_in name, int namelen); ...
int rc;

int s;

char *hostname = "myhost";

struct sockaddr_in myname;

struct hostent *hp;

 hp = gethostbyname(hostname);

 /*clear the structure to be sure that

the sin_zero field is clear*/

 memset(&myname,0,sizeof(myname));

 myname.sin_family = AF_INET;

 myname.sin_addr.s_addr = *((ip_addr_t

*)hp->h_addr);

 myname.sin_port = htons(1024); ...
rc = bind(s,(struct

sockaddr *) &myname, sizeof(myname));

Figure 119. A bind() function using gethostbyname()

int listen(int s, int backlog); ...
int s;

int rc; ...
rc = listen(s, 5);

Figure 120. An application using listen()

int connect(int s, struct sockaddr *name, int namelen); ...
int s;

struct sockaddr_in servername;

int rc; ...
memset(&servername, 0,sizeof(servername));

servername.sin_family = AF_INET;

servername.sin_addr = inet_addr("129.5.24.1");

servername.sin_port = htons(1024); ...
rc = connect(s, (struct sockaddr *) &servername,

sizeof(servername));

Figure 121. An application using connect()

Chapter 28. Network communications under UNIX System Services 449

The connect() call attempts to connect socket descriptor s to the server with

an address servername. This could be the server that was used in the previous

bind() example. The connect request is completed immediately and returns

control to the caller, regardless of the server accepting the connection. After a

successful return, the socket descriptor s is associated with the connection to

the server. For a complete description, see z/OS XL C/C++ Run-Time Library

Reference.

 5. Servers using stream sockets accept a connection request with the accept()

call, as shown in the example listed in Figure 122.

When a connection request is accepted on socket descriptor s, the name of

the client and length of the client name are returned, along with a new socket

descriptor. The new socket descriptor is associated with the client that began

the connection, and s is again available to accept new connections. For a

complete description, see z/OS XL C/C++ Run-Time Library Reference.

 6. Clients and servers have many calls from which to choose for data transfer.

The read() and write(), readv() and writev(), and send() and recv() calls

can be used only on sockets that are in the connected state. The sendto()

and recvfrom(), and sendmsg() and recvmsg() calls can be used at any time

on datagram sockets. The example listed in Figure 123 illustrates the use of

send() and recv().

The example in Figure 123 shows an application program sending data on a

connected socket and receiving data in response. The flags field can be used

to specify additional options to send() or recv(), such as sending out-of-band

data. For more information see z/OS XL C/C++ Run-Time Library Reference.

 7. If the socket is not in a connected state, additional address information must

be passed to sendto() and can be optionally returned from recvfrom(). An

int accept(int s, struct sockaddr *addr, int *addrlen); ...
int clientsocket;

int s;

struct sockaddr clientaddress;

int addrlen; ...
addrlen = sizeof(clientaddress); ...
clientsocket = accept(s, &clientaddress, &addrlen);

Figure 122. An application using accept()

int send(int socket, char *buf, int buflen, int flags);

int recv(int socket, char *buf, int buflen, int flags); ...
int bytes_sent;

int bytes_received;

char data_sent[256];

char data_received[256];

int s; ...
bytes_sent = send(s, data_sent,

sizeof(data_sent), 0); ...
bytes_received = recv(s,

data_received, sizeof(data_received), 0);

Figure 123. An application using send() and recv()

450 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|
|
|
|
|

|
|
|
|
|

example of the use of the sendto() and recvfrom()calls is listed in Figure 124.

The sendto() and recvfrom() calls take additional parameters that allow the

caller to specify the recipient of the data or to be notified of the sender of the

data. For more information see z/OS XL C/C++ Run-Time Library Reference.

Usually, sendto() and recvfrom() are used for datagram sockets, and send()

and recv() are used for stream sockets.

 8. The writev(), readv(), sendmsg(), and recvmsg() calls provide the additional

features of scatter and gather data—two related operations where data is

received and stored in multiple buffers (scatter data), and then taken from

multiple buffers and transmitted (gather data). Scattered data can reside in

multiple data buffers. The writev() and sendmsg() calls gather the scattered

data and send it. The readv() and recvmsg() calls receive data and scatter it

into multiple buffers.

 9. Applications can handle multiple descriptors. In such situations, use the

select() call to determine the descriptors that have data to be read, those that

are ready for data to be written, and those that have pending exceptional

conditions. An example of how the select() call is used is listed in Figure 125

on page 452.

int sendto(int socket, char *buf, int buflen, int flags,

 struct sockaddr *addr, int addrlen);

int recvfrom(int socket, char *buf, int buflen, int flags,

 struct sockaddr *addr, int *addrlen); ...
int bytes_sent;

int bytes_received;

char data_sent[256];

char data_received[256];

struct sockaddr_in to;

struct sockaddr from;

int addrlen;

int s; ...
memset(&to, 0, sizeof(to));

to.sin_family = AF_INET;

to.sin_addr = inet_addr("129.5.24.1");

to.sin_port = htons(1024); ...
bytes_sent = sendto(s, data_sent,

sizeof(data_sent), 0, &to, sizeof(to)); ...
addrlen = sizeof(from); /* must be initialized */

bytes_received = recvfrom(s, data_received,

 sizeof(data_received), 0, &from, &addrlen);

Figure 124. An application using sendto() and recvfrom()

Chapter 28. Network communications under UNIX System Services 451

In this example, the application program uses bit sets to indicate that the

sockets are being tested for certain conditions and also indicates a timeout. If

the timeout parameter is NULL, the select() call blocks until a socket

becomes ready. If the timeout parameter is nonzero, select() waits up to this

amount of time for at least one socket to become ready on the indicated

conditions. This is useful for application programs servicing multiple

connections that cannot afford to block, waiting for data on one connection.

For a complete description, see z/OS XL C/C++ Run-Time Library Reference.

10. In addition to select(), application programs can use the ioctl() or fcntl()

calls to help perform asynchronous (nonblocking) socket operations. An

example of the use of the ioctl() call is listed in Figure 126.

This example causes the socket descriptor s to be placed into nonblocking

mode. When this socket is passed as a parameter to calls that would block,

such as recv() when data is not present, it causes the call to return with an

fd_set readsocks;

fd_set writesocks;

fd_set exceptsocks;

struct timeval timeout;

int number_of_sockets;

int number_found; ...
/* number_of_sockets previously set to the socket number of largest

* integer value.

* Clear masks out.

*/

FD_ZERO(&readsocks);; FD_ZERO(&writesocks); FD_ZERO(&exceptsocks);

/* Set masks for socket s only */

FD_SET(s, &readsocks)

FD_SET(s, &writesocks)

FD_SET(s, &exceptsocks) ...
/* go into select wait for 5 minutes waiting for socket s to become

ready or the timer has popped*/

rc = select(number_of_sockets+1,

 &readsocks, &writesocks, &exceptsocks, &timeout); ...
/* Check rc for condition set upon exiting select */

number_found = select(number_of_sockets,

 &readsocks, &writesocks, &exceptsocks, &timeout);

Figure 125. An application using select()

int ioctl(int s, unsigned long command, char *command_data); ...
int s;

int dontblock;

char buf[256];

int rc; ...
dontblock = 1; ...
rc = ioctl(s, FIONBIO, (char *) &dontblock); ...
if (((rc=recv(s, buf, sizeof(buf),

0)) < 0)&&(errno == EWOULDBLOCK))

 /* no data available */

else

 /* either got data or some other error occurred */

Figure 126. An Application Using ioctl()

452 z/OS V1R8.0 XL C/C++ Programming Guide

error code, and the global errno value is set to EWOULDBLOCK. Setting the mode

of the socket to be nonblocking allows an application program to continue

processing without becoming blocked. For a complete description, see z/OS

XL C/C++ Run-Time Library Reference.

11. A socket descriptor, s, is deallocated with the close() call. (For a complete

description, see z/OS XL C/C++ Run-Time Library Reference. An example of

close() is shown next.

Using common INET

With Common INET (CINET), you have the capability to define up to 32 AF_INET or

dual AF_INET/AF_INET6 transport providers or stacks. The stacks can all be active

at the same time. The information for modifying BPXPRMxx and bringing up

Common INET is in z/OS UNIX System Services Planning.

For a server that you want to be able to listen to all of the available stacks at the

same time, specify INADDR_ANY and it will be listening to all at once. Note that for an

IPv6 server, IN6ADDR_ANY can be specified allowing the server to listen for IPv4

and IPv6 connections from all stacks.

The z/OS UNIX System Services Common INET layer performs a

multiplexing/demultiplexing function when more than one stack is activated under

z/OS UNIX System Services. Each stack has its own home IP addresses and when

a program binds to a specific IP address that socket becomes associated with the

one stack that is that IP address. When a program binds to NADDR_ANY (0.0.0.0) or

IN6ADDR_ANY (::), the socket remains available to all the stacks.

There are three ways that an INADDR_ANY or IN6ADDR_ANY program can associate

itself with a single stack:

v Call setibmopt(IBMTCP_IMAGE) - This sets a process so all future socket() calls

create sockets with only the one specified stack.

v The _BPXK_SETIBMOPT_TRANSPORT environment variable can be used in the PARM=

parameter of an MVS started proc to effectively issue a SETIBMOPT outside of the

program.

v Call ioctl(SIOCSETRTTD) - This associates an existing socket with the one

specified stack, removing the others.

Also, you should be able to set up things so gethostbyname() or getaddrinfo()

returns the home IP address of the local TCP/IP you are interested. With that, you

can issue a specific bind() to that IP address. This may not be useful though, if

that stack has multiple IP addresses and you really want to use INADDR_ANY to

service all of them. Applications can bind to IN6ADDR_ANY to service both Ipv4 and

IPv6 clients when TCP/IP is enabled for IPv6.

int close(int s); ...
int rc;

int s;

rc = close(s);

Figure 127. An application using close()

Chapter 28. Network communications under UNIX System Services 453

Compiling and binding

This section describes how to bind, load, and run z/OS XL C programs containing

z/OS UNIX System Services sockets. This information is specific to the z/OS UNIX

System Services application program interface and assumes that you are familiar

with the information on compiling and binding z/OS UNIX System Services

application programs in z/OS XL C/C++ Programming Guide and z/OS Language

Environment Programming Guide. C++ programs can also use z/OS UNIX System

Services sockets, but C++ programs cannot use Berkley Sockets, they must always

use X/Open Sockets.

You compile and bind your sockets application program in the same way as for any

other C language program. The process is shown conceptually in Figure 128. You

must make sure that the z/OS UNIX System Services socket application programs

have access to the files they need to compile and bind.

 As shown, whether an application program’s I/O request is targeted at the network

(TCP/IP) or at a file, the z/OS UNIX System Services logical file system (LFS) will

route the request to the appropriate physical file system (PFS).

TCP/IP (AF_INET)
(AF_INET6)

(AF_UNIX)

Kernel

LFS

PFS PFS. . .

HFS

C Application Source

Application Object

Executable Application

Socket Runtime Library

headers library
(SCEEH)

object library
(SCEELKEX)

linkedit library
(SCEELKED)

dynamic runtime libraries
(SCEERUN)
(SCEERUN2)

file and socket
descriptor assignments

bind
(or prelink and link)

compile

run

LFS = Logical File SystemHFS = Hierarchical File System PFS = Physical File System

Figure 128. A conceptual overview of the compile, bind, and run steps

454 z/OS V1R8.0 XL C/C++ Programming Guide

If your C language statements contain information, such as sequence numbers,

which are not part of the input for the z/OS XL C compiler, you must include the

following pragma directive in your program:

#pragma margins(1,72)

Note: In order to use AF_INET sockets, you must have release 3.1 or a later level

of TCP/IP installed on your system. In order to use AF_INET6 sockets, you

must have release z/OS V1R4 or later of TCP/IP installed on your system.

Using TCP/IP APIs

If you will be using the TCP/IP socket API, also called non-Berkeley sockets, you

will need to read and understand this section.

When a XL C/C++ application program running under z/OS UNIX System Services

needs to communicate with another program that is running simultaneously, it

needs to exploit, from within itself, both z/OS UNIX System Services POSIX.1 and

one or more of the following application programming interfaces (APIs) provided

with the IBM product TCP/IP:

v Socket APIs

– C sockets

– Inter-User Communication Vehicle (IUCV) sockets

v X Window System

7 interface

v remote procedure call (RPC)

With the exception of described restrictions, you can code z/OS UNIX System

Services XL C/C++ application programs to take advantage of the documented APIs

available as part of the Communications Server IP.

z/OS UNIX System Services application programs can use socket API calls from

the TCP/IP product to access HFS files or MVS data sets, communicate with other

systems running TCP/IP, or establish communication with and request services from

a workstation system acting as an X Windows server.

Note: For HFS file access to TCP/IP, the TCP/IP socket API calls must be used

instead of the POSIX file access functions to preserve the uniqueness of file

descriptors in the hierarchical file system (HFS).

Before you attempt to code your application program to use TCP/IP APIs, you

should understand the X Windows protocol running on the workstations that will be

used as application clients. You will also need to know how to invoke X Windows to

create a connection to the server on the workstation or z/OS system.

Restrictions for using z/OS TCP/IP API with z/OS UNIX System

Services

The restrictions can be grouped into categories:

v Header Files

– Header file conflicts between TCP/IP and z/OS XL C/C++. z/OS XL C/C++

and TCP/IP have header files with the same name and overlapping function.

For example, both have a types.h file. If you use TCP/IP API functions in your

7. X Windows is a trademark of Massachusetts Institute of Technology.

Chapter 28. Network communications under UNIX System Services 455

application but the z/OS XL C/C++ header file is searched for and used, the

TCP/IP function does not work as intended.

You can circumvent this problem by developing your application program with

separate compilation source files for TCP/IP function and normal z/OS XL

C/C++ function. You can then compile the TCP/IP source files separately from

the normal z/OS XL C/C++ source files. Use the c89 -I option to point to the

MVS data sets to search for the TCP/IP header files. Finally, you can bind all

the application object files together to produce the application executable file.

For the bind step, use the c89 -l option to point to the correct TCP/IP

libraries on MVS. For example:

c89 -I "//'tcpip.sezacmac'" pgm.c -l "//'tcpip.sezarnt1'" ...

v TCP/IP socket API. Both z/OS UNIX System Services POSIX.1-defined support

and the TCP/IP for z/OS socket API use a small subset of common function calls

that cannot be resolved correctly between them:

– close()

– fcntl()

– read()

– write()

Use of these calls should be reserved for one or the other, but not both, of these

programming interfaces. For example, if an application program is written to use

the open(), close(), read(), and write() functions for z/OS TCP/IP socket

communication, it cannot use them for HFS file access. z/OS XL C/C++ stream

I/O functions (fopen(), fclose(), fread(), and fwrite()) must be used for HFS

file access. See z/OS Communications Server: IP Sockets Application

Programming Interface Guide and Reference for more information.

v Creating child processes. Generally speaking, an application program cannot

have a parent process open resources—in this case sockets—and then support

those resources for a child process created through a fork() function or in a

process following use of an exec function. The new child process does not inherit

sockets from the parent process if forked. If the child process needs sockets, it

must request TCP/IP for z/OS socket support independently of the parent

process. In fact, if a child process is to be forked by an application program using

TCP/IP sockets under z/OS UNIX System Services, all MVS resources to be

opened should be opened by the child process rather than by the parent

process.

v TCP/IP configuration file access. An application executable file that uses

TCP/IP APIs and was bound with the c89 utility cannot locate the necessary

TCP/IP configuration files, because they reside in MVS sequential data sets

rather than in HFS files.

To circumvent this problem, have the system programmer copy the TCP/IP

configuration data sets into the root directory exactly as shown:

 OPUT ’tcpip.tcpip.data’ ’etc/resolv.conf’ text

Copy the address of the name server, the name, and the domain name from

tcpip.HOST.LOCAL to \etc\hosts. You should not copy the entire file directly

because you only need the address and name. The entry in the \etc\hosts file

follows the BSD format. The case of the filenames and the use of the quote

characters as part of the name are significant. Use the TSO/E OPUT command to

copy the MVS sequential data sets to the root directory. (Placing files in the root

file system requires superuser authority.)

v Program reentrancy.The TCP/IP sockets and X Windows reentrant libraries

must have a special C370LIB-directory member created for them before an

application program using TCP/IP functions can be bound. The system

456 z/OS V1R8.0 XL C/C++ Programming Guide

administrator must run the C370LIB DIR function against the reentrant libraries to

create it. The system administrator must do this once per library for an MVS

system.

Specify the TCP/IP libraries to search on the c89 utility when binding the

application program. For example:

c89 -I"//’tcpip.sezacmac’" pgm.c -l "//’tcpip.sezarnt1’" ...

For information on C370LIB, see z/OS XL C/C++ User’s Guide.

Using z/OS UNIX System Services sockets

The following list describes the files that each z/OS UNIX System Services socket

application program must have access to in order to compile:

v List of z/OS C include files:

In an MVS PDS or in the HFS directory

CEE.SCEEH.H /usr/include

CEE.SCEEH.ARPA.H /usr/include/arpa

CEE.SCEEH.NET.H /usr/include/net

CEE.SCEEH.NETINET.H /usr/include/netinet

CEE.SCEEH.SYS.H /usr/include/sys

— which contains all the C include files required by the z/OS UNIX System

Services socket API, as well as the z/OS XL C include files.

Note: The data set prefix for each of the previous files must match the name

used at your installation. CEE is the default for z/OS Language

Environment.

For Berkeley SOCKETS or X/OPEN SOCKETS, all you need are the z/OS C

include files.

Note: The data set prefix for each of these files must match the name used at your

installation. CEE is the default for the z/OS XL C library.

You must compile your application program using all include files in order to access

the entire z/OS UNIX System Services socket API. To compile a program written

using a particular API, you must include certain files specific to that API even

though your program may not require all of them.

See z/OS XL C/C++ Run-Time Library Reference. It lists the header files that must

be included for each type API. They may be different for Berkeley Sockets and

X/Open sockets.

The following list describes the files that each z/OS UNIX System Services socket

application program must have access to in order to bind:

v CEE.SCEELKED contains stub routines in the link library that are used to resolve

external references to z/OS XL C and z/OS UNIX System Services socket APIs.

v CEE.SCEELKEX contains LONGNAME stub routine object modules for a large

portion of the Language Environment function library, including the z/OS C and

z/OS UNIX System Services socket APIs. When you IPA Link your application

program, place the SCEELKEX library ahead of the SCEELKED Load Module

library in the search order. This preserves long run-time function names in the

object module and listings generated by IPA Link. When you bind your

application program, place the SCEELKEX library ahead of the SCEELKED Load

Module library in the search order. This preserves long run-time function names

in the executable module and listings generated by the binder.

Chapter 28. Network communications under UNIX System Services 457

v CEE.SCEERUN contains the z/OS XL C and z/OS UNIX System Services socket

run-time libraries.

Compiling under MVS batch for Berkeley sockets

You can use several methods to compile, bind, and run your sockets program. This

section describes one way to compile and bind your C source program, under MVS

batch, using the IBM-supplied EDCCB cataloged procedure.

Note: If you are planning on developing your application as a C++ application and

use sockets, you must use XOpen Sockets for your application. See section

“Compiling under MVS batch for X/Open sockets” on page 459 for more

information.

Sample cataloged procedure additions and changes

The following steps describe how to compile, and bind your program. For more

information about the z/OS XL C/C++ cataloged procedures refer to the z/OS XL

C/C++ User’s Guide.

You must make changes to the cataloged procedure, which is supplied with z/OS

XL C/C++ Compiler. After you select the procedure you want to use from those

available in the XL C/C++ supplied data set, CBC.SCCNPRC, you modify it. For

example, if you choose EDCC then you modify it as follows:

1. Change the CPARM parameters to:

CPARM=’DEF(MVS,_OE_SOCKETS,_POSIX1_SOURCE=1),RENT,LO’,

RENT is the reentrant option and LO is the long name option. You must specify

these options to use POSIX functions read(), write(), fcntl(), and close()

that are all included in z/OS XL C.

You must specify the feature test macro, _POSIX1_SOURCE=1 to access the

read(), write(), fcntl(), and close() functions in the z/OS XL C include files.

Or, if you choose to access all z/OS UNIX System Services POSIX functions

supported by z/OS XL C, you can specify the _OPEN_SYS feature test macro.

The _OE_Sockets feature test macro exposes the socket-related definitions in

all of the include files. For information on binding C code compiled with the RENT

and LONGNAME options, see z/OS XL C/C++ User’s Guide.

2. To run your program under TSO/E, type the following:

CALL ’USER.MYPROG.LOAD(PROGRAM1)’ ’POSIX(ON)/’

This loads the run-time library from CEE.SCEERUN and/or SCEERUN2.

To use the POSIX z/OS XL C functions, you must either specify the run-time

option POSIX(ON), or include the following statement in your C source program:

#pragma runopts(POSIX(ON))

The z/OS XL C/C++ Run-Time Library Reference identifies the POSIX z/OS XL C

functions, in the standards information at the beginning of each function description.

Compiling under MVS batch with X windows for Berkeley

sockets

If you are using z/OS UNIX System Services sockets with the latest announced

release level of TCP/IP X Windows, and compiling and binding under MVS batch,

you must do the following:

v Bind your application program with the latest announced release level of TCP/IP

X Windows libraries that are enabled for use with z/OS UNIX System Services

sockets.

458 z/OS V1R8.0 XL C/C++ Programming Guide

For a complete discussion of compiling and binding z/OS UNIX System Services

sockets with TCP/IP, see z/OS Communications Server: IP Programmer’s Guide

and Reference.

Compiling using the c89 utility for Berkeley sockets

If you want to use the c89 utility to compile and bind your program, you must use

the following define options on the c89 command:

-D MVS

-D _OE_SOCKETS

For more information about compiling and binding, see z/OS XL C/C++ User’s

Guide.

Compiling using c89 with X Windows

See z/OS Communications Server: IP Programmer’s Guide and Reference for a

complete discussion of compiling and binding with X Windows.

Compiling under MVS batch for X/Open sockets

You can use several methods to compile, bind, and run your sockets program. This

section describes one way to compile and link-edit your C source program, under

MVS batch, using the IBM-supplied EDCCB cataloged procedure.

Sample cataloged procedure additions and changes

The following steps describe how to compile, bind, and run your program. For more

information about the z/OS XL C/C++ cataloged procedures refer to the z/OS XL

C/C++ User’s Guide.

You must make changes to the cataloged procedure, which is supplied with z/OS

XL C/C++ Compiler. After you select the procedure you want to use from those

available in the XL C/C++ supplied data set, CBC.SCCNPRC, you modify it. For

example, if you choose EDCCB then you modify it as follows:

1. Change the CPARM parameters to:

CPARM=’DEF(MVS,_XOPEN_SOURCE_EXTENDED=1,_POSIX1_SOURCE=1),

RENT,LO’,

RENT is the reentrant option and LO is the long name option. You must specify

these options to use POSIX functions read(), write(), fcntl(), and close()

that are all included in z/OS XL C.

You must specify the feature test macro, _POSIX1_SOURCE=1 to access the

read(), write(), fcntl(), and close() functions in the z/OS XL C include files.

Or, if you choose to access all z/OS UNIX System Services POSIX functions

supported by z/OS XL C, you can specify the _OPEN_SYS feature test macro.

The _XOPEN_SOURCE_EXTENDED feature test macro exposes the

socket-related definitions in all of the include files.

Note: Because you are now required to compile with the RENT and LONGNAME

options, you must bind your sockets application with the z/OS binder.

2. To run your program under TSO/E, type the following:

CALL ’USER.MYPROG.LOAD(PROGRAM1)’ ’POSIX(ON)/’

To use the POSIX z/OS XL C functions, you must either specify the run-time

option POSIX(ON), or include the following statement in your C source program:

#pragma runopts(POSIX(ON))

Chapter 28. Network communications under UNIX System Services 459

Using API data sets and files for sockets

v CEE.SCEELKED contains stub routines in the link library that are used to resolve

external references to z/OS XL C and z/OS UNIX System Services socket APIs.

v CEE.SCEELKEX contains LONGNAME stub routine object modules for a large

portion of the Language Environment function library, including the z/OS C and

z/OS UNIX System Services socket APIs. When you IPA Link or bind your

application program, place the SCEELKEX library ahead of the SCEELKED Load

Module library in the search order. This preserves long run-time function names

in the object module and listings generated by IPA Link or the binder.

v CEE.SCEERUN contains the z/OS XL C and z/OS UNIX System Services socket

run-time libraries.

Notes:

1. The data set prefix for each the previous files must match the name used at

your installation. CEE is the default for z/OS Language Environment.

2. Applications developed for Open Sockets can continue to use the linkage

editor but cannot be compiled.

Understanding the X/Open Transport Interface (XTI)

The X/Open Transport Interface (XTI) specification defines an independent

transport-service interface that allows multiple users to communicate at the

transport level of the OSI reference model. Transport-layer protocols support the

following characteristics:

v connection establishment

v state change support

v event handling

v data transfer

v option manipulation

Although all transport-layer protocols support these characteristics, they vary in their

level of support and their interpretation of format.

In the next section we will discuss the TCP transport provider, since it is the only

one currently supported.

Transport endpoints

A transport endpoint specifies a communication path between a transport user

and a specific transport provider, which is identified by a local file descriptor (fd).

When a user opens a transport endpoint, a local file descriptor fd is returned which

identifies the endpoint. A transport provider is defined to be the transport protocol

that provides the services of the transport layer. All requests to the transport

provider must pass through a transport endpoint. The file descriptor fd is returned

by the function t_open() and is used as an argument to the subsequent functions to

identify the transport endpoint. A transport endpoint can support only one

established transport connection at a time.

To be active, a transport endpoint must have a transport address associated with it

by the t_bind() function. A transport connection is characterized by the association

of two active endpoints, made by using the transport connection establishment

functions t_listen(), t_accept(), t_connect(), and t_rcvconnect().

460 z/OS V1R8.0 XL C/C++ Programming Guide

Transport providers for X/Open Transport Interface

The transport layer may comprise one or more transport providers at the same

time. The identifier parameter of the transport provider passed to the t_open()

function determines the required transport provider. To keep the applications

portable, the identifier parameter of the transport provider should not be hard-coded

into the application source code.

Currently, the only valid value for the identifier parameter for the t_open() function

is /dev/tcp, indicating the TCP transport provider. Even though no device with this

pathname actually exists, the library uses this value to determine which transport

provider to use.

General restrictions for z/OS UNIX System Services

The following restrictions apply when you use XTI under z/OS UNIX System

Services.

v The file descriptor number must not exceed the limit of 65535 for XTI endpoints.

v If an endpoint is being shared among multiple processes, events such as,

T_LISTEN, T_DATA, and T_EXDATA, can be consumed by another process in the

time between calls to t_look() and t_rcv() or t_accept(). In order to avoid

processes not being aware of events occurring on endpoints, you should provide

explicit synchronization mechanisms between processes

v If an endpoint is shared:

– The process that issues the t_listen() should also issue for the pending

connection t_accept().

– If any other process accesses the endpoint in the time between the listen and

the accept, the behavior is undefined. In order to avoid this, you should

provide explicit synchronization between processes.

v If a process dies while an endpoint it was accessing is in T_INCON state, it is

impossible for any other sharing endpoints to bring it out of that state.

v If access to endpoints is shared, the participating processes are responsible for

serialization of access to the endpoints. If no synchronization is performed, the

behavior is undefined.

v Functions are thread-safed; therefore, no two threads in a process can

manipulate an endpoint at the same time. Serialization of access to endpoints

beyond this level is the responsibility of the threads sharing the endpoint.

Chapter 28. Network communications under UNIX System Services 461

462 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 29. Interprocess communication using z/OS UNIX

System Services

z/OS UNIX System Services offers software vendors and customers several ways

for programming processes to communicate:

v Message queues

v Semaphores

v Shared memory

v Memory mapping

v Issuing TSO commands from a shell

These forms of interprocess communication extend the possibilities provided by the

simpler forms of communication: pipes, named pipes or FIFOs, signals, and

sockets. Like these forms, message queues, semaphores, and shared memory are

used for communication between processes. (Sockets are the most common form

of interprocess communication across different systems.) For more information on

these communication forms, see z/OS UNIX System Services Planning.

Message queues

XPG4 provides a set of C functions that allow processes to communicate through

one or more message queues in an operating system’s kernel. A process can

create, read from, or write to a message queue. Each message is identified with a

“type” number, a length value, and data (if the length is greater than 0).

A message can be read from a queue based on its type rather than on its order of

arrival. Multiple processes can share the same queue. For example, a server

process can handle messages from a number of client processes and associate a

particular message type with a particular client process. Or the message type can

be used to assign a priority in which a message should be dequeued and handled.

A common client/server implementation on the same system uses two message

queues for communication between client and server. An inbound message queue

allows group write access and limits read access to the server. An outbound

message queue allows universal read access and limits write access to the server.

This implementation allows users to place invalid messages on the inbound queue

or remove messages belonging to another process from the outbound queue. To

solve this problem, you can use two new z/OS message queue types,

ipc_SndTypePID and ipc_RcvTypePID to enforce source and destination process

identification.

Create the inbound queue to the server with ipc_SndTypePID and the outbound

queue from the server with ipc_RcvTypePID. This arrangement guarantees that the

server knows the process ID of the client, and that the client is the only process

that can receive the server’s returned message. The server can also issue msgrcv()

with TYPE=0 to see if any messages belong to process IDs that have gone away.

Security checks on clients are not needed, since clients are unable to receive

messages intended for another process.

The ipc_PLO constants provide possible message queue performance

improvements based on workload. For information on the ipc_PLO constants, see

the msgget() function in the z/OS XL C/C++ Run-Time Library Reference.

© Copyright IBM Corp. 1996, 2006 463

Semaphores

Semaphores, unlike message queues and pipes, are not used for exchanging data,

but as a means of synchronizing operations among processes. A semaphore value

is stored in the kernel and then set, read, and reset by sharing processes according

to some defined scheme. A semaphore is created or an existing one is located with

the semget() function. Typical uses include resource counting, file locking, and the

serialization of shared memory.

A semaphore can have a single value or a set of values; each value can be binary

(0 or 1) or a larger value, depending on the implementation. For each value in a

set, the kernel keeps track of the process ID that did the last operation on that

value, the number of processes waiting for the value to increase, and the number of

processes waiting for the value to become 0.

If you define a semaphore set without any special flags, semop() processing obtains

a kernel latch to serialize the semaphore set for each semop() or semctl() call. The

more semaphores you define in the semaphore set, the higher the probability that

you will experience contention on the semaphore latch. One alternative is to define

multiple semaphore sets with fewer semaphores in each set. To get the least

amount of latch contention, define a single semaphore in each semaphore set.

z/OS has added the __IPC_BINSEM option to semget(). The __IPC_BINSEM option

provides significant performance improvement on semop() processing. __IPC_BINSEM

can only be specified if you use the semaphore as a binary semaphore and do not

specify UNDO on any semop() calls. __IPC_BINSEM also allows semop() to use special

hardware instructions to further reduce contention. With __IPC_BINSEM, you can

define many semaphores in a semaphore set without impacting performance.

Shared memory

Shared memory provides an efficient way for multiple processes to share data (for

example, control information that all processes require access to). Commonly, the

processes use semaphores to take turns getting access to the shared memory. For

example, a server process can use a semaphore to lock a shared memory area,

then update the area with new control information, use a semaphore to unlock the

shared memory area, and then notify sharing processes. Each client process

sharing the information can then use a semaphore to lock the area, read it, and

then unlock it again for access by other sharing processes.

Processes can also use shared mutexes and shared read-write locks to

communicate. For more information on mutexes and read-write locks see

“Synchronization primitives” on page 366.

Memory mapping

In z/OS, a programmer can arrange to transparently map into a hierarchical file

system (HFS) file process storage.

The use of memory mapping can reduce the number of disk accesses required

when randomly accessing a file.

The related mmap(), mprotect(), msync(), and munmap() functions that provide

memory mapping are part of the X/OPEN CAE Specification.

464 z/OS V1R8.0 XL C/C++ Programming Guide

TSO commands from a shell

In z/OS UNIX System Services, users of the z/OS UNIX System Services shells

can issue TSO/E commands. The user simply enters the shell command tso,

followed by a TSO command string. The user can specify whether the TSO

command is to be run through the shell (in which case the output will be displayed

on the screen) or through a TSO environment (in which case the command output

will be written to the defined standard output). For more information about running

the command through the shell or through a TSO environment, see z/OS UNIX

System Services Command Reference.

Chapter 29. Interprocess communication using z/OS UNIX System Services 465

466 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 30. Using templates in C++ programs

In C++, you can use a template to declare and define a set of related:

v Classes (including structs)

v Functions

v Static data members of template classes

Within an application, you can instantiate the same template multiple times with the

same arguments or with different arguments. If you use the same arguments, the

repeated instantiations are redundant. These redundant instantiations increase

compilation time, increase the size of the executable, and deliver no benefit.

There are four basic approaches to the problem of redundant instantiations:

Code for unique instantiations

Organize your source code so that the object file contains only one instance

of each required instantiation and no unused instantiations.

 This is the least usable approach, because you must know where each

template is defined and where each template instantiation is required.

Instantiate at every occurrence

Use the NOTEMPINC and NOTEMPLATEREGISTRY compiler options. The compiler

generates code for every instantiation that it encounters.

 With this approach, you accept the disadvantages of redundant

instantiations.

Store instantiations in an include directory

Use the TEMPINC compiler option. If the template header and the template

definition file have the required structure (described in “Using the TEMPINC

compiler option”), each template instantiation is stored in a template include

directory. If the compiler is asked to instantiate the same template again

with the same arguments, it uses the stored version instead.

 This is the default.

Store instantiation information in a registry

Use the TEMPLATEREGISTRY compiler option. Information about each template

instantiation is stored in a template registry. If the compiler is asked to

instantiate the same template again with the same arguments, it points to

the instantiation in the first object file instead.

 The TEMPLATEREGISTRY compiler option provides the benefits of the TEMPINC

compiler option but does not require a specific structure for the template

header and the template definition file.

Note: The NOTEMPINC and TEMPLATEREGISTRY compiler options are mutually

exclusive.

Using the TEMPINC compiler option

To use TEMPINC, you must structure your application as follows:

v Declare your class templates and function templates in template declaration files.

In the following example, the template declaration file is named stack.h.

You can identify a template declaration file in either of the following ways:

– In the HFS: /usr/src/stack.h

– In a PDS: MYUSERID.USER.H(STACK)

© Copyright IBM Corp. 1996, 2006 467

v For each template declaration file, create a template definition file. This file must

have the same file name as the template declaration file and an extension of .c.

For a class template, this file defines all of the member functions and static data

members. For a function template, this file defines the function.

You can identify a template definition file in either of the following ways:

– In the HFS: /usr/src/stack.c

– In a PDS: MYUSERID.USER.C(STACK)

v In your source program, specify an #include statement for each template

declaration file.

v In each template declaration file, conditionally include the corresponding template

definition file if the __TEMPINC__ macro is not defined.

This produces the following results:

– Whenever you compile with NOTEMPINC, the template defnition file is included.

– Whenever you compile with TEMPINC, the compiler does not include the

template definition file. Instead, the compiler looks for a file with the same

name as the template declaration file and extension .c the first time it needs a

particular instantiation. If the compiler subsequently needs the same

instantiation, it uses the copy stored in the template include directory.

TEMPINC example

This example includes the following source files:

v Two source files: stackadd.cpp and stackops.cpp

v A template declaration file: stack.h

v The corresponding template definition file: stack.c

v A function prototype: stackops.h

In this example:

1. Both source files include the template declaration file stack.h

2. Both source files include the function prototype stackops.h

3. The template declaration file conditionally includes the template definition file

stack.c if it is compiled with NOTEMPINC.

Source file stackadd.cpp

 #include <iostream.h>

 #include "stack.h" // �1�

 #include "stackops.h" // �2�

 main() {

 Stack<int, 50> s; // create a stack of ints

 int left=10, right=20;

 int sum;

 s.push(left); // push 10 on the stack

 s.push(right); // push 20 on the stack

 add(s); // pop the 2 numbers off the stack

 // and push the sum onto the stack

 sum = s.pop(); // pop the sum off the stack

 cout << "The sum of: " << left << " and: " << right << " is: " << sum << endl;

 return(0);

 }

Figure 129. stackadd.cpp file (ccntmp3.cpp)

468 z/OS V1R8.0 XL C/C++ Programming Guide

Source file stackops.cpp

Template declaration file stack.h

Template definition file stack.c

Function prototype stackops.h

The stackops.h file contains the prototype for the add function, which is used in

both stackadd.cpp and stackops.cpp.

 #include "stack.h" // �1�

 #include "stackops.h" // �2�

 void add(Stack<int, 50>& s) {

 int tot = s.pop() + s.pop();

 s.push(tot);

 return;

 }

Figure 130. stackops.cpp file (ccntmp4.cpp)

 #ifndef STACK_H

 #define STACK_H

 template <class Item, int size> class Stack {

 public:

 void push(Item item); // Push operator

 Item pop(); // Pop operator

 int isEmpty(){

 return (top==0); // Returns true if empty, otherwise false

 }

 Stack() { top = 0; } // Constructor defined inline

 private:

 Item stack[size]; // The stack of items

 int top; // Index to top of stack

 };

 #ifndef __TEMPINC__ // �3�

 #include "stack.c" // �3�

 #endif // �3�

 #endif

Figure 131. stack.h file (ccntmp2.h)

 //stack.c

 template <class Item, int size>

 void Stack<Item,size>::push(Item item) {

 if (top >= size) throw size;

 stack[top++] = item;

 }

 template <class Item, int size>

 Item Stack<Item,size>::pop() {

 if (top <= 0) throw size;

 Item item = stack[--top];

 return(item);

 }

Figure 132. stack.c file (ccntmp1.c)

 void add(Stack<int, 50>& s);

Figure 133. stackops.h File (ccntmp5.h)

Chapter 30. Using templates in C++ programs 469

JCL to compile the source files

Figure 134 contains the JCL that does the following:

1. Compiles both compilation units and creates the TEMPINC destination, which is

a sequential file with the following data set name:

MYUSERID.TEMPINC

2. Compiles the template instantiation file in the TEMPINC destination.

Syntax to compile under the z/OS shell

Here is the syntax you would use to compile the program within the z/OS shell.

Regenerating the template instantiation file

The compiler builds a template instantiation file, in the HFS tempinc directory or the

TEMPINC PDS, corresponding to each template declaration file. With each

compilation, the compiler may add information to the file but it never removes

information from the file.

As you develop your program, you may remove template function references or

reorganize your program so that the template instantiation files become obsolete.

You can periodicaly delete the TEMPINC destination and recompile your program.

TEMPINC considerations for shared libraries

In a traditional application development environment, different applications can

share both source files and compiled files. When you use templates, applications

can share source files but cannot share compiled files.

If you use TEMPINC:

v Each application must have its own tempinc destination.

//CC EXEC CBCC,

// INFILE=’MYUSERID.USER.CPP(STACKADD)’,

// OUTFILE=’MYUSERID.USER.OBJ(STACKADD),DISP=SHR’,

// CPARM=’LSEARCH(USER.+)’

//*---

//CC EXEC CBCC,

// INFILE=’MYUSERID.USER.CPP(STACKOPS)’,

// OUTFILE=’MYUSERID.USER.OBJ(STACKOPS),DISP=SHR’,

// CPARM=’LSEARCH(USER.+)’

//*---

//CC EXEC CBCC,

// INFILE=’MYUSERID.TEMPINC’,

// OUTFILE=’MYUSERID.USER.OBJ,DISP=SHR’,

// CPARM=’LSEARCH(USER.+)’

//*---

//BIND EXEC CBCBG,

// INFILE=’MYUSERID.USER.OBJ(STACKADD)’,

// OUTFILE=’MYUSERID.USER.LOAD(STACKADD),DISP=SHR’

//BIND.OBJ DD DSN=MYUSERID.USER.OBJ,DISP=SHR

//BIND.SYSIN DD *

 INCLUDE OBJ(STACKOPS)

 INCLUDE OBJ(STACK)

/*

Figure 134. JCL to compile source Files and TEMPINC destination

export _CXX_CXXSUFFIX=cpp

c++ stackadd.cpp stackops.cpp

Figure 135. z/OS UNIX System Services Syntax

470 z/OS V1R8.0 XL C/C++ Programming Guide

v You must compile all of the files for the application, even if some of the files have

already been compiled for another application.

Under MVS or z/OS UNIX System Services, you can easily assign a separate

tempinc PDS or directory for each application.

Using the TEMPLATEREGISTRY compiler option

Unlike TEMPINC, the TEMPLATEREGISTRY compiler option does not impose specific

requirements on the organization of your source code. Any program that compiles

successfully with NOTEMPINC will compile with TEMPLATEREGISTRY.

The template registry uses ″first come first served″ algorithm:

v When a program references a new instantiation for the first time, it is instantiated

in the compilation unit in which it occurs.

v When another compilation unit references the same instantiation, it is not

instantiated. Thus, only one copy is generated for the entire program.

The instantiation information is stored in a template registry file. You must use the

same template registry file for the entire program. Two programs cannot share a

template registry file.

The default file name for the template registry file is templreg in the HFS and

TEMPLREG in batch (a sequential file), but you can specify any other valid file name

to override this default. When cleaning your program build environment before

starting a fresh or scratch build, you must delete the registry file along with the old

object files.

Recompiling related compilation units

If two compilation units, A and B, reference the same instantiation, the

TEMPLATEREGISTRY compiler option has the following effect:

v If you compile A first, the object file A contains the code for the instantiation.

v When you later compile B, the object file for B contains a reference to the object

file A.

v If you later change A so that it no longer references this instantiation, the

reference in object B would produce an unresolved symbol error. When you

recompile A, the compiler detects this problem and handles it as follows:

– If the TEMPLATERECOMPILE compiler option is in effect, the compiler

automatically recompiles B using the same compiler options that were

specified for A.

– If the NOTEMPLATERECOMPILE compiler option is in effect, the compiler issues a

warning and you must manually recompile B.

Switching from TEMPINC to TEMPLATEREGISTRY

Because the TEMPLATEREGISTRY compiler option does not impose any restrictions on

the file structure of your application, it has less administrative overhead than

TEMPINC. You can make the switch as follows:

v If your application compiles successfully with both TEMPINC and NOTEMPINC, you

do not need to make any changes.

v If your application compiles successfully with TEMPINC but not with NOTEMPINC, you

must change it so that it will compile successfully with NOTEMPINC. In each

Chapter 30. Using templates in C++ programs 471

template declaration file, conditionally include the corresponding template

definition file if the __TEMPINC__ macro is not defined. This is illustrated in

“TEMPINC example” on page 468.

472 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 31. Using environment variables

This chapter describes environment variables that affect the z/OS XL C/C++

environment. You can use environment variables to define the characteristics of a

specific environment. They may be set, retrieved, and used during the execution of

a z/OS XL C/C++ program.

The following environment variables affect the z/OS XL C/C++ environment if they

are on when an application program runs. The variables that begin with _EDC_ and

CEE are described in detail in “Environment variables specific to the z/OS XL

C/C++ library” on page 481. See “Locale source files” on page 744 for more

information on the locale-related environment variables.

Note: The settings of these variables affect your environment even if you are using

the C++ I/O stream classes. For more detailed information on I/O streaming,

see:

v Standard C++ Library Reference discusses the Standard C++ I/O stream

classes

v C/C++ Legacy Class Libraries Reference discusses the UNIX Systems

Laboratories C++ Language System Release (USL) I/O Stream Library

For information on environment variables used in z/OS UNIX System

Services see z/OS UNIX System Services Command Reference and z/OS

UNIX System Services User’s Guide.

_BIDIATTR

Used to specify the attributes which will determine the way the bidirectional

layout transformation takes place. For example:

export _BIDIATTR="@ls typeoftext=visual:implicit, orientation=ltr:ltr,

 numerals=nominal:national"

If _BIDIATTR is not specified or contains erroneous values, the default

values will be used. For a detailed description of the bidirectional layout

transformation, see Chapter 59, “Bidirectional language support,” on page

855.

_BIDION

Used to specify whether iconv will perform bidirectional layout

transformation beside the basic main function (code page conversion), or

not. The value of this variable is either set to TRUE to activate the

bidirectional layout transformation, or FALSE to prevent the bidirectional

layout transformation. If this variable is not defined in the environment it

defaults to FALSE.

_BPXK_AUTOCVT

Activates or deactivates automatic text conversion of tagged HFS files.

 The value of this environment variable is interrogated during initialization of

the C main(), and at each pthread initialization in order to set the

autoconversion state for the thread. The autoconversion state for the thread

is looked at by the logical file system (LFS) when determining if automatic

text conversion should be performed during read/write operations to tagged

HFS files.

Note: The default autoconversion state is unset, meaning that the LFS

must look to the BPXPRMxx AUTOCVT parameter, which is either

© Copyright IBM Corp. 1996, 2006 473

ON or OFF. When set to a valid value, this environment variable

overrides the BPXPRMxx AUTOCVT parameter.

 During main() initialization, the following behavior is defined for this

environment variable:

Setting Autoconversion State for the Thread

ON Activated

OFF Deactivated

<other> Treated as unset. Autoconversion defers to BPXPRMxx

AUTOCVT parameter

 Changing the value of this environment variable using setenv(), putenv(), or

clearenv() during execution of the application will behave in the following

manner:

v Ignored after the first pthread create, although getenv() might show

otherwise. The autoconversion state will remain unchanged.

v Deleting or clearing the environment variable, or setting the value to an

invalid value before the first pthread create will change the

autoconversion state to unset.

v Has no effect on initially untagged HFS files that have already been

opened using fopen() or freopen() on the current thread and

FILETAG(AUTOCVT,) is in effect. These files were specifically marked, or

not marked, for automatic text conversion, at the file descriptor level, at

the time they were opened. The text conversion state for the already

opened file descriptors depended on whether or not autoconversion for

the thread was activated or deactivated at the time of the open.

v The standard streams may have already been setup for automatic text

conversion, before the main() begins execution, using EBCDIC CCSID

1047 as the File CCSID. Therefore, changing the autoconversion state

using one of these methods will not affect the standard streams.

Specifically, an application running with ASCII CCSID 819 as the

Program CCSID will continue to have text conversion with the standard

streams.

Note: Changing the value of this environment variable using any other

mechanism is ignored, although getenv() might show otherwise. You

can use setenv() with a value of NULL to delete an environment

variable.

_BPXK_CCSIDS

Defines the EBCDIC<->ASCII pair of coded character set IDs (CCSIDS) to

be used when converting text data, and for automatic tagging new or empty

HFS files. The syntax of the environment variable value is as follows:

_BPXK_CCSIDS=(e,a)

where e is the EBCDIC CCSID and a is the ASCII CCSID.

 Language Environment C/C++ applications will initialize with the default

IBM-1047<->ISO8859-1 pair. This is equivalent to specifying:

_BPXK_CCSIDS=(1047,819) before running the application.

 The value of this environment variable is interrogated during initialization of

the C main(), and at each pthread initialization in order to set the Program

474 z/OS V1R8.0 XL C/C++ Programming Guide

CCSID for the thread. For the main(), the Program CCSID is set to the

ASCII value of the pair when the main() is part of an ASCII compile unit,

otherwise it is set to the EBCDIC value of the pair. The Program CCSID for

a thread is set based on the compiled codeset of the thread start routine.

When ASCII, the ASCII value of the CCSID pair is used, else the EBCDIC

value.

 Changing the value of this environment variable using setenv(), putenv(), or

clearenv() during execution of the application will behave in the following

manner:

v Ignored after the first pthread create, although getenv() might show

otherwise. The current CCSID pair used for conversion & tagging

purposes will remain unchanged.

v Deleting or clearing the environment variable before the first pthread

create will result in the default CCSID pair (1047,819) being used for

conversion and tagging purposes.

v Using improper syntax before the first pthread create will result in the

CCSID pair being set to (0,0). This will prevent any further conversion.

v Has no effect on initially untagged new or empty HFS files that have

already been opened using fopen(), fropen(), or popen() on the current

thread and FILETAG(,AUTOTAG) is in effect. These files were setup for

tagging upon first write at the time they were opened. The File CCSID

was set to what the Program CCSID was at the time of the open.

v The standard streams may have already been setup for automatic text

conversion, before the main() begins execution, using EBCDIC CCSID

1047 as the File CCSID, therefore changing the CCSID pair using one of

these methods will not affect the standard streams.

Note: Changing the value of this environment variable using any other

mechanism is ignored, although getenv() might show otherwise. You

can use setenv() with a value of NULL to delete an environment

variable.

_BPXK_SIGDANGER

 Set to either YES or NO, this variable modifies the process termination

mechanism used during UNIX System Services Shutdown. During

Shutdown the kernel sends a signal to each non-permanent non-blocking

process. If _BPXK_SIGDANGER is not in the environment, or if its value is

not YES, then SIGTERM is sent to these processes. If

_BPXK_SIGDANGER is present in the environment and has the value YES

then signal SIGDANGER will be sent instead of SIGTERM. The default

action for SIGTERM is to terminate the process, but the default action for

SIGDANGER is to ignore the signal. The application may register a

SIGDANGER signal catcher function to handle shutdowns. If the process

does not end in a short while after being sent the first signal, the kernel will

send SIGKILL to the process. If the process does not end in a short while

after the second signal is sent, the process will be brought down using

CALLRTM ABTERM=YES.

Note: The program should not use the environ external variable to put this

or any other ″_BPXK_″ environment variable into its own

environment. The Kernel will not be told about the environment

variable setting when it is added to the environment this way.

Chapter 31. Using environment variables 475

The program should use an environ pointer to put this variable into

the environment of a new process created with spawn() or exec(). In

this case the kernel will notice _BPXK_ environment variables being

created for a new program image. In addition, the kernel will

correctly detect _BPXK_ environment variables generated into child

processes created via fork() and spawn().

_CEE_DLLLOAD_XPCOMPAT

Used to indicate if certain 31 bit XPLINK DLL application initialization

compatibility behaviors should be disabled.

_CEE_DMPTARG

Used to specify the directory in which Language Environment dumps

(CEEDUMPs) are written for applications that are running as the result of a

fork, exec, or spawn. This environment variable is ignored if the application

is not run as a result of a fork, exec, or spawn.

_CEE_ENVFILE

Used to specify a file from which to read environment variables.

_CEE_ENVFILE_S

Used to specify a file from which to read environment variables, stripping

trailing white space from each NAME=VALUE line read.

_CEE_HEAP_MANAGER

Used to specify the DLL name for the Vendor Heap Manager to be used

during execution of the application.

_CEE_RUNOPTS

Used to specify Language Environment run-time options to a program

invoked by using one of the exec functions, such as a program which is

invoked from one of the z/OS UNIX System Services shells.

_EDC_ADD_ERRNO2

Appends errno2 information to the output of perror() and strerror().

_EDC_ANSI_OPEN_DEFAULT

Affects the characteristics of MVS text files opened with the default

attributes.

_EDC_AUTOCVT_BINARY

If automatic file conversion is enabled (_BPXK_AUTOCVT=ON and running with

FILETAG(AUTOCVT) runtime option), this environment variable activates or

deactivates automatic conversion of untagged UNIX file system files opened

in binary mode and not opened for record I/O.

_EDC_BYTE_SEEK

Specifies that fseek() and ftell() should use relative byte offsets.

_EDC_CLEAR_SCREEN

Affects the behavior of output text terminal files.

_EDC_COMPAT

Specifies that C/C++ should use specific functional behavior from previous

releases of C/370.

_EDC_C99_NAN

Sets the binary floating-point representation behavior of infinite value and

Not a Number for the printf family of functions

_EDC_ERRNO_DIAG

Indicates if additional diagnostic information should be generated, when the

perror() or strerror() functions are called to produce an error message.

476 z/OS V1R8.0 XL C/C++ Programming Guide

|
|

|
|
|

|
|
|
|
|

_EDC_GLOBAL_STREAMS

Allows the C standard streams stdin, stdout and stderr to have global

behavior. _EDC_GLOBAL_STREAMS is not supported in AMODE 64.

_EDC_POPEN

Specifies that popen() uses spawn() instead of fork().

_EDC_PUTENV_COPY

Copies the putenv() string into storage owned by Language Environment.

_EDC_RRDS_HIDE_KEY

Relevant for VSAM RRDS files opened in record mode. Enables calls to

fread() that specify a pointer to a character string and do not append the

Relative Record Number to the beginning of the string.

_EDC_STOR_INCREMENT

Sets the size of increments to the internal library storage subpool acquired

above the 16M line. _EDC_STOR_INCREMENT is not supported in

AMODE 64 applications. In AMODE 64 applications, this environment

variable is replaced by the IOHEAP64 run-time option.

_EDC_STOR_INCREMENT_B

Sets the size of increments to the internal library storage subpool acquired

below the 16M line. _EDC_STOR_INCREMENT_B is not supported in

AMODE 64 applications. In AMODE 64 applications, this environment

variable is replaced by the IOHEAP64 run-time option.

_EDC_STOR_INITIAL

Sets the initial size of the internal library storage subpool acquired above

the 16M line. _EDC_STOR_INITIAL is not supported in AMODE 64

applications. In AMODE 64 applications, this environment variable is

replaced by the IOHEAP64 run-time option.

_EDC_STOR_INITIAL_B

Sets the initial size of the internal library storage subpool acquired below

the 16M line. _EDC_STOR_INITIAL_B is not supported in AMODE 64

applications. In AMODE 64 applications, this environment variable is

replaced by the IOHEAP64 run-time option.

_EDC_UMASK_DFLT

Allows the user to control how the C library sets the default umask used

when the program runs. If z/OS UNIX System Services services are

available, the possible values of the _EDC_UMASK_DFLT environment

variable are:

v NO - the library will not change the value

v a valid octal value - the library sets this as the default

v any other value - the library uses 022 octal as the value.

_EDC_ZERO_RECLEN

Enables processing of zero-length records in an MVS data set opened in

variable format.

LANG Determines the locale to use for the locale categories when neither the

LC_ALL environment variable nor the individual locale environment variables

specify locale information. This environment variable does not interact with

the language setting for messages.

LC_ALL

Determine the locale to be used to override any values for locale categories

specified by the settings of the LANG environment variable or any individual

locale environment variables.

Chapter 31. Using environment variables 477

LC_COLLATE

Determines the behavior of ranges, equivalence classes, and multicharacter

collating elements.

LC_CTYPE

Determines the locale for the interpretation of byte sequences of text data

as characters (for example, single-byte versus multibyte characters in

arguments and input files).

LC_MESSAGES

Determines the language in which messages are to be written.

LC_MONETARY

Determines the locale category for monetary-related numeric formatting

information.

LC_NUMERIC

Determines the locale category for numeric formatting (for example,

thousands separator and radix character) information.

LC_TIME

Determines the locale category for date and time formatting information.

LC_TOD

Determines the locale category for time of day and Daylight Savings Time

formatting information.

LIBPATH

Allows an absolute or relative pathname to be searched when loading a

DLL. If the input filename contains a slash (/), it is used as is to locate the

DLL. If the input filename does not contain a slash, then LIBPATH is used

to determine the pathname to load. LIBPATH specifies a list of directories

separated by colons. If the LIBPATH begins or ends with a colon, then the

working directory is also searched first or last, depending on the position of

the stand-alone colon. The ″::″ specification can only occur at the beginning

or end of the list of directories. If you are running POSIX(ON), then HFS is

searched first followed by MVS. If you are running POSIX(OFF), then MVS

is searched first followed by HFS. This double search can be avoided by

using unambiguous DLL names.

LOCPATH

Tells the setlocale() function the name of the directory in the HFS from

which to load the locale object files. It specifies a colon separated list of

HFS directories.

 If LOCPATH is defined, setlocale() searches HFS directories in the order

specified by LOCPATH for locale object files it requires. Locale object files

in the HFS are produced by the localedef utility running under z/OS UNIX

System Services.

 If LOCPATH is not defined and setlocale() is called by a POSIX program,

setlocale() looks in the default HFS locale directory, /usr/lib/nls/locale, for

locale object files it requires. If setlocale() does not find a locale object it

requires in the HFS, it converts the locale name to a PDS member name

and searches locale PDS load libraries associated with the program calling

setlocale().

Note: XPLINK locales have an .xplink suffix added to the end of the

locale name. For more information about XPLINK locale names, see

“Locale naming conventions” on page 774

478 z/OS V1R8.0 XL C/C++ Programming Guide

PATH The set of HFS directories that some z/OS XL C/C++ functions, such as

EXECVP, use in trying to locate an executable. The directories are

separated by a colon (:) delimiter. If the pathname contains a slash, the

PATH environment variable will not be used.

__POSIX_SYSTEM

Determines the behavior of the system() function when the POSIX(ON)

run-time option has been specified. If __POSIX_SYSTEM=NO, then system()

behaves as in Language Environment/370 1.2: it creates a nested enclave

within the same process as the invoker (allowing such things as sharing of

memory files). Otherwise, system() performs a fork() and exec(), and the

target program runs in a separate process (preventing such things as

sharing of memory files).

 Restriction:__POSIX_SYSTEM=NO is not supported in AMODE 64 applications.

STEPLIB

Determines the STEPLIB environment that is created for an executable file. It

can be a sequence of MVS data set names separated by a colon (:), or can

contain the value CURRENT or NONE. If you do not want a STEPLIB

environment propagated to the environment of the executable file, specify

NONE. The STEPLIB environment variable defaults to the value CURRENT,

which will propagate your current environment to that of the executable file.

 See z/OS UNIX System Services Command Reference for more information

on the use of the STEPLIB variable and changing the search order for z/OS

programs.

TZ or _TZ

Time zone information. The TZ and _TZ environment variables are typically

set when you start a shell session, either through /etc/profile or .profile

in your home directory.For more information on TZ and _TZ see Chapter 55,

“Customizing a time zone,” on page 791.

Working with environment variables

The following library functions affect environment variables:

v setenv()

v clearenv()

v getenv()

v __getenv()

v putenv()

v unsetenv()

The setenv() function adds, changes, and deletes environment variables in the

environment variable table. The getenv() function retrieves the values from the

table. If it does not find an environment variable, getenv() returns NULL. The

clearenv() function clears the environment variable table, and resets to default

behavior the actions affected by z/OS XL C/C++-specific environment variables. The

unsetenv() function deletes environment variables from the table.

The __getenv() function behaves almost the same as getenv() except getenv()

returns the address of the environment variable value string that has been copied

into a buffer, whereas __getenv() returns the address of the actual value string in

the environment variable array. Because the value is not buffered, __getenv()

cannot be used in a multithreaded application or in a single threaded application

where the function setenv() changes the value of the variables.

Chapter 31. Using environment variables 479

The putenv() function provides a subset of the function of setenv() and is provided

for convenience in porting UNIX applications. putenv(env_var) is the same as

setenv(var_name, var_value, i) where env_var represents the string

var_name=var_value.

For a complete description of these functions, refer to z/OS XL C/C++ Run-Time

Library Reference.

Environment variables may be set any time in an application program or user exit.

You can use the exit routine CEEBINT to set environment variables through calls to

setenv(). For more information on the z/OS Language Environment user exit

CEEBINT, refer to “Using run-time user exits in z/OS Language Environment” on

page 609. You can also set environment variables by using the ENVAR run-time

option. The syntax for this option is

ENVAR("1st_var=1st_value", "2nd_var=2nd_value")

For more information on this run-time option, refer to z/OS Language Environment

Programming Reference.

Specifying the _CEE_ENVFILE or _CEE_ENVFILE_S environment variable with a

filename on the ENVAR option enables you to read more environment variables from

that file. See “Environment variables specific to the z/OS XL C/C++ library” on page

481 for more information about _CEE_ENVFILE and _CEE_ENVFILE_S.

Environment variables set with the setenv() function exist only for the life of the

program, and are not saved before program termination. Child programs are

initialized with the environment variables of the parent. However, environment

variables set by a child program are not propagated back to the parent upon

termination of the child program.

Note: If you are running with POSIX(ON), environment variables are copied from a

parent process to a child process when a fork() function is called, and are

inherited by the new process image when an EXEC function is called.

When a parent process invokes a child process by using system(), using the ANSI

form of the system function, the child receives its environment variables from the

value of the ENVAR run-time option specified on the invocation of system(). For

example:

 system("PGM=CHILD,PARM='ENVAR(ABC=5)/'");)

Naming conventions

Avoid the following when creating names for environment variables:

= This is invalid and will generate an error message.

CBC

This is reserved for z/OS XL C/C++ specific environment variables.

CCN

This is reserved for z/OS XL C/C++ specific environment variables.

EDC

This is reserved for z/OS XL C/C++ specific environment variables.

CEE

This is reserved for z/OS XL C/C++ specific environment variables used

with z/OS Language Environment. See “Environment variables specific to

the z/OS XL C/C++ library” on page 481 for more information.

480 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|
|

BPX

This is reserved for z/OS XL C/C++ specific environment variables used in

the kernel. See the spawn callable service in z/OS UNIX System Services

Programming: Assembler Callable Services Reference for more information.

DBCS characters

Multibyte and DBCS characters should not be used in environment variable

names. Their use can result in unpredictable behavior.

 Multibyte and DBCS characters are allowed in environment variable values;

however, the values are not validated, and redundant shifts are not

removed.

white space

Blank spaces are valid characters and should be used carefully in

environment variable names and values.

 For example, setenv(" my name"," David ",1) sets the environment

variable <space>my<space>name to <space><space>David. A call to

getenv("my name"); returns NULL indicating that the variable was not found.

You must specifically query getenv(" my name") to retrieve the value of "

David".

The environment variable names are case-sensitive.

The empty string is a valid environment variable name.

Note: In general, it is a good idea to avoid special characters, and to use portable

names containing just upper and lower case alphabetics, numerics, and

underscore characters. Environment variable names containing certain

special characters, such as slash (/), are not propagated by the z/OS UNIX

System Services shells. Therefore, these variable names are not available to

a program called using the POSIX system() function.

Environment variables specific to the z/OS XL C/C++ library

The following z/OS XL C/C++ specific environment variables are supported to

provide various functions. z/OS XL C/C++ variables have the prefix _CEE_ or _EDC_.

You should not use these prefixes to name your own variables.

v _CEE_DLLLOAD_XPCOMPAT

v _CEE_DMPTARG

v _CEE_ENVFILE

v _CEE_ENVFILE_S

v _CEE_HEAP_MANAGER

v _CEE_RUNOPTS

v _EDC_ADD_ERRNO2

v _EDC_ANSI_OPEN_DEFAULT

v _EDC_AUTOCVT_BINARY

v _EDC_BYTE_SEEK

v _EDC_CLEAR_SCREEN

v _EDC_COMPAT

v _EDC_C99_NAN

v _EDC_ERRNO_DIAG

v _EDC_GLOBAL_STREAMS

Chapter 31. Using environment variables 481

|

|

v _EDC_POPEN

v _EDC_PUTENV_COPY

v _EDC_RRDS_HIDE_KEY

v _EDC_STOR_INCREMENT

v _EDC_STOR_INCREMENT_B

v _EDC_STOR_INITIAL

v _EDC_STOR_INITIAL_B

v _EDC_UMASK_DFLT

v _EDC_ZERO_RECLEN

There are no default settings for the environment variables that begin with _EDC_.

There are, however, default actions that occur if these environment variables are

undefined or are set to invalid values. See the descriptions of each variable below.

The z/OS XL C/C++ specific environment variables may be set with the setenv()

function.

_CEE_DLLLOAD_XPCOMPAT

Used to indicate if certain 31-bit XPLINK DLL application initialization compatibility

behaviors should be disabled.

This environment variable should only be used for applications that do not run

properly when migrating from one release to another. While the correct run-time

behavior is in the current release, this environment variable provides compatibility

support for existing programs. The need to use these settings indicates incorrect

programming within the application (for example, reliance on a particular order of

C++ static construction across all DLLs that comprise the application). When

possible, you should correct the application rather than use this environment

variable.

Value Behavior

0 Always the most current behavior (e.g. no compatibility behavior

enabled). This is identical to the behavior when

_CEE_DLLLOAD_XPCOMPAT is not set.

1 Disable static initialization prerequisite XPLINK DLL load ordering

introduced in z/OS V1R6.

2 Disable non-XPLINK to XPLINK DLL function pointer compatibility

introduced in z/OS V1R8.

3 Disable both static initialization prerequisite XPLINK DLL load

ordering, and non-XPLINK to XPLINK DLL function pointer

compatibility. (Disables both behaviors 1 and 2.)

 z/OS Language Environment converts the specified string value to a signed integer,

and interprets this value as a bit mask to determine which functions to use in

compatibility mode. This allows any combination of compatibility behaviors to be

specified.

Here are some examples of how you might set this environment variable:

v z/OS UNIX: export _CEE_DLLLOAD_XPCOMPAT=1 Disable behavior 1

v Batch/TSO command line: ENVAR("_CEE_DLLLOAD_XPCOMPAT=3") Disable behaviors

1 and 2

482 z/OS V1R8.0 XL C/C++ Programming Guide

|

|
|

|
|
|
|
|
|
|
|

||

||
|
|

||
|

||
|

||
|
|

|
|
|
|

|

|

|
|

Note: Any change to the _CEE_DLLLOAD_XPCOMPAT environment variable after the

application enclave has already been initialized, will not have any effect on

the current application enclave.

For information about XPLINK function pointer compatibility see “XPLINK

applications” on page 312.

_CEE_DMPTARG

Specifies the directory in which Language Environment dumps (CEEDUMPs) are

written for applications that are running as the result of a fork, exec, or spawn. This

environment variable is ignored if the application is not run as a result of a fork,

exec, or spawn. When _CEE_DMPTARG is set in one of these environments, its value

is used as the directory name in which to place CEEDUMPs. For example, if in a

shell, you set the environment variable as follows:

export _CEE_DMPTARG=/u/userid/dmpdir

Language Environment dumps will be written to directory /u/userid/dmpdir. If in a

shell, you set the environment variable as follows:

export _CEE_DMPTARG=dmpdir

Language Environment dumps will be written to directory "cwd"/dmpdir where "cwd"

is the current working directory

_CEE_ENVFILE

Enables a list of environment variables to be set from a specified file. This

environment variable only takes effect when it is set through the run-time option

ENVAR on initialization of a parent program.

When _CEE_ENVFILE is defined under these conditions, its value is taken as the

name of the file to be used. For example, to read the ddname MYVARS, you would

call your program with the ENVAR run-time option as follows:

 ENVAR("_CEE_ENVFILE=DD:MYVARS")

The specified file is opened as a variable length record file. For an MVS data set,

the data set must be allocated with RECFM=V. RECFM=F is not recommended, since

RECFM=F enables padding with blanks, and the blanks are counted when calculating

the size of the line. Each record consists of NAME=VALUE. For example, a file with the

following two records:

 _EDC_RRDS_HIDE_KEY=Y

 World_Champions=New_York_Yankees

would set the environment variable _EDC_RRDS_HIDE_KEY to the value Y, and the

environment variable World_Champions to the value New_York_Yankees.

Notes:

1. Using _CEE_ENVFILE to set environment variables through a file is not supported

under CICS.

2. z/OS Language Environment searches for an equal sign to delimit the

environment variable from its value. If an equal sign is not found, the

environment variable is skipped and the rest of the text is treated as comments.

3. Each record of the file is processed independently from any other record in the

file. Data within a record is used exactly as input with no substitution. A file

containing:

Chapter 31. Using environment variables 483

|
|
|

|
|

FRED=WILMA

FRED=$FRED:BAMBAM

will result in the environment variable FRED being set to $FRED:BAMBAM, rather

than to WILMA:BAMBAM as would be the case if the same statements were

processed by a UNIX shell.

_CEE_ENVFILE_S

Enables a list of environment variables to be set from a specified file, stripping

trailing white space from each NAME=VALUE line read.. This environment variable only

takes effect when it is set through the run-time option ENVAR on initialization of a

parent program.

When _CEE_ENVFILE_S is defined under this condition, its value specifies the name

of the file to be used. For example, to read the ddname MYVARS, you would call your

program with the ENVAR run-time option as follows:

 ENVAR("_CEE_ENVFILE_S=DD:MYVARS")

For an MVS data set, the data set could be allocated with any record format. Each

record consists of NAME=VALUE. For example, a file with the following two records:

 _EDC_RRDS_HIDE_KEY=Y

 World_Champions=New_York_Yankees

would set the environment variable _EDC_RRDS_HIDE_KEY to the value Y, and the

environment variable World_Champions to the value New_York_Yankees.

Notes:

1. Using _CEE_ENVFILE_S to set environment variables through a file is not

supported under CICS.

2. z/OS Language Environment searches for an equal sign to delimit the

environment variable from its value. If an equal sign is not found, the

environment variable is skipped and the rest of the text is treated as comments.

3. Both environment variables _CEE_ENVFILE and _CEE_ENVFILE_S can be specified.

_CEE_ENVFILE_S takes precedence, meaning it is processed second in

sequence.

4. Each record of the file is processed independently from any other record in the

file. Data within a record is used exactly as input with no substitution (other than

trailing white space is ignored). A file containing:

FRED=WILMA

FRED=$FRED:BAMBAM

will result in the environment variable FRED being set to $FRED:BAMBAM, rather

than to WILMA:BAMBAM as would be the case if the same statements were

processed by a UNIX shell.

_CEE_HEAP_MANAGER

Specifies the name of the Vendor Heap Manager (VHM) DLL that will be used to

manage the user heap. You set the environment variable as follows:

_CEE_HEAP_MANAGER=dllname

This environment variable must be set using one of the following mechanisms:

v ENVAR run-time option

v inside the file specified by the _CEE_ENVFILE or _CEE_ENVFILE_S environment

variable.

484 z/OS V1R8.0 XL C/C++ Programming Guide

|

|
|
|
|

|
|
|

|

|
|

|
|

|
|

|

|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|

|
|

Either of these mechanisms is before any user code gets control. This means prior

to the HLL user exit, static constructors, and/or main getting control. Setting of this

environment variable once the user code has begun execution will not activate the

VHM, but the value of the environment variable will be updated.

See z/OS Language Environment Vendor Interfaces for more information on the

Vendor Heap Manager support.

_CEE_RUNOPTS

Used to specify invocation Language Environment run-time options for programs

invoked using one of the exec family of functions. Mechanisms for setting the value

of the _CEE_RUNOPTS environment variable include using the export command within

the z/OS UNIX System Services shell, or using the setenv() or putenv() functions

within a C/C++ application. The run-time options set from the _CEE_RUNOPTS

environment variable value that become active in the invoked program are known

as invocation command run-time options.

Note: For this description, the exec family of functions includes the spawn family of

functions.

The format of the environment variable is:

_CEE_RUNOPTS=value

where value is a null-terminated character string of Language Environment run-time

options. For example, you could specify the following:

export _CEE_RUNOPTS="stack(,,any,) termthdact(dump)"

to set the value of the environment variable within the z/OS UNIX shell.

The _CEE_RUNOPTS environment variable has a unique behavior. It can be unset, or

modified, but will be re-created or added to across an exec to effect the propagation

of invocation Language Environment run-time options. This behavior is designed

specifically to allow run-time options such as TRACE to take effect for parts of an

application which are not invoked directly by the user. Without this behavior, the

external TRACE option could not be propagated to parts of an application that are

executed using one of the exec family of functions.

At the time of the exec, any active invocation command run-time option settings, not

already explicitly part of the _CEE_RUNOPTS environment variable, are added to its

value. This new value for the _CEE_RUNOPTS environment variable is passed to the

exec target to be used as invocation Language Environment run-time options for the

invoked program. Thus, all invocation run-time options, those specified with the

_CEE_RUNOPTS environment variable and those already active, are propagated across

the exec.

When the _CEE_RUNOPTS environment variable is not defined at the time of the exec,

but there are other active invocation command run-time options, it will be re-created

with its value set to represent the active invocation command run-time option

settings. This unique behavior, where the _CEE_RUNOPTS environment variable is

added to, or re-created, across an exec, can cause unexpected results when the

user attempts to unset (clear) the environment variable, or modify its value.

Chapter 31. Using environment variables 485

The following example demonstrates this behavior. We enter the z/OS UNIX shell

through OMVS, and a sub-shell is created using one of the exec family of functions.

The propagation of the _CEE_RUNOPTS environment variable takes place across

creation of the sub-shell.

/u/carbone>echo $_CEE_RUNOPTS

POSIX(ON) �1�

/u/carbone>/bin/sh �2�

/u/carbone>echo $_CEE_RUNOPTS �3�

POSIX(ON)

/u/carbone>unset _CEE_RUNOPTS �4�

/u/carbone>echo $_CEE_RUNOPTS

/u/carbone>env | grep _CEE_RUN �5�

_CEE_RUNOPTS=POS(ON)

/u/carbone>echo $_CEE_RUNOPTS �6�

/u/carbone>export _CEE_RUNOPTS="ABTERMENC(RETCODE)" �7�

/u/carbone>echo $_CEE_RUNOPTS

ABTERMENC(RETCODE)

/u/carbone>env | grep _CEE_RUN �8�

_CEE_RUNOPTS=ABTERMENC(RETCODE) POS(ON)

/u/carbone>/bin/sh �9�

/u/carbone>echo $_CEE_RUNOPTS

ABTERMENC(RETCODE) POS(ON)

/u/carbone>unset _CEE_RUNOPTS

/u/carbone>echo $_CEE_RUNOPTS

/u/carbone>env | grep _CEE_RUN

_CEE_RUNOPTS=ABT(RETCODE) POS(ON)

/u/carbone>

1. The current value of the _CEE_RUNOPTS environment variable happens to be

POSIX(ON).

2. Using /bin/sh to create a sub-shell will go through the process where the

_CEE_RUNOPTS environment variable is added to, or re-created, across the exec.

3. Displaying the value of the _CEE_RUNOPTS environment variable using echo in the

sub-shell shows that no other invocation command run-time options were in

effect at the time of the exec, since the value of the environment variable is

unchanged (there were no run-time options to add).

4. Using unset to clear the _CEE_RUNOPTS environment variable does remove it from

the sub-shell environment, as shown with the echo command, but it does not

change the fact that POSIX(ON) is the active invocation command run-time

option in the sub-shell.

5. To see this, we use the env | grep _CEE_RUNOPTS command. The env is the

target of an exec. We know that the _CEE_RUNOPTS environment variable is

re-created across the exec from the active invocation command run-time

options. And as you can see, the value shows as POS(ON). During re-creation,

Language Environment uses the minimum abbreviations for the run-time options

when re-creating or adding to the _CEE_RUNOPTS environment variable.

6. When the env returns, the _CEE_RUNOPTS environment variable is still unset in the

sub-shell as seen using the echo command.

7. We now use export to set a different value for the _CEE_RUNOPTS environment

variable in the sub-shell. We see the value using the echo command.

8. Using the env | grep _CEE_RUNOPTS command again, we see the behavior where

the active invocation command run-time options are added to the current value

of the _CEE_RUNOPTS environment variable.

486 z/OS V1R8.0 XL C/C++ Programming Guide

9. The rest of the example creates a second sub-shell and shows that the

_CEE_RUNOPTS environment variable in the sub-shell was added to across the

exec of the sub-shell. And again, using unset does not change the active

invocation command run-time options.

_EDC_ADD_ERRNO2

Appends errno2 information to the output of perror() and strerror(). For

example, for perror() if errno was 121, then the output would be ″EDC5121I Invalid

argument.″ If _EDC_ADD_ERRNO2 was defined, the ouput would be ″EDC5121I Invalid

argument. (errno2=0x0C0F8402)″.

_EDC_ADD_ERRNO2 is set with the command:

setenv("_EDC_ADD_ERRNO2","1",1);

Note: errno2 is a residual error field. It contains the errno2 from the last kernel

failure. This errno2 value may or may not be related to the errno error

message.

_EDC_ANSI_OPEN_DEFAULT

Affects the characteristics of MVS text files opened with the default attributes.

Issuing the following command causes text files opened with the default

characteristics to be opened with a record format of FIXED and a logical record

length of 254 in accordance with the ANSI standard for C.

 setenv("_EDC_ANSI_OPEN_DEFAULT","Y",1);

When this environment variable is not specified and a text file is created without its

record format or LRECL defined, then the default is a variable record format.

_EDC_AUTOCVT_BINARY

If automatic file conversion is enabled (_BPXK_AUTOCVT=ON and running with

FILETAG(AUTOCVT) runtime option), this environment variable activates or deactivates

automatic conversion of untagged UNIX file system files opened in binary mode and

not opened for record I/O.

The value of this environment variable is checked every time a UNIX file system file

is opened. If automatic file conversion is enabled and _EDC_AUTOCVT_BINARY=YES, an

untagged file opened in binary mode will trigger the file to be automatically

converted from the program CCSID to the EBCDIC CCSID as specified by the

_BPXK_CCSIDS environment variable. If _BPXK_CCSIDS is not set, a default CCSID pair

is used. See _BPXK_CCSIDS environment variable for additional details.

_EDC_AUTOCVT_BINARY can be set to the following values to set the conversion state

for binary files.

NO (default)

If automatic file conversion is enabled, an untagged file opened in binary

mode will not trigger the file to be automatically converted from the program

CCSID to the EBCDIC CCSID as specified by the _BPXK_CCSIDS

environment variable. If _BPXK_CCSIDS is not set, a default CCSID pair is

used. See _BPXK_CCSIDS environment variable for additional details. An

untagged file opened in text mode will not be affected.

YES If automatic file conversion is enabled, an untagged file opened in binary

mode and not opened for record I/O will trigger the file to be automatically

Chapter 31. Using environment variables 487

|

|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

||
|

converted from the program CCSID to the EBCDIC CCSID as specified by

the _BPXK_CCSIDS environment variable. If _BPXK_CCSIDS is not set, a default

CCSID pair is used. See _BPXK_CCSIDS environment variable for additional

details.

Note: If this environment variable is not set, the default behavior is chosen, which

is the same as _EDC_AUTOCVT_BINARY=NO. Because this environment variable

is checked on every file open, an application can pick up the changes to this

environment variable by closing and then re-opening the file at execution

time. The application itself does not need to be restarted.

_EDC_BYTE_SEEK

Indicates to z/OS XL C/C++ that, for all binary files, ftell() should return relative

byte offsets, and fseek() should use relative byte offsets as input. The default

behavior is for only binary files with a fixed record format to support relative byte

offsets.

_EDC_BYTE_SEEK is set with the command:

setenv("_EDC_BYTE_SEEK","Y",1);

_EDC_CLEAR_SCREEN

Applies to output text terminal files.

_EDC_CLEAR_SCREEN is set with the command:

setenv("_EDC_CLEAR_SCREEN","Y",1);

When _EDC_CLEAR_SCREEN is set, writing a \f (form feed) character to a text terminal

sends all preceding unwritten data in the terminal buffer to the screen, and then

clears the screen.

When _EDC_CLEAR_SCREEN in not set, writing a \f (form feed) character to a text

terminal results in the character being treated as a non-control character. The

character is written to the terminal buffer as \f.

_EDC_COMPAT

Indicates to z/OS XL C/C++ that it should use old functional behavior for various

items in code ported from old releases of C/370. These functional items are

specified by the value of the environment variable. _EDC_COMPAT is set with the

command:

setenv("_EDC_COMPAT","x",1);

where x is an integer. z/OS XL C/C++ converts the string "x" into its decimal

integer equivalent, and treats this value as a bit mask to determine which functions

to use in compatibility mode. The following table interprets the least significant bit

as bit zero.

Bit Function Affected

0 ungetc()

1 ftell()

2 fclose()

3 through 31 Unused

488 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|
|

|
|
|
|
|

For this release, calls to fseek() with an offset of SEEK_CUR, fgetpos(), and

fflush() take into account characters pushed back with the ungetc() library

function. You must set the _EDC_COMPAT environment variable for ungetc() if you

want these functions to ignore ungetc() characters as they did in old C/370 code.

For ftell(), z/OS XL C/C++ uses an encoding scheme that varies according to the

attributes of the underlying data set. You must set the _EDC_COMPAT environment

variable for ftell() if you want to use encoded ftell() values generated in old

C/370 code.

You can set _EDC_COMPAT to indicate that fclose() should not unallocate the

SYSOUT=* data set when it is closing "*" data sets created under batch. This is to

ensure that such data sets can be concatenated with the Job Log, if their attributes

are compatible.

Here are some examples of how you can set _EDC_COMPAT:

v setenv("_EDC_COMPAT","1",1); invokes old ungetc() behavior.

v setenv("_EDC_COMPAT","2",1); invokes old ftell() behavior.

v setenv("_EDC_COMPAT","3",1); invokes both old ungetc() behavior and old

ftell() behavior.

v setenv("_EDC_COMPAT","4",1); invokes old behavior for spool data sets created

by opening "*" in MVS or IMS batch.

_EDC_C99_NAN

Sets the binary floating-point representation of infinite value and Not a Number for

the printf family of functions as follows:

v When the value of _EDC_C99_NAN is set to YES, then the printf family of functions

use C99 compliant behavior. C99 defines the representation of infinity and Not a

Number as INF, and NAN (for E, F, G, and A conversion specifiers) or inf and

nan (for e, f, g, and a conversion specifiers). In C99 compliant behavior, the

case of the string will be the same as the case of the conversion specifier that

was used.

v When the value of _EDC_C99_NAN is not set, or set to a value other than YES, then

the representation of infinity and Not a Number is INF and NaN.

The _EDC_C99_NAN environment variable can be set with the function

setenv("_EDC_C99_NAN","YES", 1);

_EDC_ERRNO_DIAG

Indicates if additional diagnostic information should be generated, when the

perror() or strerror() functions are called to produce an error message. This

environment variable also controls how much additional information is produced.

_EDC_ERRNO_DIAG is set with the command

setenv("_EDC_ERRNO_DIAG","x,y",1);

where x is an integer and y is a list of integer errno values, for which additional

diagnostic information is desired. The list of errno values must be separated by

commas. If the y value is omitted, then additional diagnostic information is

generated for all errno values. If a non-numeric errno value is found in y, it is

treated as 0. Acceptable values for x are as follows:

Value Description

Chapter 31. Using environment variables 489

0 No additional diagnostic information is generated (This is the default if

_EDC_ERRNO_DIAG is not set).

1 The ctrace() function is called to generate additional diagnostic

information.

2 The csnap() function is called to generate additional diagnostic information.

3 The cdump() function is called to generate additional diagnostic information.

See z/OS XL C/C++ Run-Time Library Reference for details on the level of

diagnostic information provided by the above functions.

Examples:

v setenv("_EDC_ERRNO_DIAG","0",1); No additional diagnostic information is

produced.

v setenv("_EDC_ERRNO_DIAG","1",1); The ctrace() function is called for any errno

when perror() or strerror() are called.

v setenv("_EDC_ERRNO_DIAG","2,121",1); The csnap() function is called only when

errno equals 121 when perror() or strerror() are called.

v setenv("_EDC_ERRNO_DIAG","3,121,129",1); The cdump() function is called only

when errno equals either 121 or 129 when perror() or strerror() are called.

_EDC_GLOBAL_STREAMS

Used during initialization of the first C main in the environment to allow the C

standard streams stdin, stdout, and stderr to have global behavior. The

environment variable settings and standard streams using the global behavior, are

as follows:

Setting Standard streams using global behavior

0 none

1 stderr

2 stdout

3 stderr,stdout

4 stdin

5 stderr,stdin

6 stdout,stdin

7 stderr,stdout,stdin

Note: The first C main would include any Pre-Init Compatibility Interface

initialization.

You can use one of the following methods to set the environment variable

_EDC_GLOBAL_STREAMS:

v CEEBXITA assembler user exit

You can modify the sample CSECT and assemble and link with the application.

The run-time options specified in the CEEBXITA assembler user exit override all

other sources of run-time options except those that are specified as NONOVR in

the installation default run-time options. These options are honored only during

initialization of the first enclave.

v ENVAR(_EDC_GLOBAL_STREAMS=<setting>)

490 z/OS V1R8.0 XL C/C++ Programming Guide

You can call your program with the ENVAR run-time option. This overrides the

application defaults specified using CEEUOPT or the #pragma runopts directive.

v #pragma runopts(ENVAR(_EDC_GLOBAL_STREAMS=<setting>))

Use the #pragma runopts directive in your application source code.

v CEEUOPT application defaults

Modify the sample CSECT and assemble and link with the application. This

overrides corresponding overrideable CEEDOPT options.

v CEEDOPT installation defaults

This is not recommended. Do not use this method.

Notes:

1. _EDC_GLOBAL_STREAMS is not supported in AMODE 64.

2. Attempts to set this environment variable in the file specified by

the _CEE_ENVFILE or _CEE_ENVFILE_S environment variable are ignored. The

standard streams are initialized before that file is read.

3. You cannot use the CEEBINT user exit to set this environment variable. The

CEEBINT user exit gets control after the standard streams have been initialized.

_EDC_POPEN

Sets the behavior of the popen() function. When the value of _EDC_POPEN is set to

FORK, popen() uses fork() to create the child process. When the value of

_EDC_POPEN is set to SPAWN, popen() uses spawn() to create the child process. If the

value of _EDC_POPEN is not set, the default behavior is for popen() to use fork() to

create the child process.

The _EDC_POPEN environment variable can be set with the function

setenv("_EDC_POPEN","SPAWN", 1);

_EDC_PUTENV_COPY

Sets the behavior of the putenv() function. When the value of_EDC_PUTENV_COPY is

set to YES, the putenv() string is copied into storage owned by Language

Environment. When the value of _EDC_PUTENV_COPY is not set, or set to a value

other than YES, then the putenv() string is placed directly into the environment, so

altering the string will change the environment..

The _EDC_PUTENV_COPY environment variable can be set with the function

setenv("_EDC_PUTENV_COPY","YES", 1);

Notes:

1. Changes to z/OS specific environment variables beginning with _BPXK_, _CEE_

or _EDC_ may not be processed if the environment variable is updated directly

rather than by using setenv() or putenv(). Results are unpredictable if these

type of environment variables are updated directly.

2. For ASCII applications, the users string will be placed into the environment.

However, updates should only be made with setenv() or putenv(). Results are

unpredictable if the environment variable is updated directly.

3. If the user manually changes the environment, storage associated with the

original environment may never be freed.

4. The __putenv_la() function will always make a copy of the user string and

perform as though _EDC_PUTENV_COPY=YES were specified.

5. _EDC_PUTENV_COPY may be updated during the life of the application by setenv(),

putenv() or clearenv(). This will affect the behavior of any subsequent call to

Chapter 31. Using environment variables 491

|
|
|

putenv(), however it will not change the state of existing environment variables.

putenv() may be used to update _EDC_PUTENV_COPY. The behavior requested will

not take effect until the next putenv() call.

_EDC_RRDS_HIDE_KEY

Applies to VSAM RRDS files opened in record mode. When this environment

variable is set, you can call fread() with a pointer to a character string, and the

Relative Record Number is not appended to the beginning of the record.

The _EDC_RRDS_HIDE_KEY environment variable is set with the command

setenv("_EDC_RRDS_HIDE_KEY","Y",1);

By default, when you open a VSAM record in record mode, the fread() function is

called with the RRDS record structure, and the record is preceded by the Relative

Record Number.

_EDC_STOR_INCREMENT

Sets the size of increments to the internal library storage subpool acquired above

the 16M line. By default, when the storage subpool is filled, its size is incremented

by 8K. When _EDC_STOR_INCREMENT is set, its value string is translated to its decimal

integer equivalent. This integer is then the new setting of the subpool storage

increment size. The setting of this environment variable is only effective if it is done

before the first I/O in the enclave.

The _EDC_STOR_INCREMENT value must be greater than zero, and must be a multiple

of 4K. If the value is less than zero, the default setting of 8K is used. If the value is

not a multiple of 4K, then it is rounded up to the next 4K interval. If

_EDC_STOR_INCREMENT is set to an invalid value that must be modified internally to be

divisible by 4K, this modification is not reflected in the character string that appears

in the environment variable table.

Consider the case where setenv() is called as follows:

 setenv("_EDC_STOR_INCREMENT","9000",1);

Internally, the storage subpool increment value is set to 12288 (that is, 12K).

However, the subsequent call

 getenv("_EDC_STOR_INCREMENT");

returns "9000", as set by the call to setenv().

Note: _EDC_STOR_INCREMENT is not supported in AMODE 64. In AMODE 64

this environment variable is replaced by the IOHEAP64 run-time option.

_EDC_STOR_INCREMENT_B

Sets the increment size of an internal library storage subpool acquired below the

16M line. By default, when the below the line storage subpool is filled, its size is

incremented by 4K. When _EDC_STOR_INCREMENT_B is set, its value string is

translated to the decimal equivalent. These integers are then used as the new

settings of the below subpool storage increment sizes. The setting of this

environment variable is only effective if it is done before the first I/O in the enclave.

Consider the case where setenv() is called from CEEBINT as follows:

 setenv("_EDC_STOR_INCREMENT_B","1000",1);

492 z/OS V1R8.0 XL C/C++ Programming Guide

with the CEEBINT user exit linked to the application.

Internally, the storage subpool acquired from 24-bit storage will be 4096 (or 4K).

However, the subsequent call

 getenv("_EDC_STOR_INCREMENT_B");

returns "1000", as set by the setenv()call.

Note: _EDC_STOR_INCREMENT_B is not supported in AMODE 64. In AMODE

64, this environment variable is replaced by the IOHEAP64 run-time option.

_EDC_STOR_INITIAL

Sets the initial size of the internal library storage subpool acquired above the line.

The default subpool storage size is 12K. When _EDC_STORE_INITIAL is set, its value

string is translated to its decimal integer equivalent. This integer is then the new

setting of the subpool storage increment size. The setting of this environment

variable is only effective if it is done before the first I/O in the enclave.

The _EDC_STORE_INITIAL value must be greater than zero, and must be a multiple

of 4K. If the value is less than zero, the default setting of 12K is used. If the value

is not a multiple of 4K, then it is rounded up to the next 4K interval. If

_EDC_STORE_INITIAL is set to an invalid value that must be modified internally to be

divisible by 4K, this modification is not reflected in the character string that appears

in the environment variable table.

Consider the case where setenv() is called from CEEBINT as follows:

 setenv("_EDC_STORE_INITIAL","16000",1);

with the CEEBINT user exit linked to the application.

Internally, the storage subpool is initialized to 16384 (that is, 16K). However, the

subsequent call

 getenv("_EDC_STORE_INITIAL");

returns "16000" as set by the setenv() call.

Note: _EDC_STOR_INITIAL is not supported in AMODE 64. In AMODE 64, this

environment variable is replaced by the IOHEAP64 run-time option.

_EDC_STOR_INITIAL_B

Sets the initial size of an internal library storage subpool acquired below the 16M

line. The default below the line subpool storage size is 4K When

_EDC_STOR_INITIAL_B is set, its value string is translated to the decimal integer

equivalent. This integer is then used as the new setting of the above the line

subpool storage initial size. The setting of this environment variable is only effective

if it is done before the first I/O in the enclave.

Consider the case where setenv() is called from CEEBINT as follows:

 setenv("_EDC_STOR_INITIAL_B","1000",1);

with the CEEBINT user exit linked to the application.

Internally, the storage subpool acquired from 24-bit storage will be set to 4096 (that

is, 4K). However, the subsequent call

Chapter 31. Using environment variables 493

getenv("_EDC_STOR_INITIAL_B");

returns "1000" as set by the setenv() call.

Note: _EDC_STOR_INITIAL_B is not supported in AMODE 64. In AMODE 64, this

environment variable is replaced by the IOHEAP64 run-time option.

_EDC_ZERO_RECLEN

Allows processing of zero-length records in an MVS Variable file opened in either

record or text mode.

Note: This environment variable has no effect on streams based on HFS files. You

can always read and write zero-byte records in HFS files.

_EDC_ZERO_RECLEN is set with the command:

setenv("_EDC_ZERO_RECLEN","Y",1);

For details on the behavior of this environment variable, refer to Chapter 10,

“Performing OS I/O operations,” on page 99.

Example

The following example sets the environment variable _EDC_ANSI_OPEN_DEFAULT. A

child program is then initiated by a system call. This example illustrates that

environment variables are propagated forward, but not backward.

494 z/OS V1R8.0 XL C/C++ Programming Guide

CCNGEV1

/* this example shows how environment variables are propagated */

/* part 1 of 2-other file is CCNGEV2 */

#include <stdio.h>

#include <stdlib.h>

int main(void) {

 char *x;

 /* set the environment variable _EDC_ANSI_OPEN_DEFAULT */

 setenv("_EDC_ANSI_OPEN_DEFAULT","Y",1);

 /* set x to the current value of _EDC_ANSI_OPEN_DEFAULT */

 x = getenv("_EDC_ANSI_OPEN_DEFAULT");

 printf("ccngev1 _EDC_ANSI_OPEN_DEFAULT = %s\n",

 (x != NULL) ? x : "undefined");

 /* call the child program */

 system("ccngev2");

 /* set x to the current value of _EDC_ANSI_OPEN_DEFAULT */

 x = getenv("_EDC_ANSI_OPEN_DEFAULT");

 printf("ccngev1 _EDC_ANSI_OPEN_DEFAULT = %s\n",

 (x != NULL) ? x : "undefined");

 return(0);

}

Figure 136. Environment variables example-Part 1

Chapter 31. Using environment variables 495

CCNGEV2

 The preceding program produces the following output:

cbcgev1 _EDC_ANSI_OPEN_DEFAULT = Y

ccngev2 _EDC_ANSI_OPEN_DEFAULT = Y

ccngev2 _EDC_ANSI_OPEN_DEFAULT = undefined

ccngev1 _EDC_ANSI_OPEN_DEFAULT = Y

/* this example shows how environment variables are propagated */

/* part 2 of 2-other file is CCNGEV1 */

#include <stdio.h>

#include <stdlib.h>

int main(void) {

 char *x;

 /* set x to the current value of _EDC_ANSI_OPEN_DEFAULT */

 x = getenv("_EDC_ANSI_OPEN_DEFAULT");

 printf("ccngev2 _EDC_ANSI_OPEN_DEFAULT = %s\n",

 (x != NULL) ? x : "undefined");

 /* clear the Environment Variables Table */

 clearenv();

 /* set x to the current value of _EDC_ANSI_OPEN_DEFAULT */

 x = getenv("_EDC_ANSI_OPEN_DEFAULT");

 printf("ccngev2 _EDC_ANSI_OPEN_DEFAULT = %s\n",

 (x != NULL) ? x : "undefined");

 return(0);

}

Figure 137. Environment variables example-Part 2

496 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 32. Using hardware built-in functions

This section assumes the user has knowledge of assembler opcodes and

assembler programming.

A built-in function is inline code that is generated in place of an actual function call.

The hardware built-in functions send requests to the compiler to use instructions

that are not typically generated by the compiler. Extra instructions are generated to

load the parameters for the operation and to store the result. These functions

require that the LANGLVL not be set to ANSI. For more information about a given

instruction, refer to the z/architecture Principles of Operation.

Notes:

1. Using a built-in hardware instruction does not guarantee that a hardware

instruction will be generated. The compiler can decide that it is not necessary to

generate the code.

2. In some cases, the instruction will be generated and then executed. This occurs

where literals are not used on instructions that need to put something in the

mask or displacement field.

General instructions

General hardware built-in functions are intended to provide access to general

purpose instructions that are not normally generated by the compiler. For more

information on these instructions please refer to chapter 7 of the z/architecture

Principles of Operation.

If you want to use any of the instructions listed in Table 77 in your program, you

must include the builtins.h header file (unless the instructions are otherwise

specified) and compile the program with the LANGLVL(EXTENDED) option or the

LANGLVL(LIBEXT) option.

 Table 77. General-instruction prototypes

PROTOTYPE and Notes Sample Pseudo Assembly MIN ARCH

int __cs1(void* Op1, void* Op2, void* Op3)

The user must include stdlib.h to use this built-in function. It is

similar to cs() but does not explicitly set the type to be swapped

in the prototype.

CS Op1,Op3,Op2D(Op2B) ARCH(0)

int __csg(void* Op1, void* Op2, void* Op3) CSG Op1,Op3,Op2D(Op2B) ARCH(5) with

LP64

int __cds1(void* Op1, void* Op2, void* Op3)

The user must include stdlib.h to use this built-in function. It is

similar to cds() but does not explicitly set the type to be

swapped in the prototype.

CDS Op1,Op3,Op2D(Op2B) ARCH(0)

int __cdsg(void* Op1, void* Op2, void* Op3) CDSG Op1,Op3,Op2D(Op2B) ARCH(5) with

LP64

int __clcl(void* Op1, void* Op2, unsigned int* Op3,

unsigned int* Op4, unsigned char pad)

The return value is the condition code.

L R2,Op1

L R4,Op2

L R3,*Op3

L R5,*Op4

O R5,(pad<<24)

CLCL R2,R4

ARCH(0)

© Copyright IBM Corp. 1996, 2006 497

Table 77. General-instruction prototypes (continued)

PROTOTYPE and Notes Sample Pseudo Assembly MIN ARCH

unsigned short __lrvh(unsigned short *Op)

The return value is the result.

LRVH R1,OpD(OpX,OpR) ARCH(4)

unsigned int __lrv(unsigned int *Op)

The return value is the result.

LRV R1,OpD(OpX,OpR) ARCH(4)

unsigned long __lrvg(unsigned long *Op)

The return value is the result.

LRVG R1,OpD(OpX,OpR) ARCH(5)

with LP64

void __strvh(unsigned short Op1,unsigned short *Op2) STRVH R1,Op2D(Op2X,Op2R) ARCH(4)

void __strv(unsigned int Op1, unsigned int *Op2) STRV R1,Op2D(Op2X,Op2R) ARCH(4)

void __strvg(unsigned long Op1, unsigned long *Op2) STRVG R1,Op2D(Op2X,Op2R) ARCH(5)

with LP64

int __stck(unsigned long long *Op1)

The return value is the condition code.

STCK Op1D(Op1B) ARCH(0)

int __stcke(void *Op1)

The return value is the condition code.

STCKE Op1D(Op1B) ARCH(4)

int __ed (unsigned char *OP1, unsigned char *OP2, unsigned

char length)

The return value is the condition code.

ED Op1D(len,Op1B),Op2D(Op2B) ARCH(0)

int __edmk (unsigned char *OP1, unsigned char *OP2,

unsigned char length, unsigned char **R1)

The return value is the condition code.

EDMK Op1D(len,Op1B),Op2D(Op2B) ARCH(0)

int __nc (unsigned char *OP1, unsigned char *OP2, unsigned

char length)

The return value is the condition code.

NC Op1D(len,Op1B),Op2D(Op2B) ARCH(0)

int __oc (unsigned char *OP1, unsigned char *OP2, unsigned

char length)

The return value is the condition code.

OC Op1D(len,Op1B),Op2D(Op2B) ARCH(0)

int __xc (unsigned char *OP1, unsigned char *OP2, unsigned

char length)

The return value is the condition code.

XC Op1D(len,Op1B),Op2D(Op2B) ARCH(0)

void __pack (unsigned char *OP1, unsigned char len1,

unsigned char *OP2, unsigned char len2)

PACK

Op1D(len1,Op1B),Op2D(len2,Op2B)

ARCH(0)

void __unpk (unsigned char *OP1, unsigned char len1,

unsigned char *OP2, unsigned char len2)

UNPK

Op1D(len1,Op1B),Op2D(len2,Op2B)

ARCH(0)

void __tr (unsigned char *Op1, const unsigned char *Op2,

unsigned char len)

TR Op1D(len,Op1B),Op2D(Op2B) ARCH(0)

int __trt (unsigned char *OP1, const unsigned char *OP2,

unsigned char len, unsigned char *R2, unsigned char **R1)

The return value is the condition code.

TRT Op1D(len,Op1B),Op2D(Op2B) ARCH(0)

498 z/OS V1R8.0 XL C/C++ Programming Guide

Floating-point support instructions

These functions are intended to help convert between the two floating point formats.

For more information on these instructions please refer to chapter 9 of

z/architecture Principles of Operation.

If you want to use any of the following instructions, your program must include the

builtins.h header file and be compiled with LANGLVL(EXTENDED) or

LANGLVL(LIBEXT).

 Table 78. Floating-point instruction prototypes

PROTOTYPE and Notes Sample Pseudo Assembly MIN ARCH

int __thder(double *Op1, float Op2)

The return value is the condition code.

THDER F1,Op2

LDR *Op1,F1

ARCH(3)

int __thdr(double *Op1, double Op2)

The return value is the condition code.

THDR F1,Op2

LDR *Op1,F1

ARCH(3)

int __tbdr(double *Op1, int M3, double Op2)

The return value is the condition code.

TBDR F1,M3,Op2

LDR *Op1,F1

ARCH(3)

int __tbedr(double *Op1, int M3, float Op2)

The return value is the condition code.

TBEDR F1,M3,Op2

LDR *Op1,F1

ARCH(3)

Hexadecimal floating-point instructions

These functions are intended to generate hexadecimal floating-point instructions.

These instructions will only be generated if the FLOAT(HEX) option is in effect. For

more information about the instructions themselves please refer to chapter 18 of

z/architecture Principles of Operation.

If you want to use any of the following functions, your program must include

builtins.h and be compiled with either the LANGLVL(EXTENDED) option or the

LANGLVL(LIBEXT) and FLOAT(HEX) options.

Note: Some of these instructions also require that the ARCH option is set to a

minimum level.

 Table 79. Hexadecimal floating-point instruction prototypes

PROTOTYPE and Notes Sample Pseudo Assembly MIN ARCH

int __lner(float *Op1, float Op2)

The return value is the condition code.

LER F1,*Op1

LNER F1,Op2

LER *Op1,F1

ARCH(0)

int __lndr(double *Op1, double Op2)

The return value is the condition code.

LDR F1,*Op1

LNDR F1,Op2

LDR *Op1,F1

ARCH(0)

int __lnxr(long double *Op1, long double Op2)

The return value is the condition code.

LDR F1,*Op1

LNXR F1,Op2

LDR *Op1,F1

ARCH(3)

int __lper(float *Op1, float Op2)

The return value is the condition code.

LER F1,*Op1

LPER F1,Op2

LER *Op1,F1

ARCH(0)

Chapter 32. Using hardware built-in functions 499

Table 79. Hexadecimal floating-point instruction prototypes (continued)

PROTOTYPE and Notes Sample Pseudo Assembly MIN ARCH

int __lpdr(double *Op1, double Op2)

The return value is the condition code.

LDR F1,*Op1

LPDR F1,Op2

LDR *Op1,F1

ARCH(0)

int __lpxr(long double *Op1, long double Op2)

The return value is the condition code.

LDR F1,*Op1

LPXR F1,Op2

LDR *Op1,F1

ARCH(3)

float __sqer(float Op2)

The return value is the square root.

SQER F1,Op2 ARCH(0) or

above

double __sqdr(double Op2)

The return value is the square root.

SQDR F1,Op2 ARCH(0) or

above

long double __sqxr(long double Op2)

The return value is the square root.

SQXR F1,Op2 ARCH(3)

int __cfer(int *Op1, int M3, float Op2)

The return value is the condition code.

CFER R2,M3,Op2

LR *Op3,R2

ARCH(3)

int __cfdr(int *Op1, int M3, double Op2)

The return value is the condition code.

CFDR R2,M3,Op2

LR *Op3,R2

ARCH(3)

int __cfxr(int *Op1, int M3, long double Op2)

The return value is the condition code.

CFXR R2,M3,Op2

LR *Op3,R2

ARCH(3)

float __fier(float Op2)

The return value is the result.

FIER F1,Op2 ARCH(3)

double __fidr(double Op2)

The return value is the result.

FIDR F1,Op2 ARCH(3)

long double __fixr(long double Op2)

The return value is the result.

FIXR F1,Op2 ARCH(3)

Binary floating-Point instructions

These functions are intended to generate binary floating-point instructions. These

instructions will only be generated if the FLOAT(IEEE) option is in effect. For more

information about the instructions themselves please refer to chapter 19 of

z/architecture Principles of Operation.

If you want to use any of the following functions, your program must include

builtins.h and be compiled with either the LANGLVL(EXTENDED) option or the

LANGLVL(LIBEXT) and FLOAT(IEEE) options.

 Table 80. Binary floating-point instruction prototypes

PROTOTYPE and Notes Sample Pseudo Assembly MIN ARCH

int __lnebr(float *Op1, float Op2)

The return value is the condition code.

LER F1,*Op1

LNEBR F1,Op2

LER *Op1,F1

ARCH(3)

500 z/OS V1R8.0 XL C/C++ Programming Guide

Table 80. Binary floating-point instruction prototypes (continued)

PROTOTYPE and Notes Sample Pseudo Assembly MIN ARCH

int __lndbr(double *Op1, double Op2)

The return value is the condition code.

LDR F1,*Op1

LNDBR F1,Op2

LDR *Op1,F1

ARCH(3)

int __lnxbr(long double *Op1, long double Op2)

The return value is the condition code.

LDR F1,*Op1

LNXBR F1,Op2

LDR *Op1,F1

ARCH(3)

int __lpebr(float *Op1, float Op2)

The return value is the condition code.

LER F1,*Op1

LPEBR F1,Op2

LER *Op1,F1

ARCH(3)

int __lpdbr(double *Op1, double Op2)

The return value is the condition code.

LDR F1,*Op1

LPDBR F1,Op2

LDR *Op1,F1

ARCH(3)

int __lpxbr(long double *Op1, long double Op2)

The return value is the condition code.

LDR F1,*Op1

LPXBR F1,Op2

LDR *Op1,F1

ARCH(3)

float __sqebr(float Op2)

The return value is the square root.

SQEBR F1,Op2 ARCH(3)

double __sqdbr(double Op2)

The return value is the square root.

SQDBR F1,Op2 ARCH(3)

long double __sqxbr(long double Op2)

The return value is the square root.

SQXBR F1,Op2 ARCH(3)

int __cfebr(int *Op1, int M3, float Op2)

The return value is the condition code.

CFEBR R2,M3,Op2

LR *Op3,R2

ARCH(3)

int __cfdbr(int *Op1, int M3, double Op2)

The return value is the condition code.

CFDBR R2,M3,Op2

LR *Op3,R2

ARCH(3)

int __cfxbr(int *Op1, int M3, long double Op2)

The return value is the condition code.

CFXBR R2,M3,Op2

LR *Op3,R2

ARCH(3)

float __fiebr(int M3, float Op2)

The return value is the result.

FIEBR F1,M3,Op2 ARCH(3)

double __fidbr(int M3, double Op2)

The return value is the result.

FIDBR F1,M3,Op2 ARCH(3)

long double __fixbr(int M3, long double Op2)

The return value is the result.

FIXBR F1,M3,Op2 ARCH(3)

int __diebr(float *rem, float *quotient,

 float Op3, float Op4, int M4)

The return value is the condition code.

LER F1,Op3

DIEBR F1,F3,Op4,M4

LER *rem,F1

LER *quotient,F3

ARCH(3)

int __didbr(double *rem, double *quotient,

 double Op3, double Op4 int M4)

The return value is the condition code.

LDR F1,Op3

DIDBR F1,F3,Op4,M4

LDR *rem,F1

LDR *quotient,F3

ARCH(3)

int __efpc(void)

The return value is the fpc.

EFPC R1 ARCH(3)

Chapter 32. Using hardware built-in functions 501

Table 80. Binary floating-point instruction prototypes (continued)

PROTOTYPE and Notes Sample Pseudo Assembly MIN ARCH

float __maebr(float Op1, float Op2, float Op3)

The return value is the result.

MAEBR Op1,Op3,Op2 ARCH(3)

double __madbr(double Op1, double Op2,

 double Op3)

The return value is the result.

MADBR Op1,Op3,Op2 ARCH(3)

float __msebr(float Op1, float Op2, float Op3)

The return value is the result.

MSEBR Op1,Op3,Op2 ARCH(3)

double __msdbr(double Op1, double Op2,

 double Op3)

The return value is the condition code.

MSDBR Op1,Op3,Op2 ARCH(3)

void __sfpc(int Op1)

Only a constant literal can be passed to this built-in function.

SFPC Op1 ARCH(3)

void __srnm(int Op1) SRNM Op1 ARCH(3)

int __tceb(float Op1, int Op2)

The return value is the condition code.

TCEB Op1,Op2(0,0) ARCH(3)

int __tcdb(double Op1, int Op2)

The return value is the condition code.

TCDB Op1,Op2(0,0) ARCH(3)

int __tcxb(long double Op1, int Op2)

The return value is the condition code.

TCXB Op1,Op2(0,0) ARCH(3)

502 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 33. ANSI C/C++ 98 applications and C99

The z/OS XL C Compiler and z/OS Language Environment C run-time library are

designed to support the Programming languages - C (ISO/IEC 9899:1999) standard

and its amendments. This standard is commonly referred to as C99. The z/OS XL

C++ compiler is also designed to support the latest ISO C++ 2003 (Programming

languages - C++ (ISO/IEC 14882:2003)) standard and the latest technical

corrigendum.

The compiler language additions for C99 do not apply to C++ applications because

the C++ standard does not mandate support for C99.

Obtaining C99 behavior with XL C

You obtain compiler behavior defined by the C99 language standard when you do

either of the following:

v Use the c89 command with LANGLVL(STDC99) option.

v Use the c99 command (supported by the xlc utility) with the default language

level.

When you want to obtain C99 extended support, do either of the following:

v Use the c89 utility with the LANGLVL(EXTC99) option.

v Use the c99 command with the LANGLVL(EXTENDED) option.

Using C99 functions in XL C++ applications

IBM has made some C99 functions accessible to the XL C++ compiler. These C99

functions are enabled by the individual LANGLVL or KEYWORD suboptions.

You can also obtain C99 behavior with the XL C++ compiler by using the following

KEYWORD and LANGLVL suboptions:

v KEYWORD(RESTRICT) or LANGLVL(EXTENDED), which enable the restrict

qualifier for improved aliasing information.

v LANGLVL(UCS), which enables support for valid universal character name

ranges.

v LANGLVL(C99__FUNC__) or LANGLVL(EXTENDED), which enable the __func__

identifier for debugging assistance.

C++ applications can also access C99 run-time library functions by using feature

test macros. See “Feature test macros that control C99 interfaces in XL C++

applications.”

Feature test macros that control C99 interfaces in XL C++ applications

The following C99 headers are not available to C++ applications:

v <tgmath.h>

v <complex.h> — If <complex.h> is included, the USL Complex Class Library

version of this header file will be used.

v <stdbool.h>

To expose C99 interfaces, C++ applications can define the appropriate feature test

macros before including the identified header:

© Copyright IBM Corp. 1996, 2006 503

|

_ISOC99_SOURCE

Used to control exposure to new C99 interfaces that do not require a

C99-compliant compiler. The application programmer defines this feature

test macro to inform the compile time library that new C99 interfaces are

desired. This feature test macro must be defined prior to inclusion of the

first header in order to expose the new C99 interfaces that do not require a

C99-compliant compiler. This feature test macro requires a minimum of the

z/OS V1R2 C/C++ compiler and TARGET(zOSV1R5) in order to expose the

new C99 interfaces.

__STDC_LIMIT_MACROS

Required by C++ applications wishing to expose limits of fixed-width integer

types and limits of other integer types as documented in <stdint.h>. The

_ISOC99_SOURCE feature test macro must be defined before this feature

test macro.

__STDC_CONSTANT_MACROS

Required by C++ applications wishing to expose macros for integer

constants as documented in <stdint.h>. The _ISOC99_SOURCE feature

test macro must be defined before this feature test macro.

__STDC_FORMAT_MACROS

Required by C++ applications wishing to expose macros for format

specifiers as documented in <inttypes.h>. The _ISOC99_SOURCE feature

test macro must be defined before this feature test macro.

Using C99 functions in C++ applications when ambiguous definitions

exist

The C++ standard namespace does not include any C99 functions. Therefore, when

ambiguous definitions exist, C++ applications must access these functions through

the global namespace. The syntax of the global namespace is ::function().

XL C++ applications that need C99 interfaces must use the required feature macros

or, when ambiguous definitions exist, global namespace syntax (when ambiguous

definitions exist).

Example of code that requires the global namespace syntax

In the following example, std:: is not allowed for C99 interfaces.

#include <cstdio>

namespace FRED {

 int snprintf(char *b, size_t x, const char *f, ...) { return(x); }

};

using namespace FRED;

main() {

 char buf[512];

 int rc;

/*rc = snprintf(buf,32,"hello\n"); AMBIGUOUS */

 rc = ::snprintf(buf,32,"hello\n");

 rc = FRED::snprintf(buf,32,"hello\n");

/*rc = std::snprintf(buf,32,"hello\n"); NOT ALLOWED */

}

504 z/OS V1R8.0 XL C/C++ Programming Guide

Part 5. Performance optimization

This part describes guidelines for improving the performance of your XL C/C++

application. Performance improvement can be achieved through coding, compiling,

and the run-time environment. The following chapters discuss guidelines for these

three areas:

v Chapter 34, “Improving program performance,” on page 507

v Chapter 35, “Using built-in functions to improve performance,” on page 525

v Chapter 36, “I/O Performance considerations,” on page 527

v Chapter 37, “Improving performance with compiler options,” on page 531

v Chapter 38, “Optimizing the system and Language Environment,” on page 549

v Chapter 39, “Balancing compilation time and application performance,” on page

553

You may also find useful information in the IBM Redbook Tuning Large C/C++

Applications on z/OS UNIX System Services. This Redbook is available on the web

at:

 http://www.redbooks.ibm.com/abstracts/sg245606.html.

© Copyright IBM Corp. 1996, 2006 505

|

506 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 34. Improving program performance

This chapter discusses coding guidelines that improve the performance of a C or

C++ application. While they are most effective when creating new code, these

guidelines can also provide a gradual performance improvement when they are

consistently used when porting or fixing areas of the code. The guidelines cover the

following topics:

v “Writing code for performance”

v “Using C++ constructs in performance-critical code”

v “ANSI aliasing rules” on page 509

v “Using ANSI aliasing rules” on page 512

v “Using variables” on page 513

v “Passing function arguments” on page 514

v “Coding expressions” on page 515

v “Coding conversions” on page 515

v “Arithmetical considerations” on page 516

v “Using loops and control constructs” on page 516

v “Choosing a data type” on page 517

v “Using built-in library functions and macros” on page 518

v “Using library extensions” on page 520

v “Using pragmas” on page 521

Writing code for performance

When you write code, it is a good practice to write it so that you can understand it

when you simply read it on a printed page or on a screen, without having to refer to

anything else. If the code is simple and concise, both the programmer and the

compiler can understand it easily. Code that is easy for the compiler to understand

is also easy for it to optimize. If you follow this practice you might not only create

code that performs well on execution, you might also create code that compiles

more quickly.

If you follow the guidelines in this chapter, you will create code that performs well

on execution and can be compiled efficiently.

Using C++ constructs in performance-critical code

Note: The discussion in this section applies to high-level language constructs that

might seriously degrade the performance of C++ programs. All other coding

discussions in this chapter apply to both C and C++ programs.

Be aware that in C++, more than in C, certain coding constructs can lead to n-to-1,

m-to-1 or even z-to-1 code expansion. You can create well-performing code with

these constructs, but you must use them carefully and appropriately, especially

when you are writing critical-path or high-frequency code.

When writing performance-critical C++ programs, ensure that you understand why

problems might occur and what you can do about them if you use any of the

following high-level language constructs:

© Copyright IBM Corp. 1996, 2006 507

Virtual

The virtual construct is an important part of object-oriented coding and

can be very useful in removing the if and switch logic from an application.

Programmers often use virtual and neglect to remove the switch logic.

 Note the following:

v The use of a virtual construct (like the use of a pointer and unlike the

use of if statements) prevents the compiler from knowing how that

construct is defined, which would provide the compiler with an

optimization opportunity. In other words, when you use a virtual

construct instead of if or switch statements, you limit optimization

opportunities.

v In a non-XPLINK module, because of function overhead, virtual

functions are costlier to execute than straight-line code with if or switch

statements.

Exception handling

 When exception handling is available (that is, when you are using the EXH

compiler option), opportunities for both normal optimizations and for inlining

are limited. This is because the compiler must generate extra code to keep

track of execution events and to ensure that all required objects are caught

by the correct routines.

When you use the C++ try and catch blocks, the compiler creates

obstacles to optimization. The compiler cannot pull common code out of a

try block because it might trigger an exception that would need to be

caught. Similarly, code cannot be pulled out of a catch block because:

v The code in a catch block is triggered far down the call chain, after the

exception has occurred

v After a catch has occurred, the compiler must ensure that all requested

tasks have been executed

You might improve compiler performance by:

v Removing dependencies on C++ exception handling from your code

v Compiling with the NOEXH compiler option

Dynamic casts/Run-time type identification (RTTI)

A dynamic cast (also known as RTTI) is a coding construct that delays, until

run time, the determination of which code is to be executed. This limits the

potential for optimization. In addition, the process of actually doing the

dynamic cast involves multiple function calls and large amounts of code.

Note: We strongly recommend that RTTI/dynamic casts not be used in

performance-critical code. You can often avoid the use of RTTI

through careful application design.

iostream

As discussed in Chapter 4, “Using the Standard C++ Library I/O Stream

Classes,” on page 39 and in Chapter 9, “Using C and C++ standard

streams and redirection,” on page 79, iostream is often built upon the

standard C I/O library (fprintf, fopen, fclose, fread, fwrite). For I/O

performance-critical portions of your application, it is often faster to use the

C I/O functions explicitly instead of iostream.

 Note: You must be careful if you are mixing the C++ stream classes with

the C library. For more information, see Chapter 4, “Using the

Standard C++ Library I/O Stream Classes,” on page 39.

508 z/OS V1R8.0 XL C/C++ Programming Guide

Standard Template Library and other class libraries

These libraries are very convenient and are often well coded, but you must

remember that each use of a class can involve one or more function calls.

If you keep this in mind when coding, you can design applications that use

these libraries efficiently. For example, you would not initialize all local string

variables to the NULL string and then redefine the string on first reference.

new/delete

 New C++ applications on z/OS often depend heavily on new and delete

operators because they are commonly one of the first things taught in a

C++ introductory course, and many courses never explicitly teach that

classes can also be automatic (default for local) or global variables.

 You should be aware that the new and delete operators are costlier to use

than variables.

 Before using new, you should carefully consider:

v The scope/usage pattern of the variable

v Whether an automatic (local) or global variable is more appropriate

Note: You can ensure that all memory and storage requests are properly

optimized by following the instructions given in Chapter 37,

“Improving performance with compiler options,” on page 531.

ANSI aliasing rules

You must indicate whether your source code conforms to the ANSI aliasing rules

when you use the IPA or the OPT(2) (or above) z/OS XL C/C++ compiler options. If

the code does not conform to the rules, it must be compiled with NOANSIALIAS.

Incorrect use of these options might generate bad code.

Note: The compiler expects that the source code conforms to the ANSI aliasing

rules when the ANSIALIAS option is used. This option is on by default.

The ANSI aliasing rules are part of the ISO C Standard, and state that a pointer can

be dereferenced only to an object of the same type or compatible type. Because

the z/OS XL C/C++ compiler follows these rules during optimization, the developer

must create code that conforms to the rules.

Note: The common coding practice of casting a pointer to an incompatible type

and then dereferencing it violates ANSI aliasing rules.
When you are using ANSI aliasing, you can cast an integer pointer only to the types

described in the following table:

 Table 81. Examples of acceptable alias types

Type Reason for acceptance

int This is the declared type of the object.

const int

or

volatile int

These types are the qualified version of the declared type of

the object.

unsigned int This is a signed or unsigned type corresponding to the

declared type of the object.

Chapter 34. Improving program performance 509

Table 81. Examples of acceptable alias types (continued)

Type Reason for acceptance

const unsigned int

or

volatile unsigned int

These types are the signed or unsigned types

corresponding to a qualified version of the declared type of

the object.

struct foo {

unsigned int bar;

};

This is an aggregate or union type that includes one of the

aforementioned types among its members. This can include,

recursively, a member of a subaggregator-contained union.

char or unsigned char The char pointers are an exception to the rules, as any

pointer can be used to point to a char variable.

Conversely, your code breaks the aliasing rules if it casts a float to an int and

then assigns it to the int pointer.

Note: For more information, see type-based aliasing in z/OS XL C/C++ Language

Reference and ANSIALIAS in z/OS XL C/C++ User’s Guide.

You can cast and mix data types as long as you are careful how you intermix

values and their pointers in your code. The compiler follows the ANSI aliasing rules

to determine:

v Which variables must be stored into memory before you read a value through a

pointer

v Which variables must be updated from memory after you have updated a value

through a pointer

When you use the NOANSIALIAS option, the compiler generates code to

accommodate worst-case assumptions (for example, that any variable could have

been updated by the store through a pointer). This means that every variable (local

and global) must be stored in memory to ensure that any value can be read through

a pointer. This severely limits the potential for optimization.

Example:

int ei1;

float ef1;

int *eip1;

float *efp1;

float exmp1 ()

{

 ef1 = 3.0;

 ei1=5;

 *efp1 = ef1;

 *eip1 = ei1;

 return *efp1;

}

The following table shows the difference between code generated with, and without,

ANSI aliasing.

510 z/OS V1R8.0 XL C/C++ Programming Guide

Table 82. Comparison of code generated with the ANSIALIAS and NOANSIALIAS options

ANSIALIAS RENT and OPT(2) NOANSIALIAS RENT and OPT(2)

* {

* ef1 = 3.0;

 L r4,=A(@CONSTANT_AREA)(,r3,94)

 L r2,=Q(EF1)(,r3,98)

 LD f0,+CONSTANT_AREA(,r4,0)

 L r14,_CEECAA_(,r12,500)

 L r15,=Q(EFP1)(,r3,102)

 L r4,=Q(EIP1)(,r3,106)

 L r1,#retvalptr_1(,r1,0)

 STE f0,ef1(r2,r14,0)

 L r15,efp1(r15,r14,0)

* {

* ef1 = 3.0;

 L r2,=A(@CONSTANT_AREA)(,r3,110)

 L r14,_CEECAA_(,r12,500)

 L r4,=Q(EF1)(,r3,114)

 L r15,=Q(EFP1)(,r3,118)

 LD f0,+CONSTANT_AREA(,r2,0)

* ei1=5;

 L r2,=Q(EI1)(,r3,110)

 LA r0,

 L r4,eip1(r4,r14,0)

* ei1=5;

 L r2,=Q(EI1)(,r3,122)

 STE f0,ef1(r4,r14,0)

* *efp1 = ef1;

 STE f0,(*)float(,r15,0)

 ST r0,ei1(r2,r14,0)

* *efp1 = ef1;

 L r4,efp1(r15,r14,0)

* *eip1 = ei1;

 ST r0,(*)int(,r4,0)

* *eip1 = ei1;

 L r5,=Q(EIP1)(,r3,126)

 LA r0,5

 ST r0,ei1(r2,r14,0)

 STE f0,(*)float(,r4,0)

 L r4,eip1(r5,r14,0)

 L r0,ei1(r2,r14,0)

* return *efp1;

 STD f0,#retval_1(,r1,0)

* }

* return *efp1;

 L r1,#retvalptr_1(,r1,0)

 ST r0,(*)int(,r4,0)

 L r14,efp1(r15,r14,0)

 SDR f0,f0

 LE f0,(*)float(,r14,0)

 STD f0,#retval_1(,r1,0)

* }

Notes on the example:

v In the ANSIALIAS case:

– f0, loaded with 3.0, is used whenever referring to ef1 or efp1

– r0 is loaded with the value of 5, which is used for ei and eip

v In the NOANSIALIAS case, the loads and stores are always done. This removes

opportunities for optimizations. For example, if a + b + c were used instead of

3.0 and ef1, saving through the pointer might have updated a, b, or c, and

therefore you cannot common at all, and many more reloads.

v ANSIALIAS would not help if all the floats were also integers

v There is a group of problems that occurs when the ANSIALIAS option is used to

compile code that does not conform to ANSI-aliasing rules (for example, when it

casts a variable to a non-ANSI-aliasing type and then assigns the address of the

value to a pointer for later use). If the ANSIALIAS option is in effect (it is the

default) when a value is used through a pointer, the compiler might not reload the

pointer value when the original value is updated, and the value might be stale

when it is read.

Chapter 34. Improving program performance 511

Using ANSI aliasing rules

Your programs are likely to perform better if you follow these guidelines:

v Use ANSI aliasing whenever possible.

v Declare constant variables with const. This is particularly helpful when using the

C++ compiler because if something is qualified as const, the compiler will not be

forced to perform unnecessary reloads to see if the value has changed. This can

generate significantly faster code.

Example:

ggPoint3 operator*(const ggHAffineMatrix3 &m

, const ggPoint3 &p)

 {

 return ggPoint3(

 m.e[0][0] * p.x() + m.e[0][1] * p.y() + m.e[0][2] * p.z() + m.e[0][3],

 m.e[1][0] * p.x() + m.e[1][1] * p.y() + m.e[1][2] * p.z() + m.e[1][3],

 m.e[2][0] * p.x() + m.e[2][1] * p.y() + m.e[2][2] * p.z() + m.e[2][3]

);

}

v Whenever their values cannot change, qualify pointers and their targets as

constants, ensuring that you mark the appropriate part as const.

– If only the pointer is constant, you can use a statement that is similar to the

following:

int * const i = p /* a constant pointer to an integer that may vary */

– If only the target is constant, use a statement similar to either of the following:

int const * i = p /* a variable pointer to a constant integer */

const int * i = p /* a variable pointer to a constant integer */

– If both the target integer and the pointer are constants, use a statement

similar to either of the following:

const int * const i = &p; /* a constant pointer to a constant integer */

int const * const i = &p; /* a constant pointer to a constant integer */

v Use the ROCONST compiler option. The ROCONST option works with both C

and C++. This option causes the compiler to treat variables that are defined as

const as if they are read-only. In some cases, these variables will be stored in

read-only memory. For more information, see “ROCONST” on page 535.

v For global variables initialized to large read-only arrays or strings: Use a

#pragma variable to ensure that they are implemented as read-only csects. This

prevents them from being initialized at load time.

Example: For large initialized arrays

pragma variable (arrayname, norent)

v In a read-only situation: If you are using the value through a pointer, use a

temporary automatic variable. The difference in the source code is significant, as

shown in the following table:

 Table 83. Example of using temporaries to remove aliasing effects

ANSIALIAS RENT and OPT(2) NOANSIALIAS RENT and OPT(2)

...

 while (hot_loop < hot_loop_end) {

 hot_loop = hot_loop + foo->increment;

 fun[x] = hot_loop*foo->expansion;

 }

}

{

...

increment = foo->increment;

expansion = foo->expansion;

 while (hot_loop < hot_loop_end) {

 hot_loop = hot_loop + increment;

 fun[x] = hot_loop*expansion;

}

512 z/OS V1R8.0 XL C/C++ Programming Guide

Using variables

When choosing variables and data structures for your application, keep the

following guidelines in mind:

v Use local variables, preferably automatic variables, as often as possible.

The compiler can accurately analyze the use of local variables, while it has to

make several worst-case assumptions about global variables, which hinders

optimizations. For example, if you code a function that uses external variables,

and calls several external functions, the compiler assumes that every call to an

external function could change the value of every external variable.

v If none of the function calls affect the global variables being used and you have

to read them frequently with function calls interspersed, copy the global variables

to local variables and use these local variables to help the compiler perform

optimizations that otherwise would not be done.

Note: Using IPA can improve the performance of code written using global

variables, because it coalesces global variables. IPA puts global variables

into one or more structures and accesses them using offsets from the

beginning of the structures. For more information, see “Using the IPA

option” on page 540.

v If you need to share variables only between functions within the same

compilation unit, use static variables instead of external variables. Because static

variables are visible only in the current source file, they might not have to be

reloaded if a call is made to a function in another source file.

Organize your source code so references to a given set of externally defined

variables occur only in one source file, and then use static variables instead of

external variables.

In a file with several related functions and static variables, the compiler can

group the variables and functions together to improve locality of reference.

Use a local static variable instead of an external variable or a variable defined

outside the scope of a function.

The #pragma isolated_call preprocessor directive can improve the run-time

performance of optimized code by allowing the compiler to make fewer

assumptions about the references to external and static variables. For more

information, see isolated_call in z/OS XL C/C++ Language Reference.

Coalescing global variables causes variables that are frequently used together to

be mapped close together in memory. This strategy improves performance in the

same way that changing external variables to static variables does.

v Group external data into structures (all elements of an external structure use the

same base address) or arrays wherever it makes sense to do so.

Before it can access an external variable, the compiler has to make an extra

memory access to obtain the variable’s address. The compiler removes

extraneous address loads, but this means that the compiler has to use a register

to keep the address.

Using many external variables simultaneously requires many registers, thereby

causing spilling of registers to storage. If you group variables into structures then

it can use a single variable to keep the base address of the structure and use

offsets to access individual items. This reduces register pressure and improves

overall performance, especially in programs compiled with the RENT option.

The compiler treats register variables the same way it treats automatic variables

that do not have their addresses taken.

v Minimize the use of pointers.

Chapter 34. Improving program performance 513

Use of pointers inhibits most memory optimizations such as dead store

elimination in C and C++.

You can improve the run-time performance of optimized code by using the z/OS

C #pragma disjoint directive to list identifiers that do not share the same

physical storage. For more information, see disjoint in z/OS XL C/C++ Language

Reference.

Passing function arguments

When writing code for optimization, it is usually better to pass a value as an

argument to a function than to let the function take the value from a global variable.

Global variables might have to be stored before a value is read from a pointer or

before a function call is made. Global variables might have to be reloaded after

function calls, or stored through a pointer. For more information, see “Using ANSI

aliasing rules” on page 512 and “Using variables” on page 513.

The #pragma isolated_call preprocessor directive lists functions that do not modify

global storage. You can use it to improve the run-time performance of optimized

code. For more information, see isolated_call in z/OS XL C/C++ Language

Reference.

Linkage convention or how arguments are passed is not specified in the C

language, but is defined by the platform. Compilers in general follow the calling

convention as described by the Application Binary Interface (ABI). An ABI can

define more than one linkage due to performance considerations; for example, the

XPLINK and non-XPLINK linkages on the z/OS platform. To correctly invoke a

function, the arguments passed must match the parameters as defined in the

function definition. For example, if you pass a pointer argument to a function

expecting an integer, the code generated by the compiler for the call and for the

function definition may not match (see the note at the end of this section).

You can declare a function without providing information about the number and

types of its parameters. For example:

int func();

...

int a;

func(a);

...

int func(p)

 void *p;

{

 ...

}

Because the function declaration has no parameter information, the compiler is not

required to diagnose parameter mismatch. You can call this function, passing it any

number of arguments of any type, but the compilation will not be guaranteed to

work if the function is not defined to receive the arguments as passed, due to

differences in linkage conventions. In the worse case, when the z/OS XL C/C++

compiler attempts inlining of such ill-formed function calls, it may get into an

unrecoverable condition and the compilation is halted.

To correct the situation, use the CHECKOUT(GEN) option to identify missing

function declarations and non-prototype function declarators. Add or change the

declarations to prototyped declarations, and proceed with compilation again. Should

you receive diagnostic messages regarding incorrect function argument assignment,

change the function call to pass the expected parameter type.

514 z/OS V1R8.0 XL C/C++ Programming Guide

Note: Such a mismatch may sometimes turn out not to be an issue, depending on

the ABI; for example, if the ABI happens to allow both pointers and integers

passed using general purpose registers. Even in this case, there is no

guarantee that the optimized code would work as expected due to

ambiguous information received by the compiler.

Coding expressions

When coding expressions, consider the following recommendations:

v When components of an expression are duplicate expressions, code them either

at the left end of the expression or within parentheses. For example:

a = b*(x*y*z); /* Duplicates recognized */

c = x*y*z*d;

e = f + (x + y);

g = x + y + h;

a = b*x*y*z; /* No duplicates recognized */

c = x*y*z*d;

e = f + x + y;

g = x + y + h;

The compiler can recognize x*y*z and x + y as duplicate expressions when they

are coded in parentheses or coded at the left end of the expression.

It is the best practice to avoid using pointers as much as possible within

high-usage or other performance-critical code.

Note: The compiler might not be able to optimize duplicate expressions if either

of the following are true:

– The address of any of the variables is already taken

– Pointers are involved in the computation

v When components of an expression in a loop are constant, code the constant

expressions either at the left end of the expression or within parentheses.

Example: The difference in evaluation when c, d, and e are constant and v, w,

and x are variable

v*w*x*(c*d*e); /* Constant expressions recognized */

c + d + e + v + w + x;

v*w*x*c*d*e; /* Constant expressions not recognized */

v + w + x + c + d + e;

Coding conversions

Avoid forcing the compiler to convert numbers between integer and floating-point

internal representations. Conversions require several instructions, including some

double-precision floating-point arithmetic.

Chapter 34. Improving program performance 515

Example of numeric conversions (CCNGOP3)

 When you must use mixed-mode arithmetic, code the integral, floating-point, and

decimal arithmetic in separate computations wherever possible.

Arithmetical considerations

v Wherever possible, use multiplication rather than division. For example,

x*(1.0/3.0); /* 1.0/3.0 is evaluated at compile time */

produces faster code than:

x/3.0;

v If you divide many values by the same number in your code: Assign the divisor’s

reciprocal to a temporary variable and then multiply by that variable.

Using loops and control constructs

For the for-loop index variable:

v Use a long type variable whenever possible. Under ILP32, long and int are

equivalent, but long is better for portability to an LP64 environment.

v Use the auto or register storage class over the extern or static storage class.

v If you use an enum variable, expand the variable to be a fullword by using the

ENUMSIZE compiler option or by placing a large defined value at the end of your

enum variable, as follows:

Example:

enum animals {

ant

cat,

dog,

robin,

last_animal = INT_MAX;

};

/* this example shows how numeric conversions are done */

int main(void)

{

 int i;

 float array[10]={1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0}

 float x = 1.0;

 for (i = 0; i < 10; i++)

 {

 array[i] = array[i]*x; /* No conversions needed */

 x = x + 1.0;

 }

 for (i = 1; i <= 9; i++)

 array[i] = array[i]*i; /* Conversions may be needed */

 return(0);

}

Figure 138. Numeric conversions example

516 z/OS V1R8.0 XL C/C++ Programming Guide

v Do not use the address operator (&) on the index.

v The index should not be a member of a union.

For if statements:

v Order the if conditions efficiently; put the most decisive tests first and the most

expensive tests last.

By performing the most common tests first, you increase the efficiency of your

code; fewer tests are required to meet the test conditions.

Example:

if (command.is_classg &&

 command.len == 6 &&

 !strcmp (command.str, "LOGON")) /* call to strcmp() most expensive */

 logon ();

Choosing a data type

v Use the int data type instead of char when performing arithmetic operations.

char_var += ’0’;

int_var += ’0’; /* better */

v A char type variable is efficient when you are:

– Assigning a literal to a char variable

– Comparing the variable with a char literal
char_var = 27;

if (char_var == ’D’)

v The following table lists analogous data types and shows which data types are

more expensive to reference:

 Table 84. Referencing data types

More Expensive Less Expensive

unsigned short signed short (Although unsigned short is less

expensive on many systems, the z/OS

implementation of signed short is less

expensive.)

signed char unsigned char

long double double

Longer decimal Shorter decimal

v For storage efficiency, the compiler packs enumeration variables in 1, 2 or 4

bytes, depending on the largest value of a constant.

When performance is critical, expand the size to a fullword either by adding an

enumeration constant with a large value or by specifying the ENUMSIZE

compiler option.

Example:

enum byte { land, sea, air, space };

enum word { low, medium, high, expand_to_fullword = INT_MAX };

This is equivalent to using the ENUMSIZE(INT) compiler option with the following

code:

enum word { low, medium, high };

Fullword enumeration variables are preferred when used as function parameters.

v For efficient use of extern variables:

Chapter 34. Improving program performance 517

– Place scalars ahead of arrays in extern struct.

– Copy heavily referenced scalars to auto or register variables (especially in a

loop).

v When using float:

– When passing variables of type float to a function, an implicit widening to

double occurs (which takes time).

– On some machines divisions of type float are faster than those of type double.

v When using bit fields, be aware that:

– Even though the compiler supports a bit field spanning more than 4 bytes, the

cost of referencing it is higher.

– An unsigned bit field is preferred over a signed bit field.

– A bit field used to store integer values should have a length of 8, 16, or 24

bits and be on a byte boundary.

Example:

 struct { unsigned xval :8,

 xbool :1,

 xmany :6,

 xset :1;

 } b;

 if (b.xval == 3) ...
 if (b.xmany + 5 == x) /* inefficient because it does not */

 /* fall on a byte boundary */ ...
 if (b.xbool) ...

Using built-in library functions and macros

v You can use built-in functions (that is, compiler-generated expansions for the

functions) by including the appropriate library header files. For a list of the built-in

functions, see Chapter 32, “Using hardware built-in functions,” on page 497.

You can prevent parameter type mismatch and ensure optimal performance by

including the appropriate library header files.

You can call a library function explicitly and avoid using the built-in functions by

enclosing the function name in parentheses when you make the call, as follows:

(memcpy)(buf1, buf2, len).

Note: At NOOPT the compiler might not expand all built-in functions.

v You can use the macros listed below (rather than their equivalent functions), by

including the ctype.h header file:

 isalpha()

isalnum()

iscntrl()

isdigit()

isgraph()

islower()

isprint()

ispunct()

isspace()

isupper()

isxdigit()

toupper()

tolower()

v If you are using the __cs1 or __cds1 function with arguments other than the ones

declared in the prototypes in stdlib.h, the compiler might not be able to

generate correct code at OPT. In this case, use the NOANSIALIAS option.

518 z/OS V1R8.0 XL C/C++ Programming Guide

Note: As of z/OS V1R2, the new forms for cs() and cds() are __cs1 and

__cds1, respectively. For more information, see Chapter 32, “Using

hardware built-in functions,” on page 497.

v Typically, arrays are compared element-by-element, using a loop. When you

compare two arrays for equality, replace the loop with the memcmp() library

function. This could result in the execution of many machine instructions being

replaced by the execution of a only a few machine instructions.

Example:

 More efficient comparison with amemcmp()

library function

Less efficient comparison in a loop

if (!memcmp (a, b, sizeof(a)))

 /* arrays are equal */

int a[1000], b[1000];

for (i = 0; i < 1000; ++i)

 if (a[i] != b[i])

 break;

if (i == 1000)

 /* arrays are equal */

v Neither the C nor the C++ language allows structure comparison, because

structures might contain padding bytes with undefined values. In cases where

you know that no padding bytes exist, use memcmp() to compare structures. The

z/OS AGGREGATE compiler option for C is used to obtain a structure and union

map.

v The memset() library function should be used to initialize a character buffer and

to initialize an array to a repetitive byte pattern (such as zeros).

v Use memset() to clear structs, unions, arrays or character buffers as follows:

char c[10];

for (i = 0; i < 10; i++) /* do not use */

 c[i] = ’ ’;

memset (c, ’ ’, sizeof (c)); /* better */

v Use the alloca() function to automatically allocate memory from the stack. This

function frees memory at the end of a function call when z/OS XL C/C++

collapses the stack. For more information, see alloca in z/OS XL C/C++

Run-Time Library Reference.

v When using strlen(), do not hide size information. Less code is needed for

strlen() when the upper bound is known at compile time.

char small_str_array[100];

char *small_str_ptr; ...
x = strlen(small_str_ptr); /* unknown upper bound */

x = strlen(small_str_array); /* better */

v When concatenating strings, use strcat().

v When performing character-to-integer conversions, use atoi() rather than

sscanf().

v Whenever possible, replace strxxx() functions with their corresponding memxxx()

functions, because memxxx() functions are more efficient. You can minimize the

execution cost of a strxxx() function by using fixed-length character buffers to

save the length of incoming strings (including null terminators) for subsequent

calls to memcpy() and memcmp().

Example:

Chapter 34. Improving program performance 519

total_len = strlen (s) + 1; ...
for (i = 0; i < 10; i++)

 if (memcmp (s, t[i], total_len) == 0) /* total_len ≤ sizeof(t) */ ...

memcpy (a, s, total_len);

Note: If you try to replace all strcmp() calls with a memcmp() call taking a

strlen() value of one of the strings, the result might be an attempt to

access protected storage which follows the shorter string. Such an attempt

could cause an exception because memcmp() does not stop comparing

strings when it encounters a null in one of the strings.

Using library extensions

Effective use of DLLs could improve the performance of your application if either of

the following is true:

v The application relies on a fetch() or system() function to call programs in other

modules

v The application is overly large and there are some low-use or special-purpose

routines that you can move to a DLL

If you are using C, consider calling other C modules with fetch() or DLLs instead

of system(). A system() call does full environment initialization and termination, but

a fetched module and a DLL share the environment of the calling routine. If you are

using C++, consider using DLLs.

Use of DLLs requires more overhead than use of statically-bound function calls. You

can test your code to determine whether you can afford this extra overhead. First,

write the code so that it can be built to implement either a single module or a DLL.

Next build your application both ways, and time both applications to see if you can

handle the difference in execution time. For best DLL performance, structure the

code so that once a function in the DLL is called, it does all it needs to do in the

DLL before it returns control to the caller.

You can also choose how to implement DLLs. If you are using C, you can choose

between:

v The XPLINK compiler option

v The DLL compiler option (which is used with the NOXPLINK option)

Note: In C++, DLL is not an option, but a default. When you use the XPLINK

option, the compiler loads and accesses DLLs faster than it would if you

used the DLL option.

The following suggestions could improve the performance of the application:

v If you are using a particular DLL frequently across multiple address spaces, you

can install the DLL in either the LPA/ELPA or the DLPA to avoid load overhead.

When the DLL resides in a PDSE, the DLPA services should be used.

v When you are binding your code, specify both the RENT and the REUSE

options. Otherwise, each load of a DLL results in a separately loaded DLL with

its own writable static area.

v Group external variables into one external structure.

v When you are using z/OS UNIX System Services, avoid unnecessary load

attempts.

520 z/OS V1R8.0 XL C/C++ Programming Guide

z/OS Language Environment supports loading a DLL that resides in the HFS or

in a data set. However, the location from which it first tries to load the DLL varies,

depending whether your application runs with the run-time option POSIX(ON) or

POSIX(OFF).

– If your application runs with POSIX(ON), z/OS Language Environment tries to

load the DLL from the HFS first. If you are doing an explicit DLL load using

the dllload() function, you can avoid searching the HFS directories. You can

direct a DLL search to a data set by prefixing the DLL name with two slashes

(//), as follows:

//MYDLL

– If your application runs with POSIX(OFF), z/OS Language Environment tries

to load your DLL from a data set. Similarly, if you are loading your DLL with

the dllload() function and your DLL is loading in HFS, you can avoid the

search of the data set by directing a DLL search to the HFS. You can do so

by prefixing the DLL name with a period and slash (./), as follows:

./mydll

Note: DLL names are case sensitive in the HFS.

v When you are using IPA, export only those subprograms (functions and C++

methods) or variables that you need for the interface to the final DLL.

If you export subprograms or variables unnecessarily (for example, by using the

EXPORTALL option), you severely limit IPA optimization. In this case, global

variable coalescing and pruning of unreachable or 100% inlined code does not

occur. Before it can be processed by IPA, DLLs must contain at least one

subprogram. Any attempt to process a data-only DLL will result in a compilation

error.

v The suboption NOCALLBACKANY of the compiler option DLL is more efficient

than the CALLBACKANY suboption.

The CALLBACKANY option calls a Language Environment routine at run time.

This run-time service enables a C or C++ NOXPLINK DLL routine to call a C

NOXPLINK NODLL routine, which use function pointers that point to actual

function entry points rather than function descriptors.

Note: Compiling source with the DLL option will often cause a degradation in

performance when compared against a statically bound application

compiled without that option.

Using pragmas

This section describes pragmas that can affect performance. For information about

using each pragma, see z/OS XL C/C++ Language Reference.

#pragma disjoint

Lists identifiers that do not share the same physical storage, which provides more

opportunities for optimizations.

#pragma export

Selectively exports functions or variables from a DLL module. The EXPORTALL

compiler option exports all functions or variables, which often results in larger

modules and significantly increased WSA requirements.

Chapter 34. Improving program performance 521

#pragma inline (C only)

Together with the INLINE compiler option, ensures that frequently used functions

are inlined.

This directive is only supported in C; however, you can use the inline keyword in

C++.

#pragma isolated_call

Lists functions that have no side effects (that do not modify global storage). This

directive can improve the run-time performance of variables and storage by allowing

the compiler to make fewer assumptions about whether external and static variables

could be updated.

#pragma leaves

Specifies that a function never returns to the instruction following a call to that

function. This directive provides information to the compiler that enables it to

explore additional opportunities for optimization.

#pragma noinline

This directive can improve pipeline usage and allow more of the used routines to be

inlined.

#pragma option_override

Allows you to specify optimization options on a per-routine basis rather than on only

a per-compilation basis. It enables you to specify which functions you do not want

to optimize while compiling the rest of the program optimized. This directive helps

you to isolate which function is causing problems under optimization.

The option_override pragma can be also used to change the spill size for a

function. If the compiler requests that you to increase the spill size for a specific

function, you should use the option_override pragma instead of the SPILL

compiler option, which increases the spill size for all functions in the compile unit

and can have a negative performance impact on the generated code.

Note: The spill size should not be increased unless requested by a compiler

message.

#pragma reachable

Declares that the point in the program after the specified function can be the target

of a branch from some unknown location. That is, you can reach the instruction

after the specified function from a point in your program other than the return

statement in the named function.

This directive provides information to the compiler that enables it to explore

additional opportunities for optimization.

#pragma strings

Indicates whether strings should be placed in read-only memory or read/write

memory.

You can reduce the memory requirements for DLLs by specifying #pragma

strings(readonly), so that string literals are not placed in the writable static area.

522 z/OS V1R8.0 XL C/C++ Programming Guide

Alternatively, you can also use the ROSTRING compiler option (the default), which

informs the compiler that string literals are read-only.

#pragma unroll

Informs the compiler how to perform loop unrolling on the loop body that

immediately follows it. The directive works in conjunction with the UNROLL compiler

option to provide you with some control over the application of this optimization

techique. The pragma directive overrides the “UNROLL” on page 536 or

NOUNROLL compiler option in effect for the designated loop.

#pragma variable

Indicates whether a named external object is used in reentrant or non-reentrant

fashion. If an object is qualified as RENT, its references or its definition will be in

the writable static area, which is in modifiable storage. If an object is qualified as

NORENT, its references or its definition will be in the code area.

You can reduce the memory requirements for DLLs by specifying #pragma

variable(var_name,NORENT), so that constant variables are not placed in the

writable static area.

Alternatively, you can use the ROCONST compiler option to inform the compiler that

constant variables are not to be placed in the writable static area.

Chapter 34. Improving program performance 523

524 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 35. Using built-in functions to improve performance

A built-in function is inline code that is generated in place of an actual function call.

The built-in functions described in this chapter behave exactly the same as those in

the C library. The compiler will generate inline code for these functions if the

appropriate header file is included in the source. For more information, see built-in

functions in z/OS XL C/C++ Run-Time Library Reference.

If you have included the header files but you want to call either the library version of

the function or your own version, enclose the function name in parentheses when

you make the call. For example, if you wanted to call only memcpy from the header

file and use the built-in functions for other memory-related functions, code the

function call as follows:

(memcpy)(buf1, buf2, len)

 Table 85. C-library built-in functions

Built-In Function Header File

abs() stdlib.h

alloca() stdlib.h

ceil() math.h

ceilf() math.h

ceill() math.h

Note: The compiler only attempts to generate inline code for ceil(), ceilf(), and ceill()

when the OPTIMIZE(2) compiler option is used.

decabs() decimal.h

decchk() decimal.h

decfix() decimal.h

fabs() math.h

Note: The compiler only attempts to generate inline code for fabs() when the OPTIMIZE(2)

compiler option is used.

floor() math.h

floorf() math.h

floorl() math.h

Note: The compiler only attempts to generate inline code for floor(), floorf(), and

floorl() when the OPTIMIZE(2) compiler option is used.

fortrc() stdlib.h

memchr() string.h

memcpy() string.h

memcmp() string.h

memset() string.h

strcat() string.h

strchr() string.h

strcmp() string.h

strcpy() string.h

strlen() string.h

© Copyright IBM Corp. 1996, 2006 525

Table 85. C-library built-in functions (continued)

Built-In Function Header File

strncat() string.h

strncmp() string.h

strncpy() string.h

strrchr() string.h

Platform-specific functions

The built-in functions in this section are related to C-library functions that are z/OS

specific. The full description of each function can be found in z/OS XL C/C++

Run-Time Library Reference.

 Table 86. Platform-specific built-in functions

Built-In Function Header File

cds() stdlib.h

cs() stdlib.h

Note: cds() and cs() are masking macros. The system header expands them to the __cds

and __cs. It is advisable to use the hardware functions instead of the library functions

whenever possible. For more information, see Table 77 on page 497.

526 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 36. I/O Performance considerations

This chapter discusses the most efficient use of the available XL C/C++ input and

output methods. This includes:

v “Accessing MVS data sets”

v “Accessing HFS files” on page 528

v “Using memory files” on page 529

v “Using the C++ I/O stream libraries” on page 529

Accessing MVS data sets

v Consider the use of the file when choosing DCB parameters:

– Specify largest possible BLKSIZE (blocked files).

– Use recfm = FBS or F over FB unless dealing with a PDS. The use of standard

(S) blocks optimizes the sequential processing of a file on a direct-access

device.

– fseek() on sequential files is most efficient when using recfm = F or recfm =

FBS.

– If you are accessing an existing sequential file created as FB, and you know

that there are no short blocks in the file, specify FBS on the call to fopen() or

freopen() to enable the library to perform faster repositions.

The proper choice of file attributes is important for efficient I/O.

v When you do not need to reposition within a file, take advantage of NOSEEK for

more efficient reading and writing to a data set. You can also specify NCP or

BUFNO on the DD statement for MVS DASD data sets, thereby reducing the clock

time of the application. See “Multiple buffering” on page 118 for more information.

v If possible, read or write a block at a time to minimize the I/O overhead and

elapsed time.

v Using text I/O for writing can be slower than using binary or record I/O. When

you use binary or record I/O, the application must ensure that the data is written

to the file in the correct format.

v If you are using FB or FBS files, use binary I/O instead of record I/O. This way,

you can read or write more than one record at a time.

v Use fread() instead of fgets(), and fwrite() in place of fputs(), wherever

possible.

v Use putc() instead of fputc(), and getc() instead of fgetc(), if you must read

or write a character.

The fputc() function, as defined by ANSI, puts a single character to the text

stream. Special action occurs when writing a control character. On the other

hand, the putc() macro buffers characters in storage and invokes fputc() only

when encountering a control character. This reduces call overhead when you are

writing one character at a time.

v If you are using hiperspace memory files, you can use setvbuf() to set the

buffer size.

The default buffer size for memory files in hiperspace is 16K. You can override

this by calling setvbuf() after fopen(), but before performing any I/O operations

on the file. The minimum buffer size is 4K. If you specify a smaller size, it is

ignored, and the default is used instead.

© Copyright IBM Corp. 1996, 2006 527

If your file will be large, you can improve execution time by increasing the buffer

size. This will result in less frequent flushing of the buffer to the hiperspace, but

will cost you memory in the user address space for the larger buffers. For

example,

 rc = setvbuf(fp, NULL, _IOFBF, 32768);

Alternatively, if your memory is constrained, you can reduce requirements for

memory in the user address space by reducing the buffer size. This will result in

more frequent flushing of the buffer to the hiperspace. For example,

 rc = setvbuf(fp, NULL, _IOFBF, 4096);

For more information on hiperspace memory files, refer to Chapter 14,

“Performing memory file and hiperspace I/O operations,” on page 217.

v When writing to text files that do not use DBCS characters, ensure that

MB_CUR_MAX is set to 1 for the current locale. This will prevent internal I/O checks

for DBCS strings.

v Avoid using fscanf() or fprintf() if you can use other I/O routines instead. For

example, use fwrite() rather than fprintf() to write out a format string with no

substitution variables.

v When using fflush() beware of NULL file pointers; fflush(NULL) flushes all open

streams.

v Specify DCB parameters on fopen() only when you are creating the file. When

you are appending, updating or reading a file, these attributes are retrieved from

the existing file.

Many file attributes (DCB parameters) are possible when you open a file with

z/OS XL C/C++. DCB parameters specified on fopen() must be compatible with

those of the file or the ddname. This checking may cause unwanted overhead.

v Use fgetpos() and fsetpos() instead of ftell() and fseek() when you are

saving a position you will return to later. fgetpos() saves more information about

the position than ftell().

v Where possible, use striped data sets. These data sets improve overall I/O

throughput.

v For temporary files, use memory files rather than files created with tmpfile().

You can use MVS memory files from z/OS UNIX System Services C++

application programs. However, use of the fork() function from the program

clears a memory file and removes access from a hiperspace memory file for the

child process. Use of an exec function from the program clears a memory file

when the process address space is cleared.

v For large memory files (1MB or larger) in which you perform random seeking,

use hiperspace memory files, if they are available.

v When your library is below the 16MB line, use hiperspace memory files.

The non-hiperspace files use up your storage from below the line. Hiperspace

memory files do not reside in user virtual storage. Changing a memory file to a

hiperspace memory file saves user virtual storage only if the file is larger than

one hiperspace memory file buffer.

v For VSAM I/O use VSAM buffers appropriately and use flocate() instead of ftell()

and fseek().

Accessing HFS files

v Use fread() instead of fgets(), and fwrite() in place of fputs(), wherever

possible.

528 z/OS V1R8.0 XL C/C++ Programming Guide

v Use putc() instead of fputc(), and getc() instead of fgetc(), if you must write

or read a character.

v When using fflush(), beware of NULL file pointers; fflush(NULL) flushes all open

streams.

v Changing the buffer size for access to HFS may provide advantages. You may

want to set the buffer size to be the length of the read or write operation that you

normally do. Use the setvbuf() function to change the buffer size.

Note: When you include the header file stdio.h, macros are defined for getc(),

putc(), getchar(), and putchar(). In order to use the function calls

instead of the macro calls, use #undef after the stdio.h header file is

included. If you are working with a threaded application, these macros are

automatically undefined forcing the application to use function calls, which

are thread safe. The feature test macro _ALL_SOURCE causes these four

macros to be undefined. However, if you require _ALL_SOURCE, and want

these macros to be used in a non multi-threaded application, you can use

feature test macro _ALL_SOURCE_NOTHREADS.

Using memory files

Use memory files as efficient temporary files by specifying the type=memory attribute

in fopen() before creating the temporary file. Some applications use temporary files

to pass data between program modules.

When using one of the z/OS UNIX System Services shells, an MVS memory file

may or may not make an efficient temporary file. This depends on whether your

z/OS UNIX System Services XL C/C++ application program uses fork() and exec()

functions to call another program to run in a child process. The child process does

not inherit MVS memory files after an exec() function. For more information, see

“Accessing MVS data sets” on page 527.

Using the C++ I/O stream libraries

The following information applies to the USL I/O Stream Class Library and to the

Standard C++ I/O stream classes.

v Unit-buffering incurs a significant performance penalty. Unit-buffering can be

enabled by setting the ios::unitbuf flag. It is enabled for the cerr object by

default.

v The sync_with_stdio() function enables unit-buffering of standard streams, to

ensure their synchronization with C standard streams. However, a run-time

performance penalty is incurred to ensure this synchronization. For more

information about sync_with_stdio(), see Chapter 4, “Using the Standard C++

Library I/O Stream Classes,” on page 39.

v In most cases, calls to functions in the USL or ANSI C++ I/O stream libraries are

mapped to calls to the I/O functions of the C standard library. For this reason,

direct calls to the C I/O functions are recommended for applications that must

have the best possible performance. This does not mean that these types of

applications cannot or should not contain any iostream.h calls. However, you

might want to ensure that iostream.h I/O calls do not appear on the critical path;

it is safe to keep them for unused debugging code.

Note: If you access the same file with both C and C++ I/O stream classes,

undefined results will occur.

Chapter 36. I/O Performance considerations 529

530 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 37. Improving performance with compiler options

This chapter discusses and lists the z/OS XL C/C++ compiler options that you can

use to improve application performance.

The chapter includes the following sections:

v “Using the OPTIMIZE option”

v “Optimizations performed by the compiler”

v “Additional options that affect performance” on page 533

v “Inlining” on page 536

v “Using the XPLINK option” on page 539

v “Using the IPA option” on page 540

Using the OPTIMIZE option

During optimization, the compiler changes the unoptimized code sequences,

derived from the source code, into equivalent code sequences that execute faster

and usually require less memory space. It is also possible for an expression that

would normally cause an exception to be removed by optimization, thus preventing

the exception.

Note: You can optimize code by specifying either OPTIMIZE(2) or OPTIMIZE(3).

Optimized code takes significantly more time to compile than unoptimized

code, but will likely result in faster-running code. There is no guarantee that

the compile time at OPTIMIZE(3) will remain similar from release to release.

Because the optimization is achieved by transforming the code using knowledge

obtained from a larger program context, the direct correspondence between source

and object code is often lost. Optimized code is also more sensitive to subtle coding

errors.

One example of a subtle coding error is to type cast a pointer variable incorrectly.

The compiler assumes ISO conformance when doing optimization. If your program

does not conform, you may receive undefined results. For more information, see

“ANSI aliasing rules” on page 509 and “Using ANSI aliasing rules” on page 512.

Optimizations performed by the compiler

The compiler performs several optimizations, including:

Inlining

Inlining replaces certain function calls with the actual code of the function

being performed. For more information on inlining, see “Inlining” on page

536.

 For z/OS XL C/C++, automatic inlining is performed by default when you

specify OPTIMIZE. You can override this inlining by using the NOINLINE

option. For more information, see INLINE in z/OS XL C/C++ User’s Guide.

Value numbering

Value numbering involves local constant propagation, local expression

elimination, and folding several instructions into a single instruction.

© Copyright IBM Corp. 1996, 2006 531

Straightening

Straightening is rearranging the program code to minimize branching logic

and to combine physically separate blocks of code.

Common expression elimination

Common expressions recalculate the same value in a subsequent

expression. The duplicate expression can be eliminated by using the

previous value. This is done even for intermediate expressions within

expressions.

 Example: If your program contains the following statements:

 a = c + d;

 .

 .

 .

 f = c + d + e;

the common expression c + d is saved from its first evaluation and is used

in the subsequent statement to determine the value of f.

Code motion

If variables used in a computation within a loop are not altered within the

loop, it may be possible to perform the calculation outside of the loop and

use the results within the loop.

Strength reduction

Less efficient instructions are replaced with more efficient ones. For

example, in array addressing, an add instruction replaces a multiply.

Constant propagation

Constants used in an expression are combined and new ones generated.

Some mode conversions are done, and compile-time evaluation of some

intrinsic functions takes place.

Instruction scheduling

Instructions are reordered to minimize execution time.

Dead store elimination

The compiler eliminates stores when the value stored is never referred to

again. For example, if two stores to the same location have no intervening

load, the first store is unnecessary, and is therefore removed.

Dead code elimination

The compiler may eliminate code for calculations that are not required.

Other optimization techniques may cause code to become dead.

Graph coloring register allocation

The compiler uses a global register allocation for the whole function,

thereby allowing variables to be kept in registers rather than in memory.

These optimization techniques may be performed both locally and globally.

Increases in storage and compile time requirements over NOOPT will occur. Higher

levels of optimization may perform the same options more rigourously as well as

adding additional options.

Aggressive optimizations with OPTIMIZE(3)

The compiler optimizes more aggressively with OPTIMIZE(3) than with

OPTIMIZE(2). Code may be moved, and computations may be scheduled, even if

this could potentially raise an exception.

532 z/OS V1R8.0 XL C/C++ Programming Guide

OPTIMIZE(3) may place instructions onto execution paths where they will be

executed when they may not have been according to the actual semantics of the

program. For example, a loop-invariant floating-point computation that is found on

some, but not all, paths through a loop will not be moved using OPTIMIZE(2)

because the computation may cause an exception. For OPTIMIZE(3), the compiler

will move the computation because it is not certain to cause an exception.

The same is true for moving loads. Although a load through a pointer is never

moved, loads off the static or stack base register are considered movable using

OPTIMIZE(3). Loads in general are not considered to be absolutely safe using

OPTIMIZE(2) because a program can contain a declaration of a static array a of 10

elements and load a[60000000003], which could cause a segmentation violation.

The same concepts apply to scheduling. In the following example, using

OPTIMIZE(2), the computation of b+c is not moved out of the loop for two reasons:

v It is considered dangerous because it is a floating-point operation

v It does not occur on every path through the loop
...
int i;

float a[100], b, c;

for (i=0; i < 100; i++)

 {

 if (a[i] < a[i+11])

 a[i] = b + c;

 } ...

At OPTIMIZE(3), the computation b + c is moved out of the loop.

Additional options that affect performance

The following sections describe compiler options that affect performance. For more

information, see compiler options in z/OS XL C/C++ User’s Guide.

ANSIALIAS

The ANSIALIAS option specifies whether type-based aliasing is to be used during

optimization. Type-based aliasing will improve optimization.

For more information about ANSI aliasing, see “ANSI aliasing rules” on page 509

and “Using ANSI aliasing rules” on page 512.

ARCHITECTURE and TUNE

The ARCHITECTURE option specifies the architectural level for which the

executable program’s instructions will be generated. The TUNE option specifies for

which architectural level the executable program will be optimized.

ARCHITECTURE allows the compiler to take advantage of specific hardware

instruction sets. TUNE allows the compiler to take advantage of differences (such

as scheduling of instructions) in architectural levels.

COMPRESS

Use the COMPRESS option to suppress the generation of function names in the

function control block to reduce the size of your application’s load module. The

amount of reduction depends on the average function size in the application, as

compared to the length of the function name.

Chapter 37. Improving performance with compiler options 533

COMPACT

When the COMPACT option is active, the compiler favors optimizations that tend to

limit the growth of the code. Depending on your specific program, the object size

may increase or decrease and the execution time may increase or decrease.

Any time you change your program, or change the release of the compiler, you

should re-evaluate your use of the COMPACT option.

CVFT (C++ only)

Use the NOCVFT option to reduce the size of the writable static area for

constructors that call virtual functions within the class hierarchy where virtual

inheritance is used.

EXH (C++ only)

You might improve the run time of your C++ code by using NOEXH. The resultant

code will run faster, but it will not be ISO-compliant if the program uses exception

handling.

EXPORTALL

Use the EXPORTALL option only if you want to export all external functions and

variables in the source file so that a DLL application can use them. If you only need

to export some externally defined functions and variables, use the #pragma export

directive or the _Export C++ keyword instead of EXPORTALL.

If you use EXPORTALL, you can severely limit IPA optimization, and can cause

your modules and WSA to be larger than necessary.

The HOT compiler option enables the compiler to request high-order

transformations on loops during optimization, which gives you the ability to generate

more highly optimized code.

IGNERRNO

The IGNERRNO option informs the compiler that the program is not using errno.

This allows the compiler more freedom to explore optimization opportunities for

certain library functions (for example, sqrt). You need to include the system header

files to get the full benefit of the IGNERRNO option.

IPA

The IPA option specifies that the compiler should use interprocedural analysis when

optimizing this module. This can lead to significant performance improvements. For

more information, see “Using the IPA option” on page 540.

LIBANSI

The LIBANSI option specifies whether or not all functions with the name of an ANSI

C library function are in fact the ANSI functions. This allows the compiler to

generate code based on existing knowledge concerning the behavior of the

function. For example, the compiler will determine whether any side effects are

associated with a particular library function. LIBANSI can provide additional benefits

when used in conjunction with IGNERRNO.

534 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|

OBJECTMODEL

Starting with z/OS V1R2, you can compile your programs using two different object

models. They differ in the following areas:

v Layout for the virtual function table

v Virtual base class support

v Name mangling scheme

The OBJECTMODEL compiler option sets the type of object model, either COMPAT

or IBM.

The OBJECTMODEL compiler option has the following suboptions:

v COMPAT - uses the object model compatible with previous versions of the

compiler.

Note: The COMPAT object model is not available when the LP64 compiler

option has been specified.

v IBM - uses the new object model and should be selected if you want improved

performance. This is especially true for class hierarchies with many virtual base

classes. The size of the derived class is considerably smaller and access to the

virtual function table is faster.

All classes in the same inheritance hierarchy must have the same object model.

Use the #pragma object_model directive to specify an object model in your

source. For more information, see object_model in z/OS XL C/C++ Language

Reference.

ROCONST

The ROCONST option specifies that the const qualifier is respected by the

program. Variables that are defined with the const keyword are not overridden by a

casting operation.

When you use this option in C with the DLL option, you must ensure that no const

global variables (static or external) are initialized with the address of an entity from

another compile unit.

ROSTRING

The ROSTRING option specifies that strings are placed in read-only memory. It has

the same effect as the #pragma strings(readonly) directive.

RTTI

If you are not using RTTI/dynamic casts in your program, compile with the NORTTI

option.

SPILL

When you specify a very large spill size, you can force the compiler to generate

less than optimal code. For this reason, you might not want to specify the large spill

size for an entire application. For example, either you can specify the large spill size

for only the specific compilation unit that needs it or you can use the #pragma

option_override directive.

Chapter 37. Improving performance with compiler options 535

STRICT_INDUCTION

With strict induction, induction (loop counter) variables are not optimized. This

guards against problems that can occur if an optimized induction variable overflows.

If it is certain that the induction variables will not overflow, use the

NOSTRICT_INDUCTION option. This option can improve the performance of

induction variables that are smaller than the register size on the processor.

UNROLL

The UNROLL option gives the user the ability to control the amount of loop unrolling

done by the compiler. Loop unrolling exposes instruction level parallelism for

instruction scheduling and software pipelining and thus can improve a program’s

performance. It should be used in conjunction with “#pragma unroll” on page 523.

Inlining

Inlining replaces certain function calls with the actual code of the function and is

performed before all other optimizations. Not only does inlining eliminate the linkage

overhead, it also exposes the entire called function to the caller, which enables the

compiler to better optimize your code.

Note: See “Inlining under IPA” on page 539 for information on differences in inlining

under IPA.

The following types of calls are not inlined:

v A call where the number of parameters on the call does not match that on the

function definition. An example of this is a variable argument function call.

v A call that is directly recursive; the routine calls itself.

v K&R style var_arg functions.

Consider the C examples CCNGOP1 and CCNGOP2. CCNGOP1 specifies the

#pragma inline directive for the function which_group(). If you use the OPTIMIZE

option when you compile CCNGOP1, the compiler determines that CCNGOP1 is

equivalent to CCNGOP2.

536 z/OS V1R8.0 XL C/C++ Programming Guide

Example of optimization (CCNGOP1)

Example of optimization (CCNGOP2)

 The z/OS XL C/C++ inliner supports two modes of running: selective and automatic.

Selectively marking code to inline

Selective mode enables you to specify, in your source code, the functions that you

do, and do not, want inlined.

If you know which functions are frequently invoked from within a compilation unit,

you can mark them for inlining:

v For a C program, add the appropriate #pragma inline directives in your source

and compile with INLINE (NOAUTO,REPORT,,).

v For a C++ program, add inline keywords to your source and compile with

INLINE (NOAUTO,REPORT,,).

/* this example demonstrates optimization */

#include <stdio.h>

#pragma inline (which_group)

int which_group (int a) {

 if (a < 0) {

 printf("first group\n");

 return(99);

 }

 else if (a == 0) {

 printf("second group\n");

 return(88);

 }

 else {

 printf("third group\n");

 return(77);

 }

}

int main (void) {

 int j;

 j = which_group (7);

 return(j);

}

Figure 139. Optimization example

/* this example demonstrates optimization */

#include <stdio.h>

int main(void) {

 printf("third group\n"); /* a lot less code generation */

 return(77);

}

Figure 140. Optimization example

Chapter 37. Improving performance with compiler options 537

If your code contains complex macros, the macros can be made into static routines

that are marked to be inlined at no execution-time cost. All static routines that are

interfaces to a data object can be placed in a header file.

Automatically choosing functions to inline

Automatic mode assists you with starting to optimize your code. It allows the

compiler to choose potential functions to inline. The compiler will inline all routines

that are less than the threshold in abstract code units (ACUs) until the function that

the functions are inlined into is greater than limit abstract code units. The threshold

and limit parameters are defined as follows:

threshold Maximum relative size of a function to inline. The default value is

100 Abstract Code Units (ACUs), both for C and C++. ACUs are

proportional in size to the executable code in the function; your

code is translated into ACUs by the compiler. Specifying a threshold

of 0 is equivalent to specifying NOAUTO.

 Note that the proportion of ACUs to executable code in a function is

different under IPA.

limit Maximum relative size a function can grow before auto-inlining

stops. The default is 1000 ACUs for the specific function. Specifying

a limit of 0 is equivalent to specifying NOAUTO.

Note: When functions become too large, run-time performance can degrade.

Under the z/OS UNIX System Services shell, to provide assistance in choosing

which routines to inline, use the c89 -W command to pass the INLRPT option to the

z/OS XL C/C++ compiler. At NOOPT, you will also need to specify the INLINE option.

The default at NOOPT is NOINLINE.

For example, at NOOPT, to get INLINE(AUTO,REPORT,100,1000) for a C program,

use one of the following c89 commands:

 c89 -W "0,inline(,REPORT,,)" example.c

 c89 -W "0,inline,inlrpt" example.c

You can get the same value at OPT for a C program passing the INLRPT option to

the z/OS XL C/C++ compiler as follows:

c89 -2 -W "0,inlrpt"

Note: Inlining debugging functions or functions that are rarely invoked can degrade

performance. Use the #pragma noinline directive to instruct the automatic

inliner to not inline these types of functions. The #pragma inline and the

#pragma noinline directives and the inline keyword are honored by

automatic inlining regardless of the limit and threshold you have specified.

For more information, see inline in z/OS XL C/C++ Language Reference.

Modifying automatic inlining choices

While automatic inlining is the best choice the compiler can make for you, you can

further improve your performance. Use #pragma inline and #pragma noinline to

reduce the need to modify your inlining choices when you change your application.

You may want to wait until you have a stable application before you do the following

steps.

1. Compile with the OPTIMIZE option and ask for a report from the inliner by

specifying the compiler options INLINE(,REPORT,,) or INLRPT and OPTIMIZE.

538 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|
|

2. Look at the report to see if anything was inlined that should not have been; for

example, routines for debugging or handling exceptions. Add #pragma noinline

to your source to insure that these functions do not get inlined.

3. Add the inline keyword (for C++) or the #pragma inline directive (for C) to any

frequently used routines to ensure that it gets inlined.

4. Recompile with OPTIMIZE then, regenerate the inline report and reanalyze for

functions that should and should not be inlined.

5. You should also vary the limit and threshold values.

v The inline report tells you the abstract code units (ACUs) for each function.

These should help you determine an appropriate threshold to start from. In

general, your initial threshold should be as small as possible, and your initial

limit should be in the 1000 to 2000 range.

v Increase the threshold by an increment small enough to catch a few more

routines each time.

v Change the limit when you wish. Because performance will improve as a

function of both the limit and the threshold values, it is not recommended

that you change both limit and threshold at the same time.

6. Repeat the process until you feel that you have found the best performance

parameters. You should run your application to determine if the tuning has found

the best performance parameters.

7. When you are satisfied with the selection of inlined routines, add the appropriate

#pragma inline directives or inline keywords to the source. That is, when the

selected routines are forced with these directives, you can then compile the

program in selective mode. This way, you do not need to be affected by

changes made to the heuristics used in the automatic inliner.

Overriding inlining defaults

Automatic and selective inlining are performed when the OPTIMIZE compiler option

is specified. You can override this by specifying the NOINLINE option when you

specify your optimization level. You can also override this by specifying the

#pragma noinline directive for a particular function. For more information, see

inline in z/OS XL C/C++ Language Reference.

Inlining under IPA

The IPA Inliner functions differently from the regular inliner:

v It performs inlining across compilation units, rather than within a compilation unit.

v It handles inlining of functions with variable argument lists.

v It inlines calls from recursive cycles (for example, where function A calls function

B calls function C calls function A). However, it avoids making the functions too

large.

For more information about IPA, see “Using the IPA option” on page 540.

Using the XPLINK option

Applications that make many calls to small functions get the most benefit from using

XPLINK. Many C++ applications are structured this way, because of the object

oriented programming model. C applications that make many function calls may

also be suitable for XPLINK.

Chapter 37. Improving performance with compiler options 539

When you should not use XPLINK

Functions compiled XPLINK and NOXPLINK cannot be combined in the same

program object.

XPLINK provides a significant performance enhancement to some applications, but

can degrade the performance of applications that are not suitable for XPLINK.

Another way to call an XPLINK function from a non-XPLINK program object is to

use the DLL call mechanism. There is an overhead cost associated with calls made

from non-XPLINK to XPLINK, and from XPLINK to non-XPLINK. This overhead

includes the need to swap from one stack type to another and to convert the

passed parameters to the style accepted by the callee. Applications that make a

large number of these ″cross-linkage″ calls may lose any benefit obtained from the

parts that have been compiled XPLINK. In fact, performance could degrade from

the pure non-XPLINK case. If the number of pure XPLINK function calls is

significantly greater than the number of ″cross-linkage″ calls, the cost saved on

XPLINK calls will offset the costs associated with calls that involve stack swapping.

When you introduce an XPLINK program object into your application (for example,

an XPLINK version of a vendor-DLL which your application uses), your application

must run in an XPLINK environment (this is controlled by the XPLINK run-time

option). In an XPLINK environment, an XPLINK version of the C/C++ Run-Time

Library (RTL) is used. You cannot have both the non-XPLINK and XPLINK versions

of the C/C++ RTL active at the same time, so non-XPLINK callers of the C/C++

RTL will also incur this stack swapping overhead in an XPLINK environment.

The maximum performance improvement can be achieved by recompiling an entire

application XPLINK. The further the application gets from pure XPLINK, the less the

performance improvement. At some point, you may actually see a performance

degradation.

The only compiler that currently supports the XPLINK compiler option is the z/OS

C/C++ compiler. All COBOL and PL/I programs are non-XPLINK. Calls between

COBOL or PL/I and XPLINK-compiled C/C++ are cross-linkage calls and will incur

the stack swapping overhead.

For more information on making ILC calls with XPLINK, refer to z/OS Language

Environment Writing Interlanguage Communication Applications.

Applications that use Language Environment facilities that are not supported in an

XPLINK environment, or that use products that are not supported in an XPLINK

environment (for example, CICS), can not be recompiled as XPLINK applications.

For more information about XPLINK, see z/OS Language Environment

Programming Guide and the IBM Redbook called XPLink: OS/390 Extra

Performance Linkage, which is available at: http://www.redbooks.ibm.com/
abstracts/sg245991.html.

Using the IPA option

Interprocedural Analysis (IPA), through the IPA compiler option, can also improve

the execution time of your z/OS XL C/C++ application. IPA is a mechanism for

performing optimizations across compilation unit boundaries. It also performs

optimizations not otherwise available with the z/OS XL C/C++ compiler, such as:

v Inlining across compilation units

540 z/OS V1R8.0 XL C/C++ Programming Guide

v Program partitioning

v Coalescing of global variables

v Code straightening

v Unreachable code elimination

v Call graph pruning of unreachable functions

IPA also supports Program-directed feedback (PDF). The PDF suboptions allow the

compiler to use information from training runs when optimizing the code. The

compiler can then focus its optimizations on the most executed parts of the code

and move low-priority code out of the critical path.

This section provides an overview of the Interprocedural Analysis (IPA) processing

that is available through the IPA compiler option. For more information, see:

v For the effects of IPA on compiling, compiler options, and compiler listings: IPA

considerations in z/OS XL C/C++ User’s Guide

v For the effects of IPA on pragmas: IPA considerations in z/OS XL C/C++

Language Reference

Types of procedural analysis

The z/OS XL C/C++ compiler performs both intraprocedural and interprocedural

analysis.

Intraprocedural analysis is a mechanism for performing optimization for each

function in a compilation unit, using only the information available for that function

and compilation unit.

Interprocedural analysis is a mechanism for performing optimization across function

boundaries. The C/C++ compiler performs limited interprocedural analysis if inlining

is in effect. But this form of interprocedural analysis only applies within a

compilation unit.

Interprocedural analysis through the IPA compiler option improves upon the limited

interprocedural analysis described above. When you invoke interprocedural analysis

through the IPA option, the compiler performs optimizations across the entire

program. It also performs optimizations not otherwise available with the C/C++

compiler. The types of optimizations performed include:

Inlining across compilation units

Inlining replaces certain function calls with the actual code of the function.

Inlining not only eliminates the linkage overhead but also exposes the entire

function to the caller and thus enables the compiler to better optimize your

code.

Program partitioning

Program partitioning improves performance by reordering functions to

exploit locality of reference. Functions that call each other frequently will be

closer together in memory.

Coalescing of global variables

The compiler puts global variables into one or more structures and

accesses the variables by calculating the offsets from the beginning of the

structures. This lowers the cost of variable access and exploits data locality.

Code straightening

Code straightening streamlines the flow of your program.

Chapter 37. Improving performance with compiler options 541

Unreachable code elimination

Unreachable code elimination removes unreachable code within a function.

Call graph pruning of unreachable functions

Call graph pruning of unreachable functions removes code that is 100%

inlined or never referenced.

Intraprocedural constant and set propagation

IPA propagates floating point and integer constants to their uses and

computes constant expressions at compile time. Also, variable uses that are

known to be one of several constants can result in the folding of

conditionals and switches.

Intraprocedural pointer alias analysis

IPA tracks pointer definitions to their uses, resulting in more refined

information about memory locations that a pointer dereference may use or

define. This enables other parts of the compiler to better optimize code

around such dereferences. IPA tracks data and function pointer definitions.

When a pointer dereference can only refer to a single memory location or

function, the dereference is rewritten to be an explicit reference to the

memory location or function.

Intraprocedural copy propagation

IPA propagates expressions defining some variables to the uses of the

variable. This creates additional opportunities for constant expression

folding. It also eliminates redundant variable copies.

Intraprocedural unreachable code and store elimination

IPA removes definitions of variables that cannot be reached, along with the

computation feeding the definition.

Conversion of reference (address) arguments to value arguments

IPA converts reference (address) arguments to value arguments when the

formal parameter is not written in the called procedure.

Conversion of static variables to automatic (stack) variables

IPA converts static variables to automatic (stack) variables when their use is

limited to a single procedure invocation.

The execution time for code optimized using IPA (IPA compile and link) is normally

faster than for code optimized using interprocedural analysis (IPA compile only) or

the OPT compiler option. Please note that not all applications are suited for IPA

optimization and the performance gains realized from using IPA will vary.

Note: For additional information about using the IPA(LINK) option, see “The

IPA(LINK) option and exploitation of 64-bit virtual memory” on page 344.

Program-directed feedback

IPA uses program-directed feedback (PDF) to organize the code and to focus

optimization on the frequently-used portions of the code. This can result in

significant performance gains. Using PDF is a two-step process, that first gathers

training data, then optimizes code during compile time.

Training data is gathered by running an application that was built using the PDF

suboptions. When the application is run it collects information about itself. This

information is the training data. The application should be run in a normal manner

with accurate and varied input in order to gather as much valid training data as

possible.

542 z/OS V1R8.0 XL C/C++ Programming Guide

|
|

The second IPA build uses the training data when optimizing. This training data

gives IPA information on:

v The most common paths

v The critical paths

v The least-used parts of the code

Compiler processing flow

IPA changes the flow of compiler processing. This section explains the differences.

Regular compiler execution

If you specify the NOIPA compiler option (the default), the compiler processes

source files as shown in Figure 141. The output is an object module for each

source file processed. You can then bind the object modules to produce an

executable module.

Compiler execution with IPA

IPA processing consists of two steps: IPA Compile and IPA Link. You run the IPA

Compile step once for each compilation unit, and run the IPA Link step once for the

program as a whole. The final output is a single IPA-optimized object module which

you must bind with the binder to produce an executable load module.

Note: If you want to get the maximum benefit from IPA, run both the IPA Compile

and IPA Link steps.

You can invoke the IPA Compile step in the same environments that you use for a

regular compilation. You can invoke the IPA Link step only in MVS batch mode or in

one of the z/OS UNIX System Services shell environnments through the c89 utility.

This section describes the flow of IPA processing under MVS batch. The flow of

processing with the c89 utility is the same, but there are differences in how you

invoke IPA.

IPA Compile step processing: You invoke the IPA Compile step by specifying the

IPA(NOLINK) compiler option (NOLINK is the default suboption). During the IPA

Compile step, the compiler creates optimized objects. These objects contain

information that the IPA Link step can use for further optimization.

Analysis phase

Invocation parameters

Compiler

Code generation
phase

Source file(s)
Listing sections
Messages

Object module(s)
Listing sections
Messages

Figure 141. Flow of regular compiler processing

Chapter 37. Improving performance with compiler options 543

The following processing takes place for each compilation unit that you specify for

the IPA Compile step:

1. The compiler determines the final suboptions for the IPA option, based upon the

compiler options and IPA suboptions that you specified. This is necessary

because the compiler does not support some combinations of compiler options

and IPA suboptions. The compiler issues a warning message if it finds

unsupported combinations.

2. The compiler promotes some IPA suboptions based upon the presence of

related compiler options and issues informational messages if it does so. For

more information, see interactions in z/OS XL C/C++ User’s Guide.

3. The compiler generates an IPA object file. This object file contains control

information for a compilation unit required for the IPA Link step.

The IPA object module produced by IPA (NOLINK,NOOBJECT) has the same

structure as a regular object module. It should not be used as input to the

prelinker, linker, or binder.

Each IPA object contains a CSECT that includes the ESD name @@IPAOBJ.

4. If you specify the OBJECT suboption of the IPA option, the compiler produces a

combined IPA and conventional object file. The IPA object connection occurs

through the conventional object through END records. While the conventional

object file is not required by the IPA Link step, creating it permits you to bind

this file to create an executable module without IPA optimization. It is difficult to

debug IPA optimized code. You can use an executable module that is not

optimized to debug your program.

During the IPA Compile step, the compiler generates information that allows you to

create object libraries with the C370LIB utility or to create z/OS UNIX System

Services archives with the ar utility. The information consists of XSD and ESD

records for the external symbols that were defined in the compilation units of your

program. You can use the object libraries and z/OS UNIX System Services archives

for autocall searching in the IPA Link step. During autocall searching, the IPA Link

step searches these libraries and archives for external references from your

program.

IPA Compile step processing is shown in Figure 142 on page 545.

544 z/OS V1R8.0 XL C/C++ Programming Guide

IPA Link step processing: You invoke the IPA Link step by specifying the

IPA(LINK) compiler option. During this step, the compiler links the IPA objects that

were produced by the IPA Compile step (along with non-IPA object files and load

modules, if specified), does partitioning, performs optimizations, and generates the

final object code.

The following processing takes place:

1. The compiler determines the final suboptions for the IPA option, based upon the

compiler options and IPA suboptions you specify. This is necessary because

some combinations of compiler options and IPA suboptions are unsupported.

The compiler issues informational and warning messages for unsupported

combinations.

2. The compiler links IPA object files, as well as non-IPA object files and load

modules (if specified). The compiler also merges information from the IPA

Compile step.

Input for the Link step comes from one of three sources:

v The primary input file (specified by the SYSIN ddname). This can be either:

– A set of IPA Link control statements that you create

These may be INCLUDE and LIBRARY IPA Link control statements that

explicitly identify secondary input files. IPA uses the same control

statement format (with some exceptions) used by the binder.

– The IPA object file from the compilation unit that contains the main function

or fetchable entry point. If you specify this file, the compiler searches for

all other IPA files using the SYSLIB ddname.

v One or more secondary input files

The secondary input file may contain:

Analysis phase

Invocation parameters
(IPA or IPA(NOLINK),

other suboptions may be
specified)

Compiler

IPA compile
optimization phase

IPA object
creation

Code generation
phase (optional)

Source file(s)
Listing sections
Messages

Messages
IPA object(s)

Messages

Listing sections
Messages
Regular object(s)

Figure 142. IPA compile step processing

Chapter 37. Improving performance with compiler options 545

– IPA object files or PDS libraries

– Conventional object files or PDS libraries

– Load module libraries

– z/OS UNIX System Services archive libraries

– IPA Link control statements

These secondary input files are to be used for autocall searches. You can

specify these files through the SYSLIB ddname or explicitly include them

through INCLUDE or LIBRARY IPA Link control statements on the IPA Link

step.

Load module libraries are used to support library interface routines (such as

CICS and Language Environment) that are implemented as load module

libraries. Since IPA must resolve all parts of your application program before

beginning optimization, make all of these libraries as well as your application

object modules available to the IPA Link step.

The IPA Link step resolves external references using explicit and autocall

resolution. This allows IPA to identify the static and global data and the

external references for the whole program.

Ensure that you do not accidentally specify FB, LRECL 80 source files as

input to the IPA Link step. The IPA Link step will assume that records from

these files contain valid object information, and will retain them in the object

file. When the linkage editor processes the object file, it will determine the

records to be invalid, and will issue diagnostic messages.

v The IPA Link step control file. This file contains additional IPA control

directives. The CONTROL suboption of the IPA compiler option identifies this

file. For more information, see IPA Link step control file in z/OS XL C/C++

User’s Guide.

3. As objects are processed, IPA Link Step builds the program call graph, merging

the IPA object code according to its place in the call graph. If necessary, IPA

Link Step stores non-IPA object code for inclusion in the final object file, and

converts load module library members into object format for inclusion in the final

object file.

4. The compiler performs optimizations across the call graph. You specify the type

and extent of optimizations using the LEVEL suboption of the IPA compiler

option.

5. IPA Link Step divides the program call graph into separate units called

partitions. Partitioning of the call graph is controlled by:

v The partition size limit that is specified in the IPA control file.

v The connectivity of your program. IPA places code that is isolated from the

rest of the program into a separate partition.

v Resolution of conflicting effects between the compiler options and pragmas

specified for compilation units processed during the IPA Compile step. These

are the compiler options and pragmas that generate information during the

analysis phase of the compiler for input to the code-generation phase.

IPA Link Step produces a final single object module for the program from these

partitions.

You must bind the IPA single object module to produce the executable module.

Note: IPA Compile and IPA Link as follows:

v An object file produced by an IPA Compile that contains IPA Object or

combined IPA and conventional object information can be used as input to

the z/OS XL C/C++ IPA Link of the same or later Version/Release.

546 z/OS V1R8.0 XL C/C++ Programming Guide

v An object file produced by an IPA Compile that contains IPA Object or

combined IPA and conventional object information cannot be used as

input by the z/OS XL C/C++ IPA Link of an earlier Version/Release. If this

is attempted, the IPA Link will issue an error diagnostic message.

v If the IPA object is recompiled by a later z/OS XL C/C++ IPA Compile,

additional optimizations may be performed and the resulting application

program may perform better.

An exception to this is the IPA object files produced by the OS/390 Release

2 C IPA Compile. These must be recompiled from the program source using

a compiler that is version OS/390 Release 3 or later before attempting to

process them with the current IPA Link.

IPA Link step processing is shown in Figure 143.

IPA object
link phase

Analysis/
optimization phase

Code generation
phase

Invocation parameters
(IPA(LINK, CONTROL(dsn))

(other IPA suboptions may be
specified)

Compiler

Primary input file (object)

IPA control file
Secondary input (object, load module)

Listing sections
Messages

Listing sections
Messages

Listing sections
Messages
Final object code

Figure 143. IPA link step processing

Chapter 37. Improving performance with compiler options 547

548 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 38. Optimizing the system and Language

Environment

This chapter gives some basic tips for tuning Language Environment for optimal

C/C++ performance, and some basic system setup tips for efficient program

execution.

Improving the performance of the Language Environment

This section discusses how to increase the performance of an application by:

v “Storing libraries and modules in system memory”

v “Optimizing memory and storage”

v “Optimizing run-time options” on page 550

Storing libraries and modules in system memory

One way to boost performance is to load common or reusable modules into

memory. For example, placing the Language Environment Library in a link pack

area (LPA) can increase the performance of your entire system. This is

recommended if your z/OS system contains many applications that use the

Language Environment Library, or is a heavy user of z/OS UNIX. LPAs store

reentrant routines from system libraries. This saves loading time when a reentrant

routine is needed. Individual modules can also be loaded into a single LIBPACK, in

order to reduce the time that would otherwise be needed to load the individual load

modules.

For instructions for placing Language Environment Modules in Link Pack and

LIBPACK, see z/OS Language Environment Customization.

If LPAs or LIBPACKS do not have enough space for the Language Environment

Library, then you can place it into a library lookaside (LLA). This reduces library I/O

activity by keeping selected directory entries in storage.

Similarly, if your application uses C++ class libraries, then application performance

may be increased by placing specific libraries in the LPA or the dynamic link pack

area (DLPA). For example:

v If the application is a heavy user of the C++ ANSI Standard Libraries, then place

the 31-bit CEE.SCEERUN2(C128) or 64-bit CEE.SCEERUN2(C64) Language

Environment run-time library in the DLPA.

v If the application is using the non-XPLINK C++ standard library, then place the

CEE.SCEERUN(C128N) Language Environment run-time library in an LPA.

v If the application is a heavy user of the USL IOSTREAM libraries, then place the

CBC.SCLBDLL Language Environment run-time library in an LPA (for

non-XPLINK applications) or the CBC.SCLBDLL2 Language Environment

run-time library in a DLPA (for XPLINK applications).

Optimizing memory and storage

Memory allocations can significantly affect the performance of your application. You

can optimize your run-time space requirements by using the following Language

Environment run-time options:

 ANYHEAP LIBSTACK

© Copyright IBM Corp. 1996, 2006 549

BELOWHEAP THREADSTACK

HEAP STACK

HEAPPOOLS STORAGE

Stack extensions can also cause significant performance hits. For this reason:

v The STACK specified should be large enough to ensure that a stack extension

never occurs during the execution of the program.

v The HEAP should be large enough for an average application execution run, and

the increment size should be a reasonable portion of the difference between the

typical heap used and the maximum amount of heap that may be used.

v Use the RPTSTG(ON) run-time compiler option or the __heaprpt() function to

determine the storage usage and the option settings for the given run of your

application. The generated report will show if the ANYHEAP, BELOWHEAP, LIBSTACK,

and THREADSTACK are set to the recommended values. The STACK and HEAP

defaults should be as specified above.

The RPTSTG(ON) option should not be used in the final build or run because it is

resource-intensive, which adversely affects the performance of the application. The

__heaprpt() function, which does not require the RPTSTG(ON) option, obtains a

summary heap storage report while your application is running. For more

information, see __heaprpt() in z/OS XL C/C++ Run-Time Library Reference.

You can also tune I/O storage by using the _EDC_STOR_INITIAL and

_EDC_STOR_INCREMENT environment variables. The I/O storage usage is not in the

storage report.

See z/OS Language Environment Programming Guide for more information on

run-time storage.

Optimizing run-time options

In addition to the memory options, the ALL31 and HEAPPOOLS run-time options can

improve the performance of your application. ALL31 indicates that a Language

Environment application has a 31-bit addressing mode. The Language Environment

default is ALL31(ON). If your application has some AMODE 24 components, you will

need to run the application with ALL31(OFF), but will lose some performance.

The HEAPPOOLS run-time option might increase storage use, but will improve the

performance of the application. This option is effective if:

v The application is multi-threaded

v The application often uses:

– new()

– delete()

– new[]()

– delete[]()

– malloc()

– realloc()

– calloc()

– free()

550 z/OS V1R8.0 XL C/C++ Programming Guide

HEAPPOOLS(ON) is also quite helpful if you use any of those functions and have

compiled with the XPLINK compiler option. Use HEAPPOOLS64(on) if you are compiling

under LP64.

Note: If you are not sure which settings of ALL31 and HEAPPOOLS are in effect, use

the Language Environment run-time option RPTOPTS. RPTOPTS(ON) generates

a report of run-time options and their settings that are in use by the

currently-running application. Because this option diminishes the

performance of the application, it should be used for diagnosis purposes

only.

Tuning the system for efficient execution

This section is a quick overview of a ways to preload modules, DLLs, files, and

directories into z/OS. In general, preloading reduces overhead and memory cost.

For more detailed information, see the following documents:

v Tuning Large C/C++ Applications on z/OS UNIX System Services

v z/OS UNIX System Services Planning

v z/OS MVS Initialization and Tuning Guide

Link pack areas

It is recommended that you preload items that are either critical or frequently used

into the link pack area (LPA). For batch and z/OS UNIX tasks, use LPA for modules

or dynamic LPA for program objects. If LPA is not an option due to system

requirements, then consider putting the module into LLA.

IMS and CICS both have similar methods to allow you to preload a frequently used

module.

Library lookasides

The library lookaside facility (LLA) reduces the amount of I/O activity necessary to

locate and fetch modules and program objects from storage. In addition, LLA can

work with virtual lookasides to quickly fetch modules from virtual storage instead of

from a direct access storage device (DASD).

Virtual lookasides

The virtual lookaside facility (VLF) is used to cache various items to reduce I/O,

reduce CPU time, and increase response time. For example, you can cache the

user IDs (UIDs) and group IDs (GIDs), which will reduce the DASD I/O overhead for

Resource Access Control Facility (RACF) calls.

Filecaches

The filecache command allows frequently-accessed, read-only z/OS UNIX files to

be cached in the z/OS UNIX kernel. This reduces the overhead used to access the

file and increases performance. For example, filecache can be used to store

frequently used headerfiles, and thereby reduce the compile-time of an application.

For more information, see “System programmer tips” on page 555.

Chapter 38. Optimizing the system and Language Environment 551

552 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 39. Balancing compilation time and application

performance

Compilation time increases as the level of optimization increases.

An end user requires that an application run as fast as possible, and therefore will

compile with the maximum optimization possible. Conversely, a developer rebuilds

an application many times while debugging a problem, and therefore will compile

with the minimum optimization possible. In addition, a developer might need to

implement debugging tools, or activate extra debugging code, both of which would

affect the performance of the application.

This chapter discusses how to determine the proper balance between compilation

time and application performance.

General tips

The following list contains suggestions to support your efforts to debug programs,

and reduce compilation time, and improve application performance.

v All builds for testing or production should be compiled with the optimization level

at which you intend to ship the final product.

v Even if you compile with opt(0) and debug on a regular basis, you should also

do some testing at higher optimization levels to ensure that no aliasing rules or

ANSI rules have been broken, which would cause the code to be optimized

incorrectly.

v You can ensure the cleanest possible optimized compilations, as well as reduce

the number of bugs that occur only at high optimization levels, by reviewing

every warning issued by the compiler.

Note: Warnings are often a sign that the compiler is not sure how to interpret the

code. If the compiler is not sure how to interpret code at Opt(0), the code

could cause an error at higher optimization levels or contribute to longer

compilation times.

v The simpler the code is, the more easily the compiler can understand it and the

faster it will compile. For more information, see Chapter 34, “Improving program

performance,” on page 507

v The CHECKOUT (for C) or INFO(for C++) option can be used to look for certain

common problems (such as unprototyped functions and uninitialized variables)

that can increase both compilation time and execution time.

v Generate production builds each week throughout the project cycle. This makes

it easier to determine when problems entered the code base. Waiting until the

end of a cycle to generate a build with high optimization can make it more

difficult to find errors caused by coding that does not confirm to ANSI aliasing

rules.

v Set up a build so that you can customize options for any source file, if necessary.

For example, use a makefile for a UNIX System Services-based build with a

default rule for compilation. You can then customize targets for source files that

require different options. Similarly, use the OPTFILE compiler option for a

JCL-based build. A build script can then use a project-level option file for all

source files in a module or DLL. You can specify either of the following:

– Both a project-level option file and additional specific options for a source file

– A source-specific option file in the option list that follows the options file name

© Copyright IBM Corp. 1996, 2006 553

v Set up build scripts so that they can be used for both development and

production builds to:

– Eliminate a common source of errors (because it is necessary to update only

one build environment)

– Make it easier to reproduce and debug problems that occur only in the

development build

– Minimize occurrences of bugs that are reproducible only in the development

build

Programmer tips

v You can add code to the beginning and end of a header file to ensure that it is

not processed unnecessarily during compilation.

Example: The following example contains code that is included in a header file

called myheader.

 #ifndef __myheader

 #ifdef __COMPILER_VER__

 #pragma filetag ("IBM-1047")

 #endif

 #define __myheader 1

 .

 .

 . /* header file contents */

 #endif

You must ensure that the filetag statement, if used, appears before the first

statement or directive (except for any conditional compilation directives). The

ifndef statement is the first non-comment statement in the header file (the actual

token used after the ifndef statement is your choice). The define statement

must follow; it cannot appear before the filetag statement, but it must appear

before any other preprocessor statement (other than comments).

Note that the header can contain comment statements in any location. Using this

format of header-file blocking will improve compilation time for programs where a

header file is included more than once.

v Use the system header files from HFS instead of partitioned data sets to improve

compilation time. Specify the following compiler options to do this:

– For C++: NOSEARCH SEARCH(’/usr/include/’, ’/usr/lpp/cbclib/include/’)

– For C: NOSEARCH SEARCH(’/usr/include/’)

v With the MEMORY compiler option (the default), the compiler uses a hiperspace or

memory file in place of a work file (if possible). This option increases compilation

speed, but you might require additional memory to use it. If the compilation fails

because of a storage error, either increase your storage size or recompile your

program using the NOMEMORY option.

v If your file has many recursive tempate definitions and you want to use the

TEMPINC option, the FASTTEMPINC compiler option might reduce the compilation

time.

Note: This option defers generating object code until the final versions of all

template definitions have been determined. Then, a single compilation

pass generates the final object code. Time is not wasted generating object

code that will be discarded and generated again.

If your application has very few recursive template definitions, NOFASTTEMPINC

might be faster than FASTTEMPINC.

554 z/OS V1R8.0 XL C/C++ Programming Guide

v If you want to achieve a good balance of compilation time and small modules

that execute quickly, consider using the TEMPLATEREGISTRY option instead of

TEMPINC or NOTEMPINC.

v If a source file does not have try/catch blocks or does not throw objects, then the

NOEXH C++ compiler option may improve the compilation time. The resultant code

will not be ANSI-compliant if the program uses exception handling.

v If you want to improve your OPT compilation time at the expense of run-time

performance, you can specify:

MAXMEM Limits the amount of memory used for local tables of specific,

memory intensive optimizations. If this amount of memory is

insufficient for a particular optimization, the compiler performs

somewhat poorer optimization and issues a warning message.

Reducing the MAXMEM value from 2G to 10M may disable some

optimizations, which may cause some decrease in execution

performance.

NOINLINE Disables inlining and may therefore decrease the compilation

time. There might also be a corresponding increase in execution

time.

System programmer tips

v If you do a lot of application development on your machine, put the compiler and

run-time library in the LPA. Similarly, if you are working in z/OS UNIX System

Services also put the c89/cxx/cc utilities in the dynamic LPA, LPA or linklist.

v Use packs that are cached with DASD fast write.

If you are working in z/OS UNIX System Services, give each user a separate

mountable file system to avoid I/O contention.

If the compiler is not in LPA, tune your jobs to avoid channel and pack contention

when the headers and the compiler are on the same pack and multiple compile

jobs are executing.

v You can use the filecache command to store frequently used header files in an

HFS file system. If you use the makedepend utility to generate dependency

information, use the LIST option to generate a listing from makedepend. The

summary section of this listing shows a list of the most frequently called headers

and the frequency of these calls. Use this information to determine which

headers should be cached.

v You can define /tmp as a RAM disk by specifying:

FILESYSTYPE TYPE(TFS) ENTRYPOINT(BPXTFS)

This is described in more detail in z/OS UNIX System Services Planning.

Chapter 39. Balancing compilation time and application performance 555

556 z/OS V1R8.0 XL C/C++ Programming Guide

Part 6. z/OS XL C/C++ Environments

This part describes the different z/OS XL C/C++ environments. Note that the

MultiTasking Facility and the System Programming C Facilities are not available for

z/OS XL C++. If you attempt to run an SPC application under z/OS XL C++, it will

abend.

v Chapter 40, “Using the system programming C facilities,” on page 559

v Chapter 41, “Library functions for system programming C,” on page 603

v Chapter 42, “Using run-time user exits,” on page 609

v Chapter 43, “Using the z/OS XL C MultiTasking Facility,” on page 627

© Copyright IBM Corp. 1996, 2006 557

558 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 40. Using the system programming C facilities

This chapter explains how to use the system programming C (SPC) facilities with

z/OS XL C.

Notes:

1. Using the system programming C facilities, by programs which have been

compiled with z/OS XL C++ is not supported.

2. IPA is not supported in an SPC environment unless there is a main() function

present.

3. XPLINK is not supported by the SPC facilities.

4. AMODE 64 applications are not supported by the SPC facilities.

When z/OS XL C applications are compiled, many routines are needed to support

the z/OS XL C environment that are not included in your executable. These

routines, which are in z/OS Language Environment, are dynamically loaded at run

time. This reduces the size of the program to its practical minimum and provides for

the sharing of z/OS XL C library code by allowing its placement in Extended Link

Pack Areas.

z/OS Language Environment provides facilities to set up the environment, handle

termination, provide storage management, error handling, interlanguage calls and

debugging support. Also, the C library functions are provided with z/OS Language

Environment. In situations where not all of these services are needed or available,

or more control over the executive environment is required, the system

programming C facilities can provide a reduced customizable environment for your

application.

System programming facilities enable you to run applications without z/OS

Language Environment or with just the z/OS XL C library functions available. You

can:

v Use a subset of the C language to develop specialized applications that do not

require z/OS Language Environment on the machines where the application will

run.

You can write freestanding applications that:

– Do not use the dynamic run-time library.

– Use only the C-specific library functions without any z/OS Language

Environment facilities to manage the execution environment.

For example, a system programming application could use the C-specific library

function printf() but not have the common run time initialize the environment.

The system programming facilities would handle initialization.

For more information on this type of application, see “Creating freestanding

applications” on page 562.

v Use z/OS XL C as an assembler language alternative, such as for writing exit

routines for MVS, TSO, or JES.

For more information on this type of application, see “Creating system exit

routines” on page 568.

v Develop applications featuring a persistent C environment, where a z/OS XL C

environment is created once and used repeatedly for C function execution.

For more information on this type of application, see “Creating and using

persistent C environments” on page 572.

© Copyright IBM Corp. 1996, 2006 559

v Develop co-routines using a two-stack model, as used in client-server style

applications. In this style, the user application calls upon the applications server

to perform services independently of the user and then returns to the user.

For more information on this type of application, see “Developing services in the

service routine environment” on page 577.

Note: Using the decimal data type and its related functions (decabs(), decchk(),

and decfix()) without z/OS Language Environment is not supported.

Using functions in the system programming C environment

If you do not want to use the z/OS Language Environment run-time library and the

z/OS XL C run-time component within z/OS Language Environment the following

functions are available in the SPC environment:

v The following library functions are available as built-in so that they can be used

without the run-time library:

Mathematical

abs(), fabs()

Memory manipulation

memchr(), memcmp(), memcpy(), memset(), cds(), cs()

String operations

strcat(), strchr(), strcmp(), strcpy(), strlen(), strrchr()

The built-in versions of these functions are available only if the appropriate

header file (string.h, math.h, or stdlib.h) is included in the source file. The use

of these functions is described in z/OS XL C/C++ Run-Time Library Reference.

v The memory management functions, including complete support for:

– The malloc() function

– The calloc() function

– The realloc() function

– The free() function

– The HEAP run-time option

v The exit() function

v The sprintf() function.

Note: The use of floating point conversion specifiers (e,E,f,g or G) is not

supported without the Language Environment run-time.

Additional memory management functions are available in the system programming

C environment, as follows:

__4kmalc()

to allocate page-aligned storage

__24malc()

to allocate storage below the 16MB line in ESA systems (where MB is

1048576 bytes) even when HEAP(ANYWHERE) is specified.

Storage allocated by these functions is not part of the heap, so freeing it is your

responsibility. You can use the free() function to free the storage before the

environment is terminated. Storage allocated using these functions is not

automatically freed when the environment is terminated.

560 z/OS V1R8.0 XL C/C++ Programming Guide

In this environment, low-level memory management functions and contents

supervision (loading and deleting executable code) are supported by low-level

routines that you can replace to support non-standard environments. This is

described in “Tailoring the system programming C environment” on page 595.

System programming C facility considerations and restrictions

When using any system programming C environment, consider the following:

v The long long data type is not supported for the function sprintf() under SPC. If

you need to use the long long data type, you must use the C/C++ Run-Time

library version of the sprintf() function.).

v The fetch() function is not supported when you are running in a system

programming C environment. You can use the EDCXLOAD routine, as described in

“EDCXLOAD” on page 599, to simulate some of the functionality of the fetch()

function.

v The IMS parameter list established by the #pragma runopts(PLIST(IMS)) directive

is not supported in any of the system programming environments. However, this

does not preclude the use of IMS within these environments, because the

registers upon entry are available using the __xregs() function and ctdli() is

bound statically. For more information on __xregs(), refer to “__xregs() — Get

Registers on Entry” on page 605.

v Interlanguage calls to COBOL and PL/I are not supported. However, an SPC

program can use the system() function to call modules written in other

languages.

v SPC is not supported under CICS or MTF.

v Library functions for use with HFS I/O are not supported under SPC. Calling

them causes unpredictable results.

v All run-time options are ignored except for:

– STACK

– HEAP

– TRAP

v Redirection of standard streams is not supported.

v The default initial stack size is the minimum size required to start the C program.

(This default is different from the non-systems programming C environments.) If a

size is specified, that actual value is used, provided it is large enough. If the

value specified is smaller than the requirements for the program, the required

value is used.

v The default value for the HEAP run-time option is HEAP(12K,4K,ANY,FREE).

v When you are running a service routine, you should with #pragma

runopts(TRAP(OFF)).

v Exception handling is not supported in a persistent environment.

v Invoking the system() function from an atexit() function results in undefined

behavior.

v When using the atexit() function from a persistent environment, the atexit list

will not be run until the persistent environment has been terminated by the

__xhott() library function. For more information about this function, see

“__xhott() — Terminate a Persistent C Environment” on page 604.

v Calls to math library functions can be made in a system programming C

environment using the dynamic library. For the most efficient use of calls to math

library functions, you should enclose the function name in parentheses (). For

example, if you make a call to sin(), use:

Chapter 40. Using the system programming C facilities 561

z = (sin)(x);

v You cannot call ctrace(), csnap(), cdump(), or ctest() because they rely on

z/OS Language Environment callable services.

v System programming C environments are disjointed from each other; that is,

memory files cannot be passed and file control is not maintained across

environments. Thus, memory files cannot be passed between a C program and a

callee that is written as an assembler exit.

An exception is between environments where the target environment is built with

EDCXSTRL or EDCXSTRX but does not represent a server. For example, if a C

program invokes a freestanding SPC application that is not a server by using

system(), a memory file can be passed successfully between the programs.

v When developing an application with an interface with assembler, you can use

the DSECT Conversion Utility to build structures mapping to the data types of

your DSECTs.

v The POSIX locale features and coded character set conversion routines are

supported only for system programming applications that use z/OS Language

Environment. They are not available for freestanding applications.

Creating freestanding applications

Freestanding applications are C modules that run either:

v Without z/OS Language Environment and the z/OS XL C library (using EDCXSTRT)

v Without z/OS Language Environment but with the z/OS XL C library functions

(using EDCXSTRL)

Three initialization routines are provided by SPC for building freestanding

applications:

EDCXSTRT

For building completely freestanding applications. The applications can use

no z/OS XL C run-time library functions and can have no z/OS Language

Environment attachment.

EDCXSTRL

For building applications that use z/OS XL C run-time library functions but

have no z/OS Language Environment attachment.

EDCXSTRX

This routine accepts a parameter to choose whether your application should

behave as if it was initialized with either EDCXSTRT or EDCXSTRL. This

parameter is described further in “Setting up a C environment with

preallocated stack and heap” on page 564.

Certain restrictions apply to freestanding applications initialized by the routines

EDCXSTRT, EDCXSTRL, and EDCXSTRX. These restrictions are as follows:

v They cannot perform interlanguage calls, except with assembler language

routines that preserve register 12 and use the IBM-supplied macros for entry and

exit.

v The parameters received by the main() function (normally argc and argv) are

undefined. __xregs() (described in “__xregs() — Get Registers on Entry” on

page 605) can be used to examine the parameters passed by the calling

environment.

v They cannot do arithmetic using long double variables on pre-XA machines (that

is, on machines that do not support the DXR instruction).

562 z/OS V1R8.0 XL C/C++ Programming Guide

Creating modules without CEESTART

In many of the environments described in this chapter, the initialization normally

performed by z/OS Language Environment is replaced by special-purpose routines

that are tailored to the specific requirements of the type of application. This requires

replacing the initialization routine (CEESTART) normally used by z/OS XL C.

When you do not use the System Programming C Facilities, the compiler generates

a CEESTART CSECT (control section) whenever a main() or fetchable function is

encountered in the source file. With the NOSTART compiler option, described in the

z/OS XL C/C++ User’s Guide, you can suppress the generation of CEESTART for

source files that contain a main() function where this is required. In a system

programming C environment, you must compile using the NOSTART option. The

object modules created will then be suitable for inclusion in applications that use the

alternative initialization routines described in this chapter.

Including an alternative initialization routine under z/OS

When NOSTART is used to suppress the generation of CEESTART, an alternative

initialization routine must be explicitly included in the executable by the user at Link

Edit. Use the Linkage Editor INCLUDE and ENTRY control statements. To include the

alternative initialization routines described in this chapter, allocate CEE.SCEESPC

to the SYSLIB DD. For example, you can use the following linkage editor statements

to specify EDCXSTRT as an alternative initialization routine:

 Another example of specifying alternative initialization under z/OS is shown in

Figure 146 on page 566.

Initializing a freestanding application without Language Environment.

EDCXSTRT

This routine is for C applications that do not use any z/OS Language Environment

facilities or z/OS XL C facilities or library functions. It must be explicitly included in

the program and specified as the program entry point if it is to be used.

Under this environment, only the following library routines are supported:

v Built-in compiler functions. For a list of these functions, see “Using functions in

the system programming C environment” on page 560.

v Memory management routines, including malloc(), calloc(), realloc(), and

free().

v The exit() and sprintf() functions.

Note: The use of floating point conversion specifiers (e, E, f, g or G) is not

supported without the Language Environment run-time. Since the use of

EDCXSTRT allows the application to execute without the use of the

Language Environment run-time, the use of the above conversion

specifiers with sprintf() in this environment is not supported.

v The __4kmalc() and __24malc() functions.

//SYSLIN DD *

 INCLUDE SYSLIB(EDCXSTRT)

 ENTRY EDCXSTRT

 INCLUDE OBJECT(main-function)

/*

Figure 144. Specifying alternative initialization at link edit

Chapter 40. Using the system programming C facilities 563

The value returned to the host system will be the return value from main().

The RENT compiler option is supported in this environment.

Initializing a freestanding application using C functions

EDCXSTRL

This routine is the analog of CEESTART for C applications that use the z/OS XL C

library functions only. EDCXSTRL supports the full library of C functions except for

functions such as cdump(), csnap(), ctest(), or ctrace(). EDCXSTRL must be

explicitly included in the program and specified as the program entry point if it is to

be used.

The value returned to the host system will be the return value from main().

The RENT compiler option is supported in this environment.

Service routines (described in “Developing services in the service routine

environment” on page 577) require this routine (or EDCXSTRT if they do not require

z/OS Language Environment) for their initialization.

Applications initialized with this routine will run in any environment supported by

z/OS Language Environment.

Setting up a C environment with preallocated stack and heap

EDCXSTRX

This routine is the analog of CEESTART for an application where you want to have

more control over contents supervision and storage management. Unlike EDCXSTRT,

EDCXSTRL, and CEESTART, this routine cannot be entered directly from the operating

system (that is, from JCL, REXX EXECs, CLISTs, or the TSO command line). It

requires a structured parameter list (OS linkage) containing:

Parameters

1. The parameter list to be passed to main(). __xregs() can be used to examine

the parameters passed by the calling environment. This list cannot be accessed

by argc or argv.

2. The address of the initial storage area. This area must be doubleword aligned

with its first word containing its total length. It must be large enough to

accommodate the entire stack requirements of the application.

3. The address of the complete heap allocation (or NULL if no malloc() family

storage is required by the called routines). This area must be doubleword

aligned with its first word containing its total length. This area must include

sufficient space for the control structures required to manage the heap (currently

a minimum of 40 bytes). Applications that use the z/OS XL C library functions

will always require heap space; the amount required depends on the structure

of the application and may vary from run to run if external characteristics (file

block sizes, for example) change.

Any heap increments that occur because the size of the initial heap is not large

enough will not be freed at termination by the system programming

environment. If no initial heap allocation is specified, and a heap is required

(because the z/OS XL C library functions are required, for example), it will not

be freed by the System Programming C Environment. If this behavior is

564 z/OS V1R8.0 XL C/C++ Programming Guide

detected, the program will run to completion, but will abend during EDCXSTRX

termination with abend code 2108 and reason code 7207.

Heap increments will be freed if you explicitly free the memory (using the free()

function) and the run-time option HEAP(FREE) has been specified. You should

specify a heap value of at least 4K if you are running with the z/OS XL C library

functions.

4. The address of the z/OS XL C run-time library or NULL. Use CEEEV003 (or EDCZV,

if you want to maintain compatibility with previous releases of OS/390 Language

Environment).

The parameters (argc and argv) passed to the main() function are undefined. There

is no argument parsing (argc and argv) or redirection of standard streams.

If the z/OS XL C library functions are required, the routine EDCXABRT must be

explicitly included during the link edit. This routine enables exception handling for

EDCXSTRX. If it is not explicitly included, abend code 2107 with reason code 7206

will terminate the program.

The RENT compiler option is supported in this environment only if the z/OS XL C

library functions are used.

Determining ISA requirements

EDCXISA

This entry point is available to the caller of EDCXSTRX to determine the stack space

overhead for the environment being created. Add stack space required by the

application to the value returned by this routine to determine the size of the area to

be passed as the second parameter to EDCXSTRX. If the routine is called from

assembler, the value should be expected in Register 15. The routine should be

declared as:

#pragma linkage(__xisa,OS)

int __xisa(void);

Building freestanding applications to run under z/OS

When you are building freestanding applications under z/OS, CEE.SCEESPC must

be included in the binder SYSLIB concatenation before CEE.SCEELKED.

The routines to support this function (EDCXSTRT, EDCXSTRL, and EDCXSTRX) are

CEESTART replacements (described in “Creating modules without CEESTART” on

page 563) in your module. Therefore, the appropriate EDCXSTRn routine must be

explicitly included ahead of the module at link edit.

A simple freestanding routine that requires the library is shown in Figure 145 on

page 566.

Chapter 40. Using the system programming C facilities 565

CCNGSP1

 This routine is compiled normally and link edited using control statements shown in

Figure 146. The CEE.SCEERUN load library must be available at run time because

it contains the C library function puts().

Figure 147 shows how to compile and link a freestanding program using the

cataloged procedure EDCCL.

Special considerations for reentrant modules

A simple freestanding routine that does not require the library is shown in

Figure 148 on page 567. To develop a reentrant module, this routine must be

compiled with both the RENT (because the module contains writable static at �2�)

and NOSTART (because this is a system programming environment) compiler options.

This routine uses the exit() function, which is normally part of the z/OS Language

Environment library. Like sprintf(), it is available to freestanding routines without

requiring the dynamic library.

/* this is an example of a freestanding routine */

#include <stdio.h>

int main(void) {

 puts("Hello, World");

 return 3999;

}

Figure 145. Sample Freestanding z/OS Routine

INCLUDE SYSLIB(EDCXSTRL)

INCLUDE OBJECT

ENTRY EDCXSTRL

Figure 146. Link edit control statements used to build a freestanding z/OS routine

//JOBC JOBCARD STATEMENTS

//*---

//***

//*** COMPILE AND LINK FOR STRL ENTRY POINT

//***

//C106001 EXEC EDCCL,

// INFILE=’USERID.SPC.SOURCE(C106000)’,

// OUTFILE=’USERID.SPC.LOAD(C106000),DISP=SHR’,

// CPARM=’OPT,NOSEQ,NOMAR,NOSTART’,

// LPARM=’RMODE=ANY,AMODE=31’

//COMPILE.USERLIB DD DSN=userid.HDR.FILES,DISP=SHR

//LKED.SYSLIB DD DSN=CEE.SCEESPC,DISP=SHR

// DD DSN=CEE.SCEELKED,DISP=SHR

//LKED.SYSIN DD *

 INCLUDE SYSLIB(EDCXSTRL)

 ENTRY EDCXSTRL

/*

Figure 147. Compile and link using EDCCL

566 z/OS V1R8.0 XL C/C++ Programming Guide

CCNGSP2

JCL required

The JCL required to build and execute this routine is shown in Figure 149.

�1� The z/OS Language Environment prelinker must be used for modules

compiled with the RENT compiler option.

�2� This is the object module created by compiling the sample module with the

RENT and NOSTART compiler options.

�3� The output from the prelinker is made available to the linkage editor.

�4� The alternative initialization routine (EDCXSTRT in this example) must be

included explicitly in the module. If this is not the first CSECT in the module, it

must be explicitly named as the module entry point.

�5� The prelinked output is included in the load module.

�6� EDCXEXIT must be explicitly included if the exit() function is used in the

application.

/* this is an example of a reentrant freestanding routine */

#include <stdlib.h> �1�

int main() {

 static int i[5]={0,1,2,3,4}; �2�

 exit(320+i[1]);

}

Figure 148. Sample reentrant freestanding z/OS routine

//PLKED EXEC PGM=EDCPRLK,PARM=’MAP,NCAL’ �1�

//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR

//SYSMSGS DD DSN=CEE.SCEEMSGP(EDCPMSGE),DISP=SHR

//SYSLIB DD DUMMY

//SYSMOD DD DSNAME=&&PLKSET,SPACE=(32000,(30,30)),UNIT=SYSDA,

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200),

// DISP=(MOD,PASS)

//SYSIN DD DSNAME=userid.TEST.OBJECT(PROG1),DISP=SHR �2�

//SYSOUT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//*

//*

//LKED EXEC PGM=HEWL,PARM=’MAP,XREF,LIST’ �3�

//SYSLIB DD DSNAME=CEE.SCEESPC,DISP=SHR

// DD DSNAME=CEE.SCEELKED,DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSLMOD DD DSNAME=&&GOSET(GO),SPACE=(512,(50,20,1)),

// DISP=(NEW,PASS),UNIT=SYSDA

//SYSUT1 DD SPACE=(32000,(30,30)),UNIT=SYSDA

//PRELINK DD DSNAME=&&PLKSET,DISP=(OLD,DELETE)

//SYSLIN DD *

 INCLUDE SYSLIB(EDCXSTRT) �4�

 INCLUDE PRELINK �5�

 INCLUDE SYSLIB(EDCXEXIT) �6�

 INCLUDE SYSLIB(EDCRCINT) �7�

/*

//*

//*--

//* Go Step

//*--

//GO EXEC PGM=*.LKED.SYSLMOD

//SYSPRINT DD SYSOUT=*

Figure 149. Building and running a reentrant freestanding z/OS routine

Chapter 40. Using the system programming C facilities 567

�7� The routine EDCRCINT must be explicitly included in the module if the RENT

compiler option is used. No error will be detected at load time if this routine

is not explicitly included. At execution time, abend 2106, reason code 7205,

will result if EDCRCINT is required but not included.

Parts used for freestanding applications

Table 87 lists the parts used for freestanding applications and their function and

location. The SYSLIB specified is CEE.SCEESPC.

 Table 87. Parts used for freestanding applications

Part Name Function

Inclusion in Program

Location Notes

EDCXSTRT This module is the mainline for

applications that do not require the z/OS

Language Environment or z/OS XL C

run-time library.

1 This CSECT must be

the module entry point.

Member of SCEESPC

EDCXSTRL This module is the mainline for

applications that require only the

C-specific library functions.

1 This CSECT must be

the module entry point.

Member of SCEESPC

EDCXSTRX This module is the mainline for

applications that receive a structured

parameter list that includes preallocated

storage management areas.

2 Member of SCEESPC

EDCXISA Get ISA requirements for EDCXSTRX. 2 Member of SCEESPC

EDCXSPRT System programming version of

sprintf().

3 Member of SCEESPC

EDCXEXIT System programming version of exit(). 3 Member of SCEESPC

EDCXMEM System programming version of

malloc(), calloc(), realloc(), free(),

__4kmalc() and __24malc().

3 Member of SCEESPC

EDCRCINT This must be included if the compiler

option RENT is to be used.

3 Member of SCEESPC

EDCXABRT System programming version of

exception handling.

3 Member of SCEESPC

Notes:

1. This module must be explicitly included in the program using the binder INCLUDE control statement.

2. This module will normally be included by automatic call.

3. This module must be explicitly included if you want to use the system programming version of the function.

Creating system exit routines

z/OS XL C allows the creation of routines that have no environmental requirements

on entry except:

v Register 13 must point to a 72-byte save area

v Register 14 must contain the return address

v Register 15 must contain the entry address

There is no requirement on the name of the entry point (that is, it does not have to

be main()), so several different entry points, with names specified by the calling

environment, can be combined in the same program.

568 z/OS V1R8.0 XL C/C++ Programming Guide

Routines that do not require the z/OS XL C environment should specify one of

these two pragma forms:

v #pragma environment(function-name), if the library is required, or

v #pragma environment(function-name,nolib), if no library is required.

This pragma causes the compiler to generate a different prolog for the specified

function. The prolog contains the instructions at the beginning of the routine that

perform the housekeeping necessary for the function to run, including allocation of

the function’s automatic storage. This prolog will set up a C environment sufficient

for both the function in which it is specified and any function that may be called.

Called functions should not specify this pragma, unless they are called elsewhere

without a C environment present. This new prolog will load and initialize the module

containing the C library functions if this choice is specified.

For more information on the #pragma environment, see z/OS XL C/C++ Run-Time

Library Reference.

The RENT compiler option is not supported in this environment; if you require

reentrant system exit routines, the routine must be naturally reentrant. See z/OS

Language Environment Programming Guide for more information about reentrancy.

System exit routines can be linked with their callers or dynamically loaded and

invoked.

Building system exit routines under z/OS

The CEE.SCEESPC object library must be available at link-edit time. If the C library

is required by the exit routines, CEE.SCEELKED must also be made available after

CEE.SCEESPC. You should explicitly name the entry point with an ENTRY statement.

An example of a system exit

Table 88 on page 572 lists the parts used by exit. The following C program is a

system exit that gains control from the system when an unknown CLIST subroutine

is encountered. It checks if the name is recognized as a user-specific subroutine

before returning control to the system. For more information on this system exit, see

z/OS TSO/E Customization.

Chapter 40. Using the system programming C facilities 569

CCNGSP3

/* this is an example of a system exit */

#pragma environment(IKJCT44B,nolib) �1�

/* */

/* IKJCT44B CLIST EXIT */

/* */

#include <stdio.h>

#include <stdlib.h>

#include <spc.h>

struct parmentry { int key;

 int len;

 char *pt; };

typedef struct parmentry P_ENT;

#define REVERSE 0

#define FLIPCHR 1

/* Valid commands */

static char *cmds[] =

{

 "SYSXTREV", "SYSXTFLIP" �2�

};

void revstring(P_ENT *p11, P_ENT *p12);

void flipstring(P_ENT *p11, P_ENT *p12);

int IKJCT44B() {

 int **parme;

 struct parmentry *e7, *e10, *e11, *e12, *e13;

 /* Get registers on entry */

 parme = (void *)__xregs(1); �3�

 /* Get the parameter entry values for those relevant for CLISTs */

 e7 = (struct parmentry *)parme[6]; /* exit return */

 e10 = (struct parmentry *)parme[9]; �4�

 e11 = (struct parmentry *)parme[10];

 e12 = (struct parmentry *)parme[11];

 e13 = (struct parmentry *)parme[12];

Figure 150. System exit example (Part 1 of 2)

570 z/OS V1R8.0 XL C/C++ Programming Guide

�1� The #pragma environment directive sets up an entry point IKJCT44B other

than main().

�2� This is the list of user-specific subroutines that are available in this system

exit.

 /* Is the command supported? */

 switch(cmdchk(e10)) { �5�

 case REVERSE: /* Reverse string */

 revstring(e11, e12);

 break;

 case FLIPCHR: /* Exchange the first and last chars only */

 flipstring(e11, e12);

 break;

 default: /* Unknown command type. Return with an error. */

 e12->pt[0] = 0x00;

 e12->len = 0;

 /* Set the return code */

 e7->key = 0x01;

 e7->len = 0x04;

 *(int *)(&e7->pt) = 0x06;

 return 12;

 }

 /* Return to caller - CLIST is supported. */

 e7->key = 0x01;

 e7->len = 0x04;

 *(int *)(&e7->pt) = 0x00;

 return 0;

}

/* cmdchk(P_ENT *pt) */

/* - is the command in the list of user-specific cmds? */

int cmdchk(P_ENT *pt) {

 int i;

 for(i=0; i<(sizeof(cmds)/sizeof(char *)); i++) {

 if(memcmp(pt->pt, cmds[i], pt->len) == 0)

 return i;

 }

 /* Not found */

 return -1;

}

/* revstring().... */

/* - reverse the string */

void revstring(P_ENT *p11, P_ENT *p12) {

 int i;

 for(i=0; i<p11->len; i++)

 p12->pt[i] = p11->pt[p11->len-i-1];

 p12->len = p11->len;

}

/* flipstring() ... */

/* - flip the first and last characters in the string */

void flipstring(P_ENT *p11, P_ENT *p12) {

 char t;

 t = p11->pt[p11->len-1];

 memcpy(p12->pt, p11->pt, p11->len);

 p12->pt[p11->len-1] = p12->pt[0];

 p12->pt[0] = t;

 p12->len = p11->len;

}

Figure 150. System exit example (Part 2 of 2)

Chapter 40. Using the system programming C facilities 571

�3� The function __xregs() is used to retrieve the parameters available to the

system exit in R1 from the operating system.

�4� The parameters are parameter entries passed from TSO to this system exit

and are used for the following reasons:

e7 Exit reason code

e10 Name of subroutine

e11 Arguments

e12 Result

�5� The list of user-specific subroutines is checked and if the unknown CLIST

subroutine is recognized, the subroutine is called. Otherwise, the function

returns in error.

 Table 88 lists the parts used by the routines, and their function and location in MVS.

The SYSLIB specified is CEE.SCEESPC.

 Table 88. Parts used by exit routines

Part Name Function

Inclusion in Program

Location Notes

EDCXENV Extended prolog code for

exits that do not require

the library.

2 Member of

SCEESPC

EDCXENVL Extended prolog code for

exits that require the

library.

2 Member of

SCEESPC

EDCXSPRT System programming

version of sprintf().

3 Member of

SCEESPC

EDCXEXIT System programming

version of exit().

3 Member of

SCEESPC

EDCXMEM System programming

version of malloc(),

calloc(), realloc(),

free(), __4kmalc() and

__24malc().

3 Member of

SCEESPC

EDCXABRT System programming

version of exception

handling.

3 Member of

SCEESPC

Notes:

1. This module must be explicitly included in the program using the binder INCLUDE

control statement.

2. This module will normally be included by automatic call.

3. This module must be explicitly included if you want to use the system programming

version of the function.

Creating and using persistent C environments

Four routines are available to create and use a persistent C environment. These

routines are used by an assembler language application that needs a C

environment available to support the C functions that it calls. C main routines

cannot be called in persistent C environments.

572 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|
|

An initialization routine, EDCXHOTC or EDCXHOTL (depending upon whether the called C

subroutines will need the z/OS XL C library functions), is called to create a C

environment. This call returns a handle that can be used (through EDCXHOTU) to call

C subroutines. The environment persists until it is explicitly terminated by calling

EDCXHOTT.

The four routines are:

EDCXHOTC Sets up a persistent C environment (no library)

EDCXHOTL Sets up a persistent C environment (with library)

EDCXHOTU Runs a function in a persistent C environment

EDCXHOTT Terminates a persistent C environment

The functions that act as entry points for these routines are __xhotc(), __xhotl(),

__xhotu(), and __xhott(), respectively. For more information on these four

functions, refer to Chapter 41, “Library functions for system programming C,” on

page 603.

Restrictions:

v C main routines are not supported in persistent C environments.

v The RENT compiler option is not supported in the persistent environment

described in this chapter.

v Exception handling is not supported in persistent C environments.

As an alternative to the persistent environments, you can also create and retain a C

environment using the preinitialized programming interface. This interface supports

the RENT compiler option, but is less versatile in other respects. z/OS Language

Environment provides a callable service for preinitialization called CEEPIPI. This is

described in z/OS Language Environment Programming Guide. You may also find

information in “Retaining the C environment using preinitialization” on page 269

helpful.

Building applications that use persistent C environments

There are no special restrictions for building applications that use persistent C

environments. The automatic call facility will cause the correct routines from the

SYSLIB to be included.

If any C library function is required by any routine called in this environment, the

stub routines library CEE.SCEELKED should be made available at link time after

CEE.SCEESPC.

An example of persistent C environments

The assembler routine shown in Figure 152 on page 575 illustrates the use of this

feature to call a C function shown in Figure 151 on page 574.

Chapter 40. Using the system programming C facilities 573

|

CCNGSP4

This C function accepts two parameters: an integer and a printf()-style formatting

string. The formatting string has a maximum length of 300 bytes; it is terminated by

an @ if shorter. This routine must use OS linkage (�1� The routine scans the

formatting string for the terminator, copies it to a local work area, adds a trailing

newline and NULL character, and prints the integer according to the formatting string.

The structure of the assembler caller is shown in Figure 152 on page 575.

/* this example uses a persistent C environment */

/* part 1 of 2-other file is CCNGSP5 */

#pragma linkage(crtn,OS) �1�

#include <string.h>

#include <stdio.h>

#define INSIZE 300 /* the maximum length we’ll tolerate */

void crtn(int p1,char *p2) {

 char hold[2+INSIZE];

 char *endptr;

 int i;

 endptr=memchr(p2,’@’,INSIZE);

 if (NULL==endptr)

 i=INSIZE; /* no ender? use max */

 else

 i=endptr-p2; /* length of stuff before it */

 memcpy(hold,p2,i); /* copy formatting string */

 hold[i++]=’\n’; /* add a new-line.. */

 hold[i]=’\0’; /* ..and a null terminator */

 printf(hold,p1); /* print it out */

 return; /* and return */

}

Figure 151. Example of function used in a persistent C environment

574 z/OS V1R8.0 XL C/C++ Programming Guide

CCNGSP5

* this example demonstrates a persistent C environment

* part 2 of 2-other file is CCNGSP4

ENVA CSECT

ENVA AMODE ANY

ENVA RMODE ANY

 STM R14,R12,12(R13) �1�

 LR R3,R15

 USING ENVA,R3

 GETMAIN R,LV=DSALEN

 ST R13,4(,R1)

 LR R13,R1

 USING DSA,R13

 LA R4,HANDLE �2�

 LA R5,STKSIZE

 LA R6,STKLOC

 STM R4,R6,PARMLIST

 OI PARMLIST+8,X’80’

 LA R1,PARMLIST

 L R15,=V(EDCXHOTL)

 BALR R14,R15

 LA R8,10 �3�

LOOP DS 0H

 ST R8,LOOPCTR �4�

 LA R4,HANDLE

 LA R5,USEFN

 LA R6,LOOPCTR

 LA R7,FMTSTR1

 STM R4,R7,PARMLIST

 OI PARMLIST+12,X’80’

 LA R1,PARMLIST

 L R15,=V(EDCXHOTU)

 BALR R14,R15

 LA R7,FMTSTR2 �5�

 STM R4,R7,PARMLIST

 OI PARMLIST+12,X’80’

 L R15,=V(EDCXHOTU)

 BALR R14,R15

 BCT R8,LOOP

Figure 152. Using a persistent C environment (Part 1 of 2)

Chapter 40. Using the system programming C facilities 575

�1� This routine is entered with standard linkage conventions. It saves the

registers in the save area pointed to by register 13, acquires a dynamic

storage area for its own use, and chains the save areas together.

�2� A C environment that includes support for the z/OS XL C library is created

by calling EDCXHOTL. The parameter list for this call is the address of the

handle (for the persistent C environment created), the address of a word

containing the initial stack size, and the address of a word containing the

initial stack location (0 for below the 16MB line and 1 for above). This

parameter list uses the normal OS linkage format.

�3� The routine loops 10 times calling the C function crtn twice each time

through the loop.

�4� The parameter list for the first call is the address of the handle, the address

of a word pointing to the function, and the parameters to be received by the

function. EDCXHOTU is called. This causes the specified C function, crtn() to

be given control with register 1 pointing to the remaining parameters,

LOOPCTR and FMTSTR1.

�5� The C function is called again, this time with FMTSTR2 as the second

parameter.

�6� When the loop ends, EDCXHOTT is called to terminate the environment

created at �2�

 ST R4,PARMLIST �6�

 OI 0(R1),X’80’

 LA R1,PARMLIST

 L R15,=V(EDCXHOTT)

 BALR R14,R15

 LR R1,R13 �7�

 L R13,4(0,R13)

 FREEMAIN R,A=(1),LV=DSALEN

 LM R14,R12,12(R13)

 SR R15,R15

 BR R14

USEFN DC V(CRTN)

STKSIZE DC A(4096)

STKLOC DC A(1)

FMTSTR1 DC C’1st value of loopctr is %i@’

FMTSTR2 DC C’value on 2nd call is %i@’

 LTORG

DSA DSECT , The dynamic storage area

SAVEAREA DS 18A The save area

PARMLIST DS 4A

HANDLE DC A(0)

LOOPCTR DC A(1)

DSALEN EQU *-DSA

R0 EQU 0

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

 END ENVA

Figure 152. Using a persistent C environment (Part 2 of 2)

576 z/OS V1R8.0 XL C/C++ Programming Guide

�7� The routine terminates by freeing its dynamic storage area and returning to

its caller.

 Table 89 lists the parts used by persistent environments and their function and

location. The SYSLIB is CEE.SCEESPC.

 Table 89. Parts used by persistent environments

Part Name Function

Inclusion in Program

Location Notes

EDCXHOTC This module is called to

set up a C environment

without z/OS Language

Environment.

2 Member of

SCEESPC

EDCXHOTL This module is called to

set up a C environment

with the z/OS XL C

library functions available.

2 Member of

SCEESPC

EDCXHOTT This module is called to

terminate a C

environment set up by

EDCXHOTC or

EDCXHOTL.

2 Member of

SCEESPC

EDCXHOTU This module is called to

use a C environment set

up by EDCXHOTC or

EDCXHOTL.

2 Member of

SCEESPC

EDCXSPRT System programming

version of sprintf().

3 Member of

SCEESPC

EDCXEXIT System programming

version of exit().

3 Member of

SCEESPC

EDCXMEM System programming

version of malloc(),

calloc(), realloc(),

free(), __4kmalc() and

__24malc().

3 Member of

SCEESPC

Notes:

1. This module must be explicitly included in the program using the binder INCLUDE

control statement.

2. This module will normally be included by automatic call.

3. This module must be explicitly included if you want to use the system programming

version of the function.

Developing services in the service routine environment

The purpose of an application service routine environment is to allow the

development, using z/OS XL C, of services that can be developed, tested, and

packaged independently of their intended users. You can:

v Isolate the service code from its user

v Specify and enforce a clearly defined Application Programming Interface (API)

between the user (another application program) and the service routine

v Share server code among more than one (perhaps different) user applications

simultaneously

Chapter 40. Using the system programming C facilities 577

v Enhance or maintain the service routine code with no disruption to its various

user applications

In this environment, a service application is developed as a C main() function

together with any functions it may call, and packaged as a complete program. This

program, if it is reentrant, can be freely installed in the ELPA and shared by all of its

users.

To provide the service to a user application, the developer of the service must offer

small assembler language stub routines that are link-edited with the user code.

These stub routines use services provided by the System Programming Facilities to

load or locate the server code and pass messages to it for execution. Examples of

these stub routines are shown in “Constructing user-server stub routines” on page

594.

Using application service routine control flow

In this section examples are based on a service routine that manages a storage

queue. This server might be used by languages that do not support dynamic

memory allocation, or by applications that do not want to concern themselves with

the management of such data structures. The operations supported by this service

routine are:

v Initialize

v Terminate

v Add an element to the head of the queue (last in, first out)

v Add an element to the tail of the queue (first in, first out)

v Get the element at the head of the queue

Service routine user perspective

A conversation is initiated when a user routine calls a startup routine supplied by

the author of the service to establish a connection between the user and the server.

This routine returns a handle to the user that represents the server environment.

User routines may establish connections with many different services or many times

with the same server as long as the needed resources, principally memory, are

available in the system. Each connection has a different handle, and it is the user

routine’s responsibility to keep track of them.

Note: Memory files cannot be shared between the user routines and the server.

Once the user has initialized the server, it uses other server-supplied stub routines

to send requests (messages) to the server for action. One of the parameters to this

routine will be the handle returned by the initialize call. These request stubs would

typically return a feedback code to indicate success or failure as well as any other

information requested. The server defines the parameter list to be passed and the

feedback codes to be given to the user.

When the user is finished with the server, it calls yet another stub routine to

terminate the server.

This structure is illustrated in a sample user routine shown in Figure 153 on page

579:

578 z/OS V1R8.0 XL C/C++ Programming Guide

CCNGSP6:

�1� The user routine sets up a variable that will be used to hold the handle

returned by the server. The form taken by this handle is up to the supplier

of the service, but a fullword (4 bytes) should be regarded as typical.

�2� The user routine calls the initialize routine to set up the connection between

the user routine and the server.

�3� The user routine adds three strings to the queue. In this example, the first

character of the string indicates the order in which the user expects to

retrieve the strings.

�4� The user enters a loop in which the strings are retrieved from the queue.

�5� The user routine prints out the strings passed back by the call to the server.

If there is no string remaining in the queue a null string (zero length) is

returned.

�6� Before ending, the user routine closes down the server.

 This routine is linked normally with the server-supplied stub routines (described in

“Constructing user-server stub routines” on page 594).

Service routine perspective

A service routine is a complete, stand alone module that runs in its own C

environment. Its environment is created on demand by user application routines that

 PROGRAM MAIN

C Example User-Service Routine application

C Define the variable that will hold the ’handle’ for the server

 INTEGER*4 HANDLE �1�

C Define the variable that will hold feedback codes

 INTEGER*4 FEEDBACK

C Define the variable that we’ll use to get the strings back

 CHARACTER*100 CH

 INTEGER*4 CHLEN

C initialize the server

 CALL QMGINIT(HANDLE) �2�

C Feed some strings to the server �3�

 CALL QMGLIFO(HANDLE,FEEDBACK,17,’2 Sample string 1’)

 CALL QMGLIFO(HANDLE,FEEDBACK,23,’1 Another sample string’)

 CALL QMGFIFO(HANDLE,FEEDBACK,20,’3 Yet another string’)

C Get the strings back, print out length and value

 DO 1 I=1,3 �4�

 CALL QMGGET(HANDLE,FEEDBACK,CHLEN,CH)

 PRINT *,CHLEN,CH(1:CHLEN) �5�

1 CONTINUE

C Terminate the server

 CALL QMGTERM(HANDLE) �6�

C Go home

 STOP

 END

Figure 153. Example of user routine

Chapter 40. Using the system programming C facilities 579

call it using stub routines supplied by the server. When this happens, the server

code enters at its main() entry point and, typically, goes into a loop that contains a

function call to get the next to-do. One possible to-do is terminate; when this

command is received the server should exit() or return from its main() function.

The environment created when the server was started terminates and all resources

held by the server are freed (except storage acquired by __24malc() or __4kmalc(),

as described in “__24malc() — Allocate Storage below 16MB Line” on page 607

and “__4kmalc() — Allocate Page-Aligned Storage” on page 607.

This structure is illustrated in a sample user routine shown in Figure 154:

CCNGSP7:

/* this is an example of an application service routine */

#include <spc.h> �1�

#include <stdlib.h>

#include <string.h>

#define LIFO 1 �2�

#define FIFO 2

#define GET 3

#define TERM -1

int main(void) { �3�

 int retcode=0;

 /* data structures to manage the queue */

 struct queue_entry { �4�

 struct queue_entry *next;

 int length;

 char val[1];

 };

 struct queue_entry *head;

 struct queue_entry *tail;

Figure 154. Example of application service routine (Part 1 of 3)

580 z/OS V1R8.0 XL C/C++ Programming Guide

struct { �5�

 int code;

 union info *plist;

 } *req;

 union info { �6�

 struct {

 int *length;

 char *string;

 } lifo;

 struct {

 int *length;

 char *string;

 } fifo;

 struct {

 int *length;

 char *string;

 } get;

 };

 /* initialize the queue pointers */

 head = NULL; �7�

 tail = NULL;

 /* the main processing loop goes on until a termination signal

 is sent */

 for(;;) { �8�

 union info *info;

 int length;

 char *string;

 struct queue_entry *ent;

 /* get a message from the user routine */

 req=__xsrvc(retcode); �9� �18� .

 info = req->plist; �10�

 switch(req->code) { �11�

 case LIFO: { �12�

 length=*(*info).lifo.length;

 string= (*info).lifo.string;

 ent = malloc(sizeof *ent - 1 + length); �13�

 memcpy((*ent).val,string,length);

 __xsacc(0); �14�

 (*ent).length=length;

 (*ent).next=head;

 head=ent;

 if (NULL==tail) tail=ent;

 break;

 }

Figure 154. Example of application service routine (Part 2 of 3)

Chapter 40. Using the system programming C facilities 581

�1� The server routine should include the appropriate header files. spc.h

contains the function prototypes for the routines that are used to maintain

the conversation between the server routine and the user routine. string.h

is required if string or memory functions are used in the code and z/OS

Language Environment will not be available at run time; this header file

contains the directives necessary to use these built-in functions.

�2� These are the command codes of the requests that can be sent to this

server.

�3� The server begins with a main() function. This function gets control when

the user calls QMGINIT.

�4� This server manages an in-storage queue of unstructured elements. It does

this by maintaining a linked list of elements. The structure queue_entry

contains an individual entry; head and tail point to the first and last entries

in the queue.

�5� Requests come to the server in the form of a pointer to a structure

containing a command code (in this case, one of LIFO, FIFO, GET, or TERM)

and a pointer to a parameter list associated with the command code. The

parameter list is what follows HANDLE and FEEDBACK in the calls to QMGLIFO,

 case FIFO: { �15�

 length=*(*info).fifo.length;

 string= (*info).fifo.string;

 ent = malloc(sizeof *ent - 1 + length);

 memcpy((*ent).val,string,length);

 __xsacc(0);

 (*ent).length=length;

 (*ent).next=NULL;

 if (NULL==head) head=ent;

 else (*tail).next=ent;

 tail=ent;

 break;

 }

 case GET: { �15�

 if (NULL==head) {

 *(*info).get.length=0;

 break;

 }

 length = (*head).length;

 string = (*info).get.string;

 memcpy(string,(*head).val,length);

 *(*info).get.length=length;

 __xsacc(0);

 ent=head;

 head=(*ent).next;

 free(ent);

 if (NULL==head) tail=NULL;

 break;

 }

 case TERM: �16�

 return 0;

 default:

 __xsacc(666); �17�

 }

 } �18�

 return(0);

}

Figure 154. Example of application service routine (Part 3 of 3)

582 z/OS V1R8.0 XL C/C++ Programming Guide

QMGFIFO, and QMGGET. Like the command codes, the structure of this

parameter list is established in concert with the stub routines.

�6� In this example, all the commands have exactly the same format. This may

not generally be the case, so a union of the various parameter list formats

is appropriate. Then the interface can be expanded without disrupting

existing code.

�7� Before accepting commands, required initialization is performed.

�8� This server is structured as an endless loop. This loop terminates when a

terminate message sends control to a return statement at �17�.

�9� At this point, the server is ready for work. The call to __xsrvc() causes the

user routine to resume execution at the place it left off when it last called

the server. The value passed as the parameter is made available to the

stub routines for use as a feedback code. This function will not return until

the user application sends a request (using one of the stub routines, in this

example QMGLIFO, QMGFIFO, QMGGET, or QMGTERM).

�10� Extract the parameters from the structure pointed to by the call to

__xsrvc().

�11� Examine the request code sent by the user application.

�12� The LIFO request code is handled here.

�13� These library functions (and many others, the complete list is given in

“Using functions in the system programming C environment” on page 560)

are normally available in this environment even though z/OS Language

Environment is not available at run time.

 The amount of storage allocated is the size of the queue entry (defined at

�4�) minus 1 (because the definition of the entry allowed for 1 character of

value) plus the length actually required for the value.

�14� This function should be used to indicate that the server has completed its

use of any data structures (parameters and data areas pointed to by the

parameters) belonging to the user application. The value passed to this

function or the value passed by the next call to __xsrvc()(which ever is

greater in magnitude) will be passed to the stub routine for use as a

feedback code.

�15� The handling of FIFO and GET is similar.

�16� When a terminate request is received, the server returns. This terminates

the loop (at �8�) and the environment set up when the server was first

called.

�17� If the command code is not recognized the server acknowledges the

request and sets a return code that can be analyzed by the stub routine or

the user application.

�18� The server returns to the request for another to-do. The value passed as a

parameter here or the last value passed to __xsacc(), whichever has the

greater magnitude, is passed to the stub routine for use as a feedback

code.

 The server is built as a freestanding C application as described in “Creating

freestanding applications” on page 562.

You must specify EDCXSTRT, QMGSERV, EDCXMEM and EDCXEXIT when you

link edit.

Chapter 40. Using the system programming C facilities 583

Understanding the stub perspective

The stub routines provide the link between the user application and the application

service module. They are responsible for:

v Locating or loading the server code

v Providing the Application Programming Interface (API) seen by the user.

Many choices are available in the design of the API and how single calls in the user

are mapped. For example, the initialize call could accept parameters governing the

behavior of the session being established and pass them to the server as

commands once the server has been initialized. In the example the interactions are

straight forward, the initialize only starts up the server, and the message calls send

single messages, untouched and unexamined, to the server.

There are two kinds of stubs: the initialization stub and the message stubs.

Termination is a special case of a message stub. These stubs are most

appropriately written in assembler so that they can run in any language environment

with minimal performance cost.

The initialization stub is responsible for loading and calling the server. It can use the

low-level storage management and contents supervision routines supplied in

SCEESPC. These routines are described in “Tailoring the system programming C

environment” on page 595. The structure of an initialization stub is shown in

Figure 155 on page 585:

584 z/OS V1R8.0 XL C/C++ Programming Guide

CCNGSP8

�1� Stub routines are presumed to have a save area available at the location

pointed to by register 13.

�2� The parameter list passed to stub routines is OS linkage; that is, register 1

points to a list of addresses. In this example, the initialization stub receives

only one parameter, the handle, that gets the address of a control block

representing the environment.

�3� For efficiency, this routine gets a work area that will be used by all the stub

routines. The low level storage management routine EDCXGET, (described in

“EDCXGET” on page 596) is available for this purpose. This area will be the

DSA for this and all other stub routines. It begins with an 18-word save area

for use by routines called by this stub. It will be freed by the “terminate”

stub.

�4� When a save area is available, EDCXLOAD (described in “EDCXLOAD” on

page 599) is called to load the server.

* this is an example of a server initialization stub

QMGINIT TITLE ’SERVER supplied stub to initialize’

QMGINIT CSECT ,

 STM R14,R12,12(R13) �1�

 LR R3,R15

 USING QMGINIT,R3

 USING INPARMS,R1 �2�

 L R6,HANDLE@

 DROP R1

 LA R0,WALEN length of work area, below the line �3�

 L R15,=V(EDCXGET) GETMAIN some storage

 BALR R14,R15

 USING WA,R1

 ST R13,SA+4

 LR R13,R1

 USING WA,R13 This is now our DSA

 LA R1,NAME �4�

 L R15,=V(EDCXLOAD)

 BALR R14,R15 Load the server

 ST R1,PLIST �5�

 MVC PLIST+4(12),PLISTINI

 L R15,=V(EDCXSRVI)

 LA R1,PLIST

 BALR R14,R15

 MVC 0(4,R15),=CL4’QMqm’ eye-catcher �6�

 ST R13,4(,R15) �7�

 ST R15,0(,R6) Save handle in users parameter �8�

 L R13,4(,R13) �9�

 LM R14,R12,12(R13)

 SR R15,R15

 BR R14

PLISTINI DS 0D

 DC A(0),V(EDCXGET,EDCXFREE)

NAME DC CL8’QMGSERV’

INPARMS DSECT

HANDLE@ DS F

WA DSECT

SA DS 18F

PLIST DS 4F

WALEN EQU *-WA

 YREGS

 END

Figure 155. Example of server initialization stub

Chapter 40. Using the system programming C facilities 585

�5� EDCXSRVI is called to initialize the server. When control is returned from this

call, the server has built a complete environment and has asked for

something to do.

�6� The value returned by EDCXSRVI is the address of a control block that is

used to manage the interface between the user application and the service

application module. The first 3 words (12 bytes) of this control block are

reserved for the exclusive use of the stub routines. The fields following the

first 3 words may not be used by either the stub routines or the user, nor

may their values be altered. In this example, an eye-catcher (often useful

for debugging) is moved into the first word.

�7� The address of the work area acquired for dynamic storage requirements is

moved into the second word. The address of this control block is stored in

the user’s handle.

�8� The address of the control block from EDCXSRVI is placed in the user

routine’s handle. The user routine has no knowledge of the contents or

format of this field; it is simply a token that is passed to other stub routines

to manage the conversation between the user and the service routine.

�9� Having initialized the server, the stub returns to the user at �2� in

Figure 153 on page 579.

 Message stubs are responsible for passing requests from the user application to the

service application. Like the initialization stub, they are free to use the low-level

storage management and contents supervision routines supplied with the system

programming facilities. Example message stubs are shown in Figure 156 on page

587, Figure 157 on page 588, Figure 158 on page 590, and Figure 159 on page

592.

586 z/OS V1R8.0 XL C/C++ Programming Guide

CCNGSP9

�1� Like the initialize stub, the QMGLIFO message stub expects a standard

save area pointed to by register 13. The parameters are passed with

standard OS linkage (register 1 pointing to a list of addresses).

�2� The handle contains the value that was placed there by the initialization

stub at �8� in Figure 155 on page 585. This is the address of the control

block that is used to manage the interface between the user application and

the server.

�3� Recover the address of the stub work area for use as a Dynamic Storage

Area (DSA). This value was saved here by the initialization stub at The

save area back chain field is set according to usual conventions.

�4� A parameter list consisting of the handle (as returned by EDCXSRVI at �5� in

Figure 155 on page 585 in the initialization stub), code for LIFO, and the

address of the remaining parameters.

�5� Call EDCXSRVN to re-awaken the server. This causes the server to resume

* this is an example of a server message stub

QMGLIFO TITLE ’SERVER supplied stub for feeding strings LIFO’

QMGLIFO CSECT

 STM R14,R12,12(R13) �1�

 LR R3,R15

 USING QMGLIFO,R3

 LR R5,R1

 USING INPARMS,R5

 L R6,HANDLE@

 L R6,0(,R6) Point to the handle �2�

 L R1,4(,R6) Point to work area got by QMGINIT �3�

 USING WA,R1

 ST R13,SA+4 Keep savearea passed into us

 LR R13,R1 WA is new savearea

 USING WA,R13

 LA R7,LIFO �4�

 LA R8,INPARMS+8 User parms start at 3rd

 STM R6,R8,PLIST handle, LIFO, Other parms

 LA R1,PLIST

 L R15,=V(EDCXSRVN) �5�

 BALR R14,R15

 L R1,FEEDBK@ �6�

 ST R15,0(,R1)

 L R13,4(,R13) �7�

 L R14,12(R13)

 LM R0,R12,20(R13)

 BR R14

INPARMS DSECT

HANDLE@ DS F

FEEDBK@ DS F

LENGTH@ DS F

STRING@ DS F

WA DSECT

SA DS 18F

PLIST DS 4F

WALEN EQU *-WA

LIFO EQU 1

FIFO EQU 2

GET EQU 3

TERM EQU -1

 YREGS

 END

Figure 156. Example of server message stub-LIFO

Chapter 40. Using the system programming C facilities 587

control at �9� in Figure 154 on page 580 in the server. The server has

control until it asks for the next to-do, in this example at �9�.

�6� The value passed to __xsrvc() appears as the return code from EDCXSRVN.

This value is passed back to the user application in the second parameter.

This is part of the API defined by this particular server, not something

inherent in the user-server relationship.

�7� Control is returned to the user in the usual way.

 This routine uses functions supplied in SCEESPC to load or locate the server code

and initialize its environment.

CCNGSPD

�1� Like the initialize stub, the QMGFIFO message stub expects a standard

save area pointed to by register 13. The parameters are passed with

standard OS linkage (register 1 pointing to a list of addresses).

* this is an example of a server message stub

QMGFIFO TITLE ’SERVER supplied stub for feeding strings FIFO’

QMGFIFO CSECT

QMGFIFO AMODE ANY

QMGFIFO RMODE ANY

 STM R14,R12,12(R13) �1�

 LR R3,R15

 USING QMGFIF0,R3

 LR R5,R1

 USING INPARMS,R5

 L R6,HANDLE@

 L R6,0(,R6) Point to the handle �2�

 L R1,4(,R6) Point to work area got by QMGINIT �3�

 USING WA,R1

 ST R13,SA+4 Keep savearea passed into us

 LR R13,R1 WA is new savearea

 USING WA,R13

 LA R7,FIFO �4�

 LA R8,INPARMS+8 User parms start at 3rd

 STM R6,R8,PLIST handle, FIFO, Other parms

 LA R1,PLIST

 L R15,=V(EDCXSRVN) �5�

 BALR R14,R15

 L R1,FEEDBK@ �6�

 ST R15,0(,R1)

 L R13,4(,R13) �7�

 L R14,12(R13)

 LM R0,R12,20(R13)

 BR R14

INPARMS DSECT

HANDLE@ DS F

FEEDBK@ DS F

LENGTH@ DS F

STRING@ DS F

WA DSECT

SA DS 18F

PLIST DS 4F

WALEN EQU *-WA

LIFO EQU 1

FIFO EQU 2

GET EQU 3

TERM EQU -1

 YREGS

 END

Figure 157. Example of server message stub-FIFO

588 z/OS V1R8.0 XL C/C++ Programming Guide

�2� The handle contains the value that was placed there by the initialization

stub at �8� in Figure 155 on page 585. This is the address of the control

block that is used to manage the interface between the user application and

the server.

�3� Recover the address of the stub work area for use as a Dynamic Storage

Area (DSA). This value was saved here by the initialization stub at �7� in

Figure 155 on page 585. The save area back chain field is set according to

usual conventions.

�4� A parameter list consisting of the handle (as returned by EDCXSRVI at �5� in

Figure 155 on page 585), code for FIFO, and the address of the remaining

parameters.

�5� Call EDCXSRVN to re-awaken the server. This causes the server to resume

control at �9� Figure 154 on page 580 in the server. The server has control

until it asks for the next to-do, in this example at �9� in Figure 154 on page

580, again.

�6� The value passed to __xsrvc() appears as the return code from EDCXSRVN.

This value is passed back to the user application in the second parameter.

This is part of the API defined by this particular server, not something

inherent in the user-server relationship.

�7� Control is returned to the user in the usual way.

 This routine uses functions supplied in SCEESPC to load or locate the server code

and initialize its environment.

Chapter 40. Using the system programming C facilities 589

CCNGSPE

�1� Like the initialize stub, the QMGGET message stub expects a standard

save area pointed to by register 13. The parameters are passed with

standard OS linkage (register 1 pointing to a list of addresses).

�2� The handle contains the value that was placed there by the initialization

stub at �8� Figure 155 on page 585. This is the address of the control block

that is used to manage the interface between the user application and the

server.

�3� Recover the address of the stub work area for use as a Dynamic Storage

Area (DSA). This value was saved here by the initialization stub at �7�

Figure 155 on page 585. The save area back chain field is set according to

usual conventions.

* this is an example of a server message stub

QMGGET TITLE ’SERVER supplied stub for feeding strings GET’

QMGGET CSECT

QMGGET AMODE ANY

QMGGET RMODE ANY

 STM R14,R12,12(R13) �1�

 LR R3,R15

 USING QMGGET,R3

 LR R5,R1

 USING INPARMS,R5

 L R6,HANDLE@

 L R6,0(,R6) Point to the handle �2�

 L R1,4(,R6) Point to work area got by QMGINIT �3�

 USING WA,R1

 ST R13,SA+4 Keep savearea passed into us

 LR R13,R1 WA is new savearea

 USING WA,R13

 LA R7,GET �4�

 LA R8,INPARMS+8 User parms start at 3rd

 STM R6,R8,PLIST handle, GET, Other parms

 LA R1,PLIST

 L R15,=V(EDCXSRVN) �5�

 BALR R14,R15

 L R1,FEEDBK@ �6�

 ST R15,0(,R1)

 L R13,4(,R13) �7�

 L R14,12(R13)

 LM R0,R12,20(R13)

 BR R14

INPARMS DSECT

HANDLE@ DS F

FEEDBK@ DS F

LENGTH@ DS F

STRING@ DS F

WA DSECT

SA DS 18F

PLIST DS 4F

WALEN EQU *-WA

LIFO EQU 1

FIFO EQU 2

GET EQU 3

TERM EQU -1

 YREGS

 END

Figure 158. Example of server message stub-GET

590 z/OS V1R8.0 XL C/C++ Programming Guide

�4� A parameter list consisting of the handle (as returned by EDCXSRVI at �5�

Figure 155 on page 585. in the initialization stub), code for GET, and the

address of the remaining parameters.

�5� Call EDCXSRVN to re-awaken the server. This causes the server to resume

control at �9� in Figure 154 on page 580 in the server. The server has

control until it asks for the next to-do, in this example at �9� in Figure 154

on page 580, again.

�6� The value passed to __xsrvc() appears as the return code from EDCXSRVN.

This value is passed back to the user application in the second parameter.

This is part of the API defined by this particular server, not something

inherent in the user-server relationship.

�7� Control is returned to the user in the usual way.

 This routine uses functions supplied in SCEESPC to load or locate the server code

and initialize its environment.

Chapter 40. Using the system programming C facilities 591

CCNGSPF

�1� Like the initialize stub, the QMGTERM message stub expects a standard

save area pointed to by register 13. The parameters are passed with

standard OS linkage (register 1 pointing to a list of addresses).

�2� The handle contains the value that was placed there by the initialization

stub at �8� in Figure 155 on page 585. This is the address of the control

block that is used to manage the interface between the user application and

the server.

�3� Recover the address of the stub work area for use as a Dynamic Storage

Area (DSA). This value was saved here by the initialization stub at �7� in

Figure 155 on page 585. The save area back chain field is set according to

usual conventions.

�4� A parameter list consisting of the handle (as returned by EDCXSRVI at �5� in

Figure 155 on page 585), code for TERM, and the address of the remaining

parameters.

* this is an example of a server message stub

QMGTERM TITLE ’SERVER supplied stub for feeding strings TERM’

QMGTERM CSECT

QMGTERM AMODE ANY

QMGTERM RMODE ANY

 STM R14,R12,12(R13) �1�

 LR R3,R15

 USING QMGTERM,R3

 LR R5,R1

 USING INPARMS,R5

 L R6,HANDLE@

 L R6,0(,R6) Point to the handle �2�

 L R1,4(,R6) Point to work area got by QMGINIT �3�

 USING WA,R1

 ST R13,SA+4 Keep savearea passed into us

 LR R13,R1 WA is new savearea

 USING WA,R13

 ST R6,PLIST Store handle as first parameter �4�

 MVC PLIST+4,=A(TERM) Code for termination

 LA R1,PLIST

 L R15,=V(EDCXSRVN) �5�

 BALR R14,R15

 L R13,4(,R13) �6�

 L R14,12(R13)

 LM R0,R12,20(R13)

 BR R14

INPARMS DSECT

HANDLE@ DS F

FEEDBK@ DS F

LENGTH@ DS F

STRING@ DS F

WA DSECT

SA DS 18F

PLIST DS 4F

WALEN EQU *-WA

LIFO EQU 1

FIFO EQU 2

GET EQU 3

TERM EQU -1

 YREGS

 END

Figure 159. Example of server message stub-TERM

592 z/OS V1R8.0 XL C/C++ Programming Guide

�5� Call EDCXSRVN to re-awaken the server. This causes the server to resume

control at �9� in Figure 154 on page 580 in the server. The server has

control until it asks for the next to-do, in this example at �9� in Figure 154

on page 580, again.

�6� Control is returned to the user in the usual way.

 The routines in the following section are used to create and use a persistent C

environment for a server co-routine, written using z/OS XL C and EDCXSTRT, or

EDCXSTRL and callable by a user application written in any language.

An initialization routine, EDCXSRVI, is called to start up a server. Control returns from

the initialization call with the server code started and waiting for work.

As with the persistent C environment, the initialization call returns a handle that is

used by EDCXSRVN for further communication with the created environment. EDCXSRVN

suspends the execution of the calling routine and sends a message to the waiting

server. When the server completes the function called for by the message its

execution is suspended and the caller of EDCXSRVN resumes.

The server environment is terminated when a Terminate message is sent to the

server.

Establishing a server environment

EDCXSRVI

This routine creates a z/OS XL C environment for the server part of user-server

application. It is intended that this routine be called by a stub routine supplied by

the server and statically bound with the user application. The stub routine is

responsible for loading the server application code.

Parameters

1. The address of the entry point of the server code. This must be the address of

the EDCXSTRT or EDCXSTRL entry point.

2. The value to be in R1 when the server entry point is called. This can be used

for communication between the initialization stub and the server mainline; its

value can be retrieved in the server code. __xregs(1) will return a pointer to this

list of parameters.

3. The address of a low-level get-storage routine (meeting the same interface as

EDCXGET, but not necessarily EDCXGET).

4. The address of a low-level free-storage routine (meeting the same interface as

EDCXFREE, but not necessarily EDCXFREE).

Return

When this routine returns the server environment is fully established and waiting for

a message from the user. R15 points to a handle that is used in subsequent calls to

EDCXSRVN to send messages to the server.

Initiating a server request

EDCXSRVN

This routine is used by the stub routines that are linked with user application

routines to send a message to an active server in a user-server application.

Chapter 40. Using the system programming C facilities 593

Parameters

1. The address of the handle returned by EDCXSRVI.

2. The function code for the function to be performed. The value -1 is used to

indicate that the server should terminate. This value should not be used for any

other purpose.

3. Other parameters, which are passed to the server code.

Return

R15 will contain the return code supplied by the server (as the parameter to

EDCXSACC) for this service.

Accepting a request for service

EDCXSACC

This routine operates in the server part of a user-server application. It is used to

indicate acceptance or rejection of the last-requested service.

Parameters

1. The return code of the last-requested service 0 indicating that the request was

accepted and will be processed.

For more information on EDCXSACC, see “__xsacc() — Accept Request for Service”

on page 606.

Returning control from service

EDCXSRVC

This routine operates in the server part of a user-server application. It is used to

indicate completion of the last-requested service and to get information required for

the next service to be performed.

Parameters

1. The return code for the last-requested service.

For more information on EDCXSRVC, see “__xsrvc() — Return Control from Service”

on page 606.

Constructing user-server stub routines

Part of building a server for use in a user-server environment is the construction of

stub routines that load and initialize the server, pass messages to the server, and

terminate the server. These stub routines are typically written in assembler

language to allow them to be freely called from other environments without regard

to the characteristics of the calling environment.

Building user-server environments

To build your server application, follow the rules for building a freestanding

application as described in “Building freestanding applications to run under z/OS” on

page 565.

There are no special considerations for building user applications. The automatic

call facility will cause the correct routines from CEE.SCEESPC to be included.

594 z/OS V1R8.0 XL C/C++ Programming Guide

Table 90. Parts used by or with application server routines

Part Name Function

Inclusion in Program

Location Notes

EDCXSRVI This module is used by a

server-supplied stub

routine to start up a

server.

2 in the user

module

Member of

SCEESPC

EDCXSRVN This module is used by a

server-supplied stub

routine to send a

service-request message

to a server.

2 in the user

module

Member of

SCEESPC

EDCXSRVC This module is used by a

server to wait for the next

message to process.

2 in the user

module

Member of

SCEESPC

EDCXSACC This module is used by a

server to accept the last

message received.

2 in the user

module

Member of

SCEESPC

EDCXSPRT System programming

version of sprintf().

3 Member of

SCEESPC

EDCXEXIT System programming

version of exit().

3 Member of

SCEESPC

EDCXMEM System programming

version of malloc(),

calloc(), realloc(),

free(), __4kmalc() and

__24malc().

3 Member of

SCEESPC

Notes:

1. This module must be explicitly included in the program using the binder INCLUDE

control statement.

2. This module will normally be included by automatic call.

3. This module must be explicitly included if you want to use the system programming

version of the function.

Tailoring the system programming C environment

Depending on the environment under which you want to run your z/OS XL C

routines, you might want to replace some of the following routines for

system-specific routines. To work correctly, your routines should match the interface

as documented in this section.

The routines as supplied by IBM with z/OS XL C meet the interface as documented.

Generating abends

EDCXABND

This routine is called to generate an abend if there is an internal error during

initialization or termination of a system programming C environment.

Parameter

R1 The address of the abend code and reason code

Chapter 40. Using the system programming C facilities 595

This routine is not provided with a save area. In addition to the linkage registers,

this routine may freely alter registers 2 and 4.

This module must have the entry point name of @@XABND.

CCNGSPA:

Getting storage

EDCXGET

This routine is called to get storage from the operating system.

Parameter

R0 The requested length, in bytes. If the high-order bit is zero or if the request

was made in 24-bit addressing mode, the storage will be allocated below

the 16M line. If the high-order bit is on and the request is made in 31-bit

addressing mode, storage will be allocated anywhere with a preference for

storage above the 16M line if available.

Return

R0 The length of the storage block acquired, in bytes.

R1 The address of the acquired area or NULL.

R15 A system dependent return code, which must be zero on success and

non-zero otherwise.

This routine is not provided with a save area. In addition to the linkage registers,

this routine may freely alter registers 2 and 4.

* this is an example of a routine to generate an abend

@@XABEND TITLE ’Generate an Abend’

EDCXABND CSECT

EDCXABND AMODE ANY

EDCXABND RMODE ANY

@@XABND DS 0H

 ENTRY @@XABND

 BALR R2,0

 USING *,R2

 SPACE 1

*

 USING PARMS,R1

 L R4,REAS_RC get reason code

 L R2,ERROR_RC get error code

 DROP R1,R2

ABEND ABEND (R2),REASON=(R4)

*

 LTORG

 EJECT

PARMS DSECT

ERROR_RC DS F

REAS_RC DS F

*

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

 END

Figure 160. Example of routine to generate abend

596 z/OS V1R8.0 XL C/C++ Programming Guide

The entry point name for this routine must be @@XGET.

If you provide your own EDCXGET routine, it will be used when C library functions

explicitly get storage. Whenever the library functions invoke operating system

services, there may be implicit requests for storage that cannot be tailored.

CCNGSPB

Getting page-aligned storage

EDCX4KGT

This routine is called to get page-aligned storage from the operating system.

Parameter

R0 The requested length, in bytes. If the high-order bit of this register is zero or

if the request was made in 24-bit addressing mode, the storage is allocated

below the 16M line. If the high-order bit is on and the request is made in

31-bit addressing mode, storage is allocated above the 16M line. If this

space is not available, storage is allocated elsewhere.

* this is an example of a routine to get storage

@@XGET TITLE ’Obtain memory as specified in R0’

EDCXGET CSECT

EDCXGET AMODE ANY

EDCXGET RMODE ANY

@@XGET DS 0H

 ENTRY @@XGET

 SPACE 1

 BALR R2,R0

 USING *,R2

 LTR R0,R0 Memory above or below?

 BNL BELOW

 SLL R0,1 Want memory anywhere

 SRL R0,1

 LTR R2,R2 are we running above the line?

 BNL BELOW no, so ignore above request

 GETMAIN RC,SP=0,LV=(R0),LOC=ANY

 LTR R15,R15 Was it successful?

 BZR R14 Yes...

 SR R1,R1 No, indicate failure

 BR R14

Figure 161. Example of routine to get storage (Part 1 of 2)

BELOW DS 0H Get memory below the line

 GETMAIN RC,SP=0,LV=(R0),LOC=BELOW

 LTR R15,R15 Was it successful?

 BZR R14 Yes...

 SR R1,R1 no, indicate failure in R1

 BR R14

*

R0 EQU 0

R1 EQU 1

R2 EQU 2

R4 EQU 4

R13 EQU 13

R14 EQU 14

R15 EQU 15

Figure 161. Example of routine to get storage (Part 2 of 2)

Chapter 40. Using the system programming C facilities 597

Return

R0 The length of the storage block acquired, in bytes. This length may be

greater than the size requested.

R1 The address of the acquired area or NULL.

R15 A system-dependent return code, which must be zero on success and

nonzero otherwise.

This routine is not provided with a save area. In addition to the linkage registers,

this routine may freely alter registers 2 and 4.

Its entry point must be @@X4KGET.

Freeing storage

EDCXFREE

This routine is called to return storage to the operating system.

Parameters

R0 The length of storage to be freed, in bytes

R1 The address of the area to be freed

Return

R15 A system-dependent return code, which must be zero on success and

nonzero otherwise

This routine is not provided with a save area. In addition to the linkage registers,

this routine may freely alter registers 2 and 4.

Its entry point must be @@XFREE.

If you provide your own EDCXFREE routine, it will be used when C library functions

explicitly free storage. Whenever the library functions invoke operating-system

services, there may be implicit requests to free storage that cannot be tailored.

CCNGSPC

* this is an example of a routine to free storage

EDCXFREE CSECT

EDCXFREE AMODE ANY

EDCXFREE RMODE ANY

@@XFREE DS 0H

 ENTRY @@XFREE

 BALR R2,0

 USING *,R2

*

 FREEMAIN RC,SP=0,LV=(0),A=(1)

 BR R14 return

*

R2 EQU 2

R14 EQU 14

 END

Figure 162. Example of routine to free storage

598 z/OS V1R8.0 XL C/C++ Programming Guide

Loading a module

EDCXLOAD

This routine is called to load a named module into storage.

Parameter

R1 Points to the name of the routine to be loaded

Return

R1 the address and amode of the routine or 0

R15 A system-dependent return code, which must be zero on success and

nonzero otherwise

This routine is provided with a save area. Apart from the linkage registers, it must

save and restore all registers used.

Its entry point must be @@XLOAD.

Deleting a module

EDCXUNLD

This routine is called to delete a named module from storage.

Parameter

R1 Points to the name of the routine to be deleted

Return

R15 A system-dependent return code, which must be zero on success and

nonzero otherwise

This routine is provided with a save area. Apart from the linkage registers, it must

save and restore all registers used.

Its entry point must be @@XUNLD.

Including a run-time message file

When you are running a freestanding environment and run-time messages are

required, you must explicitly include a message file at link-edit time. One of the

three following modules can be included to produce these messages:

EDCXLANE

Creates run-time error messages in uppercase and lowercase English

EDCXLANU

Creates run-time error messages in uppercase English

EDCXLANK

Creates run-time error messages in Kanji

If one of these message routines is not included and an exception occurs, the

program could terminate without displaying a message. These error messages are

directed to stderr. Refer to z/OS Language Environment Debugging Guide for

more information.

Chapter 40. Using the system programming C facilities 599

The following tables contain the abend codes and reason codes specific to the

system programming facilities.

 Table 91. Abend codes specific to system programming environments

Abend Code Description

2100 No storage abend code

2101 Error freeing storage

2102 Error finding stack seg home

2103 Error loading library

2104 Error with heap allocation

2105 Error with system level command

2106 Error initializing statics

2107 Error establishing error handler for EDCXSTRX

2108 Error cleaning up heap for EDCXSTRX

4000 Error when handling abend

 Table 92. Reason codes specific to system programming environments

Reason Code Description

7201 Error in initialization.

7202 Error in termination.

7203 Error when extending stack.

7204 Error during longjmp/setjmp.

7205 Can not locate static init. The routine EDCRCINT must be included in

your module if you use the RENT compiler option.

7206 Module EDCXABRT was not explicitly included at link edit time.

7207 No initial heap allocation is specified and a heap is required.

Additional library routines

The following routines provide additional support that is unique to applications

running in a system programming C environment. These routines are packaged as

part of the link library.

__xregs()

Get registers on entry

__xusr()

Get address of User Word

__xusr2()

Get address of User Word

__4kmalc()

Allocate page-aligned storage

__24malc()

Allocate storage below 16mb line

For more information on these routines refer to Chapter 41, “Library functions for

system programming C,” on page 603.

600 z/OS V1R8.0 XL C/C++ Programming Guide

Summary of application types

Table 93 shows the summary of application types, how they are called, and the

module entry points.

 Table 93. Summary of types

Type of

Application How It Is Called

Module Entry

Point

Data Sets

Required at

Execution Time

Run-Time Options (1) and Other

Considerations

A mainline

function that

requires no

dynamic library

facilities

From the

command line,

JCL, or an EXEC

or CLIST.

EDCXSTRT,

which must be

explicitly included

at bind time

None. Run-Time options are specified by

#pragma runopts in compilation unit

for the main() function. The heap

and stack options are honored. The

stack defaults to be above the line.

A mainline

function that

requires the z/OS

XL C library

functions

From the

command line,

JCL, or an EXEC

or CLIST.

EDCXSTRL,

which must be

explicitly included

at bind time

CEE.SCEERUN is

required

Run-Time options are specified by

#pragma runopts in the compile unit

for the entry point. The heap and

stack options are honored, except

that the stack will default to be

above the line. The SPIE option is

honored if a library is called for.

A C subroutine

called from

assembler

language using a

pre-established

persistent

environment

A handle, the

address of the

subroutine and a

parameter list are

passed to

EDCXHOTU.

CEE.SCEERUN is

optional,

depending upon

the way the

handle was set

up.

Run-Time options are specified by

#pragma runopts in any compile unit.

The heap and stack options are

honored, except that the stack will

default to be above the line. The

SPIE option is honored if a library is

called for. The runopts in the first

object module in the link edit that

contains runopts will prevail, even if

this compilation unit is part of the

calling application.

The environment is established by

calling EDCXHOTC (or EDCXHOTL

if library facilities are required).

These functions return a value (the

handle) which is used to call

functions that use the environment.

A Server User code

includes a stub

routine that calls

EDCXSRVI. This

causes the server

to be loaded and

control to be

passed to its entry

point.

EDCXSTRT, or

EDCXSTRL,

depending upon

whether the

server needs the

C run-time library

or not

CEE.SCEERUN if

required by the

server code.

Run-Time options are the same as

for EDCXSTRL or EDCXSTRT.

The author of the server must supply

stub routines which call EDCXSRVI

and EDCXSRVN to initialize and

communicate with the server. These

are bound with the user application.

A User of an

Application Server

The server and

CEE.SCEERUN if

required by the

server.

The author of the server must supply

stub routines which call EDCXSRVI

and EDCXSRVN to initialize and

communicate with the server.

Chapter 40. Using the system programming C facilities 601

602 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 41. Library functions for system programming C

This chapter describes the library functions specific to the System Programming C

environment:

v __xhotc()

v __xhotl()

v __xhott()

v __xhotu()

v __xregs()

v __xsacc()

v __xsrvc()

v __xusr()

v __xusr2()

v __24malc()

v __4kmalc()

__xhotc() — Set Up a Persistent C Environment (No Library)

Format

#include <spc.h>

void *__xhotc(void *handle, int stack, int location);

Description

The function creates a persistent C environment that does not require the dynamic

library facilities of z/OS Language Environment at run time. The parameters are

fullwords (four bytes).

1. handle is the field for the token (or handle) which is returned.

2. stack is the initial stack allocation required for the environment.

3. location is the location of the stack:

0 Below the line

1 Above the line

__xhotc() is specific to SP C. It is part of the group serving the persistent C

environment.

The function is also available under the name EDCXHOTC.

Returned value

__xhotc() returns a token (or handle) which is used in subsequent calls to

__xhotu() and __xhott() to use or terminate a persistent C environment. This

handle is found in both the first parameter passed and R15.

The RENT compiler option is not supported for routines called using this

environment.

© Copyright IBM Corp. 1996, 2006 603

Example

For an extensive example of the use of __xhotc() see “Creating and using

persistent C environments” on page 572.

__xhotl() — Set Up a Persistent C Environment (With Library)

Format

#include <spc.h>

void *__xhotl(void *handle, int stack, int location);

Description

The function creates a persistent C environment that will use the dynamic z/OS XL

C/C++ library functions. All library facilities are available in this environment except:

v The RENT compiler option is not supported in the persistent environment

described in this chapter.

v Exception handling is not supported in persistent C environments.

The following parameters are fullwords (four bytes):

1. handle is the field for the token (or handle) which is returned.

2. stack is the initial stack allocation required for the environment.

3. location is the location of the stack:

0 Below the line

1 Anywhere

__xhotl() is specific to SP C. It is part of the group serving the persistent C

environment.

The function is also available under the name EDCXHOTL.

Returned value

This routine returns a token (or handle) which is used in subsequent calls to

__xhotu() and __xhott() to use or terminate a persistent C environment. This

handle is found in both the first parameter passed and R15.

Example

For an extensive example of the use of __xhotl() see “Creating and using

persistent C environments” on page 572.

__xhott() — Terminate a Persistent C Environment

Format

#include <spc.h>

void __xhott(void *handle);

Description

This function terminates a persistent C environment created by __xhotc() or

__xhotl().

The parameter of __xhott() is a handle returned by __xhotc() or __xhotl().

__xhott() is specific to SP C. It is part of the group serving the persistent C

environment.

604 z/OS V1R8.0 XL C/C++ Programming Guide

The function is also available under the name EDCXHOTT.

Example

For an extensive example of the use of __xhott() see “Creating and using

persistent C environments” on page 572.

__xhotu() — Run a Function in a Persistent C Environment

Format

#include <spc.h>

void *__xhotu(void *handle, void *function, ...);

Description

This function is used to run a function in a persistent C environment. The

parameters are fullwords (four bytes):

1. handle is a handle—returned by __xhotc() or __xhotl()

2. function is a function pointer, which points to the desired C function

3. First parameter to pass to the function

4. Second parameter to pass to the function

...

This routine, and the C function being called, must use OS linkage. As a result, you

cannot make direct use of z/OS XL C/C++ Library functions with this function. C

functions being invoked using __xhotu() must be compiled with #pragma

linkage(func_name,OS).

__xhotu() is specific to SP C. It is part of the group serving the persistent C

environment.

The function is also available under the name EDCXHOTU.

Returned value

The returned value from __xhotu() is the returned value from the function run in the

persistent C environment.

Example

For an extensive example of the use of __xhotu() see “Creating and using

persistent C environments” on page 572.

__xregs() — Get Registers on Entry

Format

#include <spc.h>

int __xregs(int register);

Description

This routine finds the value a specified register had on entry to EDCXSTRT,

EDCXSTRL, EDCXSTRX, or the main routine of an exit routine compiled with

#pragma environment(...).

Chapter 41. Library functions for system programming C 605

__xregs() is available in these environments only. For more information about

EDCXSTRT, EDXSTRL, or EDCXSTRX, see “Creating freestanding applications” on page

562.

__xregs() is specific to SP C. It is part of the client-server group of functions.

The function is also available under the name EDCXREGS.

Returned value

__xregs() returned the value found.

__xsacc() — Accept Request for Service

Format

#include <spc.h>

void __xsacc(int message);

Description

This routine operates in the server part of a user-server application. It is used to

indicate acceptance or rejection of the last-requested service.

Calls to __xsacc are optional but, if made, should be when the request is validated

and all server references to user-owned storage are complete. __xsacc does not

cause a return of control to the user; its sole purpose is to indicate that user-owned

storage is no longer required by the application server.

In the case of a request that cannot be processed, possibly because the user’s

command is not recognized by the server or the parameter format is invalid, the call

to __xsacc should be omitted.

__xsacc() is specific to SP C. It is part of the client-server group of functions.

The function is also available under the name EDCXSACC.

Returned value

The return code for the last-requested service, zero indicating that the request was

accepted and will be processed.

__xsrvc() — Return Control from Service

Format

#include <spc.h>

void *__xsrvc(int message);

Description

This routine operates in the server part of a user-server application. It is used to

indicate completion of the last-requested service and to get the information required

for the next service to be performed.

message is the return code for the last-requested service.

__xsrvc() is specific to SP C. It is part of the client-server group of functions.

The function is also available under the name EDCXSRVC.

606 z/OS V1R8.0 XL C/C++ Programming Guide

__xusr() - __xusr2() — Get Address of User Word

Format

#include <spc.h>

void *__xusr(void);

void *__xusr2(void);

Description

Two words in an internal control block are available for customer use. These words

have an initial value of zero (that is, all bits are 0), but are otherwise ignored by

compiled code, and by the z/OS XL C/C++-specific Library. The values in these

words may be freely queried or set by application code using the pointers returned

by these functions.

__xusr() and __xusr2() are specific to SP C.

The __xusr() and __xusr2() functions are also available under the names EDCXUSR

and EDCXUSR2, respectively.

Returned value

__xusr() and __xusr2() return the addresses of these user words. The words, and

indeed __xusr() and __xusr2() themselves, are available in any environment, not

only the system programming environments.

__24malc() — Allocate Storage below 16MB Line

Format

#include <spc.h>

void *_24malc(size_t size);

Description

This function performs in the same manner as malloc except that it allocates

storage below the 16MB line in XA or ESA systems even when the run-time option

HEAP(ANYWHERE) is specified.

Storage allocated by this function is not part of the heap, so you must free this

storage explicitly using the free() function before this environment is terminated.

Storage allocated using __24malc() is not automatically freed when the environment

is terminated.

The function is available under the System Programming Environment.

__4kmalc() — Allocate Page-Aligned Storage

Format

#include <spc.h>

void *_4kmalc(size_t size);

Description

This function performs in the same manner as malloc() except that it allocates

page-aligned storage.

Chapter 41. Library functions for system programming C 607

Storage allocated by this function is not part of the heap, so you must free this

storage explicitly using the free() function before this environment is terminated.

Storage allocated using __4kmalc() is not automatically freed when the environment

is terminated.

The function is available under the System Programming Environment.

608 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 42. Using run-time user exits

This chapter shows how to use run-time user exits with the z/OS Language

Environment run-time library. This is general-use programming interface information

and associated guidance information for using the library.

This section is provided here for your convenience. For further information on using

run-time user exits in the z/OS Language Environment environment, refer to z/OS

Language Environment Programming Guide.

Note: Run-time user exits are not supported in AMODE 64 applications.

Using run-time user exits in z/OS Language Environment

z/OS Language Environment provides user exits that you can use for functions at

your installation. You can use the assembler user exit (CEEBXITA) or the HLL user

exit (CEEBINT). This section provides information about using these run-time user

exits.

Note: You cannot code either the CEEBXITA user exit or the CEEBINT user exit as an

XPLINK application.

Understanding the basics

User exits are invoked under z/OS Language Environment to perform enclave

initialization functions and both normal and abnormal termination functions. User

exits offer you a chance to perform certain functions at a point where you would not

otherwise have a chance to do so. In an assembler initialization user exit, for

example, you can specify a list of run-time options that establish characteristics of

the environment. This is done before the actual execution of any of your application

code. Another example is using an assembler termination user exit to request a

dump after your application has terminated with an abend.

In most cases, you do not need to modify any user exit to run your application.

Instead, you can accept the IBM-supplied default versions of the exits, or the

defaults as defined by your installation. To do so, run your application normally and

the default versions of the exits are invoked. You may also want to read the

sections “User exits supported under z/OS Language Environment” on page 610

and “Order of processing of user exits” on page 610, which provide an overview of

the user exits and describe when they are invoked.

If you plan to modify either of the user exits to perform some specific function, you

must link the modified exit to your application before running, as described in “Using

installation-wide or application-specific user exits” on page 611. In addition, the

sections “Using the Assembler user exit” on page 612 and “High level language

user exit interface” on page 623 describe the respective user exit interfaces to

which you must adhere to change an assembler or HLL user exit.

PL/I and C/370 compatibility

For more information on compatibility support for the IBMBXITA and IBMFXITA

assembler user exits, see “PL/I and C/370 compatibility” on page 622. Refer to IBM

C/370 Library Version 2 Release 2 Programming Guide or to PL/I for MVS & VM

Compiler and Run-Time Migration Guide for information about the IBMBINT HLL user

exit. IBMBINT is not available under C++.

© Copyright IBM Corp. 1996, 2006 609

User exits supported under z/OS Language Environment

z/OS Language Environment provides two user exit routines, one written in

assembler and the other in an HLL. You can find sample jobs containing these user

exits in the SCEESAMP sample library.

The user exits supported by z/OS Language Environment are shown in Table 94.

 Table 94. User exits supported under z/OS Language Environment

Name Type of User Exit When Invoked

CEEBXITA Assembler user exit Enclave initialization

Enclave termination

Process termination

CEEBINT HLL user exit. CEEBINT can be written in

z/OS XL C, PL/I, z/OS Language

Environment-conforming assembler, or in

C++ (see restrictions in “Order of processing

of user exits”).

Enclave initialization

Order of processing of user exits

The location and order in which user exits are driven for your application are

summarized in Figure 163.

 In Figure 163, run-time user exits are invoked in the following sequence:

1. Assembler user exit is invoked for enclave initialization.

The assembler user exit (CEEBXITA) is invoked very early during the initialization

process, before the enclave initialization is complete. Early invocation of the

assembler exit allows the enclave initialization code to benefit from any changes

that might be contained in the exit. If run-time options are provided in the

assembler exit, the enclave initialization code is aware of the new options.

User Application Code

(Main routine plus subroutines)

INITIALIZATION

PROCESSING

TERMINATION

PROCESSING

Assembler User Exit
(CEEBXITA)

Assembler User Exit
(CEEBINT)

Assembler User Exit
(CEEBXITA)

Assembler User Exit
(CEEBXITA)

(invoked for
enclave initialization)

(invoked for
enclave termination)

(invoked for
enclave termination)

Figure 163. Location of user exits

610 z/OS V1R8.0 XL C/C++ Programming Guide

2. Environment is established.

3. HLL user exit is invoked.

The HLL initialization exit (CEEBINT) is invoked just before the invocation of the

application code. In z/OS Language Environment, this exit can be written in

z/OS XL C, PL/I, z/OS Language Environment-conforming assembler, or z/OS

XL C++. However, you can only write CEEBINT in z/OS XL C++ if the following

conditions are met:

v CEEBINT must be declared with C linkage, i.e., it must be declared with

extern "C". If you are using C, you must compile your application code with

the RENT compile-time option.

v You must bind your application code with the z/OS binder.

v CEEBINT must be used as an application-specific user exit, rather than as an

installation-wide user exit (refer to “Using installation-wide or

application-specific user exits” for more information).

The HLL initialization exit cannot be written in COBOL, although COBOL

applications can use this HLL user exit. At the time when CEEBINT is invoked,

the run-time environment is fully operational and all z/OS Language

Environment-conforming HLLs are supported.

4. Main routine is invoked.

5. Main routine returns control to caller.

6. Environment is terminated.

7. Assembler user exit is invoked for termination of the enclave.

CEEBXITA is invoked for enclave termination processing after all application code

in the enclave has completed, but before any enclave termination activity.

8. Assembler user exit is invoked for termination of the process.

CEEBXITA is invoked again when the z/OS Language Environment process

terminates.

Although both the assembler and HLL exits are invoked for initialization, they do not

perform exactly the same functions. See “CEEBXITA behavior during enclave

initialization” on page 612 and “High level language user exit interface” on page 623

for a detailed description of each exit.

z/OS Language Environment provides the CEEBXITA assembler user exit for

termination but does not provide a corresponding HLL termination user exit.

Using installation-wide or application-specific user exits

IBM offers default versions of CEEBXITA and CEEBINT. You can use the IBM-supplied

default version of either exit, or you can customize CEEBXITA or CEEBINT for use on

an installation-wide basis. When CEEBXITA or CEEBINT is linked with the z/OS

Language Environment initialization/termination library routines during installation, it

functions as an installation-wide user exit.

Finally, you can customize CEEBXITA or CEEBINT yourself for use on your application.

When CEEBXITA or CEEBINT is linked in your program, it functions as an

application-specific user exit. The application-specific exit is used only when you run

that application. The installation-wide assembler user exit is not executed.

To obtain an application-specific user exit, you must explicitly include it at bind time

in the application using a binder INCLUDE control statement. Any time that the

application-specific exit is modified, it must be relinked with the application.

Chapter 42. Using run-time user exits 611

The assembler user exit interface is described in “Assembler user exit interface” on

page 614. The HLL user exit interface is described in “High level language user exit

interface” on page 623.

Using the Assembler user exit

The assembler user exit CEEBXITA tailors the characteristics of the enclave before it

is established. CEEBXITA must be written in assembler language because an HLL

environment may not yet be established when the exit is invoked. CEEBXITA is

driven for enclave initialization and enclave termination regardless of whether the

enclave is the first enclave in the process or a nested enclave. CEEBXITA can

differentiate easily between first and nested enclaves. For more information about

nested enclaves, see z/OS Language Environment Programming Guide.

CEEBXITA behaves differently depending on when it is invoked, as described in the

following sections.

Using sample Assembler user exits

Sample assembler user exit programs are distributed with z/OS Language

Environment. You can use them and modify the code for the requirements of your

own application. Choose a sample program appropriate for your application. The

following assembler exit user programs are delivered with z/OS Language

Environment.

 Table 95. Sample Assembler user exits for z/OS Language Environment

Example User Exit Operating System Language (if Language Specific)

CEEBXITA MVS (default)

CEEBXITC TSO

CEECXITA CICS (default)

CEEBX05A MVS COBOL

Note:

1. CEEBXITA and CEECXITA are the defaults on your system for MVS and CICS, if z/OS

Language Environment is installed at your site without modification.

2. The source code for CEEBXITA, CEEBXITC, CEEDXITA, and CEEBX05A can be found on MVS

in the sample library SCEESAMP.

3. CEEBX05A is an example user exit program for COBOL applications on z/OS.

CEEBXITA behavior during enclave initialization

The CEEBXITA assembler user exit is invoked before enclave initialization is

performed. You can use it to help guide the establishment of the environment in

which your application runs. For example, you can allocate data sets in the

assembler user exit. The user exit can interrogate program parameters supplied in

the JCL and change them if desired. In addition, you can specify run-time options in

the user exit using the CEEAUE_OPTIONS field of the assembler interface (see

“Assembler user exit interface” on page 614 for information about how to do this).

CEEBXITA performs no special tasks other than to return control to z/OS Language

Environment initialization.

CEEBXITA behavior during enclave termination

The CEEBXITA assembler exit is invoked after the user code for the enclave has

completed, but before the occurrence of any enclave termination activity. For

example, CEEBXITA is invoked before the storage report is produced (if one was

612 z/OS V1R8.0 XL C/C++ Programming Guide

requested), before data sets are closed, and before HLLs are invoked for enclave

termination. In other words, the assembler user exit for termination is invoked when

the environment is still active.

The assembler user exits allow you to request an abend. Under z/OS (as well as

TSO and CICS), you can also request a dump to assist in problem diagnosis. Note

that termination activities have not yet begun when the user exit is invoked. Thus,

the majority of storage has not been modified when the dump is produced.

It is possible to request an abend and dump in the enclave termination user exit for

all enclave-terminating events.

Example code that shows how to request an abend and dump when there is an

unhandled condition of severity 2 or greater can be found in the member CEEBX05A

in the sample library.

CEEBXITA behavior during process termination

The CEEBXITA assembler exit is invoked after:

v All enclaves have terminated.

v The enclave resources have been relinquished.

v Any z/OS Language Environment-managed files have been closed.

v Debug Tool has terminated.

This allows you to free files at this time, and it presents another opportunity to

request an abend.

During termination, CEEBXITA can interrogate the z/OS Language Environment

reason and return codes and, if necessary, request an abend with or without a

dump. This can be done at either enclave or process termination.

The IBM-supplied CEEBXITA performs no special tasks other than to return control to

z/OS Language Environment termination.

Specifying abend codes to be percolated by z/OS Language

Environment

The assembler user exit, when invoked for initialization, can return a list of abend

codes that are to be percolated by z/OS Language Environment. On non-CICS

systems, this list is contained in the CEEAUE_A_AB_CODES field of the assembler user

exit interface. (See “Assembler user exit interface” on page 614.) Both system

abends and user abends can be specified in this list.

When TRAP(ON) is in effect, and the abend code is in the CEEAUE_A_AB_CODES list,

z/OS Language Environment percolates the abend. Normal z/OS Language

Environment condition handling is never invoked to handle these abends. This

feature is useful when you do not want z/OS Language Environment condition

handling to intervene for some abends, for example, when IMS issues abend code

777.

When TRAP(OFF) is specified, the condition handler is not invoked for any abends or

program interrupts. The use of TRAP(OFF) is not recommended; refer to z/OS

Language Environment Programming Reference for more information.

Chapter 42. Using run-time user exits 613

Actions taken for errors that occur within the Assembler user

exit

If any errors occur during the enclave initialization user exit, the standard system

action occurs because z/OS Language Environment condition handling has not yet

been established.

Any errors occurring during the enclave termination user exit lead to abnormal

termination (through an abend) of the z/OS Language Environment environment.

If a program check occurs during the enclave termination user exit and TRAP(ON) is

in effect, the application ends abnormally with ABEND code 4044 and reason code

2. If a program check occurs during the enclave termination exit and ″TRAP(OFF)″

has been specified, the application ends abnormally without additional error

checking support. z/OS Language Environment provides no condition handling;

error handling is performed by the operating system. The use of TRAP(OFF) is not

recommended; refer to z/OS Language Environment Programming Guide for more

information.

z/OS Language Environment takes the same actions as described above for

program checks during the process termination user exit.

Assembler user exit interface

You can modify CEEBXITA to perform any function desired, although the exit must

have the following attributes after you modify it:

v The user-supplied exit must be named CEEBXITA.

v The exit must be reentrant.

v The exit must be capable of executing in AMODE(ANY) and RMODE(ANY).

v The exit must be relinked with the application after modification (if you want an

application-specific user exit), or relinked with z/OS Language Environment

initialization/termination routines after modification (if you want an

installation-wide user exit).

If a user exit is modified, you are responsible for conforming to the interface shown

in Figure 164 on page 615. This user exit must be written in assembler.

614 z/OS V1R8.0 XL C/C++ Programming Guide

When the user exit is called, register 1 (R1) points to a word that contains the

address of the CXIT control block. The high order bit is on.

The CXIT control block contains the following fullwords:

CEEAUE_LEN (input parameter)

A fullword integer that specifies the total length of this control block. For z/OS

Language Environment, the length is 48 bytes.

CEEAUE_FUNC (input parameter)

A fullword integer that specifies the function code. In z/OS Language

Environment, the following function codes are supported:

 1 - initialization of the first enclave within a process

 2 - termination of the first enclave within a process

 3 - nested enclave initialization

 4 - nested enclave termination

 5 - process termination

The user exit should ignore function codes other than those numbered from 1

through 5.

CEEAUE_RETC (input/output parameter)

A fullword integer that specifies the return or abend code. CEEAUE_RETC has

different meanings depending on the flag CEEAUE_ABND:

v As an input parameter, this fullword is the enclave return code.

Figure 164. Interface for Assembler user exits

Chapter 42. Using run-time user exits 615

v As an output parameter, if the flag CEEAUE_ABND is on, this fullword is

interpreted as an abend code that is used when an abend is issued. (This

could be either an EXEC CICS ABEND or an SVC 13.)

v If the flag CEEAUE_ABND is off, this fullword is interpreted as the enclave return

code that might have been modified by the exit.

See z/OS Language Environment Programming Guide for more information

about how z/OS Language Environment computes return and reason codes.

CEEAUE_RSNC (input/output parameter)

A fullword integer that specifies the reason code for CEEAUE_RETC.

v As an input parameter, this fullword is the z/OS Language Environment

return code modifier.

v As an output parameter, if the flag CEEAUE_ABND is on, CEEAUE_RETC is

interpreted as an abend reason code that is used when an abend is issued.

(This field is ignored when an EXEC CICS ABEND is issued.)

v If the flag CEEAUE_ABND is off, this fullword is the z/OS Language Environment

return code modifier that might have been modified by the exit.

See z/OS Language Environment Programming Guide for more information

about how z/OS Language Environment computes return and reason codes.

CEEAUE_FLAGS (input/output parameter)

Contains four flag bytes. CEEBXITA uses only the first byte but reserves the

remaining bytes. All unspecified bits and bytes must be zero. The layout of

these flags is shown in Figure 165.

 Byte 0 (CEEAUE_FLAG1) has the following meaning:

CEEAUE_ABTERM (input parameter)

When OFF, the enclave terminates normally (severity 0 or 1 condition).

Figure 165. CEEAUE_FLAGS format

616 z/OS V1R8.0 XL C/C++ Programming Guide

When ON, the enclave terminates with the z/OS Language Environment

return code modifier of 2 or greater. This could, for example, indicate

that a condition of severity 2 or greater was raised that was unhandled.

CEEAUE_ABND (output parameter)

When OFF, the enclave terminates without an abend. CEEAUE_RETC and

CEEAUE_RSNC are placed in register 15 and register 0 and returned to the

enclave creator.

 When ON, the enclave terminates with an abend. Thus, CEEAUE_RETC

and CEEAUE_RSNC are used by z/OS Language Environment in the

invocation of the abend. While executing in CICS, an EXEC CICS ABEND

command is issued.

 CEEAUE_RSNC is ignored under CICS. The TRAP option does not affect

the setting of CEEAUE_ABND.

CEEAUE_DUMP (output parameter)

When OFF and you request an abend, an abend is issued without

requesting a system dump.

 When ON and you request an abend, an abend is issued requesting a

system dump.

CEEAUE_STEPS (output parameter)

When OFF and you request an abend, one is issued to abend the entire

task.

 When ON and you request an abend, one is issued to abend the step.

Note: This fullword is ignored under CICS.

CEEAUE-A-CC-PLIST (input/output parameter)

A fullword pointer to the parameter address list of the application program.

 As an input parameter, this fullword contains the register 1 value passed to the

main routine. The exit can modify this value, and the value is then passed to

the main routine. If run-time options are present in the invocation command

string, they are stripped off before the exit is called.

 If the parameter inbound to the main routine is a character string,

CEEAUE-A-CC-PLIST contains the address of a fullword address that points to a

halfword prefixed string. If this string is altered by the user exit, the string must

not be extended in place.

CEEAUE_WORK (input parameter)

Contains a fullword pointer to a 256-byte work area that the exit can use. On

entry, it contains binary zeros and is doubleword-aligned.

 This area does not persist across exits.

CEEAUE_OPTIONS (output parameter)

On return, this field contains a fullword pointer to the address of a halfword

length prefixed character string that contains run-time options. These options

are only processed for enclave initialization. When invoked for enclave

termination, this field is ignored.

 These run-time options override all other sources of run-time options except

those that are specified as non-overrideable in the installation default run-time

options.

 Under CICS, the STACK run-time option cannot be modified using the assembler

user exit.

Chapter 42. Using run-time user exits 617

CEEAUE_USERWD (input/output parameter)

Contains a fullword whose value is maintained without alteration and passed to

every user exit. On entry to the enclave initialization user exit, it is zero.

Thereafter, the value of the user word is not altered by z/OS Language

Environment or any member libraries. The user exit can change the value of

this field and z/OS Language Environment maintains this value. This allows a

user exit to initialize the fullword and pass it to subsequent user exits.

CEEAUE_A_AB_CODES (output parameter)

During the initialization exit, this field contains the fullword address of a table of

abend codes that the z/OS Language Environment condition handler percolates

while in the (E)STAE exit. Therefore, the application is not given the opportunity

to field the abend. The table consists of:

v A fullword count of the number of abend codes that are to be percolated

v A fullword for each of the particular abend codes that are to be percolated

The abend codes can be user abend codes or system abend codes. User

abend codes are specified by F'uuu'. For example, if you wanted user abend

777 to be percolated, an F'777' would be coded. System abend codes are

specified by X'00sss000'. Avoid specifying the values 0C0 through 0CF as 'sss'.

Language Environment ignores values between OCO and OCF. No abend is

percolated, and z/OS Language Environment condition handling semantics are

in effect.

 This function is not enabled under CICS.

CEEAUE_FBCODE (input parameter)

Contains the fullword address of the condition token with which the enclave

terminated. If the enclave terminates normally (that is, not because of a

condition), the condition token is zero.

CEEAUE_PAGE (input/output parameter)

Usage of this field is related to PL/I BASED variables that are allocated storage

outside of AREAs. You can indicate whether storage should be allocated on a

4K-page boundary. You can specify the minimum number of bytes of storage

that you want allocated. Your allocation request must be an exact multiple of

4K. The IBM-supplied default setting for CEEAUE_PAGE is 32768 (32K).

 If CEEAUE_PAGE is set to zero, PL/I BASED variables can be placed on other than

4K-page boundaries.

 CEEAUE_PAGE is honored only during enclave initialization (that is, when

CEEAUE_FUNC is 1 or 3).

 The offset of CEEAUE_PAGE under z/OS Language Environment is different from

the offset of IBMBXITA under OS PL/I Version 2 Release 3.

Parameter values in the Assembler user exit

The parameters described in the following sections contain different values

depending on how the user exit is used. Possible values are shown for the

parameters based on how the assembler user exit is invoked.

First enclave within process initialization—entry

CEEAUE_LEN 48

CEEAUE_FUNC 1 (first enclave within process initialization function

code).

CEEAUE_RETC 0

618 z/OS V1R8.0 XL C/C++ Programming Guide

CEEAUE_RSNC 0

CEEAUE_FLAGS 0

CEEAUE-A-CC-PLIST The register 1 value from the operating system.

CEEAUE_WORK Address of a 256-byte work area of binary zeros.

CEEAUE_USERWD 0

CEEAUE_FBCODE 0

CEEAUE_PAGE Minimum number of storage bytes to be allocated

for PL/I BASED variables (default = 32768).

First enclave within process initialization—return

CEEAUE_RETC 0, or if CEEAUE_ABND = 1, the abend code.

CEEAUE_RSNC 0, or if CEEAUE_ABND = 1, the reason code for

 CEEAUE_RETC.

CEEAUE_FLAGS CEEAUE_ABND = 1 if an abend is requested, or 0 if

the enclave should continue with termination

processing.

 CEEAUE_DUMP = 1 if the abend should request a

dump.

 CEEAUE_STEPS = 1 if the abend should abend the

step, or 0 if the abend should abend the task.

CEEAUE-A-CC-PLIST Register 1, used as the new parameter list.

CEEAUE_OPTIONS Pointer to the address of a halfword prefixed

character string containing run-time options, or 0.

CEEAUE_USERWD Value of CEEAUE_USERWD for all subsequent exits.

CEEAUE_A_AB_CODES Pointer to the abend code table, or 0.

CEEAUE_PAGE User-specified PAGE value. Minimum number of

storage bytes to be allocated for PL/I BASED

variables (default = 32768).

First enclave within process termination—entry

CEEAUE_LEN 48

CEEAUE_FUNC 2 (first enclave within process termination function

code).

CEEAUE_RETC Return code issued by the application that is

terminating.

CEEAUE_RSNC Reason code that accompanies CEEAUE_RETC.

CEEAUE_FLAGS CEEAUE_ABTERM = 1 if the application is terminating

with the z/OS Language Environment return code

modifier of 2 or greater, or 0 otherwise.

 CEEAUE_ABND = 0

 CEEAUE_DUMP = 0

 CEEAUE_STEPS = 0

CEEAUE_WORK Address of a 256-byte work area of binary zeros.

Chapter 42. Using run-time user exits 619

CEEAUE_USERWD Return value from the previous exit.

CEEAUE_FBCODE Feedback code causing termination.

First enclave within process termination—return

CEEAUE_RETC If CEEAUE_ABND = 0, the return code placed in

register 15 when the enclave terminates.

 If CEEAUE_ABND = 1, the abend code.

CEEAUE_RSNC If CEEAUE_ABND = 0, the enclave reason code.

 If CEEAUE_ABND = 1, the abend reason code.

CEEAUE_FLAGS CEEAUE_ABND = 1 if an abend is requested, or 0 if

the enclave should continue with termination

processing.

 CEEAUE_DUMP = 1 if the abend should request a

dump.

 CEEAUE_STEPS = 1 if the abend should abend the

step, or 0 if the abend should abend the task.

CEEAUE_USERWD The value of CEEAUE_USERWD for all subsequent

exits.

Nested enclave initialization—entry

CEEAUE_LEN 48

CEEAUE_FUNC 3 (nested enclave initialization function).

CEEAUE_RETC 0

CEEAUE_RSNC 0

CEEAUE_FLAGS 0

CEEAUE-A-CC-PLIST The register 1 value discovered in a nested enclave

creation.

CEEAUE_WORK Address of a 256-byte work area of binary zeros.

CEEAUE_USERWD The return value from previous exit.

CEEAUE_FBCODE 0

CEEAUE_PAGE Minimum number of storage bytes to be allocated

for PL/I BASED variables (default = 32768).

Nested enclave initialization—return

CEEAUE_RETC 0, or if CEEAUE_ABND = 1, the abend code.

CEEAUE_RSNC 0, or if CEEAUE_ABND = 1, the reason code for

 CEEAUE_RETC.

CEEAUE_FLAGS CEEAUE_ABND = 1 if an abend is requested, or 0 if

the enclave should continue with termination

processing.

 CEEAUE_DUMP = 1 if the abend should request a

dump.

 CEEAUE_STEPS = 1 if the abend should abend the

step, or 0 if the abend should abend the task.

620 z/OS V1R8.0 XL C/C++ Programming Guide

CEEAUE-A-CC-PLIST Register 1 used as the new parameter list.

CEEAUE_OPTIONS Pointer to a fullword address that points to a

halfword prefixed string containing run-time options,

or 0.

CEEAUE_USERWD The value of CEEAUE_USERWD for all subsequent

exits.

CEEAUE_A_AB_CODES Pointer to the abend code table, or 0.

CEEAUE_PAGE User-specified PAGE value. Minimum number of

storage bytes to be allocated for PL/I BASED

variables (default = 32768).

Nested enclave termination—entry

CEEAUE_LEN 48

CEEAUE_FUNC 4 (termination function).

CEEAUE_RETC Return code issued by the enclave that is

terminating.

CEEAUE_RSNC Reason code that accompanies CEEAUE_RETC.

CEEAUE_FLAGS CEEAUE_ABTERM = 1 if the application is terminating

with the z/OS Language Environment return code

modifier of 2 or greater, or 0 otherwise.

 CEEAUE_ABND = 0

 CEEAUE_DUMP = 0

 CEEAUE_STEPS = 0

CEEAUE_WORK Address of a 256-byte work area of binary zeros.

CEEAUE_USERWD Return value from previous exit.

CEEAUE_FBCODE Feedback code causing termination.

Nested enclave termination—return

CEEAUE_RETC If CEEAUE_ABND = 0, the return code from the

enclave.

 If CEEAUE_ABND = 1, the abend code.

CEEAUE_RSNC If CEEAUE_ABND = 0, the enclave reason code.

 If CEEAUE_ABND = 1, the enclave reason code.

CEEAUE_FLAGS CEEAUE_ABND = 1 if an abend is requested, or 0 if

the enclave should continue with termination

processing.

 CEEAUE_DUMP = 1 if the abend should request a

dump.

 CEEAUE_STEPS = 1 if the abend should abend the

step, or 0 if the abend should abend the task.

CEEAUE_USERWD Value of CEEAUE_USERWD for all subsequent exits.

Process termination—entry

CEEAUE_LEN 48

Chapter 42. Using run-time user exits 621

CEEAUE_FUNC 5 (process termination function).

CEEAUE_RETC Return code presented to the invoking system in

register 15 that reflects the value returned from the

first enclave within process termination.

CEEAUE_RSNC Reason code accompanying CEEAUE_RETC that is

presented to the invoking system in register 0 and

reflects the value returned from the first enclave

within process termination.

CEEAUE_FLAGS CEEAUE_ABTERM = 1 if the last enclave is terminating

abnormally (that is, the z/OS Language

Environment return code modifier is 2 or greater).

This reflects the value returned from the first

enclave within process termination (function code

2).

 CEEAUE_ABND = 1 if an abend is requested, or 0 if

the enclave should continue with termination

processing first enclave within process termination

(function code 2).

 CEEAUE_DUMP = 0

 CEEAUE_STEPS = 0

CEEAUE_WORK Address of a 256-byte work area of binary zeros.

CEEAUE_USERWD The return value from previous exit.

CEEAUE_FBCODE The feedback code causing termination.

Process termination—return

CEEAUE_RETC If CEEAUE_ABND = 0, the return code from the

process.

 If CEEAUE_ABND = 1, the abend code.

CEEAUE_RSNC If CEEAUE_ABND = 0, the reason code for CEEAUE_RETC

from the process.

 If CEEAUE_ABND = 1, reason code for the

CEEAUE_RETC abend reason code.

CEEAUE_FLAGS CEEAUE_ABND = 1 if an abend is requested, or 0 if

the enclave should continue with termination

processing.

 CEEAUE_DUMP = 1 if the abend should request a

dump.

 CEEAUE_STEPS = 1 if the abend should abend the

step, or 0 if the abend should abend the task.

CEEAUE_USERWD The value of CEEAUE_USERWD for all subsequent

exits.

PL/I and C/370 compatibility

The following OS PL/I Version 2 Release 3 assembler user exits are supported for

compatibility under z/OS Language Environment:

 IBMBXITA (MVS Batch version)

 IBMFXITA (CICS version)

622 z/OS V1R8.0 XL C/C++ Programming Guide

For more information about IBMBXITA see PL/I for MVS & VM Compiler and

Run-Time Migration Guide. These user exits are available only under C, not C++.

Default versions of the above exits are not supplied under z/OS Language

Environment; instead, z/OS Language Environment supplies a default version of

CEEBXITA. Table 96 describes the order of precedence if the IBMBXITA and IBMFXITA

user exits are found in the same root program with CEEBXITA.

 Table 96. Interaction of Assembler user exits

CEEBXITA

Present

IBMBXITA Present under MVS Batch,

IBMFXITA Present under CICS Exit Driven

No No Default version of CEEBXITA

Yes No CEEBXITA

No Yes IBMBXITA under MVS Batch;

IBMFXITA under CICS

Yes Yes CEEBXITA

CXIT_FUNC in IBMBXITA will map to CEEBXITA as follows:

v CXIT_FUNC = 1 when IBMBXITA is invoked for initial enclave initialization or nested

enclave initialization

v CXIT_FUNC = 2 when IBMBXITA is invoked for initial enclave termination or nested

enclave termination

CXIT_USERWD in IBMBXITA will persist across enclaves (for example, in system()

calls).

High level language user exit interface

z/OS Language Environment provides CEEBINT, an HLL user exit, for enclave

initialization. You can code CEEBINT in z/OS XL C, PL/I, or z/OS XL C++ (subject to

the restrictions in “Order of processing of user exits” on page 610), or z/OS

Language Environment-conforming assembler. The HLL user exit cannot be written

in COBOL. COBOL programmers can use an HLL exit written in z/OS XL C, PL/I,

z/OS Language Environment-conforming assembler, z/OS XL C++ (again, subject to

the restrictions in “Order of processing of user exits” on page 610), or default to the

IBM-supplied default HLL user exit.

The HLL enclave initialization exit is invoked after the enclave has been

established, after the Debug Tool initial command string has been processed, and

prior to the invocation of compiled code. When invoked, it is passed a parameter list

that conforms to the z/OS Language Environment definition. The parameters are all

fullwords and are defined as follows:

Number of arguments in parameter list (input)

A fullword binary integer.

v On entry: Contains 7.

v On exit: Not applicable.

Return code (output)

A fullword binary integer.

v On entry: 0.

v On exit: Able to be set by the exit, but not interrogated by z/OS Language

Environment.

Chapter 42. Using run-time user exits 623

Reason code (output)

A fullword binary integer.

v On entry: 0

v On exit: Able to be set by the exit, but not interrogated by z/OS Language

Environment.

Function code (input)

A fullword binary integer.

v On entry: 1, indicating the exit is being driven for initialization.

v On exit: Not applicable.

Address of the main program entry point (input)

A fullword binary address.

v On entry: The address of the routine that gains control first.

v On exit: Not applicable.

User word (input/output)

A fullword binary integer.

v On entry: Value of the user word (CEEAUE_USERWD) as set by the assembler

user exit.

v On exit: The value set by the user exit, maintained by z/OS Language

Environment and passed to subsequent user exits.

Exit List Address (output)

A fullword binary integer reserved for future use.

 This allows the establishment of one or more user exits when the enclave user

exit sets this field to a list of user exits. Currently, only one user exit is

supported in z/OS Language Environment.

A_Exits

The address of the exit list control block, Exit_list.

v On entry: 0.

v On exit: 0, unless you establish a hook exit, in which case you would set this

pointer and fill in relevant control blocks. The control blocks for Exit_list

and Hook_exit are shown in the following figure.

As supplied, CEEBINT has only one exit defined that you can establish: the hook exit

described by the Hook_exit control block. This exit gains control when hooks

generated by the PL/I compile-time TEST option are executed. You can establish

this exit by setting appropriate pointers (A_Exits to Exit_list to Hook_exit).

Figure 166 on page 625 illustrates the Exit_list and Hook_exit control blocks.

624 z/OS V1R8.0 XL C/C++ Programming Guide

The control block Exit_list exit contains the following fields:

Exit_list_len

The length of the control block. It must be 1.

Exit_list_hooks

The address of the Hook_exit control block.

The control block for the hook exit must contain the following fields:

Hook_exit_len

The length of the control block.

Hook_exit_rtn

The address of a routine you want invoked for the exit. When the routine is

invoked, it is passed the address of this control block. Because this routine is

invoked only if the address you specify is nonzero, you can turn the exit on and

off.

Hook_exit_fnccode

The function code with which the exit is invoked. This is always 1.

Hook_exit_retcode

The return code set by the exit. You must ensure it conforms to the following

specifications:

0 Requests that Debug Tool be invoked next

4 Requests that the program resume immediately

0(0)

0(0)

4(4)

4(4)

12(C)

16(10)

20(14)

24(18)

28(1C)

32(20)

36(24)

Exit_list

Hook_exit

Exit_list_len

Exit_list_hooks

Hook_exit_len

Hook_exit_rtn

Hook_exit_fnccode

Hook_exit_retcode

Hook_exit_rsncode

Hook_exit_userwd

Hook_exit_ptr

Hook_exit_reserved

Hook_exit_dsa

Hook_exit_addr

8(8)

Figure 166. Exit_list and hook_exit control blocks

Chapter 42. Using run-time user exits 625

16 Requests that the program be terminated

Hook_exit_rsncode

The reason code set by the exit. This is always zero.

Hook_exit_userwd

The user word passed to the user exits.

Hook_exit_ptr

An exit-specific user word.

Hook_exit_reserved

Reserved.

Hook_exit_dsa

The contents of register 13 when the hook was executed.

Hook_exit_addr

The address of the hook instruction executed.

Usage requirements

1. The user exit must not be a main-designated routine. For example, it cannot be

a z/OS XL C or a z/OS XL C++ main() function.

2. The HLL exit routines must be linked with compiled code. If you do not provide

an initialization user exit, an IBM-supplied default, which returns control to your

application, is linked with the compiled code.

3. The exit cannot be written in COBOL/370.

4. The exit should be coded so that it returns for all unknown function codes.

5. z/OS XL C constructs such as the exit(), abort(), raise(SIGTERM), and

raise(SIGABRT) functions terminate the enclave.

6. A PL/I EXIT or STOP statement terminates the enclave.

7. Use the callable service IBMHKS to turn hooks on and off. For more information

about IBMHKS, see PL/I for MVS & VM Compiler and Run-Time Migration Guide.

626 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 43. Using the z/OS XL C MultiTasking Facility

This chapter describes how to use the MultiTasking Facility (MTF) with z/OS XL C.

It explains how to organize, code, compile, link, and run a program using MTF. It

also lists restrictions while using MTF.

MTF is a facility available under z/OS that can be used by application programs to

improve turnaround time on multiprocessor and attached-processor configurations.

When a program uses MTF on such a system, the elapsed time required to run the

program can be reduced. You can run tasks, which can run independently of each

other, simultaneously.

MTF is easy to use and requires very little knowledge of the multitasking

capabilities upon which it depends. From the programmer’s perspective,

multitasking facilities are available through the library functions of z/OS XL C.

Because of this simplicity, it is easy to introduce MTF to existing applications and

code new MTF applications to gain the benefits of multitasking.

Notes:

1. Except for a few differences, the MTF support for z/OS XL C is the same as for

the equivalent FORTRAN multitasking facilities. MTF is not supported under

CICS, IMS, DB2, C++, or z/OS UNIX System Services. In addition, IPA is not

supported in an MTF environment.

2. XPLINK is not supported in an MTF environment.

3. AMODE 64 applications are not supported in an MTF environment.

Organizing a program with MTF

MTF takes advantage of the multitasking capabilities of the operating system to

enable a single z/OS XL C application program to use more than one processor of

a multiprocessing configuration simultaneously. The z/OS operating system

organizes all work into units called tasks. These tasks are used by the operating

system to assign work to the processors of the multiprocessor configuration.

MTF’s facilities allow a single z/OS XL C application to be organized so it can be

run in a main task and in one or more subtasks. As a result of this organization, the

system can schedule these individual tasks to run simultaneously. This can

significantly reduce the elapsed time needed to run the program.

When a program is organized in this manner, the main task runs the part of the

program that controls the overall processing. This part is referred to as the main

task program throughout this manual.

The subtasks run the portions of the program that can run independently of the

main task program and of each other. These portions of the program are referred to

as parallel functions. The library functions provided by MTF allow the main task

program to schedule parallel functions and allow them to run independently. Parallel

functions are queued for execution on the next available subtask. Scheduling a

parallel function does not require that there be a free subtask at the time of the

scheduling. MTF allows the main task program to schedule more parallel functions

than there are actual MVS subtasks.

© Copyright IBM Corp. 1996, 2006 627

The parallel functions are coded the same way as normal C functions, with the

exception of a few rules discussed in “Designing and coding applications for MTF”

on page 635. In particular, parallel functions cannot issue MTF calls.

MTF applications are link-edited as two separate load modules: a main task load

module (containing the main task program) and a parallel load module (containing

all parallel functions).

z/OS XL C provides the following MTF functions:

v tinit() to initialize the MTF environment

v tsched() to schedule parallel functions to run

v tsyncro() to synchronize the completion of parallel functions

v tterm() to terminate all executing parallel functions.

For details on the library functions, refer to the z/OS XL C/C++ Run-Time Library

Reference.

z/OS XL C also provides the header file mtf.h, which must be included in your main

task program if you are going to use the MTF facilities. The mtf.h header file

contains the macros MTF_ANY and MTF_ALL, as well as the error-return codes and

prototypes for library functions.

Ensuring computational independence

To use multitasking successfully, the parallel functions must have computational

independence. This means that no data modified by either the main task program

or a parallel function is examined or modified by a parallel function that might be

running simultaneously.

In the following figure, you see a graphic example of hypothetical data in an array

subscripted by I, J, and K. Each of the three divisions of the box represents a

section of the array that can be operated on independently of the other sections.

The same parallel function could be scheduled three times, with each instance of

the function processing one of the three sections of the array.

 Your application may not have computational independence along the same

subscript axis of K, as in this picture. The divisions might have been along one of

the other subscript axes, I or J. Also, the computational independence in your

application may not fall into neat, box-like divisions.

J

I

K

Figure 167. Computational independence

628 z/OS V1R8.0 XL C/C++ Programming Guide

It is also possible to have computational independence that is not based on

sections of the same array, but rather on separate arrays (perhaps with completely

different types of data), the values of which do not depend on each other. In this

case, separate parallel functions could be scheduled, with each function processing

its own unique data.

Computational independence also applies to input/output files. One parallel function

should not use a file while another is updating it. However, different functions can

successfully read the same file. No single file pointer should be used concurrently

by multiple parallel functions, because the behavior is undefined in such a case.

Running a C program without MTF

The following diagrams illustrate the way a z/OS XL C program runs without

multitasking. The program and its functions must run in a strictly sequential manner,

function following function, using one processor at a time. Consequently, your

program takes more elapsed time to complete than it would if it could use several

processors at the same time.

In the following example, without multitasking, the z/OS XL C program and all its

functions can only use one processor.

Processor 1 Processor 2

Your C

Function suba()

Function subb()

. . .

Function subn()

program

Chapter 43. Using the z/OS XL C MultiTasking Facility 629

While running, your program may be switched back and forth between the

processors, but it can only run on one processor at a time.

Running a C program with MTF

To illustrate the concept of multitasking, this section shows three examples of

running a z/OS XL C program with MTF. These examples show programs using:

v One parallel function

v Two different functions

v Two or more instances of the same function

Each example provides an illustration of how the processors are used and how the

program is organized to accomplish the particular use of the processors.

Running a C program with one parallel function

If your C program uses MTF, the main task program and a computationally-
independent parallel function can run concurrently.

Processor 1 Processor 2

Your C

Function suba()

Function subb()

. . .

Function subn()

program

630 z/OS V1R8.0 XL C/C++ Programming Guide

Processor use

 In the previous illustration, only the function suba has computations that can be

done independently of the main task program, which includes the C main program

plus its functions.

With the appropriate MTF request, the parallel function, suba, is scheduled to run in

a subtask.

The arrows to Processor 1 and Processor 2 are for illustration only. The main task

program could have run on Processor 2 and the parallel function, suba, on

Processor 1; in fact, while they run, they may be switched between the processors.

Sample program

Processor 1 Processor 2

C main
task program

Function subb()

. . .

Function subn()

Function suba()

Main Task Program

Parallel Function

#include <mtf.h>
. . .
tinit("plmod",1);
. . .
tsched(MTF_ANY, "suba", arglist);
. . .
subb();
. . .
subn();
tsyncro(MTF_ALL);
. . .

Function subb()

. . .

Function subn()

Main Task Program

Function suba()

1

2

3

Chapter 43. Using the z/OS XL C MultiTasking Facility 631

What the MTF functions do:

�1� tinit() names the parallel load module plmod and specifies one subtask.

�2� tsched() schedules the parallel function suba to run. suba is

computationally-independent of the main task.

�3� At this point, tsyncro() makes the main task program wait until suba is

finished before the main task program continues.

Running a C program with two different parallel functions

If your C program uses MTF, the main task program and several different

computationally-independent parallel functions can run concurrently.

Processor use

 In the previous illustration, functions suba and subc are independent of each other

and of the main task program.

The arrows to Processors 1, 2, and 3 are for illustration only. The main task

program and the parallel functions could run on any of the processors.

Processor 1 Processor 2 Processor 3

C main
task program

Function subb()

. . .

Main Task Program

Parallel Functions
(One Parallel Module)

Function subc()Function suba()

632 z/OS V1R8.0 XL C/C++ Programming Guide

Sample program

 What the MTF functions do:

The logic is similar to that for only one parallel function and can be extended to as

many parallel functions as necessary to complete the logic of the program.

�1� tinit() names the parallel load module plmod and specifies two subtasks.

�2� Each call to tsched() schedules one of the parallel functions, passing

different data to each for processing. suba and subc are

computationally-independent parallel functions.

�3� At this point, tsyncro() makes the main task program wait until both suba

and subc are finished before the main task program continues its

processing.

z/OS XL C with multiple instances of the same parallel function

If your C program uses MTF, the main task program and multiple instances of the

same parallel function can run concurrently.

Function subc()

#include <mtf.h>

. . .

tinit("plmod",2);

. . .

tsched(MTF_ANY, "suba", arglist1);

. . .

tsched(MTF_ANY, "subc", arglist2);

. . .

subb();

. . .

tsyncro(MTF_ALL);

. . .

Function subb()

. . .

Main Task Program

Function suba()

1

2

2

3

Chapter 43. Using the z/OS XL C MultiTasking Facility 633

Processor use

 In this illustration, parallel function suba has data you can divide, so two instances

of suba run independently of the main task program and of each other.

Sample program

 What the MTF functions do:

�1� tinit() names the parallel load module plmod and specifies two subtasks.

�2� Each call to tsched() schedules one instance of the parallel function to run

and supplies separate data to be processed by that instance of suba. The

data to be processed by each instance of the parallel function could be two

different sections of the same array. Both instances of suba are

computationally-independent of the main task program and each other,

because each instance of suba processes different data.

Processor 1 Processor 2 Processor 3

C main
task program

Function subb()

. . .

Main Task Program

Parallel Functions
(One Parallel Module)

Function suba()Function suba()

Function suba()

#include <mtf.h>

. . .

tinit("plmod",2);

. . .

tsched(MTF_ANY, "suba", arglist1);

. . .

tsched(MTF_ANY, "suba", arglist2);

. . .

subb();

. . .

tsyncro(MTF_ALL);

. . .

Function subb()

. . .

Main Task Program

Function suba()

1

2

2

3

634 z/OS V1R8.0 XL C/C++ Programming Guide

�3� At this point, tsyncro() makes the main task program wait until all

instances of suba finish before the main task program continues.

Designing and coding applications for MTF

You can use the following steps when preparing a z/OS XL C application to work

with MTF:

1. Identify computationally-independent code

2. Create parallel functions

3. Insert calls to parallel functions in main task program

New programs can be designed to use MTF, and existing programs can be

reconstructed.

Step 1: Identifying computationally-independent code

The first step in adapting an application program for MTF is to identify groups of

computations that can be performed in parallel. To produce correct results, the

computations that are done in parallel must be computationally-independent. This is

further explained under “Ensuring computational independence” on page 628.

Step 2: Creating parallel functions

After the segments of code that are computationally-independent are identified, they

are separated from the main task program and placed in parallel functions. A

parallel function is coded as a normal C function that follows several rules required

for correct operation with MTF. Besides to data independence, there are rules for:

v Parallel functions

v Calling other functions

v Separate storage for separate modules

v Passing data

v Input and output

v Exception/signal handling

v Function termination

Parallel functions

v A parallel function must be written only in C.

v The return value of a parallel function must be void. If a parallel function

attempts to return a value, the behavior will be undefined.

v External parallel function names must be 8 characters or shorter in length and

will be uppercased.

Calling other functions

v A parallel function may actually be coded as a series of functions that call one

another. All of these functions operate in the parallel function’s subtask

environment and must follow the rules of a parallel function except that they can

be written in assembler as well as C, and they can have return values.

v A parallel function cannot call the MTF library functions tinit(), tsched(),

tsyncro(), or tterm(). Such calls can only be used in the main task.

Separate storage for separate modules

v Every MTF application consists of two modules: the main task module which runs

on the main task, and the parallel module that runs on the subtask(s). Each task

Chapter 43. Using the z/OS XL C MultiTasking Facility 635

(main or sub) has its own unique run-time storage structure consisting of ISA,

heap, and residual storage. Each task has:

– Separate writable static (whether reentrant or not)

– Separate library-internal storage (for example, file and storage management

control blocks)

– Separate exception and signal-handling environment (for example, errno,

__amrc)

v Usually, functions must abide by the restrictions inherent in this arrangement. The

remaining rules in this section mostly arise from this arrangement.

636 z/OS V1R8.0 XL C/C++ Programming Guide

Passing data

v A parallel function is always invoked in its last-used state. If, for example, a

parallel function has defined a static variable with an initializer, then the variable

has that value the first time the parallel function executes on a given task. Should

the value be modified, the modification is available the next time that parallel

function is run only if the function is scheduled to the same task. If you don’t

User_main()

user_funcA()

user_funcB()

user_funcC()

Main Task 00

Main Task Module

Data Storage

ISA

Heap

Residual

C MTF
Library

tinit, tsched

tsyncro, tterm

...

user_pfuncX()

user_pfuncY()

user_funcD()

EDCMTFS_main

Subtask 01

Parallel Module

Data Storage

ISA

Heap

Residual

user_pfuncX()

user_pfuncY()

user_funcD()

EDCMTFS_main

Subtask nn

Parallel Module

Data Storage

ISA

Heap

Residual

Single User Application/Single Address Space

Notes:

1. Each task has private and separate storage structure that leads to most of the

parallel function idiosyncrasies:

v All file operations from same task.

v Storage must be malloc() or free()d from same task.

v Independent signal handling environments.

2. MTF library functions are only operational in the main task.

3. call/return used for invocation within a task.

4. MTF only supports parallel load modules in a PDS. Parallel load modules in a

PDSE are NOT supported.

Figure 168. Basic MTF layout

Chapter 43. Using the z/OS XL C MultiTasking Facility 637

schedule the parallel function to the same task, you cannot depend upon residual

values from previous invocations of the function.

v Data can be passed between the main task program and parallel functions, and

between parallel functions by passing a pointer to the storage area as a

parameter. Care must be taken to ensure that the data remains valid and

available until completion of the particular parallel function instance being

scheduled.

v If heap storage is obtained on a given task, it must be freed on that task and no

other. Other tasks may be given access to that storage by passing pointers but

no other task can use that pointer to free the storage.

Input/Output

v File pointers must not be shared across subtasks. A given file pointer must only

be used (for file access and closing) on the same task on that it was created

{(using fopen())}. File pointers must be utilized as a serial resource. z/OS XL C

does not protect against misuse, and a program will have unpredictable behavior

if this rule is not enforced.

v Each parallel function updates (writes or changes) a file as if it had complete

control over the file; therefore, there should be no simultaneous read or update of

a given file while any function on any task is updating that file (even if separate

file pointers are used).

v Memory files cannot be shared across subtasks.

Exception/Signal handling

v The parallel functions on the subtasks run with TRAP(ON) run-time option, and

each has a signal handling environment entirely independent from that of each

other task. All signals are initialized to default handling on each task, and can be

modified for a given task only through a signal statement from a parallel function

on that task.

v All signal interrupts are eligible to be raised from the operating system or by the

raise() function during execution of parallel functions. All signals, however,

require special handling in the case of parallel functions because of the

requirement that parallel functions always return normally. Signals must either be

ignored or a handler must be established that does not terminate the program. If

these signals are left to default handling or a handler is established that

terminates the program, MTF will treat this as an abnormal termination of the

parallel function.

Function termination

v Parallel functions run as called functions (from EDCMTFS, the z/OS XL C library

supplied main function for parallel modules) and must terminate by simple return

(to EDCMTFS). For more information on EDCMTFS, see “Creating the parallel

functions load module” on page 645.

v Termination with exit() and abort() calls is invalid because these functions

interfere with EDCMTFS operation and they are treated by MTF as abnormal

terminations.

v On the first valid call to MTF (tsched(), tsyncro(), tterm()) from the main task

program after a parallel function has abnormally terminated (via exit()/abort()

or otherwise) MTF will:

– Abort all parallel functions scheduled or in progress

– Remove the MTF environment

– Return ETASKABND on that MTF call

638 z/OS V1R8.0 XL C/C++ Programming Guide

A subsequent tterm() call is unnecessary and will simply return EINACTIVE. A

tinit() can be reissued, but depending on the severity of the condition that

caused the ETASKABND, the tinit() may or may not be successful.

Step 3: Inserting calls to parallel functions

In the main task, insert a call to tinit() to initialize the MTF environment before to

any other MTF function call, or after tterm() is invoked. Replace each segment of

code that was identified for parallel computation with a call to tsched() which

schedules the corresponding parallel function. If more parallel function instances are

scheduled than tasks are currently available, the additional instances are queued

for subsequent execution in the order in which they were scheduled. They are

queued for any task or to a particular task according to the task_id parameter

supplied on the tsched() call. If parallel operation is to be achieved by scheduling

the same function multiple times with different data, the function call may be placed

within a loop.

The arguments passed to the parallel function may be:

v A variable

v An array element

v An array name

v A constant

v A structure

The following items must not be used as the arguments supplied to the parallel

function using tsched():

v Function pointers

v A pointer to data or storage that will be modified or released before a tsyncro().

After inserting calls to the parallel functions, insert a call to tsyncro() wherever the

program requires that any subtask, one particular subtask, or all of the subtasks

have finished executing the parallel functions previously scheduled to them. As the

last MTF call, insert a call to tterm() before to exit/return from the main task

program to remove the MTF environment.

To properly use MTF from the main task program it is necessary to include the

mtf.h header file before to the first MTF call in your program. MTF calls themselves

can be issued from non-main as well as main functions within the main task

program, subject only to the restrictions already described above. MTF calls,

however, can only be issued from C functions and not from functions written in any

other language.

The next sections show examples of how to change existing C programs to use

MTF following the steps just outlined.

Changing an application to use MTF

The following examples show how to change an application to use MTF by creating

parallel functions and inserting calls to these functions.

Example 1

Figure 169 on page 640 shows a computation of the dot product on two long

one-dimensional arrays of data. The processing within the loop structure may be

separated so that the dot product is not a result of serial calculations but a result of

parallel calculations. This is because the first part of the array is not dependent on

Chapter 43. Using the z/OS XL C MultiTasking Facility 639

the results computed in any other section of the array. Thus the calculations are

therefore computationally independent of each other, and can be performed at the

same time.

Create parallel functions

The segments of the program that have been identified to run as parallel functions

are then recoded as new z/OS XL C functions. In this case, there will be one

parallel function, multiple instances of which will be scheduled. The parallel function

corresponding to the code in Figure 169 now looks like Figure 170.

 The variables to and from are used to determine on which part of the array the

parallel function is to perform.

Insert calls to parallel functions

The segments of the program that have been removed to form parallel functions are

replaced by calls to these new parallel functions. For the sample code in Figure 169

on page 640sub:exph. is scheduled for each subtask that will be used at run time.

In order to do this, the computations controlled by the k index must be divided so

that each instance of the function sub operates on a different part of the original

range of the k variable. See Figure 171 for an example of how two instances of a

parallel function can be scheduled.

double dotprod(double *a, double *b, int len)

{

 int i;

 double res = 0;

 for (i=0; i < len; ++i)

 res += *a++ * *b++;

 return(res);

}

Figure 169. Identifying Computationally-Independent Code

void pdotprod(double *a, double *b, int len, int m, int n, double *pres)

 /* m = the section of the array */

 /* n = the number of subtasks. n must be a factor of len */

{

 int i, from, to;

 *pres = 0;

 /* Determine which section of the array to operate on */

 from = (m-1) * len / n;

 to = (m * len) / n;

 /* Calculate the partial result on part of the array */

 for (a+= from, b+=from, i=from; i < to; ++i)

 *pres += *a++ * *b++;

}

Figure 170. Sample code as a parallel function

640 z/OS V1R8.0 XL C/C++ Programming Guide

Also, within the main task program, the subtasks must be initialized and eventually

terminated as shown in Figure 172.

Example 2

Not all application programs contain parallelism within the iterations of a loop

structure. The following example illustrates parallel computations that appear as

different segments of code in the original program. Also illustrated is the use of

pointer arguments for passing data, and I/O operations to files in parallel functions.

Figure 173 on page 642 shows two calls to the same function that performs the dot

product on the values in two files of data. The values are read from each file and

the function performs the dot product upon these values. The loop ends when the

#include <mtf.h>;

double dotprod(double *a, double *b, int len)

{

 ...
 int i;

 double res = 0;

 double pres[MAXTASK];

 /* Schedule the parallel functions according to */

 /* how many subtasks exist */

 for (i=1; i < n; ++i)

 tsched(MTF_ANY,"pdotprod",a,b,len,i,n,&pres[i-1]);

 /* Perform the calculations on the last part of the array */

 pdotprod(a,b,len,n,n,&pres[n-1]);

 /* Wait until all of the partial results are determined */

 tsyncro(MTF_ALL);

 /*Add all the partial results to determine the final dot product*/

 for (i=0;i < n; ++i)

 res += pres[i];

 return(res);

}

Figure 171. Scheduling instances of a parallel function

#include <mtf.h>

int main(void)

{

 ...
/* other code */

/* Attach and initialize a subtask */

 tinit(load_sub_name, n);

 ...
 result = dotprod(vector1,vector2,len);

 ...
/* Terminate subtasks */

 tterm();

/* more code */

}

Figure 172. Main task program to call dot product function

Chapter 43. Using the z/OS XL C MultiTasking Facility 641

end of either file is reached. The two computations are independent of each other

and thus can be performed simultaneously in two different parallel functions.

CCNGMT1:

Create parallel functions

The fdotprod routine is identified as a parallel function so it is recoded as a new C

function in a separate file. Data is passed from the main function to the parallel

functions by means of pointer arguments. The parallel functions are shown in

Figure 175 on page 644. The main task program is shown in Figure 174 on page

643.

/* MTF example 2 */

#include <stdio.h>

void fdotprod(char *fn1, char *fn2)

{

 int i, res1;

 double result=0, val1, val2;

 FILE *file1, *file2;

 file1 = fopen(fn1, "r");

 file2 = fopen(fn2, "r");

 while (1)

 {

 res1 = fscanf(file1, "%lf", &val1);

 res1 += fscanf(file2, "%lf", &val2);

 if (res1 != 2)

 break;

 result += val1 * val2;

 }

 if (res1 == 1)

 printf("Error: Files of unequal length\n");

 else

 printf("Result: %lf\n", result);

}

int main(void)

{

 fdotprod("a.input", "b.input");

 fdotprod("c.input", "d.input");

 return(0);

}

Figure 173. Sample code to be changed to use MTF

642 z/OS V1R8.0 XL C/C++ Programming Guide

CCNGMT2:

/* MTF example 2 */

/* part 2 of 2-other file is CCNGMT1 */

#include <stdio.h>

#include <mtf.h>

int main(void)

{

 tinit("plmod", 2);

 tsched(MTF_ANY, "fdotprod", "a.input", "b.input");

 tsched(MTF_ANY, "fdotprod", "c.input", "d.input");

 tsyncro(MTF_ALL);

 tterm();

 return(0);

}

void fdotprod(char *fn1, char *fn2)

{

 int i, res1;

 double result=0, val1, val2;

 FILE *file1, *file2;

 file1 = fopen(fn1, "r");

 file2 = fopen(fn2, "r");

 while(1)

 {

 res1 = fscanf(file1, "%lf", &val1);

 res1 += fscanf(file2, "%lf", &val2);

 if (res1 != 2)

 break;

 result += val1 * val2;

 }

 if (res1 == 1)

 printf("Error: Files of unequal length\n");

 else

 printf("Result: %lf\n", result);

}

Figure 174. Sample code

Chapter 43. Using the z/OS XL C MultiTasking Facility 643

CCNGMT3:

Compiling and linking programs that use MTF

Programs that use MTF run using two MVS load modules: a load module that

contains the main task program, and a load module that contains the parallel

functions. You compile and link-edit the main task program in the same procedure

as non-MTF C programs. The parallel function is compiled in the same procedure

as non-MTF C programs and is linked with EDCMTFS.

Creating the main task program load module

The main task program load module is the load module that first receives control

when MVS starts running your program. It is the load module named in the PGM

keyword of the EXEC statement. This load module contains your application’s C

main() function plus all other functions that are to run as part of the main task. The

MTF functions can be invoked from any of the C functions contained in the main

task load module and do not necessarily have to be invoked from the C function

called main().

The procedures that you usually use to compile and link-edit a z/OS XL C program

can be used to create the main task program load module. For example, the

following JCL sequence (see Figure 176 on page 645) uses the standard z/OS XL

C cataloged procedure EDCCL to compile and link-edit the C source for the main

task program (stored in data set USERPGM.C(MTASKPGM)) and create a main task

program load module named MTASKPGM in data set USERPGM.LOAD.

/* MTF example 2 */

/* part 2 of 2-other file is CCNGMT2 */

#include <stdio.h>

void fdotprod(char *fn1, char *fn2)

{

 int i, res1;

 double result=0, val1, val2;

 FILE *file1, *file2;

 file1 = fopen(fn1, "r");

 file2 = fopen(fn2, "r");

 while(1)

 {

 res1 = fscanf(file1, "%lf", &val1);

 res1 += fscanf(file2, "%lf", &val2);

 if (res1 != 2)

 break;

 result += val1 * val2;

 }

 if (res1 == 1)

 printf("Error: Files of unequal length\n");

 else

 printf("Result: %lf-n", result);

}

Figure 175. Sample code

644 z/OS V1R8.0 XL C/C++ Programming Guide

Creating the parallel functions load module

The parallel functions load module is the load module named in the call to the MTF

library function tinit(). This single load module contains all of your main task

program’s parallel functions. It must not contain any user’s C main() programs.

z/OS XL C itself provides the EDCMTFS module to act as the C main() function in the

parallel module. EDCMTFS controls processing of the parallel functions as they are

scheduled (by way of tsched() calls) to the subtasks. The source code for the

EDCMTFS module is included in Figure 178 on page 646.

Note: The executable module for parallel function program must be a load module

(in a PDS data set), created using the linkage editor (and prelinker if

required due to the presence of C++ code or C code compiled with the

RENT option). The MTF library functions used to access the parallel

functions are not compatible with a program object executable module (in a

PDSE data set).

The procedures that you usually use to compile and link-edit a z/OS XL C program

must be modified such that the library module CEESTART will be the entry point of the

parallel functions load module.

When you link-edit this load module, include the following linkage editor control

statements:

INCLUDE SYSLIB(EDCMTFS)

ENTRY CEESTART

For example, the following JCL sequence uses the standard z/OS XL C cataloged

procedure EDCCL to compile and link-edit the C source for the parallel functions

:{(stored in data set USERPGM.C(SUBTASK)):} and create a parallel functions load

module named PLMOD in data set USERPGM.LOAD. This load module contains the

module EDCMTFS, and has EDCMTFS as the load module’s entry point.

Note: First we have a step that compiles and link-edits the main task program.

The addressing mode is subject to normal consideration as described in the z/OS

Language Environment Programming Guide.

//MTASKPGM EXEC EDCCL,

// INFILE='USERPGM.C(MTASKPGM)',

// OUTFILE='USERPGM.LOAD(MTASKPGM),DISP=OLD'

Figure 176. Sample JCL to compile and link main task program

//MTASKPGM EXEC EDCCL,

// INFILE=’CBC.SCCNSAM(CCNGMT2)’,

// OUTFILE=’USERPGM.LOAD(CCNGMT2),DISP=SHR’

//*

//PFUNC EXEC EDCCL,

// INFILE=’CBC.SCCNSAM(CCNGMT3)’,

// OUTFILE=’USERPGM.LOAD(PLMOD),DISP=SHR’

//LKED.SYSLIN DD

 INCLUDE SYSLIB(EDCMTFS)

 ENTRY CEESTART

/*

Figure 177. Sample JCL to compile and link parallel functions

Chapter 43. Using the z/OS XL C MultiTasking Facility 645

Specifying the linkage-editor option

Do not specify the NE linkage-editor option when link-editing the parallel functions

load module. MTF cannot schedule parallel functions that are contained in a load

module link-edited with the NE option.

Modifying run-time options

You can alter the #pragma runopts options STACK and HEAP within the EDCMTFS

module for each subtask, but you must recompile the module under the same

name. The source code for EDCMTFS is shown in Figure 178.

 You can also add a #pragma runopts statement with the LIBRARY and VERSION

options to EDCMTFS, if required.

Running programs that use MTF

To run your program, use the usual MVS JCL for z/OS XL C programs, plus a few

additional JCL statements that are required to run MTF.

STEPLIB DD statement

You must ensure that the library containing the load modules is specified on the

STEPLIB DD statement in your JCL, as well as the other libraries usually specified,

as follows:

//STEPLIB DD DSN=user.dsn,DISP=SHR

where:

user.dsn

is the name of the load module library that contains the parallel functions load

module.

 The parallel functions load module (parallel_loadmod_name), specified on the

call to tinit(), must be in this data set.

 You must allocate the ddname EDCMTF to the user.dsn data set as well as

adding user.dsn to the STEPLIB concatenation list.

DD statements for standard streams

For standard streams, MTF assigns a unique run-time output file to each parallel

function. These output files contain diagnostic messages that the library can issue

/***/

/* Modify the isa/isainc/heap subparameters in the following line */

/* as required to meet your needs. Ensure that your version (compiled*/

/* and linked) is then accessed in your link-edit of the parallel */

/* module in place of the prebuilt EDCMTFS found in SCEELKED. */

/***/

#pragma runopts(STACK(8K,4K,ANY,FREE),HEAP(4K,4K,ANY,FREE))

/***/

/* The following lines must remain unmodified to ensure proper */

/* operation of MTF. */

/***/

#pragma runopts(TRAP(ON),RPTSTG(OFF),\

 (STAE,SPIE,NOREPORT,NOTEST,\

 ARGPARSE,REDIR,NOEXECOPS)

int main(int argc, char **argv) { return tsetsubt(argc,argv); }

Figure 178. Source code for EDCMTFS

646 z/OS V1R8.0 XL C/C++ Programming Guide

while the parallel functions are running. They also contain output directed to the

standard streams (stderr and stdout) by parallel functions and input from the

standard stream stdin.

Because these files are automatically allocated while the program is running, you

need not supply DD statements for them unless you wish to override the default

device type or other file characteristics. The default device type is a terminal in TSO

or SYSOUT=* in batch.

If you do supply DD statements, use the following ddnames:

v stdinstn for files containing input for operations such as getc()

v stderrstn for files containing diagnostic messages

v stdoutstn for files containing output from operations such as printf()

Where stn is the 2-digit subtask number; that is, 01, 02, 03, and so on. Thus, for

example, if you had four subtasks and the first two used printf() functions, you

would use the ddnames stdout01, stdout02, stderr01, stderr02, stderr03, and

stderr04.

Example of JCL

An example of the run-time JCL to run a program that uses MTF is shown in

Figure 179 on page 647. This figure shows the JCL that is unique to running MTF,

as well as the other JCL the program would typically require. (Some programs

might require additional DD statements.)

 MTASKPGM is the name of the main task program load module, and is the load

module that gets control when MVS first starts running the program. In this

example, this load module is contained in data set USERPGM.LOAD, which is referred

to by the STEPLIB DD statement. USERPGM.LOAD also contains the parallel functions.

The STDIN01 DD statement specifies the data set that contains the program’s input

data for the first task. The STDOUT02 DD statement specifies that printed output aside

from run-time error messages from the second subtask is to be written to SYSOUT

class S and that the record format is to be fixed-length. These DD statements are

necessary only if you do not want to accept the defaults.

Debugging programs that use MTF

Debug Tool can be used to interactively debug your main task program. It cannot,

however, be used to debug your parallel functions.

Avoiding undesirable results when using MTF

To prevent undesirable results, be aware of the following concerns and restrictions:

v MTF only supports parallel load modules in a PDS. Parallel load modules in a

PDSE are NOT supported.

v Do not update a file with one task if the other tasks read the same file. Files can

be destroyed if this is attempted.

v The following products should not be used from the main task or any subtasks

while MTF is active:

//GO EXEC PGM=MTASKPGM

//STEPLIB DD DSN=USERPGM.LOAD,DISP=SHR

//STDIN01 DD DSN=USERPGM.INPUT,DISP=SHR

//STDOUT02 DD SYSOUT=S,DCB=(RECFM=F)

Figure 179. Example run-time JCL

Chapter 43. Using the z/OS XL C MultiTasking Facility 647

– Information Management System (IMS)

– The CICS command level interface

v The following products should not be used from subtasks while MTF is active but

can be used from the main task:

– Data Window Services (DWS)

– Interactive System Productivity Facility (ISPF)

– Graphical Data Display Manager (GDDM)

v All library functions can be issued from the main task program.

v The following library functions should not be issued from parallel functions (see

“Function termination” on page 638):

– exit()

– abort()

– atexit()

v The following library functions can be used with some restrictions from parallel

functions:

– setjmp()/longjmp() can be used from within any task/subtask but must not be

used across tasks. That is, the stack environment saved via setjmp() on a

given task may be restored by a longjmp() from that task but from no other

task.

– setlocale()/localeconv() are only effective within a task. Each task has its

own distinct locale information. Thus setlocale()/localeconv() issued from

one task have no effect on such functions issued from other tasks.

– tmpnam() may produce identical file names across tasks and should be

restricted to being invoked from a single task (subtask or main task).

– rand()/srand() produce entirely independent series of pseudorandom integers

on each task

– All file manipulation functions (such as fopen()/fread()/...) - were identified

earlier under the rules for parallel functions in “Designing and coding

applications for MTF” on page 635. These functions can only be used on the

same task.

Note: When opening files under MTF, you incur additional overhead when

fopen() and freopen() are called. This overhead would normally be

performed at the first read or write to the stream and will not affect the

performance of a program that does indeed perform at least one read

or write to the stream.

– fetch()/release() must only be issued from the same task.

– free() must be issued on the same task as the malloc()/calloc()/realloc()

functions were issued. Note also that a realloc() must be issued in the same

task as the malloc().

– signal()/raise() also identified earlier under the rules for parallel functions in

“Designing and coding applications for MTF” on page 635. Basically, each

task has its own distinct interrupt environment. Thus signal()/raise() issued

from one task have no effect on the operation of any other task.

– PL/I and COBOL interlanguage calls must not be made from parallel

functions.

– Busy waits (loops that iterate until a flag is changed by a cooperating task)

violate the requirement for computational independence. In particular, they can

result in deadlock because of the scheduling algorithm used by MVS. They

must be avoided.

648 z/OS V1R8.0 XL C/C++ Programming Guide

Part 7. Programming with Other Products

This part contains the following programming product information:

v Chapter 44, “Using the CICS Transaction Server (CICS TS),” on page 651

v Chapter 45, “Using Cross System Product (CSP),” on page 675

v Chapter 46, “Using Data Window Services (DWS),” on page 689

v Chapter 47, “Using DB2 Universal Database,” on page 691

v Chapter 48, “Using Graphical Data Display Manager (GDDM),” on page 699

v Chapter 49, “Using the Information Management System (IMS),” on page 705

v Chapter 50, “Using the Interactive System Productivity Facility (ISPF),” on page

715

v Chapter 51, “Using the Query Management Facility (QMF),” on page 721

© Copyright IBM Corp. 1996, 2006 649

650 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 44. Using the CICS Transaction Server (CICS TS)

This chapter describes how to develop XL C/C++ programs for the CICS

Transaction Server for z/OS (CICS TS). You can find more information about the

general features of z/OS Language Environment and CICS in z/OS Language

Environment Programming Guide.

For information on using CSP/AD or CSP/AE under CICS, see Chapter 45, “Using

Cross System Product (CSP),” on page 675.

Notes:

1. AMODE 64 applications are not supported in a CICS TS environment.

2. As of this publication, the standalone CICS translator does not recognize the C

compiler’s support for alternative locales and coded character sets. Therefore,

you should write all your CICS C code in coded character set IBM-1047 (APL

293).

3. XPLINK applications are not supported under CICS prior to CICS TS 3.1.

4. As of V1R2, a non-XPLINK Standard C++ Library DLL allows support for the

Standard C++ Library in the CICS subsystem. For further information, see

″Binding z/OS C/C++ Programs″ in z/OS XL C/C++ User’s Guide.

Developing XL C/C++ programs for the CICS environment

When developing a program to run under CICS TS you must complete all of the

following actions:

1. Prepare CICS for use with z/OS Language Environment.

2. Design and code the CICS program.

3. Translate and compile the translated source for reentrancy.

4. Prelink and link all object modules with the CICS stub.

5. Define the program to CICS.

Preparing CICS for use with z/OS Language Environment

This section gives general instructions on enabling z/OS Language Environment to

use a new CICS TS environment or to add z/OS Language Environment to an

existing CICS TS environment. For more detailed information on CICS TS, refer to

the manuals listed in “CICS Transaction Server for z/OS” on page 994.

After CICS TS has been installed on your system, you must perform the following

tasks:

v Create a CICS TS environment if one does not already exist. This involves

creating a CICS System Definition (CSD), journals, and a Global Catalog Set

(GCD).

v Copy CEECCICS from SCEERUN to an Authorized Program Facility (APF) data set.

The data set should be concatenated in the STEPLIB when CICS is cold started.

v Create the CESO and CESE Transient Data Queues. Sample Destination Control

Table (DCT) definitions are supplied in SCEESAMP(CEECDCT).

v Add required definitions to the CSD. Sample CSD definitions are provided in

SCEESAMP(CEECCSD). These sample definitions create a group called CEE, which

must be added to the installation LIST.

v Add SCEERUN and SCEECICS to the DFHRPL concatenation.

© Copyright IBM Corp. 1996, 2006 651

|
|
|
|

|

The C run-time event handler module CEEEV003 is required for CICS TS support (in

addition to the z/OS Language Environment interface modules). CEEEV003 must be

link-edited as AMODE=31, RMODE=ANY, and loaded above the 16M line.

If you will be using the I/O stream library, complex mathematics, collection, or

Application Support Class DLLs provided with the z/OS XL C++ compiler, you must

define these DLLs in the CSD, and the CBC.SCLBDLL library must be added to the

DFHRPL concatenation. Sample CICS CSD definitions can be found in

CBC.SCLBJCL(CLB3YCSD).

Designing and coding for CICS

This section describes what you must do differently when designing and coding a

z/OS XL C/C++ program for CICS TS, such as using EXEC CICS commands in your

code, using input and output, using z/OS XL C/C++ functions, managing storage,

using interlanguage calls, and exception handling.

Using the CICS command-level interface

CICS TS provides a set of commands to access the CICS transaction server. The

format of a CICS command is:

EXEC CICS function [option[(arg)]]...;

In the following CICS command, the function is SEND TEXT. This function has 4

options: FROM, LENGTH, RESP and RESP2. In this case, each of the options takes one

argument.

EXEC CICS SEND TEXT FROM(mymsg)

 LENGTH(mymsglen)

 RESP(myresp)

 RESP2(myresp2);

For further information on the EXEC CICS interface and a list of available CICS TS

functions, refer to CICS Application Programming Guide, SC34-6231 and CICS

Application Programming Reference, SC34-6232.

When you are designing and coding your CICS TS application, remember the

following:

v The EXEC CICS command and options should be in uppercase. The arguments

follow general C or C++ conventions.

v Before any EXEC CICS command is issued, the EXEC Interface Block (EIB) must be

addressed by the EXEC CICS ADDRESS EIB command.

v z/OS XL C/C++ does not support the use of EXEC CICS commands in macros.

The examples in Figure 180 on page 653 show the use of several EXEC CICS

commands.

652 z/OS V1R8.0 XL C/C++ Programming Guide

|
|

|

|

CCNGCI1

/* program : GETSTAT */

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#define FILE_LEN 40

void check_4_down_status(char *status_record) ;

void sendmsg(char* status_record) ;

void unexpected_prob(char* desc, int rc) ;

struct com_struct {

 unsigned int quiet ;

} *commarea ;

 DFHEIBLK *dfheiptr ;

main ()

{

 long int vsamrrn;

 signed short int vsamlen;

 unsigned char status_record[41];

 signed long int myresp;

 signed long int myresp2;

 /* get addressability to the EIB first */

 EXEC CICS ADDRESS EIB(dfheiptr); �1�

 /* access common area sent from caller */

 EXEC CICS ADDRESS COMMAREA(commarea); �2�

 /* call the CATCHIT prog. if it abends */

 EXEC CICS HANDLE ABEND PROGRAM("CATCHIT "); �3�

 vsamrrn = 1;

 vsamlen = FILE_LEN;

 /* read the status record from the file*/

 EXEC CICS READ FILE("STATFILE") �4�

 UPDATE

 INTO(status_record)

 RIDFLD(vsamrrn)

 RRN

 LENGTH(vsamlen)

 RESP(myresp)

 RESP2(myresp2);

Figure 180. Example illustrating how to use EXEC CICS commands (Part 1 of 4)

Chapter 44. Using the CICS Transaction Server (CICS TS) 653

/* check cics response */

 /* -- non 0 implies a problem */

 if (myresp != DFHRESP(NORMAL))

 unexpected_prob("Unable to read from file",61);

 printf("The status_record from READ in GETSTAT = %s\n", status_record);

 if (memcmp(status_record,"DOWNTME ",8) == 0)

 check_4_down_status(status_record);

 if (commarea->quiet != 1)

 sendmsg(status_record);

 exit(11);

}

 void check_4_down_status(char *status_record)

{

 unsigned char uptime[9];

 unsigned char update[9];

 char curabs[8];

 unsigned char curtime[9];

 unsigned char curdate[9];

 long int vsmrrn;

 signed short int vsmlen;

 signed long int dnresp;

 signed long int dnresp2;

 strncpy((status_record+8),update,8);

 strncpy((status_record+16),uptime,8);

 update[8] =’\0’;

 uptime[8] =’\0’;

 /* get the current time/date */

 EXEC CICS ASKTIME ABSTIME(curabs) �5�

 RESP(dnresp)

 RESP2(dnresp2);

 if (dnresp != DFHRESP(NORMAL))

 unexpected_prob("Unexpected prob with ASKTIME",dnresp);

 /* format current date to YYMMDD */

 /* format current time to HHMMSS */

 EXEC CICS FORMATTIME ABSTIME(curabs) �6�

 YYMMDD(curdate)

 TIME(curtime)

 TIMESEP

 DATESEP;

Figure 180. Example illustrating how to use EXEC CICS commands (Part 2 of 4)

654 z/OS V1R8.0 XL C/C++ Programming Guide

if (dnresp != DFHRESP(NORMAL))

 unexpected_prob("Unexpected prob with FORMATTIME",dnresp);

 curdate[8] =’\0’;

 curtime[8] =’\0’;

 if ((atoi(curdate) > atoi(update)) ||

 (atoi(curdate) == atoi(update) && atoi(curtime) >= atoi(uptime)))

 {

 strcpy(status_record,"OK ");

 vsmrrn = 1;

 vsmlen = FILE_LEN;

 /* update the first record to OK */

 EXEC CICS REWRITE FILE("STATFILE") �7�

 FROM(status_record)

 LENGTH(vsmlen)

 RESP(dnresp)

 RESP2(dnresp2);

 if (dnresp != DFHRESP(NORMAL)) {

 printf("The dnresp from REWRITE = %d\n", dnresp) ;

 printf("The dnresp2 from REWRITE = %d\n", dnresp2) ;

 unexpected_prob("Unexpected prob with WRITE",dnresp);

 }

 printf("%s %s Changed status from DOWNTME to OK\n",curdate,

 curtime);

 }

}

void sendmsg(char* status_record)

{

 long int msgresp, msgresp2;

 char outmsgÝ80};

 int outlen;

 if (memcmp(status_record,"OK ",3)==0)

 strcpy(outmsg,"The system is available.");

 else if (memcmp(status_record,"DOWNTME ",8)==0)

 strcpy(outmsg,"The system is down for regular backups.");

 else

 strcpy(outmsg,"SYSTEM PROBLEM -- call help line for details.");

 printf("%s\n",outmsg);

 outlen=strlen(outmsg);

Figure 180. Example illustrating how to use EXEC CICS commands (Part 3 of 4)

Chapter 44. Using the CICS Transaction Server (CICS TS) 655

Both of these examples use EXEC CICS commands to:

�1� Initialize the CICS interface

�2� Access the storage passed from the caller

�3� Handle unexpected abends

�4� and �7� I/O to RRDS files

�5� and �6� Requesting and formatting time

Using input and output

This section describes how to use z/OS XL C/C++ I/O with CICS TS. It describes

the file and device support and the type of I/O used with CICS TS.

Note: You can set up a SIGIOERR handler to catch read or write system errors. See

Chapter 17, “Debugging I/O programs,” on page 235 for more information.

Standard stream support

Under CICS, if you are using the z/OS XL C++ standard streams, note the

following:

v cin is not supported under CICS.

v cout maps to the Standard C I/O stream stdout.

v cerr and clog both map to the C standard stream stderr.

stdout and stderr are assigned to transient data destinations (queues). The type of

queue, intrapartition or extrapartition, is determined during CICS initialization.

Intrapartition queues are used for queueing messages and data within a CICS

 EXEC CICS SEND TEXT FROM(outmsg)

 LENGTH(outlen)

 RESP(msgresp)

 RESP2(msgresp2);

 if (msgresp != DFHRESP(NORMAL))

 unexpected_prob("Message output failed from sendmsg",71);

}

void unexpected_prob(char* desc, int rc)

{

 long int msgresp, msgresp2;

 int msglen;

 msglen = strlen(desc);

 EXEC CICS SEND TEXT FROM(desc)

 LENGTH(msglen)

 RESP(msgresp)

 RESP2(msgresp2);

 fprintf(stderr,"%s\n",desc);

 if (msgresp != DFHRESP(NORMAL))

 exit(99);

 else

 exit(rc);

}

Figure 180. Example illustrating how to use EXEC CICS commands (Part 4 of 4)

656 z/OS V1R8.0 XL C/C++ Programming Guide

region. Extrapartition queues are used to send data outside the CICS region or to

receive data from outside the CICS region.

The transient data queues associated with stdout and stderr are CESO and CESE

respectively. z/OS XL C/C++ supports VA and VBA queues with an lrecl of at least

137 bytes.

Records sent to the transient data queues associated with stdout and stderr take

the form of a message. The entire message record can be preceded by an ASA

Standard control character. Figure 181 illustrates the recommended message

format.

 In Figure 181:

ASA is the carriage-control character.

terminal id is a 4-character terminal identifier.

transaction id is a 4-character transaction identifier.

sp is a space.

Time Stamp is the date and time displayed in the format YYYYMMDDHHMMSS.

data is the data that is output to the standard streams stdout and

stderr.

The following are sample messages of data written to a CICS data queue:

 SAMATST1 19940401080523 Hello World - from transaction TST1!

 BOBATST3 19940401112348 Hello World - from transaction TST3!

 TEDATST2 19940401112348 Hello World - from transaction TST2!

Standard streams can only be redirected to or from memory files.

Because only one transient data queue can be associated with each of stdout and

stderr, these queues can contain output written in chronological order from many C

and C++ programs. This output must be sorted as necessary into the desired

sequence.

Full memory file support

The full set of C I/O library functions is supported under CICS TS for memory files.

Memory files are created with the parameter type set to memory on the fopen() call.

If you are using C++, you can also use the I/O stream library to create and access

memory files. Hiperspace memory files are not supported.

Support for disk files and other devices

There is no support by the C I/O library or the I/O stream library for using disk files

and other devices with CICS TS. I/O to access methods supported by CICS TS

must use the CICS TS Application Programming Interface.

ASA
terminal

id
transaction

id
sp Time Stamp

YYYYMMDDHHMMSS
sp data

1 4 4 1 14 1 108

Figure 181. Format of data written to a CICS data queue

Chapter 44. Using the CICS Transaction Server (CICS TS) 657

Using z/OS XL C/C++ library support

This section discusses restrictions and support for the z/OS XL C/C++ library with

CICS.

Arguments to C or main()

When a z/OS XL C/C++ program is running under CICS TS, you cannot pass

command line arguments to it. The values for argc and argv have the following

settings:

argc 1

argv[0] 4-character CICS transaction ID

Run-time options

Command line run-time options cannot be passed in CICS. To specify run-time

options in XL C/C++, you must include the #pragma runopts directive in the code.

Figure 180 on page 653 shows how to do this. See z/OS Language Environment

Programming Guide for information on other ways to supply run-time options when

you are running under CICS TS.

Using packed decimal with CICS

The packed decimal data type is supported under CICS TS. However, the

standalone CICS translator does not support packed decimal. CICS expects packed

decimal streams to be passed to it as arrays of characters. If you want to

manipulate these arrays as a packed decimal number, you should define the array

of characters in union with the appropriate packed decimal definition. Refer to the

CICSPlex SM Application Programming Guide for information on how to define the

data fields for the EXEC CICS commands you are using.

Note: The z/OS XL C++ compiler does not support packed decimal data. Any

program using the C or C++ character data type to handle packed decimal

data must have its own functions for the manipulation of this data.

Locales

All locale functions are supported for locales that have been defined in the CSD.

CSD definitions for the IBM-supplied locales are provided in SCEESAMP(CEECCSD).

setlocale() returns NULL if the locales are not defined.

Code set conversion tables

The code set conversion tables that are used by the iconv() functions must be

defined in the CSD.

POSIX

There is no support for POSIX functions that are not already defined as part of

ANSI/ISO. z/OS UNIX System Services is not supported under CICS.

Multitasking facility

MTF functions are not supported under CICS TS.

System programming C facilities

There is no support for the System Programming C facilities (SP C) under CICS TS.

SVC99 and dynamic allocation functions

svc99() and the dynamic allocation functions dynalloc(), dynfree(), and dyninit()

are not supported under CICS TS. The svc99() function returns 0 if the input is

NULL, otherwise the return value is undefined.

658 z/OS V1R8.0 XL C/C++ Programming Guide

IMS

There is no support for the ctdli() function under CICS TS. If you call ctdli()

under CICS TS, the return value is -1. Refer to the CICSPlex SM Application

Programming Guide for information on the CICS TS method to access IMS.

Dump functions

The dump functions csnap(), cdump(), and ctrace() are supported under CICS TS.

The output is sent to the CESE transient data queue. The dump can not be written if

the queue does not have a sufficient LRECL. An LRECL of at least 161 is

recommended.

Dynamic Linked Libraries (DLL)

All DLLs must be defined in the CSD.

fetch()

The fetch() function is supported under CICS TS. Modules to be fetched must be

defined to the CSD and installed in the PPT.

release()

The release() function is supported under CICS TS.

system()

The system() function is not supported under CICS TS. However, there are two

EXEC CICS commands that give you similar functionality:

EXEC CICS LINK

This command enables you to transfer control to another program and

return to the calling program later. See Figure 182 on page 663.

EXEC CICS XCTL

This command enables you to transfer control to another program. Control

does not return to the caller after completion of the called program.

Time functions

All time functions are supported except the clock() function, which returns the

value (time_t)(-1) if it is used under CICS TS.

iscics()

The iscics() function is an extension to the C library. It returns a non-zero value if

your program is currently running under CICS. If your program is not running under

CICS, iscics() returns the value 0. The following example shows how to use

iscics() in your C or C++ program to specify non-CICS or CICS specific behavior.

 if (iscics() == 0)

 < non-CICS behavior>

 else

 < CICS-specific behavior>

Floating point arithmetic

The simulation of extended precision floating point is not supported in CICS TS.

Program termination

A C or C++ program running under CICS will terminate when:

v An exit() function call or a return statement is issued in the C or C++ program.

The atexit list of functions is run when the C or C++ program terminates.

Note: On return from a C or C++ application, the return statement or values

passed by C or C++ through the exit() function are saved in the

EIBRESP2 field of the EIB.

Chapter 44. Using the CICS Transaction Server (CICS TS) 659

v An abend occurs and is not handled.

v An EXEC CICS RETURN is issued in your C or C++ program. The atexit list of

functions runs after these calls.

v The abort() function is started.

Storage management

A z/OS XL C/C++ program can acquire storage from and release storage to CICS

TS either implicitly or explicitly.

Storage is acquired and released implicitly by the run-time environment. This

storage is used for automatic, external, and static variables. External variables are

valid until program completion.

Storage is acquired and released explicitly by the user with the C library functions

malloc(), calloc(), realloc(), or free(), with z/OS Language Environment

Callable Services (refer to z/OS Language Environment Programming Guide), with

the C++ new and delete operators, or with the EXEC CICS commands EXEC CICS

GETMAIN, or EXEC CICS FREEMAIN.

v If you request the storage by using the C functions malloc(), realloc(), or

calloc() you must deallocate it by using C functions as well.

v If you request the storage by using z/OS Language Environment Callable

Services, you must deallocate it by using z/OS Language Environment Callable

Services.

v If you request the storage by using EXEC CICS GETMAIN, you must deallocate it by

using EXEC CICS FREEMAIN.

v If you request storage using the C++ new operator, you must deallocate it by

using the C++ delete operator.

All other combinations of methods of requesting and deallocating storage are

unsupported and lead to unpredictable behavior.

Partial deallocations are not supported. All storage allocated at a given time must

be deallocated at the same time.

Under the z/OS Language Environment library, z/OS XL C/C++ uses the z/OS

Language Environment Callable Services to allocate and free storage. Refer to

z/OS Language Environment Programming Guide for specific information on

memory and storage manipulation in CICS.

The z/OS XL C/C++ library functions acquire all storage from the Extended

Dynamic Storage Area (EDSA) unless you specify otherwise using the ANYHEAP,

BELOWHEAP, HEAP, STACK, or LIBSTACK run-time options.

Storage that is acquired with the EXEC CICS GETMAIN command exists for the

duration of the CICS task.

If your application is multi-threaded or often uses malloc(), realloc(), calloc(),

and free(), you should consider using the HEAPPOOLS run-time option. Although

storage requirements may increase, you can expect better performance.

660 z/OS V1R8.0 XL C/C++ Programming Guide

|
|

Using ILC support

The z/OS Language Environment library supports a variety of different types of

interlanguage calls (ILC) with CICS TS. For information on supported

configurations, please refer to z/OS Language Environment Writing Interlanguage

Communication Applications.

Exception handling

You can use three different kinds of exception handlers when running C programs

in a CICS TS environment: CICS exception handlers, z/OS Language Environment

abend handlers, and C exception handlers. If you are using C++, you can use any

of these three, or the C++ exception handling approach using try, throw, and

catch. When a CICS condition is not handled under C++, the behavior of

constructors and destructors for objects is undefined.

If the CICS command EXEC CICS HANDLE ABEND PROGRAM(name) was specified in the

application, it will be called for any program exception that occurs (such as an

operation exception or a protection exception) as well as for any EXEC CICS ABEND

ABCODE(...) command that is run.

z/OS Language Environment provides facilities to set up a user handler. These

facilities are discussed in detail in z/OS Language Environment Programming

Guide.

In CICS TS, the C error handling facilities have almost the same behavior as

discussed in Chapter 27, “Handling error conditions, exceptions, and signals,” on

page 413. A signal raised with the raise() function is handled by its corresponding

signal handler or the default actions if no handler is installed. If a program exception

such as a protection exception occurs, it is handled by the appropriate C handler if

no CICS or z/OS Language Environment handler is present.

When a C or C++ application is invoked by an EXEC CICS LINK PROGRAM(...), the

invoked program inherits any handlers registered by EXEC CICS HANDLE ABEND

PROGRAM(...) in the parent program. Any handlers registered in the child override

the inherited handlers. C signal handlers are not inherited.

The following chart shows the process for handling abends in CICS TS.

Chapter 44. Using the CICS Transaction Server (CICS TS) 661

|

MAP 0050: Error handling in CICS

001

Is this the result of a call to raise()?

Yes No

 002

Has EXEC CICS HANDLE ABEND been issued?

Yes No

 003

Continue at Step 005.

 004

Call z/OS XL C/C++-CICS interface for termination of program. CICS turns off

signal and runs program in handler.

 005

Is SIG_IGN set for the signal?

Yes No

 006

Is z/OS Language Environment handler registered?

Yes No

 007

Is a C or C++ handler established?

Yes No

 008

Default handling the program check and percolate to next stack

frame.

 009

Run C or C++ handler.

 010

Run z/OS Language Environment user handler. See z/OS Language

Environment Programming Guide for more details.

 011

Resume at the next instruction.

Example of error handling in CICS

The examples in Figure 182 on page 663 show how to handle errors when using

z/OS XL C/C++ with CICS.

MAP 0050 (continued)

662 z/OS V1R8.0 XL C/C++ Programming Guide

CCNGCI2

/* program : CHKSTAT */

/* transaction : called stand alone from transaction CHST */

/* is also used by other transactions to determine */

/* system status */

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <signal.h>

#define FILE_LEN 40

void status_not_ok(int sig);

void unexpected_prob(char* desc, int rc);

volatile unsigned char status_record [41];

struct com_struct {

 int quiet;

} com_reg;

main (int argc, char *argv [])

{

 long int vsamrrn;

 signed short int vsamlen;

 signed long int myresp;

 signed long int myresp2;

 unsigned char status_downtme [41];

 if (strcmp(argv[0],"CHST") !=0) {

 printf("argv[0] = %s\n", argv[0]) ;

 com_reg.quiet = 1;

}

 else

 com_reg.quiet = 0;

 /* get addressability to the EIB first */

 EXEC CICS ADDRESS EIB(dfheiptr);

 EXEC CICS HANDLE ABEND PROGRAM("CATCHIT "); �1�

 signal(SIGUSR1,status_not_ok); �2�

 EXEC CICS LINK PROGRAM("GETSTAT ") �3�

 RESP(myresp)

 RESP2(myresp2)

 COMMAREA(&com_reg)

 LENGTH(4);

Figure 182. Example illustrating error handling under CICS (Part 1 of 3)

Chapter 44. Using the CICS Transaction Server (CICS TS) 663

/* check for failure in linked-to program */

 if (myresp != DFHRESP(NORMAL)) {

 printf("The RESP of LINK = %d\n", myresp) ;

 printf("The RESP2 of LINK = %d\n", myresp2) ;

 unexpected_prob("CICS failure on EXEC CICS LINK\n",51);

 }

 if (myresp2 != 11)

 unexpected_prob("Unexpected rc from GETSTAT\n",myresp2);

 vsamrrn = 1;

 vsamlen = FILE_LEN;

 /* following READ for UPDATE is for test purpose only. */

 EXEC CICS READ FILE("STATFILE")

 UPDATE

 INTO(status_record)

 RIDFLD(vsamrrn)

 RRN

 LENGTH(vsamlen)

 RESP(myresp)

 RESP2(myresp2);

 /* check for cics response - non-0 implies problem */

 if (myresp != DFHRESP(NORMAL))

 unexpected_prob("Unable to read from file",52);

 /* write DOWNTME back to file - for test purpose only */

 strcpy(status_downtme,"DOWNTME ");

 EXEC CICS REWRITE FILE("STATFILE")

 FROM(status_downtme)

 LENGTH(vsamlen)

 RESP(myresp)

 RESP2(myresp2);

 if (myresp != DFHRESP(NORMAL)) {

 printf("The dnresp from REWRITE = %d\n", myresp) ;

 printf("The dnresp2 from REWRITE = %d\n", myresp2) ;

 unexpected_prob("Unexpected prob with WRITE",myresp);

 }

 if (memcmp(status_record,"OK ",3) != 0)

 raise(SIGUSR1);

 exit(11);

}

void unexpected_prob(char* desc, int rc)

{

 long int msgresp, msgresp2;

 int msglen;

 msglen = strlen(desc);

Figure 182. Example illustrating error handling under CICS (Part 2 of 3)

664 z/OS V1R8.0 XL C/C++ Programming Guide

The numbers in the following list correspond to the numbers in the example code.

�1� The program CATCHIT has been installed as the CICS abend handler.

Because this CICS abend handler is installed, C exception handlers will

only catch signals raised with the raise() function.

�2� Install a C signal handler to catch the user defined signal SIGUSR1. This

handler will only be called if raise(SIGUSR1)is run.

�3� This command causes the flow of control to shift to a child program called

GETSTAT. GETSTAT will inherit CHKSTAT’s CICS abend handler.

�4� The C signal handler status_not_OK that was will be invoked if this line is

run. The raise() function will not trigger the CICS abend handler.

ABEND codes and error messages under z/OS XL C/C++

For information on ABEND Codes and error messages used by the z/OS Language

Environment library, refer to z/OS Language Environment Programming Guide and

z/OS Language Environment Debugging Guide.

Coding hints and tips

v Do not use EXEC CICS commands in macros.

v Do not use EXEC CICS commands in header files. This makes the translation

process much simpler.

v Do not set atexit() routines before an EXEC CICS XCTL. You will get

unpredictable results.

v If you call fclose() or freopen() for a standard stream, you cannot redirect or

reopen the link to the transient data queue. z/OS XL C/C++ does not provide a

method of opening or reopening the transient data queues.

v The actual transient data queue is not closed when you call fclose() or

freopen() for a standard stream; however, the transaction will lose access to the

stream.

v You should not use the stdin stream unless you are redirecting it from a memory

file.

v Closing the cout, cerr, or clog standard streams in a C++ application has the

same effect as closing stdout or stderr.

 EXEC CICS SEND TEXT FROM(desc)

 LENGTH(msglen)

 RESP(msgresp)

 RESP2(msgresp2);

 fprintf(stderr,"%s\n",desc);

 if (msgresp != DFHRESP(NORMAL))

 exit(99);

 else

 exit(rc);

}

void status_not_ok(int sig) �4�

{

 if (memcmp(status_record,"DOWNSTR ",8) != 0)

 exit(22);

 else

 exit(33);

}

Figure 182. Example illustrating error handling under CICS (Part 3 of 3)

Chapter 44. Using the CICS Transaction Server (CICS TS) 665

v When CICS handlers (using EXEC CICS HANDLE ABEND PROG) are activated along

with C or C++ signal handlers, the CICS handler is invoked when an abend

occurs. The C or C++ signal handler that corresponds to that class of abends is

ignored.

Note: The handler mentioned here is not a catch clause. It is a C signal handler

exception registered by a C++ routine.

v If you do an EXEC CICS RETURN out of an atexit() routine, the resulting return

code (RESP2) is undefined.

Translating and compiling for reentrancy

This section discusses translation of embedded CICS statements and provides

examples. It also discusses reentrancy issues with respect to CICS.

Options for translating CICS statements

There are two options for translating CICS statements into C or C++ code: The

z/OS XL C/C++ integrated CICS translator and the standalone CICS translator, a

CICS TS utility.

z/OS XL C/C++ integrated CICS translator

If you are using CICS Transaction Server 3.1 or later, you can compile XL C/C++

source code with embedded CICS commands and keywords without using the

CICS TS language translation utility if you use the CICS compiler option. You can

embed comments and macros within the embedded CICS commands.

When you use the z/OS XL C/C++ integrated CICS translator, you might experience

the following benefits:

v More seamless operation of C/C++ applications that run in the CICS

environment, especially under UNIX System Services

v Improved program readability

v Easier application maintenance

v Tighter coupling between the translation and compilation phases

v A more unified development approach across z/OS XL C, z/OS XL C++, COBOL,

and PL/I

For more information, refer to z/OS XL C/C++ User’s Guide.

In general, source code that can be processed successfully by the standalone CICS

translator will be compatible with the integrated CICS translator.

Exception: The standalone CICS translator does not recognize C/C++ macros. For

this reason, a CICS command that is processed with the integrated CICS translator

can either fail to translate or change semantically if it (coincidentally) contains an

identifier that is identical to a macro that is active within the scope of the CICS

command.

Standalone CICS translator

The CICS TS utility called the CICS language translator is still supported. This

program translates the EXEC CICS statements into C or C++ code. In this document,

the CICS language translator is referred to as the standalone CICS translator.

Note:

666 z/OS V1R8.0 XL C/C++ Programming Guide

|
|

|

|
|
|

|
|
|
|
|

|
|

|
|

|

|

|

|
|

|

|
|

|
|
|
|
|

|
|
|
|

If you are using C++, you must use the CPP translator option to indicate to

the compiler that you are using the C++ language, rather than the C

language. The use of the CPP parameter specifies that the translator is to

translate z/OS XL C++ programs.

Code translated without the CPP option or with a translator released before

version 4.1 of CICS is not supported by the z/OS XL C++ compiler and will

not compile.

The standalone CICS translator supplies a control block (DFHEIBLK) for passing

information between CICS TS and the application program. C or C++ function

references for the EXEC CICS commands are generated. The translation step is not

required if you do not use EXEC CICS statements.

The standalone CICS translator does not evaluate preprocessor directives such as

#include or #define. You should ensure that all EXEC CICS statements are

translated.

Translating example

Samples in this section are valid for both the integrated CICS translator and the

standalone CICS translator.

Figure 183 shows pieces of C and C++ code before they are translated with the

standalone CICS translator. Figure 184 on page 668 shows the corresponding

programs after translation.

CCNGCI3:

 In Figure 183 observe the following:

/* program : CATCHIT */

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

struct com_struct {

 unsigned int quiet ;

} *commarea ;

main () {

 signed long int myresp;

 signed long int myresp2;

 /* get addressability to the EIB first */

 EXEC CICS ADDRESS EIB(dfheiptr); �1�

 /* access common area sent from caller */

 EXEC CICS ADDRESS COMMAREA(commarea); �2�

 printf("The program is now inside CATCHIT.\n");

 /* statements required to handle the abend

 EXEC CICS ..

 EXEC CICS .. */

 EXEC CICS RETURN;

}

Figure 183. Example illustrating how to use EXEC CICS commands

Chapter 44. Using the CICS Transaction Server (CICS TS) 667

|
|

�1� and �2�

These programs each contain two EXEC CICS commands to be translated

by the standalone CICS translator. A single instance of the EXEC CICS

ADDRESS EIB command is required before any other call to the EXEC

CICS interface. In this case, the main program (see Figure 180 on page

653) issues the ADDRESS EIB command. Since the two pieces of code

make up one program there is no need to ADDRESS the EIB again.

The programs once translated appear as follows:

#ifndef __dfheitab

 #define __dfheitab 1

 char *dfhldver = "LD TABLE DFHEITAB 320." ;

 unsigned short int dfheib0 = 0 ;

 char *dfheid0 = "\x00\x00\x00\x0c" ;

 char *dfheicb = " " ;

 typedef struct { �3�

 unsigned char eibtime [4] ;

 unsigned char eibdate [4] ;

 unsigned char eibtrnid [4] ;

 unsigned char eibtaskn [4] ;

 unsigned char eibtrmid [4] ;

 signed short int eibfil01 ;

 signed short int eibcposn ;

 signed short int eibcalen ;

 unsigned char eibaid ;

 unsigned char eibfn [2] ;

 unsigned char eibrcode [6] ;

 unsigned char eibds [8] ;

 unsigned char eibreqid [8] ;

 unsigned char eibrsrce [8] ;

 unsigned char eibsync ;

 unsigned char eibfree ;

 unsigned char eibrecv ;

 unsigned char eibfil02 ;

 unsigned char eibatt ;

 unsigned char eibeoc ;

 unsigned char eibfmh ;

 unsigned char eibcompl ;

 unsigned char eibsig ;

 unsigned char eibconf ;

 unsigned char eiberr ;

 unsigned char eiberrcd [4] ;

 unsigned char eibsynrb ;

 unsigned char eibnodat ;

 signed long int eibresp ;

 signed long int eibresp2 ;

 unsigned char eibrldbk ;

 } DFHEIBLK;

 DFHEIBLK *dfheiptr;

#endif

Figure 184. Child C program after translation (Part 1 of 3)

668 z/OS V1R8.0 XL C/C++ Programming Guide

#ifndef __dfhtemps

#pragma linkage(dfhexec,OS) /* force OS linkage */

void dfhexec(); /* Function to call CICS */

 #define __dfhtemps 1

 signed short int dfhb0020, *dfhbp020 = &dfhb0020 ;

 signed short int dfhb0021, *dfhbp021 = &dfhb0021 ;

 signed short int dfhb0022, *dfhbp022 = &dfhb0022 ;

 signed short int dfhb0023, *dfhbp023 = &dfhb0023 ;

 signed short int dfhb0024, *dfhbp024 = &dfhb0024 ;

 signed short int dfhb0025, *dfhbp025 = &dfhb0025 ;

 unsigned char dfhc0010, *dfhcp010 = &dfhc0010 ;

 unsigned char dfhc0011, *dfhcp011 = &dfhc0011 ;

 signed short int dfhdummy;

#endif

/* this is an example of a CICS program for C */

/* program : GETSTAT (part 2 - infrequent use routines) */

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

void unexpected_prob(char* desc, int rc);

void sendmsg(char* status_record)

{

 long int msgresp, msgresp2;

 char outmsg[80];

 int outlen;

 if (memcmp(status_record,"OK ",3)==0)

 strcpy(outmsg,"The system is available.");

 else if (memcmp(status_record,"DOWNTME ",8)==0)

 strcpy(outmsg,"The system is down for regular backups.");

 else

 strcpy(outmsg,"SYSTEM PROBLEM -- call help line for details.");

 outlen=strlen(outmsg);

Figure 184. Child C program after translation (Part 2 of 3)

Chapter 44. Using the CICS Transaction Server (CICS TS) 669

In Figure 184 on page 668 observe the following:

�3� This structure, DFHEIBLK, is used for passing information between CICS and

the application program.

�4� This is the CICS command that was interpreted by the translator. The

translator comments out the EXEC CICS commands.

�5� The translator inserts this call to the function dfhexec and comments out the

EXEC CICS commands for further processing by the z/OS XL C/C++

compiler. The values msgresp and msgresp2 are set from the values in the

DFHEIBLK structure.

�6� This EXEC CICS command is similar in format to the one discussed in �4�.

However, you should note that the generated call to dfhexec is different. For

this reason it is important that EXEC CICS commands are not imbedded in

macros.

 /* EXEC CICS SEND TEXT FROM(outmsg) �4�

 LENGTH(outlen)

 RESP(msgresp)

 RESP2(msgresp2) */

 {

 dfhb0020 = outlen;

 dfhexec("\x18\x06\x60\x00\x2F\x00\x00\x00\x00\x00\x20\x04\x00\x00\x20\xF0\xF0\

\xF0\xF0\xF2\xF2\xF0\xF0",dfhdummy,outmsg,dfhbp020); �5�

 msgresp = dfheiptr->eibresp;

 msgresp2 = dfheiptr->eibresp2;

 }

 if (msgresp != 0)

 unexpected_prob("Message output failed from sendmsg",71);

}

void unexpected_prob(char* desc, int rc)

{

 long int msgresp, msgresp2;

 int msglen;

 msglen = strlen(desc);

 /* EXEC CICS SEND TEXT FROM(desc)

 LENGTH(msglen)

 RESP(msgresp)

 RESP2(msgresp2) */

 {

 dfhb0020 = msglen;

 dfhexec("\x18\x06\x60\x00\x2F\x00\x00\x00\x00\x00\x20\x04\x00\x00\x20\xF0\xF0\

\xF0\xF0\xF4\xF1\xF0\xF0",dfhdummy,desc,dfhbp020); �6�

 msgresp = dfheiptr->eibresp;

 msgresp2 = dfheiptr->eibresp2;

 }

 fprintf(stderr,"%s\n",desc);

 if (msgresp != 0)

 exit(99);

 else

 exit(rc);

}

Figure 184. Child C program after translation (Part 3 of 3)

670 z/OS V1R8.0 XL C/C++ Programming Guide

Compiling XL C/C++ programs that were preprocessed by the

standalone CICS translator

CICS requires that programs be reentrant at CICS entry points. If you are using C,

this means:

v If your program is not naturally reentrant, you must compile with the RENT

compiler option.

v If you are compiling code that was translated by the standalone CICS translator,

you must compile with the RENT compiler option. The standalone CICS

translator puts external writable static in the program.

For both C and C++, this means that if your program is naturally reentrant and has

not been translated, you can compile and link it just as you would a non-CICS

program.

Sample JCL to translate and compile

The sample JCL in Figure 185 and Figure 186 on page 672 shows you how to

translate and compile C and C++ modules.

//*--

//* Translate a C-CICS program

//*--

//*--

//* Translate a C program for CICS

//*--

//TRANSTEP EXEC PGM=DFHEDP1$,

// REGION=2048K,

// PARM=’MAR(1,80,0),OM(1,80,0),NOS’

//STEPLIB DD DSN=CICS.SDFHLOAD,DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSPUNCH DD DSN=&&SYSCIN,DISP=(,PASS),UNIT=VIO,

// DCB=BLKSIZE=400,SPACE=(400,(400,100))

//SYSIN DD DSN=MYID.CHKSTAT.C,DISP=SHR

//*--

//* Compile the translated C source.

//*--

//C0010308 EXEC EDCC,

// INFILE=’MYID.CHKSTAT.C’,

// OUTFILE=’MYID.OBJECT(CHKSTAT),DISP=SHR’,

// CPARM=’OPT(0) NOSEQ NOMAR RENT ’,

// SYSOUT6=’*’

//SYSIN DD DSN=*.TRANSTEP.SYSPUNCH,DISP=(OLD,DELETE)

//USERLIB DD DSN=MYID.MYHDR.FILES,DISP=SHR

Figure 185. JCL to translate and compile a C program

Chapter 44. Using the CICS Transaction Server (CICS TS) 671

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|
|

|
|
|

|
|
|

|
|
|
||

Prelinking and linking all object modules

If you are using C++, or if you have compiled your C source with the RENT

compile-time option, you must prelink all of the object modules together. The

prelinker accepts one or more object modules, combines them, and generates a

single output object module which can then be linked. For further information on the

prelinker, see the z/OS XL C/C++ User’s Guide.

When you are prelinking for CICS, you should expect some unresolved external

references and a return code of 4. These unresolved references should be resolved

at link time.

CICS provides a stub called DFHELII, which must be link-edited with the load

module. For your convenience, the linkage editor commands required for CICS are

provided with CICS in the DFHEILID member of the SDFHC370 data set. The DFHEILID

member must be reblocked before it is passed to the linkage editor. A name card

should also be passed to the linkage editor. All applications must run AMODE=31. It is

recommended that the object module is linked with AMODE(31) and RMODE(ANY).

CICS does not require any other linkage editor options.

If you are using C, and your program will reside in one of the DFHRPL libraries, you

do not need to link-edit the module with the RENT option. However, if the program is

to be installed in one of the link pack areas, STEPLIBs, or data sets in the system

link list, you should link-edit the module with the RENT option.

The example in Figure 187 on page 673 shows you how to prelink and link C and

C++ modules.

//*--

//* Translate a C++-CICS program

//*--

//*--

//* Translate C++ program for CICS

//*--

//TRANSTEP EXEC PGM=DFHEDP1$,

// REGION=2048K,

// PARM=’MAR(1,80,0),OM(1,80,0),NOS,CPP’

//STEPLIB DD DSN=CICS.SDFHLOAD,DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSPUNCH DD DSN=&&SYSCIN,DISP=(,PASS),UNIT=VIO,

// DCB=BLKSIZE=400,SPACE=(400,(400,100))

//SYSIN DD DSN=MYID.CHKSTAT.C,DISP=SHR

//*--

//* Compile the translated C++ source.

//*--

//C0010308 EXEC CBCC,

// OUTFILE=’MYID.OBJECT(CHKSTAT),DISP=SHR’,

// CPARM=’NOSEQ NOMAR RENT ’,

// SYSOUT6=’*’

//SYSIN DD DSN=*.TRANSTEP.SYSPUNCH,DISP=(OLD,DELETE)

Figure 186. JCL to translate and compile a C++ program

672 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Defining and running the CICS program

This section discusses the implications of program processing, link considerations

for C programs, and CSD considerations. Sample JCL to install z/OS XL C/C++

application programs is provided.

Program processing

In a CICS environment, a single copy of a program is used by several transactions

concurrently. One section of a program can process a transaction and then be

suspended (usually as a result of an EXEC CICS command); another transaction can

then start or resume processing the same or any other section of the same

application program. This behavior requires that the program be reentrant.

Link considerations for C programs

If your C program will reside in one of the DFHRPL libraries, following the translate,

compile, and link steps detailed earlier in this chapter is sufficient; there is no

requirement to link-edit the module with the RENT linkage editor option.

//*--

//* Reblock CICS support link module

//*--

//COPYLINK EXEC PGM=IEBGENER

//SYSUT1 DD DSN=CICS.V4R1M0.SDFHC370(DFHEILID),DISP=SHR

//SYSUT2 DD DSN=&©LINK,DISP=(,PASS),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200),

// UNIT=VIO,SPACE=(400,(20,20))

//SYSPRINT DD SYSOUT=*

//SYSIN DD DUMMY

//*---

//* Prelink and link MYMAIN with MYCICSTF and MYOTHSTF

//*---

//P0010598 EXEC EDCPL,

// INFILE=’MYID.OBJECT(MYMAIN)’,

// OUTFILE=’MYID.CICS.LOAD(MYMAIN),DISP=SHR’,

// PPARM=’ NCAL’,

// LPARM=’AMODE(31),RMODE(ANY) ’,

// SYSOUT4=’*’

//PLKED.SYSIN DD DATA,DLM=’/>’

 INCLUDE OBJECT(MYMAIN)

 INCLUDE OBJECT(MYCICSTF)

 INCLUDE OBJECT(MYOTHSTF)

/>

//PLKED.SYSMOD DD DSN=&&PLNK,DISP=(,PASS),UNIT=VIO,

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200),

// SPACE=(32000,(30,30))

//PLKED.OBJECT DD DSN=MYID.OBJECT,DISP=SHR

//LKED.SYSLIB DD DSN=CICS.V4R1M0.SDFHLOAD,DISP=SHR

// DD DSN=CEE.SCEELKED,DISP=SHR

//LKED.SYSLIN DD DSN=&©LINK,DISP=(SHR,DELETE)

// DD DSN=*.PLKED.SYSMOD,DISP=(SHR,DELETE)

// DD DDNAME=SYSIN

//LKED.SYSLMOD DD DSN=MYID.CICS.LOAD,DISP=SHR

//LKED.SYSIN DD DATA,DLM=’/>’

 NAME MYMAIN(R)

/>

Figure 187. Prelinking and linking

Chapter 44. Using the CICS Transaction Server (CICS TS) 673

However, if the program is to be installed in one of the link pack areas, STEPLIBs, or

data sets in the system link list, the module should be link-edited with the RENT

option.

CSD considerations

Before you can run a program, you must define it in the CICS CSD. When defining

a program to CICS, you should use LANGUAGE(LE). However, if the program is in C

and does not use ILC support, you can use LANGUAGE(C).

If you use a copy of a reentrant C or C++ application program that has been

installed in the link pack area, you must specify USELPACOPY(YES) in the resource

definition when you define the program in the CSD. You can use the CICS-supplied

procedure DFYEITDL to translate, compile, prelink, and link-edit C or C++ programs.

For C programs, you may have to change the compile step of this procedure. You

will have to change the compile step to use it with the C++ compiler.

Sample JCL to install z/OS XL C/C++ application programs

This is the sample JCL to install a C or C++ application program.

 Your application is anyname. x can resolve to I or X.

 //jobname JOB accounting info,name,MSGLEVEL=1

 // EXEC PROC=DFHExTEL

 # //TRN.SYSIN DD *

 #pragma XOPTS(Translator options . . .)

 ...
 z/OS XL C/C++ source statements

 ...
 /*

 //LKED.SYSIN DD *

 NAME anyname(R)

 /*

 //

Figure 188. JCL to install z/OS XL C/C++ application programs

674 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 45. Using Cross System Product (CSP)

This chapter briefly describes the interface between z/OS XL C and applications

generated through the Cross System Product/Application Development (CSP/AD)

and the Cross System Product/Application Execution (CSP/AE) Version 3 Release 2

Modification 2 or later. CSP refers to both CSP/AD and CSP/AE.

CSP/AD is an interactive application generator that provides methods for

interactively defining, testing, and generating application programs. It can aid in

improving productivity in application development.

CSP/AE takes the generated program and executes it in a production environment.

Notes:

1. XPLINK is not supported in a CSP environment.

2. AMODE 64 applications are not supported in a CSP environment.

Common data types

Table 97 lists the data types common to both CSP and z/OS XL C.

 Table 97. Common data types between z/OS XL C and CSP

z/OS XL C CSP

signed short BIN - 2 bytes

signed int/long BIN - 4 bytes

struct RECORD

char array(size) Characters

You must use the function __csplist to receive the parameter list from a CSP

application. See z/OS XL C/C++ Run-Time Library Reference for more information

on this function.

Passing control

You can pass control between CSP and z/OS XL C as follows:

CALL Calls another application or subroutine to be run.

When execution is completed, control is returned to

the statement following the CALL statement in the

original application.

XFER|DXFR Transfers control and initiates execution of a CSP

application or non-CSP program or transaction. The

current application is terminated when the transfer

statement is executed.

 Under CICS, XFER is used to transfer control to

another CICS transaction, while DXFR is used to

transfer control to an application or program. If the

target name is an application, control remains in

CSP and the application is initiated immediately. If

the target name is a program, CSP issues CICS

XCTL to the program name.

© Copyright IBM Corp. 1996, 2006 675

Note: From a z/OS XL C program, you can pass control to a CSP application but

you cannot pass control to another z/OS Language Environment-enabled

language (COBOL, PL/I) from that CSP application. Only one z/OS

Language Environment-enabled language can be in the chain of calls.

Running CSP under MVS

This section covers:

v Calling CSP applications from z/OS XL C

v Calling z/OS XL C from CSP

Calling CSP applications from z/OS XL C

To call a CSP application from z/OS XL C, you must:

1. Define the CSP program to be called one of the following:

v DCGCALL - calling under MVS/TSO

v DCGXFER - transferring control under MVS/TSO with OS pragma linkage

2. Fetch the program dynamically.

3. Transfer control to the program. You must pass at least one parameter when

calling CSP from z/OS XL C. This is the pointer to the ALF name and

application name.

Examples

The following example program CALLs a CSP application in the z/OS environment.

You must receive a structure.

CCNGCP1

/* this example shows how to CALL CSP from C under TSO */

/* CALL */

/* CCNGCP1 ====> R924A6 */

/* R924A6 is a CSP application */

#include <stdlib.h>

#include <math.h>

#pragma linkage(DCGCALL,OS)

void main(int argc , char * argv[])

{

 int ctr,base, power ;

 typedef void ASM_VOID();

 #pragma linkage (ASM_VOID,OS)

 ASM_VOID * fetch_ptr;

 int rc = 0;

 char module [8] = {"DCGCALL " } ;

 struct tag_a6progc {

 char alfx [8];

 char applx [8];

 } ;

Figure 189. C/370 CALLing CSP under TSO (Part 1 of 2)

676 z/OS V1R8.0 XL C/C++ Programming Guide

Note: CSP cannot pass the DXFR statement to z/OS XL C under TSO.

The following example program uses an XFER command to transfer control to a CSP

application. You must pass a structure.

 struct tag_a6rec {

 char a6ct [4];

 char a6lan [4];

 char fil1 [8]; /* packed fields for PLI */

 char fil2 [8]; /* packed fields for PLI */

 char fil3 [8]; /* packed fields for PLI */

 int a6xbc;

 int a6ybc;

 int a6zbc;

 };

 struct {

 char s_parm [240];

 } s_parms = {"ALF=C "};

 struct tag_a6progc a6_progc = {"FZERSAM.","R924A6 "} ;

 _Packed struct tag_a6rec a6_rec = {"CALL" ,

 "C " ,

 "0000110C",

 "0000220C",

 "0000330C",

 12, 2, 0

 };

 base = atoi(argv[1]) ;

 power= atoi(argv[2]) ;

 a6_rec.a6xbc = base;

 a6_rec.a6ybc = power;

 a6_rec.a6zbc = (int) pow((double) a6_rec.a6xbc,

 (double) a6_rec.a6ybc);

 if ((fetch_ptr = (ASM_VOID *) fetch(module)) == NULL) {

 printf (" failed on fetch of CSP %s module \n", module);

 }

 else {

 fetch_ptr (&a6_progc, &a6_rec);

 rc = release((void (*)()) fetch_ptr) ;

 if (rc != 0) {

 printf ("CCNGCP1: rc from release =%d\n", rc);

 }

 }

}

Figure 189. C/370 CALLing CSP under TSO (Part 2 of 2)

Chapter 45. Using Cross System Product (CSP) 677

CCNGCP2

/* this example shows how to transfer control to CSP from C under */

/* TSO, using XFER */

/* XFER */

/* CCNGCP2 ====> R924A5 */

/* R924A5 is a CSP application */

#include <stdlib.h>

#include <math.h>

#pragma linkage(DCGXFER,OS)

void main(int argc , char * argv[])

{

 int ctr,base, power ;

 int rc = 0;

 char module [8] = {"DCGXFER " } ;

 typedef void ASM_VOID();

 #pragma linkage (ASM_VOID,OS)

 ASM_VOID * fetch_ptr;

 struct tag_a5ws {

 short length ;

 char filler [8];

 char a5ct [4];

 char a5lan [4];

 char fil1 [8]; /* packed fields for PLI */

 char fil2 [8]; /* packed fields for PLI */

 char fil3 [8]; /* packed fields for PLI */

 int a5xbc;

 int a5ybc;

 int a5zbc;

 };

 struct tag_a5progx {

 char alfx [8];

 char applx [8];

 };

 struct {

 char s_parm [240];

 } s_parms = {"ALF=C "};

Figure 190. z/OS XL Ctransferring control to CSP under TSO using the XFER/DXFR

statement (Part 1 of 2)

678 z/OS V1R8.0 XL C/C++ Programming Guide

Calling z/OS XL C from CSP

To call a z/OS XL C program from CSP:

v PLIST(OS) must be specified in the z/OS XL C program so that input parameters

will not be processed by the run-time environment.

v When CSP passes a parameter list to a z/OS XL C function, the list is in a

different format from what z/OS XL C expects in a normal z/OS environment. To

receive the parameters, use the macro __csplist, found in the csp.h header file

and described in z/OS XL C/C++ Run-Time Library Reference.

Notes:

1. PLIST(OS) must be specified in the z/OS XL C program so that input parameters

will not be processed by the run-time environment.

2. When CSP passes a parameter list to a z/OS XL C function, the list is in a

different format from what z/OS XL C expects in a normal z/OS environment. To

receive the parameters, use the macro __csplist, found in the csp.h header file

and described in z/OS XL C/C++ Run-Time Library Reference.

Examples

The following example program shows how parameters are received from a CSP

application that uses a CALL statement to transfer control. You must pass three

parameters:

 An int

 A string

 A struct

 struct tag_a5progx a5_progx = {"FZERSAM.","R924A5 "} ;

 _Packed struct tag_a5ws a5_ws = { 54,

 "CCNGCP2",

 "XFER" ,

 "C " ,

 "0000110C",

 "0000220C",

 "0000330C",

 12, 2, 0

 };

 base = atoi(argv[1]) ;

 power= atoi(argv[2]) ;

 a5_ws.a5xbc = base;

 a5_ws.a5ybc = power;

 a5_ws.a5zbc = (int) pow((double) a5_ws.a5xbc,

 (double) a5_ws.a5ybc);

 if ((fetch_ptr = (ASM_VOID *) fetch(module)) == NULL) {

 printf (" failed on fetch of CSP %8s module \n", module);

 }

 else {

 fetch_ptr (&a5_ws , &a5_progx);

 rc = release((void (*) ())fetch_ptr) ;

 if (rc != 0) {

 printf ("CCNGCP2: rc from release =%d\n", rc);

 }

 }

}

Figure 190. z/OS XL Ctransferring control to CSP under TSO using the XFER/DXFR

statement (Part 2 of 2)

Chapter 45. Using Cross System Product (CSP) 679

CCNGCP3

 The following example program shows how parameters are received from a CSP

application that uses an XFER/DXFR statement to transfer control. You must pass a

structure.

Notes:

1. Under TSO, CSP/AD cannot use the XFER statement to transfer control to z/OS

XL C.

2. Under TSO, you cannot use the DXFR statement to transfer control to CSP.

/* this example shows how to CALL C from CSP under TSO */

#pragma runopts (plist(os))

#include <csp.h>

#include <math.h>

#include <stdlib.h>

void main()

{

struct date {

 char yy[2];

 char mm[2];

 char dd[2];

} ;

int *parm1_ptr ;

char *parm2_ptr ;

struct date * parm3_ptr ;

 parm1_ptr = (int *) __csplist[0]; /* get 1st parm */

 parm2_ptr = (char *) __csplist[1]; /* get 2nd parm */

 parm3_ptr = (struct date *) __csplist[2]; /* get 3rd parm */

}

Figure 191. CSP CALLing z/OS XL C under TSO

680 z/OS V1R8.0 XL C/C++ Programming Guide

CCNGCP4

/* this example shows how to transfer control from CSP to C */

/* This program will be called from CSP through */

/* "XFER" or DXFR call. */

/* Parameters are passed as a working storage record */

/* plus 10 bytes of filler information */

/* 2 bytes length */

/* 8 bytes filler */

/* n bytes working storage record. */

#pragma runopts (plist(os))

#include <stdlib.h>

#include <csp.h>

#include <math.h>

#include <string.h>

#pragma linkage(DCGXFER,OS)

#pragma linkage(DCGCALL,OS)

void xfer_rtn ();

void call_rtn ();

 struct tag_a3ws {

 short length ;

 char filler [8];

 char a3ct [4];

 char a3lan [4];

 char fil1 [8]; /* packed fields for PLI */

 char fil2 [8]; /* packed fields for PLI */

 char fil3 [8]; /* packed fields for PLI */

 int a3xbc;

 int a3ybc;

 int a3zbc;

 };

 struct tag_a3progx {

 char alfx [8];

 char applx [8];

 };

Figure 192. CSP transferring control to z/OS XL C under TSO using the XFER statement

(Part 1 of 3)

Chapter 45. Using Cross System Product (CSP) 681

void main()

{

 _Packed struct tag_a3ws *parm1 ;

 _Packed struct tag_a3ws a3_ws ;

 parm1 = (_Packed struct tag_a3ws *) __csplist[0];

 parm1->a3zbc = (int) pow((double) parm1->a3xbc,

 (double) parm1->a3ybc);

 if (parm1->a3zbc > 255)

 xfer_rtn(parm1); /* xfer to csp */

 else

 call_rtn(parm1); /* call to csp */

}

/***/

/* */

/***/

void xfer_rtn(_Packed struct tag_a3ws * parm1)

{

 #pragma linkage (ASM_VOID,OS)

 typedef void ASM_VOID();

 ASM_VOID * fetch_ptr;

 struct tag_a3progx a3_progx = {"FZERSAM.","R924A5 "} ;

 int rc = 0;

 char pgm_xfer [8] = {"DCGXFER " } ;

 if ((fetch_ptr = (ASM_VOID *) fetch(pgm_xfer)) == NULL) {

 printf (" failed on fetch of CSP %8s module \n", pgm_xfer);

 }

 else {

 fetch_ptr (parm1, &a3_progx);

 rc = release((void (*)()) fetch_ptr) ;

 if (rc != 0) {

 printf ("xfer_rtn: rc from release =%d\n", rc);

 }

 }

}

Figure 192. CSP transferring control to z/OS XL C under TSO using the XFER statement

(Part 2 of 3)

682 z/OS V1R8.0 XL C/C++ Programming Guide

Running under CICS control

CSP-CICS Note: Because all z/OS XL C applications running under CICS must run

with AMODE=31, when passing parameters to CSP, you must either

v Pass parameters below the line, or

v Relink the CSP load library with AMODE=31

Examples

The following example program shows how parameters are received from a CSP

application that uses a CALL statement to transfer control. The z/OS XL C program

is expecting to receive an int as a parameter.

/***/

/* */

/***/

void call_rtn(_Packed struct tag_a3ws * parm1)

{

 typedef void ASM_VOID();

 ASM_VOID * fetch_ptr;

 char pgm_call [8] = {"DCGCALL " } ;

 int rc = 0;

 struct tag_a3progx a3_progx = {"FZERSAM.","R924A6 "} ;

 struct tag_a6rec {

 char a6ct [4];

 char a6lan [4];

 char fil1 [8]; /* packed fields for PLI */

 char fil2 [8]; /* packed fields for PLI */

 char fil3 [8]; /* packed fields for PLI */

 int a6xbc;

 int a6ybc;

 int a6zbc;

 };

 struct tag_a6rec a6_rec ;

 memcpy(a6_rec.a6ct ,parm1->a3ct ,4);

 memcpy(a6_rec.a6lan,parm1->a3lan,4);

 memcpy(a6_rec.fil1 ,parm1->fil1 ,8);

 memcpy(a6_rec.fil2 ,parm1->fil2 ,8);

 memcpy(a6_rec.fil3 ,parm1->fil3 ,8);

 a6_rec.a6xbc = parm1->a3xbc;

 a6_rec.a6ybc = parm1->a3ybc;

 a6_rec.a6zbc = parm1->a3zbc;

 if ((fetch_ptr = (ASM_VOID *) fetch(pgm_call)) == NULL) {

 printf (" failed on fetch of CSP %s module \n", pgm_call);

 }

 else {

 fetch_ptr (&a3_progx, &a6_rec);

 rc = release((void (*)()) fetch_ptr) ;

 if (rc != 0) {

 printf ("CCNGCP4: rc from release =%d\n", rc);

 }

 }

}

Figure 192. CSP transferring control to z/OS XL C under TSO using the XFER statement

(Part 3 of 3)

Chapter 45. Using Cross System Product (CSP) 683

CCNGCP5

 The following example program shows how parameters are received from a CSP

application that uses an XFER statement to transfer control.

/* this example shows how to call C from CSP under CICS, and how */

/* parameters are passed */

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <math.h>

main()

{

 struct tag_commarea { /* commarea passed to z/OS C from R924A1 */

 int *ptr1 ;

 int *ptr2 ;

 int *ptr3 ;

 } * ca_ptr ; /* commarea ptr */

 int *parm1_ptr ;

 int *parm2_ptr ;

 int *parm3_ptr ;

 /* addressability to EIB control block */

 /* and COMMUNICATION AREA */

 EXEC CICS ADDRESS EIB(dfheiptr) COMMAREA(ca_ptr) ;

 parm1_ptr = ca_ptr->ptr1 ;

 parm2_ptr = ca_ptr->ptr2 ;

 parm3_ptr = ca_ptr->ptr3 ;

 *parm3_ptr = (int) pow((double) *parm1_ptr,

 (double) *parm2_ptr);

 EXEC CICS RETURN;

}

Figure 193. CSP CALLing z/OS XL C under CICS

684 z/OS V1R8.0 XL C/C++ Programming Guide

CCNGCP6

/* this example shows how to XFER control to C from CSP under CICS */

/* XFER CALL */

/* R924A3 ====> CCNGCP6 ====> R924A6 */

/* R924A3 and R924A6 are CSP applications */

#include <math.h>

#include <string.h>

 /* structure passed to R924A6*/

void main()

{

 struct {

 char *appl_ptr;

 _Packed struct tag_a3rec *rec3_ptr ;

 } parm_ptr ;

 /* Structure received R924A3*/

 struct tag_a3rec {

 char a3ct [4];

 char a3lan [4];

 char fil1 [8]; /* packed fields for PLI */

 char fil2 [8]; /* packed fields for PLI */

 char fil3 [8]; /* packed fields for PLI */

 int a3xbc; /* int field 1 for z/OS C */

 int a3ybc; /* int field 2 for z/OS C */

 int a3zbc; /* int field 3 for z/OS C */

 }

 _Packed struct tag_a3rec a3rec ;

 char lk_appl[16] = "USR5ALF.R924A6 " ;

 struct tag_a3progx {

 char alfx [8];

 char applx [8];

 };

 _Packed struct tag_a3progx a3progx = {"USR5ALF.","R924A6 "} ;

 short length_a3rec = sizeof(a3rec) ;

 char * pa3rec ;

 short i ;

 /*----- start of CSP XFER-ing to C under CICS ------------------*/

 EXEC CICS ADDRESS EIB(dfheiptr);

 /* retrieve data from CSP */

 EXEC CICS RETRIEVE INTO(&a3rec) LENGTH(length_a3rec) ;

 a3rec.a3zbc = (int) pow((double) a3rec.a3xbc,

 (double) a3rec.a3ybc);

Figure 194. CSP transferring control to z/OS XL C under CICS using the XFER statement

(Part 1 of 2)

Chapter 45. Using Cross System Product (CSP) 685

The following example program shows how parameters are received from a CSP

application that uses a DXFR statement to transfer control. You must receive a

structure.

CCNGCP7

 /*----- end of CSP XFER-ing to C under CICS --------------------*/

 /* call CSP to display results*/

 parm_ptr.appl_ptr = lk_appl ; /* alf.application */

 parm_ptr.rec3_ptr = &a3rec ;

 /* LINK to CSP application */

 EXEC CICS LINK PROGRAM("DCBINIT ")

 COMMAREA(parm_ptr)

 LENGTH(8) ;

 if (dfheiptr->eibresp2 != 0) {

 printf("CCNGCP6: EXEC CICS LINK returned non zero \n");

 printf(" return code. eibresp2 =%d\n",

 dfheiptr->eibresp2);

 }

 /*----- end of C calling CSP under CICS ------------------------*/

 EXEC CICS RETURN ;

}

Figure 194. CSP transferring control to z/OS XL C under CICS using the XFER statement

(Part 2 of 2)

/* this example shows how to transfer control to C from CSP under */

/* CICS, using the DXFR statement */

/* DXFR XCTL(equivalent to dxfr) */

/* R924A3 ====> CCNGCP7 ====> DCBINIT (appl R924A5) */

/* R924A3 is a CSP application */

 #include <stdio.h>

 #include <string.h>

 #include <stdlib.h>

 #include <math.h>

main ()

{

 struct tag_a3rec {

 char a3ct [4];

 char a3lan [4];

 char fil1 [8]; /* packed fields for PLI */

 char fil2 [8]; /* packed fields for PLI */

 char fil3 [8]; /* packed fields for PLI */

 int a3xbc;

 int a3ybc;

 int a3zbc;

 };

Figure 195. CSP Transferring Control to z/OS XL C under CICS Using the DXFR Statement

(Part 1 of 2)

686 z/OS V1R8.0 XL C/C++ Programming Guide

/* commarea passed to C/370 from R924A3 */

 struct tag_commarea {

 char a3ct [4] ;

 char a3lan [4];

 char fil1 [8]; /* packed fields for PLI */

 char fil2 [8]; /* packed fields for PLI */

 char fil3 [8]; /* packed fields for PLI */

 int a3xbc;

 int a3ybc;

 int a3zbc;

 } * ca_ptr ; /* commarea ptr */

 struct tag_a5progc {

 char alfc [8] ;

 char applc [8] ;

 struct tag_a3rec a3rec;

 } a5progc = {"USR5ALF.","R924A5 "};

 short length_a3rec = sizeof(struct tag_a3rec) ;

 short length_a5progc = sizeof(struct tag_a5progc) ;

 /* addressability to EIB control block */

 /* and COMMUNICATION AREA */

 EXEC CICS ADDRESS EIB(dfheiptr) COMMAREA(ca_ptr) ;

 if (dfheiptr->eibcalen == length_a3rec) {

 memcpy(&a5progc.a3rec, ca_ptr , length_a3rec);

 /* calculate the pow(x,y) */

 a5progc.a3rec.a3zbc = (int) pow((double) a5progc.a3rec.a3xbc,

 (double) a5progc.a3rec.a3ybc);

 EXEC CICS XCTL

 PROGRAM("DCBINIT ")

 COMMAREA(a5progc)

 length(length_a5progc) ;

 if (dfheiptr->eibresp2 != DFHRESP(NORMAL)) {

 printf ("CCNGCP7: failed on xctl call to DCBINIT\n");

 printf (" \n");

 }

 }

 else {

 printf ("CCNGCP7:length of COMMAREA is different from expected\n");

 printf (" expected %d, actual %d\n",

 length_a3rec, dfheiptr->eibcalen);

 printf (" \n");

 EXEC CICS RETURN;

 }

 EXEC CICS RETURN;

}

Figure 195. CSP Transferring Control to z/OS XL C under CICS Using the DXFR Statement

(Part 2 of 2)

Chapter 45. Using Cross System Product (CSP) 687

688 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 46. Using Data Window Services (DWS)

Data Window Services (DWS) is part of the CSL (Callable Services Library). DWS

gives your C or C++ program the ability to manipulate data objects (temporary data

objects known as TEMPSPACE, and VSAM linear data sets).

Notes:

1. XPLINK is not supported with DWS.

2. AMODE 64 applications are not supported with DWS.

To use DWS functions with C code, you do not have to specify a linkage pragma or

add any specialized code. Code the DWS function call directly inside your z/OS XL

C program just as you would a call to a C or C++ library function and then link-edit

the DWS module containing the function you want (such as CSRIDAC, CSRVIEW,

CSRSCOT, CSRSAVE or CSRREFR) with your C or C++ program.

To use DWS functions with C++ code, you must specify C linkage for any DWS

function that you use. For example, if you wished to use CSRIDAC, you would use a

code fragment like this one:

CCNGDW2

 At link-edit time, you should link-edit the DWS module containing the function you

want, just as you would for a C program.

/* this example shows how DWS may be used with C++ */

#include <stdlib.h>

extern "C" {

 void csridac(char*, char*, char*, char*, char*,

 char*, long int*, char*, long int*,

 long int*, long int*);

}

int main(void)

{

 /* Set up the parameters that will be used by CSRIDAC. */

 char op_type[6] = "BEGIN";

 char object_type[10] = "TEMPSPACE";

 char object_name[45] = "DWS.FILE ";

 char scroll_area[4] = "YES";

 char object_state[4] = "NEW";

 char access_mode[7] = "UPDATE";

 long int object_size = 8;

 char object_id[9];

 long int high_offset, return_code, reason_code;

 /* Access a DWS TEMPSPACE data object. */

 csridac(op_type, object_type, object_name, scroll_area, object_state,

 access_mode,OBJECT_size,object_id,&high_offset,

 &return_code,&reason_code);

/* INSERT ADDITIONAL CODE HERE */

}

Figure 196. Example using DWS and C++

© Copyright IBM Corp. 1996, 2006 689

In DWS the data types of the parameters are specified differently from z/OS XL

C/C++ data types. When invoking DWS functions from your C or C++ program, you

must specify:

v A long int data type for DWS parameters of integer (I*4) type.

v Character strings (of the required length) for DWS parameters of character type.

For example, if the DWS function requires a 9-character object name (in this

example we will set the object name to TEMPSPACE) you can declare the

parameter in your C or C++ function as follows:

char object_type[9] = "TEMPSPACE";

For more information on DWS, see z/OS MVS Programming: Callable Services for

HLL.

Example

The following is an excerpt from a C program that shows parameter declarations for

the DWS CSRIDAC function and the function call.

CCNGDW1

/* this example shows how DWS may be used with C */

int main(void)

{

 /* Set up the parameters that will be used by CSRIDAC. */

 char op_type[5] = "BEGIN";

 char object_type[9] = "TEMPSPACE";

 char object_name[45] = "DWS.FILE ";

 char scroll_area[3] = "YES";

 char object_state[3] = "NEW";

 char access_mode[6] = "UPDATE";

 long int object_size = 8;

 char object_id[8];

 long int high_offset, return_code, reason_code;

 /* Access a DWS TEMPSPACE data object. */

 csridac(op_type, object_type, object_name, scroll_area, object_state,

 access_mode,OBJECT_size,OBJECT_id,&high_offset,

 &return_code,&reason_code);

/* INSERT ADDITIONAL CODE HERE */

 return 0;

}

Figure 197. z/OS XL C/C++ Using Data Window Services

690 z/OS V1R8.0 XL C/C++ Programming Guide

|

Chapter 47. Using DB2 Universal Database

Both z/OS Language Environment and z/OS XL C/C++ provide an interface to the

IBM DB2 Universal Database Licensed Program. For a list of books describing

DB2, refer to “DB2” on page 994.

An XL C/C++ program requests DB2 services by using SQL statements embedded

in the program. This source code is translated into host language statements that

perform assignments and call a database language interface module. After DB2

processes each request, it returns processing control to the XL C/C++ program.

Any errors that occur during database processing are handled by the database

product. If a program is terminated during DB2 processing, DB2 takes appropriate

action, depending on the nature of termination. For information about handling SQL

error return codes, refer to DB2 Application Programming and SQL Guide.

Preparing an XL C/C++ application to request DB2 services

Before a C/C++ program can request DB2 services, the code with embedded SQL

statements must be converted into compilable code. There two ways to do this:

v Use the XL C/C++ DB2 coprocessor (provided by the z/OS XL C compiler).

v Use the DB2 C/C++ precompiler (provided by DB2).

To ensure that you are using compatible releases of z/OS XL C/C++ and DB2, see

z/OS Program Directory.

Refer to the both in z/OS XL C/C++ User’s Guide and DB2 Application

Programming and SQL Guide whenever your application performs the following

operations:

v Declares global host variables.

v Declares host variables inside functions.

v Includes a header found in SYSLIB or in the LSEARCH path.

v Puts comments at the end of selected lines in the middle of a multiline SQL

statement.

v Inserts, updates, or retrieves data using a host variable.

v Embeds SQL statements in template functions or classes.

Using the XL C/C++ DB2 coprocessor

If all the SQL statements are embedded in XL C programs, you can use the XL C

DB2 coprocessor to prepare the program to request DB2 services. You can either

run the program through the DB2 C/C++ precompiler before you compile, or you

can specify the SQL compiler option when you compile the program. For detailed

information about using the SQL option, refer to in z/OS XL C/C++ User’s Guide. If

you are compiling code with SQL in effect, refer to z/OS Program Directory for a

complete list of SQL suboptions.

When the XL C/C++ SQL(NOSTD) option is in effect, code should be written in

codepage IBM-1047 (APL)293).

The following are advantages of using the XL C/C++ DB2 coprocessor instead of

the DB2 C/C++ precompiler:

v Host variable names follow the same lexical scoping rules as C/C++ variables.

© Copyright IBM Corp. 1996, 2006 691

|

|

|
|
|

|
|
|
|

|
|
|
|

|
|

|
|

|

|

|
|

|
|
|

|

|

|

|
|

|

|

|

|
|
|
|
|
|
|

|
|

|
|

|

v Preprocessor directives (such as #include and #define) are supported.

v Variable-length source input is supported.

Note: Typically, NOSQL is the default compiler option. If your environment is

customized to make SQL the default, be aware that the compiler will attempt

to call the API that contains DBRMLIB DD even if the source code does not

contain SQL statements. When that happens, DB2 generates a message

that you can ignore.

Using the DB2 C/C++ precompiler

The DB2 C/C++ precompiler scans source code for potentially SQL-related

keywords, such as the following:

v Host variables that can be used in SQL statements in the same source.

v SQL statements that start with the token pair EXEC SQL.

While the DB2 C/C++ precompiler can fully parse the SQL syntax, it has limited

capacity for parsing compiler-language-related syntax. If you are compiling code

with SQL in effect, all DB2 z/OS XL C/C++ code should be written in codepage

IBM-1047 (APL293).

An advantage of using the DB2 C/C++ precompiler instead of the XL C/C++ DB2

coprocessor is that you can obtain a more useful message listing by preprocessing,

precompiling, and then compiling source code with embedded SQL statements.

Compiler diagnostics refer to line numbers of the translated output from the DB2

C/C++ precompiler, not to the line numbers of your source code. This means that

you need both the DB2 C/C++ precompiler listing and the compiler listing to work

through the compilation errors. Run-time troubleshooting tools also refer to

coordinates of the DB2 C/C++ precompiler output.

Using DB2 services and stored procedures with XPLINK

XL C/C++ applications that are compiled with the XPLINK option can invoke DB2

services that are called through stubs defined as #pragma linkage(..., OS).

When you embed DB2 stored procedures in a program that will be compiled with

XPLINK, each CREATE PROCEDURE statement must include a RUN OPTIONS

clause that specifies XPLINK(ON).

Examples of how to use XL C/C++ programs to request DB2 services

The examples in this section demonstrate how to code C and C++ programs with

embedded SQL statements. You can use them with either the XL C/C++ DB2

coprocessor or the DB2 C/C++ precompiler.

692 z/OS V1R8.0 XL C/C++ Programming Guide

|

|

|
|
|
|
|

|

|
|

|

|

|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|

|
|
|

|
|

|
|
|

C sample with embedded SQL statements

Example CCNGDB4 demonstrates how to code a C program with embedded SQL

statements. In Figure 198, a program CCNGDB4 creates a table called CTAB1,

inserts literal values into the table, and drops the table.You can use this example

either by compiling the program with the SQL option in effect or by running the

program through the DB2 C/C++ precompiler, and then compiling the generated

code with the NOSQL option in effect.

CCNGDB4

/* this example demonstrates how to use SQL with C */

#include <string.h>

#include <stdio.h>

EXEC SQL INCLUDE SQLCA;

int main(void)

{

 if (CreaTab() == −1)

 {

 printf("Test Failed in table-creation.\n");

 exit(−1);

 }

 if (DropTab() == −1)

 {

 printf("Test Failed in table-dropping.\n");

 exit(−1);

 }

 printf("Test Successful.\n");

 return(0);

}

/*

 * This routine creates the table CTAB1 and inserts some values

 * into it

*/

int CreaTab(void)

{

 EXEC SQL CREATE TABLE CTAB1

 (EMPNO CHAR(6) NOT NULL,

 FIRSTNME VARCHAR(12) NOT NULL,

 LASTNME VARCHAR(15) NOT NULL,

 WORKDEPT CHAR(3) NOT NULL,

 PHONENO CHAR(7),

 EDUCLVL SMALLINT,

 SALARY FLOAT(21));

 if (sqlca.sqlcode != 0)

 {

 printf("ERROR - SQL code returned non-zero for "

 "creation of CTAB1, received %d\n",sqlca.sqlcode);

 return(−1);

 }

Figure 198. Using DB2 with C (Part 1 of 2)

Chapter 47. Using DB2 Universal Database 693

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

|
|

|

C++ code example with embedded SQL statements

In Figure 199 on page 695, the code creates, populates, updates, and drops a table

called CTAB1V. You can use this example either by compiling the program with the

SQL option in effect or by running the program through the DB2 C/C++ precompiler,

and then compiling the generated code with the NOSQL option in effect.

/* Now insert some values into the table */

 EXEC SQL INSERT INTO CTAB1 VALUES

 (’097892’,’John’,’Adams’,’003’,’8883945’,3,29500.00);

 EXEC SQL INSERT INTO CTAB1 VALUES

 (’000002’,’Joe’,’Smith’,’004’,’8883791’,NULL,25500.00);

 EXEC SQL INSERT INTO CTAB1 VALUES

 (’043929’,’Ralph’,’Holland’,’001’,’8888734’,1,NULL);

 EXEC SQL INSERT INTO CTAB1 VALUES

 (’000010’,’Holly’,’Waters’,’001’,’8884590’,3,29550.00);

 if (sqlca.sqlcode != 0)

 {

 printf("ERROR - SQL code returned non-zero for "

 "insert into tables, received %d\n",sqlca.sqlcode);

 return(−1);

 }

 return(0);

}

/*

 * This routine will drop the table.

*/

int DropTab(void)

{

 EXEC SQL DROP TABLE CTAB1;

 if (sqlca.sqlcode != 0)

 {

 printf("ERROR - SQL code returned non-zero for "

 "drop of CTAB1 received %d??\n",sqlca.sqlcode);

 return(−1);

 }

 EXEC SQL COMMIT WORK;

 return(0);

}

Figure 198. Using DB2 with C (Part 2 of 2)

694 z/OS V1R8.0 XL C/C++ Programming Guide

|

|

|

|
|
|
|
|

#include <iostream>

// The test case information

typedef char TestType;

#define NUM_ROWS 3

#define IN_VALUE {’A’, ’B’, ’C’}

#define OUT_VALUE {’D’, ’E’, ’F’}

EXEC SQL INCLUDE SQLCA;

class SqlTestTable {

 public:

 // The constructor and destructor create and drop the test table

 SqlTestTable() {

 EXEC SQL CREATE TABLE CTAB1V (

 ID INTEGER NOT NULL,

 TESTVAR CHAR(1) NOT NULL

) IN DATABASE DSNUCOMP;

 if (sqlca.sqlcode != 0) {

 std::cout << "ERROR - SQL code returned " << sqlca.sqlcode

 << " for creation of CTAB1V.\n";

 }

 }

 ~SqlTestTable() {

 EXEC SQL DROP TABLE CTAB1V; // Clean up the database

 if (sqlca.sqlcode != 0) {

 std::cout << "ERROR - SQL code returned " << sqlca.sqlcode

 << " for drop of CTAB1V.\n";

 }

 EXEC SQL COMMIT WORK;

 }

 int insertRow(int idToAdd, TestType inputData) {

 int returnValue = 55;

 EXEC SQL BEGIN DECLARE SECTION;

 int idForRow = idToAdd;

 TestType inputValue = inputData;

 EXEC SQL END DECLARE SECTION;

 EXEC SQL INSERT INTO CTAB1V

 VALUES (:idForRow, :inputValue);

 if (sqlca.sqlcode != 0) {

 std::cout << "ERROR - SQL code returned " << sqlca.sqlcode

 << " for insert into tables.\n";

 returnValue = 66; // Not returned immediately in case cleanup is needed

 }

 return returnValue;

 }

Figure 199. Using DB2 with C++ (Part 1 of 3)

Chapter 47. Using DB2 Universal Database 695

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

int updateTable(int idToChange, TestType inputData) {

 int returnValue = 55;

 EXEC SQL BEGIN DECLARE SECTION;

 int idForRow = idToChange;

 TestType inputValue = inputData;

 EXEC SQL END DECLARE SECTION;

 EXEC SQL UPDATE CTAB1V

 SET TESTVAR = :inputValue

 WHERE ID = :idForRow;

 if (sqlca.sqlcode != 0) {

 std::cout << "ERROR - SQL code returned "

 << sqlca.sqlcode << " for update in tables.\n";

 returnValue = 66; // Not returned immediately in case cleanup is needed

 }

 return returnValue;

 }

 int checkTable(int idToCheck, TestType value) {

 int returnValue = 55;

 // Try other format variable names

 EXEC SQL BEGIN DECLARE SECTION;

 int idForRow = idToCheck;

 TestType check_var;

 EXEC SQL END DECLARE SECTION;

 EXEC SQL SELECT TESTVAR INTO :check_var

 FROM CTAB1V

 WHERE ID = :idForRow;

 if (sqlca.sqlcode != 0) {

 std::cout << "ERROR - SQL code returned "

 << sqlca.sqlcode << " for SELECT of the data.\n";

 return 66; // Return immediately since no cleanup; nothing else to be done

 }

 if (check_var != value) {

 std::cout << "ERROR - Value in table

 " << check_var << " is not the expected value " << value << ".\n";

 returnValue = 66; // Not returned immediately in case cleanup is needed

 }

 return returnValue;

 }

};

Figure 199. Using DB2 with C++ (Part 2 of 3)

696 z/OS V1R8.0 XL C/C++ Programming Guide

|

int main(void) {

 SqlTestTable testTable; // Creates the tables

 int i = 0;

 int returnValue = 55;

 TestType aLongVariableName[NUM_ROWS] = IN_VALUE;

 TestType expectedResults[NUM_ROWS] = OUT_VALUE;

 // SQL Declare's Not needed. Added to see what happens if not used as SQL vars.

 EXEC SQL BEGIN DECLARE SECTION;

 TestType inValue;

 TestType outValue;

 EXEC SQL END DECLARE SECTION;

 // Populate the table using non-host variables as function parameters

 for (i = 0; i < NUM_ROWS; i++) {

 returnValue = testTable.insertRow(i, aLongVariableName[i]);

 if (returnValue != 55) {

 return returnValue;

 }

 }

 // Check to see if the insert went OK using host variables as function parms

 for (i = 0; i < NUM_ROWS; i++) {

 inValue = aLongVariableName[i];

 returnValue = testTable.checkTable(i, inValue);

 if (returnValue != 55) {

 return returnValue;

 }

 }

 // Update the values using host variables as function parameters

 for (i = 0; i < NUM_ROWS; i++) {

 outValue = expectedResults[i];

 returnValue = testTable.updateTable(i, outValue);

 if (returnValue != 55) {

 return returnValue;

 }

 }

 // Check to see if the update went OK using non-host variables as function parms

 for (i = 0; i < NUM_ROWS; i++) {

 returnValue = testTable.checkTable(i, expectedResults[i]);

 if (returnValue != 55) {

 return returnValue;

 }

 }

 return returnValue; // Deletes the table through the destructor

}

Figure 199. Using DB2 with C++ (Part 3 of 3)

Chapter 47. Using DB2 Universal Database 697

|

|

698 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 48. Using Graphical Data Display Manager (GDDM)

The Graphical Data Display Manager (GDDM*) provides programmers with a

comprehensive set of functions for displaying or printing information in the most

effective manner.

The major functions provided are:

v A windowing system that the user can tailor to display selected information

v Support for presentation and interaction through the keyboard

v Comprehensive graphics support

v Fonts, including support for double-byte character sets (DBCS)

v Business image support

v Saving and restoring graphics pictures

v Support for many types of display terminals, printers, and plotters.

Because GDDM uses OS-style linkage, calls from C to GDDM require the #pragma

linkage pragma, as in the following example:

#pragma linkage(identifier, OS)

In C++ code, calls to and from GDDM require that any GDDM functions you use be

prototyped as extern "OS", as in the following example:

extern "OS" {

 ASREAD(int *type, int *num, int *count);

 CHAATT(int num, int *attrib);

 CHHATT(int num, int *attrib);

}

Because C++ does not support #pragma linkage, any existing C code that you are

moving to C++ should use the extern "OS" specification instead.

When linking a GDDM application, you must add the GDDM library to your SYSLIB

concatenation.

Notes:

1. XPLINK is not supported by GDDM.

2. AMODE 64 applications are not supported by GDDM.

Example

The following example demonstrates the interface between C and GDDM by

drawing a polar chart to compare the characteristics of two cars.

© Copyright IBM Corp. 1996, 2006 699

|

|

|
|
|

|

|

|

|

|

|

|

|

|
|

|

|
|

|
|
|
|
|

|
|

|
|

|

|

|

|
|

|
|

CCNGGD1

/* this example demonstrates the use of C and GDDM */

#include <string.h>

 #pragma linkage(asread,OS)

 #pragma linkage(chaatt,OS)

 #pragma linkage(chhatt,OS)

 #pragma linkage(chhead,OS)

 #pragma linkage(chkatt,OS)

 #pragma linkage(chkey,OS)

 #pragma linkage(chnatt,OS)

 #pragma linkage(chnoff,OS)

 #pragma linkage(chnote,OS)

 #pragma linkage(chpolr,OS)

 #pragma linkage(chset,OS)

 #pragma linkage(chxlab,OS)

 #pragma linkage(chxlat,OS)

 #pragma linkage(chxtic,OS)

 #pragma linkage(chyrng,OS)

 #pragma linkage(chyset,OS)

 #pragma linkage(fsinit,OS)

 #pragma linkage(fsterm,OS)

 /* Arrays are expected for int * and float * */

 /* char * can be an array or a string */

 extern int asread (int *type, int *num, int *count);

 extern int chaatt (int num, int *attrib);

 extern int chhatt (int num, int *attrib);

 extern int chkatt (int num, int *attrib);

 extern int chkey (int, int, char *);

 extern int chnatt (int num, int *attrib);

 extern int chnoff (double, double);

 extern int chnote (char *string, int num, char *title);

 extern int chpolr (int, int, float *xdata, float *ydata);

 extern int chset (char *charactr);

 extern int chxlab (int num, int, char *);

 extern int chxlat (int num, int *attrib);

 extern int chxtic (double x, double y);

 extern int chyrng (double from, double to);

 extern int chyset (char *charactr);

 extern int fsinit (void);

 extern int fsterm (void);

 /**

 ** Attribute arrays used for the chart. **

 **/

 int i ;

 int h_attrs[4] = { 3, 3, 0, 175 }; /* Head text attribute */

 int n_attrs[4] = { 7, 3, 0, 200 }; /* Note text attribute */

 int a_attrs[2] = { 7, 1 }; /* X-axis color and line */

 int xl_attrs[1] = { 5 }; /* X-label color */

 int k_attrs[1] = { 5 }; /* Key text color */

 int type, num, count ;

 float x_data[8] = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 };

 float y_data[16] = {

 14190.0, 260.0, 0.21, 0.066, 83.3, 6.0, 19.1, 14190.0,

 12986.0, 290.0, 0.23, 0.066, 95.6, 5.0, 16.2, 12986.0 };

 float maxvals[16] = {

 15000.0, 300.0, 0.25, 0.070, 100.0, 6.0, 20.0, 15000.0,

 15000.0, 300.0, 0.25, 0.070, 100.0, 6.0, 20.0, 15000.0 };

Figure 200. Example using GDDM and C (Part 1 of 2)

700 z/OS V1R8.0 XL C/C++ Programming Guide

|

|

|

This is a similar example, in C++:

 int main(void)

 {

 fsinit();

 chhatt(4, h_attrs);

 chhead(40,"TWO CARS COMPARED USING SEVEN PARAMETERS");

 chaatt(2,a_attrs);

 chxtic(1.0, 0.0);

 chxlat(1, xl_attrs);

 chxlab(7, 31,

 "PURCHASE PRICE ; $15,000 INSURANCE ;$300/YEAR "

 "$0.25/MILE ;SERVICING $0.070/MILE ;FUEL "

 " 100 BHP/TON; POWER/WT RATIO 6; SEATS"

 " BAGGAGE SPACE; 20 CU FT");

 chyrng (0.5,1.0);

 chyset("NOAXIS");

 chyset("NOLABEL");

 chyset("PLAIN");

 chset("KBOX");

 chkatt(1,k_attrs);

 chkey(2, 5, "CAR ACAR B");

 for(i=0; i<16; ++i)

 y_data[i] = y_data[i] / maxvals[i];

 chpolr(2, 8, x_data, y_data);

 chnatt(4, n_attrs);

 chnoff(0.0, 0.53);

 chnote("Z2", 1, "+");

 chset("BNOTE");

 n_attrs[3] = 75;

 chnatt(4,n_attrs);

 chnoff(0.0, 0.60);

 chnote("Z2", 12, "CENTER VALUE");

 chnoff(0.0, 0.55);

 chnote("Z2", 23, "= 1/2 X PERIMETER VALUE");

 /***

 ** Issue a screen read. When any interrupt is generated **

 ** by the terminal operator, the program terminates. **

 ***/

 asread(&type, &num, &count);

 fsterm();

 exit(0);

 }

Figure 200. Example using GDDM and C (Part 2 of 2)

Chapter 48. Using Graphical Data Display Manager (GDDM) 701

|

CCNGGD2

/* this example demonstrates the use of C++ and GDDM */

#include <stdlib.h>

#include <string.h>

 /* Arrays are expected for int * and float * */

 /* char * can be an array or a string */

extern "OS" {

 int asread (int *type, int *num, int *count);

 int chaatt (int num, int *attrib);

 int chhatt (int num, int *attrib);

 int chkatt (int num, int *attrib);

 int chkey (int, int, char *);

 int chhead(int, char *);

 int chnatt (int num, int *attrib);

 int chnoff (double, double);

 int chnote (char *string, int num, char *title);

 int chpolr (int, int, float *xdata, float *ydata);

 int chset (char *charactr);

 int chxlab (int num, int, char *);

 int chxlat (int num, int *attrib);

 int chxtic (double x, double y);

 int chyrng (double from, double to);

 int chyset (char *charactr);

 int fsinit (void);

 int fsterm (void);

}

 /**

 ** Attribute arrays used for the chart. **

 **/

 int i ;

 int h_attrs[4] = { 3, 3, 0, 175 }; /* Head text attribute */

 int n_attrs[4] = { 7, 3, 0, 200 }; /* Note text attribute */

 int a_attrs[2] = { 7, 1 }; /* X-axis color and line */

 int xl_attrs[1] = { 5 }; /* X-label color */

 int k_attrs[1] = { 5 }; /* Key text color */

 int type, num, count ;

 float x_data[8] = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 };

 float y_data[16] = {

 14190.0, 260.0, 0.21, 0.066, 83.3, 6.0, 19.1, 14190.0,

 12986.0, 290.0, 0.23, 0.066, 95.6, 5.0, 16.2, 12986.0 };

 float maxvals[16] = {

 15000.0, 300.0, 0.25, 0.070, 100.0, 6.0, 20.0, 15000.0,

 15000.0, 300.0, 0.25, 0.070, 100.0, 6.0, 20.0, 15000.0 };

Figure 201. Example using GDDM and C++ (Part 1 of 2)

702 z/OS V1R8.0 XL C/C++ Programming Guide

|

|

|

int main(void)

 {

 fsinit();

 chhatt(4, h_attrs);

 chhead(40,"TWO CARS COMPARED USING SEVEN PARAMETERS");

 chaatt(2,a_attrs);

 chxtic(1.0, 0.0);

 chxlat(1, xl_attrs);

 chxlab(7, 31,

 "PURCHASE PRICE ; $15,000 INSURANCE ;$300/YEAR "

 "$0.25/MILE ;SERVICING $0.070/MILE ;FUEL "

 " 100 BHP/TON; POWER/WT RATIO 6; SEATS"

 " BAGGAGE SPACE; 20 CU FT");

 chyrng (0.5,1.0);

 chyset("NOAXIS");

 chyset("NOLABEL");

 chyset("PLAIN");

 chset("KBOX");

 chkatt(1,k_attrs);

 chkey(2, 5, "CAR ACAR B");

 for(i=0; i<16; ++i)

 y_data[i] = y_data[i] / maxvals[i];

 chpolr(2, 8, x_data, y_data);

 chnatt(4, n_attrs);

 chnoff(0.0, 0.53);

 chnote("Z2", 1, "+");

 chset("BNOTE");

 n_attrs[3] = 75;

 chnatt(4,n_attrs);

 chnoff(0.0, 0.60);

 chnote("Z2", 12, "CENTER VALUE");

 chnoff(0.0, 0.55);

 chnote("Z2", 23, "= 1/2 X PERIMETER VALUE");

 /***

 ** Issue a screen read. When any interrupt is generated **

 ** by the terminal operator, the program terminates. **

 ***/

 asread(&type, &num, &count);

 fsterm();

 exit(0);

 }

Figure 201. Example using GDDM and C++ (Part 2 of 2)

Chapter 48. Using Graphical Data Display Manager (GDDM) 703

|

704 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 49. Using the Information Management System (IMS)

This chapter explains how the Information Management System (IMS) and z/OS XL

C/C++ coordinate error handling, and describes the limitations to using IMS with

z/OS XL C/C++.

z/OS XL C/C++ provides the ctdli() C library function to invoke IMS facilities (see

z/OS XL C/C++ Run-Time Library Reference for more information).

You can also invoke IMS facilities with the callable service CEETDLI which is

provided by the z/OS Language Environment. The CEETDLI interface performs

essentially the same functions as ctdli(), but it offers some advantages,

particularly if you plan to run an ILC application in IMS. If you use the CEETDLI

interface instead of ctdli(), condition handling is improved because of the

coordination between z/OS Language Environment and IMS condition handling

facilities. For complete information on the CEETDLI interface, see z/OS Language

Environment Programming Guide.

For a description of writing IMS batch and online programs in C or C++, see the

appropriate book listed in “IMS/ESA®” on page 995.

To use IMS from z/OS XL C/C++, you must keep the following in mind:

v The file <ims.h> must be included in the program.

v PLIST(OS) and TARGET(IMS) must be used to compile IMS z/OS XL C/C++

application programs. PLIST(OS) establishes the correct parameter list format

when invoked under IMS and TARGET(IMS) establishes the correct operating

environment. These compile-time options can alternatively be specified using

#pragma runopts. The PLIST(OS) compiler option is equivalent to

#pragma runopts(ENV(IMS)). The descriptions that follow use the compile-time

options, but the #pragma runopts equivalents can be used instead.

v TARGET(IMS) is mandatory, as it establishes the correct operating environment.

PLIST(OS) must also be used if the program is the initial main() program called

under IMS. Programs in nested enclaves do not need to be compiled with

PLIST(OS).

v When you specify PLIST(OS) the argument count (argc) will be set to one (1),

and the first element in the argument vector (argv[0]) will contain a NULL string.

v IMS provides a language interface module (DFSLI000) that gives a common

interface to IMS and DL/I. This module must be link-edited with the application

program.

The rest of this chapter is based on the assumption that you are using the ctdli()

interface.

Notes:

1. AMODE 64 applications are not supported in an IMS environment.

2. As of V1R2, a non-XPLINK Standard C++ Library DLL allows support for the

Standard C++ Library in the IMS subsystem. For further information, see binding

programs in z/OS XL C/C++ User’s Guide.

© Copyright IBM Corp. 1996, 2006 705

|

|

|
|
|

|
|

|
|
|
|
|
|
|
|

|
|

|

|

|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|

|
|

|

|

|
|
|

Handling errors

The IMS environments are sensitive to errors and error-handling issues. A failing

IMS transaction or program can potentially corrupt an IMS database. IMS must

know about the failure of a transaction or program that has been updating a

database so that it can back out any updates made by that failing program.

z/OS XL C/C++ provides extensive error-handling facilities for the programmer, but

special steps are required to coordinate IMS and C or C++ error handling so that

IMS can do its database rollbacks when a program fails.

When you are using IMS from C or C++:

v Run your C or C++ program with the TRAP(ON) option, and use IMS interfaces by

calling the ctdli() library function. If your application programs also use SQL

facilities provided by DB2, you must modify the user exit CEEBXITA to add the

user abend codes 777 and 778 to prevent the error handler from trapping these

abends. This will allow deadlocks to be successfully resolved by IMS. See z/OS

Language Environment Programming Guide for more information on CEEBXITA.

v The ctdli() library function will keep track of calls to and returns from IMS. If an

abend or program check occurs and the C or C++ error handler gets control, it

can determine if the problem arose on the IMS side of the interface or on the C

or C++ side.

v If a program check or abend occurs in IMS, when the C or C++ exception

handler gets control, it immediately issues an ABEND. The IMS Region Controller

gets control next and ensures that the integrity of the database is preserved.

v If a program check occurs in the C or C++ program rather than in IMS, all the

facilities of C or C++ error handling apply, provided that you meet certain

conditions when you code your program. For any error condition that arises, you

must do one of the following:

1. Resolve the error completely so that the application can continue.

2. Have IMS back out the program’s updates by issuing a rollback call to IMS,

and then terminate the program.

3. Make sure that the program terminates abnormally and provide an

installation-modified run-time user exit that turns all abnormal terminations

into operating system ABENDs to effect IMS rollbacks. See z/OS Language

Environment Programming Guide for more information.

The errors you most likely can fix in your program are arithmetic exception

(SIGFPE) conditions. It is unlikely that you can resolve other types of program

checks or system abends in your program.

Any program that invokes IMS by way of some other IMS interface should be

executed with TRAP(OFF). You should be sure that the program contains code to

issue a rollback call to IMS before terminating after an error. Refer to z/OS

Language Environment Programming Reference for more information about the

limitations of using TRAP(OFF).

Other considerations

A program communication block (PCB) is a control block used by IMS to describe

results of a DL/I call (DB PCB) or the results of a message retrieval or insertion (I/O

PCB) made by your program. A valid PCB is one that has been correctly initialized

by IMS and passed to you through your C or C++ program. For details on PCBs,

refer to the “IMS/ESA®” on page 995. See also the sample C-IMS and C++-IMS

programs in z/OS XL C/C++ Run-Time Library Reference.

706 z/OS V1R8.0 XL C/C++ Programming Guide

|
|

|
|
|
|

|
|
|

|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|

|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|

If you are running an IMS C/MVS program under TSO or IMS, you should be aware

of the effects of specifying PLIST(OS), ENV(IMS), and their combinations with the

#pragma runopts preprocessor directive. The following chart shows the

combinations of PLIST(OS) and ENV(IMS) and the resulting PCB generated under

each of the environments:

 Table 98. PCB generated under TSO and IMS

Combination Running under TSO Running under IMS

ENV(IMS) only Invalid PCB Valid PCB

PLIST(OS) only Null PCB Null PCB

ENV(IMS) and PLIST(OS) Invalid PCB Valid PCB

For more information on the run-time options ENV and PLIST, see z/OS Language

Environment Programming Reference.

If you are running an IMS C or z/OS XL C++ program under TSO or IMS, you

should be aware of the effects of specifying compiler options PLIST(OS),

TARGET(IMS), and their combinations. The following chart shows the combinations of

PLIST(OS) and TARGET(IMS) and the resulting PCB generated under each of the

environments:

 Table 99. PCB generated under TSO and IMS

Combination Running under TSO Running under IMS

TARGET(IMS) only Invalid PCB Valid PCB

PLIST(OS) only Null PCB Null PCB

TARGET(IMS) and PLIST(OS) Invalid PCB Valid PCB

For both C and C++, specifying PLIST(OS) under either TSO or IMS results in an

argc value of 1 (one), and argv[0] = NULL.

For more information on the compiler options TARGET(IMS) and PLIST(OS), see z/OS

XL C/C++ User’s Guide.

Examples

The following C++ program CCNGIM1 makes an IMS call and checks the return

code status of the call in IMS batch. Header file CCNGIM3 (shown at the end of

this chapter) is included by this program.

Chapter 49. Using the Information Management System (IMS) 707

|
|
|
|
|

||

|||

|||

|||

|||
|

|
|

|
|
|
|
|

||

|||

|||

|||

|||
|

|
|

|
|

|

|
|
|

CCNGIM1

/* this is an example of how to use IMS with C++ */

#pragma runopts(env(ims),plist(os))

#include <ims.h>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include "ccngim3.h"

int main(void) {

/***/

/* Declare the database pointer control blocks for each database */

/***/

 PCB_STRUCT_8_TYPE *locdb_ptr,*orddb_ptr;

/***/

/* IO areas used for DL/I calls */

/***/

 auto IOA2 aio_area, a2io_area;

 static IOA2 sio_area;

 IOA2 *io_area;

/***/

/* SSAs for DL/I calls */

/***/

 static char qual0[] = "ORDER (ORDKEY =333333)";

 static char qual1[] = "ORDITEM ";

 static char qual2[] = "DELIVERY ";

 static int six = 6;

 static int four = 4;

 static char gu[5] = "GU ";

 static char isrt[5] = "ISRT";

 int rc;

 int failed = 0; /* Indicate if any part of test case failed. */

Figure 202. C++ Program using IMS (Part 1 of 2)

708 z/OS V1R8.0 XL C/C++ Programming Guide

|
|

|

The following C program CCNGIM2 makes an IMS call and checks the return code

status of the call in IMS batch. Header file CCNGIM3 is included by this program.

/***/

/* Get the pointers to the databases from the parameter list */

/***/

 locdb_ptr = (__pcblist[1]);

 orddb_ptr = (__pcblist[2]);

/***/

/* Make some calls to the database and change its contents */

/***/

 printf("IMS Test starting\n");

 io_area = (IOA2 *)malloc(sizeof(IOA2));

/***/

/* Issue a DL/I call with arguments below the line (using CTDLI) */

/***/

/**/

/* The first parameter for ctdli is an int specifying the number of */

/* arguments-this parameter was optional under C but is mandatory */

/* under C++ */

/**/

 rc = ctdli(six,gu,orddb_ptr,&aio_area,qual0,qual1,qual2);

 if ((orddb_ptr−>stat_code[0] == ’ ’ && orddb_ptr−>stat_code[1]==’ ’)

 && (rc == 0))

 printf("Call to CTDLI returned successfully\n");

 else

 {

 printf("Call to CTDLI returned status of %c%c.\n",

 orddb_ptr−>stat_code[0],orddb_ptr−>stat_code[1]);

 failed = 1;

 }

 if (failed == 0)

 printf("Test Successful\n");

 else printf("Test Failed");

 return(0);

}

Figure 202. C++ Program using IMS (Part 2 of 2)

Chapter 49. Using the Information Management System (IMS) 709

|
|

CCNGIM2

/* This is an example of how to use IMS with C */

#pragma runopts(env(ims),plist(os))

#include <ims.h>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include "ccngim3.h"

int main(void) {

/***/

/* Declare the database pointer control blocks for each database */

/***/

 PCB_STRUCT_8_TYPE *locdb_ptr,*orddb_ptr;

/***/

/* IO areas used for DL/I calls */

/***/

 auto IOA2 aio_area, a2io_area;

 static IOA2 sio_area;

 IOA2 *io_area;

/***/

/* SSAs for DL/I calls */

/***/

 static char qual0[] = "ORDER (ORDKEY =333333)";

 static char qual1[] = "ORDITEM ";

 static char qual2[] = "DELIVERY ";

 static int six = 6;

 static int four = 4;

 static char gu[4] = "GU ";

 static char isrt[4] = "ISRT";

 int rc;

 int failed = 0; /* Indicate if any part of test case failed. */

Figure 203. C Program using IMS (Part 1 of 2)

710 z/OS V1R8.0 XL C/C++ Programming Guide

|
|

|

The following header file is used by both the C and the C++ examples.

/***/

/* Get the pointers to the databases from the parameter list */

/***/

 locdb_ptr = (__pcblist[1]);

 orddb_ptr = (__pcblist[2]);

/***/

/* Make some calls to the database and change its contents */

/***/

 printf("IMS Test starting\n");

 io_area = malloc(sizeof(IOA2));

/***/

/* Issue a DL/I call with arguments below the line (using CTDLI) */

/***/

 rc = ctdli(six,gu,orddb_ptr,&aio_area,qual0,qual1,qual2);

 if ((orddb_ptr−>stat_code[0] == ’ ’ &&; orddb_ptr−>stat_code[1]==’ ’)

 &&; (rc == 0))

 printf("Call to CTDLI returned successfully\n");

 else

 {

 printf("Call to CTDLI returned status of %c%c.\n",

 orddb_ptr−>stat_code[0],orddb_ptr−>stat_code[1]);

 failed = 1;

 }

 if (failed == 0)

 printf("Test Successful\n");

 else printf("Test Failed");

 return(0);

}

Figure 203. C Program using IMS (Part 2 of 2)

Chapter 49. Using the Information Management System (IMS) 711

|

CCNGIM3

/* this header file is used with the IMS example */

/*------------------*/

/* DB PCB */

/*------------------*/

typedef struct {

 char db_name[8];

 char seg_level[2];

 char stat_code[2];

 char proc_opt[4];

 int dli;

 char seg_name[8];

 int len_kfb;

 int no_senseg;

 char key_fb[2];

} DB_PCB;

/*------------------*/

/* IO PCB */

/*------------------*/

typedef struct {

 char term[8];

 char ims_res[2];

 char stat_code[2];

 char date[4];

 char time[4];

 int input_seq;

 char output_mess[8];

 char mod_nme[8];

 char user_id[8];

 } IO_AREA;

 /*------------------*/

 /* SPA DATA */

 /*------------------*/

 typedef struct {

 short int uosplth;

 char uospres1[4];

 char uosptran[8];

 char uospuser;

 char fill[85];

 } SPA_DATA;

Figure 204. Header file for IMS example (Part 1 of 2)

712 z/OS V1R8.0 XL C/C++ Programming Guide

|
|

|

/*------------------*/

/* INPUT MESSAGE */

/*------------------*/

typedef struct {

 short int ll;

 char zz[2];

 char fill[2];

 char numb[4];

 char nme[6];

} IN_MSG;

/*-------------------*/

/* OUTPUT MESSAGE */

/*-------------------*/

typedef struct {

 short int ll;

 char z1;

 char z2;

 char fill[2];

 char sca[2];

} OUT_MSG;

/*------------------*/

/* IO AREA */

/*------------------*/

typedef struct {

 char key[20];

} IOA1;

typedef struct {

 char item[40];

} IOA2;

Figure 204. Header file for IMS example (Part 2 of 2)

Chapter 49. Using the Information Management System (IMS) 713

|

714 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 50. Using the Interactive System Productivity Facility

(ISPF)

z/OS XL C/C++ allows access to the Interactive System Productivity Facility (ISPF)

Dialog Management Services. Some of the services provided by ISPF include:

v Display services

v Variable services

v Message services

v Dialog control services

For C applications, two interfaces may be used with ISPF: ISPLINK and ISPEXEC.

Because ISPF uses OS style linkage, calls from C to ISPF require the following

pragma statements for ISPLINK and ISPEXEC respectively:

 #pragma linkage(ISPLINK, OS)

 #pragma linkage(ISPEXEC, OS)

For C++ applications, two interfaces may be used with ISPF: ISPLINK and ISPEXEC.

Because ISPF uses OS style linkage, calls from C++ to ISPF require that ISPLINK

and ISPEXEC be prototyped as extern "OS", as follows:

 extern "OS"{

 int ISPLINK(char*,...);

 }

 extern "OS"{

 int ISPEXEC(int, char*,...);

 }

Consult z/OS ISPF Dialog Developer’s Guide and Reference for specific information

about using the ISPF Dialog Management Services.

Notes:

1. XPLINK is not supported by ISPF.

2. AMODE 64 applications are not supported by ISPF.

Examples

To run the following example under C:

1. Compile and link the CCNGIS3 C source file using the EDCCL procedure.

Override the SYSLIB DD statement on the LKED step to use the ISPF load

library available on your system. Your JCL should appear similar to the fragment

below:

//CISPF EXEC EDCCL,

// INFILE=’userid.C(CCNGIS3)’,

// OUTFILE=’userid.LOADLIB(CCNGIS3),DISP=SHR’

//LKED.SYSLIB DD

// DD DSN=ISP.SISPLOAD,DISP=SHR

//LKED.SYSIN DD DATA,DLM=’/>’

 NAME CCNGIS3(R)

/>

2. Copy the CCNGIS2 and CCNGIS4 menus, and the CCNGIS5 panel to your own

ISPPLIB data set. Copy CCNGIS1 to your own CLIST data set.

3. Ensure that your ISPPLIB data set is allocated to the ISPPLIB ddname. The

data set containing the CCNGIS3 program, and the SCEERUN data set, should

be allocated to the STEPLIB ddname.

© Copyright IBM Corp. 1996, 2006 715

|

|

|

|
|

|

|

|

|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|

|

|

|
|

|

|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|

4. Run the CLIST. The opening menu of the example will be displayed. Choose

the first option to call the program that starts the C to ISPF interface and

displays a secondary menu. You can either exit from this menu or press the

help key for a help panel.

CCNGIS1

CCNGIS2

CCNGIS3

/* THIS CLIST STARTS THE ISPF EXAMPLE */

ISPEXEC SELECT PANEL(CCNGIS2)

Figure 205. CCNGIS1 CLIST

)ATTR DEFAULT(%+_)

/* this menu is used by the ISPF example */

 /* % TYPE(TEXT) INTENS(HIGH) defaults displayed for */

 /* + TYPE(TEXT) INTENS(LOW) information only */

)BODY

%--------------------- SAMPLE ISPF DIALOG PANEL --------------------------

%OPTION ===>_ZCMD +

+

+ %1+ SELECTION 1 CALL C PROGRAM.

 %2+ FUTURE NOT IMPLEMENTED.

 %3+ FUTURE NOT IMPLEMENTED.

+

+ENTER %END+COMMAND TO TERMINATE.

)PROC

 &ZSEL=TRANS(TRUNC(&ZCMD,’.’)

 1,’PGM(CCNGIS3)’

 *,’?’)

)END

Figure 206. CCNGIS2 menu

/* this program shows how to use ISPF with C */

#include <stdio.h>

#include <stdlib.h>

#pragma linkage(ISPLINK,OS)

extern ISPLINK() ;

int rc,buflen;

char buffer[20];

int main(void)

{

/* Retrieve the panel definition CCNGIS4 and display it. */

 strcpy(buffer,"PANEL(CCNGIS4)");

 buflen = strlen(buffer);

 rc = ISPLINK("SELECT", buflen, buffer);

}

Figure 207. C program CCNGIS3

716 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|
|

|

||

|

||

|

||

CCNGIS4

CCNGIS5

 To run the following example under C++:

1. Compile and bind the C++ source file using the CBCCB procedure. You can use

either the ISPLINK version of the code (CCNGIS8) or the ISPEXEC version of

the code (CCNGISB). Override the SYSLIB DD statement for the BIND step to

use the ISPF load library. Your JCL should appear similar to the JCL below:

//CXXISPF EXEC CBCCB,

// INFILE=’userid.C(CCNGIS8)’,

// OUTFILE=’userid.LOADLIB(CCNGIS8),DISP=SHR’

//LKED.SYSLIB DD

// DD

// DD

// DD DSN=ISP.SISPLOAD,DISP=SHR

//LKED.SYSIN DD DATA,DLM=’/>’

 NAME CCNGIS8(R)

/>

2. Copy the CCNGIS7 menu (if you are using ISPLINK) or the CCNGISA menu (if

you are using ISPEXEC) to your own ISPPLIB data set. Copy the CCNGIS4

menu and CCNGIS5 panel to your ISPPLIB data set as well. Copy the

CCNGIS6 CLIST (if you are using ISPLINK) or the CCNGIS9 CLIST (if you are

using ISPEXEC) to your own CLIST data set.

)ATTR DEFAULT(%+_)

/* this menu is used by the ISPF example */

 /* % TYPE(TEXT) INTENS(HIGH) defaults displayed for */

 /* + TYPE(TEXT) INTENS(LOW) information only*/

 /* _ TYPE(INPUT) INTENS(HIGH) CAPS(ON) JUST(LEFT) */

)BODY

%------------------------ A SAMPLE ISPF MENU ------------------------

%OPTION ===>_ZCMD

+

+ %1+ SELECTION 1 NOT IMPLEMENTED.

 %2+ SELECTION 2 EXIT

+ %END+ TO EXIT.

+

)INIT

 .HELP = ccngis5

)PROC

 &ZSEL=TRANS(TRUNC(&ZCMD,’.’)

 2,’EXIT’

 *,’?’)

)END

Figure 208. CCNGIS4 menu-ISPEXEC or ISPLINK example

)ATTR DEFAULT(%+_)

/* this panel is used by the ISPF example */

)BODY

%--------------------- Sample Ispf Help Panel --------------------------------

+

 This is a HELP panel. Enter %END +to exit.

)PROC

)END

Figure 209. CCNGIS5 help panel-ISPEXEC or ISPLINK example

Chapter 50. Using the Interactive System Productivity Facility (ISPF) 717

|

||

|

|

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

3. Ensure that your ISPPLIB data set is allocated to the ISPPLIB ddname. The

data set containing the CCNGIS8 or CCNGISB program, and the SCEERUN

data set, should be allocated to the STEPLIB ddname.

4. Run the CLIST. The opening menu of the example will be displayed. Choose

the first option to call the program that starts the C++ to ISPF interface and

displays a secondary menu. You can either exit from this menu or press the

help key for a help panel.

CCNGIS6

CCNGIS7

/* THIS CLIST STARTS THE ISPF EXAMPLE */

ISPEXEC SELECT PANEL(CCNGIS7)

Figure 210. CCNGIS6 CLIST-ISPLINK example

)ATTR DEFAULT(%+_)

/* this menu is used by the ISPF example */

 /* % TYPE(TEXT) INTENS(HIGH) defaults displayed for */

 /* + TYPE(TEXT) INTENS(LOW) information only */

)BODY

%--------------------- SAMPLE ISPF DIALOG PANEL -----------------------------

%OPTION ===>_ZCMD +

+

+ %1+ SELECTION 1 CALL C PROGRAM.

 %2+ FUTURE NOT IMPLEMENTED.

 %3+ FUTURE NOT IMPLEMENTED.

+

+ENTER %END+COMMAND TO TERMINATE.

)PROC

 &ZSEL=TRANS(TRUNC(&ZCMD,’.’)

 1,’PGM(CCNGIS8)’

 *,’?’)

)END

Figure 211. CCNGIS7 menu-ISPLINK example

718 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|

|
|
|
|

|

||

|

||

CCNGIS8

CCNGIS9

CCNGISA

/* this program shows how to use ISPF with C++, using ISPLINK */

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

extern "OS" {

 int ISPLINK(char*,...);

}

int rc,buflen;

char buffer[20];

int main(void)

{

/* Retrieve the panel definition CCNGIS4 and display it. */

 strcpy(buffer,"PANEL(CCNGIS4)");

 buflen = strlen(buffer);

 rc = ISPLINK("SELECT",buflen, buffer);

}

Figure 212. C++ program CCNGIS8-ISPLINK example

/* THIS CLIST STARTS THE ISPF EXAMPLE */

ISPEXEC SELECT PANEL(CCNGISA)

Figure 213. CCNGIS9 CLIST-ISPEXEC example

)ATTR DEFAULT(%+_)

/* this menu is used by the ISPF example */

 /* % TYPE(TEXT) INTENS(HIGH) defaults displayed for */

 /* + TYPE(TEXT) INTENS(LOW) information only */

)BODY

%--------------------- SAMPLE ISPF DIALOG PANEL -----------------------------

%OPTION ===>_ZCMD +

+

+ %1+ SELECTION 1 CALL C PROGRAM.

 %2+ FUTURE NOT IMPLEMENTED.

 %3+ FUTURE NOT IMPLEMENTED.

+

+ENTER %END+COMMAND TO TERMINATE.

)PROC

 &ZSEL=TRANS(TRUNC(&ZCMD,’.’)

 1,’PGM(CCNGISB)’

 *,’?’)

)END

Figure 214. CCNGISA menu-ISPEXEC example

Chapter 50. Using the Interactive System Productivity Facility (ISPF) 719

|

||

|

||

|

||

CCNGISB

/* this program shows how to use ISPF with C++, using ISPEXEC */

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

extern "OS" {

 int ISPEXEC(int, char*);

}

int rc,buflen;

char buffer[20];

int main(void)

{

/* Retrieve the panel definition CCNGIS4 and display it. */

 strcpy(buffer,"SELECT PANEL(CCNGIS4)");

 buflen = strlen(buffer);

 rc = ISPEXEC(buflen, buffer);

}

Figure 215. C++ program CCNGISB-ISPEXEC example

720 z/OS V1R8.0 XL C/C++ Programming Guide

|

||

Chapter 51. Using the Query Management Facility (QMF)

The z/OS XL C/C++ compiler’s support of the Query Management Facility (QMF)

interface, a query and report writing facility, enables you to write applications

through the SAA callable interface. You can create applications to perform a variety

of tasks such as data entry, query building, administration aids, and report analysis.

The z/OS XL C++ compiler itself does not support QMF. However, QMF can be

accessed through C code that is statically or dynamically called from C++.

You must include the header file DSQCOMMC.H (provided with the QMF application),

which contains the function and structure definitions necessary to use the QMF

interface.

For information on how to write your z/OS XL C/C++ applications with the QMF

interface, see the appropriate manual listed in “QMF” on page 995.

Notes:

1. AMODE 64 applications are not supported by QMF.

2. XPLINK is not supported by QMF.

Note:

Example

The following example demonstrates the interface between the QMF facility and the

z/OS XL C/C++ compiler.

CCNGQM1

/* this example shows how to use the interface between QMF and C */

#include <string.h>

#include <stdlib.h>

#include <DSQCOMMC.H> /* QMF header file */

int main(void)

{

 struct dsqcomm communication_area; /* found in DSQCOMMC */

/**/

/* Query interface command length and commands */

/**/

 signed long command_length;

 static char start_query_interface [] = "START";

 static char set_global_variables [] = "SET GLOBAL";

 static char run_query [] = "RUN QUERY Q1";

 static char print_report [] = "PRINT REPORT (FORM=F1)";

 static char end_query_interface [] = "EXIT";

Figure 216. QMF interface example (Part 1 of 3)

© Copyright IBM Corp. 1996, 2006 721

|

|

|
|
|
|

|
|

|
|
|

|
|

|

|

|

|

|
|

|
|

|

|

|

/**/

/* Query command extension, number of parameters and lengths */

/**/

 signed long number_of_parameters;

 signed long keyword_lengths[10];

 signed long data_lengths[10];

/**/

/* Variable data type constants */

/**/

 static char char_data_type[] = DSQ_VARIABLE_CHAR;

 static char int_data_type[] = DSQ_VARIABLE_FINT;

/**/

/* Keyword parameter and value for START command */

/**/

 static char start_keywords[] = "DSQSCMD";

 static char start_keyword_values[] = "USERCMD1";

/**/

/* Keyword parameter and value for SET command */

/**/

 #define SIZE_VAL 8

 char set_keywords[3][SIZE_VAL];

 signed long set_values[3];

/**/

/* Start a Query Interface Session */

/**/

 number_of_parameters = 1;

 command_length = sizeof(start_query_interface);

 keyword_lengths[0] = sizeof (start_keywords);

 data_lengths[0] = sizeof(start_keyword_values);

 dsqcice(&communication_area,

 &command_length,

 START_query_interface[0],

 &number_of_parameters,

 &keyword_lengths[0],

 START_keywords[0],

 &data_lengths[0],

 START_keyword_values[0],

 char_data_type[0]);

Figure 216. QMF interface example (Part 2 of 3)

722 z/OS V1R8.0 XL C/C++ Programming Guide

|

The following example demonstrates how a C++ program may call a C program

that accesses QMF.

/**/

/* Set numeric values into query using SET command */

/**/

 number_of_parameters = 3;

 command_length = sizeof(set_global_variables);

 strcpy(set_keywords[0],"MYVAR01");

 strcpy(set_keywords[1],"SHORT");

 strcpy(set_keywords[2],"MYVAR03");

 keyword_lengths[0] = SIZE_VAL;

 keyword_lengths[1] = SIZE_VAL;

 keyword_lengths[2] = SIZE_VAL;

 data_lengths[0] = sizeof(long);

 data_lengths[1] = sizeof(long);

 data_lengths[2] = sizeof(long);

 set_values[0] = 20;

 set_values[1] = 40;

 set_values[2] = 84;

 dsqcice(&communication_area,

 &command_length,

 &set_global_variables[0],

 &number_of_parameters,

 &keyword_lengths[0],

 &set_keywords[0],

 &data_lengths[0],

 &set_values[0],

 &int_data_type[0]);

/**/

/* Run a Query */

/**/

 command_length = sizeof(run_query);

 dsqcic(&communication_area, &command_length,

 &run_query[0]);

/**/

/* Print the results of the query */

/**/

 command_length = sizeof(print_report);

 dsqcic(&communication_area, &command_length,

 &print_report[0]);

/**/

/* End the query interface session */

/**/

 command_length = sizeof(end_query_interface);

 dsqcic(&communication_area, &command_length,

 &end_query_interface[0]);

 return 0;

}

Figure 216. QMF interface example (Part 3 of 3)

Chapter 51. Using the Query Management Facility (QMF) 723

|
|

CCNGQM2

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

extern "C" {

 int Gen_Report(void);

}

int main(int argc, char *argv[])

{

 int cmd;

 if (argc < 2)

 {

 printf("ERROR - program takes at least one parm");

 }

 else

 {

 cmd=argv[1][0];

 cmd=toupper(cmd);

 switch (cmd)

 {

 case ’R’:

 {

 Gen_Report();

 break;

 }

 default:

 printf("%d is an invalid option.\n");

 }

 }

}

Figure 217. C++ Calling a C program that accesses QMF

724 z/OS V1R8.0 XL C/C++ Programming Guide

|

||

CCNGQM3

/* this example shows how C++ can access QMF by way of a C program */

/* part 2 of 2-this file is called from C */

/* other file is CCNGQM2 */

#include <string.h>

#include <stdlib.h>

#include <DSQCOMMC.H> /* QMF header file */

int Gen_Report(void)

{

 struct dsqcomm communication_area; /* found in DSQCOMMC */

/**/

/* Query interface command length and commands */

/**/

 signed long command_length;

 static char start_query_interface [] = "START";

 static char set_global_variables [] = "SET GLOBAL";

 static char run_query [] = "RUN QUERY Q1";

 static char print_report [] = "PRINT REPORT (FORM=F1)";

 static char end_query_interface [] = "EXIT";

/**/

/* Query command extension, number of parameters and lengths */

/**/

 signed long number_of_parameters;

 signed long keyword_lengths[10];

 signed long data_lengths[10];

/**/

/* Variable data type constants */

/**/

 static char char_data_type[] = DSQ_VARIABLE_CHAR;

 static char int_data_type[] = DSQ_VARIABLE_FINT;

/**/

/* Keyword parameter and value for START command */

/**/

 static char start_keywords[] = "DSQSCMD";

 static char start_keyword_values[] = "USERCMD1";

/**/

/* Keyword parameter and value for SET command */

/**/

 #define SIZE_VAL 8

 char set_keywords[3][SIZE_VAL];

 signed long set_values[3];

Figure 218. C program that accesses QMF (Part 1 of 3)

Chapter 51. Using the Query Management Facility (QMF) 725

|

|

|

/**/

/* Start a Query Interface Session */

/**/

 number_of_parameters = 1;

 command_length = sizeof(start_query_interface);

 keyword_lengths[0] = sizeof (start_keywords);

 data_lengths[0] = sizeof(start_keyword_values);

 dsqcice(&communication_area,

 &command_length,

 &start_query_interface[0],

 &number_of_parameters,

 &keyword_lengths[0],

 &start_keywords[0],

 &data_lengths[0],

 &start_keyword_values[0],

 &char_data_type[0]);

/**/

/* Set numeric values into query using SET command */

/**/

 number_of_parameters = 3;

 command_length = sizeof(set_global_variables);

 strcpy(set_keywords[0],"MYVAR01");

 strcpy(set_keywords[1],"SHORT");

 strcpy(set_keywords[2],"MYVAR03");

 keyword_lengths[0] = SIZE_VAL;

 keyword_lengths[1] = SIZE_VAL;

 keyword_lengths[2] = SIZE_VAL;

 data_lengths[0] = sizeof(long);

 data_lengths[1] = sizeof(long);

 data_lengths[2] = sizeof(long);

 set_values[0] = 20;

 set_values[1] = 40;

 set_values[2] = 84;

 dsqcice(&communication_area,

 &command_length,

 &set_global_variables[0],

 &number_of_parameters,

 &keyword_lengths[0],

 &set_keywords[0],

 &data_lengths[0],

 &set_values[0],

 &int_data_type[0]);

Figure 218. C program that accesses QMF (Part 2 of 3)

726 z/OS V1R8.0 XL C/C++ Programming Guide

|

/**/

/* Run a Query */

/**/

 command_length = sizeof(run_query);

 dsqcic(&communication_area, &command_length,

 &run_query[0]);

/**/

/* Print the results of the query */

/**/

 command_length = sizeof(print_report);

 dsqcic(&communication_area, &command_length,

 &print_report[0]);

/**/

/* End the query interface session */

/**/

 command_length = sizeof(end_query_interface);

 dsqcic(&communication_area, &command_length,

 &end_query_interface[0]);

 exit(0);

}

Figure 218. C program that accesses QMF (Part 3 of 3)

Chapter 51. Using the Query Management Facility (QMF) 727

|

728 z/OS V1R8.0 XL C/C++ Programming Guide

Part 8. Internationalization: Locales and Character Sets

This part includes the following topics related to Locales and Character Sets:

v Chapter 52, “Introduction to locale,” on page 731

v Chapter 53, “Building a locale,” on page 735

v Chapter 54, “Customizing a locale,” on page 785

v Chapter 55, “Customizing a time zone,” on page 791

v Chapter 56, “Definition of S370 C, SAA C, and POSIX C locales,” on page 793

v Chapter 57, “Code set conversion utilities,” on page 801

v Chapter 58, “Coded character set considerations with locale functions,” on page

837

v Chapter 59, “Bidirectional language support,” on page 855

© Copyright IBM Corp. 1996, 2006 729

|

|

|

|

|

|

|

|

|

|
|

|

730 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 52. Introduction to locale

Internationalization in programming languages

Internationalization in programming languages is a concept that comprises

externally stored cultural data, a set of programming tools to create such cultural

data, a set of programming interfaces to access this data, and a set of

programming methods that enable you to use provided interfaces to write programs

that do not make any assumptions about the cultural environments they run in.

Such programs modify their behavior according to the user’s cultural environment,

specified during the program’s execution.

Elements of internationalization

The typical elements of cultural environment are as follows:

Native language

The text that the executing program uses to communicate with a user or

environment, that is, the natural language of the end user.

Character sets and coded character sets

Map an alphabet, the characters used in a particular language, onto the set

of hexadecimal values (code points) that uniquely identify each character.

This mapping creates the coded character set, which is uniquely identified

by the character set it encodes, the set of code point values, and the

mapping between these two.

 For example IBM-273, also known as the German Code Page, and

IBM-297, also known as the French Code Page, are two coded character

sets which assign different EBCDIC encodings in the hexadecimal range 40

to FE to the same Latin Alphabet Number 1. IBM S/390 systems in

Germany and France both use this Latin 1 alphabet, which is specified by

International Standard ISO/IEC 8859-1. However, systems in Germany are

configured for encodings of this alphabet given by IBM-273; whereas,

systems in France are configured for encodings of this alphabet given by

IBM-297.

 IBM-1027, Japanese Latin Code Page, is another example of a coded

character set. It assigns EBCDIC encodings in the hexadecimal range 40 to

FE to characters specified by Japanese Industrial Standard JIS X 201-1978

plus encodings for a few more Latin characters selected by IBM. The

resulting alphabet defined by IBM-1027 consists of some characters found

in Latin Alphabet Number 1 and some Katakana characters. IBM S/390

systems in Japan are configured for encodings of this alphabet assigned by

IBM-1027.

Collating and ordering

The relative ordering of characters used for sorting.

Character classification

Determines the type of character (alphabetic, numeric, and so forth)

represented by a code point.

Character case conversion

Defines the mapping between uppercase and lowercase characters within a

single character set.

© Copyright IBM Corp. 1996, 2006 731

|

|

|
|

|
|
|
|
|
|
|

|
|

|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|

|
|
|

Date and time format

Defines the way date and time data are formatted (names of weekdays and

months; order of month, day, and year, and so forth).

Format of numeric and non-numeric numbers

Define the way numbers and monetary units are formatted with commas,

decimal points, and so forth.

z/OS XL C/C++ Support for internationalization

The z/OS XL C/C++ compiler and library support of internationalization is based on

the IEEE POSIX P1003.2 and X/Open Portability Guide standards for global locales

and coded character set conversion. See Chapter 53, “Building a locale,” on page

735 for more information about locales.

Locales and localization

A locale is a collection of data that encodes information about the cultural

environment. Localization is an action that establishes the cultural environment for

an application by selecting the active locale. Only one locale can be active at one

time, but a program can change the active locale at any time during its execution.

The active locale affects the behavior of the locale-sensitive interfaces for the entire

program. This is called the global locale model.

Locale-sensitive interfaces

The z/OS XL C/C++ run-time library provides many interfaces to manipulate and

access locales. You can use these interfaces to write internationalized C programs.

This list summarizes all the z/OS XL C/C++ library functions which affect or are

affected by the current locale.

Selecting locale

Changing the characteristics of the user’s cultural environment by changing

the current locale: setlocale()

Querying locale

Retrieving the locale information that characterizes the user’s cultural

environment:

Monetary and numeric formatting conventions:

localeconv()

Date and time formatting conventions:

localdtconv()

User-specified information:

nl_langinfo()

Encoding of the variant part of the portable character set:

getsyntx()

Character set identifier:

csid(), wcsid()

Classification of characters:

Single-byte characters:

isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(),

islower(), isprint(), ispunct(), isspace(), isupper(), isxdigit()

732 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|

|
|
|

|
|

|
|
|
|

|
|

|
|
|
|
|
|

|

|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|

|
|
|

Wide characters:

iswalnum(), iswalpha(), iswblank(), iswcntrl(), iswdigit(),

iswgraph(), iswlower(), iswprint(), iswpunct(), iswspace(),

iswupper(), iswxdigit(), wctype(), iswctype()

Character case mapping:

Single-byte characters:

tolower(), toupper()

Wide characters:

towlower(), towupper()

Multibyte character and multibyte string conversion:

mblen(), mbrlen(), mbtowc(), mbrtowc(), wctomb(), wcrtomb(), mbstowcs(),

mbsrtowcs(), wcstombs(), wcsrtombs(), mbsinit(), wctob()

String conversions to arithmetic:

strtod(), wcstod(), strtol(), wcstol(), strtoul(), wcstoul(), atof(),

atoi(), atol()

String collating:

strcoll(), strxfrm(), wcscoll(), wcsxfrm()

Character display width:

wcswidth(), wcwidth()

Date, time, and monetary formatting:

strftime(), strptime(), wcsftime(), mktime(), ctime(), gmtime(),

localtime() strfmon()

Formatted input/output:

printf() (and family of functions), scanf() (and family of functions),

vswprintf(), swprintf(), swscanf(), snprintf(), vsnprintf()

Processing regular expressions:

regcomp(), regexec()

Wide character unformatted input/output:

fgetwc(), fgetws(), fputwc(), fputws(), getwc(), getwchar(), putwc(),

putwchar(), ungetwc()

Response matching:

rpmatch()

Collating elements:

ismccollel(), strtocoll(), colltostr(), collequiv(), collrange(),

collorder(), cclass(), maxcoll(), getmccoll(), getwmccoll()

Chapter 52. Introduction to locale 733

|
|
|
|

|

|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

734 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 53. Building a locale

Cultural information is encoded in the locale source file using the locale definition

language. One locale source file characterizes one cultural environment. See

Appendix D, “Locales supplied with z/OS XL C/C++,” on page 879 for a list of the

locale source and object files supplied with the z/OS XL C/C++ compiler.

The locale source file is processed by the locale compilation tool, called the

localedef tool.

To enhance portability of the locale source files, certain information related to the

character sets can be encoded using the symbolic names of characters. The

mapping between the symbolic names and the characters they represent and its

associated hexadecimal value is defined in the character set description file or

charmap file. See Appendix E, “Charmap files supplied with z/OS XL C/C++,” on

page 901 for a list of the charmap files shipped with your product.

The conceptual model of the locale build process is presented below:

Locale source Charmap Method list

LOCALEDEF tool

coded
character set
definition

(Optional)
ASCII method
definitions

(Optional)
ASCII method
code

cultural
environment
definition

Compiled locale
compiled object
used by the
C/C++ interfaces

(Optional)

Limitations of enhanced ASCII

This section explains under what conditions you can use Enhanced ASCII.

v A subset of C headers and functions is provided in ASCII. For more information,

see z/OS XL C/C++ Run-Time Library Reference.

v The only way to get to the ASCII version of functions and the external variables

environ and tzname is to use the appropriate IBM header files.

v ASCII applications may read, but not update, environment variables using the

environ external variable. Updates to the environment variables using environ in

an ASCII application causes unpredictable results and may result in an abend.

Language Environment maintains two equivalent arrays of environment variables

when running an ASCII application, one with EBCDIC encodings and the other

with ASCII encodings. All ASCII compile units that use the environ external

variable must include <stdlib.h> so that environ can be mapped to access the

ASCII encoded environment strings. If <stdlib.h> is not included, environ will

refer to the EBCDIC representation of the environment variable strings.

© Copyright IBM Corp. 1996, 2006 735

|

|

|
|
|
|

|
|

|
|
|
|
|
|

|
|

|

|
|

|

|
|

|
|

|
|
|
|
|
|
|
|
|

Enhanced ASCII provides limited conversion of ASCII to EBCDIC, and EBCDIC to

ASCII. The character set or alphabet that is associated with any locale consists of

the following:

v A common, XPG4-defined subset of characters such as POSIX portable

characters

v A unique, locale-specific subset of characters such as NLS characters

The conversion only applies to the portable subset of characters that are associated

with a locale. Only the EBCDIC IBM-1047 encoding of portable characters is

supported.

You might encounter unexpected results in the following situations:

v If Enhanced ASCII applications run in locales that contain non-Latin Alphabet

Number 1 NLS characters, C-RTL functions might copy some of the locale’s

non-Latin 1 NLS characters into buffers that the application is writing to stdout or

another HFS files. The non-Latin Alphabet Number 1 NLS characters would then

cause problems during automatic conversion.

v Language Environment applications select non-English message files. If your

NATLANG run-time option is not UEN or ENU, messages directed to the

Language Environment message file are not converted to ASCII.

Using the charmap file

The charmap file defines a mapping between the symbolic names of characters and

the hexadecimal values associated with the character in a given coded character

set. Optionally, it can provide the alternate symbolic names for characters.

Characters in the locale source file can be referred to by their symbolic names or

alternate symbolic names, thereby allowing for writing generic locale source files

independent of the encoding of the character set they represent.

Each charmap file must contain at least the definition of the portable character set

and the character symbolic names associated with each character. The characters

in the portable character set and the corresponding symbolic names, and optional

alternate symbolic names, are defined in Table 100.

 Table 100. Characters in portable character set and corresponding symbolic names

Symbolic Name

Alternate

Name Character

Hex Value

(EBCDIC)

Hex Value

(ASCII)

<NUL> 00 00

<tab> <SE10> 05 09

<vertical-tab> <SE12> 0b 0b

<form-feed> <SE13> 0c 0c

<carriage-return> <SE14> 0d 0d

<newline> <SE11> 15 0a

<backspace> <SE09> 16 08

<alert> <SE08> 2f 07

<space> <SP01> 40 20

<period> <SP11> . 4b 2e

<less-than-sign> <SA03> < 4c 3c

<left-parenthesis> <SP06> (4d 28

<plus-sign> <SA01> + 4e 2b

736 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|

|
|

|

|
|
|

|

|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

||

|
|
||
|
|
|
|

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

Table 100. Characters in portable character set and corresponding symbolic

names (continued)

Symbolic Name

Alternate

Name Character

Hex Value

(EBCDIC)

Hex Value

(ASCII)

<ampersand> <SM03> & 50 26

<right-parenthesis> <SP07>) 5d 29

<semicolon> <SP14> ; 5e 3b

<hyphen> <SP10> - 60 2d

<hyphen-minus> <SP10> - 60 2d

<slash> <SP12> / 61 2f

<solidus> <SP12> / 61 2f

<comma> <SP08> , 6b 2c

<percent-sign> <SM02> % 6c 25

<underscore> <SP09> _ 6d 5f

<low-line> <SP09> _ 6d 5f

<greater-than-sign> <SA05> > 6e 3e

<question-mark> <SP15> ? 6f 3f

<colon> <SP13> : 7a 3a

<apostrophe> <SP05> ' 7d 27

<equals-sign> <SA04> = 7e 3d

<quotation-mark> <SP04> " 7f 22

<a> <LA01> a 81 61

 <LB01> b 82 62

<c> <LC01> c 83 63

<d> <LD01> d 84 64

<e> <LE01> e 85 65

<f> <LF01> f 86 66

<g> <LG01> g 87 67

<h> <LH01> h 88 68

<i> <LI01> i 89 69

<j> <LJ01> j 91 6a

<k> <LK01> k 92 6b

<l> <LL01> l 93 6c

<m> <LM01> m 94 6d

<n> <LN01> n 95 6e

<o> <LO01> o 96 6f

<p> <LP01> p 97 70

<q> <LQ01> q 98 71

<r> <LR01> r 99 72

<s> <LS01> s a2 73

<t> <LT01> t a3 74

<u> <LU01> u a4 75

Chapter 53. Building a locale 737

|
|

|
|
||
|
|
|
|

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

Table 100. Characters in portable character set and corresponding symbolic

names (continued)

Symbolic Name

Alternate

Name Character

Hex Value

(EBCDIC)

Hex Value

(ASCII)

<v> <LU01> v a5 76

<w> <LW01> w a6 77

<x> <LX01> x a7 78

<y> <LY01> y a8 79

<z> <LZ01> z a9 7a

<A> <LA02> A c1 41

 <LB02> B c2 42

<C> <LC02> C c3 43

<D> <LD02> D c4 44

<E> <LE02> E c5 45

<F> <LF02> F c6 46

<G> <LG02> G c7 47

<H> <LH02> H c8 48

<I> <LI02> I c9 49

<J> <LJ02> J d1 4a

<K> <LK02> K d2 4b

<L> <LL02> L d3 4c

<M> <SM02> M d4 4d

<N> <LN02> N d5 4e

<O> <LO02> O d6 4f

<P> <LP02> P d7 50

<Q> <LQ02> Q d8 51

<R> <LR02> R d9 52

<S> <LS02> S e2 53

<T> <LT02> T e3 54

<U> <LU02> U e4 55

<V> <LV02> V e5 56

<W> <LW02> W e6 57

<X> <LX02> X e7 58

<Y> <LY02> Y e8 59

<Z> <LZ02> Z e9 5a

<zero> <ND10> 0 f0 30

<one> <ND01> 1 f1 31

<two> <ND02> 2 f2 32

<three> <ND03> 3 f3 33

<four> <ND04> 4 f4 34

<five> <ND05> 5 f5 35

<six> <ND06> 6 f6 36

738 z/OS V1R8.0 XL C/C++ Programming Guide

|
|

|
|
||
|
|
|
|

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

Table 100. Characters in portable character set and corresponding symbolic

names (continued)

Symbolic Name

Alternate

Name Character

Hex Value

(EBCDIC)

Hex Value

(ASCII)

<seven> <ND07> 7 f7 37

<eight> <ND08> 8 f8 38

<nine> <ND09> 9 f9 39

<vertical-line> <SM13> | (4f) 7c

<exclamation-mark> <SP02> ! (5a) 21

<dollar-sign> <SC03> $ (5b) 24

<circumflex> <SD15> ^ (5f) 5e

<circumflex-accent> <SD15> ^ (5f) 5e

<grave-accent> <SD13> (79) 60

<number-sign> <SM01> # (7b) 23

<commercial-at> <SM05> @ (7c) 40

<tilde> <SD19> (a1) 7e

<left-square-bracket> <SM06> [(ad) 5b

<right-square-bracket> <SM08>] (bd) 5d

<left-brace> <SM11> { (c0) 7b

<left-curly-bracket> <SM11> { (c0) 7b

<right-brace> <SM14> } (d0) 7d

<right-curly-bracket> <SM14> } (d0) 7d

<backslash> <SM07> \ (e0) 5c

<reverse-solidus> <SM07> \ (e0) 5c

The portable character set is the basis for the syntactic and semantic processing of

the localedef tool, and for most of the utilities and functions that access the locale

object files. Therefore the portable character set must always be defined. It is

conceptually divided into two parts:

Invariant

Characters for which encoding must be constant among all charmap files.

The required encoded values are specified in Table 100 on page 736. If any

of these values change, the behavior of any utilities and functions on z/OS

XL C/C++ is unpredictable.

 For example, if you are using charmaps such as Turkish IBM-1026 or

Japanese IBM-290, where the characters encoded vary from the encoding

in Table 100 on page 736, you may get unpredictable results with the

utilities and functions.

Variant

Characters for which encoding may vary from one EBCDIC charmap file to

another. Only the following characters are allowed in this group:

<backslash>

<right-brace>

<left-brace>

<right-square-bracket>

<left-square-bracket>

<circumflex>

Chapter 53. Building a locale 739

|
|

|
|
||
|
|
|
|

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

<tilde>

<exclamation-mark>

<number-sign>

<vertical-line>

<dollar-sign>

<commercial-at>

<grave-accent>

The default EBCDIC encoding of each variant character is shown by a

hexadecimal value in parentheses in Table 100 on page 736. It is equivalent

to the encoding in code page 1047.

The charmap file is divided into two main sections:

1. the charmap section, or CHARMAP

2. the character set identifier section, or CHARSETID

The following definitions can precede the two sections listed above. Each consists

of the symbol shown in the following list, starting in column 1, including the

surrounding brackets, followed by one or more <blank>s, followed by the value to

be assigned to the symbol.

<code_set_name>

The string literal containing the name of the coded character set name

(IBM-1047, IBM-273, etc.)

<mb_cur_max>

the maximum number of bytes in a multibyte character which can be set to

a value between 1 and 4. EBCDIC locales have mb_cur_max settings of

either 1 or 4. ASCII locales have mb_cur_max settings of 1, 2 or 3.

 If it is 1, each character in the character set defined in this charmap is

encoded by a one-byte value. If it is 4, each character in the character set

defined in this charmap is encoded by a one-, two-, three-, or four-byte

value. If it is not specified, the default value of 1 is assumed. If a value of

other than 1 or 4 is specified for an EBCDIC locale, a warning message is

issued and the default value of 1 is assumed.

 For ASCII locales mb_cur_max is defined as 1, 2 or 3. The value 1 means

the same as for EBCDIC locales, while the values 2 and 3 mean 2 and 3

bytes per character respectively.

<mb_cur_min>

The minimum number of bytes in a multibyte character. Can be set to 1

only. If a value of other than 1 is specified, a warning message is issued

and the default value of 1 is assumed.

<escape_char>

Specifies the escape character that is used to specify hexadecimal or octal

notation for numeric values. It defaults to the hexadecimal value 0xe0,

which represents the \ character in the coded character set IBM-1047.

 For portability among the EBCDIC based systems, the escape character

has been redefined to the / or <slash> character in all IBM-supplied charmap

files, with the following statement:

 <escape_char> /

<comment_char>

Denotes the character chosen to indicate a comment within a charmap file.

It defaults to the hexadecimal value 0x7b, which represents the # character

in the coded character set IBM-1047.

740 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|
|
|
|
|

|
|
|

|

|

|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|

|
|
|
|

For portability among the EBCDIC based systems, the comment character

has been redefined to the % or <percent-sign> character in all

IBM-supplied charmap files, with the following statement:

 <comment_char> %

<shift_out>

Specifies the value of the shift-out control character that indicates the start

of a string of double-byte characters. If specified, it must be the value of the

EBCDIC shift-out (SO) character (hexadecimal value 0x0e). It is ignored if

the <mb_cur_max> value is 1.

<shift_in>

Specifies the value of the shift-in control character that indicates the end of

a string of double-byte characters. If specified, it must be the value of the

EBCDIC shift-in (SI) character (hexadecimal value 0x0f). It is ignored if the

<mb_cur_max> value is 1.

The CHARMAP section

The CHARMAP section defines the values for the symbolic names representing

characters in the coded character set. Each charmap file must define at least the

portable character set. The character symbolic names or alternate symbolic names

(or both) must be used to define the portable character set. These are shown in

Table 100 on page 736.

Additional characters can be defined by the user with symbolic character names.

The CHARMAP section starts with the line containing the keyword CHARMAP, and ends

with the line containing the keywords END CHARMAP. CHARMAP and END CHARMAP must

both start in column one.

The character set mapping definitions are all the lines between the first and last

lines of the CHARMAP section.

The formats of the character set mappings for this section are as follows:

"%s %s %s\n", <symbolic-name>, <encoding>, <comments>

"%s...%s %s %s\n", <symbolic-name>, <symbolic-name>, <encoding>, <comments>

The first format defines a single symbolic name and a corresponding encoding. A

symbolic name is one or more characters with visible glyphs, enclosed between

angle brackets.

For reasons of portability, a symbolic name should include only the characters from

the invariant part of the portable character set. If you use variant characters or

decimal or hexadecimal notation in a symbolic name, the symbolic name will not be

portable. A character following an escape character is interpreted as itself; for

example, the sequence <\\\>> represents the symbolic name \> enclosed within

angle brackets, where the backslash \ is the escape character. If / is the escape

character, the sequence <///>> represents the symbolic name />. In the supplied

charmap files, the escape character has been redefined to the forward slash /.

The second format defines a group of symbolic names associated with a range of

values. The two symbolic names are comprised of two parts, a prefix and suffix.

The prefix consists of zero or more non-numeric invariant visible glyph characters

and is the same for both symbolic names. The suffix consists of a positive decimal

integer. The suffix of the first symbolic name must be less than or equal to the suffix

Chapter 53. Building a locale 741

|
|
|

|

|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|

|

|
|
|

|
|

|

|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

of the second symbolic name. As an example, <j0101>...<j0104> is interpreted as

the symbolic names <j0101>,<j0102>,<j0103>,<j0104>. The common prefix is ’j’

and the suffixes are ’0101’ and ’0104’.

The encoding part can be written in one of two forms:

 <escape-char><number> (single byte value)

 <escape-char><number><escape-char><number> (double byte value)

The number can be written using octal, decimal, or hexadecimal notation. Decimal

numbers are written as a ’d’ followed by 2 or 3 decimal digits. Hexadecimal

numbers are written as an ’x’ followed by 2 hexadecimal digits. An octal number is

written with 2 or 3 octal digits. As an example, the single byte value x1F could be

written as ’\37’, ’\x1F’, or ’\d31’.

The double byte value of 0x1A1F could be written as ’\32\37’, ’\x1A\x1F’, or

’\d26\d31’.

In lines defining ranges of symbolic names, the encoded value is the value for the

first symbolic name in the range (the symbolic name preceding the ellipsis).

Subsequent names defined by the range have encoding values in increasing order.

When constants are concatenated for multibyte character values, they must be of

the same type, and are interpreted in byte order from first to last with the least

significant byte of the multibyte character specified by the last constant. Each value

is then prepended by the byte value of <shift_out> and appended with the byte

value of <shift_in>. Such a string represents one EBCDIC multibyte character. For

example:

is interpreted as:

<j0101> /d129/d254

<j0102> /d129/d255

<j0103> /d130/d0

<j0104> /d130/d1

It produces four 4-byte long multibyte EBCDIC characters:

<j0101> x0Ex81xFEx0F

<j0102> x0Ex81xFFx0F

<j0103> x0Ex82x00x0F

<j0104> x0Ex82x01x0F

The CHARSETID section

The character set identifier section of the charmap file maps the symbolic names

defined in the CHARMAP section to a character set identifier.

<escape_char> /

<comment_char> %

<mb_cur_max> 4

<mb_cur_min> 1

<shift-out> /x0e

<shift-in> /x0f

CHARMAP

% many definition lines

<j0101>...<j0104> /d129/d254

%many definition lines

END CHARMAP

742 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|

|

|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|

|

|
|
|
|

|

|
|
|
|

|

|
|

Note: The two functions csid() and wcsid() query the locales and return the

character set identifier for a given character. This information is not currently

used by any other library function.

The CHARSETID section starts with a line containing the keyword CHARSETID, and

ends with the line containing the keywords END CHARSETID. Both CHARSETID and END

CHARSETID must begin in column 1. The lines between the first and last lines of the

CHARSETID section define the character set identifier for the defined coded character

set.

The character set identifier mappings are defined as follows:

"%s %c", <symbolic-name>, <value>

"%c %c", <value>, <value>

"%s...%s %c", <symbolic-name>, <symbolic-name>, <value>

"%c...%c %c", <value>, <value>, <value>

"%s...%c %c", <symbolic-name>, <value>, <value>

"%c...%s %c", <value>, <symbolic-name>, <value>

The individual characters are specified by the symbolic name or the value. The

group of characters are specified by two symbolic names or by two numeric values

(or combination) separated by an ellipsis (...). The interpretation of ranges of values

is the same as specified in the CHARMAP section. The character set identifier is

specified by a numeric value.

For example:

<comment_char> %

<escape_char> /

<code_set_name> "IBM-930"

<mb_cur_max> 4

<mb_cur_min> 1

<shift_out> /x0e

<shift_in> /x0f

%

% CHARMAP

%

CHARMAP

...

<j0110> /x42/x5a

<j0111>...<j0112> /x43/xbe

<judc2001>...<judc2094> /x72/x8d

...

END CHARMAP

%

% CHARSETID

%

CHARSETID

...

<j0110> 1

<j0111>...<j0112> 1

<judc2001>...<judc2094> 3

...

END CHARSETID

Chapter 53. Building a locale 743

|
|
|

|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Locale source files

Locales are defined through the specification of a locale definition file. The locale

definition contains one or more distinct locale category source definitions and not

more than one definition of any category. Each category controls specific aspects of

the cultural environment. A category source definition is either the explicit definition

of a category or the copy directive, which indicates that the category definition

should be copied from another locale definition file.

ASCII locales must be specified using only the characters from the portable

character set, and all character references must be symbolic names, not explicit

code point values.

The definition file is composed of an optional definition section for the escape and

comment characters to be used, followed by the category source definitions.

Comment lines and blank lines can appear anywhere in the locale definition file. If

the escape and comment characters are not defined, default code points are used

(xE0 for the escape character and x7B for the comment character, respectively). The

definition section consists of the following optional lines:

escape_char <character>

comment_char <character>

where <character> in both cases is a single-byte character to be used, for example:

escape_char /

defines the escape character in this file to be ’/’ (the <slash> character).

Locale definition files passed to the localedef utility are assumed to be in coded

character set IBM-1047.

To ensure portability among EBCDIC systems, you should redefine these characters

to characters from the invariant part of the portable character set. The suggested

redefinition is:

 escape_char /

 comment_char %

This suggested redefinition is used in all locale definition files supplied by IBM. For

reasons of portability, you should use the suggested redefinition in all your

customized locale definition files. See Chapter 54, “Customizing a locale,” on page

785 for information about customizing locales. These two redefinitions should be

placed in the first lines of the locale definition source file, before any of the

redefined characters are used.

Each category source definition consists of a category header, a category body, and

a category trailer, in that order.

category header

consists of the keyword naming the category. Each category name starts

with the characters LC_. The following category names are supported:

LC_CTYPE, LC_COLLATE, LC_NUMERIC, LC_MONETARY, LC_TIME, LC_MESSAGES,

LC_TOD, and LC_SYNTAX.

 The LC_TOD and LC_SYNTAX categories, if present, must be the last two

categories in the locale definition file.

744 z/OS V1R8.0 XL C/C++ Programming Guide

|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|

|

|

|

|
|

|
|
|

|
|

|
|
|
|
|
|

|
|

|
|
|
|
|

|
|

category body

consists of one or more lines describing the components of the category.

Each component line has the following format:

 <identifier> <operand1>

 <identifier> <operand1>;<operand2>;...;<operandN>

<identifier> is a keyword that identifies a locale element, or a symbolic

name that identifies a collating element. <operand> is a character, collating

element, or string literal. Escape sequences can be specified in a string

literal using the <escape_character>. If multiple operands are specified, they

must be separated by semicolons. White space can be before and after the

semicolons.

category trailer

consists of the keyword END followed by one or more <blank>s and the

category name of the corresponding category header.

Here is an example of locale source containing the header, body, and trailer:

 You do not have to define each category. Where category definitions are absent

from the locale source, default definitions are used.

In each category, the keyword copy followed by a string specifies the name of an

existing locale to be used as the source for the definition of this category.

If the locale is not found, an error is reported and no locale output is created.

For the batch (EDC(X)LDEF proc) and TSO (LOCALDEF) commands, the name must

be the member name of a partitioned data set allocated to the EDCLOCL DD

statement. For the UNIX System Services localedef command, the copy keyword

specifies the path name of the source file.

You can continue a line in a locale definition file by placing an escape character as

the last character on the line. This continuation character is discarded from the

input. Even though there is no limitation on the length of each line, for portability

reasons it is suggested that each line be no longer than 2048 characters (bytes).

There is no limit on the accumulated length of a continued line. You cannot continue

comment lines on a subsequent line by using an escaped <newline>.

Individual characters, characters in strings, and collating elements are represented

using symbolic names, as defined below. Characters can also be represented as

the characters themselves, or as octal, hexadecimal, or decimal constants. If you

use non-symbolic notation, the resultant locale definition file may not be portable

among systems and environments. The left angle bracket (<) is a reserved symbol,

denoting the start of a symbolic name; if you use it to represent itself, you must

precede it with the escape character.

The following rules apply to the character representation:

escape_char /

comment_char %

%

% Here is a simple locale definition file consisting of one

% category source definition, LC_CTYPE.

%

LC_CTYPE

upper <A>;...;<Z>

END LC_CTYPE

Chapter 53. Building a locale 745

|
|
|

|
|

|
|
|
|
|
|

|
|
|

|
|

|
|

|
|

|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|

1. A character can be represented by a symbolic name, enclosed within angle

brackets. The symbolic name, including the angle brackets, must exactly match

a symbolic name defined in the charmap file. The symbolic name is replaced by

the character value determined from the value associated with the symbolic

name in the charmap file.

The use of a symbolic name not found in the charmap file constitutes an error,

unless the name is in the category LC_CTYPE or LC_COLLATE, in which case it

constitutes a warning. Use of the escape character or right angle bracket within

a symbolic name is invalid unless the character is preceded by the escape

character. For example:

<c>;<c-cedilla>

specifies two characters whose symbolic names are "c" and

"c-cedilla"

"<M><a><y>"

specifies a 3-character string composed of letters represented by

symbolic names "M", "a", and "y"

"<a><\>>"

specifies a 2-character string composed of letters represented by

symbolic names "a" and ">" (assuming the escape character is \)

If the character represented by the symbolic name is a multibyte character

defined by 2 byte values in the charmap file, and the shift-out and shift-in

characters are defined, the value is enclosed within shift-out and shift-in

characters before the localedef utility processes it any further.

2. A character can represent itself. Within a string, the double quotation mark, the

escape character, and the left angle bracket must be escaped (preceded by the

escape character) to be interpreted as the characters themselves. For example:

c ’c’ character represented by itself

"may" represents a 3-character string, each character within the string

represented by itself

"%%%"%>"

represents the three character long string "%">", where the escape

character is defined as %

3. A character can be represented as an octal constant. An octal constant is

specified as the escape character followed by two or more octal digits. Each

constant represents a byte value.

For example:

\131 "\212\129\168" \16\66\193\17

4. A character can be represented as a hexadecimal constant. A hexadecimal

constant is specified as the escape character, followed by an x, followed by two

or more hexadecimal digits. Each constant represents a byte value.

For example: \x83 "\xD4\x81\xA8"

5. A character can be represented as a decimal constant. A decimal constant is

specified as the escape character followed by a d followed by two or more

decimal digits. Each constant represents a byte value.

For example: \d131 "\d212\d129\d168" \d14\d66\d193\d15

For multibyte characters, the entire encoding sequence, including the shift-out and

shift-in characters, must be present. Otherwise, the sequence of bytes not enclosed

between the shift-out and shift-in characters are interpreted as a sequence of single

byte characters.

746 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

||

||
|

|
|
|

|
|
|

|

|

|
|
|

|

|
|
|

|

|
|
|
|

Multibyte characters can be represented by concatenating constants specified in

byte order with the last constant specifying the least significant byte of the

character. If the sequence of octal, hexadecimal, or decimal constants is to

represent a multibyte character, it must be enclosed in shift-out and shift-in

constants.

For example: \x0e\x42\xC1\x0f

LC_CTYPE category

This category defines character classification, case conversion, and other character

attributes. In this category, you can represent a series of characters by using three

adjacent periods as an ellipsis symbol (...). An ellipsis is interpreted as including

all characters with an encoded value higher than the encoded value of the

character preceding the ellipsis and lower than the encoded value following the

ellipsis.

An ellipsis is valid within a single encoded character set.

For example, \x30;...;\x39; includes in the character class all characters with

encoded values from X'30' to X'39'.

The keywords recognized in the LC_CTYPE category are listed below. In the

descriptions, the term "automatically included" means that it is not an error either to

include or omit any of the referenced characters; they are assumed by default even

if the entire keyword is missing and accepted if present. If a keyword is specified

without any arguments, the default characters are assumed.

When a character is automatically included, it has an encoded value dependent on

the charmap file in effect. If no charmap file is specified, the encoding of the encoded

character set IBM-1047 is assumed.

copy Specifies the name of an existing locale to be used as the source for the

definition of this category. If this keyword is specified, no other keywords

are present in this category. If the locale is not found, an error is reported

and no locale output is created. The copy keyword cannot specify a locale

that also specifies the copy keyword for the same category.

charclass

Defines one or more locale-specific character class names as strings

separated by semicolons. Each named character class can then be defined

subsequently in the LC_CTYPE definition. A character class name consists of

at least one and at most {CHARCLASS_NAME_MAX} bytes of alphanumeric

characters from the portable filename character set. The first character of a

character class name cannot be a digit. The name cannot match any of the

LC_CTYPE keywords defined in this document.

upper Defines characters to be classified as uppercase letters. No character

defined for the keywords cntrl, digit, punct, or space can be specified.

The uppercase letters A through Z are automatically included in this class.

 The isupper() and iswupper() functions test for any character and wide

character, respectively, included in this class.

lower Defines characters to be classified as lowercase letters. No character

defined for the keywords cntrl, digit, punct, or space can be specified.

The lowercase letters a through z are automatically included in this class.

Chapter 53. Building a locale 747

|
|
|
|
|

|

|

|
|
|
|
|
|

|

|
|

|
|
|
|
|

|
|
|

||
|
|
|
|

|
|
|
|
|
|
|
|

||
|
|

|
|

||
|
|

The islower() and iswlower() functions test for any character and wide

character, respectively, included in this class.

alpha Defines characters to be classified as letters. No character defined for the

keywords cntrl, digit, punct, or space can be specified. Characters

classified as either upper or lower are automatically included in this class.

 The isalpha() and iswalpha() functions test for any character or wide

character, respectively, included in this class.

digit Defines characters to be classified as numeric digits. Only the digits 0, 1,

2, 3, 4, 5, 6, 7, 8, 9. can be specified. If they are, they must be in

contiguous ascending sequence by numerical value. The digits 0 through 9

are automatically included in this class.

 The isdigit() and iswdigit() functions test for any character or wide

character, respectively, included in this class.

space Defines characters to be classified as whitespace characters. No character

defined for the keywords upper, lower, alpha, digit, or xdigit can be

specified for space. The characters <space>, <form-feed>, <newline>,

<carriage-return>, <horizontal-tab>, and <vertical-tab>, and any

characters defined in the class blank are automatically included in this

class.

 The functions isspace() and iswspace() test for any character or wide

character, respectively, included in this class.

cntrl Defines characters to be classified as control characters. No character

defined for the keywords upper, lower, alpha, digit, punct, graph, print, or

xdigit can be specified for cntrl.

 The functions iscntrl() and iswcntrl() test for any character or wide

character, respectively, included in this class.

punct Defines characters to be classified as punctuation characters. No character

defined for the keywords upper, lower, alpha, digit, cntrl, or xdigit, or as

the <space> character, can be specified.

 The functions ispunct() and iswpunct() test for any character or wide

character, respectively, included in this class.

graph Defines characters to be classified as printing characters, not including the

<space> character. Characters specified for the keywords upper, lower,

alpha, digit, xdigit, and punct are automatically included. No character

specified in the keyword cntrl can be specified for graph.

 The functions isgraph() and iswgraph() test for any character or wide

character, respectively, included in this class.

print Defines characters to be classified as printing characters, including the

<space> character. Characters specified for the keywords upper, lower,

alpha, digit, xdigit, punct, and the <space> character are automatically

included. No character specified in the keyword cntrl can be specified for

print.

 The functions isprint() and iswprint() test for any character or wide

character, respectively, included in this class.

xdigit Defines characters to be classified as hexadecimal digits. Only the

characters defined for the class digit can be specified, in contiguous

ascending sequence by numerical value, followed by one or more sets of

six characters representing the hexadecimal digits 10 through 15, with each

748 z/OS V1R8.0 XL C/C++ Programming Guide

|
|

||
|
|

|
|

||
|
|
|

|
|

||
|
|
|
|
|

|
|

||
|
|

|
|

||
|
|

|
|

||
|
|
|

|
|

||
|
|
|
|

|
|

||
|
|
|

set in ascending order (for example, A, B, C, D, E, F, a, b, c, d, e, f).

The digits 0 through 9, the uppercase letters A through F, and the lowercase

letters a through f are automatically included in this class.

 The functions isxdigit() and iswxdigit() test for any character or wide

character, respectively, included in this class.

blank Defines characters to be classified as blank characters. The characters

<space> and <tab> are automatically included in this class.

 The functions isblank() and iswblank() test for any character or wide

character, respectively, included in this class.

toupper

Defines the mapping of lowercase letters to uppercase letters. The operand

consists of character pairs, separated by semicolons. The characters in

each character pair are separated by a comma; the pair is enclosed in

parentheses. The first character in each pair is the lowercase letter, and the

second is the corresponding uppercase letter. Only characters specified for

the keywords lower and upper can be specified for toupper. The lowercase

letters a through z, their corresponding uppercase letters A through Z, are

automatically in this mapping, but only when the toupper keyword is omitted

from the locale definition.

 It affects the behavior of the toupper() and towupper() functions for

mapping characters and wide characters, respectively.

tolower

Defines the mapping of uppercase letters to lowercase letters. The operand

consists of character pairs, separated by semicolons. The characters in

each character pair are separated by a comma; the pair is enclosed by

parentheses. The first character in each pair is the uppercase letter, and the

second is its corresponding lowercase letter. Only characters specified for

the keywords lower and upper can be specified. If the tolower keyword is

omitted from the locale definition, the mapping is the reverse mapping of

the one specified for the toupper.

 The tolower keyword affects the behavior of the tolower() and towlower()

functions for mapping characters and wide characters, respectively.

You may define additional character classes using your own keywords. A maximum

of 31 classes are supported in total: the 12 standard classes, and up to 19

user-defined classes.

The defined classes affect the behavior of wctype() and iswctype() functions.

Here is an example of the definition of the LC_CTYPE category:

Chapter 53. Building a locale 749

|
|
|

|
|

||
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|

|

|
|

LC_COLLATE category

A collation sequence definition defines the relative order between collating elements

(characters and multicharacter collating elements) in the locale. This order is

expressed in terms of collation values. It assigns each element one or more

collation values (also known as collation weights). The collation sequence definition

is used by regular expressions, pattern matching, and sorting and collating

functions. The following capabilities are provided:

1. Multicharacter collating elements. Specification of multicharacter collating

elements (sequences of two or more characters to be collated as an entity).

2. User-defined ordering of collating elements. Each collating element is

assigned a collation value defining its order in the character (or basic) collation

sequence. This ordering is used by regular expressions and pattern matching,

and unless collation weights are explicitly specified, also as the collation weight

to be used in sorting.

3. Multiple weights and equivalence classes. Collating elements can be

assigned 1 to 6 collating weights for use in sorting. The first weight is referred to

as the primary weight.

4. One-to-many mapping. A single character is mapped into a string of collating

elements.

5. Many-to-many substitution. A string of one or more characters are mapped to

another string (or an empty string). The character or characters are ignored for

collation purposes.

Note: This is an IBM extension; therefore, locales that use it may not be

portable to localedef tools developed by other vendors.

escape_char /

comment_char %

%%%%%%%%%%%%%

LC_CTYPE

%%%%%%%%%%%%%

% upper letters are A-Z by default plus the three defined below

upper <A-acute.>;<A-grave.>;<C-acute.>

% lower case letters are a-z by default plus the three defined below

lower <a-acute>;<a_grave><c-acute>

% space characters are default 6 characters plus the one defined below

space <hyphen-minus>

cntrl <alert>;<backspace>;<tab>;<newline>;<vertical-tab>;/

 <form-feed>;<carriage-return>;<NUL>;/

 <SO>;<SI>

% default graph, print,punct, digit, xdigit, blank classes

% toupper mapping defined only for the following three pairs

toupper (<a-acute),<A-acute>);/

 (<a-grave),<A-grave>);/

 (<c-acute),<C-acute>);

% default upper to lower case mapping

% user defined class

myclass <e-ogonek>;<E-ogonek>

END LC_CTYPE

750 z/OS V1R8.0 XL C/C++ Programming Guide

||

|

|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|

|
|

|
|
|

|
|

6. Equivalence class definition. Two or more collating elements have the same

collation value (primary weight).

7. Ordering by weights. When two strings are compared to determine their

relative order, the two strings are first broken up into a series of collating

elements. Each successive pair of elements is compared according to the

relative primary weights for the elements. If they are equal, and more than one

weight is assigned, then the pairs of collating elements are compared again

according to the relative subsequent weights, until either two collating elements

are not equal or the weights are exhausted.

Collating rules

Collation rules consist of an ordered list of collating order statements, ordered from

lowest to highest. The <NULL> character is considered lower than any other

character. The ellipsis symbol ("...") is a special collation order statement. It

specifies that a sequence of characters collate according to their encoded character

values. It causes all characters with values higher than the value of the <collating

identifier> in the preceding line, and lower than the value for the <collating

identifier> on the following line, to be placed in the character collation order

between the previous and the following collation order statements in ascending

order according to their encoded character values.

The use of the ellipsis symbol ties the definition to a specific coded character set

and may preclude the definition from being portable among implementations.

The ellipsis symbol can precede or succeed the ellipsis symbol and may also have

weights on the same line.

A collating order statement describes how a collating identifier is weighted.

Each <collating-identifier> consists of a character, <collating-element>,

<collating-symbol>, or the special symbol UNDEFINED. The order in which collating

elements are specified determines the character order sequence, such that each

collating element is considered lower than the elements following it. The <NULL>

character is considered lower than any other character. Weights are expressed as

characters, <collating-symbol>s, <collating-element>s, or the special symbol

IGNORE. A single character, a <collating-symbol>, or a <collating-element>

represents the relative position in the character collating sequence of the character

or symbol, rather than the character or characters themselves. Thus rather than

assigning absolute values to weights, a particular weight is expressed using the

relative "order value" assigned to a collating element based on its order in the

character collation sequence.

A <collating-element> specifies multicharacter collating elements, and indicates

that the character sequence specified by the <collating-element> is to be collated

as a unit and in the relative order specified by its place.

A <collating-symbol> can define a position in the relative order for use in weights.

The <collating-symbol> UNDEFINED is interpreted as including all characters not

specified explicitly. Such characters are inserted in the character collation order at

the point indicated by the symbol, and in ascending order according to their

encoded character values. If no UNDEFINED symbol is specified, and the current

coded character set contains characters not specified in this clause, the localedef

utility issues a warning and places such characters at the end of the character

collation order.

Chapter 53. Building a locale 751

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|
|
|

The syntax for a collation order statement is:

<collating-identifier> <weight1>;<weight2>;...;<weightn>

Collation of two collating identifiers is done by comparing their relative primary

weights. This process is repeated for successive weight levels until the two

identifiers are different, or the weight levels are exhausted. The operands for each

collating identifier define the primary, secondary, and subsequent relative weights

for the collating identifier. Two or more collating elements can be assigned the

same weight. If two collating identifiers have the same primary weight, they belong

to the same equivalence class.

The special symbol IGNORE as a weight indicates that when strings are compared

using the weights at the level where IGNORE is specified, the collating element

should be ignored, as if the string did not contain the collating element. In regular

expressions and pattern matching, all characters that are IGNOREd in their primary

weight form an equivalence class.

All characters specified by an ellipsis are assigned unique weights, equal to the

relative order of the characters. Characters specified by an explicit or implicit

UNDEFINED special symbol are assigned the same primary weight (they belong to the

same equivalence class).

One-to-many mapping is indicated by specifying two or more concatenated

characters or symbolic names. For example, if the character "<ezset>" is given the

string "<s><s>" as a weight, comparisons are performed as if all occurrences of the

character <ezset> are replaced by <s><s> (assuming <s> has the collating weight

<s>). If it is desirable to define <ezset> and <s><s> as an equivalence class, then a

collating element must be defined for the string "ss".

If no weight is specified, the collating identifier is interpreted as itself.

For example, the order statement

<a> <a>

is equivalent to

<a>

Collating keywords

The following keywords are recognized in a collation sequence definition.

copy Specifies the name of an existing locale to be used as the source for the

definition of this category. If this keyword is specified, no other keyword

shall be present in this category. If the locale is not found, an error is

reported and no locale output is created. The copy keyword cannot specify

a locale that also specifies the copy keyword for the same category.

collating-element

Defines a collating-element symbol representing a multicharacter collating

element. This keyword is optional.

 In addition to the collating elements in the character set, the

collating-element keyword can be used to define multicharacter collating

elements. The syntax is:

"collating-element %s from \%s\"", <collating-element>, <string>

The <collating-element> should be a symbolic name enclosed between

angle brackets (< and >), and should not duplicate any symbolic name in

752 z/OS V1R8.0 XL C/C++ Programming Guide

|

|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|

|

|

|

|

|
|

||
|
|
|
|

|
|
|

|
|
|

|

|
|

the current charmap file (if any), or any other symbolic name defined in this

collation definition. The string operand is a string of two or more characters

that collate as an entity. A <collating-element> defined with this keyword is

only recognized within the LC_COLLATE category.

 For example:

collating-element <ch> from "<c><h>"

collating-element <e-acute> from "<acute><e>"

collating-element <ll> from "ll"

collating-symbol

Defines a collating symbol for use in collation order statements.

 The collating-symbol keyword defines a symbolic name that can be

associated with a relative position in the character order sequence. While

such a symbolic name does not represent any collating element, it can be

used as a weight. This keyword is optional.

 This construct can define symbols for use in collation sequence statements,

between the order_start and order_end keywords.

 The syntax is:

"collating-symbol \%s\"", <collating-symbol>

The <collating-symbol> must be a symbolic name, enclosed between

angle brackets (< and >), and should not duplicate any symbolic name in

the current charmap file (if any), or any other symbolic name defined in this

collation definition. A <collating-symbol> defined with this keyword is only

recognized within the LC_COLLATE category.

 For example:

collating-symbol <UPPER_CASE>

collating-symbol <HIGH>

substitute

The substitute keyword defines a substring substitution in a string to be

collated. This keyword is optional. The following operands are supported

with the substitute keyword:

"substitute %s with \%s\"", <regular-expr>, <replacement>

The first operand is treated as a basic regular expression. The replacement

operand consists of zero or more characters and regular expression

back-references (for example, \1 through \9). The back-references consist

of the backslash followed by a digit from 1 to 9. If the backslash is followed

by two or three digits, it is interpreted as an octal constant.

 When strings are collated according to a collation definition containing

substitute statements, the collation behaves as if occurrences of substrings

matching the basic regular expression are replaced by the replacement

string, before the strings are compared based on the specified collation

sequence. Ranges in the regular expression are interpreted according to

the current character collation sequence and character classes according to

the character classification specified by the LC_CTYPE environment variable

at collation time. If more than one substitute statement is present in the

collation definition, the collation process behaves as if the substitute

statements are applied to the strings in the order they occur in the source

definition. The substitution for the substitute statements are processed

Chapter 53. Building a locale 753

|
|
|
|

|

|
|
|

|
|

|
|
|
|

|
|

|

|

|
|
|
|
|

|

|
|

|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

before any substitutions for one-to-many mappings. The support of the

″substitute″ keyword is an IBM z/OS XL C/C++ extension to the POSIX

standard.

Note: This is an IBM extension; therefore, locales that use it may not be

portable to localedef tools developed by other vendors.

order_start

Define collating rules. This statement is followed by one or more collation

order statements, assigning character collation values and collation weights

to collating elements.

 The order_start keyword must precede collation order entries. It defines

the number of weights for this collation sequence definition and other

collation rules.

 The syntax of the order_start keyword is:

order_start <sort-rule1>;<sort-rule1>;...;<sort-rulen>

The operands of the order_start keyword are optional. If present, the

operands define rules to be applied when strings are compared. The

number of operands define how many weights each element is assigned; if

no operands are present, one forward operand is assumed. If any is

present, the first operand defines rules to be applied when comparing

strings using the first (primary) weight; the second when comparing strings

using the second weight, and so on. Operands are separated by

semicolons (;). Each operand consists of one or more collation directives

separated by commas (,). If the number of operands exceeds the limit of 6,

the localedef utility issues a warning message.

 The following directives are supported:

forward

specifies that comparison operations for the weight level proceed

from the start of the string towards its end.

backward

specifies that comparison operations for the weight level proceed

from the end of the string toward its beginning.

no-substitute

no substitution is performed, such that the comparison is based on

collation values for collating elements before any substitution

operations are performed.

Notes:

1. This is an IBM extension; therefore, locales that use it may not

be portable to localedef tools developed by other vendors.

2. When the no-substitute keyword is specified, one-to-many

mappings are ignored.

position

specifies that comparison operations for the weight level must

consider the relative position of non-IGNOREd elements in the

strings. The string containing a non-IGNOREd element after the

fewest IGNOREd collating elements from the start of the comparison

collates first. If both strings contain a non-IGNOREd character in the

same relative position, the collating values assigned to the

754 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|

|
|

|
|
|
|

|
|
|

|

|

|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|
|

|
|
|
|

|

|
|

|
|

|
|
|
|
|
|
|

elements determine the order. If the strings are equal, subsequent

non-IGNOREd characters are considered in the same manner.

order_end

The collating order entries are terminated with an order_end keyword.

Here is an example of an LC_COLLATE category:

 The example is interpreted as follows:

 1. collating elements

v character <c> followed by <h> collate as one entity named <ch>

v character <C> followed by <h> collate as one entity named <Ch>

v character <s> followed by <z> collate as one entity named <eszet>

 2. collating symbols <LOW>, <UPPER-CASE>, <LOWER-CASE> and <NONE> are defined

to be used in relative order definition

 3. up to 3 string comparisons are defined:

v first pass starts from the beginning of the strings

v second pass starts from the end of the strings, and

v third pass starts from the beginning of the strings

 4. the collating weights are defined such that

 LC_COLLATE

 % ARTIFICIAL COLLATE CATEGORY

 % collating elements

�1� collating-element <ch> from "<c><h>"

 collating-element <Ch> from "<C><h>"

 collating-element <eszet> from "<s><z>"

 %collating symbols for relative order definition

 collating-symbol <LOW>

 �2� collating-symbol <UPPER-CASE>

 collating-symbol <LOWER-CASE>

 collating-symbol <NONE>

 �3� order_start forward;backward;forward

 <NONE>

 �4� <LOW>

 <UPPER-CASE>

 <LOWER-CASE>

 �5� UNDEFINED IGNORE;IGNORE;IGNORE

 <space>

 �6�

 <quotation-mark>

 �7� <a> <a>;<NONE>;<LOWER-CASE>

�10� <a-acute> <a>;<a-acute>;<LOWER-CASE>

�11� <a-grave> <a>;<a-grave>;<LOWER-CASE>

 �8� <A> <a>;<NONE>;<UPPER-CASE>

�11� <A-acute> <a>;<a-acute>;<UPPER-CASE>

�11� <A-grave> <a>;<a-grave>;<UPPER-CASE>

�11� <ch> <ch>;<NONE>;<LOWER-CASE>

�11� <Ch> <ch>;<NONE>;<UPPER-CASE>

 �9� <s> <s>;<s>;<LOWER-CASE>

�12� <eszet> "<s><s>";"<eszet><s>";<LOWER-CASE>

 �9� <z> <z>;<NONE>;<LOWER-CASE>

 order_end

Chapter 53. Building a locale 755

|
|

|
|

|
|

|

|

|

|

|

|
|

|

|

|

|

|

v <LOW> collates before <UPPER-CASE>,

v <UPPER-CASE> collates before <LOWER-CASE>,

v <LOWER-CASE> collates before <NONE>;

 5. all characters for which collation is not specified here are ordered after <NONE>,

and before <space> in ascending order according to their encoded values

 6. all characters with an encoded value larger than the encoded value of <space>

and lower than the encoded value of <quotation-mark> in the current encoded

character set, collate in ascending order according to their values;

 7. <a> has a:

v primary weight of <a>,

v secondary weight <NONE>,

v tertiary weight of <LOWER-CASE>,

 8. <A> has a:

v primary weight of <a>,

v secondary weight of <NONE>,

v tertiary weight of <UPPER-CASE>,

 9. the weights of <s> and <z> are determined in a similar fashion to <a> and <A>.

10. <a-acute> has a:

v primary weight of <a>,

v secondary weight of <a-acute> itself,

v tertiary weight of <LOWER-CASE>,

11. the weights of <a-grave>, <A-acute>, <A-grave>, <ch> and <Ch> are determined

in a similar fashion to <a-acute>.

12. <eszet> has a:

v primary weight determined by replacing each occurrence of <eszet> with the

sequence of two <s>’s and using the weight of <s>,

v secondary weight determined by replacing each occurrence of <eszet> with

the sequence of <eszet> and <s> and using their weights,

v tertiary weight is the relative position of <LOWER-CASE>.

Comparison of strings

Compare the strings s1="aAch" and s2="AaCh" using the above LC_COLLATE

definition:

1. s1=> "aA<ch>", and s2=> "Aa<Ch>"

2. first pass:

a. substitute the elements of the strings with their primary weights: s1=>

"<a><a><ch>", s2=> "<a><a><ch>"

b. compare the two strings starting with the first element — they are equal.

3. second pass:

a. substitute the elements of the strings with their secondary weights: s1=>

"<NONE><NONE><NONE>", s2=>"<NONE><NONE><NONE>"

b. compare the two strings from the last element to the first — they are equal.

4. third pass:

a. substitute the elements of the strings with their third level weights:

s1=> "<LOWER-CASE><UPPER-CASE><LOWER-CASE>",

s2=> "<UPPER-CASE><LOWER-CASE><UPPER-CASE>",

b. compare the two strings starting from the beginning of the strings: s2

compares lower than s1, because <UPPER-CASE> is before <LOWER-CASE>.

756 z/OS V1R8.0 XL C/C++ Programming Guide

|

|

|

|
|

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|
|

|
|

|

|
|
|

|

|

|
|

|

|

|
|

|

|

|

|
|

|
|

Compare the strings s1="áß" and s2=>"àss":

1. s1=> "á<eszet>" and s2= "àss";

2. first pass:

a. substitute the elements of the strings with their primary weights: s1=>

"<a><s><s>", s2=> "<a><s><s>"

b. compare the two strings starting with the first element — they are equal.

3. second pass:

a. substitute the elements of the strings with their secondary weights: s1=>

"<a-acute><eszet><s>", s2=>"<a-grave><s><s>"

b. compare the two strings from the last element to the first — <s> is before

<ezset>.

LC_MONETARY category

This category defines the rules and symbols used to format monetary quantities.

The operands are strings or integers. The following keywords are supported:

copy Specifies the name of an existing locale to be used as the source for the

definition of this category. If this keyword is specified, no other keyword

should be present in this category. If the locale is not found, an error is

reported and no locale output is created. The copy keyword cannot specify

a locale that also specifies the copy keyword for the same category.

int_curr_symbol

Specifies the international currency symbol. The operand is a four-character

string, with the first three characters containing the alphabetic international

currency symbol in accordance with those specified in ISO4217 Codes for

the Representation of Currency and Funds. The fourth character is the

character used to separate the international currency symbol from the

monetary quantity.

 The following value may also be specified, though it is not If not defined, it

defaults to the empty string (″″).

currency_symbol

Specifies the string used as the local currency symbol. If not defined, it

defaults to the empty string (″″).

mon_decimal_point

The string used as a decimal delimiter to format monetary quantities. If not

defined it defaults to the empty string (″″).

mon_thousands_sep

Specifies the string used as a separator for groups of digits to the left of the

decimal delimiter in formatted monetary quantities. If not defined, it defaults

to the empty string (″″).

mon_grouping

Defines the size of each group of digits in formatted monetary quantities.

The operand is a sequence of integers separated by semicolons. Also, for

compatibility, it may be a string of integers separated by semicolons. Each

integer specifies the number of digits in each group, with the initial integer

defining the size of the group immediately preceding the decimal delimiter,

and the following integers defining the preceding groups. If the last integer

is not −1, then the size of the previous group (if any) is used repeatedly for

the rest of the digits. If the last integer is −1, then no further grouping is

performed. If not defined, mon_grouping defaults to −1 which indicates that

no grouping. An empty string is interpreted as −1.

Chapter 53. Building a locale 757

|

|

|

|
|

|

|

|
|

|
|

|

|
|

||
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

positive_sign

A string used to indicate a formatted monetary quantity with a non-negative

value. If not defined, it defaults to the empty string (″″).

negative_sign

Specifies a string used to indicate a formatted monetary quantity with a

negative value. If not defined, it defaults to the empty string (″″).

int_frac_digits

Specifies an integer representing the number of fractional digits (those to

the right of the decimal delimiter) to be displayed in a formatted monetary

quantity using int_curr_symbol. If not defined, it defaults to −1.

frac_digits

Specifies an integer representing the number of fractional digits (those to

the right of the decimal delimiter) to be displayed in a formatted monetary

quantity using currency_symbol. If not defined, it defaults to −1.

p_cs_precedes

Specifies an integer set to 1 if the currency_symbol or int_curr_symbol

precedes the value for a non-negative formatted monetary quantity, and set

to 0 if the symbol succeeds the value. If not defined, it defaults to −1.

p_sep_by_space

Specifies an integer set to 0 if no space separates the currency_symbol or

int_curr_symbol from the value for a non-negative formatted monetary

quantity, set to 1 if a space separates the symbol from the value, and set to

2 if a space separates the symbol and the string sign, if adjacent. If not

defined, it defaults to −1.

n_cs_precedes

An integer set to 1 if the currency_symbol or int_curr_symbol precedes the

value for a negative formatted monetary quantity, and set to 0 if the symbol

succeeds the value. If not defined, it defaults to −1.

n_sep_by_space

An integer set to 0 if no space separates the currency_symbol or

int_curr_symbol from the value for a negative formatted monetary quantity,

set to 1 if a space separates the symbol from the value, and set to 2 if a

space separates the symbol and the string sign, if adjacent. If not defined, it

defaults to −1.

p_sign_posn

An integer set to a value indicating the positioning of the positive_sign for a

non-negative formatted monetary quantity. The following integer values are

recognized:

0 Parentheses surround the quantity and the currency_symbol or

int_curr_symbol.

1 The sign string precedes the quantity and the currency_symbol or

int_curr_symbol.

2 The sign string succeeds the quantity and the currency_symbol or

int_curr_symbol.

3 The sign string immediately precedes the currency_symbol or

int_curr_symbol.

4 The sign string immediately succeeds the currency_symbol or

int_curr_symbol.

758 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

||
|

||
|

||
|

||
|

||
|

part of the POSIX standard.

5 Use debit-sign or credit-sign for p_sign_posn or n_sign_posn.

If not defined, it defaults to −1.

n_sign_posn

An integer set to a value indicating the positioning of the negative_sign for

a negative formatted monetary quantity. The recognized values are the

same as for p_sign_posn. If not defined, it defaults to −1.

left_parenthesis

The symbol of the locale’s equivalent of (to form a negative-valued

formatted monetary quantity together with right_parenthesis. If not

defined, it defaults to the empty string (″″).

Note: This is an IBM-specific extension.

right_parenthesis

The symbol of the locale’s equivalent of) to form a negative-valued

formatted monetary quantity together with left_parenthesis. If not defined,

it defaults to the empty string (″″);

Note: This is an IBM-specific extension.

debit_sign

The symbol of locale’s equivalent of DB to indicate a non-negative-valued

formatted monetary quantity. If not defined, it defaults to the empty string

(″″);

Note: This is an IBM-specific extension.

credit_sign

The symbol of locale’s equivalent of CR to indicate a negative-valued

formatted monetary quantity. If not defined, it defaults to the empty string

(″″);

Note: This is an IBM-specific extension.

int_p_cs_precedes

Specifies an integer set to 1 if the int_curr_symbol precedes the value for

a non-negative formatted monetary quantity, and set to 0 if the symbol

succeeds the value. If not defined, it defaults to −1.

int_n_cs_precedes

An integer set to 1 if theint_curr_symbol precedes the value for a negative

formatted monetary quantity, and set to 0 if the symbol succeeds the value.

If not defined, it defaults to −1.

int_p_sep_by_space

Specifies an integer set to 0 if no space separates the int_curr_symbol

from the value for a non-negative formatted monetary quantity, set to 1 if a

space separates the symbol from the value, and set to 2 if a space

separates the symbol and the string sign, if adjacent. If not defined, it

defaults to −1.

int_n_sep_by_space

An integer set to 0 if no space separates the int_curr_symbol from the

value for a negative formatted monetary quantity, set to 1 if a space

separates the symbol from the value, and set to 2 if a space separates the

symbol and the string sign, if adjacent. If not defined, it defaults to −1.

Chapter 53. Building a locale 759

|

||

|

|
|
|
|

|
|
|
|

|

|
|
|
|

|

|
|
|
|

|

|
|
|
|

|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

int_p_sign_posn

For a non-negative monetary quantity, the following integer values are

recognized:

0 Parentheses surround the quantity and the int_curr_symbol.

1 The sign string precedes the quantity and the int_curr_symbol.

2 The sign string succeeds the quantity and int_curr_symbol.

3 The sign string immediately precedes the int_curr_symbol.

4 The sign string immediately succeeds the currency_symbol or

int_curr_symbol.

int_n_sign_posn

For a negative monetary quantity, the following integer values are

recognized:

0 Parentheses surround the quantity and the int_curr_symbol.

1 The sign string precedes the quantity and the int_curr_symbol.

2 The sign string succeeds the quantity and int_curr_symbol.

3 The sign string immediately precedes the int_curr_symbol.

4 The sign string immediately succeeds the currency_symbol or

int_curr_symbol.

Here is an example of the definition of the LC_MONETARY category:

escape_char /

comment_char %

%%%%%%%%%%%%%

LC_MONETARY

%%%%%%%%%%%%%

int_curr_symbol "<J><P><Y><space>"

currency_symbol "<yen>"

mon_decimal_point "<period>"

mon_thousands_sep "<comma>"

mon_grouping 3

positive_sign ""

negative_sign "<hyphen-minus>"

int_frac_digits 0

frac_digits 0

p_cs_precedes 1

p_sep_by_space 0

n_cs_precedes 1

n_sep_by_space 0

p_sign_posn 1

n_sign_posn 1

debit_sign "<D>"

credit_sign "<C><R>"

left_parenthesis "<left-parenthesis>"

right_parenthesis "<right-parenthesis>"

int_p_cs_precedes -1

int_n_cs_precedes -1

int_p_sep_by_space -1

int_n_sep_by_space -1

int_p_sign_posn -1

int_n_sign_posn -1

END LC_MONETARY

760 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|

||

||

||

||

||
|

|
|
|

||

||

||

||

||
|

|
||

LC_NUMERIC category

This category defines the rules and symbols used to format non-monetary numeric

information. The operands are strings. The following keywords are recognized:

copy Specifies the name of an existing locale to be used as the source for the

definition of this category. If this keyword is specified, no other keyword

should be present in this category. If the locale is not found, an error is

reported and no locale output is created. The copy keyword cannot specify

a locale that also specifies the copy keyword for the same category.

decimal_point

Specifies a string used as the decimal delimiter in numeric, non-monetary

formatted quantities. This keyword cannot be omitted and cannot be set to

the empty string.

thousands_sep

Specifies a string containing the symbol that is used as a separator for

groups of digits to the left of the decimal delimiter in numeric, non-monetary,

formatted quantities.

grouping

Defines the size of each group of digits in formatted non-monetary

quantities. The operand is a sequence of integers separated by semicolons.

Also, for compatibility, it may be a string of integers separated by

semicolons. Each integer specifies the number of digits in each group, with

the initial integer defining the size of the group immediately preceding the

decimal delimiter, and the following integers defining the preceding groups.

If the last integer is not −1, then the size of the previous group (if any) is

used repeatedly for the rest of the digits. If the last integer is −1, then no

further grouping is performed. An empty string is interpreted as −1.

Here is an example of how to specify the LC_NUMERIC category:

LC_TIME category

The LC_TIME category defines the interpretation of the field descriptors used for

parsing, then formatting, the date and time. The descriptors identify the replacement

portion of the string, while the rest of a string is constant. The definition of

descriptors is included in z/OS XL C/C++ Run-Time Library Reference. All these

descriptors can be used in the format specifier in the time formatting functions

strftime().

The following keywords are supported:

copy Specifies the name of an existing locale to be used as the source for the

definition of this category. If this keyword is specified, no other keyword

should be present in this category.

escape_char /

comment_char %

%%%%%%%%%%%%%

LC_NUMERIC

%%%%%%%%%%%%%

decimal_point "<comma>"

thousands_sep "<space>"

grouping 3

END LC_NUMERIC

Chapter 53. Building a locale 761

|

|
|

||
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
||

|

|
|
|
|
|
|

|

||
|
|

If the locale is not found, an error is reported and no locale output is

created. The copy keyword cannot specify a locale that also specifies the

copy keyword for the same category.

abday Defines the abbreviated weekday names, corresponding to the %a field

descriptor. The operand consists of seven semicolon-separated strings. The

first string is the abbreviated name corresponding to Sunday, the second

string corresponds to Monday, and so forth.

day Defines the full weekday names, corresponding to the %A field descriptor.

The operand consists of seven semicolon-separated strings. The first string

is the full name corresponding to Sunday, the second string to Monday, and

so forth.

abmon Defines the abbreviated month names, corresponding to the %b field

descriptor. The operand consists of twelve strings separated by semicolons.

The first string is an abbreviated name that corresponds to January, the

second corresponds to February, and so forth.

mon Defines the full month names, corresponding to the %B field descriptor. The

operand consists of twelve strings separated by semicolons. The first string

is an abbreviated name that corresponds to January, the second

corresponds to February, and so forth.

d_t_fmt

Defines the appropriate date and time representation, corresponding to the

%c field descriptor. The operand consists of a string, which may contain any

combination of characters and field descriptors.

d_fmt Defines the appropriate date representation, corresponding to the %x field

descriptor. The operand consists of a string, and may contain any

combination of characters and field descriptors.

t_fmt Defines the appropriate time representation, corresponding to the %X field

descriptor. The operand consists of a string, which may contain any

combination of characters and field descriptors.

am_pm Defines the appropriate representation of the ante meridian and post

meridian strings, corresponding to the %p field descriptor. The operand

consists of two strings, separated by a semicolon. The first string represents

the ante meridian designation, the last string the post meridian designation.

t_fmt_ampm

Defines the appropriate time representation in the 12-hour clock format with

am_pm, corresponding to the %r field descriptor. The operand consists of a

string and can contain any combination of characters and field descriptors.

era Defines how the years are counted and displayed for each era (or

emperor’s reign) in a locale.

 No era is needed if the %E field descriptor modifier is not used for the

locale. See the description of the strftime() function in z/OS XL C/C++

Run-Time Library Reference for information about this field descriptor.

 For each era, there must be one string in the following format:

direction:offset:start_date:end_date:name:format

where

direction

Either a + or − character. The + character indicates the time axis

should be such that the years count in the positive direction when

762 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|

||
|
|
|

||
|
|
|

||
|
|
|

||
|
|
|

|
|
|
|

||
|
|

||
|
|

||
|
|
|

|
|
|
|

||
|

|
|
|

|

|

|

|
|
|

moving from the starting date towards the ending date. The −

character indicates the time axis should be such that the years

count in the negative direction when moving from the starting date

towards the ending date.

offset A number of the first year of the era.

start_date

A date in the form yyyy/mm/dd where yyyy, mm and dd are the

year, month and day numbers, respectively, of the start of the era.

Years prior to the year AD 0 are represented as negative numbers.

For example, an era beginning March 5th in the year 100 BC would

be represented as -100/3/5.

end_date

The ending date of the era in the same form as the start_date

above or one of the two special values −* or +*. A value of −*

indicates the ending date of the era extends to the beginning of

time while +* indicates it extends to the end of time. The ending

date may be either before or after the starting date of an era. For

example, the strings for the Christian eras AD and BC would be:

+0:0000/01/01:+*:AD:%EC %Ey

+:1:-0001/12/31:-*:BC:%EC %Ey

name A string representing the name of the era which is substituted for

the %EC field descriptor.

format A string for formatting the %EY field descriptor. This string is usually

a function of the %EC and %Ey field descriptors.

 The operand consists of one string for each era. If there is more than one

era, strings are separated by semicolons.

era_year

Defines the format of the year in alternate era format, corresponding to the

%EY field descriptor.

era_d_fmt

Defines the format of the date in alternate era notation, corresponding to

the %Ex field descriptor.

era_t_fmt

Defines the locale’s appropriate alternative time format, corresponding to

the %Ex field descriptor.

era_d_t_fmt

Defines the locale’s appropriate alternative date and time format,

corresponding to the %Ec field descriptor.

alt_digits

Defines alternate symbols for digits, corresponding to the %O field descriptor

modifier. The operand consists of semicolon-separated strings. The first

string is the alternate symbol corresponding to zero, the second string the

symbol corresponding to one, and so forth. A maximum of 100 alternate

strings may be specified. The %O modifier indicates that the string

corresponding to the value specified by the field descriptor is used instead

of the value.

For the definitions of the time formatting descriptors, see the description of the

strftime() function in z/OS XL C/C++ Run-Time Library Reference.

Chapter 53. Building a locale 763

|
|
|
|

||

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

||
|

||
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|

LC_MESSAGES category

The LC_MESSAGES category defines the format and values for positive and negative

responses.

The following keywords are recognized:

copy Specifies the name of an existing locale to be used as the source for the

definition of this category. If you specify this keyword, no other keyword

should be present in this category.

 If the locale is not found, an error is reported and no locale output is

created. The copy keyword cannot specify a locale that also specifies the

copy keyword for the same category.

yesexpr

The operand consists of an extended regular expression that describes the

acceptable affirmative response to a question that expects an affirmative

or negative response.

noexpr The operand consists of an extended regular expression that describes the

acceptable negative response to a question that expects an affirmative or

negative response.

yestr The operand consists of an fixed string (not a regular expression) that can

be used by an application for composition of a message that lists an

acceptable affirmative response, such as in a prompt.

nostr The operand consists of an fixed string that can be used by an application

for composition of a message that lists an acceptable negative response.

Here is an example that shows how to define the LC_MESSAGES category:

LC_TOD category

The LC_TOD category defines the rules used to define the beginning, end, and

duration of daylight savings time, and the difference between local time and

Greenwich Mean time. This is an IBM extension.

Note: LC_TOD and LC_SYNTAX are not supported for ASCII locales (a locale

specification can not contain a definition for these categories). However, for

consistency with EBCDIC locales, localedef generates default values for

these categories in ASCII locale objects (the values generated for the C

locale but with ASCII code points).

%%%%%%%%%%%%%

LC_MESSAGES

%%%%%%%%%%%%%

% yes expression is a string that starts with

% "SI", "Si" "sI" "si" "s" or "S"

yesexpr "<circumflex><left-parenthesis><left-square-bracket><s><S>/

<right-square-bracket><left-square-bracket><i><I><right-square-bracket>/

<vertical-line><left-square-bracket><s><S><right-square-bracket>/

<right-parenthesis>"

% no expression is a string that starts with

% "NO", "No" "nO" "no" "N" or "n"

noexpr "<circumflex><left-parenthesis><left-square-bracket><n><N>/

<right-square-bracket><left-square-bracket><o><O><right-square-bracket>/

<vertical-line><left-square-bracket><n><N><right-square-bracket>/

<right-parenthesis>"

END LC_MESSAGES

764 z/OS V1R8.0 XL C/C++ Programming Guide

|

|
|

|

||
|
|

|
|
|

|
|
|
|

||
|
|

||
|
|

||
|

|
||

|

|
|
|

|
|
|
|
|

The following keywords are recognized:

copy Specifies the name of an existing locale to be used as the source for the

definition of this category. If this keyword is specified, no other keyword

should be present in this category.

 If the locale is not found, an error is reported and no locale output is

created. The copy keyword cannot specify a locale that also specifies the

copy keyword for the same category.

Note: If you specify this keyword, no other keyword should be present in

this category.

timezone_difference

An integer specifying the time zone difference expressed in minutes. If the

local time zone is west of the Greenwich Meridian, this value must be

positive. If the local time zone is east of the Greenwich Meridian, this value

must be negative. An absolute value greater than 1440 (the number of

minutes in a day) for this keyword indicates that z/OS Language

Environment is to get the time zone difference from the system.

timezone_name

A string specifying the time zone name such as "PST" (Pacific Standard

Time) specified within quotation marks. The default for this field is a NULL

string.

daylight_name

A string specifying the Daylight Saving Time zone name, such as "PDT"

(Pacific Daylight Time), if there is one available. The string must be

specified within quotation marks. If DST information is not available, this is

set to NULL, which is also the default. This field must be filled in if DST

information as provided by the other fields is to be taken into account by

the mktime() and localtime() functions. These functions ignore DST if this

field is NULL.

start_month

An integer specifying the month of the year when Daylight Saving Time

comes into effect. This value ranges from 1 through 12 inclusive, with 1

corresponding to January and 12 corresponding to December. If DST is not

applicable to a locale, start_month is set to 0, which is also the default.

end_month

An integer specifying the month of the year when Daylight Saving Time

ceases to be in effect. The specifications are similar to those for

start_month.

start_week

An integer specifying the week of the month when DST comes into effect.

Acceptable values range from -4 to +4. A value of 4 means the fourth week

of the month, while a value of -4 means fourth week of the month, counting

from the end of the month. Sunday is considered to be the start of the

week. If DST is not applicable to a locale, start_week is set to 0, which is

also the default.

end_week

An integer specifying the week of the month when DST ceases to be in

effect. The specifications are similar to those for start_week.

Chapter 53. Building a locale 765

|

||
|
|

|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|

Note: The start_week and end_week need not be used. The start_day and

end_day fields can specify either the day of the week or the day of

the month. If day of month is specified, start_week and end_week

become redundant.

start_day

An integer specifying the day of the week or the day of the month when

DST comes into effect. The value depends on the value of start_week. If

start_week is not equal to 0, this is the day of the week when DST comes

into effect. It ranges from 0 through 6 inclusive, with 0 corresponding to

Sunday and 6 corresponding to Saturday. If start_week equals 0, start_day

is the day of the month (for the current year) when DST comes into effect. It

ranges from 1 through to the last day of the month inclusive. The last day of

the month is 31 for January, March, May, July, August, October, and

December. It is 30 for April, June, September, and November. For February,

it is 28 on non-leap years and 29 on leap years. If DST is not applicable to

a locale, start_day is set to 0, which is also the default.

end_day

An integer specifying the day of the week or the day of the month when

DST ceases to be in effect. The specifications are similar to those for

start_day.

start_time

An integer specifying the number of seconds after 12:00 midnight, local

standard time, when DST comes into effect. For example, if DST is to start

at 2:00 am, start_time is assigned the value 7200; for 12:00 am (midnight),

start_time is 0; for 1:00 am, it is 3600.

end_time

An integer specifying the number of seconds after 12 midnight, local

standard time, when DST ceases to be in effect. The specifications are

similar to those for start_time.

shift An integer specifying the DST time shift, expressed in seconds. The default

is 3600, for 1 hour.

uctname

A string specifying the name to be used for Coordinated Universal Time. If

this keyword is not specified, the uctname will default to "UTC".

Here is an example of how to define the LC_TOD category:

766 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

||
|

|
|
|

|
|

LC_SYNTAX category

The LC_SYNTAX category defines the variant characters from the portable character

set. LC_SYNTAX is an IBM-specific extension. This category can be queried by the C

library function getsyntx() to determine the encoding of a variant character if

needed.

 Attention: Customizing the LC_SYNTAX category is not recommended. You should

use the LC_SYNTAX values obtained from the charmap file when you use the localedef

utility.

The operands for the characters in the LC_SYNTAX category accept the single byte

character specification in the form of a symbolic name, the character itself, or the

decimal, octal, or hexadecimal constant. The characters must be specified in the

LC_CTYPE category as a punct character. The values for the LC_SYNTAX characters

must be unique. If symbolic names are used to define the encoding, only the

symbolic names listed for each character should be used.

The code points for the LC_SYNTAX characters are set to the code points specified.

Otherwise, they default to the code points for the respective characters from the

charmap file, if the file is present, or to the code points of the respective characters

in the IBM-1047 code page.

Note: LC_TOD and LC_SYNTAX are not supported for ASCII locales (a locale

specification can not contain a definition for these categories). However, for

consistency with EBCDIC locales, localedef generates default values for

these categories in ASCII locale objects (the values generated for the C

locale but with ASCII code points).

The following keywords are recognized:

copy Specifies the name of an existing locale to be used as the source for the

definition of this category. If you specify this keyword, no other keyword

should be present.

escape_char /

comment-char %

%%%%%%%%%%%%%

LC_TOD

%%%%%%%%%%%%%

% the time zone difference is 8hrs; the name of the daylight saving

% time is PDT, and it starts on the first Sunday of April at 2&00AM

% and ends on the second Sunday of October at 2&00AM

timezone_difference +480

timezone_name "<P><S><T>"

daylight_name "<P><D><T>"

start_month 4

end_month 10

start_week 1

end_week 2

start_day 1

end_day 30

start_time 7200

end_time 3600

shift 3600

END LC_TOD

Chapter 53. Building a locale 767

|

|

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|

||
|
|

If the locale is not found, an error is reported and no locale output is

created. The copy keyword cannot specify a locale that also specifies the

copy keyword for the same category.

backslash

Specifies a string that defines the value used to represent the backslash

character. If this keyword is not specified, the value from the charmap file for

the character <backslash>, <reverse-solidus>, or <SM07> is used, if it is

present.

right_brace

Specifies a string that defines the value used to represent the right brace

character. If this keyword is not specified, the value from the charmap file for

the character <right-brace>, <right-curly-bracket>, or <SM14> is used, if it

is present.

left_brace

Specifies a string that defines the value used to represent the left brace

character. If this keyword is not specified, the value from the charmap file for

the character <left-brace>, <left-curly-bracket>, or <SM11> is used, if it

is present.

right_bracket

Specifies a string that defines the value used to represent the right bracket

character. If this keyword is not specified, the value from the charmap file for

the character <right-square-bracket>, or <SM08> is used, if it is present.

left_bracket

Specifies a string that defines the value used to represent the left bracket

character. If this keyword is not specified, the value from the charmap file for

the character <left-square-bracket>, or <SM06> is used, if it is present.

circumflex

Specifies a string that defines the value used to represent the circumflex

character. If this keyword is not specified, the value from the charmap file for

the character <circumflex>, <circumflex-accent>, or <SD15> is used, if it is

present.

tilde Specifies a string that defines the value used to represent the tilde

character. If this keyword is not specified, the value from the charmap file for

the character <tilde>, or <SD19> is used, if it is present.

exclamation_mark

Specifies a string that defines the value used to represent the exclamation

mark character. If this keyword is not specified, the value from the charmap

file for the character <exclamation-mark>, or <SP02> is used, if it is present.

number_sign

Specifies a string that defines the value used to represent the number sign

character. If this keyword is not specified, the value from the charmap file for

the character <number-sign>, or <SM01> is used, if it is present.

vertical_line

Specifies a string that defines the value used to represent the vertical line

character. If this keyword is not specified, the value from the charmap file for

the character <vertical-line>, or <SM13> is used, if it is present.

dollar_sign

Specifies a string that defines the value used to represent the dollar sign

character. If this keyword is not specified, the value from the charmap file for

the character <dollar-sign>, or <SC03> is used, if it is present.

768 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

||
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

commercial_at

Specifies a string that defines the value used to represent the commercial

at character. If this keyword is not specified, the value from the charmap file

for the character <commercial-at>, or <SM05> is used, if it is present.

grave_accent

Specifies a string that defines the value used to represent the grave accent

character. If this keyword is not specified, the value from the charmap file for

the character <grave-accent>, or <SD13> is used, if it is present.

Here is an example of how the LC_SYNTAX category is defined:

Method files

Method files can be used when creating ASCII locales. They specify the method

functions used by the C run-time’s locale-sensitive interfaces when the ASCII locale

is activated.

IBM ships the method files used to build its ASCII locales in the /usr/lib/nls/method

directory. These method files support various ASCII Latin 1 and non-Latin 1 single

byte encodings, ASCII SJIS and EUC multibyte encodings and UTF-8 multibyte

encodings.

By replacing the CHARMAP related method functions in a method file, users can

create a locale which supports a user-defined code page. For each replaced

method, the method file supplies the user-written method function name, and

optionally indicates where the method function code is to be found (.o file, archive

library or DLL). The method source file maps method names to the National

Language Support (NLS) subroutines that implement those methods. The method

file also specifies the object libraries or DLL side decks where the implementing

subroutines are stored. The methods correspond to those subroutines that require

direct access to the data structures representing locale data.

Each user provided method must follow the standard interface defined for the API it

implements and add an argument of type _LC_charmap_objhdl_t as the first

argument. The _LC_charmap_objhdl_t is defined in the localdef.h header file.

escape_char /

comment-char %

%%%%%%%%%%%%%

LC_SYNTAX

%%%%%%%%%%%%%

backslash "<backslash>"

right_brace "<right-brace>"

left_brace "<left-brace>"

right_bracket "<right-square-bracket>"

left_bracket "<left-square-bracket>"

circumflex "<circumflex>"

tilde "<tilde>"

exclamation_mark "<exclamation-mark>"

number_sign "<number-sign>"

vertical_line "<vertical-line>"

dollar_sign "<dollar-sign>"

commercial_at "<commercial-at>"

grave_accent "<grave-accent>"

END LC_SYNTAX

Chapter 53. Building a locale 769

|
|
|
|

|
|
|
|

|
||

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

Users can provide these CHARMAP methods via a DLL side deck, an archive

library or an object file. The user-written method functions are used both by the

locale-sensitive APIs they represent, and also by the localedef utility itself while

generating the method-file based ASCII locale object. This second use by localedef

itself causes a temporary DLL to be created while processing the CHARMAP file

supplied on the -f parameter. The name of the file containing method objects or

side deck information is passed by the localedef utility as a parameter on the c89

command line, so the standard archive/object/side deck suffix naming conventions

apply (i.e. .a, .o, .x).

The following is the expected grammar for a method file:

method_def :

 "METHODS"

 method_assign_list "END METHODS"

 ;

 method_assign_list :

 method_assign_list method_assign

 method_assign_list

 method_assign

 ;

 method_assign :

 "csid" meth_name meth_lib_path

 "fnmatch" meth_name meth_lib_path

 "is_wctype" meth_name meth_lib_path

 "mblen" meth_name meth_lib_path

 "mbstowcs" meth_name meth_lib_path

 "mbtowc" meth_name meth_lib_path

 "regcomp" meth_name meth_lib_path

 "regerror" meth_name meth_lib_path

 "regexec" meth_name meth_lib_path

 "regfree" meth_name meth_lib_path

 "rpmatch" meth_name meth_lib_path

 "strcoll" meth_name meth_lib_path

 "strfmon" meth_name meth_lib_path

 "strftime" meth_name meth_lib_path

 "strptime" meth_name meth_lib_path

 "strxfrm" meth_name meth_lib_path

 "towlower" meth_name meth_lib_path

 "towupper" meth_name meth_lib_path

 "wcscoll" meth_name meth_lib_path

 "wcsftime" meth_name meth_lib_path

 "wcsid" meth_name meth_lib_path

 "wcstombs" meth_name meth_lib_path

 "wcswidth" meth_name meth_lib_path

 "wcsxfrm" meth_name meth_lib_path

 "wctomb" meth_name meth_lib_path

 "wcwidth" meth_name meth_lib_path

 ;

 meth_name:

 global_name

 cfunc_name

 ;

 global_name:

 CSID_STD

 FNMATCH_C

 FNMATCH_STD

 GET_WCTYPE_STD

 IS_WCTYPE_SB

 IS_WCTYPE_STD

 LOCALECONV_STD

 MBLEN_932

 MBLEN_EUCJP

770 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

MBLEN_SB

 MBSTOWCS_932

 MBSTOWCS_EUCJP

 MBSTOWCS_SB

 MBTOWC_932

 MBTOWC_EUCJP

 MBTOWC_SB

 REGCOMP_STD

 REGERROR_STD

 REGEXEC_STD

 REGFREE_STD

 RPMATCH_C

 RPMATCH_STD

 STRCOLL_C

 STRCOLL_SB

 STRCOLL_STD

 STRFMON_STD

 STRFTIME_STD

 STRPTIME_STD

 STRXFRM_C

 STRXFRM_SB

 STRXFRM_STD

 TOWLOWER_STD

 TOWUPPER_STD

 WCSCOLL_C

 WCSCOLL_STD

 WCSFTIME_STD

 WCSID_STD

 WCSTOMBS_932

 WCSTOMBS_EUCJP

 WCSTOMBS_SB

 WCSWIDTH_932

 WCSWIDTH_EUCJP

 WCSWIDTH_LATIN

 WCSXFRM_C

 WCSXFRM_STD

 WCTOMB_932

 WCTOMB_EUCJP

 WCTOMB_SB

 WCWIDTH_932

 WCWIDTH_EUCJP

 WCWIDTH_LATIN

 ;

Where cfunc_name is the name of a user supplied subroutine, and meth_lib_path is

an optional path name for the file containing the compiled subroutine or a side-deck

for the DLL containing the subroutine.

The localedef command parses this information to determine the methods to be

used for this locale. The following subroutines must be specified in the method file:

mblen mbstowcs

mbtowc wcstombs

wcswidth wctomb

wcwidth

The following additional subroutines are mandatory in AIX method files, but are not

supported on z/OS and if specified are ignored:

mbtopc

mbstopcs

pctomb

pcstombs

Any other method not specified in the method file retains the default. Mixing of

user-written method function names (represented as cfunc_name in the grammar)

Chapter 53. Building a locale 771

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|

|
|

|
|
|
|

|
|

and IBM-provided method function names (represented by global_name in the

grammar) is not allowed. A method file should not include both. If the localedef

command encounters both cfunc_name values and global_name values in a

method file, an error is generated and the locale is not created.

It is not mandatory that the METHODS section specify the meth_lib_path name for

all methods. The following is an example of how to specify the meth_lib_path and

what the localedef passes on the c89 command invoking the binder when linking

the method-based ASCII locale object:

METHODS

 mblen "__mblen_myuni"

 mbstowcs "__mbstowcs_myuni" "/u/my/libmyuni.a"

 mbtowc "__mbtowc_myuni"

 wcstombs "__wcstombs_myuni" "/u/gen/libgenuni.a"

 wcswidth "__wcswidth_myuni"

 wctomb "__wctomb_myuni"

 wcwidth "__wcwidth_myuni" "./wcwidth.o"

In the example, libmyuni.a contains funcions __mbstowcs_myuni and

__mbtowc_myuni. Similarly, libgenuni.a contains functions __wcstombs_myuni,

__wcswidth_myuni and __wctomb_myuni. The function __wcwidth_myuni is

contained in the file wcwidth.o.If the function __mblen_myuni is not defined in either

of the three files indicated, a locale object will not be created. For this example the

localedef utility would invoke the binder using the following c89 command line:

c89 -o myuni.locale -Wl,xplink ./localefBGgfFcGAo

 ./localeEgaBGaahA.o /u/my/libmyuni.a

 /u/gen/libgenuni.a ./wcwidth.o

It is also possible to use the -L localedef option to specify the c89 -L library flags

and only reference the library names in the method file following the liblibname.a

convention.

If an individual method does not specify a meth_lib_path name, the method inherits

the most recently specified meth_lib_path name. If no meth_lib_path name is

specified in the METHODS section, the default run-time library side-deck is

assumed. The files indicated by meth_lib_path names of all methods in the method

file are used when linking the locale object. A concatenated list of all meth_lib_path

names is specified on the link step. If multiple object libraries or side decks are

specified, the same routine should not be defined in more than one of them.

Unexpected results may occur if the method functions appear in more than one file,

particularly if the duplicate copies are not identical. The binder could resolve a

method function from a file different from the one given in the method file itself.

The method for the mbtowc and wcwidth subroutines should avoid calling other

methods where possible.

Using the localedef utility

The locale objects or locales are generated using the localedef utility. The localedef

utility:

1. Reads the locale definition file

2. Resolves all the character symbolic names to the values of characters defined

in the specified character set definition file, (CHARMAP)

3. Produces a z/OS XL C source file.

772 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|

|

|
|

|

4. Compiles the source file using the z/OS XL C compiler and link-edits the

produced text module to produce a locale object. localedef produces ASCII

locale objects as XPLINK DLL’s exclusively, while EBCDIC locales can be

non-XPLINK objects or XPLINK DLL’s.

Note: AMODE 64 locales are always XPLINK locales, while 31-bit locales may be

XPLINK or non-XPLINK.

The locale DLL object can be loaded by the setlocale() function and then

accessed by the z/OS XL C/C++ functions that are sensitive to the cultural

information, or that can query the locales. For a list of all the library functions

sensitive to locale, see “Locale-sensitive interfaces” on page 732. For detailed

information on how to invoke localedef, see ″localedef Utility″ in the z/OS XL C/C++

User’s Guide.

The locale DLL object created by localedef must adhere to certain naming

conventions so that the locale can be used by the system. These conventions are

outlined in “Locale naming conventions” on page 774.

XPLINK applications require XPLINK locale objects, and non-XPLINK applications

require non-XPLINK locale objects. Likewise, AMODE 64 applications require

AMODE 64 locale objects. localedef creates non-XPLINK locales by default. The

option XPLINK causes the TSO localedef command (LOCALDEF) to produce an

XPLINK locale object. The batch XPLINK localedef command (EDCXLDEF proc)

produces an XPLINK locale object (while the batch localedef command

(EDCLDEF) produces a non-XPLINK locale object). The -X parameter causes the

UNIX System Services localedef command to generate an XPLINK locale object.

The TSO localedef (LOCALDEF) command and the batch XPLINK localdef

command (EDCXLDEF proc) cannot be used to generate ASCII locales or AMODE

64 locales. Only the UNIX System Services localedef command may be used.

ASCII locales are generated by specifying the -A localedef option on the

command line of the UNIX System Services localedef command. AMODE 64

locales are generated by specifying the -6 option on the command line of the UNIX

System Services localedef command. Specify both -A and -6 to produce locale

objects which are both ASCII and AMODE 64. AMODE 64 locales are always

XPLINK locales. The -X option is implicitly specified whenever the -6 option is

specified. Users can supply functions for the methods referenced in the locale

charmap category by indicating the -m method_file option on the command line.

The POSIX shell (/bin/sh) UNIX System Services shell, /bin/sh, is an example of a

non-XPLINK application that uses locales. It needs non-XPLINK locales. If the shell

invokes an XPLINK application that uses locales, the application will need an

XPLINK version of the same locale. Usually, both XPLINK and non-XPLINK

versions of a locale are needed whenever an XPLINK application is invoked from

the shell, or when an XPLINK application invokes the shell or any other

non-XPLINK application. Likewise, usually both AMODE 64 and non-XPLINK

versions of a locale are needed whenever a AMODE 64 application is invoked from

the shell, or when a AMODE 64 application invokes the shell or any other

non-XPLINK application. The locale object naming conventions ensure that the

run-time library loads the appropriate version of the locale.

Chapter 53. Building a locale 773

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

Locale naming conventions

The setlocale() library function that selects the active locale maps the descriptive

locale name into the name of the locale object before loading the locale and making

it accessible.

In z/OS XL C/C++ programs, the locale modules are referred to by descriptive

locale names. The locale names themselves are not case sensitive. They follow

these conventions:

<Language>-<Territory>.<Codeset>

Where:

Language

is a two-letter uppercase abbreviation for the language name. The

abbreviations come from the ISO 639 standard.

Territory

is a two-letter uppercase abbreviation for the territory name. The

abbreviation comes from the ISO 3166 standard.

Codeset

is the name registered by the MIT X Consortium that identifies the

registration authority that owns the specific encoding.

 A modifier may be added to the registered name but is not required. The

modifier is of the form @codeset modifier and identifies the coded

character set as defined by that registration authority.

The Codeset parts are optional. If they are not specified, Codeset defaults to

IBM-nnn, where nnn is the default code page, which for EBCDIC locales is shown in

Table 102 on page 776 and for ASCII locales in Table 103 on page 778. (The

modifier portion defaults to nothing.)

For PDS resident locales, the mapping between the descriptive locale name and

the eight-character name of the locale object is performed as follows:

1. The Language-Territory part is mapped into a two-letter LT code.

2. The Codeset part is mapped into a two-letter CC code.

3. The object name is built from a prefix, the two-letter LT code, and the two-letter

CC code. The prefix

8 is one of the following:

 Table 101. Locale object prefix

Application No modifier @euro modifier @preeuro modifier

non-XPLINK EDC$ EDC@ EDC3

XPLINK CEH$ CEH@ CEH3

XPLINK ASCII CEJ$ NA NA

AMODE 64 CEQ$ CEQ@ CEQ3

AMODE 64 ASCII CEZ$ NA NA

For example:

v Non-XPLINK

8. The @-sign in the PDS and HFS locale names always has Latin-1/Open Systems encoding. See IBM-1047 CHARMAP.

774 z/OS V1R8.0 XL C/C++ Programming Guide

|

|
|
|

|
|
|

|

|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

|

|

|
|

||

||||

||||

||||

||||

||||

||||
|

|

|

Fr_BE.IBM-1148 maps to EDC$FBHO

Fr_BE.IBM-1148@euro maps to EDC@FBHO

Fr_BE.IBM-1148@preeuro maps to EDC3FBHO

v XPLINK

Fr_BE.IBM-1148 maps to CEH$FBHO

Fr_BE.IBM-1148@euro maps to CEH@FBHO

Fr_BE.IBM-1148@preeuro maps to CEH3FBHO

v ASCII

Fr_BE.ISO8859-1 maps to CEJ$FBI1

Fr_BE.UTF-8 maps to CEJ$FBU8

v AMODE 64

Fr_BE.IBM-1148 maps to CEQ$FBHO

Fr_BE.IBM-1148@euro maps to CEQ@FBHO

Fr_BE.IBM-1148@preeuro maps to CEQ3FBHO

v AMODE 64 ASCII

Fr_BE.ISO8859-1 maps to CEZ$FBI1

Fr_BE.UTF-8 maps to CEZ$FBU8

For HFS resident locales, the mapping between the descriptive locale name and the

HFS file name is performed as follows:

1. The locale object file name starts out the same as the descriptive name.

2. If the locale object is XPLINK, add a suffix of ″.xplink″ to the end of the object

file name.

3. If the locale object is AMODE 64, add a suffix of ″.lp64″ to the end of the object

file name.

For example:

v Non-XPLINK

Fr_BE.IBM-1148 maps to Fr_BE.IBM-1148

Fr_BE.IBM-1148@euro maps to Fr_BE.IBM-1148@euro

Fr_BE.IBM-1148@preeuro maps to Fr_BE.IBM-1148@preeuro

v XPLINK

Fr_BE.IBM-1148 maps to Fr_BE.IBM-1148.xplink

Fr_BE.IBM-1148@euro maps to Fr_BE.IBM-1148@euro.xplink

Fr_BE.IBM-1148@preeuro maps to Fr_BE.IBM-1148@preeuro.xplink

v ASCII

Fr_BE.ISO8859-1 maps to Fr_BE.ISO8859-1.xplink

Fr_BE.UTF-8 maps to Fr_BE.UTF-8.xplink

v AMODE 64

Fr_BE.IBM-1148 maps to FR_BE.IBM-1148.lp64

Fr_BE.IBM-1148@euro maps to Fr_BE.IBM-1148@euro.lp64

Fr_BE.IBM-1148@preeuro maps to Fr_BE.IBM-1148@preeuro.lp64

v AMODE 64 ASCII

Fr_BE.ISO8859-1 maps to Fr_BE.ISO8859-1.lp64

Fr_BE.UTF-8 maps to Fr_BE.UTF-8.lp64

The mapping between Language-Territory and the two-letter LT code is defined in

the LT conversion table EDC$LCNM, built with assembler macros as follows:

EDC$LCNM TITLE ’LOCALE NAME CONVERSION TABLE’

EDC$LCNM CSECT

 EDCLOCNM TYPE=ENTRY,LOCALE=’DA_DK’,CODESET=’IBM-1047’,CODE=’DA’

 EDCLOCNM TYPE=ENTRY,LOCALE=’DE_BE’,CODESET=’IBM-1047’,CODE=’DB’

 EDCLOCNM TYPE=ENTRY,LOCALE=’DE_CH’,CODESET=’IBM-1047’,CODE=’DC’

 EDCLOCNM TYPE=ENTRY,LOCALE=’DE_DE’,CODESET=’IBM-1047’,CODE=’DD’

 EDCLOCNM TYPE=ENTRY,LOCALE=’JA_JP’,CODESET=’IBM-939’,CODE=’EJ’

Chapter 53. Building a locale 775

|
|
|

|

|
|
|

|

|
|

|

|
|
|
|

|
|
|

|
|

|

|
|

|
|

|

|

|
|
|

|

|
|
|

|

|
|

|

|
|
|

|

|
|

|
|

|
|
|
|
|
|
|

...
 EDCLOCNM TYPE=END

 END EDC$LCNM

LOCALE specifies the name of Language-Territory, while CODE specifies the

respective LT code.

You can customize this table by adding new LOCALE name mappings. z/OS XL

C/C++ reserves alphabetic LT codes, but you can use codes containing numeric

values for your own customized names.

The following Language-Territory names and their mappings into LT codes are

provided:

 Table 102. Supported language-territory names and LT codes for EBCDIC locales

Locale

Name Language Country/Territory

EBCDIC

Codeset

2-Byte LT

Code

Ar_AA Arabic Algeria, Bahrain, Egypt, Iraq,

Jordan, Kuwait, Lebanon,

Libya, Morocco, Oman,

Qatar, Saudi Arabia, Syria,

Tunisia, U.A.E., Yemen

IBM-425 AR

Be_BY Byelorussian Belarus IBM-1025 BB

Bg_BG Bulgarian Bulgaria IBM-1025 BG

C IBM-1047 CC

Ca_ES Catalan Spain IBM-924 CS

Cs_CZ Czech Czech Republic IBM-870 CZ

Da_DK Danish Denmark IBM-1047 DA

De_AT German Austria IBM-924 DT

De_CH German Switzerland IBM-1047 DC

De_DE German Germany IBM-1047 DD

De_LU German Luxembourg IBM-924 DL

El_GR Greek Greece IBM-875 EL

En_AU English Australia IBM-1047 NA

En_BE English Belgium IBM-924 EB

En_CA English Canada IBM-1047 EC

En_GB English United Kingdom IBM-1047 EK

En_HK English China (Hong Kong S.A.R. of

China)

IBM-1047 NH

En_IE English Ireland IBM-924 EI

En_IN English India IBM-1047 NI

En_JP English Japan IBM-1027 EJ

En_NZ English New Zealand IBM-1047 NZ

En_PH English Philipines IBM-1047 NP

En_SG English Singapore IBM-1047 NS

En_US English United States IBM-1047 EU

En_ZA English South Africa IBM-1047 EZ

Es_AR Spanish Argentina IBM-1047 EA

776 z/OS V1R8.0 XL C/C++ Programming Guide

|||
|
|

|
|

|
|
|

|
|

||

|
|||
|
|
|
|

|||
|
|
|
|

||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||
|
||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

Table 102. Supported language-territory names and LT codes for EBCDIC

locales (continued)

Locale

Name Language Country/Territory

EBCDIC

Codeset

2-Byte LT

Code

Es_BO Spanish Bolivia IBM-1047 EO

Es_CL Spanish Chile IBM-1047 EH

Es_CO Spanish Colombia IBM-1047 FG

Es_CR Spanish Costa Rica IBM-1047 ER

Es_DO Spanish Dominican Republic IBM-1047 ED

Es_EC Spanish Ecuador IBM-1047 EQ

Es_ES Spanish Spain IBM-1047 ES

Es_GT Spanish Guatemala IBM-1047 EG

Es_HN Spanish Honduras IBM-1047 FE

Es_MX Spanish Mexico IBM-1047 EM

Es_NI Spanish Nicaragua IBM-1047 FA

Es_PA Spanish Panama IBM-1047 EP

Es_PE Spanish Peru IBM-1047 EW

Es_PR Spanish Puerto Rico IBM-1047 EX

Es_PY Spanish Paraguay IBM-1047 EY

Es_SV Spanish El Salvador IBM-1047 EV

Es_US Spanish United States IBM-1047 ET

Es_UY Spanish Uruguay IBM-1047 FD

Es_VE Spanish Venezuela IBM-1047 EF

Et_EE Estonian Estonia IBM-1122 EE

Fi_FI Finnish Finland IBM-1047 FI

Fr_BE French Belgium IBM-1047 FB

Fr_CA French Canada IBM-1047 FC

Fr_CH French Switzerland IBM-1047 FS

Fr_FR French France IBM-1047 FF

Fr_LU French Luxembourg IBM-924 FL

He_IL Hebrew Israel IBM-424 IL

Hr_HR Croatian Croatia IBM-870 HR

Hu_HU Hungarian Hungary IBM-870 HU

Id_ID Indonesian Indonesia IBM-1047 II

It_CH Italian Switzerland IBM-1047 IC

Is_IS Icelandic Iceland IBM-871 IS

It_IT Italian Italy IBM-1047 IT

Ja_JP Japanese Japan IBM-939 JA

Ko_KR Korean Korea IBM-933 KR

Iw_IL Hebrew Israel IBM-424 IL

Lt-LT Lithuanian Lithuania IBM-1112 LT

Lv_LV Latvian Latvia IBM-1112 LL

Chapter 53. Building a locale 777

|
|

|
|||
|
|
|
|

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

Table 102. Supported language-territory names and LT codes for EBCDIC

locales (continued)

Locale

Name Language Country/Territory

EBCDIC

Codeset

2-Byte LT

Code

Mk_MK Macedonian Macedonia IBM-1025 MM

Ms_MY Malay Malaysia IBM-1047 MY

Nl_BE Dutch Belgium IBM-1047 NB

Nl_NL Dutch The Netherlands IBM-1047 NN

No_NO Norwegian Norway IBM-1047 NO

Pl_PL Polish Poland IBM-870 PL

Pt_BR Portuguese Brazil IBM-1047 BR

Pt_PT Portuguese Portugal IBM-1047 PT

Ro_RO Romanian Romania IBM-870 RO

Ru_RU Russian Russia IBM-1025 RU

Sh_SP Serbian (Latin) Serbia IBM-870 SL

Sk_SK Slovak Slovakia IBM-870 SK

Sl_SI Slovene Slovenia IBM-870 SI

Sq_AL Albanian Albania IBM-500 SA

Sr_SP Serbian

(Cyrillic)

Serbia IBM-1025 SC

Sv_SE Swedish Sweden IBM-1047 SV

Th_TH Thai Thailand IBM-838 TH

Tr_TR Turkish Turkey IBM-1026 TR

UK_UA Ukranian Ukraine IBM-1125 UU

Zh_CN Simplified

Chinese

China (PRC) IBM-935 ZC

Zh_TW Traditional

Chinese

Taiwan IBM-937 ZT

 Table 103. Supported language-territory names and LT codes for ASCII locales

Locale

Name9 Language Country/Territory ASCII Codeset

2-Byte LT

Code

be_BY Byelorussian Belarus ISO8859-5 BB

bn_IN Bengali India UTF-8 BN

en_CA English Canada ISO8859-1 EC

cs_CZ Czech Czech Republic ISO8859-2 CZ

en_ZA English South Africa ISO8859-1 EZ

da_DK Danish Denmark ISO8859-1 DA

de_CH German Switzerland ISO8859-1 DC

de_DE German Germany ISO8859-1 DD

el_GR Greek Greece ISO8859-7 EL

en_AU English Australia ISO8859-1 NA

en_GB English United Kingdom ISO8859-1 EK

778 z/OS V1R8.0 XL C/C++ Programming Guide

|
|

|
|||
|
|
|
|

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

||
|
|||

|||||

|||||

|||||

|||||

||
|
|||

||
|
|||

|

||

|
||||
|
|

|||||

|||||

Table 103. Supported language-territory names and LT codes for ASCII locales (continued)

Locale

Name9 Language Country/Territory ASCII Codeset

2-Byte LT

Code

en_HK English China (Hong Kong S.A.R. of

China)

ISO8859-1 NH

en_IN English India ISO8859-1 NI

en_NZ English New Zealand ISO8859-1 NZ

en_PH English Philipines ISO8859-1 NP

en_SG English Singapore ISO8859-1 NS

en_US English United States ISO8859-1 EU

es_AR Spanish Argentina ISO8859-1 EA

es_BO Spanish Bolivia ISO8859-1 EO

es_CL Spanish Chile ISO8859-1 EH

es_CO Spanish Colombia ISO8859-1 FG

es_CR Spanish Costa Rica ISO8859-1 ER

es_DO Spanish Dominican Republic ISO8859-1 ED

es_EC Spanish Ecuador ISO8859-1 EQ

es_ES Spanish Spain ISO8859-1 ES

es_GT Spanish Guatemala ISO8859-1 EG

es_HN Spanish Honduras ISO8859-1 FE

es_MX Spanish Mexico ISO8859-1 EM

es_NI Spanish Nicaragua ISO8859-1 FA

es_PA Spanish Panama ISO8859-1 EP

es_PE Spanish Peru ISO8859-1 EW

es_PR Spanish Puerto Rico ISO8859-1 EX

es_PY Spanish Paraguay ISO8859-1 EY

es_SV Spanish El Salvador ISO8859-1 EV

es_US Spanish United States ISO8859-1 ET

es_UY Spanish Uruguay ISO8859-1 FD

es_VE Spanish Venezuela ISO8859-1 EF

fi_FI Finnish Finland ISO8859-1 FI

fr_BE French Belgium ISO8859-1 FB

fr_CA French Canada ISO8859-1 FC

fr_CH French Switzerland ISO8859-1 FS

fr_FR French France ISO8859-1 FF

gu_IN Gujarati India UTF-8 GI

he_IL Hebrew Israel ISO8859-8 IL

hi_IN Hindi India UTF-8 IN

hr_HR Croatian Croatia ISO8859-2 HR

hu_HU Hungarian Hungary ISO8859-2 HU

id_ID Indonesian Indonesia ISO8859-1 II

it_CH Italian Switzerland ISO8859-1 IC

Chapter 53. Building a locale 779

Table 103. Supported language-territory names and LT codes for ASCII locales (continued)

Locale

Name9 Language Country/Territory ASCII Codeset

2-Byte LT

Code

it_IT Italian Italy ISO8859-1 IT

iw_IL Hebrew Israel ISO8859-8 IL

ja_JP Japanese Japan IBM-943 JA

kk_KZ Kazakh Kazakstan UTF-8 KK

ko_KR Korean Korea IBM-eucKR KR

mr_IN Marati India UTF-8 MI

ms_MY Malay Malaysia ISO8859-1 MY

nl_NL Dutch Netherlands ISO8859-1 NN

no_NO Norwegian Norway ISO8859-1 NO

pa_IN Punjabi India UTF-8 PI

pl_PL Polish Poland ISO8859-2 PL

pt_BR Portuguese Brazil ISO8859-1 BR

pt_PT Portuguese Portugal ISO8859-1 PT

ro_RO Romanian Romania ISO8859-2 RO

ru_RU Russian Russia ISO8859-5 RU

sk_SK Slovak Slovakia ISO8859-2 SK

sl_SI Slovene Slovenia ISO8859-2 SI

sv_SE Swedish Sweden ISO8859-1 SV

ta_IN Tamil India UTF-8 AN

te_IN Telugu India UTF-8 EN

th_TH Thai Thailand TIS-620 TH

tr_TR Turkish Turkey ISO8859-9 TR

zh_CN Simplified

Chinese

China(PRC) IBM-eucCN ZC

zh_HKS Simplified

Chinese

China (Hong Kong S.A.R. of

China)

UTF-8 ZG

zh_HKT Traditional

Chinese

China (Hong Kong S.A.R. of

China)

UTF-8 ZU

zh_SGS Simplified

Chinese

Singapore UTF-8 ZS

zh_TW Simplified

Chinese

Taiwan BIG5 ZT

The mapping between Codeset and the two-letter CC code is defined in the CC

conversion table EDCUCSNM. This table is built with assembler macros as follows:

EDCUCSNM TITLE ’CODE SET NAME CONVERSION TABLE’

EDCUCSNM CSECT

 EDCCSNAM TYPE=ENTRY,CODESET=’IBM-037’,CODE=’EA’

 EDCCSNAM TYPE=ENTRY,CODESET=’IBM-273’,CODE=’EB’

 EDCCSNAM TYPE=ENTRY,CODESET=’IBM-274’,CODE=’EC’

 EDCCSNAM TYPE=ENTRY,CODESET=’IBM-277’,CODE=’ED’

 EDCCSNAM TYPE=ENTRY,CODESET=’IBM-278’,CODE=’EE’

9. ASCII locale names can also be coded <uppercase><lowercase>_<uppercase><uppercase>. For example, both en_US and En_US

are valid ASCII locale names.

780 z/OS V1R8.0 XL C/C++ Programming Guide

|||||

...
 EDCCSNAM TYPE=END

 END EDCUCSNM

CODESET specifies the name Codeset; CODE specifies the respective CC code.

You can customize this table by adding new CODESET names. The alphabetic codes

in the first byte of each CC name are reserved by IBM for future use, but you can

use codes starting with numeric values for your own customized names.

The following Codeset names and their mappings into CC codes are provided:

 Table 104. Supported codeset names and CC codes

Codesets

Primary Country or

Territory 2-Byte CC code

Big5 Taiwan BT

IBM-037 USA, Canada, Brazil EA

IBM-273 Germany, Austria EB

IBM-274 Belgium EC

IBM-277 Denmark, Norway EE

IBM-278 Finland, Sweden EF

IBM-280 Italy EG

IBM-282 Portugal EI

IBM-284 Spain, Latin America EJ

IBM-285 United Kingdom EK

IBM-290 Japan (Katakana) EL

IBM-297 France EM

IBM-300 Japanese DBCS EN

IBM-420 Algeria, Bahrain, Egypt, Iraq,

Jordan, Kuwait, Lebanon,

Libya, Morocco, Oman,

Qatar, Saudi Arabia, Syria,

Tunisia, U.A.E., Yemen

FF

IBM-424 Israel FB

IBM-425 Algeria, Bahrain, Egypt, Iraq,

Jordan, Kuwait, Lebanon,

Libya, Morocco, Oman,

Qatar, Saudi Arabia, Syria,

Tunisia, U.A.E., Yemen

AR

IBM-500 International EO

IBM-838 Thailand EP

IBM-848 Ukraine with Euro(Cyrillic) AS

IBM-870 Croatia, Czech Republic,

Hungary, Poland, Romania,

Serbia(Latin), Slovakia,

Slovenia

EQ

IBM-871 Iceland ER

IBM-875 Greece ES

Chapter 53. Building a locale 781

Table 104. Supported codeset names and CC codes (continued)

Codesets

Primary Country or

Territory 2-Byte CC code

IBM-880 Cyrillic ET

IBM-924 Latin 9/Open Systems DL

IBM-930 Japan Katakana Extended

(combined with DBCS)

EU

IBM-933 Korea GZ

IBM-935 China(PRC) GY

IBM-937 Taiwan GW

IBM-943 Japan JA

IBM-943 China(PRC) No

IBM-1025 Bulgaria, Macedonia, Russia,

Serbia(Cyrillic)

FE

IBM-1026 Turkey EW

IBM-1027 Japan (Latin) Extended EX

IBM-1047 Latin 1/Open Systems EY

IBM-1112 Lithuania GD

IBM-1122 Estonia FD

IBM-1123 Ukraine (Cyrillic) FH

IBM-1125 Ukraine (Cyrillic) AT

IBM-1140 USA, Canada, Brazil HA

IBM-1141 Austria, Germany HB

IBM-1142 Denmark, Norway HE

IBM-1143 Finland, Sweden HF

IBM-1144 Italy HG

IBM-1145 Spain, Latin America HJ

IBM-1146 United Kingdom HK

IBM-1147 France HM

IBM-1148 International HO

IBM-1149 Iceland HR

IBM-1153 Czech Republic, Hungary,

Poland, Slovakia, Slovenia

MB

IBM-1156 Latvia, Lithuania HZ

IBM-1157 Estonia HD

IBM-1158 Ukraine with Euro(Cyrillic) FI

IBM-1165 Latin 2/Open Systems FG

IBM-1364 Korea KZ

IBM-1371 Taiwan ZT

IBM-1388 China(PRC) GV

IBM-1390 Japan HU

IBM-1399 Japan HV

IBM-4933 China (PRC) FJ

782 z/OS V1R8.0 XL C/C++ Programming Guide

||
|
|

|||

|||

Table 104. Supported codeset names and CC codes (continued)

Codesets

Primary Country or

Territory 2-Byte CC code

IBM-4971 Greece HS

IBM-13124 China (PRC) FK

IBM-53668 Algeria, Behrain, Egypt, Iraq,

Jordan, Kuwait, Lebanon,

Libya, Morocco, Oman,

Qatar, Saudia Arabia, Syria,

Tunisia, U.A.E., Yemen

FV

IBMEUCCN China (PRC) BY

IBMEUCKR Korea BZ

ISO8859-1 All Latin 1 Countries I1

ISO8859-2 Croatia, Czech Republic,

Hungary, Poland, Romania,

Serbia (Latin), Slovakia,

Slovenia

I2

ISO8859-5 Bulgaria, Macedonia, Russia,

Serbia (Cyrillic)

I5

ISO8859-7 Greece I7

ISO8859-8 Israel I8

ISO8859-9 Turkey I9

TIS–620 Thailand BU

UTF-8 All Countries F8

The exceptions to the rule above are the following special locale names, which are

already recognized:

v C (EBCDIC and ASCII)

v POSIX (EBCDIC and ASCII)

v SAA (EBCDIC only)

v S370 (EBCDIC only)

The special names C, POSIX, SAA, and S370 always refer to the built-in locales, which

cannot be modified. The S370 locale and the following names are for locales in an

old format, created with the EDCLOC assembler macro, rather than with the localedef

utility:

v GERM (EBCDIC only)

v FRAN (EBCDIC only)

v UK (EBCDIC only)

v ITAL (EBCDIC only)

v SPAI (EBCDIC only)

v USA (EBCDIC only)

The EDCLOC generated locales are not supported in AMODE 64 applications.

You can use the following C macros, defined in the locale.h header file, as

synonyms for the special locale names above. These macros can only be used for

EBCDIC locales. The <prefix> in the Compiled locale column is EDC for

non-XPLINK locales and CEH for XPLINK locales. The C macros for the locales

Chapter 53. Building a locale 783

||
|
|
|
|

|

which list a prefix in the Compiled locales column, are not defined for AMODE 64

compilations.

 Macro Locale Compiled locale

LC_C C Not applicable

LC_POSIX POSIX Not applicable

LC_C_GERMANY "GERM" <prefix>$GERM

LC_C_FRANCE "FRAN" <prefix>$FRAN

LC_C_UK "UK" <prefix>$UK

LC_C_ITALY "ITAL" <prefix>$ITAL

LC_C_SPAIN "SPAI" <prefix>$SPAI

LC_C_USA "USA" <prefix>$USA

The predefined name for the built-in locale in the old format is S370.

The rest of the special names refer to the EBCDIC locale objects whose names are

built by prepending the letters EDC$ for non-XPLINK locales or CEH$ for XPLINK

locales to the special name, as for EDC$FRAN.

784 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 54. Customizing a locale

This chapter describes how you can create your own locales, based on the locale

definition files supplied by IBM. See Appendix D, “Locales supplied with z/OS XL

C/C++,” on page 879 for more information on the compiled locales and locale

source files. The information in this chapter applies to the format of locales based

on the localedef utility.

The following example assumes that the target of the generated locale will be a

data set, but locales may also reside in an HFS (see “Locale naming conventions”

on page 774 for differences in object names). In this example you will build a locale

named TEXAN using the charmap file representing the IBM-1047 encoded character

set. The locale is derived from the locale representing the English language and the

cultural conventions of the United States. We will assume that non-XPLINK,

XPLINK, and AMODE 64 applications will use the TEXAN locale. All three versions of

the TEXAN locale will be generated.

1. See “Locale source files” on page 895 to determine the source of the locale you

are going to use. In this case, it is the English language in the United States

locale, the source for which is the member EDC$EUEY of the PDS

CEE.SCEELOCX.

2. Copy the member EDC$EUEY from PDS CEE.SCEELOCX to the data set

hlq.LOCALE.SOURCE which has been pre-allocated with the same attributes as

CEE.SCEELOCX.

3. In your new file, change the locale variables to the desired values. For example,

change

d_t_fmt "%a %b %e %H:%M:%S %Z %Y

to

d_t_fmt "Howdy Pardner %a %b %e %H:%M:%S %Z %Y"

4. This locale’s <Language>-<Territory> value is TEXAN. The <Codeset> value is

IBM-1047. TEXAN is not a valid PDS resident locale name in the run-time library,

because it does not appear in the run-time Locale Name Table. You must

modify the table to include the TEXAN locale. Here are the steps to follow.

a. Copy the member EDC$LCNM from PDS CEE.SCEESAMP to the data set

hlq.LOCALE.TABLE which has been pre-allocated with the same attributes

as CEE.SCEESAMP. The z/OS XL C/C++ Library uses this table to map

locale code registry prefixes into two-character codes.

b. For this example, insert a new line into the assembler table before the last

EDCLOCNM TYPE=END entry:

EDCLOCNM TYPE=ENTRY,LOCALE=’TEXAN’,CODESET=’IBM-1047’,CODE=’1T’

5. Now that your locale name table has been modified, you must make it available

to the system. Assemble the EDC$LCNM member and link-edit it into the

hlq.LOCALE.LOADLIB load library with the member name EDC$LCNM. For our

example, this is done as follows:

 //HLASM EXEC PGM=ASMA90

 //SYSPRINT DD SYSOUT=*

 //SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR

 // DD DSN=CEE.SCEEMAC,DISP=SHR

 //SYSUT1 DD UNIT=VIO,DISP=(NEW,DELETE),SPACE=(32000,(30,30))

 //SYSUT2 DD UNIT=VIO,DISP=(NEW,DELETE),SPACE=(32000,(30,30))

 //SYSUT3 DD UNIT=VIO,DISP=(NEW,DELETE),SPACE=(32000,(30,30))

 //SYSPUNCH DD DUMMY

 //SYSLIN DD DSN=<hlq>.LOCALE.OBJECT(EDC$LCNM),DISP=SHR

 //SYSIN DD DSN=<hlq>.LOCALE.TABLE(EDC$LCNM),DISP=SHR

 //*

© Copyright IBM Corp. 1996, 2006 785

//LKED EXEC EDCL,

 // OUTFILE=’<hlq>.LOCALE.LOADLIB(EDC$LCNM),DISP=SHR’

 //LKED.SYSLIN DD DSN=<hlq>.LOCALE.OBJECT(EDC$LCNM),DISP=SHR

6. Generate the non-XPLINK, XPLINKand 64–bit locale objects into a load library.

Note that both the XPLINK and 64–bit locale objects must be placed in a PDSE,

while non-XPLINK locale objects may be in either a PDS or PDSE load library.

a. Determine the correct locale object names, using the locale naming

Conventions outlined in “Locale naming conventions” on page 774. PDS

resident locale object names are of the form <prefix><LT><CC> .

For this non-XPLINK locale the <prefix> is EDC$, the <LT> code for TEXAN is

1T and the <CC> code for IBM-1047 is EY. The non-XPLINK object name is

therefore EDC$1TEY.

For this XPLINK locale the <prefix> is CEH$. The <LT>and <CC> codes

remain the same. The XPLINK object name is therefore CEH$1TEY.

For this 64–bit locale the <prefix> is CEQ$. The <LT> and <CC> codes

remain the same. The 64–bit locale object name is therefore CEQ$1TEY.

b. Use localedef to generate the locale objects.

v For non-XPLINK:

//GENLOCNX EXEC PROC=EDCLDEF,

 // INFILE=’hlq.LOCALE.SOURCE(TEXAN)’,

 //

 OUTFILE=’hlq.LOCALE.LOADLIB(EDC$1TEY),DISP=SHR’,

 // LOPT=’CHARMAP(IBM-1047)’

v For XPLINK:

//GENLOCX EXEC PROC=EDCXLDEF,

 // INFILE=’hlq.LOCALE.SOURCE(TEXAN)’,

 //

 OUTFILE=’hlq.LOCALE.PDSE.LOADLIB(CEH$1TEY),DISP=SHR’,

 // LOPT=’CHARMAP(IBM-1047)’

v For 64–bit

The batch and TSO versions of the localedef utility cannot be used to

generate 64–bit locales. The UNIX Systems Services utility must be used.

To do this from TSO or batch the BPXBATCH utility can be used. See z/OS

UNIX System Services Command Reference for more information about

BPXBATCH. Here we will assume we are in a UNIX System Services shell

session:

cp "//’hlq.LOCALE.SOURCE(TEXAN)’" texan.localedef

localedef -6 -i texan.localedef -f /usr/lib/nls/charmap/IBM-1047

 TEXAN.IBM-1047.lp64

cp TEXAN.IBM-1047.lp64 "//’hlq.LOCALE.PDSE.LOADLIB(CEQ$1TEY)’"

See z/OS XL C/C++ User’s Guide for detailed information about the batch and

TSO versions of localedef utility. The UNIX System Services version of the

localedef utility is also described in z/OS UNIX System Services Command

Reference.

Note: The TEXAN locale uses one of the IBM supplied CHARMAPs. If you need

to customize a CHARMAP, then you must define its two-letter <CC> code

in the Codeset Name table EDCUCSNM. This is similar to defining the locale

TEXAN in EDC$LCNM. The two-letter CHARMAP codes beginning with a

number are reserved for customer use. This is the same as the

convention for customer-supplied Locale Name <LT> codes in the Locale

Name table. The <CC> portion of your locale object names would then

change to be the new <CC> value you added to the Codeset Name table.

786 z/OS V1R8.0 XL C/C++ Programming Guide

Using the customized locale

Your locale objects must be made available to your program before they can be

used. For PDS and PDSE resident locales, your load library must be included in

your program search order. For HFS resident locales, do one of the following:

v Copy your locales into the system default locale object directory

/usr/lib/nls/locale.

v Update your LOCPATH environment variable to include the directory containing

your locales.

For example, assume that the CCNGCL1 program has been compiled with LP64 into

an HFS executable called getlocname. Further assume that you have generated

non-XPLINK, XPLINK and AMODE 64 HFS resident versions of the TEXAN locale

into your current directory. The following commands make TEXAN available to

non-XPLINK, XPLINK and AMODE 64 applications:

$ ls

 TEXAN.IBM-1047 TEXAN.IBM-1047.xplink TEXAN.IBM-1047.lp64 getlocname

 $ export LOCPATH=$PWD

 $ export LC_ALL=TEXAN.IBM-1047

 $ getlocname

 Default NULL locale = C

 Default "" locale = /u/marcw/TEXAN.IBM-1047.lp64

 $

If getlocname was compiled non-XPLINK then the output would look like the

following:

$ getlocname

 Default NULL locale = C

 Default "" locale = /u/marcw/TEXAN.IBM-1047

 $

If getlocname was compiled XPLINK then the output would look like the following:

$ getlocname

Default NULL locale = C

Default "" locale = /u/marcw/TEXAN.IBM-1047.xplink

$

The customized locale is now ready to be used in these ways:

v Explicitly referenced by name in z/OS XL C/C++ application code that uses

setlocale() calls referring to the locale descriptive name (recommended) such

as:

setlocale(LC_ALL, "TEXAN.IBM-1047");

or by a short internal name (not recommended) such as:

setlocale(LC_ALL, "1TEY");

v Explicitly referenced in the z/OS XL C/C++ initialization exit, using customized

setup code in CEEBINT.

v Implicitly specified in each user environment with environment variables.

Note: You cannot customize the built-in locales, C, POSIX, SAA, or S370. The locale

source files EDC$POSX and EDC$SAAC are provided for reference only.

Referring explicitly to a customized locale

Here is a non-XPLINK program with an explicit reference to the TEXAN locale.

Chapter 54. Customizing a locale 787

CCNGCL1

 Compile the above program. Before you execute it, ensure the load library

containing the non-XPLINK version of the TEXAN locale and updated table is

available. If you compile your program XPLINK, ensure the load library containing

the XPLINK version of the TEXAN locale and updated Locale Name table is

available. If you compile your program LP64, ensure the load library containing the

64–bit version of the TEXAN locale and updated Locale Name table is available.

The output should be similar to:

Default empty_str locale is S370

Local C datetime is Fri Aug 20 14:58:12 1993

New locale is TEXAN

Texan datetime is Howdy Pardner Fri Aug 20 14:58:12 1993

For programs which are run POSIX(OFF), and which are not 64–bit programs, if the

second operand to setlocale() had been NULL, rather than ″″, the default locale

name returned would have been C.

setlocale(LC_ALL,"") returns "S370"

setlocale(LC_ALL,NULL) returns "C"

Note: For setlocale(LC_ALL,""), the result depends on the locale-related

environment variables, the POSIX run-time option, and whether the program

is AMODE 64 or not. See Chapter 56, “Definition of S370 C, SAA C, and

POSIX C locales,” on page 793 for more information about the definition of

the S370 locale.

/* this example shows how to get the local time formatted by the */

/* current locale */

#include <stdio.h>

#include <time.h>

#include <locale.h>

int main(void){

 char dest[80];

 int ch;

 time_t temp;

 struct tm *timeptr;

 temp = time(NULL);

 timeptr = localtime(&temp);

 /* Fetch default locale name */

 printf("Default empty_str locale is %s\n",setlocale(LC_ALL,""));

 ch = strftime(dest,sizeof(dest)-1,

 "Local C datetime is %c", timeptr);

 printf("%s\n", dest);

 /* Set new Texan locale name */

 printf("New locale is %s\n", setlocale(LC_ALL,"Texan.IBM-1047"));

 ch = strftime(dest,sizeof(dest)-1,

 "Texan datetime is %c ", timeptr);

 printf("%s\n", dest);

 return(0);

}

Figure 219. Referring explicitly to a customized locale

788 z/OS V1R8.0 XL C/C++ Programming Guide

Referring implicitly to a customized locale

An installation may require that a global mechanism should be used for all C

programs. The exit CEEBINT may be used for this purpose. Users can insert a

setlocale() call inside the routines referencing the locale required. Here is an

example:

CCNGCL2

 If the above example is compiled and executed with the TEXAN locale, the results

are as follows:

 CEEBINT entry. number = 7

 Locale = TEXAN.IBM-1047

 Default NULL locale = TEXAN.IBM-1047

 Default "" locale = S370

The exit CEEBINT may provide a uniform way of restricting the use of customized

locales across an installation. To do this, a system programmer can compile

CEEBINT separately, and link it with the application program that will use it. The

disadvantage to this approach is that CEEBINT must be link-edited into each user

module explicitly. See Chapter 42, “Using run-time user exits,” on page 609 for

more information about user exits.

/* this example refers implicitly to a customized locale */

#ifdef __cplusplus

 extern "C"{

#else

 #pragma linkage(CEEBINT,OS)

#endif

void CEEBINT(int, int, int, int, void**, int, void**);

#pragma map(CEEBINT,"CEEBINT")

#ifdef __cplusplus

 }

#endif

#include <locale.h>

#include <stdio.h>

int main(void){

 printf("Default NULL locale = %s\n", setlocale(LC_ALL,NULL));

 printf("Default \"\" locale = %s\n", setlocale(LC_ALL,""));

 }

void CEEBINT(int number, int retcode, int rsncode, int fnccode,

 void **a_main, int userwd, void **a_exits)

 { /* user code goes here */

 printf("CEEBINT entry. number = %i\n", number);

 printf("Locale = %s\n", setlocale(LC_ALL,"Texan.IBM-1047"));

 }

Figure 220. Referring implicitly to a customized locale

Chapter 54. Customizing a locale 789

CCNGCL3

 If you run this program above as is without calling setenv(), you can expect the

following result (for a 31-bit, POSIX(OFF), program):

Default NULL locale = C

Default "" locale = S370

On the other hand, if you issue the above setenv() call after main() but before the

first printf() statement, the LC_ALL variable will be set to "TEXAN.IBM-1047" and

you can expect this result instead:

Default NULL locale = C

Default "" locale = TEXAN.IBM-1047

In the example above, the default NULL locale returns C because the value of

LC_ALL does not affect the current locale until the next setlocale(LC_ALL, "") is

done. When this call is made, the LC_ALL environment variable will be used and the

locale will be set to TEXAN.IBM-1047.

For more information about setting environment variables, see Chapter 31, “Using

environment variables,” on page 473.

The names of the environment variables match the names of the locale categories:

v LC_ALL

v LC_COLLATE

v LC_CTYPE

v LC_MONETARY

v LC_NUMERIC

v LC_TIME

v LC_TOD

v LC_SYNTAX

See z/OS XL C/C++ Run-Time Library Reference for information about

setlocale().

Customizing your installation: When z/OS XL C/C++ initializes its environment,

it uses the C locale as its default locale. The only values that may be customized

when z/OS Language Environment is installed are those defined in the TZ or _TZ

environment variable, which can override LC_TOD category values in the default

locale. Details on this customization are provided in Chapter 55, “Customizing a

time zone,” on page 791.

/* this example can be used with setenv() to specify the name of a */

/* locale */

#include <locale.h>

#include <stdio.h>

int main(void){

 printf("Default NULL locale = %s\n", setlocale(LC_ALL,NULL));

 printf("Default \"\" locale = %s\n", setlocale(LC_ALL,""));

 return(0);

 }

Figure 221. Using environment variables to select a locale

790 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 55. Customizing a time zone

You can customize time zone information using the following:

v LC_TOD category of a locale

You can customize the LC_TOD category in a locale to a particular time zone.

The LC_TOD category binds each C/C++ locale to one time zone. For more

information on customizing the LC_TOD category, see “LC_TOD category” on

page 764 and Chapter 54, “Customizing a locale,” on page 785.

v TZ or _TZ environment variable

In a distributed environment, you might have users in several time zones. You

can use the TZ or _TZ environment variable to set each time zone. The user of

your application can use the ENVAR run-time option with the TZ or _TZ

environment variable to select the appropriate time zone.

For POSIX(ON) programs the TZ environment variable is used. For POSIX(OFF)

programs the _TZ environment variable is used. If neither TZ nor _TZ are

defined, time zone information is obtained from the LC_TOD category of the

current locale.

Using the TZ or _TZ environment variable to specify time zone

The C/C++ run-time library assumes times returned by the operating system are

stored using Greenwich Mean Time (GMT) or Universal Time Coordinated (UTC).

This time is referred to as the universal reference time. You can use the TZ or _TZ

environment variable to specify information at run time. The C/C++ run-time library

uses this information to map universal reference times to local times.

The format of the TZ or _TZ environment variable is:

TZ=standardHH[:MM[:SS]]

[daylight[HH[:MM[:SS:]]]

[,startdate[/starttime],enddate[/endtime]]]

The value of the TZ or _TZ environment variable has the following five fields (two

required and three optional):

standard

An alphabetic abbreviation for the local standard time zone (for example, GMT,

EST, MSEZ).

HH[:MM[:SS]]

The time offset westward from the universal reference time. A leading minus

sign (-) means that the local time zone is east of the universal reference time.

An offset of this form must follow standard and can also optionally follow

daylight. An optional colon (:) separates hours from optional minutes and

seconds.

 If daylight is specified without a daylight offset, daylight savings time is

assumed to be one hour ahead of the standard time.

[daylight]

The abbreviation for your local daylight savings time zone. If the first and third

fields are identical, or if the third field is missing, daylight savings time

conversion is disabled. The number of hours, minutes, and seconds your local

daylight savings time is offset from UTC when daylight savings time is in effect.

If the daylight savings time abbreviation is specified and the offset omitted, the

offset of one hour is assumed.

© Copyright IBM Corp. 1996, 2006 791

[,startdate[/starttime],enddate[/endtime]]

A rule that identifies the start and end of daylight savings time, specifying when

daylight savings time should be in effect. Both the startdate and enddate must

be present and must either take the form Jn, n, or Mm.n.d where:

v Jn is the Julian day n (1 <= n <=365) and does not account for leap days.

v n is the zero-based Julian day (0 <= n <= 365). Leap days are counted;

therefore, you can refer to February 29th.

v For Mm.n.d, (0 <= n <= 6) of week n of month m of the year (1 <= n <=5, 1

<= m <= 12) where week 5 is the last d day in month m, which may occur in

either the fourth or fifth week. Week 1 is the first week in which the d day

occurs, and day zero is Sunday.

Neither starttime nor endtime are required, and when omitted, their values

default to 02:00:00. If this daylight savings time rule is omitted altogether, the

values in the rule default to the standard American daylight savings time rules

starting at 02:00:00 the first Sunday in April and ending at 02:00:00 the last

Sunday in October.

Relationship between TZ or _TZ and LC_TOD

The C/C++ run-time library uses time zone information specified by the TZ or _TZ

environment variable to convert universal reference times to local times. When

neither the TZ nor _TZ variable are defined, the C/C++ run-time library uses time

zone information specified by the LC_TOD category of the current locale to map

universal reference times to local times. If LC_TOD in the current locale has not

been customized, the C/C++ run-time library uses the time zone of the system on

which C/C++ is installed. See Chapter 54, “Customizing a locale,” on page 785 for

information about customizing LC_TOD.

Note: The time zone external variables, tzname, timezone, and daylight,

declarations remain feature test protected in time.h. Definition of these

external variables are only known to the C/C++ run-time library if the z/OS

UNIX System Services C/C++ signature CSECT is link edited with your

C/C++ application.

792 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 56. Definition of S370 C, SAA C, and POSIX C locales

The POSIX, SAA, and S370 locales are pre-built locales used as defaults by the C

run-time library. The POSIX locale complies with the standard UNIX definition and

supports the z/OS UNIX environment. The SAA locale, which provides compatibility

with previous releases of C/370, is consistent with the POSIX model, but varies

slightly with respect to several values. The S370 locale, which is not supported for

AMODE 64 applications, is compatible with an older format generated by the EDCLOC

assembler macro rather than through the use of the localedef utility.

The POSIX definition of the C locale is described below, with the IBM extensions

LC_SYNTAX and LC_TOD showing their default values.

The SAA and S370 definitions of the C locale are different from the POSIX definition;

consistency with previous releases of z/OS XL C/C++ is provided for migration

compatibility. The differences are described in “Differences between SAA C and

POSIX C locales” on page 799.

The relationship between the POSIX C and SAA C locales is as follows. If you are

running with the run-time option POSIX(OFF):

1. The SAA C locale definition is the default. "C", "SAA", and "S370" are treated as

synonyms for the SAA C locale definition, which is prebuilt into the library.

The source file EDC$SAAC LOCALE is provided for reference, but cannot be used

to alter the definition of this prebuilt locale.

2. Issuing setlocale(category, "") has the following effect:

v First, locale-related environment variables are checked for the locale name to

use in setting the category specified. Querying the locale with

setlocale(category, NULL) returns the name of the locales specified by the

appropriate environment variables.

v If no non-null environment variable is present, then it is the equivalent of

having issued setlocale(category, "S370"). That is, the locale chosen is

the SAA C locale definition, and querying the locale with setlocale(category,

NULL) returns "S370" as the locale name.

3. If no setlocale() function is issued, or setlocale(LC_ALL, "C"), then the locale

chosen is the pre-built SAA C locale, and querying the locale with

setlocale(category, NULL) returns ″C″ as the locale name.

4. For setlocale(LC_ALL,"SAA"), the locale chosen is the pre-built SAA C locale,

and querying the locale with setlocale(category, NULL) returns ″SAA″ as the

locale name.

5. For setlocale(LC_ALL,"S370"), the locale chosen is the pre-built SAA C locale,

and querying the locale with setlocale(category, NULL) returns "S370" as the

locale name. AMODE 64 applications do not support the "S370" locale, and

setlocale will fail requests for that name.

6. For setlocale(LC_ALL,"POSIX"), the locale chosen is the pre-built POSIX C

locale, and querying the locale with setlocale(category, NULL) returns "POSIX"

as the locale name.

If you are running with the run-time option POSIX(ON):

1. The POSIX C locale definition is the default. "C" and "POSIX" are synonyms for

the POSIX C locale definition, which is pre-built into the library.

The source file EDC$POSX LOCALE is provided for reference, but cannot be used

to alter the definition of this pre-built locale.

© Copyright IBM Corp. 1996, 2006 793

2. Issuing setlocale(category, "") has the following effect:

v Locale-related environment variables are checked to find the name of locales

that can set the category specified. Querying the locale with

setlocale(category, NULL) returns the name of the locale specified by the

appropriate environment variables.

v If no non-null environment variable is present, then the result is equivalent to

having issued setlocale(category,"C"). That is, the locale chosen is the

POSIX C locale definition, and querying the locale with setlocale(category,

NULL) returns "C" as the locale name.

3. If no setlocale() function is issued, or if setlocale(LC_ALL, "C") is used, then

the locale chosen is the pre-built POSIX C locale. Querying the locale with

setlocale(category, NULL) returns ″C″ as the locale name.

4. For setlocale(LC_ALL,"POSIX"), the locale chosen is the pre-built POSIX C

locale, and querying the locale with setlocale(category, NULL) returns "POSIX"

as the locale name.

5. For setlocale(LC_ALL,"SAA"), the locale chosen is the pre-built SAA C locale.

Querying the locale with setlocale(category, NULL) returns ″SAA″ as the

locale name.

6. For setlocale(LC_ALL,"S370"), the locale chosen is the pre-built SAA C locale.

Querying the locale with setlocale(category, NULL) returns "S370" as the

locale name. As with POSIX(OFF), AMODE 64 applications do not support the

"S370" locale and setlocale will fail requests for that name.

The setlocale() function supports locales built using the localedef utility, as well as

locales built using the assembler source and produced by the EDCLOC macro.

However, locales built using EDCLOC are not supported when running AMODE 64

applications.

The LC_TOD category for the SAA C and POSIX C locales can be customized during

installation of the library by your system programmer. See “Customizing your

installation” on page 790 for more information. The supplied default will obtain the

time zone difference from the operating system. However, it will not define the

daylight savings time.

The LC_SYNTAX category for the SAA C and POSIX C locales is set to the IBM-1047

definition of the variant characters.

The other locale categories for the POSIX C locale are as follows.

escape_char /

comment_char %

%%%%%%%%%%%%

LC_CTYPE

%%%%%%%%%%%%

% "alpha" is by default "upper" and "lower"

% "alnum" is by definition "alpha" and "digit"

% "print" is by default "alnum", "punct" and <space> character

% "punct" is by default "alnum" and "punct"

upper <A>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;/

 <N>;<O>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z>

lower <a>;;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;/

 <n>;<o>;<p>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<x>;<y>;<z>

digit <zero>;<one>;<two>;<three>;<four>;/

794 z/OS V1R8.0 XL C/C++ Programming Guide

<five>;<six>;<seven>;<eight>;<nine>

space <tab>;<newline>;<vertical-tab>;<form-feed>;/

 <carriage-return>;<space>

cntrl <alert>;<backspace>;<tab>;<newline>;<vertical-tab>;/

 <form-feed>;<carriage-return>;/

 <NUL>;<SOH>;<STX>;<ETX>;<EOT>;<ENQ>;<ACK>;<SO>;/

 <SI>;<DLE>;<DC1>;<DC2>;<DC3>;<DC4>;<NAK>;<SYN>;/

 <ETB>;<CAN>;;<SUB>;<ESC>;<IS4>;<IS3>;<IS2>;/

 <IS1>;

punct <exclamation-mark>;<quotation-mark>;<number-sign>;/

 <dollar-sign>;<percent-sign>;<ampersand>;<apostrophe>;/

 <left-parenthesis>;<right-parenthesis>;<asterisk>;/

 <plus-sign>;<comma>;<hyphen>;<period>;<slash>;/

 <colon>;<semicolon>;<less-than-sign>;<equals-sign>;/

 <greater-than-sign>;<question-mark>;<commercial-at>;/

 <left-square-bracket>;<backslash>;<right-square-bracket>;/

 <circumflex>;<underscore>;<grave-accent>;/

 <left-curly-bracket>;<vertical-line>;<right-curly-bracket>;<tilde>

xdigit <zero>;<one>;<two>;<three>;<four>;/

 <five>;<six>;<seven>;<eight>;<nine>;/

 <A>;;<C>;<D>;<E>;<F>;/

 <a>;;<c>;<d>;<e>;<f>

blank <space>;/

 <tab>

toupper (<a>,<A>);(,);(<c>,<C>);(<d>,<D>);(<e>,<E>);/

 (<f>,<F>);(<g>,<G>);(<h>,<H>);(<i>,<I>);(<j>,<J>);/

 (<k>,<K>);(<l>,<L>);(<m>,<M>);(<n>,<N>);(<o>,<O>);/

 (<p>,<P>);(<q>,<Q>);(<r>,<R>);(<s>,<S>);(<t>,<T>);/

 (<u>,<U>);(<v>,<V>);(<w>,<W>);(<x>,<X>);(<y>,<Y>);/

 (<z>,<Z>)

tolower (<A>,<a>);(,);(<C>,<c>);(<D>,<d>);(<E>,<e>);/

 (<F>,<f>);(<G>,<g>);(<H>,<h>);(<I>,<i>);(<J>,<j>);/

 (<K>,<k>);(<L>,<l>);(<M>,<m>);(<N>,<n>);(<O>,<o>);/

 (<P>,<p>);(<Q>,<q>);(<R>,<r>);(<S>,<s>);(<T>,<t>);/

 (<U>,<u>);(<V>,<v>);(<W>,<w>);(<X>,<x>);(<Y>,<y>);/

 (<Z>,<z>)

END LC_CTYPE

%%%%%%%%%%%%

LC_COLLATE

%%%%%%%%%%%%

order_start

% ASCII Control characters

<NUL>

<SOH>

<STX>

<ETX>

<EOT>

<ENQ>

<ACK>

<alert>

<backspace>

<tab>

<newline>

<vertical-tab>

<form-feed>

<carriage-return>

<SO>

<SI>

<DLE>

<DC1>

<DC2>

Chapter 56. Definition of S370 C, SAA C, and POSIX C locales 795

<DC3>

<DC4>

<NAK>

<SYN>

<ETB>

<CAN>

<SUB>

<ESC>

<IS4>

<IS3>

<IS2>

<IS1>

<space>

<exclamation-mark>

<quotation-mark>

<number-sign>

<dollar-sign>

<percent-sign>

<ampersand>

<apostrophe>

<left-parenthesis>

<right-parenthesis>

<asterisk>

<plus-sign>

<comma>

<hyphen>

<period>

<slash>

<zero>

<one>

<two>

<three>

<four>

<five>

<six>

<seven>

<eight>

<nine>

<colon>

<semicolon>

<less-than-sign>

<equals-sign>

<greater-than-sign>

<question-mark>

<commercial-at>

<A>

<C>

<D>

<E>

<F>

<G>

<H>

<I>

<J>

<K>

<L>

<M>

<N>

<O>

<P>

<Q>

<R>

<S>

<T>

<U>

796 z/OS V1R8.0 XL C/C++ Programming Guide

<V>

<W>

<X>

<Y>

<Z>

<left-square-bracket>

<backslash>

<right-square-bracket>

<circumflex>

<underscore>

<grave-accent>

<a>

<c>

<d>

<e>

<f>

<g>

<h>

<i>

<j>

<k>

<l>

<m>

<n>

<o>

<p>

<q>

<r>

<s>

<t>

<u>

<v>

<w>

<x>

<y>

<z>

<left-curly-bracket>

<vertical-line>

<right-curly-bracket>

<tilde>

order_end

END LC_COLLATE

%%%%%%%%%%%%

LC_MONETARY

%%%%%%%%%%%%

int_curr_symbol ""

currency_symbol ""

mon_decimal_point ""

mon_thousands_sep ""

mon_grouping ""

positive_sign ""

negative_sign ""

int_frac_digits -1

frac_digits -1

p_cs_precedes -1

p_sep_by_space -1

n_cs_precedes -1

n_sep_by_space -1

p_sign_posn -1

n_sign_posn -1

END LC_MONETARY

Chapter 56. Definition of S370 C, SAA C, and POSIX C locales 797

%%%%%%%%%%%%

LC_NUMERIC

%%%%%%%%%%%%

decimal_point "<period>"

thousands_sep ""

grouping ""

END LC_NUMERIC

%%%%%%%%%%%%

LC_TIME

%%%%%%%%%%%%

abday "<S><u><n>";/

 "<M><o><n>";/

 "<T><u><e>";/

 "<W><e><d>";/

 "<T><h><u>";/

 "<F><r><i>";/

 "<S><a><t>"

day "<S><u><n><d><a><y>";/

 "<M><o><n><d><a><y>";/

 "<T><u><e><s><d><a><y>";/

 "<W><e><d><n><e><s><d><a><y>";/

 "<T><h><u><r><s><d><a><y>";/

 "<F><r><i><d><a><y>";/

 "<S><a><t><u><r><d><a><y>"

abmon "<J><a><n>";/

 "<F><e>";/

 "<M><a><r>";/

 "<A><p><r>";/

 "<M><a><y>";/

 "<J><u><n>";/

 "<J><u><l>";/

 "<A><u><g>";/

 "<S><e><p>";/

 "<O><c><t>";/

 "<N><o><v>";/

 "<D><e><c>"

mon "<J><a><n><u><a><r><y>";/

 "<F><e><r><u><a><r><y>";/

 "<M><a><r><c><h>";/

 "<A><p><r><i><l>";/

 "<M><a><y>";/

 "<J><u><n><e>";/

 "<J><u><l><y>";/

 "<A><u><g><u><s><t>";/

 "<S><e><p><t><e><m><e><r>";/

 "<O><c><t><o><e><r>";/

 "<N><o><v><e><m><e><r>";/

 "<D><e><c><e><m><e><r>"

% equivalent of AM/PM (%p)

am_pm "<A><M>";"<P><M>"

% appropriate date and time representation (%c) "%a %b %e %H:%M:%S %Y"

d_t_fmt "<percent-sign><a><space><percent-sign><space><percent-sign><e>/

<space><percent-sign><H><colon><percent-sign><M>/

<colon><percent-sign><S><space><percent-sign><Y>"

% appropriate date representation (%x) "%m/%d/%y"

d_fmt "<percent-sign><m><slash><percent-sign><d><slash><percent-sign><y>"

% appropriate time representation (%X) "%H:%M:%S"

t_fmt "<percent-sign><M><colon><percent-sign><M><colon><percent-sign><S>"

798 z/OS V1R8.0 XL C/C++ Programming Guide

% appropriate 12-hour time representation (%r) "%I:%M:%S %p"

t_fmt_ampm "<percent-sign><I><colon><percent-sign><M><colon><percent-sign><S>/

<space><percent-sign><p>"

END LC_TIME

%%%%%%%%%%%%

LC_MESSAGES

%%%%%%%%%%%%

yesexpr "<circumflex><left-square-bracket><y><Y><right-square-bracket>"

noexpr "<circumflex><left-square-bracket><n><N><right-square-bracket>"

END LC_MESSAGES

Differences between SAA C and POSIX C locales

In fact, there are three built-in locales, S370 C, SAA C, and POSIX C. The default

locale at your site depends on the system that is running the application. Issuing

setlocale(LC_ALL,"") sets the default, based on the current environment. Issuing

setlocale(LC_ALL,"SAA") sets the SAA C locale, even when you are running with

the POSIX(ON) run-time option. Likewise, setlocale(LC_ALL,"POSIX") sets the

POSIX locale.

If you are running in a C locale, one way you can determine whether the SAA C or

the POSIX locale is in effect is to check whether the cent sign (¢ at X'4A') is defined

as a punctuation character. Under the default POSIX support, the cent sign is not

part of the POSIX portable character set. The following code illustrates how to

perform this test:

CCNGDL1

 Under the SAA or System/370 default locales, the lowercase letters collate before

the uppercase letters, whereas under the POSIX definition, the lowercase letters

collate after the uppercase letters. The locale "" is the same locale as the one

obtained from setlocale(LC_ALL,""). For more detail on these special environment

variables, see Chapter 31, “Using environment variables,” on page 473.

Other differences between the SAA C locale and the POSIX C locale are as follows:

/* this example shows how to determine whether the SAA C or POSIX */

/* locale is in effect */

#include <stdio.h>

#include <ctype.h>

int main(void)

{

 if (ispunct(0x4A)) {

 printf(" cent sign is punct\n");

 printf(" current locale is SAA- or S370-like\n");

 }

 else {

 printf(" cent sign is not punct\n");

 printf(" default locale is POSIX-like\n");

 }

return(0);

}

Figure 222. Determining which locale is in effect

Chapter 56. Definition of S370 C, SAA C, and POSIX C locales 799

<mb_cur_max> The POSIX C locale is built using coded character

set IBM-1047, with <mb_cur_max> as 1.

 The SAA C locale is built using coded character set

IBM-1047, with <mb_cur_max> as 4.

The cent sign In the default POSIX support, the cent sign (¢) is

not part of the POSIX portable character set, but in

the SAA locale it is defined as a punctuation

character.

Collation weight by case In the POSIX definition, the lowercase letters collate

after the uppercase letters, whereas in the SAA or

System/370 default locales, the lowercase letters

collate before the uppercase letters.

LC_CTYPE category The SAA C locale has all the EBCDIC control

characters defined in the ’cntrl’ class. The POSIX

C locale has only the ASCII control characters in the

’cntrl’ class.

 The SAA C locale includes ¢ (the cent character)

and ¦ (the broken vertical line) as ’punct’

characters. The POSIX C locale does not group

these characters as ’punct’ characters.

LC_COLLATE category The default collation for the SAA C locale is the

EBCDIC sequence. The POSIX C locale uses the

ASCII collation sequence; the first 128 ASCII

characters are defined in the collation sequence,

and the remaining EBCDIC characters are at the

end of the collating sequence.

LC_TIME category The SAA C locale uses the date and time format

(d_t_fmt) as "%Y/%M/%D %X", whereas the POSIX C

locale uses "%a %b %d %H/%M/%S %Y".

 The SAA C locale uses the strings "am" and "pm",

whereas the POSIX C locale uses "AM" and "PM".

800 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 57. Code set conversion utilities

This chapter describes the code set conversion utilities supported by the z/OS XL

C/C++ compiler. These utilities are as follows:

genxlt utility

Generates a translation table for use by the iconv utility and iconv()

functions.

iconv utility

Converts a file from one code set encoding to another.

iconv() functions

Perform code set translation. These functions are iconv_open(), iconv(),

and iconv_close(). They are used by the iconv utility and may be called

from any z/OS XL C/C++ program requiring code set translation.

uconvdef utility

Handles Universal-coded character sets. Creates binary conversion tables

that define mapping between UCS-2 and multibyte code sets.

See z/OS XL C/C++ User’s Guide for descriptions of the genxlt and iconv utilities,

z/OS XL C/C++ Run-Time Library Reference for descriptions of the iconv()

functions, and z/OS MVS Program Management: User’s Guide and Reference,

SA22-7643 for descriptions of the uconvdef utility.

The genxlt utility

The genxlt utility reads a source translation file from InputFile, writes the compiled

version to OutputFile, and then generates the translation load module. The source

translation file provides the conversion specification from fromCodeSet to toCodeSet.

The source translation file contains directives that are acted upon by the genxlt

utility to produce the compiled version of the translation table.

The name of the conversion programs have the following naming conventions:

v The name starts with a four letter prefix. The prefix is EDCU for non-XPLINK

converters, CEHU for XPLINK converters, and CEQU for AMODE 64 converters.

v The prefix is followed by the two-letter CC code that corresponds to the

CodesetRegistry.CodesetEncoding name of the fromCodeSet defined in the

Table 104 on page 781.

v The first CC code is followed by the two-letter CC code than corresponds to the

CodesetRegistry.CodesetEncoding name of the toCodeSet defined in the

Table 104 on page 781.

To generate your own conversions, you must modify the codeset name table

EDCUCSNM with the macros described in “Locale naming conventions” on page 774.

For descriptions of the genxlt and iconv utilities, refer to z/OS XL C/C++ User’s

Guide. There is also a UNIX System Services iconv utility, which is described in

z/OS UNIX System Services Command Reference.

The iconv utility

The iconv utility reads characters from the input file, converts them from

fromCodeSet encoding to toCodeSet encoding, and writes them to the output file.

© Copyright IBM Corp. 1996, 2006 801

The conversion is performed by the code conversion functions of the run-time

library. They are described in “Code conversion functions.” The tables used are

determined by the CC codes of the fromCodeSet and toCodeSet appended to the

four-character prefix. The prefix is EDCU for non-XPLINK converters, CEHU for

XPLINK converters, and CEQU for AMODE 64 converters. See z/OS XL C/C++

User’s Guide for descriptions of the genxlt and iconv utilities. There is also a UNIX

System Services iconv utility, which is described in z/OS UNIX System Services

Command Reference.

The iconv utility can also perform bidirectional layout transformation (such as

shaping and reordering) while converting from fromCodeSet to toCodeSet according

to the value of an environment variable called _BIDION. The value of this variable

is either set to TRUE to activate the BiDi layout transformation or FALSE to prevent

the bidirectional layout transformation. If this variable is not defined in the

environment it defaults to FALSE. The _BIDIATTR environment variable can be

used to contain the bidirectional attributes (for information on bidirectional layout

transformation see Chapter 59, “Bidirectional language support,” on page 855)

which will determine the way the bidirectional transformation takes place. These two

environment variables are described in Chapter 31, “Using environment variables,”

on page 473.

Code conversion functions

The iconv_open(), iconv(), and iconv_close() library functions can be called from

C or C++ source to initialize and perform the characters conversions from one

character set encoding to another.

Code set converters supplied

There is a set of code set converters that are provided in the National Language

Resources component of z/OS Language Environment. Consult your system

programmer to see whether this component has been installed on your system.

The converters are as follows:

 Round Trip Conversions(RTC) or Customized

 Round Trip Conversions(C-RTC), which means round trip with exceptions.

 Conversions:

 Latin-1 EBCDIC to/from Latin-1 EBCDIC: RTC

 Non-Latin-1 EBCDIC to/from Latin-1 EBCDIC: RTC

 Latin-1 ASCII to/from Latin-1 EBCDIC: C-RTC

 Non_latin-1 ASCII to/from Latin-1 EBCDIC: C-RTC

 Example of Customized Round Trip Conversions(C-RTC) is

 IBM-850 to/from IBM-1047 conversion.

 Customized Round Trip Conversion

 IBM-850 IBM-1047

 Code Point Code Point

 0A <-> 15

 DA -> 3F

 0A <- 25

The code set converters provided as programs are shown in Table 106 on page

803. The GENXLT source for the code set converters are shipped in the

CEE.SCEEGXLT data set.

802 z/OS V1R8.0 XL C/C++ Programming Guide

Notes:

1. The <prefix> in the Program Name column is shown in the following table:

 Table 105. Referencing data types

Converter Prefix

31-bit EDCU

31-bit XPLINK CEHU

AMODE 64 CEQU

2. Specify IBM-932C or IBM-eucJC as the iconv_open() source or target code set

name to set up for conversion of POSIX data encoded by IBM-932 or

IBM-eucJP to or from a host code set encoding of the data such as IBM-930 or

IBM-939.

Examples of POSIX data are C/C++ source and shell scripts. The data includes

characters from the POSIX character set. The names IBM-932C and IBM-eucJC

indicate that the <yen> and <overline> characters in POSIX data encoded by

IBM-932 or IBM-eucJP map to the <backslash> and <tilde> characters,

respectively, when the data is converted to or from host encodings.

 Table 106. Coded character set conversion tables

FromCode ToCode GENXLT source Program Name

IBM-037 IBM-500 Yes <prefix>EAEO

IBM-037 IBM-850 Yes <prefix>EAAA

IBM-037 IBM-924 Yes <prefix>EAEZ

IBM-037 IBM-1047 Yes <prefix>EAEY

IBM-037 ISO8859-1 Yes <prefix>EAI1

IBM-037 UCS-2 No <prefix>EAU2

IBM-037 UTF-8 No <prefix>EAF8

IBM-273 IBM-500 Yes <prefix>EBEO

IBM-273 IBM-850 Yes <prefix>EBAA

IBM-273 IBM-924 Yes <prefix>EBEZ

IBM-273 IBM-1047 Yes <prefix>EBEY

IBM-273 ISO8859-1 Yes <prefix>EBI1

IBM-273 UCS-2 No <prefix>EBU2

IBM-273 UTF-8 No <prefix>EBF8

IBM-274 IBM-500 Yes <prefix>ECEO

IBM-274 IBM-1047 Yes <prefix>ECEY

IBM-274 IBM-1148 Yes <prefix>ECHO

IBM-274 ISO8859-1 Yes <prefix>ECI1

IBM-274 UCS-2 No <prefix>ECU2

IBM-274 UTF-8 No <prefix>ECF8

IBM-275 IBM-500 Yes <prefix>EDEO

IBM-275 IBM-1047 Yes <prefix>EDEY

IBM-275 IBM-1148 Yes <prefix>EDHO

IBM-275 ISO8859-1 Yes <prefix>EDI1

IBM-275 UCS-2 No <prefix>EDU2

Chapter 57. Code set conversion utilities 803

Table 106. Coded character set conversion tables (continued)

FromCode ToCode GENXLT source Program Name

IBM-275 UTF-8 No <prefix>EDF8

IBM-277 IBM-500 Yes <prefix>EEEO

IBM-277 IBM-850 Yes <prefix>EEAA

IBM-277 IBM-1047 Yes <prefix>EEEY

IBM-277 ISO8859-1 Yes <prefix>EEI1

IBM-277 UCS-2 No <prefix>EEU2

IBM-277 UTF-8 No <prefix>EEF8

IBM-278 IBM-500 Yes <prefix>EFEO

IBM-278 IBM-850 Yes <prefix>EFAA

IBM-278 IBM-924 Yes <prefix>EFEZ

IBM-278 IBM-1047 Yes <prefix>EFEY

IBM-278 ISO8859-1 Yes <prefix>EFI1

IBM-278 UCS-2 No <prefix>EFU2

IBM-278 UTF-8 No <prefix>EFF8

IBM-280 IBM-500 Yes <prefix>EGEO

IBM-280 IBM-850 Yes <prefix>EGAA

IBM-280 IBM-924 Yes <prefix>EGEZ

IBM-280 IBM-1047 Yes <prefix>EGEY

IBM-280 ISO8859-1 Yes <prefix>EGI1

IBM-280 UCS-2 No <prefix>EGU2

IBM-280 UTF-8 No <prefix>EGF8

IBM-281 IBM-500 Yes <prefix>EHEO

IBM-281 IBM-1047 Yes <prefix>EHEY

IBM-281 IBM-1148 Yes <prefix>EHHO

IBM-281 ISO8859-1 Yes <prefix>EHI1

IBM-282 IBM-500 Yes <prefix>EIEO

IBM-282 IBM-1047 Yes <prefix>EIEY

IBM-282 IBM-1148 Yes <prefix>EIHO

IBM-282 ISO8859-1 Yes <prefix>EII1

IBM-282 UCS-2 No <prefix>EIU2

IBM-282 UTF-8 No <prefix>EIF8

IBM-284 IBM-500 Yes <prefix>EJEO

IBM-284 IBM-850 Yes <prefix>EJAA

IBM-284 IBM-924 Yes <prefix>EJEZ

IBM-284 IBM-1047 Yes <prefix>EJEY

IBM-284 ISO8859-1 Yes <prefix>EJI1

IBM-284 UCS-2 No <prefix>EJU2

IBM-284 UTF-8 No <prefix>EJF8

IBM-285 IBM-500 Yes <prefix>EKEO

IBM-285 IBM-850 Yes <prefix>EKAA

804 z/OS V1R8.0 XL C/C++ Programming Guide

Table 106. Coded character set conversion tables (continued)

FromCode ToCode GENXLT source Program Name

IBM-285 IBM-924 Yes <prefix>EKEZ

IBM-285 IBM-1047 Yes <prefix>EKEY

IBM-285 ISO8859-1 Yes <prefix>EKI1

IBM-285 UCS-2 No <prefix>EKU2

IBM-285 UTF-8 No <prefix>EKF8

IBM-290 IBM-500 Yes <prefix>ELEO

IBM-290 IBM-932 Yes <prefix>ELAB

IBM-290 IBM-932C Yes <prefix>ELAG

IBM-290 IBM-1027 Yes <prefix>ELEX

IBM-290 IBM-1047 Yes <prefix>ELEY

IBM-290 IBM-1148 Yes <prefix>ELHO

IBM-290 IBM-eucJC No <prefix>ELAH

IBM-290 IBM-eucJP No <prefix>ELAC

IBM-290 ISO8859-1 Yes <prefix>ELI1

IBM-290 UCS-2 No <prefix>ELU2

IBM-290 UTF-8 No <prefix>ELF8

IBM-297 IBM-500 Yes <prefix>EMEO

IBM-297 IBM-850 Yes <prefix>EMAA

IBM-297 IBM-924 Yes <prefix>EMEZ

IBM-297 IBM-1047 Yes <prefix>EMEY

IBM-297 ISO8859-1 Yes <prefix>EMI1

IBM-297 UCS-2 No <prefix>EMU2

IBM-297 UTF-8 No <prefix>EMF8

IBM-300 IBM-eucJP No <prefix>ENAC

IBM-300 IBM-eucJC No <prefix>ENAH

IBM-300 IBM-932 No <prefix>ENAB

IBM-300 IBM-932C No <prefix>ENAG

IBM-300 UCS-2 No <prefix>ENU2

IBM-300 UTF-8 No <prefix>ENF8

IBM-420 UCS-2 No <prefix>FFU2

IBM-420 UTF-8 No <prefix>FFF8

IBM-424 UCS-2 No <prefix>FBU2

IBM-424 UTF-8 No <prefix>FBF8

IBM-437 UCS-2 No <prefix>AVU2

IBM-437 UTF-8 No <prefix>AVF8

IBM-500 IBM-037 Yes <prefix>EOEA

IBM-500 IBM-273 Yes <prefix>EOEB

IBM-500 IBM-274 Yes <prefix>EOEC

IBM-500 IBM-275 Yes <prefix>EOED

IBM-500 IBM-277 Yes <prefix>EOEE

Chapter 57. Code set conversion utilities 805

Table 106. Coded character set conversion tables (continued)

FromCode ToCode GENXLT source Program Name

IBM-500 IBM-278 Yes <prefix>EOEF

IBM-500 IBM-280 Yes <prefix>EOEG

IBM-500 IBM-281 Yes <prefix>EOEH

IBM-500 IBM-282 Yes <prefix>EOEI

IBM-500 IBM-284 Yes <prefix>EOEJ

IBM-500 IBM-285 Yes <prefix>EOEK

IBM-500 IBM-290 Yes <prefix>EOEL

IBM-500 IBM-297 Yes <prefix>EOEM

IBM-500 IBM-850 Yes <prefix>EOAA

IBM-500 IBM-871 Yes <prefix>EOER

IBM-500 IBM-924 Yes <prefix>EOEZ

IBM-500 IBM-1027 Yes <prefix>EOEX

IBM-500 IBM-1047 Yes <prefix>EOEY

IBM-500 IBM-1140 Yes <prefix>EOHA

IBM-500 IBM-1141 Yes <prefix>EOHB

IBM-500 IBM-1142 Yes <prefix>EOHE

IBM-500 IBM-1143 Yes <prefix>EOHF

IBM-500 IBM-1144 Yes <prefix>EOHG

IBM-500 IBM-1145 Yes <prefix>EOHJ

IBM-500 IBM-1146 Yes <prefix>EOHK

IBM-500 IBM-1147 Yes <prefix>EOHM

IBM-500 IBM-1149 Yes <prefix>EOHR

IBM-500 ISO8859-1 Yes <prefix>EOI1

IBM-500 UCS-2 No <prefix>EOU2

IBM-500 UTF-8 No <prefix>EOF8

IBM-808 UCS-2 No <prefix>LFU2

IBM-808 UTF-8 No <prefix>LFF8

IBM-813 UCS-2 No <prefix>I7U2

IBM-813 UTF-8 No <prefix>I7F8

IBM-819 UCS-2 No <prefix>I1U2

IBM-819 UTF-8 No <prefix>I1F8

IBM-833 IBM-1047 Yes <prefix>GPEY

IBM-833 UCS-2 No <prefix>GPU2

IBM-833 UTF-8 No <prefix>GPF8

IBM-834 UCS-2 No <prefix>GQU2

IBM-834 UTF-8 No <prefix>GQF8

IBM-835 UCS-2 No <prefix>GOU2

IBM-835 UTF-8 No <prefix>GOF8

IBM-836 IBM-1047 Yes <prefix>GLEY

IBM-836 UCS-2 No <prefix>GLU2

806 z/OS V1R8.0 XL C/C++ Programming Guide

Table 106. Coded character set conversion tables (continued)

FromCode ToCode GENXLT source Program Name

IBM-836 UTF-8 No <prefix>GLF8

IBM-837 UCS-2 No <prefix>GMU2

IBM-837 UTF-8 No <prefix>GMF8

IBM-838 UCS-2 No <prefix>EPU2

IBM-838 UTF-8 No <prefix>EPF8

IBM-848 UCS-2 No <prefix>ASU2

IBM-848 UTF-8 No <prefix>ASF8

IBM-850 IBM-037 Yes <prefix>AAEA

IBM-850 IBM-273 Yes <prefix>AAEB

IBM-850 IBM-277 Yes <prefix>AAEE

IBM-850 IBM-278 Yes <prefix>AAEF

IBM-850 IBM-280 Yes <prefix>AAEG

IBM-850 IBM-284 Yes <prefix>AAEJ

IBM-850 IBM-285 Yes <prefix>AAEK

IBM-850 IBM-297 Yes <prefix>AAEM

IBM-850 IBM-500 Yes <prefix>AAEO

IBM-850 IBM-871 Yes <prefix>AAER

IBM-850 IBM-1047 Yes <prefix>AAEY

IBM-850 IBM-1140 Yes <prefix>AAHA

IBM-850 IBM-1141 Yes <prefix>AAHB

IBM-850 IBM-1142 Yes <prefix>AAHE

IBM-850 IBM-1143 Yes <prefix>AAHF

IBM-850 IBM-1144 Yes <prefix>AAHG

IBM-850 IBM-1145 Yes <prefix>AAHJ

IBM-850 IBM-1146 Yes <prefix>AAHK

IBM-850 IBM-1147 Yes <prefix>AAHM

IBM-850 IBM-1148 Yes <prefix>AAHO

IBM-850 IBM-1149 Yes <prefix>AAHR

IBM-850 UCS-2 No <prefix>AAU2

IBM-850 UTF-8 No <prefix>AAF8

IBM-852 UCS-2 No <prefix>CBU2

IBM-852 UTF-8 No <prefix>CBF8

IBM-855 UCS-2 No <prefix>CEU2

IBM-855 UTF-8 No <prefix>CEF8

IBM-856 UCS-2 No <prefix>CHU2

IBM-856 UTF-8 No <prefix>CHF8

IBM-858 IBM-1047 Yes <prefix>AIEY

IBM-858 IBM-1140 Yes <prefix>AIHA

IBM-858 IBM-1141 Yes <prefix>AIHB

IBM-858 IBM-1142 Yes <prefix>AIHE

Chapter 57. Code set conversion utilities 807

Table 106. Coded character set conversion tables (continued)

FromCode ToCode GENXLT source Program Name

IBM-858 IBM-1143 Yes <prefix>AIHF

IBM-858 IBM-1144 Yes <prefix>AIHG

IBM-858 IBM-1145 Yes <prefix>AIHJ

IBM-858 IBM-1146 Yes <prefix>AIHK

IBM-858 IBM-1147 Yes <prefix>AIHM

IBM-858 IBM-1148 Yes <prefix>AIHO

IBM-858 IBM-1149 Yes <prefix>AIHR

IBM-858 UCS-2 No <prefix>AIU2

IBM-858 UTF-8 No <prefix>AIF8

IBM-861 UCS-2 No <prefix>CAU2

IBM-861 UTF-8 No <prefix>CAF8

IBM-862 UCS-2 No <prefix>BHU2

IBM-862 UTF-8 No <prefix>BHF8

IBM-864 UCS-2 No <prefix>CFU2

IBM-864 UTF-8 No <prefix>CFF8

IBM-866 UCS-2 No <prefix>BEU2

IBM-866 UTF-8 No <prefix>BEF8

IBM-867 UCS-2 No <prefix>LJU2

IBM-869 UCS-2 No <prefix>CGU2

IBM-869 UTF-8 No <prefix>CGF8

IBM-870 UCS-2 No <prefix>EQU2

IBM-870 UTF-8 No <prefix>EQF8

IBM-871 IBM-500 Yes <prefix>EREO

IBM-871 IBM-850 Yes <prefix>ERAA

IBM-871 IBM-924 Yes <prefix>EREZ

IBM-871 IBM-1047 Yes <prefix>EREY

IBM-871 ISO8859-1 Yes <prefix>ERI1

IBM-871 UCS-2 No <prefix>ERU2

IBM-871 UTF-8 No <prefix>ERF8

IBM-872 UCS-2 No <prefix>LEU2

IBM-872 UTF-8 No <prefix>LEF8

IBM-874 UCS-2 No <prefix>BUU2

IBM-874 UTF-8 No <prefix>BUF8

IBM-875 IBM-1047 Yes <prefix>ESEY

IBM-875 ISO8859-7 Yes <prefix>ESI7

IBM-875 UCS-2 No <prefix>ESU2

IBM-875 UTF-8 No <prefix>ESF8

IBM-867 UTF-8 No <prefix>LJF8

IBM-880 UCS-2 No <prefix>ETU2

IBM-880 UTF-8 No <prefix>ETF8

808 z/OS V1R8.0 XL C/C++ Programming Guide

Table 106. Coded character set conversion tables (continued)

FromCode ToCode GENXLT source Program Name

IBM-901 UCS-2 No <prefix>LHU2

IBM-901 UTF-8 No <prefix>LHF8

IBM-902 UCS-2 No <prefix>LDU2

IBM-902 UTF-8 No <prefix>LDF8

IBM-904 UCS-2 No <prefix>CNU2

IBM-904 UTF-8 No <prefix>CNF8

IBM-912 UCS-2 No <prefix>I2U2

IBM-912 UTF-8 No <prefix>I2F8

IBM-914 UCS-2 No <prefix>I4U2

IBM-914 UTF-8 No <prefix>I4F8

IBM-915 UCS-2 No <prefix>I5U2

IBM-915 UTF-8 No <prefix>I5F8

IBM-916 UCS-2 No <prefix>I8U2

IBM-916 UTF-8 No <prefix>I8F8

IBM-920 UCS-2 No <prefix>I9U2

IBM-920 UTF-8 No <prefix>I9F8

IBM-921 UCS-2 No <prefix>BDU2

IBM-921 UTF-8 No <prefix>BDF8

IBM-922 UCS-2 No <prefix>ADU2

IBM-922 UTF-8 No <prefix>ADF8

IBM-923 IBM-924 Yes <prefix>IFEZ

IBM-924 IBM-037 Yes <prefix>EZEA

IBM-924 IBM-273 Yes <prefix>EZEB

IBM-924 IBM-278 Yes <prefix>EZEF

IBM-924 IBM-280 Yes <prefix>EZEG

IBM-924 IBM-284 Yes <prefix>EZEJ

IBM-924 IBM-285 Yes <prefix>EZEK

IBM-924 IBM-297 Yes <prefix>EZEM

IBM-924 IBM-500 Yes <prefix>EZEO

IBM-924 IBM-871 Yes <prefix>EZER

IBM-924 IBM-923 Yes <prefix>EZIF

IBM-924 IBM-1047 Yes <prefix>EZEY

IBM-924 IBM-1140 Yes <prefix>EZHA

IBM-924 IBM-1141 Yes <prefix>EZHB

IBM-924 IBM-1142 Yes <prefix>EZHE

IBM-924 IBM-1143 Yes <prefix>EZHF

IBM-924 IBM-1144 Yes <prefix>EZHG

IBM-924 IBM-1145 Yes <prefix>EZHJ

IBM-924 IBM-1146 Yes <prefix>EZHK

IBM-924 IBM-1147 Yes <prefix>EZHM

Chapter 57. Code set conversion utilities 809

Table 106. Coded character set conversion tables (continued)

FromCode ToCode GENXLT source Program Name

IBM-924 IBM-1148 Yes <prefix>EZHO

IBM-924 IBM-1149 Yes <prefix>EZHR

IBM-924 IBM-4971 Yes <prefix>EZHS

IBM-927 UCS-2 No <prefix>COU2

IBM-927 UTF-8 No <prefix>COF8

IBM-930 IBM-932 No <prefix>EUAB

IBM-930 IBM-932C No <prefix>EUAG

IBM-930 IBM-956 No <prefix>EUJB

IBM-930 IBM-957 No <prefix>EUJC

IBM-930 IBM-958 No <prefix>EUJD

IBM-930 IBM-959 No <prefix>EUJE

IBM-930 IBM-1047 Yes <prefix>EUEY

IBM-930 IBM-2022-JP No <prefix>EUJA

IBM-930 IBM-5052 No <prefix>EUJF

IBM-930 IBM-5053 No <prefix>EUJG

IBM-930 IBM-5054 No <prefix>EUJH

IBM-930 IBM-5055 No <prefix>EUJI

IBM-930 IBM-eucJP No <prefix>EUAC

IBM-930 IBM-eucJC No <prefix>EUAH

IBM-930 UCS-2 No <prefix>EUU2

IBM-930 UTF-8 No <prefix>EUF8

IBM-932 IBM-290 Yes <prefix>ABEL

IBM-932 IBM-300 No <prefix>ABEN

IBM-932C IBM-300 No <prefix>AGEN

IBM-932 IBM-930 No <prefix>ABEU

IBM-932C IBM-930 No <prefix>AGEU

IBM-932 IBM-939 No <prefix>ABEV

IBM-932C IBM-939 No <prefix>AGEV

IBM-932C IBM-290 Yes <prefix>AGEL

IBM-932 IBM-1027 Yes <prefix>ABEX

IBM-932C IBM-1027 Yes <prefix>AGEX

IBM-932C IBM-1047 Yes <prefix>AGEY

IBM-933 IBM-1047 Yes <prefix>GZEY

IBM-933 ISO8859-1 Yes <prefix>GZI1

IBM-933 UCS-2 No <prefix>GZU2

IBM-933 UTF-8 No <prefix>GZF8

IBM-935 IBM-1047 Yes <prefix>GYEY

IBM-935 UCS-2 No <prefix>GYU2

IBM-935 UTF-8 No <prefix>GYF8

IBM-937 IBM-1047 Yes <prefix>GWEY

810 z/OS V1R8.0 XL C/C++ Programming Guide

Table 106. Coded character set conversion tables (continued)

FromCode ToCode GENXLT source Program Name

IBM-937 UCS-2 No <prefix>GWU2

IBM-937 UTF-8 No <prefix>GWF8

IBM-939 IBM-932 No <prefix>EVAB

IBM-939 IBM-932C Yes <prefix>EVAG

IBM-939 IBM-956 No <prefix>EVJB

IBM-939 IBM-957 No <prefix>EVJC

IBM-939 IBM-958 No <prefix>EVJD

IBM-939 IBM-959 No <prefix>EVJE

IBM-939 IBM-1047 Yes <prefix>EVEY

IBM-939 IBM-2022-JP No <prefix>EVJA

IBM-939 IBM-5052 No <prefix>EVJF

IBM-939 IBM-5053 No <prefix>EVJG

IBM-939 IBM-5054 No <prefix>EVJH

IBM-939 IBM-5055 No <prefix>EVJI

IBM-939 IBM-eucJP No <prefix>EVAC

IBM-939 IBM-eucJC No <prefix>EVAH

IBM-939 UCS-2 No <prefix>EVU2

IBM-939 UTF-8 No <prefix>EVF8

IBM-942 UCS-2 No <prefix>ABU2

IBM-942 UTF-8 No <prefix>ABF8

IBM-943 UCS-2 No <prefix>AJU2

IBM-943 UTF-8 No <prefix>AJF8

IBM-946 UCS-2 No <prefix>DYU2

IBM-946 UTF-8 No <prefix>DYF8

IBM-948 UCS-2 No <prefix>CWU2

IBM-948 UTF-8 No <prefix>CWF8

IBM-949 UCS-2 No <prefix>CZU2

IBM-949 UTF-8 No <prefix>CZF8

IBM-950 UCS-2 No <prefix>DWU2

IBM-950 UTF-8 No <prefix>DWF8

IBM-951 UCS-2 No <prefix>CQU2

IBM-951 UTF-8 No <prefix>CQF8

IBM-956 IBM-930 No <prefix>JBEU

IBM-956 IBM-939 No <prefix>JBEV

IBM-957 IBM-930 No <prefix>JCEU

IBM-957 IBM-939 No <prefix>JCEV

IBM-958 IBM-930 No <prefix>JDEU

IBM-958 IBM-939 No <prefix>JDEV

IBM-959 IBM-930 No <prefix>JEEU

IBM-959 IBM-939 No <prefix>JEEV

Chapter 57. Code set conversion utilities 811

Table 106. Coded character set conversion tables (continued)

FromCode ToCode GENXLT source Program Name

IBM-964 UCS-2 No <prefix>BWU2

IBM-964 UTF-8 No <prefix>BWF8

IBM-970 UCS-2 No <prefix>BZU2

IBM-970 UTF-8 No <prefix>BZF8

IBM-1025 UCS-2 No <prefix>FEU2

IBM-1025 UTF-8 No <prefix>FEF8

IBM-1026 IBM-1047 Yes <prefix>EWEY

IBM-1026 IBM-1254 Yes <prefix>EWDI

IBM-1026 ISO8859-9 Yes <prefix>EWI9

IBM-1026 UCS-2 No <prefix>EWU2

IBM-1026 UTF-8 No <prefix>EWF8

IBM-1027 IBM-290 Yes <prefix>EXEL

IBM-1027 IBM-500 Yes <prefix>EXEO

IBM-1027 IBM-932 Yes <prefix>EXAB

IBM-1027 IBM-932C Yes <prefix>EXAG

IBM-1027 IBM-1047 Yes <prefix>EXEY

IBM-1027 IBM-1148 Yes <prefix>EXHO

IBM-1027 IBM-eucJC No <prefix>EXAH

IBM-1027 IBM-eucJP No <prefix>EXAC

IBM-1027 ISO8859-1 Yes <prefix>EXI1

IBM-1027 UCS-2 No <prefix>EXU2

IBM-1027 UTF-8 No <prefix>EXF8

IBM-1046 UCS-2 No <prefix>AFU2

IBM-1046 UTF-8 No <prefix>AFF8

IBM-1047 IBM-037 Yes <prefix>EYEA

IBM-1047 IBM-273 Yes <prefix>EYEB

IBM-1047 IBM-274 Yes <prefix>EYEC

IBM-1047 IBM-275 Yes <prefix>EYED

IBM-1047 IBM-277 Yes <prefix>EYEE

IBM-1047 IBM-278 Yes <prefix>EYEF

IBM-1047 IBM-280 Yes <prefix>EYEG

IBM-1047 IBM-281 Yes <prefix>EYEH

IBM-1047 IBM-282 Yes <prefix>EYEI

IBM-1047 IBM-284 Yes <prefix>EYEJ

IBM-1047 IBM-285 Yes <prefix>EYEK

IBM-1047 IBM-290 Yes <prefix>EYEL

IBM-1047 IBM-297 Yes <prefix>EYEM

IBM-1047 IBM-500 Yes <prefix>EYEO

IBM-1047 IBM-833 Yes <prefix>EYGP

IBM-1047 IBM-836 Yes <prefix>EYGL

812 z/OS V1R8.0 XL C/C++ Programming Guide

Table 106. Coded character set conversion tables (continued)

FromCode ToCode GENXLT source Program Name

IBM-1047 IBM-850 Yes <prefix>EYAA

IBM-1047 IBM-858 Yes <prefix>EYAI

IBM-1047 IBM-871 Yes <prefix>EYER

IBM-1047 IBM-875 Yes <prefix>EYES

IBM-1047 IBM-924 Yes <prefix>EYEZ

IBM-1047 IBM-930 Yes <prefix>EYEU

IBM-1047 IBM-933 Yes <prefix>EYGZ

IBM-1047 IBM-935 Yes <prefix>EYGY

IBM-1047 IBM-937 Yes <prefix>EYGW

IBM-1047 IBM-939 Yes <prefix>EYEV

IBM-1047 IBM-1026 Yes <prefix>EYEW

IBM-1047 IBM-1027 Yes <prefix>EYEX

IBM-1047 IBM-1140 Yes <prefix>EYHA

IBM-1047 IBM-1141 Yes <prefix>EYHB

IBM-1047 IBM-1142 Yes <prefix>EYHE

IBM-1047 IBM-1143 Yes <prefix>EYHF

IBM-1047 IBM-1144 Yes <prefix>EYHG

IBM-1047 IBM-1145 Yes <prefix>EYHJ

IBM-1047 IBM-1146 Yes <prefix>EYHK

IBM-1047 IBM-1147 Yes <prefix>EYHM

IBM-1047 IBM-1148 Yes <prefix>EYHO

IBM-1047 IBM-1149 Yes <prefix>EYHR

IBM-1047 ISO8859-1 Yes <prefix>EYI1

IBM-1047 UCS-2 No <prefix>EYU2

IBM-1047 UTF-8 No <prefix>EYF8

IBM-1088 UCS-2 No <prefix>CPU2

IBM-1088 UTF-8 No <prefix>CPF8

IBM-1089 UCS-2 No <prefix>I6U2

IBM-1089 UTF-8 No <prefix>I6F8

IBM-1112 UCS-2 No <prefix>GDU2

IBM-1112 UTF-8 No <prefix>GDF8

IBM-1115 UCS-2 No <prefix>CLU2

IBM-1115 UTF-8 No <prefix>CLF8

IBM-1122 UCS-2 No <prefix>FDU2

IBM-1122 UTF-8 No <prefix>FDF8

IBM-1123 UCS-2 No <prefix>FHU2

IBM-1123 UTF-8 No <prefix>FHF8

IBM-1124 UCS-2 No <prefix>AUU2

IBM-1124 UTF-8 No <prefix>AUF8

IBM-1125 UTF-8 No <prefix>ATF8

Chapter 57. Code set conversion utilities 813

Table 106. Coded character set conversion tables (continued)

FromCode ToCode GENXLT source Program Name

IBM-1140 IBM-500 Yes <prefix>HAEO

IBM-1140 IBM-850 Yes <prefix>HAAA

IBM-1140 IBM-858 Yes <prefix>HAAI

IBM-1140 IBM-924 Yes <prefix>HAEZ

IBM-1140 IBM-1047 Yes <prefix>HAEY

IBM-1140 IBM-1148 Yes <prefix>HAHO

IBM-1140 ISO8859-1 Yes <prefix>HAI1

IBM-1140 UCS-2 No <prefix>HAU2

IBM-1140 UTF-8 No <prefix>HAF8

IBM-1141 IBM-500 Yes <prefix>HBEO

IBM-1141 IBM-850 Yes <prefix>HBAA

IBM-1141 IBM-858 Yes <prefix>HBAI

IBM-1141 IBM-924 Yes <prefix>HBEZ

IBM-1141 IBM-1047 Yes <prefix>HBEY

IBM-1141 IBM-1148 Yes <prefix>HBHO

IBM-1141 ISO8859-1 Yes <prefix>HBI1

IBM-1141 UCS-2 No <prefix>HBU2

IBM-1141 UTF-8 No <prefix>HBF8

IBM-1142 IBM-500 Yes <prefix>HEEO

IBM-1142 IBM-850 Yes <prefix>HEAA

IBM-1142 IBM-858 Yes <prefix>HEAI

IBM-1142 IBM-924 Yes <prefix>HEEZ

IBM-1142 IBM-1047 Yes <prefix>HEEY

IBM-1142 IBM-1148 Yes <prefix>HEHO

IBM-1142 ISO8859-1 Yes <prefix>HEI1

IBM-1142 UCS-2 No <prefix>HEU2

IBM-1142 UTF-8 No <prefix>HEF8

IBM-1143 IBM-500 Yes <prefix>HFEO

IBM-1143 IBM-850 Yes <prefix>HFAA

IBM-1143 IBM-858 Yes <prefix>HFAI

IBM-1143 IBM-924 Yes <prefix>HFEZ

IBM-1143 IBM-1047 Yes <prefix>HFEY

IBM-1143 IBM-1148 Yes <prefix>HFHO

IBM-1143 ISO8859-1 Yes <prefix>HFI1

IBM-1143 UCS-2 No <prefix>HFU2

IBM-1143 UTF-8 No <prefix>HFF8

IBM-1144 IBM-500 Yes <prefix>HGEO

IBM-1144 IBM-850 Yes <prefix>HGAA

IBM-1144 IBM-858 Yes <prefix>HGAI

IBM-1144 IBM-924 Yes <prefix>HGEZ

814 z/OS V1R8.0 XL C/C++ Programming Guide

Table 106. Coded character set conversion tables (continued)

FromCode ToCode GENXLT source Program Name

IBM-1144 IBM-1047 Yes <prefix>HGEY

IBM-1144 IBM-1148 Yes <prefix>HGHO

IBM-1144 ISO8859-1 Yes <prefix>HGI1

IBM-1144 UCS-2 No <prefix>HGU2

IBM-1144 UTF-8 No <prefix>HGF8

IBM-1145 IBM-500 Yes <prefix>HJEO

IBM-1145 IBM-850 Yes <prefix>HJAA

IBM-1145 IBM-858 Yes <prefix>HJAI

IBM-1145 IBM-924 Yes <prefix>HJEZ

IBM-1145 IBM-1047 Yes <prefix>HJEY

IBM-1145 IBM-1148 Yes <prefix>HJHO

IBM-1145 ISO8859-1 Yes <prefix>HJI1

IBM-1145 UCS-2 No <prefix>HJU2

IBM-1145 UTF-8 No <prefix>HJF8

IBM-1146 IBM-500 Yes <prefix>HKEO

IBM-1146 IBM-850 Yes <prefix>HKAA

IBM-1146 IBM-858 Yes <prefix>HKAI

IBM-1146 IBM-924 Yes <prefix>HKEZ

IBM-1146 IBM-1047 Yes <prefix>HKEY

IBM-1146 IBM-1148 Yes <prefix>HKHO

IBM-1146 ISO8859-1 Yes <prefix>HKI1

IBM-1146 UCS-2 No <prefix>HKU2

IBM-1146 UTF-8 No <prefix>HKF8

IBM-1147 IBM-500 Yes <prefix>HMEO

IBM-1147 IBM-850 Yes <prefix>HMAA

IBM-1147 IBM-858 Yes <prefix>HMAI

IBM-1147 IBM-924 Yes <prefix>HMEZ

IBM-1147 IBM-1047 Yes <prefix>HMEY

IBM-1147 IBM-1148 Yes <prefix>HMHO

IBM-1147 ISO8859-1 Yes <prefix>HMI1

IBM-1147 UCS-2 No <prefix>HMU2

IBM-1147 UTF-8 No <prefix>HMF8

IBM-1148 IBM-274 Yes <prefix>HOEC

IBM-1148 IBM-275 Yes <prefix>HOED

IBM-1148 IBM-281 Yes <prefix>HOEH

IBM-1148 IBM-282 Yes <prefix>HOEI

IBM-1148 IBM-290 Yes <prefix>HOEL

IBM-1148 IBM-850 Yes <prefix>HOAA

IBM-1148 IBM-858 Yes <prefix>HOAI

IBM-1148 IBM-924 Yes <prefix>HOEZ

Chapter 57. Code set conversion utilities 815

Table 106. Coded character set conversion tables (continued)

FromCode ToCode GENXLT source Program Name

IBM-1148 IBM-1027 Yes <prefix>HOEX

IBM-1148 IBM-1047 Yes <prefix>HOEY

IBM-1148 IBM-1140 Yes <prefix>HOHA

IBM-1148 IBM-1141 Yes <prefix>HOHB

IBM-1148 IBM-1142 Yes <prefix>HOHE

IBM-1148 IBM-1143 Yes <prefix>HOHF

IBM-1148 IBM-1144 Yes <prefix>HOHG

IBM-1148 IBM-1145 Yes <prefix>HOHJ

IBM-1148 IBM-1146 Yes <prefix>HOHK

IBM-1148 IBM-1147 Yes <prefix>HOHM

IBM-1148 IBM-1149 Yes <prefix>HOHR

IBM-1148 ISO8859-1 Yes <prefix>HOI1

IBM-1148 UCS-2 No <prefix>HOU2

IBM-1148 UTF-8 No <prefix>HOF8

IBM-1149 IBM-500 Yes <prefix>HREO

IBM-1149 IBM-850 Yes <prefix>HRAA

IBM-1149 IBM-858 Yes <prefix>HRAI

IBM-1149 IBM-924 Yes <prefix>HREZ

IBM-1149 IBM-1047 Yes <prefix>HREY

IBM-1149 IBM-1148 Yes <prefix>HRHO

IBM-1149 ISO8859-1 Yes <prefix>HRI1

IBM-1149 UCS-2 No <prefix>HRU2

IBM-1149 UTF-8 No <prefix>HRF8

IBM-1153 UCS-2 No <prefix>MBU2

IBM-1153 UTF-8 No <prefix>MBF8

IBM-1154 UCS-2 No <prefix>HTU2

IBM-1154 UTF-8 No <prefix>HTF8

IBM-1155 UCS-2 No <prefix>HWU2

IBM-1155 UTF-8 No <prefix>HWF8

IBM-1156 UCS-2 No <prefix>HZU2

IBM-1156 UTF-8 No <prefix>HZF8

IBM-1157 UCS-2 No <prefix>HDU2

IBM-1157 UTF-8 No <prefix>HDF8

IBM-1158 UCS-2 No <prefix>FIU2

IBM-1158 UTF-8 No <prefix>FIF8

IBM-1160 UCS-2 No <prefix>HPU2

IBM-1160 UTF-8 No <prefix>HPF8

IBM-1161 UCS-2 No <prefix>LUU2

IBM-1161 UTF-8 No <prefix>LUF8

IBM-1165 UCS-2 No <prefix>FGU2

816 z/OS V1R8.0 XL C/C++ Programming Guide

Table 106. Coded character set conversion tables (continued)

FromCode ToCode GENXLT source Program Name

IBM-1165 UTF-8 No <prefix>FGF8

IBM-1250 UCS-2 No <prefix>DBU2

IBM-1250 UTF-8 No <prefix>DBF8

IBM-1251 UCS-2 No <prefix>DEU2

IBM-1251 UTF-8 No <prefix>DEF8

IBM-1252 UCS-2 No <prefix>DAU2

IBM-1252 UTF-8 No <prefix>DAF8

IBM-1253 UCS-2 No <prefix>DGU2

IBM-1253 UTF-8 No <prefix>DGF8

IBM-1254 IBM-1026 Yes <prefix>DIEW

IBM-1254 UCS-2 No <prefix>DIU2

IBM-1254 UTF-8 No <prefix>DIF8

IBM-1255 UCS-2 No <prefix>DHU2

IBM-1255 UTF-8 No <prefix>DHF8

IBM-1256 UCS-2 No <prefix>DFU2

IBM-1256 UTF-8 No <prefix>DFF8

IBM12712 UCS-2 No <prefix>HHU2

IBM12712 UTF-8 No <prefix>HHF8

IBM-1363 UCS-2 No <prefix>LZU2

IBM-1363 UTF-8 No <prefix>LZF8

IBM-1364 UCS-2 No <prefix>KZU2

IBM-1364 UTF-8 No <prefix>KZF8

IBM-1380 UCS-2 No <prefix>CMU2

IBM-1380 UTF-8 No <prefix>CMF8

IBM-1381 UCS-2 No <prefix>CYU2

IBM-1381 UTF-8 No <prefix>CYF8

IBM-1383 UCS-2 No <prefix>BYU2

IBM-1383 UTF-8 No <prefix>BYF8

IBM-1386 UCS-2 No <prefix>CVU2

IBM-1386 UTF-8 No <prefix>CVF8

IBM-1388 UCS-2 No <prefix>GVU2

IBM-1388 UTF-8 No <prefix>GVF8

IBM-1390 UCS-2 No <prefix>HUU2

IBM-1390 UTF-8 No <prefix>HUF8

IBM-1399 UCS-2 No <prefix>HVU2

IBM-1399 UTF-8 No <prefix>HVF8

IBM13124 UCS-2 No <prefix>FKU2

IBM13124 UTF-8 No <prefix>FKF8

IBM16804 UCS-2 No <prefix>HCU2

IBM16804 UTF-8 No <prefix>HCF8

Chapter 57. Code set conversion utilities 817

Table 106. Coded character set conversion tables (continued)

FromCode ToCode GENXLT source Program Name

IBM17248 UCS-2 No <prefix>NJU2

IBM17248 UTF-8 No <prefix>NJF8

IBM-2022-JP IBM-930 No <prefix>JAEU

IBM-2022-JP IBM-939 No <prefix>JAEV

IBM33722 UCS-2 No <prefix>ACU2

IBM33722 UTF-8 No <prefix>ACF8

IBM-4909 IBM-4971 Yes <prefix>IAHS

IBM-4933 UCS-2 No <prefix>FJU2

IBM-4933 UTF-8 No <prefix>FJF8

IBM-4971 IBM-924 Yes <prefix>HSEZ

IBM-4971 IBM-4909 Yes <prefix>HSIA

IBM-5052 IBM-930 No <prefix>JFEU

IBM-5052 IBM-939 No <prefix>JFEV

IBM-5053 IBM-930 No <prefix>JGEU

IBM-5053 IBM-939 No <prefix>JGEV

IBM-5054 IBM-930 No <prefix>JHEU

IBM-5054 IBM-939 No <prefix>JHEV

IBM-5055 IBM-930 No <prefix>JIEU

IBM-5055 IBM-939 No <prefix>JIEV

IBM-5346 UCS-2 No <prefix>NBU2

IBM-5346 UTF-8 No <prefix>NBF8

IBM-5347 UCS-2 No <prefix>NEU2

IBM-5347 UTF-8 No <prefix>NEF8

IBM-5350 UCS-2 No <prefix>NIU2

IBM-5350 UTF-8 No <prefix>NIF8

IBM-5351 UCS-2 No <prefix>NHU2

IBM-5351 UTF-8 No <prefix>NHF8

IBM-5352 UCS-2 No <prefix>NFU2

IBM-5352 UTF-8 No <prefix>NFF8

IBM-53668 UCS-2 No <prefix>FVU2

IBM-53668 UTF-8 No <prefix>FVF8

IBM-9044 UCS-2 No <prefix>NGU2

IBM-9044 UTF-8 No <prefix>NGF8

IBM-9061 UCS-2 No <prefix>LGU2

IBM-9061 UTF-8 No <prefix>LGF8

IBM-9238 UCS-2 No <prefix>LIU2

IBM-9238 UTF-8 No <prefix>LIF8

IBM-eucJC IBM-290 Yes <prefix>AHEL

IBM-eucJC IBM-1027 No <prefix>AHEX

IBM-eucJP IBM-290 No <prefix>ACEL

818 z/OS V1R8.0 XL C/C++ Programming Guide

||||

||||

Table 106. Coded character set conversion tables (continued)

FromCode ToCode GENXLT source Program Name

IBM-eucJP IBM-300 No <prefix>ACEN

IBM-eucJC IBM-300 No <prefix>AHEN

IBM-eucJP IBM-930 No <prefix>ACEU

IBM-eucJC IBM-930 No <prefix>AHEU

IBM-eucJP IBM-939 No <prefix>ACEV

IBM-eucJC IBM-939 No <prefix>AHEV

IBM-eucJP IBM-1027 No <prefix>ACEX

ISO8859-1 IBM-037 Yes <prefix>I1EA

ISO8859-1 IBM-273 Yes <prefix>I1EB

ISO8859-1 IBM-274 Yes <prefix>I1EC

ISO8859-1 IBM-275 Yes <prefix>I1ED

ISO8859-1 IBM-277 Yes <prefix>I1EE

ISO8859-1 IBM-278 Yes <prefix>I1EF

ISO8859-1 IBM-280 Yes <prefix>I1EG

ISO8859-1 IBM-281 Yes <prefix>I1EH

ISO8859-1 IBM-282 Yes <prefix>I1EI

ISO8859-1 IBM-284 Yes <prefix>I1EJ

ISO8859-1 IBM-285 Yes <prefix>I1EK

ISO8859-1 IBM-290 Yes <prefix>I1EL

ISO8859-1 IBM-297 Yes <prefix>I1EM

ISO8859-1 IBM-500 Yes <prefix>I1EO

ISO8859-1 IBM-871 Yes <prefix>I1ER

ISO8859-1 IBM-933 Yes <prefix>I1GZ

ISO8859-1 IBM-1027 Yes <prefix>I1EX

ISO8859-1 IBM-1047 Yes <prefix>I1EY

ISO8859-1 IBM-1140 Yes <prefix>I1HA

ISO8859-1 IBM-1141 Yes <prefix>I1HB

ISO8859-1 IBM-1142 Yes <prefix>I1HE

ISO8859-1 IBM-1143 Yes <prefix>I1HF

ISO8859-1 IBM-1144 Yes <prefix>I1HG

ISO8859-1 IBM-1145 Yes <prefix>I1HJ

ISO8859-1 IBM-1146 Yes <prefix>I1HK

ISO8859-1 IBM-1147 Yes <prefix>I1HM

ISO8859-1 IBM-1148 Yes <prefix>I1HO

ISO8859-1 IBM-1149 Yes <prefix>I1HR

ISO8859-7 IBM-875 Yes <prefix>I7ES

ISO8859-9 IBM-1026 Yes <prefix>I9EW

UCS-2 IBM-037 No <prefix>U2EA

UCS-2 IBM-273 No <prefix>U2EB

UCS-2 IBM-274 No <prefix>U2EC

Chapter 57. Code set conversion utilities 819

Table 106. Coded character set conversion tables (continued)

FromCode ToCode GENXLT source Program Name

UCS-2 IBM-275 No <prefix>U2ED

UCS-2 IBM-277 No <prefix>U2EE

UCS-2 IBM-278 No <prefix>U2EF

UCS-2 IBM-280 No <prefix>U2EG

UCS-2 IBM-282 No <prefix>U2EI

UCS-2 IBM-284 No <prefix>U2EJ

UCS-2 IBM-285 No <prefix>U2EK

UCS-2 IBM-290 No <prefix>U2EL

UCS-2 IBM-297 No <prefix>U2EM

UCS-2 IBM-300 No <prefix>U2EN

UCS-2 IBM-420 No <prefix>U2FF

UCS-2 IBM-424 No <prefix>U2FB

UCS-2 IBM-437 No <prefix>U2AV

UCS-2 IBM-500 No <prefix>U2EO

UCS-2 IBM-808 No <prefix>U2LF

UCS-2 IBM-813 No <prefix>U2I7

UCS-2 IBM-819 No <prefix>U2I1

UCS-2 IBM-833 No <prefix>U2GP

UCS-2 IBM-834 No <prefix>U2GQ

UCS-2 IBM-835 No <prefix>U2GO

UCS-2 IBM-836 No <prefix>U2GL

UCS-2 IBM-837 No <prefix>U2GM

UCS-2 IBM-838 No <prefix>U2EP

UCS-2 IBM-848 No <prefix>U2AS

UCS-2 IBM-850 No <prefix>U2AA

UCS-2 IBM-852 No <prefix>U2CB

UCS-2 IBM-855 No <prefix>U2CE

UCS-2 IBM-856 No <prefix>U2CH

UCS-2 IBM-858 No <prefix>U2AI

UCS-2 IBM-861 No <prefix>U2CA

UCS-2 IBM-862 No <prefix>U2BH

UCS-2 IBM-864 No <prefix>U2CF

UCS-2 IBM-866 No <prefix>U2BE

UCS-2 IBM-869 No <prefix>U2CG

UCS-2 IBM-870 No <prefix>U2EQ

UCS-2 IBM-871 No <prefix>U2ER

UCS-2 IBM-872 No <prefix>U2LE

UCS-2 IBM-874 No <prefix>U2BU

UCS-2 IBM-875 No <prefix>U2ES

UCS-2 IBM-867 No <prefix>U2LJ

820 z/OS V1R8.0 XL C/C++ Programming Guide

Table 106. Coded character set conversion tables (continued)

FromCode ToCode GENXLT source Program Name

UCS-2 IBM-880 No <prefix>U2ET

UCS-2 IBM-901 No <prefix>U2LH

UCS-2 IBM-902 No <prefix>U2LD

UCS-2 IBM-904 No <prefix>U2CN

UCS-2 IBM-912 No <prefix>U2I2

UCS-2 IBM-914 No <prefix>U2I4

UCS-2 IBM-915 No <prefix>U2I5

UCS-2 IBM-916 No <prefix>U2I8

UCS-2 IBM-920 No <prefix>U2I9

UCS-2 IBM-921 No <prefix>U2BD

UCS-2 IBM-922 No <prefix>U2AD

UCS-2 IBM-927 No <prefix>U2CO

UCS-2 IBM-930 No <prefix>U2EU

UCS-2 IBM-933 No <prefix>U2GZ

UCS-2 IBM-935 No <prefix>U2GY

UCS-2 IBM-937 No <prefix>U2GW

UCS-2 IBM-939 No <prefix>U2EV

UCS-2 IBM-942 No <prefix>U2AB

UCS-2 IBM-943 No <prefix>U2AJ

UCS-2 IBM-946 No <prefix>U2DY

UCS-2 IBM-948 No <prefix>U2CW

UCS-2 IBM-949 No <prefix>U2CZ

UCS-2 IBM-950 No <prefix>U2DW

UCS-2 IBM-951 No <prefix>U2CQ

UCS-2 IBM-964 No <prefix>U2BW

UCS-2 IBM-970 No <prefix>U2BZ

UCS-2 IBM-1025 No <prefix>U2FE

UCS-2 IBM-1026 No <prefix>U2EW

UCS-2 IBM-1027 No <prefix>U2EX

UCS-2 IBM-1046 No <prefix>U2AF

UCS-2 IBM-1047 No <prefix>U2EY

UCS-2 IBM-1088 No <prefix>U2CP

UCS-2 IBM-1089 No <prefix>U2I6

UCS-2 IBM-1112 No <prefix>U2GD

UCS-2 IBM-1115 No <prefix>U2CL

UCS-2 IBM-1122 No <prefix>U2FD

UCS-2 IBM-1123 No <prefix>U2FH

UCS-2 IBM-1124 No <prefix>U2AU

UCS-2 IBM-1125 No <prefix>U2AT

UCS-2 IBM-1140 No <prefix>U2HA

Chapter 57. Code set conversion utilities 821

Table 106. Coded character set conversion tables (continued)

FromCode ToCode GENXLT source Program Name

UCS-2 IBM-1141 No <prefix>U2HB

UCS-2 IBM-1142 No <prefix>U2HE

UCS-2 IBM-1143 No <prefix>U2HF

UCS-2 IBM-1144 No <prefix>U2HG

UCS-2 IBM-1145 No <prefix>U2HJ

UCS-2 IBM-1146 No <prefix>U2HK

UCS-2 IBM-1147 No <prefix>U2HM

UCS-2 IBM-1148 No <prefix>U2HO

UCS-2 IBM-1149 No <prefix>U2HR

UCS-2 IBM-1153 No <prefix>U2MB

UCS-2 IBM-1154 No <prefix>U2HT

UCS-2 IBM-1155 No <prefix>U2HW

UCS-2 IBM-1156 No <prefix>U2HZ

UCS-2 IBM-1157 No <prefix>U2HD

UCS-2 IBM-1158 No <prefix>U2FI

UCS-2 IBM-1160 No <prefix>U2HP

UCS-2 IBM-1161 No <prefix>U2LU

UCS-2 IBM-1165 No <prefix>U2FG

UCS-2 IBM-1250 No <prefix>U2DB

UCS-2 IBM-1251 No <prefix>U2DE

UCS-2 IBM-1252 No <prefix>U2DA

UCS-2 IBM-1253 No <prefix>U2DG

UCS-2 IBM-1254 No <prefix>U2DI

UCS-2 IBM-1255 No <prefix>U2DH

UCS-2 IBM-1256 No <prefix>U2DF

UCS-2 IBM12712 No <prefix>U2HH

UCS-2 IBM-1363 No <prefix>U2LZ

UCS-2 IBM-1364 No <prefix>U2KZ

UCS-2 IBM-1380 No <prefix>U2CM

UCS-2 IBM-1381 No <prefix>U2CY

UCS-2 IBM-1383 No <prefix>U2BY

UCS-2 IBM-1386 No <prefix>U2CV

UCS-2 IBM-1388 No <prefix>U2GV

UCS-2 IBM-1390 No <prefix>U2HU

UCS-2 IBM-1399 No <prefix>U2HV

UCS-2 IBM13124 No <prefix>U2FK

UCS-2 IBM16804 No <prefix>U2HC

UCS-2 IBM17248 No <prefix>U2NJ

UCS-2 IBM33722 No <prefix>U2AC

UCS-2 IBM-4933 No <prefix>U2FJ

822 z/OS V1R8.0 XL C/C++ Programming Guide

Table 106. Coded character set conversion tables (continued)

FromCode ToCode GENXLT source Program Name

UCS-2 IBM-5346 No <prefix>U2NB

UCS-2 IBM-5347 No <prefix>U2NE

UCS-2 IBM-5350 No <prefix>U2NI

UCS-2 IBM-5351 No <prefix>U2NH

UCS-2 IBM-5352 No <prefix>U2NF

UCS-2 IBM-53668 No <prefix>U2FV

UCS-2 IBM-9044 No <prefix>U2NG

UCS-2 IBM-9061 No <prefix>U2LG

UCS-2 IBM-9238 No <prefix>U2LI

UTF-8 IBM-037 No <prefix>F8EA

UTF-8 IBM-273 No <prefix>F8EB

UTF-8 IBM-274 No <prefix>F8EC

UTF-8 IBM-275 No <prefix>F8ED

UTF-8 IBM-277 No <prefix>F8EE

UTF-8 IBM-278 No <prefix>F8EF

UTF-8 IBM-280 No <prefix>F8EG

UTF-8 IBM-282 No <prefix>F8EI

UTF-8 IBM-284 No <prefix>F8EJ

UTF-8 IBM-285 No <prefix>F8EK

UTF-8 IBM-290 No <prefix>F8EL

UTF-8 IBM-297 No <prefix>F8EM

UTF-8 IBM-300 No <prefix>F8EN

UTF-8 IBM-420 No <prefix>F8FF

UTF-8 IBM-424 No <prefix>F8FB

UTF-8 IBM-437 No <prefix>F8AV

UTF-8 IBM-500 No <prefix>F8EO

UTF-8 IBM-808 No <prefix>F8LF

UTF-8 IBM-813 No <prefix>F8I7

UTF-8 IBM-819 No <prefix>F8I1

UTF-8 IBM-833 No <prefix>F8GP

UTF-8 IBM-834 No <prefix>F8GQ

UTF-8 IBM-835 No <prefix>F8GO

UTF-8 IBM-836 No <prefix>F8GL

UTF-8 IBM-837 No <prefix>F8GM

UTF-8 IBM-838 No <prefix>F8EP

UTF-8 IBM-848 No <prefix>F8AS

UTF-8 IBM-850 No <prefix>F8AA

UTF-8 IBM-852 No <prefix>F8CB

UTF-8 IBM-855 No <prefix>F8CE

UTF-8 IBM-856 No <prefix>F8CH

Chapter 57. Code set conversion utilities 823

||||

Table 106. Coded character set conversion tables (continued)

FromCode ToCode GENXLT source Program Name

UTF-8 IBM-858 No <prefix>F8AI

UTF-8 IBM-861 No <prefix>F8CA

UTF-8 IBM-862 No <prefix>F8BH

UTF-8 IBM-864 No <prefix>F8CF

UTF-8 IBM-866 No <prefix>F8BE

UTF-8 IBM-867 No <prefix>F8LJ

UTF-8 IBM-869 No <prefix>F8CG

UTF-8 IBM-870 No <prefix>F8EQ

UTF-8 IBM-871 No <prefix>F8ER

UTF-8 IBM-872 No <prefix>F8LE

UTF-8 IBM-874 No <prefix>F8BU

UTF-8 IBM-875 No <prefix>F8ES

UTF-8 IBM-880 No <prefix>F8ET

UTF-8 IBM-901 No <prefix>F8LH

UTF-8 IBM-902 No <prefix>F8LD

UTF-8 IBM-904 No <prefix>F8CN

UTF-8 IBM-912 No <prefix>F8I2

UTF-8 IBM-914 No <prefix>F8I4

UTF-8 IBM-915 No <prefix>F8I5

UTF-8 IBM-916 No <prefix>F8I8

UTF-8 IBM-920 No <prefix>F8I9

UTF-8 IBM-921 No <prefix>F8BD

UTF-8 IBM-922 No <prefix>F8AD

UTF-8 IBM-927 No <prefix>F8CO

UTF-8 IBM-930 No <prefix>F8EU

UTF-8 IBM-933 No <prefix>F8GZ

UTF-8 IBM-935 No <prefix>F8GY

UTF-8 IBM-937 No <prefix>F8GW

UTF-8 IBM-939 No <prefix>F8EV

UTF-8 IBM-942 No <prefix>F8AB

UTF-8 IBM-943 No <prefix>F8AJ

UTF-8 IBM-946 No <prefix>F8DY

UTF-8 IBM-948 No <prefix>F8CW

UTF-8 IBM-949 No <prefix>F8CZ

UTF-8 IBM-950 No <prefix>F8DW

UTF-8 IBM-951 No <prefix>F8CQ

UTF-8 IBM-964 No <prefix>F8BW

UTF-8 IBM-970 No <prefix>F8BZ

UTF-8 IBM-1025 No <prefix>F8FE

UTF-8 IBM-1026 No <prefix>F8EW

824 z/OS V1R8.0 XL C/C++ Programming Guide

Table 106. Coded character set conversion tables (continued)

FromCode ToCode GENXLT source Program Name

UTF-8 IBM-1027 No <prefix>F8EX

UTF-8 IBM-1046 No <prefix>F8AF

UTF-8 IBM-1047 No <prefix>F8EY

UTF-8 IBM-1088 No <prefix>F8CP

UTF-8 IBM-1089 No <prefix>F8I6

UTF-8 IBM-1112 No <prefix>F8GD

UTF-8 IBM-1115 No <prefix>F8CL

UTF-8 IBM-1122 No <prefix>F8FD

UTF-8 IBM-1123 No <prefix>F8FH

UTF-8 IBM-1124 No <prefix>F8AU

UTF-8 IBM-1125 No <prefix>F8AT

UTF-8 IBM-1140 No <prefix>F8HA

UTF-8 IBM-1141 No <prefix>F8HB

UTF-8 IBM-1142 No <prefix>F8HE

UTF-8 IBM-1143 No <prefix>F8HF

UTF-8 IBM-1144 No <prefix>F8HG

UTF-8 IBM-1145 No <prefix>F8HJ

UTF-8 IBM-1146 No <prefix>F8HK

UTF-8 IBM-1147 No <prefix>F8HM

UTF-8 IBM-1148 No <prefix>F8HO

UTF-8 IBM-1149 No <prefix>F8HR

UTF-8 IBM-1153 No <prefix>F8MB

UTF-8 IBM-1154 No <prefix>F8HT

UTF-8 IBM-1155 No <prefix>F8HW

UTF-8 IBM-1156 No <prefix>F8HZ

UTF-8 IBM-1157 No <prefix>F8HD

UTF-8 IBM-1158 No <prefix>F8FI

UTF-8 IBM-1160 No <prefix>F8HP

UTF-8 IBM-1161 No <prefix>F8LU

UTF-8 IBM-1165 No <prefix>F8FG

UTF-8 IBM-1250 No <prefix>F8DB

UTF-8 IBM-1251 No <prefix>F8DE

UTF-8 IBM-1252 No <prefix>F8DA

UTF-8 IBM-1253 No <prefix>F8DG

UTF-8 IBM-1254 No <prefix>F8DI

UTF-8 IBM-1255 No <prefix>F8DH

UTF-8 IBM-1256 No <prefix>F8DF

UTF-8 IBM12712 No <prefix>F8HH

UTF-8 IBM-1363 No <prefix>F8LZ

UTF-8 IBM-1364 No <prefix>F8KZ

Chapter 57. Code set conversion utilities 825

Table 106. Coded character set conversion tables (continued)

FromCode ToCode GENXLT source Program Name

UTF-8 IBM-1380 No <prefix>F8CM

UTF-8 IBM-1381 No <prefix>F8CY

UTF-8 IBM-1383 No <prefix>F8BY

UTF-8 IBM-1386 No <prefix>F8CV

UTF-8 IBM-1388 No <prefix>F8GV

UTF-8 IBM-1390 No <prefix>F8HU

UTF-8 IBM-1399 No <prefix>F8HV

UTF-8 IBM13124 No <prefix>F8FK

UTF-8 IBM16804 No <prefix>F8HC

UTF-8 IBM17248 No <prefix>F8NJ

UTF-8 IBM33722 No <prefix>F8AC

UTF-8 IBM-4933 No <prefix>F8FJ

UTF-8 IBM-5346 No <prefix>F8NB

UTF-8 IBM-5347 No <prefix>F8NE

UTF-8 IBM-5350 No <prefix>F8NI

UTF-8 IBM-5351 No <prefix>F8NH

UTF-8 IBM-5352 No <prefix>F8NF

UTF-8 IBM-53668 No <prefix>F8FV

UTF-8 IBM-9044 No <prefix>F8NG

UTF-8 IBM-9061 No <prefix>F8LG

UTF-8 IBM-9238 No <prefix>F8LI

Universal coded character set converters

You can use the name UCS-2 to request setup for conversion to and from the

Universal Two-Octet Coded Character Set, UCS-2, specified in ISO/IEC

International Standard 10646–1. For example, iconv_open("UCS-2", "IBM-1047")

requests setup for conversion from IBM-1047 character encoding to UCS-2

character encoding.

You can also use the name UTF-8 to request setup for conversion to and from

Transform Format 8, UTF-8, specified in Unicode Standard, Version 2.1,

Appendices A-7 and A-8. For example, iconv_open("UTF-8", "IBM-1047") requests

setup for conversion from IBM-1047 character encoding to UTF-8 character

encoding.

Source for UCS-2 converters resides in a data set named installation-
prefix.SCEEUMAP, where the installation prefix for z/OS XL C/C++ data sets defaults

to CEE. UCS-2 source is also installed in the hierarchical file system (HFS)

directory /usr/lib/nls/locale/ucmap.

The uconvdef command, which is documented in z/OS UNIX System Services

Command Reference, produces uconvTable binary files required by uconv_open()

from UCS-2 source files. Table 107 on page 827 lists coded character sets for

which z/OS XL C/C++ provides UCS-2 source and uconvTable binaries. The

826 z/OS V1R8.0 XL C/C++ Programming Guide

||||

uconvTable binaries reside in a data set named installation-prefix.SCEEUTBL.

The same as for the UCS-2 source dat aset, the default value of the

installation-prefix is CEE.

Notes:

1. If your installation uses an installation-prefix different from CEE for z/OS XL

C/C++ data sets, you must use the environment variable _ICONV_UCS2_PREFIX to

specify the value of your installation-prefix before using iconv_open() to set up

UCS-2 converters. Otherwise, iconv_open() cannot find your z/OS XL C/C++

uconvTable binary data set. One way to do this is to use the ENVAR run-time

option when you start your application. For example, ENVAR(...,

_ICONV_UCS2_PREFIX=OUR.PREFIX, ...) has iconv_open() search for uconvTable

binaries it requires in the data set OUR.PREFIX.SCEEUTBL.

2. The uconvTable binaries are also installed in the HFS directory named

/usr/lib/nls/locale/uconvTable. The iconv_open()function searches for

uconvTable binaries in the HFS before looking in the z/OS XL C/C++ UCS-2

data set.

3. You can use the LOCPATH environment variable to give iconv_open() a

colon-separated list of pathname prefixes to use instead of /usr/lib/nls/locale/ to

find uconvTable directories in your HFS

4. UCS-2 source and binaries found in installation-prefix.SCEEUMAP and

installation-prefix.SCEEUTBL data sets (or corresponding HFS directories),

respectively, pertain to conversions to and from UTF-8 as well as UCS-2.

Members in the z/OS XL C/C++ UCS-2 source and uconvTable binary data sets

have names of the form EDCUUccU; where cc is the CC-id associated with a

particular coded character set name. Table 107 shows the CC-id and member name

associated with each coded character set name for which z/OS XL C/C++ provides

source and a uconvTable binary in UCS-2 data sets.

 Table 107. UCS-2 converters

Codeset Name CC-id UCS-2 source

IBM-850 AA EDCUUAAU

IBM-4946 AA EDCUUAAU

IBM-301 AB EDCUUABU

IBM-932 AB EDCUUABU

IBM-942 AB EDCUUABU

EUCJP AC EDCUUACU

IBM-EUCJP AC EDCUUACU

IBM33722 AC EDCUUACU

IBM-922 AD EDCUUADU

IBM-1046 AF EDCUUAFU

IBM-932C AG EDCUUAGU

IBM-EUCJC AH EDCUUAHU

IBM-858 AI EDCUUAIU

IBM-943 AJ EDCUUAJU

IBM-859 AK EDCUUAKU

IBM-425 AR EDCUUARU

IBM-848 AS EDCUUASU

Chapter 57. Code set conversion utilities 827

Table 107. UCS-2 converters (continued)

Codeset Name CC-id UCS-2 source

IBM-1125 AT EDCUUATU

IBM-1124 AU EDCUUAUU

IBM-437 AV EDCUUAVU

IBM-921 BD EDCUUBDU

IBM-866 BE EDCUUBEU

IBM-862 BH EDCUUBHU

GBK BS EDCUUBSU

IBM-874 BU EDCUUBUU

TIS-620 BU EDCUUBUU

EUCTW-1993 BW EDCUUBWU

IBM-EUCTW BW EDCUUBWU

IBM-964 BW EDCUUBWU

IBM-1383 BY EDCUUBYU

EUCKR BZ EDCUUBZU

IBM-EUCKR BZ EDCUUBZU

IBM-970 BZ EDCUUBZU

IBM-861 CA EDCUUCAU

IBM-852 CB EDCUUCBU

IBM-855 CE EDCUUCEU

IBM-864 CF EDCUUCFU

IBM-869 CG EDCUUCGU

IBM-856 CH EDCUUCHU

IBM-1115 CL EDCUUCLU

IBM-1380 CM EDCUUCMU

IBM-904 CN EDCUUCNU

IBM-927 CO EDCUUCOU

IBM-1088 CP EDCUUCPU

IBM-951 CQ EDCUUCQU

IBM-942 CR EDCUUCRU

IBM-1386 CV EDCUUCVU

IBM-938 CW EDCUUCWU

IBM-948 CW EDCUUCWU

IBM-1381 CY EDCUUCYU

IBM-949 CZ EDCUUCZU

IBM-1252 DA EDCUUDAU

IBM-1250 DB EDCUUDBU

IBM-1251 DE EDCUUDEU

IBM-1256 DF EDCUUDFU

IBM-1253 DG EDCUUDGU

IBM-1255 DH EDCUUDHU

828 z/OS V1R8.0 XL C/C++ Programming Guide

Table 107. UCS-2 converters (continued)

Codeset Name CC-id UCS-2 source

IBM-1254 DI EDCUUDIU

IBM-5348 DJ EDCUUDJU

IBM-5349 DK EDCUUDKU

BIG5 DW EDCUUDWU

IBM-947 DW EDCUUDWU

IBM-950 DW EDCUUDWU

IBM-928 DY EDCUUDYU

IBM-936 DY EDCUUDYU

IBM-946 DY EDCUUDYU

IBM-037 EA EDCUUEAU

IBM-28709 EA EDCUUEAU

IBM-273 EB EDCUUEBU

IBM-274 EC EDCUUECU

IBM-275 ED EDCUUEDU

IBM-277 EE EDCUUEEU

IBM-278 EF EDCUUEFU

IBM-280 EG EDCUUEGU

IBM-281 EH EDCUUEHU

IBM-282 EI EDCUUEIU

IBM-284 EJ EDCUUEJU

IBM-285 EK EDCUUEKU

IBM-290 EL EDCUUELU

IBM-297 EM EDCUUEMU

IBM-300 EN EDCUUENU

IBM-4396 EN EDCUUENU

IBM-500 EO EDCUUEOU

IBM-838 EP EDCUUEPU

IBM-870 EQ EDCUUEQU

IBM-871 ER EDCUUERU

IBM-875 ES EDCUUESU

IBM-880 ET EDCUUETU

IBM-930 EU EDCUUEUU

IBM-5026 EU EDCUUEUU

IBM-939 EV EDCUUEVU

IBM-5035 EV EDCUUEVU

IBM-1026 EW EDCUUEWU

IBM-1027 EX EDCUUEXU

IBM-1047 EY EDCUUEYU

IBM-924 EZ EDCUUEZU

UTF-8 F8 EDCUUF8U

Chapter 57. Code set conversion utilities 829

Table 107. UCS-2 converters (continued)

Codeset Name CC-id UCS-2 source

IBM-424 FB EDCUUFBU

IBM-1122 FD EDCUUFDU

IBM-1025 FE EDCUUFEU

IBM-420 FF EDCUUFFU

IBM-1165 FG EDCUUFGU

IBM-1123 FH EDCUUFHU

IBM-1158 FI EDCUUFIU

IBM-4933 FJ EDCUUFJU

IBM13124 Fk EDCUUFKU

IBM-53668 FV EDCUUFVU

IBM-1112 GD EDCUUGDU

IBM-836 GL EDCUUGLU

IBM-837 GM EDCUUGMU

IBM-835 GO EDCUUGOU

IBM-833 GP EDCUUGPU

IBM-834 GQ EDCUUGQU

IBM-1388 GV EDCUUGVU

IBM-937 GW EDCUUGWU

IBM-935 GY EDCUUGYU

IBM-5031 GY EDCUUGYU

IBM-933 GZ EDCUUGZU

IBM-1140 HA EDCUUHAU

IBM-1141 HB EDCUUHBU

IBM16804 HC EDCUUHCU

IBM-1157 HD EDCUUHDU

IBM-1142 HE EDCUUHEU

IBM-1143 HF EDCUUHFU

IBM-1144 HG EDCUUHGU

IBM12712 HH EDCUUHHU

IBM-1145 HJ EDCUUHJU

IBM-1146 HK EDCUUHKU

IBM-1147 HM EDCUUHMU

IBM-16684 HN EDCUUHNU

IBM-1148 HO EDCUUHOU

IBM-1160 HP EDCUUHPU

IBM-1149 HR EDCUUHRU

IBM-4971 HS EDCUUHSU

IBM-1154 HT EDCUUHTU

IBM-1390 HU EDCUUHUU

IBM-1399 HV EDCUUHVU

830 z/OS V1R8.0 XL C/C++ Programming Guide

|||

Table 107. UCS-2 converters (continued)

Codeset Name CC-id UCS-2 source

IBM-1155 HW EDCUUHWU

IBM-5123 HX EDCUUHXU

IBM-1156 HZ EDCUUHZU

ISO8859-1 I1 EDCUUI1U

IBM-819 I1 EDCUUI1U

ISO8859-2 I2 EDCUUI2U

IBM-912 I2 EDCUUI2U

ISO8859-4 I4 EDCUUI4U

IBM-914 I4 EDCUUI4U

ISO8859-5 I5 EDCUUI5U

IBM-915 I5 EDCUUI5U

ISO8859-6 I6 EDCUUI6U

IBM-1089 I6 EDCUUI6U

ISO8859-7 I7 EDCUUI7U

IBM-813 I7 EDCUUI7U

ISO8859-8 I8 EDCUUI8U

IBM-916 I8 EDCUUI8U

ISO8859-9 I9 EDCUUI9U

IBM-920 I9 EDCUUI9U

IBM-4909 IA EDCUUIAU

IBM-923 IF EDCUUIFU

ISO8859–15 IF EDCUUIFU

ISO-2022–JP JA EDCUUJAU

IBM-956 JB EDCUUJBU

IBM-957 JC EDCUUJCU

IBM-956C JD EDCUUJDU

IBM-958 JD EDCUUJDU

IBM-957C JE EDCUUJEU

IBM-959 JE EDCUUJEU

IBM-5052 JF EDCUUJFU

IBM-5053 JG EDCUUJGU

IBM-5052C JH EDCUUJHU

IBM-5054 JH EDCUUJHU

IBM-5053C JI EDCUUJIU

IBM-5055 JI EDCUUJIU

IBM-1371 KA EDCUUKAU

IBM-1364 KZ EDCUUKZU

IBM-1370 LA EDCUULAU

IBM-902 LD EDCUULDU

IBM-872 LE EDCUULEU

Chapter 57. Code set conversion utilities 831

Table 107. UCS-2 converters (continued)

Codeset Name CC-id UCS-2 source

IBM-808 LF EDCUULFU

IBM-9061 LG EDCUULGU

IBM-901 LH EDCUULHU

IBM-9238 LI EDCUULIU

IBM-867 LJ EDCUULJU

IBM-1161 LU EDCUULUU

IBM-1363 LZ EDCUULZU

IBM-1153 MB EDCUUMBU

IBM-5346 NB EDCUUNBU

IBM-5347 NE EDCUUNEU

IBM-5352 NF EDCUUNFU

IBM-9044 NG EDCUUNGU

IBM-5351 NH EDCUUNHU

IBM-5350 NI EDCUUNIU

IBM17248 NJ EDCUUNJU

UCS-2 U2 EDCUUU2U

Codeset conversion using UCS-2

z/OS XL C/C++ iconv supports use of UCS-2 as an intermediate code set for

conversion of characters encoded in one code set to another. The _ICONV_UCS2

environment variable instructs iconv_open("Y", "X") whether or not to set up

indirect conversion from code set X to code set Y using UCS-2 as an intermediate

code set. Values iconv_open() recognizes for _ICONV_UCS2 are:

1 Set up indirect conversion using UCS-2 first. The indirect conversions will

use direct unicode converters if available, if not, iconv_open() will

fopen/fread uconvTable binaries. If set up of indirect conversion fails,

iconv_open() will try to set up direct conversion.

2 Set up direct conversion first. If this fails, try to set up indirect conversion

using UCS-2. The indirect conversions will use direct unicode converters if

available, if not, iconv_open() will fopen/fread uconvTable binaries.This is

the default.

3 Set up direct conversion first. If this fails, try to set up indirect conversion

using UCS-2. The indirect conversions will use direct unicode converters, if

direct unicode converters are unavailable, the iconv_open() request fails.

N Never set up indirect conversion using UCS-2. If a direct converter cannot

be found, the iconv_open() request fails.

D Never set up indirect conversion using UCS-2. If a direct converter cannot

be found, the iconv_open() request fails.

O Only set up indirect conversion using UCS-2. iconv_open() will fopen/fread

uconvTable binaries. Direct unicode converters will not be used. If required

unconvTable binaries cannot be found, the iconv_open() request fails..

832 z/OS V1R8.0 XL C/C++ Programming Guide

U Only set up indirect conversion using UCS-2. The indirect conversions will

use direct unicode converters if available, if not, iconv_open() will

fopen/fread uconvTable binaries.

Notes:

1. If the value of the _ICONV_UCS2 environment variable allows iconv_open("Y",

"X") to use UCS-2 as an intermediate code set when it cannot find a direct

converter from X to Y, iconv_open() will attempt to do so even if X and Y are

not compatible code sets. That is , even if character sets encoded by X and Y

are not the same, iconv_open() will set up conversion from X to UCS-2 to Y.

2. The application must specify compatible source and target code set names on

various iconv_open() requests. For example, this can be accomplished by using

a code set registry such as is used by DCE to prevent iconv setup for

conversion from incompatible code sets.

UCMAP source format

A UCMAP source file defines UCS-2 (Unicode) conversion mappings for input to the

uconvdef command. Conversion mapping values are defined using UCS-2 symbolic

character names followed by character encoding (code point) values for the

multibyte code set. For example:

<U0020>

\x20 represents the mapping between the <U0020> UCS-2 symbolic

character name for the space character and the \x20 hexadecimal code

point for the space character in ASCII.

 In addition to the code set mappings, directives are interpreted by the uconvdef

command to produce the compiled table. These directives must precede the code

set mapping section. They consist of the following keywords surrounded by <>

(angle brackets), starting in column 1, followed by white space and the value to be

assigned to the symbol:

<comment_char>

Character used to denote start of escape sequence. Default escape

character is <number_sign> (#). In ucmap, source shipped by C/370

<percent_sign> (%) is specified for <comment_char>.

<escape_char>

Character used to denote start of escape sequence. Default escape

character is <backslash> (\). In ucmap source shipped by C/370 <slash> (/)

is specified for <escape_char>.

<code_set_name>

The name of the coded character set, enclosed in quotation marks(″), for

which the character set description file is defined.

<mb_cur_max>

The maximum number of bytes in a multibyte character. The default value is

1.

<mb_cur_min>

An unsigned positive integer value that defines the minumum number of

bytes in a character for the encoded character set. The value is less than or

equal to <mb_cur_max>. If not specified, the minimum number is equal to

<mb_cur_max>.

<char_name_mask>

A quoted string consisting of format specifiers for the UCS-2 symbolic

names. This must be a value of AXXXX, indicating an alphabetic character

Chapter 57. Code set conversion utilities 833

followed by 4 hexadecimal digits. Also, the alphabetic character must be a

U, and the hexadecimal digits must represent the UCS-2 code point for the

character. An example of a symbolic character name based on this mask is

<U0020> Unicode space character.

<uconv_class>

Specifies the type of the code set. It must be one of the following:

SBCS Single-byte encoding

DBCS Stateless double-byte, single-byte, or mixed encodings

EBCDIC_STATEFUL

Stateful double-byte, single-byte, or mixed encodings

MBCS Stateless multibyte encoding

 This type is used to direct uconvdef on the type of table to build. It is also stored in

the table to indicate the type of processing algorithm in the UCS conversion

methods.

<locale>

Specifies the default locale name to be used if locale information is needed.

<subchar>

Specifies the encoding of the default substitute character in the multibyte

code set.

 The mapping definition section consists of a sequence of mapping definition lines

preceded by a CHARMAP declaration and terminated by an END CHARMAP

declaration. Empty lines and lines containing <comment_char> in the first column

are ignored.

Symbolic character names in mapping lines must follow the pattern specified in the

<char_name_mask>, except for the reserved symbolic name, <unassigned>, that

indicates the associated code points are unassigned.

Each noncomment line of the character set mapping definition must be in one of the

following formats:

1. ″%s%s%s/n″, <symbolic_name>, <encoding>, <comments>

<U3004> \x81\x57

This format defines a single symbolic character name and a corresponding

encoding.

The encoding part is expressed as one or more concatenated decimal,

hexadecimal, or octal constants in the following formats:

v ″%cd%d″,<escape_char>, <decimal byte value>

v ″%cx%x″,<escape_char>,<hexadecimal byte value>

v ″%c%o″,<escape_char>,<octal byte value>

Decimal constants are represented by two or more decimal digits preceded by

the escape character and the lowercase letter d, as in \d97 or \d143.

Hexadecimal constants are represented by two or more hexadecimal digits

preceded by an escape character and the lowercase letter x, as in \x61 or \x8f.

Octal constants are represented by two or more octal digits preceded by an

escape character.

834 z/OS V1R8.0 XL C/C++ Programming Guide

Each constant represents a single—byte value. When constants are

concatenated for multibyte character values, the last value specifies the least

significant octet and preceding constants specify successively more significant

octets.

2. ″%s...%s %s %s/n″,<symbolic-
name>,<symbolic_name>,<encoding><comments>

For example:

<U3003><U3006> \x81\x56

This format defines a range of symbolic character names and corresponding

encodings. The range is interpreted as a series of symbolic names formed from

the alphabetic prefix and all the values in the range defined by the numeric

suffixes.

The listed encoding value is assigned to the first symbolic name, and

subsequent symbolic names in the range are assigned corresponding

incremental values. For example, the line:

<U3003>...<U3006> \x81\x56

is interpreted as:

<U3003> \x81\x56

<U3004> \x81\x57

<U3005> \x81\x58

<U3006> \x81\x59

3. ″<unassigned>″%s...%s %s/n″,<encoding>,<comments>

This format defines a range of one or more unassigned encodings. For

example, the line

<unassigned> \x9b...\x9c

is interpreted as:

<unassigned> \x9b <unassigned> \x9c

Chapter 57. Code set conversion utilities 835

836 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 58. Coded character set considerations with locale

functions

Each EBCDIC coded character set consists of a mapping of all the available glyphs

to their respective hex encodings and unique Graphic Character Global Identifiers

(GCGIDs). GCGIDs are unique identifiers assigned to each character in the

Unicode standard. A glyph is the printed appearance of a character. Each coded

character set serves one linguistic environment.

There is wide variation among coded character sets; many glyphs do not appear in

all coded character sets, and hexadecimal encodings for some glyphs differ from

one coded character set to another. You may encounter problems when exporting a

file from a system running in one coded character set, to a system running in

another. For example, a left bracket ([) entered under the APL-293 or Open

Systems IBM-1047 coded character set will appear as the capitalized Y-acute (Ý).

This occurs in such common coded character sets as International 500, France

297, Germany 273, and US or Canada 037.

z/OS XL C/C++ contains the following extensions to prevent such problems:

v The #pragma filetag directive allows you to specify the coded character set that

was used when entering the source files. See “The pragma filetag directive” on

page 843 for details on this pragma.

v The LOCALE compiler option enables you to tell the compiler what locale to use

at compile time. See “Converting coded character sets at compile time” on page

846 for details on this compiler option.

v The CONVLIT compiler option enables you to change the assumed code page

for string literals. See “CONVLIT compiler option” on page 846 for details on this

compiler option.

v The #pragma convert directive allows you to change the assumed code page for

string literals. It has the advantage of allowing more than one character encoding

to be used for string literals in a single compilation unit. For more information,

see convert in z/OS XL C/C++ Language Reference.

These facilities cause the compiler to respect your code page. Thus, you can enter

source code with what appears to you to be the correct characters, and the

compiler will recognize those characters.

The rest of this chapter discusses other ways to work efficiently in different locales.

Variant character detail

The POSIX Portable Character Set (PPCS) identifies the core set of 128 characters

that are needed to write code and to run applications. Of these, 13 characters are

variant among the EBCDIC coded character sets.

“Mappings of 13 PPCS variant characters” on page 838 lists these 13 characters. It

also displays their appearance when the Open Systems coded character set

IBM-1047 hexadecimal values are entered on systems where different Country

Extended Coded Character Sets are installed. These hex values are the ones

expected by z/OS XL C/C++, and are consistent with the use of the APL-293 coded

character set. Table 109 on page 838 lists the hexadecimal values assigned across

some of the EBCDIC coded character sets for the 13 variant characters from the

© Copyright IBM Corp. 1996, 2006 837

PPCS. Appendix C, “z/OS XL C/C++ Code Point Mappings,” on page 877 gives

more information about the mapping of glyphs. Appendix A, “POSIX character set,”

on page 867 lists the full PPCS.

Mappings of 13 PPCS variant characters

 Table 108. Mappings of 13 PPCS variant characters

 Character

Open

Systems

Hex Value

(Default)

Open

Systems

IBM-1047

view

APL

IBM-293

view

Inter-

national

IBM-500

view

France

IBM-297

view

Germany

IBM-273

view

US/Can

IBM-037

view

left bracket AD [[Ý Ý Ý Ý

right bracket BD]] ü ~ ü }

left brace C0 { { { é ä {

right brace D0 } } } è ü }

backslash E0 \ \ \ ç Ö \

circumflex 5F ^ ¬ ^ ^ ^ ¬

tilde A1 ~ ~ ~ ü . ß ~

exclamation mark 5A ! !] § Ü !

pound (number) sign 7B # # # £ # #

vertical bar 4F | | ! ! ! |

accent grave 79 ` ` ` µ ` `

dollar sign 5B $ $ $ $ $ $

commercial ″at″ 7C @ @ @ á § @

Two tables are available to show the full code—point mappings for Open Systems

coded character set IBM-1047 (Figure 232 on page 877) and for the APL coded

character set IBM-293 (Figure 233 on page 878). Upon examination of these coded

character sets, you will notice that coded character set 1047 is a ″Latinized″ coded

character set IBM-293. All the APL code points have been replaced by Latin 1 code

points, allowing a one-to-one mapping among coded character set IBM-1047 and all

other coded character sets in the Latin 1 group.

Although the official current coded character set for z/OS XL C/C++ is now coded

character set IBM-1047 (Open Systems), the coded character set IBM-293 syntax

points are still valid. Those points are the ones with syntactic relevance to the z/OS

XL C/C++ compiler. Refer to “Mappings of 13 PPCS variant characters” and

“Mappings of Hex encoding of 13 PPCS variant characters” for more information.

Mappings of Hex encoding of 13 PPCS variant characters

 Table 109. Mappings of Hex encoding of 13 PPCS variant characters

Character

Name Glyph GCGID

Open

Systems

IBM-1047

view

APL

IBM-293

view

Inter-

national

500 view

France

297 view

Germany

273 view

US/Can

037 view

left bracket [SM060000 AD AD 4A 90 63 BA

right bracket] SM080000 BD BD 5A B5 FC BB

left brace { SM110000 C0 C0 C0 51 43 C0

838 z/OS V1R8.0 XL C/C++ Programming Guide

Table 109. Mappings of Hex encoding of 13 PPCS variant characters (continued)

Character

Name Glyph GCGID

Open

Systems

IBM-1047

view

APL

IBM-293

view

Inter-

national

500 view

France

297 view

Germany

273 view

US/Can

037 view

right brace } SM140000 D0 D0 D0 54 DC D0

backslash \ SM070000 E0 E0 E0 48 EC E0

circumflex ^ SD150000 5F 5F 5F 5F 5F B0

tilde ~ SD190000 A1 A1 A1 BD 59 A1

exclamation

mark

! SP020000 5A 5A 4F 4F 4F 5A

pound (number)

sign

SM010000 7B 7B 7B B1 7B 7B

vertical bar | SM130000 4F 4F BB BB BB 4F

accent grave ` SD130000 79 79 79 A0 79 79

dollar sign $ SC030000 5B 5B 5B 5B 5B 5B

commercial ″at″ @ SM050000 7C 7C 7C 44 B5 7C

Alternate code points

All syntactic code points that were supported in previous versions of z/OS XL

C/C++ will continue to be supported if you are compiling with the NOLOCALE

option.

To be compatible, the vertical bar character is represented by the following two

encodings, provided you are not using the LOCALE compiler option or the

NOLOCALE option:

v X'4F'

v X'6A'

If you do specify the LOCALE compiler option, each of these characters is

represented by a unique value specified in the LC_SYNTAX category of the selected

locale.

Coding without locale support by using a hybrid coded character set

If you want to avoid using the locale of the compiler, use a hybrid coded character

set. A hybrid piece of code is in the local coded character set but the syntax is

written as if it were in coded character set IBM-1047.

You can continue coding in the local coded character set, writing the syntax as if it

were in coded character set IBM-1047. This solution uses the existing behavior of

the compiler, but this method is not ideal for the following reasons:

v The code can be difficult to read and may not even look like C code anymore.

v There may be ambiguities in the code.

v Exporting code to another site can be difficult because the mapping between the

hybrid characters used and the target coded character set may not be exact.

The following example illustrates these difficulties.

Chapter 58. Coded character set considerations with locale functions 839

Example of hybrid coded character set (CCNGCC1)

The code points in “Example of hybrid coded character set (CCNGCC1),” which

have different glyphs in character code set IBM-273 and APL-293, appear in

“Example of hybrid coded character set (CCNGCC1),” and are described below:

�1� This is the code point for the { character. In coded character set 273, this is

the character ä.

/* this has strings in codepage 273 with APL 293 syntax, and is a */

/* pre-locale source file for a user in Germany */

#define MAX_NAMES 20

#define MAX_NAME_LEN 80

#define STR(num) #num

#define SCAN_FORMAT(len) "%"STR(len)"s %"STR(len)"s"

struct NameList ä �1�

 char firstÝMAX_NAME_LEN+1}; �2� �3�

 char surnameÝMAX_NAME_LEN+1}; �2� �3�

ü; �4�

int compareNames(const void *elem1, const void *elem2) ä �1�

 struct NameList *name1 = (struct NameList *) elem1;

 struct NameList *name2 = (struct NameList *) elem2;

 int surnameComp = strcoll(name1->surname,

 name2->surname);

 int firstComp = strcoll(name1->first,

 name2->first);

 return(surnameComp ? surnameComp : firstComp);

ü �4�

main() ä �1�

 int i, rc, numEntries;

 struct NameList curName;

 struct NameList nameListÝMAX_NAMES}; �2� �3�

 printf("Bitte geben Sie die Namen ein, "

 "im Format <Familienname> <Vorname> "

 "(Maximum %d Namen!)Ön", �8� �5�

 MAX_NAMES);

 for (i=0; i<MAX_NAMES; ++i) ä �1�

 printf("Name (oder EOF wenn fertig):Ön"); �5�

 rc = scanf(SCAN_FORMAT(MAX_NAME_LEN),

 curName.surname, curName.first);

 if (rc Ü= 2) ä �6� �1�

 break;

 ü �4�

 nameListÝi} = curName; �2� �3�

 ü �4�

 numEntries = i+1;

 qsort(nameList, numEntries, sizeof(struct NameList),

 compareNames);

 for (i=0; i<numEntries; ++i) ä �1�

 printf("Name %d:<%s, %s>Ön", i+1, �5�

 nameListÝi}.surname, �2� �3�

 nameListÝi}.first); �2� �3�

 ü �4�

 i != (MAX_NAMES << sizeof(int)/2); �7�

 return(i);

ü �4�

Figure 223. Hybrid coded character set example

840 z/OS V1R8.0 XL C/C++ Programming Guide

�2� This is the code point for the [character. In coded character set 273, this is

the character Ý.

�3� This is the code point for the] character. In coded character set 273, this is

the character }.

�4� This is the code point for the } character. In coded character set 273, this is

the character ü.

�5� This is the code point for the \ character. In coded character set 273, this is

the character Ö.

�6� This is the code point for the ! character. In coded character set 273, this is

the character Ü.

�7� This is the code point for the | character. In coded character set 273, this is

the character !. This particular code point mapping is unfortunate because

the | character and the ! character are both valid C syntax characters. Note

that the ! character used in the printf() call at �8� will appear as ! on a

terminal displaying in coded character set 273.

Writing code using a hybrid coded character set

“Example of hybrid coded character set (CCNGCC1)” on page 840 illustrates some

of the problems with hybrid files. The following steps were done when writing this

code:

1. Look up each variant character in coded character set IBM-1047 to find out

what the compiler expects. For example, z/OS XL C/C++ expects the character [

to have a byte value of X'AD'.

2. Determine which glyph is at X'AD' in the local coded character set, then use this

in the code.

3. Always use the appropriate substitution. For example, to obtain a needed [in

Germany, one would look up X'AD' in the German IBM-273 coded character set,

and find the character Ý.

Converting hybrid code

Existing code that was written in a hybrid coded character set will continue to be

supported.

Appendix G, “Converting code from coded character set IBM-1047,” on page 919

shows you a program you can use to convert the hybrid code to another coded

character set.

Coded character set independence in developing applications

You can ensure that you are working effectively with the locale functionality if you

use the appropriate functions, macros, and tools. The following summary of the

compile-edit work flow shows which functions to use and where you can use them.

Chapter 58. Coded character set considerations with locale functions 841

The highlighted numbers refer to the following functions:

�1� Setup. The localedef information (see overview in Chapter 54,

“Customizing a locale,” on page 785 and details in “Locale source files” on

page 744).

�2� Coded character set of source code, header files, and data.

 The compiler must support the coded character set used to create a source

file so that it will recognize the variant C syntax characters correctly.

v The #pragma filetag directive identifies the coded character set of the

source file as well as the library or user’s include files (for an overview

see “The pragma filetag directive” on page 843)

v Predefined macros __LOCALE__, __FILETAG__, and __CODESET__ (for

an overview see “Using predefined macros” on page 844)

v The function setlocale()

v The pragma convlit directive

v The pragma convert directive

�3� Coded character set conversion utilities and functions. The coded

character set of a file, or a stream of data, can be converted to another

coded character set using the utilities genxlt and iconv (for an overview

see Chapter 57, “Code set conversion utilities,” on page 801; for the details

of the utilities and functions, see z/OS XL C/C++ User’s Guide), as well as

the functions in the run-time library.

�4� Coded character set conversion at compile time is determined by the

compile-time locale and supported by the compiler options, LOCALE and

NOLOCALE (for an overview, see “Converting coded character sets at

compile time” on page 846; for details, see LOCALE in z/OS XL C/C++

User’s Guide).

Source Set up

Compiler Runtime

Converter

Listings and output files

2

3

1

4

6

5

Figure 224. Compile-edit, related to locale function

842 z/OS V1R8.0 XL C/C++ Programming Guide

�5� Run-time environment. During run time, the setlocale() function has an

effect on run-time functions, such as printf(), scanf(), and regcomp(),

which use variant characters.

�6� Listings and output files. The coded character set used to create or to

convert source files may affect listings, preprocessed source code, object

modules, and SYSEVENT files (for an overview see “Object modules and

output listings” on page 848). Your application can, however, include logic

using the following to minimize the impact:

v __LOCALE__, __FILETAG__, and __CODESET__ macros

v Locale functions such as setlocale()

Coded character set in source code and header files

There are five types of locale-related changes that you can make in your source

code:

v You can tag your source code and other associated files with the #pragma

filetag directive to specify the coded character set that was used while entering

the file. You can then compile these to ensure that all variant characters in your

files are correct.

v You can use the three macros: __LOCALE__, __FILETAG__, and __CODESET__.

These z/OS XL C/C++ macros expand to provide information about the #pragma

filetag directive of the current source, and the locale and target coded character

set used by the compiler at compile time. For more information, see predefined

macros for ISO Standard and z/OS XL C/C++ in z/OS XL C/C++ Language

Reference.

v You can use the setlocale() function to set the run-time locale to be the same

as the locale used to compile the application. This can be used when your

application contains dependencies on the coded character set, as it would when

comparing constants with external data. Using the macros forces the run-time

locale to be the same as the one used to compile your code.

v You can use the #pragma convlit suspend and resume to exclude portions of

your code from string literal conversion. See CONVLIT in z/OS XL C/C++ User’s

Guide for more details on the compiler option and convlit in z/OS XL C/C++

Language Reference for more information on the pragma.

v You can use the #pragma convert directive to specify the coded character set to

use for converting string literals. See convert in z/OS XL C/C++ Language

Reference for more information on this pragma.

The pragma filetag directive

By using the #pragma filetag directive, you may write your programs in any

convenient supported coded character set (see Appendix D, “Locales supplied with

z/OS XL C/C++,” on page 879 for a list of coded character set names). The #pragma

filetag directive instructs the z/OS XL C/C++ compiler how to “read” the source.

Tagging the source files, the header files, and all data files (including messages)

with the #pragma filetag directive enables you to keep the information about the

coded character set used to create each source file, within the source file itself.

This information can be helpful when moving source files to systems with different

coded character sets. For more information, see filetag in z/OS XL C/C++

Language Reference.

The following example tag uses the German coded character set IBM-273:

??=pragma filetag("IBM-273")

Chapter 58. Coded character set considerations with locale functions 843

Because the # character is variant in different coded character sets, you must use

the trigraph ??= for the #pragma filetag directive.

The #pragma filetag directive specifies the coded character set in which the

source or data was entered. The coded character set specified in the #pragma

filetag directive is in effect for the entire source file, but not for any other source

file. This also applies to header files and data files.

The #pragma filetag directive can only appear once in each file, and it must

appear before the first statement in a program. If encountered elsewhere, a warning

appears and the directive does not change. If a comment contains variant

characters and appears before the directive, the comment does not translate.

 Attention: If you wish to use the iconv utility on a file that is tagged with the ??=

#pragma filetag directive, you must update the file manually to change the filetag

to the correct converted coded character set. iconv does not update the pragma in

source files.

Using predefined macros

There are three macros for z/OS XL C/C++ that relate to locale.

__LOCALE__

This macro expands to a string literal representing the locale of the LOCALE

compiler option. This macro can be used to set the run-time locale to be the

same as the compiled locale:

main() {

 setlocale(LC_ALL, __LOCALE__);

 ...
}

The value of this macro is defined per compilation. If NOLOCALE compiler

option is supplied, the macro is undefined.

__FILETAG__

This macro expands to a string literal representing the character coded

character set of the #pragma filetag directive associated with the current file.

For example, to convert to the coded character set specified by the LOCALE

option from the coded character set specified by the #pragma filetag directive,

you would use the iconv_open() function:

iconv_open(__FILETAG__,variable);

The value of this macro is defined per source file. If no #pragma filetag

directive is present, the macro is undefined.

__CODESET__

This macro expands to a string literal representing the character coded

character set of the LOCALE compiler option. The value of this macro is

defined per compilation. If a value is not supplied, the macro is undefined.

844 z/OS V1R8.0 XL C/C++ Programming Guide

Example of __CODESET__ macro (CCNGCC2):

 The following illustration shows the values that these macros will take on,

emphasizing that for __FILETAG__, a value is assigned for each source file, but for

__LOCALE__ and __CODESET__, a value is assigned for a compilation.

#include <iconv.h>

#include <string.h>

#include <stdio.h>

/* The following function could be in a header file */

#ifdef __CODESET__

 static int convstr(iconv_t convInfo, char *in, int inSize,

 char *out, int outSize) {

 return(iconv(convInfo, in, inSize, out, outSize))

 }

#else

 static int convstr(iconv_t convInfo, char *in, int inSize,

 char *out, int outSize) {

 memcpy(out, in, outSize > inSize ? inSize :

 outSize);

 return(outSize > inSize ? -1 ::

 0);

 }

#endif

iconv_t convInfo;

int main() {

#ifdef __CODESET__

 char *run-timeCodeSet;

 setlocale(LC_ALL, ""); /* set locale to default locale */

 run-timeCodeSet = nl_langinfo(CODESET);

 convInfo = iconv_open(run-timeCodeSet, __CODESET__);

#endif

 char intro[] = "Welcome to my variant world!\n";

 char nlIntro[sizeof(intro)];

 convstr(convInfo, intro, sizeof(intro),

 nlIntro, sizeof(nlIntro));

 puts(nlIntro); /* string will print appropriately */

#ifdef __CODESET__

 iconv_close(convInfo);

#endif

return(0);

}

Figure 225. Example of __CODESET__ macro

Chapter 58. Coded character set considerations with locale functions 845

Using setlocale()

You can change the run-time locale to any one of the other predefined locales

listed in Table 111 on page 880. To use a defined locale, refer to it by its

setlocale() parameter.

To define a new locale, copy the source file provided, edit it, then assemble it (see

Chapter 54, “Customizing a locale,” on page 785).

Converting coded character sets at compile time

CONVLIT compiler option

You can control the conversion of string literals in your code by using the CONVLIT

compiler option. CONVLIT provides a means for changing the assumed code page

for character string literals by supplying a codepage value. For more information, see

CONVLIT in z/OS XL C/C++ User’s Guide.

For example, if you used an ASCII client machine to write code that uses string

literals, and then upload this to an EBCDIC server such as MVS, your string literals

would be converted to EBCDIC. However, if you specified ″CONVLIT(ISO8859-1)″

when you compiled your code, your string literals would have been converted to an

ASCII code page.

Assuming: Compiled source file with LOCALE("De_DE.IBM-273")

PRIMARY SOURCE FILE

#include <stdio.h>
.
.
.
.
.
.
.

#include "usrfile1.h"
.
.
.
.

#include "usrfile2.h"
.

STDIO.H

USRFILE1.H

USRFILE2.H

??=pragma filetag("IBM-1047")
...........

...........

??=pragma filetag("IBM-273")
...........

For the entire compilation: __LOCALE__ = "De_DE.IBM273"
__CODESET__ = "IBM-273"

In STDIO.H: __FILETAG__ = "IBM-1047"

In USRFILE1.H: __FILETAG__ is undefined

In USRFILE2.H: __FILETAG__ = "IBM-273"

Figure 226. Values of macros __FILETAG__, __LOCALE__, and __CODESET__

846 z/OS V1R8.0 XL C/C++ Programming Guide

Consider the following program:

/* header.h */

char *text="Hello World";

/* test.c */

#pragma convlit(suspend)

#pragma comment (user, "A user comment")

#include <stdio.h>

#include "header.h"

#pragma convlit(resume)

main (){

 char *text2 ="Hi There!";

 }

When this program is compiled with the CONVLIT(ISO8859-1) option, the string ″Hi

There!″ will be converted to an ASCII string, but the string ″Hello World″ will not be

converted.

LOCALE compiler option

The LOCALE compiler option enables you to instruct the compiler to use a specific

locale at compile time, which then generates the output in the same coded

character set.

The input files that are affected are:

v The primary source file

v Library header files

v User header files

The output files that are affected are:

v Object Modules

v Preprocessed source code

v Listings

To use the LOCALE option, you must supply a locale name value. The locale name is

a string that represents the locale you want to compile source with; this will

determine the characteristics of output, including the coded character set used for

variant characters in the source. Usually, a locale name is of the format territory

name.coded character set. For example, the German locale for coded character set

273 is De_DE.IBM-273. The territory name is De_DE and the coded character set is

IBM-273. To determine the coded character set of the current locale, use the

function nl_langinfo(CODESET).

The special locale name "" gives you the default locale, which can be set using

environment variables. The locale name "C" specifies the C default locale. Full

details about the C locale are found in Chapter 56, “Definition of S370 C, SAA C,

and POSIX C locales,” on page 793.

The default option setting is NOLOCALE. It instructs the compiler to do no

conversion of text for input or for output.

You can create your own locales by using the localedef utility. See “Locale source

files” on page 744 for details.

Examples: To compile a sample file, userid.SORTNAME.C, enter:

Chapter 58. Coded character set considerations with locale functions 847

CC ’userid.SORTNAME.C’ (LOCALE("De_DE.IBM-273")

The compiler recognizes "De_DE.IBM-273" as a valid locale and automatically

converts the source code to coded character set IBM-273, for its own use. The

compiler would then generate listings in the German coded character set 273.

To generate a preprocessed file that can be sent to other sites, that use different

coded character sets, enter:

CC ’userid.SORTNAME.C’ (LOCALE("De_DE.IBM-273") PPONLY

The compiler will insert the #pragma filetag directive at the start of the

preprocessed file, using the coded character set specified in the LOCALE option. In

this example, ??=pragma filetag("IBM-273") is inserted.

Since the preprocessed file has been tagged, it can be compiled using the z/OS XL

C/C++ compiler at any site, regardless of the locale used.

Summary of usage for LOCALE, NOLOCALE, and pragma filetag directive:

 The following list shows the results from different combinations of the #pragma

filetag directive and the LOCALE compiler option.

Using LOCALE compiler option

In this case, the compiler does the following:

v Converts the source code from the coded character set specified with the

#pragma filetag directive to the code set specified by the LOCALE

compiler option.

v If no #pragma filetag directive is specified, the compiler assumes the

source is in the same coded character set as specified by the locale, and

does not perform any conversion.

v Converts compiler error messages from coded character set IBM-1047 to

the coded character set specified in the LOCALE compiler option.

v Generates compiler output in the same coded character set as that of the

locale specified in the LOCALE compiler option.

v If PPONLY was specified, the compiler inserts the #pragma filetag

directive at the beginning of the preprocessor file, using the coded

character set specified in the locale option.

Using NOLOCALE compiler option

In this case, the compiler does the following:

v Does not convert text in the input or output file, and uses the default

coded character set IBM-1047 to interpret syntactic characters.

v If a #pragma filetag directive is specified, the compiler suppresses the

#pragma filetag directive in the preprocessor file. The compiler issues

warnings if the #pragma filetag directive specifies a coded character set

other than IBM-1047, and uses IBM-1047 anyway.

Object modules and output listings: The compiler respects the locale specified

by the LOCALE compiler option in generating the listing. If the locale option is

specified, the object module is generated in the coded character set of your current

locale. Otherwise, the object module is generated in the coded character set

IBM-1047.

Code will run correctly if the run-time locale is the same as the locale of the object

module.

848 z/OS V1R8.0 XL C/C++ Programming Guide

If the object was generated with a different locale from the one you run under, you

must ensure that your code can run under different locales. Refer to Chapter 54,

“Customizing a locale,” on page 785 for more information.

For information about exporting code to other sites, see “Exporting source code to

other sites” on page 851.

You can use the LOCALE compiler option to ensure that listings are sensitive to a

specified locale.

Example: The following example shows the result from compiling the source file

hello273.c with:

c89 -o hello273 -Wc,so,locale\("De_DE.IBM-273"\),xplink,goff -Wl,xplink hello273.c

Chapter 58. Coded character set considerations with locale functions 849

In the listing above, notice the locale-specific information:

�1� The date at the top right. The format of the date in the listing is that

specified by the locale.

�2� The name of the locale and the code set.

�3� Code points for the }, /, and { characters.

15694A01 V1 R5 z/OS C ./hello273.c �1� 13.12.02 18:41:08 Page 1

 * * * * * P R O L O G * * * * *

 Compile Time Library : 41050000

 Command options:

 Program name. : ./hello273.c

 Compiler options. : *NOGONUMBER *NOALIAS *RENT *TERMINAL *NOUPCONV *SOURCE *NOLIST

 : *NOXREF *NOAGGR *NOPPONLY *NOEXPMAC *NOSHOWINC *NOOFFSET *MEMORY *NOSSCOMM

 : *LONGNAME *START *EXECOPS *ARGPARSE *NOEXPORTALL*NODLL(NOCALLBACKANY)

 : *NOLIBANSI *NOWSIZEOF *REDIR *ANSIALIAS *DIGRAPH *NOROCONST *ROSTRING

 : *TUNE(3) *ARCH(2) *SPILL(128) *MAXMEM(2097152) *NOCOMPACT

 : *TARGET(LE,CURRENT) *FLAG(W) *NOTEST(SYM,BLOCK,LINE,PATH,HOOK) *NOOPTIMIZE

 : *NOINLINE(AUTO,NOREPORT,100,1000) *NESTINC(255) *BITFIELD(UNSIGNED)

 : *NOCHECKOUT(NOPPTRACE,PPCHECK,GOTO,ACCURACY,PARM,NOENUM,

 : NOEXTERN,TRUNC,INIT,NOPORT,GENERAL,CAST)

 : *FLOAT(HEX,FOLD,NOAFP) *STRICT *NOIGNERRNO *NOINITAUTO

 : *NOCOMPRESS *NOSTRICT_INDUCTION *AGGRCOPY(NOOVERLAP) *CHARS(UNSIGNED)

 : *CSECT()

 : *NOEVENTS

 : *OBJECT(./hello273.o)

 : *NOOPTFILE

 : *NOSERVICE

 : *OE

 : *NOIPA

 : *SEARCH(/usr/include/, //’CEE.SCEEH.+’, //’CCN.SCLBH.+’)

 : *NOLSEARCH

 : *LOCALE *HALT(16) *PLIST(HOST)

 : *NOCONVLIT

 : *NOASCII

 : *GOFF *ILP32 *NOWARN64

 : *XPLINK(NOBACKCHAIN,NOSTOREARGS,NOCALLBACK,GUARD,OSCALL(NOSTACK))

 : *ENUMSIZE(SMALL)

 : *NOHALTONMSG

 : *NOSUPPRESS

 : *NODEBUG

 : *NOSQL

 : *UNROLL(AUTO)

 : DEFINE(errno=(*__errno()))

 : DEFINE(_OPEN_DEFAULT=1)

 Version Macros. : __COMPILER_VER__=0x41050000 __LIBREL__=0x41050000 __TARGET_LIB__=0x41050000

 Language level. : *ANSI

 Source margins. :

 Varying length. : 1 - 32760

 Fixed length. : 1 - 32760

 Sequence columns. :

 Varying length. : none

 Fixed length. : none

 Locale Name : De_DE.IBM-273 �2�

 Code Set. : IBM-273

 * * * * * E N D O F P R O L O G * * * * *

15694A01 V1 R5 z/OS C ./hello273.c 13.12.02 18:41:08 Page 2

 * * * * * S O U R C E * * * * *

 LINE STMT SEQNBR INCNO

 ...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+..

 1 |??=pragma filetag("IBM-273") | 1

 2 |#include <stdio.h> | 2

 3 | | 3

 4 |int main() ä �3� | 4

 5 1 | printf("Hello WorldÖn"); �3� | 5

 6 |ü �3� | 6

 * * * * * E N D O F S O U R C E * * * * *

Figure 227. Example of output when locale option Is used

850 z/OS V1R8.0 XL C/C++ Programming Guide

The pragma convert directive

You can control the conversion of string literals in your code by using the #pragma

convert directive. It allows you to change the assumed code page for character

string literals by supplying a codepage value. For more information, see convert in

z/OS XL C/C++ Language Reference.

For example, if you use an ASCII client machine to write code with string literals

and upload it to an EBCDIC server, then your string literals will be converted to

EBCDIC. However, if you add the pragma convert("ISO8859-1") directive to your

source code, then your string literals will be converted to an ASCII code page.

Example: Consider the following program:

/* header.h */

#pragma convert("ISO8859-1")

char *text="Hello World";

#pragma convert(pop)

/* test.c */

#pragma comment (user, "A user comment")

#include "header.h"

main () {

 char *text2 ="Hi There!";

}

When this program is compiled, the string "Hello World" will be converted to an

ASCII string, but the string "Hi There!" will not be converted.

Writing source code in coded character set IBM-1047

There are two reasons why you would want to write source in coded character set

IBM-1047.

First, even though z/OS XL C/C++ provides support for multiple coded character

sets, other tools may not do so. Tools such as CICS and DB2 may not support

source code in any coded character set other than the default coded character set,

IBM-1047. If you are using these tools, and you write your code in a code page

other than IBM-1047, you will need to use the z/OS XL C/C++ iconv utility to

convert your code to coded character set IBM-1047 before you can use the tool.

Second, older versions of the C/370 product do not support source in coded

character sets other than IBM-1047. This makes it difficult to share code with a site

using an older compiler.

Exporting source code to other sites

This section deals with the exporting of code from one Latin-1 coded character set

to another; that is, writing code that can be run in a locale that uses a different

coded character set than the one used to write the source.

To export code, use the iconv() utility to convert each source file, header file, and

data file to the target coded character set. You can then send all files to the target

location for compilation.

Note: You must ensure that your code runs in the same locale that it was compiled

under before running it with any other locales.

Chapter 58. Coded character set considerations with locale functions 851

1. Use the #pragma filetag directive to tag each source file, header file, and data

file.

2. Use message files for all external strings, such as prompts, help screens, and

error messages. To write truly portable code, convert these strings to the

run-time coded character set in your application code.

3. Use the setlocale() function so that the library functions are sensitive to the

run-time coded character set.

Ensure that locale-sensitive information, such as decimal points, are displayed

appropriately. Use either nl_langinfo() or localeconv() to obtain this

information.

The setlocale() function does not change the CEE callable services under the

z/OS Language Environment in such areas as date, time, currency, and time

zones. Internationalization is specific to z/OS XL C/C++ applications. Also, the

z/OS Language Environment CEE callable services do not change the z/OS XL

C/C++ locales. For a list of these callable services, see the z/OS Language

Environment Programming Guide.

4. Compile with the locale specifying coded character set IBM-1047.

If you specify locale(″locale-name″), your code will run correctly with libraries

running in the same coded character set. However, if you compile with a different

locale than you run under, you have to ensure that your code has no internal data,

and also that all libraries you use are run-time locale sensitive.

Example: Consider the following code fragment:

int main() {

 setlocale(LC_ALL, "");

 ...
 rc = scanf("%[1234567890abcdefABCDEF]", hexNum);

 ...
}

For example, if you compile with locale("De_DE.IBM-273"), the square brackets are

converted to the hex values X'63' and X'FC'. If the default locale you then run under

is not ″De_DE.IBM-273″, but instead ″En_US.IBM-1047″, and you have not used

setlocale(), the square brackets will be interpreted as Ä and Ü, and the call to

scanf() will not do what you intended.

Example: If you only need to run your code locally or export it to a site that has

your locale environment, you can solve this problem by coding:

int main() {

 setlocale(LC_ALL, __LOCALE__);

 ...
 rc = scanf("%[1234567890abcdefABCDEF]", hexNum);

 ...
}

This ensures that your code runs with the same locale it was compiled under.

Library functions such as printf(), scanf(), strfmon(), and regcomp() are

sensitive to the current coded character set. The __LOCALE__ macro is described in

“Using predefined macros” on page 844.

852 z/OS V1R8.0 XL C/C++ Programming Guide

If you are generating code to export to a site that may not have your locale

environment, you should write your code in IBM-1047.

Converting existing work

This section describes some conversion issues and presents some conversion

scenarios. It is assumed that existing source code and libraries cannot be quickly

converted from mixed coded character sets into a common coded character set;

thus a staged approach is recommended.

v Code your new source in one coded character set, preferably IBM-1047. Tag all

new source files to make them more portable by putting the #pragma filetag

directive at the top of each one.

v If you need to interact with existing code, compile your new code using the locale

in which the existing code was written.

v If you want to write code in a coded character set that does not have a

one-to-one mapping to coded character set IBM-1047 (that is, a coded character

set that is not Latin-1), create your own conversion table and compile it with the

genxlt utility. Use your own conversion table with the iconv utility to convert your

source code to coded character set IBM-1047.

Considerations with other products and tools

Note: Any software tool that scans source code or compiler listings is affected by

the introduction of the locale functionality. Tools that read or generate source

code now need to recognize the #pragma filetag directive. Tools that read

listings need to recognize the coded character set in the title header.

Since the following tools scan source code, they may be affected:

v The Debug Tool does not support code written in any coded character set other

than IBM-1047.

v Translators such as CICS and DB2 read source files and generate new source

files. If they do not, then follow these steps:

1. Convert the source file to coded character set IBM-1047 using the iconv

utility.

2. Remove the #pragma filetag directive from the source file, or change it to

??=pragma filetag("IBM-1047"). Run the source that is in the IBM-1047

coded character set through the appropriate translator, if needed.

Chapter 58. Coded character set considerations with locale functions 853

854 z/OS V1R8.0 XL C/C++ Programming Guide

Chapter 59. Bidirectional language support

This chapter describes the characteristics of bidirectional languages, and provides

an overview of the layout functions for bidirectional languages. For more information

on the layout functions see z/OS XL C/C++ Run-Time Library Reference, and

X/Open Portable Layout Services: Context-dependent and Directional Text.

Bidirectional languages

Bidirectional languages are languages such as Arabic and Hebrew, that are written

and read mainly from right to left, but some portions of the text, such as numbers

and embedded Latin languages (e.g. English) are written and read left to right.

Additional characteristics of bidirectional languages include:

v visual order versus logical order

v symmetric swapping

v number formats

v cursive (shaping) versus non-cursive

In bidirectional text it is important to note the difference between the logical order in

which the text is processed or read, and the visual order in which the text is

displayed. Bidirectional text is usually stored in logical order. For example, assume

that the following text is Arabic, then the logical storage would contain:

maple street 25 entrance b

and the visual display would be (if read from right to left):

b ecnartne 25 teerts elpam

Some characters, such as the greater-than sign, have an implied directional

meaning and have a complementary symmetric character with an opposite

directional meaning (the less-than sign.) When used within a segment that is

presented right-to-left but is inverted (left-to-right) when stored for processing, such

a character might have to be replaced by its symmetric sibling to ensure that the

correct meaning of the text is preserved. The replacement of such a character by its

complement during the transformation of BiDi text is called ″symmetrical swapping″.

Other graphic characters that need symmetrical swapping include the parentheses,

square brackets, braces, and so on. Although symmetrical swapping is a

characteristic of BiDi languages, it is not always mandatory for the software

functions that transform different BiDi language text layouts. Sometimes this

function is performed automatically by the workstation hardware or micro code.

Arabic numerals (Latin digits) are those numerals used with Latin text, while Hindi

numerals are used within Arabic text, in some of the Arabian countries, like Egypt.

However, the Implicit algorithm states the number storage should use Arabic

numerals (Latin digit), and be displayed according to the user’s settings.

Note that even though the text in the example is displayed right to left, the number

″25″ is still written left to right. That is because Arabic/Hebrew numbers are written

and read left to right.

Arabic is a cursive language. Arabic characters are connected together, and each

character has different shapes depending on its location within the word: initial,

middle, final or isolated. Cursive languages are suited to handwriting rather than

printing. Arabic is always cursive, whether in books, newspapers, signs or

© Copyright IBM Corp. 1996, 2006 855

workstation displays. English can be handwritten in a cursive style, and it is often

used that way in personal communications, but English is seldom published or

displayed in a cursive style. Thus, English is not considered a cursive language.

To simplify processing, characters are usually stored in an unshaped form. (The

unshaped form is also referred to as the abstract or basic form.) Shaping takes into

account the character being shaped and the characters in its vicinity, and replaces

the unshaped, abstract form with the proper shape. For example, in Arabic, the

unshaped character would be replaced with the initial, middle, final or isolated

shaped character, depending on the context.

Note that Hebrew letters do not use shaping, and numbers used with Hebrew text

are always displayed with the same digits as used for English.

Legacy operating systems like MVS used to store Arabic and Hebrew data in their

visual format. Sometimes for specific needs, data might be stored in a specific

shape, for example initial shape. Currently, most applications store text in its

unshaped form in logical order. Reordering and shaping are done at display time.

Storing text in its unshaped form in logical order makes it easier to process the data

(sorting, comparison).

Overview of the layout functions

The layout functions are used to handle bidirectional languages correctly, to

transform text from a format readable for the user to a format suitable for

processing, and vice-versa. The layout functions include the following:

v m_create_layout() — called at the beginning of the application to create the

layout object that will be used by the other layout functions.

v m_setvalues_layout() — sets the values that will be used inside the transform.

m_setvalues_layout() must be called before calling m_transform_layout or

m_wtransform_layout. This function is optional. Use this function if you need to

change the values for the bidirectional attributes. You can eliminate it from the

application, and use a modifier instead.

v m_getvalues_layout() — queries the current layout values within a layout object.

v m_transform_layout() — does the actual processing to convert the text format

between different bidirectional layouts, according to the settings of the

LayoutObject. Nothing will change if this function (or its wide character

equivalent) is not called inside the application.

v m_wtransform_layout() — works the same as m_transform_layout(), except that it

handles Unicode wide characters (wchar_t) .

v m_destroy_layout() — called at the end of the application to destroy the layout

object, and free up the allocated memory used by the layout object.

Those functions can be used to convert text from logical (implicit) unshaped forms

to visual (display) shaped forms and vice versa. The layout functions also handle

conversion of numerals.

m_create_layout()

 #include <sys/layout.h>

LayoutObject m_create_layout(const AttrObject attrobj,const char* modifier);

This function creates a LayoutObject associated with the locale identified by

attrobj. The LayoutObject is an opaque object containing all the data and methods

necessary to perform the layout operations on context-dependent or directional

characters of the locale identified by the attrobj. The memory for the LayoutObject

is allocated by m_create_layout() . The LayoutObject created has default layout

856 z/OS V1R8.0 XL C/C++ Programming Guide

values. (If the modifier argument is not NULL, the layout values specified by the

modifier overwrite the default layout values associated with the locale).

attrobj argument

Is or may be an amalgam of many opaque objects. A locale object is just one

example of the type of object that can be attached to an attribute object. The

attrobj argument specifies a name that is usually associated with a locale

category.

modifier argument

Can be used to announce a set of layout values when the LayoutObject is

created.

m_setvalues_layout()

#include <sys/layout.h>

int m_setvalues_layout(LayoutObject layout_object,const LayoutValues values,

 int *index_returned);

This function is used to change the layout values of a LayoutObject.

layout_object argument

Specifies a LayoutObject returned by the m_create_layout() function.

values argument

Specifies the list of layout values that are to be changed. The values are written

into the LayoutObject and may affect the behavior of subsequent layout

functions.

m_getvalues_layout()

#include <sys/layout.h>

 int m_getvalues_layout(const LayoutObject layout_object,LayoutValues values,

 int *index_returned);

This function is used to query the current settings of the layout values within a

Layout Object.

layout_object argument

Specifies a Layout Object returned by the m_create_layout() function.

values argument

Specifies the list of layout values that are to be queried. Each value element of

a LayoutValueRec must point to a location where the layout value is stored. That

is, if the layout value is of type T , the argument must be of type *T . The

values are queried from the Layout Object and represent its current setting. It is

the user’s responsibility to manage the memory allocation for the layout values

queried. If the layout value name has QueryValueSize ORed to it, instead of the

setting of the layout value, only its size is returned. This option can be used by

the caller to determine the amount of memory needed to be allocated for the

layout values queried.

m_transform_layout ()

#include <sys/layout.h>

int m_transform_layout(LayoutObject layout_object,

 const char *InpBuf,

 const size_t InpSize,

 void *OutBuf,

 size_t *Outsize,

 size_t *InpToOut,

 size_t *OutToInp,

 unsigned char *Property,

 size_t *InpBufIndex);

Chapter 59. Bidirectional language support 857

This function performs layout transformations (reordering and shaping), or it may

provide additional information needed for layout transformation (such as the

expected size of the transformed layout, the nesting level of different segments in

the text and cross references between the locations of the corresponding elements

before and after the layout transformation). Both the input text and output text are

character strings. The m_transform_layout() function transforms the input text in

InpBuf according to the current layout values in layout_object. Any layout value

whose value type is LayoutTextDescriptor describes the attributes of the InpBuf

and OutBuf arguments. If the attributes are the same for both InpBuf and OutBuf, a

null transformation is performed with respect to that specific layout value. The

InpBuf argument specifies the source text to be processed. The InpSize argument

is the number of bytes within InpBuf to be processed by the transformation. Its

value will not change after return from the transformation.

LayoutObject argument

Specifies the Layout Object returned by m_create_layout().

InpBuf argument

Corresponds to the input string that the layout functions will process.

InpSize argument

Gives the input size of the input string specified by the InpBuf argument.

Note: If you need to pass –1 as a value for InpSize, you must cast it using

(size_t)-1.

OutBuf argument

Any transformed data is stored here. This buffer will contain the data after

converting it to the specified layout values and output code page.

Outsize argument

Gives the number of bytes in the Output Buffer.

InpToOut mapping argument

A cross-reference from each InpBuf code element to the transformed data. The

cross-reference relates to the data in InpBuf starting with the first element that

InpBufIndex points to (and not necessarily starting from the beginning of the

InpBuf).

OutToInp mapping argument

A cross-reference to each InpBuf code element from the transformed data. The

cross-reference relates to the data in InpBuf starting with the first element that

InpBufIndex points to (and not necessarily starting from the beginning of the

InpBuf).

Property argument

A weighted value that represents peculiar input string transformation properties

with different connotations. If this argument is not a NULL pointer, it represents

an array of values with the same number of elements as the source sub string

text before the transformation. Each byte will contain relevant ’’property’’

information of the corresponding element in InpBuf starting from the element

pointed by InpBufIndex.

InpBufIndex argument

InpBufIndex is an offset value to the location of the transformed text. When

m_transform_layout() is called, InpBufIndex contains the offset to the element

in InpBuf that will be transformed first. (Note that this is not necessarily the first

element in InpBuf). At the return from the transformation, InpBufIndex contains

the offset to the first element in the InpBuf that has not been transformed. If the

858 z/OS V1R8.0 XL C/C++ Programming Guide

entire sub string has been transformed successfully, InpBufIndex will be

incremented by the amount defined by InpSize.

m_wtransform_layout()

#include <sys/layout.h>

 int m_wtransform_layout(LayoutObject layout_object,

 const wchar_t *InpBuf,

 const size_t InpSize, void *OutBuf,

 size_t *Outsize,

 size_t *InpToOut, size_t *OutToInp,

 unsigned char *Property,

 size_t *InpBufIndex);

The m_wtransform_layout is the same as m_transform_layout, except that it takes

Unicode (wchar_t *) as an input buffer .

m_destroy_layout()

#include <sys/layout.h>

 int m_destroy_layout(const LayoutObject layoutobject);

This function destroys the layout object and frees up the allocated memory used by

the layout object.

Using the layout functions

Perform the following steps to use the layout functions:

1. Include the sys/layout.h header file to define the values and function

prototypes.

Example:

#include <sys/layout.h>

2. Declare the program variables.

Example:

LayoutObject plh;

int error = 0, index;

size_t insize = 9, outsize;

LayoutValues layout;

LayoutTextDescriptor set_desc;

char *inbuffer;

char *outbuffer;

char *inShape;

char *outShape;

char *myModifier=

 "@lstypeoftext=implicit:visual,shaping=nominal:shaped,orientation=ltr:rtl";

In the first line declare a LayoutObject called ″plh″, this is the layout object that

m_create_layout() creates later when invoked. index is the index of the returned

error. insize is the size of the input buffer,and outsize is the size of the output

buffer. The four integer variables in the second and third lines will be used later

in the call of m_setvalues_layout() and m_transform_layout(). In the fourth line

declare a LayoutValues variable called ″layout″ and in the fifth line declare a

LayoutTextDescriptor called ″set_desc″. These two variables are very

important. They will be used with m_setvalues_layout() in the form of

input/output pairs to specify new input and output values for each one of the

specified attributes. The next two lines add four strings (char *), that will be

used as the input buffer, output buffer, input code page and finally the output

code page. The last line adds a string that specifies the modifier to be used as

specified earlier in the m_create_layout() function to create the layout object.

Chapter 59. Bidirectional language support 859

3. Allocate memory to the declared strings, layout values, layout text descriptor,

and write the contents of the input buffer.

Example:

inbuffer =(char *)malloc(insize*sizeof(char));

outbuffer=(char *)malloc(outsize*sizeof(char));

layout = (LayoutValues)malloc(6*sizeof(LayoutValueRec));

set_desc = (LayoutTextDescriptor)malloc(3*sizeof(LayoutTextDescriptorRec));

inShape = (char*) malloc(20 * sizeof(char));

outShape = (char*) malloc(20 * sizeof(char));

inbuffer[0] = 0xB0;

inbuffer[1] = 0xB1;

inbuffer[2] = 0xB2;

inbuffer[3] = 0xBF;

inbuffer[4] = 0x40;

inbuffer[5] = 0x9A;

inbuffer[6] = 0x75;

inbuffer[7] = 0x58;

inbuffer[8] = 0xDC;

The values of the input buffer are added one by one as an array of characters,

but several alternatives could be used. For example, you can read the input

buffer as a string from a file, or get it from another application.

4. Call the m_create_layout() function to create a layout object ″plh″.

Example:

plh = m_create_layout("Ar_AA",myModifier);

The layout object ″plh″ is created with the locale Ar_AA with the modifier

myModifier.

5. At this point of the program there are two options, either call

m_setvalues_layout() or just call the m_transform_layout() (or

m_wtransform_layout()) directly.

Specify the input/output layout values. The first two lines below specify the two

strings used as the input and output code pages. These two strings will be used

by the other functions to specify the input code page for the input buffer and the

output code page for the output buffer .

Example:

strcpy(outShape,"ibm-420");

strcpy(inShape,"ibm-425");

set_desc[0].inp = ORIENTATION_LTR;

set_desc[0].out = ORIENTATION_LTR;

set_desc[1].inp = TEXT_IMPLICIT;

set_desc[1].out = TEXT_VISUAL;

set_desc[2].inp = TEXT_NOMINAL;

set_desc[2].out = TEXT_SHAPED;

Add the input/output layout text descriptor pairs . These pairs are in the form of

input descriptor and output descriptor, for example the first statement specifies

that the input orientation will be ″orientation-left-to-right″ and the second

statement specifies that the output orientation will be also ″orientation-left-to-
right″ . All the above pairs follow the same rule to define the input/output pairs .

Example:

 layout[0].name = ShapeCharset;

 layout[0].value = (char *)outShape;

 layout[1].name = InputCharset;

860 z/OS V1R8.0 XL C/C++ Programming Guide

layout[1].value = (char *)inShape;

 layout[2].name = Orientation;

 layout[2].value = (LayoutTextDescriptor)&set_desc[0];

 layout[3].name = TypeOfText;

 layout[3].value = (LayoutTextDescriptor)&set_desc[1];

 layout[4].name = TextShaping;

 layout[4].value = (LayoutTextDescriptor)&set_desc[2];

 layout[5].name = 0;

In the above lines ″set_desc″ pairs create the new layout values attributes.

Each one of these statements will be in the form of attribute_name/
attribute_value pairs, for example in the fifth and sixth statements ″Orientation″

is the attribute name and set_desc[0] (as defined above) is the attribute value.

The first two statements are used to declare the output code page and the

following two lines are used to specify the input code page.

Call the m_setvalues_layout() function.

Example:

if((error =m_setvalues_layout(plh,layout,&index)))

printf("\n An error %d occurred in setting the value number %d\n",error,index);

Invoke m_setvalues_layout() using the layout object ″plh″, the layout values

″layout″ and an integer ″index″. If m_setvalues_layout() could not set any one of

the layout values attributes, it will return -1 in the integer variable called ″error″,

and also return the index of the layout value that caused the problem.

6. Call the m_transform_layout() function. The m_transform_layout() and

m_wtransform_layout() functions are the same, except that

m_wtransform_layout() is used for wide character (wchar_t). Both functions will

do the actual reordering and shaping of the input buffer using the layout object

(plh) created in step 4.

Example:

m_transform_layout(plh,inbuffer,insize,outbuffer,&outsize,NULL,

NULL,NULL,NULL);

plh The Layout Object returned by m_create_layout().

inbuffer

Corresponds to the input string to the function that the layout functions

will process.

insize Gives the input size of the input string specified by the Input Buffer

argument.

outbuffer

Any transformed data is stored here. This buffer will contain the data

after converting it to the specified output code page.

outsize

Gives the number of bytes in the Output Buffer.

The last four parameters are given here as NULL and they represent Input To

Output Mapping, Output To Input Mapping, Property and Input Buffer Index as

described above in the Overview of the Layout Functions. Each of these output

arguments may be NULL to specify that no output is desired for the specific

argument.

Chapter 59. Bidirectional language support 861

7. Call the m_destroy_layout() function. This function must be called at the end of

the program to destroy the layout object or to free up the allocated memory

used by the layout object .

Example:

 m_destroy_layout(plh);

CCNGBID1

/* This is a simple program that explains how the layout API’s are used */

/* This program will convert a simple implicit unshaped Arabic string */

/* to a visual shaped Arabic string . */

#include <sys/layout.h>

#include <stdio.h>

void main(int argc,char** argv)

{

 LayoutObject plh;

 int error = 0;

 LayoutValues layout;

 LayoutTextDescriptor set_desc;

 size_t insize = 9,outsize = 9;

 char *inbuffer=NULL;

 char *outbuffer=NULL;

 char *inShape=NULL;

 char *outShape=NULL;

 char

*myModifier="@lstypeoftext=implicit:visual,shaping=nominal:shaped,orientation=ltr:rtl";

 inbuffer =(char *)malloc((insize+1)*sizeof(char)) ;

 outbuffer=(char *)malloc((outsize+1)*sizeof(char)) ;

 layout = (LayoutValues)malloc(6*sizeof(LayoutValueRec));

 set_desc = (LayoutTextDescriptor)malloc(3*sizeof(LayoutTextDescriptorRec));

 inShape = (char*) malloc(8 * sizeof(char));

 outShape = (char*) malloc(8 * sizeof(char));

 inbuffer[0] = 0xB0; /* These are the HEX code for Arabic characters in the IBM-425 codepage */

 inbuffer[1] = 0xB1;

 inbuffer[2] = 0xB2;

 inbuffer[3] = 0xBF;

 inbuffer[4] = 0x40;

 inbuffer[5] = 0x9A;

 inbuffer[6] = 0x75;

 inbuffer[7] = 0x58;

 inbuffer[8] = 0xDC;

Figure 228. Example of bidirectional layout API’s (Part 1 of 2)

862 z/OS V1R8.0 XL C/C++ Programming Guide

plh = m_create_layout("Ar_AA",myModifier);

 strcpy(outShape,"ibm-420");

 strcpy(inShape,"ibm-425");

 set_desc[0].inp = ORIENTATION_LTR;

 set_desc[0].out = ORIENTATION_LTR;

 set_desc[1].inp = TEXT_IMPLICIT;

 set_desc[1].out = TEXT_VISUAL;

 set_desc[2].inp = TEXT_NOMINAL;

 set_desc[2].out = TEXT_SHAPED;

 layout[0].name = ShapeCharset;

 layout[0].value = (char *)outShape;

 layout[1].name = InputCharset;

 layout[1].value = (char *)inShape;

 layout[2].name = Orientation;

 layout[2].value = (LayoutTextDescriptor)&set_desc[0];

 layout[3].name = TypeOfText;

 layout[3].value = (LayoutTextDescriptor)&set_desc[1];

 layout[4].name = TextShaping;

 layout[4].value = (LayoutTextDescriptor)&set_desc[2];

 layout[5].name = 0;

 if(error=m_setvalues_layout(plh,layout,&index))

 printf("\n An error %d occurred in setting the value number %d\n",error,index);

 m_transform_layout(plh,inbuffer,insize,outbuffer,&outsize,NULL,NULL,NULL,NULL);

 m_destroy_layout(plh);

 if(inbuffer)

 free(inbuffer);

 if(outbuffer)

 free(outbuffer);

 if(set_desc)

 free(set_desc);

 if(layout)

 free(layout);

 if(inShape)

 free(inShape);

 if(outShape)

 free(outShape);

}

Figure 228. Example of bidirectional layout API’s (Part 2 of 2)

Chapter 59. Bidirectional language support 863

864 z/OS V1R8.0 XL C/C++ Programming Guide

Part 9. Appendixes

© Copyright IBM Corp. 1996, 2006 865

866 z/OS V1R8.0 XL C/C++ Programming Guide

Appendix A. POSIX character set

POSIX 1003.2, section 2.4, specifies the characters that are in the portable

character set. The following table lists the characters in the portable character set

with their symbolic name, the GCGID, and the graphic symbol for the character.

Some of the characters (the hyphen, for example) also have alternate symbolic

names.

The input files for the localedef utility, the charmap file and the locale definition file,

are coded using the characters in the portable character set.

 Symbolic Name Alternate Name Character

<NUL>

<alert> <SE08>

<backspace> <SE09>

<tab> <SE10>

<newline> <SE11>

<vertical-tab> <SE12>

<form-feed> <SE13>

<carriage-return> <SE14>

<space> <SP01>

<exclamation-mark> <SP02> !

<quotation-mark> <SP04> "

<number-sign> <SM01> #

<dollar-sign> <SC03> $

<percent-sign> <SM02> %

<ampersand> <SM03> &

<apostrophe> <SP05> '

<left-parenthesis> <SP06> (

<right-parenthesis> <SP07>)

<asterisk< <SM04> *

<plus-sign> <SA01> +

<comma> <SP08> ,

<hyphen> <SP10> -

<hyphen-minus> <SP10> -

<period> <SP11> .

<slash> <SP12> /

<zero> <ND10> 0

<one> <ND01> 1

<two> <ND02> 2

<three> <ND03> 3

<four> <ND04> 4

<five> <ND05> 5

<six> <ND06> 6

© Copyright IBM Corp. 1996, 2006 867

Symbolic Name Alternate Name Character

<seven> <ND07> 7

<eight> <ND08> 8

<nine> <ND09> 9

<colon> <SP13> :

<semicolon> <SP14> ;

<less-than-sign> <SA03> <

<equals-sign> <SA04> =

<greater-than-sign> <SA05> >

<question-mark> <SP15> ?

<commercial-at> <SM05> @

<A> <LA02> A

 <LB02> B

<C> <LC02> C

<D> <LD02> D

<E> <LE02> E

<F> <LF02> F

<G> <LG02> G

<H> <LH02> H

<I> <LI02> I

<J> <LJ02> J

<K> <LK02> K

<L> <LL02> L

<M> <SM02> M

<N> <LN02> N

<O> <LO02> O

<P> <LP02> P

<Q> <LQ02> Q

<R> <LR02> R

<S> <LS02> S

<T> <LT02> T

<U> <LU02> U

<V> <LV02> V

<W> <LW02> W

<X> <LX02> X

<Y> <LY02> Y

<Z> <LZ02> Z

<left-square-bracket> <SM06> [

<backslash> <SM07> \

<reverse-solidus> <SM07> \

<right-square-bracket> <SM08>]

<circumflex> <SD15> ^

868 z/OS V1R8.0 XL C/C++ Programming Guide

Symbolic Name Alternate Name Character

<circumflex-accent> <SD15> ^

<underscore> <SP09> _

<low-line> <SP09> _

<grave-accent> <SD13> `

<a> <LA01> a

 <LB01> b

<c> <LC01> c

<d> <LD01> d

<e> <LE01> e

<f> <LF01> f

<g> <LG01> g

<h> <LH01> h

<i> <LI01> i

<j> <LJ01> j

<k> <LK01> k

<l> <LL01> l

<m> <LM01> m

<n> <LN01> n

<o> <LO01> o

<p> <LP01> p

<q> <LQ01> q

<r> <LR01> r

<s> <LS01> s

<t> <LT01> t

<u> <LU01> u

<v> <LU01> v

<w> <LW01> w

<x> <LX01> x

<y> <LY01> y

<z> <LZ01> z

<left-brace> <SM11> {

<left-curly-bracket> <SM11> {

<vertical-line> <SM13> |

<right-brace> <SM14> }

<right-curly-bracket> <SM14> }

<tilde> <SD19> ~

With z/OS XL C/C++, the localedef utility uses code page IBM-1047 as the

definition of the code points for the characters in the Portable Character Set.

Therefore the default values for the escape-char and comment-char are the code

points from the IBM-1047 code page.

Appendix A. POSIX character set 869

There are some coded character sets, such as the Japanese Katakana coded

character set 290, that have code points for the lowercase characters different from

the code points for the lowercase characters in the set IBM-1047. A charmap file or

locale definition file cannot be coded using these coded character sets.

870 z/OS V1R8.0 XL C/C++ Programming Guide

Appendix B. Mapping variant characters for z/OS XL C/C++

This appendix describes how you can enter and display the variant characters.

These characters include square brackets ([]) and the caret character (^) for the

host environment. If you use a programmable workstation or a 3270 terminal, you

can follow the documented procedures to map the keys on your keyboard.

Remapping will send the correct variant character hexadecimal values to the host

system for the z/OS XL C/C++ compiler.

 �1� See iconv in z/OS XL C/C++ User’s Guide for more information on this utility.

�2�See “Displaying square brackets when using ISPF” on page 874 for more

information on variant characters.

Note: If you are running a programmable workstation by using host emulation

software, apply your host emulation software’s keyboard by remapping first.

If this allows correct hexadecimal values for the variant characters sent to

the host, then you have completed the task.

Displaying hexadecimal values

To ensure that your current keys generate correct hexadecimal values for the z/OS

XL C/C++ compiler and its library, use the following program to show the

hexadecimal values on the display. This program displays the hexadecimal values

for the variant characters that your current setup uses, and the values that the

compiler and library expect.

Note: See LOCALE|NOLOCALE and other appropriate sections in z/OS XL C/C++

User’s Guide for information on the option and the list of IBM-supported

locales available for use at compile time or run time. The default C locale is

encoded in code page IBM-1047; therefore the default encoding of variant

characters is as in IBM-1047.

Compile and run sample program
in Displaying Hexadecimal Values.
View hexadecimal values for the
variant characters.

Keyed in hex values match those
used by the compiler.

Use iconv() to convert your source coded
character set to IBM-1047 which the compiler
recognizes by default.

Use EDIT session to correct variant characters.

NO

YES
Done

Apply one
of the

following: 1

2

Figure 229. Variant Characters

© Copyright IBM Corp. 1996, 2006 871

Example of displaying hexadecimal values

The sample program reads the ten characters from the input file MYFILE.DAT and

displays the character values in hexadecimal notation. The program also queries

the current compile time locale for the character values that compiler would expect.

These ten variant characters are selected because they are syntactically important

to the z/OS XL C/C++ compiler. You must type them in MYFILE.DAT in this order on

a single line, without spaces between them:

v backslash \

v right square bracket]

v left square bracket [

v right brace }

v left brace {

v circumflex ^

v tilde ~

v exclamation mark !

v number sign #

v vertical line |

You can use the sample program to display the character values and then reset

your environment. This will generate the codes as shown in the column EXPECTED

BY COMPILER. After re-editing your input file, you can run this program again. Consult

your system programmer for the coded character set that your installation uses. If

you are running under TSO, the data file containing the ten variant characters is

TSOid.myfile.dat. Assign this file to SYSIN and run the program.

CCNGMV1

/* this example will display hexadecimal values for the variant */

/* characters */

#include <stdio.h>

#include <locale.h>

#include <variant.h>

#include <stdlib.h>

Figure 230. Example of displaying hexadecimal values (Part 1 of 2)

872 z/OS V1R8.0 XL C/C++ Programming Guide

void read_user_data(char *, int);

void main() {

 char *user_char, *compiler_char;

 struct variant *compiler_var_char;

 int num_var_char, index;

 char *code_set;

 char *char_names[]={"backslash",

 "right bracket",

 "left bracket",

 "right brace",

 "left_brace",

 "circumflex",

 "tilde",

 "exclamation mark",

 "number sign",

 "vertical line"};

 num_var_char=sizeof(char_names)/sizeof(char *);

 if ((user_char=(char*)calloc(num_var_char, 1)) == NULL)

 {

 printf("Error: Unable to allocate the storage\n");

 exit(99);

 }

 read_user_data(user_char, num_var_char);

 /* managed to read the users’ characters from the file */

 code_set="default IBM-1047";

 compiler_char="\xe0\xbd\xad\xd0\xc0\x5f\xa1\x5a\x7b\x4f";

 /* standard compiler code page */

 printf("Compiler and library code page is : %s\n\n", code_set);

 printf(" Variant character values:\n");

 printf(" %16s expected by compiler your current\n", "");

 for (index=0; index<num_var_char; index++)

 printf(" %16s : %X %X\n",

 char_names[index], compiler_char[index], user_char[index]);

 exit(0);

}

void read_user_data(char* char_array, int num_var_char)

{

 FILE *stream;

 int num;

 if (stream = fopen ("myfile.dat", "rb"))

 if(!(num = fread(char_array, 1, num_var_char, stream)))

 {

 printf("Error: Unable to read from the file\n");

 exit(99);

 }

 else { ;}

 else

 {

 printf("Error: Unable to open the file\n");

 exit(99);

 }

 fclose(stream);

 return;

}

Figure 230. Example of displaying hexadecimal values (Part 2 of 2)

Appendix B. Mapping variant characters for z/OS XL C/C++ 873

After executing this program, use the procedures described above to ensure that

your special characters on the keyboard generate the hexadecimal values expected

by the z/OS XL C/C++ compiler.

Using pragma filetag to specify code page in C

Add the following #pragma filetag in the source and header file to specify that the

code page encodes the file:

??=ifdef __COMPILER_VER__

 ??=pragma filetag ("codepage")

??=endif

codepage is the codepage in which the source code is written.

Note: If you are running standard 3270 emulation in the U.S., your workstation

software most likely uses code page 37. You can then use this alternative by

specifying IBM-037 as codepage.

Displaying square brackets when using ISPF

When your workstation is sending correct hexadecimal values for the square

brackets to the host system, you may still find that they are not correctly displayed

by the ISPF editor when you key them in. The following sample ISPF macro can be

used to view the [and] characters in text, trigraph, or hex form. You can then

toggle between the three settings. Include this macro in a regular CLIST library that

is concatenated to the ddname SYSPROC.

874 z/OS V1R8.0 XL C/C++ Programming Guide

Example of ISPF macro for displaying square brackets (CCNGMV2)

Using the CCNGMV2 macro

Follow these steps to use the CCNGMV2 macro:

1. Remap your host emulation software keyboard. If this does not enable correct

display of [and] on ISPF, try this macro.

2. Start ISPF to edit the C or C++ source file.

/* this ISPF macro can be used to display square brackets in different

/* formats

PROC 0

ISREDIT MACRO

SET RP = &STR())

 /* Symbolic values for 6 C language symbols.

 /* 1. left bracket, EBCDIC hex value

 /* 2. right bracket, EBCDIC hex value

 /* 3. left bracket, trigraph

 /* 4. right bracket, trigraph

 /* 5. left bracket, square

 /* 6. right bracket, square

SET LBRACKET_HEX = X’AD’

SET RBRACKET_HEX = X’BD’

SET LBRACKET_TRI = &STR(??(

SET RBRACKET_TRI = &STR(??&RP)

SET LBRACKET_SQR = X’BA’ /* LBRACKET_SQR = HEX BA */

SET RBRACKET_SQR = X’BB’ /* RBRACKET_SQR = HEX BB */

ISREDIT FIND &LBRACKET_HEX ALL NX

ISREDIT (N1) = FIND_COUNTS

ISREDIT FIND &RBRACKET_HEX ALL NX

ISREDIT (N2) = FIND_COUNTS

IF (&N1 ¬= &N2) THEN WRITE UNBALANCED HEX BRACKETS

IF (&N1 > 0) THEN DO

 ISREDIT CHANGE &LBRACKET_HEX &LBRACKET_TRI ALL NX

 ISREDIT CHANGE &RBRACKET_HEX &RBRACKET_TRI ALL NX

 EXIT

END

ISREDIT FIND &LBRACKET_TRI ALL NX

ISREDIT (N1) = FIND_COUNTS

ISREDIT FIND &RBRACKET_TRI ALL NX

ISREDIT (N2) = FIND_COUNTS

IF (&N1 ¬= &N2) THEN WRITE UNBALANCED TRIGRAPH

IF (&N1 > 0) THEN DO

 ISREDIT CHANGE &LBRACKET_TRI &LBRACKET_SQR ALL NX

 ISREDIT CHANGE &RBRACKET_TRI &RBRACKET_SQR ALL NX

 EXIT

END

ISREDIT FIND &LBRACKET_SQR ALL NX

ISREDIT (N1) = FIND_COUNTS

ISREDIT FIND &RBRACKET_SQR ALL NX

ISREDIT (N2) = FIND_COUNTS

IF (&N1 ¬= &N2) THEN WRITE UNBALANCED SQUARE BRACKETS

IF (&N1 > 0) THEN DO

 ISREDIT CHANGE &LBRACKET_SQR &LBRACKET_HEX ALL NX

 ISREDIT CHANGE &RBRACKET_SQR &RBRACKET_HEX ALL NX

 EXIT

END

Figure 231. Sample ISPF macro for displaying square brackets

Appendix B. Mapping variant characters for z/OS XL C/C++ 875

3. Run the CCNGMV2 macro before editing to convert the compiler recognizable

hexadecimal values of the square brackets to trigraphs.

4. Run the CCNGMV2 macro again to convert the trigraphs to displayable

characters.

5. Edit your C or C++ source code.

6. Run the CCNGMV2 macro again to convert the displayable characters back to

original hexadecimal values.

7. Save and File the C source file.

Procedure for mapping on 3279

Follow this procedure if you are using a 3279-S3G-1 with ISPF, z/OS batch, or

TSO. You should have the APL keys on your keyboards.

1. Go to ISPF 0.1 and set the terminal type to 3278A.

2. Edit the file which has the square brackets.

When you want to enter brackets [or] , press ALT APLon, enter the square

brackets and then ALT APLoff. You get = X'AD', and = X'BD', which is what

z/OS XL C/C++ expects for square brackets.

876 z/OS V1R8.0 XL C/C++ Programming Guide

Appendix C. z/OS XL C/C++ Code Point Mappings

The tables below show the code point mappings for Latin-1/Open Systems coded

character set 1047 (Figure 232) and for the APL coded character set 293

(Figure 233 on page 878).

Code Page 01047

Figure 232. Coded Character Set for Latin 1/Open Systems

© Copyright IBM Corp. 1996, 2006 877

Code Page 00293

Figure 233. Coded Character Set for APL

878 z/OS V1R8.0 XL C/C++ Programming Guide

Appendix D. Locales supplied with z/OS XL C/C++

The following tables list the compiled locales and locale source files supported by

default with the z/OS XL C/C++ product. All of these locale files are provided with

the National Language Resources feature of z/OS Language Environment.

Notes:

1. Prior to z/OS V1R6, the default currency for the European Economic

Community was set to local currency in the LC_MONETARY category of the

base locale. If customers wanted to set the Euro as currency, they needed to

use setlocale() to set the @euro locales. Starting with z/OS V1R6, the

LC_MONETARY category in the base locale is now set to use the Euro.

Customers who set the base locale, now have the Euro as the default currency.

If customers want to use the old (local) currency, they need to issue setlocale()

to set the @preeuro locales.

2. Starting with OS/390 V1R3, the compiled locales are built using the locale

source files stored in the CEE.SCEELOCX partitioned data set. The CEE.SCEELOCX

locale source files were created in support of the XPG4 standard. The previous

locale source files (pre-XPG4) are in the CEE.SCEELOCL partitioned data set. We

include the pre-XPG4 source for customers who want to run in a non-POSIX

locale environment.

3. In the HFS, the locale source files are in /usr/lib/nls/localedef and the

binaries are in /usr/lib/nls/locale (we do not ship the pre-XPG4 source or

binaries in the HFS).

Compiled locales

The following table lists each setlocale() parameter and its corresponding

language, country/territory, codeset, and actual program name. The S370 C, POSIX C

and SAA C locales do not have locale modules associated with them. They are

built-in locales that cannot be modified, and are always present. Their names

cannot be changed. These locales are based on the coded character set IBM-1047.

The new versions of the POSIX C and SAA C locales can be provided, but to refer to

them, you must specify the full name of the requested locale, including the

CodesetRegistry-CodesetEncoding names. For example,

"SAA.IBM-037"

refers to the SAA C locale built from the coded character set IBM-037.

Note: Not all locales listed in the following table are fully enabled. The compiler

cannot compile source that is coded in Ja_JP.IBM-290, Ja_JP.IBM-930,

Ja_JP.IBM-1390, or Tr_TR.IBM-1026.

The <prefix> in the Load module name column for EBCDIC locales is shown in the

following table:

 Table 110. Referencing data types

EBCDIC locale Prefix

31-bit EDC

31-bit XPLINK CEH

AMODE 64 CEQ

© Copyright IBM Corp. 1996, 2006 879

Table 111. Compiled EBCDIC locales supplied with z/OS XL C/C++

Locale name as in

setlocale() argument Language

Country /

Territory Codeset

Load module

name

Ar_AA.IBM-425 Arabic Algeria,

Bahrain,

Egypt, Iraq,

Jordan,

Kuwait,

Lebanon,

Libya,

Morocco,

Oman, Qatar,

Saudi Arabia,

Syria, Tunisia,

U.A.E., Yemen

IBM-425 <prefix>$AAAR

Be_BY.IBM-1025 Byelorussian Belarus IBM-1025 <prefix>$BBFE

Be_BY.IBM-1154 Byelorussian Belarus IBM-1154 <prefix>$BBHT

Bg_BG.IBM-1025 Bulgarian Bulgaria IBM-1025 <prefix>$BGFE

Bg_BG.IBM-1154 Bulgarian Bulgaria IBM-1154 <prefix>$BGHT

Ca_ES.IBM-924 Catalan Spain IBM-924 <prefix>$CSEZ

Ca_ES.IBM-924@euro Catalan Spain IBM-924 <prefix>@CSEZ

Ca_ES.IBM-
924@preeuro

Catalan Spain IBM-924 <prefix>3CSEZ

Cs_CZ.IBM-870 Czech Czech

Republic

IBM-870 <prefix>$CZEQ

Cs_CZ.IBM-1153 Czech Czech

Republic

IBM-1153 <prefix>$CZMB

Cs_CZ.IBM-1153@euro Czech Czech

Republic

IBM-1153 <prefix>@CZMB

Cs_CZ.IBM-
1153@preeuro

Czech Czech

Republic

IBM-1153 <prefix>3CZMB

Cs_CZ.IBM-1165 Czech Czech

Republic

IBM-1165 <prefix>$CZFG

Cs_CZ.IBM-1165@euro Czech Czech

Republic

IBM-1165 <prefix>@CZFG

Cs_CZ.IBM-
1165@preeuro

Czech Czech

Republic

IBM-1165 <prefix>3CZFG

Da_DK.IBM-277 Danish Denmark IBM-277 <prefix>$DAEE

Da_DK.IBM-924 Danish Denmark IBM-924 <prefix>$DAEZ

Da_DK.IBM-924@euro Danish Denmark IBM-924 <prefix>@DAEZ

Da_DK.IBM-1047 Danish Denmark IBM-1047 <prefix>$DAEY

Da_DK.IBM-1142 Danish Denmark IBM-1142 <prefix>$DAHE

Da_DK.IBM-1142@euro Danish Denmark IBM-1142 <prefix>@DAHE

De_AT.IBM-924 German Austria IBM-924 <prefix>$DTEZ

De_AT.IBM-924@euro German Austria IBM-924 <prefix>@DTEZ

De_AT.IBM-
924@preeuro

German Austria IBM-924 <prefix>3DTEZ

De_CH.IBM-500 German Switzerland IBM-500 <prefix>$DCEO

880 z/OS V1R8.0 XL C/C++ Programming Guide

|||
|
||

|
|
||
|
||

|||
|
||

|
|
||
|
||

Table 111. Compiled EBCDIC locales supplied with z/OS XL C/C++ (continued)

Locale name as in

setlocale() argument Language

Country /

Territory Codeset

Load module

name

De_CH.IBM-1047 German Switzerland IBM-1047 <prefix>$DCEY

De_CH.IBM-1148 German Switzerland IBM-1148 <prefix>$DCHO

De_CH.IBM-1148@euro German Switzerland IBM-1148 <prefix>@DCHO

De_DE.IBM-273 German Germany IBM-273 <prefix>$DDEB

De_DE.IBM-924 German Germany IBM-924 <prefix>$DDEZ

De_DE.IBM-924@euro German Germany IBM-924 <prefix>@DDEZ

De_DE.IBM-
924@preeuro

German Germany IBM-924 <prefix>3DDEZ

De_DE.IBM-1047 German Germany IBM-1047 <prefix>$DDEY

De_DE.IBM-1141 German Germany IBM-1141 <prefix>$DDHB

De_DE.IBM-1141@euro German Germany IBM-1141 <prefix>@DDHB

De_DE.IBM-
1141@preeuro

German Germany IBM-1141 <prefix>3DDHB

De_LU.IBM-924 German Luxembourg IBM-924 <prefix>$DLEZ

De_LU.IBM-924@euro German Luxembourg IBM-924 <prefix>@DLEZ

De_LU.IBM-
924@preeuro

German Luxembourg IBM-924 <prefix>3DLEZ

El_GR.IBM-875 Greek Greece IBM-875 <prefix>$ELES

El_GR.IBM-4971 Greek Greece IBM-4971 <prefix>$ELHS

El_GR.IBM-4971@euro Greek Greece IBM-4971 <prefix>@ELHS

El_GR.IBM-
4971@preeuro

Greek Greece IBM-4971 <prefix>3ELHS

En_AU.IBM-1047 English Australia IBM-1047 <prefix>$NAEY

En_BE.IBM-924 English Belgium IBM-924 <prefix>$EBEZ

En_BE.IBM-924@euro English Belgium IBM-924 <prefix>@EBEZ

En_BE.IBM-
924@preeuro

English Belgium IBM-924 <prefix>3EBEZ

En_CA.IBM-037 English Canada IBM-037 <prefix>$ECEA

En_CA.IBM-924 English Canada IBM-924 <prefix>$ECEZ

En_CA.IBM-1047 English Canada IBM-1047 <prefix>$ECEY

En_CA.IBM-1140 English Canada IBM-1140 <prefix>$ECHA

En_GB.IBM-285 English United

Kingdom

IBM-285 <prefix>$EKEK

En_GB.IBM-924 English Great Britain IBM-924 <prefix>$EKEZ

En_GB.IBM-924@euro English Great Britain IBM-924 <prefix>@EKEZ

En_GB.IBM-1047 English United

Kingdom

IBM-1047 <prefix>$EKEY

En_GB.IBM-1146 English United

Kingdom

IBM-1146 <prefix>$EKHK

En_GB.IBM-1146@euro English United

Kingdom

IBM-1146 <prefix>@EKHK

En_HK.IBM-1047 English Hong Kong IBM-1047 <prefix>$NHEY

Appendix D. Locales supplied with z/OS XL C/C++ 881

Table 111. Compiled EBCDIC locales supplied with z/OS XL C/C++ (continued)

Locale name as in

setlocale() argument Language

Country /

Territory Codeset

Load module

name

En_IE.IBM-924 English Ireland IBM-924 <prefix>$EIEZ

En_IE.IBM-924@euro English Ireland IBM-924 <prefix>@EIEZ

En_IE.IBM-924@preeuro English Ireland IBM-924 <prefix>3EIEZ

En_IN.IBM-1047 English India IBM-1047 <prefix>$NIEY

En_JP.IBM-1027 English Japan IBM-1027 <prefix>$EJEX

En_JP.IBM-5123 English Japan IBM-5123 <prefix>$EJHX

En_NZ.IBM-1047 English New Zealand IBM-1047 <prefix>$NZEY

En_PH.IBM-1047 English Philipines IBM-1047 <prefix>$NPEY

En_SG.IBM-1047 English Singapore IBM-1047 <prefix>$NSEY

En_US.IBM-037 English United States IBM-037 <prefix>$EUEA

En_US.IBM-1047 English United States IBM-1047 <prefix>$EUEY

En_US.IBM-1140 English United States IBM-1140 <prefix>$EUHA

En_US.IBM-1140@euro English United States IBM-1140 <prefix>@EUHA

En_ZA.IBM-037 English South Africa IBM-37 <prefix>$EZEA

En_ZA.IBM-924 English South Africa IBM-924 <prefix>$EZEZ

En_ZA.IBM-1047 English South Africa IBM-1047 <prefix>$EZEY

En_ZA.IBM-1140 English South Africa IBM-1140 <prefix>$EZHA

Es_AR.IBM-284 Spanish Argentina IBM-284 <prefix>$EAEJ

Es_AR.IBM-924 Spanish Argentina IBM-924 <prefix>$EAEZ

Es_AR.IBM-1047 Spanish Argentina IBM-1047 <prefix>$EAEY

Es_AR.IBM-1145 Spanish Argentina IBM-1145 <prefix>$EAHJ

Es_BO.IBM-284 Spanish Bolivia IBM-284 <prefix>$EOEJ

Es_BO.IBM-924 Spanish Bolivia IBM-924 <prefix>$EOEZ

Es_BO.IBM-1047 Spanish Bolivia IBM-1047 <prefix>$EOEY

Es_BO.IBM-1145 Spanish Bolivia IBM-1145 <prefix>$EOHJ

Es_CL.IBM-284 Spanish Chile IBM-284 <prefix>$EHEJ

Es_CL.IBM-924 Spanish Chile IBM-924 <prefix>$EHEZ

Es_CL.IBM-1047 Spanish Chile IBM-1047 <prefix>$EHEY

Es_CL.IBM-1145 Spanish Chile IBM-1145 <prefix>$EHHJ

Es_CO.IBM-284 Spanish Colombia IBM-284 <prefix>$FGEJ

Es_CO.IBM-924 Spanish Colombia IBM-924 <prefix>$FGEZ

Es_CO.IBM-1047 Spanish Colombia IBM-1047 <prefix>$FGEY

Es_CO.IBM-1145 Spanish Colombia IBM-1145 <prefix>$FGHJ

Es_CR.IBM-284 Spanish Costa Rica IBM-284 <prefix>$EREJ

Es_CR.IBM-924 Spanish Costa Rica IBM-924 <prefix>$EREZ

Es_CR.IBM-1047 Spanish Costa Rica IBM-1047 <prefix>$EREY

Es_CR.IBM-1145 Spanish Costa Rica IBM-1145 <prefix>$ERHJ

Es_DO.IBM-284 Spanish Dominican

Republic

IBM-284 <prefix>$EDEJ

882 z/OS V1R8.0 XL C/C++ Programming Guide

Table 111. Compiled EBCDIC locales supplied with z/OS XL C/C++ (continued)

Locale name as in

setlocale() argument Language

Country /

Territory Codeset

Load module

name

Es_DO.IBM-924 Spanish Dominican

Republic

IBM-924 <prefix>$EDEZ

Es_DO.IBM-1047 Spanish Dominican

Republic

IBM-1047 <prefix>$EDEY

Es_DO.IBM-1145 Spanish Dominican

Republic

IBM-1145 <prefix>$EDHJ

Es_EC.IBM-284 Spanish Ecuador IBM-284 <prefix>$EQEJ

Es_EC.IBM-924 Spanish Ecuador IBM-924 <prefix>$EQEZ

Es_EC.IBM-1047 Spanish Ecuador IBM-1047 <prefix>$EQEY

Es_EC.IBM-1145 Spanish Ecuador IBM-1145 <prefix>$EQHJ

Es_ES.IBM-284 Spanish Spain IBM-284 <prefix>$ESEJ

Es_ES.IBM-924 Spanish Spain IBM-924 <prefix>$ESEZ

Es_ES.IBM-924@euro Spanish Spain IBM-924 <prefix>@ESEZ

Es_ES.IBM-
924@preeuro

Spanish Spain IBM-924 <prefix>3ESEZ

Es_ES.IBM-1047 Spanish Spain IBM-1047 <prefix>$ESEY

Es_ES.IBM-1145 Spanish Spain IBM-1145 <prefix>$ESHJ

Es_ES.IBM-1145@euro Spanish Spain IBM-1145 <prefix>@ESHJ

Es_ES.IBM-
1145@preeuro

Spanish Spain IBM-1145 <prefix>3ESHJ

Es_GT.IBM-284 Spanish Guatemala IBM-284 <prefix>$EGEJ

Es_GT.IBM-924 Spanish Guatemala IBM-924 <prefix>$EGEZ

Es_GT.IBM-1047 Spanish Guatemala IBM-1047 <prefix>$EGEY

Es_GT.IBM-1145 Spanish Guatemala IBM-1145 <prefix>$EGHJ

Es_HN.IBM-284 Spanish Honduras IBM-284 <prefix>$FEEJ

Es_HN.IBM-924 Spanish Honduras IBM-924 <prefix>$FEEZ

Es_HN.IBM-1047 Spanish Honduras IBM-1047 <prefix>$FEEY

Es_HN.IBM-1145 Spanish Honduras IBM-1145 <prefix>$FEHJ

Es_MX.IBM-284 Spanish Mexico IBM-284 <prefix>$EMEJ

Es_MX.IBM-924 Spanish Mexico IBM-924 <prefix>$EMEZ

Es_MX.IBM-1047 Spanish Mexico IBM-1047 <prefix>$EMEY

Es_MX.IBM-1145 Spanish Mexico IBM-1145 <prefix>$EMHJ

Es_NI.IBM-284 Spanish Nicaragua IBM-284 <prefix>$FAEJ

Es_NI.IBM-924 Spanish Nicaragua IBM-924 <prefix>$FAEZ

Es_NI.IBM-1047 Spanish Nicaragua IBM-1047 <prefix>$FAEY

Es_NI.IBM-1145 Spanish Nicaragua IBM-1145 <prefix>$FAHJ

Es_PA.IBM-284 Spanish Panama IBM-284 <prefix>$EPEJ

Es_PA.IBM-924 Spanish Panama IBM-924 <prefix>$EPEZ

Es_PA.IBM-1047 Spanish Panama IBM-1047 <prefix>$EPEY

Es_PA.IBM-1145 Spanish Panama IBM-1145 <prefix>$EPHJ

Es_PE.IBM-284 Spanish Peru IBM-284 <prefix>$EWEJ

Appendix D. Locales supplied with z/OS XL C/C++ 883

Table 111. Compiled EBCDIC locales supplied with z/OS XL C/C++ (continued)

Locale name as in

setlocale() argument Language

Country /

Territory Codeset

Load module

name

Es_PE.IBM-924 Spanish Peru IBM-924 <prefix>$EWEZ

Es_PE.IBM-1047 Spanish Peru IBM-1047 <prefix>$EWEY

Es_PE.IBM-1145 Spanish Peru IBM-1145 <prefix>$EWHJ

Es_PR.IBM-284 Spanish Puerto Rico IBM-284 <prefix>$EXEJ

Es_PR.IBM-924 Spanish Puerto Rico IBM-924 <prefix>$EXEZ

Es_PR.IBM-1047 Spanish Puerto Rico IBM-1047 <prefix>$EXEY

Es_PR.IBM-1145 Spanish Puerto Rico IBM-1145 <prefix>$EXHJ

Es_PY.IBM-284 Spanish Paraguay IBM-284 <prefix>$EYEJ

Es_PY.IBM-924 Spanish Paraguay IBM-924 <prefix>$EYEZ

Es_PY.IBM-1047 Spanish Paraguay IBM-1047 <prefix>$EYEY

Es_PY.IBM-1145 Spanish Paraguay IBM-1145 <prefix>$EYHJ

Es_SV.IBM-284 Spanish El Salvador IBM-284 <prefix>$EVEJ

Es_SV.IBM-924 Spanish El Salvador IBM-924 <prefix>$EVEZ

Es_SV.IBM-1047 Spanish El Salvador IBM-1047 <prefix>$EVEY

Es_SV.IBM-1145 Spanish El Salvador IBM-1145 <prefix>$EVHJ

Es_US.IBM-284 Spanish United States IBM-284 <prefix>$ETEJ

Es_US.IBM-924 Spanish United States IBM-924 <prefix>$ETEZ

Es_US.IBM-1047 Spanish United States IBM-1047 <prefix>$ETEY

Es_US.IBM-1145 Spanish United States IBM-1145 <prefix>$ETHJ

Es_UY.IBM-284 Spanish Uruguay IBM-284 <prefix>$FDEJ

Es_UY.IBM-924 Spanish Uruguay IBM-924 <prefix>$FDFD

Es_UY.IBM-1047 Spanish Uruguay IBM-1047 <prefix>$FDEY

Es_UY.IBM-1145 Spanish Uruguay IBM-1145 <prefix>$FDHJ

Es_VE.IBM-284 Spanish Venezuela IBM-284 <prefix>$EFEJ

Es_VE.IBM-924 Spanish Venezuela IBM-924 <prefix>$EFEZ

Es_VE.IBM-1047 Spanish Venezuela IBM-1047 <prefix>$EFEY

Es_VE.IBM-1145 Spanish Venezuela IBM-1145 <prefix>$EFHJ

Et_EE.IBM-1122 Estonian Estonia IBM-1122 <prefix>$EEFD

Et_EE.IBM-1157 Estonian Estonia IBM-1157 <prefix>$EEHD

Et_EE.IBM-1157@euro Estonian Estonia IBM-1157 <prefix>@EEHD

Et_EE.IBM-
1157@preeuro

Estonian Estonia IBM-1157 <prefix>3EEHD

Fi_FI.IBM-278 Finnish Finland IBM-278 <prefix>$FIEF

Fi_FI.IBM-924 Finnish Finland IBM-924 <prefix>$FIEZ

Fi_FI.IBM-924@euro Finnish Finland IBM-924 <prefix>@FIEZ

Fi_FI.IBM-924@preeuro Finnish Finland IBM-924 <prefix>3FIEZ

Fi_FI.IBM-1047 Finnish Finland IBM-1047 <prefix>$FIEY

Fi_FI.IBM-1143 Finnish Finland IBM-1143 <prefix>$FIHF

Fi_FI.IBM-1143@euro Finnish Finland IBM-1143 <prefix>@FIHF

884 z/OS V1R8.0 XL C/C++ Programming Guide

|||||

|
|
||||

Table 111. Compiled EBCDIC locales supplied with z/OS XL C/C++ (continued)

Locale name as in

setlocale() argument Language

Country /

Territory Codeset

Load module

name

Fi_FI.IBM-1143@preeuro Finnish Finland IBM-1143 <prefix>3FIHF

Fr_BE.IBM-500 French Belgium IBM-500 <prefix>$FBEO

Fr_BE.IBM-924 French Belgium IBM-924 <prefix>$FBEZ

Fr_BE.IBM-924@euro French Belgium IBM-924 <prefix>@FBEZ

Fr_BE.IBM-924@preeuro French Belgium IBM-924 <prefix>3FBEZ

Fr_BE.IBM-1047 French Belgium IBM-1047 <prefix>$FBEY

Fr_BE.IBM-1148 French Belgium IBM-1148 <prefix>$FBHO

Fr_BE.IBM-1148@euro French Belgium IBM-1148 <prefix>@FBHO

Fr_BE.IBM-
1148@preeuro

French Belgium IBM-1148 <prefix>3FBHO

Fr_CA.IBM-037 French Canada IBM-037 <prefix>$FCEA

Fr_CA.IBM-500 French Canada IBM-500 <prefix>$FCEO

Fr_CA.IBM-1047 French Canada IBM-1047 <prefix>$FCEY

Fr_CA.IBM-1140 French Canada IBM-1140 <prefix>$FCHA

Fr_CA.IBM-1140@euro French Canada IBM-1140 <prefix>@FCHA

Fr_CH.IBM-500 French Switzerland IBM-500 <prefix>$FSEO

Fr_CH.IBM-1047 French Switzerland IBM-1047 <prefix>$FSEY

Fr_CH.IBM-1148 French Switzerland IBM-1148 <prefix>$FSHO

Fr_CH.IBM-1148@euro French Switzerland IBM-1148 <prefix>@FSHO

Fr_FR.IBM-297 French France IBM-297 <prefix>$FFEM

Fr_FR.IBM-924 French France IBM-924 <prefix>$FFEZ

Fr_FR.IBM-924@euro French France IBM-924 <prefix>@FFEZ

Fr_FR.IBM-924@preeuro French France IBM-924 <prefix>3FFEZ

Fr_FR.IBM-1047 French France IBM-1047 <prefix>$FFEY

Fr.FR.IBM-1147 French France IBM-1147 <prefix>$FFHM

Fr.FR.IBM-1147@euro French France IBM-1147 <prefix>@FFHM

Fr_FR.IBM-
1147@preeuro

French France IBM-1147 <prefix>3FFHM

Fr_LU.IBM-924 French Luxembourg IBM-924 <prefix>$FLEZ

Fr_LU.IBM-924@euro French Luxembourg IBM-924 <prefix>@FLEZ

Fr_LU.IBM-924@preeuro French Luxembourg IBM-924 <prefix>3FLEZ

Hr_HR.IBM-870 Croatian Croatia IBM-870 <prefix>$HREQ

Hr_HR.IBM-1153 Croatian Croatia IBM-1153 <prefix>$HRMB

Hr_HR.IBM-1165 Croatian Croatia IBM-1165 <prefix>$HRFG

Hu_HU.IBM-870 Hungarian Hungary IBM-870 <prefix>$HUEQ

Hu_HU.IBM-1153 Hungarian Hungary IBM-1153 <prefix>$HUMB

Hu_HU.IBM-1153@euro Hungarian Hungary IBM-1153 <prefix>@HUMB

Hu_HU.IBM-
1153@preeuro

Hungarian Hungary IBM-1153 <prefix>3HUMB

Hu_HU.IBM-1165 Hungarian Hungary IBM-1165 <prefix>$HUFG

Appendix D. Locales supplied with z/OS XL C/C++ 885

|||||

|
|
||||

Table 111. Compiled EBCDIC locales supplied with z/OS XL C/C++ (continued)

Locale name as in

setlocale() argument Language

Country /

Territory Codeset

Load module

name

Hu_HU.IBM-1165@euro Hungarian Hungary IBM-1165 <prefix>@HUFG

Hu_HU.IBM-
1165@preeuro

Hungarian Hungary IBM-1165 <prefix>3HUFG

Id_ID.IBM-1047 Indonesian Indonesia IBM-1047 <prefix>$IIEY

Is_IS.IBM-871 Icelandic Iceland IBM-871 <prefix>$ISER

Is_IS.IBM-1047 Icelandic Iceland IBM-1047 <prefix>$ISEY

Is_IS.IBM-1149 Icelandic Iceland IBM-1149 <prefix>$ISHR

Is_IS.IBM-1149@euro Icelandic Iceland IBM-1149 <prefix>@ISHR

It_CH.IBM-500 Italian Switzerland IBM-500 <prefix>$ICEO

It_CH.IBM-924 Italian Switzerland IBM-924 <prefix>$ICEZ

It_CH.IBM-1047 Italian Switzerland IBM-1047 <prefix>$ICEY

It_CH.IBM-1148 Italian Switzerland IBM-1148 <prefix>$ICHO

It_IT.IBM-280 Italian Italy IBM-280 <prefix>$ITEG

It_IT.IBM-924 Italian Italy IBM-924 <prefix>$ITEZ

It_IT.IBM-924@euro Italian Italy IBM-924 <prefix>@ITEZ

It_IT.IBM-924@preeuro Italian Italy IBM-924 <prefix>3ITEZ

It_IT.IBM-1047 Italian Italy IBM-1047 <prefix>$ITEY

It_IT.IBM-1144 Italian Italy IBM-1144 <prefix>$ITHG

It_IT.IBM-1144@euro Italian Italy IBM-1144 <prefix>@ITHG

It_IT.IBM-1144@preeuro Italian Italy IBM-1144 <prefix>3ITHG

Iw_IL.IBM-424 Hebrew Israel IBM-424 <prefix>$ILFB

Iw_IL.IBM-12712 Hebrew Israel IBM12712 <prefix>$ILHH

Ja_JP.IBM-290 Japanese Japan IBM-290 <prefix>$JAEL

Ja_JP.IBM-930 Japanese Japan IBM-930 <prefix>$JAEU

Ja_JP.IBM-939 Japanese Japan IBM-939 <prefix>$JAEV

Ja_JP.IBM-1027 Japanese Japan IBM-1027 <prefix>$JAEX

Ja_JP.IBM-1390 Japanese Japan IBM-1390 <prefix>$JAHU

Ja_JP.IBM-1399 Japanese Japan IBM-1399 <prefix>$JAHV

Ja_JP.IBM-5123 Japanese Japan IBM-5123 <prefix>$JAHX

Ja_JP.IBM-8482 Japanese Japan IBM-8482 <prefix>$JAHL

Ko_KR.IBM-933 Korean Korea IBM-933 <prefix>$KRGZ

Ko_KR.IBM-1364 Korean Korea IBM-1364 <prefix>$KRKZ

Lt_LT.IBM-1112 Lithuanian Lithuania IBM-1112 <prefix>$LTGD

Lt_LT.IBM-1156 Lithuanian Lithuania IBM-1156 <prefix>$LTHZ

Lt_LT.IBM-1156@euro Lithuanian Lithuania IBM-1156 <prefix>@LTHZ

Lt_LT.IBM-1156@preeuro Lithuanian Lithuania IBM-1156 <prefix>3LTHZ

Lv_LV.IBM-1112 Latvian Latvia IBM-1112 <prefix>$LLGD

Lv_LV.IBM-1156 Latvian Latvia IBM-1156 <prefix>$LLHZ

Lv_LV.IBM-1156@euro Latvian Latvia IBM-1156 <prefix>@LLHZ

886 z/OS V1R8.0 XL C/C++ Programming Guide

|||||

|
|
||||

|||||

|||||

|||||

Table 111. Compiled EBCDIC locales supplied with z/OS XL C/C++ (continued)

Locale name as in

setlocale() argument Language

Country /

Territory Codeset

Load module

name

Lv_LV.IBM-
1156@preeuro

Latvian Latvia IBM-1156 <prefix>3LLHZ

Mk_MK.IBM-1025 Macedonian Macedonia IBM-1025 <prefix>$MMFE

Mk_MK.IBM-1154 Macedonian Macedonia IBM-1154 <prefix>$MMHT

Ms_MY.IBM-1047 Malay Malaysia IBM-1047 <prefix>$MYEY

Nl_BE.IBM-500 Dutch Belgium IBM-500 <prefix>$NBEO

Nl_BE.IBM-924 Dutch Belgium IBM-924 <prefix>$NBEZ

Nl_BE.IBM-924@euro Dutch Belgium IBM-924 <prefix>@NBEZ

Nl_BE.IBM-924@preeuro Dutch Belgium IBM-924 <prefix>3NBEZ

Nl_BE.IBM-1047 Dutch Belgium IBM-1047 <prefix>$NBEY

Nl_BE.IBM-1148 Dutch Belgium IBM-1148 <prefix>$NBHO

Nl_BE.IBM-1148@euro Dutch Belgium IBM-1148 <prefix>@NBHO

Nl_BE.IBM-
1148@preeuro

Dutch Belgium IBM-1148 <prefix>3NBHO

Nl_NL.IBM-037 Dutch Netherlands IBM-037 <prefix>$NNEA

Nl_NL.IBM-924 Dutch Netherlands IBM-924 <prefix>$NNEZ

Nl_NL.IBM-924@euro Dutch Netherlands IBM-924 <prefix>@NNEZ

Nl_NL.IBM-924@preeuro Dutch Netherlands IBM-924 <prefix>3NNEZ

Nl_NL.IBM-1047 Dutch Netherlands IBM-1047 <prefix>$NNEY

Nl_NL.IBM-1140 Dutch Netherlands IBM-1140 <prefix>$NNHA

Nl_NL.IBM-1140@euro Dutch Netherlands IBM-1140 <prefix>@NNHA

Nl_NL.IBM-
1140@preeuro

Dutch Netherlands IBM-1140 <prefix>3NNHA

No_NO.IBM-277 Norwegian Norway IBM-277 <prefix>$NOEE

No_NO.IBM-1047 Norwegian Norway IBM-1047 <prefix>$NOEY

No_NO.IBM-1142 Norwegian Norway IBM-1142 <prefix>$NOHE

No_NO.IBM-1142@euro Norwegian Norway IBM-1142 <prefix>@NOHE

Pl_PL.IBM-870 Polish Poland IBM-870 <prefix>$PLEQ

Pl_PL.IBM-1153 Polish Poland IBM-1153 <prefix>$PLMB

Pl_PL.IBM-1153@euro Polish Poland IBM-1153 <prefix>@PLMB

Pl_PL.IBM-
1153@preeuro

Polish Poland IBM-1153 <prefix>3PLMB

Pl_PL.IBM-1165 Polish Poland IBM-1165 <prefix>$PLFG

Pl_PL.IBM-1165@euro Polish Poland IBM-1165 <prefix>@PLFG

Pl_PL.IBM-
1165@preeuro

Polish Poland IBM-1165 <prefix>3PLFG

Pt_BR.IBM-037 Portuguese Brazil IBM-037 <prefix>$BREA

Pt_BR.IBM-1047 Portuguese Brazil IBM-1047 <prefix>$BREY

Pt_BR.IBM-1140 Portuguese Brazil IBM-1140 <prefix>$BRHA

Pt_BR.IBM-1140@euro Portuguese Brazil IBM-1140 <prefix>@BRHA

Pt_PT.IBM-037 Portuguese Portugal IBM-037 <prefix>$PTEA

Appendix D. Locales supplied with z/OS XL C/C++ 887

|
|
||||

|||||

|
|
||||

|||||

|
|
||||

Table 111. Compiled EBCDIC locales supplied with z/OS XL C/C++ (continued)

Locale name as in

setlocale() argument Language

Country /

Territory Codeset

Load module

name

Pt_PT.IBM-924 Portuguese Portugal IBM-924 <prefix>$PTEZ

Pt_PT.IBM-924@euro Portuguese Portugal IBM-924 <prefix>@PTEZ

Pt_PT.IBM-924@preeuro Portuguese Portugal IBM-924 <prefix>3PTEZ

Pt_PT.IBM-1047 Portuguese Portugal IBM-1047 <prefix>$PTEY

Pt_PT.IBM-1140 Portuguese Portugal IBM-1140 <prefix>$PTHA

Pt_PT.IBM-1140@euro Portuguese Portugal IBM-1140 <prefix>@PTHA

Pt_PT.IBM-
1140@preeuro

Portuguese Portugal IBM-1140 <prefix>3PTHA

Ro_RO.IBM-870 Romanian Romania IBM-870 <prefix>$ROEQ

Ro_RO.IBM-1153 Romanian Romania IBM-1153 <prefix>$ROMB

Ro_RO.IBM-1165 Romanian Romania IBM-1165 <prefix>$ROFG

Ru_RU.IBM-1025 Russian Russia IBM-1025 <prefix>$RUFE

Ru_RU.IBM-1154 Russian Russia IBM-1154 <prefix>$RUHT

Sh_SP.IBM-870 Serbian (Latin) Serbia IBM-870 <prefix>$SLEQ

Sh_SP.IBM-1153 Serbian (Latin) Serbia IBM-1153 <prefix>$SLMB

Sh_SP.IBM-1165 Serbian (Latin) Serbia IBM-1165 <prefix>$SLFG

Sk_SK.IBM-870 Slovak Slovakia IBM-870 <prefix>$SKEQ

Sk_SK.IBM-1153 Slovak Slovakia IBM-1153 <prefix>$SKMB

Sk_SK.IBM-1153@euro Slovak Slovakia IBM-1153 <prefix>@SKMB

Sk_SK.IBM-
1153@preeuro

Slovak Slovakia IBM-1153 <prefix>3SKMB

Sk_SK.IBM-1165 Slovak Slovakia IBM-1165 <prefix>$SKFG

Sk_SK.IBM-1165@euro Slovak Slovakia IBM-1165 <prefix>@SKFG

Sk_SK.IBM-
1165@preeuro

Slovak Slovakia IBM-1165 <prefix>3SKFG

Sl_SI.IBM-870 Slovene Slovenia IBM-870 <prefix>$SIEQ

Sl_SI.IBM-1153 Slovene Slovenia IBM-1153 <prefix>$SIMB

Sl_SI.IBM-1153@euro Slovene Slovenia IBM-1153 <prefix>@SIMB

Sl_SI.IBM-1153@preeuro Slovene Slovenia IBM-1153 <prefix>3SIMB

Sl_SI.IBM-1165 Slovene Slovenia IBM-1165 <prefix>$SIFG

Sl_SI.IBM-1165@euro Slovene Slovenia IBM-1165 <prefix>@SIFG

Sl_SI.IBM-1165@preeuro Slovene Slovenia IBM-1165 <prefix>3SIFG

Sq_AL.IBM-500 Albanian Albania IBM-500 <prefix>$SAEO

Sq_AL.IBM-1047 Albanian Albania IBM-1047 <prefix>$SAEY

Sq_AL.IBM-1148 Albanian Albania IBM-1148 <prefix>$SAHO

Sq_AL.IBM-1148@euro Albanian Albania IBM-1148 <prefix>@SAHO

Sr_SP.IBM-1025 Serbian

(Cyrillic)

Serbia IBM-1025 <prefix>$SCFE

Sr_SP.IBM-1154 Serbian

(Cyrillic)

Serbia IBM-1154 <prefix>$SCHT

Sv_SE.IBM-278 Swedish Sweden IBM-278 <prefix>$SVEF

888 z/OS V1R8.0 XL C/C++ Programming Guide

|||||

|
|
||||

|||||

|
|
||||

|||||

|||||

|||||

|||||

Table 111. Compiled EBCDIC locales supplied with z/OS XL C/C++ (continued)

Locale name as in

setlocale() argument Language

Country /

Territory Codeset

Load module

name

Sv_SE.IBM-924 Swedish Sweden IBM-924 <prefix>$SVEZ

Sv_SE.IBM-924@euro Swedish Sweden IBM-924 <prefix>@SVEZ

Sv_SE.IBM-
924@preeuro

Swedish Sweden IBM-924 <prefix>3SVEZ

Sv_SE.IBM-1047 Swedish Sweden IBM-1047 <prefix>$SVEY

Sv_SE.IBM-1143 Swedish Sweden IBM-1143 <prefix>$SVHF

Sv_SE.IBM-1143@euro Swedish Sweden IBM-1143 <prefix>@SVHF

Sv_SE.IBM-
1143@preeuro

Swedish Sweden IBM-1143 <prefix>3SVHF

th_TH.IBM-838 Thai Thailand IBM-838 <prefix>$THEP

th_TH.IBM-1160 Thai Thailand IBM-1160 <prefix>$THHP

Tr_TR.IBM-1026 Turkish Turkey IBM-1026 <prefix>$TREW

Tr_TR.IBM-1155 Turkish Turkey IBM-1155 <prefix>$TRHW

Uk_UA.IBM-1123 Ukranian Ukraine IBM-1123 <prefix>$UUFH

Uk_UA.IBM-1158 Ukranian Ukraine IBM-1158 <prefix>$UUFI

Zh_CN.IBM-935 Simplified

Chinese

China (PRC) IBM-935 <prefix>$ZCGY

Zh_CN.IBM-1388 Simplified

Chinese

China (PRC) IBM-1388 <prefix>$ZCGV

Zh_HKS.IBM-935 Simplified

Chinese

China (Hong

Kong S.A.R. of

China)

IBM-935 <prefix>$ZGGY

Zh_HKS.IBM-1388 Simplified

Chinese

China (Hong

Kong S.A.R. of

China)

IBM-1388 <prefix>$ZGGV

Zh_SGS.IBM-935 Simplified

Chinese

Singapore IBM-935 <prefix>$ZSGY

Zh_SGS.IBM-1388 Simplified

Chinese

Singapore IBM-1388 <prefix>$ZSGV

Zh_TW.IBM-937 Traditional

Chinese

Taiwan IBM-937 <prefix>$ZTGW

Zh_TW.IBM-1371 Traditional

Chinese

Taiwan IBM-1371 <prefix>$ZTKA

 Table 112. Compiled ASCII locales supplied with z/OS XL C/C++

Locale name as in

setlocale() argument Language

Country /

Territory Codeset

Load

module

name

be_BY.ISO8859-5 Byelorussian Belarus ISO8859-5 CEJ$BBI5

bn_IN.UTF-8 Bengali India UTF-8 CEJ$BNF8

cs_CZ.ISO8859-2 Czech Czech Republic ISO8859-2 CEJ$CZI2

cs_CZ.UTF-8 Czech Czech Republic UTF-8 CEJ$CZF8

da_DK.ISO8859-1 Danish Denmark ISO8859-1 CEJ$DAI1

da_DK.UTF-8 Danish Denmark UTF-8 CEJ$DAF8

Appendix D. Locales supplied with z/OS XL C/C++ 889

|
|
||||

|
|
||||

|||||

Table 112. Compiled ASCII locales supplied with z/OS XL C/C++ (continued)

Locale name as in

setlocale() argument Language

Country /

Territory Codeset

Load

module

name

de_CH.ISO8859-1 German Switzerland ISO8859-1 CEJ$DCI1

de_CH.UTF-8 German Switzerland UTF-8 CEJ$DCF8

de_DE.ISO8859-1 German Germany ISO8859-1 CEJ$DDI1

de_DE.UTF-8 German Germany UTF-8 CEJ$DDF8

el_GR.ISO8859-7 Greek Greece ISO8859-7 CEJ$ELI7

el_GR.UTF-8 Greek Greece UTF-8 CEJ$ELF8

en_AU.ISO8859-1 English Australia ISO8859-1 CEJ$NAI1

en_CA.ISO8859-1 English Canada ISO8859-1 CEJ$ECI1

en_CA.ISO8859-15 English Canada ISO8859-15 CEJ$ECIF

en_GB.ISO8859-1 English United Kingdom ISO8859-1 CEJ$EKI1

en_GB.UTF-8 English United Kingdom UTF-8 CEJ$EKF8

en_HK.ISO8859-1 English China (Hong Kong

S.A.R. of China)

ISO8859-1 CEJ$NHI1

en_IN.ISO8859-1 English India ISO8859-1 CEJ$NII1

en_NZ.ISO8859-1 English New Zealand ISO8859-1 CEJ$NZI1

en_PH.ISO8859-1 English Philipines ISO8859-1 CEJ$NPI1

en_SG.ISO8859-1 English Singapore ISO8859-1 CEJ$NSI1

en_US.ISO8859-1 English United States ISO8859-1 CEJ$EUI1

en_US.UTF-8 English United States UTF-8 CEJ$EUF8

es_ES.ISO8859-1 Spanish Spain ISO8859-1 CEJ$ESI1

es_ES.UTF-8 Spanish Spain UTF-8 CEJ$ESF8

en_ZA.ISO8859-1 English South Africa ISO8859-1 CEJ$EZI1

en_ZA.ISO8859-15 English South Africa ISO8859-15 CEJ$EZIF

es_AR.ISO8859-1 Spanish Argentina ISO8859-1 CEJ$EAI1

es_AR.ISO8859-15 Spanish Argentina ISO8859-15 CEJ$EAIF

es_BO.ISO8859-1 Spanish Bolivia ISO8859-1 CEJ$EOI1

es_BO.ISO8859-15 Spanish Bolivia ISO8859-15 CEJ$EOIF

es_CL.ISO8859-1 Spanish Chile ISO8859-1 CEJ$EHI1

es_CL.ISO8859-15 Spanish Chile ISO8859-15 CEJ$EHIF

es_CO.ISO8859-1 Spanish Colombia ISO8859-1 CEJ$FGI1

es_CO.ISO8859-15 Spanish Colombia ISO8859-15 CEJ$FGIF

es_CR.ISO8859-1 Spanish Costa Rica ISO8859-1 CEJ$ERI1

es_CR.ISO8859-15 Spanish Costa Rica ISO8859-15 CEJ$ERIF

es_DO.ISO8859-1 Spanish Dominican

Republic

ISO8859-1 CEJ$EDI1

es_DO.ISO8859-15 Spanish Dominican

Republic

ISO8859-15 CEJ$EDIF

es_EC.ISO8859-1 Spanish Ecuador ISO8859-1 CEJ$EQI1

es_EC.ISO8859-15 Spanish Ecuador ISO8859-15 CEJ$EQIF

890 z/OS V1R8.0 XL C/C++ Programming Guide

Table 112. Compiled ASCII locales supplied with z/OS XL C/C++ (continued)

Locale name as in

setlocale() argument Language

Country /

Territory Codeset

Load

module

name

es_GT.ISO8859-1 Spanish Guatemala ISO8859-1 CEJ$EGI1

es_GT.ISO8859-15 Spanish Guatemala ISO8859-15 CEJ$EGIF

es_HN.ISO8859-1 Spanish Honduras ISO8859-1 CEJ$FEI1

es_HN.ISO8859-15 Spanish Honduras ISO8859-15 CEJ$FEIF

es_MX.ISO8859-1 Spanish Mexico ISO8859-1 CEJ$EMI1

es_MX.ISO8859-15 Spanish Mexico ISO8859-15 CEJ$EMIF

es_NI.ISO8859-1 Spanish Nicaragua ISO8859-1 CEJ$FAI1

es_NI.ISO8859-15 Spanish Nicaragua ISO8859-15 CEJ$FAIF

es_PA.ISO8859-1 Spanish Panama ISO8859-1 CEJ$EPI1

es_PA.ISO8859-15 Spanish Panama ISO8859-15 CEJ$EPIF

es_PE.ISO8859-1 Spanish Peru ISO8859-1 CEJ$EWI1

es_PE.ISO8859-15 Spanish Peru ISO8859-15 CEJ$EWIF

es_PR.ISO8859-1 Spanish Puerto Rico ISO8859-1 CEJ$EXI1

es_PR.ISO8859-15 Spanish Puerto Rico ISO8859-15 CEJ$EXIF

es_PY.ISO8859-1 Spanish Paraguay ISO8859-1 CEJ$EYI1

es_PY.ISO8859-15 Spanish Paraguay ISO8859-15 CEJ$EYIF

es_SV.ISO8859-1 Spanish El Salvador ISO8859-1 CEJ$EVI1

es_SV.ISO8859-15 Spanish El Salvador ISO8859-15 CEJ$EVIF

es_US.ISO8859-1 Spanish United States ISO8859-1 CEJ$ETI1

es_US.ISO8859-15 Spanish United States ISO8859-15 CEJ$ETIF

es_UY.ISO8859-1 Spanish Uruguay ISO8859-1 CEJ$FDI1

es_UY.ISO8859-15 Spanish Uruguay ISO8859-15 CEJ$FDIF

es_VE.ISO8859-1 Spanish Venezuela ISO8859-1 CEJ$EFI1

es_VE.ISO8859-15 Spanish Venezuela ISO8859-15 CEJ$EFIF

fi_FI.ISO8859-1 Finnish Finland ISO8859-1 CEJ$FII1

fi_FI.UTF-8 Finnish Finland UTF-8 CEJ$FIF8

fr_BE.ISO8859-1 French Belgium ISO8859-1 CEJ$FBI1

fr_BE.UTF-8 French Belgium UTF-8 CEJ$FBF8

fr_CA.ISO8859-1 French Canada ISO8859-1 CEJ$FCI1

fr_CA.UTF-8 French Canada UTF-8 CEJ$FCF8

fr_CH.ISO8859-1 French Switzerland ISO8859-1 CEJ$FSI1

fr_CH.UTF-8 French Switzerland UTF-8 CEJ$FSF8

fr_FR.ISO8859-1 French France ISO8859-1 CEJ$FFI1

fr_FR.UTF-8 French France UTF-8 CEJ$FFF8

gu_IN.UTF-8 Gujarati India UTF-8 CEJ$GIF8

he_IL.ISO8859-8 Hebrew Israel ISO8859-8 CEJ$ILI8

he_IL.UTF-8 Hebrew Israel UTF-8 CEJ$ILF8

hi_IN.UTF-8 Hindi India UTF-8 CEJ$INF8

Appendix D. Locales supplied with z/OS XL C/C++ 891

Table 112. Compiled ASCII locales supplied with z/OS XL C/C++ (continued)

Locale name as in

setlocale() argument Language

Country /

Territory Codeset

Load

module

name

hr_HR.ISO8859-2 Croatian Croatia ISO8859-2 CEJ$HRI2

hr_HR.UTF-8 Croatian Croatia UTF-8 CEJ$HRF8

hu_HU.ISO8859-2 Hungarian Hungary ISO8859-2 CEJ$HUI2

hu_HU.UTF-8 Hungarian Hungary UTF-8 CEJ$HUF8

id_ID.ISO8859-1 Indonesian Indonesia ISO8859-1 CEJ$III1

it_CH.ISO8859-1 Italian Switzerland ISO8859-1 CEJ$ICI1

it_CH.ISO8859-15 Italian Switzerland ISO8859-15 CEJ$ICIF

it_IT.ISO8859-1 Italian Italy ISO8859-1 CEJ$ITI1

it_IT.UTF-8 Italian Italy UTF-8 CEJ$ITF8

iw_IL.ISO8859-8 Hebrew Israel ISO8859-8 CEJ$ILI8

iw_IL.UTF-8 Hebrew Israel UTF-8 CEJ$ILF8

ja_JP.IBM-943 Japanese Japan IBM-943 CEJ$JAAJ

ja_JP.UTF-8 Japanese Japan UTF-8 CEJ$JAF8

kk_KZ.UTF-8 Kazakh Kazakstan UTF-8 CEJ$KKF8

ko_KR.IBM-eucKR Korean Korea IBM-eucKR CEJ$KRBZ

ko_KR.UTF-8 Korean Korea UTF-8 CEJ$KRF8

lv_LV.IBM-901 Latvian Latvia 901 CEJ$LLLH

lv_LV.IBM-921 Latvian Latvia 921 CEJ$LLBD

mr_IN.UTF-8 Marati India UTF-8 CEJ$MIF8

ms_MY.ISO8859-1 Malay Malaysia ISO8859-1 CEJ$MYI1

nl_NL.ISO8859-1 Dutch Netherlands ISO8859-1 CEJ$NNI1

nl_NL.UTF-8 Dutch Netherlands UTF-8 CEJ$NNF8

no_NO.ISO8859-1 Norwegian Norway ISO8859-1 CEJ$NOI1

no_NO.UTF-8 Norwegian Norway UTF-8 CEJ$NOF8

pa_IN.UTF-8 Punjabi India UTF-8 CEJ$PIF8

pl_PL.ISO8859-2 Polish Poland ISO8859-2 CEJ$PLI2

pl_PL.UTF-8 Polish Poland UTF-8 CEJ$PLF8

pt_BR.ISO8859-1 Portuguese Brazil ISO8859-1 CEJ$BRI1

pt_BR.UTF-8 Portuguese Brazil UTF-8 CEJ$BRF8

pt_PT.ISO8859-1 Portuguese Portugal ISO8859-1 CEJ$PTI1

pt_PT.UTF-8 Portuguese Portugal UTF-8 CEJ$PTF8

ro_RO.ISO8859-2 Romanian Romania ISO8859-2 CEJ$ROI2

ro_RO.UTF-8 Romanian Romania UTF-8 CEJ$ROF8

ru_RU.ISO8859-5 Russian Russia ISO8859-5 CEJ$RUI5

ru_RU.UTF-8 Russian Russia UTF-8 CEJ$RUF8

sk_SK.ISO8859-2 Slovak Slovakia ISO8859-2 CEJ$SKI2

sk_SK.UTF-8 Slovak Slovakia UTF-8 CEJ$SKF8

sl_SI.ISO8859-2 Slovene Slovenia ISO8859-2 CEJ$SII2

892 z/OS V1R8.0 XL C/C++ Programming Guide

|||||

Table 112. Compiled ASCII locales supplied with z/OS XL C/C++ (continued)

Locale name as in

setlocale() argument Language

Country /

Territory Codeset

Load

module

name

sl_SI.UTF-8 Slovene Slovenia UTF-8 CEJ$SIF8

sv_SE.ISO8859-1 Swedish Sweden ISO8859-1 CEJ$SVI1

sv_SE.UTF-8 Swedish Sweden UTF-8 CEJ$SVF8

ta_IN.UTF-8 Tamil India UTF-8 CEJ$ANF8

te_IN.UTF-8 Telugu India UTF-8 CEJ$ENF8

th_TH.TIS-620 Thai Thailand TIS-620 CEJ$THBU

th_TH.UTF-8 Thai Thailand UTF-8 CEJ$THF8

tr_TR.ISO8859-9 Turkish Turkey ISO8859-9 CEJ$TRI9

tr_TR.UTF-8 Turkish Turkey UTF-8 CEJ$TRF8

uk_UA.IBM-1124 Ukrainian Ukraine IBM-1124 CEJ$UUAU

zh_CN.IBM-eucCN Simplified

Chinese

China(PRC) IBM-eucCN CEJ$ZCBY

zh_CN.UTF-8 Simplified

Chinese

China(PRC) UTF-8 CEJ$ZCF8

zh_HKS.UTF-8 Simplified

Chinese

China (Hong Kong

S.A.R. of China)

UTF-8 CEJ$ZGF8

zh_HKT.UTF-8 Traditional

Chinese

China (Hong Kong

S.A.R. of China)

UTF-8 CEJ$ZUF8

zh_SGS.UTF-8 Simplified

Chinese

Singapore UTF-8 CEJ$ZSF8

zh_TW.BIG5 Simplified

Chinese

Taiwan BIG5 CEJ$ZTBT

zh_TW.UTF-8 Simplified

Chinese

Taiwan UTF-8 CEJ$ZTF8

 Table 113. ASCII HFS locale object names and method files

HFS Locale Object Name Method File

cs_CZ.ISO8859-2.xplink sbmeth.m

cs_CZ.UTF-8.xplink utfmeth.m

da_DK.ISO8859-1.xplink iso1meth.m

da_DK.UTF-8.xplink utfmeth.m

de_CH.ISO8859-1.xplink iso1meth.m

de_CH.UTF-8.xplink utfmeth.m

de_DE.ISO8859-1.xplink iso1meth.m

de_DE.UTF-8.xplink utfmeth.m

el_GR.ISO8859-7.xplink sbmeth.m

el_GR.UTF-8.xplink utfmeth.m

en_AU.ISO8859-1 iso1meth.m

en_GB.ISO8859-1.xplink iso1meth.m

en_GB.UTF-8.xplink utfmeth.m

en_HK.ISO8859-1 iso1meth.m

Appendix D. Locales supplied with z/OS XL C/C++ 893

Table 113. ASCII HFS locale object names and method files (continued)

HFS Locale Object Name Method File

en_IN.ISO8859-11 iso1meth.m

en_NZ.ISO8859-1 iso1meth.m

en_PH.ISO8859-1 iso1meth.m

en_SG.ISO8859-1 iso1meth.m

en_US.ISO8859-1.xplink iso1meth.m

en_US.UTF-8.xplink utfmeth.m

es_ES.ISO8859-1.xplink iso1meth.m

es_ES.UTF-8.xplink utfmeth.m

fi_FI.ISO8859-1.xplink iso1meth.m

fi_FI.UTF-8.xplink utfmeth.m

fr_BE.ISO8859-1.xplink iso1meth.m

fr_BE.UTF-8.xplink utfmeth.m

fr_CA.ISO8859-1.xplink iso1meth.m

fr_CA.UTF-8.xplink utfmeth.m

fr_CH.ISO8859-1.xplink iso1meth.m

fr_CH.UTF-8.xplink utfmeth.m

fr_FR.ISO8859-1.xplink iso1meth.m

fr_FR.UTF-8.xplink utfmeth.m

gu_IN.UTF-8 utfmeth.m

he_IL.ISO8859-8.xplink sbmeth.m

he_IL.UTF-8.xplink utfmeth.m

hi_IN.UTF-8.xplink utfmeth.m

hr_HR.ISO8859-2.xplink sbmeth.m

hr_HR.UTF-8.xplink utfmeth.m

hu_HU.ISO8859-2.xplink sbmeth.m

hu_HU.UTF-8.xplink utfmeth.m

id_ID.ISO8859-1 iso1meth.m

it_IT.ISO8859-1.xplink iso1meth.m

it_IT.UTF-8.xplink utfmeth.m

ja_JP.IBM-943.xplink stdmeth.m

ja_JP.UTF-8.xplink utfmeth.m

ko_KR.IBM-eucKR.xplink stdmeth.m

ko_KR.UTF-8.xplink utfmeth.m

kk_KZ.UTF-8.xplink utfmeth.m

mr_IN.UTF-8 utfmeth.m

ms_MY.ISO8859-1 iso1meth.m

nl_NL.ISO8859-1.xplink iso1meth.m

nl_NL.UTF-8.xplink utfmeth.m

no_NO.ISO8859-1.xplink iso1meth.m

no_NO.UTF-8.xplink utfmeth.m

894 z/OS V1R8.0 XL C/C++ Programming Guide

Table 113. ASCII HFS locale object names and method files (continued)

HFS Locale Object Name Method File

pl_PL.ISO8859-2.xplink sbmeth.m

pl_PL.UTF-8.xplink utfmeth.m

pt_BR.ISO8859-1.xplink iso1meth.m

pt_BR.UTF-8.xplink utfmeth.m

pt_PT.ISO8859-1.xplink iso1meth.m

pt_PT.UTF-8.xplink utfmeth.m

ro_RO.ISO8859-2.xplink iso1meth.m

ro_RO.UTF-8.xplink utfmeth.m

ru_RU.ISO8859-5.xplink sbmeth.m

ru_RU.UTF-8.xplink utfmeth.m

sk_SK.ISO8859-2.xplink sbmeth.m

sk_SK.UTF-8.xplink utfmeth.m

sl_SI.ISO8859-2.xplink sbmeth.m

sl_SI.UTF-8.xplink utfmeth.m

sv_SE.ISO8859-1.xplink iso1meth.m

sv_SE.UTF-8.xplink utfmeth.m

ta_IN.UTF-88.xplink utfmeth.m

te_IN.UTF-8.xplink utfmeth.m

th_TH.TIS-620.xplink sbmeth.m

th_TH.UTF-8.xplink utfmeth.m

tr_TR.ISO8859-9.xplink sbmeth.m

tr_TR.UTF-8.xplink utfmeth.m

uk-UA.IBM-1124.xplink iso1meth.m

zh_CN.IBM-eucCN.xplink stdmeth.m

zh_CN.UTF-8.xplink utf_asia.m

zh_TW.BIG5.xplink stdmeth.m

zh_TW.UTF-8.xplink utfmeth.m

Locale source files

The locale source files are supplied to enable you to build locales in coded

character sets other than those supplied. The locale sources supplied are listed in

the following table in sequence by source file name.

The “Applicable Codesets” column indicates which charmap files can be used with

the source files to build the locales. The values in this column indicate the following:

All The locale source contains only the portable character set and can be used

to build a locale with any of the supplied charmap files.

Latin-1

The locale source contains characters from the Latin-1 character set, and

can be used to build a locale from any of the supplied Latin-1 charmap files.

See Appendix E, “Charmap files supplied with z/OS XL C/C++,” on page

901 for a list of Latin-1 charmap files.

Appendix D. Locales supplied with z/OS XL C/C++ 895

Other The locale source is specific to the specified coded character set, and can

only be used to build a locale with the specified charmap file.

 Table 114. Locale source files supplied with z/OS XL C/C++

Language Country / Territory Source name

Applicable

Codesets

POSIX (built-in) EDC$POSX All

SAA (built-in) EDC$SAAC Latin-1

Arabic Algeria, Bahrain,

Egypt, Iraq, Jordan,

Kuwait, Lebanon,

Libya, Morocco,

Oman, Qatar, Saudi

Arabia, Syria, Tunisia,

U.A.E., Yemen

EDC$AAAR IBM-425

Bulgarian Bulgaria EDC$BGFE IBM-1025

Bulgarian Bulgaria EDC$BGHT IBM-1154

Portuguese Brazil EDC$BREY Latin-1

Portuguese Brazil EDC$BRHA IBM-1140

Portuguese Brazil EDC@BRHA IBM-1140

Catalan Spain EDC$CSEZ IBM-924

Catalan Spain EDC@CSEZ IBM-924

Czech Czech Republic EDC$CZEQ IBM-870

Czech Czech Republic EDC$CZMB IBM-1153

Danish Denmark EDC$DAEY Latin-1

Danish Denmark EDC$DAEZ IBM-924

Danish Denmark EDC@DAEZ IBM-924

Danish Denmark EDC$DAHE IBM-1142

Danish Denmark EDC@DAHE IBM-1142

German Switzerland EDC$DCEY Latin-1

German Switzerland EDC$DCHO IBM-1148

German Switzerland EDC@DCHO IBM-1148

German Germany EDC$DDEY Latin-1

German Germany EDC$DDEZ IBM-924

German Germany EDC@DDEZ IBM-924

German Germany EDC$DDHB IBM-1141

German Germany EDC@DDHB IBM-1141

German Luxembourg EDC$DLEZ IBM-924

German Luxembourg EDC@DLEZ IBM-924

German Austria EDC$DTEZ IBM-924

German Austria EDC@DTEZ IBM-924

Estonian Estonia EDC$EEFD IBM-1122

Estonian Estonia EDC$EEHD IBM-1157

English Belgium EDC$EBEZ IBM-924

English Belgium EDC@EBEZ IBM-924

896 z/OS V1R8.0 XL C/C++ Programming Guide

Table 114. Locale source files supplied with z/OS XL C/C++ (continued)

Language Country / Territory Source name

Applicable

Codesets

English Ireland EDC$EIEZ IBM-924

English Ireland EDC@EIEZ IBM-924

English Japan EDC$EJEX IBM-1027

English Japan EDC$EJHX IBM-5123

English United Kingdom EDC$EKEY Latin-1

English Great Britain EDC$EKEZ IBM-924

English Great Britain EDC@EKEZ IBM-924

English United Kingdom EDC$EKHK IBM-1146

English United Kingdom EDC@EKHK IBM-1146

Greek Greece EDC$ELHS IBM-4971

Greek Greece EDC@ELHS IBM-4971

Greek Greece EDC$ELES IBM-875

Spanish Spain EDC$ESEY Latin-1

Spanish Spain EDC$ESEZ IBM-924

Spanish Spain EDC@ESEZ IBM-924

Spanish Spain EDC$ESHJ IBM-1145

Spanish Spain EDC@ESHJ IBM-1145

English United States EDC$EUEY Latin-1

English United States EDC$EUHA IBM-1140

English United States EDC@EUHA IBM-1140

French Belgium EDC$FBEY Latin-1

French Belgium EDC$FBEZ IBM-924

French Belgium EDC@FBEZ IBM-924

French Belgium EDC$FBHO IBM-1148

French Belgium EDC@FBHO IBM-1148

French Canada EDC$FCEY Latin-1

French Canada EDC$FCHA IBM-1140

French Canada EDC@FCHA IBM-1140

French France EDC$FFEY Latin-1

French France EDC$FFEZ IBM-924

French France EDC@FFEZ IBM-924

French France EDC$FFHM IBM-1147

French France EDC@FFHM IBM-1147

Finnish Finland EDC$FIEY Latin-1

Finnish Finland EDC$FIEZ IBM-924

Finnish Finland EDC@FIEZ IBM-924

Finnish Finland EDC$FIHF IBM-1143

Finnish Finland EDC@FIHF IBM-1143

French Luxembourg EDC$FLEZ IBM-924

Appendix D. Locales supplied with z/OS XL C/C++ 897

Table 114. Locale source files supplied with z/OS XL C/C++ (continued)

Language Country / Territory Source name

Applicable

Codesets

French Luxembourg EDC@FLEZ IBM-924

French Switzerland EDC$FSEY Latin-1

French Switzerland EDC$FSHO IBM-1148

French Switzerland EDC@FSHO IBM-1148

Croatian Croatia EDC$HREQ IBM-870

Croatian Croatia EDC$HRMB IBM-1153

Hungarian Hungary EDC$HUEQ IBM-870

Hungarian Hungary EDC$HUMB IBM-1153

Hebrew Israel EDC$ILFB IBM-424

Hebrew Israel EDC$ILHH IBM12712

Icelandic Iceland EDC$ISEY Latin-1

Icelandic Iceland EDC$ISHR IBM-1149

Icelandic Iceland EDC@ISHR IBM-1149

Italian Italy EDC$ITEY Latin-1

Italian Italy EDC$ITEZ IBM-924

Italian Italy EDC@ITEZ IBM-924

Italian Italy EDC$ITHG IBM-1144

Italian Italy EDC@ITHG IBM-1144

Japanese Japan EDC$JAEL IBM-290

Japanese Japan EDC$JAEU IBM-930

Japanese Japan EDC$JAEV IBM-939

Japanese Japan EDC$JAEX IBM-1027

Japanese Japan EDC$JAHL IBM-8482

Japanese Japan EDC$JAHU IBM-1390

Japanese Japan EDC$JAHV IBM-1399

Japanese Japan EDC$JAHX IBM-5123

Korean Korea EDC$KRGZ IBM-933

Korean Korea EDC$KRKZ IBM-1364

Lithuanian Lithuania EDC$LTGD IBM-1112

Lithuanian Lithuania EDC$LTHZ IBM-1156

Macedonian Macedonia EDC$MMFE IBM-1025

Macedonian Macedonia EDC$MMHT IBM-1154

Dutch Belgium EDC$NBEY Latin-1

Dutch Belgium EDC$NBEZ IBM-924

Dutch Belgium EDC@NBEZ IBM-924

Dutch Belgium EDC$NBHO IBM-1148

Dutch Belgium EDC@NBHO IBM-1148

Dutch Netherlands EDC$NNEY Latin-1

Dutch Netherlands EDC$NNEZ IBM-924

898 z/OS V1R8.0 XL C/C++ Programming Guide

Table 114. Locale source files supplied with z/OS XL C/C++ (continued)

Language Country / Territory Source name

Applicable

Codesets

Dutch Netherlands EDC@NNEZ IBM-924

Dutch Netherlands EDC$NNHA IBM-1140

Dutch Netherlands EDC@NNHA IBM-1140

Norwegian Norway EDC$NOEY Latin-1

Norwegian Norway EDC$NOHE IBM-1142

Norwegian Norway EDC@NOHE IBM-1142

Polish Poland EDC$PLEQ IBM-870

Polish Poland EDC$PLMB IBM-1153

Portuguese Portugal EDC$PTEY Latin-1

Portuguese Portugal EDC$PTEZ IBM-924

Portuguese Portugal EDC@PTEZ IBM-924

Portuguese Portugal EDC$PTHA IBM-1140

Portuguese Portugal EDC@PTHA IBM-1140

Romanian Romania EDC$ROEQ IBM-870

Romanian Romania EDC$ROMB IBM-1153

Russian Russia EDC$RUFE IBM-1025

Russian Russia EDC$RUHT IBM-1154

Albanian Albania EDC$SAEY Latin-1

Albanian Albania EDC$SAHO IBM-1148

Albanian Albania EDC@SAHO IBM-1148

Serbian (Cyrillic) Serbia EDC$SCFE IBM-1025

Serbian (Cyrillic) Serbia EDC$SCHT IBM-1154

Slovene Slovenia EDC$SIEQ IBM-870

Slovene Slovenia EDC$SIMB IBM-1153

Slovak Slovakia EDC$SKEQ IBM-870

Slovak Slovakia EDC$SKMB IBM-1153

Serbian (Latin) Serbia EDC$SLEQ IBM-870

Serbian (Latin) Serbia EDC$SLMB IBM-1153

Swedish Sweden EDC$SVEY Latin-1

Swedish Sweden EDC$SVEZ IBM-924

Swedish Sweden EDC@SVEZ IBM-924

Swedish Sweden EDC$SVHF IBM-1143

Swedish Sweden EDC@SVHF IBM-1143

Thai Thailand EDC$THEP IBM-838

Thai Thailand EDC$THHP IBM-1160

Turkish Turkey EDC$TREW IBM-1026

Turkish Turkey EDC$TRHW IBM-1155

Simplified Chinese China (PRC) EDC$ZCGY IBM-935

Simplified Chinese China (PRC) EDC$ZCGV IBM-1388

Appendix D. Locales supplied with z/OS XL C/C++ 899

Table 114. Locale source files supplied with z/OS XL C/C++ (continued)

Language Country / Territory Source name

Applicable

Codesets

Traditional Chinese Taiwan EDC$ZTGW IBM-937

Traditional Chinese Taiwan EDC$ZTKA IBM-1371

900 z/OS V1R8.0 XL C/C++ Programming Guide

Appendix E. Charmap files supplied with z/OS XL C/C++

All the locales supplied were built using the appropriate charmap file that represents

the coded character sets described by the CodesetRegistry-CodesetEncoding

element of the locale name.

All of these charmap files are provided with the National Language Resources

feature of z/OS Language Environment. Consult your system programmer to

determine whether they have been installed.

Under MVS, the charmap files are provided in a separate partitioned data set,

CEE.SCEECMAP. The − sign is converted to the @ character.

The following table lists the coded character set name, which is the same as the

name of the corresponding charmap file, and the national language each code set

represents.

The column marked Latin-1 indicates whether the charmap file is for a coded

character set that contains the Latin-1 character set.

 Table 115. Coded character set names and corresponding primary country/territory

Codeset Primary Country/Territory Latin-1

Big5 Taiwan No

IBM-037 USA, Canada, Brazil Yes

IBM-273 Germany, Austria Yes

IBM-274 Belgium Yes

IBM-277 Denmark, Norway Yes

IBM-278 Finland, Sweden Yes

IBM-280 Italy Yes

IBM-281 Japan (Latin-1) Yes

IBM-282 Portugal Yes

IBM-284 Spain, Latin America Yes

IBM-285 United Kingdom Yes

IBM-290 Japan (Katakana) No

IBM-297 France Yes

IBM-424 Israel No

IBM-425 Algeria, Bahrain, Egypt, Iraq, Jordan, Kuwait,

Lebanon, Libya, Morocco, Oman, Qatar, Saudi

Arabia, Syria, Tunisia, U.A.E., Yemen

No

IBM-500 International Yes

IBM-838 Thailand No

IBM-870 Croatia, Czech Republic, Hungary, Poland,

Romania, Serbia (Latin), Slovakia, Slovenia

No

IBM-871 Iceland Yes

IBM-875 Greece No

IBM–901 Estonia, Latvia, Lithuania No

IBM–921 Estonia, Latvia, Lithuania No

© Copyright IBM Corp. 1996, 2006 901

Table 115. Coded character set names and corresponding primary country/
territory (continued)

Codeset Primary Country/Territory Latin-1

IBM-923 Multinational No

IBM-924 Latin 9/Open Systems No

IBM-930 Japan (Katakana, combined with DBCS) No

IBM-933 Korea No

IBM-935 China (PRC) No

IBM-937 Taiwan No

IBM-939 Japan (Latin, combined with DBCS) No

IBM-943 Japan No

IBM-1025 Bulgaria, Macedonia, Russia, Serbia (Cyrillic) No

IBM-1026 Turkey No

IBM-1027 Japan (Latin) extended No

IBM-1047 Latin 1/Open Systems Yes

IBM-1112 Lithuania No

IBM-1122 Estonia No

IBM-1123 Ukraine No

IBM-1124 Ukraine No

IBM-1140 USA, Canada, Brazil Yes

IBM-1141 Germany, Austria Yes

IBM-1142 Denmark, Norway Yes

IBM-1143 Finland, Sweden Yes

IBM-1144 Italy Yes

IBM-1145 Spain, Latin America Yes

IBM-1146 United Kingdom Yes

IBM-1147 France Yes

IBM-1148 International Yes

IBM-1149 Iceland Yes

IBM-1153 Croatia, Czech Republic, Hungary, Poland,

Romania, Serbia (Latin), Slovakia, Slovenia

No

IBM-1154 Bulgaria, Macedonia, Russia, Serbia (Cyrillic) No

IBM-1155 Turkey No

IBM-1156 Lithuania No

IBM-1157 Estonia No

IBM-1158 Ukraine No

IBM-1160 Thailand No

IBM-1165 Multinational No

IBM-1364 Korea No

IBM-1371 Taiwan No

IBM-1388 China (PRC) No

IBM-1390 Japan No

902 z/OS V1R8.0 XL C/C++ Programming Guide

Table 115. Coded character set names and corresponding primary country/
territory (continued)

Codeset Primary Country/Territory Latin-1

IBM-1399 Japan No

IBM-4971 Greece No

IBM-5123 Japan No

IBM-8482 Japan No

IBM12712 Israel No

IBMEUCCN China (PRC) No

IBMEUCKR Korea No

ISO8859-1 All Latin 1 Countries Yes

ISO8859-2 Croatia, Czech Republic, Hungary, Poland,

Romania, Serbia (Latin), Slovakia, Slovenia

No

ISO8859-5 Bulgaria, Macedonia, Russia, Serbia (Cyrillic) No

ISO8859-7 Greece No

ISO8859-8 Israel No

ISO8859-9 Turkey No

TIS–620 Thailand No

UTF-8 All Countries Yes

Only the charmap files for IBM-930, IBM-933, IBM-935, IBM-937, IBM-939 and

IBM-1388 specify <mb_cur_max> as 4 and include the definition of the double-byte

characters.

Note: The SAA C locale is built with the charmap IBM-1047, but has <mb_cur_max>

set to 4 to maintain compatibility with old releases of C/370.

Any of these charmaps that represent the same character set, even though they

represent different encoding of the same character sets, can be used with any

locale source that uses the same character set, to build a new locale and charmap

combination. See Chapter 53, “Building a locale,” on page 735 for information about

building your own locales.

Appendix E. Charmap files supplied with z/OS XL C/C++ 903

904 z/OS V1R8.0 XL C/C++ Programming Guide

Appendix F. Examples of charmap and locale definition

source

Following are examples of the charmap source and locale definition source files.

Charmap file

This example shows the charmap file for the encoded character set IBM-1047.

Charmap file

<code_set_name> "IBM-1047"

<mb_cur_max> 1

<mb_cur_min> 1

<escape_char> /

<comment_char> %

CHARMAP

<NUL> /x00

<SOH> /x01

<STX> /x02

<ETX> /x03

<SEL> /x04

<tab> /x05

<HT> /x05

<RNL> /x06

 /x07

<GE> /x08

<SPS> /x09

<RPT> /x0a

<vertical-tab> /x0b

<VT> /x0b

<form-feed> /x0c

<FF> /x0c

<carriage-return> /x0d

<CR> /x0d

<SO> /x0e

<SI> /x0f

<DLE> /x10

<DC1> /x11

<DC2> /x12

<DC3> /x13

<RES> /x14

<newline> /x15

<backspace> /x16

<BS> /x16

<POC> /x17

<CAN> /x18

 /x19

<UBS> /x1a

<CU1> /x1b

<IFS> /x1c % file separator

<IS4> /x1c

<FS> /x1c

<IGS> /x1d % group separator

<IS3> /x1d

<GS> /x1d

<IRS> /x1e % record separator

<IS2> /x1e

<RS> /x1e

<IUS> /x1f % unit separator

<IS1> /x1f

<US> /x1f

<ITB> /x1f

© Copyright IBM Corp. 1996, 2006 905

<DS> /x20

<SOS> /x21

<FS> /x22 % field separator

<WUS> /x23

<BYP> /x24

<LF> /x25

<ETB> /x26

<ESC> /x27

<SA> /x28

<SFE> /x29

<SM> /x2a

<CSP> /x2b

<MFA> /x2c

<ENQ> /x2d

<ACK> /x2e

<alert> /x2f

<BEL> /x2f

<SYN> /x32

<IR> /x33

<PP> /x34

<TRN> /x35

<NBS> /x36

<EOT> /x37

<SBS> /x38

<IT> /x39

<RFF> /x3a

<CU3> /x3b

<DC4> /x3c

<NAK> /x3d

<SUB> /x3f

<space> /x40

<SP01> /x40

<RSP> /x41

<SP30> /x41

<a-circumflex> /x42

<LA15> /x42

<a-diaeresis> /x43

<LA17> /x43

<a-grave> /x44

<LA13> /x44

<a-acute> /x45

<LA11> /x45

<a-tilde> /x46

<LA19> /x46

<a-ring> /x47

<LA27> /x47

<c-cedilla> /x48

<LC41> /x48

<n-tilde> /x49

<LN19> /x49

<cent> /x4a

<SC04> /x4a

<period> /x4b

<SP11> /x4b

<less-than-sign> /x4c

<SA03> /x4c

<left-parenthesis> /x4d

<SP06> /x4d

<plus-sign> /x4e

<SA01> /x4e

<vertical-line> /x4f

<SM13> /x4f

<ampersand> /x50

<SM03> /x50

<e-acute> /x51

<LE11> /x51

<e-circumflex> /x52

906 z/OS V1R8.0 XL C/C++ Programming Guide

<LE15> /x52

<e-diaeresis> /x53

<LE17> /x53

<e-grave> /x54

<LE13> /x54

<i-acute> /x55

<LI11> /x55

<i-circumflex> /x56

<LI15> /x56

<i-diaeresis> /x57

<LI17> /x57

<i-grave> /x58

<LI13> /x58

<s-sharp> /x59

<LS61> /x59

<exclamation-mark> /x5a

<SP02> /x5a

<dollar-sign> /x5b

<SC03> /x5b

<asterisk> /x5c

<SM04> /x5c

<right-parenthesis> /x5d

<SP07> /x5d

<semicolon> /x5e

<SP14> /x5e

<circumflex> /x5f

<circumflex-accent> /x5f

<SD15> /x5f

<hyphen> /x60

<hyphen-minus> /x60

<SP10> /x60

<slash> /x61

<SP12> /x61

<A-circumflex> /x62

<LA16> /x62

<A-diaeresis> /x63

<LA18> /x63

<A-grave> /x64

<LA14> /x64

<A-acute> /x65

<LA12> /x65

<A-tilde> /x66

<LA20> /x66

<A-ring> /x67

<LA28> /x67

<C-cedilla> /x68

<LC42> /x68

<N-tilde> /x69

<LN20> /x69

<broken-bar> /x6a

<SM65> /x6a

<comma> /x6b

<SP08> /x6b

<percent-sign> /x6c

<SM02> /x6c

<underscore> /x6d

<SP09> /x6d

<greater-than-sign> /x6e

<SA05> /x6e

<question-mark> /x6f

<SP15> /x6f

<o-slash> /x70

<LO61> /x70

<E-acute> /x71

<LE12> /x71

<E-circumflex> /x72

<LE16> /x72

Appendix F. Examples of charmap and locale definition source 907

<E-diaeresis> /x73

<LE18> /x73

<E-grave> /x74

<LE14> /x74

<I-acute> /x75

<LI12> /x75

<I-circumflex> /x76

<LI16> /x76

<I-diaeresis> /x77

<LI18> /x77

<I-grave> /x78

<LI14> /x78

<grave-accent> /x79

<SD13> /x79

<colon> /x7a

<SP13> /x7a

<number-sign> /x7b

<SM01> /x7b

<commercial-at> /x7c

<SM05> /x7c

<apostrophe> /x7d

<SP05> /x7d

<equals-sign> /x7e

<SA04> /x7e

<quotation-mark> /x7f

<SP04> /x7f

<O-slash> /x80

<LO62> /x80

<a> /x81

<LA01> /x81

 /x82

<LB01> /x82

<c> /x83

<LC01> /x83

<d> /x84

<LD01> /x84

<e> /x85

<LE01> /x85

<f> /x86

<LF01> /x86

<g> /x87

<LG01> /x87

<h> /x88

<LH01> /x88

<i> /x89

<LI01> /x89

<left-angle-quotes> /x8a

<guillemot-left> /x8a

<SP17> /x8a

<right-angle-quotes> /x8b

<guillemot-right> /x8b

<SP18> /x8b

<eth> /x8c

<LD63> /x8c

<y-acute> /x8d

<LY11> /x8d

<thorn> /x8e

<LT63> /x8e

<plus-minus> /x8f

<SA02> /x8f

<degree> /x90

<SM19> /x90

<j> /x91

<LJ01> /x91

<k> /x92

<LK01> /x92

<l> /x93

908 z/OS V1R8.0 XL C/C++ Programming Guide

<LL01> /x93

<m> /x94

<LM01> /x94

<n> /x95

<LN01> /x95

<o> /x96

<LO01> /x96

<p> /x97

<LP01> /x97

<q> /x98

<LQ01> /x98

<r> /x99

<LR01> /x99

<feminine> /x9a

<SM21> /x9a

<masculine> /x9b

<SM20> /x9b

<ae> /x9c

<LA51> /x9c

<cedilla> /x9d

<SD41> /x9d

<AE> /x9e

<LA52> /x9e

<currency> /x9f

<SC01> /x9f

<mu> /xa0

<SM17> /xa0

<tilde> /xa1

<SD19> /xa1

<s> /xa2

<LS01> /xa2

<t> /xa3

<LT01> /xa3

<u> /xa4

<LU01> /xa4

<v> /xa5

<LV01> /xa5

<w> /xa6

<LW01> /xa6

<x> /xa7

<LX01> /xa7

<y> /xa8

<LY01> /xa8

<z> /xa9

<LZ01> /xa9

<exclamation-down> /xaa

<SP03> /xaa

<question-down> /xab

<SP16> /xab

<Eth> /xac

<LD62> /xac

<left-square-bracket> /xad

<SM06> /xad

<Thorn> /xae

<LT64> /xae

<registered> /xaf

<SM53> /xaf

<not> /xb0

<SM66> /xb0

<sterling> /xb1

<SC02> /xb1

<yen> /xb2

<SC05> /xb2

<dot> /xb3

<SD63> /xb3

<copyright> /xb4

<SM52> /xb4

Appendix F. Examples of charmap and locale definition source 909

<section> /xb5

<SM24> /xb5

<paragraph> /xb6

<SM25> /xb6

<one-quarter> /xb7

<NF04> /xb7

<one-half> /xb8

<NF01> /xb8

<three-quarters> /xb9

<NF05> /xb9

<Y-acute> /xba

<LY12> /xba

<diaeresis> /xbb

<SD17> /xbb

<macron> /xbc

<SM15> /xbc

<right-square-bracket> /xbd

<SM08> /xbd

<acute> /xbe

<SD11> /xbe

<multiply> /xbf

<SA07> /xbf

<left-brace> /xc0

<left-curly-bracket> /xc0

<SM11> /xc0

<A> /xc1

<LA02> /xc1

 /xc2

<LB02> /xc2

<C> /xc3

<LC02> /xc3

<D> /xc4

<LD02> /xc4

<E> /xc5

<LE02> /xc5

<F> /xc6

<LF02> /xc6

<G> /xc7

<LG02> /xc7

<H> /xc8

<LH02> /xc8

<I> /xc9

<LI02> /xc9

<syllable-hyphen> /xca

<SP32> /xca

<o-circumflex> /xcb

<LO15> /xcb

<o-diaeresis> /xcc

<LO17> /xcc

<o-grave> /xcd

<LO13> /xcd

<o-acute> /xce

<LO11> /xce

<o-tilde> /xcf

<LO19> /xcf

<right-brace> /xd0

<right-curly-bracket> /xd0

<SM14> /xd0

<J> /xd1

<LJ02> /xd1

<K> /xd2

<LK02> /xd2

<L> /xd3

<LL02> /xd3

<M> /xd4

<LM02> /xd4

<N> /xd5

910 z/OS V1R8.0 XL C/C++ Programming Guide

<LN02> /xd5

<O> /xd6

<LO02> /xd6

<P> /xd7

<LP02> /xd7

<Q> /xd8

<LQ02> /xd8

<R> /xd9

<LR02> /xd9

<one-superior> /xda

<ND011> /xda

<u-circumflex> /xdb

<LU15> /xdb

<u-diaeresis> /xdc

<LU17> /xdc

<u-grave> /xdd

<LU13> /xdd

<u-acute> /xde

<LU11> /xde

<y-diaeresis> /xdf

<LY17> /xdf

<backslash> /xe0

<reverse-solidus> /xe0

<SM07> /xe0

<divide> /xe1

<division> /xe1

<SA06> /xe1

<S> /xe2

<LS02> /xe2

<T> /xe3

<LT02> /xe3

<U> /xe4

<LU02> /xe4

<V> /xe5

<LV02> /xe5

<W> /xe6

<LW02> /xe6

<X> /xe7

<LX02> /xe7

<Y> /xe8

<LY02> /xe8

<Z> /xe9

<LZ02> /xe9

<two-superior> /xea

<ND021> /xea

<O-circumflex> /xeb

<LO16> /xeb

<O-diaeresis> /xec

<LO18> /xec

<O-grave> /xed

<LO14> /xed

<O-acute> /xee

<LO12> /xee

<O-tilde> /xef

<LO20> /xef

<zero> /xf0

<ND10> /xf0

<one> /xf1

<ND01> /xf1

<two> /xf2

<ND02> /xf2

<three> /xf3

<ND03> /xf3

<four> /xf4

<ND04> /xf4

<five> /xf5

<ND05> /xf5

Appendix F. Examples of charmap and locale definition source 911

<six> /xf6

<ND06> /xf6

<seven> /xf7

<ND07> /xf7

<eight> /xf8

<ND08> /xf8

<nine> /xf9

<ND09> /xf9

<three-superior> /xfa

<ND031> /xfa

<U-circumflex> /xfb

<LU16> /xfb

<U-diaeresis> /xfc

<LU18> /xfc

<U-grave> /xfd

<LU14> /xfd

<U-acute> /xfe

<LU12> /xfe

<eo> /xff

END CHARMAP

CHARSETID

<NUL>...<SUB> 0

<space>...<U-acute> 1

END CHARSETID

Locale definition source file

This example shows the typical locale definition file representing the cultural and

language conventions in the United States of America. For this example

(LC_COLLATE), please note the following:

v The digits (0...9) sort before the letters.

v Upper case and lowercase letters have the same primary sorting weight.

v For each letter, the uppercase letter sorts before the equivalent lowercase letter.

Locale definition file

escape_char /

comment-char %

%%%%%%%%%%%%%

LC_CTYPE

%%%%%%%%%%%%%

upper <A>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;/

 <N>;<O>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z>

lower <a>;;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;/

 <n>;<o>;<p>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<x>;<y>;<z>

space <tab>;<newline>;<vertical-tab>;<form-feed>;/

 <carriage-return>;<space>

cntrl <alert>;<backspace>;<tab>;<newline>;<vertical-tab>;/

 <form-feed>;<carriage-return>;<NUL>;<SOH>;<STX>;/

 <ETX>;<SEL>;<RNL>;;<GE>;<SPS>;<RPT>;<SI>;<SO>;<DLE>;<DC1>;/

 <DC2>;<DC3>;<RES>;<POC>;<CAN>;;<UBS>;<CU1>;<IFS>;/

 <IGS>;<IRS>;<ITB>;<DS>;<SOS>;<fs>;<WUS>;<BYP>;<LF>;/

 <ETB>;<ESC>;<SA>;<SM>;<CSP>;<MFA>;<ENQ>;<ACK>;/

 <SYN>;<IR>;<PP>;<TRN>;<NBS>;<EOT>;<SBS>;<IT>;<RFF>;/

 <CU3>;<DC4>;<NAK>;<SUB>

punct <exclamation-mark>;<quotation-mark>;<number-sign>;<dollar-sign>;/

 <percent-sign>;<ampersand>;<apostrophe>;<left-parenthesis>;/

912 z/OS V1R8.0 XL C/C++ Programming Guide

<right-parenthesis>;<asterisk>;<plus-sign>;<comma>;/

 <hyphen-minus>;<period>;<slash>;<colon>;<semicolon>;/

 <less-than-sign>;<equals-sign>;<greater-than-sign>;/

 <question-mark>;<commercial-at>;<left-square-bracket>;/

 <backslash>;<right-square-bracket>;<circumflex>;/

 <underscore>;<grave-accent>;<left-curly-bracket>;/

 <vertical-line>;<right-curly-bracket>;<tilde>

digit <zero>;<one>;<two>;<three>;<four>;/

 <five>;<six>;<seven>;<eight>;<nine>

xdigit <zero>;<one>;<two>;<three>;<four>;/

 <five>;<six>;<seven>;<eight>;<nine>;/

 <A>;;<C>;<D>;<E>;<F>;/

 <a>;;<c>;<d>;<e>;<f>

blank <space>;<tab>

END LC_CTYPE

%%%%%%%%%%%%%

LC_COLLATE

%%%%%%%%%%%%%

order_start forward;forward

<NUL>

...

<SUB>

<space>

<exclamation-mark>

<quotation-mark>

<number-sign>

<dollar-sign>

<percent-sign>

<ampersand>

<apostrophe>

<left-parenthesis>

<right-parenthesis>

<asterisk>

<plus-sign>

<comma>

<hyphen-minus>

<period>

<slash>

<zero>

...

<nine>

<colon>

<semicolon>

<less-than-sign>

<equals-sign>

<greater-than-sign>

<question-mark>

<commercial-at>

<A> <A>;<A>

 ;

<C> <C>;<C>

<D> <D>;<D>

<E> <E>;<E>

<F> <F>;<F>

<G> <G>;<G>

<H> <H>;<H>

<I> <I>;<I>

<J> <J>;<J>

<K> <K>;<K>

<L> <L>;<L>

Appendix F. Examples of charmap and locale definition source 913

<M> <M>;<M>

<N> <N>;<N>

<O> <O>;<O>

<P> <P>;<P>

<Q> <Q>;<Q>

<R> <R>;<R>

<S> <S>;<S>

<T> <T>;<T>

<U> <U>;<U>

<V> <V>;<V>

<W> <W>;<W>

<X> <X>;<X>

<Y> <Y>;<Y>

<Z> <Z>;<Z>

<left-square-bracket>

<backslash>

<right-square-bracket>

<circumflex>

<underscore>

<grave-accent>

<a> <A>;<a>

 ;

<c> <C>;<c>

<d> <D>;<d>

<e> <E>;<e>

<f> <F>;<f>

<g> <G>;<g>

<h> <H>;<h>

<i> <I>;<i>

<j> <J>;<j>

<k> <K>;<k>

<l> <L>;<l>

<m> <M>;<m>

<n> <N>;<n>

<o> <O>;<o>

<p> <P>;<p>

<q> <Q>;<q>

<r> <R>;<r>

<s> <S>;<s>

<t> <T>;<t>

<u> <U>;<u>

<v> <V>;<v>

<w> <W>;<w>

<x> <X>;<x>

<y> <Y>;<y>

<z> <Z>;<z>

UNDEFINED

order_end

END LC_COLLATE

%%%%%%%%%%%%%

LC_MONETARY

%%%%%%%%%%%%%

int_curr_symbol "<U><S><D><space>"

currency_symbol "<dollar-sign>"

mon_decimal_point "<period>"

mon_thousands_sep "<comma>"

mon_grouping "3;0"

positive_sign ""

negative_sign "<hyphen-minus>"

int_frac_digits 2

frac_digits 2

p_cs_precedes 1

p_sep_by_space 0

n_cs_precedes 1

914 z/OS V1R8.0 XL C/C++ Programming Guide

n_sep_by_space 0

p_sign_posn 2

n_sign_posn 2

debit_sign "<D>"

credit_sign "<C><R>"

left_parenthesis "<left-parenthesis>"

right_parenthesis "<right-parenthesis>"

END LC_MONETARY

%%%%%%%%%%%%%

LC_NUMERIC

%%%%%%%%%%%%%

decimal_point "<period>"

thousands_sep "<comma>"

grouping "3;0"

END LC_NUMERIC

%%%%%%%%%%%%%

LC_TIME

%%%%%%%%%%%%%

abday "<S><u><n>";/

 "<M><o><n>";/

 "<T><u><e>";/

 "<W><e><d>";/

 "<T><h><u>";/

 "<F><r><i>";/

 "<S><a><t>"

day "<S><u><n><d><a><y>";/

 "<M><o><n><d><a><y>";/

 "<T><u><e><s><d><a><y>";/

 "<W><e><d><n><e><s><d><a><y>";/

 "<T><h><u><r><s><d><a><y>";/

 "<F><r><i><d><a><y>";/

 "<S><a><t><u><r><d><a><y>"

abmon "<J><a><n>";/

 "<F><e>";/

 "<M><a><r>";/

 "<A><p><r>";/

 "<M><a><y>";/

 "<J><u><n>";/

 "<J><u><l>";/

 "<A><u><g>";/

 "<S><e><p>";/

 "<O><c><t>";/

 "<N><o><v>";/

 "<D><e><c>"

mon "<J><a><n><u><a><r><y>";/

 "<F><e><r><u><a><r><y>";/

 "<M><a><r><c><h>";/

 "<A><p><r><i><l>";/

 "<M><a><y>";/

 "<J><u><n><e>";/

 "<J><u><l><y>";/

 "<A><u><g><u><s><t>";/

 "<S><e><p><t><e><m><e><r>";/

 "<O><c><t><o><e><r>";/

 "<N><o><v><e><m><e><r>";/

 "<D><e><c><e><m><e><r>"

d_t_fmt "%a %b %e %H:%M:%S %Z %Y"

Appendix F. Examples of charmap and locale definition source 915

d_fmt "%m//%d//%y"

t_fmt "%H:%M:%S"

am_pm "<A><M>";"<P><M>"

END LC_TIME

%%%%%%%%%%%%%

LC_MESSAGES

%%%%%%%%%%%%%

yesexpr "<circumflex><left-parenthesis><left-square-bracket><y><Y>/

<right-square-bracket><left-square-bracket><e><E><right-square-bracket>/

<left-square-bracket><s><S><right-square-bracket><vertical-line>/

<left-square-bracket><y><Y><right-square-bracket><right-parenthesis>"

noexpr "<circumflex><left-parenthesis><left-square-bracket><n><N>/

<right-square-bracket><left-square-bracket><o><O><right-square-bracket>/

<vertical-line><left-square-bracket><n><N><right-square-bracket>/

<right-parenthesis>"

END LC_MESSAGES

%%%%%%%%%%%%%

LC_SYNTAX

%%%%%%%%%%%%%

backslash "<backslash>"

right_brace "<right-brace>"

left_brace "<left-brace>"

right_bracket "<right-square-bracket>"

left_bracket "<left-square-bracket>"

circumflex "<circumflex>"

tilde "<tilde>"

exclamation_mark "<exclamation-mark>"

number_sign "<number-sign>"

vertical_line "<vertical-line>"

dollar_sign "<dollar-sign>"

commercial_at "<commercial-at>"

grave_accent "<grave-accent>"

END LC_SYNTAX

%%%%%%%%%%%%%

LC_TOD

%%%%%%%%%%%%%

timezone_difference +480

timezone_name "<P><S><T>"

daylight_name "<P><D><T>"

start_month 0

end_month 0

start_week 0

end_week 0

start_day 0

end_day 0

start_time 0

end_time 0

shift 3600

END LC_TOD

916 z/OS V1R8.0 XL C/C++ Programming Guide

Locale method source file

The method source file maps method names to the National Language Support

(NLS) subroutines that implement those methods. The method file also specifies the

object libraries or DLL side-decks where the implementing subroutines are stored.

The methods correspond to those subroutines that require direct access to the data

structures representing locale data. The following example shows a typical locale

method source file.

Locale method source file

escape_char /

comment_char %

%**

%* Licensed Materials - Property of IBM *

%* *

%* "Restricted Materials of IBM" *

%* *

%* 5694-A01 5688-198 *

%* *

%* (C) Copyright IBM Corp. 2001 *

%* *

%* Status = HLE7705 *

%* *

%**

%* method file for ISO1 ASCII locales *

%**

% IBM_PROLOG_BEGIN_TAG

% This is an automatically generated prolog.

%

% bos430 src/bos/usr/lib/nls/loc/locale/iso1meth.m 1.1

%

% Licensed Materials - Property of IBM

%

% Restricted Materials of IBM

%

% (C) COPYRIGHT International Business Machines Corp. 1997

% All Rights Reserved

%

% US Government Users Restricted Rights - Use, duplication or

% disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

%

% IBM_PROLOG_END_TAG

METHODS

mblen "__mblen_sb_a"

mbtowc "__mbtowc_iso1"

mbstowcs "__mbstowcs_std_a"

wctomb "__wctomb_iso1"

wcstombs "__wcstombs_std_a"

wcwidth "__wcwidth_std_a"

wcswidth "__wcswidth_std_a"

csid "__csid_std_a"

towupper "__towupper_std_a"

towlower "__towlower_std_a"

get_wctype "__get_wctype_std_a"

is_wctype "__is_wctype_std_a"

strcoll "__strcoll_std_a"

strxfrm "__strxfrm_std_a"

wcscoll "__wcscoll_std_a"

wcsxfrm "__wcsxfrm_std_a"

regcomp "__regcomp_std_a"

regexec "__regexec_std_a"

regfree "__regfree_std_a"

regerror "__regerror_std_a"

strfmon "__strfmon_std_a"

Appendix F. Examples of charmap and locale definition source 917

strftime "__strftime_std_a"

strptime "__strptime_std_a"

wcsftime "__wcsftime_std_a"

wcsid "__wcsid_std_a"

END METHODS

918 z/OS V1R8.0 XL C/C++ Programming Guide

Appendix G. Converting code from coded character set

IBM-1047

The following program shows you how to convert hybrid code to a specified code

page. Hybrid code is code in which the data is in the local coded character set but

the syntax uses IBM-1047 code.

Example of converting hybrid code to a specific character set

(CCNGHC1)

/*

 * CCNGHC1: Sample code to convert all C syntax from code page 1047

 * to the coded character set the user specifies.

 * Comments, string literals and character constants are

 * left alone. The escape character in an escape sequence

 * is changed, since it is variant.

 *

 * Usage: CCNGHC1 <coded character set>

 * The input file is read from stdin and the output is written

 * to stdout.

 *

 * Example: If you want to convert all C syntax, written in coded character set

 * 1047, in a file (test1047 c a) to coded character set 500, you can

 * use CCNGHC1 by issuing the following command.

 *

 * ccnghc1 <test1047.c.a >test1047.gen.a IBM-500

 *

 * The result will store in "test500 gen a" file.

 */

#include <stdio.h>

#include <stdlib.h>

#include <iconv.h>

#include <errno.h>

enum boolean { false=0, False=0, FALSE=0, true=1, True=1, TRUE=1 };

/*

 * CharState - state that the FSM is in. Initial State is CodeState

 */

enum CharState { CodeState, SQuoteState, DQuoteState, CommentState,

 DBCSState, EscState, EOFState };

/*

 * CharVal - characters that can change the state of the FSM

 */

enum CharVal { SlashChar=’/’, SQuoteChar=’\’’, DQuoteChar=’"’,

 StarChar=’*’, SOChar=’\x0E’, SIChar=’\x0F’,

 BSlashChar=’\\’, EOFChar= -1 };

Figure 234. Converting Hybrid Code to a Specific Character Set (Part 1 of 10)

© Copyright IBM Corp. 1996, 2006 919

/*

 * XlateTable - type of translation table

 */

typedef iconv_t XlateTable;

static char *Initialize(int argc, char *argv[]);

static int Convert(char *codeset);

static int InitConv(char **inBuff, char **outBuff, int *maxRecSize,

 char *codeSet, XlateTable *xlateTable);

static void ConvBuff(int start, int end,

 char *buff, XlateTable xlateTable);

static enum CharVal LookAhead(char *inBuff, char *outBuff,

 int *recSize, int *curPos,

 int maxRecSize, int *codeStartPos,

 enum CharState state,

 XlateTable xlateTable);

static enum CharVal GetNextChar(char *inBuff, char *outBuff,

 int *recSize, int maxRecSize,

 int *curPos, int *codeStartPos,

 enum CharState state,

 XlateTable xlateTable);

static int UpdateAndRead(char *inBuff, char *outBuff,

 int *recSize, int maxRecSize,

 int codeStartPos, enum CharState state,

 XlateTable xlateTable);

static int ReadAndCopy(char *inBuff,char *outBuff, int maxRecSize);

#pragma inline(LAST_POS)

#pragma inline(NEXT_TO_LAST_POS)

#pragma inline(LookAhead)

#pragma inline(GetNextChar)

#pragma inline(ConvBuff)

Figure 234. Converting Hybrid Code to a Specific Character Set (Part 2 of 10)

920 z/OS V1R8.0 XL C/C++ Programming Guide

/*

 * Initialize the environment, and if everything is ok, convert input

 */

main(int argc, char *argv[]) {

 char *codeset = Initialize(argc, argv);

 if (codeset == NULL) {

 return(8);

 }

 return(Convert(codeset));

}

/*

 * Check that 1 parameter was specified - the coded character set to convert the

 * the syntax to.

 * Re-open stdin and stdout as binary files for record I/O.

 * Return the code set if everything is ok, NULL otherwise

 */

static char *Initialize(int argc, char *argv[]) {

 if (argc != 2) {

 fprintf(stderr, "Expected %d argument but got %d\n",

 1, argc-1);

 return(NULL);

 }

 stdin = freopen("", "rb,type=record", stdin);

 stdout= freopen("", "wb,type=record", stdout);

 if (stdin == NULL || stdout == NULL) {

 fprintf(stderr, "Could not re-open standard streams\n");

 return(NULL);

 }

 return(argv[1]);

}

/*

 * Return the last position in a record

 */

static int LAST_POS(int recSize) {

 return(recSize-1);

}

/*

 * Return the next to last position in a record

 */

static int NEXT_TO_LAST_POS(int recSize) {

 return(recSize-2);

}

Figure 234. Converting Hybrid Code to a Specific Character Set (Part 3 of 10)

Appendix G. Converting code from coded character set IBM-1047 921

/*

 * Convert the stdin file using codeset and write to stdout.

 * Set up the translation table.

 * Read the first record and copy it into the output buffer.

 * Go through the FSM, starting in the Code State and leaving

 * when EOFState is reached (End Of File).

 * Close the translation table.

 */

static int Convert(char *codeset) {

 enum CharVal c;

 int recSize;

 enum CharState prvState;

 int rc;

 int codeStartPos = 0;

 int curPos = 0;

 enum boolean high = FALSE;

 enum CharState state = CodeState;

 char * inBuff;

 char * outBuff;

 int maxRecSize;

 XlateTable xlateTable;

 rc = InitConv(&inBuff, &outBuff, &maxRecSize, codeset, &xlateTable);

 if (rc) {

 if (inBuff) free(inBuff);

 if (outBuff) free(outBuff);

 return(rc);

 }

 recSize = ReadAndCopy(inBuff, outBuff, maxRecSize);

 while (state != EOFState) {

 c = GetNextChar(inBuff, outBuff, &recSize, maxRecSize,

 &curPos, &codeStartPos, state, xlateTable);

 if (c == EOFChar) {

 state = EOFState;

 }

Figure 234. Converting Hybrid Code to a Specific Character Set (Part 4 of 10)

922 z/OS V1R8.0 XL C/C++ Programming Guide

switch(state) {

 case CodeState:

 switch (c) {

 case BSlashChar:

 curPos = LAST_POS(recSize);

 break;

 case SlashChar:

 if (LookAhead(inBuff, outBuff, &recSize,

 &curPos, maxRecSize, &codeStartPos,

 state, xlateTable)

 == StarChar) {

 state = CommentState;

 }

 break;

 case SQuoteChar:

 state = SQuoteState;

 break;

 case DQuoteChar:

 state = DQuoteState;

 break;

 }

 if (state != CodeState || curPos == NEXT_TO_LAST_POS(recSize)) {

 if (curPos == NEXT_TO_LAST_POS(recSize)) {

 ++curPos;

 }

 else {

 ConvBuff(codeStartPos, curPos, outBuff, xlateTable);

 }

 }

 break;

 case CommentState:

 switch(c) {

 case BSlashChar:

 curPos = LAST_POS(recSize);

 break;

 case StarChar:

 if (LookAhead(inBuff, outBuff, &recSize,

 &curPos, maxRecSize, &codeStartPos,

 state, xlateTable)

 == SlashChar) {

 state = CodeState;

 codeStartPos = curPos;

 }

 break;

 }

 break;

Figure 234. Converting Hybrid Code to a Specific Character Set (Part 5 of 10)

Appendix G. Converting code from coded character set IBM-1047 923

case DQuoteState:

 switch(c) {

 case DQuoteChar:

 state = CodeState;

 codeStartPos = curPos;

 break;

 case SOChar:

 prvState = state;

 state = DBCSState;

 break;

 case BSlashChar:

 ConvBuff(curPos, curPos, outBuff, xlateTable);

 if (curPos != LAST_POS(recSize)) {

 prvState = state;

 state = EscState;

 }

 break;

 }

 break;

 case SQuoteState:

 switch(c) {

 case SQuoteChar:

 state = CodeState;

 codeStartPos = curPos;

 break;

 case SOChar:

 prvState = state;

 state = DBCSState;

 break;

 case BSlashChar:

 ConvBuff(curPos, curPos, outBuff, xlateTable);

 if (curPos != LAST_POS(recSize)) {

 prvState = state;

 state = EscState;

 }

 break;

 }

 break;

Figure 234. Converting Hybrid Code to a Specific Character Set (Part 6 of 10)

924 z/OS V1R8.0 XL C/C++ Programming Guide

case DBCSState:

 high ¬= 1; /* TRUE -> FALSE or FALSE -> TRUE */

 if (high && (c == SIChar)) {

 state = prvState;

 high = FALSE;

 }

 break;

 case EscState:

 state = prvState; /* really, this is ok */

 break;

 case EOFState:

 break;

 default:

 fprintf(stderr, "Internal error - ended up in state %d\n",

 state);

 return(16);

 } /* end of switch statement */

 ++curPos;

 }

 rc = TermConv(inBuff, outBuff, xlateTable);

 return(0);

}

/*

 * Initialize the translation table and allocate the input and

 * output buffers to use.

 * Return 0 if successful.

 */

static int InitConv(char **inBuff, char **outBuff, int *maxRecSize,

 char *codeset, XlateTable* xlateTable) {

 static char fileNameBuff[FILENAME_MAX+1];

 fldata_t info;

 int rc;

 *outBuff = *inBuff = NULL;

 rc = fldata(stdin, fileNameBuff, &info);

 if (rc) {

 return(rc);

 }

 *maxRecSize = info.__maxreclen;

 *inBuff = malloc(*maxRecSize);

 *outBuff = malloc(*maxRecSize);

 if ((*xlateTable = iconv_open("IBM-1047",codeset)) == (iconv_t)(-1)) {

 fprintf(stderr,"Cannot open convertor from %s to IBM-1047",codeset);

 return (8);

 }

 return(!inBuff || !outBuff);

}

Figure 234. Converting Hybrid Code to a Specific Character Set (Part 7 of 10)

Appendix G. Converting code from coded character set IBM-1047 925

/*

 * Convert the buffer from start to end using the translation table

 */

static void ConvBuff(int start, int end,

 char *buff, XlateTable xlateTable) {

 int rc;

 size_t inleft, outleft, org;

 char *inptr, *outptr;

 outleft = inleft = end-start+1;

 inptr = outptr = &buff[start];

 while (1) {

 rc = iconv(xlateTable,&inptr,&inleft,&outptr,&outleft);

 if (rc == -1) {

 switch (errno) {

 /* Skip the invalid character */

 case EILSEQ: if (--inleft == 0) return;

 ++inptr;

 ++outptr;

 --outleft;

 break;

 default: fprintf(stderr,"iconv() fails with errno = %d\n",errno);

 exit(8);

 }

 } else

 return;

 }

}

Figure 234. Converting Hybrid Code to a Specific Character Set (Part 8 of 10)

926 z/OS V1R8.0 XL C/C++ Programming Guide

/*

 * Look ahead to the next character. If the current position

 * is the last character of the input record, write the current

 * output record and read in the next record.

 * Return the ’character’ read, which may be EOF if the end of

 * the file was reached.

 */

static enum CharVal LookAhead(char *inBuff, char *outBuff,

 int *recSize, int *curPos,

 int maxRecSize, int *codeStartPos,

 enum CharState state,

 XlateTable xlateTable) {

 if (*curPos == LAST_POS(*recSize)) {

 if (UpdateAndRead(inBuff, outBuff, recSize, maxRecSize,

 *codeStartPos, state, xlateTable)) {

 return(EOFChar);

 }

 *curPos = 0;

 *codeStartPos = 0;

 }

 else {

 (*curPos)++;

 }

 return(inBuff[*curPos]);

}

/*

 * Similar to LookAhead(), but return the current character

 */

static enum CharVal GetNextChar(char *inBuff, char *outBuff,

 int *recSize, int maxRecSize,

 int *curPos, int *codeStartPos,

 enum CharState state,

 XlateTable xlateTable) {

 if (*curPos > LAST_POS(*recSize)) {

 if (UpdateAndRead(inBuff, outBuff, recSize, maxRecSize,

 *codeStartPos, state, xlateTable)) {

 return(EOFChar);

 }

 *curPos = 0;

 *codeStartPos = 0;

 }

 return(inBuff[*curPos]);

}

Figure 234. Converting Hybrid Code to a Specific Character Set (Part 9 of 10)

Appendix G. Converting code from coded character set IBM-1047 927

/*

 * If the current state is the code state, translate the remaining

 * part of the record.

 * Write out the record to stdout

 * Read in the next record and copy it to the output buffer.

 */

static int UpdateAndRead(char *inBuff, char *outBuff,

 int *recSize, int maxRecSize,

 int codeStartPos, enum CharState state,

 XlateTable xlateTable) {

 if (state == CodeState) {

 ConvBuff(codeStartPos, LAST_POS(*recSize), outBuff, xlateTable);

 }

 fwrite(outBuff, 1, *recSize, stdout);

 *recSize = ReadAndCopy(inBuff, outBuff, maxRecSize);

 return((*recSize == 0) ? 1 : 0);

}

/*

 * Read in a record from stdin and copy it to the output buffer.

 * Return the number of bytes read.

 */

static int ReadAndCopy(char *inBuff, char *outBuff,

 int maxRecSize) {

 int recSize;

 recSize = fread(inBuff, 1, maxRecSize, stdin);

 if (feof(stdin) && recSize == 0) {

 return(0);

 }

 else {

 memcpy(outBuff, inBuff, recSize);

 return(recSize);

 }

}

/*

 * Free allocated storage and close the translation table.

 */

static int TermConv(char *inBuff,

 char *outBuff, XlateTable xlateTable) {

 iconv_close(xlateTable);

 free(inBuff);

 free(outBuff);

 return(0);

}

Figure 234. Converting Hybrid Code to a Specific Character Set (Part 10 of 10)

928 z/OS V1R8.0 XL C/C++ Programming Guide

Appendix H. Additional Examples

This chapter contains additional examples that you might find useful when you are

writing a C or C++ program.

Memory Management

If you have ever received an error from overwriting storage created with the

malloc() function, the following code may be of interest. It shows how to use

debuggable versions of malloc()/calloc()/realloc() and free(). You can tailor the

following macros.

CCNGMI1

 Main routine follows:

/* debuggable malloc()/calloc()/realloc()/free() example */

/* part 1 of 2-other file is CCNGMI2 */

#ifndef __STORAGE__

 #define __STORAGE__

 #define PADDING_SIZE 4 /* amount of padding around */

 /* allocated storage */

 #define PADDING_BYTE 0xFE /* special value to initialize*/

 /* padding to */

 #define HEAP_INIT_SIZE 4096 /* get 4K to start with */

 #define HEAP_INCR_SIZE 4096 /* get 4K increments */

 #define HEAP_OPTS 72 /* HEAP(,,ANYWHERE,FREE) */

 extern int heapVerbose; /* If 0, heap allocation and */

 /* free messages will be */

 /* suppressed, otherwise, they*/

 /* will be displayed */

#endif

Figure 235. Debuggable malloc()/calloc()/realloc()/free() example

© Copyright IBM Corp. 1996, 2006 929

CCNGMI2

/* debuggable malloc()/calloc()/realloc()/free() example */

/* part 2 of 2-other file is CCNGMI1 */

/*

 * STORAGE:

 *

 * EXTERNALS:

 *

 * This file contains code for the following functions:

 * -malloc......allocate storage from a Language Environment heap

 * -calloc......allocate storage from a Language Environment heap

 * and initialize it to 0.

 * file.

 * this file. If a NULL pointer is passed instead of a

 * directly.

 *

 * USAGE:

 *

 * You do not need to compile this code with any special options.

 * The TEST option is useful, however, as the traceback will provide

 * additional information. Line number information and the type and

 * values of variables will be dumped in a traceback for all

 * files compiled with TEST.

 *

 * Prelink,link, or bind this object module with your other object modules.

 * malloc(), free(), and realloc().

 *

 * INTERNALS:

 *

 * General Algorithm:

 *

 * When storage is allocated, extra ’padding’ is allocated at the

 * start and end of the actual storage allocated for you.

 * This padding is then initialized to a special pad value. If your

 * code is functioning correctly, the padding should not

 * have been changed when it comes time to free the storage. If the

 * free() routine finds that the padding does not have the correct

 * value, the storage about to be freed is dumped and a traceback

 * is issued. The storage is then dumped, as usual.

 * The padding size and padding byte value can be modified to suit

 * your needs. Update the include file "ccngmi2.h" if you want

 * to modify these values.

 * Here is a diagram of how storage is allocated (assume that the

 * pad value is xFE, the padding size is 4 bytes and 8 bytes of

 * storage were requested):

 *

Figure 236. Debuggable malloc()/calloc()/realloc()/free() example (Part 1 of 10)

930 z/OS V1R8.0 XL C/C++ Programming Guide

* Length of Padding Allocated storage Padding

 * storage | returned to user |

 * | | | |

 * +----+------+ +----+------+ +------------+------------+ +----+-----+

 * | | | | | | | |

 *+--+

 *| 00 00 00 10 | FE FE FE FE | xx xx xx xx | xx xx xx xx | FE FE FE FE|

 *+--+

 *

 * (Values above shown in hexadecimal)

 *

 * This method is fairly effective in tracking down storage

 * allocation problems. Also, code does not have

 * to be recompiled to use these routines - it just has to be

 * relinked. Note that this method is not guaranteed to find all storage

 * allocation errors - if you overwrite the padding with the

 * same value it had before, or you overwrite more storage than

 * you had padding for, you will still have problems.

 *

 * This code uses the Language Environment heap services to allocate,

 * reallocate, and free storage. A User Heap is used instead of the

 * library heap so that if the heap gets corrupted, the standard library

 * services that use the heap will not be affected. For example,

 * if the user heap is damaged, a call to a library function

 * such as printf should still succeed.

 *

 * Notes of interest:

 * - The run-time option STORAGE is very useful for tracking down

 * random pointer problems - it initializes heap or stack frame

 * storage to a particular value.

 * - The run-time option RPTSTG(ON) is useful for improving heap and

 * stack frame allocation - it generates a report indicating how

 * stack and heap storage was managed for a given program.

 */

#include "storage.h"

#include <leawi.h>

#include <stdio.h>

Figure 236. Debuggable malloc()/calloc()/realloc()/free() example (Part 2 of 10)

Appendix H. Additional Examples 931

/*

 * heapVerbose: external variable that controls whether heap

 * allocation and free messages are displayed.

 */

int heapVerbose=1;

/*

 * mallocHeapID: static variable that is the Heap ID used for allocating

 * storage via malloc(). On the first call to malloc(),

 * a Heap will be created and this Heap ID will be set.

 * All subsequent calls to malloc will use this Heap ID.

 */

static _INT4 mallocHeapID=0;

/*

 * CHARS_PER_LINE/BYTES_PER_LINE: Used by dump() and DumpLine()

 * to control the width of a storage dump.

 */

#define CHARS_PER_LINE 40

#define BYTES_PER_LINE 16

/*

 * align: Given a value and the alignment desired (in bits), round

 * the value to the next largest alignment, unless it is

 * already aligned, in which case, just return the value passed.

 */

#pragma inline(align)

static int align(int value, int shift) {

 int alignment = (0x1 << shift);

 if (value % alignment) {

 return(((value >> shift) << shift) + alignment);

 }

 else {

 return(value);

 }

}

/*

 * padding: given a buffer (address and length), return 1 if the

 * entire buffer consists of the pad character specified,

 * otherwise return 0.

 */

#pragma inline(padding)

static int padding(const char* buffer, long size, int pad) {

 int i;

 for (i=0;i<size;++i) {

 if (buffer[i] != pad) return(0);

 }

 return(1);

}

Figure 236. Debuggable malloc()/calloc()/realloc()/free() example (Part 3 of 10)

932 z/OS V1R8.0 XL C/C++ Programming Guide

/*

 * CEECmp: Given two feedback codes, return 0 if they have the same

 * message number and facility id, otherwise return 1.

 */

#pragma inline(CEECmp)

static int CEECmp(_FEEDBACK* fc1, _FEEDBACK* fc2) {

 if (fc1->tok_msgno == fc2->tok_msgno &&

 !memcmp(fc1->tok_facid, fc2->tok_facid,

 sizeof(fc1->tok_facid))) {

 return(0);

 }

 else {

 return(1);

 }

}

/*

 * CEEOk: Given a feedback code, return 1 if it compares the same to

 * condition code CEE000.

 */

#pragma inline(CEEOk)

static int CEEOk(_FEEDBACK* fc) {

 _FEEDBACK CEE000 = { 0, 0, 0, 0, 0, {0,0,0}, 0 };

 return(CEECmp(fc, &CEE000) == 0);

}

/*

 * CEEErr: Given a title string and a feedback code, print the

 * title to stderr, then print the message associated

 * with the feedback code. If the feedback code message can not

 * be printed out, print out the message number and severity.

 */

static void CEEErr(const char* title, _FEEDBACK* fc) {

 _FEEDBACK msgFC;

 _INT4 dest = 2;

 fprintf(stderr, "\n%s\n", title);

 CEEMSG(fc, &dest, &msgFC);

 if (!CEEOk(&msgFC)); {

 fprintf(stderr, "Message number:%d with severity %d occurred\n",

 fc->tok_msgno, fc->tok_sev);

 }

}

Figure 236. Debuggable malloc()/calloc()/realloc()/free() example (Part 4 of 10)

Appendix H. Additional Examples 933

/*

 * DumpLine: Dump out a buffer (address and length) to stderr.

 */

static void DumpLine(char* address, int length) {

 int i, c, charCount=0;

 if (length % 4) length += 4;

 fprintf(stderr, "%8.8p: ", address);

 for (i=0; i < length/4; ++i) {

 fprintf(stderr, "%8.8X ", ((int*)address)[i]);

 charCount += 9;

 }

 for (i=charCount; i < CHARS_PER_LINE; ++i) {

 putc(’ ’, stderr);

 }

 fprintf(stderr, "| ");

 for (i=0; i < length; ++i) {

 c = address[i];

 c = (isprint(c) ? c : ’.’);

 fprintf(stderr, "%c", c);

 }

 fprintf(stderr, "\n");

}

/*

 * dump: dump out a buffer (address and length) to stderr by dumping out

 * a line at a time (DumpLine), until the buffer is written out.

 */

static void dump(void* generalAddress, int length) {

 int curr = 0;

 char* address = (char*) generalAddress;

 while (&address[curr] < &address[length-BYTES_PER_LINE]) {

 DumpLine(&address[curr], BYTES_PER_LINE);

 curr += BYTES_PER_LINE;

 }

 if (curr < length) {

 DumpLine(&address[curr], length-curr);

 }

}

Figure 236. Debuggable malloc()/calloc()/realloc()/free() example (Part 5 of 10)

934 z/OS V1R8.0 XL C/C++ Programming Guide

/*

 * malloc: Create a heap if necessary by calling CEECRHP. This only

 * needs to be done on the first call to malloc(). Verify

 * that the heap creation was ok. If it was not, issue an

 * error message and return a NULL pointer.

 * Write a message to stderr indicating how many bytes

 * are about to be allocated.

 * Call CEEGTST to allocate the storage requested plus

 * additional padding to be placed at the start and end

 * of the allocated storage. Verify that the storage allocation

 * was successful. If it was not, issue an error message and

 * return a NULL pointer.

 * Write a message to stderr indicating the address of the

 * allocated storage.

 * Initialize the padding to the value of PADDING_BYTE, so that

 * free() will be able to test that the padding was not changed.

 * Return the address of the allocated storage (starting after

 * the padding bytes).

 */

void* malloc(long initSize) {

 _FEEDBACK fc;

 _POINTER address=0;

 long totSize;

 long* lenPtr;

 char* msg;

 char* start;

 char* end;

Figure 236. Debuggable malloc()/calloc()/realloc()/free() example (Part 6 of 10)

Appendix H. Additional Examples 935

if (!mallocHeapID) {

 _INT4 heapSize = HEAP_INIT_SIZE;

 _INT4 heapInc = HEAP_INCR_SIZE;

 _INT4 opts = HEAP_OPTS;

 CEECRHP(&mallocHeapID, &heapSize, &heapInc, &opts,

 &fc);

 if (!CEEOk(&fc)) {

 CEEErr("Heap creation failed", &fc);

 return(0);

 }

 }

 if (heapVerbose) {

 fprintf(stderr, "Allocate %d bytes", initSize);

 }

 /*

 * Add the padding size to the total size, then round up to the

 * nearest double word

 */

 totSize = initSize + (PADDING_SIZE*2) + sizeof(long);

 totSize = align(totSize, 3);

 CEEGTST(&mallocHeapID, &totSize, &address, &fc);

 if (!CEEOk(&fc)) {

 msg = "Storage request failed";

 CEEErr(msg, &fc);

 __ctrace(msg);

 return(0);

 }

 lenPtr = (long*) address;

 *lenPtr= initSize;

 start = ((char*) address) + sizeof(long);

 end = start + initSize + PADDING_SIZE;

 memset(start, PADDING_BYTE, PADDING_SIZE);

 memset(end, PADDING_BYTE, PADDING_SIZE);

 if (heapVerbose) {

 fprintf(stderr, " starting at address %p\n", address);

 }

 return(start + PADDING_SIZE);

}

Figure 236. Debuggable malloc()/calloc()/realloc()/free() example (Part 7 of 10)

936 z/OS V1R8.0 XL C/C++ Programming Guide

/*

 * calloc: Call malloc() to allocate the requested amount of storage.

 * If the allocation was successful, initialize the allocated

 * storage to 0.

 * Return the address of the allocated storage (or a NULL

 * pointer if malloc returned a NULL pointer).

 */

void* calloc(size_t num, size_t size) {

 size_t initSize = num * size;

 void* ptr;

 ptr = malloc(initSize);

 if (ptr) {

 memset(ptr, 0, initSize);

 }

 return(ptr);

}

/*

 * realloc: If a NULL pointer is passed, call malloc() directly.

 * Call CEECZST to reallocate the storage requested plus

 * additional padding to be placed at the start and end

 * of the allocated storage.

 * Verify that the storage re-allocation was ok. If it was not,

 * issue an error message, dump the storage, and return a NULL

 * pointer.

 * Write a message to stderr indicating the address of the

 * reallocated storage.

 * Initialize the padding to the value of PADDING_BYTE, so

 * that free() will be able to test that the padding was not

 * changed. Note that the padding at the start of the storage

 * does not need to be allocated, since it was already

 * initialized by an earlier call to malloc().

 * Return the address of the reallocated storage (starting

 * after the padding bytes).

 */

void* realloc(char* ptr, long initSize) {

 _FEEDBACK fc;

 _POINTER address = (ptr - sizeof(long) - PADDING_SIZE);

 long oldSize;

 long* lenPtr;

 char* start;

 char* end;

 char* msg;

 long newSize = initSize;

Figure 236. Debuggable malloc()/calloc()/realloc()/free() example (Part 8 of 10)

Appendix H. Additional Examples 937

if (ptr == 0) {

 return(malloc(newSize));

 }

 oldSize = *((long*) address);

 if (heapVerbose) {

 fprintf(stderr, "Re-allocate %d bytes from address %p to ",

 newSize, address);

 }

 /*

 * Add the padding size to the total size, then round up to the

 * nearest double word

 */

 newSize += (PADDING_SIZE*2) + sizeof(long);

 newSize = align(newSize, 3);

 CEECZST(&address, &newSize, &fc);

 if (!CEEOk(&fc)) {

 msg = "Storage re-allocation failed";

 CEEErr(msg, &fc);

 dump(address, oldSize + (PADDING_SIZE*2) + sizeof(long));

 __ctrace(msg);

 return(0);

 }

 lenPtr = (long*) address;

 *lenPtr= initSize;

 start = ((char*) address) + sizeof(long);

 end = start + initSize + PADDING_SIZE;

 memset(end, PADDING_BYTE, PADDING_SIZE);

 if (heapVerbose) {

 fprintf(stderr, "address %p\n", address);

 }

 return(start + PADDING_SIZE);

}

Figure 236. Debuggable malloc()/calloc()/realloc()/free() example (Part 9 of 10)

938 z/OS V1R8.0 XL C/C++ Programming Guide

Calling MVS WTO routines from C

The following sample code calls a function that will perform a Write To Operator

(WTO) call. You can tailor it as you wish. The C code performs an ILC to an

assembler routine to do a dynamic WTO call.

Assemble CCNGWT1, compile CCNGWT2, link the two together, and run

CCNGWT2. Information is written to the job log.

Note: This example runs only in the TSO BATCH environment.

/*

 * free: Calculate where the start and end of the originally

 * allocated storage was. The start will be different than the

 * address passed in because the address passed in points after

 * the padding bytes added by malloc() or realloc().

 * Write a message to stderr indicating what address is about

 * to be freed.

 * Verify that the start and end padding bytes have the original

 * padding value. If they do not, dump out the originally

 * allocated storage and issue a trace.

 * Free the storage by calling CEEFRST. If the storage free

 * fails, dump out the storage and issue a trace.

 */

void free(char* ptr) {

 _FEEDBACK fc;

 _POINTER address=(void*) (ptr - sizeof(long) - PADDING_SIZE);

 char* start;

 char* end;

 long size;

 long* lenPtr;

 char* msg;

 lenPtr = (long*) address;

 size = *lenPtr;

 start = ((char*) address) + sizeof(long);

 end = start + size + PADDING_SIZE;

 if (heapVerbose) {

 fprintf(stderr, "Free address %p\n", address);

 }

 if (!padding(start, PADDING_SIZE, PADDING_BYTE) ||

 !padding(end, PADDING_SIZE, PADDING_BYTE)) {

 dump(address, size + (PADDING_SIZE*2) + sizeof(long));

 msg = "Padding overwritten";

 __ctrace(msg);

 }

 else {

 CEEFRST(&address, &fc);

 if (!CEEOk(&fc)) {

 msg = "Storage free failed";

 CEEErr(msg, &fc);

 dump(address, size + (PADDING_SIZE*2) + sizeof(long));

 __ctrace(msg);

 }

 }

}

Figure 236. Debuggable malloc()/calloc()/realloc()/free() example (Part 10 of 10)

Appendix H. Additional Examples 939

CCNGWT1

* WRITE TO OPERATOR EXAMPLE *

* PART 1 OF 2-OTHER FILE IS CCNGWT2 *

WTO CSECT

WTO AMODE 31

WTO RMODE ANY

* R1->ADDRESS OF INTEGER -> LENGTH OF STRING

* ->CHARACTER STRING

 EDCPRLG DSALEN=DLEN

 USING DSA,13

* RANGE CHECK LENGTH

* IGNORE A SINGLE TRAILING NULL CHARACTER

 L 5,0(,1) POINT TO LENGTH

 LA 15,4 RETURN CODE FOR INVALID LENGTH

 ICM 5,B’1111’,0(5) LENGTH OF MESSAGE

 BNP RETURN NOT >0? RETURN

 L 6,4(,1) POINT TO MESSAGE

 LA 8,0(5,6) POINT TO CHAR AFTER MESSAGE

 BCTR 8,0 POINT TO LAST CHARACTER

 CLI 0(8),0 IS IT A NULL CHARACTER?

 BNE NOENDINGNULL

 BCT 5,NOENDINGNULL IGNORE IT: USER SAID WTO(SIZEOF S,S)

 B RETURN UNLESS LENGTH WAS DROPPED TO ZERO

NOENDINGNULL DS 0H

 LA 7,0 LENGTH OK SO FAR

 LA 8,L’BUFFER MAXIMUM LENGTH

 CR 5,8 CHECK LENGTH

 BNH LENOK

 LR 5,8 SHOW ONLY WHAT FITS INTO BUFFER

 LA 7,4 REMEMBER SPECIFIED STRING WAS TOO LONG

LENOK DS 0H

* BUILD WTO BUFFER

* COPY LIST FORM OF WTO TO DSA

* EXECUTE WTO

 STH 5,PREFIX LENGTH SHOWN GOES INTO PREFIX

 BCTR 5,0 REDUCE LENGTH FOR EXECUTE

 EX 5,MSG MOVE MESSAGE TEXT

 LA 6,PREFIX POINT TO PREFIX OF COPIED MESSAGE

 MVC WTOD,WTOL MOVE LIST FORM OF MACRO TO DSA

 WTO TEXT=(6),MF=(E,WTOD)

Figure 237. Performing a Write To Operator (Part 1 of 2)

940 z/OS V1R8.0 XL C/C++ Programming Guide

CCNGWT2

Listing Partitioned Data Set Members

The following example shows a way to create a list of all members in a Partitioned

Data Set (PDS).

Note: This information is included to aid you in such a task and is not

programming interface information.

* IF WTO RETURNED NON-ZERO THAT’S THE RETURN CODE FOR THE USER

* OTHERWISE WE RETURN 4 IF WE TRUNCATED MESSAGE, 0 IF WE DIDN’T

 LTR 15,15 CHECK RC FROM WTO

 BNZ RETURN 0 WTO RC RETURNED TO CALLER

 LR 15,7 TELL CALLER IF STRING WAS TOO LONG

RETURN DS 0H

 EDCEPIL

MSG MVC BUFFER(*-*),0(6)

WTOL WTO TEXT=,ROUTCDE=11,DESC=12,MF=L LIST FORM

WTOLEN EQU *-WTOL LENGTH TO MOVE

DSA EDCDSAD

 DS 0F

WTOD DS CL(WTOLEN)

PREFIX DS H

BUFFER DS CL126

DLEN EQU *-DSA

 END

Figure 237. Performing a Write To Operator (Part 2 of 2)

 /* write to operator example */

 /* part 2 of 2-other file is CCNGWT1 */

 #pragma linkage(WTO,os_upstack)

 int WTO(int,char*);

 int main(void) {

 #define msg "my message"

 WTO(sizeof msg-1,msg);

 }

Figure 238. Performing a Write To Operator

Appendix H. Additional Examples 941

CCNGIP1

/* this example shows how to create a list of members of a PDS */

/* part 1 of 2-other file is CCNGIP2 */

/*

* NODE_PTR pds_mem(const char *pds):

* pds must be a fully qualified pds name, for example,

* ID.PDS.DATASET * returns a * pointer to a linked list of

* nodes. Each node contains a member of the * pds and a

* pointer to the next node. If no members exist, the pointer

* is NULL.

*

* Note: Behavior is undefined if pds is the name of a sequential file.

*/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include "ccngip2.h"

/*

 * RECORD: each record of a pds will be read into one of these structures.

 * The first 2 bytes is the record length, which is put into ’count’,

 * the remaining 254 bytes are put into rest. Each record is 256 bytes long.

*/

#define RECLEN 254

typedef struct {

 unsigned short int count;

 char rest[RECLEN];

 } RECORD;

/* Local function prototypes */

static int gen_node(NODE_PTR *node, RECORD *rec, NODE_PTR *last_ptr);

static char *add_name(NODE_PTR *node, char *name, NODE_PTR *last_ptr);

Figure 239. Example of Listing All Members of a PDS (Part 1 of 5)

942 z/OS V1R8.0 XL C/C++ Programming Guide

NODE_PTR pds_mem(const char *pds) {

 FILE *fp;

 int bytes;

 NODE_PTR node, last_ptr;

 RECORD rec;

 int list_end;

 char *qual_pds;

 node = NULL;

 last_ptr = NULL;

 /*

 * Allocate a new variable, qual_pds, which will be the same as pds, except

 * with single quotes around it, i.e. ID.PDS.DATASET ==> ’ID.PDS.DATA SET’

 */

 qual_pds = (char *)malloc(strlen(pds) + 3);

 if (qual_pds == NULL) {

 fprintf(stderr,"malloc failed for %d bytes\n",strlen(pds) + 3);

 exit(-1);

 }

 sprintf(qual_pds,"’%s’",pds);

 /*

 * Open the pds in binary read mode. The PDS directory will be read one

 * record at a time until either the end of the directory or end-of-file

 * is detected. Call up gen_node() with every record read, to add member

 * names to the linked list

 */

 fp = fopen(qual_pds,"rb");

 if (fp == NULL)

 return(NULL);

 do {

 bytes = fread(&rec, 1, sizeof(rec), fp);

 if ((bytes != sizeof(rec)) && !feof(fp)) {

 perror("FREAD:");

 fprintf(stderr,"Failed in %s, line %d\n"

 "Expected to read %d bytes but read %d bytes\n",

 __FILE__,__LINE__,sizeof(rec), bytes);

 exit(-1);

 }

 list_end = gen_node(&node,&rec, &last_ptr);

 } while (!feof(fp) &&; !list_end);

 fclose(fp);

 free(qual_pds);

 return(node);

}

Figure 239. Example of Listing All Members of a PDS (Part 2 of 5)

Appendix H. Additional Examples 943

/*

 * GEN_NODE() processes the record passed. The main loop scans through the

 * record until it has read at least rec->count bytes, or a directory end

 * marker is detected.

 *

 * Each record has the form:

 *

 * +------------+------+------+------+------+----------------+

 * + # of bytes ¦Member¦Member¦......¦Member¦ Unused +

 * + in record ¦ 1 ¦ 2 ¦ ¦ n ¦ +

 * +------------+------+------+------+------+----------------+

 * ¦--count---¦¦-----------------rest-----------------------¦

 * (Note that the number stored in count includes its own

 * two bytes)

 *

 * And, each member has the form:

 *

 * +--------+-------+----+-----------------------------------+

 * + Member ¦TTR ¦info¦ +

 * + Name ¦ ¦byte¦ User Data TTRN’s (halfwords) +

 * + 8 bytes¦3 bytes¦ ¦ +

 * +--------+-------+----+-----------------------------------+

*/

#define TTRLEN 3 /* The TTR’s are 3 bytes long */

/*

 * bit 0 of the info-byte is ’1’ if the member is an alias,

 * 0 otherwise. ALIAS_MASK is used to extract this information

*/

#define ALIAS_MASK ((unsigned int) 0x80)

/*

 * The number of user data half-words is in bits 3-7 of the info byte.

 * SKIP_MASK is used to extract this information. Since this number is

 * in half-words, it needs to be double to obtain the number of bytes.

*/

#define SKIP_MASK ((unsigned int) 0x1F)

/*

 * 8 hex FF’s mark the end of the directory

Figure 239. Example of Listing All Members of a PDS (Part 3 of 5)

944 z/OS V1R8.0 XL C/C++ Programming Guide

*/

char *endmark = "\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF";

static int gen_node(NODE_PTR *node, RECORD *rec, NODE_PTR *last_ptr) {

 char *ptr, *name;

 int skip, count = 2;

 unsigned int info_byte, alias, ttrn;

 char ttr[TTRLEN];

 int list_end = 0;

 ptr = rec->rest;

 while(count < rec->count) {

 if (!memcmp(ptr,endmark,NAMELEN)) {

 list_end = 1;

 break;

 }

 /* member name */

 name = ptr;

 ptr += NAMELEN;

 /* ttr */

 memcpy(ttr,ptr,TTRLEN);

 ptr += TTRLEN;

 /* info_byte */

 info_byte = (unsigned int) (*ptr);

 alias = info_byte & ALIAS_MASK;

 if (!alias) add_name(node,name,last_ptr);

 skip = (info_byte & SKIP_MASK) * 2 + 1;

 ptr += skip;

 count += (TTRLEN + NAMELEN + skip);

 }

 return(list_end);

}

Figure 239. Example of Listing All Members of a PDS (Part 4 of 5)

Appendix H. Additional Examples 945

/*

 * ADD_NAME: Add a new member name to the linked node. The new member is

 * added to the end so that the original ordering is maintained.

*/

static char *add_name(NODE_PTR *node, char *name, NODE_PTR *last_ptr) {

 NODE_PTR newnode;

 /*

 * malloc space for the new node

 */

 newnode = (NODE_PTR)malloc(sizeof(NODE));

 if (newnode == NULL) {

 fprintf(stderr,"malloc failed for %d bytes\n",sizeof(NODE));

 exit(-1);

 }

 /* copy the name into the node and NULL terminate it */

 memcpy(newnode->name,name,NAMELEN);

 newnode->name[NAMELEN] = ’\0’;

 newnode->next = NULL;

 /*

 * add the new node to the linked list

 */

 if (*last_ptr != NULL) {

 (*last_ptr)->next = newnode;

 *last_ptr = newnode;

 }

 else {

 *node = newnode;

 *last_ptr = newnode;

 }

 return(newnode->name);

}

/*

 * FREE_MEM: This function is not used by pds_mem(), but it should be used

 * as soon as you are finished using the linked list. It frees the storage

 * allocated by the linked list.

*/

void free_mem(NODE_PTR node) {

 NODE_PTR next_node=node;

 while (next_node != NULL) {

 next_node = node->next;

 free(node);

 node = next_node;

 }

 return;

}

Figure 239. Example of Listing All Members of a PDS (Part 5 of 5)

946 z/OS V1R8.0 XL C/C++ Programming Guide

CCNGIP2

/* this example shows how to create a list of members of a PDS */

/* part 2 of 2-other file is CCNGIP1 */

/*

 * NODE: a pointer to this structure is returned from the call to pds_mem().

 * It is a linked list of character arrays - each array contains a member

 * name. Each next pointer points * to the next member, except the last

 * next member which points to NULL.

*/

#define NAMELEN 8 /* Length of a MVS member name */

typedef struct node {

 struct node *next;

 char name[NAMELEN+1];

 } NODE, *NODE_PTR;

NODE_PTR pds_mem(const char *pds);

void free_mem(NODE_PTR list);

Figure 240. ccngip2.h Header file

Appendix H. Additional Examples 947

948 z/OS V1R8.0 XL C/C++ Programming Guide

Appendix I. Application considerations for z/OS UNIX System

Services XL C/C++

This appendix briefly describes the extent of z/OS XL C/C++ support available for

traditional MVS programming environments when you are using z/OS UNIX System

Services.

Relationship to DB2 universal database

No explicit support for DB2 programs exists for POSIX.1 implementation. DB2 z/OS

XL C/C++ programs must be processed by a DB2 precompile step to replace

Structured Query Language (SQL) statements with z/OS XL C/C++ functions. The

precompilation step accepts only MVS data set I/O.

It is possible that an existing DB2 z/OS XL C/C++ application program can be

changed to add POSIX.1-defined I/O functions to access data in HFS files. IBM,

however, does not explicitly support this access. It is also possible that you can

write a new POSIX.1.-conforming z/OS XL C/C++ application program that access

DB2 data by calling non-POSIX.1-conforming DB2 programs. IBM, however, does

not explicitly support this either.

Application programming environments not supported

The following MVS programming environments are not supported for use when

developing POSIX.1 z/OS XL C/C++ application programs:

v CICS

v IMS file system

Application programs that attempt to take advantage of these environments will not

work as intended.

Support for the Curses library

The Curses library provides a set of functions that enable you to manipulate a

terminal’s display regardless of the terminal type. Using this structure, you can

manipulate data on a terminal’s display. You can instruct curses to treat the entire

terminal display as one large window or you can create multiple windows on the

display. The windows can be different sizes and can overlap one another.

Each window on a terminal’s display has its own window data structure. This

structure keeps state information about the window such as its size and where it is

located on the display. Curses uses the window data structure to obtain relevant

information it needs to carry out your instructions.

The Curses archive file resides in /usr/lib. The name of the Curses archive file is

libcurses.a. libcurses.a is used for all applications: base 31-bit, XPLINK 31-bit, and

64–bit. The following is an example of compiling test.c with the Curses archive

using XPLINK:

c89 -o test -Wc,xplink -Wl,xplink test.c -lcurses

The following is an example of compiling test.c with the Curses archive for a 64–bit

application:

c89 -o test -Wc,lp64 -Wl,lp64 test.c -lcurses

© Copyright IBM Corp. 1996, 2006 949

For more information about curses, refer to the z/OS C Curses manual.

950 z/OS V1R8.0 XL C/C++ Programming Guide

Appendix J. External variables

The POSIX 1003.1 and X/Open CAE Specification 4.2 (XPG4.2) require that the C

system header files define certain external variables. Additional variables are

defined for use with POSIX or XPG4.2 functions. If you define one of the POSIX or

XPG4 feature test macros and include one of these headers, the external variables

will be defined in your program. These external variables are treated differently than

other global variables in a multithreaded environment (values are thread-specific)

and across a call to a fetched module (values are propagated). To access the

global variable values (not thread specific), either C with the RENT compiler option

or C++ must be used, and the SCEEOBJ autocall library must be specified during

the z/OS bind. The SCEEOBJ library must be specified before the SCEELKEX and

the SCEELKED libraries. If the SCEEOBJ library is not specified first, then

Language Environment cannot find the external variables. Although there are no

linker/binder errors or warnings, run-time errors can occur. Functions to access the

thread-specific values of these variables are provided for use in a multithreaded

environment.

For a dynamically called DLL module to share access to the POSIX external

variables with its caller, the DLL module must define the _SHARE_EXT_VARS

feature test macro. This is implemented in the current Language Environment

run-time. For more information, see the section on feature test macros in z/OS XL

C/C++ Run-Time Library Reference.

When compiling code with the XPLINK or LP64 compiler options, all access to

these external variables is resolved by dynamic linkage, using IMPORT control

statements in the CELHS003 (CELQS003) member of the SCEELIB library. The

SCEEOBJ library cannot be used when binding XPLINK executable modules.

Because of this, the _SHARE_EXT_VARS (and subordinate) feature test macros

need only be used with XPLINK to access the thread-specific values of these

external variables without the explicit use of the thread-specific functions.

For more information on the header files referred to in the following sections, see

z/OS XL C/C++ Run-Time Library Reference.

errno

When a run-time library function is not successful, the function may do any of the

following to identify the error:

v Set errno to a documented value.

v Set errno to a value that is not documented. You can use strerror() or perror()

to get the message associated with the errno.

v Not set errno.

v Clear errno.

See also errno.h.

daylight

The daylight savings time flag set by tzset(). Note that other time zone sensitive

functions such as ctime(), localtime(), mktime(), and strftime() implicitly call

tzset(). Use the __dlght() function to access the thread-specific value of

daylight. See also time.h.

© Copyright IBM Corp. 1996, 2006 951

|
|
|
|
|
|
|

|
|
|
|

getdate_err

The variable is set to the following value when an error occurs in the getdate()

function.

Value Description

1 The DATEMASK environment variable is null or undefined.

2 The template file cannot be opened for reading.

3 Failed to get file status information.

4 The template file is not a regular file.

5 An error is encountered while reading the template file.

6 Memory allocation is not successful.

7 There is no line in the template that matches the input.

8 There is no line in the template that matches the input.

Any changes to errno are unspecified. Use the __gderr() function to access the

thread-specific value of getdate_err. See also time.h.

h_errno

An integer that holds the specific error code when the network nameserver

encounters an error. The network nameserver is used by the gethostbyname() and

gethostbyaddr() functions. Use the __h_errno() function to access the

thread-specific value of h_errno. See also netdb.h.

__loc1

A global character pointer that is set by the regex() function to point to the first

matched character in the input string. Use the ____loc1() function to access the

thread-specific value of __loc1. __loc1 is not supported in AMODE 64 applications.

See also libgen.h.

loc1

A pointer to characters matched by regular expressions used by step(). The value

is not propagated across a call to a fetched module. loc1 is not supported in

AMODE 64 applications. See also regexp.h.

loc2

A pointer to characters matched by regular expressions used by step(). The value

is not propagated across a call to a fetched module. loc2 is not supported in

AMODE 64 applications. See also regexp.h.

locs

Used by advance() to stop regular expression matching in a string. The value is not

propagated across a call to a fetched module. locs is not supported in AMODE 64

applications. See also regexp.h.

952 z/OS V1R8.0 XL C/C++ Programming Guide

|
|

||

||

||

||

||

||

||

||

||

|
|

|
|
|
|

|
|
|
|

optarg

Character pointer used by getopt() for options parsing variables. Use the

__optargf() function to access the thread-specific value of optarg. See also

stdio.h and unistd.h.

opterr

Error value used by getopt(). Use the __operrf() function to access the

thread-specific value of opterr. See also stdio.h and unistd.h.

optind

Integer pointer used by getopt() for options parsing variables. Use the __opindf()

function to access the thread-specific value of optind. See also stdio.h and

unistd.h.

optopt

Integer pointer used by getopt() for options parsing variables. Use the __opoptf()

function to access the thread-specific value of optopt. See also stdio.h and

unistd.h.

signgam

Storage for sign of lgamma(). This function defaults to thread specific. See also

math.h.

stdin

Standard Input stream. The external variable will be initialized to point to the

enclave-level stream pointer for the standard input file. There is no multithreaded

function. See also stdio.h.

stderr

Standard Error stream. The external variable will be initialized to point to the

enclave-level stream pointer for the standard error file. There is no multithreaded

function. See also stdio.h.

stdout

Standard Output stream. The external variable will be initialized to point to the

enclave-level stream pointer for the standard output file. There is no multithreaded

function. See also stdio.h.

t_errno

An integer that holds the specific error code when a failure occurs in one of the

X/Open Transport Interface (XTI) functions. Use the __t_errno() function to access

the thread-specific value of t_errno. See also xti.h.

Appendix J. External variables 953

|
|
|

|
|

|
|
|

|
|
|

|
|
|

timezone

Long integer difference from UTC and standard time as set by tzset(). Note that

other time zone sensitive functions such as, ctime(), localtime(), mktime(), and

strftime() implicitly call tzset(). Use the __tzone() function to access the

thread-specific value of timezone. See also time.h.

tzname

Character pointer to unsized array of timezone strings used by tzset() and

ctime(). The *tzname variable contains the Standard and Daylight Savings time

zone names. If the TZ environment variable is present and correct, tzname is set

from TZ. Otherwise tzname is set from the LC_TOD locale category. See the

tzset() function for a description. There is no multithreaded function. See also

time.h.

954 z/OS V1R8.0 XL C/C++ Programming Guide

|
|
|
|

Appendix K. Packaging considerations

When you develop a program, library, or application that will be shipped as a

product, you should use SMP/E to manage the installation. This appendix provides

hints and tips for packaging a C or C++ application. It assumes that you are familar

with SMP/E concepts and terminology. For more information about SMP/E and

packaging rules, refer to the following manuals:

v SMP/E Reference

v SMP/E User’s Guide

v Standard Packaging Rules for MVS-Based Products

The way you package your product may have a significant impact on its relationship

with other products, its dependency on libraries, and the way it is eventually

serviced. For this reason, you should make a packaging plan as part of the design

process for your product.

Compiler options

The following options are useful when you compile a program that will be packaged

as a product:

TARGET

If your product will run on multiple releases of z/OS, use the TARGET

compiler option to specify the lowest level of the z/OS Language

Environment that you will support. The compiler will notify you if your

application uses any features that are not supported at this level.

 The target must be the same release as the compiler or a previous release.

If the target is a previous release, you must link with the system library of

the target system. You cannot link with libraries from the current release

and run the resulting executable with a previous release of z/OS Language

Environment.

CSECT

Use the CSECT compiler option or #pragma csect to assign names to

CSECTs. This provides you with more control and flexibility when you

service the product.

 For more information about these compiler options, see z/OS XL C/C++ User’s

Guide.

Libraries

Your product can use various type of libraries:

z/OS Language Environment libraries

Because z/OS Language Environment is upward-compatible, a program

that runs on a lower level of z/OS Language Environment can also run on

higher levels without being relinked or recompiled. You can optionally

recompile your programs, if you want to take advantage of new features

that are introduced to z/OS Language Environment.

Your own libraries

If your program uses your own libraries, you can statically bind the libraries

with the program and consider them an integral part of the product.

© Copyright IBM Corp. 1996, 2006 955

Third-party libraries

If your application uses third-part vendor libraries, you should consider

whether the linking is static or dynamic (if it is a DLL), and whether the

libaries are upward-compatible. If you statically link a library with your

application, you can use either the ++MOD method or the ++PROGRAM

method, as described in “Linking.”

Prelinking

You must use the z/OS Language Environment prelinker before linking your

application if the resultant load module will reside in a PDS and any of the following

are true:

v Your application contains C++ code.

v Your application contains C code that is compiled with the RENT, LONGNAME, DLL, or

IPA compiler option.

v Your application is compiled to run under z/OS UNIX System Services.

SMP/E will not invoke the prelinker. If your product needs to be prelinked, you

should usually prelink as part of your product build and ship the prelinker output on

the SMP/E tape.

Linking

There are two ways to ship an application that is statically linked to a library:

v You can use the ++MOD command to build the application, and not perform the

final link to the library until the product is installed. If the customer later installs a

PTF for this library, your application will automatically be relinked.

v You can build the application and link it to the library, and then install it using the

++PROGRAM command. If a PTF is issued for the library, this will have no effect

until you include the updated library in a PTF for your product.

++MOD

If you want to do the final link-edit step during installation, use the ++MOD

command statement in the MCS. You must compile and then partially link your

program with any libraries that will not exist on the customer’s system, and then

produce output in link-edited format. Any references to libraries that will exist on the

customer’s system, such as z/OS Language Environment libraries, are unresolved.

Ship this link-edited module on the SMP/E tape.

At installation time, the application is linked to the libraries on the customer’s

system. For example, on z/OS V1R4, the application is linked to z/OS Language

Environment V1R4 libraries.

SMP/E supports automatic library call facility through the use of SYSLIB DD

statements. This allows you to implicitly include modules without explicitly specifying

them in the JCLIN. This can provide flexibility if the link-edit structure of the

application must change during servicing, for example because new functions are

used.

When you service a ++MOD, you must ship your fixes using a ++PTF command

statement. The SMP/E tape must contain the text deck (object files) in fixed-block

80 format. SMP/E invokes the link-editor to rebind the new text deck with the

existing load module. You must name all of the CSECTs, using the CSECT compiler

option or #pragma csect. (If you do not name the CSECTs, CSECT replacement

956 z/OS V1R8.0 XL C/C++ Programming Guide

would not happen. Old text records would accumulate in the load module as you

ship out subsequent fixes for your product.)

To allow rebind, you must also use the EDIT=YES option in the bind step. This is the

default.

++PROGRAM

You can choose to do the final link step as part of your product build, and ship the

output load module to your customer. The advantage is that the whole build process

is under your control, and you can perform the final testing of the load module in

your own controlled environment.

If your customers have different levels of z/OS Language Environment, you must

target your build to the lowest level and link with system libraries at this level. Your

product will have a prerequisite that the customer must have z/OS Language

Environment at this level or a higher level.

If service is applied to any linked library, this will have no effect on your product

until you include the service in a PTF.

The ++PTF command, which is used for shipping and applying fixes, expects input

in fixed-block 80 format. The output of the link step is not in this format. You can

convert it as follows:

1. UNLOAD - use IEBCOPY to copy the module and its alias (if any) to a

sequential file.

2. Run the SMP/E utility GIMDTS to convert the sequential file to a fixed-block 80

file.

Conceptually, the ++PROGRAM copies the whole load module to your customer’s

target dataset with no additional processing. You customer receives the module

exactly as you ship it.

Appendix K. Packaging considerations 957

958 z/OS V1R8.0 XL C/C++ Programming Guide

Appendix L. Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. The major

accessibility features in z/OS enable users to:

v Use assistive technologies such as screen readers and screen magnifier

software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user

interfaces found in z/OS. Consult the assistive technology documentation for

specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E

Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Vol I for

information about accessing TSO/E and ISPF interfaces. These guides describe

how to use TSO/E and ISPF, including the use of keyboard shortcuts or function

keys (PF keys). Each guide includes the default settings for the PF keys and

explains how to modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library

Server versions of z/OS books in the Internet library at:

www.ibm.com/servers/eserver/zseries/zos/bkserv/

© Copyright IBM Corp. 1996, 2006 959

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

960 z/OS V1R8.0 XL C/C++ Programming Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may be

used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any

time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2006 961

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

IBM Corporation

Mail Station P300

2455 South Road

Poughkeepsie, NY 12601-5400

USA

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those

products, their published announcements or other publicly available sources. IBM

has not tested those products and cannot confirm the accuracy of performance

compatibility or any other claims related to non-IBM products. Questions on the

capabilities of non-IBM products should be addressed to the suppliers of those

products.

All statements regarding IBM’s future direction or intent are subject to change

without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to IBM,

for the purposes of developing, using, marketing or distributing application programs

conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,

serviceability, or function of these programs. You may copy, modify, and distribute

these sample programs in any form without payment to IBM for the purposes of

developing, using, marketing, or distributing application programs conforming to

IBM’s application programming interfaces.

962 z/OS V1R8.0 XL C/C++ Programming Guide

If you are viewing this information softcopy, the photographs and color illustrations

may not appear.

Programming Interface Information

This book documents intended Programming Interfaces that allow the customer to

write programs to obtain the services of z/OS Language Environment.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or

other countries or both:

 AIX

BookManager

BookMaster

C/370

CICS

COBOL/370

DB2

DB2 Universal Database

DRDA

eServer

GDDM

Hiperspace

IBM

IMS

IMS/ESA

Language Environment

MVS

MVS/ESA

Open Class

OS/2

OS/390

OS/400

QMF

System z

S/390

VisualAge

VSE/ESA

z/OS

z/OS.e

zSeries

z/VM

IEEE is a trademark of the Institute of Electrical and Electronics Engineers, Inc. in

the United States and other countries.

POSIX is a registered trademark of the Institute of Electrical and Electronics

Engineers, Inc. in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Java and all Java-based trademarks and logos are trademarks of Sun

Microsystems, Inc. in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United

States and/or other countries.

Other company, product, and service names may be trademarks or service marks

of others.

Standards

The following standards are supported in combination with the z/OS Language

Environment:

v The C language is consistent with Programming languages - C (ISO/IEC

9899:1999). This standard has officially replaced American National Standard for

Notices 963

Information Systems-Programming Language C (X3.159–1989) and is technically

equivalent to the ANSI C standard. The compiler supports the changes adopted

into the C Standard by ISO/IEC 9899:1990/Amendment 1:1994. For more

information on ISO, visit their web site at http://www.iso.ch/

v The C++ language is consistent with Programming languages - C++ (ISO/IEC

14882:2003) and Programming languages - C++ (ISO/IEC 14882:1998).

The following standards are supported in combination with the z/OS Language

Environment and z/OS UNIX System Services:

v IEEE Std 1003.1—1990, IEEE Standard Information Technology—Portable

Operating System Interface (POSIX)—Part 1: System Application Program

Interface (API) [C language], copyright 1990 by the Institute of Electrical and

Electronic Engineers, Inc. For more information on IEEE, visit their web site at

http://www.ieee.org/.

v A subset of IEEE P1003.1a Draft 6 July 1991, Draft Revision to Information

Technology—Portable Operating System Interface (POSIX), Part 1: System

Application Program Interface (API) [C Language], copyright 1992 by the Institute

of Electrical and Electronic Engineers, Inc.

v IEEE Std 1003.2—1992, IEEE Standard Information Technology—Portable

Operating System Interface (POSIX)—Part 2: Shells and Utilities, copyright 1990

by the Institute of Electrical and Electronic Engineers, Inc.

v A subset of IEEE Std P1003.4a/D6—1992, IEEE Draft Standard Information

Technology—Portable Operating System Interface (POSIX)—Part 1: System

Application Program Interface (API)—Amendment 2: Threads Extension [C

language], copyright 1990 by the Institute of Electrical and Electronic Engineers,

Inc.

v A subset of IEEE 754-1985 (R1990) IEEE Standard for Binary Floating-Point

Arithmetic (ANSI), copyright 1985 by the Institute of Electrical and Electronic

Engineers, Inc.

v X/Open CAE Specification, System Interfaces and Headers, Issue 4 Version 2,

copyright 1994 by The Open Group

v X/Open CAE Specification, Networking Services, Issue 4, copyright 1994 by The

Open Group

v X/Open Specification Programming Languages, Issue 3, Common Usage C,

copyright 1988, 1989, and 1992 by The Open Group

v United States Government’s Federal Information Processing Standard (FIPS)

publication for the programming language C, FIPS-160, issued by National

Institute of Standards and Technology, 1991

Portions of this text are reprinted and reproduced in electronic form in z/OS, from

IEEE Std 1003.1, 2004 Edition, Standard for Information Technology -- Portable

Operating System Interface (POSIX), The Open Group Base Specifications Issue 6,

copyright 2001-2004 by the Institute of Electrical and Electronics Engineers, Inc and

The Open Group. In the event of any discrepancy between these versions and the

original IEEE and The Open Group Standard, the original IEEE and The Open

Group Standard is the referee document. The original Standard can be obtained

online at http://www.opengroup.org/unix/online.html .

964 z/OS V1R8.0 XL C/C++ Programming Guide

http://www.iso.ch/
http://www.ieee.org/
http://www.opengroup.org/unix/online.html

Glossary

This glossary defines technical terms and

abbreviations that are used in z/OS XL C/C++

documentation. If you do not find the term you are

looking for, refer to the index of the appropriate

z/OS XL C/C++ manual or view IBM Glossary of

Computing Terms, located at:

www.ibm.com/ibm/terminology. This glossary

includes terms and definitions from:

v American National Standard Dictionary for

Information Systems, ANSI/ISO X3.172-1990,

copyright 1990 by the American National

Standards Institute (ANSI/ISO). Copies may be

purchased from the American National

Standards Institute, 11 West 42nd Street, New

York, New York 10036. Definitions are indicated

by the symbol ANSI/ISO after the definition.

v IBM Dictionary of Computing, SC20-1699.

These definitions are indicated by the registered

trademark IBM after the definition.

v X/Open CAE Specification, Commands and

Utilities, Issue 4. July, 1992. These definitions

are indicated by the symbol X/Open after the

definition.

v ISO/IEC 9945-1:1990/IEEE POSIX

1003.1-1990. These definitions are indicated by

the symbol ISO.1 after the definition.

v The Information Technology Vocabulary,

developed by Subcommittee 1, Joint Technical

Committee 1, of the International Organization

for Standardization and the International

Electrotechnical Commission (ISO/IEC

JTC1/SC1). Definitions of published parts of this

vocabulary are identified by the symbol

ISO-JTC1 after the definition; definitions taken

from draft international standards, committee

drafts, and working papers being developed by

ISO/IEC JTC1/SC1 are identified by the symbol

ISO Draft after the definition, indicating that final

agreement has not yet been reached among

the participating National Bodies of SC1.

A

abstract class. (1) A class with at least one pure

virtual function that is used as a base class for other

classes. The abstract class represents a concept;

classes derived from it represent implementations of the

concept. You cannot create a direct object of an

abstract class, but you can create references and

pointers to an abstract class and set them to refer to

objects of classes derived from the abstract class. See

also base class. (2) A class that allows polymorphism.

There can be no objects of an abstract class; they are

only used to derive new classes.

abstract code unit. See ACU.

abstract data type. A mathematical model that

includes a structure for storing data and operations that

can be performed on that data. Common abstract data

types include sets, trees, and heaps.

abstraction (data). A data type with a private

representation and a public set of operations (functions

or operators) which restrict access to that data type to

that set of operations. The C++ language uses the

concept of classes to implement data abstraction.

access. An attribute that determines whether or not a

class member is accessible in an expression or

declaration.

access declaration. A declaration used to restore

access to members of a base class.

access mode. (1) A technique that is used to obtain a

particular logical record from, or to place a particular

logical record into, a file assigned to a mass storage

device. ANSI/ISO. (2) The manner in which files are

referred to by a computer. Access can be sequential

(records are referred to one after another in the order in

which they appear on the file), access can be random

(the individual records can be referred to in a

nonsequential manner), or access can be dynamic

(records can be accessed sequentially or randomly,

depending on the form of the input/output request). IBM.

(3) A particular form of access permitted to a file.

X/Open.

access resolution. The process by which the

accessibility of a particular class member is determined.

access specifier. One of the C++ keywords: public,

private, and protected, used to define the access to a

member.

ACU (abstract code unit). A measurement used by

the z/OS XL C/C++ compiler for judging the size of a

function. The number of ACUs that comprise a function

is proportional to its size and complexity.

addressing mode. See AMODE.

address space. (1) The range of addresses available

to a computer program. ANSI/ISO. (2) The complete

range of addresses that are available to a programmer.

See also virtual address space. (3) The area of virtual

storage available for a particular job. (4) The memory

locations that can be referenced by a process. X/Open.

ISO.1.

© Copyright IBM Corp. 1996, 2006 965

http://www.ibm.com/ibm/terminology

aggregate. (1) An array or a structure. (2) A

compile-time option to show the layout of a structure or

union in the listing. (3) In programming languages, a

structured collection of data items that form a data type.

ISO-JTC1. (4) In C++, an array or a class with no

user-declared constructors, no private or protected

non-static data members, no base classes, and no

virtual functions.

alert. (1) A message sent to a management services

focal point in a network to identify a problem or an

impending problem. IBM. (2) To cause the user's

terminal to give some audible or visual indication that an

error or some other event has occurred. When the

standard output is directed to a terminal device, the

method for alerting the terminal user is unspecified.

When the standard output is not directed to a terminal

device, the alert is accomplished by writing the alert

character to standard output (unless the utility

description indicates that the use of standard output

produces undefined results in this case). X/Open.

alert character. A character that in the output stream

should cause a terminal to alert its user via a visual or

audible notification. The alert character is the character

designated by a '\a' in the C and C++ languages. It is

unspecified whether this character is the exact

sequence transmitted to an output device by the system

to accomplish the alert function. X/Open.

 This character is named <alert> in the portable

character set.

alias. (1) An alternate label; for example, a label and

one or more aliases may be used to refer to the same

data element or point in a computer program. ANSI/ISO.

(2) An alternate name for a member of a partitioned

data set. IBM. (3) An alternate name used for a

network. Synonymous with nickname. IBM.

alias name. (1) A word consisting solely of

underscores, digits, and alphabetics from the portable

file name character set, and any of the following

characters: ! % , @. Implementations may allow other

characters within alias names as an extension. X/Open.

(2) An alternate name. IBM. (3) A name that is defined

in one network to represent a logical unit name in

another interconnected network. The alias name does

not have to be the same as the real name; if these

names are not the same; translation is required. IBM.

alignment. The storing of data in relation to certain

machine-dependent boundaries. IBM.

alternate code point. A syntactic code point that

permits a substitute code point to be used. For

example, the left brace ({) can be represented by X'B0'

and also by X'C0'.

American National Standard Code for Information

Interchange (ASCII). The standard code, using a

coded character set consisting of 7-bit coded characters

(8 bits including parity check), that is used for

information interchange among data processing

systems, data communication systems, and associated

equipment. The ASCII set consists of control characters

and graphic characters. IBM.

Note: IBM has defined an extension to ASCII code

(characters 128–255).

American National Standards Institute (ANSI/ISO).

An organization consisting of producers, consumers,

and general interest groups, that establishes the

procedures by which accredited organizations create

and maintain voluntary industry standards in the United

States. ANSI/ISO.

AMODE (addressing mode). In z/OS, a program

attribute that refers to the address length that a program

is prepared to handle upon entry. In z/OS, addresses

may be 24, 31, or 64 bits in length. IBM.

angle brackets. The characters < (left angle bracket)

and > (right angle bracket). When used in the phrase

“enclosed in angle brackets”, the symbol < immediately

precedes the object to be enclosed, and > immediately

follows it. When describing these characters in the

portable character set, the names <less-than-sign> and

<greater-than-sign> are used. X/Open.

anonymous union. A union that is declared within a

structure or class and does not have a name. It must

not be followed by a declarator.

ANSI/ISO. See American National Standards Institute.

API (application program interface). A functional

interface supplied by the operating system or by a

separately orderable licensed program that allows an

application program written in a high-level language to

use specific data or functions of the operating system or

the licensed program. IBM.

application. (1) The use to which an information

processing system is put; for example, a payroll

application, an airline reservation application, a network

application. IBM. (2) A collection of software

components used to perform specific types of

user-oriented work on a computer. IBM.

application generator. An application development

tool that creates applications, application components

(panels, data, databases, logic, interfaces to system

services), or complete application systems from design

specifications.

application program. A program written for or by a

user that applies to the user's work, such as a program

that does inventory control or payroll. IBM.

archive libraries. The archive library file, when

created for application program object files, has a

special symbol table for members that are object files.

966 z/OS V1R8.0 XL C/C++ Programming Guide

argument. (1) A parameter passed between a calling

program and a called program. IBM. (2) In a function

call, an expression that represents a value that the

calling function passes to the function specified in the

call. (3) In the shell, a parameter passed to a utility as

the equivalent of a single string in the argv array

created by one of the exec functions. An argument is

one of the options, option-arguments, or operands

following the command name. X/Open.

argument declaration. See parameter declaration.

arithmetic object. (1) A bit field, or an integral,

floating-point, or packed decimal (IBM extension) object.

(2) A real object or objects having the type float, double,

or long double.

array. In programming languages, an aggregate that

consists of data objects with identical attributes, each of

which may be uniquely referenced by subscripting.

ISO-JTC1.

array element. A data item in an array. IBM.

ASCII. See American National Standard Code for

Information Interchange.

Assembler H. An IBM licensed program. Translates

symbolic assembler language into binary machine

language.

assembler language. A source language that includes

symbolic language statements in which there is a

one-to-one correspondence with the instruction formats

and data formats of the computer. IBM.

assembler user exit. In z/OS Language Environment

a routine to tailor the characteristics of an enclave prior

to its establishment.

assignment expression. An expression that assigns

the value of the right operand expression to the left

operand variable and has as its value the value of the

right operand. IBM.

atexit list. A list of actions specified in the z/OS XL

C/C++ atexit() function that occur at normal program

termination.

auto storage class specifier. A specifier that enables

the programmer to define a variable with automatic

storage; its scope restricted to the current block.

automatic call library. Contains modules that are

used as secondary input to the binder to resolve

external symbols left undefined after all the primary

input has been processed.

 The automatic call library can contain:

v Object modules, with or without binder control

statements

v Load modules

v z/OS XL C/C++ run-time routines (SCEELKED)

automatic library call. The process in which control

sections are processed by the binder or loader to

resolve references to members of partitioned data sets.

IBM.

automatic storage. Storage that is allocated on entry

to a routine or block and is freed on the subsequent

return. Sometimes referred to as stack storage or

dynamic storage.

B

background process. (1) A process that does not

require operator intervention but can be run by the

computer while the workstation is used to do other

work. IBM. (2) A mode of program execution in which

the shell does not wait for program completion before

prompting the user for another command. IBM. (3) A

process that is a member of a background process

group. X/Open. ISO.1.

background process group. Any process group,

other than a foreground process group, that is a

member of a session that has established a connection

with a controlling terminal. X/Open. ISO.1.

backslash. The character \. This character is named

<backslash> in the portable character set.

base class. A class from which other classes are

derived. A base class may itself be derived from another

base class. See also abstract class.

based on. The use of existing classes for

implementing new classes.

binary expression. An expression containing two

operands and one operator.

binary stream. (1) An ordered sequence of

untranslated characters. (2) A sequence of characters

that corresponds on a one-to-one basis with the

characters in the file. No character translation is

performed on binary streams. IBM.

bind. (1) To combine one or more control sections or

program modules into a single program module,

resolving references between them. (2) To assign virtual

storage addresses to external symbols.

binder. The DFSMS/MVS program that processes the

output of language translators and compilers into an

executable program (load module or program object). It

replaces the linkage editor and batch loader in the

MVS/ESA, OS/390, or z/OS operating system.

bit field. A member of a structure or union that

contains a specified number of bits. IBM.

bitwise operator. An operator that manipulates the

value of an object at the bit level.

Glossary 967

blank character. (1) A graphic representation of the

space character. ANSI/ISO. (2) A character that

represents an empty position in a graphic character

string. ISO Draft. (3) One of the characters that belong

to the blank character class as defined via the

LC_CTYPE category in the current locale. In the POSIX

locale, a blank character is either a tab or a space

character. X/Open.

block. (1) In programming languages, a compound

statement that coincides with the scope of at least one

of the declarations contained within it. A block may also

specify storage allocation or segment programs for

other purposes. ISO-JTC1. (2) A string of data elements

recorded or transmitted as a unit. The elements may be

characters, words or physical records. ISO Draft. (3)

The unit of data transmitted to and from a device. Each

block contains one record, part of a record, or several

records.

block statement. In the C or C++ languages, a group

of data definitions, declarations, and statements

appearing between a left brace and a right brace that

are processed as a unit. The block statement is

considered to be a single C or C++ statement. IBM.

boundary alignment. The position in main storage of

a fixed-length field, such as a halfword or doubleword,

on a byte-level boundary for that unit of information.

IBM.

braces. The characters { (left brace) and } (right

brace), also known as curly braces. When used in the

phrase “enclosed in (curly) braces” the symbol {

immediately precedes the object to be enclosed, and }

immediately follows it. When describing these

characters in the portable character set, the names

<left-brace> and <right-brace> are used. X/Open.

brackets. The characters [(left bracket) and] (right

bracket), also known as square brackets. When used in

the phrase enclosed in (square) brackets the symbol [

immediately precedes the object to be enclosed, and]

immediately follows it. When describing these

characters in the portable character set, the names

<left-bracket> and <right-bracket> are used. X/Open.

break statement. A C or C++ control statement that

contains the keyword “break” and a semicolon. IBM. It is

used to end an iterative or a switch statement by exiting

from it at any point other than the logical end. Control is

passed to the first statement after the iteration or switch

statement.

built-in. (1) A function that the compiler will

automatically inline instead of making the function call,

unless the programmer specifies not to inline. (2) In

programming languages, pertaining to a language

object that is declared by the definition of the

programming language; for example, the built-in function

SIN in PL/I, the predefined data type INTEGER in

FORTRAN. ISO-JTC1. Synonymous with predefined.

IBM.

byte-oriented stream. See orientation of a stream.

C

C library. A system library that contains common C

language subroutines for file access, string operators,

character operations, memory allocation, and other

functions. IBM.

C or C++ language statement. A C or C++ language

statement contains zero or more expressions. A block

statement begins with a { (left brace) symbol, ends with

a } (right brace) symbol, and contains any number of

statements.

 All C or C++ language statements, except block

statements, end with a ; (semicolon) symbol.

c89 utility. A utility used to compile and bind an

application program from the z/OS shell. It invokes the

compiler using host environment variables.

C++ class library. A collection of C++ classes.

C++ library. A system library that contains common

C++ language subroutines for file access, memory

allocation, and other functions.

callable services. A set of services that can be

invoked by z/OS Language Environment-conforming

high level languages using the conventional z/OS

Language Environment-defined call interface, and

usable by all programs sharing the z/OS Language

Environment conventions.

 Use of these services helps to decrease an application's

dependence on the specific form and content of the

services delivered by any single operating system.

call chain. A trace of all active functions.

caller. A function that calls another function.

cancelability point. A specific point within the current

thread that is enabled to solicit cancel requests. This is

accomplished using the pthread_testintr() function.

carriage-return character. A character that in the

output stream indicates that printing should start at the

beginning of the same physical line in which the

carriage-return character occurred. The carriage-return

is the character designated by '\r' in the C and C++

languages. It is unspecified whether this character is the

exact sequence transmitted to an output device by the

system to accomplish the movement to the beginning of

the line. X/Open.

case clause. In a C or C++ switch statement, a CASE

label followed by any number of statements.

968 z/OS V1R8.0 XL C/C++ Programming Guide

case label. The word case followed by a constant

integral expression and a colon. When the selector

evaluates the value of the constant expression, the

statements following the case label are processed.

cast expression. An expression that converts or

reinterprets its operand.

cast operator. The cast operator is used for explicit

type conversions.

cataloged procedures. A set of control statements

placed in a library and retrievable by name. IBM.

catch block. A block associated with a try block that

receives control when an exception matching its

argument is thrown.

char specifier. A char is a built-in data type. In the

C++ language, char, signed char, and unsigned char

are all distinct data types.

character. (1) A letter, digit, or other symbol that is

used as part of the organization, control, or

representation of data. A character is often in the form

of a spatial arrangement of adjacent or connected

strokes. ANSI/ISO. (2) A sequence of one or more bytes

representing a single graphic symbol or control code.

This term corresponds to the ISO C standard term

multibyte character (multibyte character), where a

single-byte character is a special case of the multibyte

character. Unlike the usage in the ISO C standard,

character here has no necessary relationship with

storage space, and byte is used when storage space is

discussed. X/Open. ISO.1.

character array. An array of type char. X/Open.

character class. A named set of characters sharing

an attribute associated with the name of the class. The

classes and the characters that they contain are

dependent on the value of the LC_CTYPE category in

the current locale. X/Open.

character constant. A string of any of the characters

that can be represented, usually enclosed in quotes.

character set. (1) A finite set of different characters

that is complete for a given purpose; for example, the

character set in ISO Standard 646, 7-bit Coded

Character Set for Information Processing Interchange.

ISO Draft. (2) All the valid characters for a programming

language or for a computer system. IBM. (3) A group of

characters used for a specific reason; for example, the

set of characters a printer can print. IBM. (4) See also

portable character set.

character special file. (1) A special file that provides

access to an input or output device. The character

interface is used for devices that do not use block I/O.

IBM. (2) A file that refers to a device. One specific type

of character special file is a terminal device file. X/Open.

ISO.1.

character string. A contiguous sequence of

characters terminated by and including the first null

byte. X/Open.

child. A node that is subordinate to another node in a

tree structure. Only the root node is not a child.

child enclave. The nested enclave created as a result

of certain commands being issued from a parent

enclave.

CICS (Customer Information Control System).

Pertaining to an IBM licensed program that enables

transactions entered at remote terminals to be

processed concurrently by user-written application

programs. It includes facilities for building, using, and

maintaining databases. IBM.

CICS destination control table. See DCT.

CICS translator. A routine that accepts as input an

application containing EXEC CICS commands and

produces as output an equivalent application in which

each CICS command has been translated into the

language of the source.

class. (1) A C++ aggregate that may contain functions,

types, and user-defined operators in addition to data. A

class may be derived from another class, inheriting the

properties of its parent class. A class may restrict

access to its members. (2) A user-defined data type. A

class data type can contain both data representations

(data members) and functions (member functions).

class key. One of the C++ keywords: class, struct and

union.

class library. A collection of classes.

class member operator. An operator used to access

class members through class objects or pointers to

class objects. The class member operators are:

 . -> .* ->*

class name. A unique identifier that names a class

type.

class scope. An indication that a name of a class can

be used only in a member function of that class.

class tag. Synonym for class name.

class template. A blueprint describing how a set of

related classes can be constructed.

class template declaration. A class template

declaration introduces the name of a class template and

specifies its template parameter list. A class template

declaration may optionally include a class template

definition.

class template definition. A class template definition

describes various characteristics of the class types that

are its specializations. These characteristics include the

Glossary 969

names and types of data members of specializations,

the signatures and definitions of member functions,

accessibility of members, and base classes.

client program. A program that uses a class. The

program is said to be a client of the class.

CLIST. A programming language that typically

executes a list of TSO commands.

CLLE (COBOL Load List Entry). Entry in the load list

containing the name of the program and the load

address.

COBCOM. Control block containing information about

a COBOL partition.

COBOL (common business-oriented language). A

high-level language, based on English, that is primarily

used for business applications.

COBOL Load List Entry. See CLLE.

COBVEC. COBOL vector table containing the address

of the library routines.

code element set. (1) The result of applying a code to

all elements of a coded set, for example, all the

three-letter international representations of airport

names. ISO Draft. (2) The result of applying rules that

map a numeric code value to each element of a

character set. An element of a character set may be

related to more than one numeric code value but the

reverse is not true. However, for state-dependent

encodings the relationship between numeric code

values to elements of a character set may be further

controlled by state information. The character set may

contain fewer elements than the total number of

possible numeric code values; that is, some code

values may be unassigned. X/Open. (3) Synonym for

codeset.

code generator. The part of the compiler that

physically generates the object code.

code page. (1) An assignment of graphic characters

and control function meanings to all code points; for

example, assignment of characters and meanings to

256 code points for an 8-bit code, assignment of

characters and meanings to 128 code points for a 7-bit

code. (2) A particular assignment of hexadecimal

identifiers to graphic characters.

code point. (1) A representation of a unique character.

For example, in a single-byte character set each of 256

possible characters is represented by a one-byte code

point. (2) An identifier in an alert description that

represents a short unit of text. The code point is

replaced with the text by an alert display program.

coded character set. (1) A set of graphic characters

and their code point assignments. The set may contain

fewer characters than the total number of possible

characters: some code points may be unassigned. IBM.

(2) A coded set whose elements are single characters;

for example, all characters of an alphabet. ISO Draft. (3)

Loosely, a code. ANSI/ISO.

codeset. Synonym for code element set. IBM.

collating element. The smallest entity used to

determine the logical ordering of character or

wide-character strings. A collating element consists of

either a single character, or two or more characters

collating as a single entity. The value of the

LC_COLLATE category in the current locale determines

the current set of collating elements. X/Open.

collating sequence. (1) A specified arrangement used

in sequencing. ISO-JTC1. ANSI/ISO. (2) An ordering

assigned to a set of items, such that any two sets in

that assigned order can be collated. ANSI/ISO. (3) The

relative ordering of collating elements as determined by

the setting of the LC_COLLATE category in the current

locale. The character order, as defined for the

LC_COLLATE category in the current locale, defines the

relative order of all collating elements, such that each

element occupies a unique position in the order. This is

the order used in ranges of characters and collating

elements in regular expressions and pattern matching.

In addition, the definition of the collating weights of

characters and collating elements uses collating

elements to represent their respective positions within

the collation sequence.

collation. The logical ordering of character or

wide-character strings according to defined precedence

rules. These rules identify a collation sequence between

the collating elements, and such additional rules that

can be used to order strings consisting or multiple

collating elements. X/Open.

collection. (1) An abstract class without any ordering,

element properties, or key properties. (2) In a general

sense, an implementation of an abstract data type for

storing elements.

Collection Class Library. A set of classes that

provide basic functions for collections, and can be used

as base classes.

column position. A unit of horizontal measure related

to characters in a line.

 It is assumed that each character in a character set has

an intrinsic column width independent of any output

device. Each printable character in the portable

character set has a column width of one. The standard

utilities, when used as described in this document set,

assume that all characters have integral column widths.

The column width of a character is not necessarily

related to the internal representation of the character

(numbers of bits or bytes).

 The column position of a character in a line is defined

as one plus the sum of the column widths of the

970 z/OS V1R8.0 XL C/C++ Programming Guide

preceding characters in the line. Column positions are

numbered starting from 1. X/Open.

comma expression. An expression (not a function

argument list) that contains two or more operands

separated by commas. The compiler evaluates all

operands in the order specified, discarding all but the

last (rightmost). The value of the expression is the value

of the rightmost operand. Typically this is done to

produce side effects.

command. A request to perform an operation or run a

program. When parameters, arguments, flags, or other

operands are associated with a command, the resulting

character string is a single command.

command processor parameter list (CPPL). The

format of a TSO parameter list. When a TSO terminal

monitor application attaches a command processor,

register 1 contains a pointer to the CPPL, containing

addresses required by the command processor.

COMMAREA. A communication area made available

to applications running under CICS.

Common Business-Oriented Language. See

COBOL.

common expression elimination. Duplicated

expressions are eliminated by using the result of the

previous expression. This includes intermediate

expressions within expressions.

compilation unit. (1) A portion of a computer program

sufficiently complete to be compiled correctly. IBM. (2) A

single compiled file and all its associated include files.

(3) An independently compilable sequence of high-level

language statements. Each high-level language product

has different rules for what makes up a compilation unit.

complete class name. The complete qualification of a

nested class name including all enclosing class names.

Complex Mathematics library. A C++ class library

that provides the facilities to manipulate complex

numbers and perform standard mathematical operations

on them.

computational independence. No data modified by

either a main task program or a parallel function is

examined or modified by a parallel function that might

be running simultaneously.

concrete class. (1) A class that is not abstract. (2) A

class defining objects that can be created.

condition. (1) A relational expression that can be

evaluated to a value of either true or false. IBM. (2) An

exception that has been enabled, or recognized, by the

z/OS Language Environment and thus is eligible to

activate user and language condition handlers. Any

alteration to the normal programmed flow of an

application. Conditions can be detected by the

hardware/operating system and result in an interrupt.

They can also be detected by language-specific

generated code or language library code.

conditional expression. A compound expression that

contains a condition (the first expression), an expression

to be evaluated if the condition has a nonzero value

(the second expression), and an expression to be

evaluated if the condition has the value zero (the third

expression).

condition handler. A user-written condition handler or

language-specific condition handler (such as a PL/I

ON-unit or z/OS XL C/C++ signal() function call)

invoked by the z/OS XL C/C++ condition manager to

respond to conditions.

condition manager. Manages conditions in the

common execution environment by invoking various

user-written and language-specific condition handlers.

condition token. In z/OS Language Environment, a

data type consisting of 12 bytes (96 bits). The condition

token contains structured fields that indicate various

aspects of a condition including the severity, the

associated message number, and information that is

specific to a given instance of the condition.

const. (1) An attribute of a data object that declares

the object cannot be changed. (2) A keyword that allows

you to define a variable whose value does not change.

(3) A keyword that allows you to define a parameter that

is not changed by the function. (4) A keyword that

allows you to define a member function that does not

modify the state of the class for which it is defined.

constant. (1) In programming languages, a language

object that takes only one specific value. ISO-JTC1. (2)

A data item with a value that does not change. IBM.

constant expression. An expression having a value

that can be determined during compilation and that

does not change during the running of the program.

IBM.

constant propagation. An optimization technique

where constants used in an expression are combined

and new ones are generated. Mode conversions are

done to allow some intrinsic functions to be evaluated at

compile time.

constructed reentrancy. The attribute of applications

that contain external data and require additional

processing to make them reentrant. Contrast with

natural reentrancy.

constructor. A special C++ class member function

that has the same name as the class and is used to

create an object of that class.

control character. (1) A character whose occurrence

in a particular context specifies a control function. ISO

Draft. (2) Synonymous with non-printing character. IBM.

Glossary 971

(3) A character, other than a graphic character, that

affects the recording, processing, transmission, or

interpretation of text. X/Open.

control statement. (1) A statement that is used to

alter the continuous sequential execution of statements;

a control statement may be a conditional statement,

such as if, or an imperative statement, such as return.

(2) A statement that changes the path of execution.

controlling process. The session leader that

establishes the connection to the controlling terminal. If

the terminal ceases to be a controlling terminal for this

session, the session leader ceases to be the controlling

process. X/Open. ISO.1.

controlling terminal. A terminal that is associated with

a session. Each session may have at most one

controlling terminal associated with it, and a controlling

terminal is associated with exactly one session. Certain

input sequences from the controlling terminal cause

signals to be sent to all processes in the process group

associated with the controlling terminal. X/Open. ISO.1.

conversion. (1) In programming languages, the

transformation between values that represent the same

data item but belong to different data types. Information

may be lost because of conversion since accuracy of

data representation varies among different data types.

ISO-JTC1. (2) The process of changing from one

method of data processing to another or from one data

processing system to another. IBM. (3) The process of

changing from one form of representation to another; for

example to change from decimal representation to

binary representation. IBM. (4) A change in the type of a

value. For example, when you add values having

different data types, the compiler converts both values

to a common form before adding the values.

conversion descriptor. A per-process unique value

used to identify an open codeset conversion. X/Open.

conversion function. A member function that

specifies a conversion from its class type to another

type.

coordinated universal time (UTC). Synonym for

Greenwich Mean Time (GMT). See GMT.

copy constructor. A constructor that copies a class

object of the same class type.

CSECT (control section). The part of a program

specified by the programmer to be a relocatable unit, all

elements of which are to be loaded into adjoining main

storage locations.

Cross System Product. See CSP.

CSP (Cross System Product). A set of licensed

programs designed to permit the user to develop and

run applications using independently defined maps

(display and printer formats), data items (records,

working storage, files, and single items), and processes

(logic). The Cross System Product set consists of two

parts: Cross System Product/Application Development

(CSP/AD) and Cross System Product/Application

Execution (CSP/AE). IBM.

current working directory. (1) A directory, associated

with a process, that is used in path name resolution for

path names that do not begin with a slash. X/Open.

ISO.1. (2) In the OS/2® operating system, the first

directory in which the operating system looks for

programs and files and stores temporary files and

output. IBM. (3) In the z/OS UNIX System Services

environment, a directory that is active and that can be

displayed. Relative path name resolution begins in the

current directory. IBM.

cursor. A reference to an element at a specific

position in a data structure.

Customer Information Control System. See CICS.

D

data abstraction. A data type with a private

representation and a public set of operations (functions

or operators) which restrict access to that data type to

that set of operations. The C++ language uses the

concept of classes to implement data abstraction.

data definition (DD). (1) In the C and C++ languages,

a definition that describes a data object, reserves

storage for a data object, and can provide an initial

value for a data object. A data definition appears

outside a function or at the beginning of a block

statement. IBM. (2) A program statement that describes

the features of, specifies relationships of, or establishes

context of, data. ANSI/ISO. (3) A statement that is

stored in the environment and that externally identifies a

file and the attributes with which it should be opened.

data definition name. See ddname.

data definition statement. See DD statement.

data member. The smallest possible piece of

complete data. Elements are composed of data

members.

data object. (1) A storage area used to hold a value.

(2) Anything that exists in storage and on which

operations can be performed, such as files, programs,

classes, or arrays. (3) In a program, an element of data

structure, such as a file, array, or operand, that is

needed for the execution of a program and that is

named or otherwise specified by the allowable character

set of the language in which a program is coded. IBM.

data set. Under z/OS, a named collection of related

data records that is stored and retrieved by an assigned

name.

972 z/OS V1R8.0 XL C/C++ Programming Guide

data stream. A continuous stream of data elements

being transmitted, or intended for transmission, in

character or binary-digit form, using a defined format.

IBM.

data structure. The internal data representation of an

implementation.

data type. The properties and internal representation

that characterize data.

Data Window Services (DWS). Services provided as

part of the Callable Services Library that allow

manipulation of data objects such as VSAM linear data

sets and temporary data objects known as

TEMPSPACE.

DBCS (double-byte character set). A set of

characters in which each character is represented by 2

bytes. Languages such as Japanese, Chinese, and

Korean, which contain more symbols than can be

represented by 256 code points, require double-byte

character sets.

 Because each character requires 2 bytes, the typing,

display, and printing of DBCS characters requires

hardware and programs that support DBCS. IBM.

DCT (destination control table). A table that contains

an entry for each extrapartition, intrapartition, and

indirect destination. Extrapartition entries address data

sets external to the CICS region. Intrapartition

destination entries contain the information required to

locate the queue in the intrapartition data set. Indirect

destination entries contain the information required to

locate the queue in the intrapartition data set.

ddname (data definition name). (1) The logical name

of a file within an application. The ddname provides the

means for the logical file to be connected to the

physical file. (2) The part of the data definition before

the equal sign. It is the name used in a call to fopen or

freopen to refer to the data definition stored in the

environment.

DD statement (data definition statement). (1) In

z/OS, serves as the connection between the logical

name of a file and the physical name of the file. (2) A

job control statement that defines a file to the operating

system, and is a request to the operating system for the

allocation of input/output resources.

dead code elimination. A process that eliminates

code that exists for calculations that are not necessary.

Code may be designated as dead by other optimization

techniques.

dead store elimination. A process that eliminates

unnecessary storage use in code. A store is deemed

unnecessary if the value stored is never referenced

again in the code.

decimal constant. (1) A numerical data type used in

standard arithmetic operations. (2) A number containing

any of the digits 0 through 9. IBM.

decimal overflow. A condition that occurs when one

or more nonzero digits are lost because the destination

field in a decimal operation is too short to contain the

results.

declaration. (1) In the C and C++ languages, a

description that makes an external object or function

available to a function or a block statement. IBM. (2)

Establishes the names and characteristics of data

objects and functions used in a program.

declarator. Designates a data object or function

declared. Initializations can be performed in a

declarator.

default argument. An argument that is declared with a

default value in a function prototype or declaration. If a

call to the function omits this argument, the default

value is used. Arguments with default values must be

the trailing arguments in a function prototype argument

list.

default clause. In the C or C++ languages, within a

switch statement, the keyword default followed by a

colon, and one or more statements. When the

conditions of the specified case labels in the switch

statement do not hold, the default clause is chosen.

IBM.

default constructor. A constructor that takes no

arguments, or, if it takes arguments, all its arguments

have default values.

default initialization. The initial value assigned to a

data object by the compiler if no initial value is specified

by the programmer.

default locale. (1) The C locale, which is always used

when no selection of locale is performed. (2) A system

default locale, named by locale-related environmental

variables.

define directive. A preprocessor directive that directs

the preprocessor to replace an identifier or macro

invocation with special code.

definition. (1) A data description that reserves storage

and may provide an initial value. (2) A declaration that

allocates storage, and may initialize a data object or

specify the body of a function.

degree. The number of children of a node.

delete. (1) A C++ keyword that identifies a free storage

deallocation operator. (2) A C++ operator used to

destroy objects created by new.

demangling. The conversion of mangled names back

to their original source code names. During C++

Glossary 973

compilation, identifiers such as function and static class

member names are mangled (encoded) with type and

scoping information to ensure type-safe linkage. These

mangled names appear in the object file and the final

executable file. Demangling (decoding) converts these

names back to their original names to make program

debugging easier. See also mangling.

deque. A queue that can have elements added and

removed at both ends. A double-ended queue.

dequeue. An operation that removes the first element

of a queue.

dereference. In the C and C++ languages, the

application of the unary operator * to a pointer to access

the object the pointer points to. Also known as

indirection.

derivation. In the C++ language, to derive a class,

called a derived class, from an existing class, called a

base class.

derived class. A class that inherits from a base class.

All members of the base class become members of the

derived class. You can add additional data members

and member functions to the derived class. A derived

class object can be manipulated as if it is a base class

object. The derived class can override virtual functions

of the base class.

descriptor. PL/I control block that holds information

such as string lengths, array subscript bounds, and area

sizes, and is passed from one PL/I routine to another

during run time.

destination control table. See DCT.

destructor. A special member function that has the

same name as its class, preceded by a tilde (~), and

that "cleans up" after an object of that class, for

example, freeing storage that was allocated when the

object was created. A destructor has no arguments and

no return type.

detach state attribute. An attribute associated with a

thread attribute object. This attribute has two possible

values:

0 Undetached. An undetached thread keeps its

resources after termination of the thread.

1 Detached. A detached thread has its resources

freed by the system after termination.

device. A computer peripheral or an object that

appears to the application as such. X/Open. ISO.1.

difference. For two sets A and B, the difference (A-B)

is the set of all elements in A but not in B. For bags,

there is an additional rule for duplicates: If bag P

contains an element m times and bag Q contains the

same element n times, then, if m>n, the difference

contains that element m-n times. If m≤n, the difference

contains that element zero times.

digraph. A combination of two keystrokes used to

represent unavailable characters in a C or C++ source

program. Digraphs are read as tokens during the

preprocessor phase.

directory. (1) In a hierarchical file system, a container

for files or other directories. IBM. (2) The part of a

partitioned data set that describes the members in the

data set.

disabled signal. Synonym for enabled signal.

display. To direct the output to the user's terminal. If

the output is not directed to the terminal, the results are

undefined. X/Open.

DLL. See dynamic link library.

do statement. In the C and C++ compilers, a looping

statement that contains the keyword “do”, followed by a

statement (the action), the keyword “while”, and an

expression in parentheses (the condition). IBM.

dot. The file name consisting of a single dot character

(.). X/Open. ISO.1.

double-byte character set. See DBCS.

double-precision. Pertaining to the use of two

computer words to represent a number in accordance

with the required precision. ISO-JTC1. ANSI/ISO.

double-quote. The character ", also known as

quotation mark. X/Open.

 This character is named <quotation-mark> in the

portable character set.

doubleword. A contiguous sequence of bytes or

characters that comprises two computer words and is

capable of being addressed as a unit. IBM.

dynamic. Pertaining to an operation that occurs at the

time it is needed rather than at a predetermined or fixed

time. IBM.

dynamic allocation. Assignment of system resources

to a program when the program is executed rather than

when it is loaded into main storage. IBM.

dynamic binding. The act of resolving references to

external variables and functions at run time. In C++,

dynamic binding is supported by using virtual functions.

dynamic link library (DLL). A file containing

executable code and data bound to a program at run

time. The code and data in a dynamic link library can be

shared by several applications simultaneously.

Compiling code with the DLL option does not mean that

974 z/OS V1R8.0 XL C/C++ Programming Guide

the produced executable will be a DLL. To create a

DLL, use #pragma export or the EXPORTALL compiler

option.

DSA (dynamic storage area). An area of storage

obtained during the running of an application that

consists of a register save area and an area for

automatic data, such as program variables. DSAs are

generally allocated within Language

Environment-managed stack segments. DSAs are

added to the stack when a routine is entered and

removed upon exit in a last in, first out (LIFO) manner.

In Language Environment, a DSA is known as a stack

frame.

dynamic storage. Synonym for automatic storage.

dynamic storage area . See DSA

E

EBCDIC. See extended binary-coded decimal

interchange code.

effective group ID. An attribute of a process that is

used in determining various permissions, including file

access permissions. This value is subject to change

during the process lifetime, as described in the exec

family of functions and setgid(). X/Open. ISO.1.

effective user ID. (1) The user ID associated with the

last authenticated user or the last setuid() program. It

is equal to either the real or the saved user ID. (2) The

current user ID, but not necessarily the user's login ID;

for example, a user logged in under a login ID may

change to another user's ID. The ID to which the user

changes becomes the effective user ID until the user

switches back to the original login ID. All discretionary

access decisions are based on the effective user ID.

IBM. (3) An attribute of a process that is used in

determining various permissions, including file access

permissions. This value is subject to change during the

process lifetime, as described in exec and setuid().

X/Open. ISO.1.

elaborated type specifier. A specifier typically used in

an incomplete class declaration to qualify types that are

otherwise hidden.

element. The component of an array, subrange,

enumeration, or set.

element equality. A relation that determines if two

elements are equal.

element occurrence. A single instance of an element

in a collection. In a unique collection, element

occurrence is synonymous with element value.

element value. All the instances of an element with a

particular value in a collection. In a nonunique

collection, an element value may have more than one

occurrence. In a unique collection, element value is

synonymous with element occurrence.

else clause. The part of an if statement that contains

the word else, followed by a statement. The else clause

provides an action that is started when the if condition

evaluates to a value of zero (false). IBM.

empty line. A line consisting of only a new-line

character. X/Open.

empty string. (1) A string whose first byte is a null

byte. Synonymous with null string. X/Open. (2) A

character array whose first element is a null character.

ISO.1.

enabled signal. The occurrence of an enabled signal

results in the default system response or the execution

of an established signal handler. If disabled, the

occurrence of the signal is ignored.

encapsulation. Hiding the internal representation of

data objects and implementation details of functions

from the client program. This enables the end user to

focus on the use of data objects and functions without

having to know about their representation or

implementation.

enclave. In z/OS Language Environment, an

independent collection of routines, one of which is

designated as the main routine. An enclave is roughly

analogous to a program or run unit.

enqueue. (1) An operation that adds an element as

the last element to a queue. (2) Request control of a

serially reusable resource.

entry point. The address or label of the first

instruction that is executed when a routine is entered for

execution.

enumeration constant. In the C or C++ language, an

identifier, with an associated integer value, defined in an

enumerator. An enumeration constant may be used

anywhere an integer constant is allowed. IBM.

enumeration data type. (1) In the Fortran, C, and

C++ language, a data type that represents a set of

values that a user defines. IBM. (2) A type that

represents integers and a set of enumeration constants.

Each enumeration constant has an associated integer

value.

enumeration tag. In the C and C++ language, the

identifier that names an enumeration data type. IBM.

enumeration type. An enumeration type defines a set

of enumeration constants. In the C++ language, an

enumeration type is a distinct data type that is not an

integral type.

enumerator. In the C and C++ language, an

enumeration constant and its associated value. IBM.

Glossary 975

equivalence class. (1) A grouping of characters that

are considered equal for the purpose of collation; for

example, many languages place an uppercase

character in the same equivalence class as its

lowercase form, but some languages distinguish

between accented and unaccented character forms for

the purpose of collation. IBM. (2) A set of collating

elements with the same primary collation weight.

 Elements in an equivalence class are typically elements

that naturally group together, such as all accented

letters based on the same base letter.

 The collation order of elements within an equivalence

class is determined by the weights assigned on any

subsequent levels after the primary weight. X/Open.

escape sequence. (1) A representation of a character.

An escape sequence contains the \ symbol followed by

one of the characters: a, b, f, n, r, t, v, ', ", x, \, or

followed by one or more octal or hexadecimal digits. (2)

A sequence of characters that represent, for example,

non-printing characters, or the exact code point value to

be used to represent variant and nonvariant characters

regardless of code page. (3) In the C and C++

language, an escape character followed by one or more

characters. The escape character indicates that a

different code, or a different coded character set, is

used to interpret the characters that follow. Any member

of the character set used at run time can be

represented using an escape sequence. (4) A character

that is preceded by a backslash character and is

interpreted to have a special meaning to the operating

system. (5) A sequence sent to a terminal to perform

actions such as moving the cursor, changing from

normal to reverse video, and clearing the screen.

Synonymous with multibyte control. IBM.

exception. (1) Any user, logic, or system error

detected by a function that does not itself deal with the

error but passes the error on to a handling routine (also

called throwing the exception). (2) In programming

languages, an abnormal situation that may arise during

execution, that may cause a deviation from the normal

execution sequence, and for which facilities exist in a

programming language to define, raise, recognize,

ignore, and handle it; for example, (ON-) condition in

PL/I, exception in ADA. ISO-JTC1.

executable. A load module or program object which

has yet to be loaded into memory for execution.

executable file. A regular file acceptable as a new

process image file by the equivalent of the exec family

of functions, and thus usable as one form of a utility.

The standard utilities described as compilers can

produce executable files, but other unspecified methods

of producing executable files may also be provided. The

internal format of an executable file is unspecified, but a

conforming application cannot assume an executable

file is a text file. X/Open.

exception handler. (1) Exception handlers are catch

blocks in C++ applications. Catch blocks catch

exceptions when they are thrown from a function

enclosed in a try block. Try blocks, catch blocks, and

throw expressions are the constructs used to implement

formal exception handling in C++ applications. (2) A set

of routines used to detect deadlock conditions or to

process abnormal condition processing. An exception

handler allows the normal running of processes to be

interrupted and resumed. IBM.

executable file. A regular file acceptable as a new

process image file by the equivalent of the exec family

of functions, and thus usable as one form of a utility.

The standard utilities described as compilers can

produce executable files, but other unspecified methods

of producing executable files may also be provided. The

internal format of an executable file is unspecified, but a

conforming application cannot assume an executable

file is a text file. X/Open.

executable program. A program that has been

link-edited and therefore can be run in a processor.

IBM.

extended binary-coded data interchange code

(EBCDIC). A coded character set of 256 8-bit

characters. IBM.

extended-precision. Pertaining to the use of more

than two computer words to represent a floating point

number in accordance with the required precision. In

z/OS four computer words are used for an

extended-precision number.

extension. (1) An element or function not included in

the standard language. (2) File name extension.

external data definition. A description of a variable

appearing outside a function. It causes the system to

allocate storage for that variable and makes that

variable accessible to all functions that follow the

definition and are located in the same file as the

definition. IBM.

extern storage class specifier. A specifier that

enables the programmer to declare objects and

functions that several source files can use.

F

feature test macro (FTM). A macro (#define) used to

determine whether a particular set of features will be

included from a header. X/Open. ISO.1.

FIFO special file. A type of file with the property that

data written to such a file is read on a first-in-first-out

basis. Other characteristics of FIFOs are described in

open(), read(), write(), and lseek(). X/Open. ISO.1.

file access permissions. The standard file access

control mechanism uses the file permission bits. The

976 z/OS V1R8.0 XL C/C++ Programming Guide

bits are set at the time of file creation by functions such

as open(), creat(), mkdir(), and mkfifo() and can be

changed by chmod(). The bits are read by stat() or

fstat(). X/Open.

file descriptor. (1) A positive integer that the system

uses instead of the file name to identify an open file. (2)

A per-process unique, non-negative integer used to

identify an open file for the purpose of file access.

ISO.1.

 The value of a file descriptor is from zero to

{OPEN_MAX}—which is defined in <limits.h>. A process

can have no more than {OPEN_MAX} file descriptors

open simultaneously. File descriptors may also be used

to implement directory streams. X/Open.

file mode. An object containing the file mode bits and

file type of a file, as described in <sys/stat.h>. X/Open.

file mode bits. A file's file permission bits,

set-user-ID-on-execution bit (S_ISUID) and

set-group-ID-on-execution bit (S_ISGID). X/Open.

file permission bits. Information about a file that is

used, along with other information, to determine if a

process has read, write, or execute/search permission

to a file. The bits are divided into three parts: owner,

group, and other. Each part is used with the

corresponding file class of process. These bits are

contained in the file mode, as described in <sys/stat.h>.

The detailed usage of the file permission bits is

described in file access permissions. X/Open. ISO.1.

file scope. A name declared outside all blocks,

classes, and function declarations has file scope and

can be used after the point of declaration in a source

file.

filter. A command whose operation consists of reading

data from standard input or a list of input files and

writing data to standard output. Typically, its function is

to perform some transformation on the data stream.

X/Open.

first element. The element visited first in an iteration

over a collection. Each collection has its own definition

for first element. For example, the first element of a

sorted set is the element with the smallest value.

flat collection. A collection that has no hierarchical

structure.

float constant. (1) A constant representing a

nonintegral number. (2) A number containing a decimal

point, an exponent, or both a decimal point and an

exponent. The exponent contains an e or E, an optional

sign (+ or -), and one or more digits (0 through 9). IBM.

for statement. A looping statement that contains the

word for followed by a for-initializing-statement, an

optional condition, a semicolon, and an optional

expression, all enclosed in parentheses.

foreground process. (1) A process that must run to

completion before another command is issued. The

foreground process is in the foreground process group,

which is the group that receives the signals generated

by a terminal. IBM. (2) A process that is a member of a

foreground process group. X/Open. ISO.1.

foreground process group. (1) The group that

receives the signals generated by a terminal. IBM. (2) A

process group whose member processes have certain

privileges, denied to processes in background process

groups, when accessing their controlling terminal. Each

session that has established a connection with a

controlling terminal has exactly one process group of

the session as the foreground process group of that

controlling terminal. X/Open. ISO.1.

foreground process group ID. The process group ID

of the foreground process group. X/Open. ISO.1.

form-feed character. A character in the output stream

that indicates that printing should start on the next page

of an output device. The formfeed is the character

designated by '\f' in the C and C++ language. If the

formfeed is not the first character of an output line, the

result is unspecified. It is unspecified whether this

character is the exact sequence transmitted to an output

device by the system to accomplish the movement to

the next page. X/Open.

forward declaration. A declaration of a class or

function made earlier in a compilation unit, so that the

declared class or function can be used before it has

been defined.

freestanding application. (1) An application that is

created to run without the run-time environment or

library with which it was developed. (2) An z/OS XL

C/C++ application that does not use the services of the

dynamic z/OS XL C/C++ run-time library or Language

Environment. Under z/OS XL C support, this ability is a

feature of the System Programming C support.

free store. Dynamically allocated memory. New and

delete are used to allocate and deallocate free store.

friend class. A class in which all the member

functions are granted access to the private and

protected members of another class. It is named in the

declaration of another class and uses the keyword

friend as a prefix to the class. For example, the

following source code makes all the functions and data

in class you friends of class me:

class me {

 friend class you;

 // ...

};

friend function. A function that is granted access to

the private and protected parts of a class. It is named in

the declaration of the other class with the prefix friend.

Glossary 977

function. A named group of statements that can be

called and evaluated and can return a value to the

calling statement. IBM.

function call. An expression that moves the path of

execution from the current function to a specified

function and evaluates to the return value provided by

the called function. A function call contains the name of

the function to which control moves and a

parenthesized list of values. IBM.

function declarator. The part of a function definition

that names the function, provides additional information

about the return value of the function, and lists the

function parameters. IBM.

function definition. The complete description of a

function. A function definition contains a sequence of

specifiers (storage class, optional type, inline, virtual,

optional friend), a function declarator, optional

constructor-initializers, parameter declarations, optional

const, and the block statement. Inline, virtual, friend,

and const are not available with C.

function prototype. A function declaration that

provides type information for each parameter. It is the

first line of the function (header) followed by a

semicolon (;). The declaration is required by the

compiler at the time that the function is declared, so that

the compiler can check the type.

function scope. Labels that are declared in a function

have function scope and can be used anywhere in that

function after their declaration.

function template. Provides a blueprint describing

how a set of related individual functions can be

constructed.

G

Generalization. Refers to a class, function, or static

data member which derives its definition from a

template. An instantiation of a template function would

be a generalization.

Generalized Object File Format (GOFF). An object

module format that extends the capabilities of object

modules to contain more information than current object

modules. It removes the limitations of the previous

object module format and supports future

enhancements. It is required for XPLINK.

generic class. Synonym for class templates.

global. Pertaining to information available to more

than one program or subroutine. IBM.

global scope. Synonym for file scope.

global variable. A symbol defined in one program

module that is used in other independently compiled

program modules.

GMT (Greenwich Mean Time). The solar time at the

meridian of Greenwich, formerly used as the prime

basis of standard time throughout the world. GMT has

been superseded by coordinated universal time (UTC).

graphic character. (1) A visual representation of a

character, other than a control character, that is

normally produced by writing, printing, or displaying.

ISO Draft. (2) A character that can be displayed or

printed. IBM.

Graphical Data Display Manager (GDDM). Pertaining

to an IBM licensed program that provides a group of

routines that allows pictures to be defined and displayed

procedurally through function routines that correspond

to graphic primitives. IBM.

Greenwich Mean Time. See GMT.

group ID. (1) A non-negative integer that is used to

identify a group of system users. Each system user is a

member of at least one group. When the identity of a

group is associated with a process, a group ID value is

referred to as a real group ID, an effective group ID,

one of the supplementary group IDs or a saved

set-group-ID. X/Open. (2) A non-negative integer, which

can be contained in an object of type gid_t, that is used

to identify a group of system users. ISO.1.

H

halfword. A contiguous sequence of bytes or

characters that constitutes half a computer word and

can be addressed as a unit. IBM.

hash function. A function that determines which

category, or bucket, to put an element in. A hash

function is needed when implementing a hash table.

hash table. (1) A data structure that divides all

elements into (preferably) equal-sized categories, or

buckets, to allow quick access to the elements. The

hash function determines which bucket an element

belongs in. (2) A table of information that is accessed by

way of a shortened search key (that hash value). Using

a hash table minimizes average search time.

header file. A text file that contains declarations used

by a group of functions, programs, or users.

heap storage. An area of storage used for allocation

of storage whose lifetime is not related to the execution

of the current routine. The heap consists of the initial

heap segment and zero or more increments.

hexadecimal constant. A constant, usually starting

with special characters, that contains only hexadecimal

digits. Three examples for the hexadecimal constant

with value 0 would be '\x00', '0x0', or '0X00'.

978 z/OS V1R8.0 XL C/C++ Programming Guide

High Level Assembler. An IBM licensed program.

Translates symbolic assembler language into binary

machine language.

Hiperspace memory file. An IBM file used under

z/OS to deal with memory files as large as 2 gigabytes.

IBM.

hooks. Instructions inserted into a program by a

compiler at compile-time. Using hooks, you can set

breakpoints to instruct Debug Tool to gain control of the

program at selected points during its execution.

hybrid code. Program statements that have not been

internationalized with respect to code page, especially

where data constants contain variant characters. Such

statements can be found in applications written in older

implementations of MVS, which required syntax

statements to be written using code page IBM-1047

exclusively. Such applications cannot be converted from

one code page to another using iconv().

I

I18N. Abbreviation for internationalization.

identifier. (1) One or more characters used to identify

or name a data element and possibly to indicate certain

properties of that data element. ANSI/ISO. (2) In

programming languages, a token that names a data

object such as a variable, an array, a record, a

subprogram, or a function. ANSI/ISO. (3) A sequence of

letters, digits, and underscores used to identify a data

object or function. IBM.

if statement. A conditional statement that contains the

keyword if, followed by an expression in parentheses

(the condition), a statement (the action), and an optional

else clause (the alternative action). IBM.

ILC (interlanguage call). A function call made by one

language to a function coded in another language.

Interlanguage calls are used to communicate between

programs written in different languages.

ILC (interlanguage communication). The ability of

routines written in different programming languages to

communicate. ILC support enables the application writer

to readily build applications from component routines

written in a variety of languages.

implementation-defined behavior. Application

behavior that is not defined by the standards. The

implementing compiler and library defines this behavior

when a program contains correct program constructs or

uses correct data. Programs that rely on

implementation-defined behavior may behave differently

on different C or C++ implementations. Refer to the

z/OS XL C/C++ documents that are listed in “z/OS XL

C/C++ and related documents” on page xxv for

information about implementation-defined behavior in

the z/OS XL C/C++ environment. Contrast with

unspecified behavior and undefined behavior.

IMS (Information Management System). Pertaining

to an IBM database/data communication (DB/DC)

system that can manage complex databases and

networks. IBM.

include directive. A preprocessor directive that

causes the preprocessor to replace the statement with

the contents of a specified file.

include file. See header file.

incomplete class declaration. A class declaration

that does not define any members of a class. Until a

class is fully declared, or defined, you can only use the

class name where the size of the class is not required.

Typically an incomplete class declaration is used as a

forward declaration.

incomplete type. A type that has no value or meaning

when it is first declared. There are three incomplete

types: void, arrays of unknown size and structures and

unions of unspecified content. A void type can never be

completed. Arrays of unknown size and structures or

unions of unspecified content can be completed in

further declarations.

indirection. (1) A mechanism for connecting objects

by storing, in one object, a reference to another object.

(2) In the C and C++ languages, the application of the

unary operator * to a pointer to access the object to

which the pointer points.

indirection class. Synonym for reference class.

induction variable. It is a controlling variable of a

loop.

inheritance. A technique that allows the use of an

existing class as the base for creating other classes.

initial heap. The z/OS XL C/C++ heap controlled by

the HEAP run-time option and designated by a heap_id

of 0. The initial heap contains dynamically allocated

user data.

initializer. An expression used to initialize data

objects. The C++ language, supports the following types

of initializers:

v An expression followed by an assignment operator

that is used to initialize fundamental data type objects

or class objects that contain copy constructors.

v A parenthesized expression list that is used to

initialize base classes and members that use

constructors.

Both the C and C++ languages support an expression

enclosed in braces ({ }), that used to initialize

aggregates.

Glossary 979

inlined function. A function whose actual code

replaces a function call. A function that is both declared

and defined in a class definition is an example of an

inline function. Another example is one which you

explicitly declared inline by using the keyword inline.

Both member and non-member functions can be inlined.

input stream. A sequence of control statements and

data submitted to a system from an input unit.

Synonymous with input job stream, job input stream.

IBM.

instance. An object-oriented programming term

synonymous with object. An instance is a particular

instantiation of a data type. It is simply a region of

storage that contains a value or group of values. For

example, if a class box is previously defined, two

instances of a class box could be instantiated with the

declaration: box box1, box2;

instantiate. To create or generate a particular instance

or object of a data type. For example, an instance box1

of class box could be instantiated with the declaration:

box box1;

instruction. A program statement that specifies an

operation to be performed by the computer, along with

the values or locations of operands. This statement

represents the programmer's request to the processor

to perform a specific operation.

instruction scheduling. An optimization technique

that reorders instructions in code to minimize execution

time.

integer constant. A decimal, octal, or hexadecimal

constant.

integral object. A character object, an object having

an enumeration type, an object having variations of the

type int, or an object that is a bit field.

Interactive System Productivity Facility. See ISPF.

interlanguage call. See ILC (interlanguage call).

interlanguage communication. See ILC

(interlanguage communication).

internationalization. The capability of a computer

program to adapt to the requirements of different native

languages, local customs, and coded character sets.

X/Open.

 Synonymous with I18N.

interoperability. The capability to communicate,

execute programs, or transfer data among various

functional units in a way that requires the user to have

little or no knowledge of the unique characteristics of

those units.

Interprocedural Analysis. See IPA.

interprocess communication. (1) The exchange of

information between processes or threads through

semaphores, queues, and shared memory. (2) The

process by which programs communicate data to each

other to synchronize their activities. Semaphores,

signals, and internal message queues are common

methods of inter-process communication.

I/O stream library. A class library that provides the

facilities to deal with many varieties of input and output.

IPA (Interprocedural Analysis). A process for

performing optimizations across compilation units.

ISPF (Interactive System Productivity Facility). An

IBM licensed program that serves as a full-screen editor

and dialogue manager. Used for writing application

programs, it provides a means of generating standard

screen panels and interactive dialogues between the

application programmer and terminal user. (ISPF)

iteration. The process of repeatedly applying a

function to a series of elements in a collection until

some condition is satisfied.

J

JCL (job control language). A control language used

to identify a job to an operating system and to describe

the job's requirement. IBM.

K

keyword. (1) A predefined word reserved for the C

and C++ languages, that may not be used as an

identifier. (2) A symbol that identifies a parameter in

JCL.

kind attribute. An attribute for a mutex attribute

object. This attribute's value determines whether the

mutex can be locked once or more than once for a

thread and whether state changes to the mutex will be

reported to the debug interface.

L

label. An identifier within or attached to a set of data

elements. ISO Draft.

Language Environment. Abbreviated form of z/OS

Language Environment. Pertaining to an IBM software

product that provides a common run-time environment

and run-time services to applications compiled by

Language Environment-conforming compilers.

last element. The element visited last in an iteration

over a collection. Each collection has its own definition

for last element. For example, the last element of a

sorted set is the element with the largest value.

980 z/OS V1R8.0 XL C/C++ Programming Guide

late binding. Allowing the system to determine the

specific class of the object and invoke the appropriate

function implementations at run time. Late binding or

dynamic binding hides the differences between a group

of related classes from the application program.

leaves. Nodes without children. Synonymous with

terminals.

lexically. Relating to the left-to-right order of units.

library. (1) A collection of functions, calls, subroutines,

or other data. IBM. (2) A set of object modules that can

be specified in a link command.

linkage editor. Synonym for linker. The linkage editor

has been replaced by the binder for the MVS/ESA,

OS/390, or z/OS operating systems. See binder.

Linkage. Refers to the binding between a reference

and a definition. A function has internal linkage if the

function is defined inline as part of the class, is declared

with the inline keyword, or is a non-member function

declared with the static keyword. All other functions

have external linkage.

linker. A computer program for creating load modules

from one or more object modules by resolving cross

references among the modules and, if necessary,

adjusting addresses. IBM.

link pack area (LPA). In z/OS, an area of storage

containing re-enterable routines from system libraries.

Their presence in main storage saves loading time.

literal. (1) In programming languages, a lexical unit

that directly represents a value; for example, 14

represents the integer fourteen, “APRIL” represents the

string of characters APRIL, 3.0005E2 represents the

number 300.05. ISO-JTC1. (2) A symbol or a quantity in

a source program that is itself data, rather than a

reference to data. IBM. (3) A character string whose

value is given by the characters themselves; for

example, the numeric literal 7 has the value 7, and the

character literal CHARACTERS has the value

CHARACTERS. IBM.

loader. A routine, commonly a computer program, that

reads data into main storage. ANSI/ISO.

load module. All or part of a computer program in a

form suitable for loading into main storage for execution.

A load module is usually the output of a linkage editor.

ISO Draft.

local. (1) In programming languages, pertaining to the

relationship between a language object and a block

such that the language object has a scope contained in

that block. ISO-JTC1. (2) Pertaining to that which is

defined and used only in one subdivision of a computer

program. ANSI/ISO.

local customs. The conventions of a geographical

area or territory for such things as date, time, and

currency formats. X/Open.

locale. The definition of the subset of a user's

environment that depends on language and cultural

conventions. X/Open.

localization. The process of establishing information

within a computer system specific to the operation of

particular native languages, local customs, and coded

character sets. X/Open.

local scope. A name declared in a block has scope

within the block, and can therefore only be used in that

block.

Long name. An external name C++ name in an object

module, or and external name in an object module

created by the C compiler when the LONGNAME option is

used. Long names are up to 1024 characters long and

may contain both upper-case and lower-case

characters.

lvalue. An expression that represents a data object

that can be both examined and altered.

M

macro. An identifier followed by arguments (may be a

parenthesized list of arguments) that the preprocessor

replaces with the replacement code located in a

preprocessor #define directive.

macro call. Synonym for macro.

macro instruction. Synonym for macro.

main function. An external function with the identifier

main that is the first user function—aside from exit

routines and C++ static object constructors—to get

control when program execution begins. Each C and

C++ program must have exactly one function named

main.

makefile. A text file containing a list of your

application's parts. The make utility uses makefiles to

maintain application parts and dependencies.

make utility. Maintains all of the parts and

dependencies for your application. The make utility uses

a makefile to keep the parts of your program

synchronized. If one part of your application changes,

the make utility updates all other files that depend on

the changed part. This utility is available under the z/OS

shell and by default, uses the c89 utility to recompile

and bind your application.

mangling. The encoding during compilation of

identifiers such as function and variable names to

include type and scope information. These mangled

names ensure type-safe linkage. See also demangling.

Glossary 981

manipulator. A value that can be inserted into streams

or extracted from streams to affect or query the

behavior of the stream.

member. A data object or function in a structure,

union, or class. Members can also be classes,

enumerations, bit fields, and type names.

member function. (1) An operator or function that is

declared as a member of a class. A member function

has access to the private and protected data members

and member functions of objects of its class. Member

functions are also called methods. (2) A function that

performs operations on a class.

method. In the C++ language, a synonym for member

function.

method file. (1) A file that allows users to indicate to

the localedef utility where to look for user-provided

methods for processing user-designed codepages. (2)

For ASCII locales, a file that defines the method

functions to be used by C runtime locale-sensitive

interfaces. A method file also identifies where the

method functions can be found. IBM supplies several

method files used to create its standard set of ASCII

locales. Other method files can be created to support

customized or user-created codepages. Such

customized method files replace IBM-supplied charmap

method functions with user-written functions.

migrate. To move to a changed operating

environment, usually to a new release or version of a

system. IBM.

module. A program unit that usually performs a

particular function or related functions, and that is

distinct and identifiable with respect to compiling,

combining with other units, and loading.

multibyte character. A mixture of single-byte

characters from a single-byte character set and

double-byte characters from a double-byte character

set.

multicharacter collating element. A sequence of two

or more characters that collate as an entity. For

example, in some coded character sets, an accented

character is represented by a non-spacing accent,

followed by the letter. Other examples are the Spanish

elements ch and ll. X/Open.

multiple inheritance. An object-oriented programming

technique implemented in the C++ language through

derivation, in which the derived class inherits members

from more than one base class.

multitasking. A mode of operation that allows

concurrent performance, or interleaved execution of two

or more tasks. ISO-JTC1. ANSI/ISO.

mutex. A flag used by a semaphore to protect shared

resources. The mutex is locked and unlocked by

threads in a program. A mutex can only be locked by

one thread at a time and can only be unlocked by the

same thread that locked it. The current owner of a

mutex is the thread that it is currently locked by. An

unlocked mutex has no current owner.

mutex attribute object. Allows the user to manage

the characteristics of mutexes in their application by

defining a set of values to be used for the mutex during

its creation. A mutex attribute object allows the user to

create many mutexes with the same set of

characteristics without redefining the same set of

characteristics for each mutex created.

mutex object. Used to identify a mutex.

N

namespace. A category used to group similar types of

identifiers.

named pipe. A FIFO file. Named pipes allow transfer

of data between processes in a FIFO manner and

synchronization of process execution. Allows processes

to communicate even though they do not know what

processes are on the other end of the pipe.

natural reentrancy. A program that contains no

writable static and requires no additional processing to

make it reentrant is considered naturally reentrant.

nested class. A class defined within the scope of

another class.

nested enclave. A new enclave created by an existing

enclave. The nested enclave that is created must be a

new main routine within the process. See also child

enclave and parent enclave.

newline character. A character that in the output

stream indicates that printing should start at the

beginning of the next line. The newline character is

designated by '\n' in the C and C++ language. It is

unspecified whether this character is the exact

sequence transmitted to an output device by the system

to accomplish the movement to the next line. X/Open.

nickname. Synonym for alias.

non-printing character. See control character.

null character (NUL). The ASCII or EBCDIC character

'\0' with the hex value 00, all bits turned off. It is used to

represent the absence of a printed or displayed

character. This character is named <NUL> in the

portable character set.

null pointer. The value that is obtained by converting

the number 0 into a pointer; for example, (void *) 0.

The C and C++ languages guarantee that this value will

not match that of any legitimate pointer, so it is used by

many functions that return pointers to indicate an error.

X/Open.

982 z/OS V1R8.0 XL C/C++ Programming Guide

null statement. A C or C++ statement that consists

solely of a semicolon.

null string. (1) A string whose first byte is a null byte.

Synonymous with empty string. X/Open. (2) A character

array whose first element is a null character. ISO.1.

null value. A parameter position for which no value is

specified. IBM.

null wide-character code. A wide-character code with

all bits set to zero. X/Open.

number sign. The character #, also known as pound

sign and hash sign. This character is named

<number-sign> in the portable character set.

O

object. (1) A region of storage. An object is created

when a variable is defined. An object is destroyed when

it goes out of scope. (See also instance.) (2) In

object-oriented design or programming, an abstraction

consisting of data and the operations associated with

that data. See also class. IBM. (3) An instance of a

class.

object code. Machine-executable instructions, usually

generated by a compiler from source code written in a

higher level language (such as the C++ language). For

programs that must be linked, object code consists of

relocatable machine code.

object module. (1) All or part of an object program

sufficiently complete for linking. Assemblers and

compilers usually produce object modules. ISO Draft.

(2) A set of instructions in machine language produced

by a compiler from a source program. IBM.

object-oriented programming. A programming

approach based on the concepts of data abstraction

and inheritance. Unlike procedural programming

techniques, object-oriented programming concentrates

not on how something is accomplished, but on what

data objects comprise the problem and how they are

manipulated.

octal constant. The digit 0 (zero) followed by any

digits 0 through 7.

open file. A file that is currently associated with a file

descriptor. X/Open. ISO.1.

operand. An entity on which an operation is

performed. ISO-JTC1. ANSI/ISO.

operating system (OS). Software that controls

functions such as resource allocation, scheduling,

input/output control, and data management.

operator function. An overloaded operator that is

either a member of a class or that takes at least one

argument that is a class type or a reference to a class

type.

operator precedence. In programming languages, an

order relation defining the sequence of the application

of operators within an expression. ISO-JTC1.

orientation of a stream. After application of an input

or output function to a stream, it becomes either

byte-oriented or wide-oriented. A byte-oriented stream is

a stream that had a byte input or output function applied

to it when it had no orientation. A wide-oriented stream

is a stream that had a wide character input or output

function applied to it when it had no orientation. A

stream has no orientation when it has been associated

with an external file but has not had any operations

performed on it.

overflow. (1) A condition that occurs when a portion of

the result of an operation exceeds the capacity of the

intended unit of storage. (2) That portion of an operation

that exceeds the capacity of the intended unit of

storage. IBM.

overlay. The technique of repeatedly using the same

areas of internal storage during different stages of a

program. ANSI/ISO. Unions are used to accomplish this

in C and C++.

overloading. An object-oriented programming

technique that allows you to redefine functions and most

standard C++ operators when the functions and

operators are used with class types.

P

parameter. (1) In the C and C++ languages, an object

declared as part of a function declaration or definition

that acquires a value on entry to the function, or an

identifier following the macro name in a function-like

macro definition. X/Open. (2) Data passed between

programs or procedures. IBM.

parameter declaration. A description of a value that a

function receives. A parameter declaration determines

the storage class and the data type of the value.

parent enclave. The enclave that issues a call to

system services or language constructs to create a

nested or child enclave. See also child enclave and

nested enclave.

parent process. (1) The program that originates the

creation of other processes by means of spawn or exec

function calls. See also child process. (2) A process that

creates other processes.

parent process ID. (1) An attribute of a new process

identifying the parent of the process. The parent

process ID of a process is the process ID of its creator,

Glossary 983

for the lifetime of the creator. After the creator's lifetime

has ended, the parent process ID is the process ID of

an implementation-dependent system process. X/Open.

(2) An attribute of a new process after it is created by a

currently active process. ISO.1.

partitioned concatenation. Specifying multiple PDSs

or PDSEs under one ddname. The concatenated data

sets act as one big PDS or PDSE and access can be

made to any member with a unique name. An attempted

access to a member whose name occurs more than

once in the concatenated data sets, returns the first

member with that name found in the entire

concatenation.

partitioned data set (PDS). A data set in direct

access storage that is divided into partitions, called

members, each of which can contain a program, part of

a program, or data. IBM.

partitioned data set extended (PDSE). Similar to

partitioned data set, but with extended capabilities.

path name. (1) A string that is used to identify a file. A

path name consists of, at most, {PATH_MAX} bytes,

including the terminating null character. It has an

optional beginning slash, followed by zero or more file

names separated by slashes. If the path name refers to

a directory, it may also have one or more trailing

slashes. Multiple successive slashes are treated as one

slash. A path name that begins with two successive

slashes may be interpreted in an implementation-
dependent manner, although more than two leading

slashes are treated as a single slash. The interpretation

of the path name is described in path name resolution.

ISO.1. (2) A file name specifying all directories leading

to the file.

path name resolution. Path name resolution is

performed for a process to resolve a path name to a

particular file in a file hierarchy. There may be multiple

path names that resolve to the same file. X/Open.

pattern. A sequence of characters used either with

regular expression notation or for path name expansion,

as a means of selecting various characters strings or

path names, respectively. The syntaxes of the two

patterns are similar, but not identical. X/Open.

period. The character (.). The term period is

contrasted against dot, which is used to describe a

specific directory entry. This character is named

<period> in the portable character set.

permissions. Codes that determine how a file can be

used by any users who work on the system. See also

file access permissions. IBM.

persistent environment. A program can explicitly

establish a persistent environment, direct functions to it,

and explicitly terminate it.

pointer. In the C and C++ languages, a variable that

holds the address of a data object or a function. IBM.

pointer class. A class that implements pointers.

pointer to member. An operator used to access the

address of non-static members of a class.

polymorphism. The technique of taking an abstract

view of an object or function and using any concrete

objects or arguments that are derived from this abstract

view.

portable character set. The set of characters

specified in POSIX 1003.2, section 2.4:

<NUL>

<alert>

<backspace>

<tab>

<newline>

<vertical-tab>

<form-feed>

<carriage-return>

<space>

<exclamation-mark> !

<quotation-mark> "

<number-sign> #

<dollar-sign> $

<percent-sign> %

<ampersand> &

<apostrophe> '

<left-parenthesis> (

<right-parenthesis>)

<asterisk> *

<plus-sign> +

<comma> ,

<hyphen> –

<hyphen-minus> –

<period> .

<slash> ⁄

<zero> 0

<one> 1

<two> 2

<three> 3

<four> 4

<five> 5

<six> 6

<seven> 7

<eight> 8

<nine> 9

<colon> :

<semicolon> ;

<less-than-sign> <

<equals-sign> =

<greater-than-sign> >

<question-mark> ?

<commercial-at> @

<A> A

 B

<C> C

<D> D

<E> E

<F> F

<G> G

<H> H

<I> I

984 z/OS V1R8.0 XL C/C++ Programming Guide

<J> J

<K> K

<L> L

<M> M

<N> N

<O> O

<P> P

<Q> Q

<R> R

<S> S

<T> T

<U> U

<V> V

<W> W

<X> X

<Y> Y

<Z> Z

<left-square-bracket> [

<backslash> \

<reverse-solidus> \

<right-square-bracket>]

<circumflex> ^

<circumflex-accent> ^

<underscore> _

<low-line> _

<grave-accent> `

<a> a

 b

<c> c

<d> d

<e> e

<f> f

<g> g

<h> h

<i> i

<j> j

<k> k

<l> l

<m> m

<n> n

<o> o

<p> p

<q> q

<r> r

<s> s

<t> t

<u> u

<v> v

<w> w

<x> x

<y> y

<z> z

<left-brace> {

<left-curly-bracket> {

<vertical-line> |

<right-brace> }

<right-curly-bracket> }

<tilde> ~

portable file name character set. The set of

characters from which portable file names are

constructed. For a file name to be portable across

implementations conforming to the ISO POSIX-1

standard and to ISO/IEC 9945, it must consists only of

the following characters:

A B C D E F G H I J K L M N O P Q R S T U V W X

Y Z a b c d e f g h i j k l m n o p q r s t u v

w x y z 0 1 2 3 4 5 6 7 8 9 . _ -

The last three characters are the period, underscore,

and hyphen characters, respectively. The hyphen must

not be used as the first character of a portable file

name. Upper- and lower-case letters retain their unique

identities between conforming implementations. In the

case of a portable path name, the slash character may

also be used. X/Open. ISO.1.

portability. The ability of a programming language to

compile successfully on different operating systems

without requiring changes to the source code.

positional parameter. A parameter that must appear

in a specified location relative to other positional

parameters. IBM.

precedence. The priority system for grouping different

types of operators with their operands.

predefined macros. Frequently used routines

provided by an application or language for the

programmer.

preinitialization. A process by which an environment

or library is initialized once and can then be used

repeatedly to avoid the inefficiency of initializing the

environment or library each time it is needed.

prelinker. A utility provided with z/OS Language

Environment that you can use to process application

programs that require DLL support, or contain either

constructed reentrancy or external symbol names that

are longer than 8 characters. You require the prelinker,

or its equivalent function which is provided by the

binder, to process all C++ applications, or C applications

that are compiled with the RENT, DLL, LONGNAME or

IPA options. As of Version 2 Release 4, the prelinker

was superseded by the binder. See also binder.

preprocessor. A phase of the compiler that examines

the source program for preprocessor statements that

are then executed, resulting in the alteration of the

source program.

preprocessor statement. In the C and C++

languages, a statement that begins with the symbol #

and is interpreted by the preprocessor during

compilation. IBM.

primary expression. (1) An identifier, parenthesized

expression, function call, array element specification,

structure member specification, or union member

specification. IBM. (2) Literals, names, and names

qualified by the :: (scope resolution) operator.

printable character. One of the characters included in

the print character classification of the LC_CTYPE

category in the current locale. X/Open.

Glossary 985

private. Pertaining to a class member that is only

accessible to member functions and friends of that

class.

process. (1) An instance of an executing application

and the resources it uses. (2) An address space and

single thread of control that executes within that

address space, and its required system resources. A

process is created by another process issuing the

fork() function. The process that issues the fork()

function is known as the parent process, and the new

process created by the fork() function is known as the

child process. X/Open. ISO.1.

process group. A collection of processes that permits

the signaling of related processes. Each process in the

system is a member of a process group that is identified

by the process group ID. A newly created process joins

the process group of its creator. IBM. X/Open. ISO.1.

process group ID. The unique identifier representing

a process group during its lifetime. A process group ID

is a positive integer. (Under ISO only, it is a positive

integer that can be contained in a pid_t.) A process

group ID will not be reused by the system until the

process group lifetime ends. X/Open. ISO.1.

process group lifetime. A period of time that begins

when a process group is created and ends when the

last remaining process in the group leaves the group,

because either it is the end of the last process' lifetime

or the last remaining process is calling the setsid() or

setpgid() functions. X/Open. ISO.1.

process ID. The unique identifier representing a

process. A process ID is a positive integer. (Under ISO

only, it is a positive integer that can be contained in a

pid_t.) A process ID will not be reused by the system

until the process lifetime ends. In addition, if there exists

a process group whose process group ID is equal to

that process ID, the process ID will not be reused by

the system until the process group lifetime ends. A

process that is not a system process will not have a

process ID of 1. X/Open. ISO.1.

process lifetime. The period of time that begins when

a process is created and ends when the process ID is

returned to the system. After a process is created with a

fork() function, it is considered active. Its thread of

control and address space exist until it terminates. It

then enters an inactive state where certain resources

may be returned to the system, although some

resources, such as the process ID, are still in use.

When another process executes a wait() or waitpid()

function for an inactive process, the remaining

resources are returned to the system. The last resource

to be returned to the system is the process ID. At this

time, the lifetime of the process ends. X/Open. ISO.1.

program object. All or part of a computer program in

a from suitable for loading into main storage for

execution. A program object is the output of the z/OS

binder and is a newer more flexible format (e.g. longer

external names) than a load module.

protected. Pertaining to a class member that is only

accessible to member functions and friends of that

class, or to member functions and friends of classes

derived from that class.

prototype. A function declaration or definition that

includes both the return type of the function and the

types of its parameters. See function prototype.

public. Pertaining to a class member that is accessible

to all functions.

pure virtual function. A virtual function that has a

function definition of = 0;. See also abstract classes.

Q

qualified class name. Any class name or class name

qualified with one or more :: (scope resolution)

operators.

qualified name. Used to qualify a non-class type

name such as a member by its class name.

qualified type name. Used to reduce complex class

name syntax by using typedefs to represent qualified

class names.

Query Management Facility (QMF). Pertaining to an

IBM query and report writing facility that enables a

variety of tasks such as data entry, query building,

administration, and report analysis. IBM.

queue. A sequence with restricted access in which

elements can only be added at the back end (or bottom)

and removed from the front end (or top). A queue is

characterized by first-in, first-out behavior and

chronological order.

quotation marks. The characters " and ‘, also known

as double-quote and single-quote respectively. X/Open.

R

radix character. The character that separates the

integer part of a number from the fractional part.

X/Open.

real group ID. The attribute of a process that, at the

time of process creating, identifies the group of the user

who created the process. This value is subject to

change during the process lifetime, as describe in

setgid(). X/Open. ISO.1.

real user ID. The attribute of a process that, at the

time of process creation, identifies the user who created

the process. This value is subject to change during the

process lifetime, as described in setuid(). X/Open.

ISO.1.

986 z/OS V1R8.0 XL C/C++ Programming Guide

reason code. A code that identifies the reason for a

detected error. IBM.

reassociation. An optimization technique that

rearranges the sequence of calculations in a subscript

expression producing more candidates for common

expression elimination.

redirection. In the shell, a method of associating files

with the input or output of commands. X/Open.

reentrant. The attribute of a program or routine that

allows the same copy of a program or routine to be

used concurrently by two or more tasks.

reference class. A class that links a concrete class to

an abstract class. Reference classes make

polymorphism possible with the Collection Classes.

Synonymous with indirection class.

refresh. To ensure that the information on the user's

terminal screen is up-to-date. X/Open.

register storage class specifier. A specifier that

indicates to the compiler within a block scope data

definition, or a parameter declaration, that the object

being described will be heavily used.

register variable. A variable defined with the register

storage class specifier. Register variables have

automatic storage.

regular expression. (1) A mechanism to select

specific strings from a set of character strings. (2) A set

of characters, meta-characters, and operators that

define a string or group of strings in a search pattern.

(3) A string containing wildcard characters and

operations that define a set of one or more possible

strings.

regular file. A file that is a randomly accessible

sequence of bytes, with no further structure imposed by

the system. X/Open. ISO.1.

relation. An unordered flat collection class that uses

keys, allows for duplicate elements, and has element

equality.

relative path name. The name of a directory or file

expressed as a sequence of directories followed by a

file name, beginning from the current directory. See path

name resolution. IBM.

reserved word. (1) In programming languages, a

keyword that may not be used as an identifier.

ISO-JTC1. (2) A word used in a source program to

describe an action to be taken by the program or

compiler. It must not appear in the program as a

user-defined name or a system name. IBM.

RMODE (residency mode). In z/OS, a program

attribute that refers to where a module is prepared to

run. RMODE can be 24 or ANY. ANY refers to the fact

that the module can be loaded either above or below

the 16M line. RMODE 24 means the module expects to

be loaded below the 16M line.

RTTI. Use the RTTI option to generate run-time type

identification (RTTI) information for the typeid operator

and the dynamic_cast operator.

run-time library. A compiled collection of functions

whose members can be referred to by an application

program during run-time execution. Typically used to

refer to a dynamic library that is provided in object code,

such that references to the library are resolved during

the linking step. The run-time library itself is not

statically bound into the application modules.

S

saved set-group-ID. An attribute of a process that

allows some flexibility in the assignment of the effective

group ID attribute, as described in the exec() family of

functions and setgid(). X/Open. ISO.1.

saved set-user-ID. An attribute of a process that

allows some flexibility in the assignment of the effective

user ID attribute, as described in exec() and setuid().

X/Open. ISO.1.

scalar. An arithmetic object, or a pointer to an object

of any type.

scope. (1) That part of a source program in which a

variable is visible. (2) That part of a source program in

which an object is defined and recognized.

scope operator (::). An operator that defines the

scope for the argument on the right. If the left argument

is blank, the scope is global; if the left argument is a

class name, the scope is within that class. Synonymous

with scope resolution operator.

scope resolution operator (::). Synonym for scope

operator.

semaphore. An object used by multi-threaded

applications for signalling purposes and for controlling

access to serially reusable resources. Processes can be

locked to a resource with semaphores if the processes

follow certain programming conventions.

sequence. A sequentially ordered flat collection.

sequential concatenation. Multiple sequential data

sets or partitioned data-set members are treated as one

long sequential data set. In the case of sequential data

sets, you can access or update the data sets in order.

In the case of partitioned data-set members, you can

access or update the members in order. Repositioning

is possible if all of the data sets in the concatenation

support repositioning.

Glossary 987

sequential data set. A data set whose records are

organized on the basis of their successive physical

positions, such as on magnetic tape. IBM.

session. A collection of process groups established for

job control purposes. Each process group is a member

of a session. A process is a member of the session of

which its process group is a member. A newly created

process joins the session of its creator. A process can

alter its session membership; see setsid(). There can

be multiple process groups in the same session.

X/Open. ISO.1.

shell. A program that interprets sequences of text

input as commands. It may operate on an input stream

or it may interactively prompt and read commands from

a terminal. X/Open.

 This feature is provided as part of the z/OS Shell and

Utilities feature licensed program.

Short name. An external non-C++ name in an object

module produced by compiling with the NOLONGNAME

option. Such a name is up to 8 characters long and

single case.

signal. (1) A condition that may or may not be

reported during program execution. For example, SIGFPE

is the signal used to represent erroneous arithmetic

operations such as a division by zero. (2) A mechanism

by which a process may be notified of, or affected by,

an event occurring in the system. Examples of such

events include hardware exceptions and specific actions

by processes. The term signal is also used to refer to

the event itself. X/Open. ISO.1. (3) A method of

interprocess communication that simulates software

interrupts. IBM.

signal handler. A function to be called when the signal

is reported.

single-byte character set (SBCS). A set of characters

in which each character is represented by a one-byte

code. IBM.

single-precision. Pertaining to the use of one

computer word to represent a number in accordance

with the required precision. ISO-JTC1. ANSI/ISO.

single-quote. The character ‘, also known as

apostrophe. This character is named <quotation-mark>

in the portable character set.

slash. The character /, also known as solidus. This

character is named <slash> in the portable character

set.

socket. (1) A unique host identifier created by the

concatenation of a port identifier with a transmission

control protocol/Internet protocol (TCP/IP) address. (2) A

port identifier. (3) A 16-bit port-identifier. (4) A port on a

specific host; a communications end point that is

accessible though a protocol family's addressing

mechanism. A socket is identified by a socket address.

IBM.

sorted map. A sorted flat collection with key and

element equality.

sorted relation. A sorted flat collection that uses keys,

has element equality, and allows duplicate elements.

sorted set. A sorted flat collection with element

equality.

source module. A file that contains source statements

for such items as high-level language programs and

data description specifications. IBM.

source program. A set of instructions written in a

programming language that must be translated to

machine language before the program can be run. IBM.

space character. The character defined in the

portable character set as <space>. The space character

is a member of the space character class of the current

locale, but represents the single character, and not all of

the possible members of the class. X/Open.

spanned record. A logical record contained in more

than one block. IBM.

specialization. A user-supplied definition which

replaces a corresponding template instantiation.

specifiers. Used in declarations to indicate storage

class, fundamental data type and other properties of the

object or function being declared.

spill area. A storage area used to save the contents of

registers. IBM.

SQL (Structured Query Language). A language

designed to create, access, update and free data

tables.

square brackets. The characters [(left bracket) and]

(right bracket). Also see brackets.

stack frame. The physical representation of the

activation of a routine. The stack frame is allocated and

freed on a LIFO (last in, first out) basis. A stack is a

collection of one or more stack segments consisting of

an initial stack segment and zero or more increments.

stack storage. Synonym for automatic storage.

standard error. An output stream usually intended to

be used for diagnostic messages. X/Open.

standard input. (1) An input stream usually intended

to be used for primary data input. X/Open. (2) The

primary source of data entered into a command.

Standard input comes from the keyboard unless

988 z/OS V1R8.0 XL C/C++ Programming Guide

redirection or piping is used, in which case standard

input can be from a file or the output from another

command. IBM.

standard output. (1) An output stream usually

intended to be used for primary data output. X/Open. (2)

The primary destination of data coming from a

command. Standard output goes to the display unless

redirection or piping is used, in which case standard

output can go to a file or to another command. IBM.

statement. An instruction that ends with the character

; (semicolon) or several instructions that are surrounded

by the characters { and }.

static. A keyword used for defining the scope and

linkage of variables and functions. For internal variables,

the variable has block scope and retains its value

between function calls. For external values, the variable

has file scope and retains its value within the source

file. For class variables, the variable is shared by all

objects of the class and retains its value within the

entire program.

static binding. The act of resolving references to

external variables and functions before run time.

storage class specifier. One of the terms used to

specify a storage class, such as auto, register, static, or

extern.

stream. (1) A continuous stream of data elements

being transmitted, or intended for transmission, in

character or binary-digit form, using a defined format.

(2) A file access object that allows access to an ordered

sequence of characters, as described by the ISO C

standard. Such objects can be created by the fdopen()

or fopen() functions, and are associated with a file

descriptor. A stream provides the additional services of

user-selectable buffering and formatted input and

output. X/Open.

string. A contiguous sequence of bytes terminated by

and including the first null byte. X/Open.

string constant. Zero or more characters enclosed in

double quotation marks.

string literal. Zero or more characters enclosed in

double quotation marks.

striped data set. A special data set organization that

spreads a data set over a specified number of volumes

so that I/O parallelism can be exploited. Record n in a

striped data set is found on a volume separate from the

volume containing record n - p, where n > p.

struct. An aggregate of elements having arbitrary

types.

structure. A construct (a class data type) that contains

an ordered group of data objects. Unlike an array, the

data objects within a structure can have varied data

types. A structure can be used in all places a class is

used. The initial projection is public.

structure tag. The identifier that names a structure

data type.

Structured Query Language. See SQL.

stub routine. A routine, within a run-time library, that

contains the minimum lines of code required to locate a

given routine at run time.

subprogram. In the IPA Link version of the Inline

Report listing section, an equivalent term for 'function'.

subscript. One or more expressions, each enclosed in

brackets, that follow an array name. A subscript refers

to an element in an array.

subsystem. A secondary or subordinate system,

usually capable of operating independently of or

asynchronously with, a controlling system. ISO Draft.

subtree. A tree structure created by arbitrarily denoting

a node to be the root node in a tree. A subtree is

always part of a whole tree.

superset. Given two sets A and B, A is a superset of B

if and only if all elements of B are also elements of A.

That is, A is a superset of B if B is a subset of A.

support. In system development, to provide the

necessary resources for the correct operation of a

functional unit. IBM.

switch expression. The controlling expression of a

switch statement.

switch statement. A C or C++ language statement

that causes control to be transferred to one of several

statements depending on the value of an expression.

system default. A default value defined in the system

profile. IBM.

system process. (1) An implementation-dependent

object, other than a process executing an application,

that has a process ID. X/Open. (2) An object, other than

a process executing an application, that is defined by

the system, and has a process ID. ISO.1.

T

tab character. A character that in the output stream

indicates that printing or displaying should start at the

next horizontal tabulation position on the current line.

The tab is the character designated by '\t' in the C

language. If the current position is at or past the last

defined horizontal tabulation position, the behavior is

unspecified. It is unspecified whether the character is

the exact sequence transmitted to an output device by

the system to accomplish the tabulation. X/Open.

Glossary 989

This character is named <tab> in the portable character

set.

task library. A class library that provides the facilities

to write programs that are made up of tasks.

template. A family of classes or functions with variable

types.

template class. A class instance generated by a class

template.

template function. A function generated by a function

template.

template instantiation. The act of creating a new

definition of a function, class, or member of a class from

a template declaration and one or more template

arguments.

terminals. Synonym for leaves.

text file. A file that contains characters organized into

one or more lines. The lines must not contain NUL

characters and none can exceed {LINE_MAX}—which is

defined in limits.h—bytes in length, including the

new-line character. The term text file does not prevent

the inclusion of control or other unprintable characters

(other than NUL). X/Open.

thread. The smallest unit of operation to be performed

within a process. IBM.

throw expression. An argument to the C++ exception

being thrown.

tilde. The character ~. This character is named <tilde>

in the portable character set.

token. The smallest independent unit of meaning of a

program as defined either by a parser or a lexical

analyzer. A token can contain data, a language

keyword, an identifier, or other parts of language syntax.

IBM.

traceback. A section of a dump that provides

information about the stack frame, the program unit

address, the entry point of the routine, the statement

number, and the status of the routines on the call-chain

at the time the traceback was produced.

trigraph sequence. An alternative spelling of some

characters to allow the implementation of C in character

sets that do not provide a sufficient number of

non-alphabetic graphics. ANSI/ISO.

 Before preprocessing, each trigraph sequence in a

string or literal is replaced by the single character that it

represents.

truncate. To shorten a value to a specified length.

try block. A block in which a known C++ exception is

passed to a handler.

type definition. A definition of a name for a data type.

IBM.

type specifier. Used to indicate the data type of an

object or function being declared.

U

ultimate consumer. The target of data in an I/O

operation. An ultimate consumer can be a file, a device,

or an array of bytes in memory.

ultimate producer. The source of data in an I/O

operation. An ultimate producer can be a file, a device,

or an array of byes in memory.

unary expression. An expression that contains one

operand. IBM.

undefined behavior. Action by the compiler and

library when the program uses erroneous constructs or

contains erroneous data. Permissible undefined

behavior includes ignoring the situation completely with

unpredictable results. It also includes behaving in a

documented manner that is characteristic of the

environment, during translation or program execution,

with or without issuing a diagnostic message. It can also

include terminating a translation or execution, while

issuing a diagnostic message. Contrast with unspecified

behavior and implementation-defined behavior.

underflow. (1) A condition that occurs when the result

of an operation is less than the smallest possible

nonzero number. (2) Synonym for arithmetic underflow,

monadic operation. IBM.

union. (1) In the C or C++ language, a variable that

can hold any one of several data types, but only one

data type at a time. IBM. (2) For bags, there is an

additional rule for duplicates: If bag P contains an

element m times and bag Q contains the same element

n times, then the union of P and Q contains that

element m+n times.

union tag. The identifier that names a union data type.

unnamed pipe. A pipe that is accessible only by the

process that created the pipe and its child processes.

An unnamed pipe does not have to be opened before it

can be used. It is a temporary file that lasts only until

the last file descriptor that uses it is closed.

unique collection. A collection in which the value of

an element only occurs once; that is, there are no

duplicate elements.

unrecoverable error. An error for which recovery is

impossible without use of recovery techniques external

to the computer program or run.

unspecified behavior. Action by the compiler and

library when the program uses correct constructs or

data, for which the standards impose no specific

990 z/OS V1R8.0 XL C/C++ Programming Guide

requirements. Such action should not cause compiler or

application failure. You should not, however, write any

programs to rely on such behavior as they may not be

portable to other systems. Contrast with

implementation-defined behavior and undefined

behavior.

user-defined data type. (1) A mathematical model

that includes a structure for storing data and operations

that can be performed on that data. Common abstract

data types include sets, trees, and heaps. (2) See also

abstract data type.

user ID. A nonnegative integer that is used to identify

a system user. (Under ISO only, a nonnegative integer,

which can be contained in an object of type uid_t.)

When the identity of a user is associated with a

process, a user ID value is referred to as a real user ID,

an effective user ID, or (under ISO only, and there

optionally) a saved set-user ID. X/Open. ISO.1.

user name. A string that is used to identify a user.

ISO.1.

user prefix. In the z/OS environment, the user prefix

is typically the user's logon user identification.

V

value numbering. An optimization technique that

involves local constant propagation, local expression

elimination, and folding several instructions into a single

instruction.

variable. In programming languages, a language

object that may take different values, one at a time. The

values of a variable are usually restricted to a certain

data type. ISO-JTC1.

variant character. A character whose hexadecimal

value differs between different character sets. On

EBCDIC systems, such as z/OS, these 13 characters

are an exception to the portability of the portable

character set.

<left-square-bracket> [

<right-square-bracket>]

<left-brace> {

<right-brace> }

<backslash> \

<circumflex> ^

<tilde> ~

<exclamation-mark> !

<number-sign> #

<vertical-line> |

<grave-accent> `

<dollar-sign> $

<commercial-at> @

vertical-tab character. A character that in the output

stream indicates that printing should start at the next

vertical tabulation position. The vertical-tab is the

character designated by '\v' in the C or C++ languages.

If the current position is at or past the last defined

vertical tabulation position, the behavior is unspecified.

It is unspecified whether this character is the exact

sequence transmitted to an output device by the system

to accomplish the tabulation. X/Open. This character is

named <vertical-tab> in the portable character set.

virtual address space. In virtual storage systems, the

virtual storage assigned to a batched or terminal job, a

system task, or a task initiated by a command.

virtual function. A function of a class that is declared

with the keyword virtual. The implementation that is

executed when you make a call to a virtual function

depends on the type of the object for which it is called,

which is determined at run time.

Virtual Storage Access Method (VSAM). An access

method for direct or sequential processing of fixed and

variable length records on direct access devices. The

records in a VSAM data set or file can be organized in

logical sequence by a key field (key sequence), in the

physical sequence in which they are written on the data

set or file (entry-sequence), or by relative-record

number.

visible. Visibility of identifiers is based on scoping

rules and is independent of access.

volatile attribute. (1) In the C or C++ language, the

keyword volatile, used in a definition, declaration, or

cast. It causes the compiler to place the value of the

data object in storage and to reload this value at each

reference to the data object. IBM. (2) An attribute of a

data object that indicates the object is changeable. Any

expression referring to a volatile object is evaluated

immediately (for example, assignments).

W

while statement. A looping statement that contains

the keyword while followed by an expression in

parentheses (the condition) and a statement (the

action). IBM.

white space. (1) Space characters, tab characters,

form-feed characters, and new-line characters. (2) A

sequence of one or more characters that belong to the

space character class as defined via the LC_CTYPE

category in the current locale. In the POSIX locale,

white space consists of one or more blank characters

(space and tab characters), new-line characters,

carriage-return characters, form-feed characters, and

vertical-tab characters. X/Open.

wide-character. A character whose range of values

can represent distinct codes for all members of the

largest extended character set specified among the

supporting locales.

wide-character code. An integral value corresponding

to a single graphic symbol or control code. X/Open.

Glossary 991

|

wide-character string. A contiguous sequence of

wide-character codes terminated by and including the

first null wide-character code. X/Open.

wide-oriented stream. See orientation of a stream.

word. A character string considered as a unit for a

given purpose. In z/OS, a word is 32 bits or 4 bytes.

working directory. Synonym for current working

directory.

writable static area. See WSA.

write. (1) To output characters to a file, such as

standard output or standard error. Unless otherwise

stated, standard output is the default output destination

for all uses of the term write. X/Open. (2) To make a

permanent or transient recording of data in a storage

device or on a data medium. ISO-JTC1. ANSI/ISO.

WSA (writable static area). An area of memory in the

program that is modifyable during program execution.

Typically, this area contains global variables and

function and variable descriptors for DLLs.

X

xlc. A utility that uses an external configuration file to

control the invocation of the compiler. xlc and related

commands compile C and C++ source files. They also

process assembler source files and object files.

XPLINK (Extra Performance Linkage). A new call

linkage between functions that has the potential for a

significant performance increase when used in an

environment of frequent calls between small functions.

XPLINK makes subroutine calls more efficient by

removing nonessential instructions from the main path.

When all functions are compiled with the XPLINK

option, pointers can be used without restriction, which

makes it easier to port new applications to z/OS.

Z

z/OS UNIX System Services. An element of the z/OS

operating system that includes a POSIX system

Application Programming Interface for the C language, a

shell and utilities component, and a dbx debugger. All

the components conform to IEEE POSIX standards

(ISO 9945-1: 1990/IEEE POSIX 1003.1-1990, IEEE

POSIX 1003.1a, IEEE POSIX 1003.2, and IEEE POSIX

1003.4a).

992 z/OS V1R8.0 XL C/C++ Programming Guide

Bibliography

This bibliography lists the publications for IBM products that are related to z/OS XL

C/C++. It includes publications covering the application programming task. The

bibliography is not a comprehensive list of the publications for these products,

however, it should be adequate for most z/OS XL C/C++ users. Refer to z/OS

Information Roadmap, SA22-7500, for a complete list of publications belonging to

the z/OS product.

Related publications not listed in this section can be found on the IBM Online

Library Omnibus Edition MVS Collection, SK2T-0710, the z/OS Collection,

SK3T-4269, or on a tape available with z/OS.

z/OS

v z/OS Introduction and Release Guide, GA22-7502

v z/OS and z/OS.e Planning for Installation, GA22-7504

v z/OS Summary of Message and Interface Changes, SA22-7505

v z/OS Information Roadmap, SA22-7500

v z/OS Licensed Program Specifications, GA22-7503

v z/OS Migration, GA22-7499

v z/OS Program Directory, GI10-0670

z/OS XL C/C++

v z/OS XL C/C++ Programming Guide, SC09-4765

v z/OS XL C/C++ User’s Guide, SC09-4767

v z/OS XL C/C++ Language Reference, SC09-4815

v z/OS XL C/C++ Messages, GC09-4819

v z/OS XL C/C++ Run-Time Library Reference, SA22-7821

v z/OS C Curses, SA22-7820

v z/OS XL C/C++ Compiler and Run-Time Migration Guide for the Application

Programmer, GC09-4913

v IBM Open Class Library Transition Guide, SC09-4948

v Standard C++ Library Reference, SC09-4949

z/OS Run-Time Library Extensions

v C/C++ Legacy Class Libraries Reference, SC09-7652

v z/OS Common Debug Architecture User’s Guide, SC09-7653

v z/OS Common Debug Architecture Library Reference, SC09-7654

v DWARF/ELF Extensions Library Reference, SC09-7655

Debug Tool

v Debug Tool documentation, which is available at: www.ibm.com/software/
awdtools/debugtool/library/

© Copyright IBM Corp. 1996, 2006 993

http://www.ibm.com/software/awdtools/debugtool/library/
http://www.ibm.com/software/awdtools/debugtool/library/

z/OS Language Environment

v z/OS Language Environment Concepts Guide, SA22-7567

v z/OS Language Environment Customization, SA22-7564

v z/OS Language Environment Debugging Guide, GA22-7560

v z/OS Language Environment Programming Guide, SA22-7561

v z/OS Language Environment Programming Reference, SA22-7562

v z/OS Language Environment Run-Time Application Migration Guide, GA22-7565

v z/OS Language Environment Writing Interlanguage Communication Applications,

SA22-7563

v z/OS Language Environment Run-Time Messages, SA22-7566

Assembler

v HLASM Language Reference, SC26-4940

v HLASM Programmer’s Guide, SC26-4941

COBOL

v COBOL documentation, which is available at: http://www.ibm.com/software/
awdtools/cobol/zos/library/

PL/I

v PL/I documentation, which is available at: http://www.ibm.com/software/awdtools/
pli/plizos/library/

VS FORTRAN

v VS FORTRAN documentation, which is available at: http://www.ibm.com/
software/awdtools/fortran/vsfortran/library.html

CICS Transaction Server for z/OS

v CICS documentation, which is available at: http://www.ibm.com/software/htp/cics/
tserver/v31/library/

DB2

v DB2 Administration Guide, SC18-7413

v DB2 Application Programming and SQL Guide, SC18-7415

v DB2 ODBC Guide and Reference, SC18-7423

v DB2 Command Reference, SC18-7416

v DB2 Data Sharing: Planning and Administration, SC18-7417

v DB2 Installation Guide, GC18-7418

v DB2 Messages and Codes, GC18-7422

v DB2 Reference for Remote DRDA Requesters and Servers, SC18-7424

v DB2 SQL Reference, SC18-7426

v DB2 Utility Guide and Reference, SC18-7427

994 z/OS V1R8.0 XL C/C++ Programming Guide

|
|

|
|

|
|

|
|

http://www.ibm.com/software/awdtools/cobol/zos/library/
http://www.ibm.com/software/awdtools/cobol/zos/library/
http://www.ibm.com/software/awdtools/pli/plizos/library/
http://www.ibm.com/software/awdtools/pli/plizos/library/
http://www.ibm.com/software/awdtools/fortran/vsfortran/library.html
http://www.ibm.com/software/awdtools/fortran/vsfortran/library.html
http://www.ibm.com/software/htp/cics/tserver/v31/library/
http://www.ibm.com/software/htp/cics/tserver/v31/library/

IMS/ESA®

v IMS documentation, which is available at: http://www.ibm.com/software/data/ims/
library.html

MVS

v z/OS MVS Program Management: User’s Guide and Reference, SA22-7643

v z/OS MVS Program Management: Advanced Facilities, SA22-7644

QMF

v QMF documentation, which is available at: http://www.ibm.com/software/data/qmf/
library.html

DFSMS

v z/OS DFSMS Introduction, SC26-7397

v z/OS DFSMS Managing Catalogs, SC26-7409

v z/OS DFSMS Using Data Sets, SC26-7410

v z/OS DFSMS Macro Instructions for Data Sets, SC26-7408

v z/OS DFSMS Access Method Services for Catalogs, SC26-7394

Bibliography 995

|
|

|
|

http://www.ibm.com/software/data/ims/library.html
http://www.ibm.com/software/data/ims/library.html
http://www.ibm.com/software/data/qmf/library.html
http://www.ibm.com/software/data/qmf/library.html

996 z/OS V1R8.0 XL C/C++ Programming Guide

INDEX

Special characters
__abendcode macro, using for debugging 237

__amrc structure
debugging I/O programs 235

example 238

using with VSAM 167, 191

__amrc2 structure
usage 239

__csplist() library function 675

__last_op codes for __amrc 240

__rsncode macro 237, 428

__STDC_CONSTANT_MACROS feature test

macro 504

__STDC_FORMAT_MACROS feature test macro 504

__STDC_LIMIT_MACROS feature test macro 504

_24malc() library function 607

_4kmalc() library function 607

_EDC_ERRNO_DIAG environment variable 489

_EDC_GLOBAL_STREAMS environment variable 490

_EDC_POPEN environment variable 491

_EDC_PUTENV_COPY environment variable 491

_EDC_RRDS_HIDE_KEY environment variable 176

_ICONV_UCS2 environment variable 832

_ICONV_UCS2_PREFIX environment variable 827

_ISOC99_SOURCE feature test macro 504

_LP64 macro
64-bit 363

_TZ environment variable 791

_xhotc() library function 603

_xhotl() library function 604

_xhott() library function 604

_xhotu() library function 605

_xregs() library function 605

_xsacc() library function 606

_xsrvc() library function 606

_xusr() library function 607

_xusr2() library function 607

! (exclamation mark) 872

// (double slash), part of MVS data set name 100, 170

/* (EOF sequence for text terminal) 209

\a (alarm) 123

\b (backspace) 123

\f (form feed) 123

\n (newline) 123

\r (carriage return) 124

\t (horizontal tab) 124

\v (vertical tab) 124

\x0E (DBCS shift out) 124

\x0F (DBCS shift in) 124

] (right square bracket) and [(left square bracket) 871

| (vertical bar) 872

& (ampersand)
using to specify temporary data set names 100

(number sign) 872

{ (left brace) 872

} (right brace) 872

^ (caret) 871

~ (tilde) 872

Numerics
24malc() library function 607

32-bit application
recompiling as 64-bit 340

4kmalc() library function 607

64 bit offsets 156

64-bit
_LP64 macro 363

environment 337

migrating from 32-bit 343

pointers 353

printf 359

structure alignment 345

64-bit virtual memory
IPA(LINK) 344

A
abend

CICS and assembler user exit 617

codes
CEEBXITA, CEEAUE_RETC field 615

specifying those to be percolated 618

dumps, CEEAUE_DUMP 617

generating 595

percolating 613, 618

requesting dump 617

system 613, 618

TRAP run-time option 614

user 613, 618

ABEND, compiler
insufficient storage 344

MEMLIMIT system parameter and IMEMLIM

variable 344

absolute value, decimal type 402

acc parameter for fopen()
memory file I/O 220

terminal I/O 209

VSAM data sets 173

z/OS OS I/O 116

accept(), network example 443

access control list (ACL) 161

access method selection 113

accessibility 959

accessing HFS files
optimizing 528

ACL (access control list) 161

additive operators, decimal 392

addressing
within AF_INET domain 441

within AF_INET6 domain 441

within AF_UNIX domain 442

within sockets 439

© Copyright IBM Corp. 1996, 2006 997

addressing capabilities
ILP32 and LP64 337

AF_INET domain
addressing 441

defined 441

AF_INET6 domain
addressing 441

AF_UNIX domain
addressing 442

defined 442

alarm escape sequence \a 123

alignment
z/OS basic rule 345

alloca() library function 519

alternate code point support 839

AMODE processing option
for CEEBXITA user exit 614

AMODE/RMODE under CICS 652, 672

ANSI C++ 98 applications
C99 behavior 503

ANSIALIAS compiler option 533

application service routines 577

application, network 447

ARCHITECTURE compiler option 533

argc under CICS 658

ARGPARSE run-time option 273

argv under CICS 658

arithmetic
constructions 516

operators, decimal data type
additive 392

conditional 394

equality 393

multiplicative 392

relational 393

ASA (American Standards Association)
control characters 65

example 65

overview 65

ASCII limitations 735

asis parameter, fopen()
memory file I/O 220

terminal I/O 209

VSAM data sets 173

z/OS OS I/O 116

assembler
assembler user exit for termination of 615

epilog 260

example 267, 274

interlanguage calls 255

level 259

macros 255

multiple invocations 269

prolog 260, 264

system programming alternative 559

user exits
CEEBXITA 610

assignment
operators, decimal 395

standard stream 87

asynchronous I/O (z/OS) 118

atoi() library function 519

B
backspace escape sequence \b 123

BDAM data sets, restriction 99

BDW (block descriptor word) 115

bidirectional languages 855

binary files
byte stream behavior 36

fixed behavior 29

undefined format behavior 35

using fseek() and ftell(), OS I/O 131

variable behavior 33

binary I/O, description 26

bind(), network example 443

binding 11

bit fields 518

blksize parameter
defaults 50

memory file I/O 220

specifying 50

terminal I/O 208

VSAM data sets 172

z/OS OS I/O 115

blocked records 28

BookManager documents xxx

buffers
full buffering 63

line buffering 63

multiple 118

no buffering
HFS files 63

memory files 63

OS I/O 117

terminal I/O 209

using 63

BUFNO subparameter, multiple buffering 118

built-in library functions
hardware built-in functions 497

optimizing code 518

byte order, network 440

byteseek parameter in fopen()
effects on OS files 131

memory file I/O 220

terminal I/O 209

VSAM data sets 173

z/OS OS I/O 117

C
C language 6

C locale
comparing with POSIX and SAA locales 799

defined 793

C or C++ interlanguage calls
with assembler 255

with C++ 249

with COBOL 249

with FORTRAN 249

with PL/I 249

998 z/OS V1R8.0 XL C/C++ Programming Guide

C++
optimizing 507

C++ language 6

c99 interfaces
exposure to XL C++ applications 503

C99 support
ANSI C and C++ 98 applications 503

CALL
command 675

token for preinitialization 271

calling
assembler from C or C++ 255

C from C++ 249

C or C++ from assembler 255

C++ from C 249

COBOL from C or C++ 249

FORTRAN from C or C++ 249

functions repeatedly 269

PL/I from C or C++ 249

card
punch output 112

reader input 112

carriage return escape sequence \r 124

cast operator, decimal 396

catalogued procedure 459

changes for sockets 458, 459

EDCC sample 459

EDCCB sample 458

link edit 458

catalogued procedures
IPA Link 344

with IMEMLIM variable 344

catch 413

CCNGDB4
using DB2 with C 693

CCSID (coded character set id) 160

cds() library function 518

cdump() library function 659

CEE.SCEEMAC 259

CEEAUE_ parameters 613

CEEBINT HLL user exit
customizing 611

invoking 610

using default version 611

CEEBXITA assembler user exit
abends 613

customizing for your installation 611

during enclave termination 612

during process termination 613

effects of run-time options 613

error handling 614

invoking 610, 612

using default version 611

CEESTART
creating modules without 563

using with MTF 645

cerr
C++ standard error stream 79

predefined stream, usage 40

CESE, CICS data queue 231

CESO, CICS data queue 231

Character Set
hexadecimal values 877

POSIX 867

character shaping 856

character special files (HFS)
creating 140

I/O rules 153

using 139

charmap file
example 905

input 867

restriction, Japanese Katakana 869

charmap section 741

CHARSETID section 742

CICS (Customer Information Control System)
AMODE/RMODE considerations 652, 672

arguments to C or C++ main() 658

C program reentrancy 671

cdump() library function 659

CESE data queue 231

CESO data queue 231

clock() library function 659

compile 666

compiling XL C/C++ programs after

preprocessing 671

Cross System Product (CSP) 675

CSD considerations 674

csnap() library function 659

ctdli() library function 659

ctrace() library function 659

define and run the program 673

designing and coding a program 652

developing and XL C/C++ program 651

DLL 659

dump functions 659

dynamic allocation 658

EXEC CICS LINK 659

EXEC CICS statements
example 667

EXEC CICS statements and the standalone CICS

translator 666

EXEC CICS XCTL 659

fetch() library function 659

floating point arithmetic 659

input and output 48, 231

interlanguage support 661

iscics() library function 659

JCL to translate and compile 671

link considerations 673

link load module 672

linking for reentrancy 672

locale support 658, 853

memory file support 657

migrating to a newer translation option 666

MTF support 658

overview 651

packed decimal support 658

POSIX support 658

prelinking 672

preparing for use with z/OS Language

Environment 651

INDEX 999

CICS (Customer Information Control System)

(continued)
program processing 673

program termination 659

redirecting standard streams 91

reentrancy 673

release() library function 659

requirements 651

run-time options 658

SP C support 658

standalone CICS translator 666

standard stream support 656

storage management 660

svc99() library function 658

system() library function 659

translating example 667

translating options 666

using with IMS 659

z/OS UNIX System Services 949

z/OS XL C/C++ integrated CICS translator 666

z/OS XL C/C++ library support 658

cin
C++ standard input stream 79

predefined stream, usage 40

CINET 453

class libraries 8

optimizing 509

clearenv() library function 479

clearing memory 519

client perspective 444

client/server
allocation with socket() 443

conversation 442

exchanging data 442

server perspective 442

clock() library function 659

clog
C++ standard error stream 79

predefined stream, usage 40

closing
HFS files 147

memory files 227

OS I/O files 133

terminal files 214

VSAM data sets 191

z/OS Language Environment message file 234

clrmemf() library function
memory I/O files 228

COBOL
assembler user exit 612

using linkage specifications 249

code
independence 635

motion 532

point mapping 877

coded character set
CICS support 651

considerations with locale 837

conversion during compile 847

conversion utilities 801

converters supplied 802

coded character set (continued)
IBM-1047

converting code from 919

converting code to 841

IBM-1047 vs. IBM-293 838

independence 841

related to compile-edit cycle 841

coded character set id 160

collating sequence difference, SAA and POSIX 799

command
syntax diagrams xxiii

common expression elimination 532

common features of z/OS XL C and XL C++

compilers 6

Common INET 453

Common Programming Interface (CPI) 721

communication, network basics 436

communications, interprocess
asynchronous signal delivery 423

z/OS TCP/IP considerations 455

COMPACT compiler option 534

compile-edit cycle related to coded character set 841

compiler diagnostics
ensuring code portability 341

compiling 454

for a locale 847

include files 457

linking 454

procedures 454

sockets programs 454

under batch
for Berkeley Sockets 458

for X/Open Sockets 459

with X Windows 458

using c89
for Berkeley Sockets 459

with X Windows 459

COMPRESS compiler option 533

computational independence 628, 635

concatenation
compatibility rules 108

in-stream data sets 109

sequential and partitioned 107

condition variable 367

conditional operators, decimal 394

configuration file access, z/OS TCP/IP 456

constant
fixed-point decimal 390

propagation 532

control characters
ASA text files 65

OS I/O text files 123

terminal I/O files 212

z/OS XL C/C++recognized by text files 25

conversation 442

conversions
32-bit to 64-bit 354

code set 801

decimal types
decimal to decimal 396

decimal to float 399

1000 z/OS V1R8.0 XL C/C++ Programming Guide

conversions (continued)
decimal types (continued)

decimal to integer 398

float to decimal 399

integer to decimal 398

hybrid code from IBM-1047 919

hybrid code to IBM-1047 841

integers 354

pointers 354

convert pragma 851

converters, locale code set 802

cout
C++ standard output stream 79

predefined stream, usage 40

CPI (Common Programming Interface) 721

creat() library function 139

cs() library function 518

CSECT (control section)
CEESTART 563

compiler option 955

csid() library function 732

csnap() library function 659

CSP (Cross System Product) 675

CSP/AD (Cross System Product/Application

Development) 675

CSP/AE (Cross System Product/Application

Execution) 675

csplist library function
passing parameters 675

ctdli() library function 659

ctrace() library function 659

Curses library 949

cursive languages 855

CVFT compiler option 534

CXIT control block 613

D
DASD (Direct-Access Storage Device)

input and output 99

multivolume data sets, input and output 110

sequential and partitioned concatenation 107

striped data sets, input and output 111

data alignment
64-bit 356

data independence 628, 635

data models
ILP32 and LP64 337

data sets
in-stream 109

large format sequential 111

multivolume 110

name
opening a memory file 218

opening an MVS data set 170

opening z/OS OS files 99

sequential vs. partitioned concatenation 107

striped 111

temporary 100

data structures
rule of alignment 345

data type sizes
ILP32 and LP64 337

datagram
definition 436

sockets 439

DB2
application programming environment, z/OS UNIX

System Services 949

codepage 691

DB2 C/C++ precompiler 692

host variables 691

example 694

invoking DB2 services with z/OS XL C/C++ 692

locale support 853

preprocessor directives 691

stored procedures and XPLINK 692

varable-length source input 691

when NOSQL is the default compiler option 691

with z/OS XL C/C++ 691

examples 692

XL C/C++ DB2 coprocessor 691

DBCS (Double-Byte Character Support)
input and output functions 69

reading 70

shift in character 124

shift out character 124

writing 71

dbx 9

DCB (Data Control Block)
OS I/O 118

parameter on a DD statement 102

parameters, optimizing code 527

ddname
creating

description 52

in source code 53

under MVS batch 52

under TSO 53

opening an HFS I/O file under MVS 143

opening an OS I/O file under z/OS 101

restriction 53

dead code elimination 532

dead store elimination 532

Debug Tool 18

CEEBINT and 623

debugging
Debug Tool 18

debugging I/O programs 235

DEC_DIG decimal constant
numerical limit 391

range of values 389

DEC_EPSILON decimal constant 391

DEC_MAX decimal constant 391

DEC_MIN decimal constant 391

DEC_PRECISION decimal constant
numerical limit 391

range of values 389

decchk() library function 406

decimal data type
absolute value 402

assignments 391

INDEX 1001

decimal data type (continued)
constants 390

conversions 396

declarations 389

error messages 406

exception handling 405

fixing sign of 401

operators 391

printing with library functions 400

SPC restriction 406

validating 401

variables 390

viewing with library functions 400

declarations
decimal 389

extern, using for linkage to other languages 249

using optimization 517

default
C locales for POSIX, SAA, and S370 793

DCB attributes for SYSOUT data set 110

fopen() 50

locales 793, 799

LRECL, fopen() 50

RECFM 50

definition side-deck 303

delete
HFS files 147

named module from storage 599

optimizing 509

pipes with HFS 150

VSAM records 178

delimiter in JCL statements 109

delivery, signals
ANSI C rules 421

asynchronous 423

POSIX rules 421

differences among C, POSIX, and SAA locales 799

digitsof operator 395

direct processing 176

directories (HFS)
creating 140

deleting 147

using 139

disability 959

disabled signals 425

disjoint pragma 521

DISP=MOD specification, DD statement
DDnames 53

OS I/O, fopen() modes 101

displaying variant characters 871

DL/I (Data Language I) 705

DLL code 311

DLLs (Dynamic Link Libraries)
applications 292

binding a DLL 303

binding a DLL application 303

C example 320, 326

C++ example 324

calling explicitly 294

calling implicitly 293

CICS 659

DLLs (Dynamic Link Libraries) (continued)
compatibility with non-DLL 315

Complex
assigning pointers 317

compatibility issues 315

creating 311

guidelines 313

modifying source 312

creating 300, 301

C 301

description 300

export pragma 301

exporting functions 301

guidelines 313

entry point 307

example 305

freeing 300

load-on-call 293

loading 298

managing the use of 298

performance 308

restrictions 307

sharing among application executable files 300

using 304

domain
AF_INET 441

AF_UNIX 442

downward compatibility 10

DSQCOMMC.H header file 721

DUMMY data set output 112

dumps
requesting in the CEEBXITA assembler user

exit 613, 617

duplicate alternate index keys
retrieval sequence 176

under VSAM 173

DWS (Data Window Services) 689

DXFR, transfer control 675

dynamic memory 549

E
EDCCB 458, 459

cataloged procedure 458, 459

changes for sockets 458, 459

sample 458, 459

EDCDPLNK macro 386

EDCDSAD macro 259, 264

EDCDXD macro 386

EDCEPIL macro 259, 260

EDCLA macro 386

EDCPRLG macro 259, 260

EDCPROL macro 259

EDCRCINT routine 568

EDCX4KGT routine 597

EDCXABND routine 595

EDCXABRT module
using during link edit 565

EDCXABRT routine 568, 572

EDCXCALL 259

EDCXENV module 572

1002 z/OS V1R8.0 XL C/C++ Programming Guide

EDCXENVL module 572

EDCXEPLG 259

EDCXEPLG macro 264

EDCXEXIT module
exit(), system programming version 572, 577, 595

freestanding applications 568

EDCXFREE routine 598

EDCXGET routine 596

EDCXHOTC library function 603

EDCXHOTC routine 577

EDCXHOTL library function 604

EDCXHOTL routine 577

EDCXHOTT library function 604

EDCXHOTT routine 577

EDCXHOTU library function 605

EDCXHOTU routine 577

EDCXISA module
entry point 565

in freestanding applications 568

EDCXLANE module 599

EDCXLANK module 599

EDCXLANU module 599

EDCXLOAD routine 599

EDCXMEM module
freestanding applications 568

persistent environment 577

system programming memory management 572,

595

EDCXPRLG 259

EDCXPRLG macro 260

EDCXREGS library function 605

EDCXSACC library function 606

EDCXSACC routine
accepting a request for service 594

EDCXSPRT module
in freestanding applications 568

sprintf(), system programming version 577

sprintf(), system programming version of 572

System programming version of sprintf() 595

EDCXSRC routine
xsrvc library function 606

EDCXSRVC routine 594

EDCXSRVN routine
initiating a server request 593

EDCXSTRL module
in freestanding applications 568

usage 564

EDCXSTRT module
in freestanding applications 568

usage 563

EDCXSTRX module
in freestanding applications 568

usage 564

EDCXUNLD routine 599

EDCXUSR library function 607

EDCXUSR2 library function 607

ELPA (Extended Link Pack Area) 382

empty records
_EDC_ZERO_RECLEN 34, 494

enabled signals 425

enclave
terminating with CEEAUE_ABND 617

encoded offset 131

ENGLISH run-time messages 599

Enhanced ASCII
limitations of 735

environment
64-bit 337

environment variables
_BPXK_AUTOCVTS 473

_BPXK_CCSIDS 474

_BPXK_SIGDANGER 475

_CEE_DLLLOAD_XPCOMPAT 482

_CEE_DMPTARG 483

_CEE_ENVFILE 483

_CEE_ENVFILE_S 484

_CEE_HEAP_MANAGER 484

_CEE_RUNOPTS 485

_EDC_ADD_ERRNO2 487

_EDC_ANSI_OPEN_DEFAULT 119, 487

_EDC_AUTOCVT_BINARY 487

_EDC_BYTE_SEEK 117, 131, 488

_EDC_C99_NAN 489

_EDC_CLEAR_SCREEN 212, 488

_EDC_COMPAT 488

_EDC_ERRNO_DIAG 489

_EDC_GLOBAL_STREAMS 490

_EDC_POPEN 491

_EDC_PUTENV_COPY 491

_EDC_RRDS_HIDE_KEY 492

_EDC_STOR_INCREMENT 492

_EDC_STOR_INCREMENT_B 492

_EDC_STOR_INITIAL 493

_EDC_STOR_INITIAL_B 493

_EDC_ZERO_RECLEN 494

_ICONV_UCS2 832

_ICONV_UCS2_PREFIX 827

BIDIATTR 473

BIDION 473

locale 477

naming conventions 480

using 479

EOF (end of file)
resetting terminal I/O 209

equality operators
decimal in C 393

ERRCOUNT run-time option 421

errno values 951

errors, debugging 428

ESCON channels, striped data sets 111

ESDS (Entry-Sequenced Data Set)
alternate index keys 167

use of 164

established signals 424

examples
ccngas1 65

ccngbid1 862

ccngca1 267

ccngca10 264

ccngca2 266, 267

ccngca3 268

INDEX 1003

examples (continued)
ccngca5 266

ccngca6 274

ccngca7 277

ccngca9 263

ccngcc2 845

ccngch1 415

ccngch2 417

ccngci1 653

ccngci3 667

ccngcl1 788

ccngcl2 789

ccngcl3 790

ccngcp1 676

ccngcp2 678

ccngcp3 680

ccngcp4 681

ccngcp5 684

ccngcp6 685

ccngcp7 686

CCNGDB4 693

ccngdc1 392

ccngdc2 393

ccngdc3 403

ccngdc4 405

ccngdi1 238

ccngdi2 243

ccngdl1 799

ccngdw1 690

ccngdw2 689

ccngec1 434

ccngev1 495

ccngev2 496

ccnggd1 700

ccnggd2 702

ccnghc1 919

ccnghf1 149

ccnghf2 151

ccnghf3 154

ccnghf4 157

ccngim1 708

ccngim2 710

ccngim3 712

ccngip1 942

ccngip2 947

ccngis1 716

ccngis2 716

ccngis3 716

ccngis4 717

ccngis5 717

ccngis6 718

ccngis7 718

ccngis8 719

ccngis9 719

ccngisa 719

ccngisb 720

ccngmf1 223

ccngmf2 224

ccngmf3 229

ccngmf4 230

ccngmi1 929

examples (continued)
ccngmi2 930

ccngmt1 642

ccngmt2 643

ccngmt3 644

ccngmv1 872

ccngmv2 875

ccngof1 47

ccngop1 537

ccngop2 537

ccngop3 516

ccngos1 104

ccngos2 105

ccngos3 128

ccngos4 135

ccngqm1 721

ccngqm2 724

ccngqm3 725

ccngre1 384

ccngre2 385

ccngre3 386

ccngre4 387

ccngsp1 566

ccngsp2 567

ccngsp3 570

ccngsp4 574

ccngsp5 575

ccngsp6 579

ccngsp7 580

ccngsp8 585

ccngsp9 587

ccngspa 596

ccngspb 597

ccngspc 598

ccngspd 588

ccngspe 590

ccngspf 592

ccngth1 372

ccngvs1 168

ccngvs2 193

ccngvs3 198

ccngvs4 201

ccngwt1 940

ccngwt2 941

ccnngci2 663

machine-readable xxx

naming of xxx

softcopy xxx

using DB2 with C 693

exception handling
C exceptions under C++ 413

C-IMS 706

C++-IMS 706

CEEBXITA assembler user exit 614

decimal type 405

description 413

hardware exceptions under C++ 414

optimizing 508

EXEC CICS commands
FREEMAIN 660

GETMAIN 660

1004 z/OS V1R8.0 XL C/C++ Programming Guide

EXEC CICS commands (continued)
how to use 652

LINK 659

RETURN 660

WRITEQ TD 240

XCTL 659

exec family of functions
data definition considerations 143

described 528

EXECUTE extended parameter list request 271

EXH compiler option 534

export pragma 521

EXPORTALL compiler option 534

exporting functions 292

exporting source to other sites 851

expressions, optimizing 515

extended parameter list 269

extern declaration
using for linkage to other languages 249

external
static 382

variables 513, 517

F
F-format records 28

families
address 439

socket 438

fclose() library function
_EDC_COMPAT environment variable 489

See closing

fcntl() library function 139

fdelrec() library function
using to delete records 169, 178

fetch() library function
and writable statics 378

calling other z/OS XL C/C++ modules in C 520

system programming C environment 561

under CICS 659

fflush() library function
_EDC_COMPAT environment variable 489

See also flushing

optimizing code 528, 529

fgetc() library function
See reading

fgetpos() library function
_EDC_COMPAT environment variable 489

See also positioning

optimizing code 528

fgets() library function
See also reading

optimizing code 527

fgetwc() library function 70

fgetws() library function 71

FIFO
mkfifo() 147, 149

special files
creating 140

using 139, 149

filecaches
optimizing 551

files
conversion 160

large support 156

memory
closing 227

extending 227

flushing 226

opening 218

positioning 227

reading 225

repositioning 227

writing 226

named pipe 149

origin of OS attributes 118

OS
flushing 127

opening 99

reading from 121

removing 136

renaming 136

repositioning 130, 133

writing to 122

tagging 160

VSAM
closing 191

deleting a record 178

flushing 181

locating a record 179

reading a record 175

repositioning 179

updating a record 177

writing a record 176

z/OS, opening 99

filetag pragma 843

fixed-format records
overview 28

standard format 28

fldata() library function
HFS I/O 159

memory file I/O 228

OS I/O files 136

terminal I/O 214

floating-point
IEEE 409

floating-point registers 268

flocate() library function
VSAM data sets 167, 179

flushing
binary streams, wide character I/O 74

buffers for terminal files 213

HFS records 146

memory files 226

OS I/O files 127

terminal files 213

text streams, wide character I/O 74

VSAM data sets 181, 188

z/OS Language Environment message file 234

fopen() library function
See also opening

INDEX 1005

fopen() library function (continued)
HFS files 139

list of parameters, for
HFS I/O 143

memory file I/O 219

terminal I/O 208

VSAM I/O 172

z/OS OS I/O 114

restrictions 50

under MTF 648

for statement 517

fork() library function
data definition considerations 143

using with memory files 528

form feed escape sequence \f 123

Format-D files restriction 27

fprintf() library function
See writing

fputc() library function
See also writing

optimizing code 527

fputs() library function
See also writing

optimizing code 527

fputwc() library function 71

fputws() library function 71

fread() library function
See also reading

optimizing code 527, 528

FREE=CLOSE parameter, DD statement 102

freestanding applications
EDCXISA 565

EDCXSTRL 564

EDCXSTRT 563

EDCXSTRX 564

freopen() library function
See also opening

HFS files 139

noseek parameter
See also NOSEEK parameter

in-stream data sets 109

under MTF 648

VSAM data sets 170

warning 52

fscanf() library function
See reading

fseek() library function
_EDC_COMPAT environment variable 489

See also repositioning

optimizing code 527

fsetpos() library function
See also repositioning

optimizing code 528

fstream class 41

ftell() library function
_EDC_COMPAT environment variable 489

See repositioning

full buffering 63

functions
arguments 514

descriptors 291

functions (continued)
exported 292

imported 292

fupdate() library function 169, 177

fwprintf() library fiunction 71

fwrite() library function
See also writing

optimizing code 527, 528

fwscanf() library function 71

G
GDDM (Graphical Data Display Manager)

interface 699

with z/OS XL C/C++ 699

GDG (Generation Data Group)
C example 104

C++ example 105

input and output 102

genxlt utility 801

getc() library function
See reading

getchar() library function
See reading

getenv() library function 479

getsyntx() library function 732

getwc() library function 71

getwchar() library function 71

global assembler user exit 611

global variables 513

graph coloring register allocation 532

graphics support 699

H
hard-coding 839

hardware signals 425

HEAP run-time option
system programming C environment 561

HFS (Hierarchical File System)
character special 140

closing files 147

creating files 139

deleting 147

directory 140

example 154, 157

FIFO 140

file types 139

flushing records 146

I/O functions, example program 153

I/O stream library 139

I/O, description 46

input and output 139

link 140

naming files 140

reading streams and files 145

record I/O rules 144

regular 139

setting positions within files 146

writing to streams and files 145

1006 z/OS V1R8.0 XL C/C++ Programming Guide

high-level
language user exits

CEEBINT 610

qualifier
defaults 101, 219

running without RACF 101, 219

setting the user prefix under TSO 101, 219

hiperspace memory files
I/O, description 47

input and output 217

POSIX restrictions 48

specifying buffer size, setvbuf() 218

thread affinity restrictions 377

horizontal tab escape sequence \t 124

hybrid coded character set, using 839

I
I/O

binary stream 26

card input and output 112

category descriptions
CICS data queues 48

HFS files 46

hiperspace memory files 47

memory files 47

OS files 46

terminal 46

VSAM files 46

z/OS Language Environment message files 48

CICS 231, 656

debugging 235

DUMMY data set output 112

errors 235

Hierarchical File System (HFS) 139

functions 153

using with I/O 139

hiperspace memory files 217

in-stream data sets 109

low-level z/OS UNIX System Services 153

memory file 217

multivolume data sets 110

object-oriented 39

optical reader input 112

OS
See OS I/O

pipe 147

printer output 112

record
introduction 26

model 27

rules, HFS 144

restrictions in multithreaded applications 377

striped data sets 111

summary table 44

sysout data set 109

tapes 110

terminal 207

text stream 25

wide characters 69

z/OS Language Environment message file 233

I/O interfaces 15

i/o stream libraries
optimizing 529

I/O Stream Library 79

I/O Streams File I/O 39

IBM-1047 (APL 293), CICS 651

IBM-1047 coded character set
converting code from 919

converting code to 841

iconv utility
converting code sets 801

preparing source code for exporting 851

iconv() library function 802

IEBGENER utility (TSO)
tape files 110

IEEE Floating-Point 409

IEFUSI exit routine
MEMLIMITvalue 344

if statement 517

ifstream class 41

IGNERRNO compiler option 534

ILP32
and LP64 337

ILP32 to LP64 migrations 363

alignment differences 345

alignment issues 345

assignment issues 349

availability of suboptions 344

conditional compiler directives 363

conversions between int and pointer 354

converters 363

customized locales 363

debugging 362

ensuring portability 341

explicit types 360

function prototypes 362

header files 353, 360

localedef utility 363

locales 363

LONG_MAX 359

padding 361

pointer cast conversions 355

pointer declarations 353

portability issues 343, 349

portable coding 360

post-migration activities 341

pre-migration activities 340

precision 355

SAA 363

shared structures 356, 361

suffixes 360

type definitions 360

unsuffixed numbers 358

IMEMLIM variable
to override the MEMLIMIT default 344

IMS (Information Management System)
default high-level qualifier 101, 219

error handling 706

opening files 101, 219

other considerations 706

redirecting standard streams 91

INDEX 1007

IMS (Information Management System) (continued)
using with CICS 659

with z/OS XL C/C++ 705

z/OS UNIX System Services 949

in-stream data sets
delimiter for data 109

input 109

noseek parameter 109

include files
with z/OS UNIX System Services sockets 457

INCLUDE statement, MVS 611

INFO compiler option
ensuring portability to LP64 341

INIT token preinitialization 271

initialization
nested enclave

CEEBXITA’s function code for 615

using CEEBXITA 612

inlining
optimization 536

suggestions 537

under IPA 539

input and output 15

installation-wide assembler user exit 611

instruction scheduling 532

integer constants
64-bit 355

interaction with other IBM products 18

interface
CICS 651

DB2 691

DWS 689

GDDM 699

IMS 705

ISPF 715

locale-sensitive 732

preinitialized program 270

interlanguage calls
C or C++ and assembler 255

using linkage specifications 249

interleaving
standard streams 81

without sync_with_stdio() 83

international enabling
for programming languages 731

z/OS XL C/C++ support for 732

Internet address 440

internetworking concepts 435

interprocess communication
asynchronous signal delivery 423

z/OS TCP/IP considerations 455

INTRDR, using to create job stream within a

program 110

ios class 39

iostream
optimizing 508

iostream header file 39

iostream.h header file 39

IPA
compiler option 534

IPA (continued)
flow of processing

IPA 543

IPA Compile step 543

IPA Link step 545

non-IPA 543

IPA(LINK) compiler option
as of z/OS V1R8 XL C/C++ 344

isalnum() macro 518

isalpha() macro 518

ISAM data sets, restriction 99

ISASIZE run-time option
system programming C environment 561

iscics() library function 659

iscntrl() macro 518

isdigit() macro 518

ISearchByClassExample 852

isgraph() macro 518

islower() macro 518

isolated_call 522

ISPF (Interactive System Productivity Facility) 715

isprint() macro 518

ispunct() macro 518

isspace() macro 518

isupper() macro 518

isxdigit() macro 518

J
JCL procedures

64-bit virtual memory 344

setting MEMLIMIT value 344

K
KANJI run-time messages 599

keyboard 959

keyboard, mapping variant characters 871

KSDS (Key-Sequenced Data Set)
alternate index, under VSAM 167

description 164

L
Language Environment 9

large format sequential data sets 111

LC_ALL locale variable 744

LC_COLLATE locale variable 744

LC_CTYPE locale variable 744

LC_MONETARY locale variable 744

LC_NUMERIC locale variable 744

LC_SYNTAX locale variable 767

LC_TIME locale variable 744

LC_TOD locale category 791

LC_TOD locale variable 744

leaves pragma 522

LIBANSI compiler option 534

library extensions 520

library lookasides
optimizing 551

line buffering 63

1008 z/OS V1R8.0 XL C/C++ Programming Guide

linear data sets 165

link edit 458

link files (HFS), creating 140

link pack areas
optimizing 551

link() library function 140

linkage editor, CICS 651

linkage pragma for interlanguage calls 268

linking 11

kinds of linkage 250

sockets programs 454

syntax 249

listen(), network example 443

listings, locale sensitive 848

loading
named module into storage 599

VSAM data sets 176

local
constant propagation 531

expression elimination 531

variables 513

localdtconv() library function 732

locale
ASCII method files 769, 893

C 793

categories
LC_ALL 744

LC_COLLATE locale variable 744

LC_MONETARY locale variable 744

LC_NUMERIC locale variable 744

LC_SYNTAX locale variable 767

LC_TIME locale variable 744

LC_TOD locale variable 744

LC_TYPE locale variable 744

CICS support 651

compiler option examples 847

converting existing work 853

customizing 785

environment variables 477

generating an object module 848

hybrid coded character set, using 839

library functions
localdtconv() 732

localeconv() 732

setlocale() 732

LOCALE compiler option 847

localeconv() library function 744

macros 844

overview of z/OS XL C/C++ support 732

predefined 846

source-code functions summary 843

summary of support in compiler 848

tests for SAA or POSIX 799

TZ or _TZ environment variable 791

using with CICS 658

LOCALE compiler option 847

localeconv() library function 732

localedef utility 363

example 905

locales
under ILP32 and LP64 363

locales, customized 363

logical record length parameter
See LRECL (logical record length) parameter

LookAt message retrieval tool xxxi

loop statements, optimizing 516

low-level z/OS UNIX System Services I/O 153

LP64
and ILP32 337

LP64 environment
advantages and disadvantages 338

application performance and program size 338

migrating applications to 340

pointer assignment 354

restrictions 339

LP64 strategy 340

LPA (Link Pack Area) 382

LRECL (logical record length) parameter
defaults 50

fopen() library function
See also opening

memory file I/O 220

terminal I/O 208

VSAM data sets 172

z/OS OS I/O 115

lrecl=X, OS I/O 115

M
m_create_layout() library function 856

m_destroy_layout() library function 859

m_getvalues_layout() library function 857

m_setvalues_layout() library function 857

m_transform_layout() library function 858

m_wtransform_layout() library function 859

machine print-control codes 28

macros
EDCDSAD 259

EDCEPIL 259

EDCPRLG 259

EDCPROL 259

EDCXCALL 259

EDCXEPLG 259

EDCXPRLG 259

use with locale 844

main task for MTF 627

malloc() library function
system programming C environment 572, 577, 595

mapping variant characters 871

MB_CUR_MAX, effect on DBCS 69

member, PDS and PDSE 106

memcmp library function 519

MEMLIMIT default value
64-bit virtual memory 344

overriding 344

setting 344

memory
optimizing 549

memory files
automatic name generation 221

closing 227

example 47, 229

INDEX 1009

memory files (continued)
example program 229

extending 227

flushing 226

I/O, description 47

in hiperspace 217

input and output 217

opening 218

optimizing 529

positioning within 227

reading from 225

repositioning within 227

return values for fldata() 228

simulated partitioned data sets
description 222

example 223, 224

specifying asterisk as file name 221

support under CICS 657

text mode treated as binary 221

ungetc() considerations 226

using to optimize code 529

writing to 226

memset library function 519

message retrieval tool, LookAt xxxi

method files 769, 893

migrating applications
from ILP32 to LP64 340

migration issues, ILP32–to-LP64 343

mkdir() library function 140

mkfifo() library function
with HFS files 140, 147, 149

mknod() library function 140, 149

MSGCLASS, matching for SYSOUT data sets 110

MSGFILE (z/OS Language Environment)
closing 234

default destination SYSOUT 89

flushing buffers 234

opening files 233

output 233

reading from 233

repositioning within 234

writing to 234

MTF (multitasking facility)
coding for 635

compiling 644

concepts illustrated 630

DD statements 646

designing for 635

dynamic commons 641

EDCMTFS 645

examples 639

independence requirement 635

introduction to 627

Job Control Language (JCL) 645, 647

link-editing considerations 646

linking 644

load modules 644

modifying run-time options 646

multithreading 378

passing data 637

restrictions 647

MTF (multitasking facility) (continued)
rules 635

running under 646

tasks 627

with z/OS XL C++ 557

multibyte characters 69

effect of MB_CUR_MAX 69

reading 70

writing 71

multiple buffering 118

multiple invocations, preinitialized program 269

multiple threads 365

multiplicative operators, decimal 392

multivolume data sets, opening 110

mutex 367

MVS (Multiple Virtual System)
alternative initialization routine 563

building freestanding applications 565

Data Window Services (DWS) 689

file names 99

file names for memory files 218

listing PDS members 941

reentrant modules 566

MVS data sets
optimizing 527

N
named pipes

example 151

using 149

naming environment variables 480

natural reentrancy 381

NCP subparameter
multiple buffering 118

network byte order 440

network communication basics 436

network, application example 447

new
optimizing 509

newline escape sequence \n 123

nl_langinfo() library function 732

NOARGPARSE run-time option 273

non-DASD devices, I/O 112

nonoverrideable run-time options in the user exit 617

NOSEEK parameter
in-stream data sets 109

memory file I/O 220

sequential concatenations 108

terminal I/O 209

VSAM data sets 174

z/OS OS I/O 117

Notices 961

O
object-oriented model for I/O 39

OBJECTMODEL compiler option 535

ofstream class 41

Open Socket 435

1010 z/OS V1R8.0 XL C/C++ Programming Guide

open() library function
for low-level z/OS UNIX System Services files 140

HFS files 139

with pipes 150

opening
CICS data queues 48

determining type of file to open 44

files for I/O, overview 43

HFS files 46, 141

memory files
description 47

example 47

memory I/O files 218

multibyte character files 70

OS files 46

terminal files 207

terminal I/O files 46

VSAM data sets 46, 170

z/OS Language Environment message files 48, 233

operators, decimal
arithmetic 392

assignment 395

cast 396

summary 396

unary 395

optica/reader input 112

optimization
accessing HFS files 528

additional compiler options 533

ANSI aliasing 509

application performance 553

arithmetic constructions 516

C++ 507

code motion 532

common expression elimination 532

compilation time 553

constant propagation 532

control constructs 516

conversions 515

dead code elimination 532

dead store elimination 532

declarations 517

dynamic memory 549

expressions 515

filecaches 551

fixed standard format records 28

function arguments 514

general notes 507

graph coloring register allocation 532

i/o stream libraries 529

inlining 536, 537

inlining under IPA 539

instruction scheduling 532

levels 540

library extensions 520

library functions 518

library lookasides 551

link pack areas 551

loop statements 516

memory 549

memory files 529

optimization (continued)
MVS data sets 527

noseek parameter for OS I/O 117

OPTIMIZE 531

pointers 513

programming recommendations 28

storage 549

straightening 532

strength reduction 532

value numbering 531

variables 513

virtual lookasides 551

XPLINK 539

OPTIMIZE
optimizing 531

option_override 522

order, network byte 440

OS I/O
acc= parameter 116

asis parameter 116

asynchronous reads 117, 118

asynchronous writes 117, 118

buffering 117

byteseek parameter 117

closing files 133

description 46

fgetpos() and ftell() values 131

flushing records
description 127

example 128

I/O stream library 99

in-stream data sets 109

lrecl=X 115

multivolume data sets 110

opening files 99

overview 99

password= parameter 116

PDS and PDSE considerations
BLKSIZE values 116

LRECL values 116

overview 106

RECFM values 115

reading from files 121

repositioning within files 130

space= parameter 116

striped data sets 111

tapes 110

type= parameter 116

ungetc() considerations 129, 131

writing to files 122

OS linkage 249, 257, 268

os parameter, fopen()
memory file I/O 221

terminal I/O 209

VSAM I/O 174

z/OS OS I/O 117

overlapped I/O 118

overrideable run-time options in the user exit 617

INDEX 1011

P
packaging considerations 955

packed decimal
assignments 391

conversions 396

declarations 389

operators 391

using with CICS 658

variables 390

parallel functions 628

parameter list, OS 257

partitioned concatenation
compatibility rules 108

data sets 107

passing parameters
CSP 675

OS 257

passing streams across system calls 92

password= parameter
memory file I/O 220

VSAM data sets 173

z/OS OS I/O 116

PATH, under VSAM 167

pathname, under POSIX.1 141

PDF documents xxx

PDS (partitioned data set)
input and output 106

listing members 941

memory files simulation
description 222

example 223, 224

opening 115

OS I/O, restriction on opening 106

PDSE (partitioned data set extended)
input and output 106

opening 115

OS I/O, restriction on opening 106

performance
impact from BYTESEEK mode for OS files 131

improvements by using fixed standard format

records 28

memory files 217

noseek parameter for OS I/O 117

opening memory files 221

specifying FBS format 115

persistent C environments 572

pipe() library function 140

pipes
creating 140

I/O 147

named 149

unnamed 147

description 140

example 149

PL/I
using linkage specifications 249

PLIST
system programming environment 561

plotters, Graphical Data Display Manager (GDDM) 699

pointer assignments
under LP64 354

pointers 317

64-bit 353

assigning in DLLs 317

optimization 513

portability
between ILP32 and LP64 360

from ILP32 to LP64 341

ILP32–to-LP64 issues 343

INFO 341

long and int 349

VM/CMS and z/OS filenames 101

WARN64 342

portable character set 837, 867

ports
description 440

locating 447

positioning
HFS files 146

memory files 227

OS I/O files 130

terminal files 214

z/OS Language Environment message file 234

POSIX
character set 867

locale, defined 793

POSIX C locale and SAA C locale differences 799

pragma
See pragmas

pragmas
convert 851

disjoint 521

environment 569, 571

export 521

filetag
??=pragma filetag directive 843

inline 522

isolated_call 522

leaves 522

linkage 565

noinline 522

option_override 522

reachable 522

runopts
description 600, 601

heap 646

IMS 705

plist 561

stack 646

strings 522

unroll 523

variable 523

NORENT 381

RENT 381

with XPLINK and SQL 692

precisionof operator 395

predefined locale 846

preinitialization
ARGPARSE run-time option 273

CALL token 271

example 273

INIT token 271

1012 z/OS V1R8.0 XL C/C++ Programming Guide

preinitialization (continued)
TERM token 271

z/OS 278

prelinking 11

presentation interface 699

printer output
Graphical Data Display Manager (GDDM) 699

printf
64-bit 359

printf() library function
See writing

program management binder 13

protocols, transport 436

putc() library function
See also writing

optimizing code 527

putchar() library function
See writing

puts() library function
See writing

putwc() library function 71

putwchar() library function 71

Q
QMF (Query Management Facility)

with has SAA callable interface 721

R
RACF (Resource Access Control Facility)

no hyphens in names for 100

qualifier required in data set name 101

raise() library function
error handling 420

RBA (Random Byte Address)
in VSAM 167

RDW (record descriptor word) 115

reachable pragma 522

read-write lock 367

read() library function
HFS files 145

with pipes 150

reading
from HFS files 145

from memory files 225

from OS I/O files 121

from terminal files 210

from the z/OS Language Environment message

file 233

from VSAM data sets 175

multibyte characters 70

using recfm=U 115

realloc() library function
system programming C environment 577, 595

reason codes
in user exits 616

RECFM (record format)
F (fixed-format) 28

memory file I/O 220

overview 27

RECFM (record format) (continued)
RECFM defaults 50

recfm=* extension 49, 115

recfm=A extension 115

restrictions 52

S (fixed standard) 28

S (variable spanned) 32

specifying 49

terminal I/O 208

U (undefined format)
overview 34

reading OS files 115

V (variable format)
overview 31

VSAM data sets 172

z/OS OS I/O 114

record
empty

_EDC_ZERO_RECLEN 34, 494

files, using fseek() and ftell() 133

fixed standard format 28

HFS I/O rules 144

I/O
byte stream behavior 36

fixed-format behavior 31

introduction 26

restriction 70

undefined-format behavior 36

variable-format behavior 34

spanned 32

specifying length 49

undefined-length 34

variable-length 31

zero-byte
_EDC_ZERO_RECLEN 34, 494

redirection
standard streams 79

introduction 89

to fully qualified data sets 89

using DD statements 89

using freopen() 89

using PARM 89

standard streams in a system programming C

environment 561

stderr, with z/OS Language Environment MSGFILE

option 87

stream, using assignment 87

streams under CICS 91

streams under IMS 91

streams under TSO
from the command line 91

introduction 91

streams, using freopen() 87

symbols 86

reentrancy
in z/OS XL C/C++ 381

limitations 382

modified CEEBXITA must be reentrant 614

with respect to CICS 666

register
allocation 532

INDEX 1013

register (continued)
conventions 268

variables 513

regular HFS files 139

relational operators
decimal in C 393

relative byte offset 131

release changes 3

remove() library function
memory I/O files 228

OS I/O files 136

rename() library function
OS I/O files 136

RENT compiler option 381

repositioning
binary streams, wide character I/O 75

HFS files 146

memory files 227

OS I/O files 130

terminal files 214

text streams, wide character I/O 75

VSAM records 179

z/OS Language Environment message file 234

restrictions, compiler 454

retaining for multiple invocations
assembler to C repeatedly 269

preinitialized program 269

return
codes

__amrc structure 191

CEEAUE_RETC field of CEEBXITA and 615

in user exits 615

value under CICS 659

rewind() library function
See repositioning

RMODE processing option
for CEEBXITA user exit 614

ROCONST compiler option 535

controlling external static 382

ROSTRING compiler option 535

controlling writable strings 383

RPC (Remote Procedure Call) 455

RRDS (Relative Record Data Set)
choosing whether key and data are contiguous 175

choosing whether key is returned with data on

read 176

key structure 175

related environment variable 492

use of 164

RRN (Relative Record Number)
under VSAM 168

RTTI
optimizing 508

RTTI compiler option 535

run-time
messages

EDCXLANE 599

EDCXLANK 599

UENGLISH 599

options
in the user exit 612, 617

run-time (continued)
options (continued)

TRAP 613, 614, 617

user exits 609

run-time library file types 16

Run-time type identification
optimizing 508

S
S370 locale 793

SAA (Systems Application Architecture)
applications using QMF callable interface 721

differences between C and POSIX locales 799

locale 793

scanf() library function
See reading

screen layouts 699

SEEK_CUR macro
effects of ungetc() 131

effects of ungetwc() 76

seeking
OS I/O files 130

terminal files 214

within HFS files 146

within memory files 227

z/OS Language Environment message file 234

select(), network example 444

sequential
concatenation

compatibility rules 108

data sets 107

noseek parameter 108

processing 175, 176

sequential data sets, large format 111

server
allocation with socket() 443

locating the port 447

perspective 442

service routines 577

session
typical TCP socket 445

typical UDP socket 446

setenv() library function
setting environment variables 479

setlocale() library function
description 732

not thread-safe 378

setvbuf() library function
hiperspace memory files 63, 218

specifying size of buffer for hiperspace 218

usage 529

severity of a condition
CEEBXITA assembler user exit and 616

shaping characters 856

shared programs 381

shareoptions specification, VSAM
deleting records 177

opening a data set 171

shift-in character (DBCS) 124

shift-out character (DBCS) 124

1014 z/OS V1R8.0 XL C/C++ Programming Guide

shortcut keys 959

SIGABND signal 425

SIGABRT signal 425

SIGDANGER signal 425, 426

SIGDUMP signal 425, 426

SIGFPE signal
error condition 425

under decimal 395

SIGILL signal 425

SIGINT signal 425

SIGIOERR signal 243, 425

signal
actions, defaults 428

delivery
ANSI C rules 421

asynchronous 423

POSIX rules 421

handling
default 428

disabled 425

enabled 425

established 424

hardware 425

raise 420

software 425

with signal() and raise() 420

with z/OS Language Environment 420

SIGSEGV signal 425

SIGTERM signal 425

SIGUSR1 signal 425

SIGUSR2 signal 425

sizeof operator 395

SMP/E
packaging considerations 955

socket
address 440

address families 439

addressing within 439

AF_INET domain 441

AF_UNIX domain 442

client perspective 444

compiling 454

data sets 457

datagram 439

defined 435, 437

domains 439

families 438

include files 457

Internet 435

linking 454

local 435

types
datagram 438

guidelines for using 439

stream 438

typical TCP session 445

typical UDP session 446

using over TCP/IP 435

z/OS TCP/IP 455, 456

z/OS UNIX System Services specific 438

software signals 425

space= parameter
memory file I/O 220

terminal I/O 208

VSAM data sets 172

z/OS OS I/O 116

spanned records 32

SPILL compiler option 535

spool data sets 489

sprintf() library function
in freestanding routines 566

system programming C environment 572, 577, 595

square brackets ([and])
displaying on workstation or 3270 871

displaying square brackets 874

square brackets 874

sscanf() library function
character to integer conversions 519

stand-alone modules 562

standalone CICS translator 671

standard
records 28

stream
association with ddnames 90

buffering 63

cerr 40

cin 40

clog 40

cout 40

default open modes 80

direct assignment 87

global behavior 95, 490

interleaving 81

interleaving without sync_with_stdio() 83

passing across a system() call 92

redirecting 79

redirection to fully qualified data sets 89

redirection under MVS 89

restrictions in threaded applications 377

stderr 79

stdin 79

stdout 79

support under CICS 656

using 79

standard error, redirecting 79

standard in, redirecting 79

standard out, redirecting 79

static variables 513

STDERR
redirecting with z/OS Language Environment

MSGFILE option 87

stdin, C standard input stream 79

stdout, C standard output stream 79

STEPLIB DD statement 646

storage
allocating with the system programming C

environment 560

freeing with EDCXFREE 598

getting with EDCXGET 596

optimizing 549

page-aligned, getting with EDCX4KGT 597

under CICS 660

INDEX 1015

straightening 532

strcat() library function 519

stream sockets 439

streambuf class 39

streams, orientation of 69

strength reduction 532

STRICT_INDUCTION compiler option 536

strings
comparisons 519

pragma 522

processing 519

striped data sets 111

strlen library function 519

structure alignment
64-bit 345

structure comparison 519

structures
ILP32 to LP64 alignment problems 356

rule of alignment 345

stub routines
in a user-server environment 594

svc99() library function 658

symbolic link (HFS) files, creating 140

symlink() library function 140

syntax diagrams
how to read xxiii

SYSERR data set
with stdout 80, 89

SYSIN data set for stdin
description of 80, 89

SYSOUT data set
DCB attributes, defaults 110

default destination for z/OS Language Environment

MSGFILE 89

output 109

SYSPRINT data set
with stdout 80, 89

system
exit routines 568

functions
built-in 560

memory management 560

programming facilities
additional library routines 600

building persistent C environments 572, 573

building system exit routines 569

building user-server environments 594

freestanding applications 562

run-time messages 599

tailoring the environment 595

with z/OS XL C++ 557

System Programming C facility 17

system() library function
CICS 659

library extension 521

programming C environment 561

SYSTERM data set
with stdout 80, 89

T
tab, horizontal 124

tab, vertical 124

tapes
input and output 110

multivolume data sets 110

TARGET compiler option
IMS 705

packaging considerations 955

tasks
using an implicitly loaded DLL in your simple DLL

application>
steps for 304

tasks, using MTF 627

TCP socket session 445

TCP/IP
See socket

templates
TEMPINC

examples of source files 468, 469

JCL to compile examples 470

regenerating the template instantiation file 470

TEMPLATEREGISTRY
changing and recompiling parts of program 471

instantiation with template registry 471

using TEMPINC or NOTEMPINC
multipurpose header file 467

temporary data sets (MVS)
using & names 100

temporary files 217

TERM token preinitialization 271

terminals
closing 214

flushing 213

Graphical Data Display Manager (GDDM) 699

I/O
description 46

overview 207

reading from files 210

writing to files 212

opening I/O files 207

positioning within 214

responses to fldata() 214

termination
enclave

as indicated in CEEAUE_ABND field of

CEEAUE_FLAGS 617

as indicated in CEEAUE_ABTERM field of

CEEAUE_FLAGS 616

CEEBXITA’s behavior during 612

CEEBXITA’s function codes for 615

process 613, 615

text files
ASA RECFM fixed-format behavior 31

ASA RECFM undefined-format behavior 35

ASA RECFM variable-format behavior 34

non-ASA RECFM fixed-format behavior 29

non-ASA RECFM undefined-format behavior 35

non-ASA RECFM variable-format behavior 34

RECFM byte stream behavior 36

using fseek() and ftell() 132

1016 z/OS V1R8.0 XL C/C++ Programming Guide

text I/O 25

threads
cancel 374

cleanup 375

condition variable 367

create 365

functions 365

low-level z/OS UNIX System Services I/O 153

management 365

mutex 367

read-write lock 367

signals 372

thread-specific data 370

using in z/OS UNIX System Services

applications 365

using with MVS files 376

throw 413

time zone
customizing 791

specifying 744

tolower() macro 518

toupper() macro 518

traceback 414

translation tables 801

transport protocols 436

TRAP run-time option
CEEBXITA assembler user exit and 613

how CEEAUE_ABND is affected by 617

IMS considerations 706

try 413

TSO (Time Sharing Option)
default high-level qualifier 101, 219

opening files 101, 219

redirecting standard streams 91

setting the user prefix 101, 219

variant characters 872

TUNE compiler option 533

type= parameter
memory file I/O 220

terminal I/O 209

VSAM data sets 173

z/OS OS I/O 116

types, sockets 439

TZ environment variable 791

tzset() library function
not thread-safe 378

U
UDP socket session 446

ulimit command
MEMLIMIT system parameter 344

unary operators, decimal data type
digitsof 395

precisionof 395

sizeof 395

unbuffered I/O
setvbuf() function 117

undefined format records 34

ungetc() library function
_EDC_COMPAT environment variable 489

ungetc() library function (continued)
memory file I/O, effect on fflush() 226

OS I/O, effect on fflush() 129

OS I/O, effect on fgetpos() and ftell() 131

SEEK_CUR 131

ungetwc() library function
effect on fflush(), wide character I/O 74

effect on fgetpos(), ftell() and fseek() 76

seek_cur 76

universal reference time 791

UNIX System Services 13

UNIX System Services C functions 15

unlink() library function
using with named pipes 150

with HFS files 147

unnamed pipes
creating 140

example 149

using 147

UNROLL compiler option 536

unroll pragma 523

unsuffixed numbers
ILP32 to LP64 migrations 358

updating VSAM records 177

user exit
for initialization 612

for termination 611, 612, 613

run-time options 617

under CICS 615, 617

user words 607

user-server stub routines 594

USL 8

V
V-format records 31

value numbering 531

variable pragma 523

variable-format records 31

variables
decimal 390

environment 473

exported 292

external 513

global 513

local 513

locale 477

register 513

static 513

variant characters
detail 837

mapping keyboard 871

mappings 838

use of 837

VB-format records 31

VBS-format records 31

vertical tab escape sequence \v 124

vfprintf() library function
See writing

vfwprintf() library fiunction 71

vfwscanf() library function 71

INDEX 1017

virtual
optimizing 508

virtual lookasides
optimizing 551

vprintf() library function
See writing

VS-format records 31

VSAM (Virtual Storage Access Method)
__amrc structure 191

closing a data set 191

example programs 192

KSDS 192

RRDS 200

example showing how to access __amrc

structure 168

I/O operations
deleting a record 178

loading a data set 176

locating a record 179

opening a file 46

overview 164

reading a record 175

repositioning 179

specifying access mode 171

summary of binary I/O operations 189

summary of operations 168

summary of record I/O operations 181

summary of text I/O operations 188

updating a record 177

using fopen() 170

using freopen() 170

writing a record 176

I/O stream library 164

keys 167

KSDS example 193

linear data sets 165

naming MVS data sets 170

organization of data sets 164

Record Level Sharing 182

Relative Byte Addresses (RBA) 167

Relative Record Numbers (RRN) 168

return codes 191

RLS 182

RSDS example 201

Transactional VSAM 182

TVS 182

types and advantages of data sets 166

vwprintf() library fiunction 72

vwscanf() library function 71

W
WARN64 compiler option

identifying portability problems 342

wcsid() library function 732

wide characters
effect of MB_CUR_MAX 69

input and output functions 69

reading streams and files 70

ungetwc() considerations 74

writing streams and files 71

windowing 699

wprintf() library fiunction 72

writable static
assembler code 385

in reentrant programs 381

write() library function
HFS I/O 146

with pipes 150

writing
binary streams, wide character I/O 73

in coded character set IBM-1047 851

multibyte characters 71

text streams, wide character I/O 72

to HFS files 145

to memory files 226

to OS I/O files 122

to terminal files 212

to the z/OS Language Environment message

file 234

VSAM data sets 176

wscanf() library function 71

X
X Windows, z/OS TCP/IP 455

X/Open Socket 435

X/Open Transport Interface (XTI)
concepts 460

transport endpoints 460

transport providers 461

XFER, transfer control 675

xhotc library function 603

xhotl library function 604

xhott library function 604

xhotu library function 605

XITPTR, CXIT control block 614

XL C compiler-specific features 8

XL C/C++ compiler utilities 9

XL C++ compiler-specific features 8

XPLINK
and DB2 services, stored procedures 692

assembler macros 257

register conventions 258

when to use 539

xregs library function 605

xsacc library function 606

xusr() library function 607

xusr2() library function 607

Z
z/OS Language Environment 9

message file I/O, description 48

message file output 233

z/OS TCP/IP
child process creation restrictions 456

configuration file access 456

header file restrictions 455

interprocess communication 455

socket API restrictions 456

z/OS UNIX System Services 13

1018 z/OS V1R8.0 XL C/C++ Programming Guide

z/OS UNIX System Services (continued)
application programming environment 949

I/O, low-level 153

ulimit command 344

z/OS UNIX System Services C functions 15

z/OS XL C compiler-specific features 8

z/OS XL C/C++ compiler utilities 9

z/OS XL C/C++ integrated CICS translator 666

z/OS XL C++ compiler-specific features 8

zero-byte records, _EDC_ZERO_RECLEN 34, 494

INDEX 1019

1020 z/OS V1R8.0 XL C/C++ Programming Guide

����

Program Number: 5694–A01 and 5655–G52

Printed in the United States of America

SC09-4765-07

	Contents
	About this document
	How to read syntax diagrams
	Symbols
	Syntax items
	Syntax examples

	z/OS XL C/C++ and related documents
	Softcopy documents
	Softcopy examples
	z/OS XL C/C++ on the World Wide Web
	Where to find more information
	Using LookAt to look up message explanations
	Using IBM Health Checker for z/OS
	Information updates on the web

	Part 1. Introduction
	Chapter 1. About IBM z/OS XL C/C++
	Changes for z/OS V1R8
	The XL C/C++ compilers
	The C language
	The C++ language
	Common features of the z/OS XL C and XL C++ compilers
	z/OS XL C compiler-specific features
	z/OS XL C++ compiler-specific features

	Class libraries
	Utilities
	dbx
	z/OS Language Environment
	z/OS Language Environment downward compatibility

	About prelinking, linking, and binding
	Notes on the prelinking process
	File format considerations
	The program management binder

	z/OS UNIX System Services
	z/OS XL C/C++ applications with z/OS UNIX System Services C functions
	Input and output
	I/O interfaces
	File types
	Additional I/O features

	The System Programming C facility
	Interaction with other IBM products
	Additional features of z/OS XL C/C++

	Part 2. Input and Output
	Chapter 2. Introduction to C and C++ input and output
	Types of C and C++ input and output
	Text streams
	Binary streams
	Record I/O

	Chapter 3. Understanding models of C I/O
	The record model for C I/O
	Record formats
	Fixed-format records
	Variable-format records
	Undefined-format records

	The byte stream model for C I/O
	Mapping the C types of I/O to the byte stream model

	Chapter 4. Using the Standard C++ Library I/O Stream Classes
	Advantages to using the C++ I/O stream classes
	Predefined streams for C++
	How C++ I/O streams relate to C I/O streams
	Mixing the Standard C++ I/O stream classes, USL I/O stream class library, and C I/O library functions
	Specifying file attributes

	Chapter 5. Opening files
	Prototypes of functions
	Categories of I/O
	Specifying what kind of file to use
	OS files
	HFS files
	VSAM data sets
	Terminal files
	Memory files and hiperspace memory files
	CCNGOF1

	CICS data queues
	z/OS Language Environment Message file
	How to specify RECFM, LRECL, and BLKSIZE
	fopen() defaults
	RECFM defaults
	LRECL and BLKSIZE defaults

	DDnames

	Avoiding Undesirable Results when Using I/O
	How z/OS XL C/C++ determines what kind of file to open

	Chapter 6. Buffering of C streams
	Chapter 7. Using ASA text files
	Example of writing to an ASA file
	CCNGAS1

	ASA file control

	Chapter 8. z/OS XL C Support for the double-byte character set
	Opening files
	Reading streams and files
	Writing streams and files
	Writing text streams
	Writing binary streams

	Flushing buffers
	Flushing text streams
	Flushing binary streams
	ungetwc() considerations

	Setting positions within files
	Repositioning within text streams
	Repositioning within binary streams
	ungetwc() considerations

	Closing files
	Manipulating wide character array functions

	Chapter 9. Using C and C++ standard streams and redirection
	Default open modes
	Interleaving the standard streams with sync_with_stdio()
	Interleaving the standard streams without sync_with_stdio()
	Redirecting standard streams
	Redirecting streams from the command line
	Using the redirection symbols

	Assigning the standard streams
	Using the freopen() library function
	Redirecting streams with the MSGFILE option
	MSGFILE considerations

	Redirecting streams under z/OS
	Under MVS batch
	Using the PARM parameter of the EXEC statement
	Using DD statements

	Under TSO
	From the command line
	Using the parameter list in a CALL command

	Under IMS
	Under CICS

	Passing C and C++ standard streams across a system() call
	Passing binary streams
	Passing text streams
	C++ standard streams considerations

	Passing record I/O streams

	Using global standard streams
	Command line redirection
	Direct assignment
	freopen()
	MSGFILE() run-time option
	fclose()
	File position and visible data
	C++ I/O stream library

	Chapter 10. Performing OS I/O operations
	Opening files
	Using fopen() or freopen()
	Using a data set name
	Using a DDname

	Generation data group I/O
	CCNGOS1
	CCNGOS2

	Regular and extended partitioned data sets
	Partitioned and sequential concatenated data sets
	In-stream data sets
	SYSOUT data sets
	Tapes
	Multivolume data sets
	Striped data sets
	Large format sequential data sets
	Other devices
	Access method selection
	fopen() and freopen() parameters

	Buffering
	Multiple buffering

	DCB (Data Control Block) attributes
	Reading from files
	Reading from binary files
	Reading from text files
	Reading from record I/O files

	Writing to files
	Writing to binary files
	Writing to text files
	Writing to fixed-format text files
	Writing to variable-format text files
	Writing to undefined-format text files
	Truncation versus splitting

	Writing to record I/O files

	Flushing buffers
	Updating existing records
	Reading updated records
	CCNGOS3

	Writing new records
	Binary streams
	Text streams
	Record I/O

	ungetc() considerations

	Repositioning within files
	ungetc() considerations
	How long fgetpos() and ftell() values last
	Using fseek() and ftell() in binary files
	Relative byte offsets
	Encoded offsets

	Using fseek() and ftell() in text files (ASA and Non-ASA)
	Using fseek() and ftell() in record files
	Porting old C code that uses fseek() or ftell()

	Closing files
	CCNGOS4

	Renaming and removing files
	fldata() behavior

	Chapter 11. Performing UNIX file system I/O operations
	Creating files
	Regular files
	Link and symbolic link files
	Directory files
	Character special files
	FIFO files

	Opening files
	Using fopen() or freopen()
	File naming considerations
	Opening a file by name
	Opening a file by DDname
	fopen() and freopen() parameters

	Reading from HFS files
	Opening and reading from HFS directory files
	Writing to HFS files
	Flushing records
	Setting positions within files
	Closing files
	Deleting files
	Pipe I/O
	Using unnamed pipes
	CCNGHF1

	Using named pipes
	CCNGHF2

	Character special file I/O

	Low-level z/OS UNIX System Services I/O
	Example of HFS I/O functions
	CCNGHF3
	CCNGHF4

	fldata() behavior
	File tagging and conversion
	Access Control Lists (ACLs)

	Chapter 12. Performing VSAM I/O operations
	VSAM types (data set organization)
	Access method services

	Choosing VSAM data set types
	Keys, RBAs and RRNs
	Keys for indexed VSAM data sets
	Relative byte addresses
	CCNGVS1
	Relative record numbers

	Summary of VSAM I/O operations

	Opening VSAM data sets
	Using fopen() or freopen()
	File names for MVS data sets: Using a data set name
	File names for MVS data sets: Using a DDname
	Specifying fopen() and freopen() keywords
	fopen() and freopen() keywords
	Keyword descriptions

	Buffering

	Record I/O in VSAM
	RRDS record structure
	Reading record I/O files
	Writing to record I/O files
	Updating record I/O files
	Deleting records
	Repositioning within record I/O files
	flocate()
	fgetpos() and fsetpos()
	ftell() and fseek()
	rewind()

	Flushing buffers
	Summary of VSAM record I/O operations

	VSAM record level sharing and transactional VSAM
	Error reporting

	VSAM extended addressability
	Text and binary I/O in VSAM
	Reading from text and binary I/O files
	Writing to and updating text and binary I/O files
	Deleting records in text and binary I/O files
	Repositioning within text and binary I/O files
	flocate()
	fgetpos() and fsetpos()
	ftell() and fseek()

	Flushing buffers
	Summary of VSAM text I/O operations
	Summary of VSAM binary I/O operations

	Closing VSAM data sets
	VSAM return codes
	VSAM examples
	KSDS example
	CCNGVS2
	CCNGVS3

	RRDS example
	CCNGVS4

	fldata() behavior

	Chapter 13. Performing terminal I/O operations
	Opening files
	Using fopen() and freopen()
	Opening a file by data set name
	Opening a file by DDname
	fopen() and freopen() keywords
	Opening a terminal file under a shell

	Buffering

	Reading from files
	Reading from binary files
	Reading from fixed binary files
	Reading from variable or undefined binary files

	Reading from text files
	Reading from fixed text files
	Reading from variable or undefined text files

	Reading from record I/O files
	Reading from fixed record I/O files
	Reading from variable or undefined record I/O files

	Writing to files
	Writing to binary files
	Writing to fixed binary files
	Writing to variable or undefined binary files

	Writing to text files
	Writing to fixed text files
	Writing to variable or undefined text files

	Writing to record I/O files
	Writing to fixed record I/O files
	Writing to variable or undefined record I/O files

	Flushing records
	Text streams
	Binary streams
	Record I/O

	Repositioning within files
	Closing files
	fldata() behavior

	Chapter 14. Performing memory file and hiperspace I/O operations
	Using hiperspace operations
	Opening files
	Using fopen() or freopen()
	File-naming considerations
	fopen() and freopen() keywords
	Opening hiperspace files

	Simulating partitioned data sets
	CCNGMF1
	CCNGMF2

	Buffering

	Reading from files
	Writing to files
	Flushing records
	ungetc() considerations

	Repositioning within files
	Closing files
	Performance tips

	Removing memory files
	fldata() behavior
	Example program
	CCNGMF3
	CCNGMF4

	Chapter 15. Performing CICS Transaction Server I/O operations
	Chapter 16. Language Environment Message file operations
	Opening files
	Reading from files
	Writing to files
	Flushing buffers
	Repositioning within files
	Closing files

	Chapter 17. Debugging I/O programs
	Using the __amrc structure
	CCNGDI1

	Using the __amrc2 structure
	Using __last_op codes
	Using the SIGIOERR signal
	CCNGDI2

	Part 3. Interlanguage Calls with z/OS XL C/C++
	Chapter 18. Using Linkage Specifications in C or C++
	Syntax for Linkage in C or C++
	Syntax for Linkage in C
	Syntax for Linkage in C++

	Kinds of Linkage used by C or C++ Interlanguage Programs
	Using Linkage Specifications in C++

	Chapter 19. Combining C or C++ and Assembler
	Establishing the z/OS XL C/C++ environment
	Specifying linkage for C or C++ to Assembler
	Parameter lists for OS linkage
	XPLINK Assembler
	Using standard macros
	Non-XPLINK assembler prolog
	Non-XPLINK assembler epilog
	XPLINK Assembler prolog
	XPLINK Call
	CCNGCA9
	CCNGCA10

	XPLINK Assembler epilog
	Accessing automatic memory in the non-XPLINK stack

	Calling C code from Assembler — C example
	CCNGCA4
	CCNGCA2
	CCNGCA5

	Calling run-time library routines from Assembler — C++ example
	CCNGCA1
	CCNGCA2
	CCNGCA3

	Register content at entry to a non-XPLINK ASM routine using OS linkage
	Register content at exit from a non-XPLINK ASM routine to z/OS XL C/C++
	Retaining the C environment using preinitialization
	Setting up the interface for preinitializable programs
	Preinitializing a C program
	CCNGCA6
	CCNGCA7
	CCNGCA8
	Return codes
	User exits in preinitializable programs
	Run-time options
	Calling a preinitializable program

	Multiple preinitialization compatibility interface C environments
	Request modifier 4 environment characteristics
	Request modifier 5 environment characteristics
	Restrictions on using batch environments with preinitialization compatibility interface C environments
	Behaviors when mixing request modifier 4 and request modifier 5

	Using the service vector and associated routines
	Using the service vector
	Load service routine
	Delete service routine
	Get-storage service routine
	Free-storage service routine
	Exception router service routine
	Attention router service routine
	Message router service routine

	Part 4. Coding: Advanced Topics
	Chapter 20. Building and using Dynamic Link Libraries (DLLs)
	Support for DLLs
	DLL concepts and terms
	Loading a DLL
	Loading a DLL implicitly
	Loading a DLL explicitly
	Examples of explicit use of a DLL in an application

	Managing the use of DLLs when running DLL applications
	Loading DLLs
	Sharing DLLs
	Freeing DLLs

	Creating a DLL or a DLL application
	Building a simple DLL
	Example of building a simple C DLL
	Example of building a simple C++ DLL
	Compiling your code
	Binding your code

	Building a simple DLL application
	Steps for using an implicitly loaded DLL in your simple DLL application

	Creating and using DLLs
	DLL restrictions
	Improving performance

	Chapter 21. Building complex DLLs
	Rules for compiling source code with XPLINK
	XPLINK applications
	Modifying noncompliant source

	Non-XPLINK applications
	Modifying noncompliant source

	Compatibility issues between DLL and non-DLL code
	Pointer assignment
	Function pointers

	DLL function pointer call in non-DLL code
	C example
	Non-DLL function pointer call in DLL(CBA) code
	Non-DLL function pointer call in DLL code
	Example of passing a non-DLL function point to DLL code using C and C++

	Function pointer comparison in non-DLL code
	Comparing a DLL function pointer to a non-DLL function pointer
	Example of comparing a DLL function pointer to a non-DLL function pointer using C
	Comparing a DLL function pointer to another DLL function pointer
	Comparison of two DLL function pointers in non-DLL code
	Comparing a DLL function pointer to a constant function address other than NULL

	Function pointer comparison in DLL code

	Using DLLs that call each other

	Chapter 22. The z/OS 64-bit environment
	Overview
	Differences between the ILP32 and LP64 environments
	ILP32 and LP64 addressing capabilities
	ILP32 and LP64 data models and data type sizes

	Advantages and disadvantages of the LP64 environment
	LP64 application performance and program size
	LP64 restrictions

	Migrating applications from ILP32 to LP64
	When to migrate applications to LP64
	Checklist for ILP32-to-LP64 pre-migration activities
	Checklist for ILP32-to-LP64 post-migration activities

	Using compiler diagnostics to ensure portability of code
	Using the INFO option to ensure that numbers are suffixed
	Using the WARN64 option to identify potential portability problems

	ILP32-to-LP64 portability issues
	The IPA(LINK) option and exploitation of 64-bit virtual memory
	Availability of suboptions
	Potential changes in structure size and alignment
	z/OS basic rule of alignment
	Examples of structure alignment differences under ILP32 and LP64

	Data type assignment differences under ILP32 and LP64
	Portability issues with data types long and int

	Pointer declarations when 32-bit and 64-bit applications share header files
	Potential pointer corruption
	Potentially incorrect pointer-to-int and int-to-pointer conversions
	Potential truncation problem with a pointer cast conversion

	Potential loss of data in constant expressions
	Data alignment problems when structures are shared
	Portability issues with unsuffixed numbers
	Example of unexpected behavior resulting from use of unsuffixed numbers
	Example of how a suffix causes the compiler to parse the number differently under ILP32 than under LP64

	Using a LONG_MAX macro in a printf subroutine

	Programming for portability between ILP32 and LP64
	Using header files to provide type definitions
	Using suffixes and explicit types to prevent unexpected behavior
	Defining pad members to avoid data alignment problems
	Using prototypes to avoid debugging problems
	Using a conditional compiler directive for preprocessor macro selection
	Using converters under ILP32 or LP64
	Using locales under ILP32 or LP64
	Customized 64-bit locales
	Old SAA locales

	Chapter 23. Using threads in z/OS UNIX System Services applications
	Models and requirements
	Functions
	Creating a thread
	Synchronization primitives
	Models
	Functions
	Creating a mutex
	Creating a condition variable
	Creating a read-write lock

	Thread-specific data
	Model
	Functions
	Creating thread-specific data

	Signals
	Generating a signal
	sigaction()
	sigprocmask()

	Thread cancellation
	Cancellation Points
	Functions
	Cancelling a thread

	Cleanup for threads
	Functions

	Behaviors and restrictions in z/OS UNIX System Services applications
	Using threads with MVS files
	Multithreaded I/O
	Thread-scoped functions
	Unsafe thread functions
	Fetched functions and writable statics
	MTF and z/OS UNIX System Services threading
	Thread queuing function
	Thread scheduling
	iconv() family of functions

	Chapter 24. Reentrancy in z/OS XL C/C++
	Natural or constructed reentrancy
	Limitations of constructed reentrancy for C programs

	Controlling external static in C programs
	Controlling writable strings
	Example of making strings constant (CCNGRE1)

	Controlling the memory area in C++

	Controlling where string literals exist in C++ code
	Example of how to make string literals modifiable (CCNGRE2)

	Using writable static in Assembler code
	Example of referencing objects in the writeable static-area, Part 1 (CCNGRE3)
	Example of referencing objects in the writeable static-area, Part 2 (CCNGRE4)

	Chapter 25. Using the decimal data type in C
	Declaring decimal types
	Declaring fixed-point decimal constants
	Declaring decimal variables

	Defining decimal-related constants
	Using operators
	Arithmetic operators
	Example of arithmetic operators (CCNGDC1)
	Additive operators
	Relational operators
	Example of relational operators (CCNGDC2)
	Equality operators
	Conditional operators
	Intermediate results

	Assignment operators
	Unary operators
	sizeof operator
	digitsof operator
	precisionof operator

	Cast operator
	Summary of operators used with decimal types

	Converting decimal types
	Converting decimal types to decimal types
	Examples

	Converting decimal types to and from integer types
	Conversion to integer types
	Example of conversion to integer type
	Conversion from integer types
	Example of conversion from integer type

	Converting decimal types to and from floating types
	Conversion to floating types
	Conversion from floating types
	Example of conversion from floating type

	Calling functions
	Using library functions
	Using variable arguments with decimal types

	Formatting input and output operations
	Validating values
	Fix sign
	Decimal absolute value
	Programming example
	Example 1 of use of decimal type (CCNGDC3)
	Example 1 of output from programming
	Example 2 of use of decimal type (CCNGDC4)
	Example 2 of output from programming

	Decimal exception handling
	System programming calls restrictions
	printf() and scanf() restrictions
	Additional considerations
	Error messages
	Decimal exceptions and Assembler interlanguage calls

	Chapter 26. IEEE Floating-Point
	Floating-point numbers
	C/C++ compiler support
	Using IEEE floating-point

	Chapter 27. Handling error conditions, exceptions, and signals
	Handling C software exceptions under C++
	Handling hardware exceptions under C++
	Tracebacks under C++
	CCNGCH1
	CCNGCH2

	AMODE 64 exception handlers
	Scope and nesting of exception handlers
	Handling exceptions

	Signal handlers
	Handling signals with POSIX(OFF) using signal() and raise()
	Handling signals using Language Environment callable services
	Handling signals using z/OS UNIX System Services with POSIX(ON)
	Asynchronous signal delivery under z/OS UNIX System Services
	C signal handling features under z/OS XL C/C++
	Establishing a signal handler
	Enabling a signal
	Interrupting a program
	Raising a signal
	Identifying hardware and software signals
	SIGABND considerations
	SIGIOERR considerations
	Default handling of signals
	Example of C signal handling under z/OS XL C or z/OS XL C++

	Chapter 28. Network communications under UNIX System Services
	Understanding z/OS UNIX System Services sockets and internetworking
	The basics of network communication
	Transport protocols for sockets

	What is a socket?
	z/OS UNIX System Services Socket families
	z/OS UNIX System Services Socket types
	Stream sockets
	Datagram sockets

	Guidelines for using socket types
	Addressing within sockets
	Address families
	Socket address
	Internet addresses
	Ports
	Network byte order
	Addressing within the AF_INET domain
	Addressing within the AF_INET6 domain
	Addressing within the AF_UNIX domain

	The conversation
	The server perspective
	Allocation with socket()
	bind()
	listen()
	accept()
	select()

	The client perspective
	A typical TCP socket session

	A typical UDP socket session
	A typical datagram socket session

	Locating the server's port
	Network application example
	Using common INET
	Compiling and binding
	Using TCP/IP APIs
	Restrictions for using z/OS TCP/IP API with z/OS UNIX System Services

	Using z/OS UNIX System Services sockets
	Compiling under MVS batch for Berkeley sockets
	Sample cataloged procedure additions and changes
	Compiling under MVS batch with X windows for Berkeley sockets
	Compiling using the c89 utility for Berkeley sockets
	Compiling using c89 with X Windows

	Compiling under MVS batch for X/Open sockets
	Sample cataloged procedure additions and changes
	Using API data sets and files for sockets

	Understanding the X/Open Transport Interface (XTI)
	Transport endpoints
	Transport providers for X/Open Transport Interface
	General restrictions for z/OS UNIX System Services

	Chapter 29. Interprocess communication using z/OS UNIX System Services
	Message queues
	Semaphores
	Shared memory
	Memory mapping
	TSO commands from a shell

	Chapter 30. Using templates in C++ programs
	Using the TEMPINC compiler option
	TEMPINC example
	Source file stackadd.cpp
	Source file stackops.cpp
	Template declaration file stack.h
	Template definition file stack.c
	Function prototype stackops.h
	JCL to compile the source files
	Syntax to compile under the z/OS shell

	Regenerating the template instantiation file
	TEMPINC considerations for shared libraries

	Using the TEMPLATEREGISTRY compiler option
	Recompiling related compilation units
	Switching from TEMPINC to TEMPLATEREGISTRY

	Chapter 31. Using environment variables
	Working with environment variables
	Naming conventions

	Environment variables specific to the z/OS XL C/C++ library
	_CEE_DLLLOAD_XPCOMPAT
	_CEE_DMPTARG
	_CEE_ENVFILE
	_CEE_ENVFILE_S
	_CEE_HEAP_MANAGER
	_CEE_RUNOPTS
	_EDC_ADD_ERRNO2
	_EDC_ANSI_OPEN_DEFAULT
	_EDC_AUTOCVT_BINARY
	_EDC_BYTE_SEEK
	_EDC_CLEAR_SCREEN
	_EDC_COMPAT
	_EDC_C99_NAN
	_EDC_ERRNO_DIAG
	_EDC_GLOBAL_STREAMS
	_EDC_POPEN
	_EDC_PUTENV_COPY
	_EDC_RRDS_HIDE_KEY
	_EDC_STOR_INCREMENT
	_EDC_STOR_INCREMENT_B
	_EDC_STOR_INITIAL
	_EDC_STOR_INITIAL_B
	_EDC_ZERO_RECLEN

	Example
	CCNGEV1
	CCNGEV2

	Chapter 32. Using hardware built-in functions
	General instructions
	Floating-point support instructions
	Hexadecimal floating-point instructions
	Binary floating-Point instructions

	Chapter 33. ANSI C/C++ 98 applications and C99
	Obtaining C99 behavior with XL C
	Using C99 functions in XL C++ applications
	Feature test macros that control C99 interfaces in XL C++ applications
	Using C99 functions in C++ applications when ambiguous definitions exist
	Example of code that requires the global namespace syntax

	Part 5. Performance optimization
	Chapter 34. Improving program performance
	Writing code for performance
	Using C++ constructs in performance-critical code
	ANSI aliasing rules
	Using ANSI aliasing rules
	Using variables
	Passing function arguments
	Coding expressions
	Coding conversions
	Example of numeric conversions (CCNGOP3)

	Arithmetical considerations
	Using loops and control constructs
	Choosing a data type
	Using built-in library functions and macros
	Using library extensions
	Using pragmas
	#pragma disjoint
	#pragma export
	#pragma inline (C only)
	#pragma isolated_call
	#pragma leaves
	#pragma noinline
	#pragma option_override
	#pragma reachable
	#pragma strings
	#pragma unroll
	#pragma variable

	Chapter 35. Using built-in functions to improve performance
	Platform-specific functions

	Chapter 36. I/O Performance considerations
	Accessing MVS data sets
	Accessing HFS files
	Using memory files
	Using the C++ I/O stream libraries

	Chapter 37. Improving performance with compiler options
	Using the OPTIMIZE option
	Optimizations performed by the compiler
	Aggressive optimizations with OPTIMIZE(3)

	Additional options that affect performance
	ANSIALIAS
	ARCHITECTURE and TUNE
	COMPRESS
	COMPACT
	CVFT (C++ only)
	EXH (C++ only)
	EXPORTALL
	IGNERRNO
	IPA
	LIBANSI
	OBJECTMODEL
	ROCONST
	ROSTRING
	RTTI
	SPILL
	STRICT_INDUCTION
	UNROLL

	Inlining
	Example of optimization (CCNGOP1)
	Example of optimization (CCNGOP2)
	Selectively marking code to inline
	Automatically choosing functions to inline
	Modifying automatic inlining choices
	Overriding inlining defaults
	Inlining under IPA

	Using the XPLINK option
	When you should not use XPLINK

	Using the IPA option
	Types of procedural analysis
	Program-directed feedback
	Compiler processing flow
	Regular compiler execution
	Compiler execution with IPA

	Chapter 38. Optimizing the system and Language Environment
	Improving the performance of the Language Environment
	Storing libraries and modules in system memory
	Optimizing memory and storage
	Optimizing run-time options

	Tuning the system for efficient execution
	Link pack areas
	Library lookasides
	Virtual lookasides
	Filecaches

	Chapter 39. Balancing compilation time and application performance
	General tips
	Programmer tips
	System programmer tips

	Part 6. z/OS XL C/C++ Environments
	Chapter 40. Using the system programming C facilities
	Using functions in the system programming C environment
	System programming C facility considerations and restrictions
	Creating freestanding applications
	Creating modules without CEESTART
	Including an alternative initialization routine under z/OS
	Initializing a freestanding application without Language Environment.
	EDCXSTRT

	Initializing a freestanding application using C functions
	EDCXSTRL

	Setting up a C environment with preallocated stack and heap
	EDCXSTRX

	Determining ISA requirements
	EDCXISA

	Building freestanding applications to run under z/OS
	CCNGSP1
	Special considerations for reentrant modules
	CCNGSP2
	JCL required

	Parts used for freestanding applications

	Creating system exit routines
	Building system exit routines under z/OS
	An example of a system exit
	CCNGSP3

	Creating and using persistent C environments
	Building applications that use persistent C environments
	An example of persistent C environments
	CCNGSP4
	CCNGSP5

	Developing services in the service routine environment
	Using application service routine control flow
	Service routine user perspective
	Service routine perspective

	Understanding the stub perspective
	CCNGSP8
	CCNGSP9
	CCNGSPD
	CCNGSPE
	CCNGSPF

	Establishing a server environment
	EDCXSRVI

	Initiating a server request
	EDCXSRVN

	Accepting a request for service
	EDCXSACC

	Returning control from service
	EDCXSRVC

	Constructing user-server stub routines
	Building user-server environments

	Tailoring the system programming C environment
	Generating abends
	EDCXABND

	Getting storage
	EDCXGET
	CCNGSPB

	Getting page-aligned storage
	EDCX4KGT

	Freeing storage
	EDCXFREE

	Loading a module
	EDCXLOAD

	Deleting a module
	EDCXUNLD

	Including a run-time message file
	Additional library routines
	Summary of application types

	Chapter 41. Library functions for system programming C
	__xhotc() — Set Up a Persistent C Environment (No Library)
	Format
	Description
	Returned value
	Example
	__xhotl() — Set Up a Persistent C Environment (With Library)
	Format
	Description
	Returned value
	Example

	__xhott() — Terminate a Persistent C Environment
	Format
	Description
	Example

	__xhotu() — Run a Function in a Persistent C Environment
	Format
	Description
	Returned value
	Example

	__xregs() — Get Registers on Entry
	Format
	Description
	Returned value

	__xsacc() — Accept Request for Service
	Format
	Description
	Returned value

	__xsrvc() — Return Control from Service
	Format
	Description

	__xusr() - __xusr2() — Get Address of User Word
	Format
	Description
	Returned value

	__24malc() — Allocate Storage below 16MB Line
	Format
	Description

	__4kmalc() — Allocate Page-Aligned Storage
	Format
	Description

	Chapter 42. Using run-time user exits
	Using run-time user exits in z/OS Language Environment
	Understanding the basics
	PL/I and C/370 compatibility
	User exits supported under z/OS Language Environment
	Order of processing of user exits
	Using installation-wide or application-specific user exits
	Using the Assembler user exit
	Using sample Assembler user exits
	CEEBXITA behavior during enclave initialization
	CEEBXITA behavior during enclave termination
	CEEBXITA behavior during process termination
	Specifying abend codes to be percolated by z/OS Language Environment
	Actions taken for errors that occur within the Assembler user exit

	Assembler user exit interface
	Parameter values in the Assembler user exit
	First enclave within process initialization—entry
	First enclave within process initialization—return
	First enclave within process termination—entry
	First enclave within process termination—return
	Nested enclave initialization—entry
	Nested enclave initialization—return
	Nested enclave termination—entry
	Nested enclave termination—return
	Process termination—entry
	Process termination—return

	PL/I and C/370 compatibility
	High level language user exit interface
	Usage requirements

	Chapter 43. Using the z/OS XL C MultiTasking Facility
	Organizing a program with MTF
	Ensuring computational independence
	Running a C program without MTF
	Running a C program with MTF
	Running a C program with one parallel function
	Processor use
	Sample program

	Running a C program with two different parallel functions
	Processor use
	Sample program

	z/OS XL C with multiple instances of the same parallel function
	Processor use
	Sample program

	Designing and coding applications for MTF
	Step 1: Identifying computationally-independent code
	Step 2: Creating parallel functions
	Parallel functions
	Calling other functions
	Separate storage for separate modules
	Passing data
	Input/Output
	Exception/Signal handling
	Function termination

	Step 3: Inserting calls to parallel functions
	Changing an application to use MTF
	Example 1
	Create parallel functions
	Insert calls to parallel functions
	Example 2
	Create parallel functions

	Compiling and linking programs that use MTF
	Creating the main task program load module
	Creating the parallel functions load module
	Specifying the linkage-editor option
	Modifying run-time options

	Running programs that use MTF
	STEPLIB DD statement
	DD statements for standard streams
	Example of JCL
	Debugging programs that use MTF
	Avoiding undesirable results when using MTF

	Part 7. Programming with Other Products
	Chapter 44. Using the CICS Transaction Server (CICS TS)
	Developing XL C/C++ programs for the CICS environment
	Preparing CICS for use with z/OS Language Environment
	Designing and coding for CICS
	Using the CICS command-level interface
	CCNGCI1

	Using input and output
	Standard stream support
	Full memory file support
	Support for disk files and other devices

	Using z/OS XL C/C++ library support
	Arguments to C or main()
	Run-time options
	Using packed decimal with CICS
	Locales
	Code set conversion tables
	POSIX
	Multitasking facility
	System programming C facilities
	SVC99 and dynamic allocation functions
	IMS
	Dump functions
	Dynamic Linked Libraries (DLL)
	fetch()
	release()
	system()
	Time functions
	iscics()
	Floating point arithmetic
	Program termination

	Storage management
	Using ILC support
	Exception handling
	Example of error handling in CICS
	CCNGCI2

	ABEND codes and error messages under z/OS XL C/C++
	Coding hints and tips

	Translating and compiling for reentrancy
	Options for translating CICS statements
	z/OS XL C/C++ integrated CICS translator
	Standalone CICS translator
	Translating example

	Compiling XL C/C++ programs that were preprocessed by the standalone CICS translator
	Sample JCL to translate and compile

	Prelinking and linking all object modules
	Defining and running the CICS program
	Program processing
	Link considerations for C programs
	CSD considerations
	Sample JCL to install z/OS XL C/C++ application programs

	Chapter 45. Using Cross System Product (CSP)
	Common data types
	Passing control
	Running CSP under MVS
	Calling CSP applications from z/OS XL C
	Examples
	CCNGCP1
	CCNGCP2

	Calling z/OS XL C from CSP
	Examples
	CCNGCP3
	CCNGCP4

	Running under CICS control
	Examples
	CCNGCP5
	CCNGCP6
	CCNGCP7

	Chapter 46. Using Data Window Services (DWS)
	CCNGDW2
	Example

	CCNGDW1

	Chapter 47. Using DB2 Universal Database
	Preparing an XL C/C++ application to request DB2 services
	Using the XL C/C++ DB2 coprocessor
	Using the DB2 C/C++ precompiler

	Using DB2 services and stored procedures with XPLINK
	Examples of how to use XL C/C++ programs to request DB2 services
	C sample with embedded SQL statements
	CCNGDB4

	C++ code example with embedded SQL statements

	Chapter 48. Using Graphical Data Display Manager (GDDM)
	Example
	CCNGGD1
	CCNGGD2

	Chapter 49. Using the Information Management System (IMS)
	Handling errors
	Other considerations
	Examples
	CCNGIM1
	CCNGIM2
	CCNGIM3

	Chapter 50. Using the Interactive System Productivity Facility (ISPF)
	Examples
	CCNGIS1
	CCNGIS2
	CCNGIS3
	CCNGIS4
	CCNGIS5
	CCNGIS6
	CCNGIS7
	CCNGIS8
	CCNGIS9
	CCNGISA
	CCNGISB

	Chapter 51. Using the Query Management Facility (QMF)
	Example
	CCNGQM1
	CCNGQM2
	CCNGQM3

	Part 8. Internationalization: Locales and Character Sets
	Chapter 52. Introduction to locale
	Internationalization in programming languages
	Elements of internationalization
	z/OS XL C/C++ Support for internationalization
	Locales and localization
	Locale-sensitive interfaces

	Chapter 53. Building a locale
	Limitations of enhanced ASCII
	Using the charmap file
	The CHARMAP section
	The CHARSETID section

	Locale source files
	LC_CTYPE category
	LC_COLLATE category
	Collating rules
	Collating keywords
	Comparison of strings

	LC_MONETARY category
	LC_NUMERIC category
	LC_TIME category
	LC_MESSAGES category
	LC_TOD category
	LC_SYNTAX category

	Method files
	Using the localedef utility
	Locale naming conventions

	Chapter 54. Customizing a locale
	Using the customized locale
	Referring explicitly to a customized locale
	CCNGCL1

	Referring implicitly to a customized locale
	CCNGCL2
	CCNGCL3

	Chapter 55. Customizing a time zone
	Using the TZ or _TZ environment variable to specify time zone
	Relationship between TZ or _TZ and LC_TOD

	Chapter 56. Definition of S370 C, SAA C, and POSIX C locales
	Differences between SAA C and POSIX C locales
	CCNGDL1

	Chapter 57. Code set conversion utilities
	The genxlt utility
	The iconv utility
	Code conversion functions
	Code set converters supplied
	Universal coded character set converters
	Codeset conversion using UCS-2
	UCMAP source format

	Chapter 58. Coded character set considerations with locale functions
	Variant character detail
	Mappings of 13 PPCS variant characters
	Mappings of Hex encoding of 13 PPCS variant characters

	Alternate code points
	Coding without locale support by using a hybrid coded character set
	Example of hybrid coded character set (CCNGCC1)
	Writing code using a hybrid coded character set
	Converting hybrid code

	Coded character set independence in developing applications
	Coded character set in source code and header files
	The pragma filetag directive
	Using predefined macros
	Using setlocale()

	Converting coded character sets at compile time
	CONVLIT compiler option
	LOCALE compiler option
	The pragma convert directive

	Writing source code in coded character set IBM-1047
	Exporting source code to other sites
	Converting existing work
	Considerations with other products and tools

	Chapter 59. Bidirectional language support
	Bidirectional languages
	Overview of the layout functions
	m_create_layout()
	m_setvalues_layout()
	m_getvalues_layout()
	m_transform_layout ()
	m_wtransform_layout()
	m_destroy_layout()

	Using the layout functions
	CCNGBID1

	Part 9. Appendixes
	Appendix A. POSIX character set
	Appendix B. Mapping variant characters for z/OS XL C/C++
	Displaying hexadecimal values
	Example of displaying hexadecimal values
	CCNGMV1

	Using pragma filetag to specify code page in C
	Displaying square brackets when using ISPF
	Example of ISPF macro for displaying square brackets (CCNGMV2)
	Using the CCNGMV2 macro

	Procedure for mapping on 3279

	Appendix C. z/OS XL C/C++ Code Point Mappings
	Appendix D. Locales supplied with z/OS XL C/C++
	Compiled locales
	Locale source files

	Appendix E. Charmap files supplied with z/OS XL C/C++
	Appendix F. Examples of charmap and locale definition source
	Charmap file
	Locale definition source file
	Locale method source file

	Appendix G. Converting code from coded character set IBM-1047
	Example of converting hybrid code to a specific character set (CCNGHC1)

	Appendix H. Additional Examples
	Memory Management
	CCNGMI1
	CCNGMI2

	Calling MVS WTO routines from C
	CCNGWT1
	CCNGWT2

	Listing Partitioned Data Set Members
	CCNGIP1
	CCNGIP2

	Appendix I. Application considerations for z/OS UNIX System Services XL C/C++
	Relationship to DB2 universal database
	Application programming environments not supported
	Support for the Curses library

	Appendix J. External variables
	errno
	daylight
	getdate_err
	h_errno
	__loc1
	loc1
	loc2
	locs
	optarg
	opterr
	optind
	optopt
	signgam
	stdin
	stderr
	stdout
	t_errno
	timezone
	tzname

	Appendix K. Packaging considerations
	Compiler options
	Libraries
	Prelinking
	Linking
	++MOD
	++PROGRAM

	Appendix L. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Notices
	Programming Interface Information
	Trademarks
	Standards

	Glossary
	Bibliography
	z/OS
	z/OS XL C/C++
	z/OS Run-Time Library Extensions
	Debug Tool
	z/OS Language Environment
	Assembler
	COBOL
	PL/I
	VS FORTRAN
	CICS Transaction Server for z/OS
	DB2
	IMS/ESA®
	MVS
	QMF
	DFSMS

	INDEX

