
DB2 11 for z/OS

Application Programming and SQL
Guide

SC19-4051-00

���

DB2 11 for z/OS

Application Programming and SQL
Guide

SC19-4051-00

���

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” at the
end of this information.

First edition (October 2013)

This edition applies to DB2 11 for z/OS (product number 5615-DB2), DB2 11 for z/OS Value Unit Edition (product
number 5697-P43), and to any subsequent releases until otherwise indicated in new editions. Make sure you are
using the correct edition for the level of the product.

Specific changes are indicated by a vertical bar to the left of a change. A vertical bar to the left of a figure caption
indicates that the figure has changed. Editorial changes that have no technical significance are not noted.

© Copyright IBM Corporation 1983, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this information. xiii
Who should read this information . xiii
DB2 Utilities Suite . xiii
Terminology and citations . xiii
Accessibility features for DB2 11 for z/OS . xiv
How to send your comments . xv
How to read syntax diagrams . xv

Chapter 1. Planning for and designing DB2 applications 1
Application and SQL release incompatibilities . 1

Change to determination of ASUTIME for dynamic statements 1
Automatic rebind of plans and packages created before DB2 Version 9 2
Invalidated plans and packages . 3
Default for ODBC limited block fetch . 4
Views, materialized query tables, and SQL table functions with period specifications 4
Dropping columns named CLONE, ORGANIZATION, or VERSIONING 5
Allow XPath processing to continue even if error on filtered results 6
XML document node implicitly added on insert and update 6
Client information special registers length . 7
Client information results from ADMIN_COMMAND_DB2 8
Altering limit keys blocks immediate definition changes . 8
Removing the SYSPUBLIC schema from the SQL PATH routine option 9
SYSIBMADM schema added to the SQL path . 10
Change in result for CAST(string AS TIMESTAMP) . 11
New maximum lengths for values that are returned for some built-in functions 12
Timestamp string representations . 12
SQL reserved words . 13
Qualify user-defined function names . 13
SQLCODE changes . 14

Determining the value of any SQL processing options that affect the design of your program 14
Changes that invalidate packages . 14
Determining the value of any bind options that affect the design of your program 16
Programming applications for performance. 16
Designing your application for recovery . 18

Unit of work in TSO . 19
Unit of work in CICS . 19
Planning for program recovery in IMS programs . 20
Undoing selected changes within a unit of work by using savepoints 27
Planning for recovery of table spaces that are not logged 29

Designing your application to access distributed data . 30
Remote servers and distributed data . 31
Preparing for coordinated updates to two or more data sources 32
Forcing restricted system rules in your program . 32

Chapter 2. Connecting to DB2 from your application program 35
Invoking the call attachment facility . 36

Call attachment facility . 39
Making the CAF language interface (DSNALI) available 43
Requirements for programs that use CAF . 44
How CAF modifies the content of registers . 45
Implicit connections to CAF . 45
CALL DSNALI statement parameter list . 46
Summary of CAF behavior . 48
CAF connection functions . 49
Turning on a CAF trace . 61

© Copyright IBM Corp. 1983, 2013 iii

CAF return codes and reason codes . 61
Sample CAF scenarios . 62
Examples of invoking CAF . 63

Invoking the Resource Recovery Services attachment facility 69
Resource Recovery Services attachment facility . 71
Making the RRSAF language interface (DSNRLI) available 75
Requirements for programs that use RRSAF . 77
How RRSAF modifies the content of registers . 77
Implicit connections to RRSAF . 78
CALL DSNRLI statement parameter list . 78
Summary of RRSAF behavior . 79
RRSAF connection functions . 81
RRSAF return codes and reason codes . 112
Sample RRSAF scenarios . 113
Program examples for RRSAF . 115

Universal language interface . 117
Link-editing an application with DSNULI . 119

Controlling the CICS attachment facility from an application 119
Detecting whether the CICS attachment facility is operational 120
Improving thread reuse in CICS applications . 121

Chapter 3. Coding SQL statements in application programs: General information . . . 123
Declaring table and view definitions. 124

DCLGEN (declarations generator) . 125
Generating table and view declarations by using DCLGEN 125
Including declarations from DCLGEN in your program 133
Example: Adding DCLGEN declarations to a library . 134

Defining the items that your program can use to check whether an SQL statement executed successfully 137
Defining SQL descriptor areas . 137
Declaring host variables and indicator variables . 138

Host variables . 138
Host variable arrays . 139
Host structures . 139
Indicator variables, arrays, and structures . 140
Setting the CCSID for host variables. 142
Determining what caused an error when retrieving data into a host variable 143

Accessing an application defaults module . 144
Compatibility of SQL and language data types . 144
Embedding SQL statements in your application . 147

Delimiting an SQL statement . 147
Rules for host variables in an SQL statement . 148
Retrieving a single row of data into host variables . 148
Determining whether a retrieved value in a host variable is null or truncated 151
Determining whether a column value is null . 153
Updating data by using host variables . 154
Inserting a single row by using a host variable . 154
Inserting null values into columns by using indicator variables or arrays 155
Host variable arrays in an SQL statement . 156
Retrieving multiple rows of data into host variable arrays 157
Inserting multiple rows of data from host variable arrays. 157
Retrieving a single row of data into a host structure . 158
Including dynamic SQL in your program . 159
Methods for keeping prepared statements after commit points 200
Limiting CPU time for dynamic SQL statements by using the resource limit facility 202

Checking the execution of SQL statements. 204
Checking the execution of SQL statements by using the SQLCA 205
Checking the execution of SQL statements by using SQLCODE and SQLSTATE 209
Checking the execution of SQL statements by using the WHENEVER statement 210
Checking the execution of SQL statements by using the GET DIAGNOSTICS statement 211

Handling SQL error codes . 217
Arithmetic and conversion errors . 217

iv Application Programming and SQL Guide

Writing applications that enable users to create and modify tables. 218
Saving SQL statements that are translated from user requests 218
XML data in embedded SQL applications . 219

Host variable data types for XML data in embedded SQL applications 219
XML column updates in embedded SQL applications . 224
XML data retrieval in embedded SQL applications . 226

Programming examples . 229
Examples of programs that call stored procedures . 230

Chapter 4. Coding SQL statements in assembler application programs 231
Defining the SQL communications area, SQLSTATE, and SQLCODE in assembler 231
Defining SQL descriptor areas in assembler . 233
Declaring host variables and indicator variables in assembler 233

Host variables in assembler . 234
Indicator variables in assembler . 239

Equivalent SQL and assembler data types . 240
SQL statements in assembler programs . 245

Delimiters in SQL statements in assembler programs . 250
Macros for assembler applications . 250
Programming examples in assembler . 250

Chapter 5. Coding SQL statements in C application programs 251
Defining the SQL communications area, SQLSTATE, and SQLCODE in C 251
Defining SQL descriptor areas in C . 252
Declaring host variables and indicator variables in C . 253

Host variables in C . 253
Host variable arrays in C . 265
Host structures in C . 273
Indicator variables, indicator arrays, and host structure indicator arrays in C 275
Referencing pointer host variables in C programs . 277
Declaring pointer host variables in C programs . 278

Equivalent SQL and C data types. 280
SQL statements in C programs . 285

Delimiters in SQL statements in C programs . 289
Programming examples in C . 289

Chapter 6. Coding SQL statements in COBOL application programs. 301
Defining the SQL communications area, SQLSTATE, and SQLCODE in COBOL 301
Defining SQL descriptor areas in COBOL . 303
Declaring host variables and indicator variables in COBOL 303

Host variables in COBOL . 304
Host variable arrays in COBOL . 314
Host structures in COBOL . 323
Indicator variables, indicator arrays, and host structure indicator arrays in COBOL 328
Controlling the CCSID for COBOL host variables . 330

Equivalent SQL and COBOL data types . 331
SQL statements in COBOL programs . 336

Delimiters in SQL statements in COBOL programs . 342
Object-oriented extensions in COBOL . 342
Programming examples in COBOL . 343

Chapter 7. Coding SQL statements in Fortran application programs 373
Defining the SQL communications area, SQLSTATE, and SQLCODE in Fortran 373
Defining SQL descriptor areas in Fortran . 374
Declaring host variables and indicator variables in Fortran 375

Host variables in Fortran . 375
Indicator variables in Fortran . 378

Equivalent SQL and Fortran data types. 379
SQL statements in Fortran programs. 381

Delimiters in SQL statements in Fortran programs . 384

Contents v

Chapter 8. Coding SQL statements in PL/I application programs 385
Defining the SQL communications area, SQLSTATE, and SQLCODE in PL/I 385
Defining SQL descriptor areas in PL/I . 386
Declaring host variables and indicator variables in PL/I . 386

Host variables in PL/I . 387
Host variable arrays in PL/I . 393
Host structures in PL/I . 398
Indicator variables in PL/I . 400

Equivalent SQL and PL/I data types . 401
SQL statements in PL/I programs . 405

Delimiters in SQL statements in PL/I programs . 410
Programming examples in PL/I . 410

Chapter 9. Coding SQL statements in REXX application programs 415
Defining the SQL communications area, SQLSTATE, and SQLCODE in REXX 415
Defining SQL descriptor areas in REXX. 415
Equivalent SQL and REXX data types . 416
SQL statements in REXX programs . 417

Delimiters in SQL statements in REXX programs . 420
Accessing the DB2 REXX language support application programming interfaces 420
Ensuring that DB2 correctly interprets character input data in REXX programs 422
Passing the data type of an input data type to DB2 for REXX programs 423
Setting the isolation level of SQL statements in a REXX program 424
Retrieving data from DB2 tables in REXX programs . 424
Cursors and statement names in REXX . 425
Programming examples in REXX . 426

Chapter 10. Creating and modifying DB2 objects 437
Creating tables . 437

Data types . 438
Storing LOB data in a table. 441
Identity columns . 444
Creating tables for data integrity . 446
Creating work tables for the EMP and DEPT sample tables 456
Creating created temporary tables . 458
Creating declared temporary tables . 460

Providing a unique key for a table . 462
Fixing tables with incomplete definitions . 462
Dropping tables . 463
Defining a view . 463

Views . 465
Dropping a view . 466
Creating a common table expression. 466

Common table expressions . 467
Examples of recursive common table expressions . 468

Creating triggers . 472
Invoking a stored procedure or user-defined function from a trigger 480
Inserting, updating, and deleting data in views by using INSTEAD OF triggers 482
Trigger packages . 484
Trigger cascading . 484
Order of multiple triggers . 485
Interactions between triggers and referential constraints 486
Interactions between triggers and tables that have multilevel security with row-level granularity 487
Triggers that return inconsistent results. 488

Sequence objects . 490
DB2 object relational extensions . 492
Creating a distinct type . 493

Distinct types . 493
Example of distinct types, user-defined functions, and LOBs 494
Arrays in SQL statements . 497

vi Application Programming and SQL Guide

||

Defining a user-defined function . 502
User-defined functions . 505
Components of a user-defined function definition . 508
Writing an external user-defined function . 510
Making a user-defined function reentrant . 532
Special registers in a user-defined function or a stored procedure 533
Accessing transition tables in a user-defined function or stored procedure 536
Preparing an external user-defined function for execution 540
Abnormal termination of an external user-defined function 540
Saving information between invocations of a user-defined function by using a scratchpad. 541
Example of creating and using a user-defined scalar function 542
User-defined function samples that ship with DB2 . 543
Determining the authorization cache size for stored procedures and user-defined functions 543

Creating a stored procedure . 544
Stored procedures . 545
Creating a native SQL procedure . 561
Migrating an external SQL procedure to a native SQL procedure 586
Changing an existing version of a native SQL procedure 588
Regenerating an existing version of a native SQL procedure 589
Removing an existing version of a native SQL procedure 589
Creating an external SQL procedure . 590
Creating an external stored procedure . 606
Creating multiple versions of external procedures and external SQL procedures 646

Chapter 11. Adding and modifying data . 647
Inserting data into tables . 647

Inserting rows by using the INSERT statement . 647
Inserting data and updating data in a single operation 653
Selecting values while inserting data . 655

Adding data to the end of a table . 662
Storing data that does not have a tabular format . 662
Updating table data . 663

Selecting values while updating data . 664
Updating thousands of rows . 665

Deleting data from tables . 665
Selecting values while deleting data . 667

Chapter 12. Accessing data . 669
Determining which tables you have access to. 669
Displaying information about the columns for a given table 669
Retrieving data by using the SELECT statement . 670

Selecting derived columns . 673
Selecting XML data . 673
Formatting the result table . 674
Combining result tables from multiple SELECT statements 680
Summarizing group values . 685
Finding rows that were changed within a specified period of time 687
Joining data from more than one table . 688
Optimizing retrieval for a small set of rows . 699
Creating recursive SQL by using common table expressions 700
Updating data as it is retrieved from the database . 701
Avoiding decimal arithmetic errors . 701
Implications of using SELECT * . 703
Subqueries . 703
Restrictions when using distinct types with UNION, EXCEPT, and INTERSECT 711
Comparison of distinct types . 712
Nested SQL statements . 713

Retrieving a set of rows by using a cursor . 715
Cursors . 715
Accessing data by using a row-positioned cursor . 719

Contents vii

||
||

Accessing data by using a rowset-positioned cursor . 724
Retrieving rows by using a scrollable cursor . 730
Accessing XML or LOB data quickly by using FETCH WITH CONTINUE 736
Determining the attributes of a cursor by using the SQLCA 739
Determining the attributes of a cursor by using the GET DIAGNOSTICS statement 740
Scrolling through previously retrieved data . 740
Updating previously retrieved data . 742
FETCH statement interaction between row and rowset positioning 743
Examples of fetching rows by using cursors . 744

Specifying direct row access by using row IDs . 748
ROWID columns . 750

Ways to manipulate LOB data . 750
LOB host variable, LOB locator, and LOB file reference variable declarations 752
LOB and XML materialization . 757
Saving storage when manipulating LOBs by using LOB locators 757
Deferring evaluation of a LOB expression to improve performance 759
LOB file reference variables . 761

Referencing a sequence object . 764
Retrieving thousands of rows . 764
Determining when a row was changed . 765
Checking whether an XML column contains a certain value 765
Accessing DB2 data that is not in a table . 766
Ensuring that queries perform sufficiently . 766
Items to include in a batch DL/I program . 767

Chapter 13. Invoking a user-defined function. 771
Determining the authorization ID for invoking user-defined functions 773
Ensuring that DB2 executes the intended user-defined function. 773

How DB2 resolves functions . 774
Checking how DB2 resolves functions by using DSN_FUNCTION_TABLE 777

Restrictions when passing arguments with distinct types to functions 782
Cases when DB2 casts arguments for a user-defined function 784

Chapter 14. Calling a stored procedure from your application 787
Passing large output parameters to stored procedures by using indicator variables 792
Data types for calling stored procedures . 793
Calling a stored procedure from a REXX procedure . 793
Preparing a client program that calls a remote stored procedure 797
How DB2 determines which stored procedure to run . 798
Calling different versions of a stored procedure from a single application 798
Invoking multiple instances of a stored procedure . 800
Designating the active version of a native SQL procedure 801
Temporarily overriding the active version of a native SQL procedure 801
Specifying the number of stored procedures that can run concurrently 802
Retrieving the procedure status . 802
Writing a program to receive the result sets from a stored procedure 804
DB2-supplied stored procedures . 809

WLM_REFRESH stored procedure . 813
WLM_SET_CLIENT_INFO stored procedure . 816
DSN_WLM_APPLENV stored procedure . 818
DSNACICS stored procedure . 820
DSNAIMS stored procedure . 828
DSNAIMS2 stored procedure . 833
DSNACCOR stored procedure (deprecated) . 837
XSR_REGISTER stored procedure . 858
XSR_ADDSCHEMADOC stored procedure . 860
XSR_COMPLETE stored procedure . 862
XSR_REMOVE stored procedure . 864

viii Application Programming and SQL Guide

Chapter 15. Coding methods for distributed data 867
Accessing distributed data by using three-part table names 867

Accessing remote declared temporary tables by using three-part table names 869
Accessing distributed data by using explicit CONNECT statements 870

Specifying a location alias name for multiple sites . 871
Releasing connections . 871

Transmitting mixed data. 872
Identifying the server at run time . 872
SQL limitations at dissimilar servers. 872
Support for executing long SQL statements in a distributed environment 873
Distributed queries against ASCII or Unicode tables . 873
Restrictions when using scrollable cursors to access distributed data 874
Restrictions when using rowset-positioned cursors to access distributed data 874
WebSphere MQ with DB2 . 874

WebSphere MQ messages . 875
DB2 MQ functions and DB2 MQ XML stored procedures 877
Generating XML documents from existing tables and sending them to an MQ message queue 879
Shredding XML documents from an MQ message queue 880
DB2 MQ tables . 880
Basic messaging with WebSphere MQ . 888
Sending messages with WebSphere MQ . 889
Retrieving messages with WebSphere MQ . 890
Application to application connectivity with WebSphere MQ 891
Asynchronous messaging in DB2 for z/OS . 894

Chapter 16. DB2 as a web services consumer and provider 907
Deprecated: The SOAPHTTPV and SOAPHTTPC user-defined functions 907
The SOAPHTTPNV and SOAPHTTPNC user-defined functions 909
SQLSTATEs for DB2 as a web services consumer . 910

Chapter 17. Preparing an application to run on DB2 for z/OS 913
Setting the DB2I defaults . 915
Processing SQL statements . 916

Processing SQL statements by using the DB2 precompiler 918
Processing SQL statements by using the DB2 coprocessor. 925
Translating command-level statements in a CICS program 927
Differences between the DB2 precompiler and the DB2 coprocessor 928
Options for SQL statement processing . 930

Compiling and link-editing an application. 940
Binding an application . 941

Binding a DBRM to a package. 942
Binding an application plan . 947
Bind process for remote access . 951
Binding a batch program . 954
Conversion of DBRMs that are bound to a plan to DBRMs that are bound to a package 955
Converting an existing plan into packages to run remotely 956
Setting the program level . 957
DYNAMICRULES bind option . 957
Determining the authorization cache size for plans . 959
Determining the authorization cache size for packages 960
Dynamic plan selection . 960

Rebinding an application . 961
Rebinding a package . 962
Rebinding a plan . 963
Rebinding lists of plans and packages . 964
Generating lists of REBIND commands . 964
Automatic rebinding . 969

Application compatibility of packages . 972
V10R1 application compatibility . 973

Specifying the rules that apply to SQL behavior at run time 975

Contents ix

||
||

DB2 program preparation overview . 976
Input and output data sets for DL/I batch jobs . 978
DB2-supplied JCL procedures for preparing an application 981

JCL to include the appropriate interface code when using the DB2-supplied JCL procedures 981
Tailoring DB2-supplied JCL procedures for preparing CICS programs 982

DB2I primary option menu . 984
DB2I panels that are used for program preparation . 985

DB2 Program Preparation panel . 986
DB2I Defaults Panel 1 . 990
DB2I Defaults Panel 2 . 993
Precompile panel . 994
Bind Package panel . 996
Bind Plan panel . 999
Defaults for Bind Package and Defaults for Rebind Package panels 1002
Defaults for Bind Plan and Defaults for Rebind Plan panels 1005
System Connection Types panel . 1007
Panels for entering lists of values . 1008
Program Preparation: Compile, Link, and Run panel . 1009

DB2I panels that are used to rebind and free plans and packages. 1011
Bind/Rebind/Free Selection panel . 1012
Rebind Package panel . 1013
Rebind Trigger Package panel . 1015
Rebind Plan panel . 1018
Free Package panel . 1020
Free Plan panel . 1021

Chapter 18. Running an application on DB2 for z/OS 1023
DSN command processor . 1023
DB2I Run panel . 1024
Running a program in TSO foreground . 1025
Running a DB2 REXX application . 1026
Invoking programs through the Interactive System Productivity Facility 1026

ISPF . 1027
Invoking a single SQL program through ISPF and DSN 1028
Invoking multiple SQL programs through ISPF and DSN 1029

Loading and running a batch program . 1030
Authorization for running a batch DL/I program . 1031
Restarting a batch program . 1032

Running stored procedures from the command line processor 1034
Command line processor CALL statement . 1034

Example of running a batch DB2 application in TSO . 1035
Example of calling applications in a command procedure 1036

Chapter 19. Testing and debugging an application program on DB2 for z/OS 1039
Designing a test data structure . 1039

Analyzing application data needs . 1039
Authorization for test tables and applications . 1041
Example SQL statements to create a comprehensive test structure 1041

Populating the test tables with data . 1042
Methods for testing SQL statements . 1042
Executing SQL by using SPUFI . 1043

SPUFI . 1047
Content of a SPUFI input data set . 1047
The SPUFI panel . 1047
Changing SPUFI defaults . 1049
Setting the SQL terminator character in a SPUFI input data set 1055
Controlling toleration of warnings in SPUFI . 1056
Output from SPUFI . 1056

Testing an external user-defined function . 1058
Testing a user-defined function by using the Debug Tool for z/OS 1058

x Application Programming and SQL Guide

Testing a user-defined function by routing the debugging messages to SYSPRINT 1060
Testing a user-defined function by using driver applications 1060
Testing a user-defined function by using SQL INSERT statements 1060

Debugging stored procedures . 1061
Debugging stored procedures with the Debug Tool and IBM VisualAge COBOL 1062
Debugging a C language stored procedure with the Debug Tool and C/C++ Productivity Tools for z/OS 1063
Debugging stored procedures by using the Unified Debugger 1064
Debugging stored procedures with the Debug Tool for z/OS 1065
Recording stored procedure debugging messages in a file 1067
Driver applications for debugging procedures . 1068
DB2 tables that contain debugging information. 1068

Debugging an application program. 1068
Locating the problem in an application . 1068
Techniques for debugging programs in TSO . 1073
Techniques for debugging programs in IMS . 1074
Techniques for debugging programs in CICS . 1075

Finding a violated referential or check constraint . 1079

Chapter 20. DB2 sample applications and data 1081
DB2 sample tables . 1081

Activity table (DSN8B10.ACT) . 1081
Department table (DSN8B10.DEPT). 1082
Employee table (DSN8B10.EMP). 1084
Employee photo and resume table (DSN8B10.EMP_PHOTO_RESUME). 1087
Project table (DSN8B10.PROJ) . 1089
Project activity table (DSN8B10.PROJACT) . 1090
Employee-to-project activity table (DSN8B10.EMPPROJACT) 1091
Unicode sample table (DSN8B10.DEMO_UNICODE) . 1092
Relationships among the sample tables . 1093
Views on the sample tables . 1094
Storage of sample application tables . 1098

DB2 sample applications . 1102
Types of sample applications . 1104
Application languages and environments for the sample applications 1106
Sample applications in TSO . 1107
Sample applications in IMS . 1110
Sample applications in CICS . 1110
DSNTIAUL . 1111
DSNTIAD . 1116
DSNTEP2 and DSNTEP4 . 1118

Information resources for DB2 for z/OS and related products 1125

Notices . 1127
Programming interface information. 1128
Trademarks. 1129
Privacy policy considerations . 1129

Glossary . 1131

Index . 1133

Contents xi

xii Application Programming and SQL Guide

About this information

This information discusses how to design and write application programs that
access DB2® for z/OS® (DB2), a highly flexible relational database management
system (DBMS).

Visit the following Web site for information about ordering DB2 books and
obtaining other valuable information about DB2 for z/OS: http://
publib.boulder.ibm.com/infocenter/imzic

This information assumes that your DB2 subsystem is running in Version 11
new-function mode. Generally, new functions that are described, including changes
to existing functions, statements, and limits, are available only in new-function
mode, unless explicitly stated otherwise. Exceptions to this general statement
include optimization and virtual storage enhancements, which are also available in
conversion mode unless stated otherwise.

Who should read this information
This information is for DB2 application developers who are familiar with
Structured Query Language (SQL) and who know one or more programming
languages that DB2 supports.

DB2 Utilities Suite

Important: In this version of DB2 for z/OS, the DB2 Utilities Suite is available as
an optional product. You must separately order and purchase a license to such
utilities, and discussion of those utility functions in this publication is not intended
to otherwise imply that you have a license to them.

The DB2 Utilities Suite can work with DB2 Sort and the DFSORT program, which
you are licensed to use in support of the DB2 utilities even if you do not otherwise
license DFSORT for general use. If your primary sort product is not DFSORT,
consider the following informational APARs mandatory reading:
v II14047/II14213: USE OF DFSORT BY DB2 UTILITIES
v II13495: HOW DFSORT TAKES ADVANTAGE OF 64-BIT REAL

ARCHITECTURE

These informational APARs are periodically updated.
Related information

DB2 utilities packaging (Utility Guide)

Terminology and citations
When referring to a DB2 product other than DB2 for z/OS, this information uses
the product's full name to avoid ambiguity.

The following terms are used as indicated:

DB2 Represents either the DB2 licensed program or a particular DB2 subsystem.

© Copyright IBM Corp. 1983, 2013 xiii

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utlpackaging.htm

OMEGAMON®

Refers to any of the following products:
v IBM® Tivoli® OMEGAMON XE for DB2 Performance Expert on z/OS
v IBM Tivoli OMEGAMON XE for DB2 Performance Monitor on z/OS
v IBM DB2 Performance Expert for Multiplatforms and Workgroups
v IBM DB2 Buffer Pool Analyzer for z/OS

C, C++, and C language
Represent the C or C++ programming language.

CICS® Represents CICS Transaction Server for z/OS.

IMS™ Represents the IMS Database Manager or IMS Transaction Manager.

MVS™ Represents the MVS element of the z/OS operating system, which is
equivalent to the Base Control Program (BCP) component of the z/OS
operating system.

RACF®

Represents the functions that are provided by the RACF component of the
z/OS Security Server.

Accessibility features for DB2 11 for z/OS
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in z/OS products,
including DB2 11 for z/OS. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers and screen magnifiers.
v Customization of display attributes such as color, contrast, and font size

Tip: The Information Management Software for z/OS Solutions Information
Center (which includes information for DB2 11 for z/OS) and its related
publications are accessibility-enabled for the IBM Home Page Reader. You can
operate all features using the keyboard instead of the mouse.

Keyboard navigation

You can access DB2 11 for z/OS ISPF panel functions by using a keyboard or
keyboard shortcut keys.

For information about navigating the DB2 11 for z/OS ISPF panels using TSO/E or
ISPF, refer to the z/OS TSO/E Primer, the z/OS TSO/E User's Guide, and the z/OS
ISPF User's Guide. These guides describe how to navigate each interface, including
the use of keyboard shortcuts or function keys (PF keys). Each guide includes the
default settings for the PF keys and explains how to modify their functions.

Related accessibility information

Online documentation for DB2 11 for z/OS is available in the Information
Management Software for z/OS Solutions Information Center, which is available at
the following website: http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp

xiv Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp

IBM and accessibility

See the IBM Accessibility Center at http://www.ibm.com/able for more information
about the commitment that IBM has to accessibility.

How to send your comments
Your feedback helps IBM to provide quality information. Please send any
comments that you have about this book or other DB2 for z/OS documentation.
You can use the following methods to provide comments:
v Send your comments by email to db2zinfo@us.ibm.com and include the name of

the product, the version number of the product, and the number of the book. If
you are commenting on specific text, please list the location of the text (for
example, a chapter and section title or a help topic title).

v You can also send comments by using the Feedback link at the footer of each
page in the Information Management Software for z/OS Solutions Information
Center at http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp.

How to read syntax diagrams
Certain conventions apply to the syntax diagrams that are used in IBM
documentation.

Apply the following rules when reading the syntax diagrams that are used in DB2
for z/OS documentation:
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ��─── symbol indicates the beginning of a statement.
The ───� symbol indicates that the statement syntax is continued on the next
line.
The �─── symbol indicates that a statement is continued from the previous line.
The ───�� symbol indicates the end of a statement.

v Required items appear on the horizontal line (the main path).

�� required_item ��

v Optional items appear below the main path.

�� required_item
optional_item

��

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

��
optional_item

required_item ��

v If you can choose from two or more items, they appear vertically, in a stack.
If you must choose one of the items, one item of the stack appears on the main
path.

About this information xv

http://www.ibm.com/able
mailto:db2zinfo@us.ibm.com
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp

�� required_item required_choice1
required_choice2

��

If choosing one of the items is optional, the entire stack appears below the main
path.

�� required_item
optional_choice1
optional_choice2

��

If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

�� required_item
default_choice

optional_choice
optional_choice

��

v An arrow returning to the left, above the main line, indicates an item that can be
repeated.

�� required_item � repeatable_item ��

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

�� required_item �

,

repeatable_item ��

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

v Sometimes a diagram must be split into fragments. The syntax fragment is
shown separately from the main syntax diagram, but the contents of the
fragment should be read as if they are on the main path of the diagram.

�� required_item fragment-name ��

fragment-name:

required_item
optional_name

v With the exception of XPath keywords, keywords appear in uppercase (for
example, FROM). Keywords must be spelled exactly as shown. XPath keywords
are defined as lowercase names, and must be spelled exactly as shown. Variables
appear in all lowercase letters (for example, column-name). They represent
user-supplied names or values.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

xvi Application Programming and SQL Guide

Chapter 1. Planning for and designing DB2 applications

Before you write or run your program, you need to make some planning and
design decisions. These decisions need to be made whether you are writing a new
DB2 application or migrating an existing application from a previous release of
DB2.

About this task

If you are migrating an existing application from a previous release of DB2, read
the application and SQL release incompatibilities and make any necessary changes
in the application.

If you are writing a new DB2 application, first determine the following items:
v the value of some of the SQL processing options
v the binding method
v the value of some of the bind options

Then make sure that your program implements the appropriate recommendations
so that it promotes concurrency, can handle recovery and restart situations, and can
efficiently access distributed data.
Related tasks:

Programming applications for performance (DB2 Performance)

Programming for concurrency (DB2 Performance)

Writing efficient SQL queries (DB2 Performance)

Improving performance for applications that access distributed data (DB2
Performance)
Related reference:

BIND and REBIND options (DB2 Commands)

Application and SQL release incompatibilities
When you migrate from DB2 Version 10 to Version 11, be aware of and plan for
application and SQL release incompatibilities that might affect your migration.

Plan for the following changes in Version 11 that might affect your migration.

Release incompatibilities that were changed or added since the first edition of this
Version 11 publication are indicated by a vertical bar in the left margin. In other
areas of this publication, a vertical bar in the margin indicates a change or addition
that has occurred since the Version 10 release of this publication.

Change to determination of ASUTIME for dynamic statements
In DB2 Version 11 new-function mode with application compatibility set to
’V11R1’, the dynamic SQL ASUTIME limit for each routine is used by the resource
limit facility.

© Copyright IBM Corp. 1983, 2013 1

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_programapplicationperformance.htm#db2z_programapplicationperformance
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_programapps4concurrency.htm#db2z_programapps4concurrency
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_programsqlperf.htm#db2z_programsqlperf
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tunedistributedapps.htm#db2z_tunedistributedapps
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tunedistributedapps.htm#db2z_tunedistributedapps
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions

Explanation

The ASUTIME limit that is specified for the routine determines the limit. If the
dynamic SQL statements in a routine use more ASUTIME than the limit, then
SQLCODE -905 is returned. This SQLCODE occurs even if the value is lower than
the ASUTIME limit of a top-level calling package. The ASUTIME limit that is
specified for the top-level calling package is not considered. In previous versions of
DB2, SQLCODE -905 is issued only when the limit of the top-level calling package
is encountered.

Possible impact to your DB2 environment

Because the limit is enforced for each monitored routine, your applications might
return more SQLCODE -905 errors.

Actions to take

While in conversion mode with application compatibility for your package set to
value ’V10R1’, run your applications with IFCID 0366 or IFCID 0376 enabled.
Then, review the trace output for incompatible changes with the identifier ’1103’.
Review and, if necessary, adjust the ASUTIME limits on routines and packages that
use dynamic SQL.
Related concepts:

Application compatibility of packages (DB2 Application programming and
SQL)
Related tasks:

Setting limits for system resource usage by using the resource limit facility
(DB2 Performance)
Related information:

-905 (DB2 Codes)

Automatic rebind of plans and packages created before DB2
Version 9

Explanation

Plans and packages that were last bound before Version 9 are not supported in
Version 11 conversion mode and later.

Possible impact to your DB2 environment

If you specify YES or COEXIST for the ABIND subsystem parameter, DB2 Version
11 automatically rebinds plans and packages that were bound before Version 9. As
a result, an execution delay might occur the first time that such a plan or package
is loaded. Also, the automatic rebind might change the access path to a potentially
more efficient access path.

If you specify NO for the ABIND subsystem parameter, negative SQLCODEs are
returned for each attempt to run a package or plan that was bound before Version
9. SQLCODE -908, SQLSTATE 23510 is returned for packages, and SQLCODE -923,
SQLSTATE 57015 is returned for plans until they are rebound in Version 11.

2 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_applicationcompatibility.htm#db2z_applicationcompatibility
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_applicationcompatibility.htm#db2z_applicationcompatibility
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_setsystemresourcelimit.htm#db2z_setsystemresourcelimit
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_setsystemresourcelimit.htm#db2z_setsystemresourcelimit
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.codes/src/tpc/n905.htm#n905

Actions to take

To identify plans and packages that were bound before Version 9, run the Version
11 premigration job DSNTIJPM on your Version 10 catalog.
Related reference:

AUTO BIND field (ABIND subsystem parameter) (DB2 Installation and
Migration)
Related information:

-908 (DB2 Codes)

-923 (DB2 Codes)

Invalidated plans and packages
During the enabling-new-function mode processing, plans and packages that
reference the affected DB2 catalog and directory table spaces become invalidated.

Explanation

The following table spaces in the DB2 catalog and directory are modified when
you run job DSNTIJEN to enable DB2 Version 11 new-function mode:
v DSNDB01.SYSUTILX
v DSNDB01.SYSLGRNX
v DSNDB06.SYSCOPY
v DSNDB06.SYSRTSTS
v DSNDB06.SYSTSIXS
v DSNDB06.SYSTSTAB
v DSNDB06.SYSSTR

As these table spaces are processed, DB2 invalidates packages or plans that
reference them.

The packages that are dependent on the following catalog tables are also
invalidated:
v SYSIBM.SYSCOPY
v SYSIBM.SYSCHECKS
v SYSIBM.SYSCHECKS2
v SYSIBM.SYSCHECKDEP
v SYSIBM.SYSSTRINGS
v SYSIBM.SYSINDEXSPACESTATS
v SYSIBM.SYSTABLESPACESTATS

Possible impact to your DB2 environment

If you have autobind enabled, the invalid packages are bound on the first run after
they were marked invalid.

If you have autobind disabled, each attempt to use an invalidated package fails
with SQLCODE -908 to indicate that the application must be bound before it can
be run.

Chapter 1. Planning for and designing DB2 applications 3

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_abind.htm#db2z_dsntipo08
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_abind.htm#db2z_dsntipo08
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.codes/src/tpc/n908.htm#n908
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.codes/src/tpc/n923.htm#n923

Actions to take

For SYSLGRNX, existing CHAR(6) columns were changed to CHAR(10). You might
need to modify your application before it can run successfully.

For SYSUTILX, the RBA fields were moved to new fields. Applications might need
to be updated before you can see the new fields.

The SYSCOPY table space was replaced by a new table space, SYSTSCPY. You
might need to modify your application before it can run successfully.

The SYSRTSTS table space was replaced by two new table spaces, SYSTSTSS and
SYSTSISS. SYSTSTSS contains the SYSIBM.SYSTABLESPACESTATS catalog table
and SYSTSISS contains the SYSIBM.SYSINDEXSPACESTATS table. You might need
to modify your application before it can run successfully.

The SYSSTR table space was replaced by four new table spaces, SYSTSCKS,
SYSTSCHX, SYSTSCKD, and SYSTSSRG. SYSTSCKS contains
SYSIBM.SYSCHECKS, SYSTSCHX contains SYSIBM.SYSCHECKS2, SYSTSCKD
contains SYSIBM.SYSCHECKDEP, and SYSTSSRG contains SYSIBM.SYSSTRINGS
catalog table. You might need to modify your application before it can run
successfully.

Default for ODBC limited block fetch
The default for the LIMITEDBLOCKFETCH initialization keyword changed.

Explanation

In Version 10, ODBC limited block fetch was disabled by default. In Version 11
new-function mode, ODBC limited block fetch is enabled by default.

Possible impact to your DB2 environment

Your applications might use limited block fetch, when they did not do so
previously.

Actions to take

If the default is not appropriate for your ODBC applications, you can change it by
modifying the value of the LIMITEDBLOCKFETCH initialization keyword.
Related reference:

DB2 ODBC initialization keywords (DB2 Programming for ODBC)

Views, materialized query tables, and SQL table functions with
period specifications

Explanation

In Version 11, views, materialized query tables, and SQL table functions that were
created with period specifications in Version 10 are not supported.

Possible impact to your DB2 environment

If such views, materialized query tables, or SQL functions are used in Version 11,
incorrect results might occur.

4 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.odbc/src/tpc/db2z_hdckeyw.htm#db2z_hdckeyw

Actions to take

To prepare for this change, drop all views, materialized query tables, and SQL
table functions that contain a SYSTEM_TIME or BUSINESS_TIME period
specification.

To identify such existing views, materialized query tables, and SQL table functions,
run the Version 11 premigration job DSNTIJPM on your Version 10 catalog.

You can also manually issue the following queries.

To identify views and materialized query tables that were created with a period
specification, issue the following query:
SELECT * FROM SYSIBM.SYSVIEWDEP WHERE BTYPE IN (’W’, ’Z’) AND DTYPE IN (’V’, ’M’);

To identify SQL table functions that were created with a period specification, issue
the following query:
SELECT * FROM SYSIBM.SYSDEPENDENCIES WHERE BTYPE = ’Z’;

To identify SQL scalar functions that were created with a period specification or
period clause, issue the following query:
SELECT * FROM SYSIBM.SYSPACKDEP WHERE BTYPE IN (’W’, ’Z’) AND DTYPE = ’N’;

Related tasks:

Run premigration queries (DSNTIJPM) (DB2 Installation and Migration)

Dropping columns named CLONE, ORGANIZATION, or
VERSIONING

In DB2 Version 11 new-function mode, a column that is named CLONE,
ORGANIZATION, or VERSIONING should be specified as a delimited identifier in
order to be dropped from a table.

Explanation

Prior to Version 11, CLONE, ORGANIZATION, and VERSIONING are reserved
keywords that can appear after the DROP keyword in an ALTER TABLE statement.
When CLONE, ORGANIZATION, or VERSIONING is specified as a simple token
(that is, not as a delimited identifier), these keywords can only match the DROP
CLONE, DROP ORGANIZATION, or DROP VERSIONING clauses on an ALTER
TABLE statement.

Possible impact to your DB2 environment

If you intend to drop a column named CLONE, ORGANIZATION, or
VERSIONING in Version 11, and the name is specified as a simple token on the
ALTER TABLE statement, the DB2 subsystem might interpret the ALTER TABLE
statement as specifying the DROP CLONE, DROP ORGANIZATION, or DROP
VERSIONING clauses instead of the DROP COLUMN clause.

Actions to take

To drop a column named CLONE, ORGANIZATION, or VERSIONING in Version
11, the name must be specified as a delimited identifier. For example: DROP
"ORGANIZATION" or DROP "CLONE" (assuming " is the delimiter for a delimited
identifier).

Chapter 1. Planning for and designing DB2 applications 5

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_dsntijpm.htm#db2z_dsntijpm

Alternatively, you can specify the optional COLUMN keyword in the DROP
COLUMN clause. For example: DROP COLUMN ORGANIZATION or DROP
COLUMN CLONE.
Related reference:

ALTER TABLE (DB2 SQL)

Allow XPath processing to continue even if error on filtered
results

In DB2 Version 11 new-function mode with application compatibility set to
’V11R1’, XPath processing might return fewer errors on predicate expressions with
an explicit cast or an operation with an invalid value.

Explanation

In previous versions of DB2, even though the invalid result is filtered from the
result set, XPath processing would return an error SQLCODE. In Version 11,
examples of XPath expressions that have fewer errors include situations when:
v Data is filtered from the result by the predicate before an invalid operation such

as division of a number by zero
v Data is explicitly cast to an incompatible data type

Possible impact to your DB2 environment

Your applications might return fewer error SQLCODEs.

Actions to take

While in conversion mode with application compatibility for your package set to
value ’V10R1’, run your applications with IFCID 0366 or IFCID 0376 enabled.
Then, review the trace output for incompatible changes with the identifier ’1102’.
Related concepts:

XML enhancements (DB2 for z/OS What's New?)

Application compatibility of packages (DB2 Application programming and
SQL)

XML document node implicitly added on insert and update
In DB2 Version 11 new-function mode with application compatibility set to
’V11R1’, if an XML document does not have a document node, then one is added
during insert and update operations.

Explanation

In previous versions of DB2, document nodes are not implicitly added and an SQL
insert or update of an XML document returned SQLCODE -20345. To avoid the
error, an application invokes the XMLDOCUMENT function before the insert or
update. In Version 11, an XML document node is added if one does not exist in the
XML document.

Possible impact to your DB2 environment

Your applications might return fewer errors on insert and update operations.

6 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_altertable.htm#db2z_sql_altertable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.wnew/src/tpc/db2z_11_xml.htm#db2z_11_xml
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_applicationcompatibility.htm#db2z_applicationcompatibility
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_applicationcompatibility.htm#db2z_applicationcompatibility

Actions to take

While in conversion mode with application compatibility for your package set to
value ’V10R1’, run your applications with IFCID 0366 or IFCID 0376 enabled.
Then, review the trace output for incompatible changes with the identifier ’1101’.
In addition, you can review your applications for use of the XMLDOCUMENT
function.
Related concepts:

XML enhancements (DB2 for z/OS What's New?)

Application compatibility of packages (DB2 Application programming and
SQL)

Client information special registers length
In DB2 Version 11 new-function mode with application compatibility set to
’V11R1’, special registers for client information fields might return different length
values. The values in special registers CURRENT CLIENT_USERID, CURRENT
CLIENT_WRKSTNAME, CURRENT CLIENT_APPLNAME, and CURRENT
CLIENT_ACCTNG are determined by the application compatibility level.

Explanation

In previous versions of DB2, client information values were truncated and padded
to the maximum length. In Version 11 the following lengths increase:
v The maximum length of CURRENT CLIENT_USERID increases from 16 bytes to

128 bytes.
v The maximum length of CURRENT CLIENT_WKSTNAME increases from 18

bytes to 255 bytes.
v The maximum length of CURRENT CLIENT_APPLNAME increases from 32

bytes to 255 bytes.
v The maximum length of CURRENT CLIENT_ACCTNG increases from 200 bytes

to 255 bytes.

In Version 11, trailing blanks are removed.

Possible impact to your DB2 environment

When the application compatibility for your package is set to value ’V11R1’, your
applications might receive a different length client information value than they did
previously. The value is no longer padded to the supported maximum length and
trailing blanks are removed.

Actions to take

Review your applications for use of these special registers. While in conversion
mode with application compatibility for your package set to value ’V10R1’, run
your applications with IFCID 0366 or IFCID 0376 enabled. Then, review the trace
output for incompatible changes with the identifier ’1104’, ’1105’, ’1106’, or ’1107’.

Chapter 1. Planning for and designing DB2 applications 7

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.wnew/src/tpc/db2z_11_xml.htm#db2z_11_xml
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_applicationcompatibility.htm#db2z_applicationcompatibility
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_applicationcompatibility.htm#db2z_applicationcompatibility

Related concepts:

Application compatibility of packages (DB2 Application programming and
SQL)

Client information results from ADMIN_COMMAND_DB2
In DB2 Version 11 conversion mode, the ADMIN_COMMAND_DB2 result set row
returned changes in the created global temporary table
SYSIBM.DB2_THREAD_STATUS when processing-type = "THD". The column data
type and maximum lengths for WORKSTATION, USERID, APPLICATION, and
ACCOUNTING change.

Explanation

In Version 11 the following column data types and lengths change:
v WORKSTATION increases from CHAR(18) to VARCHAR(255).
v USERID increases from CHAR(16) to VARCHAR(128).
v APPLICATION increases from CHAR(32) to VARCHAR(255).
v ACCOUNTING increases from CHAR(247) to VARCHAR(255).

Possible impact to your DB2 environment

Your applications now receive a VARCHAR data type and possibly a different
length client information value. The length is no longer padded to the supported
maximum length.

Actions to take

Review your applications for use of the ADMIN_COMMAND_DB2 stored
procedure.
Related reference:

ADMIN_COMMAND_DB2 stored procedure (DB2 Administration Guide)

Altering limit keys blocks immediate definition changes
In DB2 Version 11 new-function mode, if you alter a limit key for certain table
space types, you cannot make any immediate definition changes until the limit key
changes are materialized.

Explanation

In previous versions of DB2, altering a limit key was an immediate definition
change. In Version 11, altering a limit key for one of the following types of
partitioned table spaces is now a pending definition change:
v Range-partitioned universal table spaces
v Table spaces that are partitioned (non-universal) with table-controlled

partitioning

As in Version 10, you cannot make immediate definition changes before pending
definition changes are materialized. (Table spaces with pending definition changes
have an entry in SYSIBM.SYSPENDINGDDL.)

8 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_applicationcompatibility.htm#db2z_applicationcompatibility
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_applicationcompatibility.htm#db2z_applicationcompatibility
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_sp_admincommanddb2.htm#db2z_sp_admincommanddb2

Possible impact to your DB2 environment

Some immediate alter operations that worked in previous versions of DB2 might
fail in Version 11 with SQLCODE -20385 reason code 1 or 2.

Actions to take

Change any applications or jobs that attempt immediate definition changes on the
following table space types while outstanding limit key changes exist:
v Range-partitioned universal table spaces
v Table spaces that are partitioned (non-universal) with table-controlled

partitioning

This scenario includes ALTER statements that contain both limit key changes and
other immediate definition changes in the same statement. Put those requests in
separate ALTER statements.

Run the REORG TABLESPACE utility to materialize the limit key changes before
you request the immediate definition change. Specify the SHRLEVEL CHANGE or
SHRLEVEL REFERENCE option in the REORG TABLESPACE statement. If you
specify SHRLEVEL NONE, the limit key changes are not materialized.
Related concepts:

Improved availability when altering limit keys (DB2 for z/OS What's New?)
Related tasks:

Materializing pending definition changes (DB2 Administration Guide)
Related reference:

Syntax and options of the REORG TABLESPACE control statement (DB2
Utilities)

ALTER TABLESPACE (DB2 SQL)

SYSIBM.SYSPENDINGDDL table (DB2 SQL)
Related information:

-20385 (DB2 Codes)

Removing the SYSPUBLIC schema from the SQL PATH routine
option

Starting in DB2 Version 11 conversion mode, SYSPUBLIC is the schema that is
used for public aliases. As such, the SQL PATH routine option must not specify the
SYSPUBLIC schema.

Explanation

In previous versions of DB2, you could not define functions, procedures, distinct
types, and sequences in the SYSPUBLIC schema, but you were not restricted from
specifying SYSPUBLIC as part of the SQL PATH. If you had specified SYSPUBLIC
as part of the SQL PATH, it had no effect on their applications. With DB2 Version
11 you will no longer be able to specify SYSPUBLIC as part of the SQL PATH.

Chapter 1. Planning for and designing DB2 applications 9

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.wnew/src/tpc/db2z_11_onlinealterlimitkey.htm#db2z_11_onlinealterlimitkey
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_materializingdefchanges.htm#db2z_materializingdefchanges
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_reorgtablespacesyntax.htm#db2z_reorgtablespacesyntax
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_reorgtablespacesyntax.htm#db2z_reorgtablespacesyntax
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_altertablespace.htm#db2z_sql_altertablespace
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsyspendingddltable.htm#db2z_sysibmsyspendingddltable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.codes/src/tpc/n20385.htm#n20385

Possible impact to your DB2 environment

Creation or resolution of some objects that worked in previous versions of DB2
might fail in Version 11 with SQLCODE -713 if SYSPUBLIC is specified as part of
the SQL PATH.

Actions to take

Query the catalog to see if any object schemas use SYSPUBLIC as the schema
qualifier. This is highly unlikely for any object, but most likely with objects that
use the SQL PATH (functions, procedures, distinct types, and sequences).

Change any existing SET PATH statements to not specify SYSPUBLIC as a schema.
Related concepts:

SQL path (DB2 SQL)

Unqualified type, function, procedure, global variable, and specific names (DB2
SQL)
Related reference:

CURRENT PATH (DB2 SQL)

SET PATH (DB2 SQL)
Related information:

-713 (DB2 Codes)

SYSIBMADM schema added to the SQL path
In DB2 Version 11 new-function mode with application compatibility set to
’V11R1’, SYSIBMADM is added to the SQL path as an implicit schema.

Explanation

If SYSIBMADM is not specified as an explicit schema in the SQL path, it is
included as an implicit schema at the beginning of the path after SYSIBM,
SYSFUN, and SYSPROC.

Possible impact to your DB2 environment

Applications that reference the content of the CURRENT PATH special register
now have the SYSIBMADM schema returned when implicit schemas are included
in the path. For example, the statement SELECT CURRENT PATH FROM
SYSIBM.SYSDUMMY1 now returns
"SYSIBM","SYSFUN","SYSPROC","SYSIBMADM","authid," where authid is the
authorization ID of the statement, instead of
"SYSIBM","SYSFUN","SYSPROC","authid."

Actions to take

No action is required.

10 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sqlpath.htm#db2z_sqlpath
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_unqualifiedroutinenames.htm#db2z_unqualifiedroutinenames
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_unqualifiedroutinenames.htm#db2z_unqualifiedroutinenames
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_currentpath.htm#db2z_currentpath
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_setpath.htm#db2z_sql_setpath
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.codes/src/tpc/n713.htm#n713

Related concepts:

SQL path (DB2 SQL)
Related reference:

CURRENT PATH (DB2 SQL)

Change in result for CAST(string AS TIMESTAMP)
In DB2 Version 11 new-function mode with application compatibility set to
’V11R1’, the result of CAST(string AS TIMESTAMP) is changed in some cases.

Explanation

Previously, when DB2 executed CAST(string AS TIMESTAMP), DB2 interpreted an
8-byte string as a Store Clock value and a 13-byte string as a GENERATE_UNIQUE
value. This interpretation might result in an incorrect result from the CAST
specification. Starting with Version 11, with the application compatibility set to
V11R1, when an 8-byte string or a 13-byte string is input to CAST(string AS
TIMESTAMP), DB2 interprets the input strings as string representations of
TIMESTAMP values.

Possible impact to your DB2 environment

An invalid representation of an 8-byte or 13-byte string in CAST(string AS
TIMESTAMP) results in SQLCODE -180.

For example, suppose that you execute the following SQL statements in Version 11
new-function mode:
-- SET APPLICATION COMPATIBILITY TO V10R1
SET CURRENT APPLICATION COMPATIBILITY=’V10R1’;
-- CAST AN 8-BYTE STRING REPRESENTATION OF A DATETIME VALUE
-- TO TIMESTAMP
SELECT CAST(’1/1/2013’ AS TIMESTAMP) FROM SYSIBM.SYSDUMMY1;
-- CAST AN 8-BYTE STRING REPRESENTATION OF A STORE CLOCK VALUE
-- TO TIMESTAMP
SELECT CAST(X’CAB5060708090100’ AS TIMESTAMP) FROM SYSIBM.SYSDUMMY1;

The result is of the first SELECT statement is 2034-07-25-16.43.41.599503, which is
an incorrect result. The result of the second SELECT statement is
2013-01-01-20.37.04.246928, which is the correct result if the input string is
interpreted as a Store Clock value.

If you execute the following SQL statements, the result differ:
-- SET APPLICATION COMPATIBILITY TO V11R1
SET CURRENT APPLICATION COMPATIBILITY=’V11R1’;
-- CAST AN 8-BYTE STRING REPRESENTATION OF A DATETIME VALUE
-- TO TIMESTAMP
SELECT CAST(’1/1/2013’ AS TIMESTAMP) FROM SYSIBM.SYSDUMMY1;
-- CAST AN 8-BYTE STRING REPRESENTATION OF A STORE CLOCK VALUE
-- TO TIMESTAMP
SELECT CAST(X’CAB5060708090100’ AS TIMESTAMP) FROM SYSIBM.SYSDUMMY1;

The result of the first SELECT statement is 2013-01-01-00.00.00.000000, which is the
correct result. The result of the second SELECT statement is SQLCODE -180,
because a Store Clock value is not valid input to CAST(string AS TIMESTAMP).

Chapter 1. Planning for and designing DB2 applications 11

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sqlpath.htm#db2z_sqlpath
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_currentpath.htm#db2z_currentpath

Actions to take

While in Version 11 conversion mode, or in Version 11 new-function mode with
application compatibility set to V10R1, identify applications with this
incompatibility by starting a trace for IFCID 0366 or IFCID 0376, and then running
the applications. Review the trace output for incompatible changes with the
identifier 1109. If you need to convert Store Clock values to the TIMESTAMP data
type, use the TIMESTAMP built-in function instead of CAST(string AS
TIMESTAMP).

For example:
-- SET APPLICATION COMPATIBILITY TO V11R1
SET CURRENT APPLICATION COMPATIBILITY=’V11R1’;
-- CONVERT AN 8-BYTE STRING REPRESENTATION OF A STORE CLOCK VALUE
-- TO TIMESTAMP
SELECT TIMESTAMP(X’CAB5060708090100’) FROM SYSIBM.SYSDUMMY1;

You receive the correct result of 2013-01-01-20.37.04.246928.
Related reference:

CAST specification (DB2 SQL)

New maximum lengths for values that are returned for some
built-in functions

In DB2 Version 11 new-function mode with application compatibility set to
’V11R1’, the maximum lengths for values that are returned for some built-in
functions is decreased.

Explanation

For the SPACE and VARCHAR built-in functions, the maximum length of the
result is changed from 32767 to 32764 bytes.

Possible impact to your DB2 environment

If the length of the output string for any of these functions is greater than 32764
bytes, SQLCODE -171 is returned.

Actions to take

Review your applications for use of these functions, and, if necessary, modify the
function input so that the result does not exceed 32764 bytes. While in conversion
mode with application compatibility for your package set to value ’V10R1’, run
your applications with IFCID 0366 or IFCID 0376 enabled. Then, review the trace
output for incompatible changes with the identifier ’1110’ or ’1111’.

Timestamp string representations
DB2 Version 11 new-function mode with application compatibility set to ’V11R1’
strictly enforces valid string representations of timestamp values.

Explanation

DB2 Version 11 behavior with application compatibility set to V11R1 is equivalent
to Version 10 with subsystem parameter BIF_COMPATIBILITY = CURRENT. With
application compatibility set to V10R1, the enforcement of valid string

12 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_castspecification.htm#db2z_castspecification

representations depends on the BIF_COMPATIBILITY value.

Possible impact to your DB2 environment

In Version 11 with application compatibility set to V11R1, invalid string
representations of timestamp values result in an SQL error.

Actions to take

Review your setting of the BIF_COMPATIBILITY subsystem parameter. If the value
is not CURRENT, then while in conversion mode with application compatibility for
your package set to value ’V10R1’, run your applications with IFCID 0366 or IFCID
0376. Then, review the trace output with the function identifier ’3’ to identify SQL
with unsupported timestamp values. Make appropriate changes to your SQL.
Related concepts:

String representations of datetime values (DB2 SQL)

Application compatibility of packages (DB2 Application programming and
SQL)

SQL reserved words
PSPI

Explanation

Version 11 has several new SQL reserved words, which are listed in Reserved
words (DB2 SQL).

Possible impact to your DB2 environment

In some cases, the use of these reserved words might cause an incompatibility in
Version 11 conversion mode, regardless of the setting of the application
compatibility value.

Actions to take

Collect IFCID 0366 trace records in Version 10. Values 4, 5, and 6 for the
QW0366FN field indicate instances of reserved words in applications that will
cause an incompatibility in Version 11. Adjust these applications by changing the
reserved word to a delimited identifier or by using a word that is not reserved in

Version 11. PSPI

Qualify user-defined function names
If you use a user-defined function that has the same name as a built-in function
that has been added to Version 11, ensure that you fully qualify the function name.
If the function name is unqualified and “SYSIBM” precedes the schema that you
used for this function in the SQL path, DB2 invokes one of the built-in functions.

For a list of built-in functions, including those that have been added in Version 11,
see Functions (DB2 SQL).

Chapter 1. Planning for and designing DB2 applications 13

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_datetimestringrepresentation.htm#db2z_datetimestringrepresentation
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_applicationcompatibility.htm#db2z_applicationcompatibility
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_applicationcompatibility.htm#db2z_applicationcompatibility
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_reservedwords.htm#db2z_reservedwords
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_reservedwords.htm#db2z_reservedwords
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sqlfunctionsintro.htm#db2z_sqlfunctionsintro

SQLCODE changes
Some SQLCODE numbers and message text might have changed in DB2 Version
11. Also, the conditions under which some SQLCODEs are issued might have

changed.

Determining the value of any SQL processing options that affect the
design of your program

When you process SQL statements in an application program, you can specify
options that describe the basic characteristics of the program. You can also indicate
how you want the output listings to look. Although most of these options do not
affect how you design or code the program, a few options do.

About this task

SQL processing options specify program characteristics such as the following items:
v The host language in which the program is written
v The maximum precision of decimal numbers in the program
v How many lines are on a page of the precompiler listing

In many cases, you may want to accept the default value provided.

Procedure

To determine the value of any SQL processing options that affect the design of
your program:

Review the list of SQL processing options and decide the values for any options
that affect the way that you write your program. For example, you need to know if
you are using NOFOR or STDSQL(YES) before you begin coding.
Related concepts:
“DB2 program preparation overview” on page 976
Related reference:
“Descriptions of SQL processing options” on page 931

Changes that invalidate packages
Changes to your program or database objects can invalidate packages.

A change to your program probably invalidates one or more of your packages. For
some changes, you must bind a new object; for others, rebinding is sufficient.

A package can also become invalid for reasons that do not depend on operations
in your program. For example, when an index is dropped that is used in an access
path by one of your queries, a package can become invalid. In those cases, DB2
might rebind the package automatically the next time that the package is used.

The following table lists the actions that you must take when changes are made to
your program or database objects.

14 Application Programming and SQL Guide

Table 1. Changes that require packages to be rebound.

Change made Required action

Run RUNSTATS to update catalog statistics Rebind the package by using the REBIND
command. Rebinding might improve the
access path that DB2 uses.

Add an index to a table Rebind the package by using the REBIND
command. Rebinding causes DB2 to consider
using the index when accessing this table.

Change the bind options 1 Rebind the package by using the REBIND
command and specifying the new value for
the bind option. If the option that you want
to change is not available for the REBIND
command, issue the BIND command with
ACTION(REPLACE) instead.

Change both statements in the host language
and SQL statements

Precompile, compile, and link the application
program. Issue the BIND command with
ACTION(REPLACE) for the package.

Drop a table, index, or other object, and
re-create the object

If a table with a trigger is dropped, re-create
the trigger if you re-create the table.
Otherwise, no change is required. DB2
attempts to automatically rebind the package
the next time it is run.

Drop an object that a package depends on No action is required. If the package becomes
invalid, DB2 automatically rebinds the
package the next time that it is allocated.

Revoke an authorization to use an object No action is required. DB2 attempts to
automatically rebind the package the next
time it is run. Automatic rebind fails if
authorization is still not available. In this
case, you must rebind the package by using
the REBIND command.

Rename a column in a table on which a
package is dependent

No action is required. DB2 automatically
rebinds invalidated packages. If automatic
rebind is unsuccessful, modify, recompile,
and rebind the affected applications.

RUN REPAIR DBD REBUILD on a database Trigger packages in the database are
invalidated. Rebind all trigger packages in
the database

Convert a partitioned table space to a
range-partitioned universal table space

No action is required. DB2 automatically
rebinds invalidated packages. If automatic
rebind is unsuccessful, modify, recompile,
and rebind the affected applications.

Convert a simple table space to a
partition-by-growth universal table space

No action is required. DB2 automatically
rebinds invalidated packages. If automatic
rebind is unsuccessful, modify, recompile,
and rebind the affected applications.

ALTER TABLESPACE with BUFFERPOOL to
change the buffer pool page size

No action is required. DB2 automatically
rebinds invalidated packages. If automatic
rebind is unsuccessful, modify, recompile,
and rebind the affected applications.

ALTER TABLESPACE with
MAXPARTITIONS to change the maximum
number of partitions

No action is required. DB2 automatically
rebinds invalidated packages. If automatic
rebind is unsuccessful, modify, recompile,
and rebind the affected applications.

Chapter 1. Planning for and designing DB2 applications 15

Note:

1. In the case of changing the bind options, the change is not actually made until
you perform the required action.

Related concepts:
“Automatic rebinding” on page 969
“Trigger packages” on page 484
Related tasks:

Checking for invalid packages (DB2 Performance)
“Rebinding an application” on page 961
Related reference:

Invalid and inoperative packages (Managing Security)
Related information:

00E30305 (DB2 Codes)

Determining the value of any bind options that affect the design of
your program

Several options of the BIND PACKAGE and BIND PLAN commands can affect
your program design. For example, you can use a bind option to ensure that a
package or plan can run only from a particular CICS connection or IMS region.
Your code does not need to enforce this situation.

Procedure

To determine the value of any bind options that affect the design of your program:

Review the list of bind options and decide the values for any options that affect
the way that you write your program. For example, you should decide the values
of the ACQUIRE and RELEASE options before you write your program. These
options determine when your application acquires and releases locks on the objects
it uses.
Related reference:

BIND and REBIND options (DB2 Commands)

Programming applications for performance
You can achieve better DB2 performance by considering performance as you
program and deploy your applications.

Procedure

To improve the performance of application programs that access data in DB2, use
the following approaches when writing and preparing your programs:
v Program your applications for concurrency. The goal is to program and prepare

applications in a way that:
– Protects the integrity of the data that is being read or updated from being

changed by other applications.
– Minimizes the length of time that other access to the data is prevented.
For more information about DB2 concurrency and recommendations for
improving concurrency in your application programs, see the following topics:

16 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_check4invalidplanspackages.htm#db2z_check4invalidplanspackages
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_invalidinoperativeplanpackage.htm#db2z_invalidinoperativeplanpackage
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.codes/src/tpc/00e30305.htm#e30305
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions

– Concurrency recommendations for application designers (Introduction to DB2
for z/OS)

– Concurrency and locks (DB2 Performance)
– Improving concurrency (DB2 Performance)
– Improving concurrency in data sharing environments (DB2 Data Sharing

Planning and Administration)
v Write SQL statements that access data efficiently. The predicates, subqueries, and

other structures in SQL statements affect the access paths that DB2 uses to access
the data.
For information about how to write SQL statements that access data efficiently,
see the following topics:
– Ways to improve query performance (Introduction to DB2 for z/OS)
– Writing efficient SQL queries (DB2 Performance)

v Use EXPLAIN or SQL optimization tools to analyze the access paths that DB2
chooses to process your SQL statements. By analyzing the access path that DB2
uses to access the data for an SQL statement, you can discover potential
problems. You can use this information to modify your statement to perform
better.
For information about how you can use EXPLAIN tables, and SQL optimization
tools, to analyze the access paths for your SQL statements, see the following
topics:
– Investigating access path problems (DB2 Performance)
– Using EXPLAIN to understand the access path (Introduction to DB2 for

z/OS)
– Investigating SQL performance by using EXPLAIN (DB2 Performance)
– Interpreting data access by using EXPLAIN (DB2 Performance)
– EXPLAIN tables (DB2 Performance)
– EXPLAIN (DB2 SQL)
– Tuning SQL with Optim Query Tuner, Part 1: Understanding access paths
– Generating visual representations of access plans

v Consider performance in the design of applications that access distributed data.
The goal is to reduce the amount of network traffic that is required to access the
distributed data, and to manage the use of system resources such as distributed
database access threads and connections.
For information about improving the performance of applications that access
distributed data, see the following topics:
– Ways to reduce network traffic (Introduction to DB2 for z/OS)
– Managing DB2 threads (DB2 Performance)
– Improving performance for applications that access distributed data (DB2

Performance)
– Improving performance for SQL statements in distributed applications (DB2

Performance)
v Use stored procedures to improve performance, and consider performance when

creating stored procedures.
For information about stored procedures and DB2 performance, see the
following topics:
– Implementing DB2 stored procedures (DB2 Administration Guide)
– Improving the performance of stored procedures and user-defined functions

(DB2 Performance)

Chapter 1. Planning for and designing DB2 applications 17

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_concurrencyrecommendappdesign.htm#db2z_concurrencyrecommendappdesign
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_concurrencyrecommendappdesign.htm#db2z_concurrencyrecommendappdesign
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_concurrencyandlocksdefined.htm#db2z_concurrencyandlocksdefined
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_recommend4concurrency.htm#db2z_recommend4concurrency
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_tuninguseoflocks.htm#db2z_tuninguseoflocks
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_tuninguseoflocks.htm#db2z_tuninguseoflocks
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_improvequeryperformance.htm#db2z_improvequeryperformance
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_programsqlperf.htm#db2z_programsqlperf
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_investigateaccesspaths.htm#db2z_investigateaccesspaths
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_explainforunderstandingaccesspath.htm#db2z_explainforunderstandingaccesspath
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_explainforunderstandingaccesspath.htm#db2z_explainforunderstandingaccesspath
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_useexplain2capturesqlinfo.htm#db2z_useexplain2capturesqlinfo
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_interpretdataaccess.htm#db2z_interpretdataaccess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_explaintables.htm#db2z_explaintables
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_explain.htm#db2z_sql_explain
https://ltsbwass001.sby.ibm.com/cms/developerworks/data/library/techarticle/dm-1006optimquerytuner1/index.html
http://publib.boulder.ibm.com/infocenter/dstudio/v4r1/topic/com.ibm.datatools.qrytune.sngqry.doc/topics/reviewingapg.html
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_waystoreducenetworktraffic.htm#db2z_waystoreducenetworktraffic
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_managethreads.htm#db2z_managethreads
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tunedistributedapps.htm#db2z_tunedistributedapps
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tunedistributedapps.htm#db2z_tunedistributedapps
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_sqloptions4dist.htm#db2z_sqloptions4dist
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_sqloptions4dist.htm#db2z_sqloptions4dist
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_implementstoredprocedure.htm#db2z_implementstoredprocedure
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_improvestoreprocudfperf.htm#db2z_improvestoreprocudfperf
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_improvestoreprocudfperf.htm#db2z_improvestoreprocudfperf

Related concepts:

Query and application performance analysis (Introduction to DB2 for z/OS)

Programming for the instrumentation facility interface (IFI) (DB2 Performance)
Related tasks:
Chapter 1, “Planning for and designing DB2 applications,” on page 1
Chapter 3, “Coding SQL statements in application programs: General information,”
on page 123

Designing your application for recovery
If your application fails or DB2 terminates abnormally, you need to ensure the
integrity of any data that was manipulated in your application. You should
consider possible recovery situations when you design your application.

Procedure

To design your application for recovery:
1. Put any changes that logically need to be made at the same time in the same

unit of work. This action ensures that in case DB2 terminates abnormally or
your application fails, the data is left in a consistent state.
A unit of work is a logically distinct procedure that contains steps that change
the data. If all the steps complete successfully, you want the data changes to
become permanent. But, if any of the steps fail, you want all modified data to
return to the original value before the procedure began. For example, suppose
two employees in the sample table DSN8B10.EMP exchange offices. You need
to exchange their office phone numbers in the PHONENO column. You need to
use two UPDATE statements to make each phone number current. Both
statements, taken together, are a unit of work. You want both statements to
complete successfully. For example, if only one statement is successful, you
want both phone numbers rolled back to their original values before attempting
another update.

2. Consider how often you should commit any changes to the data.
If your program abends or the system fails, DB2 backs out all uncommitted
data changes. Changed data returns to its original condition without interfering
with other system activities.
For IMS and CICS applications, if the system fails, DB2 data does not always
return to a consistent state immediately. DB2 does not process indoubt data
(data that is neither uncommitted nor committed) until you restart IMS or the
CICS attachment facility. To ensure that DB2 and IMS are synchronized, restart
both DB2 and IMS. To ensure that DB2 and CICS are synchronized, restart both
DB2 and the CICS attachment facility.

3. Consider whether your application should intercept abends.
If your application intercepts abends, DB2 commits work, because it is unaware
that an abend has occurred. If you want DB2 to roll back work automatically
when an abend occurs in your program, do not let the program or run time
environment intercept the abend. If your program uses Language
Environment®, and you want DB2 to roll back work automatically when an
abend occurs in the program, specify the run time options
ABTERMENC(ABEND) and TRAP(ON).

4. For TSO applications only: Issue COMMIT statements before you connect to
another DBMS.

18 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_queryandapplicationperformanceanalysis.htm#db2z_queryandapplicationperformanceanalysis
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_program4ifi.htm#db2z_program4ifi

If the system fails at this point, DB2 cannot know whether your transaction is
complete. In this case, as in the case of a failure during a one-phase commit
operation for a single subsystem, you must make your own provision for
maintaining data integrity.

5. For TSO applications only: Determine if you want to provide an abend exit
routine in your program.
If you provide this routine, it must use tracking indicators to determine if an
abend occurs during DB2 processing. If an abend does occur when DB2 has
control, you must allow task termination to complete. DB2 detects task
termination and terminates the thread with the ABRT parameter. Do not re-run
the program.
Allowing task termination to complete is the only action that you can take for
abends that are caused by the CANCEL command or by DETACH. You cannot
use additional SQL statements at this point. If you attempt to execute another
SQL statement from the application program or its recovery routine,
unexpected errors can occur.

Related concepts:

Unit of work (Introduction to DB2 for z/OS)

Unit of work in TSO
Applications that use the TSO attachment facility can explicitly define units of
work by using the SQL COMMIT and ROLLBACK statements.

In TSO applications, a unit of work starts when the first updates of a DB2 object
occur. A unit of work ends when one of the following conditions occurs:
v The program issues a subsequent COMMIT statement. At this point in the

processing, your program has determined that the data is consistent; all data
changes that were made since the previous commit point were made correctly.

v The program issues a subsequent ROLLBACK statement. At this point in the
processing, your program has determined that the data changes were not made
correctly and, therefore, should not be permanent. A ROLLBACK statement
causes any data changes that were made since the last commit point to be
backed out.

v The program terminates and returns to the DSN command processor, which
returns to the TSO Terminal Monitor Program (TMP).

The first and third conditions in the preceding list are called a commit point. A
commit point occurs when you issue a COMMIT statement or your program
terminates normally.
Related reference:

COMMIT (DB2 SQL)

ROLLBACK (DB2 SQL)

Unit of work in CICS
CICS applications can explicitly define units of work by using the CICS
SYNCPOINT command. Alternatively, units of work are defined implicitly by
several logic-breaking points.

All the processing that occurs in your program between two commit points is
known as a logical unit of work (LUW) or unit of work. In CICS applications, a

Chapter 1. Planning for and designing DB2 applications 19

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_unitofwork.htm#db2z_unitofwork
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_commit.htm#db2z_sql_commit
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_rollback.htm#db2z_sql_rollback

unit of work is marked as complete by a commit or synchronization (sync) point,
which is defined in one of following ways:
v Implicitly at the end of a transaction, which is signaled by a CICS RETURN

command at the highest logical level.
v Explicitly by CICS SYNCPOINT commands that the program issues at logically

appropriate points in the transaction.
v Implicitly through a DL/I PSB termination (TERM) call or command.
v Implicitly when a batch DL/I program issues a DL/I checkpoint call. This call

can occur when the batch DL/I program shares a database with CICS
applications through the database sharing facility.

For example, consider a program that subtracts the quantity of items sold from an
inventory file and then adds that quantity to a reorder file. When both transactions
complete (and not before) and the data in the two files is consistent, the program
can then issue a DL/I TERM call or a SYNCPOINT command. If one of the steps
fails, you want the data to return to the value it had before the unit of work began.
That is, you want it rolled back to a previous point of consistency. You can achieve
this state by using the SYNCPOINT command with the ROLLBACK option.

By using a SYNCPOINT command with the ROLLBACK option, you can back out
uncommitted data changes. For example, a program that updates a set of related
rows sometimes encounters an error after updating several of them. The program
can use the SYNCPOINT command with the ROLLBACK option to undo all of the
updates without giving up control.

The SQL COMMIT and ROLLBACK statements are not valid in a CICS
environment. You can coordinate DB2 with CICS functions that are used in
programs, so that DB2 and non-DB2 data are consistent.

Planning for program recovery in IMS programs
To be prepared for recovery situations for IMS programs that access DB2 data, you
need to make several design decisions that are specific to IMS programs. These
decisions are in addition to the general recommendations that you should follow
when designing your application for recovery.

About this task

Both IMS and DB2 handle recovery in an IMS application program that accesses
DB2 data. IMS coordinates the process, and DB2 handles recovery for DB2 data.

Procedure

To plan for program recovery in IMS programs:
1. For a program that processes messages as its input, decide whether to specify

single-mode or multiple-mode transactions on the TRANSACT statement of the
APPLCTN macro for the program.

Single-mode
Indicates that a commit point in DB2 occurs each time the program
issues a call to retrieve a new message. Specifying single-mode can
simplify recovery; if the program abends, you can restart the program
from the most recent call for a new message. When IMS restarts the
program, the program starts by processing the next message.

20 Application Programming and SQL Guide

Multiple-mode
Indicates that a commit point occurs when the program issues a
checkpoint call or when it terminates normally. Those two events are
the only times during the program that IMS sends the program's
output messages to their destinations. Because fewer commit points are
processed in multiple-mode programs than in single-mode programs,
multiple-mode programs could perform slightly better than
single-mode programs. When a multiple-mode program abends, IMS
can restart it only from a checkpoint call. Instead of having only the
most recent message to reprocess, a program might have several
messages to reprocess. The number of messages to process depends on
when the program issued the last checkpoint call.

DB2 does some processing with single- and multiple-mode programs. When a
multiple-mode program issues a call to retrieve a new message, DB2 performs
an authorization check and closes all open cursors in the program.

2. Decide whether to issue checkpoint calls (CHKP) and if so, how often to issue
them. Each call indicates to IMS that the program has reached a sync point and
establishes a place in the program from which you can restart the program.
Consider the following factors when deciding when to use checkpoint calls:
v How long it takes to back out and recover that unit of work. The program

must issue checkpoints frequently enough to make the program easy to back
out and recover.

v How long database resources are locked in DB2 and IMS.
v For multiple-mode programs: How you want the output messages grouped.

Checkpoint calls establish how a multiple-mode program groups its output
messages. Programs must issue checkpoints frequently enough to avoid
building up too many output messages.

Restriction: You cannot use SQL COMMIT and ROLLBACK statements in the
DB2 DL/I batch support environment, because IMS coordinates the unit of
work.

3. Issue CLOSE CURSOR statements before any checkpoint calls or GU calls to
the message queue, not after.

4. After any checkpoint calls, set the value of any special registers that were reset
if their values are needed after the checkpoint:
A CHKP call causes IMS to sign on to DB2 again, which resets the special
registers that are shown in the following table.

Table 2. Special registers that are reset by a checkpoint call.

Special register
Value to which it is reset after a checkpoint
call

CURRENT PACKAGESET blanks

CURRENT SERVER blanks

CURRENT SQLID blanks

CURRENT DEGREE 1

5. After any commit points, reopen the cursors that you want and re-establish
positioning

6. Decide whether to specify the WITH HOLD option for any cursors. This option
determines whether the program retains the position of the cursor in the DB2
database after you issue IMS CHKP calls. You always lose the program
database positioning in DL/I after an IMS CHKP call.

Chapter 1. Planning for and designing DB2 applications 21

The program database positioning in DB2 is affected according to the following
criteria:
v If you do not specify the WITH HOLD option for a cursor, you lose the

position of that cursor.
v If you specify the WITH HOLD option for a cursor and the application is

message-driven, you lose the position of that cursor.
v If you specify the WITH HOLD option for a cursor and the application is

operating in DL/I batch or DL/I BMP, you retain the position of that cursor.
7. Use IMS rollback calls, ROLL and ROLB, to back out DB2 and DL/I changes to

the last commit point. These options have the following differences:

ROLL
Specifies that all changes since the last commit point are to be backed out
and the program is to be terminated. IMS terminates the program with user
abend code U0778 and without a storage dump.

When you issue a ROLL call, the only option you supply is the call
function, ROLL.

ROLLB
Specifies that all changes since the last commit point are to be backed out
and control is to be returned to the program so that it can continue
processing.

A ROLB call has the following options:
v The call function, ROLB
v The name of the I/O PCB

How ROLL and ROLB calls effect DL/I changes in a batch environment
depends on the IMS system log and back out options that are specified, as
shown in the following table.

Table 3. Effects of ROLL and ROLLB calls on DL/I changes in a batch environment

Options specified

ResultRollback call System log option Backout option

ROLL tape any DL/I does not back
out updates, and
abend U0778 occurs.
DB2 backs out
updates to the
previous checkpoint.

disk BKO=NO

disk BKO=YES DL/I backs out
updates, and abend
U0778 occurs. DB2
backs out updates to
the previous
checkpoint.

22 Application Programming and SQL Guide

Table 3. Effects of ROLL and ROLLB calls on DL/I changes in a batch
environment (continued)

Options specified

ResultRollback call System log option Backout option

ROLB tape any DL/I does not back
out updates, and an
AL status code is
returned in the PCB.
DB2 backs out
updates to the
previous checkpoint.
The DB2 DL/I
support causes the
application program
to abend when ROLB
fails.

disk BKO=NO

disk BKO=YES DL/I backs out
database updates,
and control is passed
back to the
application program.
DB2 backs out
updates to the
previous checkpoint.
Restriction: You
cannot specify the
address of an I/O
area as one of the
options on the call; if
you do, your
program receives an
AD status code.
However, you must
have an I/O PCB for
your program.
Specify CMPAT=YES
on the CMPAT
keyword in the
PSBGEN statement
for your program's
PSB.

Related concepts:
“Checkpoints in IMS programs” on page 25

Unit of work in IMS online programs
IMS applications can explicitly define units of work by using a CHKP, SYNC,
ROLL, or ROLB call, or, for single-mode transactions, a GU call.

In IMS, a unit of work starts when one of the following events occurs:
v When the program starts
v After a CHKP, SYNC, ROLL, or ROLB call has completed
v For single-mode transactions, when a GU call is issued to the I/O PCB

A unit of work ends when one of the following events occurs:

Chapter 1. Planning for and designing DB2 applications 23

v The program issues either a subsequent CHKP or SYNC call, or, for single-mode
transactions, a GU call to the I/O PCB. At this point in the processing, the data
is consistent. All data changes that were made since the previous commit point
are made correctly.

v The program issues a subsequent ROLB or ROLL call. At this point in the
processing, your program has determined that the data changes are not correct
and, therefore, that the data changes should not become permanent.

v The program terminates.

Restriction: The SQL COMMIT and ROLLBACK statements are not valid in an
IMS environment.

A commit point occurs in a program as the result of any one of the following
events:
v The program terminates normally. Normal program termination is always a

commit point.
v The program issues a checkpoint call. Checkpoint calls are a program's means of

explicitly indicating to IMS that it has reached a commit point in its processing.
v The program issues a SYNC call. A SYNC call is a Fast Path system service call

to request commit-point processing. You can use a SYNC call only in a
non-message-driven Fast Path program.

v For a program that processes messages as its input, a commit point can occur
when the program retrieves a new message. This behavior depends on the mode
that you specify in the APPLCTN macro for the program:
– If you specify single-mode transactions, a commit point in DB2 occurs each

time the program issues a call to retrieve a new message.
– If you specify multiple-mode transactions or you do not specify a mode, a

commit point occurs when the program issues a checkpoint call or when it
terminates normally.

At the time of a commit point, the following actions occur:
v IMS and DB2 can release locks that the program has held since the last commit

point. Releasing these locks makes the data available to other application
programs and users.

v DB2 closes any open cursors that the program has been using.
v IMS and DB2 make the program's changes to the database permanent.
v If the program processes messages, IMS sends the output messages that the

application program produces to their final destinations. Until the program
reaches a commit point, IMS holds the program's output messages at a
temporary destination.

If the program abends before reaching the commit point, the following actions
occur:
v Both IMS and DB2 back out all the changes the program has made to the

database since the last commit point.
v IMS deletes any output messages that the program has produced since the last

commit point (for nonexpress PCBs).
v If the program processes messages, people at terminals and other application

programs receive information from the terminating application program.

If the system fails, a unit of work resolves automatically when DB2 and IMS batch
programs reconnect. Any indoubt units of work are resolved at reconnect time.

24 Application Programming and SQL Guide

Specifying checkpoint frequency in IMS programs
A checkpoint indicates a commit point in IMS programs. You should specify
checkpoint frequency in your program in a way that allows it to easily be changed,
in case the frequency that you initially specify is not appropriate.

Procedure

To specify checkpoint frequency in IMS programs:
1. Use a counter in your program to keep track of one of the following items:

v Elapsed time
v The number of root segments that your program accesses
v The number of updates that your program performs

2. Issue a checkpoint call after a certain time interval, number of root segments, or
number of updates.

Checkpoints in IMS programs:

Issuing checkpoint calls releases locked resources and establishes a place in the
program from which you can restart the program. The decision about whether
your program should issue checkpoints (and if so, how often) depends on your
program.

Generally, the following types of programs should issue checkpoint calls:
v Multiple-mode programs
v Batch-oriented BMPs
v Nonmessage-driven Fast Path programs. (These programs can use a special Fast

Path call, but they can also use symbolic checkpoint calls.)
v Most batch programs
v Programs that run in a data sharing environment. (Data sharing makes it

possible for online and batch application programs in separate IMS systems, in
the same or separate processors, to access databases concurrently. Issuing
checkpoint calls frequently in programs that run in a data sharing environment
is important, because programs in several IMS systems access the database.)

You do not need to issue checkpoints in the following types of programs:
v Single-mode programs
v Database load programs
v Programs that access the database in read-only mode (defined with the

processing option GO during a PSBGEN) and are short enough to restart from
the beginning

v Programs that, by their nature, must have exclusive use of the database

A CHKP call causes IMS to perform the following actions:
v Inform DB2 that the changes that your program made to the database can

become permanent. DB2 makes the changes to DB2 data permanent, and IMS
makes the changes to IMS data permanent.

v Send a message that contains the checkpoint identification that is given in the
call to the system console operator and to the IMS master terminal operator.

v Return the next input message to the program's I/O area if the program
processes input messages. In MPPs and transaction-oriented BMPs, a checkpoint
call acts like a call for a new message.

Chapter 1. Planning for and designing DB2 applications 25

v Sign on to DB2 again.

Programs that issue symbolic checkpoint calls can specify as many as seven data
areas in the program that is to be restored at restart. DB2 always recovers to the
last checkpoint. You must restart the program from that point.

If you use symbolic checkpoint calls, you can use a restart call (XRST) to restart a
program after an abend. This call restores the program's data areas to the way they
were when the program terminated abnormally, and it restarts the program from
the last checkpoint call that the program issued before terminating abnormally.

Restriction: For BMP programs that process DB2 databases, you can restart the
program only from the latest checkpoint and not from any checkpoint, as in IMS.

Checkpoints in MPPs and transaction-oriented BMPs

In single-mode programs, checkpoint calls and message retrieval calls (called
get-unique calls) both establish commit points. The checkpoint calls retrieve input
messages and take the place of get-unique calls. BMPs that access non-DL/I
databases and MPPs can issue both get unique calls and checkpoint calls to
establish commit points. However, message-driven BMPs must issue checkpoint
calls rather than get-unique calls to establish commit points, because they can
restart from a checkpoint only. If a program abends after issuing a get-unique call,
IMS backs out the database updates to the most recent commit point, which is the
get-unique call.

In multiple-mode BMPs and MPPs, the only commit points are the checkpoint calls
that the program issues and normal program termination. If the program abends
and it has not issued checkpoint calls, IMS backs out the program's database
updates and cancels the messages that it has created since the beginning of the
program. If the program has issued checkpoint calls, IMS backs out the program's
changes and cancels the output messages it has created since the most recent
checkpoint call.

Checkpoints in batch-oriented BMPs

If a batch-oriented BMP does not issue checkpoints frequently enough, IMS can
abend that BMP or another application program for one of the following reasons:
v Other programs cannot get to the data that they need within a specified amount

of time.
If a BMP retrieves and updates many database records between checkpoint calls,
it can monopolize large portions of the databases and cause long waits for other
programs that need those segments. (The exception to this situation is a BMP
with a processing option of GO; IMS does not enqueue segments for programs
with this processing option.) Issuing checkpoint calls releases the segments that
the BMP has enqueued and makes them available to other programs.

v Not enough storage is available for the segments that the program has read and
updated.
If IMS is using program isolation enqueuing, the space that is needed to
enqueue information about the segments that the program has read and updated
must not exceed the amount of storage that is defined for the IMS system. (The
amount of storage available is specified during IMS system definition.) If a BMP
enqueues too many segments, the amount of storage that is needed for the
enqueued segments can exceed the amount of available storage. In that case,

26 Application Programming and SQL Guide

IMS terminates the program abnormally. You then need to increase the
program's checkpoint frequency before rerunning the program.

When you issue a DL/I CHKP call from an application program that uses DB2
databases, IMS processes the CHKP call for all DL/I databases, and DB2 commits
all the DB2 database resources. No checkpoint information is recorded for DB2
databases in the IMS log or the DB2 log. The application program must record
relevant information about DB2 databases for a checkpoint, if necessary. One way
to record such information is to put it in a data area that is included in the DL/I
CHKP call.

Performance might be slowed by the commit processing that DB2 does during a
DL/I CHKP call, because the program needs to re-establish position within a DB2
database. The fastest way to re-establish a position in a DB2 database is to use an
index on the target table, with a key that matches one-to-one with every column in
the SQL predicate.

Recovering data in IMS programs
Online IMS systems handle recovery and restart. For a batch region, the
operational procedures control recovery and restart for your location.

Procedure

To recover data in IMS programs:

Take one or more of the following actions depending on the type of program:

Program type Recommended action

DL/I batch applications Use the DL/I batch backout utility to back
out DL/I changes. DB2 automatically backs
out changes whenever the application
program abends.

Applications that use symbolic checkpoints Use a restart call (XRST) to restart a program
after an abend. This call restores the
program's data areas to the way they were
when the program terminated abnormally,
and it restarts the program from the last
checkpoint call that the program issued
before terminating abnormally.

BMP programs that access DB2 databases Restart the program from the latest
checkpoint.
Restriction: You can restart the program
only from the latest checkpoint and not from
any checkpoint, as in IMS.

Applications that use online IMS systems No action needed. Recovery and restart are
part of the IMS system

Applications that reside in the batch region Follow your location's operational procedures
to control recovery and restart.

Undoing selected changes within a unit of work by using
savepoints

Savepoints enable you to undo selected changes within a unit of work. Your
application can set any number of savepoints and then specify a specific savepoint
to indicate which changes to undo within the unit of work.

Chapter 1. Planning for and designing DB2 applications 27

Procedure

To undo selected changes within a unit of work by using savepoints:
1. Set any savepoints by using SQL SAVEPOINT statements. Savepoints set a

point to which you can undo changes within a unit of work.
Consider the following abilities and restrictions when setting savepoints:
v You can set a savepoint with the same name multiple times within a unit of

work. Each time that you set the savepoint, the new value of the savepoint
replaces the old value.

v If you do not want a savepoint to have different values within a unit of
work, use the UNIQUE option in the SAVEPOINT statement. If an
application executes a SAVEPOINT statement with the same name as a
savepoint that was previously defined as unique, an SQL error occurs.

v If you set a savepoint before you execute a CONNECT statement, the scope
of that savepoint is the local site. If you set a savepoint after you execute the
CONNECT statement, the scope of that savepoint is the site to which you are
connected.

v When savepoints are active, which they are until the unit of work completes,
you cannot access remote sites by using three-part names or aliases for
three-part names. You can, however, use DRDA® access with explicit
CONNECT statements.

v You cannot use savepoints in global transactions, triggers, user-defined
functions, or stored procedures that are nested within triggers or
user-defined functions.

2. Specify the changes that you want to undo within a unit of work by using the
SQL ROLLBACK TO SAVEPOINT statement.
DB2 undoes all changes since the specified savepoint. If you do not specify a
savepoint name, DB2 rolls back work to the most recently created savepoint.

3. Optional: If you no longer need a savepoint, delete it by using the SQL
RELEASE SAVEPOINT statement.

Recommendation: If you no longer need a savepoint before the end of a
transaction, release it. Otherwise, savepoints are automatically released at the
end of a unit of work. Releasing savepoints is essential if you need to use
three-part names to access remote locations, because you cannot perform this
action while savepoints are active.

Examples

Rolling back to the most recently created savepoint: When the ROLLBACK TO
SAVEPOINT statement is executed in the following code, DB2 rolls back work to
savepoint B.
EXEC SQL SAVEPOINT A;
...
EXEC SQL SAVEPOINT B;
...
EXEC SQL ROLLBACK TO SAVEPOINT;

Setting savepoints during distributed processing: An application performs the
following tasks:
1. Sets savepoint C1.
2. Does some local processing.
3. Executes a CONNECT statement to connect to a remote site.
4. Sets savepoint C2.

28 Application Programming and SQL Guide

Because savepoint C1 is set before the application connects to a remote site,
savepoint C1 is known only at the local site. However, because savepoint C2 is set
after the application connects to the remote site, savepoint C2 is known only at the
remote site.

Setting multiple savepoints with the same name: Suppose that the following
actions occur within a unit of work:
1. Application A sets savepoint S.
2. Application A calls stored procedure P.
3. Stored procedure P sets savepoint S.
4. Stored procedure P executes the following statement: ROLLBACK TO SAVEPOINT S

When DB2 executes the ROLLBACK statement, DB2 rolls back work to the
savepoint that was set in the stored procedure, because that value is the most
recent value of savepoint S.
Related reference:

RELEASE SAVEPOINT (DB2 SQL)

ROLLBACK (DB2 SQL)

SAVEPOINT (DB2 SQL)

Planning for recovery of table spaces that are not logged
To suppress logging, you can specify the NOT LOGGED option when you create
or alter a table space. However, because logs are generally used in recovery,
planning for recovery of table spaces for which changes are not logged requires
some additional planning.

About this task

Although you can plan for recovery, you still need to take some corrective actions
after any system failures to recover the data and fix any affected table spaces. For
example, if a table space that is not logged was open for update at the time that
DB2 terminates, the subsequent restart places that table space in LPL and marks it
with RECOVER-pending status. You need to take corrective action to clear the
RECOVER-pending status.

Procedure

To plan for recovery of table spaces that are not logged:
1. Ensure that you can recover lost data by performing one of the following

actions:
v Ensure that you have a data recovery source that does not rely on a log

record to re-create any lost data.
v Limit modifications that are not logged to easily repeatable changes that can

be quickly repeated.
2. Avoid placing a table space that is not logged in a RECOVER-pending status.

The following actions place a table space in RECOVER-pending status:
v Issuing a ROLLBACK statement or ROLLBACK TO SAVEPOINT statement

after modifying a table in a table space that is not logged.
v Causing duplicate keys or referential integrity violations when you modify a

table space that is not logged.

Chapter 1. Planning for and designing DB2 applications 29

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_releasesavepoint.htm#db2z_sql_releasesavepoint
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_rollback.htm#db2z_sql_rollback
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_savepoint.htm#db2z_sql_savepoint

If the table space is placed in RECOVER-pending status, it is unavailable until
you manually fix it.

3. For table spaces that are not logged and have associated LOB or XML table
spaces, take image copies as a recovery set.
This action ensures that the base table space and all the associated LOB or XML
table spaces are copied at the same point in time. A subsequent RECOVER TO
LASTCOPY operation for the entire set results in consistent data across the base
table space and all of the associated LOB and XML table spaces.

Related tasks:

Clearing the RECOVER-pending status (DB2 Administration Guide)
Related reference:

RECOVER (DB2 Utilities)

Designing your application to access distributed data
You can design applications that access data on another database management
system (DBMS) other than your local system. You should consider the limitations
and recommendations for such programs when designing them.

Procedure

To design your application to access distributed data:
1. Ensure that the appropriate authorization ID has been granted authorization at

the remote server to connect to that server and use resources from it.
2. If your application contains SQL statements that run at the requester, include at

the requester a database request module (DBRM) that is bound directly into a
package that is included in the plan's package list.

3. Copy the requester package to any remote server that is accessed by the
application via a bind package copy command and include the remote
packages in the application plan's package list.

Recommendation: Specify an asterisk (*) instead of a specific name in the
location name of any package entry of a plan so that the plan does not have to
be rebound whenever a new location is accessed by the application or a
different location is to be accessed.

4. For TSO and batch applications that update data at a remote server, ensure that
one of the following conditions is true:
v No other connections exist.
v All existing connections are to servers that are restricted to read-only

operations.

Restriction: If neither of these conditions are met, the application is restricted
to read-only operations.
If one of these conditions is met, and if the first connection in a logical unit of
work is to a server that supports two-phase commit, that server and all servers
that support two-phase commit can update data. However, if the first
connection is to a server that does not support two-phase commit, only that
server is allowed to update data.

5. For programs that access at least one restricted system, ensure that your
program does not violate any of the limitations for accessing restricted systems.
A restricted system is a DBMS that does not implement two-phase commit
processing.

30 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_restorerecoverpending.htm#db2z_restorerecoverpending
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utl_recover.htm#db2z_utl_recover

Accessing restricted systems has the following limitations:
v For programs that access CICS or IMS, you cannot update data on restricted

systems.
v Within a unit of work, you cannot update a restricted system after updating

a non-restricted system.
v Within a unit of work, if you update a restricted system, you cannot update

any other systems.
If you are accessing a mixture of systems, some of which might be restricted,
you can perform the following actions:
v Read from any of the systems at any time.
v Update any one system many times in one unit of work.
v Update many systems, including CICS or IMS, in one unit of work, provided

that none of them is a restricted system. If the first system you update in a
unit of work is not restricted, any attempt to update a restricted system in
that unit of work returns an error.

v Update one restricted system in a unit of work, provided that you do not try
to update any other system in the same unit of work. If the first system you
update in a unit of work is restricted, any attempt to update any other
system in that unit of work returns an error.

Related concepts:

Phase 6: Accessing data at a remote site (DB2 Installation and Migration)
Related tasks:

Improving performance for applications that access distributed data (DB2
Performance)

Remote servers and distributed data
Distributed data is data that resides on a database management system (DBMS)
other than your local system. Your local DBMS is the one on which you bind your
application plan. All other DBMSs are remote.

If you are requesting services from a remote DBMS, that DBMS is a server, and
your local system is a requester or client.

Your application can be connected to many DBMSs at one time; the one that is
currently performing work is the current server. When the local system is
performing work, it also is called the current server.

A remote server can be physically remote, or it can be another subsystem of the
same operating system that your local DBMS runs under. A remote server might be
an instance of DB2 for z/OS, or it might be an instance of one of another product.

A DBMS, whether local or remote, is known to your DB2 system by its location
name. The location name of a remote DBMS is recorded in the communications
database.

Chapter 1. Planning for and designing DB2 applications 31

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_dsntej6x.htm#db2z_dsntej6x
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tunedistributedapps.htm#db2z_tunedistributedapps
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tunedistributedapps.htm#db2z_tunedistributedapps

Related tasks:

Choosing names for the local subsystem (DB2 Installation and Migration)

Preparing for coordinated updates to two or more data
sources

Two or more updates are coordinated if they must all commit or all roll back in the
same unit of work.

About this task

This situation is common in banking. Suppose that an amount is subtracted from
one account and added to another. The two actions must either both commit or
both roll back at the end of the unit of work.

Procedure

To prepare for coordinated updates to two or more data sources:

Ensure that all systems that your program accesses implement two-phase commit
processing. This processing ensures that updates to two or more DBMSs are
coordinated automatically.
For example, DB2 and IMS, and DB2 and CICS, jointly implement a two-phase
commit process. You can update an IMS database and a DB2 table in the same unit
of work. If a system or communication failure occurs between committing the
work on IMS and on DB2, the two programs restore the two systems to a
consistent point when activity resumes.
You cannot do true coordinated updates within a DBMS that does not implement
two-phase commit processing, because DB2 prevents you from updating such a
DBMS and any other system within the same unit of work. In this context, update
includes the statements INSERT, UPDATE, MERGE, DELETE, CREATE, ALTER,
DROP, GRANT, REVOKE, RENAME, COMMENT, and LABEL.
However, if you cannot implement two-phase commit processing on all systems
that your program accesses, you can simulate the effect of coordinated updates by
performing the following actions:
1. Update one system and commit that work.
2. Update the second system and commit its work.
3. Ensure that your program has code to undo the first update if a failure occurs

after the first update is committed and before the second update is committed.
No automatic provision exists for bringing the two systems back to a consistent
point.

Related concepts:

Two-phase commit process (DB2 Administration Guide)

Forcing restricted system rules in your program
A restricted system is a DBMS that does not implement two-phase commit
processing. These systems have a number of update restrictions. You can restrict
your program completely to the rules for these restricted systems, regardless of
whether the program is accessing restricted systems or non-restricted systems.

About this task

Accessing restricted systems has the following limitations:

32 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_choosevtamnamessubsys.htm#db2z_choosevtamnamessubsys
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_twophasecommit.htm#db2z_twophasecommit

v For programs that access CICS or IMS, you cannot update data on restricted
systems.

v Within a unit of work, you cannot update a restricted system after updating a
non-restricted system.

v Within a unit of work, if you update a restricted system, you cannot update any
other systems.

Procedure

To force restricted system rules in your program:

When you prepare your program, specify the SQL processing option
CONNECT(1). This option applies type 1 CONNECT statement rules.

Restriction: Do not use packages that are precompiled with the CONNECT(1)
option and packages that are precompiled with the CONNECT(2) option in the
same package list. The first CONNECT statement that is executed by your
program determines which rules are in effect for the entire execution: type 1 or
type 2. If your program attempts to execute a later CONNECT statement that is
precompiled with the other type, DB2 returns an error.
Related concepts:
“Options for SQL statement processing” on page 930

Chapter 1. Planning for and designing DB2 applications 33

34 Application Programming and SQL Guide

Chapter 2. Connecting to DB2 from your application program

Application programs communicate with DB2 through an attachment facility. You
must invoke an attachment facility, either implicitly or explicitly, before your
program can interact with DB2.

About this task

You can use the following attachment facilities in a z/OS environment:

CICS attachment facility
Use this facility to access DB2 from CICS application programs.

IMS attachment facility
Use this facility to access DB2 from IMS application programs.

Time Sharing Option (TSO) attachment facility
Use this facility in a TSO or batch environment to communicate to a local
DB2 subsystem. This facility invokes the DSN command processor.

Call attachment facility (CAF)
Use this facility as an alternative to the TSO attachment facility when your
application needs tight control over the session environment.

Resource Recovery Services attachment facility (RRSAF)
Use this facility for stored procedures that run in a WLM-established
address space or as an alternative to the CAF. RRSAF provides support for
z/OS RRS as the recovery coordinator and supports other capabilities not
present in CAF

For distributed applications, use the distributed data facility (DDF).

Requirement: Ensure that any application that requests DB2 services satisfies the
following environment characteristics, regardless of the attachment facility that you
use:
v The application must be running in TCB mode. SRB mode is not supported.
v An application task cannot have any Enabled Unlocked Task (EUT) functional

recovery routines (FRRs) active when requesting DB2 services. If an EUT FRR is
active, the DB2 functional recovery can fail, and your application can receive
some unpredictable abends.

v Different attachment facilities cannot be active concurrently within the same
address space. Specifically, the following requirements exist:
– An application must not use CAF or RRSAF in an CICS or IMS address

space.
– An application that runs in an address space that has a CAF connection to

DB2 cannot connect to DB2 by using RRSAF.
– An application that runs in an address space that has an RRSAF connection to

DB2 cannot connect to DB2 by using CAF.
– An application cannot invoke the z/OS AXSET macro after executing the CAF

CONNECT call and before executing the CAF DISCONNECT call.
v One attachment facility cannot start another. For example, your CAF or RRSAF

application cannot use DSN, and a DSN RUN subcommand cannot call your
CAF or RRSAF application.

© Copyright IBM Corp. 1983, 2013 35

v The language interface modules for CAF and RRSAF, DSNALI and DSNRLI, are
shipped with the linkage attributes AMODE(31) and RMODE(ANY). If your
applications load CAF or RRSAF below the 16-MB line, you must link-edit
DSNALI or DSNRLI again.

Related concepts:

DB2 attachment facilities (Introduction to DB2 for z/OS)

Distributed data facility (Introduction to DB2 for z/OS)

Invoking the call attachment facility
Invoke the call attachment facility (CAF) when you want your application program
to establish and control its own connection to DB2. Applications that use CAF can
explicitly control the state of their connections to DB2 by using connection
functions that CAF supplies.

Before you begin

Before you can invoke CAF, perform the following actions:
v Ensure that the CAF language interface (DSNALI) is available.
v Ensure that your application satisfies the requirements for programs that access

CAF.
v Ensure that your application satisfies the general environment characteristics for

connecting to DB2.
v Ensure that you are familiar with the following z/OS concepts and facilities:

– The CALL macro and standard module linkage conventions
– Program addressing and residency options (AMODE and RMODE)
– Creating and controlling tasks; multitasking
– Functional recovery facilities such as ESTAE, ESTAI, and FRRs
– Asynchronous events and TSO attention exits (STAX)
– Synchronization techniques such as WAIT/POST.

About this task

Applications that use CAF can be written in assembler language, C, COBOL,
Fortran, and PL/I. When choosing a language to code your application in, consider
the following restrictions:
v If you need to use z/OS macros (ATTACH, WAIT, POST, and so on), use a

programming language that supports them or embed them in modules that are
written in assembler language.

v The CAF TRANSLATE function is not available in Fortran. To use this function,
code it in a routine that is written in another language, and then call that routine
from Fortran.

Recommendations: For IMS and DSN applications, consider the following
recommendations:
v For IMS batch applications, do not use CAF. Instead use the DB2 DL/I batch

support. Although it is possible for IMS batch applications to access DB2
databases through CAF, that method does not coordinate the commitment of
work between the IMS and DB2 systems.

v For DSN applications, do not use CAF unless you provide an application
controller to manage the DSN application and replace any needed DSN
functions. You might also have to change the application to communicate

36 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_db2attachmentfacilities.htm#db2z_db2attachmentfacilities
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_distributeddatafacility.htm#db2z_distributeddatafacility

connection failures to the controller correctly. Running DSN applications with
CAF is not advantageous, and the loss of DSN services can affect how well your
program runs.

Procedure

To invoke CAF:

Perform one of the following actions:
v Explicitly invoke CAF by including in your program CALL DSNALI statements

with the appropriate options.
The first option is a CAF connection function, which describes the action that
you want CAF to take. The effect of any function depends in part on what
functions the program has already run.

Requirement: For C and PL/I applications, you must also include in your
program the compiler directives that are listed in the following table, because
DSNALI is an assembler language program.

Table 4. Compiler directives to include in C and PL/I applications that contain CALL DSNALI
statements

Language Compiler directive to include

C #pragma linkage(dsnali, OS)

C++ extern "OS" {
int DSNALI(

char * functn,
...); }

PL/I DCL DSNALI ENTRY OPTIONS(ASM,INTER,RETCODE;

v Implicitly invoke CAF by including SQL statements or IFI calls in your program
just as you would in any program. The CAF facility establishes the connections
to DB2 with the default values for the subsystem name and plan name.

Restriction: If your program can make its first SQL call from different modules
with different DBRMs, you cannot use a default plan name and thus, you cannot
implicitly invoke CAF. Instead, you must explicitly invoke CAF by using the
OPEN function.

Requirement: If your application includes both SQL and IFI calls, you must
issue at least one SQL call before you issue any IFI calls. This action ensures that
your application uses the correct plan.
Although doing so is not recommended, you can run existing DSN applications
with CAF by allowing them to make implicit connections to DB2. For DB2 to
make an implicit connection successfully, the plan name for the application must
be the same as the member name of the database request module (DBRM) that
DB2 produced when you precompiled the source program that contains the first
SQL call. You must also substitute the DSNALI language interface module for
the TSO language interface module, DSNELI.

If you do not specify the return code and reason code parameters in your CAF
calls or you invoked CAF implicitly, CAF puts a return code in register 15 and a
reason code in register 0.
To determine if an implicit connection was successful, the application program

Chapter 2. Connecting to DB2 from your application program 37

should examine the return and reason codes immediately after the first executable
SQL statement in the application program by performing one of the following
actions:
v Examining registers 0 and 15 directly.
v Examining the SQLCA, and if the SQLCODE is -991, obtain the return and

reason code from the message text. The return code is the first token, and the
reason code is the second token.

If the implicit connection was successful, the application can examine the
SQLCODE for the first, and subsequent, SQL statements.

Examples

Example of a CAF configuration: The following figure shows an conceptual
example of invoking and using CAF. The application contains statements to load
DSNALI, DSNHLI2, and DSNWLI2. The application accesses DB2 by using the
CAF Language Interface. It calls DSNALI to handle CAF requests, DSNWLI to
handle IFI calls, and DSNHLI to handle SQL calls.

38 Application Programming and SQL Guide

Sample programs that use CAF: You can find a sample assembler program
(DSN8CA) and a sample COBOL program (DSN8CC) that use the CAF in library
prefix.SDSNSAMP. A PL/I application (DSN8SPM) calls DSN8CA, and a COBOL
application (DSN8SCM) calls DSN8CC.
Related concepts:
“DB2 sample applications” on page 1102
Related reference:
“CAF connection functions” on page 49

Call attachment facility
An attachment facility enables programs to communicate with DB2. The call
attachment facility (CAF) provides such a connection for programs that run in
z/OS batch, TSO foreground, and TSO background. The CAF needs tight control
over the session environment.

Application CAF
Language
Interface

CAF
Mainline
CodeLOAD DSNALI

LOAD DSNHLI2
LOAD DSNWLI2

Load

CALL DSNALI
(CONNECT)
(OPEN)
(CLOSE)
(DISCONNECT)

Call

DSNALI

(Process
connection
requests)

CALL DSNWLI

CALL DSNHLI
(SQL calls)

DSNHLI (dummy
application
entry point)

DSNWLI (dummy
application
entry point)

CALL DSNHLI2
(Transfer calls
to real CAF SQL
entry point)

CALL DSNWLI2
(Transfer calls
to real CAF
IFI)

DSNWLI

DSNHLI2
(Process
SQL stmts)

DB2

(IFI calls)

Figure 1. Sample call attachment facility configuration

Chapter 2. Connecting to DB2 from your application program 39

A program that uses CAF can perform the following actions:
v Access DB2 from z/OS address spaces where TSO, IMS, or CICS do not exist.
v Access DB2 from multiple z/OS tasks in an address space.
v Access the DB2 IFI.
v Run when DB2 is down.

Restriction: The application cannot run SQL when DB2 is down.
v Run with or without the TSO terminal monitor program (TMP).
v Run without being a subtask of the DSN command processor or of any DB2

code.
v Run above or below the 16-MB line. (The CAF code resides below the line.)
v Establish an explicit connection to DB2, through a CALL interface, with control

over the exact state of the connection.
v Establish an implicit connection to DB2, by using SQL statements or IFI calls

without first calling CAF, with a default plan name and subsystem identifier.
v Verify that the application is using the correct release of DB2.
v Supply event control blocks (ECBs), for DB2 to post, that signal startup or

termination.
v Intercept return codes, reason codes, and abend codes from DB2 and translate

them into messages.

Any task in an address space can establish a connection to DB2 through CAF. Only
one connection can exist for each task control block (TCB). A DB2 service request
that is issued by a program that is running under a given task is associated with
that task's connection to DB2. The service request operates independently of any
DB2 activity under any other task.

Each connected task can run a plan. Multiple tasks in a single address space can
specify the same plan, but each instance of a plan runs independently from the
others. A task can terminate its plan and run a different plan without fully
breaking its connection to DB2.

CAF does not generate task structures.

When you design your application, consider that using multiple simultaneous
connections can increase the possibility of deadlocks and DB2 resource contention.

A tracing facility provides diagnostic messages that aid in debugging programs
and diagnosing errors in the CAF code. In particular, attempts to use CAF
incorrectly cause error messages in the trace stream.

Restriction: CAF does not provide attention processing exits or functional recovery
routines. You can provide whatever attention handling and functional recovery
your application needs, but you must use ESTAE/ESTAI type recovery routines
and not Enabled Unlocked Task (EUT) FRR routines.

Properties of CAF connections
Call attachment facility (CAF) enables programs to communicate with DB2.

The connection that CAF makes with DB2 has the basic properties that are listed in
the following table.

40 Application Programming and SQL Guide

Table 5. Properties of CAF connections

Property Value Comments

Connection name DB2CALL You can use the DISPLAY
THREAD command to list
CAF applications that have
the connection name
DB2CALL.

Connection type BATCH BATCH connections use a
single phase commit process
that is coordinated by DB2.
Application programs can
also control when statements
are committed by using the
SQL COMMIT and
ROLLBACK statements.

Authorization IDs Authorization IDs that are
associated with the address
space

DB2 establishes authorization
IDs for each task's connection
when it processes that
connection. For the BATCH
connection type, DB2 creates
a list of authorization IDs
based on the authorization ID
that is associated with the
address space. This list is the
same for every task. A
location can provide a DB2
connection authorization exit
routine to change the list of
IDs.

Scope CAF processes connections as
if each task is entirely
isolated. When a task
requests a function, the CAF
passes the functions to DB2
and is unaware of the
connection status of other
tasks in the address space.
However, the application
program and the DB2
subsystem are aware of the
connection status of multiple
tasks in an address space.

none

If a connected task terminates normally before the CLOSE function deallocates the
plan, DB2 commits any database changes that the thread made since the last
commit point. If a connected task abends before the CLOSE function deallocates
the plan, DB2 rolls back any database changes since the last commit point. In
either case, DB2 deallocates the plan, if necessary, and terminates the task's
connection before it allows the task to terminate.

If DB2 abnormally terminates while an application is running, the application is
rolled back to the last commit point. If DB2 terminates while processing a commit
request, DB2 either commits or rolls back any changes at the next restart. The
action taken depends on the state of the commit request when DB2 terminates.

Chapter 2. Connecting to DB2 from your application program 41

Related concepts:

Connection routines and sign-on routines (Managing Security)

Attention exit routines for CAF
An attention exit routine enables you to regain control from DB2 during
long-running or erroneous requests. Call attachment facility (CAF) has no attention
exit routines, but you can provide your own if necessary.

An attention exit routine works by detaching the TCB that is currently waiting on
an SQL or IFI request to complete. After the TCB is detached, DB2 detects the
resulting abend and performs termination processing for that task. The termination
processing includes any necessary rollback of transactions.

You can provide your own attention exit routines. However, your routine might
not get control if you request attention while DB2 code is running, because DB2
uses enabled unlocked task (EUT) functional recovery routines (FRRs).

Recovery routines for CAF
You can use abend recovery routines and functional recovery routines (FRRs) to
handle unexpected errors. An abend recovery routine controls what happens when
an abend occurs while DB2 has control. A functional recovery routine can obtain
information about and recover from program errors.

The CAF has no abend recovery routines, but you can provide your own. Any
abend recovery routines that you provide must use tracking indicators to
determine if an abend occurred during DB2 processing. If an abend occurs while
DB2 has control, the recovery routine can take one of the following actions:
v Allow task termination to complete. Do not try the program again. DB2 detects

task termination and terminates the thread with the ABRT parameter. You lose
all database changes back to the last sync point or commit point.
This action is the only action that you can take for abends that are caused by the
CANCEL command or by DETACH. You cannot use additional SQL statements.
If you attempt to execute another SQL statement from the application program
or its recovery routine, you receive a return code of +256 and a reason code of
X'00F30083'.

v In an ESTAE routine, issue a CLOSE function call with the ABRT parameter
followed by a DISCONNECT function call. The ESTAE exit routine can try again
so that you do not need to reinstate the application task.

FRRs must comply with the following requirements and restrictions:
v You can use only enabled unlocked task (EUT) FRRs in your routines that call

DB2. The standard z/OS functional recovery routines (FRRs) apply to only code
that runs in service request block (SRB) mode, and DB2 does not support calls
from SRB mode routines.

v Do not have an EUT FRR active when using CAF, processing SQL requests, or
calling IFI. With z/OS, if you have an active EUT FRR, all DB2 requests fail,
including the initial CONNECT or OPEN request. The requests fail because DB2
always creates an ARR-type ESTAE, and z/OS does not allow the creation of
ARR-type ESTAEs when an FRR is active.

v An EUT FRR cannot retry failing DB2 requests. An EUT FRR retry bypasses
ESTAE routines from DB2. The next DB2 request of any type, including a
DISCONNECT request, fails with a return code of +256 and a reason code of
X'00F30050'.

42 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_connectionsignonroutine.htm#db2z_connectionsignonroutine

Making the CAF language interface (DSNALI) available
Before you can invoke the call attachment facility (CAF), you must first make
DSNALI available.

About this task

Part of CAF is a DB2 load module, DSNALI, which is also known as the CAF
language interface. DSNALI has the alias names DSNHLI2 and DSNWLI2. The
module has five entry points: DSNALI, DSNHLI, DSNHLI2, DSNWLI, and
DSNWLI2. These entry points serve the following functions:
v Entry point DSNALI handles explicit DB2 connection service requests.
v DSNHLI and DSNHLI2 handle SQL calls. Use DSNHLI if your application

program link-edits DSNALI. Use DSNHLI2 if your application program loads
DSNALI.

v DSNWLI and DSNWLI2 handle IFI calls. Use DSNWLI if your application
program link-edits DSNALI. Use DSNWLI2 if your application program loads
DSNALI.

Procedure

To make DSNALI available:
1. Decide which of the following methods you want to use to make DSNALI

available:
v Explicitly issuing LOAD requests when your program runs.

By explicitly loading the DSNALI module, you beneficially isolate the
maintenance of your application from future IBM maintenance to the
language interface. If the language interface changes, the change will
probably not affect your load module.

v Including the DSNALI module in your load module when you link-edit your
program.
If you do not need explicit calls to DSNALI for CAF functions, link-editing
DSNALI into your load module has some advantages. When you include
DSNALI during the link-edit, you do not need to code a dummy DSNHLI
entry point in your program or specify the precompiler option ATTACH.
Module DSNALI contains an entry point for DSNHLI, which is identical to
DSNHLI2, and an entry point DSNWLI, which is identical to DSNWLI2.
A disadvantage to link-editing DSNALI into your load module is that any
IBM maintenance to DSNALI requires a new link-edit of your load module.

Alternatively, if using explicit connections via CALL DSNALI, you can link-edit
your program with DSNULI, the Universal Language Interface.

2. Depending on the method that you chose in step 1, perform one of the
following actions:
v If you want to explicitly issue LOAD requests when your program runs:

In your program, issue z/OS LOAD service requests for entry points
DSNALI and DSNHLI2. If you use IFI services, you must also load
DSNWLI2. The entry point addresses that LOAD returns are saved for later
use with the CALL macro. Indicate to DB2 which entry point to use in one of
the following two ways:
– Specify the precompiler option ATTACH(CAF).

This option causes DB2 to generate calls that specify entry point
DSNHLI2.

Chapter 2. Connecting to DB2 from your application program 43

Restriction: You cannot use this option if your application is written in
Fortran.

– Code a dummy entry point named DSNHLI within your load module.
If you do not specify the precompiler option ATTACH, the DB2
precompiler generates calls to entry point DSNHLI for each SQL request.
The precompiler does not know about and is independent of the different
DB2 attachment facilities. When the calls generated by the DB2
precompiler pass control to DSNHLI, your code that corresponds to the
dummy entry point must preserve the option list that was passed in R1
and specify the same option list when it calls DSNHLI2.

v If you want to include the DSNALI module in your load module when
you link-edit your program:

Include DSNALI in your load module during a link-edit step. The module
must be in a load module library, which is included either in the SYSLIB
concatenation or another INCLUDE library that is defined in the linkage
editor JCL. Because all language interface modules contain an entry point
declaration for DSNHLI, the linkage editor JCL must contain an INCLUDE
linkage editor control statement for DSNALI; for example, INCLUDE
SYSLIB(DSNALI). By coding these options, you avoid inadvertently picking up
the wrong language interface module.

Related concepts:
“LOB file reference variables” on page 761
“Examples of invoking CAF” on page 63
“Universal language interface” on page 117
Related tasks:
“Link-editing an application with DSNULI” on page 119
“Saving storage when manipulating LOBs by using LOB locators” on page 757

Requirements for programs that use CAF
The call attachment facility (CAF) enables programs to communicate with DB2.
Before you invoke CAF in your program, ensure that your program satisfies any
requirements for using CAF.

When you write programs that use CAF, ensure that they meet the following
requirements:
v The program accounts for the size of the CAF code. The CAF code requires

about 16 KB of virtual storage per address space and an additional 10 KB for
each TCB that uses CAF.

v If your local environment intercepts and replaces the z/OS LOAD SVC that CAF
uses, you must ensure that your version of LOAD manages the load list element
(LLE) and contents directory entry (CDE) chains like the standard z/OS LOAD
macro. CAF uses z/OS SVC LOAD to load two modules as part of the
initialization after your first service request. Both modules are loaded into
fetch-protected storage that has the job-step protection key.

v If you use CAF from IMS batch, you must write data to only one system in any
one unit of work. If you write to both systems within the same unit, a system
failure can leave the two databases inconsistent with no possibility of automatic
recovery. To end a unit of work in DB2, execute the SQL COMMIT statement. To
end a unit of work in IMS, issue the SYNCPOINT command.

You can prepare application programs to run in CAF similar to how you prepare
applications to run in other environments, such as CICS, IMS, and TSO. You can

44 Application Programming and SQL Guide

prepare a CAF application either in the batch environment or by using the DB2
program preparation process. You can use the program preparation system either
through DB2I or through the DSNH CLIST.
Related tasks:
Chapter 17, “Preparing an application to run on DB2 for z/OS,” on page 913

How CAF modifies the content of registers
If you do not specify the return code and reason code parameters in your CAF
function calls or if you invoke CAF implicitly, CAF puts a return code in register
15 and a reason code in register 0. The contents of registers 2 through 14 are
preserved across calls.

The following table lists the standard calling conventions for registers R1, R13, R14,
and R15.

Table 6. Standard usage of registers R1, R13, R14, and R15

Register Usage

R1 CALL DSNALI parameter list pointer

R13 Address of caller's save area

R14 Caller's return address

R15 CAF entry point address

Your CAF program should respect these register conventions.

CAF also supports high-level languages that cannot examine the contents of
individual registers.
Related concepts:
“CALL DSNALI statement parameter list” on page 46

Implicit connections to CAF
If the CAF language interface (DSNALI) is available and you do not explicitly
specify CALL DSNALI statements in your application, CAF initiates implicit
CONNECT and OPEN requests to DB2. These requests are subject to the same DB2
return codes and reason codes as explicitly specified requests.

Implicit connections use the following defaults:

Subsystem name

The default name that is specified in the module DSNHDECP. CAF uses
the installation default DSNHDECP, unless your own DSNHDECP module
is in a library in a STEPLIB statement of a JOBLIB concatenation or in the
link list. In a data sharing group, the default subsystem name is the group
attachment name.

Implicit connections to CAF always use DSNHDECP as the user-specified
application defaults module.

Be certain that you know what the default name is and that it names the
specific DB2 subsystem you want to use.

Chapter 2. Connecting to DB2 from your application program 45

Plan name
The member name of the database request module (DBRM) that DB2
produced when you precompiled the source program that contains the first
SQL call.

Different types of implicit connections exist. The simplest is for an application to
call neither the CONNECT nor OPEN functions. You can also use the CONNECT
function only or the OPEN function only. Each of these calls implicitly connects
your application to DB2. To terminate an implicit connection, you must use the
proper calls.
Related concepts:
“Summary of CAF behavior” on page 48

CALL DSNALI statement parameter list
The CALL DSNALI statement explicitly invokes CAF. When you include CALL
DSNALI statements in your program, you must specify all parameters that come
before the return code parameter.

For CALL DSNALI statements, use a standard z/OS CALL parameter list. Register
1 points to a list of fullword addresses that point to the actual parameters. The last
address must contain a 1 in the high-order bit.

In CALL DSNALI statements, you cannot omit any of parameters that come before
the return code parameter by coding zeros or blanks. No defaults exist for those
parameters for explicit connection requests. Defaults are provided for only implicit
connections. All parameters starting with the return code parameter are optional.

When you want to use the default value for a parameter but specify subsequent
parameters, code the CALL DSNALI statement as follows:
v For C-language, when you code CALL DSNALI statements in C, you need to

specify the address of every required parameter, using the “address of” operator
(&), and not the parameter itself. For example, to pass the startecb parameter on
CONNECT, specify the address of the 4-byte integer (&secb).
functn char[13] = "CONNECT ";
ssid char[5] = "DB2A";
int tecb = 0;
int secb = 0;
ptr ribptr;
int retcode;
int reascode;
ptr eibptr;

fnret = dsnali(&functn[0], &ssid[0], &tecb, &secb, &ribptr, &retcode, &reascode,
NULL, &eibptr);

v For other languages except assembler language, code zero for that parameter in
the CALL DSNALI statement. For example, suppose that you are coding a
CONNECT call in a COBOL program, and you want to specify all parameters
except the return code parameter. You can write a statement similar to the
following statement:
CALL ’DSNALI’ USING FUNCTN SSID TECB SECB RIBPTR

BY CONTENT ZERO BY REFERENCE REASCODE SRDURA EIBPTR.

v For assembler language, code a comma for that parameter in the CALL DSNALI
statement. For example, to specify all optional parameters except the return code
parameter write a statement similar to the following statement:
CALL DSNALI,(FUNCTN,SSID,TERMECB,STARTECB,RIBPTR,,REASCODE,SRDURA,EIBPTR,
GROUPOVERRIDE)

46 Application Programming and SQL Guide

The following figure shows a sample parameter list structure for the CONNECT
function.

The preceding figure illustrates how you can omit parameters for the CALL
DSNALI statement to control the return code and reason code fields after a
CONNECT call. You can terminate the parameter list at any of the following
points. These termination points apply to all CALL DSNALI statement parameter
lists.
1. Terminates the parameter list without specifying the parameters retcode,

reascodeand srdura and places the return code in register 15 and the reason code
in register 0.
Terminating the parameter list at this point ensures compatibility with CAF
programs that require a return code in register 15 and a reason code in register
0.

2. Terminates the parameter list after the parameter retcode and places the return
code in the parameter list and the reason code in register 0.
Terminating the parameter list at this point enables the application program to
take action, based on the return code, without further examination of the
associated reason code.

3. Terminates the parameter list after the parameter reascode and places the return
code and the reason code in the parameter list.

Figure 2. The parameter list for a CONNECT call

Chapter 2. Connecting to DB2 from your application program 47

Terminating the parameter list at this point provides support to high-level
languages that are unable to examine the contents of individual registers.
If you code your CAF application in assembler language, you can specify the
reason code parameter and omit the return code parameter.

4. Terminates the parameter list after the parameter srdura.
If you code your CAF application in assembler language, you can specify this
parameter and omit the retcode and reascode parameters.

5. Terminates the parameter list after the parameter eibptr.
If you code your CAF application in assembler language, you can specify this
parameter and omit the retcode, reascode, or srdura parameters.

6. Terminates the parameter list after the parameter groupoverride.
If you code your CAF application in assembler language, you can specify this
parameter and omit the retcode, reascode,srdura, or eibptr parameters.

Even if you specify that the return code be placed in the parameter list, it is also
placed in register 15 to accommodate high-level languages that support special
return code processing.
Related concepts:
“How CAF modifies the content of registers” on page 45

Summary of CAF behavior
The effect of any CAF function depends in part on what functions the program has
already run. You should plan the CAF function calls that your program makes to
avoid any errors and major structural problems in your application.

The following table summarizes CAF behavior after various inputs from
application programs. The top row lists the possible CAF functions that programs
can call. The first column lists the task's most recent history of connection requests.
For example, the value “CONNECT followed by OPEN” in the first column means
that the task issued CONNECT and then OPEN with no other CAF calls in
between. The intersection of a row and column shows the effect of the next call if
it follows the corresponding connection history. For example, if the call is OPEN
and the connection history is CONNECT, the effect is OPEN; the OPEN function is
performed. If the call is SQL and the connection history is empty (meaning that the
SQL call is the first CAF function the program), the effect is that implicit
CONNECT and OPEN functions are performed, followed by the SQL function.

Table 7. Effects of CAF calls, as dependent on connection history

Previous
function

Next function

CONNECT OPEN SQL CLOSE DISCONNECT TRANSLATE

Empty: first call CONNECT OPEN CONNECT,
OPEN, followed
by the SQL or
IFI call

Error 2031 Error 2041 Error 2051

CONNECT Error 2011 OPEN OPEN, followed
by the SQL or
IFI call

Error 2031 DISCONNECT TRANSLATE

CONNECT
followed by
OPEN

Error 2011 Error 2021 The SQL or IFI
call

CLOSE2 DISCONNECT TRANSLATE

48 Application Programming and SQL Guide

Table 7. Effects of CAF calls, as dependent on connection history (continued)

Previous
function

Next function

CONNECT OPEN SQL CLOSE DISCONNECT TRANSLATE

CONNECT
followed by SQL
or IFI call

Error 2011 Error 2021 The SQL or IFI
call

CLOSE2 DISCONNECT TRANSLATE

OPEN Error 2011 Error 2021 The SQL or IFI
call

CLOSE2 Error 2041 TRANSLATE

SQL or IFI call Error 2011 Error 2021 The SQL or IFI
call

CLOSE2 Error 2041 TRANSLATE3

Notes:

1. An error is shown in this table as Error nnn. The corresponding reason code is
X'00C10nnn'. The message number is DSNAnnnI or DSNAnnnE.

2. The task and address space connections remain active. If the CLOSE call fails
because DB2 was down, the CAF control blocks are reset, the function produces
return code 4 and reason code X'00C10824', and CAF is ready for more
connection requests when DB2 is up.

3. A TRANSLATE request is accepted, but in this case it is redundant. CAF
automatically issues a TRANSLATE request when an SQL or IFI request fails.

Related reference:
“CAF return codes and reason codes” on page 61

CAF connection functions
A CAF connection function specifies the action that you want CAF to take. You
specify these functions when you invoke CAF through CALL DSNALI statements.

You can specify the following CAF functions in a CALL DSNALI statement:

CONNECT
Establishes the task (TCB) as a user of the named DB2 subsystem. When
the first task within an address space issues a connection request, the
address space is also initialized as a user of DB2.

OPEN Allocates a DB2 plan. You must allocate a plan before DB2 can process SQL
statements. If you did not request the CONNECT function, the OPEN
function implicitly establishes the task, and optionally the address space, as
a user of DB2.

CLOSE
Commits or abnormally terminates any database changes and deallocates
the plan. If the OPEN function implicitly requests the CONNECT function,
the CLOSE function removes the task, and possibly the address space, as a
user of DB2.

DISCONNECT
Removes the task as a user of DB2 and, if this task is the last or only task
in the address space with a DB2 connection, terminates the address space
connection to DB2.

TRANSLATE
Returns an SQL code and printable text that describe a DB2 hexadecimal
error reason code. This information is returned to the SQLCA.

Chapter 2. Connecting to DB2 from your application program 49

Restriction: You cannot call the TRANSLATE function from the Fortran
language.

Recommendation: Because the effect of any CAF function depends on what
functions the program has already run, carefully plan the calls that your program
makes to these CAF connection functions. Read about the summary of CAF
behavior and make these function calls accordingly.
Related concepts:
“Summary of CAF behavior” on page 48
“CALL DSNALI statement parameter list” on page 46

CONNECT function for CAF
The CAF CONNECT function initializes a connection to DB2. This function is
different than the SQL CONNECT statement that accesses a remote location within
DB2.

The CONNECT function establishes the caller's task as a user of DB2 services. If no
other task in the address space currently holds a connection with the specified
subsystem, the CONNECT function also initializes the address space for
communication to the DB2 address spaces. The CONNECT function establishes the
address space's cross memory authorization to DB2 and builds address space
control blocks. You can issue a CONNECT request from any or all tasks in the
address space, but the address space level is initialized only once when the first
task connects.

Using the CONNECT function is optional. If you do not call the CONNECT
function, the first request from a task, either an OPEN request or an SQL or IFI
call, causes CAF to issue an implicit CONNECT request. If a task is connected
implicitly, the connection to DB2 is terminated either when you call the CLOSE
function or when the task terminates.

Call the CONNECT function in all of the following situations:
v You need to specify a particular subsystem name (ssnm) other than the default

subsystem name.
v You need the value of the CURRENT DEGREE special register to last as long as

the connection (srdura).
v You need to monitor the DB2 startup ECB (startecb), the DB2 termination ECB

(termecb), or the DB2 release level.
v You plan to have multiple tasks in the address space open and close plans or a

single task in the address space open and close plans more than once.
Establishing task and address space level connections involves significant
overhead. Using the CONNECT function to establish a task connection explicitly
minimizes this overhead by ensuring that the connection to DB2 remains after
the CLOSE function deallocates a plan. In this case, the connection terminates
only when you use the DISCONNECT function or when the task terminates.

The CONNECT function also enables the caller to learn the following items:
v That the operator has issued a STOP DB2 command. When this event occurs,

DB2 posts the termination ECB, termecb. Your application can either wait on or
just look at the ECB.

v That DB2 is abnormally terminating. When this event occurs happens, DB2 posts
the termination ECB, termecb.

50 Application Programming and SQL Guide

v That DB2 is available again after a connection attempt that failed because DB2
was down. Your application can either wait or look at the startup ECB, startecb.
DB2 ignores this ECB if it was active at the time of the CONNECT request.

v The current release level of DB2. To find this information, access the RIBREL
field in the release information block (RIB). If RIBREL is '999', the actual version,
release, and modification level of DB2 is indicated in the RIBRELX field and its
subfields.

Restriction: Do not issue CONNECT requests from a TCB that already has an
active DB2 connection.

Recommendation: Do not mix explicit CONNECT and OPEN requests with
implicitly established connections in the same address space. Either explicitly
specify which DB2 subsystem you want to use or allow all requests to use the
default subsystem.

The following diagram shows the syntax for the CONNECT function.

DSNALI CONNECT function

�� CALL DSNALI (function, ssnm, termecb, startecb, ribptr �

�
,retcode

,reascode
,srdura

,eibptr
,groupoverride

,decpptr

) ��

Parameters point to the following areas:

function
A 12-byte area that contains CONNECT followed by five blanks.

ssnm
A 4-byte DB2 subsystem name or group attachment or subgroup attachment
name (if used in a data sharing group) to which the connection is made.

If ssnm is less than four characters long, pad it on the right with blanks to a
length of four characters.

termecb
A 4-byte integer representing the application's event control block (ECB) for
DB2 termination. DB2 posts this ECB when the operator enters the STOP DB2
command or when DB2 is abnormally terminating. The ECB indicates the type
of termination by a POST code, as shown in the following table:

Table 8. POST codes and related termination types

POST code Termination type

8 QUIESCE

12 FORCE

16 ABTERM

Chapter 2. Connecting to DB2 from your application program 51

Before you check termecb in your CAF application program, first check the
return code and reason code from the CONNECT call to ensure that the call
completed successfully.

startecb
A 4-byte integer representing the application's startup ECB. If DB2 has not yet
started when the application issues the call, DB2 posts the ECB when it
successfully completes its startup processing. DB2 posts at most one startup
ECB per address space. The ECB is the one associated with the most recent
CONNECT call from that address space. Your application program must
examine any nonzero CAF and DB2 reason codes before issuing a WAIT on
this ECB.

If ssnm is a group attachment or subgroup attachment name, the first DB2
subsystem that starts on the local z/OS system and matches the specified
group attachment name posts the ECB.

ribptr
A 4-byte area in which CAF places the address of the release information block
(RIB) after the call. You can determine what release level of DB2 you are
currently running by examining the RIBREL field. If RIBREL is '999', the actual
version, release, and modification level of DB2 is indicated in the RIBRELX
field and its subfields.You can determine the modification level within the
release level by examining the RIBCNUMB and RIBCINFO fields. If the value
in the RIBCNUMB field is greater than zero, check the RIBCINFO field for
modification levels.

If the RIB is not available (for example, if you name a subsystem that does not
exist), DB2 sets the 4-byte area to zeros.

The area to which ribptr points is below the 16-MB line.

Your program does not have to use the release information block, but it cannot
omit the ribptr parameter.

Macro DSNDRIB maps the release information block (RIB). It can be found in
prefix.SDSNMACS(DSNDRIB).

retcode
A 4-byte area in which CAF places the return code.

This field is optional. If you do not specify retcode, CAF places the return code
in register 15 and the reason code in register 0.

reascode
A 4-byte area in which CAF places a reason code.

This field is optional. If you do not specify reascode, CAF places the reason
code in register 0. If you specify reascode, you must also specify retcode.

srdura
A 10-byte area that contains the string 'SRDURA(CD)'. This field is optional. If
you specify srdura, the value in the CURRENT DEGREE special register stays
in effect from the time of the CONNECT call until the time of the
DISCONNECT call. If you do not specify srdura, the value in the CURRENT
DEGREE special register stays in effect from the time of the OPEN call until
the time of the CLOSE call. If you specify this parameter in any language
except assembler, you must also specify retcode and reascode. In assembler
language, you can omit these parameters by specifying commas as
placeholders.

52 Application Programming and SQL Guide

eibptr
A 4-byte area in which CAF puts the address of the environment information
block (EIB). The EIB contains information that you can use if you are
connecting to a DB2 subsystem that is part of a data sharing group. For
example, you can determine the name of the data sharing group, the member
to which you are connecting, and whether the subsystem is in new-function
mode. If the DB2 subsystem that you connect to is not part of a data sharing
group, the fields in the EIB that are related to data sharing are blank. If the EIB
is not available (for example, if you name a subsystem that does not exist),
DB2 sets the 4-byte area to zeros.

The area to which eibptr points is above the 16-MB line.

You can omit this parameter when you make a CONNECT call.

If you specify this parameter in any language except assembler, you must also
specify retcode, reascode, and srdura. In assembler language, you can omit
retcode, reascode, and srdura by specifying commas as placeholders.

Macro DSNDEIB maps the EIB. It can be found in
prefix.SDSNMACS(DSNDEIB).

groupoverride
An 8-byte area that the application provides. This parameter is optional. If you
do not want group attach to be attempted, specify 'NOGROUP'. This string
indicates that the subsystem name that is specified by ssnm is to be used as a
DB2 subsystem name, even if ssnm matches a group attachment or subgroup
attachment name. If groupoverride is not provided, ssnm is used as the group
attachment or subgroup attachment name if it matches a group attachment or
subgroup attachment name.

If you specify this parameter in any language except assembler, you must also
specify retcode, reascode, srdura, and eibptr. In assembler language, you can omit
retcode, reascode, srdura, and eibptr by specifying commas as placeholders.

Recommendation: Avoid using the groupoverride parameter when possible,
because it limits the ability to do dynamic workload routing in a Parallel
Sysplex®. However, you should use this parameter in a data sharing
environment when you want to connect to a specific member of a data sharing
group, and the subsystem name of that member is the same as the group
attachment or subgroup attachment name.

decpptr
A 4-byte area in which CAF is to put the address of the DSNHDECP control
block or user-specified application defaults module that was loaded by
subsystem ssnm when that subsystem was started. This 4-byte area is a 31-bit
pointer. If ssnm is not found, the 4-byte area is set to 0.

The area to which decpptr points may be above the 16-MB line.

If you specify this parameter in any language except assembler, you must also
specify the retcode, reascode, srdura, eibptr, and groupoverride parameters. In
assembler language, you can omit the retcode, reascode, srdura, eibptr, and
groupoverride parameters by specifying commas as placeholders.

Chapter 2. Connecting to DB2 from your application program 53

Example of CAF CONNECT function calls

The following table shows a CONNECT call in each language.

Table 9. Examples of CAF CONNECT function calls

Language Call example

Assembler CALL
DSNALI,(FUNCTN,SSID,TERMECB,STARTECB,RIBPTR,RETCODE,REASCODE,SRDURA,
EIBPTR, GRPOVER)

C1 fnret=dsnali(&functn[0],&ssid[0], &tecb, &secb,&ribptr,&retcode, &reascode, &srdura[0],
&eibptr, &grpover[0]);

COBOL CALL ’DSNALI’ USING FUNCTN SSID TERMECB STARTECB RIBPTR RETCODE REASCODE SRDURA
EIBPTR GRPOVER.

Fortran CALL
DSNALI(FUNCTN,SSID,TERMECB,STARTECB,RIBPTR,RETCODE,REASCODE,SRDURA,
EIBPTR,GRPOVER)

PL/I1 CALL
DSNALI(FUNCTN,SSID,TERMECB,STARTECB,RIBPTR,RETCODE,REASCODE,SRDURA,
EIBPTR,GRPOVER)

Note:

v For C and PL/I applications, you must include the appropriate compiler
directives, because DSNALI is an assembler language program. These compiler
directives are described in the instructions for invoking CAF.

Related concepts:
“Examples of invoking CAF” on page 63
Related tasks:
“Invoking the call attachment facility” on page 36
Related reference:

Synchronizing Tasks (WAIT, POST, and EVENTS Macros) (MVS Programming:
Assembler Services Guide)

OPEN function for CAF
The OPEN function allocates DB2 resources that are needed to run the specified
plan or to issue IFI requests. If the requesting task does not already have a
connection to the named DB2 subsystem, the OPEN function establishes it.

Using the OPEN function is optional. If you do not call the OPEN function, the
actions that the OPEN function perform occur implicitly on the first SQL or IFI call
from the task.

Restriction: Do not use the OPEN function if the task already has a plan allocated.

The following diagram shows the syntax for the OPEN function.

54 Application Programming and SQL Guide

http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/iea2a680/6.1
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/iea2a680/6.1

DSNALI OPEN function

�� CALL DSNALI (function, ssnm, plan �

�
, retcode

, reascode
, groupoverride

) ��

Parameters point to the following areas:

function
A 12-byte area that contains the word OPEN followed by eight blanks.

ssnm
A 4-byte DB2 subsystem name or group attachment or subgroup attachment
name (if used in a data sharing group). The OPEN function allocates the
specified plan to this DB2 subsystem. Also, if the requesting task does not
already have a connection to the named DB2 subsystem, the OPEN function
establishes it.

You must specify the ssnm parameter, even if the requesting task also issues a
CONNECT call. If a task issues a CONNECT call followed by an OPEN call,
the subsystem names for both calls must be the same.

If ssnm is less than four characters long, pad it on the right with blanks to a
length of four characters.

plan
An 8-byte DB2 plan name.

retcode
A 4-byte area in which CAF places the return code.

This field is optional. If you do not specify retcode,CAF places the return code
in register 15 and the reason code in register 0.

reascode
A 4-byte area in which CAF places a reason code.

This field is optional. If you do not specify reascode, CAF places the reason
code in register 0. If you specify reascode, you must also specify retcode.

groupoverride
An 8-byte area that the application provides. This field is optional. If you do
not want group attach to be attempted, specify 'NOGROUP'. This string
indicates that the subsystem name that is specified by ssnm is to be used as a
DB2 subsystem name, even if ssnm matches a group attachment or subgroup
attachment name. If you do not specify groupoverride, ssnm is used as the group
attachment and subgroup attachment name if it matches a group attachment or
subgroup attachment name. If you specify this parameter in any language
except assembler, you must also specify retcode and reascode. In assembler
language, you can omit these parameters by specifying commas as
placeholders.

Recommendation: Avoid using the groupoverride parameter when possible,
because it limits the ability to do dynamic workload routing in a Parallel
Sysplex. However, you should use this parameter in a data sharing

Chapter 2. Connecting to DB2 from your application program 55

environment when you want to connect to a specific member of a data sharing
group, and the subsystem name of that member is the same as the group
attachment or subgroup attachment name.

Examples of CAF OPEN calls

The following table shows an OPEN call in each language.

Table 10. Examples of CAF OPEN calls

Language Call example

Assembler CALL DSNALI,(FUNCTN,SSID,PLANNAME, RETCODE,REASCODE,GRPOVER)

C1 fnret=dsnali(&functn[0],&ssid[0], &planname[0],&retcode, &reascode,&grpover[0]);

COBOL CALL ’DSNALI’ USING FUNCTN SSID PLANNAME RETCODE REASCODE GRPOVER.

Fortran CALL DSNALI(FUNCTN,SSID,PLANNAME, RETCODE,REASCODE,GRPOVER)

PL/I1 CALL DSNALI(FUNCTN,SSID,PLANNAME, RETCODE,REASCODE,GRPOVER);

Note:

v For C and PL/I applications, you must include the appropriate compiler
directives, because DSNALI is an assembler language program. These compiler
directives are described in the instructions for invoking CAF.

Related concepts:
“Implicit connections to CAF” on page 45
Related tasks:
“Invoking the call attachment facility” on page 36

CLOSE function for CAF
The CAF CLOSE function deallocates the plan that was created either explicitly by
a call to the OPEN function or implicitly at the first SQL call. Optionally, the
CLOSE function also disconnects the task, and possibly the address space, from
DB2.

If you did not issue an explicit CONNECT call for the task, the CLOSE function
deletes the task's connection to DB2. If no other task in the address space has an
active connection to DB2, DB2 also deletes the control block structures that were
created for the address space and removes the cross memory authorization.

Using the CLOSE function is optional. Consider the following rules and
recommendations about when to use and not use the CLOSE function:
v Do not use the CLOSE function when your current task does not have a plan

allocated.
v If you want to use a new plan, you must issue an explicit CLOSE call, followed

by an OPEN call with the new plan name.
v When shutting down your application you can improve the performance of this

shut down by explicitly calling the CLOSE function before the task terminates. If
you omit the CLOSE call, DB2 performs an implicit CLOSE. In this case, DB2
performs the same actions when your task terminates, by using the SYNC
parameter if termination is normal and the ABRT parameter if termination is
abnormal.

v If DB2 terminates, issue an explicit CLOSE call for any task that did not issue a
CONNECT call. This action enables CAF to reset its control blocks to allow for
future connections. This CLOSE call returns the reset accomplished return code

56 Application Programming and SQL Guide

(+004) and reason code X'00C10824'. If you omit the CLOSE call in this case,
when DB2 is back on line, the task's next connection request fails. You get either
the message YOUR TCB DOES NOT HAVE A CONNECTION, with X'00F30018'
in register 0, or the CAF error message DSNA201I or DSNA202I, depending on
what your application tried to do. The task must then issue a CLOSE call before
it can reconnect to DB2.

v A task that issued an explicit CONNECT call should issue a DISCONNECT call
instead of a CLOSE call. This action causes CAF to reset its control blocks when
DB2 terminates.

The following diagram shows the syntax for the CLOSE function.

DSNALI CLOSE function

�� CALL DSNALI (function, termop)
, retcode

, reascode

��

Parameters point to the following areas:

function
A 12-byte area that contains the word CLOSE followed by seven blanks.

termop
A 4-byte terminate option, with one of the following values:

SYNC Specifies that DB2 is to commit any modified data.

ABRT Specifies that DB2 is to roll back data to the previous commit point.

retcode
A 4-byte area in which CAF is to place the return code.

This field is optional. If you do not specify retcode, CAF places the return code
in register 15 and the reason code in register 0.

reascode
A 4-byte area in which CAF places a reason code.

This field is optional. If you do not specify reascode, CAF places the reason
code in register 0. If you specify reascode, you must also specify retcode.

Examples of CAF CLOSE calls

The following table shows a CLOSE call in each language.

Table 11. Examples of CAF CLOSE calls

Language Call example

Assembler CALL DSNALI,(FUNCTN,TERMOP,RETCODE, REASCODE)

C1 fnret=dsnali(&functn[0], &termop[0], &retcode,&reascode);

COBOL CALL ’DSNALI’ USING FUNCTN TERMOP RETCODE REASCODE.

Fortran CALL DSNALI(FUNCTN,TERMOP, RETCODE,REASCODE)

PL/I1 CALL DSNALI(FUNCTN,TERMOP, RETCODE,REASCODE);

Chapter 2. Connecting to DB2 from your application program 57

Note:

v For C and PL/I applications, you must include the appropriate compiler
directives, because DSNALI is an assembler language program. These compiler
directives are described in the instructions for invoking CAF.

Related tasks:
“Invoking the call attachment facility” on page 36

DISCONNECT function for CAF
The CAF DISCONNECT function terminates a connection to DB2.

DISCONNECT removes the calling task's connection to DB2. If no other task in the
address space has an active connection to DB2, DB2 also deletes the control block
structures that were created for the address space and removes the cross memory
authorization.

If an OPEN call is in effect, which means that a plan is allocated, when the
DISCONNECT call is issued, CAF issues an implicit CLOSE with the SYNC
parameter.

Using the DISCONNECT function is optional. Consider the following rules and
recommendations about when to use and not use the DISCONNECT function:
v Only those tasks that explicitly issued a CONNECT call can issue a

DISCONNECT call. If a CONNECT call was not used, a DISCONNECT call
causes an error.

v When shutting down your application you can improve the performance of this
shut down by explicitly calling the DISCONNECT function before the task
terminates. If you omit the DISCONNECT call, DB2 performs an implicit
DISCONNECT. In this case, DB2 performs the same actions when your task
terminates.

v If DB2 terminates, any task that issued a CONNECT call must issue a
DISCONNECT call to reset the CAF control blocks. The DISCONNECT function
returns the reset accomplished return codes and reason codes (+004 and
X'00C10824'). This action ensures that future connection requests from the task
work when DB2 is back on line.

v A task that did not explicitly issue a CONNECT call must issue a CLOSE call
instead of a DISCONNECT call. This action resets the CAF control blocks when
DB2 terminates.

The following diagram shows the syntax for the DISCONNECT function.

DSNALI DISCONNECT function

�� CALL DSNALI (function)
, retcode

, reascode

��

The single parameter points to the following area:

function
A 12-byte area that contains the word DISCONNECT followed by two blanks.

58 Application Programming and SQL Guide

retcode
A 4-byte area in which CAF places the return code.

This field is optional. If you do not specify retcode, CAF places the return code
in register 15 and the reason code in register 0.

reascode
A 4-byte area in which CAF places a reason code.

This field is optional. If you do not specify reascode, CAF places the reason
code in register 0. If you specify reascode, you must also specify retcode.

Examples of CAF DISCONNECT calls

The following table shows a DISCONNECT call in each language.

Table 12. Examples of CAF DISCONNECT calls

Language Call example

Assembler CALL DSNALI(,FUNCTN,RETCODE,REASCODE)

C1 fnret=dsnali(&functn[0], &retcode, &reascode);

COBOL CALL ’DSNALI’ USING FUNCTN RETCODE REASCODE.

Fortran CALL DSNALI(FUNCTN,RETCODE,REASCODE)

PL/I1 CALL DSNALI(FUNCTN,RETCODE,REASCODE);

Note:

v For C and PL/I applications, you must include the appropriate compiler
directives, because DSNALI is an assembler language program. These compiler
directives are described in the instructions for invoking CAF.

Related tasks:
“Invoking the call attachment facility” on page 36

TRANSLATE function for CAF
The TRANSLATE function converts a DB2 hexadecimal error reason code from a
failed OPEN request into an SQL error code and printable error message text. DB2
places the information into the SQLCODE and SQLSTATE host variables or related
fields of the SQLCA of the caller.

The DB2 error reason code that is converted is read from register 0. The
TRANSLATE function does not change the contents of registers 0 and 15, unless
the TRANSLATE request fails; in that case, register 0 is set to X'C10205' and
register 15 is set to 200.

Consider the following rules and recommendations about when to use and not use
the TRANSLATE function:
v You cannot call the TRANSLATE function from the Fortran language.
v The TRANSLATE function is useful only if you used an explicit CONNECT call

before an OPEN request that fails. For errors that occur during SQL or IFI
requests, the TRANSLATE function performs automatically.

v The TRANSLATE function can translate those codes that begin with X'00F3', but
it does not translate CAF reason codes that begin with X'00C1'.

If you receive error reason code X'00F30040' (resource unavailable) after an OPEN
request, the TRANSLATE function returns the name of the unavailable database
object in the last 44 characters of the SQLERRM field.

Chapter 2. Connecting to DB2 from your application program 59

If the TRANSLATE function does not recognize the error reason code, it returns
SQLCODE -924 (SQLSTATE '58006') and places a printable copy of the original
DB2 function code and the return and error reason codes in the SQLERRM field.

The following diagram shows the syntax for the TRANSLATE function.

DSNALI TRANSLATE function

�� CALL DSNALI (function, sqlca)
, retcode

, reascode

��

Parameters point to the following areas:

function
A 12-byte area the contains the word TRANSLATE followed by three blanks.

sqlca
The program's SQL communication area (SQLCA).

retcode
A 4-byte area in which CAF places the return code.

This field is optional. If you do not specify retcode, CAF places the return code
in register 15 and the reason code in register 0.

reascode
A 4-byte area in which CAF places a reason code.

This field is optional. If you do not specify reascode, CAF places the reason
code in register 0. If you specify reascode, you must also specify retcode.

Examples of CAF TRANSLATE calls

The following table shows a TRANSLATE call in each language.

Table 13. Examples of CAF TRANSLATE calls

Language Call example

Assembler CALL DSNALI,(FUNCTN,SQLCA,RETCODE, REASCODE)

C1 fnret=dsnali(&functn[0], &sqlca, &retcode, &reascode);

COBOL CALL ’DSNALI’ USING FUNCTN SQLCA RETCODE REASCODE.

PL/I1 CALL DSNALI(FUNCTN,SQLCA,RETCODE, REASCODE);

Note:

v For C and PL/I applications, you must include the appropriate compiler
directives, because DSNALI is an assembler language program. These compiler
directives are described in the instructions for invoking CAF.

60 Application Programming and SQL Guide

Related tasks:
“Invoking the call attachment facility” on page 36

Turning on a CAF trace
CAF does not capture any diagnostic trace messages unless you tell it to by
turning on a trace.

Procedure

To turn on a CAF trace:

Allocate a DSNTRACE data set either dynamically or by including a DSNTRACE
DD statement in your JCL. CAF writes diagnostic trace messages to that data set.
The trace message numbers contain the last three digits of the reason codes.
Related concepts:
“Examples of invoking CAF” on page 63

CAF return codes and reason codes
CAF provides the return codes either to the corresponding parameters that are
specified in a CAF function call or, if you choose not to use those parameters, to
registers 15 and 0.

When the reason code begins with X'00F3' except for X'00F30006', you can use the
CAF TRANSLATE function to obtain error message text that can be printed and
displayed. These reason codes are issued by the subsystem support for allied
memories, a part of the DB2 subsystem support subcomponent that services all
DB2 connection and work requests.

For SQL calls, CAF returns standard SQL codes in the SQLCA. CAF returns IFI
return codes and reason codes in the instrumentation facility communication area
(IFCA).

The following table lists the CAF return codes and reason codes.

Table 14. CAF return codes and reason codes

Return code Reason code Explanation

0 X'00000000' Successful completion.

4 X'00C10824' CAF reset complete. CAF is ready to make a new connection.

8 X'00C10831' Release level mismatch between DB2 and the CAF code.

2001 X'00C10201' Received a second CONNECT request from the same TCB. The first
CONNECT request could have been implicit or explicit.

2001 X'00C10202' Received a second OPEN request from the same TCB. The first
OPEN request could have been implicit or explicit.

2001 X'00C10203' CLOSE request issued when no active OPEN request exists.

2001 X'00C10204' DISCONNECT request issued when no active CONNECT request
exists, or the AXSET macro was issued between the CONNECT
request and the DISCONNECT request.

2001 X'00C10205' TRANSLATE request issued when no connection to DB2 exists.

2001 X'00C10206' Incorrect number of parameters was specified or the end-of-list bit
was off.

2001 X'00C10207' Unrecognized function parameter.

Chapter 2. Connecting to DB2 from your application program 61

Table 14. CAF return codes and reason codes (continued)

Return code Reason code Explanation

2001 X'00C10208' Received requests to access two different DB2 subsystems from the
same TCB.

204 2 CAF system error. Probable error in the attach or DB2.

Notes:

1. A CAF error probably caused by errors in the parameter lists from the application programs. CAF errors do not
change the current state of your connection to DB2; you can continue processing with a corrected request.

2. System errors cause abends. If tracing is on, a descriptive message is written to the DSNTRACE data set just
before the abend.

Sample CAF scenarios
One or more tasks can use call attachment facility (CAF) to connect to DB2. This
connection can be made either implicitly or explicitly. For explicit connections, a
task calls one or more of the CAF connection functions.

A single task with implicit connections

The simplest connection scenario is a single task that makes calls to DB2 without
using explicit CALL DSNALI statements. The task implicitly connects to the
default subsystem name and uses the default plan name.

When the task terminates, the following events occur:
v If termination was normal, any database changes are committed.
v If termination was abnormal, any database changes are rolled back.
v The active plan and all database resources are deallocated.
v The task and address space connections to DB2 are terminated.

A single task with explicit connections

The following example pseudocode illustrates a more complex scenario with a
single task.
CONNECT

OPEN allocate a plan
SQL or IFI call
•••
CLOSE deallocate the current plan
OPEN allocate a new plan
SQL or IFI call
•••
CLOSE

DISCONNECT

A task can have a connection to only one DB2 subsystem at any point in time. A
CAF error occurs if the subsystem name in the OPEN call does not match the
subsystem name in the CONNECT call. To switch to a different subsystem, the
application must first disconnect from the current subsystem and then issue a
connect request with a new subsystem name.

Multiple tasks

In the following scenario, multiple tasks within the address space use DB2 services.
Each task must explicitly specify the same subsystem name on either the

62 Application Programming and SQL Guide

CONNECT function request or the OPEN function request. Task 1 makes no SQL
or IFI calls. Its purpose is to monitor the DB2 termination and startup ECBs and to
check the DB2 release level.
TASK 1 TASK 2 TASK 3 TASK n

CONNECT
OPEN OPEN OPEN
SQL SQL SQL
...
CLOSE CLOSE CLOSE
OPEN OPEN OPEN
SQL SQL SQL
...
CLOSE CLOSE CLOSE

DISCONNECT

Examples of invoking CAF
The call attachment facility (CAF) enables programs to communicate with DB2. If
you explicitly invoke CAF in your program, you can use the CAF connection
functions to control the state of the connection.

Example JCL for invoking CAF

The following sample JCL shows how to use CAF in a batch (non-TSO)
environment. The DSNTRACE statement in this example is optional.
//jobname JOB z/OS_jobcard_information
//CAFJCL EXEC PGM=CAF_application_program
//STEPLIB DD DSN=application_load_library
// DD DSN=DB2_load_library

...

//SYSPRINT DD SYSOUT=*
//DSNTRACE DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*

Example of assembler code that invokes CAF

The following examples show parts of a sample assembler program that uses CAF.
They demonstrate the basic techniques for making CAF calls, but do not show the
code and z/OS macros needed to support those calls. For example, many
applications need a two-task structure so that attention-handling routines can
detach connected subtasks to regain control from DB2. This structure is not shown
in the following code examples. Also, these code examples assume the existence of
a WRITE macro. Wherever this macro is included in the example, substitute code
of your own. You must decide what you want your application to do in those
situations; you probably do not want to write the error messages shown.

Example of loading and deleting the CAF language interface: The following code
segment shows how an application can load entry points DSNALI and DSNHLI2
for the CAF language interface. Storing the entry points in variables LIALI and
LISQL ensures that the application has to load the entry points only once. When
the module is done with DB2, you should delete the entries.
****************************** GET LANGUAGE INTERFACE ENTRY ADDRESSES

LOAD EP=DSNALI Load the CAF service request EP
ST R0,LIALI Save this for CAF service requests
LOAD EP=DSNHLI2 Load the CAF SQL call Entry Point
ST R0,LISQL Save this for SQL calls

* .

Chapter 2. Connecting to DB2 from your application program 63

* . Insert connection service requests and SQL calls here
* .

DELETE EP=DSNALI Correctly maintain use count
DELETE EP=DSNHLI2 Correctly maintain use count

Example of connecting to DB2 with CAF: The following example code shows
how to issue explicit requests for certain actions, such as CONNECT, OPEN,
CLOSE, DISCONNECT, and TRANSLATE, and uses the CHEKCODE subroutine to
check the return reason codes from CAF.
****************************** CONNECT ********************************

L R15,LIALI Get the Language Interface address
MVC FUNCTN,CONNECT Get the function to call
CALL (15),(FUNCTN,SSID,TECB,SECB,RIBPTR),VL,MF=(E,CAFCALL)
BAL R14,CHEKCODE Check the return and reason codes
CLC CONTROL,CONTINUE Is everything still OK
BNE EXIT If CONTROL not ’CONTINUE’, stop loop
USING R8,RIB Prepare to access the RIB
L R8,RIBPTR Access RIB to get DB2 release level
CLC RIBREL,RIBR999 DB2 V10 or later?
BE USERELX If RIBREL = ’999’, use RIBRELX
WRITE ’The current DB2 release level is’ RIBREL
B OPEN Continue with signon

USERELX WRITE ’The current DB2 release level is’ RIBRELX

****************************** OPEN ***********************************
OPEN L R15,LIALI Get the Language Interface address

MVC FUNCTN,OPEN Get the function to call
CALL (15),(FUNCTN,SSID,PLAN),VL,MF=(E,CAFCALL)
BAL R14,CHEKCODE Check the return and reason codes

****************************** SQL ************************************
* Insert your SQL calls here. The DB2 Precompiler
* generates calls to entry point DSNHLI. You should
* specify the precompiler option ATTACH(CAF), or code
* a dummy entry point named DSNHLI to intercept
* all SQL calls. A dummy DSNHLI is shown below.
****************************** CLOSE **********************************

CLC CONTROL,CONTINUE Is everything still OK?
BNE EXIT If CONTROL not ’CONTINUE’, shut down
MVC TRMOP,ABRT Assume termination with ABRT parameter
L R4,SQLCODE Put the SQLCODE into a register
C R4,CODE0 Examine the SQLCODE
BZ SYNCTERM If zero, then CLOSE with SYNC parameter
C R4,CODE100 See if SQLCODE was 100
BNE DISC If not 100, CLOSE with ABRT parameter

SYNCTERM MVC TRMOP,SYNC Good code, terminate with SYNC parameter
DISC DS 0H Now build the CAF parmlist

L R15,LIALI Get the Language Interface address
MVC FUNCTN,CLOSE Get the function to call
CALL (15),(FUNCTN,TRMOP),VL,MF=(E,CAFCALL)
BAL R14,CHEKCODE Check the return and reason codes

****************************** DISCONNECT *****************************
CLC CONTROL,CONTINUE Is everything still OK
BNE EXIT If CONTROL not ’CONTINUE’, stop loop
L R15,LIALI Get the Language Interface address
MVC FUNCTN,DISCON Get the function to call
CALL (15),(FUNCTN),VL,MF=(E,CAFCALL)
BAL R14,CHEKCODE Check the return and reason codes

This example code does not show a task that waits on the DB2 termination ECB. If
you want such a task, you can code it by using the z/OS WAIT macro to monitor
the ECB. You probably want this task to detach the sample code if the termination
ECB is posted. That task can also wait on the DB2 startup ECB. This sample waits
on the startup ECB at its own task level.

64 Application Programming and SQL Guide

This example code assumes that the variables in the following table are already set:

Table 15. Variables that preceding example assembler code assumes are set

Variable Usage

LIALI The entry point that handles DB2 connection
service requests.

LISQL The entry point that handles SQL calls.

SSID The DB2 subsystem identifier.

TECB The address of the DB2 termination ECB.

SECB The address of the DB2 startup ECB.

RIBPTR A fullword that CAF sets to contain the RIB
address.

PLAN The plan name to use in the OPEN call.

CONTROL This variable is used to shut down
processing because of unsatisfactory return
or reason codes. The CHECKCODE
subroutine sets this value.

CAFCALL List-form parameter area for the CALL
macro.

Example of checking return codes and reason codes when using CAF: The
following example code illustrates a way to check the return codes and the DB2
termination ECB after each connection service request and SQL call. The routine
sets the variable CONTROL to control further processing within the module.

* CHEKCODE PSEUDOCODE *

*IF TECB is POSTed with the ABTERM or FORCE codes
* THEN
* CONTROL = ’SHUTDOWN’
* WRITE ’DB2 found FORCE or ABTERM, shutting down’
* ELSE /* Termination ECB was not POSTed */
* SELECT (RETCODE) /* Look at the return code */
* WHEN (0) ; /* Do nothing; everything is OK */
* WHEN (4) ; /* Warning */
* SELECT (REASCODE) /* Look at the reason code */
* WHEN (’00C10824’X) /* Ready for another CAF call */
* CONTROL = ’RESTART’ /* Start over, from the top */
* OTHERWISE
* WRITE ’Found unexpected R0 when R15 was 4’
* CONTROL = ’SHUTDOWN’
* END INNER-SELECT
* WHEN (8,12) /* Connection failure */
* SELECT (REASCODE) /* Look at the reason code */
* WHEN (’00C10831’X) /* DB2 / CAF release level mismatch*/
* WRITE ’Found a mismatch between DB2 and CAF release levels’
* WHEN (’00F30002’X, /* These mean that DB2 is down but */
* ’00F30012’X) /* will POST SECB when up again */
* DO
* WRITE ’DB2 is unavailable. I’ll tell you when it is up.’
* WAIT SECB /* Wait for DB2 to come up */
* WRITE ’DB2 is now available.’
* END
* /**/
* /* Insert tests for other DB2 connection failures here. */
* /* CAF Externals Specification lists other codes you can */
* /* receive. Handle them in whatever way is appropriate */
* /* for your application. */

Chapter 2. Connecting to DB2 from your application program 65

* /**/
* OTHERWISE /* Found a code we’re not ready for*/
* WRITE ’Warning: DB2 connection failure. Cause unknown’
* CALL DSNALI (’TRANSLATE’,SQLCA) /* Fill in SQLCA */
* WRITE SQLCODE and SQLERRM
* END INNER-SELECT
* WHEN (200)
* WRITE ’CAF found user error. See DSNTRACE data set’
* WHEN (204)
* WRITE ’CAF system error. See DSNTRACE data set’
* OTHERWISE
* CONTROL = ’SHUTDOWN’
* WRITE ’Got an unrecognized return code’
* END MAIN SELECT
* IF (RETCODE > 4) THEN /* Was there a connection problem?*/
* CONTROL = ’SHUTDOWN’
* END CHEKCODE

* Subroutine CHEKCODE checks return codes from DB2 and Call Attach.
* When CHEKCODE receives control, R13 should point to the caller’s
* save area.

CHEKCODE DS 0H

STM R14,R12,12(R13) Prolog
ST R15,RETCODE Save the return code
ST R0,REASCODE Save the reason code
LA R15,SAVEAREA Get save area address
ST R13,4(,R15) Chain the save areas
ST R15,8(,R13) Chain the save areas
LR R13,R15 Put save area address in R13

* ********************* HUNT FOR FORCE OR ABTERM ***************
TM TECB,POSTBIT See if TECB was POSTed
BZ DOCHECKS Branch if TECB was not POSTed
CLC TECBCODE(3),QUIESCE Is this "STOP DB2 MODE=FORCE"
BE DOCHECKS If not QUIESCE, was FORCE or ABTERM
MVC CONTROL,SHUTDOWN Shutdown
WRITE ’Found found FORCE or ABTERM, shutting down’
B ENDCCODE Go to the end of CHEKCODE

DOCHECKS DS 0H Examine RETCODE and REASCODE
* ********************* HUNT FOR 0 *****************************

CLC RETCODE,ZERO Was it a zero?
BE ENDCCODE Nothing to do in CHEKCODE for zero

* ********************* HUNT FOR 4 *****************************
CLC RETCODE,FOUR Was it a 4?
BNE HUNT8 If not a 4, hunt eights
CLC REASCODE,C10831 Was it a release level mismatch?
BNE HUNT824 Branch if not an 831
WRITE ’Found a mismatch between DB2 and CAF release levels’
B ENDCCODE We are done. Go to end of CHEKCODE

HUNT824 DS 0H Now look for ’CAF reset’ reason code
CLC REASCODE,C10824 Was it 4? Are we ready to restart?
BNE UNRECOG If not 824, got unknown code
WRITE ’CAF is now ready for more input’
MVC CONTROL,RESTART Indicate that we should re-CONNECT
B ENDCCODE We are done. Go to end of CHEKCODE

UNRECOG DS 0H
WRITE ’Got RETCODE = 4 and an unrecognized reason code’
MVC CONTROL,SHUTDOWN Shutdown, serious problem
B ENDCCODE We are done. Go to end of CHEKCODE

* ********************* HUNT FOR 8 *****************************
HUNT8 DS 0H

CLC RETCODE,EIGHT Hunt return code of 8
BE GOT8OR12
CLC RETCODE,TWELVE Hunt return code of 12
BNE HUNT200

66 Application Programming and SQL Guide

GOT8OR12 DS 0H Found return code of 8 or 12
WRITE ’Found RETCODE of 8 or 12’
CLC REASCODE,F30002 Hunt for X’00F30002’
BE DB2DOWN

CLC REASCODE,F30012 Hunt for X’00F30012’
BE DB2DOWN
WRITE ’DB2 connection failure with an unrecognized REASCODE’
CLC SQLCODE,ZERO See if we need TRANSLATE
BNE A4TRANS If not blank, skip TRANSLATE

* ********************* TRANSLATE unrecognized RETCODEs ********
WRITE ’SQLCODE 0 but R15 not, so TRANSLATE to get SQLCODE’
L R15,LIALI Get the Language Interface address
CALL (15),(TRANSLAT,SQLCA),VL,MF=(E,CAFCALL)
C R0,C10205 Did the TRANSLATE work?
BNE A4TRANS If not C10205, SQLERRM now filled in
WRITE ’Not able to TRANSLATE the connection failure’
B ENDCCODE Go to end of CHEKCODE

A4TRANS DS 0H SQLERRM must be filled in to get here
* Note: your code should probably remove the X’FF’
* separators and format the SQLERRM feedback area.
* Alternatively, use DB2 Sample Application DSNTIAR
* to format a message.

WRITE ’SQLERRM is:’ SQLERRM
B ENDCCODE We are done. Go to end of CHEKCODE

DB2DOWN DS 0H Hunt return code of 200
WRITE ’DB2 is down and I will tell you when it comes up’
WAIT ECB=SECB Wait for DB2 to come up
WRITE ’DB2 is now available’
MVC CONTROL,RESTART Indicate that we should re-CONNECT
B ENDCCODE

* ********************* HUNT FOR 200 ***************************
HUNT200 DS 0H Hunt return code of 200

CLC RETCODE,NUM200 Hunt 200
BNE HUNT204
WRITE ’CAF found user error, see DSNTRACE data set’
B ENDCCODE We are done. Go to end of CHEKCODE

* ********************* HUNT FOR 204 ***************************
HUNT204 DS 0H Hunt return code of 204

CLC RETCODE,NUM204 Hunt 204
BNE WASSAT If not 204, got strange code
WRITE ’CAF found system error, see DSNTRACE data set’
B ENDCCODE We are done. Go to end of CHEKCODE

* ********************* UNRECOGNIZED RETCODE *******************
WASSAT DS 0H

WRITE ’Got an unrecognized RETCODE’
MVC CONTROL,SHUTDOWN Shutdown
BE ENDCCODE We are done. Go to end of CHEKCODE

ENDCCODE DS 0H Should we shut down?
L R4,RETCODE Get a copy of the RETCODE
C R4,FOUR Have a look at the RETCODE
BNH BYEBYE If RETCODE <= 4 then leave CHEKCODE
MVC CONTROL,SHUTDOWN Shutdown

BYEBYE DS 0H Wrap up and leave CHEKCODE
L R13,4(,R13) Point to caller’s save area
RETURN (14,12) Return to the caller

Example of invoking CAF when you do not specify the precompiler option
ATTACH(CAF): Each of the four DB2 attachment facilities contains an entry point
named DSNHLI. When you use CAF but do not specify the precompiler option
ATTACH(CAF), SQL statements result in BALR instructions to DSNHLI in your
program. To find the correct DSNHLI entry point without including DSNALI in
your load module, code a subroutine with entry point DSNHLI that passes control
to entry point DSNHLI2 in the DSNALI module. DSNHLI2 is unique to DSNALI
and is at the same location in DSNALI as DSNHLI. DSNALI uses 31-bit

Chapter 2. Connecting to DB2 from your application program 67

addressing. If the application that calls this intermediate subroutine uses 24-bit
addressing, this subroutine should account for the difference.

In the following example, LISQL is addressable because the calling CSECT used
the same register 12 as CSECT DSNHLI. Your application must also establish
addressability to LISQL.

* Subroutine DSNHLI intercepts calls to LI EP=DSNHLI

DS 0D
DSNHLI CSECT Begin CSECT

STM R14,R12,12(R13) Prologue
LA R15,SAVEHLI Get save area address
ST R13,4(,R15) Chain the save areas
ST R15,8(,R13) Chain the save areas
LR R13,R15 Put save area address in R13
L R15,LISQL Get the address of real DSNHLI
BASSM R14,R15 Branch to DSNALI to do an SQL call

* DSNALI is in 31-bit mode, so use
* BASSM to assure that the addressing
* mode is preserved.

L R13,4(,R13) Restore R13 (caller’s save area addr)
L R14,12(,R13) Restore R14 (return address)
RETURN (1,12) Restore R1-12, NOT R0 and R15 (codes)

Example of variable declarations when using CAF: The following example code
shows declarations for some of the variables that were used in the previous
subroutines.
****************************** VARIABLES ******************************
SECB DS F DB2 Startup ECB
TECB DS F DB2 Termination ECB
LIALI DS F DSNALI Entry Point address
LISQL DS F DSNHLI2 Entry Point address
SSID DS CL4 DB2 Subsystem ID. CONNECT parameter
PLAN DS CL8 DB2 Plan name. OPEN parameter
TRMOP DS CL4 CLOSE termination option (SYNC|ABRT)
FUNCTN DS CL12 CAF function to be called
RIBPTR DS F DB2 puts Release Info Block addr here
RETCODE DS F Chekcode saves R15 here
REASCODE DS F Chekcode saves R0 here
CONTROL DS CL8 GO, SHUTDOWN, or RESTART
SAVEAREA DS 18F Save area for CHEKCODE
****************************** CONSTANTS ******************************
SHUTDOWN DC CL8’SHUTDOWN’ CONTROL value: Shutdown execution
RESTART DC CL8’RESTART ’ CONTROL value: Restart execution
CONTINUE DC CL8’CONTINUE’ CONTROL value: Everything OK, cont
CODE0 DC F’0’ SQLCODE of 0
CODE100 DC F’100’ SQLCODE of 100
QUIESCE DC XL3’000008’ TECB postcode: STOP DB2 MODE=QUIESCE
CONNECT DC CL12’CONNECT ’ Name of a CAF service. Must be CL12!
OPEN DC CL12’OPEN ’ Name of a CAF service. Must be CL12!
CLOSE DC CL12’CLOSE ’ Name of a CAF service. Must be CL12!
DISCON DC CL12’DISCONNECT ’ Name of a CAF service. Must be CL12!
TRANSLAT DC CL12’TRANSLATE ’ Name of a CAF service. Must be CL12!
SYNC DC CL4’SYNC’ Termination option (COMMIT)
ABRT DC CL4’ABRT’ Termination option (ROLLBACK)
****************************** RETURN CODES (R15) FROM CALL ATTACH ****
ZERO DC F’0’ 0
FOUR DC F’4’ 4
EIGHT DC F’8’ 8
TWELVE DC F’12’ 12 (Call Attach return code in R15)
NUM200 DC F’200’ 200 (User error)
NUM204 DC F’204’ 204 (Call Attach system error)
****************************** REASON CODES (R00) FROM CALL ATTACH ****

68 Application Programming and SQL Guide

C10205 DC XL4’00C10205’ Call attach could not TRANSLATE
C10831 DC XL4’00C10831’ Call attach found a release mismatch
C10824 DC XL4’00C10824’ Call attach ready for more input
F30002 DC XL4’00F30002’ DB2 subsystem not up
F30011 DC XL4’00F30011’ DB2 subsystem not up
F30012 DC XL4’00F30012’ DB2 subsystem not up
F30025 DC XL4’00F30025’ DB2 is stopping (REASCODE)
*
* Insert more codes here as necessary for your application
*
****************************** SQLCA and RIB **************************

EXEC SQL INCLUDE SQLCA
DSNDRIB Get the DB2 Release Information Block

****************************** CALL macro parm list *******************
CAFCALL CALL ,(*,*,*,*,*,*,*,*,*),VL,MF=L

Invoking the Resource Recovery Services attachment facility
The Resource Recovery Services attachment facility (RRSAF) enables your program
to communicate with DB2. Invoke RRSAF as an alternative to invoking CAF or
when using stored procedures that run in a WLM-established address space.
RRSAF has more capabilities than CAF.

Before you begin

Before you invoke RRSAF, perform the following actions:
v Ensure that the RRSAF language interface load module, DSNRLI, is available.
v Ensure that your application satisfies the requirements for programs that access

RRSAF.
v Ensure that your application satisfies the general environment characteristics for

connecting to DB2.
v Ensure that you are familiar with the following z/OS concepts and facilities:

– The CALL macro and standard module linkage conventions
– Program addressing and residency options (AMODE and RMODE)
– Creating and controlling tasks; multitasking
– Functional recovery facilities such as ESTAE, ESTAI, and FRRs
– Synchronization techniques such as WAIT/POST
– z/OS RRS functions, such as SRRCMIT and SRRBACK

About this task

Applications that use RRSAF can be written in assembler language, C, COBOL,
Fortran, and PL/I. When choosing a language to code your application in, consider
the following restrictions:
v If you use z/OS macros (ATTACH, WAIT, POST, and so on), choose a

programming language that supports them.
v The RRSAF TRANSLATE function is not available in Fortran. To use this

function, code it in a routine that is written in another language, and then call
that routine from Fortran.

Procedure

To invoke RRSAF:
1. Perform one of the following actions:

v Explicitly invoke RRSAF by including in your program CALL DSNRLI
statements with the appropriate options.

Chapter 2. Connecting to DB2 from your application program 69

The first option is an RRSAF connection function, which describes the action
that you want RRSAF to take. The effect of any function depends in part on
what functions the program has already performed.
To code RRSAF functions in C, COBOL, Fortran, or PL/I, follow the
individual language's rules for making calls to assembler language routines.
Specify the return code and reason code parameters in the parameter list for
each RRSAF call.

Requirement: For C, C++, and PL/I applications, you must also include in
your program the compiler directives that are listed in the following table,
because DSNRLI is an assembler language program.

Table 16. Compiler directives to include in C, C++, and PL/I applications that contain CALL
DSNRLI statements

Language Compiler directive to include

C #pragma linkage(dsnrli, OS)

C++ extern "OS" {
int DSNRLI(

char * functn,
...); }

PL/I DCL DSNRLI ENTRY OPTIONS(ASM,INTER,RETCODE);

v Implicitly invoke RRSAF by including SQL statements or IFI calls in your
program just as you would in any program. The RRSAF facility establishes
the connection to DB2 with the default values for the subsystem name, plan
name and authorization ID.

Restriction: If your program can make its first SQL call from different
modules with different DBRMs, you cannot use a default plan name and
thus, you cannot implicitly invoke RRSAF. Instead, you must explicitly
invoke RRSAF by calling the CREATE THREAD function.

Requirement: If your application includes both SQL and IFI calls, you must
issue at least one SQL call before you issue any IFI calls. This action ensures
that your application uses the correct plan.

2. If you implicitly invoked RRSAF, determine if the implicit connection was
successful by examining the return code and reason code immediately after the
first executable SQL statement within the application program. Your program
can check these codes by performing one of the following actions:
v Examine registers 0 and 15 directly.
v Examine the SQLCA, and if the SQLCODE is -981, obtain the return and

reason code from the message text. The return code is the first token, and the
reason code is the second token.

If the implicit connection is successful, the application can examine the
SQLCODE for the first, and subsequent, SQL statements.

Example of an RRSAF configuration

The following figure shows an conceptual example of invoking and using RRSAF.

70 Application Programming and SQL Guide

Resource Recovery Services attachment facility
An attachment facility enables programs to communicate with DB2. The Resource
Recovery Services attachment facility (RRSAF) provides such a connection for
programs that run in z/OS batch, TSO foreground, and TSO background. The
RRSAF is an alternative to CAF and has more functionality.

An application program using RRSAF can perform the following actions:
v Use DB2 to process SQL statements, commands, or instrumentation facility

interface (IFI) calls.

Figure 3. Sample RRSAF configuration

Chapter 2. Connecting to DB2 from your application program 71

v Coordinate DB2 updates with updates made by all other resource managers that
also use z/OS RRS in an z/OS system.

v Use the z/OS System Authorization Facility and an external security product,
such as RACF, to sign on to DB2 with the authorization ID of a user.

v Sign on to DB2 using a new authorization ID and an existing connection and
plan.

v Access DB2 from multiple z/OS tasks in an address space.
v Switch a DB2 thread among z/OS tasks within a single address space.
v Access the DB2 IFI.
v Run with or without the TSO terminal monitor program (TMP).
v Run without being a subtask of the DSN command processor (or of any DB2

code).
v Run above or below the 16-MB line.
v Establish an explicit connection to DB2, through a call interface, with control

over the exact state of the connection.
v Establish an implicit connection to DB2 (with a default subsystem identifier and

a default plan name) by using SQL statements or IFI calls without first calling
RRSAF.

v Supply event control blocks (ECBs), for DB2 to post, that signal start-up or
termination.

v Intercept return codes, reason codes, and abend codes from DB2 and translate
them into messages as required.

RRSAF uses z/OS Transaction Management and Recoverable Resource Manager
Services (z/OS RRS).

Any task in an address space can establish a connection to DB2 through RRSAF.
Each task control block (TCB) can have only one connection to DB2. A DB2 service
request that is issued by a program that runs under a given task is associated with
that task's connection to DB2. The service request operates independently of any
DB2 activity under any other task.

Each connected task can run a plan. Tasks within a single address space can
specify the same plan, but each instance of a plan runs independently from the
others. A task can terminate its plan and run a different plan without completely
breaking its connection to DB2.

RRSAF does not generate task structures.

When you design your application, consider that using multiple simultaneous
connections can increase the possibility of deadlocks and DB2 resource contention.

Restriction: RRSAF does not provide attention processing exits or functional
recovery routines. You can provide whatever attention handling and functional
recovery your application needs, but you must use ESTAE/ESTAI type recovery
routines only.

A tracing facility provides diagnostic messages that help you debug programs and
diagnose errors in the RRSAF code. The trace information is available only in a
SYSABEND or SYSUDUMP dump.

72 Application Programming and SQL Guide

To commit work in RRSAF applications, use the CPIC SRRCMIT function or the
DB2 COMMIT statement. To roll back work, use the CPIC SRRBACK function or
the DB2 ROLLBACK statement.

Use the following guidelines to decide whether to use the DB2 statements or the
CPIC functions for commit and rollback operations:
v Use DB2 COMMIT and ROLLBACK statements when all of the following

conditions are true:
– The only recoverable resource that is accessed by your application is DB2 data

that is managed by a single DB2 instance.
DB2 COMMIT and ROLLBACK statements fail if your RRSAF application
accesses recoverable resources other than DB2 data that is managed by a
single DB2 instance.

– The address space from which syncpoint processing is initiated is the same as
the address space that is connected to DB2.

v If your application accesses other recoverable resources, or syncpoint processing
and DB2 access are initiated from different address spaces, use SRRCMIT and
SRRBACK.

Related reference:

COMMIT (DB2 SQL)

ROLLBACK (DB2 SQL)
Related information:

Using Protected Resources (MVS Programming: Callable Services for
High-Level Languages)

Properties of RRSAF connections
RRSAF enables programs to communicate with DB2 to process SQL statements,
commands, or IFI calls.

Restriction: Do not mix RRSAF connections with other connection types in a
single address space. The first connection that is made from an address space to
DB2 determines the type of connection allowed.

The connection that RRSAF makes with DB2 has the basic properties that are listed
in the following table.

Table 17. Properties of RRSAF connections

Property Value Comments

Connection name RRSAF You can use the DISPLAY
THREAD command to list
RRSAF applications that have
the connection name RRSAF.

Connection type RRSAF None.

Chapter 2. Connecting to DB2 from your application program 73

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_commit.htm#db2z_sql_commit
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_rollback.htm#db2z_sql_rollback
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2c171/4.1?ACTION=MATCHES&REQUEST=using+protected+resources&TYPE=FUZZY&SHELF=&DT=20120127100832&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2c171/4.1?ACTION=MATCHES&REQUEST=using+protected+resources&TYPE=FUZZY&SHELF=&DT=20120127100832&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT

Table 17. Properties of RRSAF connections (continued)

Property Value Comments

Authorization ID Authorization IDs that are
associated with each DB2
connection

A connection must have a
primary ID and can have one
or more secondary IDs. Those
identifiers are used for the
following purposes:
v Validating access to DB2
v Checking privileges on

DB2 objects
v Assigning ownership of

DB2 objects
v Identifying the user of a

connection for audit,
performance, and
accounting traces.

RRSAF relies on the z/OS
System Authorization Facility
(SAF) and a security product,
such as RACF, to verify and
authorize the authorization
IDs. An application that
connects to DB2 through
RRSAF must pass those
identifiers to SAF for
verification and authorization
checking. RRSAF retrieves
the identifiers from SAF.

A location can provide an
authorization exit routine for
a DB2 connection to change
the authorization IDs and to
indicate whether the
connection is allowed. The
actual values that are
assigned to the primary and
secondary authorization IDs
can differ from the values
that are provided by a
SIGNON or AUTH SIGNON
request. A site's DB2 signon
exit routine can access the
primary and secondary
authorization IDs and can
modify the IDs to satisfy the
site's security requirements.
The exit routine can also
indicate whether the signon
request should be accepted.

74 Application Programming and SQL Guide

Table 17. Properties of RRSAF connections (continued)

Property Value Comments

Scope RRSAF processes connections
as if each task is entirely
isolated. When a task
requests a function, RRSAF
passes the function to DB2,
regardless of the connection
status of other tasks in the
address space. However, the
application program and the
DB2 subsystem have access
to the connection status of
multiple tasks in an address
space.

None.

If an application that is connected to DB2 through RRSAF terminates normally
before the TERMINATE THREAD or TERMINATE IDENTIFY functions deallocate
the plan, RRS commits any changes made after the last commit point. If the
application terminates abnormally before the TERMINATE THREAD or
TERMINATE IDENTIFY functions deallocate the plan, z/OS RRS rolls back any
changes made after the last commit point. In either case, DB2 deallocates the plan,
if necessary, and terminates the application's connection.

If DB2 abends while an application is running, DB2 rolls back changes to the last
commit point. If DB2 terminates while processing a commit request, DB2 either
commits or rolls back any changes at the next restart. The action taken depends on
the state of the commit request when DB2 terminates.

Making the RRSAF language interface (DSNRLI) available
Before you can invoke the Resource Recovery Services attachment facility (RRSAF),
you must first make available the RRSAF language interface load module,
DSNRLI.

About this task

Part of RRSAF is a DB2 load module, DSNRLI, which is also known as the RRSAF
language interface module. DSNRLI has the alias names DSNHLIR and DSNWLIR.
The module has five entry points: DSNRLI, DSNHLI, DSNHLIR, DSNWLI, and
DSNWLIR. These entry points serve the following functions:
v Entry point DSNRLI handles explicit DB2 connection service requests.
v DSNHLI and DSNHLIR handle SQL calls. Use DSNHLI if your application

program link-edits RRSAF. Use DSNHLIR if your application program loads
RRSAF.

v DSNWLI and DSNWLIR handle IFI calls. Use DSNWLI if your application
program link-edits RRSAF. Use DSNWLIR if your application program loads
RRSAF.

Procedure

To make DSNRLI available:
1. Decide which of the following methods you want to use to make DSNRLI

available:
v Explicitly issuing LOAD requests when your program runs.

Chapter 2. Connecting to DB2 from your application program 75

By explicitly loading the DSNRLI module, you can isolate the maintenance of
your application from future IBM maintenance to the language interface. If
the language interface changes, the change will probably not affect your load
module.

v Including the DSNRLI module in your load module when you link-edit your
program.
A disadvantage of link-editing DSNRLI into your load module is that if IBM
makes a change to DSNRLI, you must link-edit your program again.

Alternatively, if using explicit connections via CALL DSNALI, you can link-edit
your program with DSNULI, the Universal Language Interface.

2. Depending on the method that you chose in step 1, perform one of the
following actions:
v If you want to explicitly issue LOAD requests when your program runs:

In your program, issue z/OS LOAD service requests for entry points
DSNRLI and DSNHLIR. If you use IFI services, you must also load
DSNWLIR. Save the entry point address that LOAD returns and use it in the
CALL macro.
Indicate to DB2 which entry point to use in one of the following two ways:
– Specify the precompiler option ATTACH(RRSAF).

This option causes DB2 to generate calls that specify entry point
DSNHLIR.

Restriction: You cannot use this option if your application is written in
Fortran.

– Code a dummy entry point named DSNHLI within your load module.
If you do not specify the precompiler option ATTACH, the DB2
precompiler generates calls to entry point DSNHLI for each SQL request.
The precompiler does not know about and is independent of the different
DB2 attachment facilities. When the calls that are generated by the DB2
precompiler pass control to DSNHLI, your code that corresponds to the
dummy entry point must preserve the option list that is passed in register
1 and call DSNHLIR with the same option list.

v If you want to include the DSNRLI module in your load module when
you link-edit your program:

Include DSNRLI in your load module during a link-edit step. For example,
you can use a linkage editor control statement that is similar to the following
statement in your JCL:
INCLUDE DB2LIB(DSNRLI).

By coding this statement, you avoid inadvertently picking up the wrong
language interface module.
When you include the DSNRLI module during the link-edit, do not include a
dummy DSNHLI entry point in your program or specify the precompiler
option ATTACH. Module DSNRLI contains an entry point for DSNHLI,
which is identical to DSNHLIR, and an entry point for DSNWLI, which is
identical to DSNWLIR.

76 Application Programming and SQL Guide

Related concepts:
“Program examples for RRSAF” on page 115
“Universal language interface” on page 117
Related tasks:
“Making the CAF language interface (DSNALI) available” on page 43
“Link-editing an application with DSNULI” on page 119

Requirements for programs that use RRSAF
The Resource Recovery Services attachment facility (RRSAF) enables programs to
communicate with DB2. Before you invoke RRSAF in your program, ensure that
your program satisfies any requirements for using RRSAF.

When you write programs that use RRSAF, ensure that they meet the following
requirements:
v The program accounts for the size of the RRSAF code. The RRSAF code requires

about 10 KB of virtual storage per address space and an additional 10 KB for
each TCB that uses RRSAF.

v If your local environment intercepts and replaces the z/OS LOAD SVC that
RRSAF uses, you must ensure that your version of LOAD manages the load list
element (LLE) and contents directory entry (CDE) chains like the standard z/OS
LOAD macro. RRSAF uses z/OS SVC LOAD to load a module as part of the
initialization after your first service request. The module is loaded into
fetch-protected storage that has the job-step protection key.

You can prepare application programs to run in RRSAF similar to how you prepare
applications to run in other environments, such as CICS, IMS, and TSO. You can
prepare an RRSAF application either in the batch environment or by using the DB2
program preparation process. You can use the program preparation system either
through DB2I or through the DSNH CLIST.
Related tasks:
Chapter 17, “Preparing an application to run on DB2 for z/OS,” on page 913

How RRSAF modifies the content of registers
If you do not specify the return code and reason code parameters in your RRSAF
function calls or ifyou invoke RRSAF implicitly, RRSAF puts a return code in
register 15 and a reason code in register 0. RRSAF preserves the contents of
registers 2 through 14.

If you specify the return code and reason code parameters, RRSAF places the
return code in register 15 and in the return code parameter to accommodate
high-level languages that support special return code processing.

The following table summarizes the register conventions for RRSAF calls.

Table 18. Register conventions for RRSAF calls

Register Usage

R1 Parameter list pointer

R13 Address of caller's save area

R14 Caller's return address

R15 RRSAF entry point address

Chapter 2. Connecting to DB2 from your application program 77

Implicit connections to RRSAF
Resource Recovery Services attachment facility (RRSAF) establishes an implicit
connection to DB2 under certain situations. The connection is established if the
following are true: the RRSAF language interface load module (DSNRLI) is
available, you do not explicitly specify the IDENTIFY function in a CALL DSNRLI
statement in your program, and the application includes SQL statements or IFI
calls.

An implicit connection causes RRSAF to initiate implicit IDENTIFY and CREATE
THREAD requests to DB2. These requests are subject to the same DB2 return codes
and reason codes as explicitly specified requests.

Implicit connections use the following defaults:

Subsystem name
The default name that is specified in the module DSNHDECP. RRSAF uses
the installation default DSNHDECP, unless your own DSNHDECP module
is in a library in a STEPLIB statement of the JOBLIB concatenation or in
the link list. In a data sharing group, the default subsystem name is the
group attachment name.

Be certain that you know what the default name is and that it names the
specific DB2 subsystem that you want to use.

Plan name
The member name of the database request module (DBRM) that DB2
produced when you precompiled the source program that contains the first
SQL call.

Authorization ID
The 7-byte user ID that is associated with the address space, unless an
authorized function has built an Accessor Environment Element (ACEE)
for the address space. If an authorized function has built an ACEE, DB2
passes the 8-byte user ID from the ACEE.

For an implicit connection request, your application should not explicitly specify
either the IDENTIFY function or the CREATE THREAD function. Your application
can execute other explicit RRSAF calls after the implicit connection is made. An
implicit connection does not perform any SIGNON processing. Your application
can execute the SIGNON function at any point of consistency. To terminate an
implicit connection, you must use the proper function calls.

For implicit connection requests, register 15 contains the return code, and register 0
contains the reason code. The return code and reason code are also in the message
text for SQLCODE -981.
Related concepts:
“Summary of RRSAF behavior” on page 79

CALL DSNRLI statement parameter list
The CALL DSNRLI statement explicitly invokes RRSAF. When you include CALL
DSNRLI statements in your program, you must specify all parameters that precede
the return code parameter.

In CALL DSNRLI statements, you cannot omit any of parameters that come before
the return code parameter by coding zeros or blanks. No defaults exist for those

78 Application Programming and SQL Guide

parameters for explicit connection requests. Defaults are provided for only implicit
connections. All parameters starting with the return code parameter are optional.

When you want to use the default value for a parameter but specify subsequent
parameters, code the CALL DSNRLI statement as follows:
v For C-language, when you code CALL DSNRLI statements in C, you need to

specify the address of every parameter, using the "address of" operator (&), and
not the parameter itself. For example, to pass the pklistptr parameter on the
"CREATE THREAD" specify the address of the 4-byte pointer to the structure
(&pklistptr):
fnret=dsnrli(&crthrdfn[0], &plan[0], &collid[0], &reuse[0],

&retcode, &reascode, &pklistptr);

v For all languages except assembler language, code zero for that parameter in the
CALL DSNRLI statement. For example, suppose that you are coding an
IDENTIFY call in a COBOL program, and you want to specify all parameters
except the return code parameter. You can write a statement similar to the
following statement:
CALL ’DSNRLI’ USING IDFYFN SSNM RIBPTR EIBPTR TERMECB STARTECB

BY CONTENT ZERO BY REFERENCE REASCODE.

v For assembler language, code a comma for that parameter in the CALL DSNRLI
statement. For example, suppose that you are coding an IDENTIFY call, and you
want to specify all parameters except the return code parameter. You can write a
statement similar to the following statement:
CALL DSNRLI,(IDFYFN,SSNM,RIBPTR,EIBPTR,TERMECB,STARTECB,,REASCODE)

For assembler programs that invoke RRSAF, use a standard parameter list for an
z/OS CALL. Register 1 must contain the address of a list of pointers to the
parameters. Each pointer is a 4-byte address. The last address must contain the
value 1 in the high-order bit.

Summary of RRSAF behavior
The effect of any Resource Recovery Services attachment facility (RRSAF) function
depends in part on what functions the program has already run. You should plan
the RRSAF function calls that your program makes to avoid any errors and major
structural problems in your application.

The following tables summarize RRSAF behavior after various inputs from
application programs. The contents of each table cell indicate the result of calling
the function in the first column for that row followed by the function in the
current column heading. For example, if you issue TERMINATE THREAD and
then IDENTIFY, RRSAF returns reason code X'00C12201'. Use these tables to
understand the order in which your application must issue RRSAF calls, SQL
statements, and IFI requests.

The RRSAF FIND_DB2_SYSTEMS function is omitted from these tables, because it
does not affect the operation of any of the other functions

The following table summarizes RRSAF behavior when the next call is to the
IDENTIFY function, the SWITCH TO function, the SIGNON function, or the
CREATE THREAD function.

Chapter 2. Connecting to DB2 from your application program 79

Table 19. Effect of call order when next call is IDENTIFY, SWITCH TO, SIGNON, or CREATE THREAD

Previous function

Next function

IDENTIFY SWITCH TO
SIGNON, AUTH SIGNON,
or CONTEXT SIGNON CREATE THREAD

Empty: first call IDENTIFY X'00C12205'1 X'00C12204'1 X'00C12204'1

IDENTIFY X'00F30049'1 Switch to ssnm Signon 2 X'00C12217'1

SWITCH TO IDENTIFY Switch to ssnm Signon 2 CREATE THREAD

SIGNON, AUTH SIGNON,
or CONTEXT SIGNON

X'00F30049'1 Switch to ssnm Signon 2 CREATE THREAD

CREATE THREAD X'00F30049'1 Switch to ssnm Signon 2 X'00C12202'1

TERMINATE THREAD X'00C12201'1 Switch to ssnm Signon 2 CREATE THREAD

IFI X'00F30049'1 Switch to ssnm Signon 2 X'00C12202'1

SQL X'00F30049'1 Switch to ssnm X'00F30092'13 X'00C12202'1

SRRCMIT or SRRBACK X'00F30049'1 Switch to ssnm Signon 2 X'00C12202'1

Notes:

1. Errors are identified by the DB2 reason code that RRSAF returns.

2. Signon means either the SIGNON function, the AUTH SIGNON function, or the CONTEXT SIGNON function.

3. The SIGNON, AUTH SIGNON, or CONTEXT SIGNON functions are not allowed if any SQL operations are
requested after the CREATE THREAD function or after the last SRRCMIT or SRRBACK request.

The following table summarizes RRSAF behavior when the next call is an SQL
statement or an IFI call or to the TERMINATE THREAD function, the TERMINATE
IDENTIFY function, or the TRANSLATE function.

Table 20. Effect of call order when next call is SQL or IFI, TERMINATE THREAD, TERMINATE IDENTIFY, or
TRANSLATE

Previous function

Next function

SQL or IFI TERMINATE THREAD TERMINATE IDENTIFY TRANSLATE

Empty: first call SQL or IFI call4 X'00C12204'1 X'00C12204'1 X'00C12204'1

IDENTIFY SQL or IFI call4 X'00C12203'1 TERMINATE IDENTIFY TRANSLATE

SWITCH TO SQL or IFI call4 TERMINATE THREAD TERMINATE IDENTIFY TRANSLATE

SIGNON, AUTH SIGNON,
or CONTEXT SIGNON

SQL or IFI call4 TERMINATE THREAD TERMINATE IDENTIFY TRANSLATE

CREATE THREAD SQL or IFI call4 TERMINATE THREAD TERMINATE IDENTIFY TRANSLATE

TERMINATE THREAD SQL or IFI call 4 X'00C12203'1 TERMINATE IDENTIFY TRANSLATE

IFI SQL or IFI call4 TERMINATE THREAD TERMINATE IDENTIFY TRANSLATE

SQL SQL or IFI call4 X'00F30093'12 X'00F30093'13 TRANSLATE

SRRCMIT or SRRBACK SQL or IFI call4 TERMINATE THREAD TERMINATE IDENTIFY TRANSLATE

80 Application Programming and SQL Guide

Table 20. Effect of call order when next call is SQL or IFI, TERMINATE THREAD, TERMINATE IDENTIFY, or
TRANSLATE (continued)

Previous function

Next function

SQL or IFI TERMINATE THREAD TERMINATE IDENTIFY TRANSLATE

Notes:

1. Errors are identified by the DB2 reason code that RRSAF returns.

2. TERMINATE THREAD is not allowed if any SQL operations are requested after the CREATE THREAD function
or after the last SRRCMIT or SRRBACK request.

3. TERMINATE IDENTIFY is not allowed if any SQL operations are requested after the CREATE THREAD function
or after the last SRRCMIT or SRRBACK request.

4. If you are using an implicit connection to RRSAF and issue SQL or IFI calls, RRSAF issues implicit IDENTIFY and
CREATE THREAD requests. If you continue with explicit RRSAF statements, you must follow the standard order
of explicit RRSAF calls. Implicitly connecting to RRSAF does not cause an implicit SIGNON request. Therefore,
you might need to issue an explicit SIGNON request to satisfy the standard order requirement. For example, an
SQL statement followed by an explicit TERMINATE THREAD request results in an error. You must issue an
explicit SIGNON request before issuing the TERMINATE THREAD request.

Related concepts:

X'C1......' codes (DB2 Codes)

X'F3......' codes (DB2 Codes)

RRSAF connection functions
An Resource Recovery Services attachment facility (RRSAF) connection function
specifies the action that you want RRSAF to take. You specify these functions when
you invoke RRSAF through CALL DSNRLI statements.
Related concepts:
“CALL DSNRLI statement parameter list” on page 78
“Summary of RRSAF behavior” on page 79

IDENTIFY function for RRSAF
The RRSAF IDENTIFY function initializes a connection to DB2.

The IDENTIFY function establishes the caller's task as a user of DB2 services. If no
other task in the address space currently is connected to the specified subsystem,
the IDENTIFY function also initializes the address space to communicate with the
DB2 address spaces. The IDENTIFY function establishes the cross-memory
authorization of the address space to DB2 and builds address space control blocks.

The following diagram shows the syntax for the IDENTIFY function.

Chapter 2. Connecting to DB2 from your application program 81

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.codes/src/tpc/db2z_00c1.htm#db2z_00c1
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.codes/src/tpc/db2z_00f3.htm#db2z_00f3

DSNRLI IDENTIFY function

�� CALL DSNRLI (function , ssnm , ribptr , eibptr , termecb , �

� startecb �

�
, retcode

, reascode
, groupoverride

, decpptr

) ��

Parameters point to the following areas:

function
An 18-byte area that contains IDENTIFY followed by 10 blanks.

ssnm
A 4-byte DB2 subsystem name, or group attachment or subgroup attachment
name (if used in a data sharing group) to which the connection is made. If
ssnm is less than four characters long, pad it on the right with blanks to a
length of four characters.

ribptr
A 4-byte area in which RRSAF places the address of the release information
block (RIB) after the call. You can use the RIB to determine the release level of
the DB2 subsystem to which the application is connected. You can determine
the modification level within the release level by examining the RIBCNUMB
and RIBCINFO fields. If the value in the RIBCNUMB field is greater than zero,
check the RIBCINFO field for modification levels.

If the RIB is not available (for example, if ssnm names a subsystem that does
not exist), DB2 sets the 4-byte area to zeros.

The area to which ribptr points is below the 16-MB line.

This parameter is required. However, the application does not need to refer to
the returned information.

eibptr
A 4-byte area in which RRSAF places the address of the environment
information block (EIB) after the call. The EIB contains environment
information, such as the data sharing group, the name of the DB2 member to
which the IDENTIFY request was issued, and whether the subsystem is in
new-function mode. If the DB2 subsystem is not in a data sharing group,
RRSAF sets the data sharing group and member names to blanks. If the EIB is
not available (for example, if ssnm names a subsystem that does not exist),
RRSAF sets the 4-byte area to zeros.

The area to which eibptr points is above the 16-MB line.

This parameter is required. However, the application does not need to refer to
the returned information.

termecb
The address of the application's event control block (ECB) that is used for DB2
termination. DB2 posts this ECB when the system operator enters the STOP
DB2 command or when DB2 is terminating abnormally. Specify a value of 0 if
you do not want to use a termination ECB.

82 Application Programming and SQL Guide

The ECB is ignored when DB2 is already stopped. The application program
must examine any nonzero RRSAF or DB2 reason codes before issuing a WAIT
request on this ECB.

RRSAF puts a POST code in the ECB to indicate the type of termination as
shown in the following table.

Table 21. Post codes for types of DB2 termination

POST code Termination type

8 QUIESCE

12 FORCE

16 ABTERM

startecb
The address of the application's startup ECB. If DB2 has not started when the
application issues the IDENTIFY call, DB2 posts the ECB when DB2 has
started. Enter a value of zero if you do not want to use a startup ECB. DB2
posts no more than one startup ECB per address space. The ECB that is posted
is associated with the most recent IDENTIFY call from that address space. The
application program must examine any nonzero RRSAF or DB2 reason codes
before issuing a WAIT request on this ECB.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify retcode, RRSAF places the
return code in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places a reason code.

This parameter is optional. If you do not specify reascode, RRSAF places the
reason code in register 0.

If you specify reascode, you must also specify retcode or its default. You can
specify a default for retcode by specifying a comma or zero, depending on the
language.

groupoverride
An 8-byte area that the application provides. This parameter is optional. If you
do not want group attach to be attempted, specify 'NOGROUP'. This string
indicates that the subsystem name that is specified by ssnm is to be used as a
DB2 subsystem name, even if ssnm matches a group attachment or subgroup
attachment name. If groupoverride is not provided, ssnm is used as the group
attachment or subgroup attachment name if it matches a group attachment or
subgroup attachment name.

If you specify this parameter in any language except assembler, you must also
specify the retcode and reascode parameters. In assembler language, you can
omit the retcode and reascode parameters by specifying commas as
place-holders.

Recommendation: Avoid using the groupoverride parameter when possible,
because it limits the ability to do dynamic workload routing in a Parallel
Sysplex. However, you should use this parameter in a data sharing
environment when you want to connect to a specific member of a data sharing
group, and the subsystem name of that member is the same as the group
attachment or subgroup attachment name.

Chapter 2. Connecting to DB2 from your application program 83

decpptr

A 4-byte area in which RRSAF is to put the address of the DSNHDECP or a
user-specified application defaults module that was loaded by subsystem ssnm
when that subsystem was started. This 4-byte area is a 31-bit pointer. If ssnm is
not found, the 4-byte area is set to 0.

The area to which decpptr points is above the 16-MB line.

If you specify this parameter in any language except assembler, you must also
specify the retcode, reascode, and groupoverride parameters. In assembler
language, you can omit the retcode, reascode, and groupoverride parameters by
specifying commas as placeholders.

Example of RRSAF IDENTIFY function calls

The following table shows an IDENTIFY call in each language.

Table 22. Examples of RRSAF IDENTIFY calls

Language Call example

Assembler CALL DSNRLI,(IDFYFN,SSNM,RIBPTR,EIBPTR,TERMECB,STARTECB, RETCODE,REASCODE,GRPOVER,DECPPTR)

C1 fnret=dsnrli(&idfyfn[0],&ssnm[0], &ribptr, &eibptr, &termecb, &startecb, &retcode,
&reascode,&grpover[0],&decpptr);

COBOL CALL ’DSNRLI’ USING IDFYFN SSNM RIBTPR EIBPTR TERMECB STARTECB RETCODE REASCODE GRPOVER
DECPPTR.

Fortran CALL DSNRLI(IDFYFN,SSNM,RIBPTR,EIBPTR,TERMECB,STARTECB, RETCODE,REASCODE,GRPOVER,DECPPTR)

PL/I1 CALL DSNRLI(IDFYFN,SSNM,RIBPTR,EIBPTR,TERMECB,STARTECB, RETCODE,REASCODE,GRPOVER,DECPPTR);

Note:

1. For C, C++, and PL/I applications, you must include the appropriate compiler
directives, because DSNRLI is an assembler language program. These compiler
directives are described in the instructions for invoking RRSAF.

Internal processing for the IDENTIFY function

When you call the IDENTIFY function, DB2 performs the following steps:
1. DB2 determines whether the user address space is authorized to connect to

DB2. DB2 invokes the z/OS SAF and passes a primary authorization ID to SAF.
That authorization ID is the 7-byte user ID that is associated with the address
space, unless an authorized function has built an ACEE for the address space.
If an authorized function has built an ACEE, DB2 passes the 8-byte user ID
from the ACEE. SAF calls an external security product, such as RACF, to
determine if the task is authorized to use the following items:
v The DB2 resource class (CLASS=DSNR)
v The DB2 subsystem (SUBSYS=ssnm)
v Connection type RRSAF

2. If that check is successful, DB2 calls the DB2 connection exit routine to perform
additional verification and possibly change the authorization ID.

3. DB2 searches for a matching trusted context in the system cache and then the
catalog based on the following criteria:
v The primary authorization ID matches a trusted context SYSTEM AUTHID.
v The job or started task name matches the JOBNAME attribute that is defined

for the identified trusted context.

84 Application Programming and SQL Guide

If a trusted context is defined, DB2 checks if SECURITY LABEL is defined in
the trusted context. If SECURITY LABEL is defined, DB2 verifies the SECURITY
LABEL with RACF by using the RACROUTE VERIFY request. This security
label is used to verify multi-level security for SYSTEM AUTHID.If a matching
trusted context is defined, DB2 establishes the connection as trusted. Otherwise,
the connection is established without any additional privileges.

4. DB2 then sets the connection name to RRSAF and the connection type to
RRSAF.

Related tasks:
“Invoking the Resource Recovery Services attachment facility” on page 69

SWITCH TO function for RRSAF
The RRSAF SWITCH TO function directs RRSAF, SQL, or IFI requests to a
specified DB2 subsystem. Use the SWITCH TO function to establish connections to
multiple DB2 subsystems from a single task.

The SWITCH TO function is useful only after a successful IDENTIFY call. If you
have established a connection with one DB2 subsystem, you must issue a SWITCH
TO call before you make an IDENTIFY call to another DB2 subsystem. Otherwise,
DB2 returns return code X'200' and reason code X'00C12201'.

The first time that you make a SWITCH TO call to a new DB2 subsystem, DB2
returns return code 4 and reason code X'00C12205' as a warning to indicate that
the current task has not yet been identified to the new DB2 subsystem.

The following diagram shows the syntax for the SWITCH TO function.

DSNRLI SWITCH TO function

�� CALL DSNRLI (function,ssnm �

�
, retcode

, reascode
, groupoverride

) ��

Parameters point to the following areas:

function
An 18-byte area that contains SWITCH TO followed by nine blanks.

ssnm
A 4-byte DB2 subsystem name, or group attachment or subgroup attachment
name (if used in a data sharing group) to which the connection is made. If
ssnm is less than four characters long, pad it on the right with blanks to a
length of four characters.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify retcode, RRSAF places the
return code in register 15 and the reason code in register 0.

Chapter 2. Connecting to DB2 from your application program 85

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify reascode, RRSAF places the
reason code in register 0.

If you specify this parameter, you must also specify retcode.

groupoverride
An 8-byte area that the application provides. This parameter is optional. If you
do not want group attach to be attempted, specify 'NOGROUP'. This string
indicates that the subsystem name that is specified by ssnm is to be used as a
DB2 subsystem name, even if ssnm matches a group attachment or subgroup
attachment name. If groupoverride is not provided, ssnm is used as the group
attachment or subgroup attachment name if it matches a group attachment or
subgroup attachment name.

If you specify this parameter in any language except assembler, you must also
specify the retcode and reascode parameters. In assembler language, you can
omit the retcode and reascode parameters by specifying commas as
place-holders.

Recommendation: Avoid using the groupoverride parameter when possible,
because it limits the ability to do dynamic workload routing in a Parallel
Sysplex. However, you should use this parameter in a data sharing
environment when you want to connect to a specific member of a data sharing
group, and the subsystem name of that member is the same as the group
attachment or subgroup attachment name.

Examples

Examples of RRSAF SWITCH TO calls: The following table shows a SWITCH TO
call in each language.

Table 23. Examples of RRSAF SWITCH TO calls

Language Call example

Assembler CALL DSNRLI,(SWITCHFN,SSNM,RETCODE,REASCODE,GRPOVER)

C1 fnret=dsnrli(&switchfn[0], &ssnm[0], &retcode, &reascode,&grpover[0]);

COBOL CALL ’DSNRLI’ USING SWITCHFN RETCODE REASCODE GRPOVER.

Fortran CALL DSNRLI(SWITCHFN,RETCODE,REASCODE,GRPOVER)

PL/I1 CALL DSNRLI(SWITCHFN,RETCODE,REASCODE,GRPOVER);

1. For C, C++, and PL/I applications, you must include the appropriate compiler
directives, because DSNRLI is an assembler language program. These compiler
directives are described in the instructions for invoking RRSAF.

Example of using the SWITCH TO function to interact with multiple DB2
subsystems: The following example shows how you can use the SWITCH TO
function to interact with three DB2 subsystems.
RRSAF calls for subsystem db21:

IDENTIFY
SIGNON
CREATE THREAD

Execute SQL on subsystem db21
SWITCH TO db22
IF retcode = 4 AND reascode = ’00C12205’X THEN

DO;

86 Application Programming and SQL Guide

RRSAF calls on subsystem db22:
IDENTIFY
SIGNON
CREATE THREAD

END;
Execute SQL on subsystem db22
SWITCH TO db23
IF retcode = 4 AND reascode = ’00C12205’X THEN

DO;
RRSAF calls on subsystem db23:
IDENTIFY
SIGNON
CREATE THREAD

END;
Execute SQL on subsystem 23
SWITCH TO db21
Execute SQL on subsystem 21
SWITCH TO db22
Execute SQL on subsystem 22
SWITCH TO db21
Execute SQL on subsystem 21
SRRCMIT (to commit the UR)
SWITCH TO db23
Execute SQL on subsystem 23
SWITCH TO db22
Execute SQL on subsystem 22
SWITCH TO db21
Execute SQL on subsystem 21
SRRCMIT (to commit the UR)

Related tasks:
“Invoking the Resource Recovery Services attachment facility” on page 69

SIGNON function for RRSAF
The RRSAF SIGNON function establishes a primary authorization ID and,
optionally, one or more secondary authorization IDs for a connection.

Requirement: Your program does not need to be an authorized program to issue
the SIGNON call. For that reason, before you issue the SIGNON call, you must
issue the RACF external security interface macro RACROUTE REQUEST=VERIFY
to perform the following actions:
v Define and populate an ACEE to identify the user of the program.
v Associate the ACEE with the user's TCB.
v Verify that the user is defined to RACF and authorized to use the application.

Generally, you issue a SIGNON call after an IDENTIFY call and before a CREATE
THREAD call. You can also issue a SIGNON call if the application is at a point of
consistency, and one of the following conditions is true:
v The value of reuse in the CREATE THREAD call was RESET.
v The value of reuse in the CREATE THREAD call was INITIAL, no held cursors

are open, the package or plan is bound with KEEPDYNAMIC(NO), and all
special registers are at their initial state. If open held cursors exist or the package
or plan is bound with KEEPDYNAMIC(YES), you can issue a SIGNON call only
if the primary authorization ID has not changed.

After you issue a SIGNON call, subsequent SQL statements return an error
(SQLCODE -900) if the both of following conditions are true:
v The connection was established as trusted when it was initialized.
v The primary authorization ID that was used when you issued the SIGNON call

is not allowed to use the trusted connection.

Chapter 2. Connecting to DB2 from your application program 87

If a trusted context is defined, DB2 checks if SECURITY LABEL is defined in the
trusted context. If SECURITY LABEL is defined, DB2 verifies the security label
with RACF by using the RACROUTE VERIFY request. This security label is used
to verify multi-level security for SYSTEM AUTHID.

The following diagram shows the syntax for the SIGNON function.

DSNRLI SIGNON function

�� CALL DSNRLI (function, correlation-id, accounting-token, accounting-interval �

�
,retcode

,reascode
,user

,appl
,ws

,xid
,accounting-string

) ��

Parameters point to the following areas:

function
An 18-byte area that contains SIGNON followed by twelve blanks.

correlation-id
A 12-byte area in which you can put a DB2 correlation ID. The correlation ID is
displayed in DB2 accounting and statistics trace records. You can use the
correlation ID to correlate work units. This token appears in the output from
the DISPLAY THREAD command. If you do not want to specify a correlation
ID, fill the 12-byte area with blanks.

accounting-token
A 22-byte area in which you can put a value for a DB2 accounting token. This
value is displayed in DB2 accounting and statistics trace records in the
QWHCTOKN field, which is mapped by DSNDQWHC DSECT. Setting the
value of the accounting token sets the value of the CURRENT
CLIENT_ACCTNG special register. If accounting-token is less than 22 characters
long, you must pad it on the right with blanks to a length of 22 characters. If
you do not want to specify an accounting token, fill the 22-byte area with
blanks.

Alternatively, you change the value of the DB2 accounting token with RRSAF
functions AUTH SIGNON, CONTEXT SIGNON or SET_CLIENT_ID. You can
retrieve the DB2 accounting token with the CURRENT CLIENT_ACCTNG
special register only if the DDF accounting string is not set.

accounting-interval
A 6-byte area that specifies when DB2 writes an accounting record.

If you specify COMMIT in that area, DB2 writes an accounting record each
time that the application issues SRRCMIT without open held cursors. If the
accounting interval is COMMIT and an SRRCMIT is issued while a held cursor
is open, the accounting interval spans that commit and ends at the next valid
accounting interval end point (such as the next SRRCMIT that is issued
without open held cursors, application termination, or SIGNON with a new
authorization ID).

88 Application Programming and SQL Guide

If you specify any other value, DB2 writes an accounting record when the
application terminates or when you call the SIGNON function with a new
authorization ID.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify retcode, RRSAF places the
return code in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify reascode, RRSAF places the
reason code in register 0.

If you specify this parameter, you must also specify retcode.

user
A 16-byte area that contains the user ID of the client user. You can use this
parameter to provide the identity of the client user for accounting and
monitoring purposes. DB2 displays this user ID in the output from the
DISPLAY THREAD command and in DB2 accounting and statistics trace
records. Setting the user ID sets the value of the CURRENT CLIENT_USERID
special register. If user is less than 16 characters long, you must pad it on the
right with blanks to a length of 16 characters.

This parameter is optional. If you specify user, you must also specify retcode
and reascode. If you do not specify user, no user ID is associated with the
connection.

appl
A 32-byte area that contains the application or transaction name of the user's
application. You can use this parameter to provide the identity of the client
user for accounting and monitoring purposes. DB2 displays the application
name in the output from the DISPLAY THREAD command and in DB2
accounting and statistics trace records. Setting the application name sets the
value of the CURRENT CLIENT_APPLNAME special register. If appl is less
than 32 characters long, you must pad it on the right with blanks to a length of
32 characters.

This parameter is optional. If you specify appl, you must also specify retcode,
reascode, and user. If you do not specify appl, no application or transaction is
associated with the connection.

ws An 18-byte area that contains the workstation name of the client user. You can
use this parameter to provide the identity of the client user for accounting and
monitoring purposes. DB2 displays the workstation name in the output from
the DISPLAY THREAD command and in DB2 accounting and statistics trace
records. Setting the workstation name sets the value of the CURRENT
CLIENT_WRKSTNNAME special register. If ws is less than 18 characters long,
you must pad it on the right with blanks to a length of 18 characters.

This field is optional. If you specify ws, you must also specify retcode, reascode,
user, and appl. If you do not specify ws, no workstation name is associated with
the connection.

xid
A 4-byte area that indicates whether the thread is part of a global transaction.
A DB2 thread that is part of a global transaction can share locks with other
DB2 threads that are part of the same global transaction and can access and

Chapter 2. Connecting to DB2 from your application program 89

modify the same data. A global transaction exists until one of the threads that
is part of the global transaction is committed or rolled back.

You can specify one of the following values for xid:

0 Indicates that the thread is not part of a global transaction. The value 0
must be specified as a binary integer.

1 Indicates that the thread is part of a global transaction and that DB2
should retrieve the global transaction ID from RRS. If a global
transaction ID already exists for the task, the thread becomes part of
the associated global transaction. Otherwise, RRS generates a new
global transaction ID. The value 1 must be specified as a binary
integer. Alternatively, if you want DB2 to return the generated global
transaction ID to the caller, specify an address instead of 1.

address The 4-byte address of an area in which you enter a global transaction
ID for the thread. If the global transaction ID already exists, the thread
becomes part of the associated global transaction. Otherwise, RRS
creates a new global transaction with the ID that you specify.

Alternatively, if you want DB2 to generate and return a global
transaction ID, pass the address of a null global transaction ID by
setting the format ID field of the global transaction ID to binary -1
('FFFFFFF'X). DB2 then replaces the contents of the area with the
generated transaction ID. The area at the specified address must be in
writable storage and have a length of at least 140 bytes to
accommodate the largest possible transaction ID value.

The following table shows the format of a global transaction ID.

Table 24. Format of a user-created global transaction ID

Field description Length in bytes Data type

Format ID 4 Integer

Global transaction ID length
(1 - 64)

4 Integer

Branch qualifier length (1 -
64)

4 Integer

Global transaction ID 1 to 64 Character

Branch qualifier 0 to 64 Character

accounting-string
A one-byte length field and a 255-byte area in which you can put a value for a
DB2 accounting string. This value is placed in the DDF accounting trace
records in the QMDASQLI field, which is mapped by DSNDQMDA DSECT. If
accounting-string is less than 255 characters, you must pad it on the right with
zeros to a length of 255 bytes. The entire 256 bytes is mapped by DSNDQMDA
DSECT.

This parameter is optional. If you specify accounting-string, you must also
specify retcode, reascode, user, appl and xid. If you do not specify
accounting-string, no accounting string is associated with the connection.

You can also change the value of the accounting string with RRSAF functions
AUTH SIGNON, CONTEXT SIGNON, or SET_CLIENT_ID.

You can retrieve the DDF suffix portion of the accounting string with the
CURRENT CLIENT_ACCTNG special register. The suffix portion of
accounting-string can contain a maximum of 200 characters. The QMDASFLN

90 Application Programming and SQL Guide

field contains the accounting suffix length, and the QMDASUFX field contains
the accounting suffix value. If the DDF accounting string is set, you cannot
query the accounting token with the CURRENT CLIENT_ACCTNG special
register.

Example of RRSAF SIGNON calls

The following table shows a SIGNON call in each language.

Table 25. Examples of RRSAF SIGNON calls

Language Call example

assembler CALL DSNRLI,(SGNONFN,CORRID,ACCTTKN,ACCTINT, RETCODE,REASCODE,USERID,APPLNAME,WSNAME,XIDPTR)

C1 fnret=dsnrli(&sgnonfn[0], &corrid[0], &accttkn[0], &acctint[0], &retcode, &reascode,
&userid[0], &applname[0], &wsname[0], &xidptr);

COBOL CALL ’DSNRLI’ USING SGNONFN CORRID ACCTTKN ACCTINT RETCODE REASCODE USERID APPLNAME WSNAME
XIDPTR.

Fortran CALL DSNRLI(SGNONFN,CORRID,ACCTTKN,ACCTINT, RETCODE,REASCODE,USERID,APPLNAME,WSNAME,XIDPTR)

PL/I1 CALL DSNRLI(SGNONFN,CORRID,ACCTTKN,ACCTINT, RETCODE,REASCODE,USERID,APPLNAME,WSNAME,XIDPTR);

Note:

1. For C, C++, and PL/I applications, you must include the appropriate compiler
directives, because DSNRLI is an assembler language program. These compiler
directives are described in the instructions for invoking RRSAF.

Related tasks:
“Invoking the Resource Recovery Services attachment facility” on page 69
Related reference:

RACROUTE REQUEST=VERIFY: Identify and verify a RACF-defined user
(Security Server RACROUTE Macro Reference)

AUTH SIGNON function for RRSAF
The RRSAF AUTH SIGNON function enables an APF authorization program to
pass an ID to DB2.

An APF-authorized program can pass to DB2 either a primary authorization ID
and, optionally, one or more secondary authorization IDs, or an ACEE that is used
for authorization checking. These IDs are then associated with the connection.

Generally, you issue an AUTH SIGNON call after an IDENTIFY call and before a
CREATE THREAD call. You can also issue an AUTH SIGNON call if the
application is at a point of consistency, and one of the following conditions is true:
v The value of reuse in the CREATE THREAD call was RESET.
v The value of reuse in the CREATE THREAD call was INITIAL, no held cursors

are open, the package or plan is bound with KEEPDYNAMIC(NO), and all
special registers are at their initial state. If open held cursors exist or the package
or plan is bound with KEEPDYNAMIC(YES), a SIGNON call is permitted only if
the primary authorization ID has not changed.

The following diagram shows the syntax for the AUTH SIGNON function.

Chapter 2. Connecting to DB2 from your application program 91

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/FRAMESET/ICHZC6A0/3.60
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/FRAMESET/ICHZC6A0/3.60

DSNRLI AUTH SIGNON function

�� CALL DSNRLI (function, correlation-id, accounting-token, �

� accounting-interval, primary-authid, ACEE-address, secondary-authid �

�
,retcode

,reascode
,user

,appl
,ws

,xid
,accounting-string

) ��

Parameters point to the following areas:

function
An 18-byte area that contains AUTH SIGNON followed by seven blanks.

correlation-id
A 12-byte area in which you can put a DB2 correlation ID. The correlation ID is
displayed in DB2 accounting and statistics trace records. You can use the
correlation ID to correlate work units. This token appears in output from the
DISPLAY THREAD command. If you do not want to specify a correlation ID,
fill the 12-byte area with blanks.

accounting-token
A 22-byte area in which you can put a value for a DB2 accounting token. This
value is displayed in DB2 accounting and statistics trace records in the
QWHCTOKN field, which is mapped by DSNDQWHC DSECT. Setting the
value of the accounting token sets the value of the CURRENT
CLIENT_ACCTNG special register. If accounting-token is less than 22 characters
long, you must pad it on the right with blanks to a length of 22 characters. If
you do not want to specify an accounting token, fill the 22-byte area with
blanks.

You can also change the value of the DB2 accounting token with RRSAF
functions SIGNON, CONTEXT SIGNON or SET_CLIENT_ID. You can retrieve
the DB2 accounting token with the CURRENT CLIENT_ACCTNG special
register only if the DDF accounting string is not set.

accounting-interval
A 6-byte area with that specifies when DB2 writes an accounting record.

If you specify COMMIT in that area, DB2 writes an accounting record each
time that the application issues SRRCMIT without open held cursors. If the
accounting interval is COMMIT and an SRRCMIT is issued while a held cursor
is open, the accounting interval spans that commit and ends at the next valid
accounting interval end point (such as the next SRRCMIT that is issued
without open held cursors, application termination, or SIGNON with a new
authorization ID).

If you specify any other value, DB2 writes an accounting record when the
application terminates or when you call the SIGNON function with a new
authorization ID.

primary-authid
An 8-byte area in which you can put a primary authorization ID. If you are not
passing the authorization ID to DB2 explicitly, put X'00' or a blank in the first
byte of the area.

92 Application Programming and SQL Guide

ACEE-address
The 4-byte address of an ACEE that you pass to DB2. If you do not want to
provide an ACEE, specify 0 in this field.

secondary-authid
An 8-byte area in which you can put a secondary authorization ID. If you do
not pass the authorization ID to DB2 explicitly, put X'00' or a blank in the first
byte of the area. If you enter a secondary authorization ID, you must also enter
a primary authorization ID.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify retcode, RRSAF places the
return code in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify reascode, RRSAF places the
reason code in register 0.

If you specify reascoder, you must also specify retcode.

user
A 16-byte area that contains the user ID of the client user. You can use this
parameter to provide the identity of the client user for accounting and
monitoring purposes. DB2 displays this user ID in the output from the
DISPLAY THREAD command and in DB2 accounting and statistics trace
records. Setting the user ID sets the value of the CURRENT CLIENT_USERID
special register. If user is less than 16 characters long, you must pad it on the
right with blanks to a length of 16 characters.

This parameter is optional. If you specify user, you must also specify retcode
and reascode. If you do not specify this parameter, no user ID is associated with
the connection.

appl
A 32-byte area that contains the application or transaction name of the user's
application. You can use this parameter to provide the identity of the client
user for accounting and monitoring purposes. DB2 displays the application
name in the output from the DISPLAY THREAD command and in DB2
accounting and statistics trace records. Setting the application name sets the
value of the CURRENT CLIENT_APPLNAME special register. If appl is less
than 32 characters long, you must pad it on the right with blanks to a length of
32 characters.

This parameter is optional. If you specify appl, you must also specify retcode,
reascode, and user. If you do not specify this parameter, no application or
transaction is associated with the connection.

ws An 18-byte area that contains the workstation name of the client user. You can
use this parameter to provide the identity of the client user for accounting and
monitoring purposes. DB2 displays the workstation name in the output from
the DISPLAY THREAD command and in DB2 accounting and statistics trace
records. Setting the workstation name sets the value of the CURRENT
CLIENT_WRKSTNNAME special register. If ws is less than 18 characters long,
you must pad it on the right with blanks to a length of 18 characters.

This parameter is optional. If you specify ws, you must also specify retcode,
reascode, user, and appl. If you do not specify this parameter, no workstation
name is associated with the connection.

Chapter 2. Connecting to DB2 from your application program 93

You can also change the value of the workstation name with RRSAF functions
SIGNON, CONTEXT SIGNON or SET_CLIENT_ID. You can retrieve the
workstation name with the CURRENT CLIENT_WRKSTNNAME special
register.

xid
A 4-byte area that indicates whether the thread is part of a global transaction.
A DB2 thread that is part of a global transaction can share locks with other
DB2 threads that are part of the same global transaction and can access and
modify the same data. A global transaction exists until one of the threads that
is part of the global transaction is committed or rolled back.

You can specify one of the following values for xid:

0 Indicates that the thread is not part of a global transaction. The value 0
must be specified as a binary integer.

1 Indicates that the thread is part of a global transaction and that DB2
should retrieve the global transaction ID from RRS. If a global
transaction ID already exists for the task, the thread becomes part of
the associated global transaction. Otherwise, RRS generates a new
global transaction ID. The value 1 must be specified as a binary
integer. Alternatively, if you want DB2 to return the generated global
transaction ID to the caller, specify an address instead of 1.

address The 4-byte address of an area into which you enter a global transaction
ID for the thread. If the global transaction ID already exists, the thread
becomes part of the associated global transaction. Otherwise, RRS
creates a new global transaction with the ID that you specify.

Alternatively, if you want DB2 to generate and return a global
transaction ID, pass the address of a null global transaction ID by
setting the format ID field of the global transaction ID to binary -1
('FFFFFFF'X). DB2 then replaces the contents of the area with the
generated transaction ID. The area at the specified address must be in
writable storage and have a length of at least 140 bytes to
accommodate the largest possible transaction ID value.

The format of a global transaction ID is shown in the description of the
RRSAF SIGNON function.

accounting-string
A one-byte length field and a 255-byte area in which you can put a value for a
DB2 accounting string. This value is placed in the DDF accounting trace
records in the QMDASQLI field, which is mapped by DSNDQMDA DSECT. If
accounting-string is less than 255 characters, you must pad it on the right with
zeros to a length of 255 bytes. The entire 256 bytes is mapped by DSNDQMDA
DSECT.

This parameter is optional. If you specify this accounting-string, you must also
specify retcode, reascode, user, appl and xid. If you do not specify this parameter,
no accounting string is associated with the connection.

You can also change the value of the accounting string with RRSAF functions
AUTH SIGNON, CONTEXT SIGNON, or SET_CLIENT_ID.

You can retrieve the DDF suffix portion of the accounting string with the
CURRENT CLIENT_ACCTNG special register. The suffix portion of
accounting-string can contain a maximum of 200 characters. The QMDASFLN
field contains the accounting suffix length, and the QMDASUFX field contains

94 Application Programming and SQL Guide

the accounting suffix value. If the DDF accounting string is set, you cannot
query the accounting token with the CURRENT CLIENT_ACCTNG special
register.

Example of RRSAF AUTH SIGNON calls

The following table shows a AUTH SIGNON call in each language.

Table 26. Examples of RRSAF AUTH SIGNON calls

Language Call example

Assembler CALL DSNRLI,(ASGNONFN,CORRID,ACCTTKN,ACCTINT,PAUTHID,ACEEPTR, SAUTHID,RETCODE,REASCODE,
USERID,APPLNAME,WSNAME,XIDPTR)

C1 fnret=dsnrli(&asgnonfn[0], &corrid[0], &accttkn[0], &acctint[0], &pauthid[0], &aceeptr,
&sauthid[0], &retcode, &reascode, &userid[0], &applname[0], &wsname[0], &xidptr);

COBOL CALL ’DSNRLI’ USING ASGNONFN CORRID ACCTTKN ACCTINT PAUTHID ACEEPTR SAUTHID RETCODE REASCODE
USERID APPLNAME WSNAME XIDPTR.

Fortran CALL DSNRLI(ASGNONFN,CORRID,ACCTTKN,ACCTINT,PAUTHID,ACEEPTR, SAUTHID,RETCODE,REASCODE,USERID,
APPLNAME,WSNAME,XIDPTR)

PL/I1 CALL DSNRLI(ASGNONFN,CORRID,ACCTTKN,ACCTINT,PAUTHID,ACEEPTR, SAUTHID,RETCODE,REASCODE,USERID,
APPLNAME,WSNAME,XIDPTR);

Note:

1. For C, C++, and PL/I applications, you must include the appropriate compiler
directives, because DSNRLI is an assembler language program. These compiler
directives are described in the instructions for invoking RRSAF.

Related tasks:
“Invoking the Resource Recovery Services attachment facility” on page 69
Related reference:
“SIGNON function for RRSAF” on page 87

CONTEXT SIGNON function for RRSAF
The RRSAF CONTEXT SIGNON function establishes a primary authorization ID
and one or more secondary authorization IDs for a connection.

Requirement: Before you invoke CONTEXT SIGNON, you must have called the
RRS context services function Set Context Data (CTXSDTA) to store a primary
authorization ID and optionally, the address of an ACEE in the context data whose
context key you supply as input to CONTEXT SIGNON.

The CONTEXT SIGNON function uses the context key to retrieve the primary
authorization ID from data that is associated with the current RRS context. DB2
uses the RRS context services function Retrieve Context Data (CTXRDTA) to
retrieve context data that contains the authorization ID and ACEE address. The
context data must have the following format:

Version number
A 4-byte area that contains the version number of the context data. Set this
area to 1.

Server product name
An 8-byte area that contains the name of the server product that set the
context data.

ALET A 4-byte area that can contain an ALET value. DB2 does not reference this
area.

Chapter 2. Connecting to DB2 from your application program 95

ACEE address
A 4-byte area that contains an ACEE address or 0 if an ACEE is not
provided. DB2 requires that the ACEE is in the home address space of the
task.

If you pass an ACEE address, the CONTEXT SIGNON function uses the
value in ACEEGRPN as the secondary authorization ID if the length of the
group name (ACEEGRPL) is not 0.

primary-authid
An 8-byte area that contains the primary authorization ID to be used. If the
authorization ID is less than 8 bytes in length, pad it on the right with
blank characters to a length of 8 bytes.

If the new primary authorization ID is not different than the current
primary authorization ID (which was established when the IDENTIFY
function was invoked or at a previous SIGNON invocation), DB2 invokes
only the signon exit. If the value has changed, DB2 establishes a new
primary authorization ID and new SQL authorization ID and then invokes
the signon exit.

Generally, you issue a CONTEXT SIGNON call after an IDENTIFY call and before
a CREATE THREAD call. You can also issue a CONTEXT SIGNON call if the
application is at a point of consistency, and one of the following conditions is true:
v The value of reuse in the CREATE THREAD call was RESET.
v The value of reuse in the CREATE THREAD call was INITIAL, no held cursors

are open, the package or plan is bound with KEEPDYNAMIC(NO), and all
special registers are at their initial state. If open held cursors exist or the package
or plan is bound with KEEPDYNAMIC(YES), a SIGNON call is permitted only if
the primary authorization ID has not changed.

The following diagram shows the syntax for the CONTEXT SIGNON function.

DSNRLI CONTEXT SIGNON function

�� CALL DSNRLI (function, correlation-id, accounting-token, accounting-interval, context-key �

�
,retcode

,reascode
,user

,appl
,ws

,xid
,accounting-string

) ��

Parameters point to the following areas:

function
An 18-byte area that contains CONTEXT SIGNON followed by four blanks.

correlation-id
A 12-byte area in which you can put a DB2 correlation ID. The correlation ID is
displayed in DB2 accounting and statistics trace records. You can use the
correlation ID to correlate work units. This token appears in output from the
DISPLAY THREAD command. If you do not want to specify a correlation ID,
fill the 12-byte area with blanks.

96 Application Programming and SQL Guide

accounting-token
A 22-byte area in which you can put a value for a DB2 accounting token. This
value is displayed in DB2 accounting and statistics trace records in the
QWHCTOKN field, which is mapped by DSNDQWHC DSECT. Setting the
value of the accounting token sets the value of the CURRENT
CLIENT_ACCTNG special register. If accounting-token is less than 22 characters
long, you must pad it on the right with blanks to a length of 22 characters. If
you do not want to specify an accounting token, fill the 22-byte area with
blanks.

You can also change the value of the DB2 accounting token with RRSAF
functions SIGNON, AUTH SIGNON, or SET_CLIENT_ID. You can retrieve the
DB2 accounting token with the CURRENT CLIENT_ACCTNG special register
only if the DDF accounting string is not set.

accounting-interval
A 6-byte area that specifies when DB2 writes an accounting record.

If you specify COMMIT in that area, DB2 writes an accounting record each
time that the application issues SRRCMIT without open held cursors. If the
accounting interval is COMMIT and an SRRCMIT is issued while a held cursor
is open, the accounting interval spans that commit and ends at the next valid
accounting interval end point (such as the next SRRCMIT that is issued
without open held cursors, application termination, or SIGNON with a new
authorization ID).

If you specify any other value, DB2 writes an accounting record when the
application terminates or when you call the SIGNON function with a new
authorization ID.

context-key
A 32-byte area in which you put the context key that you specified when you
called the RRS Set Context Data (CTXSDTA) service to save the primary
authorization ID and an optional ACEE address.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify retcode, RRSAF places the
return code in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify reascode, RRSAF places the
reason code in register 0.

If you specify reascode, you must also specify retcode.

user
A 16-byte area that contains the user ID of the client user. You can use this
parameter to provide the identity of the client user for accounting and
monitoring purposes. DB2 displays this user ID in the output from the
DISPLAY THREAD command and in DB2 accounting and statistics trace
records. Setting the user ID sets the value of the CURRENT CLIENT_USERID
special register. If user is less than 16 characters long, you must pad it on the
right with blanks to a length of 16 characters.

This parameter is optional. If you specify user, you must also specify retcode
and reascode. If you do not specify user, no user ID is associated with the
connection.

Chapter 2. Connecting to DB2 from your application program 97

appl
A 32-byte area that contains the application or transaction name of the user's
application. You can use this parameter to provide the identity of the client
user for accounting and monitoring purposes. DB2 displays the application
name in the output from the DISPLAY THREAD command and in DB2
accounting and statistics trace records. Setting the application name sets the
value of the CURRENT CLIENT_APPLNAME special register. If appl is less
than 32 characters long, you must pad it on the right with blanks to a length of
32 characters.

This parameter is optional. If you specify appl, you must also specify retcode,
reascode, and user. If you do not specify appl, no application or transaction is
associated with the connection.

ws An 18-byte area that contains the workstation name of the client user. You can
use this parameter to provide the identity of the client user for accounting and
monitoring purposes. DB2 displays the workstation name in the output from
the DISPLAY THREAD command and in DB2 accounting and statistics trace
records. Setting the workstation name sets the value of the CURRENT
CLIENT_WRKSTNNAME special register. If ws is less than 18 characters long,
you must pad it on the right with blanks to a length of 18 characters.

This parameter is optional. If you specify ws, you must also specify retcode,
reascode, user, and appl. If you do not specify ws, no workstation name is
associated with the connection.

You can also change the value of the workstation name with the RRSAF
functions SIGNON, AUTH SIGNON, or SET_CLIENT_ID. You can retrieve the
workstation name with the CLIENT_WRKSTNNAME special register.

xid
A 4-byte area that indicates whether the thread is part of a global transaction.
A DB2 thread that is part of a global transaction can share locks with other
DB2 threads that are part of the same global transaction and can access and
modify the same data. A global transaction exists until one of the threads that
is part of the global transaction is committed or rolled back.

You can specify one of the following values for xid:

0 Indicates that the thread is not part of a global transaction. The value 0
must be specified as a binary integer.

1 Indicates that the thread is part of a global transaction and that DB2
should retrieve the global transaction ID from RRS. If a global
transaction ID already exists for the task, the thread becomes part of
the associated global transaction. Otherwise, RRS generates a new
global transaction ID. The value 1 must be specified as a binary
integer. Alternatively, if you want DB2 to return the generated global
transaction ID to the caller, specify an address instead of 1.

address The 4-byte address of an area into which you enter a global transaction
ID for the thread. If the global transaction ID already exists, the thread
becomes part of the associated global transaction. Otherwise, RRS
creates a new global transaction with the ID that you specify.

Alternatively, if you want DB2 to generate and return a global
transaction ID, pass the address of a null global transaction ID by
setting the format ID field of the global transaction ID to binary -1
('FFFFFFF'X). DB2 then replaces the contents of the area with the
generated transaction ID. The area at the specified address must be in

98 Application Programming and SQL Guide

writable storage and have a length of at least 140 bytes to
accommodate the largest possible transaction ID value.

The format of a global transaction ID is shown in the description of the
RRSAF SIGNON function.

accounting-string
A one-byte length field and a 255-byte area in which you can put a value for a
DB2 accounting string. This value is placed in the DDF accounting trace
records in the QMDASQLI field, which is mapped by DSNDQMDA DSECT. If
accounting-string is less than 255 characters, you must pad it on the right with
zeros to a length of 255 bytes. The entire 256 bytes is mapped by DSNDQMDA
DSECT.

This parameter is optional. If you specify this accounting-string, you must also
specify retcode, reascode, user, appl and xid. If you do not specify this parameter,
no accounting string is associated with the connection.

You can also change the value of the accounting string with RRSAF functions
AUTH SIGNON, CONTEXT SIGNON, or SET_CLIENT_ID.

You can retrieve the DDF suffix portion of the accounting string with the
CURRENT CLIENT_ACCTNG special register. The suffix portion of
accounting-string can contain a maximum of 200 characters. The QMDASFLN
field contains the accounting suffix length, and the QMDASUFX field contains
the accounting suffix value. If the DDF accounting string is set, you cannot
query the accounting token with the CURRENT CLIENT_ACCTNG special
register.

Example of RRSAF CONTEXT SIGNON calls

The following table shows a CONTEXT SIGNON call in each language.

Table 27. Examples of RRSAF CONTEXT SIGNON calls

Language Call example

Assembler CALL DSNRLI,(CSGNONFN,CORRID,ACCTTKN,ACCTINT,CTXTKEY, RETCODE,REASCODE,USERID,APPLNAME,
WSNAME,XIDPTR)

C1 fnret=dsnrli(&csgnonfn[0], &corrid[0], &accttkn[0], &acctint[0], &ctxtkey[0], &retcode,
&reascode, &userid[0], &applname[0], &wsname[0], &xidptr);

COBOL CALL ’DSNRLI’ USING CSGNONFN CORRID ACCTTKN ACCTINT CTXTKEY RETCODE REASCODE USERID APPLNAME
WSNAME XIDPTR.

Fortran CALL DSNRLI(CSGNONFN,CORRID,ACCTTKN,ACCTINT,CTXTKEY, RETCODE,REASCODE, USERID,APPLNAME,
WSNAME,XIDPTR)

PL/I1 CALL DSNRLI(CSGNONFN,CORRID,ACCTTKN,ACCTINT,CTXTKEY, RETCODE,REASCODE,USERID,APPLNAME,
WSNAME,XIDPTR);

Note:

1. For C, C++, and PL/I applications, you must include the appropriate compiler
directives, because DSNRLI is an assembler language program. These compiler
directives are described in the instructions for invoking RRSAF.

Chapter 2. Connecting to DB2 from your application program 99

Related tasks:
“Invoking the Resource Recovery Services attachment facility” on page 69
Related reference:
“SIGNON function for RRSAF” on page 87

SET_ID function for RRSAF
The RRSAF SET_ID function sets a new value for the client program ID that can be
used to identify the user. The function then passes this information to DB2 when
the next SQL request is processed.

The following diagram shows the syntax of the SET_ID function.

DSNRLI SET_ID function

�� CALL DSNRLI (function, program-id)
, retcode

, reascode

��

Parameters point to the following areas:

function
An 18-byte area that contains SET_ID followed by 12 blanks.

program-id
An 80-byte area that contains the caller-provided string to be passed to DB2. If
program-id is less than 80 characters, you must pad it with blanks on the right
to a length of 80 characters.

DB2 places the contents of program-id into IFCID 316 records, along with other
statistics, so that you can identify which program is associated with a
particular SQL statement.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify retcode RRSAF places the
return code in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify reascode, RRSAF places the
reason code in register 0.

If you specify reascode, you must also specify retcode.

Example of RRSAF SET_ID calls

The following table shows a SET_ID call in each language.

Table 28. Examples of RRSAF SET_ID calls

Language Call example

Assembler CALL DSNRLI,(SETIDFN,PROGID,RETCODE,REASCODE)

C1 fnret=dsnrli(&setidfn[0], &progid[0], &retcode, &reascode);

100 Application Programming and SQL Guide

Table 28. Examples of RRSAF SET_ID calls (continued)

Language Call example

COBOL CALL ’DSNRLI’ USING SETIDFN PROGID RETCODE REASCODE.

Fortran CALL DSNRLI(SETIDFN,PROGID,RETCODE,REASCODE)

PL/I1 CALL DSNRLI(SETIDFN,PROGID,RETCODE,REASCODE);

Note:

1. For C, C++, and PL/I applications, you must include the appropriate compiler
directives, because DSNRLI is an assembler language program. These compiler
directives are described in the instructions for invoking RRSAF.

Related tasks:
“Invoking the Resource Recovery Services attachment facility” on page 69

SET_CLIENT_ID function for RRSAF
The RRSAF SET_CLIENT_ID function sets new values for the client user ID, the
application program name, the workstation name, the accounting token, and the
DDF client accounting string. The function then passes this information to DB2
when the next SQL request is processed.

These values can be used to identify the end user. The calling program defines the
contents of these parameters. DB2 places the parameter values in the output from
the DISPLAY THREAD command and in DB2 accounting and statistics trace
records.

The following diagram shows the syntax of the SET_CLIENT_ID function.

DSNRLI SET_CLIENT_ID function

�� CALL DSNRLI (function , accounting-token , user , appl , ws ,
0 0 0 0

�

� retcode , reascode , accounting-string , corr-token ,)
0 0 0 0 long-name

��

Parameters point to the following areas:

function
An 18-byte area that contains SET_CLIENT_ID followed by 5 blanks.

accounting-token
A 22-byte or 255-byte area in which you can put a value for a DB2 accounting
token. This value is placed in the DB2 accounting and statistics trace records in
the QWHCTOKN field, which is mapped by DSNDQWHC DSECT. If
accounting-token is less than 22 characters long, you must pad it on the right
with blanks to a length of 22 characters.

You can omit this parameter by specifying a value of 0 in the parameter list.

If the long-name parameter is specified, the maximum length of the
accounting-token parameter is 255 bytes. If accounting-token is less than 255
characters long, you must pad it on the right with blanks to a length of 255
characters. However, DB2 accepts only the first 22 bytes.

Chapter 2. Connecting to DB2 from your application program 101

|

|

|||
|

|
|||

|
||

|

|
|
|
|

Alternatively, you can change the value of the DB2 accounting token with the
RRSAF functions SIGNON, AUTH SIGNON, or CONTEXT SIGNON. You can
retrieve the DB2 accounting token with the CURRENT CLIENT_ACCTNG
special register only if the DDF accounting string is not set.

user
A 16-byte or 128-byte area that contains the user ID of the client end user. You
can use this parameter to provide the identity of the client end user for
accounting and monitoring purposes. DB2 places this user ID in the output
from the DISPLAY THREAD command and in DB2 accounting and statistics
trace records. If user is less than 16 characters long, you must pad it on the
right with blanks to a length of 16 characters.

You can omit this parameter by specifying a value of 0 in the parameter list.

If the long-name parameter is specified, the maximum length of the user
parameter is 128 bytes. If user is less than 128 characters long, you must pad it
on the right with blanks to a length of 128 characters.

You can also change the value of the client user ID with the RRSAF functions
SIGNON, AUTH SIGNON, or CONTEXT SIGNON. You can retrieve the client
user ID with the CLIENT_USERID special register.

appl
An 32-byte or 255-byte area that contains the application or transaction name
of the end user's application. You can use this parameter to provide the
identity of the client end user for accounting and monitoring purposes. DB2
places the application name in the output from the DISPLAY THREAD
command and in DB2 accounting and statistics trace records. If appl is less than
32 characters, you must pad it on the right with blanks to a length of 32
characters.

You can omit this parameter by specifying a value of 0 in the parameter list.

If the long-name parameter is specified, the maximum length of the appl
parameter is 255 bytes. If appl is less than 255 characters long, you must pad it
on the right with blanks to a length of 255 characters.

You can also change the value of the application name with the RRSAF
functions SIGNON, AUTH SIGNON, or CONTEXT SIGNON. You can retrieve
the application name with the CLIENT_APPLNAME special register.

ws An 18-byte or 255-byte area that contains the workstation name of the client
end user. You can use this parameter to provide the identity of the client end
user for accounting and monitoring purposes. DB2 places this workstation
name in the output from the DISPLAY THREAD command and in DB2
accounting and statistics trace records. If ws is less than 18 characters, you
must pad it on the right with blanks to a length of 18 characters.

You can omit this parameter by specifying a value of 0 in the parameter list.

If the long-name parameter is specified, the maximum length of the ws
parameter is 255 bytes. If ws is less than 255 characters long, you must pad it
on the right with blanks to a length of 255 characters.

You can also change the value of the workstation name with the RRSAF
functions SIGNON, AUTH SIGNON, or CONTEXT SIGNON. You can retrieve
the workstation name with the CLIENT_WRKSTNNAME special register.

retcode
A 4-byte area in which RRSAF places the return code.

You can omit this parameter by specifying a value of 0 in the parameter list.

102 Application Programming and SQL Guide

|

|
|
|

|

|
|
|

|

|
|
|

This parameter is optional. If you do not specify retcode, RRSAF places the
return code in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

You can omit this parameter by specifying a value of 0 in the parameter list.

This parameter is optional. If you do not specify reascode, RRSAF places the
reason code in register 0.

If you specify reascode, you must also specify retcode.

accounting-string
A one-byte length field and a 255-byte area in which you can put a value for a
DB2 accounting string. This value is placed in the DDF accounting trace
records in the QMDASUFX field, which is mapped by DSNDQMDA DSECT. If
accounting-string is less than 255 characters, you must pad it on the right with
zeros to a length of 255 bytes. The entire 256 bytes is mapped by DSNDQMDA
DSECT.

You can omit this parameter by specifying a value of 0 in the parameter list.

This parameter is optional. If you specify this accounting-string, you must also
specify retcode, reascode, user, and appl. If you do not specify this parameter, no
accounting string is associated with the connection.

You can also change the value of the accounting string with RRSAF functions
AUTH SIGNON, CONTEXT SIGNON, or SET_CLIENT_ID.

You can retrieve the DDF suffix portion of the accounting string with the
CURRENT CLIENT_ACCTNG special register. The suffix portion of
accounting-string can contain a maximum of 200 characters. The QMDASFLN
field contains the accounting suffix length, and the QMDASUFX field contains
the accounting suffix value. If the DDF accounting string is set, you cannot
query the accounting token with the CURRENT CLIENT_ACCTNG special
register.

corr-token
An 255-byte area where you specify a client correlation token. You can specify
a unique value to correlate your business process within DB2 and your entire
business enterprise. The value of corr-token is displayed by the DISPLAY
THREAD DETAIL command. The CURRENT CLIENT_CORR_TOKEN special
register contains the client correlation token. If corr-token is less than 255
characters, you must pad it on the right with blanks to a length of 255 bytes.

You can omit this parameter by specifying a value of 0 in the parameter list. If
you specify corr-token you must also specify long-name.

You can also change the value of the client correlation token with the RRSAF
SIGNON function.

long-name
An 8-byte area that contains the value LONGNAME.

This optional parameter is used to indicate to the RRSAF function that the
input parameters accounting-token,user, appl, ws, accounting-string, and corr-token
can accept longer lengths. You cannot selectively associate the long-name
parameter with any individual parameter.

Chapter 2. Connecting to DB2 from your application program 103

|
|
|
|
|
|
|

|
|

|
|

|
|

|
|
|
|

Example of RRSAF SET_CLIENT_ID calls

The following table shows a SET_CLIENT_ID call in each language.

Table 29. Examples of RRSAF SET_CLIENT_ID calls

Language Call example

Assembler CALL DSNRLI,(SECLIDFN,ACCT,USER,APPL,WS,RETCODE,REASCODE)

C1 fnret=dsnrli(&seclidfn[0], &acct[0], &user[0], &appl[0], &ws[0], &retcode, &reascode);

COBOL CALL ’DSNRLI’ USING SECLIDFN ACCT USER APPL WS RETCODE REASCODE.

Fortran CALL DSNRLI(SECLIDFN,ACCT,USER,APPL,WS,RETCODE,REASCODE)

PL/I1 CALL DSNRLI(SECLIDFN,ACCT,USER,APPL,WS,RETCODE,REASCODE);

Note:

1. For C, C++, and PL/I applications, you must include the appropriate compiler
directives, because DSNRLI is an assembler language program. These compiler
directives are described in the instructions for invoking RRSAF.

Related tasks:
“Invoking the Resource Recovery Services attachment facility” on page 69

SET_REPLICATION function for RRSAF
The RRSAF SET_REPLICATION function enables an APF authorized program to
identify to DB2 as a replication program.

Calling the SET_REPLICATION function is optional. If you do not call it, DB2
treats the application normally. The SET_REPLICATION function allows the
application to perform insert, update, and delete operations then the tablespace or
database is started access RREPL.

The following diagram shows the syntax for the SET REPLICATION function.

DSNRLI SET_REPLICATION function

�� CALL DSNRLI (function ,
, retcode

, reascode

) ��

Parameters point to the following areas:

function
An 18-byte area that contains SET_REPLICATION.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify retcode, RRSAF places the
return code in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places a reason code.

104 Application Programming and SQL Guide

This parameter is optional. If you do not specify reascode, RRSAF places the
reason code in register 0.

If you specify reascode, you must also specify retcode.
Related tasks:
“Invoking the Resource Recovery Services attachment facility” on page 69

CREATE THREAD function for RRSAF
The RRSAF CREATE THREAD function allocates the DB2 resources that are
required for an application to issue SQL or IFI requests. This function must
complete before the application can execute SQL statements or IFI requests.

The following diagram shows the syntax of the CREATE THREAD function.

DSNRLI CREATE THREAD function

�� CALL DSNRLI (function, plan, collection, reuse �

�
, retcode

, reascode
, pklistptr

) ��

Parameters point to the following areas:

function
An 18-byte area that contains CREATE THREAD followed by five blanks.

plan
An 8-byte DB2 plan name. RRSAF allocates the named plan.

If you provide a collection name instead of a plan name, specify the question
mark character (?) in the first byte of this field. DB2 then allocates a special
plan named ?RRSAF and uses the value that you specify for collection . When
DB2 allocates a plan named ?RRSAF, DB2 checks authorization to execute the
package in the same way as it checks authorization to execute a package from
a requester other than DB2 for z/OS.

If you do not provide a collection name in the collection field, you must enter a
valid plan name in this field.

collection
An 18-byte area in which you enter a collection name. DB2 uses the collection
names to locate a package that is associated with the first SQL statement in the
program.

When you provide a collection name and put the question mark character (?)
in the plan field, DB2 allocates a plan named ?RRSAF and a package list that
contains the following two entries:
v The specified collection name.
v An entry that contains * for the location, collection name, and package name.

(This entry lets the application access remote locations and access packages
in collections other than the default collection that is specified at create
thread time.)

Chapter 2. Connecting to DB2 from your application program 105

The application can use the SET CURRENT PACKAGESET statement to change
the collection ID that DB2 uses to locate a package.

If you provide a plan name in the plan field, DB2 ignores the value in the
collection field.

reuse
An 8-byte area that controls the action that DB2 takes if a SIGNON call is
issued after a CREATE THREAD call. Specify one of the following values in
this field:

RESET
Releases any held cursors and reinitializes the special registers

INITIAL
Does not allow the SIGNON call

This parameter is required. If the 8-byte area does not contain either RESET or
INITIAL, the default value is INITIAL.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify retcode, RRSAF places the
return code in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify reascode, RRSAF places the
reason code in register 0.

If you specify reascode, you must also specify retcode.

pklistptr
A 4-byte field that contains a pointer to a user-supplied data area that contains
a list of collection IDs. A collection ID is an SQL identifier of 1 to 128 letters,
digits, or the underscore character that identifies a collection of packages. The
length of the data area is a maximum of 2050 bytes. The data area contains a
2-byte length field, followed by up to 2048 bytes of collection ID entries,
separated by commas.

When you specify pklistptr and the question mark character (?) in the plan field,
DB2 allocates a special plan named ?RRSAF and a package list that contains
the following entries:
v The collection names that you specify in the data area to which pklistptr

points
v An entry that contains * for the location, collection ID, and package name

If you also specify collection, DB2 ignores that value.

Each collection entry must be of the form collection-ID.*, *.collection-ID.*, or *.*.*.
collection-ID and must follow the naming conventions for a collection ID, as
described in the description of the BIND and REBIND options.

DB2 uses the collection names to locate a package that is associated with the
first SQL statement in the program. The entry that contains *.*.* lets the
application access remote locations and access packages in collections other
than the default collection that is specified at create thread time.

The application can use the SET CURRENT PACKAGESET statement to change
the collection ID that DB2 uses to locate a package.

106 Application Programming and SQL Guide

This parameter is optional. If you specify this parameter, you must also specify
retcode and reascode.

If you provide a plan name in the plan field, DB2 ignores the pklistptr value.

Recommendation: Using a package list can have a negative impact on
performance. For better performance, specify a short package list.

Example of RRSAF CREATE THREAD calls

The following table shows a CREATE THREAD call in each language.

Table 30. Examples of RRSAF CREATE THREAD calls

Language Call example

Assembler CALL DSNRLI,(CRTHRDFN,PLAN,COLLID,REUSE,RETCODE,REASCODE,PKLISTPTR)

C1 fnret=dsnrli(&crthrdfn[0], &plan[0], &collid[0], &reuse[0], &retcode, &reascode, &pklistptr);

COBOL CALL ’DSNRLI’ USING CRTHRDFN PLAN COLLID REUSE RETCODE REASCODE PKLSTPTR.

Fortran CALL DSNRLI(CRTHRDFN,PLAN,COLLID,REUSE,RETCODE,REASCODE,PKLSTPTR)

PL/I1 CALL DSNRLI(CRTHRDFN,PLAN,COLLID,REUSE,RETCODE,REASCODE,PKLSTPTR);

Note:

1. For C, C++, and PL/I applications, you must include the appropriate compiler
directives, because DSNRLI is an assembler language program. These compiler
directives are described in the instructions for invoking RRSAF.

Related tasks:
“Invoking the Resource Recovery Services attachment facility” on page 69

Authorizing plan or package access through applications (Managing Security)
Related reference:

BIND and REBIND options (DB2 Commands)

TERMINATE THREAD function for RRSAF
The RRSAF TERMINATE THREAD function deallocates DB2 resources that are
associated with a plan and were previously allocated for an application by the
CREATE THREAD function. You can then use the CREATE THREAD function to
allocate another plan with the same connection.

If you call the TERMINATE THREAD function and the application is not at a point
of consistency, RRSAF returns reason code X'00C12211'.

The following diagram shows the syntax of the TERMINATE THREAD function.

DSNRLI TERMINATE THREAD function

�� CALL DSNRLI (function,)
, retcode

, reascode

��

Chapter 2. Connecting to DB2 from your application program 107

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_accesscontrolbyapp.htm#db2z_accesscontrolbyapp
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions

Parameters point to the following areas:

function
An 18-byte area the contains TERMINATE THREAD followed by two blanks.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify retcode, RRSAF places the
return code in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify reascode, RRSAF places the
reason code in register 0.

If you specify reascode, you must also specify retcode.

Example of RRSAF TERMINATE THREAD calls

The following table shows a TERMINATE THREAD call in each language.

Table 31. Examples of RRSAF TERMINATE THREAD calls

Language Call example

Assembler CALL DSNRLI,(TRMTHDFN,RETCODE,REASCODE)

C1 fnret=dsnrli(&trmthdfn[0], &retcode, &reascode);

COBOL CALL ’DSNRLI’ USING TRMTHDFN RETCODE REASCODE.

Fortran CALL DSNRLI(TRMTHDFN,RETCODE,REASCODE)

PL/I1 CALL DSNRLI(TRMTHDFN,RETCODE,REASCODE);

Note:

1. For C, C++, and PL/I applications, you must include the appropriate compiler
directives, because DSNRLI is an assembler language program. These compiler
directives are described in the instructions for invoking RRSAF.

Related tasks:
“Invoking the Resource Recovery Services attachment facility” on page 69

TERMINATE IDENTIFY function for RRSAF
The RRSAF TERMINATE IDENTIFY function terminates a connection to DB2.
Calling the TERMINATE IDENTIFY function is optional. If you do not call it, DB2
performs the same functions when the task terminates.

If DB2 terminates, the application must issue TERMINATE IDENTIFY to reset the
RRSAF control blocks. This action ensures that future connection requests from the
task are successful when DB2 restarts.

The TERMINATE IDENTIFY function removes the calling task's connection to DB2.
If no other task in the address space has an active connection to DB2, DB2 also
deletes the control block structures that were created for the address space and
removes the cross-memory authorization.

If the application is not at a point of consistency when you call the TERMINATE
IDENTIFY function, RRSAF returns reason code X'00C12211'.

108 Application Programming and SQL Guide

If the application allocated a plan, and you call the TERMINATE IDENTIFY
function without first calling the TERMINATE THREAD function, DB2 deallocates
the plan before terminating the connection.

The following diagram shows the syntax of the TERMINATE IDENTIFY function.

DSNRLI TERMINATE IDENTIFY function

�� CALL DSNRLI (function)
, retcode

, reascode

��

Parameters point to the following areas:

function
An 18-byte area that contains TERMINATE IDENTIFY.

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify retcode, RRSAF places the
return code in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

This parameter is optional. If you do not specify reascode, RRSAF places the
reason code in register 0.

If you specify reascode, you must also specify retcode.

Example of RRSAF TERMINATE IDENTIFY calls

The following table shows a TERMINATE IDENTIFY call in each language.

Table 32. Examples of RRSAF TERMINATE IDENTIFY calls

Language Call example

Assembler CALL DSNRLI,(TMIDFYFN,RETCODE,REASCODE)

C1 fnret=dsnrli(&tmidfyfn[0], &retcode, &reascode);

COBOL CALL ’DSNRLI’ USING TMIDFYFN RETCODE REASCODE.

Fortran CALL DSNRLI(TMIDFYFN,RETCODE,REASCODE)

PL/I1 CALL DSNRLI(TMIDFYFN,RETCODE,REASCODE);

Note:

1. For C, C++, and PL/I applications, you must include the appropriate compiler
directives, because DSNRLI is an assembler language program. These compiler
directives are described in the instructions for invoking RRSAF.

Chapter 2. Connecting to DB2 from your application program 109

Related tasks:
“Invoking the Resource Recovery Services attachment facility” on page 69

TRANSLATE function for RRSAF
The RRSAF TRANSLATE function converts a hexadecimal reason code for a DB2
error into a signed integer SQL code and a printable error message. The SQL code
and message text are placed in the SQLCODE and SQLSTATE host variables or
related fields of the SQLCA.

Consider the following rules and recommendations about when to use and not use
the TRANSLATE function:
v You cannot call the TRANSLATE function from the Fortran language.
v Call the TRANSLATE function only after a successful IDENTIFY operation. For

errors that occur during SQL or IFI requests, the TRANSLATE function performs
automatically.

v The TRANSLATE function translates codes that begin with X'00F3', but it does
not translate RRSAF reason codes that begin with X'00C1'.

If you receive error reason code X'00F30040' (resource unavailable) after an OPEN
request, the TRANSLATE function returns the name of the unavailable database
object in the last 44 characters of the SQLERRM field.

If the TRANSLATE function does not recognize the error reason code, it returns
SQLCODE -924 (SQLSTATE '58006') and places a printable copy of the original
DB2 function code and the return and error reason codes in the SQLERRM field.
The contents of registers 0 and 15 do not change, unless TRANSLATE fails. In this
case, register 0 is set to X'00C12204', and register 15 is set to 200.

The following diagram shows the syntax of the TRANSLATE function.

DSNRLI TRANSLATE function

�� CALL DSNRLI (function, sqlca)
, retcode

, reascode

��

Parameters point to the following areas:

function
An 18-byte area that contains the word TRANSLATE followed by nine blanks.

sqlca
The program's SQL communication area (SQLCA).

retcode
A 4-byte area in which RRSAF places the return code.

This parameter is optional. If you do not specify retcode, RRSAF places the
return code in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF places the reason code.

110 Application Programming and SQL Guide

This parameter is optional. If you do not specify reascode, RRSAF places the
reason code in register 0.

If you specify reascode, you must also specify retcode.

Example of RRSAF TRANSLATE calls

The following table shows a TRANSLATE call in each language.

Table 33. Examples of RRSAF TRANSLATE calls

Language Call example

Assembler CALL DSNRLI,(XLATFN,SQLCA,RETCODE,REASCODE)

C1 fnret=dsnrli(&connfn[0], &sqlca, &retcode, &reascode);

COBOL CALL ’DSNRLI’ USING XLATFN SQLCA RETCODE REASCODE.

PL/I1 CALL DSNRLI(XLATFN,SQLCA,RETCODE,REASCODE);

Note:

1. For C, C++, and PL/I applications, you must include the appropriate compiler
directives, because DSNRLI is an assembler language program. These compiler
directives are described in the instructions for invoking RRSAF.

Related tasks:
“Invoking the Resource Recovery Services attachment facility” on page 69

FIND_DB2_SYSTEMS function for RRSAF
The RRSAF FIND_DB2_SYSTEMS function identifies all active DB2 subsystems on
a z/OS LPAR.

The following diagram shows the syntax of the FIND_DB2_SYSTEMS function.

DSNRLI FIND_DB2_SYSTEMS function

�� CALL DSNRLI (function , ssnma , activea , arraysz , �

�
, retcode

, reascode

) ��

Parameters point to the following areas:

function
An 18-byte area that contains FIND_DB2_SYSTEMS followed by two blanks.

ssnma
A storage area for an array of 4-byte character strings into which RRSAF places
the names of all the DB2 subsystems (SSIDs) that are defined for the current
LPAR. You must provide the storage area. If the array is larger than the
number of DB2 subsystems, RRSAF returns the value ’ ’ (four blanks) in
all unused array members.

activea
A storage area for an array of 4-byte values into which RRSAF returns an

Chapter 2. Connecting to DB2 from your application program 111

indication of whether a defined subsystem is active. Each value is represented
as a fixed 31-bit integer. The value 1 means that the subsystem is active. The
value 0 means that the subsystem is not active. The size of this array must be
the same as the size of the ssnma array. If the array is larger than the number
of DB2 subsystems, RRSAF returns the value -1 in all unused array members.

The information in the activea array is the information that is available at the
point in time that you requested it and might change at any time.

arraysz
A 4-byte area, represented as a fixed 31-bit integer, that specifies the number of
entries for the ssnma and activea arrays. If the number of array entries is
insufficient to contain all of the subsystems defined on the current LPAR,
RRSAF uses all available entries and returns return code 4.

retcode
A 4-byte area in which RRSAF is to place the return code for this call to the
FIND_DB2_SYSTEMS function.

This parameter is optional. If you do not retcode, RRSAF places the return code
in register 15 and the reason code in register 0.

reascode
A 4-byte area in which RRSAF is to place the reason code for this call to the
FIND_DB2_SYSTEMS function.

This parameter is optional. If you do not specify reascode, RRSAF places the
reason code in register 0.

Example values that the FIND_DB2_SYSTEMS function returns

Assume that two subsystems are defined on the current LPAR. Subsystem DB2A is
active, and subsystem DB2B is stopped. Suppose that you invoke RRSAF with the
function FIND_DB2_SYSTEMS and a value of 3 for arraysz. The ssnma array and
activea array are set to the following values:

Table 34. Example values returned in the ssnma and activeaarrays

Array element number Values in ssnma array Values in activea array

1 DB2A 1

2 DB2B 0

3 (four blanks) -1

Related tasks:
“Invoking the Resource Recovery Services attachment facility” on page 69

RRSAF return codes and reason codes
If you specify return code and reason code parameters in an Resource Recovery
Services attachment facility (RRSAF) function call, RRSAF returns the return code
and reason code in those parameters. If you do not specify those parameters or
implicitly invoke RRSAF, RRSAF puts the return code in register 15 and the reason
code in register 0.

When the reason code begins with X'00F3', except for X'00F30006', you can use the
RRSAF TRANSLATE function to obtain error message text that can be printed and
displayed.

112 Application Programming and SQL Guide

For SQL calls, RRSAF returns standard SQL return codes in the SQLCA. RRSAF
returns IFI return codes and reason codes in the instrumentation facility
communication area (IFCA).

The following table lists the RRSAF return codes.

Table 35. RRSAF return codes

Return code Explanation

0 The call completed successfully.

4 Status information is available. See the
reason code for details.

>4 The call failed. See the reason code for
details.

Related reference:
“TRANSLATE function for RRSAF” on page 110

Sample RRSAF scenarios
One or more tasks can use Resource Recovery Services attachment facility (RRSAF)
to connect to DB2. This connection can be made either implicitly or explicitly. For
explicit connections, a task calls one or more of the RRSAF connection functions.

A single task

The following example pseudocode illustrates a single task running in an address
space that explicitly connects to DB2 through RRSAF. z/OS RRS controls commit
processing when the task terminates normally.
IDENTIFY
SIGNON
CREATE THREAD
SQL or IFI...
TERMINATE IDENTIFY

Multiple tasks

In the following scenario, multiple tasks in an address space explicitly connect to
DB2 through RRSAF. Task 1 executes no SQL statements and makes no IFI calls. Its
purpose is to monitor DB2 termination and startup ECBs and to check the DB2
release level.
TASK 1 TASK 2 TASK 3 TASK n

IDENTIFY IDENTIFY IDENTIFY IDENTIFY
SIGNON SIGNON SIGNON
CREATE THREAD CREATE THREAD CREATE THREAD

SQL SQL SQL
...
SRRCMIT SRRCMIT SRRCMIT
SQL SQL SQL
...
SRRCMIT SRRCMIT SRRCMIT
...

TERMINATE IDENTIFY

Chapter 2. Connecting to DB2 from your application program 113

Reusing a DB2 thread

The following example pseudocode shows a DB2 thread that is reused by another
user at a point of consistency. When the application calls the SIGNON function for
user B, DB2 reuses the plan that is allocated by the CREATE THREAD function for
user A.
IDENTIFY
SIGNON user A
CREATE THREAD

SQL
...
SRRCMIT

SIGNON user B
SQL
...
SRRCMIT

Switching DB2 threads between tasks

The following scenario shows how you can switch the threads for four users (A, B,
C, and D) among two tasks (1 and 2).
Task 1 Task 2

CTXBEGC (create context a) CTXBEGC (create context b)
CTXSWCH(a,0) CTXSWCH(b,0)
IDENTIFY IDENTIFY
SIGNON user A SIGNON user B
CREATE THREAD (Plan A) CREATE THREAD (plan B)

SQL SQL
... ...

CTXSWCH(0,a) CTXSWCH(0,b)

CTXBEGC (create context c) CTXBEGC (create context d)
CTXSWCH(c,0) CTXSWCH(d,0)
IDENTIFY IDENTIFY
SIGNON user C SIGNON user D
CREATE THREAD (plan C) CREATE THREAD (plan D)

SQL SQL
... ...

CTXSWCH(b,c) CTXSWCH(0,d)
SQL (plan B) ...
... CTXSWCH(a,0)

SQL (plan A)

The applications perform the following steps:
v Task 1 creates context a, switches contexts so that context a is active for task 1,

and calls the IDENTIFY function to initialize a connection to a subsystem. A task
must always call the IDENTIFY function before a context switch can occur. After
the IDENTIFY operation is complete, task 1 allocates a thread for user A, and
performs SQL operations.
At the same time, task 2 creates context b, switches contexts so that context b is
active for task 2, calls the IDENTIFY function to initialize a connection to the
subsystem, allocates a thread for user B, and performs SQL operations.
When the SQL operations complete, both tasks perform RRS context switch
operations. Those operations disconnect each DB2 thread from the task under
which it was running.

v Task 1 then creates context c, calls the IDENTIFY function to initialize a
connection to the subsystem, switches contexts so that context c is active for task
1, allocates a thread for user C, and performs SQL operations for user C.

114 Application Programming and SQL Guide

Task 2 does the same operations for user D.
v When the SQL operations for user C complete, task 1 performs a context switch

operation to perform the following actions:
– Switch the thread for user C away from task 1.
– Switch the thread for user B to task 1.

For a context switch operation to associate a task with a DB2 thread, the DB2
thread must have previously performed an IDENTIFY operation. Therefore,
before the thread for user B can be associated with task 1, task 1 must have
performed an IDENTIFY operation.

v Task 2 performs two context switch operations to perform the following actions:
– Disassociate the thread for user D from task 2.
– Associate the thread for user A with task 2.

Program examples for RRSAF
The Resource Recovery Services attachment facility (RRSAF) enables programs to
communicate with DB2. You can use RRSAF as an alternative to CAF.

Example JCL for invoking RRSAF

The following sample JCL shows how to use RRSAF in a batch environment. The
DSNRRSAF DD statement starts the RRSAF trace. Use that DD statement only if
you are diagnosing a problem.
//jobname JOB z/OS_jobcard_information
//RRSJCL EXEC PGM=RRS_application_program
//STEPLIB DD DSN=application_load_library
// DD DSN=DB2_load_library

...

//SYSPRINT DD SYSOUT=*
//DSNRRSAF DD DUMMY
//SYSUDUMP DD SYSOUT=*

Example of loading and deleting the RRSAF language interface

The following code segment shows how an application loads entry points DSNRLI
and DSNHLIR of the RRSAF language interface. Storing the entry points in
variables LIRLI and LISQL ensures that the application loads the entry points only
once. Delete the loaded modules when the application no longer needs to access
DB2.
****************************** GET LANGUAGE INTERFACE ENTRY ADDRESSES

LOAD EP=DSNRLI Load the RRSAF service request EP
ST R0,LIRLI Save this for RRSAF service requests
LOAD EP=DSNHLIR Load the RRSAF SQL call Entry Point
ST R0,LISQL Save this for SQL calls

* .
* . Insert connection service requests and SQL calls here
* .

DELETE EP=DSNRLI Correctly maintain use count
DELETE EP=DSNHLIR Correctly maintain use count

Example of using dummy entry point DSNHLI for RRSAF

Each of the DB2 attachment facilities contains an entry point named DSNHLI.
When you use RRSAF but do not specify the ATTACH(RRSAF) precompiler
option, the precompiler generates BALR instructions to DSNHLI for SQL
statements in your program. To find the correct DSNHLI entry point without

Chapter 2. Connecting to DB2 from your application program 115

including DSNRLI in your load module, code a subroutine, with entry point
DSNHLI, that passes control to entry point DSNHLIR in the DSNRLI module.
DSNHLIR is unique to DSNRLI and is at the same location as DSNHLI in
DSNRLI. DSNRLI uses 31-bit addressing. If the application that calls this
intermediate subroutine uses 24-bit addressing, the intermediate subroutine must
account for the difference.

In the following example, LISQL is addressable because the calling CSECT used
the same register 12 as CSECT DSNHLI. Your application must also establish
addressability to LISQL.

* Subroutine DSNHLI intercepts calls to LI EP=DSNHLI

DS 0D
DSNHLI CSECT Begin CSECT

STM R14,R12,12(R13) Prologue
LA R15,SAVEHLI Get save area address
ST R13,4(,R15) Chain the save areas
ST R15,8(,R13) Chain the save areas
LR R13,R15 Put save area address in R13
L R15,LISQL Get the address of real DSNHLI
BASSM R14,R15 Branch to DSNRLI to do an SQL call

* DSNRLI is in 31-bit mode, so use
* BASSM to assure that the addressing
* mode is preserved.

L R13,4(,R13) Restore R13 (caller’s save area addr)
L R14,12(,R13) Restore R14 (return address)
RETURN (1,12) Restore R1-12, NOT R0 and R15 (codes)

Example of connecting to DB2 with RRSAF

This example uses the variables that are declared in the following code.
****************** VARIABLES SET BY APPLICATION ***********************
LIRLI DS F DSNRLI entry point address
LISQL DS F DSNHLIR entry point address
SSNM DS CL4 DB2 subsystem name for IDENTIFY
CORRID DS CL12 Correlation ID for SIGNON
ACCTTKN DS CL22 Accounting token for SIGNON
ACCTINT DS CL6 Accounting interval for SIGNON
PLAN DS CL8 DB2 plan name for CREATE THREAD
COLLID DS CL18 Collection ID for CREATE THREAD. If
* PLAN contains a plan name, not used.
REUSE DS CL8 Controls SIGNON after CREATE THREAD
CONTROL DS CL8 Action that application takes based
* on return code from RRSAF
****************** VARIABLES SET BY DB2 *******************************
STARTECB DS F DB2 startup ECB
TERMECB DS F DB2 termination ECB
EIBPTR DS F Address of environment info block
RIBPTR DS F Address of release info block
****************************** CONSTANTS ******************************
CONTINUE DC CL8’CONTINUE’ CONTROL value: Everything OK
IDFYFN DC CL18’IDENTIFY ’ Name of RRSAF service
SGNONFN DC CL18’SIGNON ’ Name of RRSAF service
CRTHRDFN DC CL18’CREATE THREAD ’ Name of RRSAF service
TRMTHDFN DC CL18’TERMINATE THREAD ’ Name of RRSAF service
TMIDFYFN DC CL18’TERMINATE IDENTIFY’ Name of RRSAF service
****************************** SQLCA and RIB **************************

EXEC SQL INCLUDE SQLCA
DSNDRIB Map the DB2 Release Information Block

******************* Parameter list for RRSAF calls ********************
RRSAFCLL CALL ,(*,*,*,*,*,*,*,*),VL,MF=L

116 Application Programming and SQL Guide

The following example code shows how to issue requests for the RRSAF functions
IDENTIFY, SIGNON, CREATE THREAD, TERMINATE THREAD, and
TERMINATE IDENTIFY. This example does not show a task that waits on the DB2
termination ECB. You can code such a task and use the z/OS WAIT macro to
monitor the ECB. The task that waits on the termination ECB should detach the
sample code if the termination ECB is posted. That task can also wait on the DB2
startup ECB. This example waits on the startup ECB at its own task level.
***************************** IDENTIFY ********************************

L R15,LIRLI Get the Language Interface address
CALL (15),(IDFYFN,SSNM,RIBPTR,EIBPTR,TERMECB,STARTECB),VL,MF=X

(E,RRSAFCLL)
BAL R14,CHEKCODE Call a routine (not shown) to check

* return and reason codes
CLC CONTROL,CONTINUE Is everything still OK
BNE EXIT If CONTROL not ’CONTINUE’, stop loop
USING R8,RIB Prepare to access the RIB
L R8,RIBPTR Access RIB to get DB2 release level
CLC RIBREL,RIBR999 DB2 V10 or later?
BE USERELX If RIBREL = ’999’, use RIBRELX
WRITE ’The current DB2 release level is’ RIBREL
B SIGNON Continue with signon

USERELX WRITE ’The current DB2 release level is’ RIBRELX
***************************** SIGNON **********************************
SIGNON L R15,LIRLI Get the Language Interface address

CALL (15),(SGNONFN,CORRID,ACCTTKN,ACCTINT),VL,MF=(E,RRSAFCLL)
BAL R14,CHEKCODE Check the return and reason codes

*************************** CREATE THREAD *****************************
L R15,LIRLI Get the Language Interface address
CALL (15),(CRTHRDFN,PLAN,COLLID,REUSE),VL,MF=(E,RRSAFCLL)
BAL R14,CHEKCODE Check the return and reason codes

****************************** SQL ************************************
* Insert your SQL calls here. The DB2 Precompiler
* generates calls to entry point DSNHLI. You should
* code a dummy entry point of that name to intercept
* all SQL calls. A dummy DSNHLI is shown in the following
* section.
************************ TERMINATE THREAD *****************************

CLC CONTROL,CONTINUE Is everything still OK?
BNE EXIT If CONTROL not ’CONTINUE’, shut down
L R15,LIRLI Get the Language Interface address
CALL (15),(TRMTHDFN),VL,MF=(E,RRSAFCLL)
BAL R14,CHEKCODE Check the return and reason codes

************************ TERMINATE IDENTIFY ***************************
CLC CONTROL,CONTINUE Is everything still OK
BNE EXIT If CONTROL not ’CONTINUE’, stop loop
L R15,LIRLI Get the Language Interface address
CALL (15),(TMIDFYFN),VL,MF=(E,RRSAFCLL)
BAL R14,CHEKCODE Check the return and reason codes

Universal language interface
The universal language interface (DSNULI) subcomponent determines the runtime
environment and dynamically loads and branches to the appropriate language
interface module.

The following figure shows the general structure of DSNULI and a program that
uses it:

Chapter 2. Connecting to DB2 from your application program 117

DSNULI has no aliases. The module has nine entry points: DSNALI, DSNRLI,
DSNCLI, DSNHLI, DSNHLI2, DSNHLIR, DSNWLI, DSNWLI2, and DSNWLIR.
DSNULI will dynamically load and branch to the appropriate language interface
module, based on the entry point name (for attachment-specific entry points), or
based on the current environment (for the generic entry points DSNHLI and
DSNWLI).
v Entry point DSNALI handles explicit DB2 Call Attach Facility connection service

requests.
v Entry point DSNRLI handles explicit DB2 Resource Recovery Services Attach

Facility connection service requests.
v Entry point DSNCLI is provided for link-editing with CICS
v DSNHLI, DSNHLI2, and DSNHLIR handle SQL calls. DSNHLI2 is an explicit

SQL call via the Call Attachment Facility. DSNHLIR is an explicit SQL call via
the Resource Recovery Services Attachment Facility. They are provided for
compatibility only. Applications designed to run in any environment should use
the generic entry point, DSNHLI.

DSNCLI

DSNHLI

DSNWLI

TSO

DSNELI

DSNHLI

DSNALI

DSNHLI2

DSNWLI2

CAF

RRSAF

DSNRLI

DSNHLIR

DSNWLIR

DSNWLI

DSNULI

DSNRLI

DSNALI

Appl. Program or
stored procedure

DSNWLI2
DSNWLIR
DSNWLI

DSN LI2H
DSNHLIR
DSNHLI

DSNRLI

DSNALI

CICS

Figure 4. Application program or stored procedure linked with DSNULI

118 Application Programming and SQL Guide

v DSNWLI, DSNWLI2, DSNWLIR handle IFI calls. DSNWLI2 is an explicit IFI call
via the Call Attachment Facility. DSNWLIR is an explicit IFI call via the
Resource Recovery Services Attachment Facility. They are provided for
compatibility only. Applications designed to run in any environment should use
the generic entry point, DSNWLI.

Link-editing an application with DSNULI
To create a single load module that can be used in more than one attachment
environment, you can link-edit your program or stored procedure with the
Universal Language Interface module (DSNULI) instead of with one of the
environment-specific language interface modules (DSNELI, DSNALI, DSNRLI, or
DSNCLI).

About this task

DSNULI should be link-edited with TSO, CAF, RRSAF applications (including
Stored Procedures), and CICS applications. DSNULI does not support dynamic
loading or IMS applications. DSNULI determines the run time environment, then
dynamically loads and branches to the appropriate language interface module
(DSNELI, DSNALI, DSNRLI, or DSNCLI).

Considerations:

v If maximum performance is the primary requirement, link-edit with DSNELI,
DSNALI, DSNRLI, or DSNCLI rather than DSNULI. If maintaining a single copy
of a load module is the primary requirement, link-edit with DSNULI.

v If CAF implicit connect functionality is required, link-edit your application with
DSNALI instead of with DSNULI. DSNULI defaults to RRSAF implicit
connections if an attachment environment has not been established upon entry
to DSNHLI. Attachment environments are established by calling DSNRLI or
DSNALI initially, or by running an SQL application under the TSO command
processor or under CICS.

v DSNULI will not explicitly delete the loaded DSNELI, DSNALI, DSNRLI or
DSNCLI. If an application cannot tolerate having these modules deleted only at
task termination, use DSNELI, DSNALI, DSNRLI or DSNCLI instead of
DSNULI.

v DSNULI is shipped with the linkage attributes AMODE(31) and RMODE(ANY)
and must be entered in AMODE(31).

Procedure

To link-edit an application with DSNULI:

You can include DSNULI when you link-edit your load module. For example, you
can use a linkage editor control statement like this in your JCL:
INCLUDE SYSLIB(DSNULI)

Results

By coding this statement, you avoid linking to one of the environment-specific
language interface modules.

Controlling the CICS attachment facility from an application
Use the CICS attachment facility to access DB2 from CICS application programs.

Chapter 2. Connecting to DB2 from your application program 119

About this task

You can start and stop the CICS attachment facility from within an application
program.

Procedure

To control the CICS attachment facility:
1. To start the CICS attachment facility, perform one of the following actions:

v Include the following statement in your application:
EXEC CICS LINK PROGRAM(’DSN2COM0’)

v Use the system programming interface SET DB2CONN for the CICS
Transaction Server.

2. To stop the CICS attachment facility, perform one of the following actions:
v Include the following statement in your application:

EXEC CICS LINK PROGRAM(’DSN2COM2’)

v Use the system programming interface SET DB2CONN for the CICS
Transaction Server.

Related information:

SET DB2CONN (CICS Transaction Server for z/OS)

Detecting whether the CICS attachment facility is operational
Before you execute SQL statements in a CICS program, you should determine if
the CICS attachment facility is available. You do not need to do this test if the
CICS attachment facility is started and you are using standby mode.

About this task

When an SQL statement is executed, and the CICS attachment facility is in standby
mode, the attachment issues SQLCODE -923 with a reason code that indicates that
DB2 is not available.

Procedure

To detect whether the CICS attachment facility is operational:

Use the INQUIRE EXITPROGRAM command for the CICS Transaction Server in
your application.
The following example shows how to use this command. In this example, the
INQUIRE EXITPROGRAM command tests whether the resource manager for SQL,
DSNCSQL, is up and running. CICS returns the results in the EIBRESP field of the
EXEC interface block (EIB) and in the field whose name is the argument of the
CONNECTST parameter (in this case, STST). If the EIBRESP value indicates that
the command completed normally and the STST value indicates that the resource
manager is available, you can then execute SQL statements.
STST DS F
ENTNAME DS CL8
EXITPROG DS CL8...

MVC ENTNAME,=CL8’DSNCSQL’
MVC EXITPROG,=CL8’DSN2EXT1’
EXEC CICS INQUIRE EXITPROGRAM(EXITPROG) X

ENTRYNAME(ENTNAME) CONNECTST(STST) NOHANDLE
CLC EIBRESP,DFHRESP(NORMAL)

120 Application Programming and SQL Guide

https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/topic/com.ibm.cics.ts.doc/dfha8/commands/dfha8_setdb2conn.htm

BNE NOTREADY
CLC STST,DFHVALUE(CONNECTED)
BNE NOTREADY

UPNREADY DS 0H
attach is up

NOTREADY DS 0H
attach is not up yet

If you use the INQUIRE EXITPROGRAM command to avoid AEY9 abends and the
CICS attachment facility is down, the storm drain effect can occur. The storm drain
effect is a condition that occurs when a system continues to receive work, even
though that system is down.
Related concepts:

Storm-drain effect (DB2 Installation and Migration)
Related information:

INQUIRE EXITPROGRAM (CICS Transaction Server for z/OS)

-923 (DB2 Codes)

Improving thread reuse in CICS applications
Having transactions reuse threads is generally recommended because each thread
creation is associated with a high processor cost.

Procedure

To improve thread reuse in CICS applications:

Close all cursors that are declared with the WITH HOLD option before each sync
point. DB2 does not automatically close them. A thread for an application that
contains an open cursor cannot be reused. You should close all cursors
immediately after you finish using them.
Related concepts:
“Held and non-held cursors” on page 718

Chapter 2. Connecting to DB2 from your application program 121

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_stormdraineffectds.htm#db2z_stormdraineffectds
https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/topic/com.ibm.cics.ts.doc/dfha8/commands/dfha8_inquireexitprogram.html
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.codes/src/tpc/n923.htm#n923

122 Application Programming and SQL Guide

Chapter 3. Coding SQL statements in application programs:
General information

A query is an SQL statement that returns data from a DB2 database. Your program
can communicate this SQL statement to DB2 in one of several ways. After
processing the statement, DB2 issues a return code, which your program should
then test to determine the result of the operation.

Procedure

To include DB2 queries in an application program:
1. Choose one of the following methods for communicating with DB2:

v Static SQL
v Embedded dynamic SQL
v Open Database Connectivity (ODBC)
v JDBC application support
v SQLJ application support
ODBC lets you access data through ODBC function calls in your application.
You execute SQL statements by passing them to DB2 through a ODBC function
call. ODBC eliminates the need for precompiling and binding your application
and increases the portability of your application by using the ODBC interface.
If you are writing your applications in Java™, you can use JDBC application
support to access DB2. JDBC is similar to ODBC but is designed specifically for
use with Java. In addition to using JDBC, you can use SQLJ application support
to access DB2. SQLJ is designed to simplify the coding of DB2 calls for Java
applications.

2. Optional: Declare the tables and views that you use. You can use DCLGEN to
generate these declarations.

3. Define the items that your program can use to check whether an SQL statement
executed successfully. You can either define an SQL communications area
(SQLCA) or declare SQLSTATE and SQLCODE host variables.

4. Define at least one SQL descriptor area (SQLDA).
5. Declare any of the following data items for passing data between DB2 and a

host language:
v host variables
v host variable arrays
v host structures

Ensure that you use the appropriate data types.
6. Code SQL statements to access DB2 data. Ensure that you delimit these

statements properly.
Consider using cursors to select a set of rows and then process the set either
one row at a time or one rowset at a time.

7. Check the execution of the SQL statements.
8. Handle any SQL error codes.

© Copyright IBM Corp. 1983, 2013 123

Related concepts:
“Dynamic SQL” on page 159

Introduction to DB2 ODBC (DB2 Programming for ODBC)

JDBC application programming (DB2 Application Programming for Java)

SQLJ application programming (DB2 Application Programming for Java)
Related tasks:
“Delimiting an SQL statement” on page 147
“Retrieving a set of rows by using a cursor” on page 715

Programming applications for performance (DB2 Performance)

Declaring table and view definitions
Before your program issues SQL statements that select, insert, update, or delete
data, the program needs to declare the tables and views that those statements
access.

About this task

Your program is not required to declare tables or views, but doing so offers the
following advantages:
v Clear documentation in the program

The declaration specifies the structure of the table or view and the data type of
each column. You can refer to the declaration for the column names and data
types in the table or view.

v Assurance that your program uses the correct column names and data types
The DB2 precompiler uses your declarations to make sure that you have used
correct column names and data types in your SQL statements. The DB2
precompiler issues a warning message when the column names and data types
in SQL statements do not correspond to the table and view declarations in your
program.

Procedure

To declare table and view definitions:

Perform one of the following actions:
v Include an SQL DECLARE TABLE statement in your program. Specify the name

of the table or view and list each column and its data type.
When you declare a table or view that contains a column with a distinct type,
declare that column with the source type of the distinct type rather than with
the distinct type itself. When you declare the column with the source type, DB2
can check embedded SQL statements that reference that column at precompile
time.
In a COBOL program, code the DECLARE TABLE statement in the
WORKING-STORAGE SECTION or LINKAGE SECTION within the DATA
DIVISION.

Example DECLARE statement in a COBOL program: The following DECLARE
TABLE statement in a COBOL program defines the DSN8B10.DEPT table:

124 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.odbc/src/tpc/db2z_hdint.htm#db2z_hdint
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.java/src/tpc/imjcc_c0052041.htm#imjcc_c0052041
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.java/src/tpc/imjcc_c0052042.htm#imjcc_c0052042
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_programapplicationperformance.htm#db2z_programapplicationperformance

EXEC SQL
DECLARE DSN8B10.DEPT TABLE

(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
MGRNO CHAR(6) ,
ADMRDEPT CHAR(3) NOT NULL,
LOCATION CHAR(16))

END-EXEC.

v Use DCLGEN, the declarations generator that is supplied with DB2, to create
these declarations for you and then include them in your program.

Restriction: You can use DCLGEN for only C, COBOL, and PL/I programs.
Related reference:

DECLARE TABLE (DB2 SQL)

DCLGEN (declarations generator)
Your program should declare the tables and views that it accesses. The DB2
declarations generator, DCLGEN, produces these DECLARE statements for C,
COBOL, and PL/I programs, so that you do not need to code the statements
yourself. DCLGEN also generates corresponding host variable structures.

DCLGEN generates a table or view declaration and puts it into a member of a
partitioned data set that you can include in your program. When you use
DCLGEN to generate a table declaration, DB2 gets the relevant information from
the DB2 catalog. The catalog contains information about the table or view
definition and the definition of each column within the table or view. DCLGEN
uses this information to produce an SQL DECLARE TABLE statement for the table
or view and a corresponding PL/I or C structure declaration or COBOL record
description.
Related reference:

DCLGEN (DECLARATIONS GENERATOR) (DSN) (DB2 Commands)

Generating table and view declarations by using DCLGEN
Your program should declare the tables and views that it accesses. For C, COBOL,
and PL/I programs, you can use DCLGEN to produce these declarations, so that
you do not need to code the statements yourself. DCLGEN also generates
corresponding host variable structures.

Before you begin

Requirements:

v DB2 must be active before you can use DCLGEN.
v You can use DCLGEN for table declarations only if the table or view that you

are declaring already exists.
v If you use DCLGEN, you must use it before you precompile your program.

Procedure

To generate table and view declarations by using DCLGEN:
1. Invoke DCLGEN by performing one of the following actions:

v To start DCLGEN from ISPF through DB2I: Select the DCLGEN option on
the DB2I Primary Option Menu panel. Then follow the detailed instructions
for generating table and view declarations by using DCLGEN from DB2I.

Chapter 3. Coding SQL statements in application programs: General information 125

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_declaretable.htm#db2z_sql_declaretable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_dclgen.htm#db2z_cmd_dclgen

v To start DCLGEN directly from TSO: Sign on to TSO, issue the TSO
command DSN, and then issue the subcommand DCLGEN.

v To start DCLGEN directly from a CLIST: From a CLIST, running in TSO
foreground or background, issue DSN and then DCLGEN.

v To start DCLGEN with JCL: Supply the required information in JCL and run
DCLGEN in batch. Use the sample jobs DSNTEJ2C and DSNTEJ2P in the
prefix.SDSNSAMP library as models.

Requirement: If you want to start DCLGEN in the foreground and your
table names include DBCS characters, you must provide and display
double-byte characters. If you do not have a terminal that displays DBCS
characters, you can enter DBCS characters by using the hex mode of ISPF
edit.

DCLGEN creates the declarations in the specified data set.
DCLGEN generates a table or column name in the DECLARE statement as a
non-delimited identifier unless at least one of the following conditions is true:
v The name contains special characters and is not a DBCS string.
v The name is a DBCS string, and you have requested delimited DBCS names.

2. If you use an SQL reserved word as an identifier, edit the DCLGEN output to
add the appropriate SQL delimiters.

3. Make any other necessary edits to the DCLGEN output.
DCLGEN produces output that is intended to meet the needs of most users,
but occasionally, you need to edit the DCLGEN output to work in your specific
case. For example, DCLGEN is unable to determine whether a column that is
defined as NOT NULL also contains the DEFAULT clause, so you must edit the
DCLGEN output to add the DEFAULT clause to the appropriate column
definitions.
DCLGEN produces declarations based on the encoding scheme of the source
table. Therefore, if your application uses a different encoding scheme, you
might need to manually adjust the declarations. For example, if your source
table is in EBCDIC with CHAR columns and your application is in COBOL,
DCLGEN produces declarations of type PIC X. However, suppose your host
variables in your COBOL application are UTF-16. In this case, you will need to
manually change the declarations to be type PIC N USAGE NATIONAL.

Related reference:

DCLGEN (DECLARATIONS GENERATOR) (DSN) (DB2 Commands)

DSN (TSO) (DB2 Commands)

Reserved words (DB2 SQL)

Generating table and view declarations by using DCLGEN from
DB2I
DCLGEN generates table and view declarations and the corresponding variable
declarations for C, COBOL, and PL/I programs so that you do not need to code
these statements yourself. The easiest way to start DCLGEN is through DB2I.

Procedure

To generate table and view declarations by using DCLGEN from DB2I:
1. From the DB2I Primary Option Menu panel, select the DCLGEN option. The

following DCLGEN panel is displayed:

126 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_dclgen.htm#db2z_cmd_dclgen
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_dsn.htm#db2z_cmd_dsn
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_reservedwords.htm#db2z_reservedwords

2. Complete the following fields on the DCLGEN panel:

1 SOURCE TABLE NAME
Is the unqualified name of the table, view, or created temporary table
for which you want DCLGEN to produce SQL data declarations. The
table can be stored at your DB2 location or at another DB2 location. To
specify a table name at another DB2 location, enter the table qualifier in
the TABLE OWNER field and the location name in the AT LOCATION
field. DCLGEN generates a three-part table name from the SOURCE
TABLE NAME, TABLE OWNER, and AT LOCATION fields. You can
also use an alias for a table name.

To specify a table name that contains special characters or blanks,
enclose the name in apostrophes. If the name contains apostrophes, you
must double each one(' '). For example, to specify a table named DON'S
TABLE, enter the following text:
’DON’’S TABLE’

The underscore is not handled as a special character in DCLGEN. For
example, the table name JUNE_PROFITS does not need to be enclosed
in apostrophes. Because COBOL field names cannot contain
underscores, DCLGEN substitutes hyphens (-) for single-byte
underscores in COBOL field names that are built from the table name.

You do not need to enclose DBCS table names in apostrophes.

If you do not enclose the table name in apostrophes, DB2 converts
lowercase characters to uppercase.

2 TABLE OWNER
Is the schema qualifier of the source table. If you do not specify this
value and the table is a local table, DB2 assumes that the table qualifier
is your TSO logon ID. If the table is at a remote location, you must
specify this value.

3 AT LOCATION
Is the location of a table or view at another DB2 subsystem. The value
of the AT LOCATION field becomes a prefix for the table name on the
SQL DECLARE statement, as follows: location_name, schema_name,

DSNEDP01 DCLGEN SSID: DSN
===>

Enter table name for which declarations are required:
1 SOURCE TABLE NAME ===>

2 TABLE OWNER ===>

3 AT LOCATION ===> (Optional)
Enter destination data set: (Can be sequential or partitioned)
4 DATA SET NAME ... ===>
5 DATA SET PASSWORD ===> (If password protected)

Enter options as desired:
6 ACTION ===> ADD (ADD new or REPLACE old declaration)
7 COLUMN LABEL ===> NO (Enter YES for column label)
8 STRUCTURE NAME .. ===> (Optional)
9 FIELD NAME PREFIX ===> (Optional)

10 DELIMIT DBCS ===> YES (Enter YES to delimit DBCS identifiers)
11 COLUMN SUFFIX ... ===> NO (Enter YES to append column name)
12 INDICATOR VARS .. ===> NO (Enter YES for indicator variables)
13 ADDITIONAL OPTIONS===> YES (Enter YES to change additional options)

PRESS: ENTER to process END to exit HELP for more information

Figure 5. DCLGEN panel

Chapter 3. Coding SQL statements in application programs: General information 127

table_name For example, if the location name is PLAINS_GA, the
schema name is CARTER, and the table name is CROP_YIELD_89, the
following table name is included in the SQL DECLARE statement:
PLAINS_GA.CARTER.CROP_YIELD_89

The default is the local location name. This field applies to DB2 private
protocol access only. The location must be another DB2 for z/OS
subsystem.

4 DATA SET NAME
Is the name of the data set that you allocated to contain the
declarations that DCLGEN produces. You must supply a name; no
default exists.

The data set must already exist and be accessible to DCLGEN. The data
set can be either sequential or partitioned. If you do not enclose the
data set name in apostrophes, DCLGEN adds a standard TSO prefix
(user ID) and suffix (language). DCLGEN determines the host language
from the DB2I defaults panel.

For example, for library name LIBNAME(MEMBNAME), the name
becomes userid.libname.language(membname) For library name
LIBNAME, the name becomes userid.libname.language.

If this data set is password protected, you must supply the password in
the DATA SET PASSWORD field.

5 DATA SET PASSWORD
Is the password for the data set that is specified in the DATA SET
NAME field, if the data set is password protected. The password is not
displayed on your terminal, and it is not recognized if you issued it
from a previous session.

6 ACTION
Specifies what DCLGEN is to do with the output when it is sent to a
partitioned data set. (The option is ignored if the data set you specify
in the DATA SET NAME field is sequential.) You can specify one of the
following values:

ADD
Indicates that an old version of the output does not exist and
creates a new member with the specified data set name. ADD is the
default.

REPLACE
Replaces an old version, if it already exists. If the member does not
exist, this option creates a new member.

7 COLUMN LABEL
Specifies whether DCLGEN is to include labels that are declared on any
columns of the table or view as comments in the data declarations.
(The SQL LABEL statement creates column labels to use as
supplements to column names.) You can specify one of the following
values:

YES
Include column labels.

NO Ignore column labels. NO is the default.

8 STRUCTURE NAME
Is the name of the generated data structure. The name can be up to 31

128 Application Programming and SQL Guide

characters. If the name is not a DBCS string, and the first character is
not alphabetic, enclose the name in apostrophes. If you use special
characters, be careful to avoid name conflicts.

If you leave this field blank, DCLGEN generates a name that contains
the table or view name with a prefix of DCL. If the language is COBOL
or PL/I and the table or view name consists of a DBCS string, the
prefix consists of DBCS characters.

For C, lowercase characters that you enter in this field are not
converted to uppercase.

9 FIELD NAME PREFIX
Specifies a prefix that DCLGEN uses to form field names in the output.
For example, if you choose ABCDE, the field names generated are
ABCDE1, ABCDE2, and so on.

You can specify a field name prefix of up to 28 bytes that can include
special and double-byte characters. If you specify a single-byte or
mixed-string prefix and the first character is not alphabetic, enclose the
prefix in apostrophes. If you use special characters, be careful to avoid
name conflicts.

For COBOL and PL/I, if the name is a DBCS string, DCLGEN
generates DBCS equivalents of the suffix numbers.

For C, lowercase characters that you enter in this field do not converted
to uppercase.

If you leave this field blank, the field names are the same as the
column names in the table or view.

10 DELIMIT DBCS
Specifies whether DCLGEN is to delimit DBCS table names and column
names in the table declaration. You can specify one of the following
values:

YES
Specifies that DCLGEN is to enclose the DBCS table and column
names with SQL delimiters.

NO Specifies that DCLGEN is not to delimit the DBCS table and
column names.

11 COLUMN SUFFIX
Specifies whether DCLGEN is to form field names by attaching the
column name as a suffix to the value that you specify in FIELD NAME
PREFIX. You can specify one of the following values:

YES
Specifies that DCLGEN is to use the column name as a suffix. For
example, if you specify YES, the field name prefix is NEW, and the
column name is EMPNO, the field name is NEWEMPNO.

If you specify YES, you must also enter a value in FIELD NAME
PREFIX. If you do not enter a field name prefix, DCLGEN issues a
warning message and uses the column names as the field names.

NO Specifies that DCLGEN is not to use the column name as a suffix.
The default is NO.

Chapter 3. Coding SQL statements in application programs: General information 129

12 INDICATOR VARS
Specifies whether DCLGEN is to generate an array of indicator
variables for the host variable structure. You can specify one of the
following values:

YES
Specifies that DCLGEN is to generate an array of indicator
variables for the host variable structure.

If you specify YES, the array name is the table name with a prefix
of I (or DBCS letter <I> if the table name consists solely of
double-byte characters). The form of the data declaration depends
on the language, as shown in the following table. n is the number
of columns in the table.

Table 36. Declarations for indicator variable arrays from DCLGEN

Language Declaration form

C short int Itable-name[n];

COBOL 01 Itable-name PIC S9(4) USAGE COMP
OCCURS n TIMES.

PL/I DCL Itable-name(n) BIN FIXED(15);

For example, suppose that you define the following table:
CREATE TABLE HASNULLS (CHARCOL1 CHAR(1), CHARCOL2 CHAR(1));

If you request an array of indicator variables for a COBOL
program, DCLGEN might generate the following host variable
declaration:
01 DCLHASNULLS.

10 CHARCOL1 PIC X(1).
10 CHARCOL2 PIC X(1).

01 IHASNULLS PIC S9(4) USAGE COMP OCCURS 2 TIMES.

NO Specifies that DCLGEN is not to generate an array of indicator
variables. The default is NO.

13 ADDITIONAL OPTIONS
Indicates whether to display the panel for additional DCLGEN options,
including the break point for statement tokens and whether to generate
DECLARE VARIABLE statements for FOR BIT DATA columns. You can
specify YES or NO. The default is YES.

If you specified YES in the ADDITIONAL OPTIONS field, the following
ADDITIONAL DCLGEN OPTIONS panel is displayed:

Otherwise, DCLGEN creates the declarations in the specified data set.

DSNEDP02 ADDITIONAL DCLGEN OPTIONS SSID: DSN
===>

Enter options as desired:
1 RIGHT MARGIN ===> 72 (Enter 72 or 80)

2 FOR BIT DATA ===> NO (Enter YES to declare SQL variables for
FOR BIT DATA columns)

PRESS: ENTER to process END to exit HELP for more information

Figure 6. ADDITIONAL DCLGEN OPTIONS panel

130 Application Programming and SQL Guide

3. If the ADDITIONAL DCLGEN OPTIONS panel is displayed, complete the
following fields on that panel:

1 RIGHT MARGIN
Specifies the break point for statement tokens that must be wrapped to
one or more subsequent records. You can specify column 72 or column
80.

The default is 72.

2 FOR BIT DATA
Specifies whether DCLGEN is to generate a DECLARE VARIABLE
statement for SQL variables for columns that are declared as FOR BIT
DATA. This statement is required in DB2 applications that meet all of
the following criteria:
v are written in COBOL
v have host variables for FOR BIT DATA columns
v are prepared with the SQLCCSID option of the DB2 coprocessor.

You can specify YES or NO. The default is NO.

If the table or view does not have FOR BIT DATA columns, DCLGEN
does not generate this statement.

DCLGEN creates the declarations in the specified data set.
Related reference:
“DB2I primary option menu” on page 984

LABEL (DB2 SQL)

Data types that DCLGEN uses for variable declarations
DCLGEN produces declarations for tables and views and the corresponding host
variable structures for C, COBOL, and PL/I programs. DCLGEN derives the
variable names and data types for these declarations based on the source tables in
the database.

The following table lists the C, COBOL, and PL/I data types that DCLGEN uses
for variable declarations based on the corresponding SQL data types that are used
in the source tables. var represents a variable name that DCLGEN provides.

Table 37. Type declarations that DCLGEN generates

SQL data type1 C COBOL PL/I

SMALLINT short int PIC S9(4) USAGE COMP BIN FIXED(15)

INTEGER long int PIC S9(9) USAGE COMP BIN FIXED(31)

DECIMAL(p,s) or
NUMERIC(p,s)

decimal(p,s)2 PIC S9(p-s)V9(s) USAGE
COMP-3

DEC FIXED(p,s)

If p>15, the PL/I compiler
must support this precision,
or a warning is generated.

REAL or FLOAT(n) 1 <= n
<= 21

float USAGE COMP-1 BIN FLOAT(n)

DOUBLE PRECISION,
DOUBLE, or FLOAT(n)

double USAGE COMP-2 BIN FLOAT(n)

CHAR(1) char PIC X(1) CHAR(1)

CHAR(n) char var [n+1] PIC X(n) CHAR(n)

Chapter 3. Coding SQL statements in application programs: General information 131

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_label.htm#db2z_sql_label

Table 37. Type declarations that DCLGEN generates (continued)

SQL data type1 C COBOL PL/I

VARCHAR(n) struct
{short int var_len;
char var_data[n];
} var;

10 var.
49 var_LEN PIC 9(4)

USAGE COMP.
49 var_TEXT PIC X(n).

CHAR(n) VAR

CLOB(n)3 SQL TYPE IS CLOB_LOCATOR USAGE SQL TYPE IS
CLOB-LOCATOR

SQL TYPE IS CLOB_LOCATOR

GRAPHIC(1) sqldbchar PIC G(1) GRAPHIC(1)

GRAPHIC(n)

n > 1

sqldbchar var[n+1]; PIC G(n) USAGE
DISPLAY-1.4

or
PIC N(n).4

GRAPHIC(n)

VARGRAPHIC(n) struct VARGRAPH
{short len;
sqldbchar data[n];
} var;

10 var.
49 var_LEN PIC 9(4)

USAGE COMP.
49 var_TEXT PIC G(n)

USAGE DISPLAY-1.4

or
10 var.

49 var_LEN PIC 9(4)
USAGE COMP.

49 var_TEXT PIC N(n).4

GRAPHIC(n) VAR

DBCLOB(n)3 SQL TYPE IS
DBCLOB_LOCATOR

USAGE SQL TYPE IS
DBCLOB-LOCATOR

SQL TYPE IS
DBCLOB_LOCATOR

BINARY(n) SQL TYPE IS BINARY(n) USAGE SQL TYPE IS
BINARY(n)

SQL TYPE IS BINARY(n)

VARBINARY(n) SQL TYPE IS VARBINARY(n) USAGE SQL TYPE IS
VARBINARY(n)

SQL TYPE IS VARBINARY(n)

BLOB(n)3 SQL TYPE IS BLOB_LOCATOR USAGE SQL TYPE IS
BLOB-LOCATOR

SQL TYPE IS BLOB_LOCATOR

DATE char var[11]5 PIC X(10)5 CHAR(10)5

TIME char var[9]6 PIC X(8)6 CHAR(8)6

TIMESTAMP char var[27] PIC X(26) CHAR(26)

TIMESTAMP(0) char var[20] PIC X(19) CHAR(19)

TIMESTAMP(p) p > 0 char var[21+p] PIC X(20+p) CHAR(20+p)

TIMESTAMP(0) WITH
TIME ZONE

struct
{short int var_len;
char var_data[147];
} var;

01 var.
49 var_LEN

PIC S9(4) COMP.
49 var_TEXT

PIC X(147).

DCL var CHAR(147) VAR;

TIMESTAMP(p) WITH
TIME ZONE

struct
{short int var_len;
char var_data[148 + p];
} var;

01 var.
49 var_LEN

PIC S9(4) COMP.
49 var_TEXT

PIC X(148 + p).

DCL var CHAR(148 + p)
VAR;

ROWID SQL TYPE IS ROWID USAGE SQL TYPE IS ROWID SQL TYPE IS ROWID

BIGINT long long int PIC S9(18) USAGE COMP FIXED BIN(63)

XML7 SQL TYPE IS XML AS
CLOB(1M)

SQL TYPE IS XML AS
CLOB(1M)

SQL TYPE IS XML AS
CLOB(1M)

132 Application Programming and SQL Guide

Table 37. Type declarations that DCLGEN generates (continued)

SQL data type1 C COBOL PL/I

Notes:

1. For a distinct type, DCLGEN generates the host language equivalent of the source data type.

2. If your C compiler does not support the decimal data type, edit your DCLGEN output and replace the decimal
data declarations with declarations of type double.

3. For a BLOB, CLOB, or DBCLOB data type, DCLGEN generates a LOB locator.

4. DCLGEN chooses the format based on the character that you specify as the DBCS symbol on the COBOL Defaults
panel.

5. This declaration is used unless a date installation exit routine exists for formatting dates, in which case the length
is that specified for the LOCAL DATE LENGTH installation option.

6. This declaration is used unless a time installation exit routine exists for formatting times, in which case the length
is that specified for the LOCAL TIME LENGTH installation option.

7. The default setting for XML is 1M; however, you might need to adjust it.

Including declarations from DCLGEN in your program
After you use DCLGEN to produce declarations for tables, views, and variables for
your C, COBOL, or PL/I program, you should include these declarations in your
program.

Before you begin

Recommendation: To ensure that your program uses a current description of the
table, use DCLGEN to generate the table's declaration and store it as a member in
a library (usually a partitioned data set) just before you precompile the program.

Procedure

To include declarations from DCLGEN in your program:

Code the following SQL INCLUDE statement in your program:
EXEC SQL

INCLUDE member-name
END-EXEC.

member-name is the name of the data set member where the DCLGEN output is
stored.

Example: Suppose that you used DCLGEN to generate a table declaration and
corresponding COBOL record description for the table DSN8B10.EMP, and those
declarations were stored in the data set member DECEMP. (A COBOL record
description is a two-level host structure that corresponds to the columns of a
table's row.) To include those declarations in your program, include the following
statement in your COBOL program:
EXEC SQL

INCLUDE DECEMP
END-EXEC.

Chapter 3. Coding SQL statements in application programs: General information 133

Related reference:

INCLUDE (DB2 SQL)

Example: Adding DCLGEN declarations to a library
You can use DCLGEN to generate table and variable declarations for C, COBOL,
and PL/I programs. If you store these declarations in a library, you can later
integrate them into your program with a single SQL INCLUDE statement.

This example adds a table declaration and a corresponding host-variable structure
to a library. This example is based on the following scenario:
v The library name is prefix.TEMP.COBOL.
v The member is a new member named VPHONE.
v The table is a local table named DSN8B10.VPHONE.
v The host-variable structure is for COBOL.
v The structure receives the default name DCLVPHONE.

Throughout this example, information that you must enter on each panel is in
bold-faced type.

In this scenario, to add a table declaration and a corresponding host variable
structure for DSN8B10.VPHONE to the library prefix.TEMP.COBOL, complete the
following steps:
1. Specify COBOL as the host language by completing the following actions:

a. On the ISPF/PDF menu, select option D to display the DB2I DEFAULTS
PANEL l panel.

b. Specify IBMCOB as the application language, as shown in the following figure
and press Enter.

The DB2I DEFAULTS PANEL 2 panel for COBOL is then displayed.
c. Complete the DB2I DEFAULTS PANEL 2 panel, shown in the following

figure, as needed and press Enter to save the new defaults, if any.

DSNEOP01 DB2I DEFAULTS PANEL 1
COMMAND ===>_

Change defaults as desired:

1 DB2 NAME ===> DSN (Subsystem identifier)
2 DB2 CONNECTION RETRIES ===> 0 (How many retries for DB2 connection)
3 APPLICATION LANGUAGE ===> IBMCOB (ASM, C, CPP, IBMCOB, FORTRAN, PLI)
4 LINES/PAGE OF LISTING ===> 80 (A number from 5 to 999)
5 MESSAGE LEVEL ===> I (Information, Warning, Error, Severe)
6 SQL STRING DELIMITER ===> DEFAULT (DEFAULT, ’ or ")
7 DECIMAL POINT ===> . (. or ,)
8 STOP IF RETURN CODE >= ===> 8 (Lowest terminating return code)
9 NUMBER OF ROWS ===> 20 (For ISPF Tables)

10 CHANGE HELP BOOK NAMES?===> NO (YES to change HELP data set names)
11 AS USER ===> (Userid to associate with the trusted

connection)

PRESS: ENTER to process END to cancel HELP for more information

Figure 7. DB2I defaults panel—changing the application language

134 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_include.htm#db2z_sql_include

The DB2I Primary Option menu is displayed.
2. Generate the table and host structure declarations by completing the following

actions:
a. On the DB2I Primary Option menu, select the DCLGEN option and press

Enter to display the DCLGEN panel.
b. Complete the fields as shown in the following figure and press Enter.

A successful completion message, such as the one in the following figure, is
displayed at the top of your screen.

DB2 again displays the DCLGEN screen, as shown in the following figure.

DSNEOP02 DB2I DEFAULTS PANEL 2
COMMAND ===>_

Change defaults as desired:

1 DB2I JOB STATEMENT: (Optional if your site has a SUBMIT exit)
===> //ADMF001A JOB (ACCOUNT),’NAME’
===> //*
===> //*
===> //*

COBOL DEFAULTS: (For IBMCOB)
2 COBOL STRING DELIMITER ===> DEFAULT (DEFAULT, ’ or ")
3 DBCS SYMBOL FOR DCLGEN ===> G (G/N - Character in PIC clause)

Figure 8. The COBOL defaults panel. Shown only if the field APPLICATION LANGUAGE on the DB2I DEFAULTS
PANEL l panel is IBMCOB.

DSNEDP01 DCLGEN SSID: DSN
===>

Enter table name for which declarations are required:
1 SOURCE TABLE NAME ===> DSN8B10.VPHONE

2 TABLE OWNER ===>

3 AT LOCATION ===> (Optional)
Enter destination data set: (Can be sequential or partitioned)
4 DATA SET NAME ... ===> TEMP(VPHONEC)
5 DATA SET PASSWORD ===> (If password protected)

Enter options as desired:
6 ACTION ===> ADD (ADD new or REPLACE old declaration)
7 COLUMN LABEL ===> NO (Enter YES for column label)
8 STRUCTURE NAME .. ===> (Optional)
9 FIELD NAME PREFIX ===> (Optional)

10 DELIMIT DBCS ===> YES (Enter YES to delimit DBCS identifiers)
11 COLUMN SUFFIX ... ===> NO (Enter YES to append column name)
12 INDICATOR VARS .. ===> NO (Enter YES for indicator variables)
13 ADDITIONAL OPTIONS===> NO (Enter YES to change additional options)

PRESS: ENTER to process END to exit HELP for more information

Figure 9. DCLGEN panel—selecting source table and destination data set

DSNE905I EXECUTION COMPLETE, MEMBER VPHONEC ADDED

Figure 10. Successful completion message

Chapter 3. Coding SQL statements in application programs: General information 135

c. Press Enter to return to the DB2I Primary Option menu.
3. Exit from DB2I.
4. Examine the DCLGEN output by selecting either the browse or the edit option

from the ISPF/PDF menu to view the results in the specified data set member.
For this example, the data set to edit is prefix.TEMP.COBOL(VPHONEC). This
data set member contains the following information.

***** DCLGEN TABLE(DSN8B10.VPHONE) ***
***** LIBRARY(SYSADM.TEMP.COBOL(VPHONEC)) ***
***** QUOTE ***
***** ... IS THE DCLGEN COMMAND THAT MADE THE FOLLOWING STATEMENTS ***

EXEC SQL DECLARE DSN8B10.VPHONE TABLE
(LASTNAME VARCHAR(15) NOT NULL,

FIRSTNAME VARCHAR(12) NOT NULL,
MIDDLEINITIAL CHAR(1) NOT NULL,
PHONENUMBER VARCHAR(4) NOT NULL,
EMPLOYEENUMBER CHAR(6) NOT NULL,
DEPTNUMBER CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL

) END-EXEC.
***** COBOL DECLARATION FOR TABLE DSN8B10.VPHONE ******

01 DCLVPHONE.
10 LASTNAME.

49 LASTNAME-LEN PIC S9(4) USAGE COMP.
49 LASTNAME-TEXT PIC X(15).

10 FIRSTNAME.
49 FIRSTNAME-LEN PIC S9(4) USAGE COMP.
49 FIRSTNAME-TEXT PIC X(12).

10 MIDDLEINITIAL PIC X(1).
10 PHONENUMBER.

49 PHONENUMBER-LEN PIC S9(4) USAGE COMP.
49 PHONENUMBER-TEXT PIC X(4).

10 EMPLOYEENUMBER PIC X(6).
10 DEPTNUMBER PIC X(3).
10 DEPTNAME.

49 DEPTNAME-LEN PIC S9(4) USAGE COMP.
49 DEPTNAME-TEXT PIC X(36).

***** THE NUMBER OF COLUMNS DESCRIBED BY THIS DECLARATION IS 7 ******

You can now pull these declarations into your program by using an SQL
INCLUDE statement.

DSNEDP01 DCLGEN SSID: DSN
===>

Enter table name for which declarations are required:
1 SOURCE TABLE NAME ===> DSN8B10.VPHONE

2 TABLE OWNER ===>

3 AT LOCATION ===> (Optional)
Enter destination data set: (Can be sequential or partitioned)
4 DATA SET NAME ... ===> TEMP(VPHONEC)
5 DATA SET PASSWORD ===> (If password protected)

Enter options as desired:
6 ACTION ===> ADD (ADD new or REPLACE old declaration)
7 COLUMN LABEL ===> NO (Enter YES for column label)
8 STRUCTURE NAME .. ===> (Optional)
9 FIELD NAME PREFIX ===> (Optional)

10 DELIMIT DBCS ===> YES (Enter YES to delimit DBCS identifiers)
11 COLUMN SUFFIX ... ===> NO (Enter YES to append column name)
12 INDICATOR VARS .. ===> NO (Enter YES for indicator variables)
13 ADDITIONAL OPTIONS===> NO (Enter YES to change additional options)

PRESS: ENTER to process END to exit HELP for more information

Figure 11. DCLGEN panel—displaying system and user return codes

136 Application Programming and SQL Guide

Defining the items that your program can use to check whether an
SQL statement executed successfully

If your program contains SQL statements, the program should define some
infrastructure so that it can check whether the statements executed successfully.
You can either include an SQL communications area (SQLCA), which contains
SQLCODE and SQLSTATE variables, or declare individual SQLCODE and
SQLSTATE host variables.

About this task

Whether you define the SQLCODE or SQLSTATE variables or an SQLCA in your
program depends on what you specify for the SQL processing option STDSQL.

If your application contains SQL statements and does not include an SQL
communications area (SQLCA), you must declare individual SQLCODE and
SQLSTATE host variables. Your program can use these variables to check whether
an SQL statement executed successfully.
Related tasks:
“Defining the SQL communications area, SQLSTATE, and SQLCODE in assembler”
on page 231
“Defining the SQL communications area, SQLSTATE, and SQLCODE in C” on page
251
“Defining the SQL communications area, SQLSTATE, and SQLCODE in COBOL”
on page 301
“Defining the SQL communications area, SQLSTATE, and SQLCODE in Fortran”
on page 373
“Defining the SQL communications area, SQLSTATE, and SQLCODE in PL/I” on
page 385
“Defining the SQL communications area, SQLSTATE, and SQLCODE in REXX” on
page 415
Related reference:
“Descriptions of SQL processing options” on page 931

Description of SQLCA fields (DB2 SQL)

INCLUDE (DB2 SQL)

The REXX SQLCA (DB2 SQL)

Defining SQL descriptor areas
If your program includes certain SQL statements, you must define at least one SQL
descriptor area (SQLDA). Depending on the context in which it is used, the
SQLDA stores information about prepared SQL statements or host variables. This
information can then be read by either the application program or DB2.

About this task

If your program includes any of the following statements, you must include an
SQLDA in your program:
v CALL ... USING DESCRIPTOR descriptor-name
v DESCRIBE statement-name INTO descriptor-name
v DESCRIBE CURSOR host-variable INTO descriptor-name

Chapter 3. Coding SQL statements in application programs: General information 137

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_descriptionofsqlcafields.htm#db2z_descriptionofsqlcafields
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_include.htm#db2z_sql_include
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_therexxsqlca.htm#db2z_therexxsqlca

v DESCRIBE INPUT statement-name INTO descriptor-name
v DESCRIBE PROCEDURE host-variable INTO descriptor-name
v DESCRIBE TABLE host-variable INTO descriptor-name
v EXECUTE ... USING DESCRIPTOR descriptor-name
v FETCH ... INTO DESCRIPTOR descriptor-name
v OPEN ... USING DESCRIPTOR descriptor-name
v PREPARE ... INTO descriptor-name

Unlike the SQLCA, a program can have more than one SQLDA, and an SQLDA
can have any valid name.

Procedure

To define SQL descriptor areas:

Take the actions that are appropriate for the programming language that you use.
Related tasks:
“Defining SQL descriptor areas in assembler” on page 233
“Defining SQL descriptor areas in C” on page 252
“Defining SQL descriptor areas in COBOL” on page 303
“Defining SQL descriptor areas in Fortran” on page 374
“Defining SQL descriptor areas in PL/I” on page 386
“Defining SQL descriptor areas in REXX” on page 415
Related reference:
“Descriptions of SQL processing options” on page 931

Description of SQLCA fields (DB2 SQL)

SQL descriptor area (SQLDA) (DB2 SQL)

The REXX SQLCA (DB2 SQL)

Declaring host variables and indicator variables
You can use host variables and indicator variables in SQL statements in your
program to pass data between DB2 and your application.

Procedure

To declare host variables, host variable arrays, and host structures:

Use the techniques that are appropriate for the programming language that you
use.
Related tasks:
“Accessing data by using a rowset-positioned cursor” on page 724
“Determining whether a retrieved value in a host variable is null or truncated” on
page 151
Related reference:
“Descriptions of SQL processing options” on page 931

Host variables
Use host variables to pass a single data item between DB2 and your application.

138 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_descriptionofsqlcafields.htm#db2z_descriptionofsqlcafields
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sqldescriptorareaintro.htm#db2z_sqldescriptorareaintro
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_therexxsqlca.htm#db2z_therexxsqlca

A host variable is a single data item that is declared in the host language to be used
within an SQL statement. You can use host variables in application programs that
are written in the following languages: assembler, C, C++, COBOL, Fortran, and
PL/I to perform the following actions:
v Retrieve data into the host variable for your application program's use
v Place data into the host variable to insert into a table or to change the contents

of a row
v Use the data in the host variable when evaluating a WHERE or HAVING clause
v Assign the value that is in the host variable to a special register, such as

CURRENT SQLID and CURRENT DEGREE
v Insert null values into columns by using a host indicator variable that contains a

negative value
v Use the data in the host variable in statements that process dynamic SQL, such

as EXECUTE, PREPARE, and OPEN
Related concepts:
“Rules for host variables in an SQL statement” on page 148
Related reference:
“Host variables in assembler” on page 234
“Host variables in C” on page 253
“Host variables in COBOL” on page 304
“Host variables in Fortran” on page 375
“Host variables in PL/I” on page 387

Host variable arrays
Use host variable arrays to pass a data array between DB2 and your application.

A host variable array is a data array that is declared in the host language to be used
within an SQL statement. You can use host variable arrays to perform the
following actions:
v Retrieve data into host variable arrays for your application program's use
v Place data into host variable arrays to insert rows into a table

You typically define host variable arrays for use with multiple-row FETCH,
INSERT, and MERGE statements.
Related concepts:
“Host variable arrays in an SQL statement” on page 156
Related tasks:
“Inserting multiple rows of data from host variable arrays” on page 157
“Retrieving multiple rows of data into host variable arrays” on page 157
Related reference:
“Host variable arrays in C” on page 265
“Host variable arrays in COBOL” on page 314
“Host variable arrays in PL/I” on page 393

Host structures
Use host structures to pass a group of host variables between DB2 and your
application.

Chapter 3. Coding SQL statements in application programs: General information 139

A host structure is a group of host variables that can be referenced with a single
name. You can use host structures in all host languages except REXX. You define
host structures with statements in the host language. You can refer to a host
structure in any context where you want to refer to the list of host variables in the
structure. A host structure reference is equivalent to a reference to each of the host
variables within the structure in the order in which they are defined in the
structure declaration. You can also use indicator variables (or indicator structures)
with host structures.
Related tasks:
“Retrieving a single row of data into a host structure” on page 158
Related reference:
“Host structures in C” on page 273
“Host structures in COBOL” on page 323
“Host structures in PL/I” on page 398

Indicator variables, arrays, and structures
An indicator variable is associated with a particular host variable. Each indicator
variable contains a small integer value that indicates some information about the
associated host variable. Indicator arrays and structures serve the same purpose for
host variable arrays and structures.

You can use indicator variables to perform the following actions:
v Determine whether the value of an associated output host variable is null or

indicate that the value of an input host variable is null
v Determine the original length of a character string that was truncated when it

was assigned to a host variable
v Determine that a character value could not be converted when it was assigned

to a host variable
v Determine the seconds portion of a time value that was truncated when it was

assigned to a host variable
v Indicate that the target column of the host variable is to be set to its defined

DEFAULT value, or that the host variable's value is UNASSIGNED and its target
column is to be treated as if it had not appeared in the statement.

You can use indicator variable arrays and indicator structures to perform these
same actions for individual items in host data arrays and structures.

If you provide an indicator variable for the variable X, when DB2 retrieves a null
value for X, it puts a negative value in the indicator variable and does not update
X. Your program should check the indicator variable before using X. If the
indicator variable is negative, you know that X is null and any value that you find
in X is irrelevant. When your program uses variable X to assign a null value to a
column, the program should set the indicator variable to a negative number. DB2
then assigns a null value to the column and ignores any value in X.

An indicator variable array contains a series of small integers to help you
determine the associated information for the corresponding item in a host data
array. When you retrieve data into a host variable array, you can check the values
in the associated indicator array to determine how to handle each data item. If a
value in the associated indicator array is negative, you can disregard the contents
of the corresponding element in the host variable array. Values in indicator arrays
have the following meanings:

140 Application Programming and SQL Guide

On output to the application, the normal indicator variable can contain the
following values:

0 A 0 (zero), or positive value of the indicator variable specifies that the first
host-identifier provides the value of this host variable reference.

-1 A -1 value indicates that the value that was selected was the null value.

-2 A -2 value of the indicator variable indicates that a numeric conversion
error (such as a divide by 0 or overflow) has occurred. Or indicates a null
result because of character string conversion warnings.

-3 A -3 value of the indicator variable indicates that no value was returned. A
-3 value of the indicator variable can also indicate a null result because the
cursor's current row is on a hole that was detected during a multiple row
FETCH.

positive integer
If the indicator variable contains a positive integer, the retrieved value is
truncated, and the integer is the original length of the string.

positive integer
The seconds portion of a time if the time is truncated on assignment to a
host variable.

On input to DB2, normal indicator variables or extended indicator variables can
contain the following values:

0, or positive integer
Specifies a non-null value. A 0 (zero), or positive value of the indicator
variable specifies that the first host-identifier provides the value of this
host variable reference.

-1, -2, -3, -4, -6
Specifies a null value.

-5

v If the extended indicator variable is not enabled, a -5 value specifies the
NULL value.

v If the extended indicator variable is enabled, a -5 value specifies the
DEFAULT value. A -5 value specifies that the target column for this host
variable is to be set to its DEFAULT value.

-7

v If the extended indicator variable is not enabled, a -7 value specifies the
NULL value.

v If the extended indicator variable is enabled, a -7 value specifies the an
UNASSIGNED value. A -7 value specifies that the target column for this
host variable is to be treated as if it hadn't been specified in the
statement.

An indicator structure is an array of halfword integer variables that supports a
specified host structure. If the column values that your program retrieves into a
host structure can be null, you can attach an indicator structure name to the host
structure name. This name enables DB2 to notify your program about each null
value it returns to a host variable in the host structure.

Chapter 3. Coding SQL statements in application programs: General information 141

Related concepts:
“Holes in the result table of a scrollable cursor” on page 734
Related tasks:
“Executing SQL statements by using a rowset cursor” on page 726
Related reference:
“Indicator variables in assembler” on page 239
“Indicator variables, indicator arrays, and host structure indicator arrays in C” on
page 275
“Indicator variables, indicator arrays, and host structure indicator arrays in
COBOL” on page 328
“Indicator variables in Fortran” on page 378
“Indicator variables in PL/I” on page 400

Setting the CCSID for host variables
All DB2 string data, other than binary data, has an encoding scheme and a coded
character set ID (CCSID) associated with it. You can associate an encoding scheme
and a CCSID with individual host variables. Any data in those host variable is
then associated with that encoding scheme and CCSID.

Procedure

To set the CCSID for host variables:

Specify the DECLARE VARIABLE statement after the corresponding host variable
declaration and before your first reference to that host variable.
This statement associates an encoding scheme and a CCSID with individual host
variables. You can use this statement in static or dynamic SQL applications.

Restriction: You cannot use the DECLARE VARIABLE statement to control the
CCSID and encoding scheme of data that you retrieve or update by using an
SQLDA.
The DECLARE VARIABLE statement has the following effects on a host variable:
v When you use the host variable to update a table, the local subsystem or the

remote server assumes that the data in the host variable is encoded with the
CCSID and encoding scheme that the DECLARE VARIABLE statement assigns.

v When you retrieve data from a local or remote table into the host variable, the
retrieved data is converted to the CCSID and encoding scheme that are assigned
by the DECLARE VARIABLE statement.

Example

Suppose that you are writing a C program that runs on a DB2 for z/OS subsystem.
The subsystem has an EBCDIC application encoding scheme. The C program
retrieves data from the following columns of a local table that is defined with the
CCSID UNICODE option:
PARTNUM CHAR(10)
JPNNAME GRAPHIC(10)
ENGNAME VARCHAR(30)

Because the application encoding scheme for the subsystem is EBCDIC, the
retrieved data is EBCDIC. To make the retrieved data Unicode, use DECLARE
VARIABLE statements to specify that the data that is retrieved from these columns
is encoded in the default Unicode CCSIDs for the subsystem.

142 Application Programming and SQL Guide

Suppose that you want to retrieve the character data in Unicode CCSID 1208 and
the graphic data in Unicode CCSID 1200. Use the following DECLARE VARIABLE
statements:
EXEC SQL BEGIN DECLARE SECTION;
char hvpartnum[11];
EXEC SQL DECLARE :hvpartnum VARIABLE CCSID 1208;
sqldbchar hvjpnname[11];
EXEC SQL DECLARE :hvjpnname VARIABLE CCSID 1200;
struct {

short len;
char d[30];
} hvengname;

EXEC SQL DECLARE :hvengname VARIABLE CCSID 1208;
EXEC SQL END DECLARE SECTION;

Related reference:

DECLARE VARIABLE (DB2 SQL)

Determining what caused an error when retrieving data into a
host variable

Errors that occur when DB2 passes data to host variables in an application are
usually caused by a problem in converting from one data type to another. These
errors do not affect the position of the cursor.

About this task

For example, suppose that you fetch an integer value of 32768 into a host variable
of type SMALLINT. The conversion might cause an error if you do not provide
sufficient conversion information to DB2.

The variable to which DB2 assigns the data is called the output host variable. If you
provide an indicator variable for the output host variable or if data type
conversion is not required, DB2 returns a positive SQLCODE for the row in most
cases. In other cases where data conversion problems occur, DB2 returns a negative
SQLCODE for that row. Regardless of the SQLCODE for the row, no new values
are assigned to the host variable or to subsequent variables for that row. Any
values that are already assigned to variables remain assigned. Even when a
negative SQLCODE is returned for a row, statement processing continues and DB2
returns a positive SQLCODE for the statement (SQLSTATE 01668, SQLCODE
+354).

Procedure

To determine what caused an error when retrieving data into a host variable:
1. When DB2 returns SQLCODE = +354, use the GET DIAGNOSTICS statement

with the NUMBER option to determine the number of errors and warnings.

Example: Suppose that no indicator variables are provided for the values that
are returned by the following statement:
FETCH FIRST ROWSET FROM C1 FOR 10 ROWS INTO :hva_col1, :hva_col2;

For each row with an error, DB2 records a negative SQLCODE and continues
processing until the 10 rows are fetched. When SQLCODE = +354 is returned
for the statement, you can use the GET DIAGNOSTICS statement to determine
which errors occurred for which rows. The following statement returns
num_rows = 10 and num_cond = 3:

Chapter 3. Coding SQL statements in application programs: General information 143

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_declarevariable.htm#db2z_sql_declarevariable

GET DIAGNOSTICS :num_rows = ROW_COUNT, :num_cond = NUMBER;

2. To investigate the errors and warnings, use additional GET DIAGNOSTIC
statements with the CONDITION option.

Example: To investigate the three conditions that were reported in the example
in the previous step, use the following statements:

Table 38. GET DIAGNOSTIC statements to investigate conditions

Statement Output

GET DIAGNOSTICS CONDITION 3 :sqlstate
= RETURNED_SQLSTATE, :sqlcode =
DB2_RETURNED_SQLCODE, :row_num
= DB2_ROW_NUMBER;

sqlstate = 22003
sqlcode = -304
row_num = 5

GET DIAGNOSTICS CONDITION 2 :sqlstate
= RETURNED_SQLSTATE, :sqlcode =
DB2_RETURNED_SQLCODE, :row_num
= DB2_ROW_NUMBER;

sqlstate = 22003
sqlcode = -802
row_num = 7

GET DIAGNOSTICS CONDITION 1 :sqlstate
= RETURNED_SQLSTATE, :sqlcode =
DB2_RETURNED_SQLCODE, :row_num
= DB2_ROW_NUMBER;

sqlstate = 01668
sqlcode = +354
row_num = 0

This output shows that the fifth row has a data mapping error (-304) for
column 1 and that the seventh row has a data mapping error (-802) for column
2. These rows do not contain valid data, and they should not be used.

Related concepts:
“Indicator variables, arrays, and structures” on page 140
Related reference:

GET DIAGNOSTICS (DB2 SQL)
Related information:

+354 (DB2 Codes)

Accessing an application defaults module
If your application program currently uses LOAD DSNHDECP, consider changing
the application program to use the DECP address that is returned by ICFID 373,
DSNALI, or DSNRLI.

About this task

By using the DECP address that is returned by IFCID 373, DSNALI, or DSNRLI,
guarantees that you are using the same DECP module that was used to start DB2.
It also allows the code to skip the LOAD entirely, only after successfully
connecting to DB2. DSNHDECP is loaded by DB2 into Global, pageable storage, so
all programs can share it.

Compatibility of SQL and language data types
The host variable data types that are used in SQL statements must be compatible
with the data types of the columns with which you intend to use them.

When deciding the data types of host variables, consider the following rules and
recommendations:
v Numeric data types are compatible with each other:

144 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_getdiagnostics.htm#db2z_sql_getdiagnostics
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.codes/src/tpc/p354.htm#p354

Assembler: A SMALLINT, INTEGER, BIGINT, DECIMAL, or FLOAT column is
compatible with a numeric assembler host variable.
Fortran: An INTEGER column is compatible with any Fortran host variable that
is defined as INTEGER*2, INTEGER*4, REAL, REAL*4, REAL*8, or DOUBLE
PRECISION.
PL/I: A SMALLINT, INTEGER, BIGINT, DECIMAL, or FLOAT column is
compatible with a PL/I host variable of BIN FIXED(15), BIN FIXED(31),
DECIMAL(s,p), or BIN FLOAT(n), where n is from 1 to 53, or DEC FLOAT(m)
where m is from 1 to 16.

v Character data types are compatible with each other:
Assembler: A CHAR, VARCHAR, or CLOB column is compatible with a
fixed-length or varying-length assembler character host variable.
C/C++: A CHAR, VARCHAR, or CLOB column is compatible with a
single-character, NUL-terminated, or VARCHAR structured form of a C
character host variable.
COBOL: A CHAR, VARCHAR, or CLOB column is compatible with a
fixed-length or varying-length COBOL character host variable.
Fortran: A CHAR, VARCHAR, or CLOB column is compatible with Fortran
character host variable.
PL/I: A CHAR, VARCHAR, or CLOB column is compatible with a fixed-length
or varying-length PL/I character host variable.

v Character data types are partially compatible with CLOB locators. You can
perform the following assignments:
– Assign a value in a CLOB locator to a CHAR or VARCHAR column
– Use a SELECT INTO statement to assign a CHAR or VARCHAR column to a

CLOB locator host variable.
– Assign a CHAR or VARCHAR output parameter from a user-defined function

or stored procedure to a CLOB locator host variable.
– Use a SET assignment statement to assign a CHAR or VARCHAR transition

variable to a CLOB locator host variable.
– Use a VALUES INTO statement to assign a CHAR or VARCHAR function

parameter to a CLOB locator host variable.

However, you cannot use a FETCH statement to assign a value in a CHAR or
VARCHAR column to a CLOB locator host variable.

v Graphic data types are compatible with each other:
Assembler: A GRAPHIC, VARGRAPHIC, or DBCLOB column is compatible
with a fixed-length or varying-length assembler graphic character host variable.
C/C++: A GRAPHIC, VARGRAPHIC, or DBCLOB column is compatible with a
single character, NUL-terminated, or VARGRAPHIC structured form of a C
graphic host variable.
COBOL: A GRAPHIC, VARGRAPHIC, or DBCLOB column is compatible with a
fixed-length or varying-length COBOL graphic string host variable.
PL/I: A GRAPHIC, VARGRAPHIC, or DBCLOB column is compatible with a
fixed-length or varying-length PL/I graphic character host variable.

v Graphic data types are partially compatible with DBCLOB locators. You can
perform the following assignments:
– Assign a value in a DBCLOB locator to a GRAPHIC or VARGRAPHIC

column
– Use a SELECT INTO statement to assign a GRAPHIC or VARGRAPHIC

column to a DBCLOB locator host variable.

Chapter 3. Coding SQL statements in application programs: General information 145

– Assign a GRAPHIC or VARGRAPHIC output parameter from a user-defined
function or stored procedure to a DBCLOB locator host variable.

– Use a SET assignment statement to assign a GRAPHIC or VARGRAPHIC
transition variable to a DBCLOB locator host variable.

– Use a VALUES INTO statement to assign a GRAPHIC or VARGRAPHIC
function parameter to a DBCLOB locator host variable.

However, you cannot use a FETCH statement to assign a value in a GRAPHIC
or VARGRAPHIC column to a DBCLOB locator host variable.

v Binary data types are compatible with each other.
v Binary data types are partially compatible with BLOB locators. You can perform

the following assignments:
– Assign a value in a BLOB locator to a BINARY or VARBINARY column.
– Use a SELECT INTO statement to assign a BINARY or VARBINARY column

to a BLOB locator host variable.
– Assign a BINARY or VARBINARY output parameter from a user-defined

function or stored procedure to a BLOB locator host variable.
– Use a SET assignment statement to assign a BINARY or VARBINARY

transition variable to a BLOB locator host variable.
– Use a VALUES INTO statement to assign a BINARY or VARBINARY function

parameter to a BLOB locator host variable.

However, you cannot use a FETCH statement to assign a value in a BINARY or
VARBINARY column to a BLOB locator host variable.

v Fortran: A BINARY, VARBINARY, or BLOB column or BLOB locator is
compatible only with a BLOB host variable.

v C: For varying-length BIT data, use BINARY. Some C string manipulation
functions process NUL-terminated strings and other functions process strings
that are not NUL-terminated. The C string manipulation functions that process
NUL-terminated strings cannot handle bit data because these functions might
misinterpret a NUL character to be a NUL-terminator.

v Datetime data types are compatible with character host variables.
Assembler: A DATE, TIME, or TIMESTAMP column is compatible with a
fixed-length or varying-length assembler character host variable.
C/C++: A DATE, TIME, or TIMESTAMP column is compatible with a
single-character, NUL-terminated, or VARCHAR structured form of a C
character host variable.
COBOL: A DATE, TIME, or TIMESTAMP column is compatible with a
fixed-length or varying length COBOL character host variable.
Fortran: A DATE, TIME, or TIMESTAMP column is compatible with a Fortran
character host variable.
PL/I: A DATE, TIME, or TIMESTAMP column is compatible with a fixed-length
or varying-length PL/I character host variable.

v The ROWID column is compatible only with a ROWID host variable.
v A host variable is compatible with a distinct type if the host variable type is

compatible with the source type of the distinct type.
v XML columns are compatible with the XML host variable types, character types,

and binary string types.

Recommendation: Use the XML host variable types for data from XML
columns.

146 Application Programming and SQL Guide

v Assembler:You can assign LOB data to a file reference variable (BLOB_FILE,
CLOB_FILE, and DBCLOB_FILE).

When necessary, DB2 automatically converts a fixed-length string to a
varying-length string, or a varying-length string to a fixed-length string.
Related concepts:
“Distinct types” on page 493
“Host variable data types for XML data in embedded SQL applications” on page
219
Related reference:
“Equivalent SQL and assembler data types” on page 240
“Equivalent SQL and C data types” on page 280
“Equivalent SQL and COBOL data types” on page 331
“Equivalent SQL and Fortran data types” on page 379
“Equivalent SQL and PL/I data types” on page 401
“Equivalent SQL and REXX data types” on page 416

Embedding SQL statements in your application
You can code SQL statements in an assembler, C, C++, COBOL, Fortran, or PL/I
program or REXX procedure wherever you can use executable statements.

Procedure

To embed SQL statements in your application:

Take action based on the program language that you use.
Related concepts:
“SQL statements in assembler programs” on page 245
“SQL statements in C programs” on page 285
“SQL statements in COBOL programs” on page 336
“SQL statements in Fortran programs” on page 381
“SQL statements in PL/I programs” on page 405
“SQL statements in REXX programs” on page 417

Delimiting an SQL statement
You must delimit SQL statements in your program so that DB2 knows when a
particular SQL statement ends.

Procedure

To delimit an SQL statement:

Take action based on the programming language that you use.

Chapter 3. Coding SQL statements in application programs: General information 147

Related concepts:
“Delimiters in SQL statements in assembler programs” on page 250
“Delimiters in SQL statements in C programs” on page 289
“Delimiters in SQL statements in COBOL programs” on page 342
“Delimiters in SQL statements in Fortran programs” on page 384
“Delimiters in SQL statements in PL/I programs” on page 410
“Delimiters in SQL statements in REXX programs” on page 420

Rules for host variables in an SQL statement
Use host variables in embedded SQL statements to represent a single value. Host
variables are useful for storing retrieved data or for passing values that are to be
assigned or used for comparisons.

When you use host variables, adhere to the following requirements:
v You must declare the name of the host variable in the host program before you

use it. Host variables follow the naming conventions of the host language.
v You can use a host variable to represent a data value, but you cannot use it to

represent a table, view, or column name. You can specify table, view, or column
names at run time by using dynamic SQL.

v To use a host variable in an SQL statement, you can specify any valid host
variable name that is declared according to the rules of the host language.

v A colon (:) must precede host variables that are used in SQL statements so that
DB2 can distinguish a variable name from a column name. When host variables
are used outside of SQL statements, do not precede them with a colon. PL/I
programs have the following exceptions: If the SQL statement meets any of the
following conditions, do not precede a host variable or host variable array in
that statement with a colon:
– The SQL statement is in a program that also contains a DECLARE VARIABLE

statement.
– The host variable is part of a string expression, but the host variable is not the

only component of the string expression.
v To optimize performance, make sure that the host language declaration maps as

closely as possible to the data type of the associated data in the database.
v For assignments and comparisons between a DB2 column and a host variable of

a different data type or length, expect conversions to occur.
Related concepts:
“Dynamic SQL” on page 159

Assignment and comparison (DB2 SQL)

Retrieving a single row of data into host variables
If you know that your query returns only one row, you can specify one or more
host variables to contain the column values of the retrieved row.

About this task

Restriction: These instructions do not apply if you do not know how many rows
DB2 will return or if you expect DB2 to return more than one row. In these
situations, use a cursor. A cursor enables an application to return a set of rows and
fetch either one row at a time or one rowset at a time from the result table.

148 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_assignmentandcomparison.htm#db2z_assignmentandcomparison

Procedure

To retrieve a single row of data into host variables:

In the SELECT statement specify the INTO clause with the name of one or more
host variables to contain the retrieved values. Specify one variable for each value
that is to be retrieved. The retrieved value can be a column value, a value of a host
variable, the result of an expression, or the result of an aggregate function.

Recommendation: If you want to ensure that only one row is returned, specify the
FETCH FIRST 1 ROW ONLY clause. Consider using the ORDER BY clause to
control which row is returned. If you specify both the ORDER BY clause and the
FETCH FIRST clause, ordering is performed on the entire result set before the first
row is returned.
DB2 assigns the first value in the result row to the first variable in the list, the
second value to the second variable, and so on.
If the SELECT statement returns more than one row, DB2 returns an error, and any
data that is returned is undefined and unpredictable.

Examples

Example of retrieving a single row into a host variable: Suppose that you are
retrieving the LASTNAME and WORKDEPT column values from the
DSN8B10.EMP table for a particular employee. You can define a host variable in
your program to hold each column value and then name the host variables in the
INTO clause of the SELECT statement, as shown in the following COBOL example.
MOVE ’000110’ TO CBLEMPNO.
EXEC SQL

SELECT LASTNAME, WORKDEPT
INTO :CBLNAME, :CBLDEPT
FROM DSN8B10.EMP
WHERE EMPNO = :CBLEMPNO

END-EXEC.

In this example, the host variable CBLEMPNO is preceded by a colon (:) in the
SQL statement, but it is not preceded by a colon in the COBOL MOVE statement.

This example also uses a host variable to specify a value in a search condition. The
host variable CBLEMPNO is defined for the employee number, so that you can
retrieve the name and the work department of the employee whose number is the
same as the value of the host variable, CBLEMPNO; in this case, 000110.

In the DATA DIVISION section of a COBOL program, you must declare the host
variables CBLEMPNO, CBLNAME, and CBLDEPT to be compatible with the data
types in the columns EMPNO, LASTNAME, and WORKDEPT of the
DSN8B10.EMP table.

Example of ensuring that a query returns only a single row: You can use the
FETCH FIRST 1 ROW ONLY clause in a SELECT statement to ensure that only one
row is returned. This action prevents undefined and unpredictable data from being
returned when you specify the INTO clause of the SELECT statement. The
following example SELECT statement ensures that only one row of the
DSN8B10.EMP table is returned.

Chapter 3. Coding SQL statements in application programs: General information 149

EXEC SQL
SELECT LASTNAME, WORKDEPT

INTO :CBLNAME, :CBLDEPT
FROM DSN8B10.EMP
FETCH FIRST 1 ROW ONLY

END-EXEC.

You can include an ORDER BY clause in the preceding example to control which
row is returned. The following example SELECT statement ensures that the only
row returned is the one with a last name that is first alphabetically.
EXEC SQL

SELECT LASTNAME, WORKDEPT
INTO :CBLNAME, :CBLDEPT
FROM DSN8810.EMP
ORDER BY LASTNAME
FETCH FIRST 1 ROW ONLY

END-EXEC.

Example of retrieving the results of host variable values and expressions into
host variables:

When you specify a list of items in the SELECT clause, that list can include more
than the column names of tables and views. You can request a set of column
values mixed with host variable values and constants. For example, the following
query requests the values of several columns (EMPNO, LASTNAME, and
SALARY), the value of a host variable (RAISE), and the value of the sum of a
column and a host variable (SALARY and RAISE). For each of these five items in
the SELECT list, a host variable is listed in the INTO clause.
MOVE 4476 TO RAISE.
MOVE ’000220’ TO PERSON.
EXEC SQL

SELECT EMPNO, LASTNAME, SALARY, :RAISE, SALARY + :RAISE
INTO :EMP-NUM, :PERSON-NAME, :EMP-SAL, :EMP-RAISE, :EMP-TTL
FROM DSN8B10.EMP
WHERE EMPNO = :PERSON

END-EXEC.

The preceding SELECT statement returns the following results. The column
headings represent the names of the host variables.
EMP-NUM PERSON-NAME EMP-SAL EMP-RAISE EMP-TTL
======= =========== ======= ========= =======
000220 LUTZ 29840 4476 34316

Example of retrieving the result of an aggregate function into a host variable: A
query can request summary values to be returned from aggregate functions and
store those values in host variables. For example, the following query requests that
the result of the AVG function be stored in the AVG-SALARY host variable.
MOVE ’D11’ TO DEPTID.
EXEC SQL

SELECT WORKDEPT, AVG(SALARY)
INTO :WORK-DEPT, :AVG-SALARY
FROM DSN8B10.EMP
WHERE WORKDEPT = :DEPTID

END-EXEC.

150 Application Programming and SQL Guide

Related tasks:
“Retrieving a set of rows by using a cursor” on page 715
Related reference:

SELECT INTO (DB2 SQL)

Determining whether a retrieved value in a host variable is
null or truncated

Before your application manipulates the data that was retrieved from DB2 into a
host variable, determine if the value is null. Also determine if it was truncated
when assigned to the variable. You can use indicator variables to obtain this
information.

Before you begin

Before you determine whether a retrieved column value is null or truncated, you
must have defined the appropriate indicator variables, arrays, and structures.

About this task

An error occurs if you do not use an indicator variable and DB2 retrieves a null
value.

Procedure

To determine whether a retrieved value in a host variable is null or truncated:

Determine the value of the indicator variable, array, or structure that is associated
with the host variable, array, or structure. Those values have the following
meanings:

Table 39. Meanings of values in indicator variables

Value of indicator variable Meaning

Less than zero The column value is null. The value of the
host variable does not change from its
previous value.

If the indicator variable value is -2, the
column value is null because of a numeric or
character conversion error,

Zero The column value is nonnull. If the column
value is a character string, the retrieved
value is not truncated.

Positive integer The retrieved value is truncated. The integer
is the original length of the string.

Examples

Example of testing an indicator variable: Assume that you have defined the
following indicator variable INDNULL for the host variable CBLPHONE.

Chapter 3. Coding SQL statements in application programs: General information 151

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_selectinto.htm#db2z_sql_selectinto

EXEC SQL
SELECT PHONENO

INTO :CBLPHONE:INDNULL
FROM DSN8B10.EMP
WHERE EMPNO = :EMPID

END-EXEC.

You can then test INDNULL for a negative value. If the value is negative, the
corresponding value of PHONENO is null, and you can disregard the contents of
CBLPHONE.

Example of testing an indicator variable array: Suppose that you declare the
following indicator array INDNULL for the host variable array CBLPHONE.
EXEC SQL

FETCH NEXT ROWSET CURS1
FOR 10 ROWS
INTO :CBLPHONE :INDNULL

END-EXEC.

After the multiple-row FETCH statement, you can test each element of the
INDNULL array for a negative value. If an element is negative, you can disregard
the contents of the corresponding element in the CBLPHONE host variable array.

Example of testing an indicator structure in COBOL: The following example
defines the indicator structure EMP-IND as an array that contains six values and
corresponds to the PEMP-ROW host structure.
01 PEMP-ROW.

10 EMPNO PIC X(6).
10 FIRSTNME.

49 FIRSTNME-LEN PIC S9(4) USAGE COMP.
49 FIRSTNME-TEXT PIC X(12).

10 MIDINIT PIC X(1).
10 LASTNAME.

49 LASTNAME-LEN PIC S9(4) USAGE COMP.
49 LASTNAME-TEXT PIC X(15).

10 WORKDEPT PIC X(3).
10 EMP-BIRTHDATE PIC X(10).

01 INDICATOR-TABLE.
02 EMP-IND PIC S9(4) COMP OCCURS 6 TIMES....

MOVE ’000230’ TO EMPNO....
EXEC SQL

SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT, BIRTHDATE
INTO :PEMP-ROW:EMP-IND
FROM DSN8B10.EMP
WHERE EMPNO = :EMPNO

END-EXEC.

You can test the indicator structure EMP-IND for negative values. If, for example,
EMP-IND(6) contains a negative value, the corresponding host variable in the host
structure (EMP-BIRTHDATE) contains a null value.

152 Application Programming and SQL Guide

Related concepts:
“Arithmetic and conversion errors” on page 217
Related tasks:
“Declaring host variables and indicator variables” on page 138

Determining whether a column value is null
Before you retrieve a column value, you might first want to determine if the
column value is null.

Procedure

To determine whether a column value is null:

Use the IS NULL predicate or the IS DISTINCT FROM predicate.

Restriction: You cannot determine whether a column value is null by comparing it
to a host variable with an indicator variable that is set to -1.

Example

The following code, which uses an indicator variable, does not select the
employees who have no phone number:
MOVE -1 TO PHONE-IND.
EXEC SQL

SELECT LASTNAME
INTO :PGM-LASTNAME
FROM DSN8B10.EMP
WHERE PHONENO = :PHONE-HV:PHONE-IND

END-EXEC.

Instead, use the following statement with the IS NULL predicate to select
employees who have no phone number:
EXEC SQL

SELECT LASTNAME
INTO :PGM-LASTNAME
FROM DSN8B10.EMP
WHERE PHONENO IS NULL

END-EXEC.

To select employees whose phone numbers are equal to the value of :PHONE-HV
and employees who have no phone number (as in the second example), code two
predicates, one to handle the non-null values and another to handle the null
values, as in the following statement:
EXEC SQL

SELECT LASTNAME
INTO :PGM-LASTNAME
FROM DSN8B10.EMP
WHERE (PHONENO = :PHONE-HV AND PHONENO IS NOT NULL AND :PHONE-HV IS NOT NULL)

OR
(PHONENO IS NULL AND :PHONE-HV:PHONE-IND IS NULL)

END-EXEC.

You can simplify the preceding example by coding the following statement with
the NOT form of the IS DISTINCT FROM predicate:

Chapter 3. Coding SQL statements in application programs: General information 153

EXEC SQL
SELECT LASTNAME

INTO :PGM-LASTNAME
FROM DSN8B10.EMP
WHERE PHONENO IS NOT DISTINCT FROM :PHONE-HV:PHONE-IND

END-EXEC.

Related tasks:
“Declaring host variables and indicator variables” on page 138
Related reference:

DISTINCT predicate (DB2 SQL)

NULL predicate (DB2 SQL)

Updating data by using host variables
When you want to update a value in a DB2 table, but you do not know the exact
value until the program runs, use host variables. DB2 can change a table value to
match the current value of the host variable.

Procedure

To update data by using host variables:
1. Declare the necessary host variables.
2. Specify an UPDATE statement with the appropriate host variable names in the

SET clause.

Examples

Example of updating a single row by using a host variable: The following
COBOL example changes an employee's phone number to the value in the
NEWPHONE host variable. The employee ID value is passed through the EMPID
host variable.
MOVE ’4246’ TO NEWPHONE.
MOVE ’000110’ TO EMPID.
EXEC SQL

UPDATE DSN8B10.EMP
SET PHONENO = :NEWPHONE
WHERE EMPNO = :EMPID

END-EXEC.

Example of updating multiple rows by using a host variable value in the search
condition: The following example gives the employees in a particular department
a salary increase of 10%. The department value is passed through the DEPTID host
variable.
MOVE ’D11’ TO DEPTID.
EXEC SQL

UPDATE DSN8B10.EMP
SET SALARY = 1.10 * SALARY
WHERE WORKDEPT = :DEPTID

END-EXEC.

Related reference:

UPDATE (DB2 SQL)

Inserting a single row by using a host variable
Use host variables in your INSERT statement when you don't know at least some
of the values to insert until the program runs.

154 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_distinctpredicate.htm#db2z_distinctpredicate
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_nullpredicate.htm#db2z_nullpredicate
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_update.htm#db2z_sql_update

About this task

Restriction: These instructions apply only to inserting a single row. If you want to
insert multiple rows, use host variable arrays or the form of the INSERT statement
that selects values from another table or view.

Procedure

To insert a single row by using host variables:

Specify an INSERT statement with column values in the VALUES clause. Specify
host variables or a combination of host variables and constants as the column
values.
DB2 inserts the first value into the first column in the list, the second value into
the second column, and so on.

Example

The following example uses host variables to insert a single row into the activity
table.
EXEC SQL

INSERT INTO DSN8B10.ACT
VALUES (:HV-ACTNO, :HV-ACTKWD, :HV-ACTDESC)

END-EXEC.

Related tasks:
“Inserting multiple rows of data from host variable arrays” on page 157
Related reference:

INSERT (DB2 SQL)

Inserting null values into columns by using indicator variables
or arrays

If you need to insert null values into a column, using an indicator variable or array
is an easy way to do so. An indicator variable or array is associated with a
particular host variable or array.

Procedure

To insert null values into columns by using indicator variables or arrays:
1. Define an indicator variable or array for a particular host variable or array.
2. Assign a negative value to the indicator variable or array.
3. Issue the appropriate INSERT, UPDATE, or MERGE statement with the host

variable or array and its indicator variable or array.
When DB2 processes INSERT, UPDATE, and MERGE statements, it checks the
indicator variable if one exists. If the indicator variable is negative, the column
value is null. If the indicator variable is greater than -1, the associated host
variable contains a value for the column.

Examples

Example of setting a column value to null by using an indicator
variable: Suppose your program reads an employee ID and a new phone number
and must update the employee table with the new number. The new number could
be missing if the old number is incorrect, but a new number is not yet available. If

Chapter 3. Coding SQL statements in application programs: General information 155

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_insert.htm#db2z_sql_insert

the new value for column PHONENO might be null, you can use an indicator
variable, as shown in the following UPDATE statement.
EXEC SQL

UPDATE DSN8B10.EMP
SET PHONENO = :NEWPHONE:PHONEIND
WHERE EMPNO = :EMPID

END-EXEC.

When NEWPHONE contains a non-null value, set the indicator variable
PHONEIND to zero by preceding the UPDATE statement with the following line:
MOVE 0 TO PHONEIND.

When NEWPHONE contains a null value, set PHONEIND to a negative value by
preceding the UPDATE statement with the following line:
MOVE -1 TO PHONEIND.

Example of setting a column value to null by using an indicator variable
array: Assume that host variable arrays hva1 and hva2 have been populated with
values that are to be inserted into the ACTNO and ACTKWD columns. Assume the
ACTDESC column allows nulls. To set the ACTDESC column to null, assign -1 to
the elements in its indicator array, ind3, as shown in the following example:
/* Initialize each indicator array */
for (i=0; i<10; i++) {

ind1[i] = 0;
ind2[i] = 0;
ind3[i] = -1;

}

EXEC SQL
INSERT INTO DSN8B10.ACT

(ACTNO, ACTKWD, ACTDESC)
VALUES (:hva1:ind1, :hva2:ind2, :hva3:ind3)
FOR 10 ROWS;

DB2 ignores the values in the hva3 array and assigns the values in the ARTDESC
column to null for the 10 rows that are inserted.
Related tasks:
“Declaring host variables and indicator variables” on page 138

Host variable arrays in an SQL statement
Use host variable arrays in embedded SQL statements to represent values that the
program does not know until the query is executed. Host variable arrays are useful
for storing a set of retrieved values or for passing a set of values that are to be
inserted into a table.

To use a host variable array in an SQL statement, specify any valid host variable
array that is declared according to the host language rules. You can specify host
variable arrays in C or C++, COBOL, and PL/I. You must declare the array in the
host program before you use it.

Restrictions: Use of host variable arrays in assembler programs is limited in the
following:
v The DB2 precompiler does not recognize declarations of host variable arrays for

assembler, it recognizes these declarations only in C, COBOL, and PL/I.
v Assembler does not support multiple-row MERGE. You cannot specify MERGE

statements that reference host variable arrays.

156 Application Programming and SQL Guide

v Assembler support for multiple-row FETCH is limited to the FETCH statement
with the INTO DESCRIPTOR clause. For example:
EXEC SQL FETCH NEXT ROWSET FROM C1 FOR 10 ROWS X

INTO DESCRIPTOR :SQLDA

v Assembler support for multiple-row INSERT is limited to the following cases:
– Static multiple-row INSERT statement with scalar values (scalar host variables

or scalar expressions) in the VALUES clause. For example:
EXEC SQL INSERT INTO T1 VALUES (1, CURRENT DATE, ’TEST’) X

FOR 10 ROWS

– Dynamic multiple-row INSERT executed with the USING DESCRIPTOR
clause on the EXECUTE statement. For example:
ATR DS CL20 ATTRIBUTES FOR PREPARE
S1 DS H,CL30 VARCHAR STATEMENT STRING

MVC ATR(20),=C’FOR MULTIPLE ROWS ’
MVC S1(2),=H’25’
MVC S1+2(30),=C’INSERT INTO T1 VALUES (?) ’
EXEC SQL PREPARE STMT ATTRIBUTES :ATR FROM :S1
EXEC SQL EXECUTE STMT USING DESCRIPTOR :SQLDA FOR 10 ROWS

where the descriptor is set up correctly in advance according to the
specifications for dynamic execution of a multiple-row INSERT statement
with a descriptor

Related concepts:
“Host variable arrays” on page 139
Related tasks:
“Embedding SQL statements in your application” on page 147
“Inserting multiple rows of data from host variable arrays”
“Retrieving multiple rows of data into host variable arrays”

Retrieving multiple rows of data into host variable arrays
If you know that your query returns multiple rows, you can specify host variable
arrays to store the retrieved column values.

About this task

You can use host variable arrays to specify a program data area to contain multiple
rows of column values. A DB2 rowset cursor enables an application to retrieve and
process a set of rows from the result table of the cursor.
Related concepts:
“Host variable arrays in an SQL statement” on page 156
“Host variable arrays” on page 139
Related tasks:
“Accessing data by using a rowset-positioned cursor” on page 724
“Inserting multiple rows of data from host variable arrays”

Inserting multiple rows of data from host variable arrays
Use host variable arrays in your INSERT statement when you do not know at least
some of the values to insert until the program runs.

About this task

You can use a form of the INSERT statement or MERGE statement to insert
multiple rows from values that are provided in host variable arrays. Each array
contains values for a column of the target table. The first value in an array

Chapter 3. Coding SQL statements in application programs: General information 157

corresponds to the value for that column for the first inserted row, the second
value in the array corresponds to the value for the column in the second inserted
row, and so on. DB2 determines the attributes of the values based on the
declaration of the array.

Example

You can insert the number of rows that are specified in the host variable
NUM-ROWS by using the following INSERT statement:
EXEC SQL

INSERT INTO DSN8B10.ACT
(ACTNO, ACTKWD, ACTDESC)
VALUES (:HVA1, :HVA2, :HVA3)
FOR :NUM-ROWS ROWS

END-EXEC.

Assume that the host variable arrays HVA1, HVA2, and HVA3 have been declared
and populated with the values that are to be inserted into the ACTNO, ACTKWD,
and ACTDESC columns. The NUM-ROWS host variable specifies the number of
rows that are to be inserted, which must be less than or equal to the dimension of
each host variable array.
Related tasks:
“Retrieving multiple rows of data into host variable arrays” on page 157

Retrieving a single row of data into a host structure
If you know that your query returns multiple column values for only one row, you
can specify a host structure to contain the column values.

About this task

In the following example, assume that your COBOL program includes the
following SQL statement:
EXEC SQL

SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT
INTO :EMPNO, :FIRSTNME, :MIDINIT, :LASTNAME, :WORKDEPT
FROM DSN8B10.VEMP
WHERE EMPNO = :EMPID

END-EXEC.

If you want to avoid listing host variables, you can substitute the name of a
structure, say :PEMP, that contains :EMPNO, :FIRSTNME, :MIDINIT, :LASTNAME,
and :WORKDEPT. The example then reads:
EXEC SQL

SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT
INTO :PEMP
FROM DSN8B10.VEMP
WHERE EMPNO = :EMPID

END-EXEC.

You can declare a host structure yourself, or you can use DCLGEN to generate a
COBOL record description, PL/I structure declaration, or C structure declaration
that corresponds to the columns of a table.

158 Application Programming and SQL Guide

Related concepts:
“DCLGEN (declarations generator)” on page 125
“Host structures” on page 139
“Example: Adding DCLGEN declarations to a library” on page 134

Including dynamic SQL in your program
Dynamic SQL is prepared and executed while the program is running. Before you
use dynamic SQL, you should consider whether static SQL or dynamic SQL is the
best technique for your application. Also consider the type of dynamic SQL that
you want to use.

Dynamic SQL
Dynamic SQL statements are prepared and executed while the program is running.
Use dynamic SQL when you do not know what SQL statements your application
needs to execute before run time.

Before you decide to use dynamic SQL, you should consider whether using static
SQL or dynamic SQL is the best technique for your application.

For most DB2 users, static SQL, which is embedded in a host language program
and bound before the program runs, provides a straightforward, efficient path to
DB2 data. You can use static SQL when you know before run time what SQL
statements your application needs to execute.

Dynamic SQL prepares and executes the SQL statements within a program, while
the program is running. Four types of dynamic SQL are:
v Interactive SQL

A user enters SQL statements through SPUFI or the command line processor.
DB2 prepares and executes those statements as dynamic SQL statements.

v Embedded dynamic SQL
Your application puts the SQL source in host variables and includes PREPARE
and EXECUTE statements that tell DB2 to prepare and run the contents of those
host variables at run time. You must precompile and bind programs that include
embedded dynamic SQL.

v Deferred embedded SQL
Deferred embedded SQL statements are neither fully static nor fully dynamic.
Like static statements, deferred embedded SQL statements are embedded within
applications, but like dynamic statements, they are prepared at run time. DB2
processes deferred embedded SQL statements with bind-time rules. For example,
DB2 uses the authorization ID and qualifier determined at bind time as the plan
or package owner.

v Dynamic SQL executed through ODBC functions
Your application contains ODBC function calls that pass dynamic SQL
statements as arguments. You do not need to precompile and bind programs
that use ODBC function calls.

Differences between static and dynamic SQL:

Static and dynamic SQL are each appropriate for different circumstances. You
should consider the differences between the two when determining whether static
SQL or dynamic SQL is best for your application.

Chapter 3. Coding SQL statements in application programs: General information 159

Flexibility of static SQL with host variables

When you use static SQL, you cannot change the form of SQL statements unless
you make changes to the program. However, you can increase the flexibility of
static statements by using host variables.

Example: In the following example, the UPDATE statement can update the salary
of any employee. At bind time, you know that salaries must be updated, but you
do not know until run time whose salaries should be updated, and by how much.
01 IOAREA.

02 EMPID PIC X(06).
02 NEW-SALARY PIC S9(7)V9(2) COMP-3....

(Other declarations)
READ CARDIN RECORD INTO IOAREA

AT END MOVE ’N’ TO INPUT-SWITCH....
(Other COBOL statements)
EXEC SQL

UPDATE DSN8B10.EMP
SET SALARY = :NEW-SALARY
WHERE EMPNO = :EMPID

END-EXEC.

The statement (UPDATE) does not change, nor does its basic structure, but the
input can change the results of the UPDATE statement.

Flexibility of dynamic SQL

What if a program must use different types and structures of SQL statements? If
there are so many types and structures that it cannot contain a model of each one,
your program might need dynamic SQL.

You can use one of the following programs to execute dynamic SQL:

DB2 Query Management Facility™ (DB2 QMF™)
Provides an alternative interface to DB2 that accepts almost any SQL statement

SPUFI
Accepts SQL statements from an input data set, and then processes and
executes them dynamically

command line processor
Accepts SQL statements from a UNIX System Services environment.

Limitations of dynamic SQL

You cannot use some of the SQL statements dynamically.

Dynamic SQL processing

A program that provides for dynamic SQL accepts as input, or generates, an SQL
statement in the form of a character string. You can simplify the programming if
you can plan the program not to use SELECT statements, or to use only those that
return a known number of values of known types. In the most general case, in
which you do not know in advance about the SQL statements that will execute, the
program typically takes these steps:
1. Translates the input data, including any parameter markers, into an SQL

statement

160 Application Programming and SQL Guide

2. Prepares the SQL statement to execute and acquires a description of the result
table

3. Obtains, for SELECT statements, enough main storage to contain retrieved data
4. Executes the statement or fetches the rows of data
5. Processes the information returned
6. Handles SQL return codes.

Performance of static and dynamic SQL

To access DB2 data, an SQL statement requires an access path. Two big factors in
the performance of an SQL statement are the amount of time that DB2 uses to
determine the access path at run time and whether the access path is efficient. DB2
determines the access path for a statement at either of these times:
v When you bind the plan or package that contains the SQL statement
v When the SQL statement executes

The time at which DB2 determines the access path depends on these factors:
v Whether the statement is executed statically or dynamically
v Whether the statement contains input host variables
v Whether the statement contains a declared global temporary table.

Static SQL statements with no input host variables

For static SQL statements that do not contain input host variables, DB2 determines
the access path when you bind the plan or package. This combination yields the
best performance because the access path is already determined when the program
executes.

Static SQL statements with input host variables

For static SQL statements that have input host variables, the time at which DB2
determines the access path depends on which bind option you specify:
REOPT(NONE) or REOPT(ALWAYS). REOPT(NONE) is the default. Do not specify
REOPT(AUTO) or REOPT(ONCE); these options are applicable only to dynamic
statements. DB2 ignores REOPT(ONCE) and REOPT(AUTO) for static SQL
statements, because DB2 only caches dynamic statements.

If you specify REOPT(NONE), DB2 determines the access path at bind time, just as
it does when there are no input variables.

DB2 ignores REOPT(ONCE) for static SQL statements because DB2 can cache only
dynamic SQL statements

If you specify REOPT(ALWAYS), DB2 determines the access path at bind time and
again at run time, using the values in these types of input variables:
v Host variables
v Parameter markers
v Special registers

This means that DB2 must spend extra time determining the access path for
statements at run time, but if DB2 determines a significantly better access path
using the variable values, you might see an overall performance improvement.
With REOPT(ALWAYS), DB2 optimizes statements using known literal values.
Knowing the literal values can help DB2 to choose a more efficient access path

Chapter 3. Coding SQL statements in application programs: General information 161

when the columns contain skewed data. DB2 can also recognize which partitions
qualify if there are search conditions with host variables on the limit keys of
partitioned table spaces.

With REOPT(ALWAYS) DB2 does not start the optimization over from the
beginning. For example DB2 does not perform query transformations based on the
literal values. Consequently, static SQL statements that use host variables
optimized with REOPT(ALWAYS) and similar SQL statements that use explicit
literal values might result in different access paths.

Dynamic SQL statements

For dynamic SQL statements, DB2 determines the access path at run time, when
the statement is prepared. The repeating cost of preparing a dynamic statement can
make the performance worse than that of static SQL statements. However, if you
execute the same SQL statement often, you can use the dynamic statement cache to
decrease the number of times that those dynamic statements must be prepared.

Dynamic SQL statements with input host variables: When you bind applications
that contain dynamic SQL statements with input host variables, consider using the
REOPT(ALWAYS), REOPT(ONCE), or REOPT(AUTO) options, instead of the
REOPT(NONE) option.

Use REOPT(ALWAYS) when you are not using the dynamic statement cache. DB2
determines the access path for statements at each EXECUTE or OPEN of the
statement. This ensure the best access path for a statement, but using
REOPT(ALWAYS) can increase the cost of frequently used dynamic SQL
statements.

Consequently, the REOPT(ALWAYS) option is not a good choice for high-volume
sub-second queries. For high-volume fast running queries, the repeating cost of
prepare can exceed the execution cost of the statement. Statements that are
processed under the REOPT(ALWAYS) option are excluded from the dynamic
statement cache even if dynamic statement caching is enabled because DB2 cannot
reuse access paths when REOPT(ALWAYS) is specified.

Use REOPT(ONCE) or REOPT(AUTO) when you are using the dynamic statements
cache:
v If you specify REOPT(ONCE), DB2 determines and the access path for

statements only at the first EXECUTE or OPEN of the statement. It saves that
access path in the dynamic statement cache and uses it until the statement is
invalidated or removed from the cache. This reuse of the access path reduces the
prepare cost of frequently used dynamic SQL statements that contain input host
variables; however, it does not account for changes to parameter marker values
for dynamic statements.
The REOPT(ONCE) option is ideal for ad-hoc query applications such as SPUFI,
DSNTEP2, DSNTEP4, DSNTIAUL, and QMF. DB2 can better optimize statements
knowing the literal values for special registers such as CURRENT DATE and
CURRENT TIMESTAMP, rather than using default filter factor estimates.

v If you specify REOPT(AUTO), DB2 determines the access path at run time. For
each execution of a statement with parameter markers, DB2 generates a new
access path if it determines that a new access path is likely to improve
performance.

162 Application Programming and SQL Guide

You should code your PREPARE statements to minimize overhead. With
REOPT(AUTO), REOPT(ALWAYS), and REOPT(ONCE), DB2 prepares an SQL
statement at the same time as it processes OPEN or EXECUTE for the statement.
That is, DB2 processes the statement as if you specify DEFER(PREPARE). However,
in the following cases, DB2 prepares the statement twice:
v If you execute the DESCRIBE statement before the PREPARE statement in your

program
v If you use the PREPARE statement with the INTO parameter

For the first prepare, DB2 determines the access path without using input variable
values. For the second prepare, DB2 uses the input variable values to determine
the access path. This extra prepare can decrease performance.

If you specify REOPT(ALWAYS), DB2 prepares the statement twice each time it is
run.

If you specify REOPT(ONCE), DB2 prepares the statement twice only when the
statement has never been saved in the cache. If the statement has been prepared
and saved in the cache, DB2 will use the saved version of the statement to
complete the DESCRIBE statement.

If you specify REOPT(AUTO), DB2 initially prepares the statement without using
input variable values. If the statement has been saved in the cache, for the
subsequent OPEN or EXECUTE, DB2 determines if a new access path is needed
according to the input variable values.

For a statement that uses a cursor, you can avoid the double prepare by placing
the DESCRIBE statement after the OPEN statement in your program.

If you use predictive governing, and a dynamic SQL statement that is bound with
either REOPT(ALWAYS) or REOPT(ONCE) exceeds a predictive governing warning
threshold, your application does not receive a warning SQLCODE. However, it will
receive an error SQLCODE from the OPEN or EXECUTE statement.
Related reference:

Characteristics of SQL statements in DB2 for z/OS (DB2 SQL)

Possible host languages for dynamic SQL applications
Programs that use dynamic SQL are usually written in assembler, C, PL/I, REXX,
and COBOL. All SQL statements in REXX programs are considered dynamic SQL.

You can write non-SELECT and fixed-list SELECT statements in any of the DB2
supported languages. A program containing a varying-list SELECT statement is
more difficult to write in Fortran, because the program cannot run without the
help of a subroutine to manage address variables (pointers) and storage allocation.

Most of the examples in this topic are in PL/I. Longer examples in the form of
complete programs are available in the sample applications:

DSNTEP2
Processes both SELECT and non-SELECT statements dynamically. (PL/I).

DSNTIAD
Processes only non-SELECT statements dynamically. (Assembler).

DSNTIAUL
Processes SELECT statements dynamically. (Assembler).

Chapter 3. Coding SQL statements in application programs: General information 163

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_characteristicsofsqlstmts.htm#db2z_characteristicsofsqlstmts

Library prefix.SDSNSAMP contains the sample programs. You can view the
programs online, or you can print them using ISPF, IEBPTPCH, or your own
printing program.

You can use all forms of dynamic SQL in all supported versions of COBOL.
Related concepts:
“Sample COBOL dynamic SQL program” on page 343

Including dynamic SQL for non-SELECT statements in your
program
The easiest way to use dynamic SQL is to use non-SELECT statements. Because
you do not need to dynamically allocate any main storage, you can write your
program in any host language, including Fortran.

Procedure

Your program must take the following steps:
1. Include an SQLCA. The requirements for an SQL communications area

(SQLCA) are the same as for static SQL statements. For REXX, DB2 includes the
SQLCA automatically.

2. Load the input SQL statement into a data area. The procedure for building or
reading the input SQL statement is not discussed here; the statement depends
on your environment and sources of information. You can read in complete
SQL statements, or you can get information to build the statement from data
sets, a user at a terminal, previously set program variables, or tables in the
database. If you attempt to execute an SQL statement dynamically that DB2
does not allow, you get an SQL error.

3. Execute the statement. You can use either of these methods:
v EXECUTE IMMEDIATE
v PREPARE and EXECUTE

4. Handle any errors that might result. The requirements are the same as those for
static SQL statements. The return code from the most recently executed SQL
statement appears in the host variables SQLCODE and SQLSTATE or
corresponding fields of the SQLCA.

164 Application Programming and SQL Guide

Related concepts:
“Sample dynamic and static SQL in a C program” on page 289
“SQL statements in assembler programs” on page 245
“SQL statements in C programs” on page 285
“SQL statements in COBOL programs” on page 336
“SQL statements in Fortran programs” on page 381
“SQL statements in PL/I programs” on page 405
“SQL statements in REXX programs” on page 417
Related tasks:
“Checking the execution of SQL statements” on page 204
“Dynamically executing an SQL statement by using EXECUTE IMMEDIATE” on
page 185
“Dynamically executing an SQL statement by using PREPARE and EXECUTE” on
page 186

Including dynamic SQL for fixed-list SELECT statements in your
program
A fixed-list SELECT statement returns rows that contain a known number of
values of a known type. When you use this type of statement, you know in
advance exactly what kinds of host variables you need to declare to store the
results.

About this task

The term “fixed-list” does not imply that you must know in advance how many
rows of data will be returned. However, you must know the number of columns
and the data types of those columns. A fixed-list SELECT statement returns a result
table that can contain any number of rows; your program looks at those rows one
at a time, using the FETCH statement. Each successive fetch returns the same
number of values as the last, and the values have the same data types each time.
Therefore, you can specify host variables as you do for static SQL.

An advantage of the fixed-list SELECT is that you can write it in any of the
programming languages that DB2 supports. Varying-list dynamic SELECT
statements require assembler, C, PL/I, and COBOL.

Procedure

To execute a fixed-list SELECT statement dynamically, your program must:
1. Include an SQLCA.
2. Load the input SQL statement into a data area. The preceding two steps are

exactly the same including dynamic SQL for non-SELECT statements in your
program.

3. Declare a cursor for the statement name.
4. Prepare the statement.
5. Open the cursor.
6. Fetch rows from the result table.
7. Close the cursor.
8. Handle any resulting errors. This step is the same as for static SQL, except for

the number and types of errors that can result.

Chapter 3. Coding SQL statements in application programs: General information 165

Results

Example: Suppose that your program retrieves last names and phone numbers by
dynamically executing SELECT statements of this form:
SELECT LASTNAME, PHONENO FROM DSN8B10.EMP

WHERE ... ;

The program reads the statements from a terminal, and the user determines the
WHERE clause.

As with non-SELECT statements, your program puts the statements into a
varying-length character variable; call it DSTRING. Eventually you prepare a
statement from DSTRING, but first you must declare a cursor for the statement
and give it a name.

Declaring a cursor for the statement name:

Dynamic SELECT statements cannot use INTO. Therefore, you must use a cursor
to put the results into host variables.

Example: When you declare the cursor, use the statement name (call it STMT), and
give the cursor itself a name (for example, C1):
EXEC SQL DECLARE C1 CURSOR FOR STMT;

Preparing the statement:

Prepare a statement (STMT) from DSTRING.

Example: This is one possible PREPARE statement:
EXEC SQL PREPARE STMT FROM :DSTRING ATTRIBUTES :ATTRVAR;

ATTRVAR contains attributes that you want to add to the SELECT statement, such
as FETCH FIRST 10 ROWS ONLY or OPTIMIZE for 1 ROW. In general, if the
SELECT statement has attributes that conflict with the attributes in the PREPARE
statement, the attributes on the SELECT statement take precedence over the
attributes on the PREPARE statement. However, in this example, the SELECT
statement in DSTRING has no attributes specified, so DB2 uses the attributes in
ATTRVAR for the SELECT statement.

As with non-SELECT statements, the fixed-list SELECT could contain parameter
markers. However, this example does not need them.

To execute STMT, your program must open the cursor, fetch rows from the result
table, and close the cursor.

Opening the cursor:

The OPEN statement evaluates the SELECT statement named STMT.

Example: Without parameter markers, use this statement:
EXEC SQL OPEN C1;

If STMT contains parameter markers, you must use the USING clause of OPEN to
provide values for all of the parameter markers in STMT.

166 Application Programming and SQL Guide

Example: If four parameter markers are in STMT, you need the following
statement:
EXEC SQL OPEN C1 USING :PARM1, :PARM2, :PARM3, :PARM4;

Fetching rows from the result table:

Example: Your program could repeatedly execute a statement such as this:
EXEC SQL FETCH C1 INTO :NAME, :PHONE;

The key feature of this statement is the use of a list of host variables to receive the
values returned by FETCH. The list has a known number of items (in this case,
two items, :NAME and :PHONE) of known data types (both are character strings,
of lengths 15 and 4, respectively).

You can use this list in the FETCH statement only because you planned the
program to use only fixed-list SELECTs. Every row that cursor C1 points to must
contain exactly two character values of appropriate length. If the program is to
handle anything else, it must use the techniques for including dynamic SQL for
varying-list SELECT statements in your program.

Closing the cursor:

This step is the same as for static SQL.

Example: A WHENEVER NOT FOUND statement in your program can name a
routine that contains this statement:
EXEC SQL CLOSE C1;

Related concepts:
“Sample dynamic and static SQL in a C program” on page 289
“SQL statements in assembler programs” on page 245
“SQL statements in C programs” on page 285
“SQL statements in COBOL programs” on page 336
“SQL statements in Fortran programs” on page 381
“SQL statements in PL/I programs” on page 405
“SQL statements in REXX programs” on page 417
Related tasks:
“Including dynamic SQL for non-SELECT statements in your program” on page
164
“Including dynamic SQL for varying-list SELECT statements in your program”

Including dynamic SQL for varying-list SELECT statements in
your program
A varying-list SELECT statement returns rows that contain an unknown number of
values of unknown type. When you use this type of statement, you do not know
in advance exactly what kinds of host variables you need to declare for storing the
results.

About this task

Because the varying-list SELECT statement requires pointer variables for the SQL
descriptor area, you cannot issue it from a Fortran program. A Fortran program
can call a subroutine written in a language that supports pointer variables (such as
PL/I or assembler), if you need to use a varying-list SELECT statement.

Chapter 3. Coding SQL statements in application programs: General information 167

What your application program must do for varying-list SELECT statements: To
execute a varying-list SELECT statement dynamically, your program must follow
these steps:
1. Include an SQLCA.

DB2 performs this step for a REXX program.
2. Load the input SQL statement into a data area.
3. Prepare and execute the statement. This step is more complex than for fixed-list

SELECTs. It involves the following steps:
a. Include an SQLDA (SQL descriptor area).

DB2 performs this step for a REXX program.
b. Declare a cursor and prepare the variable statement.
c. Obtain information about the data type of each column of the result table.
d. Determine the main storage needed to hold a row of retrieved data.

You do not perform this step for a REXX program.
e. Put storage addresses in the SQLDA to tell where to put each item of

retrieved data.
f. Open the cursor.
g. Fetch a row.
h. Eventually close the cursor and free main storage.

Additional complications exist for statements with parameter markers.
4. Handle any errors that might result.

Preparing a varying-list SELECT statement:

Suppose that your program dynamically executes SQL statements, but this time
without any limits on their form. Your program reads the statements from a
terminal, and you know nothing about them in advance. They might not even be
SELECT statements.

As with non-SELECT statements, your program puts the statements into a
varying-length character variable; call it DSTRING. Your program goes on to
prepare a statement from the variable and then give the statement a name; call it
STMT.

Now, the program must find out whether the statement is a SELECT. If it is, the
program must also find out how many values are in each row, and what their data
types are. The information comes from an SQL descriptor area (SQLDA).

An SQL descriptor area:

The SQLDA is a structure that is used to communicate with your program, and
storage for it is usually allocated dynamically at run time.

To include the SQLDA in a PL/I or C program, use:
EXEC SQL INCLUDE SQLDA;

For assembler, use this in the storage definition area of a CSECT:
EXEC SQL INCLUDE SQLDA

For COBOL, use:
EXEC SQL INCLUDE SQLDA END-EXEC.

168 Application Programming and SQL Guide

You cannot include an SQLDA in a Fortran, or REXX program.

Obtaining information about the SQL statement:

An SQLDA can contain a variable number of occurrences of SQLVAR, each of
which is a set of five fields that describe one column in the result table of a
SELECT statement.

The number of occurrences of SQLVAR depends on the following factors:
v The number of columns in the result table you want to describe.
v Whether you want the PREPARE or DESCRIBE to put both column names and

labels in your SQLDA. This is the option USING BOTH in the PREPARE or
DESCRIBE statement.

v Whether any columns in the result table are LOB types or distinct types.

The following table shows the minimum number of SQLVAR instances you need
for a result table that contains n columns.

Table 40. Minimum number of SQLVARs for a result table with n columns

Type of DESCRIBE and contents of result
table Not USING BOTH USING BOTH

No distinct types or LOBs n 2*n

Distinct types but no LOBs 2*n 3*n

LOBs but no distinct types 2*n 2*n

LOBs and distinct types 2*n 3*n

An SQLDA with n occurrences of SQLVAR is referred to as a single SQLDA, an
SQLDA with 2*n occurrences of SQLVAR a double SQLDA, an SQLDA with 3*n
occurrences of SQLVAR a triple SQLDA.

A program that admits SQL statements of every kind for dynamic execution has
two choices:
v Provide the largest SQLDA that it could ever need. The maximum number of

columns in a result table is 750, so an SQLDA for 750 columns occupies 33 016
bytes for a single SQLDA, 66 016 bytes for a double SQLDA, or 99 016 bytes for
a triple SQLDA. Most SELECT statements do not retrieve 750 columns, so the
program does not usually use most of that space.

v Provide a smaller SQLDA, with fewer occurrences of SQLVAR. From this the
program can find out whether the statement was a SELECT and, if it was, how
many columns are in its result table. If more columns are in the result than the
SQLDA can hold, DB2 returns no descriptions. When this happens, the program
must acquire storage for a second SQLDA that is long enough to hold the
column descriptions, and ask DB2 for the descriptions again. Although this
technique is more complicated to program than the first, it is more general.
How many columns should you allow? You must choose a number that is large
enough for most of your SELECT statements, but not too wasteful of space; 40 is
a good compromise. To illustrate what you must do for statements that return
more columns than allowed, the example in this discussion uses an SQLDA that
is allocated for at least 100 columns.

Declaring a cursor for the statement:

As before, you need a cursor for the dynamic SELECT. For example, write:

Chapter 3. Coding SQL statements in application programs: General information 169

EXEC SQL
DECLARE C1 CURSOR FOR STMT;

Preparing the statement using the minimum SQLDA:

Suppose that your program declares an SQLDA structure with the name
MINSQLDA, having 100 occurrences of SQLVAR and SQLN set to 100. To prepare
a statement from the character string in DSTRING and also enter its description
into MINSQLDA, write this:
EXEC SQL PREPARE STMT FROM :DSTRING;
EXEC SQL DESCRIBE STMT INTO :MINSQLDA;

Equivalently, you can use the INTO clause in the PREPARE statement:
EXEC SQL

PREPARE STMT INTO :MINSQLDA FROM :DSTRING;

Do not use the USING clause in either of these examples. At the moment, only the
minimum SQLDA is in use. The following figure shows the contents of the
minimum SQLDA in use.

SQLN determines what SQLVAR gets:

The SQLN field, which you must set before using DESCRIBE (or PREPARE INTO),
tells how many occurrences of SQLVAR the SQLDA is allocated for. If DESCRIBE
needs more than that, the results of the DESCRIBE depend on the contents of the
result table. Let n indicate the number of columns in the result table. Then:
v If the result table contains at least one distinct type column but no LOB

columns, you do not specify USING BOTH, and n<=SQLN<2*n, then DB2
returns base SQLVAR information in the first n SQLVAR occurrences, but no
distinct type information. Base SQLVAR information includes:
– Data type code
– Length attribute (except for LOBs)
– Column name or label
– Host variable address
– Indicator variable address

v Otherwise, if SQLN is less than the minimum number of SQLVARs specified in
the table above, then DB2 returns no information in the SQLVARs.

Regardless of whether your SQLDA is big enough, whenever you execute
DESCRIBE, DB2 returns the following values, which you can use to build an
SQLDA of the correct size:
v SQLD is 0 if the SQL statement is not a SELECT. Otherwise, SQLD is the

number of columns in the result table. The number of SQLVAR occurrences you
need for the SELECT depends on the value in the seventh byte of SQLDAID.

v The seventh byte of SQLDAID is 2 if each column in the result table requires
two SQLVAR entries. The seventh byte of SQLDAID is 3 if each column in the
result table requires three SQLVAR entries.

If the statement is not a SELECT:

Header SQLDAID SQLDABC 100 SQLD

Figure 12. The minimum SQLDA structure

170 Application Programming and SQL Guide

To find out if the statement is a SELECT, your program can query the SQLD field
in MINSQLDA. If the field contains 0, the statement is not a SELECT, the
statement is already prepared, and your program can execute it. If no parameter
markers are in the statement, you can use:
EXEC SQL EXECUTE STMT;

(If the statement does contain parameter markers, you must use an SQL descriptor
area)

Acquiring storage for a second SQLDA if needed:

Now you can allocate storage for a second, full-size SQLDA; call it FULSQLDA.
The following figure shows its structure.

FULSQLDA has a fixed-length header of 16 bytes in length, followed by a
varying-length section that consists of structures with the SQLVAR format. If the
result table contains LOB columns or distinct type columns, a varying-length
section that consists of structures with the SQLVAR2 format follows the structures
with SQLVAR format. All SQLVAR structures and SQLVAR2 structures are 44 bytes
long. The number of SQLVAR and SQLVAR2 elements you need is in the SQLD
field of MINSQLDA, and the total length you need for FULSQLDA (16 + SQLD *
44) is in the SQLDABC field of MINSQLDA. Allocate that amount of storage.

Describing the SELECT statement again:

After allocating sufficient space for FULSQLDA, your program must take these
steps:
1. Put the total number of SQLVAR and SQLVAR2 occurrences in FULSQLDA into

the SQLN field of FULSQLDA. This number appears in the SQLD field of
MINSQLDA.

2. Describe the statement again into the new SQLDA:

Figure 13. The full-size SQLDA structure

Chapter 3. Coding SQL statements in application programs: General information 171

EXEC SQL DESCRIBE STMT INTO :FULSQLDA;

After the DESCRIBE statement executes, each occurrence of SQLVAR in the
full-size SQLDA (FULSQLDA in our example) contains a description of one
column of the result table in five fields. If an SQLVAR occurrence describes a LOB
column or distinct type column, the corresponding SQLVAR2 occurrence contains
additional information specific to the LOB or distinct type.

The following figure shows an SQLDA that describes two columns that are not
LOB columns or distinct type columns.

Acquiring storage to hold a row:

Before fetching rows of the result table, your program must:
1. Analyze each SQLVAR description to determine how much space you need for

the column value.
2. Derive the address of some storage area of the required size.
3. Put this address in the SQLDATA field.

If the SQLTYPE field indicates that the value can be null, the program must also
put the address of an indicator variable in the SQLIND field. The following figures
show the SQL descriptor area after you take certain actions.

In the previous figure, the DESCRIBE statement inserted all the values except the
first occurrence of the number 200. The program inserted the number 200 before it
executed DESCRIBE to tell how many occurrences of SQLVAR to allow. If the
result table of the SELECT has more columns than this, the SQLVAR fields describe
nothing.

The first SQLVAR pertains to the first column of the result table (the WORKDEPT
column). SQLVAR element 1 contains fixed-length character strings and does not
allow null values (SQLTYPE=452); the length attribute is 3.

The following figure shows the SQLDA after your program acquires storage for the
column values and their indicators, and puts the addresses in the SQLDATA fields
of the SQLDA.

SQLDA header

SQLVAR element 1 (44 bytes)

SQLVAR element 2 (44 bytes)

SQLDA 8816 200 200

452 3 Undefined 0 8 WORKDEPT

453 4 Undefined 0 7 PHONENO

Figure 14. Contents of FULSQLDA after executing DESCRIBE

172 Application Programming and SQL Guide

The following figure shows the SQLDA after your program executes a FETCH
statement.

The following table describes the values in the descriptor area.

Table 41. Values inserted in the SQLDA

Value Field Description

SQLDA SQLDAID An “eye-catcher”

8816 SQLDABC The size of the SQLDA in bytes (16 + 44 * 200)

200 SQLN The number of occurrences of SQLVAR, set by the
program

200 SQLD The number of occurrences of SQLVAR actually used
by the DESCRIBE statement

452 SQLTYPE The value of SQLTYPE in the first occurrence of
SQLVAR. It indicates that the first column contains
fixed-length character strings, and does not allow
nulls.

3 SQLLEN The length attribute of the column

Undefined or
CCSID value

SQLDATA Bytes 3 and 4 contain the CCSID of a string column.
Undefined for other types of columns.

Undefined SQLIND

8 SQLNAME The number of characters in the column name

WORKDEPT SQLNAME+2 The column name of the first column

Putting storage addresses in the SQLDA:

SQLDA header

SQLVAR element 1 (44 bytes)

SQLVAR element 2 (44 bytes)

SQLDA 8816 200 200

452 3 Addr FLDA Addr FLDAI WORKDEPT

453 4 Addr FLDB Addr FLDBI 7 PHONENO

8

FLDA
CHAR(3)

FLDB
CHAR(4) FLDAI FLDBI

Indicator variables
(halfword)

Figure 15. SQL descriptor area after analyzing descriptions and acquiring storage

SQLDA header

SQLVAR element 1 (44 bytes)

SQLVAR element 2 (44 bytes)

SQLDA 8816 200 200

452 3 Addr FLDA Addr FLDAI WORKDEPT

453 4 Addr FLDB Addr FLDBI 7 PHONENO

8

FLDA
CHAR(3)

FLDB
CHAR(4) FLDAI FLDBI

Indicator variables
(halfword)

E11 4502 0 0

Figure 16. SQL descriptor area after executing FETCH

Chapter 3. Coding SQL statements in application programs: General information 173

After analyzing the description of each column, your program must replace the
content of each SQLDATA field with the address of a storage area large enough to
hold values from that column. Similarly, for every column that allows nulls, the
program must replace the content of the SQLIND field. The content must be the
address of a halfword that you can use as an indicator variable for the column.
The program can acquire storage for this purpose, of course, but the storage areas
used do not have to be contiguous.

Figure 15 on page 173 shows the content of the descriptor area before the program
obtains any rows of the result table. Addresses of fields and indicator variables are
already in the SQLVAR.

Changing the CCSID for retrieved data:

All DB2 string data has an encoding scheme and CCSID associated with it. When
you select string data from a table, the selected data generally has the same
encoding scheme and CCSID as the table. If the application uses some method,
such as issuing the DECLARE VARIABLE statement, to change the CCSID of the
selected data, the data is converted from the CCSID of the table to the CCSID that
is specified by the application.

You can set the default application encoding scheme for a plan or package by
specifying the value in the APPLICATION ENCODING field of the panel
DEFAULTS FOR BIND PACKAGE or DEFAULTS FOR BIND PLAN. The default
application encoding scheme for the DB2 subsystem is the value that was specified
in the APPLICATION ENCODING field of installation panel DSNTIPF.

If you want to retrieve the data in an encoding scheme and CCSID other than the
default values, you can use one of the following techniques:
v For dynamic SQL, set the CURRENT APPLICATION ENCODING SCHEME

special register before you execute the SELECT statements. For example, to set
the CCSID and encoding scheme for retrieved data to the default CCSID for
Unicode, execute this SQL statement:
EXEC SQL SET CURRENT APPLICATION ENCODING SCHEME =’UNICODE’;

The initial value of this special register is the application encoding scheme that
is determined by the BIND option.

v For static and dynamic SQL statements that use host variables and host variable
arrays, use the DECLARE VARIABLE statement to associate CCSIDs with the
host variables into which you retrieve the data. See “Setting the CCSID for host
variables” on page 142 for information about this technique.

v For static and dynamic SQL statements that use a descriptor, set the CCSID for
the retrieved data in the SQLDA. The following text describes that technique.

To change the encoding scheme for SQL statements that use a descriptor, set up the
SQLDA, and then make these additional changes to the SQLDA:
1. Put the character + in the sixth byte of field SQLDAID.
2. For each SQLVAR entry:

a. Set the length field of SQLNAME to 8.
b. Set the first two bytes of the data field of SQLNAME to X'0000'.
c. Set the third and fourth bytes of the data field of SQLNAME to the CCSID,

in hexadecimal, in which you want the results to display, or to X'0000'.
X'0000' indicates that DB2 should use the default CCSID If you specify a
nonzero CCSID, it must meet one of the following conditions:

174 Application Programming and SQL Guide

v A row in catalog table SYSSTRINGS has a matching value for
OUTCCSID.

v The Unicode conversion services support conversion to that CCSID. See
z/OS C/C++ Programming Guide for information about the conversions
supported.

If you are modifying the CCSID to retrieve the contents of an ASCII,
EBCDIC, or Unicode table on a DB2 for z/OS system, and you previously
executed a DESCRIBE statement on the SELECT statement that you are
using to retrieve the data, the SQLDATA fields in the SQLDA that you used
for the DESCRIBE contain the ASCII or Unicode CCSID for that table. To set
the data portion of the SQLNAME fields for the SELECT, move the contents
of each SQLDATA field in the SQLDA from the DESCRIBE to each
SQLNAME field in the SQLDA for the SELECT. If you are using the same
SQLDA for the DESCRIBE and the SELECT, be sure to move the contents of
the SQLDATA field to SQLNAME before you modify the SQLDATA field
for the SELECT.

For REXX, you set the CCSID in the stem.n.SQLUSECCSID field instead of
setting the SQLDAID and SQLNAME fields.

For example, suppose that the table that contains WORKDEPT and PHONENO is
defined with CCSID ASCII. To retrieve data for columns WORKDEPT and
PHONENO in ASCII CCSID 437 (X'01B5'), change the SQLDA as shown in the
following figure.

Specifying that DESCRIBE use column labels in the SQLNAME field:

By default, DESCRIBE describes each column in the SQLNAME field by the
column name. You can tell it to use column labels instead.

Restriction: You cannot use column labels with set operators (UNION,
INTERSECT, and EXCEPT).

To specify that DESCRIBE use column labels in the SQLNAME field, specify one of
the following options when you issue the DESCRIBE statement:

USING LABELS
Specifies that SQLNAME is to contain labels. If a column has no label,
SQLNAME contains nothing.

USING ANY
Specifies that SQLNAME is to contain labels wherever they exist. If a column
has no label, SQLNAME contains the column name.

SQLDA header

SQLVAR element 1 (44 bytes)

SQLVAR element 2 (44 bytes)

SQLDA+ 8816 200 200

452 3 Addr FLDA Addr FLDAI

453 4 Addr FLDB Addr FLDBI 8

8

FLDA
CHAR(3)

FLDB
CHAR(4) FLDAI FLDBI

Indicator variables
(halfword)

X 000001B500000000

X 000001B500000000

Figure 17. SQL descriptor area for retrieving data in ASCII CCSID 437

Chapter 3. Coding SQL statements in application programs: General information 175

USING BOTH
Specifies that SQLNAME is to contain both labels and column names, when
both exist.

In this case, FULSQLDA must contain a second set of occurrences of SQLVAR.
The first set contains descriptions of all the columns with column names; the
second set contains descriptions with column labels.

If you choose this option, perform the following actions:
v Allocate a longer SQLDA for the second DESCRIBE statement ((16 + SQLD *

88 bytes) instead of (16 + SQLD * 44))
v Put double the number of columns (SLQD * 2) in the SQLN field of the

second SQLDA.

These actions ensure that enough space is available. Otherwise, if not enough
space is available, DESCRIBE does not enter descriptions of any of the
columns.

EXEC SQL
DESCRIBE STMT INTO :FULSQLDA USING LABELS;

Some columns, such as those derived from functions or expressions, have neither
name nor label; SQLNAME contains nothing for those columns. For example, if
you use a UNION to combine two columns that do not have the same name and
do not use a label, SQLNAME contains a string of length zero.

Describing tables with LOB and distinct type columns:

In general, the steps that you perform when you prepare an SQLDA to select rows
from a table with LOB and distinct type columns are similar to the steps that you
perform if the table has no columns of this type. The only difference is that you
need to analyze some additional fields in the SQLDA for LOB or distinct type
columns.

Example: Suppose that you want to execute this SELECT statement:
SELECT USER, A_DOC FROM DOCUMENTS;

The USER column cannot contain nulls and is of distinct type ID, defined like this:
CREATE DISTINCT TYPE SCHEMA1.ID AS CHAR(20);

The A_DOC column can contain nulls and is of type CLOB(1M).

The result table for this statement has two columns, but you need four SQLVAR
occurrences in your SQLDA because the result table contains a LOB type and a
distinct type. Suppose that you prepare and describe this statement into
FULSQLDA, which is large enough to hold four SQLVAR occurrences. FULSQLDA
looks like the following figure .

176 Application Programming and SQL Guide

The next steps are the same as for result tables without LOBs or distinct types:
1. Analyze each SQLVAR description to determine the maximum amount of space

you need for the column value.
For a LOB type, retrieve the length from the SQLLONGL field instead of the
SQLLEN field.

2. Derive the address of some storage area of the required size.
For a LOB data type, you also need a 4-byte storage area for the length of the
LOB data. You can allocate this 4-byte area at the beginning of the LOB data or
in a different location.

3. Put this address in the SQLDATA field.
For a LOB data type, if you allocated a separate area to hold the length of the
LOB data, put the address of the length field in SQLDATAL. If the length field
is at beginning of the LOB data area, put 0 in SQLDATAL. When you use a file
reference variable for a LOB column, the indicator variable indicates whether
the data in the file is null, not whether the data to which SQLDATA points is
null.

4. If the SQLTYPE field indicates that the value can be null, the program must
also put the address of an indicator variable in the SQLIND field.

The following figure shows the contents of FULSQLDA after you enter pointers to
the storage locations.

The following figure shows the contents of FULSQLDA after you execute a FETCH
statement.

SQLDA header

SQLVAR element 1 (44 bytes)

SQLVAR element 2 (44 bytes)

SQLDA 2 192 4 4

452 20 Undefined 0 4 USER

409 0 Undefined 0 5 A_DOC

SQLVAR2 element 1 (44 bytes)

SQLVAR2 element 2 (44 bytes) 1 048 576

SCH1.ID7

SYSIBM.CLOB11

Figure 18. SQL descriptor area after describing a CLOB and distinct type

Figure 19. SQL descriptor area after analyzing CLOB and distinct type descriptions and acquiring storage

Chapter 3. Coding SQL statements in application programs: General information 177

Setting an XML host variable in an SQLDA:

Instead of specifying host variables to store XML values from a table, you can
create an SQLDA to point to the data areas where DB2 puts the retrieved data. The
SQLDA needs to describe the data type for each data area.

To set an XML host variable in an SQLDA:
1. Allocate an appropriate SQLDA.
2. Issue a DESCRIBE statement for the SQL statement whose result set you want

to store. The DESCRIBE statement populates the SQLDA based on the column
definitions. In the SQLDA, an SQLVAR entry is populated for each column in
the result set. (Multiple SQLVAR entries are populated for LOB columns and
columns with distinct types.) For columns of type XML the associated SQLVAR
entry is populated as follows:

Table 42. SQLVAR field values for XML columns

SQLVAR field Value for an XML column

sqltype
SQLTYPE

988 for a column that is not nullable
or 989 for a nullable column

sqllen
SQLLEN

0

sqldata
SQLDATA

0

sqlind
SQLIND

0

sqlname
SQLNAME

The unqualified name or label of the column

3. Check the SQLTYPE field of each SQLVAR entry. If the SQLTYPE field is 988 or
989, the column in the result set is an XML column.

Figure 20. SQL descriptor area after executing FETCH on a table with CLOB and distinct type columns

178 Application Programming and SQL Guide

4. For each XML column, make the following changes to the associated SQLVAR
entry:
a. Change the SQLTYPE field to indicate the data type of the host variable to

receive the XML data. You can retrieve the XML data into a host variable of
type XML AS BLOB, XML AS CLOB, or XML AS DBCLOB, or a compatible
string data type.
If the target host variable type is XML AS BLOB, XML AS CLOB, or XML
AS DBCLOB, set the SQLTYPE field to one of the following values:

404
XML AS BLOB

405
nullable XML AS BLOB

408
XML AS CLOB

409
nullable XML AS CLOB

412
XML AS DBCLOB

413
nullable XML AS DBCLOB

If the target host variable type is a string data type, set the SQLTYPE field
to a valid string value.

Restriction: You cannot use the XML type (988/989) as a target host
variable type.

b. If the target host variable type is XML AS BLOB, XML AS CLOB, or XML
AS DBCLOB, change the first two bytes in the SQLNAME field to X'0000'
and the fifth and sixth bytes to X'0100'. These bytes indicate that the value
to be received is an XML value.

5. Populate the extended SQLVAR fields for each XML column as you would for a
LOB column, as indicated in the following table.

Table 43. Fields for an extended SQLVAR entry for an XML host variable

SQLVAR field Value for an XML host variable

len.sqllonglen
SQLLONGL
SQLLONGLEN

length attribute for the XML host variable

* Reserved

sqldatalen
SQLDATAL
SQLDATALEN

pointer to the length of the XML host variable

sqldatatype_name
SQLTNAME
SQLDATATYPENAME

not used

Chapter 3. Coding SQL statements in application programs: General information 179

You can now use the SQLDA to retrieve the XML data into a host variable of type
XML AS BLOB, XML AS CLOB, or XML AS DBCLOB, or a compatible string data
type.

Executing a varying-list SELECT statement dynamically:

You can easily retrieve rows of the result table using a varying-list SELECT
statement. The statements differ only a little from those for the fixed-list example.

Open the cursor: If the SELECT statement contains no parameter marker, this
step is simple enough. For example:
EXEC SQL OPEN C1;

Fetch rows from the result table: This statement differs from the corresponding
one for the case of a fixed-list select. Write:
EXEC SQL

FETCH C1 USING DESCRIPTOR :FULSQLDA;

The key feature of this statement is the clause USING DESCRIPTOR :FULSQLDA.
That clause names an SQL descriptor area in which the occurrences of SQLVAR
point to other areas. Those other areas receive the values that FETCH returns. It is
possible to use that clause only because you previously set up FULSQLDA to look
like Figure 14 on page 172.

Figure 16 on page 173 shows the result of the FETCH. The data areas identified in
the SQLVAR fields receive the values from a single row of the result table.

Successive executions of the same FETCH statement put values from successive
rows of the result table into these same areas.

Close the cursor: This step is the same as for the fixed-list case. When no more
rows need to be processed, execute the following statement:
EXEC SQL CLOSE C1;

When COMMIT ends the unit of work containing OPEN, the statement in STMT
reverts to the unprepared state. Unless you defined the cursor using the WITH
HOLD option, you must prepare the statement again before you can reopen the
cursor.

Executing arbitrary statements with parameter markers:

Consider, as an example, a program that executes dynamic SQL statements of
several kinds, including varying-list SELECT statements, any of which might
contain a variable number of parameter markers. This program might present your
users with lists of choices: choices of operation (update, select, delete); choices of
table names; choices of columns to select or update. The program also enables the
users to enter lists of employee numbers to apply to the chosen operation. From
this, the program constructs SQL statements of several forms, one of which looks
like this:
SELECT FROM DSN8B10.EMP

WHERE EMPNO IN (?,?,?,...?);

The program then executes these statements dynamically.

When the number and types of parameters are known: In the preceding example,
you do not know in advance the number of parameter markers, and perhaps the

180 Application Programming and SQL Guide

kinds of parameter they represent. You can use techniques described previously if
you know the number and types of parameters, as in the following examples:
v If the SQL statement is not SELECT, name a list of host variables in the

EXECUTE statement:
WRONG: EXEC SQL EXECUTE STMT;

RIGHT: EXEC SQL EXECUTE STMT USING :VAR1, :VAR2, :VAR3;

v If the SQL statement is SELECT, name a list of host variables in the OPEN
statement:
WRONG: EXEC SQL OPEN C1;

RIGHT: EXEC SQL OPEN C1 USING :VAR1, :VAR2, :VAR3;

In both cases, the number and types of host variables named must agree with the
number of parameter markers in STMT and the types of parameter they represent.
The first variable (VAR1 in the examples) must have the type expected for the first
parameter marker in the statement, the second variable must have the type
expected for the second marker, and so on. There must be at least as many
variables as parameter markers.

When the number and types of parameters are not known: When you do not
know the number and types of parameters, you can adapt the SQL descriptor area.
Your program can include an unlimited number of SQLDAs, and you can use them
for different purposes. Suppose that an SQLDA, arbitrarily named DPARM,
describes a set of parameters.

The structure of DPARM is the same as that of any other SQLDA. The number of
occurrences of SQLVAR can vary, as in previous examples. In this case, every
parameter marker must have one SQLVAR. Each occurrence of SQLVAR describes
one host variable that replaces one parameter marker at run time. DB2 replaces the
parameter markers when a non-SELECT statement executes or when a cursor is
opened for a SELECT statement.

You must enter certain fields in DPARM before using EXECUTE or OPEN; you can
ignore the other fields.

Field Use when describing host variables for parameter markers

SQLDAID
The seventh byte indicates whether more than one SQLVAR entry is used
for each parameter marker. If this byte is not blank, at least one parameter
marker represents a distinct type or LOB value, so the SQLDA has more
than one set of SQLVAR entries.

You do not set this field for a REXX SQLDA.

SQLDABC
The length of the SQLDA, which is equal to SQLN * 44 + 16. You do not
set this field for a REXX SQLDA.

SQLN The number of occurrences of SQLVAR allocated for DPARM. You do not
set this field for a REXX SQLDA.

SQLD The number of occurrences of SQLVAR actually used. This number must
not be less than the number of parameter markers. In each occurrence of
SQLVAR, put information in the following fields: SQLTYPE, SQLLEN,
SQLDATA, SQLIND.

Chapter 3. Coding SQL statements in application programs: General information 181

SQLTYPE
The code for the type of variable, and whether it allows nulls.

SQLLEN
The length of the host variable.

SQLDATA
The address of the host variable.

For REXX, this field contains the value of the host variable.

SQLIND
The address of an indicator variable, if needed.

For REXX, this field contains a negative number if the value in SQLDATA
is null.

SQLNAME
Ignore.

Using the SQLDA with EXECUTE or OPEN: To indicate that the SQLDA called
DPARM describes the host variables substituted for the parameter markers at run
time, use a USING DESCRIPTOR clause with EXECUTE or OPEN.
v For a non-SELECT statement, write:

EXEC SQL EXECUTE STMT USING DESCRIPTOR :DPARM;

v For a SELECT statement, write:
EXEC SQL OPEN C1 USING DESCRIPTOR :DPARM;

How bind options REOPT(ALWAYS), REOPT(AUTO) and REOPT(ONCE) affect
dynamic SQL:

When you specify the bind option REOPT(ALWAYS), DB2 reoptimizes the access
path at run time for SQL statements that contain host variables, parameter
markers, or special registers. The option REOPT(ALWAYS) has the following effects
on dynamic SQL statements:
v When you specify the option REOPT(ALWAYS), DB2 automatically uses

DEFER(PREPARE), which means that DB2 waits to prepare a statement until it
encounters an OPEN or EXECUTE statement.

v When you execute a DESCRIBE statement and then an EXECUTE statement on a
non-SELECT statement, DB2 prepares the statement twice: Once for the
DESCRIBE statement and once for the EXECUTE statement. DB2 uses the values
in the input variables only during the second PREPARE. These multiple
PREPAREs can cause performance to degrade if your program contains many
dynamic non-SELECT statements. To improve performance, consider putting the
code that contains those statements in a separate package and then binding that
package with the option REOPT(NONE).

v If you execute a DESCRIBE statement before you open a cursor for that
statement, DB2 prepares the statement twice. If, however, you execute a
DESCRIBE statement after you open the cursor, DB2 prepares the statement only
once. To improve the performance of a program bound with the option
REOPT(ALWAYS), execute the DESCRIBE statement after you open the cursor.
To prevent an automatic DESCRIBE before a cursor is opened, do not use a
PREPARE statement with the INTO clause.

v If you use predictive governing for applications bound with REOPT(ALWAYS),
DB2 does not return a warning SQLCODE when dynamic SQL statements
exceed the predictive governing warning threshold. DB2 does return an error

182 Application Programming and SQL Guide

SQLCODE when dynamic SQL statements exceed the predictive governing error
threshold. DB2 returns the error SQLCODE for an EXECUTE or OPEN
statement.

When you specify the bind option REOPT(AUTO), DB2 optimizes the access path
for SQL statements at the first EXECUTE or OPEN. Each time a statement is
executed, DB2 determines if a new access path is needed to improve the
performance of the statement. If a new access path will improve the performance,
DB2 generates one. The option REOPT(AUTO) has the following effects on
dynamic SQL statements:
v When you specify the bind option REOPT(AUTO), DB2 optimizes the access

path for SQL statements at the first EXECUTE or OPEN. Each time a statement
is executed, DB2 determines if a new access path is needed to improve the
performance of the statement. If a new access path will improve the
performance, DB2 generates one.

v When you specify the option REOPT(ONCE), DB2 automatically uses
DEFER(PREPARE), which means that DB2 waits to prepare a statement until it
encounters an OPEN or EXECUTE statement.

v When DB2 prepares a statement using REOPT(AUTO), it saves the access path
in the dynamic statement cache. This access path is used each time the statement
is run, until DB2 determines that a new access path is needed to improve the
performance or the statement that is in the cache is invalidated (or removed
from the cache) and needs to be rebound.

v The DESCRIBE statement has the following effects on dynamic statements that
are bound with REOPT(AUTO):
– When you execute a DESCRIBE statement before an EXECUTE statement on a

non-SELECT statement, DB2 prepares the statement an extra time if it is not
already saved in the cache: Once for the DESCRIBE statement and once for
the EXECUTE statement. DB2 uses the values of the input variables only
during the second time the statement is prepared. It then saves the statement
in the cache. If you execute a DESCRIBE statement before an EXECUTE
statement on a non-SELECT statement that has already been saved in the
cache, DB2 will always prepare the non-SELECT statement for the DESCRIBE
statement, and will prepare the statement again on EXECUTE only if DB2
determines that a new access path different from the one already saved in the
cache can improve the performance.

– If you execute DESCRIBE on a statement before you open a cursor for that
statement, DB2 always prepares the statement on DESCRIBE. However, DB2
will not prepare the statement again on OPEN if the statement has already
been saved in the cache and DB2 does not think that a new access path is
needed at OPEN time. If you execute DESCRIBE on a statement after you
open a cursor for that statement, DB2 prepared the statement only once if it is
not already saved in the cache. If the statement is already saved in the cache
and you execute DESCRIBE after you open a cursor for that statement, DB2
does not prepare the statement, it used the statement that is saved in the
cache.

v If you use predictive governing for applications that are bound with
REOPT(AUTO), DB2 does not return a warning SQLCODE when dynamic SQL
statements exceed the predictive governing warning threshold. DB2 does return
an error SQLCODE when dynamic SQL statements exceed the predictive
governing error threshold. DB2 returns the error SQLCODE for an EXECUTE or
OPEN statement.

Chapter 3. Coding SQL statements in application programs: General information 183

When you specify the bind option REOPT(ONCE), DB2 optimizes the access path
only once, at the first EXECUTE or OPEN, for SQL statements that contain host
variables, parameter markers, or special registers. The option REOPT(ONCE) has
the following effects on dynamic SQL statements:
v When you specify the option REOPT(ONCE), DB2 automatically uses

DEFER(PREPARE), which means that DB2 waits to prepare a statement until it
encounters an OPEN or EXECUTE statement.

v When DB2 prepares a statement using REOPT(ONCE), it saves the access path
in the dynamic statement cache. This access path is used each time the statement
is run, until the statement that is in the cache is invalidated (or removed from
the cache) and needs to be rebound.

v The DESCRIBE statement has the following effects on dynamic statements that
are bound with REOPT(ONCE):
– When you execute a DESCRIBE statement before an EXECUTE statement on a

non-SELECT statement, DB2 prepares the statement twice if it is not already
saved in the cache: Once for the DESCRIBE statement and once for the
EXECUTE statement. DB2 uses the values of the input variables only during
the second time the statement is prepared. It then saves the statement in the
cache. If you execute a DESCRIBE statement before an EXECUTE statement
on a non-SELECT statement that has already been saved in the cache, DB2
prepares the non-SELECT statement only for the DESCRIBE statement.

– If you execute DESCRIBE on a statement before you open a cursor for that
statement, DB2 always prepares the statement on DESCRIBE. However, DB2
will not prepare the statement again on OPEN if the statement has already
been saved in the cache. If you execute DESCRIBE on a statement after you
open a cursor for that statement, DB2 prepared the statement only once if it is
not already saved in the cache. If the statement is already saved in the cache
and you execute DESCRIBE after you open a cursor for that statement, DB2
does not prepare the statement, it used the statement that is saved in the
cache.

To improve the performance of a program that is bound with REOPT(ONCE),
execute the DESCRIBE statement after you open a cursor. To prevent an
automatic DESCRIBE before a cursor is opened, do not use a PREPARE
statement with the INTO clause.

v If you use predictive governing for applications that are bound with
REOPT(ONCE), DB2 does not return a warning SQLCODE when dynamic SQL
statements exceed the predictive governing warning threshold. DB2 does return
an error SQLCODE when dynamic SQL statements exceed the predictive
governing error threshold. DB2 returns the error SQLCODE for an EXECUTE or
OPEN statement.

184 Application Programming and SQL Guide

Related concepts:
“SQL statements in assembler programs” on page 245
“SQL statements in C programs” on page 285
“SQL statements in COBOL programs” on page 336
“SQL statements in Fortran programs” on page 381
“SQL statements in PL/I programs” on page 405
“SQL statements in REXX programs” on page 417
Related reference:

DESCRIBE OUTPUT (DB2 SQL)

SQL descriptor area (SQLDA) (DB2 SQL)

SQLTYPE and SQLLEN (DB2 SQL)

The SQLDA Header (DB2 SQL)

Dynamically executing an SQL statement by using EXECUTE
IMMEDIATE
In certain situations, you might want your program to prepare and dynamically
execute a statement immediately after reading it.

About this task

Suppose that you design a program to read SQL DELETE statements, similar to
these, from a terminal:
DELETE FROM DSN8B10.EMP WHERE EMPNO = ’000190’
DELETE FROM DSN8B10.EMP WHERE EMPNO = ’000220’

After reading a statement, the program is to run it immediately.

Recall that you must prepare (precompile and bind) static SQL statements before
you can use them. You cannot prepare dynamic SQL statements in advance. The
SQL statement EXECUTE IMMEDIATE causes an SQL statement to prepare and
execute, dynamically, at run time.

Declaring the host variable: Before you prepare and execute an SQL statement,
you can read it into a host variable. If the maximum length of the SQL statement is
32 KB, declare the host variable as a character or graphic host variable according to
the following rules for the host languages:
v In assembler, PL/I, COBOL and C, you must declare a string host variable as a

varying-length string.
v In Fortran, it must be a fixed-length string variable.

If the length is greater than 32 KB, you must declare the host variable as a CLOB
or DBCLOB, and the maximum is 2 MB.

Example: Using a varying-length character host variable: This excerpt is from a C
program that reads a DELETE statement into the host variable dstring and executes
the statement:
EXEC SQL BEGIN DECLARE SECTION;

...
struct VARCHAR {

short len;
char s[40];
} dstring;

EXEC SQL END DECLARE SECTION;

Chapter 3. Coding SQL statements in application programs: General information 185

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_describeoutput.htm#db2z_sql_describeoutput
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sqldescriptorareaintro.htm#db2z_sqldescriptorareaintro
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sqltypeandsqlleninsqlda.htm#db2z_sqltypeandsqlleninsqlda
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_thesqldaheader.htm#db2z_thesqldaheader

...
/* Read a DELETE statement into the host variable dstring. */
gets(dstring);
EXEC SQL EXECUTE IMMEDIATE :dstring;
...

EXECUTE IMMEDIATE causes the DELETE statement to be prepared and executed
immediately.

Declaring a CLOB or DBCLOB host variable: You declare CLOB and DBCLOB
host variables according to certain rules.

The precompiler generates a structure that contains two elements, a 4-byte length
field and a data field of the specified length. The names of these fields vary
depending on the host language:
v In PL/I, assembler, and Fortran, the names are variable_LENGTH and

variable_DATA.
v In COBOL, the names are variable–LENGTH and variable–DATA.
v In C, the names are variable.LENGTH and variable.DATA.

Example: Using a CLOB host variable: This excerpt is from a C program that
copies an UPDATE statement into the host variable string1 and executes the
statement:
EXEC SQL BEGIN DECLARE SECTION;

...
SQL TYPE IS CLOB(4k) string1;

EXEC SQL END DECLARE SECTION;
...
/* Copy a statement into the host variable string1. */
strcpy(string1.data, "UPDATE DSN8610.EMP SET SALARY = SALARY * 1.1");
string1.length = 44;
EXEC SQL EXECUTE IMMEDIATE :string1;
...

EXECUTE IMMEDIATE causes the UPDATE statement to be prepared and
executed immediately.
Related concepts:
“LOB host variable, LOB locator, and LOB file reference variable declarations” on
page 752
“SQL statements in assembler programs” on page 245
“SQL statements in C programs” on page 285
“SQL statements in COBOL programs” on page 336
“SQL statements in Fortran programs” on page 381
“SQL statements in PL/I programs” on page 405
“SQL statements in REXX programs” on page 417

Dynamically executing an SQL statement by using PREPARE and
EXECUTE
As an alternative to executing an SQL statement immediately after it is read, you
can prepare and execute the SQL statement in two steps. This two-step method is
useful when you need to execute an SQL statement multiple times with different
values.

186 Application Programming and SQL Guide

About this task

Suppose that you want to execute DELETE statements repeatedly using a list of
employee numbers. Consider how you would do it if you could write the DELETE
statement as a static SQL statement:
< Read a value for EMP from the list. >
DO UNTIL (EMP = 0);

EXEC SQL
DELETE FROM DSN8B10.EMP WHERE EMPNO = :EMP ;

< Read a value for EMP from the list. >
END;

The loop repeats until it reads an EMP value of 0.

If you know in advance that you will use only the DELETE statement and only the
table DSN8B10.EMP, you can use the more efficient static SQL. Suppose further
that several different tables have rows that are identified by employee numbers,
and that users enter a table name as well as a list of employee numbers to delete.
Although variables can represent the employee numbers, they cannot represent the
table name, so you must construct and execute the entire statement dynamically.
Your program must now do these things differently:
v Use parameter markers instead of host variables
v Use the PREPARE statement
v Use EXECUTE instead of EXECUTE IMMEDIATE

Parameter markers with PREPARE and EXECUTE: Dynamic SQL statements
cannot use host variables. Therefore, you cannot dynamically execute an SQL
statement that contains host variables. Instead, substitute a parameter marker,
indicated by a question mark (?), for each host variable in the statement.

You can indicate to DB2 that a parameter marker represents a host variable of a
certain data type by specifying the parameter marker as the argument of a CAST
specification. When the statement executes, DB2 converts the host variable to the
data type in the CAST specification. A parameter marker that you include in a
CAST specification is called a typed parameter marker. A parameter marker without
a CAST specification is called an untyped parameter marker.

Recommendation: Because DB2 can evaluate an SQL statement with typed
parameter markers more efficiently than a statement with untyped parameter
markers, use typed parameter markers whenever possible. Under certain
circumstances you must use typed parameter markers.

Example using parameter markers: Suppose that you want to prepare this
statement:
DELETE FROM DSN8B10.EMP WHERE EMPNO = :EMP;

You need to prepare a string like this:
DELETE FROM DSN8B10.EMP WHERE EMPNO = CAST(? AS CHAR(6))

You associate host variable :EMP with the parameter marker when you execute the
prepared statement. Suppose that S1 is the prepared statement. Then the EXECUTE
statement looks like this:
EXECUTE S1 USING :EMP;

Chapter 3. Coding SQL statements in application programs: General information 187

Using the PREPARE statement: Before you prepare an SQL statement, you can
assign it to a host variable. If the length of the statement is greater than 32 KB, you
must declare the host variable as a CLOB or DBCLOB.

You can think of PREPARE and EXECUTE as an EXECUTE IMMEDIATE done in
two steps. The first step, PREPARE, turns a character string into an SQL statement,
and then assigns it a name of your choosing.

Example using the PREPARE statement: Assume that the character host variable
:DSTRING has the value “DELETE FROM DSN8B10.EMP WHERE EMPNO = ?”.
To prepare an SQL statement from that string and assign it the name S1, write:
EXEC SQL PREPARE S1 FROM :DSTRING;

The prepared statement still contains a parameter marker, for which you must
supply a value when the statement executes. After the statement is prepared, the
table name is fixed, but the parameter marker enables you to execute the same
statement many times with different values of the employee number.

Using the EXECUTE statement: The EXECUTE statement executes a prepared
SQL statement by naming a list of one or more host variables, one or more host
variable arrays, or a host structure. This list supplies values for all of the parameter
markers.

After you prepare a statement, you can execute it many times within the same unit
of work. In most cases, COMMIT or ROLLBACK destroys statements prepared in a
unit of work. Then, you must prepare them again before you can execute them
again. However, if you declare a cursor for a dynamic statement and use the
option WITH HOLD, a commit operation does not destroy the prepared statement
if the cursor is still open. You can execute the statement in the next unit of work
without preparing it again.

Example using the EXECUTE statement: To execute the prepared statement S1
just once, using a parameter value contained in the host variable :EMP, write:
EXEC SQL EXECUTE S1 USING :EMP;

Preparing and executing the example DELETE statement: The example in this
topic began with a DO loop that executed a static SQL statement repeatedly:
< Read a value for EMP from the list. >
DO UNTIL (EMP = 0);

EXEC SQL
DELETE FROM DSN8B10.EMP WHERE EMPNO = :EMP ;

< Read a value for EMP from the list. >
END;

You can now write an equivalent example for a dynamic SQL statement:
< Read a statement containing parameter markers into DSTRING.>
EXEC SQL PREPARE S1 FROM :DSTRING;
< Read a value for EMP from the list. >
DO UNTIL (EMPNO = 0);

EXEC SQL EXECUTE S1 USING :EMP;
< Read a value for EMP from the list. >
END;

The PREPARE statement prepares the SQL statement and calls it S1. The EXECUTE
statement executes S1 repeatedly, using different values for EMP.

188 Application Programming and SQL Guide

Using more than one parameter marker: The prepared statement (S1 in the
example) can contain more than one parameter marker. If it does, the USING
clause of EXECUTE specifies a list of variables or a host structure. The variables
must contain values that match the number and data types of parameters in S1 in
the proper order. You must know the number and types of parameters in advance
and declare the variables in your program, or you can use an SQLDA (SQL
descriptor area).
Related concepts:
“SQL statements in assembler programs” on page 245
“SQL statements in C programs” on page 285
“SQL statements in COBOL programs” on page 336
“SQL statements in Fortran programs” on page 381
“SQL statements in PL/I programs” on page 405
“SQL statements in REXX programs” on page 417
Related tasks:
“Dynamically executing an SQL statement by using EXECUTE IMMEDIATE” on
page 185
Related reference:

PREPARE (DB2 SQL)

Dynamically executing a data change statement
Dynamically executing data change statements with host variable arrays is useful if
you want to enter rows of data into different tables. It is also useful if you want to
enter a different number of rows. The process is similar for both INSERT and
MERGE statements.

About this task

For example, suppose that you want to repeatedly execute a multiple-row INSERT
statement with a list of activity IDs, activity keywords, and activity descriptions
that are provided by the user. You can use the following static SQL INSERT
statement to insert multiple rows of data into the activity table:
EXEC SQL

INSERT INTO DSN8B10.ACT
VALUES (:hva_actno, :hva_actkwd, :hva_actdesc)
FOR :num_rows ROWS;

However, if you want to enter the rows of data into different tables or enter
different numbers of rows, you can construct the INSERT statement dynamically.

This topic describes the following methods that you can use to execute a data
change statement dynamically:
v By using host variable arrays that contain the data to be inserted
v By using a descriptor to describe the host variable arrays that contain the data

Dynamically executing a data change statement by using host variable arrays:

To dynamically execute a data change statement by using host variable arrays,
perform the following actions in your program:
1. Assign the appropriate INSERT or MERGE statement to a host variable. If

needed, use the CAST specification to explicitly assign types to parameter
markers that represent host variable arrays.

Chapter 3. Coding SQL statements in application programs: General information 189

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_prepare.htm#db2z_sql_prepare

Example: For the activity table, the following string contains an INSERT
statement that is to be prepared:
INSERT INTO DSN8B10.ACT

VALUES (CAST(? AS SMALLINT), CAST(? AS CHAR(6)), CAST(? AS VARCHAR(20)))

2. Assign any attributes for the SQL statement to a host variable.
3. Include a PREPARE statement for the SQL statement.
4. Include an EXECUTE statement with the FOR n ROWS clause.

Each host variable in the USING clause of the EXECUTE statement represents
an array of values for the corresponding column of the target of the SQL
statement. You can vary the number of rows without needing to prepare the
SQL statement again.

Example: The following code prepares and executes an INSERT statement:
/* Copy the INSERT string into the host variable sqlstmt */
strcpy(sqlstmt, "INSERT INTO DSN8B10.ACT VALUES (CAST(? AS SMALLINT),");
strcat(sqlstmt, " CAST(? AS CHAR(6)), CAST(? AS VARCHAR(20)))");

/* Copy the INSERT attributes into the host variable attrvar */
strcpy(attrvar, "FOR MULTIPLE ROWS");

/* Prepare and execute my_insert using the host variable arrays */
EXEC SQL PREPARE my_insert ATTRIBUTES :attrvar FROM :sqlstmt;
EXEC SQL EXECUTE my_insert USING :hva1, :hva2, :hva3 FOR :num_rows ROWS;

Dynamically executing a data change statement by using descriptors:

You can use an SQLDA structure to specify data types and other information about
the host variable arrays that contain the values to insert.

To dynamically execute a data change statement by using descriptors, perform the
following actions in your program:
1. Set the following fields in the SQLDA structure for your INSERT statement.

v SQLN
v SQLABC
v SQLD
v SQLVAR
v SQLNAME

Example: Assume that your program includes the standard SQLDA structure
declaration and declarations for the program variables that point to the SQLDA
structure. For C application programs, the following example code sets the
SQLDA fields:

strcpy(sqldaptr->sqldaid,"SQLDA");
sqldaptr->sqldabc = 192; /* number of bytes of storage allocated
for the SQLDA */
sqldaptr->sqln = 4; /* number of SQLVAR
occurrences */
sqldaptr->sqld = 4;
varptr = (struct sqlvar *) (&(sqldaptr->sqlvar[0])); /* Point
to first SQLVAR */
varptr->sqltype = 500; /* data
type SMALLINT */
varptr->sqllen = 2;
varptr->sqldata = (char *) hva1;
varptr->sqlname.length = 8;
memcpy(varptr->sqlname.data, "\x00\x00\x00\x00\x00\x01\x00\x14",varptr->sqlname.length);
varptr = (struct sqlvar *) (&(sqldaptr->sqlvar[0]) + 1); /* Point

190 Application Programming and SQL Guide

to next SQLVAR */
varptr->sqltype = 452; /* data
type CHAR(6) */
varptr->sqllen = 6;
varptr->sqldata = (char *) hva2;
varptr->sqlname.length = 8;
memcpy(varptr->sqlname.data, "\x00\x00\x00\x00\x00\x01\x00\x14",varptr->sqlname.length);
varptr = (struct sqlvar *) (&(sqldaptr->sqlvar[0]) + 2); /* Point
to next SQLVAR */
varptr->sqltype = 448; /* data type
VARCHAR(20) */
varptr->sqllen = 20;
varptr->sqldata = (char *) hva3;
varptr->sqlname.length = 8;
memcpy(varptr->sqlname.data, "\x00\x00\x00\x00\x00\x01\x00\x14",varptr->sqlname.length);

The SQLDA structure has the following fields:
v SQLDABC indicates the number of bytes of storage that are allocated for the

SQLDA. The storage includes a 16-byte header and 44 bytes for each
SQLVAR field. The value is SQLN x 44 + 16, or 192 for this example.

v SQLN is the number of SQLVAR occurrences, plus one for use by DB2 for
the host variable that contains the number n in the FOR n ROWS clause.

v SQLD is the number of variables in the SQLDA that are used by DB2 when
processing the INSERT statement.

v An SQLVAR occurrence specifies the attributes of an element of a host
variable array that corresponds to a value provided for a target column of
the INSERT. Within each SQLVAR:
– SQLTYPE indicates the data type of the elements of the host variable

array.
– SQLLEN indicates the length of a single element of the host variable array.
– SQLDATA points to the corresponding host variable array. Assume that

your program allocates the dynamic variable arrays hva1, hva2, and hva3.
– SQLNAME has two parts: the LENGTH and the DATA. The LENGTH is

8. The first two bytes of the DATA field is X'0000'. Bytes 5 and 6 of the
DATA field are a flag indicating whether the variable is an array or a FOR
n ROWS value. Bytes 7 and 8 are a two-byte binary integer representation
of the dimension of the array.

2. Assign the appropriate INSERT or MERGE statement to a host variable.

Example: The following string contains an INSERT statement that is to be
prepared:
INSERT INTO DSN8B10.ACT VALUES (?, ?, ?)

3. Assign any attributes for the SQL statement to a host variable.
4. Include a PREPARE statement for the SQL statement.
5. Include an EXECUTE statement with the FOR n ROWS clause. The host

variable in the USING clause of the EXECUTE statement names the SQLDA
that describes the parameter markers in the INSERT statement.

Example: The following code prepares and executes an INSERT statement:
/* Copy the INSERT string into the host variable sqlstmt */
strcpy(sqlstmt, "INSERT INTO DSN8B10.ACT VALUES (?, ?, ?)");

/* Copy the INSERT attributes into the host variable attrvar */
strcpy(attrvar, "FOR MULTIPLE ROWS");

Chapter 3. Coding SQL statements in application programs: General information 191

/* Prepare and execute my_insert using the descriptor */
EXEC SQL PREPARE my_insert ATTRIBUTES :attrvar FROM :sqlstmt;
EXEC SQL EXECUTE my_insert USING DESCRIPTOR :*sqldaptr FOR :num_rows ROWS;

Related concepts:
“SQL statements in assembler programs” on page 245
“SQL statements in C programs” on page 285
“SQL statements in COBOL programs” on page 336
“SQL statements in Fortran programs” on page 381
“SQL statements in PL/I programs” on page 405
Related tasks:
“Including dynamic SQL for varying-list SELECT statements in your program” on
page 167
Related reference:

SQLTYPE and SQLLEN (DB2 SQL)

Dynamically executing a statement with parameter markers by
using the SQLDA
Your program can get data type information about parameter markers by asking
DB2 to set the fields in the SQLDA.

Before you begin

Before you dynamically execute a statement with parameter markers, allocate an
SQLDA with enough instances of SQLVAR to represent all parameter markers in
the SQL statement.

Procedure

To dynamically execute a statement with parameter markers by using the SQLDA:
1. Include in your program a DESCRIBE INPUT statement that specifies the

prepared SQL statement and the name of an appropriate SQLDA.
DB2 puts the requested parameter marker information in the SQLDA.

2. Code the application in the same way as any other application in which you
execute a prepared statement by using an SQLDA. First, obtain the addresses of
the input host variables and their indicator variables and insert those addresses
into the SQLDATA and SQLIND fields. Then, execute the prepared SQL
statement.

Example

Suppose that you want to execute the following statement dynamically:
DELETE FROM DSN8B10.EMP WHERE EMPNO = ?

You can use the following code to set up an SQLDA, obtain parameter information
by using the DESCRIBE INPUT statement, and execute the statement:
SQLDAPTR=ADDR(INSQLDA); /* Get pointer to SQLDA */
SQLDAID=’SQLDA’; /* Fill in SQLDA eye-catcher */
SQLDABC=LENGTH(INSQLDA); /* Fill in SQLDA length */
SQLN=1; /* Fill in number of SQLVARs */
SQLD=0; /* Initialize # of SQLVARs used */
DO IX=1 TO SQLN; /* Initialize the SQLVAR */

SQLTYPE(IX)=0;
SQLLEN(IX)=0;
SQLNAME(IX)=’’;

192 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sqltypeandsqlleninsqlda.htm#db2z_sqltypeandsqlleninsqlda

END;
SQLSTMT=’DELETE FROM DSN8B10.EMP WHERE EMPNO = ?’;
EXEC SQL PREPARE SQLOBJ FROM SQLSTMT;
EXEC SQL DESCRIBE INPUT SQLOBJ INTO :INSQLDA;
SQLDATA(1)=ADDR(HVEMP); /* Get input data address */
SQLIND(1)=ADDR(HVEMPIND); /* Get indicator address */
EXEC SQL EXECUTE SQLOBJ USING DESCRIPTOR :INSQLDA;

Related concepts:
“SQL statements in assembler programs” on page 245
“SQL statements in C programs” on page 285
“SQL statements in COBOL programs” on page 336
“SQL statements in Fortran programs” on page 381
“SQL statements in PL/I programs” on page 405
“SQL statements in REXX programs” on page 417
Related tasks:
“Defining SQL descriptor areas” on page 137
Related reference:

DESCRIBE INPUT (DB2 SQL)

Improving dynamic SQL performance by enabling the dynamic
statement cache
The dynamic statement cache is a pool in which DB2 saves control structures for
prepared SQL statements that can be shared among different threads, plans, and
packages. By sharing these control structures, applications can avoid unnecessary
preparation processes and thus improve performance. You must enable the
dynamic statement cache before it can be used.

Procedure

To enable the dynamic statement cache to save prepared statements:

Specify YES for the value of the CACHEDYN subsystem parameter.
Related concepts:
“SQL statements in assembler programs” on page 245
“SQL statements in C programs” on page 285
“SQL statements in COBOL programs” on page 336
“SQL statements in Fortran programs” on page 381
“SQL statements in PL/I programs” on page 405
“SQL statements in REXX programs” on page 417
Related reference:

CACHE DYNAMIC SQL field (CACHEDYN subsystem parameter) (DB2
Installation and Migration)

Dynamic SQL statements that DB2 can cache:

The dynamic statement cache is a pool in which DB2 saves prepared SQL
statements that can be shared among different threads, plans, and packages to
improve performance. Only certain dynamic SQL statements can be saved in this
cache.

As the DB2 ability to optimize SQL has improved, the cost of preparing a dynamic
SQL statement has grown. Applications that use dynamic SQL might be forced to

Chapter 3. Coding SQL statements in application programs: General information 193

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_describeinput.htm#db2z_sql_describeinput
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_cachedyn.htm#db2z_dsntip802
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_cachedyn.htm#db2z_dsntip802

pay this cost more than once. When an application performs a commit operation, it
must issue another PREPARE statement if that SQL statement is to be executed
again. For a SELECT statement, the ability to declare a cursor WITH HOLD
provides some relief but requires that the cursor be open at the commit point.
WITH HOLD also causes some locks to be held for any objects that the prepared
statement is dependent on. Also, WITH HOLD offers no relief for SQL statements
that are not SELECT statements.

DB2 can save prepared dynamic statements in a cache. The cache is a dynamic
statement cache pool that all application processes can use to save and retrieve
prepared dynamic statements. After an SQL statement has been prepared and is
automatically saved in the cache, subsequent prepare requests for that same SQL
statement can avoid the costly preparation process by using the statement that is in
the cache. Statements that are saved in the cache can be shared among different
threads, plans, or packages.

Example: Assume that your application program contains a dynamic SQL
statement, STMT1, which is prepared and executed multiple times. If you are using
the dynamic statement cache when STMT1 is prepared for the first time, it is
placed in the cache. When your application program encounters the identical
PREPARE statement for STMT1, DB2 uses the already prepared STMT1 that is
saved in the dynamic statement cache. The following example shows the identical
STMT1 that might appear in your application program:
PREPARE STMT1 FROM ... Statement is prepared and the prepared
EXECUTE STMT1 statement is put in the cache.
COMMIT...
PREPARE STMT1 FROM ... Identical statement. DB2 uses the prepared
EXECUTE STMT1 statement from the cache.
COMMIT...

Eligible statements: The following SQL statements can be saved in the cache:
SELECT
UPDATE
INSERT
DELETE
MERGE

Distributed and local SQL statements are eligible to be saved.

The following types of SQL statement text with SQL bracketed comments can be
saved in the dynamic statement cache:
v SQL statement text that begins with SQL bracketed comments that are unnested.

No single SQL bracketed comment that begins the statement can be greater than
258 bytes. An example of unnested bracketed comments is /* */ /* */.

v SQL statement text with unnested or nested SQL bracketed comments within the
text. An example of nested bracketed comments is /* /* */ */.

Bracketed comments that are in SQL statement source code are saved with the
statement text when the SQL statements are placed in the dynamic statement
cache, unless other tools remove the bracketed comments before DB2 processes the
SQL statement.

194 Application Programming and SQL Guide

SQL statement text that is preceded by SQL simple comments (--) or any other
characters besides unnested, bracketed comments is not eligible to be saved in the
dynamic statement cache.

Statements in plans or packages that are bound with REOPT(ALWAYS) cannot be
saved in the cache. Statements in plans and packages that are bound with
REOPT(ONCE) or REOPT(AUTO) can be saved in the cache.

Statements that are sent to an accelerator server cannot be saved in the cache.

Prepared statements cannot be shared among data sharing members. Because each
member has its own EDM pool, a cached statement on one member is not
available to an application that runs on another member.
Related tasks:
“Including dynamic SQL for varying-list SELECT statements in your program” on
page 167

Conditions for statement sharing:

If a prepared version of an identical SQL statement already exists in the dynamic
statement cache, certain conditions must still be met before DB2 can reuse that
prepared statement.

Suppose that S1 and S2 are source statements, and P1 is the prepared version of
S1. P1 is in the dynamic statement cache.

The following conditions must be met before DB2 can use statement P1 instead of
preparing statement S2:
v S1 and S2 must be identical. The statements must pass a character by character

comparison and must be the same length. If the PREPARE statement for either
statement contains an ATTRIBUTES clause, DB2 concatenates the values in the
ATTRIBUTES clause to the statement string before comparing the strings. That
is, if A1 is the set of attributes for S1 and A2 is the set of attributes for S2, DB2
compares S1||A1 to S2||A2. S1 and S2 must be identical if the PREPARE
ATTRIBUTES clause CONCENTRATE STATEMENTS WITH LITERALS is not
used to request literal constant replacement in S1 and S2.
If the statement strings are not identical, DB2 cannot use the statement in the
cache.
For example, assume that S1 and S2 are specified as follows:
’UPDATE EMP SET SALARY=SALARY+50’

In this case, DB2 can use P1 instead of preparing S2.
However, assume that S1 is specified as follows:
’UPDATE EMP SET SALARY=SALARY+50’

Assume also that S2 is specified as follows:
’UPDATE EMP SET SALARY=SALARY+50 ’

In this case, DB2 cannot use P1 for S2. DB2 prepares S2 and saves the prepared
version of S2 in the cache.

v The authorization ID or role that was used to prepare S1 must be used to
prepare S2:
– When a plan or package has run behavior, the authorization ID is the current

SQLID value.

Chapter 3. Coding SQL statements in application programs: General information 195

For secondary authorization IDs:
- The application process that searches the cache must have the same

secondary authorization ID list as the process that inserted the entry into
the cache or must have a superset of that list.

- If the process that originally prepared the statement and inserted it into the
cache used one of the privileges held by the primary authorization ID to
accomplish the prepare, that ID must either be part of the secondary
authorization ID list of the process searching the cache, or it must be the
primary authorization ID of that process.

– When a plan or package has bind behavior, the authorization ID is the plan
owner's ID. For a DDF server thread, the authorization ID is the package
owner's ID.

– When a package has define behavior, then the authorization ID is the
user-defined function or stored procedure owner.

– When a package has invoke behavior, then the authorization ID is the
authorization ID under which the statement that invoked the user-defined
function or stored procedure executed.

– If the application process has a role associated with it, DB2 uses the role to
search the cache instead of the authorization IDs. If the trusted context that
associated the role with the application process is defined with the WITH
ROLE AS OBJECT OWNER clause, the role value is used as the default for
the CURRENT SCHEMA special register and the SQL path.

v When the plan or package that contains S2 is bound, the values of these bind
options must be the same as when the plan or package that contains S1 was
bound:

CURRENTDATA
DYNAMICRULES
ISOLATION
SQLRULES
QUALIFIER
EXTENDEDINDICATOR

v When S2 is prepared, the values of the following special registers must be the
same as when S1 was prepared:

CURRENT DECFLOAT ROUNDING MODE
CURRENT DEGREE
CURRENT RULES
CURRENT PRECISION
CURRENT REFRESH AGE
CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
CURRENT LOCALE LC_CTYPE

v Two statements must be identical, except for literals. When the PREPARE
ATTRIBUTES clause CONCENTRATE STATEMENTS WITH LITERALS is
specified and the statements qualify for literal constant replacement, the cached
statement (where the literals were already replaced) and the new statement must
be identical, except for the literals. To be considered for literal constant
replacement, the dynamic SQL statement must not include parameter markers
('?').
If the first search of the cache does not find an exact match using the original
statement text and CONCENTRATE STATEMENTS WITH LITERALS is
specified in the ATTRIBUTES clause, the CONCENTRATE STATEMENTS
behavior goes into effect. DB2 substitutes the ampersand character ('&') for
literal constants in the SQL statement text and continues the cache prepare
process, using this new version of the statement text that contains '&'. DB2

196 Application Programming and SQL Guide

searches the cache again to find a matching cached statement that also has '&'
substituted for the literal constants. For this second search, the new statement
and the cached statement must again pass a character by character statement
text comparison, with both statements having '&' for the literals. If that
statement text comparison is successful, DB2 determines if the literal reusability
criteria between the two statements allows for the new statement to share the
cached statement.
For literal reusability, the reusability criteria includes, but is not limited to, the
immediate usage context, the literal data type, and the data type size of both the
new literal instance and the cached literal instance. If DB2 determines that the
new instance of a literal can be reused in place of the cached literal instance, a
cached statement that was prepared with the CONCENTRATE STATEMENTS
WITH LITERALS clause can be shared by the same SQL statement with a
different instance of a literal value. However, that same SQL statement must
meet all of the other conditions for sharing the cached statement.
If DB2 determines that the statement with the new literal instance cannot share
the cached statement because of incompatible literal reusability criteria, DB2
inserts into the cache a new statement that has both '&' substitution and a
different set of literal reusability criteria. This new statement is different from the
cached statement, even though both statements have the same statement text
with ampersand characters ('&'). Now, both statements are in the cache, but each
has different literal reusability criteria that makes these two cached statements
unique.

Example 1: Original SQL statement:
SELECT X, Y, Z FROM TABLE1 WHERE X < 123 (no cache match)

After the literals are replaced with '&', the cached statement is as follows:
SELECT X, Y, Z FROM TABLE1 WHERE X < &

Example 2: Original SQL statement:
INSERT INTO TABLE1 (X, Y, Z) VALUES (8,109,29) (no cache match)

After the literals are replaced with '&', the cached statement is as follows:
INSERT INTO TABLE1 (X, Y, Z) VALUES (&,&,&)

Example 3: As an example of the literal reusability criteria, assume that the
SELECT statement from example 1 is cached as follows, where column X has
data type decimal:
SELECT X, Y, Z FROM TABLE1 WHERE X < 123 (no cache match)

After the literals are replaced with '&', the cached statement is as follows:
SELECT X, Y, Z FROM TABLE1 WHERE X < & (+ lit 123 reuse info)

Assume that the following new instance of that statement is now being
prepared:
SELECT X, Y, Z FROM TABLE1 WHERE X < 1E2

According to the literal reusability criteria that DB2 uses for literal replacement,
the literal value 1E2 in the new version of the SELECT statement is not reusable
in place of the literal value 123 in the original cached '&' SELECT statement,
because the literal value 1E2 does not match the literal data type reusability of
the cached statement. Therefore, DB2 does a full cache prepare for this SELECT
statement with literal 1E2 and inserts another instance of this '&' SELECT
statement into the cache as follows:
SELECT X, Y, Z FROM TABLE1 WHERE X < & (+ lit 1E2 reuse info)

Chapter 3. Coding SQL statements in application programs: General information 197

The new literal reusability information that was used as part of the cache match
criteria is also be cached with this instance of the '&' SELECT statement. This
literal reusability information is specific to the literal 1E2, making it a new
unique entry in the cache even though it is another instance of the same '&'
SELECT statement that is cached.
Now, given the two '&' SELECT statements that are cached, let's attempt to
prepare the same SELECT statement again but with a different literal value
instance from the first two cases as follows:
SELECT X, Y, Z FROM TABLE1 WHERE X < 9

The DB2 cache behavior, for this scenario with CONCENTRATE STATEMENTS
WITH LITERALS in effect, is as follows:
1. DB2 searches the cache, attempting to find an exact match for the new

SELECT statement with literal '9' (along with the usual required conditions
for a cache match or sharing). No cache match is found.

2. DB2 replaces literal '9' in the SELECT statement with '&' and does a second
search of the cache using the new SELECT statement text that has the '&'
instead of '9'. DB2 finds two qualifying cached '&' SELECT statements that
match. The one for original literal 123 and the second for original literal 1E2.

3. Given the two qualifying '&' SELECT statement cache matches that were
found, DB2 continues the cache matching evaluation by using the literal
reusability criteria to determine which of the two cache matches is reusable
with literal value '9'. In this case, both cached statements are reusable with
literal value '9', therefore, simply by order of statement insertion into the
cache, cached statement for literal 123 is the first cached statement found that
satisfies the literal reusability criteria for the new literal value '9'.

4. DB2 does a short prepare for the SELECT statement with literal '9', using the
executable statement structures that are cached for the cached '&' SELECT
statement for literal 123.

Exception: If you set the CACHEDYN_FREELOCAL subsystem parameter to 1
and a storage shortage occurs, DB2 frees the cached dynamic statements. In this
case, DB2 cannot use P1 instead of preparing statement S2, because P1 no longer
exists in the statement cache.
Related concepts:

Reoptimization for statements with replaced literal values (DB2 Performance)
“DYNAMICRULES bind option” on page 957
Related reference:

PREPARE (DB2 SQL)

Subsystem parameters that are not on installation panels (DB2 Installation and
Migration)

Capturing performance information for dynamic SQL statements:

DB2 maintains statement caching performance statistics records when dynamic
statements are cached. The statistics include cache hit ratio and other useful data
points that you can use to evaluate the overall performance of your statement
caches and statement executions.

Before you begin

v Set the value of the CACHEDYN subsystem parameter to YES.

198 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_reoptconcentrateliteral.htm#db2z_reoptconcentrateliteral
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_prepare.htm#db2z_sql_prepare
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_zparmnotonpanels.htm#db2z_zparmnotonpanels
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_zparmnotonpanels.htm#db2z_zparmnotonpanels

v Create DSN_STATEMENT_CACHE_TABLE, and the associated LOB and
auxiliary tables and indexes. You can find the sample statements for creating
these objects in member DSNTESC of the SDSNSAMP library.

About this task

When DB2 prepares a dynamic SQL statement, it creates control structures that are
used when the statements are executed. When dynamic statement caching is in
effect, DB2 stores the control structure associated with each prepared dynamic SQL
statement in a storage pool. If that same statement or a matching statement is
issued again, DB2 can use the cached control structure, avoiding the expense of
preparing the statement again.

Procedure

To externalize the statement cache statistics for performance analysis:
1. To externalize the statement cache statistics for performance analysis:

START TRACE(P) CLASS(30) IFCID(316,317,318)

IFCID 0316 contains the first 60 bytes of SQL text and statement execution
statistics. IFCID 0317 captures the full text of the SQL statement. IFCID 0318
enables the collection of statistics. DB2 begins to collect statistics and
accumulates them for the length of time when the trace is on. Stopping the
trace resets all statistics.

2. Run the SQL workload that you want to analyze.
3. Issue the following SQL statement in a DSNTEP2 utility job:

EXPLAIN STMTCACHE ALL

Important: Run the workload and issue the EXPLAIN statement while the
traces are still running. If you stop the trace for IFCID 318, all statistics in the
dynamic statement cache are reset.
DB2 extracts all statements from the global cache and writes the statistics
information to for all statements in the cache that qualify based on the user's
SQLID into the DSN_STATEMENT_CACHE_TABLE. If the SQLID has
SYSADM authority, statistics for all statement in the cache are written into the
table.

4. Begin your evaluation of the statement cache performance by selecting from the
inserted rows from the DSN_STATEMENT_CACHE_TABLE table. For example,
you can use the following clauses in your query to identify the n queries that
have the highest total accumulated CPU time for all the executions of the query
during the trace interval:
ORDER BY STAT_CPU DESC
FETCH FIRST n ROWS ONLY;

Similarly, you might use the following clauses in your query to identify the top
n queries that have the highest average CPU time per query execution during
the trace interval:
SELECT STAT_CPU / STAT_EXEC
FETCH FIRST n ROWS ONLY;

What to do next

You can also use optimization tools such as IBM Data Studio and InfoSphere®

Optim™ Query Workload Tuner to capture and analyze statements from the
dynamic statement cache.

Chapter 3. Coding SQL statements in application programs: General information 199

Related tasks:

Creating EXPLAIN tables (DB2 Performance)

Monitoring the dynamic statement cache with READS calls (DB2 Performance)
Related reference:

DSN_STATEMENT_CACHE_TABLE (DB2 Performance)

CACHE DYNAMIC SQL field (CACHEDYN subsystem parameter) (DB2
Installation and Migration)

EXPLAIN (DB2 SQL)

DSNTEP2 and DSNTEP4 (DB2 Application programming and SQL)

IBM Data Studio product overview

InfoSphere Optim Query Workload Tuner

Methods for keeping prepared statements after commit points
If your program issues the same dynamic SQL statement in different commit
scopes, consider specifying that DB2 keep the prepared versions of these
statements after the commit points. This behavior can improve performance. By
default, DB2 does not keep these statements after commit points.

Two bind options can be used to keep prepared dynamic statements past commit
points. For most dynamic statements, you can use the KEEPDYNAMIC(YES) bind
option. For statements that reference declared global temporary tables, you can use
the RELEASE(DEALLOCATE) bind option.

KEEPDYNAMIC(YES) bind option

The KEEPDYNAMIC(YES) bind option lets you hold dynamic statements past a
commit point for an application process. An application can issue a PREPARE for a
statement once and omit subsequent PREPAREs for that statement. The following
example illustrates an application that is written to use KEEPDYNAMIC(YES).
PREPARE STMT1 FROM ... Statement is prepared.
EXECUTE STMT1
COMMIT...
EXECUTE STMT1 Application does not issue PREPARE.
COMMIT...
EXECUTE STMT1 Again, no PREPARE needed.
COMMIT

To understand how the KEEPDYNAMIC bind option works, you need to
differentiate between the executable form of a dynamic SQL statement, which is
the prepared statement, and the character string form of the statement, which is
the statement string.

Relationship between KEEPDYNAMIC(YES) and statement caching: When the
dynamic statement cache is not active, and you run an application bound with
KEEPDYNAMIC(YES), DB2 saves only the statement string for a prepared
statement after a commit operation. On a subsequent OPEN, EXECUTE, or
DESCRIBE, DB2 must prepare the statement again before performing the requested
operation. The following example illustrates this concept.

200 Application Programming and SQL Guide

|
|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_createexplaintables.htm#db2z_createexplaintables
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_monitordynamicsqlreads.htm#db2z_monitordynamicsqlreads
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_dsnstatementcachetable.htm#db2z_dsnstatementcachetable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_cachedyn.htm#db2z_dsntip802
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_cachedyn.htm#db2z_dsntip802
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_explain.htm#db2z_sql_explain
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_dsntep24.htm#db2z_dsntep24
http://publib.boulder.ibm.com/infocenter/dstudio/v4r1/topic/com.ibm.datatools.ds.nav.doc/topics/helpindex_ds.html
http://pic.dhe.ibm.com/infocenter/dstudio/v4r1/topic/com.ibm.datatools.qrytune.nav.doc/topics/helpindex_qt.html

PREPARE STMT1 FROM ... Statement is prepared and put in memory.
EXECUTE STMT1
COMMIT...
EXECUTE STMT1 Application does not issue PREPARE.
COMMIT DB2 prepares the statement again....
EXECUTE STMT1 Again, no PREPARE needed.
COMMIT

When the dynamic statement cache is active, and you run an application bound
with KEEPDYNAMIC(YES), DB2 retains a copy of both the prepared statement
and the statement string. The prepared statement is cached locally for the
application process. In general, the statement is globally cached in the EDM pool,
to benefit other application processes. If the application issues an OPEN,
EXECUTE, or DESCRIBE after a commit operation, the application process uses its
local copy of the prepared statement to avoid a prepare and a search of the cache.
The following example illustrates this process.
PREPARE STMT1 FROM ... Statement is prepared and put in memory.
EXECUTE STMT1
COMMIT...
EXECUTE STMT1 Application does not issue PREPARE.
COMMIT DB2 uses the prepared statement in memory....
EXECUTE STMT1 Again, no PREPARE needed.
COMMIT DB2 uses the prepared statement in memory....
PREPARE STMT1 FROM ... Again, no PREPARE needed.
COMMIT DB2 uses the prepared statement in memory.

The local instance of the prepared SQL statement is kept in ssnmDBM1 storage
until one of the following occurs:
v The application process ends.
v A rollback operation occurs.
v The application issues an explicit PREPARE statement with the same statement

name.
If the application does issue a PREPARE for the same SQL statement name that
has a kept dynamic statement associated with it, the kept statement is discarded
and DB2 prepares the new statement.

v The statement is removed from memory because the statement has not been
used recently, and the number of kept dynamic SQL statements reaches the
subsystem default as set during installation.

Handling implicit prepare errors: If a statement is needed during the lifetime of
an application process, and the statement has been removed from the local cache,
DB2 might be able to retrieve it from the global cache. If the statement is not in the
global cache, DB2 must implicitly prepare the statement again. The application
does not need to issue a PREPARE statement. However, if the application issues an
OPEN, EXECUTE, or DESCRIBE for the statement, the application must be able to
handle the possibility that DB2 is doing the prepare implicitly. Any error that
occurs during this prepare is returned on the OPEN, EXECUTE, or DESCRIBE.

How KEEPDYNAMIC affects applications that use distributed data: If a
requester does not issue a PREPARE after a COMMIT, the package at the DB2 for
z/OS server must be bound with KEEPDYNAMIC(YES). If both requester and

Chapter 3. Coding SQL statements in application programs: General information 201

server are DB2 for z/OS subsystems, the DB2 requester assumes that the
KEEPDYNAMIC value for the package at the server is the same as the value for
the plan at the requester.

The KEEPDYNAMIC option has performance implications for DRDA clients that
specify WITH HOLD on their cursors:
v If KEEPDYNAMIC(NO) is specified, a separate network message is required

when the DRDA client issues the SQL CLOSE for the cursor.
v If KEEPDYNAMIC(YES) is specified, the DB2 for z/OS server automatically

closes the cursor when SQLCODE +100 is detected, which means that the client
does not have to send a separate message to close the held cursor. This reduces
network traffic for DRDA applications that use held cursors. It also reduces the
duration of locks that are associated with the held cursor.

Note: If one member of a data sharing group has enabled the cache but another
has not, and an application is bound with KEEPDYNAMIC(YES), DB2 must
implicitly prepare the statement again if the statement is assigned to a member
without the cache. This can mean a slight reduction in performance.

RELEASE(DEALLOCATE) bind option

The RELEASE(DEALLOCATE) bind option retains prepared INSERT, UPDATE,
DELETE, and MERGE statements that reference declared global temporary tables
past commit points. If this option is used, the number of required PREPARE
operations in an application that references declared global temporary tables can
be reduced, resulting in a potential performance improvement.

To take advantage of this potential performance improvement, alter existing
applications to include one PREPARE operation for the dynamic statement and
omit subsequent PREPARE operations for the statement. The following example
illustrates an application that is written to take advantage of the
RELEASE(DEALLOCATE) performance enhancement and keep prepared
statements after commit points.
DECLARE GLOBAL TEMPORARY TABLE SESSION.tablename

PREPARE STMT1 FROM ... Statement is prepared and put in memory.
EXECUTE STMT1
COMMIT...
EXECUTE STMT1 Application does not issue PREPARE.
COMMIT DB2 uses the prepared statement in memory....
EXECUTE STMT1 Again, no PREPARE needed.
COMMIT DB2 uses the prepared statement in memory.

Limiting CPU time for dynamic SQL statements by using the
resource limit facility

The resource limit facility (or governor) limits the amount of CPU time that an
SQL statement can take, which prevents SQL statements from making excessive
requests.

About this task

PSPI The predictive governing function of the resource limit facility provides an
estimate of the processing cost of SQL statements before they run. To predict the

202 Application Programming and SQL Guide

|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
||||
|
||||
|
|

cost of an SQL statement, you execute EXPLAIN to put information about the
statement cost in DSN_STATEMNT_TABLE.

The governor controls only the dynamic SQL manipulative statements SELECT,
UPDATE, DELETE, and INSERT. Each dynamic SQL statement used in a program
is subject to the same limits. The limit can be a reactive governing limit or a
predictive governing limit. If the statement exceeds a reactive governing limit, the
statement receives an error SQL code. If the statement exceeds a predictive
governing limit, it receives a warning or error SQL code.

Your system administrator can establish the limits for individual plans or packages,
for individual users, or for all users who do not have personal limits.

Follow the procedures defined by your location for adding, dropping, or
modifying entries in the resource limit specification table.

PSPI

Related concepts:
“Predictive governing”
“SQL statements in assembler programs” on page 245
“SQL statements in C programs” on page 285
“SQL statements in COBOL programs” on page 336
“SQL statements in Fortran programs” on page 381
“SQL statements in PL/I programs” on page 405
“SQL statements in REXX programs” on page 417
Related tasks:

Managing resource limit tables (DB2 Performance)

Reactive governing
The reactive governing function of the resource limit facility stops any dynamic
SQL statements that overuse system resources. When a statement exceeds a
reactive governing threshold, the application program receives SQLCODE -905. The
application must include code that performs the appropriate action based on this
situation.

If the failed statement involves an SQL cursor, the cursor's position remains
unchanged. The application can then close that cursor. All other operations with
the cursor do not run and the same SQL error code occurs.

If the failed SQL statement does not involve a cursor, then all changes that the
statement made are undone before the error code returns to the application. The
application can either issue another SQL statement or commit all work done so far.

Predictive governing
The predictive governing function of the resource limit facility provides an
estimate of the processing cost of SQL statements before they run.

If your installation uses predictive governing, you need to modify your
applications to check for the +495 and -495 SQLCODEs that predictive governing
can generate after a PREPARE statement executes. The +495 SQLCODE in
combination with deferred prepare requires that DB2 do some special processing to
ensure that existing applications are not affected by this new warning SQLCODE.

Chapter 3. Coding SQL statements in application programs: General information 203

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_reourcelimittables.htm#db2z_reourcelimittables

Handling the +495 SQLCODEIf your requester uses deferred prepare, the
presence of parameter markers determines when the application receives the +495
SQLCODE. When parameter markers are present, DB2 cannot do PREPARE,
OPEN, and FETCH processing in one message. If SQLCODE +495 is returned, no
OPEN or FETCH processing occurs until your application requests it.
v If there are parameter markers, the +495 is returned on the OPEN (not the

PREPARE).
v If there are no parameter markers, the +495 is returned on the PREPARE.

Normally with deferred prepare, the PREPARE, OPEN, and first FETCH of the
data are returned to the requester. For a predictive governor warning of +495, you
would ideally like to have the option to choose beforehand whether you want the
OPEN and FETCH of the data to occur. For down-level requesters, you do not
have this option.

Using predictive governing and down-level DRDA requesters

If SQLCODE +495 is returned to the requester, OPEN processing continues but the
first block of data is not returned with the OPEN. Thus, if your application does
not continue with the query, you have already incurred the performance cost of
OPEN processing.

Using predictive governing and enabled requesters

If your application does not defer the prepare, SQLCODE +495 is returned to the
requester and OPEN processing does not occur.

If your application does defer prepare processing, the application receives the +495
at its usual time (OPEN or PREPARE). If you have parameter markers with
deferred prepare, you receive the +495 at OPEN time as you normally do.
However, an additional message is exchanged.

Recommendation: Do not use deferred prepare for applications that use parameter
markers and that are predictively governed at the server side.
Related tasks:

Controlling resource usage (DB2 Performance)

Checking the execution of SQL statements
After executing an SQL statement, your program should check for any errors codes
before you commit the data and handle the errors that they represent.

About this task

You can check the execution of SQL statements in one of the following ways:
v By displaying specific fields in the SQLCA.
v By testing SQLCODE or SQLSTATE for specific values.
v By using the WHENEVER statement in your application program.
v By testing indicator variables to detect numeric errors.
v By using the GET DIAGNOSTICS statement in your application program to

return all the condition information that results from the execution of an SQL
statement.

v By calling DSNTIAR to display the contents of the SQLCA.

204 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_improveresoureusage.htm#db2z_improveresoureusage

Related concepts:
“Arithmetic and conversion errors” on page 217
Related tasks:
“Defining the SQL communications area, SQLSTATE, and SQLCODE in assembler”
on page 231
“Defining the SQL communications area, SQLSTATE, and SQLCODE in C” on page
251
“Defining the SQL communications area, SQLSTATE, and SQLCODE in COBOL”
on page 301
“Defining the SQL communications area, SQLSTATE, and SQLCODE in Fortran”
on page 373
“Defining the SQL communications area, SQLSTATE, and SQLCODE in PL/I” on
page 385
“Defining the SQL communications area, SQLSTATE, and SQLCODE in REXX” on
page 415
“Displaying SQLCA fields by calling DSNTIAR” on page 206

Checking the execution of SQL statements by using the
SQLCA

One way to check whether an SQL statement executed successfully is to use the
SQL communication area (SQLCA). This area is set apart for communication with
DB2.

About this task

If you use the SQLCA, include the necessary instructions to display information
that is contained in the SQLCA in your application program. Alternatively, you can
use the GET DIAGNOSTICS statement, which is an SQL standard, to diagnose
problems.
v When DB2 processes an SQL statement, it places return codes that indicate the

success or failure of the statement execution in SQLCODE and SQLSTATE.
v When DB2 processes a FETCH statement, and the FETCH is successful, the

contents of SQLERRD(3) in the SQLCA is set to the number of returned rows.
v When DB2 processes a multiple-row FETCH statement, the contents of

SQLCODE is set to +100 if the last row in the table has been returned with the
set of rows.

v When DB2 processes an UPDATE, INSERT, or DELETE statement, and the
statement execution is successful, the contents of SQLERRD(3) in the SQLCA is
set to the number of rows that are updated, inserted, or deleted.

v When DB2 processes a TRUNCATE statement and the statement execution is
successful, SQLERRD(3) in the SQLCA is set to -1. The number of rows that are
deleted is not returned.

v If SQLWARN0 contains W, DB2 has set at least one of the SQL warning flags
(SQLWARN1 through SQLWARNA):
– SQLWARN1 contains N for non-scrollable cursors and S for scrollable cursors

after an OPEN CURSOR or ALLOCATE CURSOR statement.
– SQLWARN4 contains I for insensitive scrollable cursors, S for sensitive static

scrollable cursors, and D for sensitive dynamic scrollable cursors, after an
OPEN CURSOR or ALLOCATE CURSOR statement, or blank if the cursor is
not scrollable.

Chapter 3. Coding SQL statements in application programs: General information 205

– SQLWARN5 contains a character value of 1 (read only), 2 (read and delete),
or 4 (read, delete, and update) to indicate the operation that is allowed on the
result table of the cursor.

Related tasks:
“Accessing data by using a rowset-positioned cursor” on page 724
“Checking the execution of SQL statements by using SQLCODE and SQLSTATE”
on page 209
“Defining the SQL communications area, SQLSTATE, and SQLCODE in assembler”
on page 231
“Defining the SQL communications area, SQLSTATE, and SQLCODE in C” on page
251
“Defining the SQL communications area, SQLSTATE, and SQLCODE in COBOL”
on page 301
“Defining the SQL communications area, SQLSTATE, and SQLCODE in Fortran”
on page 373
“Defining the SQL communications area, SQLSTATE, and SQLCODE in PL/I” on
page 385
“Defining the SQL communications area, SQLSTATE, and SQLCODE in REXX” on
page 415
Related reference:

Description of SQLCA fields (DB2 SQL)

Displaying SQLCA fields by calling DSNTIAR
If you use the SQLCA to check whether an SQL statement executed successfully,
your program needs to read the data in the appropriate SQLCA fields. One easy
way to read these fields is to use the assembler subroutine DSNTIAR.

About this task

You should check for errors codes before you commit data, and handle the errors
that they represent. The assembler subroutine DSNTIAR helps you to obtain a
formatted form of the SQLCA and a text message based on the SQLCODE field of
the SQLCA. You can retrieve this same message text by using the MESSAGE_TEXT
condition item field of the GET DIAGNOSTICS statement. Programs that require
long token message support should code the GET DIAGNOSTICS statement
instead of DSNTIAR.

DSNTIAR takes data from the SQLCA, formats it into a message, and places the
result in a message output area that you provide in your application program.
Each time you use DSNTIAR, it overwrites any previous messages in the message
output area. You should move or print the messages before using DSNTIAR again,
and before the contents of the SQLCA change, to get an accurate view of the
SQLCA.

DSNTIAR expects the SQLCA to be in a certain format. If your application
modifies the SQLCA format before you call DSNTIAR, the results are
unpredictable.

DSNTIAR:

The assembler subroutine DSNTIAR helps you to obtain a formatted form of the
SQLCA and a text message that is based on the SQLCODE field of the SQLCA.

206 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_descriptionofsqlcafields.htm#db2z_descriptionofsqlcafields

DSNTIAR can run either above or below the 16-MB line of virtual storage. The
DSNTIAR object module that comes with DB2 has the attributes AMODE(31) and
RMODE(ANY). At installation time, DSNTIAR links as AMODE(31) and
RMODE(ANY). DSNTIAR runs in 31-bit mode if any of the following conditions is
true:
v DSNTIAR is linked with other modules that also have the attributes AMODE(31)

and RMODE(ANY).
v DSNTIAR is linked into an application that specifies the attributes AMODE(31)

and RMODE(ANY) in its link-edit JCL.
v An application loads DSNTIAR.

When loading DSNTIAR from another program, be careful how you branch to
DSNTIAR. For example, if the calling program is in 24-bit addressing mode and
DSNTIAR is loaded above the 16-MB line, you cannot use the assembler BALR
instruction or CALL macro to call DSNTIAR, because they assume that DSNTIAR
is in 24-bit mode. Instead, you must use an instruction that is capable of branching
into 31-bit mode, such as BASSM.

You can dynamically link (load) and call DSNTIAR directly from a language that
does not handle 31-bit addressing. To do this, link a second version of DSNTIAR
with the attributes AMODE(24) and RMODE(24) into another load module library.
Alternatively, you can write an intermediate assembler language program that calls
DSNTIAR in 31-bit mode and then call that intermediate program in 24-bit mode
from your application.

For more information on the allowed and default AMODE and RMODE settings
for a particular language, see the application programming guide for that
language. For details on how the attributes AMODE and RMODE of an application
are determined, see the linkage editor and loader user's guide for the language in
which you have written the application.

Defining a message output area:

If a program calls DSNTIAR, the program must allocate enough storage in the
message output area to hold all of the message text that DSNTIAR returns.

About this task

You will probably need no more than 10 lines, 80-bytes each, for your message
output area. An application program can have only one message output area.

You must define the message output area in VARCHAR format. In this varying
character format, a 2-byte length field precedes the data. The length field indicates
to DSNTIAR how many total bytes are in the output message area; the minimum
length of the output area is 240-bytes.

The following figure shows the format of the message output area, where length is
the 2-byte total length field, and the length of each line matches the logical record
length (lrecl) you specify to DSNTIAR.

Chapter 3. Coding SQL statements in application programs: General information 207

When you call DSNTIAR, you must name an SQLCA and an output message area
in the DSNTIAR parameters. You must also provide the logical record length (lrecl)
as a value between 72 and 240 bytes. DSNTIAR assumes the message area contains
fixed-length records of length lrecl.

DSNTIAR places up to 10 lines in the message area. If the text of a message is
longer than the record length you specify on DSNTIAR, the output message splits
into several records, on word boundaries if possible. The split records are indented.
All records begin with a blank character for carriage control. If you have more
lines than the message output area can contain, DSNTIAR issues a return code of
4. A completely blank record marks the end of the message output area.

Possible return codes from DSNTIAR:

The assembler subroutine DSNTIAR helps your program read the information in
the SQLCA. The subroutine also returns its own return code.

Code Meaning

0 Successful execution.

4 More data available than could fit into the provided message area.

8 Logical record length not between 72 and 240, inclusive.

12 Message area not large enough. The message length was 240 or greater.

16 Error in TSO message routine.

20 Module DSNTIA1 could not be loaded.

24 SQLCA data error.

A scenario for using DSNTIAR:

You can use the assembler subroutine DSNTIAR to generate the error message text
in the SQLCA.

Suppose you want your DB2 COBOL application to check for deadlocks and
timeouts, and you want to make sure your cursors are closed before continuing.
You use the statement WHENEVER SQLERROR to transfer control to an error
routine when your application receives a negative SQLCODE.

Line:

1

2

..

.

n-1

n

Field sizes (in bytes):
2 Logical record length

Figure 21. Format of the message output area

208 Application Programming and SQL Guide

In your error routine, you write a section that checks for SQLCODE -911 or -913.
You can receive either of these SQLCODEs when a deadlock or timeout occurs.
When one of these errors occurs, the error routine closes your cursors by issuing
the statement:
EXEC SQL CLOSE cursor-name

An SQLCODE of 0 or -501 resulting from that statement indicates that the close
was successful.

To use DSNTIAR to generate the error message text, first follow these steps:
1. Choose a logical record length (lrecl) of the output lines. For this example,

assume lrecl is 72 (to fit on a terminal screen) and is stored in the variable
named ERROR-TEXT-LEN.

2. Define a message area in your COBOL application. Assuming you want an area
for up to 10 lines of length 72, you should define an area of 720 bytes, plus a
2-byte area that specifies the total length of the message output area.
01 ERROR-MESSAGE.

02 ERROR-LEN PIC S9(4) COMP VALUE +720.
02 ERROR-TEXT PIC X(72) OCCURS 10 TIMES

INDEXED BY ERROR-INDEX.
77 ERROR-TEXT-LEN PIC S9(9) COMP VALUE +72.

For this example, the name of the message area is ERROR-MESSAGE.
3. Make sure you have an SQLCA. For this example, assume the name of the

SQLCA is SQLCA.

To display the contents of the SQLCA when SQLCODE is 0 or -501, call DSNTIAR
after the SQL statement that produces SQLCODE 0 or -501:
CALL ’DSNTIAR’ USING SQLCA ERROR-MESSAGE ERROR-TEXT-LEN.

You can then print the message output area just as you would any other variable.
Your message might look like this:
DSNT408I SQLCODE = -501, ERROR: THE CURSOR IDENTIFIED IN A FETCH OR

CLOSE STATEMENT IS NOT OPEN
DSNT418I SQLSTATE = 24501 SQLSTATE RETURN CODE
DSNT415I SQLERRP = DSNXERT SQL PROCEDURE DETECTING ERROR
DSNT416I SQLERRD = -315 0 0 -1 0 0 SQL DIAGNOSTIC INFORMATION
DSNT416I SQLERRD = X’FFFFFEC5’ X’00000000’ X’00000000’

X’FFFFFFFF’ X’00000000’ X’00000000’ SQL DIAGNOSTIC
INFORMATION

Checking the execution of SQL statements by using
SQLCODE and SQLSTATE

Whenever an SQL statement executes, the SQLCODE and SQLSTATE fields of the
SQLCA receive a return code. Portable applications should use SQLSTATE instead
of SQLCODE, although SQLCODE values can provide additional DB2-specific
information about an SQL error or warning.

About this task

SQLCODE:

DB2 returns the following codes in SQLCODE:
v If SQLCODE = 0, execution was successful.
v If SQLCODE > 0, execution was successful with a warning.
v If SQLCODE < 0, execution was not successful.

Chapter 3. Coding SQL statements in application programs: General information 209

SQLCODE 100 indicates that no data was found.

The meaning of SQLCODEs other than 0 and 100 varies with the particular
product implementing SQL.

SQLSTATE: SQLSTATE enables an application program to check for errors in the
same way for different IBM database management systems.

Using SQLCODE and SQLSTATE:

An advantage to using the SQLCODE field is that it can provide more specific
information than the SQLSTATE. Many of the SQLCODEs have associated tokens
in the SQLCA that indicate, for example, which object incurred an SQL error.
However, an SQL standard application uses only SQLSTATE.

You can declare SQLCODE and SQLSTATE (SQLCOD and SQLSTA in Fortran) as
stand-alone host variables. If you specify the STDSQL(YES) precompiler option,
these host variables receive the return codes, and you should not include an
SQLCA in your program.
Related tasks:
“Defining the SQL communications area, SQLSTATE, and SQLCODE in assembler”
on page 231
“Defining the SQL communications area, SQLSTATE, and SQLCODE in C” on page
251
“Defining the SQL communications area, SQLSTATE, and SQLCODE in COBOL”
on page 301
“Defining the SQL communications area, SQLSTATE, and SQLCODE in Fortran”
on page 373
“Defining the SQL communications area, SQLSTATE, and SQLCODE in PL/I” on
page 385
“Defining the SQL communications area, SQLSTATE, and SQLCODE in REXX” on
page 415
Related reference:

SQLSTATE values and common error codes (DB2 Codes)

Checking the execution of SQL statements by using the
WHENEVER statement

The WHENEVER statement causes DB2 to check the SQLCA and continue
processing your program. If an error, exception, or warning occurs, DB2 branches
to another area in your program. The condition handling area of your program can
then examine the SQLCODE or SQLSTATE to react specifically to the error or
exception.

About this task

The WHENEVER statement is not supported for REXX.

The WHENEVER statement enables you to specify what to do if a general
condition is true. You can specify more than one WHENEVER statement in your
program. When you do this, the first WHENEVER statement applies to all
subsequent SQL statements in the source program until the next WHENEVER
statement.

210 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.codes/src/tpc/db2z_sqlstatevalues.htm#db2z_sqlstatevalues

The WHENEVER statement looks like this:
EXEC SQL

WHENEVER condition action
END-EXEC

The condition of the WHENEVER statement is one of these three values:

SQLWARNING
Indicates what to do when SQLWARN0 = W or SQLCODE contains a
positive value other than 100. DB2 can set SQLWARN0 for several
reasons—for example, if a column value is truncated when moved into a
host variable. Your program might not regard this as an error.

SQLERROR
Indicates what to do when DB2 returns an error code as the result of an
SQL statement (SQLCODE < 0).

NOT FOUND
Indicates what to do when DB2 cannot find a row to satisfy your SQL
statement or when there are no more rows to fetch (SQLCODE = 100).

The action of the WHENEVER statement is one of these two values:

CONTINUE
Specifies the next sequential statement of the source program.

GOTO or GO TO host-label
Specifies the statement identified by host-label. For host-label, substitute a
single token, preceded by an optional colon. The form of the token
depends on the host language. In COBOL, for example, it can be
section-name or an unqualified paragraph-name.

The WHENEVER statement must precede the first SQL statement it is to affect.
However, if your program checks SQLCODE directly, you must check SQLCODE
after each SQL statement.
Related concepts:
Chapter 9, “Coding SQL statements in REXX application programs,” on page 415
Related reference:

WHENEVER (DB2 SQL)

Checking the execution of SQL statements by using the GET
DIAGNOSTICS statement

One way to check whether an SQL statement executed successfully is to ask DB2
to return the diagnostic information about the last executed SQL statement.

About this task

You can use the GET DIAGNOSTICS statement to return diagnostic information
about the last SQL statement that was executed. You can request individual items
of diagnostic information from the following groups of items:
v Statement items, which contain information about the SQL statement as a whole
v Condition items, which contain information about each error or warning that

occurred during the execution of the SQL statement
v Connection items, which contain information about the SQL statement if it was a

CONNECT statement

Chapter 3. Coding SQL statements in application programs: General information 211

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_whenever.htm#db2z_sql_whenever

In addition to requesting individual items, you can request that GET
DIAGNOSTICS return ALL diagnostic items that are set during the execution of
the last SQL statement as a single string.

In SQL procedures, you can also retrieve diagnostic information by using handlers.
Handlers tell the procedure what to do if a particular error occurs.

Use the GET DIAGNOSTICS statement to handle multiple SQL errors that might
result from the execution of a single SQL statement. First, check SQLSTATE (or
SQLCODE) to determine whether diagnostic information should be retrieved by
using GET DIAGNOSTICS. This method is especially useful for diagnosing
problems that result from a multiple-row INSERT that is specified as NOT
ATOMIC CONTINUE ON SQLEXCEPTIONand multiple row MERGE statements.

Even if you use only the GET DIAGNOSTICS statement in your application
program to check for conditions, you must either include the instructions required
to use the SQLCA or you must declare SQLSTATE (or SQLCODE) separately in
your program.

When you use the GET DIAGNOSTICS statement, you assign the requested
diagnostic information to host variables. Declare each target host variable with a
data type that is compatible with the data type of the requested item.

To retrieve condition information, you must first retrieve the number of condition
items (that is, the number of errors and warnings that DB2 detected during the
execution of the last SQL statement). The number of condition items is at least one.
If the last SQL statement returned SQLSTATE '00000' (or SQLCODE 0), the number
of condition items is one.

Example: Using GET DIAGNOSTICS with multiple-row INSERT:

You want to display diagnostic information for each condition that might occur
during the execution of a multiple-row INSERT statement in your application
program. You specify the INSERT statement as NOT ATOMIC CONTINUE ON
SQLEXCEPTION, which means that execution continues regardless of the failure of
any single-row insertion. DB2 does not insert the row that was processed at the
time of the error.

In the following example, the first GET DIAGNOSTICS statement returns the
number of rows inserted and the number of conditions returned. The second GET
DIAGNOSTICS statement returns the following items for each condition:
SQLCODE, SQLSTATE, and the number of the row (in the rowset that was being
inserted) for which the condition occurred.
EXEC SQL BEGIN DECLARE SECTION;

long row_count, num_condns, i;
long ret_sqlcode, row_num;
char ret_sqlstate[6];
...

EXEC SQL END DECLARE SECTION;
...
EXEC SQL

INSERT INTO DSN8B10.ACT
(ACTNO, ACTKWD, ACTDESC)
VALUES (:hva1, :hva2, :hva3)
FOR 10 ROWS
NOT ATOMIC CONTINUE ON SQLEXCEPTION;

EXEC SQL GET DIAGNOSTICS

212 Application Programming and SQL Guide

:row_count = ROW_COUNT, :num_condns = NUMBER;
printf("Number of rows inserted = %d\n", row_count);

for (i=1; i<=num_condns; i++) {
EXEC SQL GET DIAGNOSTICS CONDITION :i

:ret_sqlcode = DB2_RETURNED_SQLCODE,
:ret_sqlstate = RETURNED_SQLSTATE,
:row_num = DB2_ROW_NUMBER;
printf("SQLCODE = %d, SQLSTATE = %s, ROW NUMBER = %d\n",

ret_sqlcode, ret_sqlstate, row_num);
}

In the activity table, the ACTNO column is defined as SMALLINT. Suppose that
you declare the host variable array hva1 as an array with data type long, and you
populate the array so that the value for the fourth element is 32768.

If you check the SQLCA values after the INSERT statement, the value of
SQLCODE is equal to 0, the value of SQLSTATE is '00000', and the value of
SQLERRD(3) is 9 for the number of rows that were inserted. However, the INSERT
statement specified that 10 rows were to be inserted.

The GET DIAGNOSTICS statement provides you with the information that you
need to correct the data for the row that was not inserted. The printed output from
your program looks like this:
Number of rows inserted = 9
SQLCODE = -302, SQLSTATE = 22003, ROW NUMBER = 4

The value 32768 for the input variable is too large for the target column ACTNO.
You can print the MESSAGE_TEXT condition item.

Retrieving statement and condition items:

When you use the GET DIAGNOSTICS statement, you assign the requested
diagnostic information to host variables. Declare each target host variable with a
data type that is compatible with the data type of the requested item.

To retrieve condition information, you must first retrieve the number of condition
items (that is, the number of errors and warnings that DB2 detected during the
execution of the last SQL statement). The number of condition items is at least one.
If the last SQL statement returned SQLSTATE '00000' (or SQLCODE 0), the number
of condition items is one.
Related concepts:
“Handlers in an SQL procedure” on page 567
Related reference:
“Data types for GET DIAGNOSTICS items”

GET DIAGNOSTICS (DB2 SQL)
Related information:

-302 (DB2 Codes)

Data types for GET DIAGNOSTICS items
You can use the GET DIAGNOSTICS statement to request information about the
statement, condition, and connection for the last SQL statement that was executed.
You must declare each target host variable with a data type that is compatible with
the data type of the requested item.

Chapter 3. Coding SQL statements in application programs: General information 213

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_getdiagnostics.htm#db2z_sql_getdiagnostics
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.codes/src/tpc/n302.htm#n302

The following tables specify the data types for the statement, condition, and
connection information items that you can request by using the GET
DIAGNOSTICS statement.

Table 44. Data types for GET DIAGNOSTICS items that return statement information

Item Description Data type

DB2_GET_DIAGNOSTICS_DIAGNOSTICS After a GET DIAGNOSTICS statement,
if any error or warning occurred, this
item contains all of the diagnostics as a
single string.

VARCHAR(32672)

DB2_LAST_ROW After a multiple-row FETCH statement,
this item contains a value of +100 if the
last row in the table is in the rowset
that was returned.

INTEGER

DB2_NUMBER_PARAMETER_MARKERS After a PREPARE statement, this item
contains the number of parameter
markers in the prepared statement.

INTEGER

DB2_NUMBER_RESULT_SETS After a CALL statement that invokes a
stored procedure, this item contains the
number of result sets that are returned
by the procedure.

INTEGER

DB2_NUMBER_ROWS After an OPEN or FETCH statement
for which the size of the result table is
known, this item contains the number
of rows in the result table. After a
PREPARE statement, this item contains
the estimated number of rows in the
result table for the prepared statement.
For SENSITIVE DYNAMIC cursors,
this item contains the approximate
number of rows. Otherwise, or if the
server only returns an SQLCA, the
value zero is returned.

DECIMAL(31,0)

DB2_RETURN_STATUS After a CALL statement that invokes
an SQL procedure, this item contains
the return status if the procedure
contains a RETURN statement.

INTEGER

DB2_SQL_ATTR_CURSOR_HOLD After an ALLOCATE or OPEN
statement, this item indicates whether
the cursor can be held open across
multiple units of work (Y or N).

CHAR(1)

DB2_SQL_ATTR_CURSOR_ROWSET After an ALLOCATE or OPEN
statement, this item indicates whether
the cursor can use rowset positioning
(Y or N).

CHAR(1)

DB2_SQL_ATTR_CURSOR_SCROLLABLE After an ALLOCATE or OPEN
statement, this item indicates whether
the cursor is scrollable (Y or N).

CHAR(1)

DB2_SQL_ATTR_CURSOR_SENSITIVITY After an ALLOCATE or OPEN
statement, this item indicates whether
the cursor shows updates made by
other processes (sensitivity I or S).

CHAR(1)

214 Application Programming and SQL Guide

Table 44. Data types for GET DIAGNOSTICS items that return statement information (continued)

Item Description Data type

DB2_SQL_ATTR_CURSOR_TYPE After an ALLOCATE or OPEN
statement, this item indicates whether
the cursor is forward (F), declared
static (S for INSENSITIVE or
SENSITIVE STATIC, or dynamic (D for
SENSITIVE DYNAMIC).

CHAR(1)

DB2_SQL_NESTING_LEVEL After a CALL statement, this item
identifies the current level of nesting or
recursion in effect when the GET
DIAGNOSTICS statement was
executed. Each level of nesting
corresponds to a nested or recursive
invocation of a packaged SQL function,
packaged SQL procedure, or trigger. If
the GET DIAGNOSTICS statement is
executed outside of a level of nesting,
the value zero is returned. When an
application connects to another server
the value is reset to zero.

INTEGER

MORE After any SQL statement, this item
indicates whether some conditions
items were discarded because of
insufficient storage (Y or N).

CHAR(1)

NUMBER After any SQL statement, this item
contains the number of condition
items. If no warning or error occurred,
or if no previous SQL statement has
been executed, the number that is
returned is 1.

INTEGER

ROW_COUNT After an insert, update, delete, or fetch,
this item contains the number of rows
that are deleted, inserted, updated, or
fetched. After PREPARE, this item
contains the estimated number of
result rows in the prepared statement.
After TRUNCATE, it contains -1.

DECIMAL(31,0)

Table 45. Data types for GET DIAGNOSTICS items that return condition information

Item Description Data type

CATALOG_NAME This item contains the server name of the
table that owns a constraint that caused an
error, or that caused an access rule or check
violation.

VARCHAR(128)

CONDITION_NUMBER This item contains the number of the
condition.

INTEGER

CURSOR_NAME This item contains the name of a cursor in
an invalid cursor state.

VARCHAR(128)

DB2_ERROR_CODE1 This item contains an internal error code. INTEGER

DB2_ERROR_CODE2 This item contains an internal error code. INTEGER

DB2_ERROR_CODE3 This item contains an internal error code. INTEGER

DB2_ERROR_CODE4 This item contains an internal error code. INTEGER

Chapter 3. Coding SQL statements in application programs: General information 215

||
|
|
|
|
|
|
|
|
|
|
|
|

|

Table 45. Data types for GET DIAGNOSTICS items that return condition information (continued)

Item Description Data type

DB2_INTERNAL_ERROR_POINTER For some errors, this item contains a
negative value that is an internal error
pointer.

INTEGER

DB2_MESSAGE_ID This item contains the message ID that
corresponds to the message that is contained
in the MESSAGE_TEXT diagnostic item.

CHAR(10)

DB2_MODULE_DETECTING_ERROR After any SQL statement, this item indicates
which module detected the error.

CHAR(8)

DB2_ORDINAL_TOKEN_n After any SQL statement, this item contains
the nth token, where n is a value from 1 to
100.

VARCHAR(515)

DB2_REASON_CODE After any SQL statement, this item contains
the reason code for errors that have a reason
code token in the message text.

INTEGER

DB2_RETURNED_SQLCODE After any SQL statement, this item contains
the SQLCODE for the condition.

INTEGER

DB2_ROW_NUMBER After any SQL statement that involves
multiple rows, this item contains the row
number on which DB2 detected the
condition.

DECIMAL(31,0)

DB2_TOKEN_COUNT After any SQL statement, this item contains
the number of tokens available for the
condition.

INTEGER

MESSAGE_TEXT After any SQL statement, this item contains
the message text associated with the
SQLCODE.

VARCHAR(32672)

RETURNED_SQLSTATE After any SQL statement, this item contains
the SQLSTATE for the condition.

CHAR(5)

SERVER_NAME After a CONNECT, DISCONNECT, or SET
CONNECTION statement, this item contains
the name of the server specified in the
statement.

VARCHAR(128)

Table 46. Data types for GET DIAGNOSTICS items that return connection information

Item Description Data type

DB2_AUTHENTICATION_TYPE This item contains the authentication type (S,
C, D, E, or blank).

CHAR(1)

DB2_AUTHORIZATION_ID This item contains the authorization ID that
is used by the connected server.

VARCHAR(128)

DB2_CONNECTION_STATE This item indicates whether the connection is
unconnected (-1), local (0), or remote (1).

INTEGER

DB2_CONNECTION_STATUS This item indicates whether updates can be
committed for the current unit of work (1 for
Yes, 2 for No).

INTEGER

216 Application Programming and SQL Guide

Table 46. Data types for GET DIAGNOSTICS items that return connection information (continued)

Item Description Data type

DB2_ENCRYPTION_TYPE This item contains one of the following
values that indicates the level of encryption
for the connection:
A Only the authentication tokens

(authid and password) are
encrypted

D All of the data for the connection is
encrypted

CHAR(1)

DB2_SERVER_CLASS_NAME After a CONNECT or SET CONNECTION
statement, this item contains the DB2 server
class name.

VARCHAR(128)

DB2_PRODUCT_ID This item contains the DB2 product
signature.

VARCHAR(8)

Related reference:

GET DIAGNOSTICS (DB2 SQL)

Handling SQL error codes
You can use the subroutine DSNTIAR or the GET DIAGNOSTICS statement to
convert an SQL return code into a text message.

Procedure

To handle SQL error codes:

Take action based on the programming language that you use.
Related concepts:
“SQL statements in assembler programs” on page 245
“SQL statements in C programs” on page 285
“SQL statements in COBOL programs” on page 336
“SQL statements in Fortran programs” on page 381
“SQL statements in PL/I programs” on page 405
“SQL statements in REXX programs” on page 417

Arithmetic and conversion errors
You can track arithmetic and conversion errors by using indicator variables. An
indicator variable contains a small integer value that indicates some information
about the associated host variable.

Numeric or character conversion errors or arithmetic expression errors can set an
indicator variable to -2. For example, division by zero and arithmetic overflow do
not necessarily halt the execution of a SELECT statement. If you use indicator
variables and an error occurs in the SELECT list, the statement can continue to
execute and return good data for rows in which the error does not occur.

For rows in which a conversion or arithmetic expression error does occur, the
indicator variable indicates that one or more selected items have no meaningful
value. The indicator variable flags this error with a -2 for the affected host variable
and an SQLCODE of +802 (SQLSTATE '01519') in the SQLCA.

Chapter 3. Coding SQL statements in application programs: General information 217

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_getdiagnostics.htm#db2z_sql_getdiagnostics

Writing applications that enable users to create and modify tables
You can write a DB2 application that enables users to create new tables, add
columns to them, increase the length of columns, rearrange the columns, and drop
columns.

Procedure

To create new tables:
v Use the CREATE TABLE statement.
To add columns or increase the length of columns:
v Use the ALTER TABLE statement with the ADD COLUMN clause or the ALTER

COLUMN clause. Added columns initially contain either the null value or a
default value. Both CREATE TABLE and ALTER TABLE, like any data definition
statement, are relatively expensive to execute. Also consider the effects of locks.

To drop columns:
v Use the ALTER TABLE statement with the DROP COLUMN clause. Dropping a

column from a table is a pending-definition change unless the table space is
defined with the DEFINE NO option. The column is not removed from the table
until the REORG utility is run on the table space. If you are planning on
dropping a column from a table in addition to making other changes to the
table, make all changes that take effect immediately, prior to issuing the ALTER
TABLE statement with the DROP COLUMN clause.

To rearrange columns:
v Drop the table and create the table again, with the columns you want, in the

order you want. Consider creating a view on the table, which includes only the
columns that you want, in the order that you want, as an alternative to
redefining the table.

Related concepts:
“Dynamic SQL” on page 159
Related reference:

ALTER TABLE (DB2 SQL)

CREATE TABLE (DB2 SQL)

CREATE VIEW (DB2 SQL)

Saving SQL statements that are translated from user requests
If your program translates requests from users into SQL statements and allows
users to save their requests, your program can improve performance by saving
those translated statements.

About this task

A program translates requests from users into SQL statements before executing
them, and users can save a request.

Procedure

To save the corresponding SQL statement:

Save the corresponding SQL statements in a table with a column having a data
type of VARCHAR(n), where n is the maximum length of any SQL statement. You

218 Application Programming and SQL Guide

|
|
|

|

|
|
|
|
|
|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_altertable.htm#db2z_sql_altertable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtable.htm#db2z_sql_createtable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createview.htm#db2z_sql_createview

must save the source SQL statements, not the prepared versions. That means that
you must retrieve and then prepare each statement before executing the version
stored in the table. In essence, your program prepares an SQL statement from a
character string and executes it dynamically.
Related concepts:
“Dynamic SQL” on page 159

XML data in embedded SQL applications
Embedded SQL applications that are written in assembler language, C, C++,
COBOL, or PL/I can update and retrieve data in XML columns.

In embedded SQL applications, you can:
v Store an entire XML document in an XML column using INSERT or UPDATE

statements.
v Retrieve an entire XML document from an XML column using SELECT

statements.
v Retrieve a sequence from a document in an XML column by using the SQL

XMLQUERY function within a SELECT or FETCH statement, to retrieve the
sequence into a textual XML string in the database, and then retrieve the data
into an application variable.

Recommendation: Follow these guidelines when you write embedded SQL
applications:
v Avoid using the XMLPARSE and XMLSERIALIZE functions.

Let DB2 do the conversions between the external and internal XML formats
implicitly.

v Use XML host variables for input and output.
Doing so allows DB2 to process values as XML data instead of character or
binary string data. If the application cannot use XML host variables, it should
use binary string host variables to minimize character conversion issues.

v Avoid character conversion by using UTF-8 host variables for input and output
of XML values whenever possible.

Host variable data types for XML data in embedded SQL
applications

DB2 provides XML host variable types for assembler, C, C++, COBOL, and PL/I.

Those types are:
v XML AS BLOB
v XML AS CLOB
v XML AS DBCLOB
v XML AS BLOB_FILE (C, C++, or PL/I) or XML AS BLOB-FILE (COBOL)
v XML AS CLOB_FILE (C, C++, or PL/I) or XML AS CLOB-FILE (COBOL)
v XML AS DBCLOB_FILE (C, C++, or PL/I) or XML AS DBCLOB-FILE (COBOL)

The XML host variable types are compatible only with the XML column data type.

You can use BLOB, CLOB, DBCLOB, CHAR, VARCHAR, GRAPHIC,
VARGRAPHIC, BINARY, or VARBINARY host variables to update XML columns.
You can convert the host variable data types to the XML type using the
XMLPARSE function, or you can let the DB2 database server perform the
conversion implicitly.

Chapter 3. Coding SQL statements in application programs: General information 219

You can use BLOB, CLOB, DBCLOB, CHAR, VARCHAR, GRAPHIC,
VARGRAPHIC, BINARY, or VARBINARY host variables to retrieve data from XML
columns. You can convert the XML data to the host variable type using the
XMLSERIALIZE function, or you can let the DB2 database server perform the
conversion implicitly.

The following examples show you how to declare XML host variables in each
supported language. In each table, the left column contains the declaration that
you code in your application program. The right column contains the declaration
that DB2 generates.

Declarations of XML host variables in assembler

The following table shows assembler language declarations for some typical XML
types.

Table 47. Example of assembler XML variable declarations

You declare this variable DB2 generates this variable

BLOB_XML SQL TYPE IS XML AS BLOB 1M BLOB_XML DS 0FL4
BLOB_XML_LENGTH DS FL4
BLOB_XML_DATA DS CL655351

ORG *+(983041)

CLOB_XML SQL TYPE IS XML AS CLOB 40000K CLOB_XML DS 0FL4
CLOB_XML_LENGTH DS FL4
CLOB_XML_DATA DS CL655351

ORG *+(40894465)

DBCLOB_XML SQL TYPE IS XML AS DBCLOB 4000K DBCLOB_XML DS 0FL4
DBCLOB_XML_LENGTH DS FL4
DBCLOB_XML_DATA DS GL655342

ORG *+(4030466)

BLOB_XML_FILE SQL TYPE IS XML AS BLOB_FILE BLOB_XML_FILE DS 0FL4
BLOB_XML_FILE_NAME_LENGTH DS FL4
BLOB_XML_FILE_DATA_LENGTH DS FL4
BLOB_XML_FILE_FILE_OPTIONS DS FL4
BLOB_XML_FILE_NAME DS CL255

CLOB_XML_FILE SQL TYPE IS XML AS CLOB_FILE CLOB_XML_FILE DS 0FL4
CLOB_XML_FILE_NAME_LENGTH DS FL4
CLOB_XML_FILE_DATA_LENGTH DS FL4
CLOB_XML_FILE_FILE_OPTIONS DS FL4
CLOB_XML_FILE_NAME DS CL255

DBCLOB_XML_FILE SQL TYPE IS XML AS DBCLOB_FILE DBCLOB_XML_FILE DS 0FL4
DBCLOB_XML_FILE_NAME_LENGTH DS FL4
DBCLOB_XML_FILE_DATA_LENGTH DS FL4
DBCLOB_XML_FILE_FILE_OPTIONS DS FL4
DBCLOB_XML_FILE_NAME DS CL255

Notes:

1. Because assembler language allows character declarations of no more than 65535 bytes, DB2 separates the host
language declarations for XML AS BLOB and XML AS CLOB host variables that are longer than 65535 bytes into
two parts.

2. Because assembler language allows graphic declarations of no more than 65534 bytes, DB2 separates the host
language declarations for XML AS DBCLOB host variables that are longer than 65534 bytes into two parts.

220 Application Programming and SQL Guide

Declarations of XML host variables in C

The following table shows C and C++ language declarations that are generated by
the DB2 precompiler for some typical XML types. The declarations that the DB2
coprocessor generates might be different.

Table 48. Examples of C language variable declarations

You declare this variable DB2 generates this variable

SQL TYPE IS XML AS BLOB (1M) blob_xml; struct
{ unsigned long length;

char data??(1048576??);
} blob_xml;

SQL TYPE IS XML AS CLOB(40000K) clob_xml; struct
{ unsigned long length;

char data??(40960000??);
} clob_xml;

SQL TYPE IS XML AS DBCLOB (4000K) dbclob_xml; struct
{ unsigned long length;

unsigned short data??(4096000??);
} dbclob_xml;

SQL TYPE IS XML AS BLOB_FILE blob_xml_file; struct {
unsigned long name_length;
unsigned long data_length;
unsigned long file_options;
char name??(255??);
} blob_xml_file;

SQL TYPE IS XML AS CLOB_FILE clob_xml_file; struct {
unsigned long name_length;
unsigned long data_length;
unsigned long file_options;
char name??(255??);
} clob_xml_file;

SQL TYPE IS XML AS DBCLOB_FILE dbclob_xml_file; struct {
unsigned long name_length;
unsigned long data_length;
unsigned long file_options;
char name??(255??);
} dbclob_xml_file;

Declarations of XML host variables in COBOL

The declarations that are generated for COBOL differ, depending on whether you
use the DB2 precompiler or the DB2 coprocessor.

The following table shows COBOL declarations that the DB2 precompiler generates
for some typical XML types.

Chapter 3. Coding SQL statements in application programs: General information 221

Table 49. Examples of COBOL variable declarations by the DB2 precompiler

You declare this variable DB2 precompiler generates this variable

01 BLOB-XML USAGE IS
SQL TYPE IS XML AS BLOB(1M).

01 BLOB-XML.
02 BLOB-XML-LENGTH

PIC 9(9) COMP.
02 BLOB-XML-DATA.

49 FILLER PIC X(32767).1

49 FILLER PIC X(32767).
Repeat 30 times...
49 FILLER

PIC X(1048576-32*32767).

01 CLOB-XML USAGE IS
SQL TYPE IS XML AS CLOB(40000K).

01 CLOB-XML.
02 CLOB-XML-LENGTH

PIC 9(9) COMP.
02 CLOB-XML-DATA.

49 FILLER PIC X(32767).1

49 FILLER PIC X(32767).
Repeat 1248 times...
49 FILLER

PIC X(40960000-1250*32767).

01 DBCLOB-XML USAGE IS
SQL TYPE IS XML AS DBCLOB(4000K).

01 DBCLOB-XML.
02 DBCLOB-XML-LENGTH

PIC 9(9) COMP.
02 DBCLOB-XML-DATA.

49 FILLER PIC G(32767)
USAGE DISPLAY-1.2

49 FILLER PIC G(32767)
USAGE DISPLAY-1.

Repeat 123 times...
49 FILLER

PIC G(4096000-125*32767)
USAGE DISPLAY-1.

01 BLOB-XML-FILE USAGE IS SQL
TYPE IS XML AS BLOB-FILE.

01 BLOB-XML-FILE.
49 BLOB-XML-FILE-NAME-LENGTH PIC S9(9) COMP-5 SYNC.
49 BLOB-XML-FILE-DATA-LENGTH PIC S9(9) COMP-5.
49 BLOB-XML-FILE-FILE-OPTION PIC S9(9) COMP-5.
49 BLOB-XML-FILE-NAME PIC X(255).

01 CLOB-XML-FILE USAGE IS SQL
TYPE IS XML AS CLOB-FILE.

01 CLOB-XML-FILE.
49 CLOB-XML-FILE-NAME-LENGTH PIC S9(9) COMP-5 SYNC.
49 CLOB-XML-FILE-DATA-LENGTH PIC S9(9) COMP-5.
49 CLOB-XML-FILE-FILE-OPTION PIC S9(9) COMP-5.
49 CLOB-XML-FILE-NAME PIC X(255).

01 DBCLOB-XML-FILE USAGE IS SQL
TYPE IS XML AS DBCLOB-FILE.

01 DBCLOB-XML-FILE.
49 DBCLOB-XML-FILE-NAME-LENGTH PIC S9(9) COMP-5 SYNC.
49 DBCLOB-XML-FILE-DATA-LENGTH PIC S9(9) COMP-5.
49 DBCLOB-XML-FILE-FILE-OPTION PIC S9(9) COMP-5.
49 DBCLOB-XML-FILE-NAME PIC X(255).

Notes:

1. For XML AS BLOB or XML AS CLOB host variables that are greater than 32767 bytes in length, DB2 creates
multiple host language declarations of 32767 or fewer bytes.

2. For XML AS DBCLOB host variables that are greater than 32767 double-byte characters in length, DB2 creates
multiple host language declarations of 32767 or fewer double-byte characters.

222 Application Programming and SQL Guide

Declarations of XML host variables in PL/I

The declarations that are generated for PL/I differ, depending on whether you use
the DB2 precompiler or the DB2 coprocessor.

The following table shows PL/I declarations that the DB2 precompiler generates
for some typical XML types.

Table 50. Examples of PL/I variable declarations

You declare this variable DB2 precompiler generates this variable

DCL BLOB_XML
SQL TYPE IS XML AS BLOB (1M);

DCL
1 BLOB_XML,

2 BLOB_XML_LENGTH BIN FIXED(31),
2 BLOB_XML_DATA,1

3 BLOB_XML_DATA1 (32) CHAR(32767),
3 BLOB_XML_DATA2 CHAR(32);

DCL CLOB_XML
SQL TYPE IS XML AS CLOB (40000K);

DCL
1 CLOB_XML,

2 CLOB_XML_LENGTH BIN FIXED(31),
2 CLOB_XML_DATA,1

3 CLOB_XML_DATA1 (1250) CHAR(32767),
3 CLOB_XML_DATA2 CHAR(1250);

DCL DBCLOB_XML
SQL TYPE IS XML AS DBCLOB (4000K);

DCL
1 DBCLOB_XML,

2 DBCLOB_XML_LENGTH BIN FIXED(31),
2 DBCLOB_XML_DATA,2

3 DBCLOB_XML_DATA1 (250) GRAPHIC(16383),
3 DBCLOB_XML_DATA2 GRAPHIC(250);

DCL BLOB_XML_FILE
SQL TYPE IS XML AS BLOB_FILE;

DCL
1 BLOB_XML_FILE,

2 BLOB_XML_FILE_NAME_LENGTH BIN FIXED(31) ALIGNED,
2 BLOB_XML_FILE_DATA_LENGTH BIN FIXED(31),
2 BLOB_XML_FILE_FILE_OPTIONS BIN FIXED(31),
2 BLOB_XML_FILE_NAME CHAR(255);

DCL CLOB_XML_FILE
SQL TYPE IS XML AS CLOB_FILE;

DCL
1 CLOB_XML_FILE,

2 CLOB_XML_FILE_NAME_LENGTH BIN FIXED(31) ALIGNED,
2 CLOB_XML_FILE_DATA_LENGTH BIN FIXED(31),
2 CLOB_XML_FILE_FILE_OPTIONS BIN FIXED(31),
2 CLOB_XML_FILE_NAME CHAR(255);

DCL DBCLOB_XML_FILE SQL TYPE IS XML AS
DBCLOB_FILE;

DCL
1 DBCLOB_XML_FILE,

2 DBCLOB_XML_FILE_NAME_LENGTH BIN FIXED(31) ALIGNED,
2 DBCLOB_XML_FILE_DATA_LENGTH BIN FIXED(31),
2 DBCLOB_XML_FILE_FILE_OPTIONS BIN FIXED(31),
2 DBCLOB_XML_FILE_NAME CHAR(255);

Chapter 3. Coding SQL statements in application programs: General information 223

Table 50. Examples of PL/I variable declarations (continued)

You declare this variable DB2 precompiler generates this variable

Notes:

1. For XML AS BLOB or XML AS CLOB host variables that are greater than 32767 bytes in length, DB2 creates host
language declarations in the following way:

v If the length of the XML is greater than 32767 bytes and evenly divisible by 32767, DB2 creates an array of
32767-byte strings. The dimension of the array is length/32767.

v If the length of the XML is greater than 32767 bytes but not evenly divisible by 32767, DB2 creates two
declarations: The first is an array of 32767 byte strings, where the dimension of the array, n, is length/32767.
The second is a character string of length length-n*32767.

2. For XML AS DBCLOB host variables that are greater than 16383 double-byte characters in length, DB2 creates
host language declarations in the following way:

v If the length of the XML is greater than 16383 characters and evenly divisible by 16383, DB2 creates an array of
16383-character strings. The dimension of the array is length/16383.

v If the length of the XML is greater than 16383 characters but not evenly divisible by 16383, DB2 creates two
declarations: The first is an array of 16383 byte strings, where the dimension of the array, m, is length/16383.
The second is a character string of length length-m*16383.

Related concepts:

Insertion of rows with XML column values (DB2 Programming for XML)

Retrieving XML data (DB2 Programming for XML)

Updates of XML columns (DB2 Programming for XML)

XML column updates in embedded SQL applications
When you update or insert data into XML columns of a DB2 table, the input data
must be in the textual XML format.

The encoding of XML data can be derived from the data itself, which is known as
internally encoded data, or from external sources, which is known as externally
encoded data. XML data that is sent to the database server as binary data is treated
as internally encoded data. XML data that is sent to the database server as
character data is treated as externally encoded data.

Externally encoded data can have internal encoding. That is, the data might be sent
to the database server as character data, but the data contains encoding
information. DB2 does not enforce consistency of the internal and external
encoding. When the internal and external encoding information differs, the
external encoding takes precedence. However, if there is a difference between the
external and internal encoding, intervening character conversion might have
occurred on the data, and there might be data loss.

Character data in XML columns is stored in UTF-8 encoding. The database server
handles conversion of the data from its internal or external encoding to UTF-8.

The following examples demonstrate how to update XML columns in assembler, C,
COBOL, and PL/I applications. The examples use a table named MYCUSTOMER,
which is a copy of the sample CUSTOMER table.

Example: The following example shows an assembler program that inserts data
from XML AS BLOB, XML AS CLOB, and CLOB host variables into an XML
column. The XML AS BLOB data is inserted as binary data, so the database server

224 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.xml/src/tpc/db2z_insertxml.htm#db2z_insertxml
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.xml/src/tpc/db2z_queryxml.htm#db2z_queryxml
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.xml/src/tpc/db2z_updatexml.htm#db2z_updatexml

honors the internal encoding. The XML AS CLOB and CLOB data is inserted as
character data, so the database server honors the external encoding.
**
* UPDATE AN XML COLUMN WITH DATA IN AN XML AS CLOB HOST VARIABLE *
**

EXEC SQL +
UPDATE MYCUSTOMER +
SET INFO = :XMLBUF +
WHERE CID = 1000

**
* UPDATE AN XML COLUMN WITH DATA IN AN XML AS BLOB HOST VARIABLE *
**

EXEC SQL +
UPDATE MYCUSTOMER +
SET INFO = :XMLBLOB +
WHERE CID = 1000

**
* UPDATE AN XML COLUMN WITH DATA IN A CLOB HOST VARIABLE. USE *
* THE XMLPARSE FUNCTION TO CONVERT THE DATA TO THE XML TYPE. *
**

EXEC SQL +
UPDATE MYCUSTOMER +
SET INFO = XMLPARSE(DOCUMENT :CLOBBUF) +
WHERE CID = 1000

...
LTORG

* HOST VARIABLE DECLARATIONS *

XMLBUF SQL TYPE IS XML AS CLOB 10K
XMLBLOB SQL TYPE IS XML AS BLOB 10K
CLOBBUF SQL TYPE IS CLOB 10K

Example: The following example shows a C language program that inserts data
from XML AS BLOB, XML AS CLOB, and CLOB host variables into an XML
column. The XML AS BLOB data is inserted as binary data, so the database server
honors the internal encoding. The XML AS CLOB and CLOB data is inserted as
character data, so the database server honors the external encoding.
/******************************/
/* Host variable declarations */
/******************************/
EXEC SQL BEGIN DECLARE SECTION;
SQL TYPE IS XML AS CLOB(10K) xmlBuf;
SQL TYPE IS XML AS BLOB(10K) xmlblob;
SQL TYPE IS CLOB(10K) clobBuf;
EXEC SQL END DECLARE SECTION;
/**/
/* Update an XML column with data in an XML AS CLOB host variable */
/**/
EXEC SQL UPDATE MYCUSTOMER SET INFO = :xmlBuf where CID = 1000;
/**/
/* Update an XML column with data in an XML AS BLOB host variable */
/**/
EXEC SQL UPDATE MYCUSTOMER SET INFO = :xmlblob where CID = 1000;
/**/
/* Update an XML column with data in a CLOB host variable. Use */
/* the XMLPARSE function to convert the data to the XML type. */
/**/
EXEC SQL UPDATE MYCUSTOMER SET INFO = XMLPARSE(DOCUMENT :clobBuf) where CID = 1000;

Example: The following example shows a COBOL program that inserts data from
XML AS BLOB, XML AS CLOB, and CLOB host variables into an XML column.
The XML AS BLOB data is inserted as binary data, so the database server honors

Chapter 3. Coding SQL statements in application programs: General information 225

the internal encoding. The XML AS CLOB and CLOB data is inserted as character
data, so the database server honors the external encoding.

* Host variable declarations *

01 XMLBUF USAGE IS SQL TYPE IS XML as CLOB(10K).
01 XMLBLOB USAGE IS SQL TYPE IS XML AS BLOB(10K).
01 CLOBBUF USAGE IS SQL TYPE IS CLOB(10K).

* Update an XML column with data in an XML AS CLOB host variable *

EXEC SQL UPDATE MYCUSTOMER SET INFO = :XMLBUF where CID = 1000.

* Update an XML column with data in an XML AS BLOB host variable *

EXEC SQL UPDATE MYCUSTOMER SET INFO = :XMLBLOB where CID = 1000.

* Update an XML column with data in a CLOB host variable. Use *
* the XMLPARSE function to convert the data to the XML type. *

EXEC SQL UPDATE MYCUSTOMER SET INFO = XMLPARSE(DOCUMENT :CLOBBUF) where CID = 1000.

Example: The following example shows a PL/I program that inserts data from
XML AS BLOB, XML AS CLOB, and CLOB host variables into an XML column.
The XML AS BLOB data is inserted as binary data, so the database server honors
the internal encoding. The XML AS CLOB and CLOB data is inserted as character
data, so the database server honors the external encoding.
/******************************/
/* Host variable declarations */
/******************************/
DCL
XMLBUF SQL TYPE IS XML AS CLOB(10K),
XMLBLOB SQL TYPE IS XML AS BLOB(10K),
CLOBBUF SQL TYPE IS CLOB(10K);

/***/
/* Update an XML column with data in an XML AS CLOB host variable */
/***/
EXEC SQL UPDATE MYCUSTOMER SET INFO = :XMLBUF where CID = 1000;
/***/
/* Update an XML column with data in an XML AS BLOB host variable */
/***/
EXEC SQL UPDATE MYCUSTOMER SET INFO = :XMLBLOB where CID = 1000;
/***/
/* Update an XML column with data in a CLOB host variable. Use */
/* the XMLPARSE function to convert the data to the XML type. */
/***/
EXEC SQL UPDATE MYCUSTOMER SET INFO = XMLPARSE(DOCUMENT :CLOBBUF) where CID = 1000;

Insertion of rows with XML column values (DB2 Programming for XML)

Updates of XML columns (DB2 Programming for XML)

XML data retrieval in embedded SQL applications
In an embedded SQL application, if you retrieve the data into a character host
variable, DB2 converts the data from the UTF-8 encoding scheme to the application
encoding scheme. If you retrieve the data into binary host variable, DB2 does not
convert the data to another encoding scheme.

The output data is in the textual XML format.

DB2 might add an XML encoding specification to the retrieved data, depending on
whether you call the XMLSERIALIZE function when you retrieve the data. If you

226 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.xml/src/tpc/db2z_insertxml.htm#db2z_insertxml
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.xml/src/tpc/db2z_updatexml.htm#db2z_updatexml

do not call the XMLSERIALIZE function, DB2 adds the correct XML encoding
specification to the retrieved data. If you call the XMLSERIALIZE function, DB2
adds an internal XML encoding declaration for UTF-8 encoding if you specify
INCLUDING XMLDECLARATION in the function call. When you use
INCLUDING XMLDECLARATION, you need to ensure that the retrieved data is
not converted from UTF-8 encoding to another encoding.

The following examples demonstrate how to retrieve data from XML columns in
assembler, C, COBOL, and PL/I applications. The examples use a table named
MYCUSTOMER, which is a copy of the sample CUSTOMER table.

Example: The following example shows an assembler program that retrieves data
from an XML column into XML AS BLOB, XML AS CLOB, and CLOB host
variables. The data that is retrieved into an XML AS BLOB host variable is
retrieved as binary data, so the database server generates an XML declaration with
UTF-8 encoding. The data that is retrieved into an XML AS CLOB host variable is
retrieved as character data, so the database server generates an XML declaration
with an internal encoding declaration that is consistent with the external encoding.
The data that is retrieved into a CLOB host variable is retrieved as character data,
so the database server generates an XML declaration with an internal encoding
declaration. That declaration might not be consistent with the external encoding.
**
* RETRIEVE XML COLUMN DATA INTO AN XML AS CLOB HOST VARIABLE *
**

EXEC SQL +
SELECT INFO +
INTO :XMLBUF +
FROM MYCUSTOMER +
WHERE CID = 1000

**
* RETRIEVE XML COLUMN DATA INTO AN XML AS BLOB HOST VARIABLE *
**

EXEC SQL +
SELECT INFO +
INTO :XMLBLOB +
FROM MYCUSTOMER +
WHERE CID = 1000

**
* RETRIEVE DATA FROM AN XML COLUMN INTO A CLOB HOST VARIABLE. *
* BEFORE SENDING THE DATA TO THE APPLICATION, INVOKE THE *
* XMLSERIALIZE FUNCTION TO CONVERT THE DATA FROM THE XML *
* TYPE TO THE CLOB TYPE. *
**

EXEC SQL +
SELECT XMLSERIALIZE(INFO AS CLOB(10K)) +
INTO :CLOBBUF +
FROM MYCUSTOMER +
WHERE CID = 1000

...
LTORG

* HOST VARIABLE DECLARATIONS *

XMLBUF SQL TYPE IS XML AS CLOB 10K
XMLBLOB SQL TYPE IS XML AS BLOB 10K
CLOBBUF SQL TYPE IS CLOB 10K

Example: The following example shows a C language program that retrieves data
from an XML column into XML AS BLOB, XML AS CLOB, and CLOB host
variables. The data that is retrieved into an XML AS BLOB host variable is
retrieved as binary data, so the database server generates an XML declaration with

Chapter 3. Coding SQL statements in application programs: General information 227

UTF-8 encoding. The data that is retrieved into an XML AS CLOB host variable is
retrieved as character data, so the database server generates an XML declaration
with an internal encoding declaration that is consistent with the external encoding.
The data that is retrieved into a CLOB host variable is retrieved as character data,
so the database server generates an XML declaration with an internal encoding
declaration. That declaration might not be consistent with the external encoding.
/******************************/
/* Host variable declarations */
/******************************/
EXEC SQL BEGIN DECLARE SECTION;
SQL TYPE IS XML AS CLOB(10K) xmlBuf;
SQL TYPE IS XML AS BLOB(10K) xmlBlob;
SQL TYPE IS CLOB(10K) clobBuf;
EXEC SQL END DECLARE SECTION;
/**/
/* Retrieve data from an XML column into an XML AS CLOB host variable */
/**/
EXEC SQL SELECT INFO INTO :xmlBuf from myTable where CID = 1000;
/**/
/* Retrieve data from an XML column into an XML AS BLOB host variable */
/**/
EXEC SQL SELECT INFO INTO :xmlBlob from myTable where CID = 1000;
/**/
/* RETRIEVE DATA FROM AN XML COLUMN INTO A CLOB HOST VARIABLE. */
/* BEFORE SENDING THE DATA TO THE APPLICATION, INVOKE THE */
/* XMLSERIALIZE FUNCTION TO CONVERT THE DATA FROM THE XML */
/* TYPE TO THE CLOB TYPE. */
/**/
EXEC SQL SELECT XMLSERIALIZE(INFO AS CLOB(10K))
INTO :clobBuf from myTable where CID = 1000;

Example: The following example shows a COBOL program that retrieves data
from an XML column into XML AS BLOB, XML AS CLOB, and CLOB host
variables. The data that is retrieved into an XML AS BLOB host variable is
retrieved as binary data, so the database server generates an XML declaration with
UTF-8 encoding. The data that is retrieved into an XML AS CLOB host variable is
retrieved as character data, so the database server generates an XML declaration
with an internal encoding declaration that is consistent with the external encoding.
The data that is retrieved into a CLOB host variable is retrieved as character data,
so the database server generates an XML declaration with an internal encoding
declaration. That declaration might not be consistent with the external encoding.

* Host variable declarations *

01 XMLBUF USAGE IS SQL TYPE IS XML AS CLOB(10K).
01 XMLBLOB USAGE IS SQL TYPE IS XML AS BLOB(10K).
01 CLOBBUF USAGE IS SQL TYPE IS CLOB(10K).
**
* Retrieve data from an XML column into an XML AS CLOB host variable *
**
EXEC SQL SELECT INFO

INTO :XMLBUF
FROM MYTABLE
WHERE CID = 1000

END-EXEC.
**
* Retrieve data from an XML column into an XML AS BLOB host variable *
**
EXEC SQL SELECT INFO

INTO :XMLBLOB
FROM MYTABLE
WHERE CID = 1000

END-EXEC.

228 Application Programming and SQL Guide

**
* RETRIEVE DATA FROM AN XML COLUMN INTO A CLOB HOST VARIABLE. *
* BEFORE SENDING THE DATA TO THE APPLICATION, INVOKE THE *
* XMLSERIALIZE FUNCTION TO CONVERT THE DATA FROM THE XML *
* TYPE TO THE CLOB TYPE. *
**
EXEC SQL SELECT XMLSERIALIZE(INFO AS CLOB(10K))
INTO :CLOBBUF
FROM MYTABLE
WHERE CID = 1000
END-EXEC.

Example: The following example shows a PL/I program that retrieves data from
an XML column into XML AS BLOB, XML AS CLOB, and CLOB host variables.
The data that is retrieved into an XML AS BLOB host variable is retrieved as
binary data, so the database server generates an XML declaration with UTF-8
encoding. The data that is retrieved into an XML AS CLOB host variable is
retrieved as character data, so the database server generates an XML declaration
with an internal encoding declaration that is consistent with the external encoding.
The data that is retrieved into a CLOB host variable is retrieved as character data,
so the database server generates an XML declaration with an internal encoding
declaration. That declaration might not be consistent with the external encoding.
/******************************/
/* Host variable declarations */
/******************************/
DCL
XMLBUF SQL TYPE IS XML AS CLOB(10K),
XMLBLOB SQL TYPE IS XML AS BLOB(10K),
CLOBBUF SQL TYPE IS CLOB(10K);

/**/
/* Retrieve data from an XML column into an XML AS CLOB host variable */
/**/
EXEC SQL SELECT INFO INTO :XMLBUF FROM MYTABLE WHERE CID = 1000;
/**/
/* Retrieve data from an XML column into an XML AS BLOB host variable */
/**/
EXEC SQL SELECT INFO INTO :XMLBLOB FROM MYTABLE WHERE CID = 1000;
/**/
/* RETRIEVE DATA FROM AN XML COLUMN INTO A CLOB HOST VARIABLE. */
/* BEFORE SENDING THE DATA TO THE APPLICATION, INVOKE THE */
/* XMLSERIALIZE FUNCTION TO CONVERT THE DATA FROM THE XML */
/* TYPE TO THE CLOB TYPE. */
/**/
EXEC SQL SELECT XMLSERIALIZE(INFO AS CLOB(10K))
INTO :CLOBBUF FROM MYTABLE WHERE CID = 1000;

Retrieving XML data (DB2 Programming for XML)

Programming examples
You can write DB2 programs in assembler language, C, C++, COBOL, Fortran,
PL/I, or REXX. These programs can access a local or remote DB2 subsystem and
can execute static or dynamic SQL statements.

You can write DB2 programs in assembler language, C, C++, COBOL, Fortran,
PL/I or REXX. These programs can access a local or remote DB2 subsystem and
can execute static or dynamic SQL statements. This information contains several
such programming examples.

To prepare and run these applications, use the JCL in DSNB10.SDSNSAMP as a
model for your JCL.

Chapter 3. Coding SQL statements in application programs: General information 229

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.xml/src/tpc/db2z_queryxml.htm#db2z_queryxml

Conventions used in examples of coding SQL statements

The examples in this information use certain conventions and assumptions. Some
of the examples vary from these conventions. Exceptions are noted where they
occur.

The SQL statements in this information use the following conventions:
v The SQL statement is part of a C or COBOL application program. Each SQL

example is displayed on several lines, with each clause of the statement on a
separate line.

v The use of the precompiler options APOST and APOSTSQL are assumed
(although they are not the defaults). Therefore, apostrophes (') are used to
delimit character string literals within SQL and host language statements.

v The SQL statements access data in the sample tables provided with DB2. The
tables contain data that a manufacturing company might keep about its
employees and its current projects.

v An SQL example does not necessarily show the complete syntax of an SQL
statement.

v Examples do not take referential constraints into account.
Related concepts:
“DB2 sample applications” on page 1102
“Programming examples in assembler” on page 250
“Programming examples in C” on page 289
“Programming examples in COBOL” on page 343
“Programming examples in PL/I” on page 410
“Programming examples in REXX” on page 426

C and C++ language options to use with the installation verification
procedures (DB2 Installation and Migration)

COBOL options to use with the installation verification procedures (DB2
Installation and Migration)

PL/I options to use with the installation verification procedures (DB2
Installation and Migration)
Related reference:

DB2 sample tables (Introduction to DB2 for z/OS)

Examples of programs that call stored procedures
Examples can be used as models when you write applications that call stored
procedures. In addition, DSNB10.SDSNSAMP contains sample jobs DSNTEJ6P and
DSNTEJ6S and programs DSN8EP1 and DSN8EP2, which you can run.

230 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ivpccppopts.htm#db2z_ivpccppopts
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ivpccppopts.htm#db2z_ivpccppopts
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ivpcobolopts.htm#db2z_ivpcobolopts
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ivpcobolopts.htm#db2z_ivpcobolopts
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ivppliopts.htm#db2z_ivppliopts
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ivppliopts.htm#db2z_ivppliopts
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_sampletablesdescription.htm#db2z_sampletablesdescription

Chapter 4. Coding SQL statements in assembler application
programs

When you code SQL statements in assembler application programs, you should
follow certain guidelines.

Defining the SQL communications area, SQLSTATE, and SQLCODE in
assembler

Assembler programs that contain SQL statements can include an SQL
communications area (SQLCA) to check whether an SQL statement executed
successfully. Alternatively, these programs can declare individual SQLCODE and
SQLSTATE host variables.

About this task

If you specify the SQL processing option STDSQL(YES), do not define an SQLCA.
If you do, DB2 ignores your SQLCA, and your SQLCA definition causes
compile-time errors. If you specify the SQL processing option STDSQL(NO),
include an SQLCA explicitly.

If your application contains SQL statements and does not include an SQL
communications area (SQLCA), you must declare individual SQLCODE and
SQLSTATE host variables. Your program can use these variables to check whether
an SQL statement executed successfully.

Procedure

To define the SQL communications area, SQLSTATE, and SQLCODE:

Choose one of the following actions:

© Copyright IBM Corp. 1983, 2013 231

Option Description

To define the SQL communications area: 1. Code the SQLCA directly in the program
or use the following SQL INCLUDE
statement to request a standard SQLCA
declaration:

EXEC SQL INCLUDE SQLCA

If your program is reentrant, you must
include the SQLCA within a unique data
area that is acquired for your task (a
DSECT). For example, at the beginning
of your program, specify the following
code:

PROGAREA DSECT
EXEC SQL INCLUDE SQLCA

As an alternative, you can create a
separate storage area for the SQLCA and
provide addressability to that area.

DB2 sets the SQLCODE and SQLSTATE
values in the SQLCA after each SQL
statement executes. Your application should
check these values to determine whether the
last SQL statement was successful.

To declare SQLCODE and SQLSTATE host
variables:

1. Declare the SQLCODE variable within a
BEGIN DECLARE SECTION statement
and an END DECLARE SECTION
statement in your program declarations
as a fullword integer.

2. Declare the SQLSTATE variable within a
BEGIN DECLARE SECTION statement
and an END DECLARE SECTION
statement in your program declarations
as a character string of length 5 (CL5).

Restriction: Do not declare an SQLSTATE
variable as an element of a structure.
Requirement: After you declare the
SQLCODE and SQLSTATE variables, ensure
that all SQL statements in the program are
within the scope of the declaration of these
variables.

232 Application Programming and SQL Guide

Related tasks:
“Checking the execution of SQL statements” on page 204
“Checking the execution of SQL statements by using the SQLCA” on page 205
“Checking the execution of SQL statements by using SQLCODE and SQLSTATE”
on page 209
“Defining the items that your program can use to check whether an SQL statement
executed successfully” on page 137

Defining SQL descriptor areas in assembler
If your program includes certain SQL statements, you must define at least one SQL
descriptor area (SQLDA). Depending on the context in which it is used, the
SQLDA stores information about prepared SQL statements or host variables. This
information can then be read by either the application program or DB2.

Procedure

To define SQL descriptor areas:

Code the SQLDA directly in the program, or use the following SQL INCLUDE
statement to request a standard SQLDA declaration:
EXEC SQL INCLUDE SQLDA

Restriction: You must place SQLDA declarations before the first SQL statement
that references the data descriptor, unless you use the TWOPASS SQL processing
option.
Related tasks:
“Defining SQL descriptor areas” on page 137

Declaring host variables and indicator variables in assembler
You can use host variables, host variable arrays, and host structures in SQL
statements in your program to pass data between DB2 and your application.

Procedure

To declare host variables, host variable arrays, and host structures:
1. Declare the variables according to the following rules and guidelines:

v You can declare host variables in normal assembler style (DC or DS),
depending on the data type and the limitations on that data type. You can
specify a value on DC or DS declarations (for example, DC H’5’). The DB2
precompiler examines only packed decimal declarations.

v If you specify the ONEPASS SQL processing option, you must explicitly
declare each host variable and each host variable array before using them in
an SQL statement. If you specify the TWOPASS precompiler option, you
must declare each host variable before using it in the DECLARE CURSOR
statement.

v If you specify the STDSQL(YES) SQL processing option, you must precede
the host language statements that define the host variables and host variable
arrays with the BEGIN DECLARE SECTION statement and follow the host
language statements with the END DECLARE SECTION statement.
Otherwise, these statements are optional.

Chapter 4. Coding SQL statements in assembler application programs 233

v Ensure that any SQL statement that uses a host variable or host variable
array is within the scope of the statement that declares that variable or array.

v If you are using the DB2 precompiler, ensure that the names of host variables
and host variable arrays are unique within the program, even if the variables
and variable arrays are in different blocks, classes, procedures, functions, or
subroutines. You can qualify the names with a structure name to make them
unique.

2. Optional: Define any associated indicator variables, arrays, and structures.
Related tasks:
“Declaring host variables and indicator variables” on page 138

Host variables in assembler
In assembler programs, you can specify numeric, character, graphic, binary, LOB,
XML, and ROWID host variables. You can also specify result set, table, and LOB
locators and LOB and XML file reference variables.

Restrictions:

v Only some of the valid assembler declarations are valid host variable
declarations. If the declaration for a host variable is not valid, any SQL
statement that references the variable might result in the message
UNDECLARED HOST VARIABLE.

v The locator data types are assembler language data types and SQL data types.
You cannot use locators as column types.

Recommendations:

v Be careful of overflow. For example, suppose that you retrieve an INTEGER
column value into a DS H host variable, and the column value is larger than
32767. You get an overflow warning or an error, depending on whether you
provide an indicator variable.

v Be careful of truncation. For example, if you retrieve an 80-character CHAR
column value into a host variable that is declared as DS CL70, the rightmost ten
characters of the retrieved string are truncated. If you retrieve a floating-point or
decimal column value into a host variable declared as DS F, any fractional part
of the value is removed.

Numeric host variables

The following diagram shows the syntax for declaring numeric host variables.

234 Application Programming and SQL Guide

�� variable-name DC
DS 1

H
L2

F
L4

FD
L8

(1)
P 'value '

Ln
E

L4
EH

L4
EB

L4
ED

L4
D

L8
DH

L8
DB

L8
DD

L8
LD

L16

��

Notes:

1 value is a numeric value that specifies the scale of the packed decimal variable. If value does not
include a decimal point, the scale is 0.

For floating-point data types (E, EH, EB, D, DH, and DB), use the FLOAT SQL
processing option to specify whether the host variable is in IEEE binary
floating-point or z/Architecture® hexadecimal floating-point format. If you specify
FLOAT(S390), you need to define your floating-point host variables as E, EH, D, or
DH. If you specify FLOAT(IEEE), you need to define your floating-point host
variables as EB or DB. DB2 does not check if the host variable declarations or
format of the host variable contents match the format that you specified with the
FLOAT SQL processing option. Therefore, you need to ensure that your
floating-point host variable types and contents match the format that you specified
with the FLOAT SQL processing option. DB2 converts all floating-point input data
to z/Architecture hexadecimal floating-point format before storing it.

Restriction: The FLOAT SQL processing options do not apply to the decimal
floating-point host variable types ED, DD, or LD.

For the decimal floating-point host variable types ED, DD, and LD, you can specify
the following special values: MIN, MAX, NAN, SNAN, and INFINITY.

Character host variables

You can specify the following forms of character host variables:
v Fixed-length strings
v Varying-length strings

Chapter 4. Coding SQL statements in assembler application programs 235

v CLOBs

The following diagrams show the syntax for forms other than CLOBs.

The following diagram shows the syntax for declaring fixed-length character
strings.

�� variable-name DC C
DS 1 (1)

Ln

��

Notes:

1 If you declare a character string host variable without a length (for example, DC C ’ABCD’) DB2
interprets the length as 1. To get the correct length, specify a length attribute (for example, DC CL
4 ’ABCD’).

The following diagram shows the syntax for declaring varying-length character
strings.

�� variable-name DC H ,
DS 1 L2 1

CLn ��

Graphic host variables

You can specify the following forms of graphic host variables:
v Fixed-length strings
v Varying-length strings
v DBCLOBs

The following diagrams show the syntax for forms other than DBCLOBs. In the
syntax diagrams, value denotes one or more DBCS characters, and the symbols <
and > represent the shift-out and shift-in characters.

The following diagram shows the syntax for declaring fixed-length graphic strings.

�� variable-name DC G
DS Ln

'<value>'
Ln'<value>'

��

The following diagram shows the syntax for declaring varying-length graphic
strings.

236 Application Programming and SQL Guide

�� variable-name DS H , GLn
DC L2 'm' '<value>'

��

Binary host variables

The following diagram shows the syntax for declaring binary host variables.

��
(1)

variable-name DS X Ln ��

Notes:

1 1 ≤ n ≤ 255

Varbinary host variables

The following diagram shows the syntax for declaring varbinary host variables.

��
(1)

variable-name DS H L2 , X Ln ��

Notes:

1 1 ≤ n ≤ 32704

Result set locators

The following diagram shows the syntax for declaring result set locators.

��
(1)

variable-name SQL TYPE IS RESULT_SET_LOCATOR VARYING ��

Notes:

1 To be compatible with previous releases, result set locator host variables may be declared as
fullword integers (FL4), but the method shown is the preferred syntax.

Table Locators

The following diagram shows the syntax for declaring of table locators.

Chapter 4. Coding SQL statements in assembler application programs 237

�� variable-name SQL TYPE IS TABLE LIKE table-name AS LOCATOR ��

LOB variables, locators, and file reference variables

The following diagram shows the syntax for declaring BLOB, CLOB, and DBCLOB
host variables, locators, and file reference variables.

�� variable-name SQL TYPE IS BINARY LARGE OBJECT length
BLOB K
CHARACTER LARGE OBJECT M
CHAR LARGE OBJECT G
CLOB

DBCLOB
BLOB_LOCATOR
CLOB_LOCATOR
DBCLOB_LOCATOR
BLOB_FILE
CLOB_FILE
DBCLOB_FILE

��

XML data host and file reference variables

The following diagram shows the syntax for declaring BLOB, CLOB, and DBCLOB
host variables and file reference variables for XML data types.

��
(1)

variable-name SQL TYPE IS XML AS BINARY LARGE OBJECT length
BLOB K
CHARACTER LARGE OBJECT M
CHAR LARGE OBJECT G
CLOB

DBCLOB
BLOB_FILE
CLOB_FILE
DBCLOB_FILE

��

Notes:

1 If you specify the length of the LOB in terms of KB, MB, or GB, do not leave spaces between the
length and K, M, or G.

ROWIDs

The following diagram shows the syntax for declaring ROWID host variables.

238 Application Programming and SQL Guide

�� variable-name SQL TYPE IS ROWID ��

Related concepts:
“Host variables” on page 138
“Rules for host variables in an SQL statement” on page 148
“Large objects (LOBs)” on page 443
Related tasks:
“Determining whether a retrieved value in a host variable is null or truncated” on
page 151
“Inserting a single row by using a host variable” on page 154
“Inserting null values into columns by using indicator variables or arrays” on page
155
“Retrieving a single row of data into host variables” on page 148
“Updating data by using host variables” on page 154
Related reference:
“Descriptions of SQL processing options” on page 931

High Level Assembler (HLASM) and Toolkit Feature Library

Indicator variables in assembler
An indicator variable is a 2-byte integer (DS HL2). You declare indicator variables
in the same way as host variables. You can mix the declarations of the two types of
variables.

The following diagram shows the syntax for declaring an indicator variable in
assembler.

�� variable-name DC H
DS 1 L2

��

Example

The following example shows a FETCH statement with the declarations of the host
variables that are needed for the FETCH statement and their associated indicator
variables.

EXEC SQL FETCH CLS_CURSOR INTO :CLSCD, X
:DAY :DAYIND, X
:BGN :BGNIND, X
:END :ENDIND

You can declare these variables as follows:
CLSCD DS CL7
DAY DS HL2
BGN DS CL8
END DS CL8
DAYIND DS HL2 INDICATOR VARIABLE FOR DAY
BGNIND DS HL2 INDICATOR VARIABLE FOR BGN
ENDIND DS HL2 INDICATOR VARIABLE FOR END

Chapter 4. Coding SQL statements in assembler application programs 239

http://www.ibm.com/software/awdtools/hlasm/library.html

Related concepts:
“Indicator variables, arrays, and structures” on page 140
Related tasks:
“Inserting null values into columns by using indicator variables or arrays” on page
155

Equivalent SQL and assembler data types
When you declare host variables in your assembler programs, the precompiler uses
equivalent SQL data types. When you retrieve data of a particular SQL data type
into a host variable, ensure that the host variable is of an equivalent data type.

The following table describes the SQL data type and the base SQLTYPE and
SQLLEN values that the precompiler uses for host variables in SQL statements.

Table 51. SQL data types, SQLLEN values, and SQLTYPE values that the precompiler uses for host variables in
assembler programs

Assembler host variable data type
SQLTYPE of host
variable1

SQLLEN of
host variable SQL data type

DS HL2 500 2 SMALLINT

DS FL4 496 4 INTEGER

DS P’value’
DS PLn’value’ or
DS PLn
1<=n<=16

484 p in byte 1, s in
byte 2

DECIMAL(p,s)

short decimal FLOAT:

SDFP DC ED
SDFP DC EDL4
SDFP DC EDL4’11.11’

996 4 DECFLOAT

long decimal FLOAT:

LDFP DC DD
LDFP DC DDL8
LDFP DC DDL8’22.22’

996 8 DECFLOAT

extended decimal FLOAT:

EDFP DC LD
EDFP DC LDL16
EDFP DC LDL16’33.33’

996 16 DECFLOAT

DS EL4
DS EHL4
DS EBL4

480 4 REAL or FLOAT (n)
1<=n<=21

DS DL8
DS DHL8
DS DBL8

480 8 DOUBLE PRECISION,
or FLOAT (n)
22<=n<=53

DS FDL8
DS FD

492 8 BIGINT

SQL TYPE IS BINARY(n)
1<=n<=255

912 n BINARY(n)

SQL TYPE IS VARBINARY(n) or
SQL TYPE IS BINARY(n) VARYING
1<=n<=32704

908 n VARBINARY(n)

240 Application Programming and SQL Guide

Table 51. SQL data types, SQLLEN values, and SQLTYPE values that the precompiler uses for host variables in
assembler programs (continued)

Assembler host variable data type
SQLTYPE of host
variable1

SQLLEN of
host variable SQL data type

DS CLn
1<=n<=255

452 n CHAR(n)

DS HL2,CLn
1<=n<=255

448 n VARCHAR(n)

DS HL2,CLn
n>255

456 n VARCHAR(n)

DS GLm
2<=m<=254

2

468 n GRAPHIC(n)

3

DS HL2,GLm
2<=m<=254

2

464 n VARGRAPHIC(n)

3

DS HL2,GLm
m>254

2

472 n VARGRAPHIC(n)

3

SQL TYPE IS RESULT_SET_LOCATOR 972 4 Result set locator4,5

SQL TYPE IS
TABLE LIKE
table-name
AS LOCATOR

976 4 Table locator4

SQL TYPE IS
BLOB_LOCATOR

960 4 BLOB locator4

SQL TYPE IS
CLOB_LOCATOR

964 4 CLOB locator4

SQL TYPE IS
DBCLOB_LOCATOR

968 4 DBCLOB locator4

SQL TYPE IS
BLOB(n)
1≤n≤2147483647

404 n BLOB(n)

SQL TYPE IS
CLOB(n)
1≤n≤2147483647

408 n CLOB(n)

SQL TYPE IS
DBCLOB(n)
1≤n≤1073741823

412 n DBCLOB(n)

3

SQL TYPE IS XML AS BLOB(n) 404 0 XML

SQL TYPE IS XML AS CLOB(n) 408 0 XML

SQL TYPE IS XML AS DBCLOB(n) 412 0 XML

SQL TYPE IS BLOB_FILE 916/917 267 BLOB file reference 4

SQL TYPE IS CLOB_FILE 920/921 267 CLOB file reference 4

Chapter 4. Coding SQL statements in assembler application programs 241

Table 51. SQL data types, SQLLEN values, and SQLTYPE values that the precompiler uses for host variables in
assembler programs (continued)

Assembler host variable data type
SQLTYPE of host
variable1

SQLLEN of
host variable SQL data type

SQL TYPE IS DBCLOB_FILE 924/925 267 DBCLOB file reference 4

SQL TYPE IS XML AS BLOB_FILE 916/917 267 XML BLOB file reference 4

SQL TYPE IS XML AS CLOB_FILE 920/921 267 XML CLOB file reference 4

SQL TYPE IS XML AS DBCLOB_FILE 924/925 267 XML DBCLOB file reference 4

SQL TYPE IS ROWID 904 40 ROWIDnote 5

Notes:

1. If a host variable includes an indicator variable, the SQLTYPE value is the base SQLTYPE value plus 1.

2. m is the number of bytes.

3. n is the number of double-byte characters.

4. This data type cannot be used as a column type.

5. To be compatible with previous releases, result set locator host variables may be declared as fullword integers
(FL4), but the method shown is the preferred syntax.

The following table shows equivalent assembler host variables for each SQL data
type. Use this table to determine the assembler data type for host variables that
you define to receive output from the database. For example, if you retrieve
TIMESTAMP data, you can define variable DS CLn.

This table shows direct conversions between SQL data types and assembler data
types. However, a number of SQL data types are compatible. When you do
assignments or comparisons of data that have compatible data types, DB2 converts
those compatible data types.

Table 52. Assembler host variable equivalents that you can use when retrieving data of a
particular SQL data type

SQL data type
Assembler host variable
equivalent Notes

SMALLINT DS HL2

INTEGER DS F

BIGINT DS FD OR DS FDL8 DS FDL8 requires High Level Assembler
(HLASM), Release 4 or later.

242 Application Programming and SQL Guide

Table 52. Assembler host variable equivalents that you can use when retrieving data of a
particular SQL data type (continued)

SQL data type
Assembler host variable
equivalent Notes

DECIMAL(p,s) or
NUMERIC(p,s)

DS P'value' DS PLn'value'
DS PLn

p is precision; s is scale. 1<=p<=31 and
0<=s<=p. 1<=n<=16. value is a literal value
that includes a decimal point. You must
use Ln, value, or both. Using only value is
recommended.

Precision: If you use Ln, it is 2n-1;
otherwise, it is the number of digits in
value. Scale: If you use value, it is the
number of digits to the right of the
decimal point; otherwise, it is 0.

For efficient use of indexes: Use value. If
p is even, do not use Ln and be sure the
precision of value is p and the scale of
value is s. If p is odd, you can use Ln
(although it is not advised), but you must
choose n so that 2n-1=p, and value so that
the scale is s. Include a decimal point in
value, even when the scale of value is 0.

REAL or FLOAT(n) DS EL4 DS EHL4 DS
EBL41

1<=n<=21

DOUBLE
PRECISION,
DOUBLE, or
FLOAT(n)

DS DL8 DS DHL8 DS
DBL81

22<=n<=53

DECFLOAT DC EDL4 DC DDL8 DC
LDL16

CHAR(n) DS CLn 1<=n<=255

VARCHAR(n) DS HL2,CLn

GRAPHIC(n) DS GLm m is expressed in bytes. n is the number
of double-byte characters. 1<=n<=127

VARGRAPHIC(n) DS HL2,GLx DS
HL2'm',GLx'<value>'

x and m are expressed in bytes. n is the
number of double-byte characters. < and
> represent shift-out and shift-in
characters.

BINARY(n)
Format 1:

variable-name--
DS--X--Ln

Format 2:
SQL TYPE IS
BINARY(n)

1<=n<=255

Chapter 4. Coding SQL statements in assembler application programs 243

Table 52. Assembler host variable equivalents that you can use when retrieving data of a
particular SQL data type (continued)

SQL data type
Assembler host variable
equivalent Notes

VARBINARY(n)
Format 1:

variable-name--
DS--H--L2--,--
X--Ln

Format 2:
SQL TYPE IS
VARBINARY(n)
or SQL TYPE IS
BINARY(n)
VARYING

1<=n<=32704

DATE DS CLn If you are using a date exit routine, n is
determined by that routine; otherwise, n
must be at least 10.

TIME DS CLn If you are using a time exit routine, n is
determined by that routine. Otherwise, n
must be at least 6; to include seconds, n
must be at least 8.

TIMESTAMP DS CLn n must be at least 19. To include
microseconds, n must be 26; if n is less
than 26, truncation occurs on the
microseconds part.

TIMESTAMP(0) DS CLn n must be at least 19.

TIMESTAMP(p) p >
0

DS CLn n must be at least 19. To include fractional
seconds, n must be 20+x where x is the
number of fractional seconds to include; if
x is less than p, truncation occurs on the
fractional seconds part.

TIMESTAMP(0)
WITH TIME ZONE

DS HL2,CLn n must be at least 25.

TIMESTAMP(p)
WITH TIME ZONE
p > 0

DS HL2,CLn n must be at least 26+p.

Result set locator DS F Use this data type only to receive result
sets. Do not use this data type as a
column type.

Table locator SQL TYPE IS TABLE
LIKE table-name AS
LOCATOR

Use this data type only in a user-defined
function or stored procedure to receive
rows of a transition table. Do not use this
data type as a column type.

BLOB locator SQL TYPE IS
BLOB_LOCATOR

Use this data type only to manipulate
data in BLOB columns. Do not use this
data type as a column type.

CLOB locator SQL TYPE IS
CLOB_LOCATOR

Use this data type only to manipulate
data in CLOB columns. Do not use this
data type as a column type.

DBCLOB locator SQL TYPE IS
DBCLOB_LOCATOR

Use this data type only to manipulate
data in DBCLOB columns. Do not use this
data type as a column type.

244 Application Programming and SQL Guide

Table 52. Assembler host variable equivalents that you can use when retrieving data of a
particular SQL data type (continued)

SQL data type
Assembler host variable
equivalent Notes

BLOB(n) SQL TYPE IS BLOB(n) 1≤n≤2147483647

CLOB(n) SQL TYPE IS CLOB(n) 1≤n≤2147483647

DBCLOB(n) SQL TYPE IS DBCLOB(n) n is the number of double-byte characters.
1≤n≤1073741823

XML SQL TYPE IS XML AS
BLOB(n)

1≤n≤2147483647

XML SQL TYPE IS XML AS
CLOB(n)

1≤n≤2147483647

XML SQL TYPE IS XML AS
DBCLOB(n)

n is the number of double-byte characters.
1≤n≤1073741823

BLOB file reference SQL TYPE IS BLOB_FILE Use this data type only to manipulate
data in BLOB columns. Do not use this
data type as a column type.

CLOB file reference SQL TYPE IS CLOB_FILE Use this data type only to manipulate
data in CLOB columns. Do not use this
data type as a column type.

DBCLOB file
reference

SQL TYPE IS
DBCLOB_FILE

Use this data type only to manipulate
data in DBCLOB columns. Do not use this
data type as a column type.

XML BLOB file
reference

SQL TYPE IS XML AS
BLOB_FILE

Use this data type only to manipulate
XML data as BLOB files. Do not use this
data type as a column type.

XML CLOB file
reference

SQL TYPE IS XML AS
CLOB_FILE

Use this data type only to manipulate
XML data as CLOB files. Do not use this
data type as a column type.

XML DBCLOB file
reference

SQL TYPE IS XML AS
DBCLOB_FILE

Use this data type only to manipulate
XML data as DBCLOB files. Do not use
this data type as a column type.

ROWID SQL TYPE IS ROWID

Notes:

1. Although stored procedures and user-defined functions can use IEEE floating-point host
variables, you cannot declare a user-defined function or stored procedure parameter as
IEEE.

Related concepts:
“Compatibility of SQL and language data types” on page 144
“LOB host variable, LOB locator, and LOB file reference variable declarations” on
page 752
“Host variable data types for XML data in embedded SQL applications” on page
219

SQL statements in assembler programs
You can code SQL statements in a assembler program wherever you can use
executable statements.

Chapter 4. Coding SQL statements in assembler application programs 245

Each SQL statement in an assembler program must begin with EXEC SQL. The
EXEC and SQL keywords must appear on one line, but the remainder of the
statement can appear on subsequent lines.

You might code an UPDATE statement in an assembler program as follows:
EXEC SQL UPDATE DSN8B10.DEPT X

SET MGRNO = :MGRNUM X
WHERE DEPTNO = :INTDEPT

Comments: You cannot include assembler comments in SQL statements. However,
you can include SQL comments in any embedded SQL statement.

Continuation for SQL statements: The line continuation rules for SQL statements
are the same as those for assembler statements, except that you must specify EXEC
SQL within one line. Any part of the statement that does not fit on one line can
appear on subsequent lines, beginning at the continuation margin (column 16, the
default). Every line of the statement, except the last, must have a continuation
character (a non-blank character) immediately after the right margin in column 72.

Declaring tables and views: Your assembler program should include a DECLARE
statement to describe each table and view the program accesses.

Including code: To include SQL statements or assembler host variable declaration
statements from a member of a partitioned data set, place the following SQL
statement in the source code where you want to include the statements:

EXEC SQL INCLUDE member-name

You cannot nest SQL INCLUDE statements.

Margins: Use the precompiler option MARGINS to set a left margin, a right
margin, and a continuation margin. The default values for these margins are
columns 1, 71, and 16, respectively. If EXEC SQL starts before the specified left
margin, the DB2 precompiler does not recognize the SQL statement. If you use the
default margins, you can place an SQL statement anywhere between columns 2
and 71.

Multiple-row FETCH statements: You can use only the FETCH ... USING
DESCRIPTOR form of the multiple-row FETCH statement in an assembler
program. The DB2 precompiler does not recognize declarations of host variable
arrays for an assembler program.

Names: You can use any valid assembler name for a host variable. However, do
not use external entry names or access plan names that begin with 'DSN' or host
variable names that begin with 'SQL'. These names are reserved for DB2.

The first character of a host variable that is used in embedded SQL cannot be an
underscore. However, you can use an underscore as the first character in a symbol
that is not used in embedded SQL.

Statement labels: You can prefix an SQL statement with a label. The first line of an
SQL statement can use a label beginning in the left margin (column 1). If you do
not use a label, leave column 1 blank.

WHENEVER statement: The target for the GOTO clause in an SQL WHENEVER
statement must be a label in the assembler source code and must be within the
scope of the SQL statements that WHENEVER affects.

246 Application Programming and SQL Guide

Special assembler considerations: The following considerations apply to programs
written in assembler:
v To allow for reentrant programs, the precompiler puts all the variables and

structures it generates within a DSECT called SQLDSECT, and it generates an
assembler symbol called SQLDLEN. SQLDLEN contains the length of the
DSECT. Your program must allocate an area of the size indicated by SQLDLEN,
initialize it, and provide addressability to it as the DSECT SQLDSECT. The
precompiler does not generate code to allocate the storage for SQLDSECT; the
application program must allocate the storage.
CICS: An example of code to support reentrant programs, running under CICS,
follows:
DFHEISTG DSECT

DFHEISTG
EXEC SQL INCLUDE SQLCA

*
DS 0F

SQDWSREG EQU R7
SQDWSTOR DS (SQLDLEN)C RESERVE STORAGE TO BE USED FOR SQLDSECT

...

XXPROGRM DFHEIENT CODEREG=R12,EIBREG=R11,DATAREG=R13
*
*
* SQL WORKING STORAGE

LA SQDWSREG,SQDWSTOR GET ADDRESS OF SQLDSECT
USING SQLDSECT,SQDWSREG AND TELL ASSEMBLER ABOUT IT

*

In this example, the actual storage allocation is done by the DFHEIENT macro.
TSO: The sample program in prefix.SDSNSAMP(DSNTIAD) contains an example
of how to acquire storage for the SQLDSECT in a program that runs in a TSO
environment. The following example code contains pieces from
prefix.SDSNSAMP(DSNTIAD) with explanations in the comments.
DSNTIAD CSECT CONTROL SECTION NAME

SAVE (14,12) ANY SAVE SEQUENCE
LR R12,R15 CODE ADDRESSABILITY
USING DSNTIAD,R12 TELL THE ASSEMBLER
LR R7,R1 SAVE THE PARM POINTER

*
* Allocate storage of size PRGSIZ1+SQLDSIZ, where:
* - PRGSIZ1 is the size of the DSNTIAD program area
* - SQLDSIZ is the size of the SQLDSECT, and declared
* when the DB2 precompiler includes the SQLDSECT
*

L R6,PRGSIZ1 GET SPACE FOR USER PROGRAM
A R6,SQLDSIZ GET SPACE FOR SQLDSECT
GETMAIN R,LV=(6) GET STORAGE FOR PROGRAM VARIABLES
LR R10,R1 POINT TO IT

*
* Initialize the storage
*

LR R2,R10 POINT TO THE FIELD
LR R3,R6 GET ITS LENGTH
SR R4,R4 CLEAR THE INPUT ADDRESS
SR R5,R5 CLEAR THE INPUT LENGTH
MVCL R2,R4 CLEAR OUT THE FIELD

*
* Map the storage for DSNTIAD program area
*

ST R13,FOUR(R10) CHAIN THE SAVEAREA PTRS
ST R10,EIGHT(R13) CHAIN SAVEAREA FORWARD

Chapter 4. Coding SQL statements in assembler application programs 247

LR R13,R10 POINT TO THE SAVEAREA
USING PRGAREA1,R13 SET ADDRESSABILITY

*
* Map the storage for the SQLDSECT
*

LR R9,R13 POINT TO THE PROGAREA
A R9,PRGSIZ1 THEN PAST TO THE SQLDSECT
USING SQLDSECT,R9 SET ADDRESSABILITY

...
LTORG

**
* *
* DECLARE VARIABLES, WORK AREAS *
* *
**
PRGAREA1 DSECT WORKING STORAGE FOR THE PROGRAM
...

DS 0D
PRGSIZE1 EQU *-PRGAREA1 DYNAMIC WORKAREA SIZE
...
DSNTIAD CSECT RETURN TO CSECT FOR CONSTANT
PRGSIZ1 DC A(PRGSIZE1) SIZE OF PROGRAM WORKING STORAGE
CA DSECT

EXEC SQL INCLUDE SQLCA
...

v DB2 does not process set symbols in SQL statements.
v Generated code can include more than two continuations per comment.
v Generated code uses literal constants (for example, =F'-84'), so an LTORG

statement might be necessary.
v Generated code uses registers 0, 1, 14, and 15. Register 13 points to a save area

that the called program uses. Register 15 does not contain a return code after a
call that is generated by an SQL statement.
CICS: A CICS application program uses the DFHEIENT macro to generate the
entry point code. When using this macro, consider the following:
– If you use the default DATAREG in the DFHEIENT macro, register 13 points

to the save area.
– If you use any other DATAREG in the DFHEIENT macro, you must provide

addressability to a save area.
For example, to use SAVED, you can code instructions to save, load, and
restore register 13 around each SQL statement as in the following example.
ST 13,SAVER13 SAVE REGISTER 13
LA 13,SAVED POINT TO SAVE AREA
EXEC SQL . . .
L 13,SAVER13 RESTORE REGISTER 13

v If you have an addressability error in precompiler-generated code because of
input or output host variables in an SQL statement, check to make sure that you
have enough base registers.

v Do not put CICS translator options in the assembly source code. Instead, pass
the options to the translator by using the PARM field.

Handling SQL error return codes in assembler

You can use the subroutine DSNTIAR to convert an SQL return code into a text
message. DSNTIAR takes data from the SQLCA, formats it into a message, and
places the result in a message output area that you provide in your application
program. For concepts and more information about the behavior of DSNTIAR, see
“Displaying SQLCA fields by calling DSNTIAR” on page 206.

248 Application Programming and SQL Guide

You can also use the MESSAGE_TEXT condition item field of the GET
DIAGNOSTICS statement to convert an SQL return code into a text message.
Programs that require long token message support should code the GET
DIAGNOSTICS statement instead of DSNTIAR. For more information about GET
DIAGNOSTICS, see “Checking the execution of SQL statements by using the GET
DIAGNOSTICS statement” on page 211.

DSNTIAR syntax:

CALL DSNTIAR,(sqlca, message, lrecl),MF=(E,PARM)

The DSNTIAR parameters have the following meanings:

sqlca
An SQL communication area.

message
An output area, defined as a varying-length string, in which DSNTIAR places
the message text. The first halfword contains the length of the remaining area;
its minimum value is 240.

The output lines of text, each line being the length specified in lrecl, are put
into this area. For example, you could specify the format of the output area as:
LINES EQU 10
LRECL EQU 132

...
MSGLRECL DC AL4(LRECL)
MESSAGE DS H,CL(LINES*LRECL)

ORG MESSAGE
MESSAGEL DC AL2(LINES*LRECL)
MESSAGE1 DS CL(LRECL) text line 1
MESSAGE2 DS CL(LRECL) text line 2

...
MESSAGEn DS CL(LRECL) text line n

...
CALL DSNTIAR,(SQLCA,MESSAGE,MSGLRECL),MF=(E,PARM)

where MESSAGE is the name of the message output area, LINES is the
number of lines in the message output area, and LRECL is the length of each
line.

lrecl
A fullword containing the logical record length of output messages, between 72
and 240.

The expression MF=(E,PARM) is an z/OS macro parameter that indicates dynamic
execution. PARM is the name of a data area that contains a list of pointers to the
call parameters of DSNTIAR.

See “DB2 sample applications” on page 1102 for instructions on how to access and
print the source code for the sample program.

CICS: If your CICS application requires CICS storage handling, you must use the
subroutine DSNTIAC instead of DSNTIAR. DSNTIAC has the following syntax:
CALL DSNTIAC,(eib,commarea,sqlca,msg,lrecl),MF=(E,PARM)

Chapter 4. Coding SQL statements in assembler application programs 249

DSNTIAC has extra parameters, which you must use for calls to routines that use
CICS commands.

eib EXEC interface block

commarea
communication area

For more information on these parameters, see the appropriate application
programming guide for CICS. The remaining parameter descriptions are the same
as those for DSNTIAR. Both DSNTIAC and DSNTIAR format the SQLCA in the
same way.

You must define DSNTIA1 in the CSD. If you load DSNTIAR or DSNTIAC, you
must also define them in the CSD. For an example of CSD entry generation
statements for use with DSNTIAC, see member DSN8FRDO in the data set
prefix.SDSNSAMP.

The assembler source code for DSNTIAC and job DSNTEJ5A, which assembles and
link-edits DSNTIAC, are also in the data set prefix.SDSNSAMP.
Related tasks:
“Including dynamic SQL in your program” on page 159
“Embedding SQL statements in your application” on page 147
“Handling SQL error codes” on page 217
“Limiting CPU time for dynamic SQL statements by using the resource limit
facility” on page 202

Delimiters in SQL statements in assembler programs
You must delimit SQL statements in your assembler program so that DB2 knows
when a particular SQL statement ends.

Delimit an SQL statement in your assembler program with the beginning keyword
EXEC SQL and an end of line or end of last continued line.

Macros for assembler applications
Data set DSNB10.SDSNMACS contains all DB2 macros that are available for use.

Programming examples in assembler
You can write DB2 programs in assembler. These programs can access a local or
remote DB2 subsystem and can execute static or dynamic SQL statements. This
information contains several such programming examples.

To prepare and run these applications, use the JCL in DSN910.SDSNSAMP as a
model for your JCL.
Related reference:
“Programming examples” on page 229

250 Application Programming and SQL Guide

Chapter 5. Coding SQL statements in C application programs

When you code SQL statements in C or C++ application programs, you should
follow certain guidelines.

Defining the SQL communications area, SQLSTATE, and SQLCODE in
C

C and C++ programs that contain SQL statements can include an SQL
communications area (SQLCA) to check whether an SQL statement executed
successfully. Alternatively, these programs can declare individual SQLCODE and
SQLSTATE host variables.

About this task

If you specify the SQL processing option STDSQL(YES), do not define an SQLCA.
If you do, DB2 ignores your SQLCA, and your SQLCA definition causes
compile-time errors. If you specify the SQL processing option STDSQL(NO),
include an SQLCA explicitly.

If your application contains SQL statements and does not include an SQL
communications area (SQLCA), you must declare individual SQLCODE and
SQLSTATE host variables. Your program can use these variables to check whether
an SQL statement executed successfully.

Procedure

To define the SQL communications area, SQLSTATE, and SQLCODE:

Choose one of the following actions:

Option Description

To define the SQL communications area: 1. Code the SQLCA directly in the program
or use the following SQL INCLUDE
statement to request a standard SQLCA
declaration:

EXEC SQL INCLUDE SQLCA

The standard declaration includes both a
structure definition and a static data area
named 'sqlca'.

DB2 sets the SQLCODE and SQLSTATE
values in the SQLCA after each SQL
statement executes. Your application should
check these values to determine whether the
last SQL statement was successful.

© Copyright IBM Corp. 1983, 2013 251

Option Description

To declare SQLCODE and SQLSTATE host
variables:

1. Declare the SQLCODE variable within a
BEGIN DECLARE SECTION statement
and an END DECLARE SECTION
statement in your program declarations
as a long integer:

long SQLCODE;

2. Declare the SQLSTATE variable within a
BEGIN DECLARE SECTION statement
and an END DECLARE SECTION
statement in your program declarations
as a character array of length 6:

char SQLSTATE[6];

Restriction: Do not declare an SQLSTATE
variable as an element of a structure.
Requirement: After you declare the
SQLCODE and SQLSTATE variables, ensure
that all SQL statements in the program are
within the scope of the declaration of these
variables.

Related tasks:
“Checking the execution of SQL statements” on page 204
“Checking the execution of SQL statements by using the SQLCA” on page 205
“Checking the execution of SQL statements by using SQLCODE and SQLSTATE”
on page 209
“Defining the items that your program can use to check whether an SQL statement
executed successfully” on page 137

Defining SQL descriptor areas in C
If your program includes certain SQL statements, you must define at least one SQL
descriptor area (SQLDA). Depending on the context in which it is used, the
SQLDA stores information about prepared SQL statements or host variables. This
information can then be read by either the application program or DB2.

Procedure

To define SQL descriptor areas:

Code the SQLDA directly in the program, or use the following SQL INCLUDE
statement to request a standard SQLDA declaration:
EXEC SQL INCLUDE SQLDA

You can place an SQLDA declaration wherever C allows a structure definition.
Normal C scoping rules apply. The standard declaration includes only a structure
definition with the name sqlda.

Restriction: You must place SQLDA declarations before the first SQL statement
that references the data descriptor, unless you use the TWOPASS SQL processing
option.

252 Application Programming and SQL Guide

Related tasks:
“Defining SQL descriptor areas” on page 137

Declaring host variables and indicator variables in C
You can use host variables, host variable arrays, and host structures in SQL
statements in your program to pass data between DB2 and your application.

Procedure

To declare host variables, host variable arrays, and host structures:
1. Declare the variables according to the following rules and guidelines:

v You can have more than one host variable declaration section in your
program.

v You can use class members as host variables. Class members that are used as
host variables are accessible to any SQL statement within the class. However,
you cannot use class objects as host variables.

v If you specify the ONEPASS SQL processing option, you must explicitly
declare each host variable and each host variable array before using them in
an SQL statement. If you specify the TWOPASS precompiler option, you
must declare each host variable before using it in the DECLARE CURSOR
statement.

Restriction: The DB2 coprocessor for C/C++ supports only the ONEPASS
option.

v If you specify the STDSQL(YES) SQL processing option, you must precede
the host language statements that define the host variables and host variable
arrays with the BEGIN DECLARE SECTION statement and follow the host
language statements with the END DECLARE SECTION statement.
Otherwise, these statements are optional.

v Ensure that any SQL statement that uses a host variable or host variable
array is within the scope of the statement that declares that variable or array.

v If you are using the DB2 precompiler, ensure that the names of host variables
and host variable arrays are unique within the program, even if the variables
and variable arrays are in different blocks, classes, procedures, functions, or
subroutines. You can qualify the names with a structure name to make them
unique.

2. Optional: Define any associated indicator variables, arrays, and structures.
Related tasks:
“Declaring host variables and indicator variables” on page 138

Host variables in C
In C and C++ programs, you can specify numeric, character, graphic, binary, LOB,
XML, and ROWID host variables. You can also specify result set, table, and LOB
locators and LOB and XML file reference variables.

Restrictions:

v Only some of the valid C declarations are valid host variable declarations. If the
declaration for a variable is not valid, any SQL statement that references the
variable might result in the message UNDECLARED HOST VARIABLE.

v C supports some data types and storage classes with no SQL equivalents, such
as register storage class, typedef, and long long.

Chapter 5. Coding SQL statements in C application programs 253

v The following locator data types are special SQL data types that do not have C
equivalents:
– Result set locator
– Table locator
– LOB locators

You cannot use them to define column types.
v Although DB2 allows you to use properly formed L-literals in C application

programs, DB2 does not check for all the restrictions that the C compiler
imposes on the L-literal. \

v Do not use L-literals in SQL statements. Use DB2 graphic string constants in
SQL statements to work with the L-literal.

Recommendations:

v Be careful of overflow. For example, suppose that you retrieve an INTEGER
column value into a short integer host variable, and the column value is larger
than 32767. You get an overflow warning or an error, depending on whether you
provide an indicator variable.

v Be careful of truncation. Ensure that the host variable that you declare can
contain the data and a NUL terminator, if needed. Retrieving a floating-point or
decimal column value into a long integer host variable removes any fractional
part of the value.

Numeric host variables

The following diagram shows the syntax for declaring numeric host variables.

��
auto
extern
static

const
volatile

float
double

int
short

sqlint32
int

long
int

long long
decimal (precision)

, scale
_Decimal32
_Decimal64
_Decimal128

�

� �

,

variable-name
(1) =expression

*pointer-name

; ��

Notes:

1 If you use the pointer notation of the host variable, you must use the DB2 coprocessor.

254 Application Programming and SQL Guide

Restrictions:

v If your C compiler does not have a decimal data type, no exact equivalent exists
for the SQL data type DECIMAL. In this case, you can use one of the following
variables or techniques to handle decimal values:
– An integer or floating-point variable, which converts the value. If you use an

integer variable, you lose the fractional part of the number. If the decimal
number can exceed the maximum value for an integer or if you want to
preserve a fractional value, use floating-point variables. Floating-point
numbers are approximations of real numbers. Therefore, when you assign a
decimal number to a floating-point variable, the result might be different from
the original number.

– A character-string host variable. Use the CHAR function to get a string
representation of a decimal number.

– The DECIMAL function to explicitly convert a value to a decimal data type,
as shown in the following example:
long duration=10100; /* 1 year and 1 month */
char result_dt[11];

EXEC SQL SELECT START_DATE + DECIMAL(:duration,8,0)
INTO :result_dt FROM TABLE1;

v z/OS 1.10 or above (z/OS V1R10 XL C/C++) is required to use the decimal
floating-point host data type.

v The special C only 'complex floating-point' host data type is not a supported
type for host variable.

v The FLOAT precompiler option does not apply to the decimal floating-point host
variable types.

v To use decimal floating-point host variable, you must use the DB2 coprocessor.

For floating-point data types, use the FLOAT SQL processing option to specify
whether the host variable is in IEEE binary floating-point or z/Architecture
hexadecimal floating-point format. DB2 does not check if the format of the host
variable contents match the format that you specified with the FLOAT SQL
processing option. Therefore, you need to ensure that your floating-point host
variable contents match the format that you specified with the FLOAT SQL
processing option. DB2 converts all floating-point input data to z/Architecture
hexadecimal floating-point format before storing it.

Character host variables

You can specify the following forms of character host variables:
v Single-character form
v NUL-terminated character form
v VARCHAR structured form
v CLOBs

The following diagrams show the syntax for forms other than CLOBs.

The following diagram shows the syntax for declaring single-character host
variables.

Chapter 5. Coding SQL statements in C application programs 255

��
auto
extern
static

const
volatile

char
unsigned

�

,

variable-name
(1) =expression

*pointer-name

�

� ; ��

Notes:

1 If you use the pointer notation of the host variable, you must use the DB2 coprocessor.

The following diagram shows the syntax for declaring NUL-terminated character
host variables.

��
auto
extern
static

const
volatile

char
unsigned

�

� �

,

variable-name [length]
(1) =expression

*pointer-name

(2) (3)
; ��

Notes:

1 If you use the pointer notation of the host variable, you must use the DB2 coprocessor.

2 Any string that is assigned to this variable must be NUL-terminated. Any string that is retrieved
from this variable is NUL-terminated.

3 A NUL-terminated character host variable maps to a varying-length character string (except for
the NUL).

The following diagram shows the syntax for declaring varying-length character
host variables that use the VARCHAR structured form.

256 Application Programming and SQL Guide

��
auto
extern
static

const
volatile

(1) int (2)
struct { short var-1 ;

tag
�

�
(2)

char var-2 [length] ; }
unsigned

�

� �

,

variable-name ;
(3) ={expression, expression}

*pointer-name

��

Notes:

1 You can use the struct tag to define other variables, but you cannot use them as host variables in
SQL.

2 You cannot use var-1 and var-2 as host variables in an SQL statement.

3 If you use the pointer notation of the host variable, you must use the DB2 coprocessor.

Example: The following example code shows valid and invalid declarations of the
VARCHAR structured form:
EXEC SQL BEGIN DECLARE SECTION;

/* valid declaration of host variable VARCHAR vstring */
struct VARCHAR {

short len;
char s[10];
} vstring;

/* invalid declaration of host variable VARCHAR wstring */
struct VARCHAR wstring;

For NUL-terminated string host variables, use the SQL processing options
PADNTSTR and NOPADNTSTR to specify whether the variable should be padded
with blanks. The option that you specify determines where the NUL-terminator is
placed.

If you assign a string of length n to a NUL-terminated string host variable, the
variable has one of the values that is shown in the following table.

Table 53. Value of a NUL-terminated string host variable that is assigned a string of length n

Length of the NUL-terminated string host
variable Value of the variable

Less than or equal to n The source string up to a length of n-1 and a
NUL at the end of the string. 1

DB2 sets SQLWARN[1] to W and any
indicator variable that you provide to the
original length of the source string.

Chapter 5. Coding SQL statements in C application programs 257

Table 53. Value of a NUL-terminated string host variable that is assigned a string of length
n (continued)

Length of the NUL-terminated string host
variable Value of the variable

Equal to n+1 The source string and a NUL at the end of
the string. 1

Greater than n+1 and the source is a
fixed-length string If PADNTSTR is in effect

The source string, blanks to pad the
value, and a NUL at the end of the
string.

If NOPADNTSTR is in effect
The source string and a NUL at the end
of the string.

Greater than n+1 and the source is a
varying-length string

The source string and a NUL at the end of
the string. 1

Note:

1. In these cases, whether NOPADNTSTR or PADNTSTR is in effect is irrelevant.

Restriction: If you use the DB2 precompiler, you cannot use a host variable that is
of the NUL-terminated form in either a PREPARE or DESCRIBE statement.
However, if you use the DB2 coprocessor, you can use host variables of the
NUL-terminated form in PREPARE, DESCRIBE, and EXECUTE IMMEDIATE
statements.

Graphic host variables

You can specify the following forms of graphic host variables:
v Single-graphic form
v NUL-terminated graphic form
v VARGRAPHIC structured form.
v DBCLOBs

Recommendation: Instead of using the C data type wchar_t to define graphic and
vargraphic host variables, use one of the following techniques:
v Define the sqldbchar data type by using the following typedef statement:

typedef unsigned short sqldbchar;

v Use the sqldbchar data type that is defined in the typedef statement in one of
the following files or libraries:
– SQL library, sql.h
– DB2 CLI library, sqlcli.h
– SQLUDF file in data set DSNB10.SDSNC.H

v Use the C data type unsigned short.

Using sqldbchar or unsigned short enables you to manipulate DBCS and Unicode
UTF-16 data in the same format in which it is stored in DB2. Using sqldbchar also
makes applications easier to port to other platforms.

The following diagrams show the syntax for forms other than DBCLOBs.

258 Application Programming and SQL Guide

The following diagram shows the syntax for declaring single-graphic host
variables.

��
auto
extern
static

const
volatile

sqldbchar �

,
(1)

variable-name
*pointer-name =expression

(2)
; ��

Notes:

1 You cannot use array notation in variable-name.

2 The single-graphic form declares a fixed-length graphic string of length 1.

The following diagram shows the syntax for declaring NUL-terminated graphic
host variables.

��
auto
extern
static

const
volatile

sqldbchar �

� �

,
(2)

variable-name [length]
(1) =expression

*pointer-name

(3) (4)
; ��

Notes:

1 If you use the pointer notation of the host variable, you must use the DB2 coprocessor.

2 length must be a decimal integer constant greater than 1 and not greater than 16352.

3 Any string that is assigned to this variable must be NUL-terminated. Any string that is retrieved
from this variable is NUL-terminated.

4 The NUL-terminated graphic form does not accept single-byte characters for the variable.

The following diagram shows the syntax for declaring graphic host variables that
use the VARGRAPHIC structured form.

Chapter 5. Coding SQL statements in C application programs 259

��
auto
extern
static

const
volatile

(1) int (2) (3)
struct { short var-1 ;

tag
�

�
(3) (4)

sqldbchar var-2 [length] ; } �

� �

,

variable-name
(5) ={ expression, expression}

*pointer-name

; ��

Notes:

1 You can use the struct tag to define other variables, but you cannot use them as host variables in
SQL.

2 var-1 must be less than or equal to length.

3 You cannot use var-1 or var-2 as host variables in an SQL statement.

4 length must be a decimal integer constant greater than 1 and not greater than 16352.

5 If you use the pointer notation of the host variable, you must use the DB2 coprocessor.

Example: The following example shows valid and invalid declarations of graphic
host variables that use the VARGRAPHIC structured form:
EXEC SQL BEGIN DECLARE SECTION;

/* valid declaration of host variable structured vgraph */
struct VARGRAPH {

short len;
sqldbchar d[10];
} vgraph;

/* invalid declaration of host variable structured wgraph */
struct VARGRAPH wgraph;

Binary host variables

You can specify the following forms of binary host variables:
v Fixed-length strings
v Varying-length strings
v BLOBs

The following diagrams show the syntax for forms other than BLOBs.

The following diagram shows the syntax for declaring binary host variables.

260 Application Programming and SQL Guide

��
auto
extern
static

const
volatile

SQL TYPE IS BINARY
(1)

(length) �

,

variable-name ; ��

Notes:

1 The length must be a value from 1 to 255.

The following diagram shows the syntax for declaring VARBINARY host variables.

��
auto
extern
static

const
volatile

SQL TYPE IS
(1)

VARBINARY
BINARY VARYING

(length) �

� �

,

variable-name
= { init-len , " init-data " }

; ��

Notes:

1 For VARBINARY host variables, the length must be in the range from 1 to 32 704.

The C language does not have variables that correspond to the SQL binary data
types BINARY and VARBINARY. To create host variables that can be used with
these data types, use the SQL TYPE IS clause. The SQL precompiler replaces this
declaration with the C language structure in the output source member.

When you reference a BINARY or VARBINARY host variable in an SQL statement,
you must use the variable that you specify in the SQL TYPE declaration. When
you reference the host variable in a host language statement, you must use the
variable that DB2 generates.

Examples of binary variable declarations: The following table shows examples of
variables that DB2 generates when you declare binary host variables.

Table 54. Examples of BINARY and VARBINARY variable declarations for C

Variable declaration that you include in
your C program

Corresponding variable that DB2 generates
in the output source member

SQL TYPE IS BINARY(10) bin_var; char bin_var[10]

SQL TYPE IS VARBINARY(10) vbin_var; struct {
short length;
char data[10];

} vbin_var;

Chapter 5. Coding SQL statements in C application programs 261

Recommendation: Be careful when you use binary host variables with C and C++.
The SQL TYPE declaration for BINARY and VARBINARY does not account for the
NUL-terminator that C expects, because binary strings are not NUL-terminated
strings. Also, the binary host variable might contain zeroes at any point in the
string.

Result set locators

The following diagram shows the syntax for declaring result set locators.

��
auto
extern
static
register

const
volatile

SQL TYPE IS RESULT_SET_LOCATOR VARYING �

� �

,

variable-name
*pointer-name = init-value

; ��

Table locators

The following diagram shows the syntax for declaring table locators.

��
auto
extern
static
register

const
volatile

SQL TYPE IS TABLE LIKE table-name AS LOCATOR �

� �

,

variable-name
*pointer-name =init-value

; ��

LOB variables, locators, and file reference variables

The following diagram shows the syntax for declaring BLOB, CLOB, and DBCLOB
host variables, locators, and file reference variables.

262 Application Programming and SQL Guide

��
auto
extern
static
register

const
volatile

SQL TYPE IS �

� BINARY LARGE OBJECT (length)
BLOB K
CHARACTER LARGE OBJECT M
CHAR LARGE OBJECT G
CLOB

DBCLOB
BLOB_LOCATOR
CLOB_LOCATOR
DBCLOB_LOCATOR
BLOB_FILE
CLOB_FILE
DBCLOB_FILE

�

� �

,

variable-name
*pointer-name (1)

=init-value

; ��

Notes:

1 Specify the initial value as a series of expressions. For example, specify ={expression,
expression}. For BLOB_FILE, CLOB_FILE, and DBCLOB_FILE, specify ={name_length,
data_length, file_option_map, file_name}.

XML data host and file reference variables

The following diagram shows the syntax for declaring BLOB, CLOB, and DBCLOB
host variables and file reference variables for XML data types.

Chapter 5. Coding SQL statements in C application programs 263

��
auto
extern
static
register

const
volatile

SQL TYPE IS XML AS BLOB
XML AS CLOB
XML AS DBCLOB
XML AS BLOB_FILE
XML AS CLOB_FILE
XML AS DBCLOB_FILE

�

� �

,

variable-name
*pointer-name =init-value

(1)
; ��

Notes:

1 Specify the initial value as a series of expressions. For example, specify ={expression,
expression}. For BLOB_FILE, CLOB_FILE, and DBCLOB_FILE, specify ={name_length,
data_length, file_option_map, file_name}.

ROWID host variables

The following diagram shows the syntax for declaring ROWID host variables.

��
auto
extern
static
register

const
volatile

variable-name
*pointer-name

SQL TYPE IS ROWID ; ��

Constants

The syntax for constants in C and C++ programs differs from the syntax for
constants in SQL statements in the following ways:
v C/C++ uses various forms for numeric literals (possible suffixes are: ll, LL, u, U,

f,F,l,L,df,DF, dd, DD, dl, DL,d, D). For example, in C/C++:
4850976 is a decimal literal
0x4bD is a hexadecimal integer literal
03245 is an octal integer literal
3.2E+4 is a double floating-point literal
3.2E+4f is a float floating-point literal
3.2E+4l is a long double floating-point literal
0x4bDP+4 is a double hexadecimal floating-point literal
22.2df is a _Decimal32 decimal floating-point literal
0.00D is a fixed-point decimal literal (z/OS only when
LANGLVL(EXTENDED) is specified)

v Use C/C++ literal form only outside of SQL statements. Within SQL statements,
use numeric constants.

264 Application Programming and SQL Guide

v In C, character constants and string constants can use escape sequences. You
cannot use the escape sequences in SQL statements.

v Apostrophes and quotation marks have different meanings in C and SQL. In C,
you can use double quotation marks to delimit string constants, and apostrophes
to delimit character constants.

Example of the use of quotation marks in C:
printf("%d lines read. \n", num_lines);

Example of the use of apostrophes in C:
#define NUL ’\0’

In SQL, you can use double quotation marks to delimit identifiers and
apostrophes to delimit string constants.

Example of the use of quotation marks in SQL:
SELECT "COL#1" FROM TBL1;

Example of the use of apostrophes in SQL:
SELECT COL1 FROM TBL1 WHERE COL2 = ’BELL’;

v Character data in SQL is distinct from integer data. Character data in C is a
subtype of integer data.

Related concepts:
“Host variables” on page 138
“Rules for host variables in an SQL statement” on page 148
“Large objects (LOBs)” on page 443
Related tasks:
“Determining whether a retrieved value in a host variable is null or truncated” on
page 151
“Inserting a single row by using a host variable” on page 154
“Inserting null values into columns by using indicator variables or arrays” on page
155
“Retrieving a single row of data into host variables” on page 148
“Retrieving a single row of data into a host structure” on page 158
“Updating data by using host variables” on page 154
Related reference:
“Descriptions of SQL processing options” on page 931

Host variable arrays in C
In C and C++ programs, you can specify numeric, character, graphic, binary, LOB,
XML, and ROWID host variable arrays. You can also specify LOB locators and
LOB and XML file reference variables.

Restrictions:

v Only some of the valid C declarations are valid host variable array declarations.
If the declaration for a variable array is not valid, any SQL statement that
references the variable array might result in the message UNDECLARED HOST
VARIABLE ARRAY.

v For both C and C++, you cannot specify the _packed attribute on the structure
declarations for the following arrays that are used in multiple-row INSERT,
FETCH, and MERGE statements:

Chapter 5. Coding SQL statements in C application programs 265

– varying-length character arrays
– varying-length graphic arrays
– LOB arrays

In addition, the #pragma pack(1) directive cannot be in effect if you plan to use
these arrays in multiple-row statements.

Numeric host variable arrays

The following diagram shows the syntax for declaring numeric host variable
arrays.

��
auto
extern
static

const
volatile

unsigned
float
double

int
long
short

int
long long
decimal (precision)

, scale
_Decimal32
_Decimal64
_Decimal128

�

� �

�

,
(1)

variable-name [dimension]
,

= { expression }

; ��

Notes:

1 dimension must be an integer constant between 1 and 32767.

Example: The following example shows a declaration of a numeric host variable
array:
EXEC SQL BEGIN DECLARE SECTION;

/* declaration of numeric host variable array */
long serial_num[10];
...

EXEC SQL END DECLARE SECTION;

Character host variable arrays

You can specify the following forms of character host variable arrays:
v NUL-terminated character form
v VARCHAR structured form
v CLOBs

The following diagrams show the syntax for forms other than CLOBs.

266 Application Programming and SQL Guide

The following diagram shows the syntax for declaring NUL-terminated character
host variable arrays.

��
auto
extern
static

const
volatile

char
unsigned

�

� �

�

,
(1) (2) (3)

variable-name [dimension] [length] ;
,

= { expression }

��

Notes:

1 dimension must be an integer constant between 1 and 32767.

2 Any string that is assigned to this variable must be NUL-terminated. Any string that is retrieved
from this variable is NUL-terminated.

3 The strings in a NUL-terminated character host variable array map to varying-length character
strings (except for the NUL).

The following diagram shows the syntax for declaring varying-length character
host variable arrays that use the VARCHAR structured form.

Chapter 5. Coding SQL statements in C application programs 267

��
auto
extern
static

const
volatile

(1) int (2)
struct { short var-1 ; �

�
(3)

char var-2 [length] ; }
unsigned

�

� �

�

,
(4)

variable-name [dimension] ;
,

= { expression }

��

Notes:

1 You can use the struct tag to define other variables, but you cannot use them as host variable
arrays in SQL.

2 var-1 must be a scalar numeric variable.

3 var-2 must be a scalar CHAR array variable.

4 dimension must be an integer constant between 1 and 32767.

Example: The following example shows valid and invalid declarations of
VARCHAR host variable arrays.
EXEC SQL BEGIN DECLARE SECTION;

/* valid declaration of VARCHAR host variable array */
struct VARCHAR {

short len;
char s[18];
} name[10];

/* invalid declaration of VARCHAR host variable array */
struct VARCHAR name[10];

Binary host variable arrays

The following diagram shows the syntax for declaring binary host variable arrays.

268 Application Programming and SQL Guide

��
auto
extern
static
register

const
volatile

SQL TYPE IS BINARY
VARBINARY

(length) �

� �

,
(1)

variable-name [dimension] ; ��

Notes:

1 dimension must be an integer constant between 1 and 32767.

Graphic host variable arrays

You can specify the following forms of graphic host variable arrays:
v NUL-terminated graphic form
v VARGRAPHIC structured form.

Recommendation: Instead of using the C data type wchar_t to define graphic and
vargraphic host variable arrays, use one of the following techniques:
v Define the sqldbchar data type by using the following typedef statement:

typedef unsigned short sqldbchar;

v Use the sqldbchar data type that is defined in the typedef statement in the
header files that are supplied by DB2.

v Use the C data type unsigned short.

The following diagram shows the syntax for declaring NUL-terminated graphic
host variable arrays.

Chapter 5. Coding SQL statements in C application programs 269

��
auto
extern
static

const
volatile

sqldbchar
unsigned

�

� �

�

,
(1) (2) (3) (4)

variable-name [dimension] [length] ;
,

= { expression }

��

Notes:

1 dimension must be an integer constant between 1 and 32767.

2 length must be a decimal integer constant greater than 1 and not greater than 16352.

3 Any string that is assigned to this variable must be NUL-terminated. Any string that is retrieved
from this variable is NUL-terminated.

4 Do not assign single-byte characters into a NUL-terminated graphic host variable array

The following diagram shows the syntax for declaring graphic host variable arrays
that use the VARGRAPHIC structured form.

��
auto
extern
static

const
volatile

(1) int (2)
struct { short var-1 ; �

�
(3) (4)

sqldbchar var-2 [length] ; }
unsigned

�

� �

�

,
(5)

variable-name [dimension] ;
,

= { expression }

��

Notes:

1 You can use the struct tag to define other variables, but you cannot use them as host variable
arrays in SQL.

2 var-1 must be a scalar numeric variable.

3 var-2 must be a scalar char array variable.

4 length must be a decimal integer constant greater than 1 and not greater than 16352.

5 dimension must be an integer constant between 1 and 32767.

270 Application Programming and SQL Guide

Example: The following example shows valid and invalid declarations of graphic
host variable arrays that use the VARGRAPHIC structured form.
EXEC SQL BEGIN DECLARE SECTION;

/* valid declaration of host variable array vgraph */
struct VARGRAPH {

short len;
sqldbchar d[10];
} vgraph[20];

/* invalid declaration of host variable array vgraph */
struct VARGRAPH vgraph[20];

LOB, locator, and file reference variable arrays

The following diagram shows the syntax for declaring BLOB, CLOB, and DBCLOB
host variable arrays, locators, and file reference variables.

��
auto
extern
static
register

const
volatile

SQL TYPE IS �

� BINARY LARGE OBJECT (length)
BLOB K
CHARACTER LARGE OBJECT M
CHAR LARGE OBJECT G
CLOB

DBCLOB
BLOB_LOCATOR
CLOB_LOCATOR
DBCLOB_LOCATOR
BLOB_FILE
CLOB_FILE
DBCLOB_FILE

�

� �

�

,
(1)

variable-name [dimension] ;
,

= { expression }

��

Notes:

1 dimension must be an integer constant between 1 and 32767.

XML host and file reference variable arrays

The following diagram shows the syntax for declaring BLOB, CLOB, and DBCLOB
host variable arrays and file reference variable arrays for XML data types.

Chapter 5. Coding SQL statements in C application programs 271

��
auto
extern
static
register

const
volatile

SQL TYPE IS XML AS �

� BINARY LARGE OBJECT (length)
BLOB K
CHARACTER LARGE OBJECT M
CHAR LARGE OBJECT G
CLOB

DBCLOB
BLOB_FILE
CLOB_FILE
DBCLOB_FILE

�

� �

�

,
(1)

variable-name [dimension] ;
,

= { expression }

��

Notes:

1 dimension must be an integer constant between 1 and 32767.

ROWID variable arrays

The following diagram shows the syntax for declaring ROWID variable arrays.

��
auto
extern
static
register

const
volatile

SQL TYPE IS ROWID �

,
(1)

variable-name [dimension] ; ��

Notes:

1 dimension must be an integer constant between 1 and 32767.

272 Application Programming and SQL Guide

Related concepts:
“Host variable arrays in an SQL statement” on page 156
“Host variable arrays” on page 139
“Large objects (LOBs)” on page 443
Related tasks:
“Inserting multiple rows of data from host variable arrays” on page 157
“Retrieving multiple rows of data into host variable arrays” on page 157

Host structures in C
A C host structure contains an ordered group of data fields.

Host structures

The following diagram shows the syntax for declaring host structures.

��
auto
extern
static

const
volatile

struct {
packed tag

�

� � float var-1 ;
double

int
short

sqlint32
int

long
int

long long
decimal (precision

, scale)
_Decimal32
_Decimal64
_Decimal128
varchar structure
binary structure
vargraphic structure
SQL TYPE IS ROWID
LOB data type

char var-2 ;
unsigned [length]

sqldbchar var-5 ;
[length]

} �

� variable-name ;
=expression

��

Chapter 5. Coding SQL statements in C application programs 273

VARCHAR structures

The following diagram shows the syntax for VARCHAR structures that are used
within declarations of host structures.

��
int

struct { short var-3 ;
tag signed

�

� char var-4 [length] ; }
unsigned

��

VARGRAPHIC structures

The following diagram shows the syntax for VARGRAPHIC structures that are
used within declarations of host structures.

��
int

struct { short var-6 ; sqldbchar var-7 [length] ; }
tag signed

��

Binary structures

The following diagram shows the syntax for binary structures that are used within
declarations of host structures.

�� SQL TYPE IS BINARY (length)
VARBINARY
BINARY VARYING

��

LOB data types

The following diagram shows the syntax for LOB data types that are used within
declarations of host structures.

274 Application Programming and SQL Guide

�� SQL TYPE IS BINARY LARGE OBJECT (length)
BLOB K
CHARACTER LARGE OBJECT M
CHAR LARGE OBJECT G
CLOB

DBCLOB
BLOB_LOCATOR
CLOB_LOCATOR
DBCLOB_LOCATOR

��

LOB data types for XML data

The following diagram shows the syntax for LOB data types that are used within
declarations of host structures for XML data.

�� SQL TYPE IS XML AS BINARY LARGE OBJECT (length)
BLOB K
CHARACTER LARGE OBJECT M
CHAR LARGE OBJECT G
CLOB

DBCLOB
BLOB_FILE
CLOB_FILE
DBCLOB_FILE

��

Example

In the following example, the host structure is named target, and it contains the
fields c1, c2, and c3. c1 and c3 are character arrays, and c2 is a host variable that is
equivalent to the SQL VARCHAR data type. The target host structure can be part
of another host structure but must be the deepest level of the nested structure.
struct {char c1[3];

struct {short len;
char data[5];
}c2;

char c3[2];
}target;

Related concepts:
“Host structures” on page 139

Indicator variables, indicator arrays, and host structure
indicator arrays in C

An indicator variable is a 2-byte integer (short int). An indicator variable array is
an array of 2-byte integers (short int). You declare indicator variables in the same
way as host variables. You can mix the declarations of the two types of variables.

The following diagram shows the syntax for declaring an indicator variable in C
and C++.

Chapter 5. Coding SQL statements in C application programs 275

��
auto
extern
static

const
volatile

int
short

signed

�

,

variable-name
= expression

; ��

The following diagram shows the syntax for declaring an indicator array or a host
structure indicator array in C and C++.

��
auto
extern
static

const
volatile

int
short

signed
�

� �

,
(1)

variable-name [dimension]
= expression

; ��

Notes:

1 dimension must be an integer constant between 1 and 32767.

Example

The following example shows a FETCH statement with the declarations of the host
variables that are needed for the FETCH statement and their associated indicator
variables.
EXEC SQL FETCH CLS_CURSOR INTO :ClsCd,

:Day :DayInd,
:Bgn :BgnInd,
:End :EndInd;

You can declare these variables as follows:
EXEC SQL BEGIN DECLARE SECTION;
char ClsCd[8];
char Bgn[9];
char End[9];
short Day, DayInd, BgnInd, EndInd;
EXEC SQL END DECLARE SECTION;

276 Application Programming and SQL Guide

Related concepts:
“Indicator variables, arrays, and structures” on page 140
Related tasks:
“Inserting null values into columns by using indicator variables or arrays” on page
155

Referencing pointer host variables in C programs
If you use the DB2 coprocessor, you can reference any declared pointer host
variables in your SQL statements.

Procedure

To reference pointer host variables in C and C++ programs:

Specify the pointer host variable exactly as it was declared. The only exception is
when you reference pointers to nul-terminated character arrays. In this case, you
do not have to include the parentheses that were part of the declaration.

Examples of scalar pointer host variable references:

Table 55. Example references to scalar pointer host variables

Declaration Description Reference

short *hvshortp; hvshortp is a pointer host
variable that points to two
bytes of storage.

EXEC SQL set:*hvshortp=123;

double *hvdoubp; hvdoubp is a pointer host
variable that points to eight
bytes of storage.

EXEC SQL set:*hvdoubp=456;

char (*hvcharpn) [20]; hvcharpn is a pointer host
variable that points to a
nul-terminated character
array of up to 20 bytes.

EXEC SQL set:
*hvcharpn=’nul_terminated’;

Example of a bounded character pointer host variable reference: Suppose that
your program declares the following bounded character pointer host variable:
struct {

unsigned long len;
char * data;
} hvbcharp;

The following example references this bounded character pointer host variable:
hvcharp.len = dynlen; �a�
hvcharp.data = (char 8) malloc (hvcharp.len); �b�
EXEC SQL set :hvcharp = ’data buffer with length’; �c�

Note:

a dynlen can be either a compile time constant or a variable with a value
that is assigned at run time.

b Storage is dynamically allocated for hvcharp.data.

c The SQL statement references the name of the structure, not an element
within the structure.

Chapter 5. Coding SQL statements in C application programs 277

Examples of array pointer host variable references:

Table 56. Example references to array pointer host variables

Declaration Description Reference

short * hvarrpl[6] hvarrp1 is an array of 6 pointers that
point to two bytes of storage each.

EXEC SQL set:*hvarrpl[n]=123;

double * hvarrp2[3] hvarrp2 is an array of 3 pointers that
point to 8 bytes of storage each.

EXEC SQL set:*hvarrp2[n]=456;

struct {
unsigned long len;
char * data; }

hvbarrp3[5];

hvbarrp3 is an array of 5 bounded
character pointers.

EXEC SQL set :hvarrp3[n] =
’data buffer with length’

Example of a structure array host variable reference: Suppose that your program
declares the following pointer to the structure tbl_struct:
struct tbl_struct *ptr_tbl_struct =
(struct tbl_struct *) malloc (sizeof (struct tbl_struct) * n);

To reference this data is SQL statements, use the pointer as shown in the following
example. Assume that tbl_sel_cur is a declared cursor.
for (L_col_cnt = 0; L_col_cnt < n; L_con_cnt++)
{ ...

EXEC SQL FETCH tbl_sel_cur INTO :ptr_tbl_struct [L_col_cnt]
...

}

Related tasks:
“Declaring pointer host variables in C programs”

Declaring pointer host variables in C programs
If you use the DB2 coprocessor, you can use pointer host variables with statically
or dynamically allocated storage. These pointer host variables can point to numeric
data, non-numeric data, or a structure.

About this task

You can declare the following types of pointer host variables:

scalar pointer host variable
A host variable that points to numeric or non-numeric scalar data.

array pointer host variable
A host variable that is an array of pointers.

structure array host variable
A host variable that points to a structure.

Procedure

To declare pointer host variables in C and C++ programs:

Include an asterisk (*) in each variable declaration to indicate that the variable is a
pointer.

Restrictions:

278 Application Programming and SQL Guide

v You cannot use pointer host variables that point to character data of an
unknown length. For example, do not specify the following declaration: char *
hvcharpu. Instead, specify the length of the data by using a bounded character
pointer host variable. A bounded character pointer host variable is a host variable
that is declared as a structure with the following elements:
– A 4-byte field that contains the length of the storage area.
– A pointer to the non-numeric dynamic storage area.

v You cannot use untyped pointers. For example, do not specify the following
declaration: void * untypedprt .

Examples of scalar pointer host variable declarations:

Table 57. Example declarations of scalar pointer host variables

Declaration Description

short *hvshortp; hvshortp is a pointer host variable that
points to two bytes of storage.

double *hvdoubp; hvdoubp is a pointer host variable that
points to eight bytes of storage.

char (*hvcharpn) [20]; hvcharpn is a pointer host variable that
points to a nul-terminated character array of
up to 20 bytes.

Example of a bounded character pointer host variable declaration: The following
example code declares a bounded character pointer host variable called hvbcharp
with two elements: len and data.
struct {

unsigned long len;
char * data;
} hvbcharp;

Examples of array pointer host variable declarations:

Table 58. Example declarations of array pointer host variables

Declaration Description

short * hvarrpl[6] hvarrp1 is an array of 6 pointers that point to
two bytes of storage each.

double * hvarrp2[3] hvarrp2 is an array of 3 pointers that point to
8 bytes of storage each.

struct {
unsigned long len;
char * data; }

hvbarrp3[5];

hvbarrp3 is an array of 5 bounded character
pointers.

Example of a structure array host variable declaration: The following example
code declares a table structure called tbl_struct.
struct tbl_struct
{

char colname[20];
small int colno;
small int coltype;
small int collen;

};

Chapter 5. Coding SQL statements in C application programs 279

The following example code declares a pointer to the structure tbl_struct. Storage is
allocated dynamically for up to n rows.
struct tbl_struct *ptr_tbl_struct =
(struct tbl_struct *) malloc (sizeof (struct tbl_struct) * n);

Related tasks:
“Referencing pointer host variables in C programs” on page 277

Equivalent SQL and C data types
When you declare host variables in your C programs, the precompiler uses
equivalent SQL data types. When you retrieve data of a particular SQL data type
into a host variable, you need to ensure that the host variable is of an equivalent
data type.

The following table describes the SQL data type and the base SQLTYPE and
SQLLEN values that the precompiler uses for host variables in SQL statements.

Table 59. SQL data types, SQLLEN values, and SQLTYPE values that the precompiler uses
for host variables in C programs

C host variable data type
SQLTYPE of host
variable1

SQLLEN of host
variable SQL data type

short int 500 2 SMALLINT

long int 496 4 INTEGER

long long
long long int
sqlint64

492 8 BIGINT5

decimal(p,s)2 484 p in byte 1, s in
byte 2

DECIMAL(p,s)2

v _Decimal32 996/997 4 DECFLOAT(16)7, 8

v _Decimal64 996/997 8 DECFLOAT(16)8

v _Decimal128 996/997 16 DECFLOAT(34)8

float 480 4 FLOAT (single
precision)

double 480 8 FLOAT (double
precision)

v

SQL TYPE IS
BINARY(n),
1<=n<=255

912 n BINARY(n)

v

SQL TYPE IS
VARBINARY(n),
1<=n<=32704

908 n VARBINARY(n)

Single-character form 452 1 CHAR(1)

NUL-terminated
character form

460 n VARCHAR (n-1)

VARCHAR structured
form 1<=n<=255

448 n VARCHAR(n)

280 Application Programming and SQL Guide

Table 59. SQL data types, SQLLEN values, and SQLTYPE values that the precompiler uses
for host variables in C programs (continued)

C host variable data type
SQLTYPE of host
variable1

SQLLEN of host
variable SQL data type

VARCHAR structured
form
n>255

456 n VARCHAR(n)

Single-graphic form 468 1 GRAPHIC(1)

NUL-terminated
graphic form

400 n VARGRAPHIC (n-1)

VARGRAPHIC
structured form
1<=n<128

464 n VARGRAPHIC(n)

VARGRAPHIC
structured form
n>127

472 n VARGRAPHIC(n)

v

SQL TYPE IS
RESULT_SET
_LOCATOR

972 4 Result set locator3

SQL TYPE IS
TABLE LIKE
table-name
AS LOCATOR

976 4 Table locator3

SQL TYPE IS
BLOB_LOCATOR

960 4 BLOB locator3

SQL TYPE IS
CLOB_LOCATOR

964 4 CLOB locator3

SQL TYPE IS
DBCLOB_LOCATOR

968 4 DBCLOB locator3

SQL TYPE IS
BLOB(n)
1≤n≤2147483647

404 n BLOB(n)

SQL TYPE IS
CLOB(n)
1≤n≤2147483647

408 n CLOB(n)

SQL TYPE IS
DBCLOB(n)
1≤n≤1073741823

412 n DBCLOB(n)4

SQL TYPE IS XML AS
BLOB(n)

404 0 XML

SQL TYPE IS XML AS
CLOB(n)

408 0 XML

SQL TYPE IS XML AS
DBCLOB(n)

412 0 XML

SQL TYPE IS BLOB_FILE 916/917 267 BLOB file reference 3

SQL TYPE IS CLOB_FILE 920/921 267 CLOB file reference 3

SQL TYPE IS
DBCLOB_FILE

924/925 267 DBCLOB file reference
3

Chapter 5. Coding SQL statements in C application programs 281

Table 59. SQL data types, SQLLEN values, and SQLTYPE values that the precompiler uses
for host variables in C programs (continued)

C host variable data type
SQLTYPE of host
variable1

SQLLEN of host
variable SQL data type

SQL TYPE IS XML AS
BLOB_FILE

916/917 267 XML BLOB file
reference 3

SQL TYPE IS XML AS
CLOB_FILE

920/921 267 XML CLOB file
reference 3

SQL TYPE IS XML AS
DBCLOB_FILE

924/925 267 XML DBCLOB file
reference 3

SQL TYPE IS ROWID 904 40 ROWID

Notes:

1. If a host variable includes an indicator variable, the SQLTYPE value is the base
SQLTYPE value plus 1.

2. p is the precision; in SQL terminology, this the total number of digits. In C, this is called
the size.

s is the scale; in SQL terminology, this is the number of digits to the right of the decimal
point. In C, this is called the precision.

C++ does not support the decimal data type.

3. Do not use this data type as a column type.

4. n is the number of double-byte characters.

5. No exact equivalent. Use DECIMAL(19,0).

6. The C data type long maps to the SQL data type BIGINT.

7. DFP host variable with a length of 4 is supported while DFP column can be defined only
with length 8(DECFLOAT(16)) or 16(DECFLOAT(34)).

8. To use the decimal floating-point host data type, you must do the following:

v Use z/OS 1.10 or above (z/OS V1R10 XL C/C++).

v Compile with the C/C++ compiler option, DFP.

v Specify the SQL compiler option to enable the DB2 coprocessor.

v Specify C/C++ compiler option, ARCH(7). It is required by the DFP compiler option if
the DFP type is used in the source.

v Specify 'DEFINE(__STDC_WANT_DEC_FP__)' compiler option because DFP is not
officially part of the C/C++ Language Standard.

The following table shows equivalent C host variables for each SQL data type. Use
this table to determine the C data type for host variables that you define to receive
output from the database. For example, if you retrieve TIMESTAMP data, you can
define a variable of NUL-terminated character form or VARCHAR structured form

This table shows direct conversions between SQL data types and C data types.
However, a number of SQL data types are compatible. When you do assignments
or comparisons of data that have compatible data types, DB2 converts those
compatible data types.

Table 60. C host variable equivalents that you can use when retrieving data of a particular SQL data type

SQL data type C host variable equivalent Notes

SMALLINT short int

INTEGER long int

282 Application Programming and SQL Guide

Table 60. C host variable equivalents that you can use when retrieving data of a particular SQL data type (continued)

SQL data type C host variable equivalent Notes

DECIMAL(p,s) or
NUMERIC(p,s)

decimal You can use the double data type if your
C compiler does not have a decimal data
type; however, double is not an exact
equivalent.

REAL or FLOAT(n) float 1<=n<=21

DOUBLE PRECISION or
FLOAT(n)

double 22<=n<=53

DECFLOAT(16) _Decminal32

DECFLOAT(34) _Decimal128

BIGINT long long, long long int, and sqlint64

BINARY(n) SQL TYPE IS BINARY(n) 1<=n<=255

If data can contain character NULs (\0),
certain C and C++ library functions might
not handle the data correctly. Ensure that
your application handles the data
properly.

VARBINARY(n) SQL TYPE IS VARBINARY(n) 1<=n<=32 704

CHAR(1) single-character form

CHAR(n) no exact equivalent If n>1, use NUL-terminated character form

VARCHAR(n) NUL-terminated character form If data can contain character NULs (\0),
use VARCHAR structured form. Allow at
least n+1 to accommodate the
NUL-terminator.

VARCHAR structured form

GRAPHIC(1) single-graphic form

GRAPHIC(n) no exact equivalent If n>1, use NUL-terminated graphic form.
n is the number of double-byte characters.

VARGRAPHIC(n) NUL-terminated graphic form If data can contain graphic NUL values
(\0\0), use VARGRAPHIC structured
form. Allow at least n+1 to accommodate
the NUL-terminator. n is the number of
double-byte characters.

VARGRAPHIC structured form n is the number of double-byte characters.

DATE NUL-terminated character form If you are using a date exit routine, that
routine determines the length. Otherwise,
allow at least 11 characters to
accommodate the NUL-terminator.

VARCHAR structured form If you are using a date exit routine, that
routine determines the length. Otherwise,
allow at least 10 characters.

Chapter 5. Coding SQL statements in C application programs 283

Table 60. C host variable equivalents that you can use when retrieving data of a particular SQL data type (continued)

SQL data type C host variable equivalent Notes

TIME NUL-terminated character form If you are using a time exit routine, the
length is determined by that routine.
Otherwise, the length must be at least 7;
to include seconds, the length must be at
least 9 to accommodate the
NUL-terminator.

VARCHAR structured form If you are using a time exit routine, the
length is determined by that routine.
Otherwise, the length must be at least 6;
to include seconds, the length must be at
least 8.

TIMESTAMP NUL-terminated character form The length must be at least 20. To include
microseconds, the length must be 27. If the
length is less than 27, truncation occurs on
the microseconds part.

VARCHAR structured form The length must be at least 19. To include
microseconds, the length must be 26. If the
length is less than 26, truncation occurs on
the microseconds part.

TIMESTAMP(0) NUL-terminated character form The length must be at least 20.

VARCHAR structured form The length must be at least 19.

TIMESTAMP(p) p > 0 NUL-terminated character form The length must be at least 20. To include
fractional seconds, the length must be
21+x where x is the number of fractional
seconds to include; if x is less than p,
truncation occurs on the fraction seconds
part.

VARCHAR structured form The length must be at least 19. To include
fractional seconds, the length must be
20+x where x is the number of fractional
seconds to include; if x is less than p,
truncation occurs on the fractional seconds
part.

TIMESTAMP(0) WITH TIME
ZONE

NUL-terminated character form The length must be at least 26.

VARCHAR structured form The length must be at least 25.

TIMESTAMP(p) WITH TIME
ZONE

NUL-terminated character form The length must be at least 27+p.

VARCHAR structured form The length must be at least 26+p.

Result set locator SQL TYPE IS RESULT_SET_LOCATOR Use this data type only for receiving result
sets. Do not use this data type as a
column type.

Table locator SQL TYPE IS TABLE LIKE table-name AS
LOCATOR

Use this data type only in a user-defined
function or stored procedure to receive
rows of a transition table. Do not use this
data type as a column type.

BLOB locator SQL TYPE IS BLOB_LOCATOR Use this data type only to manipulate data
in BLOB columns. Do not use this data
type as a column type.

CLOB locator SQL TYPE IS CLOB_LOCATOR Use this data type only to manipulate data
in CLOB columns. Do not use this data
type as a column type.

284 Application Programming and SQL Guide

Table 60. C host variable equivalents that you can use when retrieving data of a particular SQL data type (continued)

SQL data type C host variable equivalent Notes

DBCLOB locator SQL TYPE IS DBCLOB_LOCATOR Use this data type only to manipulate data
in DBCLOB columns. Do not use this data
type as a column type.

BLOB(n) SQL TYPE IS BLOB(n) 1≤n≤2147483647

CLOB(n) SQL TYPE IS CLOB(n) 1≤n≤2147483647

DBCLOB(n) SQL TYPE IS DBCLOB(n) n is the number of double-byte characters.
1≤n≤1073741823

XML SQL TYPE IS XML AS BLOB(n) 1≤n≤2147483647

XML SQL TYPE IS XML AS CLOB(n) 1≤n≤2147483647

XML SQL TYPE IS XML AS DBCLOB(n) n is the number of double-byte characters.
1≤n≤1073741823

BLOB file reference SQL TYPE IS BLOB_FILE Use this data type only to manipulate data
in BLOB columns. Do not use this data
type as a column type.

CLOB file reference SQL TYPE IS CLOB_FILE Use this data type only to manipulate data
in CLOB columns. Do not use this data
type as a column type.

DBCLOB file reference SQL TYPE IS DBCLOB_FILE Use this data type only to manipulate data
in DBCLOB columns. Do not use this data
type as a column type.

XML BLOB file reference SQL TYPE IS XML AS BLOB_FILE Use this data type only to manipulate
XML data as BLOB files. Do not use this
data type as a column type.

XML CLOB file reference SQL TYPE IS XML AS CLOB_FILE Use this data type only to manipulate
XML data as CLOB files. Do not use this
data type as a column type.

XML DBCLOB file reference SQL TYPE IS XML AS DBCLOB_FILE Use this data type only to manipulate
XML data as DBCLOB files. Do not use
this data type as a column type.

ROWID SQL TYPE IS ROWID

Related concepts:
“Compatibility of SQL and language data types” on page 144
“LOB host variable, LOB locator, and LOB file reference variable declarations” on
page 752
“Host variable data types for XML data in embedded SQL applications” on page
219

SQL statements in C programs
You can code SQL statements in a C program wherever you can use executable
statements.

Each SQL statement in a C program must begin with EXEC SQL and end with a
semicolon (;). The EXEC and SQL keywords must appear on one line, but the
remainder of the statement can appear on subsequent lines.

In general, because C is case sensitive, use uppercase letters to enter all SQL
keywords. However, if you use the FOLD precompiler suboption, DB2 folds

Chapter 5. Coding SQL statements in C application programs 285

lowercase letters in SBCS SQL ordinary identifiers to uppercase. For information
about host language precompiler options, see Table 146 on page 931.

You must keep the case of host variable names consistent throughout the program.
For example, if a host variable name is lowercase in its declaration, it must be
lowercase in all SQL statements. You might code an UPDATE statement in a C
program as follows:
EXEC SQL

UPDATE DSN8B10.DEPT
SET MGRNO = :mgr_num
WHERE DEPTNO = :int_dept;

Comments: You can include C comments (/* ... */) within SQL statements
wherever you can use a blank, except between the keywords EXEC and SQL. You
can use single-line comments (starting with //) in C language statements, but not
in embedded SQL. You can use SQL comments within embedded SQL statements.
You can nest comments.

To include EBCDIC DBCS characters in comments, you must delimit the characters
by a shift-out and shift-in control character; the first shift-in character in the DBCS
string signals the end of the DBCS string.

Continuation for SQL statements: You can use a backslash to continue a
character-string constant or delimited identifier on the following line. However,
EBCDIC DBCS string constants cannot be continued on a second line.

Declaring tables and views: Your C program should use the DECLARE TABLE
statement to describe each table and view the program accesses. You can use the
DB2 declarations generator (DCLGEN) to generate the DECLARE TABLE
statements. For more information, see “DCLGEN (declarations generator)” on page
125.

Including SQL statements and variable declarations in source code that is to be
processed by the DB2 precompiler: To include SQL statements or C host variable
declarations from a member of a partitioned data set, add the following SQL
statement to the source code where you want to include the statements:
EXEC SQL INCLUDE member-name;

You cannot nest SQL INCLUDE statements. Do not use C #include statements to
include SQL statements or C host variable declarations.

Margins: Code SQL statements in columns 1 through 72, unless you specify other
margins to the DB2 precompiler. If EXEC SQL is not within the specified margins,
the DB2 precompiler does not recognize the SQL statement. The margin rules do
not apply to the DB2 coprocessor. The DB2 coprocessor allows variable length
source input.

Names:You can use any valid C name for a host variable, subject to the following
restrictions:
v Do not use DBCS characters.
v Do not use external entry names or access plan names that begin with 'DSN',

and do not use host variable names or macro names that begin with 'SQL' (in
any combination of uppercase or lowercase letters). These names are reserved
for DB2.

286 Application Programming and SQL Guide

Nulls and NULs: C and SQL differ in the way they use the word null. The C
language has a null character (NUL), a null pointer (NULL), and a null statement
(just a semicolon). The C NUL is a single character that compares equal to 0. The C
NULL is a special reserved pointer value that does not point to any valid data
object. The SQL null value is a special value that is distinct from all non-null
values and denotes the absence of a (nonnull) value. NUL (or NUL-terminator) is
the null character in C and C++, and NULL is the SQL null value.

Sequence numbers: The DB2 precompiler generates statements without sequence
numbers. (The DB2 coprocessor does not perform this action, because the source is
read and modified by the compiler.)

Statement labels: You can precede SQL statements with a label.

Trigraph characters: Some characters from the C character set are not available on
all keyboards. You can enter these characters into a C source program using a
sequence of three characters called a trigraph. The trigraph characters that DB2
supports are the same as those that the C compiler supports.

WHENEVER statement: The target for the GOTO clause in an SQL WHENEVER
statement must be within the scope of any SQL statements that the statement
WHENEVER affects.

Special C/C++ considerations:

v Using the C/370™ multi-tasking facility, in which multiple tasks execute SQL
statements, causes unpredictable results.

v Except for the DB2 coprocessor, you must run the DB2 precompiler before
running the C preprocessor.

v Except for the DB2 coprocessor, DB2 precompiler does not support C
preprocessor directives.

v If you use conditional compiler directives that contain C code, either place them
after the first C token in your application program, or include them in the C
program using the #include preprocessor directive.

Refer to the appropriate C documentation for more information about C
preprocessor directives.

To use the decimal floating-point host data type, you must do the following:
v Use z/OS 1.10 or above (z/OS V1R10 XL C/C++).
v Compile with the C/C++ compiler option, DFP.
v Specify the SQL compiler option to enable the DB2 coprocessor.
v Specify C/C++ compiler option, ARCH(7). It is required by the DFP compiler

option if the DFP type is used in the source.
v Specify 'DEFINE(__STDC_WANT_DEC_FP__)' compiler option.

Handling SQL error return codes in C or C++

You can use the subroutine DSNTIAR to convert an SQL return code into a text
message. DSNTIAR takes data from the SQLCA, formats it into a message, and
places the result in a message output area that you provide in your application
program. For concepts and more information about the behavior of DSNTIAR, see
“Displaying SQLCA fields by calling DSNTIAR” on page 206.

Chapter 5. Coding SQL statements in C application programs 287

You can also use the MESSAGE_TEXT condition item field of the GET
DIAGNOSTICS statement to convert an SQL return code into a text message.
Programs that require long token message support should code the GET
DIAGNOSTICS statement instead of DSNTIAR. For more information about GET
DIAGNOSTICS, see “Checking the execution of SQL statements by using the GET
DIAGNOSTICS statement” on page 211.

DSNTIAR syntax:

rc = DSNTIAR(&sqlca, &message, &lrecl);

The DSNTIAR parameters have the following meanings:

&sqlca
An SQL communication area.

&message
An output area, in VARCHAR format, in which DSNTIAR places the message
text. The first halfword contains the length of the remaining area; its minimum
value is 240.

The output lines of text, each line being the length specified in &lrecl, are put
into this area. For example, you could specify the format of the output area as:
#define data_len 132
#define data_dim 10
int length_of_line = data_len ;
struct error_struct {

short int error_len;
char error_text[data_dim][data_len];
} error_message = {data_dim * data_len};...

rc = DSNTIAR(&sqlca, &error_message, &length_of_line);

where error_message is the name of the message output area, data_dim is the
number of lines in the message output area, and data_len is the length of each
line.

&lrecl
A fullword containing the logical record length of output messages, between 72
and 240.

To inform your compiler that DSNTIAR is an assembler language program, include
one of the following statements in your application.

For C, include:
#pragma linkage (DSNTIAR,OS)

For C++, include a statement similar to this:
extern "OS" short int DSNTIAR(struct sqlca *sqlca,

struct error_struct *error_message,
int *data_len);

Examples of calling DSNTIAR from an application appear in the DB2 sample C
program DSN8BD3 and in the sample C++ program DSN8BE3. Both are in the
library DSN8B10.SDSNSAMP. See “DB2 sample applications” on page 1102 for
instructions on how to access and print the source code for the sample programs.

CICS: If your CICS application requires CICS storage handling, you must use the
subroutine DSNTIAC instead of DSNTIAR. DSNTIAC has the following syntax:

288 Application Programming and SQL Guide

rc = DSNTIAC(&eib, &commarea, &sqlca, &message, &lrecl);

DSNTIAC has extra parameters, which you must use for calls to routines that use
CICS commands.

&eib EXEC interface block

&commarea
communication area

For more information on these parameters, see the appropriate application
programming guide for CICS. The remaining parameter descriptions are the same
as those for DSNTIAR. Both DSNTIAC and DSNTIAR format the SQLCA in the
same way.

You must define DSNTIA1 in the CSD. If you load DSNTIAR or DSNTIAC, you
must also define them in the CSD. For an example of CSD entry generation
statements for use with DSNTIAC, see job DSNTEJ5A.

The assembler source code for DSNTIAC and job DSNTEJ5A, which assembles and
link-edits DSNTIAC, are in the data set prefix.SDSNSAMP.
Related concepts:
“Host variable arrays in an SQL statement” on page 156
Related tasks:
“Including dynamic SQL in your program” on page 159
“Embedding SQL statements in your application” on page 147
“Handling SQL error codes” on page 217
“Limiting CPU time for dynamic SQL statements by using the resource limit
facility” on page 202

Delimiters in SQL statements in C programs
You must delimit SQL statements in your C program so that DB2 knows when a
particular SQL statement ends.

Delimit an SQL statement in your C program with the beginning keyword EXEC
SQL and a Semicolon (;).

Programming examples in C
You can write DB2 programs in C and C++. These programs can access a local or
remote DB2 subsystem and can execute static or dynamic SQL statements. This
information contains several such programming examples.

To prepare and run these applications, use the JCL in DSN910.SDSNSAMP as a
model for your JCL.
Related reference:
“Programming examples” on page 229

Sample dynamic and static SQL in a C program
Programs that access DB2 can contain static SQL, dynamic SQL, or both.

This example shows a C program that contains both static and dynamic SQL.

The following figure illustrates dynamic SQL and static SQL embedded in a C
program. Each section of the program is identified with a comment. Section 1 of

Chapter 5. Coding SQL statements in C application programs 289

the program shows static SQL; sections 2, 3, and 4 show dynamic SQL. The
function of each section is explained in detail in the prologue to the program.
/**/
/* Descriptive name = Dynamic SQL sample using C language */
/* */
/* Function = To show examples of the use of dynamic and static */
/* SQL. */
/* */
/* Notes = This example assumes that the EMP and DEPT tables are */
/* defined. They need not be the same as the DB2 Sample */
/* tables. */
/* */
/* Module type = C program */
/* Processor = DB2 precompiler, C compiler */
/* Module size = see link edit */
/* Attributes = not reentrant or reusable */
/* */
/* Input = */
/* */
/* symbolic label/name = DEPT */
/* description = arbitrary table */
/* symbolic label/name = EMP */
/* description = arbitrary table */
/* */
/* Output = */
/* */
/* symbolic label/name = SYSPRINT */
/* description = print results via printf */
/* */
/* Exit-normal = return code 0 normal completion */
/* */
/* Exit-error = */
/* */
/* Return code = SQLCA */
/* */
/* Abend codes = none */
/* */
/* External references = none */
/* */
/* Control-blocks = */
/* SQLCA - sql communication area */
/* */

/* Logic specification: */
/* */
/* There are four SQL sections. */
/* */
/* 1) STATIC SQL 1: using static cursor with a SELECT statement. */
/* Two output host variables. */
/* 2) Dynamic SQL 2: Fixed-list SELECT, using same SELECT statement */
/* used in SQL 1 to show the difference. The prepared string */
/* :iptstr can be assigned with other dynamic-able SQL statements. */
/* 3) Dynamic SQL 3: Insert with parameter markers. */
/* Using four parameter markers which represent four input host */
/* variables within a host structure. */
/* 4) Dynamic SQL 4: EXECUTE IMMEDIATE */
/* A GRANT statement is executed immediately by passing it to DB2 */
/* via a varying string host variable. The example shows how to */
/* set up the host variable before passing it. */
/* */
/**/

#include "stdio.h"
#include "stdefs.h"
EXEC SQL INCLUDE SQLCA;
EXEC SQL INCLUDE SQLDA;
EXEC SQL BEGIN DECLARE SECTION;

290 Application Programming and SQL Guide

short edlevel;
struct { short len;

char x1[56];
} stmtbf1, stmtbf2, inpstr;

struct { short len;
char x1[15];

} lname;
short hv1;
struct { char deptno[4];

struct { short len;
char x[36];

} deptname;
char mgrno[7];
char admrdept[4];

} hv2;
short ind[4];
EXEC SQL END DECLARE SECTION;
EXEC SQL DECLARE EMP TABLE

(EMPNO CHAR(6) ,
FIRSTNAME VARCHAR(12) ,
MIDINIT CHAR(1) ,
LASTNAME VARCHAR(15) ,
WORKDEPT CHAR(3) ,
PHONENO CHAR(4) ,
HIREDATE DECIMAL(6) ,
JOBCODE DECIMAL(3) ,
EDLEVEL SMALLINT ,
SEX CHAR(1) ,
BIRTHDATE DECIMAL(6) ,
SALARY DECIMAL(8,2) ,
FORFNAME VARGRAPHIC(12) ,
FORMNAME GRAPHIC(1) ,
FORLNAME VARGRAPHIC(15) ,
FORADDR VARGRAPHIC(256)) ;

EXEC SQL DECLARE DEPT TABLE
(
DEPTNO CHAR(3) ,
DEPTNAME VARCHAR(36) ,
MGRNO CHAR(6) ,
ADMRDEPT CHAR(3));

main ()
{
printf("??/n*** begin of program ***");
EXEC SQL WHENEVER SQLERROR GO TO HANDLERR;
EXEC SQL WHENEVER SQLWARNING GO TO HANDWARN;
EXEC SQL WHENEVER NOT FOUND GO TO NOTFOUND;
/**/
/* Assign values to host variables which will be input to DB2 */
/**/
strcpy(hv2.deptno,"M92");
strcpy(hv2.deptname.x,"DDL");
hv2.deptname.len = strlen(hv2.deptname.x);
strcpy(hv2.mgrno,"123456");
strcpy(hv2.admrdept,"abc");
/**/
/* Static SQL 1: DECLARE CURSOR, OPEN, FETCH, CLOSE */
/* Select into :edlevel, :lname */
/**/
printf("??/n*** begin declare ***");
EXEC SQL DECLARE C1 CURSOR FOR SELECT EDLEVEL, LASTNAME FROM EMP

WHERE EMPNO = ’000010’;
printf("??/n*** begin open ***");
EXEC SQL OPEN C1;

printf("??/n*** begin fetch ***");
EXEC SQL FETCH C1 INTO :edlevel, :lname;
printf("??/n*** returned values ***");

Chapter 5. Coding SQL statements in C application programs 291

printf("??/n??/nedlevel =
printf("??/nlname =

printf("??/n*** begin close ***");
EXEC SQL CLOSE C1;
/**/
/* Dynamic SQL 2: PREPARE, DECLARE CURSOR, OPEN, FETCH, CLOSE */
/* Select into :edlevel, :lname */
/**/
sprintf (inpstr.x1,

"SELECT EDLEVEL, LASTNAME FROM EMP WHERE EMPNO = ’000010’");
inpstr.len = strlen(inpstr.x1);
printf("??/n*** begin prepare ***");
EXEC SQL PREPARE STAT1 FROM :inpstr;
printf("??/n*** begin declare ***");
EXEC SQL DECLARE C2 CURSOR FOR STAT1;
printf("??/n*** begin open ***");
EXEC SQL OPEN C2;

printf("??/n*** begin fetch ***");
EXEC SQL FETCH C2 INTO :edlevel, :lname;
printf("??/n*** returned values ***");
printf("??/n??/nedlevel =
printf("??/nlname =

printf("??/n*** begin close ***");
EXEC SQL CLOSE C2;

/**/
/* Dynamic SQL 3: PREPARE with parameter markers */
/* Insert into with four values. */
/**/
sprintf (stmtbf1.x1,

"INSERT INTO DEPT VALUES (?,?,?,?)");
stmtbf1.len = strlen(stmtbf1.x1);
printf("??/n*** begin prepare ***");
EXEC SQL PREPARE s1 FROM :stmtbf1;
printf("??/n*** begin execute ***");
EXEC SQL EXECUTE s1 USING :hv2:ind;
printf("??/n*** following are expected insert results ***");
printf("??/n hv2.deptno =
printf("??/n hv2.deptname.len =
printf("??/n hv2.deptname.x =
printf("??/n hv2.mgrno =
printf("??/n hv2.admrdept =
EXEC SQL COMMIT;
/**/
/* Dynamic SQL 4: EXECUTE IMMEDIATE */
/* Grant select */
/**/
sprintf (stmtbf2.x1,

"GRANT SELECT ON EMP TO USERX");
stmtbf2.len = strlen(stmtbf2.x1);
printf("??/n*** begin execute immediate ***");
EXEC SQL EXECUTE IMMEDIATE :stmtbf2;
printf("??/n*** end of program ***");
goto progend;
HANDWARN: HANDLERR: NOTFOUND: ;
printf("??/n SQLCODE =
printf("??/n SQLWARN0 =
printf("??/n SQLWARN1 =
printf("??/n SQLWARN2 =
printf("??/n SQLWARN3 =
printf("??/n SQLWARN4 =
printf("??/n SQLWARN5 =

292 Application Programming and SQL Guide

printf("??/n SQLWARN6 =
printf("??/n SQLWARN7 =
progend: ;
}

Example C program that calls a stored procedure
You can call the C language version of the GETPRML stored procedure that uses
the GENERAL WITH NULLS linkage convention.

Because the stored procedure returns result sets, this program checks for result sets
and retrieves the contents of the result sets. The following figure contains the
example C program that calls the GETPRML stored procedure.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
main()
{

/**/
/* Include the SQLCA and SQLDA */
/**/
EXEC SQL INCLUDE SQLCA;
EXEC SQL INCLUDE SQLDA;
/**/
/* Declare variables that are not SQL-related. */
/**/
short int i; /* Loop counter */
/**/
/* Declare the following: */
/* - Parameters used to call stored procedure GETPRML */
/* - An SQLDA for DESCRIBE PROCEDURE */
/* - An SQLDA for DESCRIBE CURSOR */
/* - Result set variable locators for up to three result */
/* sets */
/**/
EXEC SQL BEGIN DECLARE SECTION;

char procnm[19]; /* INPUT parm -- PROCEDURE name */
char schema[9]; /* INPUT parm -- User’s schema */
long int out_code; /* OUTPUT -- SQLCODE from the */

/* SELECT operation. */
struct {

short int parmlen;
char parmtxt[254];

} parmlst; /* OUTPUT -- RUNOPTS values */
/* for the matching row in */
/* catalog table SYSROUTINES */

struct indicators {
short int procnm_ind;
short int schema_ind;
short int out_code_ind;
short int parmlst_ind;
} parmind;

/* Indicator variable structure */

struct sqlda *proc_da;
/* SQLDA for DESCRIBE PROCEDURE */

struct sqlda *res_da;
/* SQLDA for DESCRIBE CURSOR */

static volatile
SQL TYPE IS RESULT_SET_LOCATOR *loc1, *loc2, *loc3;

/* Locator variables */
EXEC SQL END DECLARE SECTION;

/***/
/* Allocate the SQLDAs to be used for DESCRIBE */
/* PROCEDURE and DESCRIBE CURSOR. Assume that at most */

Chapter 5. Coding SQL statements in C application programs 293

/* three cursors are returned and that each result set */
/* has no more than five columns. */
/***/
proc_da = (struct sqlda *)malloc(SQLDASIZE(3));
res_da = (struct sqlda *)malloc(SQLDASIZE(5));

/**/
/* Call the GETPRML stored procedure to retrieve the */
/* RUNOPTS values for the stored procedure. In this */
/* example, we request the PARMLIST definition for the */
/* stored procedure named DSN8EP2. */
/* */
/* The call should complete with SQLCODE +466 because */
/* GETPRML returns result sets. */
/**/
strcpy(procnm,"dsn8ep2 ");

/* Input parameter -- PROCEDURE to be found */
strcpy(schema," ");

/* Input parameter -- Schema name for proc */
parmind.procnm_ind=0;
parmind.schema_ind=0;
parmind.out_code_ind=0;

/* Indicate that none of the input parameters */
/* have null values */

parmind.parmlst_ind=-1;
/* The parmlst parameter is an output parm. */
/* Mark PARMLST parameter as null, so the DB2 */
/* requester does not have to send the entire */
/* PARMLST variable to the server. This */
/* helps reduce network I/O time, because */
/* PARMLST is fairly large. */

EXEC SQL
CALL GETPRML(:procnm INDICATOR :parmind.procnm_ind,

:schema INDICATOR :parmind.schema_ind,
:out_code INDICATOR :parmind.out_code_ind,
:parmlst INDICATOR :parmind.parmlst_ind);

if(SQLCODE!=+466) /* If SQL CALL failed, */
{

/* print the SQLCODE and any */
/* message tokens */

printf("SQL CALL failed due to SQLCODE =
printf("sqlca.sqlerrmc = ");
for(i=0;i<sqlca.sqlerrml;i++)

printf("i]);
printf("\n");

}

else /* If the CALL worked, */
if(out_code!=0) /* Did GETPRML hit an error? */

printf("GETPRML failed due to RC =
/**/
/* If everything worked, do the following: */
/* - Print out the parameters returned. */
/* - Retrieve the result sets returned. */
/**/
else
{

printf("RUNOPTS =
/* Print out the runopts list */

/**/
/* Use the statement DESCRIBE PROCEDURE to */
/* return information about the result sets in the */
/* SQLDA pointed to by proc_da: */
/* - SQLD contains the number of result sets that were */
/* returned by the stored procedure. */
/* - Each SQLVAR entry has the following information */
/* about a result set: */

294 Application Programming and SQL Guide

/* - SQLNAME contains the name of the cursor that */
/* the stored procedure uses to return the result */
/* set. */
/* - SQLIND contains an estimate of the number of */
/* rows in the result set. */
/* - SQLDATA contains the result locator value for */
/* the result set. */
/**/
EXEC SQL DESCRIBE PROCEDURE INTO :*proc_da;
/**/
/* Assume that you have examined SQLD and determined */
/* that there is one result set. Use the statement */
/* ASSOCIATE LOCATORS to establish a result set locator */
/* for the result set. */
/**/
EXEC SQL ASSOCIATE LOCATORS (:loc1) WITH PROCEDURE GETPRML;

/**/
/* Use the statement ALLOCATE CURSOR to associate a */
/* cursor for the result set. */
/**/
EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :loc1;
/**/
/* Use the statement DESCRIBE CURSOR to determine the */
/* columns in the result set. */
/**/
EXEC SQL DESCRIBE CURSOR C1 INTO :*res_da;

/**/
/* Call a routine (not shown here) to do the following: */
/* - Allocate a buffer for data and indicator values */
/* fetched from the result table. */
/* - Update the SQLDATA and SQLIND fields in each */
/* SQLVAR of *res_da with the addresses at which to */
/* to put the fetched data and values of indicator */
/* variables. */
/**/
alloc_outbuff(res_da);

/**/
/* Fetch the data from the result table. */
/**/
while(SQLCODE==0)

EXEC SQL FETCH C1 USING DESCRIPTOR :*res_da;
}

return;
}

Example C stored procedure with a GENERAL linkage
convention
You can call a stored procedure that uses the GENERAL linkage convention from a
C program.

This example stored procedure does the following:
v Searches the DB2 catalog table SYSROUTINES for a row that matches the input

parameters from the client program. The two input parameters contain values
for NAME and SCHEMA.

v Searches the DB2 catalog table SYSTABLES for all tables in which the value of
CREATOR matches the value of input parameter SCHEMA. The stored
procedure uses a cursor to return the table names.

The linkage convention used for this stored procedure is GENERAL.

Chapter 5. Coding SQL statements in C application programs 295

The output parameters from this stored procedure contain the SQLCODE from the
SELECT statement and the value of the RUNOPTS column from SYSROUTINES.

The CREATE PROCEDURE statement for this stored procedure might look like
this:
CREATE PROCEDURE GETPRML(PROCNM CHAR(18) IN, SCHEMA CHAR(8) IN,

OUTCODE INTEGER OUT, PARMLST VARCHAR(254) OUT)
LANGUAGE C
DETERMINISTIC
READS SQL DATA
EXTERNAL NAME "GETPRML"
COLLID GETPRML
ASUTIME NO LIMIT
PARAMETER STYLE GENERAL
STAY RESIDENT NO
RUN OPTIONS "MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)"
WLM ENVIRONMENT SAMPPROG
PROGRAM TYPE MAIN
SECURITY DB2
RESULT SETS 2
COMMIT ON RETURN NO;

The following example is a C stored procedure with linkage convention GENERAL
#pragma runopts(plist(os))
#include <stdlib.h>

EXEC SQL INCLUDE SQLCA;

/***/
/* Declare C variables for SQL operations on the parameters. */
/* These are local variables to the C program, which you must */
/* copy to and from the parameter list provided to the stored */
/* procedure. */
/***/
EXEC SQL BEGIN DECLARE SECTION;
char PROCNM[19];
char SCHEMA[9];
char PARMLST[255];
EXEC SQL END DECLARE SECTION;

/***/
/* Declare cursors for returning result sets to the caller. */
/***/

EXEC SQL DECLARE C1 CURSOR WITH RETURN FOR
SELECT NAME
FROM SYSIBM.SYSTABLES
WHERE CREATOR=:SCHEMA;

main(argc,argv)
int argc;
char *argv[];
{

/**/
/* Copy the input parameters into the area reserved in */
/* the program for SQL processing. */
/**/

strcpy(PROCNM, argv[1]);
strcpy(SCHEMA, argv[2]);

/**/
/* Issue the SQL SELECT against the SYSROUTINES */
/* DB2 catalog table. */
/**/

strcpy(PARMLST, ""); /* Clear PARMLST */
EXEC SQL

296 Application Programming and SQL Guide

SELECT RUNOPTS INTO :PARMLST
FROM SYSIBM.ROUTINES
WHERE NAME=:PROCNM AND

SCHEMA=:SCHEMA;

/**/
/* Copy SQLCODE to the output parameter list. */
/**/

*(int *) argv[3] = SQLCODE;

/**/
/* Copy the PARMLST value returned by the SELECT back to*/
/* the parameter list provided to this stored procedure.*/
/**/

strcpy(argv[4], PARMLST);

/**/
/* Open cursor C1 to cause DB2 to return a result set */
/* to the caller. */
/**/

EXEC SQL OPEN C1;
}

Example C stored procedure with a GENERAL WITH NULLS
linkage convention
You can call a stored procedure that uses the GENERAL WITH NULLS linkage
convention from a C program.

This example stored procedure does the following:
v Searches the DB2 catalog table SYSROUTINES for a row that matches the input

parameters from the client program. The two input parameters contain values
for NAME and SCHEMA.

v Searches the DB2 catalog table SYSTABLES for all tables in which the value of
CREATOR matches the value of input parameter SCHEMA. The stored
procedure uses a cursor to return the table names.

The linkage convention for this stored procedure is GENERAL WITH NULLS.

The output parameters from this stored procedure contain the SQLCODE from the
SELECT operation, and the value of the RUNOPTS column retrieved from the
SYSROUTINES table.

The CREATE PROCEDURE statement for this stored procedure might look like
this:
CREATE PROCEDURE GETPRML(PROCNM CHAR(18) IN, SCHEMA CHAR(8) IN,

OUTCODE INTEGER OUT, PARMLST VARCHAR(254) OUT)
LANGUAGE C
DETERMINISTIC
READS SQL DATA
EXTERNAL NAME "GETPRML"
COLLID GETPRML
ASUTIME NO LIMIT
PARAMETER STYLE GENERAL WITH NULLS
STAY RESIDENT NO
RUN OPTIONS "MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)"
WLM ENVIRONMENT SAMPPROG
PROGRAM TYPE MAIN
SECURITY DB2
RESULT SETS 2
COMMIT ON RETURN NO;

Chapter 5. Coding SQL statements in C application programs 297

The following example is a C stored procedure with linkage convention GENERAL
WITH NULLS.
#pragma runopts(plist(os))
#include <stdlib.h>

EXEC SQL INCLUDE SQLCA;

/***/
/* Declare C variables used for SQL operations on the */
/* parameters. These are local variables to the C program, */
/* which you must copy to and from the parameter list provided */
/* to the stored procedure. */
/***/
EXEC SQL BEGIN DECLARE SECTION;
char PROCNM[19];
char SCHEMA[9];
char PARMLST[255];
struct INDICATORS {

short int PROCNM_IND;
short int SCHEMA_IND;
short int OUT_CODE_IND;
short int PARMLST_IND;
} PARM_IND;
EXEC SQL END DECLARE SECTION;

/***/
/* Declare cursors for returning result sets to the caller. */
/***/

EXEC SQL DECLARE C1 CURSOR WITH RETURN FOR
SELECT NAME
FROM SYSIBM.SYSTABLES
WHERE CREATOR=:SCHEMA;

main(argc,argv)
int argc;
char *argv[];
{

/**/
/* Copy the input parameters into the area reserved in */
/* the local program for SQL processing. */
/**/

strcpy(PROCNM, argv[1]);
strcpy(SCHEMA, argv[2]);

/**/
/* Copy null indicator values for the parameter list. */
/**/

memcpy(&PARM_IND,(struct INDICATORS *) argv[5],
sizeof(PARM_IND));

/**/
/* If any input parameter is NULL, return an error */
/* return code and assign a NULL value to PARMLST. */
/**/

if (PARM_IND.PROCNM_IND<0 ||
PARM_IND.SCHEMA_IND<0 || {

*(int *) argv[3] = 9999; /* set output return code */
PARM_IND.OUT_CODE_IND = 0; /* value is not NULL */
PARM_IND.PARMLST_IND = -1; /* PARMLST is NULL */
}

else {
/**/
/* If the input parameters are not NULL, issue the SQL */
/* SELECT against the SYSIBM.SYSROUTINES catalog */
/* table. */

298 Application Programming and SQL Guide

/**/
strcpy(PARMLST, ""); /* Clear PARMLST */
EXEC SQL

SELECT RUNOPTS INTO :PARMLST
FROM SYSIBM.SYSROUTINES
WHERE NAME=:PROCNM AND

SCHEMA=:SCHEMA;
/**/
/* Copy SQLCODE to the output parameter list. */
/**/
*(int *) argv[3] = SQLCODE;
PARM_IND.OUT_CODE_IND = 0; /* OUT_CODE is not NULL */

}

/**/
/* Copy the RUNOPTS value back to the output parameter */
/* area. */
/**/

strcpy(argv[4], PARMLST);

/**/
/* Copy the null indicators back to the output parameter*/
/* area. */
/**/

memcpy((struct INDICATORS *) argv[5],&PARM_IND,
sizeof(PARM_IND));

/**/
/* Open cursor C1 to cause DB2 to return a result set */
/* to the caller. */
/**/

EXEC SQL OPEN C1;
}

Chapter 5. Coding SQL statements in C application programs 299

300 Application Programming and SQL Guide

Chapter 6. Coding SQL statements in COBOL application
programs

When you code SQL statements in COBOL application programs, you should
follow certain guidelines.

Defining the SQL communications area, SQLSTATE, and SQLCODE in
COBOL

COBOL programs that contain SQL statements can include an SQL
communications area (SQLCA) to check whether an SQL statement executed
successfully. Alternatively, these programs can declare individual SQLCODE and
SQLSTATE host variables.

About this task

If you specify the SQL processing option STDSQL(YES), do not define an SQLCA.
If you do, DB2 ignores your SQLCA, and your SQLCA definition causes
compile-time errors. If you specify the SQL processing option STDSQL(NO),
include an SQLCA explicitly.

For COBOL programs, when you specify STDSQL(YES), you must declare an
SQLCODE variable. DB2 declares an SQLCA area for you in the
WORKING-STORAGE SECTION. DB2 controls the structure and location of the
SQLCA.

If your application contains SQL statements and does not include an SQL
communications area (SQLCA), you must declare individual SQLCODE and
SQLSTATE host variables. Your program can use these variables to check whether
an SQL statement executed successfully.

Procedure

To define the SQL communications area, SQLSTATE, and SQLCODE:

Choose one of the following actions:

© Copyright IBM Corp. 1983, 2013 301

Option Description

To define the SQL communications area: 1. Code the SQLCA directly in the program
or use the following SQL INCLUDE
statement to request a standard SQLCA
declaration:

EXEC SQL INCLUDE SQLCA

You can specify INCLUDE SQLCA or a
declaration for SQLCODE wherever you
can specify a 77 level or a record
description entry in the
WORKING-STORAGE SECTION.

DB2 sets the SQLCODE and SQLSTATE
values in the SQLCA after each SQL
statement executes. Your application should
check these values to determine whether the
last SQL statement was successful.

To declare SQLCODE and SQLSTATE host
variables:

1. Declare the SQLCODE variable within a
BEGIN DECLARE SECTION statement
and an END DECLARE SECTION
statement in your program declarations
as PIC S9(9) BINARY, PIC S9(9) COMP-4,
PIC S9(9) COMP-5, or PICTURE S9(9)
COMP.

When you use the DB2 precompiler, you
can declare a stand-alone SQLCODE
variable in either the
WORKING-STORAGE SECTION or
LINKAGE SECTION. When you use the
DB2 coprocessor, you can declare a
stand-alone SQLCODE variable in the
WORKING-STORAGE SECTION,
LINKAGE SECTION or
LOCAL-STORAGE SECTION.

2. Declare the SQLSTATE variable within a
BEGIN DECLARE SECTION statement
and an END DECLARE SECTION
statement in your program declarations
as PICTURE X(5).

Restriction: Do not declare an SQLSTATE
variable as an element of a structure.
Requirement: After you declare the
SQLCODE and SQLSTATE variables, ensure
that all SQL statements in the program are
within the scope of the declaration of these
variables.

302 Application Programming and SQL Guide

Related tasks:
“Checking the execution of SQL statements” on page 204
“Checking the execution of SQL statements by using the SQLCA” on page 205
“Checking the execution of SQL statements by using SQLCODE and SQLSTATE”
on page 209
“Defining the items that your program can use to check whether an SQL statement
executed successfully” on page 137

Defining SQL descriptor areas in COBOL
If your program includes certain SQL statements, you must define at least one SQL
descriptor area (SQLDA). Depending on the context in which it is used, the
SQLDA stores information about prepared SQL statements or host variables. This
information can then be read by either the application program or DB2.

Procedure

To define SQL descriptor areas:

Perform one of the following actions:
v Code the SQLDA declarations directly in your program. When you use the DB2

precompiler, you must place SQLDA declarations in the WORKING-STORAGE
SECTION or LINKAGE SECTION of your program, wherever you can specify a
record description entry in that section. When you use the DB2 coprocessor, you
must place SQLDA declarations in the WORKING-STORAGE SECTION,
LINKAGE SECTION or LOCAL-STORAGE SECTION of your program,
wherever you can specify a record description entry in that section.

v Call a subroutine that is written in C, PL/I, or assembler language and that uses
the INCLUDE SQLDA statement to define the SQLDA. The subroutine can also
include SQL statements for any dynamic SQL functions that you need.

Restrictions:

v You must place SQLDA declarations before the first SQL statement that
references the data descriptor, unless you use the TWOPASS SQL processing
option.

v You cannot use the SQL INCLUDE statement for the SQLDA, because it is not
supported in COBOL.

Related tasks:
“Defining SQL descriptor areas” on page 137

Declaring host variables and indicator variables in COBOL
You can use host variables, host variable arrays, and host structures in SQL
statements in your program to pass data between DB2 and your application.

Procedure

To declare host variables, host variable arrays, and host structures:
1. Declare the variables according to the following rules and guidelines:

v You must explicitly declare all host variables and host variable arrays that
are used in SQL statements in the WORKING-STORAGE SECTION or
LINKAGE SECTION of your program's DATA DIVISION.

Chapter 6. Coding SQL statements in COBOL application programs 303

v You must explicitly declare each host variable and host variable array before
using them in an SQL statement.

v You can specify OCCURS when defining an indicator structure, a host
variable array, or an indicator variable array. You cannot specify OCCURS for
any other type of host variable.

v You cannot implicitly declare any host variables through default typing or by
using the IMPLICIT statement.

v If you specify the ONEPASS SQL processing option, you must explicitly
declare each host variable and each host variable array before using them in
an SQL statement. If you specify the TWOPASS precompiler option, you
must declare each host variable before using it in the DECLARE CURSOR
statement.

v If you specify the STDSQL(YES) SQL processing option, you must precede
the host language statements that define the host variables and host variable
arrays with the BEGIN DECLARE SECTION statement and follow the host
language statements with the END DECLARE SECTION statement.
Otherwise, these statements are optional.

v Ensure that any SQL statement that uses a host variable or host variable
array is within the scope of the statement that declares that variable or array.

v If you are using the DB2 precompiler, ensure that the names of host variables
and host variable arrays are unique within the program, even if the variables
and variable arrays are in different blocks, classes, procedures, functions, or
subroutines. You can qualify the names with a structure name to make them
unique.

2. Optional: Define any associated indicator variables, arrays, and structures.
Related tasks:
“Declaring host variables and indicator variables” on page 138

Host variables in COBOL
In COBOL programs, you can specify numeric, character, graphic, binary, LOB,
XML, and ROWID host variables. You can also specify result set and table locators
and LOB and XML file reference variables.

Restrictions:

v Only some of the valid COBOL declarations are valid host variable declarations.
If the declaration for a variable is not valid, any SQL statement that references
the variable might result in the message UNDECLARED HOST VARIABLE.

v You can not use locators as column types.
The following locator data types are COBOL data types and SQL data types:
– Result set locator
– Table locator
– LOB locators
– LOB file reference variables

v One or more REDEFINES entries can follow any level 77 data description entry.
However, you cannot use the names in these entries in SQL statements. Entries
with the name FILLER are ignored.

Recommendations:

v Be careful of overflow. For example, suppose that you retrieve an INTEGER
column value into a PICTURE S9(4) host variable and the column value is larger

304 Application Programming and SQL Guide

than 32767 or smaller than -32768. You get an overflow warning or an error,
depending on whether you specify an indicator variable.

v Be careful of truncation. For example, if you retrieve an 80-character CHAR
column value into a PICTURE X(70) host variable, the rightmost 10 characters of
the retrieved string are truncated. Retrieving a double precision floating-point or
decimal column value into a PIC S9(8) COMP host variable removes any
fractional part of the value. Similarly, retrieving a column value with DECIMAL
data type into a COBOL decimal variable with a lower precision might truncate
the value.

v If your varying-length string host variables receive values whose length is
greater than 9999 bytes, compile the applications in which you use those host
variables with the option TRUNC(BIN). TRUNC(BIN) lets the length field for the
string receive a value of up to 32767 bytes.

Numeric host variables

You can specify the following forms of numeric host variables:
v Floating-point numbers
v Integers and small integers
v Decimal numbers

The following diagram shows the syntax for declaring floating-point or real host
variables.

�� 01
77

(1)
level-1

variable-name
IS

USAGE

(2)
COMPUTATIONAL-1
COMP-1

(3)
COMPUTATIONAL-2
COMP-2

�

�
IS

VALUE numeric-constant

. ��

Notes:

1 level-1 indicates a COBOL level between 2 and 48.

2 COMPUTATIONAL-1 and COMP-1 are equivalent.

3 COMPUTATIONAL-2 and COMP-2 are equivalent.

The following diagram shows the syntax for declaring integer and small integer
host variables.

Chapter 6. Coding SQL statements in COBOL application programs 305

�� 01
77

(1)
level-1

variable-name PICTURE
PIC

IS
S9(4)
S9999
S9(9)
S999999999
S9(18)

IS
USAGE

�

�
(2)

BINARY
COMPUTATIONAL-4
COMP-4

(3)
COMPUTATIONAL-5
COMP-5
COMPUTATIONAL
COMP

IS
VALUE numeric-constant

(4)
. ��

Notes:

1 level-1 indicates a COBOL level between 2 and 48.

2 The COBOL binary integer data types BINARY, COMPUTATIONAL, COMP,
COMPUTATIONAL-4, and COMP-4 are equivalent.

3 COMPUTATIONAL-5 (and COMP-5) are equivalent to the other COBOL binary integer data
types if you compile the other data types with TRUNC(BIN).

4 Any specification for scale is ignored.

The following diagram shows the syntax for declaring decimal host variables.

306 Application Programming and SQL Guide

�� 01
77

(1)
level-1

variable-name PICTURE
PIC

IS (2)
picture-string

IS
USAGE

�

�
(3)

PACKED-DECIMAL
COMPUTATIONAL-3
COMP-3

IS CHARACTER
DISPLAY SIGN LEADING SEPARATE
NATIONAL

�

�
IS

VALUE numeric-constant

. ��

Notes:

1 level-1 indicates a COBOL level between 2 and 48.

2 The picture-string that is associated with SIGN LEADING SEPARATE must have the form
S9(i)V9(d) (or S9...9V9...9, with i and d instances of 9 or S9...9V with i instances of 9).

3 PACKED-DECIMAL, COMPUTATIONAL-3, and COMP-3 are equivalent. The picture-string that is
that is associated with these types must have the form S9(i)V9(d) (or S9...9V9...9, with i and d
instances of 9) or S9(i)V.

In COBOL, you declare the SMALLINT and INTEGER data types as a number of
decimal digits. DB2 uses the full size of the integers (in a way that is similar to
processing with the TRUNC(BIN) compiler option) and can place larger values in
the host variable than would be allowed in the specified number of digits in the
COBOL declaration. If you compile with TRUNC(OPT) or TRUNC(STD), ensure
that the size of numbers in your application is within the declared number of
digits.

For small integers that can exceed 9999, use S9(4) COMP-5 or compile with
TRUNC(BIN). For large integers that can exceed 999 999 999, use S9(10) COMP-3
to obtain the decimal data type. If you use COBOL for integers that exceed the
COBOL PICTURE, specify the column as decimal to ensure that the data types
match and perform well.

If you are using a COBOL compiler that does not support decimal numbers of
more than 18 digits, use one of the following data types to hold values of greater
than 18 digits:
v A decimal variable with a precision less than or equal to 18, if the actual data

values fit. If you retrieve a decimal value into a decimal variable with a scale
that is less than the source column in the database, the fractional part of the
value might be truncated.

v An integer or a floating-point variable, which converts the value. If you use an
integer variable, you lose the fractional part of the number. If the decimal
number might exceed the maximum value for an integer or if you want to
preserve a fractional value, use a floating-point variable. Floating-point numbers

Chapter 6. Coding SQL statements in COBOL application programs 307

are approximations of real numbers. Therefore, when you assign a decimal
number to a floating-point variable, the result might be different from the
original number.

v A character-string host variable. Use the CHAR function to retrieve a decimal
value into it.

Restriction: The SQL data type DECFLOAT has no equivalent in COBOL.

Character host variables

You can specify the following forms of character host variables:
v Fixed-length strings
v Varying-length strings
v CLOBs

The following diagrams show the syntax for forms other than CLOBs.

The following diagram shows the syntax for declaring fixed-length character host
variables.

�� 01
77

(1)
level-1

variable-name PICTURE
PIC

IS (2)
picture-string �

�
DISPLAY

IS
USAGE

IS
VALUE character-constant

. ��

Notes:

1 level-1 indicates a COBOL level between 2 and 48.

2 The picture-string that is associated with these forms must be X(m) (or XX...X, with m instances of
X), where m is up to COBOL's limitation. However, the maximum length of the CHAR data type
(fixed-length character string) in DB2 is 255 bytes.

The following diagrams show the syntax for declaring varying-length character
host variables.

�� 01 variable-name .
(1)

level-1

��

Notes:

1 level-1 indicates a COBOL level between 2 and 48.

308 Application Programming and SQL Guide

��
(1) (2)

49 var-1 PICTURE
PIC

IS (3)
S9(4)
S9999 IS

USAGE

�

� BINARY
COMPUTATIONAL-4
COMP-4
COMPUTATIONAL-5
COMP-5
COMPUTATIONAL
COMP

IS
VALUE numeric-constant

. ��

Notes:

1 You cannot use an intervening REDEFINE at level 49.

2 You cannot directly reference var-1 as a host variable.

3 DB2 uses the full length of the S9(4) BINARY variable even though COBOL with TRUNC(STD)
recognizes values up to only 9999. This behavior can cause data truncation errors when COBOL
statements execute and might effectively limit the maximum length of variable-length character
strings to 9999. Consider using the TRUNC(BIN) compiler option or USAGE COMP-5 to avoid
data truncation.

��
(1) (2)

49 var-2 PICTURE
PIC

IS (3)
picture-string

DISPLAY
IS

USAGE

�

�
IS

VALUE character-constant

. ��

Notes:

1 You cannot use an intervening REDEFINE at level 49.

2 You cannot directly reference var-2 as a host variable.

3 For fixed-length strings, the picture-string must be X(m) (or XX, with m instances of X), where mis
up to COBOL's limitation. However, the maximum length of the VARCHAR data type in DB2
varies depending on the data page size.

Graphic character host variables

You can specify the following forms of graphic host variables:
v Fixed-length strings
v Varying-length strings
v DBCLOBs

The following diagrams show the syntax for forms other than DBCLOBs.

Chapter 6. Coding SQL statements in COBOL application programs 309

The following diagram shows the syntax for declaring fixed-length graphic host
variables.

�� 01
77

(1)
level-1

variable-name PICTURE
PIC

IS (2)
picture-string �

� DISPLAY-1
IS (3) IS

USAGE NATIONAL VALUE graphic-constant

. ��

Notes:

1 level-1 indicates a COBOL level between 2 and 48.

2 For fixed-length strings, the picture-string is G(m) or N(m) (or, m instances of GG...G or NN...N),
where m is up to COBOL's limitation. However, the maximum length of the GRAPHIC data type
(fixed-length graphic string) in DB2 is 127 double-bytes.

3 Use USAGE NATIONAL only for Unicode UTF-16 data. In the picture-string for USAGE
NATIONAL, you must use N in place of G. USAGE NATIONAL is supported only by the DB2
coprocessor.

The following diagrams show the syntax for declaring varying-length graphic host
variables.

�� 01 variable-name .
(1)

level-1

��

Notes:

1 level-1 indicates a COBOL level between 2 and 48.

310 Application Programming and SQL Guide

��
(1)

49 var-1 PICTURE
PIC

IS (2)
S9(4)
S9999 IS

USAGE

BINARY
COMPUTATIONAL-4
COMP-4
COMPUTATIONAL-5
COMP-5
COMPUTATIONAL
COMP

�

�
IS

VALUE numeric-constant

. ��

Notes:

1 You cannot directly reference var-1 as a host variable.

2 DB2 uses the full length of the S9(4) BINARY variable even though COBOL with TRUNC(STD)
recognizes values up to only 9999. This behavior can cause data truncation errors when COBOL
statements execute and might effectively limit the maximum length of variable-length character
strings to 9999. Consider using the TRUNC(BIN) compiler option or USAGE COMP-5 to avoid
data truncation.

��
(1)

49 var-2 PICTURE
PIC

IS (2)
picture-string

IS
USAGE

DISPLAY-1
(3)

NATIONAL

�

�
IS

VALUE graphic-constant

. ��

Notes:

1 You cannot directly reference var-2 as a host variable.

2 For fixed-length strings, the picture-string is G(m) or N(m) (or, m instances of GG...G or NN...N),
where m is up to COBOL's limitation. However, the maximum length of the VARGRAPHIC data
type in DB2 varies depending on the data page size.

3 Use USAGE NATIONAL only for Unicode UTF-16 data. In the picture-string for USAGE
NATIONAL, you must use N in place of G. USAGE NATIONAL is supported only by the DB2
coprocessor.

Binary host variables

You can specify the following forms of binary host variables:
v Fixed-length strings
v Varying-length strings
v BLOBs

Chapter 6. Coding SQL statements in COBOL application programs 311

The following diagram shows the syntax for declaring BINARY and VARBINARY
host variables.

�� 01 variable-name

IS
USAGE

SQL TYPE IS BINARY
VARBINARY
BINARY VARYING

(1)
(length) . ��

Notes:

1 For BINARY host variables, the length must be in the range from 1 to 255. For VARBINARY host
variables, the length must be in the range from 1 to 32 704.

COBOL does not have variables that correspond to the SQL binary types BINARY
and VARBINARY. To create host variables that can be used with these data types,
use the SQL TYPE IS clause. The SQL precompiler replaces this declaration with a
COBOL language structure in the output source member.

When you reference a BINARY or VARBINARY host variable in an SQL statement,
you must use the variable that you specify in the SQL TYPE declaration. When
you reference the host variable in a host language statement, you must use the
variable that DB2 generates.

Examples of binary variable declarations: The following table shows examples of
variables that DB2 generates when you declare binary host variables.

Table 61. Examples of BINARY and VARBINARY variable declarations for COBOL

Variable declaration that you include in your COBOL
program

Corresponding variable that DB2 generates in the
output source member

01 BIN-VAR USAGE IS SQL TYPE IS BINARY(10). 01 BIN-VAR PIC X(10).

01 VBIN-VAR USAGE IS SQL TYPE IS VARBINARY(10). 01 VBIN-VAR.
49 VBIN-VAR-LEN PIC S9(4) USAGE BINARY.
49 VBIN-VAR-TEXT PIC X(10).

Result set locators

The following diagram shows the syntax for declaring result set locators.

�� 01 variable-name SQL TYPE IS RESULT-SET-LOCATOR VARYING .
IS

USAGE

��

Table Locators

The following diagram shows the syntax for declaring table locators.

312 Application Programming and SQL Guide

�� 01
(1)

level-1

variable-name
IS

USAGE

�

� SQL TYPE IS TABLE LIKE table-name AS LOCATOR . ��

Notes:

1 level-1 indicates a COBOL level between 2 and 48.

LOB variables and file reference variables

The following diagram shows the syntax for declaring BLOB, CLOB, and DBCLOB
variables and file reference variables.

�� 01 variable-name
level-1 IS

USAGE

SQL TYPE IS �

� BINARY LARGE OBJECT (length)
BLOB K
CHARACTER LARGE OBJECT M
CHAR LARGE OBJECT G
CLOB

DBCLOB
BLOB-LOCATOR
CLOB-LOCATOR
DBCLOB-LOCATOR
BLOB-FILE
CLOB-FILE
DBCLOB-FILE

. ��

XML data host and file reference variables

The following diagram shows the syntax for declaring BLOB, CLOB, and DBCLOB
host variables and file reference variables for XML data types.

Chapter 6. Coding SQL statements in COBOL application programs 313

�� 01 variable-name
(1)

level-1
IS

USAGE

SQL TYPE IS XML AS �

� BINARY LARGE OBJECT (length)
BLOB K
CHARACTER LARGE OBJECT M
CHAR LARGE OBJECT G
CLOB

DBCLOB
BLOB-FILE
CLOB-FILE
DBCLOB-FILE

. ��

Notes:

1 level-1 indicates a COBOL level between 2 and 48.

ROWID host variables

The following diagram shows the syntax for declaring ROWID host variables.

�� 01
(1)

level-1

variable-name
IS

USAGE

SQL TYPE IS ROWID . ��

Notes:

1 level-1 indicates a COBOL level between 2 and 48.

Related concepts:
“Host variables” on page 138
“Large objects (LOBs)” on page 443
Related tasks:
“Embedding SQL statements in your application” on page 147
Related reference:

Limits in DB2 for z/OS (DB2 SQL)

Host variable arrays in COBOL
In COBOL programs, you can specify numeric, character, graphic, LOB, XML, and
ROWID host variable arrays. You can also specify LOB locators and LOB and XML
file reference variables.

Restriction: Only some of the valid COBOL declarations are valid host variable
array declarations. If the declaration for a variable array is not valid, any SQL
statement that references the variable array might result in the message
UNDECLARED HOST VARIABLE ARRAY.

314 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_limits.htm#db2z_limits

Numeric host variable arrays

You can specify the following forms of numeric host variable arrays:
v Floating-point numbers
v Integers and small integers
v Decimal numbers

The following diagram shows the syntax for declaring floating-point host variable
arrays.

��
(1)

level-1 variable-name
IS

USAGE

COMPUTATIONAL-1
(2)

COMP-1
COMPUTATIONAL-2

(3)
COMP-2

�

�
(4)

OCCURS dimension
TIMES IS

VALUE numeric-constant

. ��

Notes:

1 level-1 indicates a COBOL level between 2 and 48.

2 COMPUTATIONAL-1 and COMP-1 are equivalent.

3 COMPUTATIONAL-2 and COMP-2 are equivalent.

4 dimension must be an integer constant between 1 and 32767.

The following diagram shows the syntax for declaring integer and small integer
host variable arrays.

Chapter 6. Coding SQL statements in COBOL application programs 315

��
(1)

level-1 variable-name PICTURE
PIC

IS
S9(4)
S9999
S9(9)
S999999999

IS
USAGE

�

�
(2)

BINARY
COMPUTATIONAL-4
COMP-4
COMPUTATIONAL-5

(3)
COMP-5
COMPUTATIONAL
COMP

(4)
OCCURS dimension

TIMES IS
VALUE numeric-constant

�

�
(5)

. ��

Notes:

1 level-1 indicates a COBOL level between 2 and 48.

2 The COBOL binary integer data types BINARY, COMPUTATIONAL, COMP,
COMPUTATIONAL-4, and COMP-4 are equivalent.

3 COMPUTATIONAL-5 (and COMP-5) are equivalent to the other COBOL binary integer data
types if you compile the other data types with TRUNC(BIN).

4 dimension must be an integer constant between 1 and 32767.

5 Any specification for scale is ignored.

The following diagram shows the syntax for declaring decimal host variable
arrays.

316 Application Programming and SQL Guide

��
(1)

level-1 variable-name PICTURE
PIC

IS
picture-string

IS
USAGE

�

�
(2)

PACKED-DECIMAL
COMPUTATIONAL-3
COMP-3

IS (3) CHARACTER
DISPLAY SIGN LEADING SEPARATE
NATIONAL

�

�
(4)

OCCURS dimension
TIMES IS

VALUE numeric-constant

. ��

Notes:

1 level-1 indicates a COBOL level between 2 and 48.

2 PACKED-DECIMAL, COMPUTATIONAL-3, and COMP-3 are equivalent. The picture-string that is
associated with these types must have the form S9(i)V9(d) (or S9...9V9...9, with i and d instances
of 9) or S9(i)V.

3 The picture-string that is associated with SIGN LEADING SEPARATE must have the form
S9(i)V9(d) (or S9...9V9...9, with i and d instances of 9 or S9...9V with i instances of 9).

4 dimension must be an integer constant between 1 and 32767.

Character host variable arrays

You can specify the following forms of character host variable arrays:
v Fixed-length character strings
v Varying-length character strings
v CLOBs

The following diagrams show the syntax for forms other than CLOBs.

The following diagram shows the syntax for declaring fixed-length character string
arrays.

Chapter 6. Coding SQL statements in COBOL application programs 317

��
(1)

level-1 variable-name PICTURE
PIC

IS (2)
picture-string �

�
DISPLAY

IS
USAGE

(3)
OCCURS dimension

TIMES
�

�
IS

VALUE character-constant

. ��

Notes:

1 level-1 indicates a COBOL level between 2 and 48.

2 The picture-string must be in the form X(m) (or XX...X, with m instances of X), where 1 <= m <=
32767 for fixed-length strings. However, the maximum length of the CHAR data type
(fixed-length character string) in DB2 is 255 bytes.

3 dimension must be an integer constant between 1 and 32767.

The following diagrams show the syntax for declaring varying-length character
string arrays.

��
(1) (2)

level-1 variable-name OCCURS dimension .
TIMES

��

Notes:

1 level-1 indicates a COBOL level between 2 and 48.

2 dimension must be an integer constant between 1 and 32767.

318 Application Programming and SQL Guide

��
(1)

49 var-1 PICTURE
PIC

IS (2)
S9(4)
S9999 IS

USAGE

BINARY
COMPUTATIONAL-4
COMP-4
COMPUTATIONAL-5
COMP-5
COMPUTATIONAL
COMP

�

� SYNCHRONIZED
SYNC IS

VALUE numeric-constant

. ��

Notes:

1 You cannot directly reference var-1 as a host variable array.

2 DB2 uses the full length of the S9(4) BINARY variable even though COBOL with TRUNC(STD)
recognizes values up to only 9999. This behavior can cause data truncation errors when COBOL
statements execute and might effectively limit the maximum length of variable-length character
strings to 9999. Consider using the TRUNC(BIN) compiler option or USAGE COMP-5 to avoid
data truncation.

��
(1)

49 var-2 PICTURE
PIC

IS (2)
picture-string

DISPLAY
IS

USAGE

�

�
IS

VALUE character-constant

(3)
. ��

Notes:

1 You cannot directly reference var-2 as a host variable array.

2 The picture-string must be in the form X(m) (or XX...X, with m instances of X), where 1 <= m <=
32767 for fixed-length strings; for other strings, m cannot be greater than the maximum size of a
varying-length character string.

3 You cannot use an intervening REDEFINE at level 49.

Example: The following example shows declarations of a fixed-length character
array and a varying-length character array.
01 OUTPUT-VARS.

05 NAME OCCURS 10 TIMES.
49 NAME-LEN PIC S9(4) COMP-4 SYNC.
49 NAME-DATA PIC X(40).

05 SERIAL-NUMBER PIC S9(9) COMP-4 OCCURS 10 TIMES.

Chapter 6. Coding SQL statements in COBOL application programs 319

Graphic character host variable arrays

You can specify the following forms of graphic host variable arrays:
v Fixed-length strings
v Varying-length strings
v DBCLOBs

The following diagrams show the syntax for forms other than DBCLOBs.

The following diagram shows the syntax for declaring fixed-length graphic string
arrays.

��
(1)

level-1 variable-name PICTURE
PIC

IS (2)
picture-string �

�
IS

USAGE DISPLAY-1
(3) (4)

NATIONAL

(5)
OCCURS dimension

TIMES
�

� .
IS

VALUE graphic-constant

��

Notes:

1 level-1 indicates a COBOL level between 2 and 48.

2 For fixed-length strings, the format for picture-string is G(m) or N(m) (or, m instances of GG...G or
NN...N), where 1 <= m <= 127; for other strings, m cannot be greater than the maximum size of a
varying-length graphic string.

3 Use USAGE NATIONAL only for Unicode UTF-16 data. In the picture-string for USAGE
NATIONAL, you must use N in place of G.

4 You can use USAGE NATIONAL only if you are using the DB2 coprocessor.

5 dimension must be an integer constant between 1 and 32767.

The following diagrams show the syntax for declaring varying-length graphic
string arrays.

��
(1) (2)

level-1 variable-name OCCURS dimension .
TIMES

��

Notes:

1 level-1 indicates a COBOL level between 2 and 48.

2 dimension must be an integer constant between 1 and 32767.

320 Application Programming and SQL Guide

��
(1)

49 var-1 PICTURE
PIC

IS (2)
S9(4)
S9999 IS

USAGE

BINARY
COMPUTATIONAL-4
COMP-4
COMPUTATIONAL-5
COMP-5
COMPUTATIONAL
COMP

�

� SYNCHRONIZED
SYNC IS

VALUE numeric-constant

. ��

Notes:

1 You cannot directly reference var-1 as a host variable array.

2 DB2 uses the full length of the S9(4) BINARY variable even though COBOL with TRUNC(STD)
recognizes values up to only 9999. This behavior can cause data truncation errors when COBOL
statements execute and might effectively limit the maximum length of variable-length character
strings to 9999. Consider using the TRUNC(BIN) compiler option or USAGE COMP-5 to avoid
data truncation.

��
(1)

49 var-2 PICTURE
PIC

IS (2) IS
picture-string USAGE DISPLAY-1

(3) (4)
NATIONAL

�

�
IS

VALUE graphic-constant

. ��

Notes:

1 You cannot directly reference var-2 as a host variable array.

2 For fixed-length strings, the format for picture-string is G(m) or N(m) (or, m instances of GG...G or
NN...N), where 1 <= m <= 127; for other strings, m cannot be greater than the maximum size of a
varying-length graphic string.

3 Use USAGE NATIONAL only for Unicode UTF-16 data. In the picture-string for USAGE
NATIONAL, you must use N in place of G.

4 You can use USAGE NATIONAL only if you are using the DB2 coprocessor.

Binary host variable arrays

The following diagram shows the syntax for declaring binary host variable arrays.

Chapter 6. Coding SQL statements in COBOL application programs 321

��
(1)

level-1 variable-name SQL TYPE IS
(2)

BINARY (length)
BINARY VARYING
VARBINARY

�

�
(3)

OCCURS dimension .
TIMES

��

Notes:

1 level-1 indicates a COBOL level between 2 and 48.

2 For BINARY host variables, the length must be in the range 1 to 255. For VARBINARY host
variables, the length must be in the range 1 to 32704.

3 dimension must be an integer constant between 1 and 32767.

LOB, locator, and file reference variable arrays

The following diagram shows the syntax for declaring BLOB, CLOB, and DBCLOB
host variable, locator, and file reference arrays.

��
(1)

level-1 variable-name
IS

USAGE

SQL TYPE IS �

� BINARY LARGE OBJECT (length)
BLOB K
CHARACTER LARGE OBJECT M
CHAR LARGE OBJECT G
CLOB

DBCLOB
BLOB-LOCATOR
CLOB-LOCATOR
DBCLOB-LOCATOR
BLOB-FILE
CLOB-FILE
DBCLOB-FILE

(2)
OCCURS dimension .

TIMES
��

Notes:

1 level-1 indicates a COBOL level between 2 and 48.

2 dimension must be an integer constant between 1 and 32767.

XML host and file reference variable arrays

The following diagram shows the syntax for declaring BLOB, CLOB, and DBCLOB
host variable and file reference arrays for XML data types.

322 Application Programming and SQL Guide

��
(1)

level-1 variable-name
IS

USAGE

SQL TYPE IS XML AS �

� BINARY LARGE OBJECT (length)
BLOB K
CHARACTER LARGE OBJECT M
CHAR LARGE OBJECT G
CLOB

DBCLOB
BLOB-FILE
CLOB-FILE
DBCLOB-FILE

(2)
OCCURS dimension .

TIMES
��

Notes:

1 level-1 indicates a COBOL level between 2 and 48.

2 dimension must be an integer constant between 1 and 32767.

ROWID variable arrays

The following diagram shows the syntax for declaring ROWID variable arrays.

��
(1)

level-1 variable-name
IS

USAGE

SQL TYPE IS ROWID
(2)

OCCURS dimension �

� .
TIMES

��

Notes:

1 level-1 indicates a COBOL level between 2 and 48.

2 dimension must be an integer constant between 1 and 32767.

Related concepts:
“Host variable arrays in an SQL statement” on page 156
“Host variable arrays” on page 139
“Large objects (LOBs)” on page 443
Related tasks:
“Inserting multiple rows of data from host variable arrays” on page 157
“Retrieving multiple rows of data into host variable arrays” on page 157

Host structures in COBOL
A COBOL host structure is a named set of host variables that are defined in your
program's WORKING-STORAGE SECTION or LINKAGE SECTION.

Chapter 6. Coding SQL statements in COBOL application programs 323

Requirements: Host structure declarations in COBOL must satisfy the following
requirements:
v COBOL host structures can have a maximum of two levels, even though the

host structure might occur within a structure with multiple levels. However, you
can declare a varying-length character string, which must be level 49.

v A host structure name can be a group name whose subordinate levels name
elementary data items.

v If you are using the DB2 precompiler, do not declare host variables or host
structures on any subordinate levels after one of the following items:
– A COBOL item that begins in area A
– Any SQL statement (except SQL INCLUDE)
– Any SQL statement within an included member

When the DB2 precompiler encounters one of the preceding items in a host
structure, it considers the structure to be complete.

When you write an SQL statement that contains a qualified host variable name
(perhaps to identify a field within a structure), use the name of the structure
followed by a period and the name of the field. For example, for structure B that
contains field C1, specify B.C1 rather than C1 OF B or C1 IN B.

Host structures

The following diagram shows the syntax for declaring host structures.

��
(1)

level-1 variable-name . �

� �
(2) (3) (4)

level-2 var-1 numeric-usage .
IS

PICTURE integer-decimal-usage .
PIC picture-string

char-inner-variable .
varchar-inner-variables
vargraphic-inner-variables

SQL TYPE IS ROWID .
IS

USAGE
SQL TYPE IS TABLE LIKE table-name AS LOCATOR .

IS
USAGE

LOB data type .
IS

USAGE

��

Notes:

1 level-1 indicates a COBOL level between 1 and 47.

2 level-2 indicates a COBOL level between 2 and 48.

3 For elements within a structure, use any level 02 through 48 (rather than 01 or 77), up to a
maximum of two levels.

4 Using a FILLER or optional FILLER item within a host structure declaration can invalidate the
whole structure.

324 Application Programming and SQL Guide

Numeric usage items

The following diagram shows the syntax for numeric-usage items that are used
within declarations of host structures.

��
IS

USAGE

COMPUTATIONAL-1
COMP-1
COMPUTATIONAL-2
COMP-2

IS
VALUE constant

��

Integer and decimal usage items

The following diagram shows the syntax for integer and decimal usage items that
are used within declarations of host structures.

��
IS

USAGE

BINARY
COMPUTATIONAL-4
COMP-4
COMPUTATIONAL-5
COMP-5
COMPUTATIONAL
COMP
PACKED-DECIMAL
COMPUTATIONAL-3
COMP-3

IS
DISPLAY SIGN LEADING SEPARATE
NATIONAL CHARACTER

�

�
IS

VALUE constant

��

CHAR inner variables

The following diagram shows the syntax for CHAR inner variables that are used
within declarations of host structures.

Chapter 6. Coding SQL statements in COBOL application programs 325

�� PICTURE
PIC

IS
picture-string

DISPLAY
IS

USAGE

�

�
IS

VALUE constant

��

VARCHAR inner variables

The following diagrams show the syntax for VARCHAR inner variables that are
used within declarations of host structures.

��
(1)

49 var-2 PICTURE
PIC

IS
S9(4)
S9999 IS

USAGE

BINARY
COMPUTATIONAL-4
COMP-4
COMPUTATIONAL-5
COMP-5
COMPUTATIONAL
COMP

�

�
IS

VALUE numeric-constant

. ��

Notes:

1 The number 49 has a special meaning to DB2. Do not specify another number.

�� 49 var-3 PICTURE
PIC

IS
picture-string

DISPLAY
IS

USAGE

�

�
IS

VALUE character-constant

. ��

326 Application Programming and SQL Guide

VARGRAPHIC inner variables

The following diagrams show the syntax for VARGRAPHIC inner variables that
are used within declarations of host structures.

�� 49 var-4 PICTURE
PIC

IS
S9(4)
S9999 IS

USAGE

BINARY
COMPUTATIONAL-4
COMP-4
COMPUTATIONAL-5
COMP-5
COMPUTATIONAL
COMP

�

�
IS

VALUE numeric-constant

. ��

�� 49 var-5 PICTURE
PIC

IS (1)
picture-string

IS
USAGE

(2) (3)
DISPLAY-1
NATIONAL

�

�
IS

VALUE graphic-constant

. ��

Notes:

1 For fixed-length strings, the format of picture-string is G(m) or N(m) (or, m instances of GG...G or
NN...N), where 1 <= m <= 127; for other strings, m cannot be greater than the maximum size of a
varying-length graphic string.

2 Use USAGE NATIONAL for only Unicode UTF-16 data. In the picture-string for USAGE
NATIONAL, you must use N in place of G.

3 You can use USAGE NATIONAL only if you are using the DB2 coprocessor.

LOB variables, locators, and file reference variables

The following diagram shows the syntax for LOB variables, locators, and file
reference variables that are used within declarations of host structures.

Chapter 6. Coding SQL statements in COBOL application programs 327

�� SQL TYPE IS BINARY LARGE OBJECT (length)
BLOB K
CHARACTER LARGE OBJECT M
CHAR LARGE OBJECT G
CLOB

DBCLOB
BLOB-LOCATOR
CLOB-LOCATOR
DBCLOB-LOCATOR
BLOB-FILE
CLOB-FILE
DBCLOB-FILE

��

LOB variables and file reference variables for XML data

The following diagram shows the syntax for LOB variables and file reference
variables that are used within declarations of host structures for XML.

�� SQL TYPE IS XML AS BINARY LARGE OBJECT (length)
BLOB K
CHARACTER LARGE OBJECT M
CHAR LARGE OBJECT G
CLOB

DBCLOB
BLOB-FILE
CLOB-FILE
DBCLOB-FILE

��

Example

In the following example, B is the name of a host structure that contains the
elementary items C1 and C2.
01 A

02 B
03 C1 PICTURE ...
03 C2 PICTURE ...

To reference the C1 field in an SQL statement, specify B.C1.
Related concepts:
“Host structures” on page 139

Indicator variables, indicator arrays, and host structure
indicator arrays in COBOL

An indicator variable is a 2-byte integer (PIC S9(4) USAGE BINARY). An indicator
variable array is an array of 2-byte integers (PIC S9(4) USAGE BINARY). You
declare indicator variables in the same way as host variables. You can mix the
declarations of the two types of variables.

You can define indicator variables as scalar variables or as array elements in a
structure form or as an array variable by using a single level OCCURS clause.

328 Application Programming and SQL Guide

The following diagram shows the syntax for declaring an indicator variable in
COBOL.

�� 01
77

variable-name PICTURE
PIC

IS
S9(4)
S9999 IS

USAGE

BINARY
COMPUTATIONAL-4
COMP-4
COMPUTATIONAL-5
COMP-5
COMPUTATIONAL
COMP

�

�
IS

VALUE constant

. ��

The following diagram shows the syntax for declaring an indicator array in
COBOL.

��
(1)

level-1 variable-name PICTURE
PIC

IS
S9(4)
S9999 IS

USAGE

�

� BINARY
COMPUTATIONAL-4
COMP-4
COMPUTATIONAL-5
COMP-5
COMPUTATIONAL
COMP

(2)
OCCURS dimension

TIMES IS
VALUE constant

. ��

Notes:

1 level-1 must be an integer between 2 and 48.

2 dimension must be an integer constant between 1 and 32767.

Example

The following example shows a FETCH statement with the declarations of the host
variables that are needed for the FETCH statement and their associated indicator
variables.
EXEC SQL FETCH CLS_CURSOR INTO :CLS-CD,

:DAY :DAY-IND,
:BGN :BGN-IND,
:END :END-IND

END-EXEC.

You can declare these variables as follows:

Chapter 6. Coding SQL statements in COBOL application programs 329

77 CLS-CD PIC X(7).
77 DAY PIC S9(4) BINARY.
77 BGN PIC X(8).
77 END PIC X(8).
77 DAY-IND PIC S9(4) BINARY.
77 BGN-IND PIC S9(4) BINARY.
77 END-IND PIC S9(4) BINARY.

Related concepts:
“Indicator variables, arrays, and structures” on page 140
Related tasks:
“Inserting null values into columns by using indicator variables or arrays” on page
155

Controlling the CCSID for COBOL host variables
Setting the CCSID for COBOL host variables is slightly different than the process
for other host languages. In COBOL, several other settings affect the CCSID.

Before you begin

This task applies to programs that use IBM Enterprise COBOL for z/OS and the
DB2 coprocessor.

Procedure

To control the CCSID for COBOL host variables:

Use one or more of the following items:

The NATIONAL data type
Use this data type to declare Unicode values in the UTF-16 format (CCSID
1200).

If you declare a host variable HV1 as USAGE NATIONAL, DB2 always
handles HV1 as if you had used the following DECLARE VARIABLE
statement:
DECLARE :HV1 VARIABLE CCSID 1200

The COBOL CODEPAGE compiler option
Use this option to specify the default EBCDIC CCSID of character data
items.

The SQLCCSID compiler option
Use this option to control whether the CODEPAGE compiler option
influences the processing of SQL host variables in your COBOL programs
(available in Enterprise COBOL V3R4 or later).

When you specify the SQLCCSID compiler option, the COBOL DB2
coprocessor uses the CCSID that is specified in the CODEPAGE compiler
option. All host variables of character data type, other than NATIONAL,
are specified with that CCSID unless they are explicitly overridden by a
DECLARE VARIABLE statement.

When you specify the NOSQLCCSID compiler option, the CCSID that is
specified in the CODEPAGE compiler option is used for processing only
COBOL statements within the COBOL program. That CCSID is not used
for the processing of host variables in SQL statements. DB2 uses the
CCSIDs that are specified through DB2 mechanisms and defaults as host
variable data value encodings.

330 Application Programming and SQL Guide

The DECLARE VARIABLE statement.
This statement explicitly sets the CCSID for individual host variables.

Example

Assume that the COBOL SQLCCSID compiler option is specified and that the
COBOL CODEPAGE compiler option is specified as CODEPAGE(1141). The
following code shows how you can control the CCSID:
DATA DIVISION.

01 HV1 PIC N(10) USAGE NATIONAL.
01 HV2 PIC X(20) USAGE DISPLAY.
01 HV3 PIC X(30) USAGE DISPLAY.
...
EXEC SQL

DECLARE :HV3 VARIABLE CCSID 1047
END-EXEC.
...

PROCEDURE DIVISION.
...
EXEC SQL

SELECT C1, C2, C3 INTO :HV1, :HV2, :HV3 FROM T1
END-EXEC.

Each of the host variables have the following CCSIDs:

HV1 1200

HV2 1141

HV3 1047

Assume that the COBOL NOSQLCCSID compiler option is specified, the COBOL
CODEPAGE compiler option is specified as CODEPAGE(1141), and the DB2 default
single byte CCSID is set to 37. In this case, each of the host variables in this
example have the following CCSIDs:

HV1 1200

HV2 37

HV3 1047
Related reference:
“Host variables in COBOL” on page 304

Compiler options (COBOL) (Enterprise COBOL for z/OS Programming Guide)

Equivalent SQL and COBOL data types
When you declare host variables in your COBOL programs, the precompiler uses
equivalent SQL data types. When you retrieve data of a particular SQL data type
into a host variable, you need to ensure that the host variable is of an equivalent
data type.

The following table describes the SQL data type and the base SQLTYPE and
SQLLEN values that the precompiler uses for host variables in SQL statements.

Chapter 6. Coding SQL statements in COBOL application programs 331

http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/igy3pg50/2.4?DT=20090820210412

Table 62. SQL data types, SQLLEN values, and SQLTYPE values that the precompiler uses for host variables in
COBOL programs

COBOL host variable data type
SQLTYPE of host
variable1 SQLLEN of host variable SQL data type

COMP-1 480 4 REAL or FLOAT(n) 1<=n<=21

COMP-2 480 8 DOUBLE PRECISION, or
FLOAT(n) 22<=n<=53

S9(i)V9(d) COMP-3 or S9(i)V9(d)
PACKED-DECIMAL

484 i+d in byte 1, d in byte 2 DECIMAL(i+d,d) or
NUMERIC(i+d,d)

S9(i)V9(d) DISPLAY SIGN
LEADING SEPARATE

504 i+d in byte 1, d in byte 2 No exact equivalent. Use
DECIMAL(i+d,d) or
NUMERIC(i+d,d)

S9(i)V9(d) NATIONAL SIGN
LEADING SEPARATE

504 i+d in byte 1, d in byte 2 No exact equivalent. Use
DECIMAL(i+d,d) or
NUMERIC(i+d,d)

S9(4) COMP-4, S9(4) COMP-5,
S9(4) COMP, or S9(4) BINARY

500 2 SMALLINT

S9(9) COMP-4, S9(9) COMP-5,
S9(9) COMP, or S9(9) BINARY

496 4 INTEGER

S9(18) COMP-4, S9(18) COMP-5,
S9(18) COMP, or S9(18) BINARY

492 8 BIGINT

Fixed-length character data 452 n CHAR(n)

Varying-length character data
1<=n<=255

448 n VARCHAR(n)

Varying-length character data
m>255

456 m VARCHAR(m)

Fixed-length graphic data 468 m GRAPHIC(m)

Varying-length graphic data
1<=m<=127

464 m VARGRAPHIC(m)

Varying-length graphic data
m>127

472 m VARGRAPHIC(m)

SQL TYPE is BINARY(n),
1<=n<=255

912 n BINARY(n)

SQL TYPE is VARBINARY(n),
1<=n<=32 704

908 n VARBINARY(n)

SQL TYPE IS
RESULT-SET-LOCATOR

972 4 Result set locator2

SQL TYPE IS TABLE LIKE
table-name AS LOCATOR

976 4 Table locator2

SQL TYPE IS BLOB-LOCATOR 960 4 BLOB locator2

SQL TYPE IS CLOB-LOCATOR 964 4 CLOB locator2

SQL TYPE IS
DBCLOB-LOCATOR

968 4 DBCLOB locator2

USAGE IS SQL TYPE IS
BLOB(n) 1≤n≤2147483647

404 n BLOB(n)

USAGE IS SQL TYPE IS
CLOB(n) 1≤n≤2147483647

408 n CLOB(n)

USAGE IS SQL TYPE IS
DBCLOB(m) 1≤m≤10737418233

412 n DBCLOB(m)3

332 Application Programming and SQL Guide

Table 62. SQL data types, SQLLEN values, and SQLTYPE values that the precompiler uses for host variables in
COBOL programs (continued)

COBOL host variable data type
SQLTYPE of host
variable1 SQLLEN of host variable SQL data type

SQL TYPE IS XML AS BLOB(n) 404 0 XML

SQL TYPE IS XML AS CLOB(n) 408 0 XML

SQL TYPE IS XML AS
DBCLOB(n)

412 0 XML

SQL TYPE IS BLOB-FILE 916/917 267 BLOB file reference2

SQL TYPE IS CLOB-FILE 920/921 267 CLOB file reference2

SQL TYPE IS DBCLOB-FILE 924/925 267 DBCLOB file reference2

SQL TYPE IS XML AS
BLOB-FILE

916/917 267 XML BLOB file reference2

SQL TYPE IS XML AS
CLOB-FILE

920/921 267 XML CLOB file reference2

SQL TYPE IS XML AS
DBCLOB-FILE

924/925 267 XML DBCLOB file reference2

SQL TYPE IS ROWID 904 40 ROWID

Notes:

1. If a host variable includes an indicator variable, the SQLTYPE value is the base SQLTYPE value plus 1.

2. Do not use this data type as a column type.

3. m is the number of double-byte characters.

The following table shows equivalent COBOL host variables for each SQL data
type. Use this table to determine the COBOL data type for host variables that you
define to receive output from the database. For example, if you retrieve
TIMESTAMP data, you can define a fixed-length character string variable of length
n

This table shows direct conversions between SQL data types and COBOL data
types. However, a number of SQL data types are compatible. When you do
assignments or comparisons of data that have compatible data types, DB2 converts
those compatible data types.

Table 63. COBOL host variable equivalents that you can use when retrieving data of a particular SQL data type

SQL data type COBOL host variable equivalent Notes

SMALLINT S9(4) COMP-4,
S9(4) COMP-5,
S9(4) COMP,
or S9(4) BINARY

INTEGER S9(9) COMP-4,
S9(9) COMP-5,
S9(9) COMP,
or S9(9) BINARY

DECIMAL(p,s) or
NUMERIC(p,s)

S9(p-s)V9(s) COMP-3 or
S9(p-s)V9(s)
PACKED-DECIMAL
DISPLAY SIGN
LEADING SEPARATE
NATIONAL SIGN
LEADING SEPARATE

p is precision; s is scale. 0<=s<=p<=31. If
s=0, use S9(p)V or S9(p). If s=p, use SV9(s).
If the COBOL compiler does not support
31–digit decimal numbers, no exact
equivalent exists. Use COMP-2.

Chapter 6. Coding SQL statements in COBOL application programs 333

Table 63. COBOL host variable equivalents that you can use when retrieving data of a particular SQL data
type (continued)

SQL data type COBOL host variable equivalent Notes

REAL or FLOAT (n) COMP-1 1<=n<=21

DOUBLE PRECISION,
DOUBLE or FLOAT (n)

COMP-2 22<=n<=53

BIGINT S9(18) COMP-4, S9(18) COMP-5, S9(18)
COMP, or S9(18) BINARY

CHAR(n) Fixed-length character string. For example,

01 VAR-NAME PIC X(n).

1<=n<=255

VARCHAR(n) Varying-length character string. For
example,

01 VAR-NAME.
49 VAR-LEN PIC S9(4)

USAGE BINARY.
49 VAR-TEXT PIC X(n).

The inner variables must have a level of
49.

GRAPHIC(n) Fixed-length graphic string. For example,

01 VAR-NAME PIC G(n)
USAGE IS DISPLAY-1.

n refers to the number of double-byte
characters, not to the number of bytes.
1<=n<=127

VARGRAPHIC(n) Varying-length graphic string. For
example,

01 VAR-NAME.
49 VAR-LEN PIC S9(4)

USAGE BINARY.
49 VAR-TEXT PIC G(n)

USAGE IS DISPLAY-1.

n refers to the number of double-byte
characters, not to the number of bytes.

The inner variables must have a level of
49.

BINARY(n) SQL TYPE IS BINARY(n) 1<=n<=255

VARBINARY(n) SQL TYPE IS VARBINARY(n) 1<=n<=32 704

DATE Fixed-length character string of length n.
For example,

01 VAR-NAME PIC X(n).

If you are using a date exit routine, n is
determined by that routine. Otherwise, n
must be at least 10.

TIME Fixed-length character string of length n.
For example,

01 VAR-NAME PIC X(n).

If you are using a time exit routine, n is
determined by that routine. Otherwise, n
must be at least 6; to include seconds, n
must be at least 8.

TIMESTAMP Fixed-length character string of length n.
For example,

01 VAR-NAME PIC X(n).

n must be at least 19. To include
microseconds, n must be 26; if n is less
than 26, truncation occurs on the
microseconds part.

TIMESTAMP(0) Fixed-length character string of length n.
For example,

01 VAR-NAME PIC X(n).

n must be at least 19.

TIMESTAMP(p) p > 0 Fixed-length character string of length n.
For example,

01 VAR-NAME PIC X(n

).

n must be at least 19. To include fractional
seconds, n must be 20+x where x is the
number of fractional seconds to include; if
x is less than p, truncation occurs on the
fractional seconds part.

334 Application Programming and SQL Guide

Table 63. COBOL host variable equivalents that you can use when retrieving data of a particular SQL data
type (continued)

SQL data type COBOL host variable equivalent Notes

TIMESTAMP(0) WITH TIME
ZONE

Varying-length character string. For
example,

01 VAR-NAME.
49 VAR-LEN PIC S9(4) USAGE
BINARY. 49 VAR-TEXT PIC
X(n).

The inner variables must have a level of
49. n must be at least 25.

TIMESTAMP(p) WITH TIME
ZONE

Varying-length character string. For
example,

01 VAR-NAME.
49 VAR-LEN PIC S9(4) USAGE
BINARY. 49 VAR-TEXT PIC
X(n).

The inner variables must have a level of
49. n must be at least 26+p.

Result set locator SQL TYPE IS
RESULT-SET-LOCATOR

Use this data type only for receiving result
sets. Do not use this data type as a
column type.

Table locator SQL TYPE IS
TABLE LIKE
table-name
AS LOCATOR

Use this data type only in a user-defined
function or stored procedure to receive
rows of a transition table. Do not use this
data type as a column type.

BLOB locator USAGE IS SQL TYPE IS
BLOB-LOCATOR

Use this data type only to manipulate data
in BLOB columns. Do not use this data
type as a column type.

CLOB locator USAGE IS SQL TYPE IS
CLOB-LOCATOR

Use this data type only to manipulate data
in CLOB columns. Do not use this data
type as a column type.

DBCLOB locator USAGE IS SQL TYPE IS
DBCLOB-LOCATOR

Use this data type only to manipulate data
in DBCLOB columns. Do not use this data
type as a column type.

BLOB(n) USAGE IS SQL TYPE IS
BLOB(n)

1≤n≤2147483647

CLOB(n) USAGE IS SQL TYPE IS
CLOB(n)

1≤n≤2147483647

DBCLOB(n) USAGE IS SQL TYPE IS
DBCLOB(n)

n is the number of double-byte characters.
1≤n≤1073741823

XML SQL TYPE IS XML AS BLOB(n) 1≤n≤2147483647

XML SQL TYPE IS XML AS CLOB(n) 1≤n≤2147483647

XML SQL TYPE IS XML AS DBCLOB(n) n is the number of double-byte characters.
1≤n≤1073741823

BLOB file reference USAGE IS SQL TYPE IS
BLOB-FILE

Use this data type only to manipulate data
in BLOB columns. Do not use this data
type as a column type.

CLOB file reference USAGE IS SQL TYPE IS
CLOB-FILE

Use this data type only to manipulate data
in CLOB columns. Do not use this data
type as a column type.

DBCLOB file reference USAGE IS SQL TYPE IS
DBCLOB-FILE

Use this data type only to manipulate data
in DBCLOB columns. Do not use this data
type as a column type.

Chapter 6. Coding SQL statements in COBOL application programs 335

Table 63. COBOL host variable equivalents that you can use when retrieving data of a particular SQL data
type (continued)

SQL data type COBOL host variable equivalent Notes

XML BLOB file reference SQL TYPE IS XML AS BLOB-FILE Use this data type only to manipulate
XML data as BLOB files. Do not use this
data type as a column type.

XML CLOB file reference SQL TYPE IS XML AS CLOB-FILE Use this data type only to manipulate
XML data as CLOB files. Do not use this
data type as a column type.

XML DBCLOB file reference SQL TYPE IS XML AS DBCLOB-FILE Use this data type only to manipulate
XML data as DBCLOB files. Do not use
this data type as a column type.

ROWID SQL TYPE IS ROWID

Related concepts:
“Compatibility of SQL and language data types” on page 144
“LOB host variable, LOB locator, and LOB file reference variable declarations” on
page 752
“Host variable data types for XML data in embedded SQL applications” on page
219

SQL statements in COBOL programs
You can code SQL statements in certain COBOL program sections.

The allowable sections are shown in the following table.

Table 64. Allowable SQL statements for COBOL program sections

SQL statement Program section

BEGIN DECLARE SECTION
END DECLARE SECTION

WORKING-STORAGE SECTION1 or LINKAGE
SECTION

INCLUDE SQLCA WORKING-STORAGE SECTION1 or LINKAGE
SECTION

INCLUDE text-file-name PROCEDURE DIVISION or DATA DIVISION2

DECLARE TABLE
DECLARE CURSOR

DATA DIVISION or PROCEDURE DIVISION

DECLARE VARIABLE WORKING-STORAGE SECTION1

Other PROCEDURE DIVISION

Notes:

1. If you use the DB2 coprocessor, you can use the LOCAL-STORAGE SECTION wherever
WORKING-STORAGE SECTION is listed in the table.

2. When including host variable declarations, the INCLUDE statement must be in the
WORKING-STORAGE SECTION or the LINKAGE SECTION.

You cannot put SQL statements in the DECLARATIVES section of a COBOL
program.

Each SQL statement in a COBOL program must begin with EXEC SQL and end
with END-EXEC. If you are using the DB2 precompiler, the EXEC and SQL
keywords must appear on one line, but the remainder of the statement can appear

336 Application Programming and SQL Guide

on subsequent lines. If you are using the DB2 coprocessor, the EXEC and SQL
keywords can be on different lines. Do not include any tokens between the two
keywords EXEC and SQL except for COBOL comments, including debugging lines.
Do not include SQL comments between the keywords EXEC and SQL.

If the SQL statement appears between two COBOL statements, the period after
END-EXEC is optional and might not be appropriate. If the statement appears in
an IF...THEN set of COBOL statements, omit the ending period to avoid
inadvertently ending the IF statement.

You might code an UPDATE statement in a COBOL program as follows:
EXEC SQL

UPDATE DSN8B10.DEPT
SET MGRNO = :MGR-NUM
WHERE DEPTNO = :INT-DEPT

END-EXEC.

Comments: You can include COBOL comment lines (* in column 7) in SQL
statements wherever you can use a blank. If you are using the DB2 precompiler,
you cannot include COBOL comment lines between the keywords EXEC and SQL.
The precompiler treats COBOL debugging lines and page-eject lines (/ in column
7) as comment lines. The DB2 coprocessor treats the debugging lines based on the
COBOL rules, which depend on the WITH DEBUGGING mode setting.

For an SQL INCLUDE statement, the DB2 precompiler treats any text that follows
the period after END-EXEC, and on the same line as END-EXEC, as a comment.
The DB2 coprocessor treats this text as part of the COBOL program syntax.

In addition, you can include SQL comments ('--') in any embedded SQL statement.

Debugging lines: The DB2 precompiler ignores the 'D' in column 7 on debugging
lines and treats it as a blank. The DB2 coprocessor follows the COBOL language
rules regarding debugging lines.

Continuation for SQL statements: The rules for continuing a character string
constant from one line to the next in an SQL statement embedded in a COBOL
program are the same as those for continuing a non-numeric literal in COBOL.
However, you can use either a quote or an apostrophe as the first nonblank
character in area B of the continuation line. The same rule applies for the
continuation of delimited identifiers and does not depend on the string delimiter
option.

To conform with SQL standard, delimit a character string constant with an
apostrophe, and use a quote as the first nonblank character in area B of the
continuation line for a character string constant.

Continued lines of an SQL statement can be in columns 8 through 72 when using
the DB2 precompiler and columns 12 through 72 when using the DB2 coprocessor.

COPY: If you use the DB2 precompiler, do not use a COBOL COPY statement
within host variable declarations. If you use the DB2 coprocessor, you can use
COBOL COPY.

REPLACE: If you use the DB2 precompiler, the REPLACE statement has no effect
on SQL statements. It affects only the COBOL statements that the precompiler
generates.

Chapter 6. Coding SQL statements in COBOL application programs 337

If you use the DB2 coprocessor, the REPLACE statement replaces text strings in
SQL statements as well as in generated COBOL statements.

Declaring tables and views: Your COBOL program should include the statement
DECLARE TABLE to describe each table and view the program accesses. You can
use the DB2 declarations generator (DCLGEN) to generate the DECLARE TABLE
statements. You should include the DCLGEN members in the DATA DIVISION.

Dynamic SQL in a COBOL program: In general, COBOL programs can easily
handle dynamic SQL statements. COBOL programs can handle SELECT statements
if the data types and the number of fields returned are fixed. If you want to use
variable-list SELECT statements, use an SQLDA.

Including code: To include SQL statements or COBOL host variable declarations
from a member of a partitioned data set, use the following SQL statement in the
source code where you want to include the statements:
EXEC SQL INCLUDE member-name END-EXEC.

If you are using the DB2 precompiler, you cannot nest SQL INCLUDE statements.
In this case, do not use COBOL verbs to include SQL statements or host variable
declarations, and do not use the SQL INCLUDE statement to include CICS
preprocessor related code. In general, if you are using the DB2 precompiler, use the
SQL INCLUDE statement only for SQL-related coding. If you are using the COBOL
DB2 coprocessor, none of these restrictions apply.

Use the 'EXEC SQL' and 'END-EXEC' keyword pair to include SQL statements
only. COBOL statements, such as COPY or REPLACE, are not allowed.

Margins: You must code SQL statements that begin with EXEC SQL in columns 12
through 72. Otherwise the DB2 precompiler does not recognize the SQL statement.

Names: You can use any valid COBOL name for a host variable. Do not use
external entry names or access plan names that begin with 'DSN', and do not use
host variable names that begin with 'SQL'. These names are reserved for DB2.

Sequence numbers: The source statements that the DB2 precompiler generates do
not include sequence numbers.

Statement labels: You can precede executable SQL statements in the PROCEDURE
DIVISION with a paragraph name.

WHENEVER statement: The target for the GOTO clause in an SQL statement
WHENEVER must be a section name or unqualified paragraph name in the
PROCEDURE DIVISION.

Special COBOL considerations: The following considerations apply to programs
written in COBOL:
v In a COBOL program that uses elements in a multi-level structure as host

variable names, the DB2 precompiler generates the lowest two-level names.
v Using the COBOL compiler options DYNAM and NODYNAM depends on the

operating environment.
TSO and IMS: You can specify the option DYNAM when compiling a COBOL
program if you use the following guidelines. IMS and DB2 share a common alias
name, DSNHLI, for the language interface module. You must do the following
when you concatenate your libraries:

338 Application Programming and SQL Guide

– If you use IMS with the COBOL option DYNAM, be sure to concatenate the
IMS library first.

– If you run your application program only under DB2, be sure to concatenate
the DB2 library first.

CICS, CAF, and RRSAF: You must specify the NODYNAM option when you
compile a COBOL program that either includes CICS statements or is translated
by a separate CICS translator or the integrated CICS translator. In these cases,
you cannot specify the DYNAM option. If your CICS program has a subroutine
that is not translated by a separate CICS translator or the integrated CICS
translator but contains SQL statements, you can specify the DYNAM option.
However, in this case, you must concatenate the CICS libraries before the DB2
libraries.
You can compile COBOL stored procedures with either the DYNAM option or
the NODYNAM option. If you use DYNAM, ensure that the correct DB2
language interface module is loaded dynamically by performing one of the
following actions:
– Use the ATTACH(RRSAF) precompiler option.
– Copy the DSNRLI module into a load library that is concatenated in front of

the DB2 libraries. Use the member name DSNHLI.
v To avoid truncating numeric values, use either of the following methods:

– Use the COMP-5 data type for binary integer host variables.
– Specify the COBOL compiler option:

- TRUNC(OPT) if you are certain that the data being moved to each binary
variable by the application does not have a larger precision than is defined
in the PICTURE clause of the binary variable.

- TRUNC(BIN) if the precision of data being moved to each binary variable
might exceed the value in the PICTURE clause.

DB2 assigns values to binary integer host variables as if you had specified the
COBOL compiler option TRUNC(BIN) or used the COMP-5 data type.

v If you are using the DB2 precompiler and your COBOL program contains
several entry points or is called several times, the USING clause of the entry
statement that executes before the first SQL statement executes must contain the
SQLCA and all linkage section entries that any SQL statement uses as host
variables.

v If you use the DB2 precompiler, no compiler directives should appear between
the PROCEDURE DIVISION and the DECLARATIVES statement.

v Do not use COBOL figurative constants (such as ZERO and SPACE), symbolic
characters, reference modification, and subscripts within SQL statements.

v Observe the rules for naming SQL identifiers. However, for COBOL only, the
names of SQL identifiers can follow the rules for naming COBOL words, if the
names do not exceed the allowable length for the DB2 object. For example, the
name 1ST-TIME is a valid cursor name because it is a valid COBOL word, but
the name 1_TIME is not valid because it is not a valid SQL identifier or a valid
COBOL word.

v Observe these rules for hyphens:
– Surround hyphens used as subtraction operators with spaces. DB2 usually

interprets a hyphen with no spaces around it as part of a host variable name.
– You can use hyphens in SQL identifiers under either of the following

circumstances:
- The application program is a local application that runs on DB2 for z/OS

Version 11 or later.

Chapter 6. Coding SQL statements in COBOL application programs 339

- The application program accesses remote sites, and the local site and
remote sites are DB2 for z/OS Version 11 or later.

v If you include an SQL statement in a COBOL PERFORM ... THRU paragraph and
also specify the SQL statement WHENEVER ... GO, the COBOL compiler returns
the warning message IGYOP3094. That message might indicate a problem. This
usage is not recommended.

v If you are using the DB2 precompiler, all SQL statements and any host variables
they reference must be within the first program when using nested programs or
batch compilation.

v If you are using the DB2 precompiler, your COBOL programs must have a
DATA DIVISION and a PROCEDURE DIVISION. Both divisions and the
WORKING-STORAGE SECTION must be present in programs that contain SQL
statements. However, if your COBOL programs requires the LOCAL-STORAGE
SECTION, then the DB2 coprocessor should be used instead of the DB2
precompiler.

PSPI If your program uses the DB2 precompiler and uses parameters that are
defined in LINKAGE SECTION as host variables to DB2 and the address of the
input parameter might change on subsequent invocations of your program, your
program must reset the variable SQL-INIT-FLAG. This flag is generated by the
DB2 precompiler. Resetting this flag indicates that the storage must initialize when
the next SQL statement executes. To reset the flag, insert the statement MOVE
ZERO TO SQL-INIT-FLAG in the called program's PROCEDURE DIVISION, ahead
of any executable SQL statements that use the host variables. If you use the
COBOL DB2 coprocessor, the called program does not need to reset

SQL-INIT-FLAG. PSPI

You can use the MESSAGE_TEXT condition item field of the GET DIAGNOSTICS
statement to convert an SQL return code into a text message. Programs that require
long token message support should code the GET DIAGNOSTICS statement
instead of DSNTIAR.

You can use the subroutine DSNTIAR to convert an SQL return code into a text
message. DSNTIAR takes data from the SQLCA, formats it into a message, and
places the result in a message output area that you provide in your application
program.

DSNTIAR syntax:

CALL 'DSNTIAR' USING sqlca message lrecl.

The DSNTIAR parameters have the following meanings:

sqlca
An SQL communication area.

message
An output area, in VARCHAR format, in which DSNTIAR places the message
text. The first halfword contains the length of the remaining area; its minimum
value is 240.

The output lines of text, each line being the length specified in lrecl, are put
into this area. For example, you could specify the format of the output area as:
01 ERROR-MESSAGE.

02 ERROR-LEN PIC S9(4) COMP VALUE +1320.
02 ERROR-TEXT PIC X(132) OCCURS 10 TIMES

340 Application Programming and SQL Guide

INDEXED BY ERROR-INDEX.
77 ERROR-TEXT-LEN PIC S9(9) COMP VALUE +132....
CALL ’DSNTIAR’ USING SQLCA ERROR-MESSAGE ERROR-TEXT-LEN.

where ERROR-MESSAGE is the name of the message output area containing
10 lines of length 132 each, and ERROR-TEXT-LEN is the length of each line.

lrecl
A fullword containing the logical record length of output messages, between 72
and 240.

An example of calling DSNTIAR from an application appears in the DB2 sample
assembler program DSN8BC3, which is contained in the library DSN8B10.

CICS: If you call DSNTIAR dynamically from a CICS COBOL application program,
be sure you do the following:
v Compile the COBOL application with the NODYNAM option.
v Define DSNTIAR in the CSD.

If your CICS application requires CICS storage handling, you must use the
subroutine DSNTIAC instead of DSNTIAR. DSNTIAC has the following syntax:
CALL ’DSNTIAC’ USING eib commarea sqlca msg lrecl.

DSNTIAC has extra parameters, which you must use for calls to routines that use
CICS commands.

eib EXEC interface block

commarea
communication area

For more information on these parameters, see the appropriate application
programming guide for CICS. The remaining parameter descriptions are the same
as those for DSNTIAR. Both DSNTIAC and DSNTIAR format the SQLCA in the
same way.

You must define DSNTIA1 in the CSD. If you load DSNTIAR or DSNTIAC, you
must also define them in the CSD. For an example of CSD entry generation
statements for use with DSNTIAC, see job DSNTEJ5A.

The assembler source code for DSNTIAC and job DSNTEJ5A, which assembles and
link-edits DSNTIAC, are in the data set prefix.SDSNSAMP.

Chapter 6. Coding SQL statements in COBOL application programs 341

Related concepts:
“DB2 sample applications” on page 1102
“DCLGEN (declarations generator)” on page 125
“Host variable arrays in an SQL statement” on page 156

SQL identifiers (DB2 SQL)
Related tasks:
“Including dynamic SQL in your program” on page 159
“Embedding SQL statements in your application” on page 147
“Checking the execution of SQL statements by using the GET DIAGNOSTICS
statement” on page 211
“Defining SQL descriptor areas” on page 137
“Displaying SQLCA fields by calling DSNTIAR” on page 206
“Limiting CPU time for dynamic SQL statements by using the resource limit
facility” on page 202

Delimiters in SQL statements in COBOL programs
You must delimit SQL statements in your COBOL program so that DB2 knows
when a particular SQL statement ends.

Delimit an SQL statement in your COBOL program with the beginning keyword
EXEC SQL and an END-EXEC.

Example

Use EXEC SQL and END-EXEC. to delimit an SQL statement in a COBOL program:
EXEC SQL

an SQL statement
END-EXEC.

Object-oriented extensions in COBOL
When you use object-oriented extensions in a COBOL application, you need to
consider where to place SQL statements, the SQLCA, the SQLDA, and host
variable declarations. You also need to consider the rules for host variables.

Where to place SQL statements in your application: A COBOL source data set or
member can contain the following elements:
v Multiple programs
v Multiple class definitions, each of which contains multiple methods

You can put SQL statements in only the first program or class in the source data
set or member. However, you can put SQL statements in multiple methods within
a class. If an application consists of multiple data sets or members, each of the data
sets or members can contain SQL statements.

Where to place the SQLCA, SQLDA, and host variable declarations: You can put
the SQLCA, SQLDA, and SQL host variable declarations in the
WORKING-STORAGE SECTION of a program, class, or method. An SQLCA or
SQLDA in a class WORKING-STORAGE SECTION is global for all the methods of
the class. An SQLCA or SQLDA in a method WORKING-STORAGE SECTION is
local to that method only.

If a class and a method within the class both contain an SQLCA or SQLDA, the
method uses the SQLCA or SQLDA that is local.

342 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sqlidentifiers.htm#db2z_sqlidentifiers

Rules for host variables: You can declare COBOL variables that are used as host
variables in the WORKING-STORAGE SECTION or LINKAGE-SECTION of a
program, class, or method. You can also declare host variables in the
LOCAL-STORAGE SECTION of a method. The scope of a host variable is the
method, class, or program within which it is defined.

Programming examples in COBOL
You can write DB2 programs in COBOL. These programs can access a local or
remote DB2 subsystem and can execute static or dynamic SQL statements. This
information contains several such programming examples.

To prepare and run these applications, use the JCL in DSN910.SDSNSAMP as a
model for your JCL.
Related reference:
“Programming examples” on page 229

Sample COBOL dynamic SQL program
You can code dynamic varying-list SELECT statements in a COBOL program.
Varying-List SELECT statements are statements for which you do not know the
number or data types of columns that are to be returned when you write the
program.

“Dynamic SQL” on page 159 describes three variations of dynamic SQL statements:
v Non-SELECT statements
v Fixed-List SELECT statements

In this case, you know the number of columns returned and their data types
when you write the program.

v Varying-List SELECT statements.
In this case, you do not know the number of columns returned and their data
types when you write the program.

This section documents a technique of coding varying list SELECT statements in
COBOL.

This example program does not support BLOB, CLOB, or DBCLOB data types.

Pointers and based variables in the sample COBOL program

COBOL has a POINTER type and a SET statement that provide pointers and based
variables.

The SET statement sets a pointer from the address of an area in the linkage section
or another pointer; the statement can also set the address of an area in the linkage
section. UNLDBCU2 in “Example of the sample COBOL program” on page 344
provides these uses of the SET statement. The SET statement does not permit the
use of an address in the WORKING-STORAGE section.

Storage allocation for the sample COBOL program

COBOL does not provide a means to allocate main storage within a program. You
can achieve the same end by having an initial program which allocates the storage,
and then calls a second program that manipulates the pointer. (COBOL does not
permit you to directly manipulate the pointer because errors and abends are likely
to occur.)

Chapter 6. Coding SQL statements in COBOL application programs 343

The initial program is extremely simple. It includes a working storage section that
allocates the maximum amount of storage needed. This program then calls the
second program, passing the area or areas on the CALL statement. The second
program defines the area in the linkage section and can then use pointers within
the area.

If you need to allocate parts of storage, the best method is to use indexes or
subscripts. You can use subscripts for arithmetic and comparison operations.

Example of the sample COBOL program

The following example shows an example of the initial program UNLDBCU1 that
allocates the storage and calls the second program UNLDBCU2. UNLDBCU2 then
defines the passed storage areas in its linkage section and includes the USING
clause on its PROCEDURE DIVISION statement.

Defining the pointers, then redefining them as numeric, permits some
manipulation of the pointers that you cannot perform directly. For example, you
cannot add the column length to the record pointer, but you can add the column
length to the numeric value that redefines the pointer.

The following example is the initial program that allocates storage.
**** UNLDBCU1- DB2 SAMPLE BATCH COBOL UNLOAD PROGRAM ***********
* *
* MODULE NAME = UNLDBCU1 *
* *
* DESCRIPTIVE NAME = DB2 SAMPLE APPLICATION *
* UNLOAD PROGRAM *
* BATCH *
* IBM ENTERPRISE COBOL FOR Z/OS *
* *
* COPYRIGHT = 5740-XYR (C) COPYRIGHT IBM CORP 1982, 1987 *
* REFER TO COPYRIGHT INSTRUCTIONS FORM NUMBER G120-2083 *
* *
* STATUS = VERSION 1 RELEASE 3, LEVEL 0 *
* *
* FUNCTION = THIS MODULE PROVIDES THE STORAGE NEEDED BY *
* UNLDBCU2 AND CALLS THAT PROGRAM. *
* *
* NOTES = *
* DEPENDENCIES = ENTERPRISE COBOL FOR Z/OS IS REQUIRED. *
* SEVERAL NEW FACILITIES ARE USED. *
* *
* RESTRICTIONS = *
* THE MAXIMUM NUMBER OF COLUMNS IS 750, *
* WHICH IS THE SQL LIMIT. *
* *
* DATA RECORDS ARE LIMITED TO 32700 BYTES, *
* INCLUDING DATA, LENGTHS FOR VARCHAR DATA, *
* AND SPACE FOR NULL INDICATORS. *
* *
* MODULE TYPE = IBM ENTERPRISE COBOL PROGRAM *
* PROCESSOR = ENTERPRISE COBOL FOR Z/OS *
* MODULE SIZE = SEE LINK EDIT *
* ATTRIBUTES = REENTRANT *
* *
* ENTRY POINT = UNLDBCU1 *
* PURPOSE = SEE FUNCTION *
* LINKAGE = INVOKED FROM DSN RUN *
* INPUT = NONE *
* OUTPUT = NONE *
* *

344 Application Programming and SQL Guide

* EXIT-NORMAL = RETURN CODE 0 NORMAL COMPLETION *
* *
* EXIT-ERROR = *
* RETURN CODE = NONE *
* ABEND CODES = NONE *
* ERROR-MESSAGES = NONE *
* *
* EXTERNAL REFERENCES = *
* ROUTINES/SERVICES = *
* UNLDBCU2 - ACTUAL UNLOAD PROGRAM *
* *
* DATA-AREAS = NONE *
* CONTROL-BLOCKS = NONE *
* *
* TABLES = NONE *
* CHANGE-ACTIVITY = NONE *
* *
* *PSEUDOCODE* *
* *
* PROCEDURE *
* CALL UNLDBCU2. *
* END. *

/
IDENTIFICATION DIVISION.
*-----------------------
PROGRAM-ID. UNLDBCU1
*
ENVIRONMENT DIVISION.
*
CONFIGURATION SECTION.
DATA DIVISION.
*
WORKING-STORAGE SECTION.
*
01 WORKAREA-IND.

02 WORKIND PIC S9(4) COMP OCCURS 750 TIMES.
01 RECWORK.

02 RECWORK-LEN PIC S9(8) COMP VALUE 32700.
02 RECWORK-CHAR PIC X(1) OCCURS 32700 TIMES.

*
PROCEDURE DIVISION.
*

CALL ’UNLDBCU2’ USING WORKAREA-IND RECWORK.
GOBACK.

The following example is the called program that does pointer manipulation.
**** UNLDBCU2- DB2 SAMPLE BATCH COBOL UNLOAD PROGRAM ***********
* *
* MODULE NAME = UNLDBCU2 *
* *
* DESCRIPTIVE NAME = DB2 SAMPLE APPLICATION *
* UNLOAD PROGRAM *
* BATCH *
* ENTERPRISE COBOL FOR Z/OS *
* *
* COPYRIGHT = 5740-XYR (C) COPYRIGHT IBM CORP 1982, 1987 *
* REFER TO COPYRIGHT INSTRUCTIONS FORM NUMBER G120-2083 *
* *
* STATUS = VERSION 1 RELEASE 3, LEVEL 0 *
* *
* FUNCTION = THIS MODULE ACCEPTS A TABLE NAME OR VIEW NAME *
* AND UNLOADS THE DATA IN THAT TABLE OR VIEW. *
* READ IN A TABLE NAME FROM SYSIN. *
* PUT DATA FROM THE TABLE INTO DD SYSREC01. *
* WRITE RESULTS TO SYSPRINT. *

Chapter 6. Coding SQL statements in COBOL application programs 345

* *
* NOTES = *
* DEPENDENCIES = IBM ENTERPRISE COBOL FOR Z/OS *
* IS REQUIRED. *
* *
* RESTRICTIONS = *
* THE SQLDA IS LIMITED TO 33016 BYTES. *
* THIS SIZE ALLOWS FOR THE DB2 MAXIMUM *
* OF 750 COLUMNS. *
* *
* DATA RECORDS ARE LIMITED TO 32700 BYTES, *
* INCLUDING DATA, LENGTHS FOR VARCHAR DATA, *
* AND SPACE FOR NULL INDICATORS. *
* *
* TABLE OR VIEW NAMES ARE ACCEPTED, AND ONLY *
* ONE NAME IS ALLOWED PER RUN. *
* *
* MODULE TYPE = ENTERPRISE COBOL FOR Z/OS *
* PROCESSOR = DB2 PRECOMPILER, COBOL COMPILER *
* MODULE SIZE = SEE LINK EDIT *
* ATTRIBUTES = REENTRANT *
* *
* ENTRY POINT = UNLDBCU2 *
* PURPOSE = SEE FUNCTION *
* LINKAGE = *
* CALL ’UNLDBCU2’ USING WORKAREA-IND RECWORK. *
* *
* INPUT = SYMBOLIC LABEL/NAME = WORKAREA-IND *
* DESCRIPTION = INDICATOR VARIABLE ARRAY *
* 01 WORKAREA-IND. *
* 02 WORKIND PIC S9(4) COMP OCCURS 750 TIMES. *
* *
* SYMBOLIC LABEL/NAME = RECWORK *
* DESCRIPTION = WORK AREA FOR OUTPUT RECORD *
* 01 RECWORK. *
* 02 RECWORK-LEN PIC S9(8) COMP. *
* 02 RECWORK-CHAR PIC X(1) OCCURS 32700 TIMES.*
* *
* SYMBOLIC LABEL/NAME = SYSIN *
* DESCRIPTION = INPUT REQUESTS - TABLE OR VIEW *
* *
* OUTPUT = SYMBOLIC LABEL/NAME = SYSPRINT *
* DESCRIPTION = PRINTED RESULTS *
* *
* SYMBOLIC LABEL/NAME = SYSREC01 *
* DESCRIPTION = UNLOADED TABLE DATA *
* *
* EXIT-NORMAL = RETURN CODE 0 NORMAL COMPLETION *
* EXIT-ERROR = *
* RETURN CODE = NONE *
* ABEND CODES = NONE *
* ERROR-MESSAGES = *
* DSNT490I SAMPLE COBOL DATA UNLOAD PROGRAM RELEASE 3.0*
* - THIS IS THE HEADER, INDICATING A NORMAL *
* - START FOR THIS PROGRAM. *
* DSNT493I SQL ERROR, SQLCODE = NNNNNNNN *
* - AN SQL ERROR OR WARNING WAS ENCOUNTERED *
* - ADDITIONAL INFORMATION FROM DSNTIAR *
* - FOLLOWS THIS MESSAGE. *
* DSNT495I SUCCESSFUL UNLOAD XXXXXXXX ROWS OF *
* TABLE TTTTTTTT *
* - THE UNLOAD WAS SUCCESSFUL. XXXXXXXX IS *
* - THE NUMBER OF ROWS UNLOADED. TTTTTTTT *
* - IS THE NAME OF THE TABLE OR VIEW FROM *
* - WHICH IT WAS UNLOADED. *
* DSNT496I UNRECOGNIZED DATA TYPE CODE OF NNNNN *
* - THE PREPARE RETURNED AN INVALID DATA *

346 Application Programming and SQL Guide

* - TYPE CODE. NNNNN IS THE CODE, PRINTED *
* - IN DECIMAL. USUALLY AN ERROR IN *
* - THIS ROUTINE OR A NEW DATA TYPE. *
* DSNT497I RETURN CODE FROM MESSAGE ROUTINE DSNTIAR *
* - THE MESSAGE FORMATTING ROUTINE DETECTED *
* - AN ERROR. SEE THAT ROUTINE FOR RETURN *
* - CODE INFORMATION. USUALLY AN ERROR IN *
* - THIS ROUTINE. *
* DSNT498I ERROR, NO VALID COLUMNS FOUND *
* - THE PREPARE RETURNED DATA WHICH DID NOT *
* - PRODUCE A VALID OUTPUT RECORD. *
* - USUALLY AN ERROR IN THIS ROUTINE. *
* DSNT499I NO ROWS FOUND IN TABLE OR VIEW *
* - THE CHOSEN TABLE OR VIEWS DID NOT *
* - RETURN ANY ROWS. *
* ERROR MESSAGES FROM MODULE DSNTIAR *
* - WHEN AN ERROR OCCURS, THIS MODULE *
* - PRODUCES CORRESPONDING MESSAGES. *
* OTHER MESSAGES: *
* THE TABLE COULD NOT BE UNLOADED. EXITING. *
* *
* EXTERNAL REFERENCES = *
* ROUTINES/SERVICES = *
* DSNTIAR - TRANSLATE SQLCA INTO MESSAGES *
* DATA-AREAS = NONE *
* CONTROL-BLOCKS = *
* SQLCA - SQL COMMUNICATION AREA *
* *
* TABLES = NONE *
* CHANGE-ACTIVITY = NONE *
* *
* *PSEUDOCODE* *
* PROCEDURE *
* EXEC SQL DECLARE DT CURSOR FOR SEL END-EXEC. *
* EXEC SQL DECLARE SEL STATEMENT END-EXEC. *
* INITIALIZE THE DATA, OPEN FILES. *
* OBTAIN STORAGE FOR THE SQLDA AND THE DATA RECORDS. *
* READ A TABLE NAME. *
* OPEN SYSREC01. *
* BUILD THE SQL STATEMENT TO BE EXECUTED *
* EXEC SQL PREPARE SQL STATEMENT INTO SQLDA END-EXEC. *
* SET UP ADDRESSES IN THE SQLDA FOR DATA. *
* INITIALIZE DATA RECORD COUNTER TO 0. *
* EXEC SQL OPEN DT END-EXEC. *
* DO WHILE SQLCODE IS 0. *
* EXEC SQL FETCH DT USING DESCRIPTOR SQLDA END-EXEC. *
* ADD IN MARKERS TO DENOTE NULLS. *
* WRITE THE DATA TO SYSREC01. *
* INCREMENT DATA RECORD COUNTER. *
* END. *
* EXEC SQL CLOSE DT END-EXEC. *
* INDICATE THE RESULTS OF THE UNLOAD OPERATION. *
* CLOSE THE SYSIN, SYSPRINT, AND SYSREC01 FILES. *
* END. *

/
IDENTIFICATION DIVISION.
*-----------------------
PROGRAM-ID. UNLDBCU2
*
ENVIRONMENT DIVISION.
*--------------------
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT SYSIN
ASSIGN TO DA-S-SYSIN.

Chapter 6. Coding SQL statements in COBOL application programs 347

SELECT SYSPRINT
ASSIGN TO UT-S-SYSPRINT.

SELECT SYSREC01
ASSIGN TO DA-S-SYSREC01.

*
DATA DIVISION.
*-------------
*
FILE SECTION.
FD SYSIN

RECORD CONTAINS 80 CHARACTERS
BLOCK CONTAINS 0 RECORDS
LABEL RECORDS ARE OMITTED
RECORDING MODE IS F.

01 CARDREC PIC X(80).
*
FD SYSPRINT

RECORD CONTAINS 120 CHARACTERS
LABEL RECORDS ARE OMITTED
DATA RECORD IS MSGREC
RECORDING MODE IS F.

01 MSGREC PIC X(120).
*
FD SYSREC01

RECORD CONTAINS 5 TO 32704 CHARACTERS
LABEL RECORDS ARE OMITTED
DATA RECORD IS REC01
RECORDING MODE IS V.

01 REC01.
02 REC01-LEN PIC S9(8) COMP.
02 REC01-CHAR PIC X(1) OCCURS 1 TO 32700 TIMES

DEPENDING ON REC01-LEN.
/
WORKING-STORAGE SECTION.
*

* STRUCTURE FOR INPUT *

01 IOAREA.

02 TNAME PIC X(72).
02 FILLER PIC X(08).

01 STMTBUF.
49 STMTLEN PIC S9(4) COMP VALUE 92.
49 STMTCHAR PIC X(92).

01 STMTBLD.
02 FILLER PIC X(20) VALUE ’SELECT * FROM’.
02 STMTTAB PIC X(72).

*

* REPORT HEADER STRUCTURE *

01 HEADER.

02 FILLER PIC X(35)
VALUE ’ DSNT490I SAMPLE COBOL DATA UNLOAD ’.

02 FILLER PIC X(85) VALUE ’PROGRAM RELEASE 3.0’.
01 MSG-SQLERR.

02 FILLER PIC X(31)
VALUE ’ DSNT493I SQL ERROR, SQLCODE = ’.

02 MSG-MINUS PIC X(1).
02 MSG-PRINT-CODE PIC 9(8).
02 FILLER PIC X(81) VALUE ’ ’.

01 MSG-OTHER-ERR.
02 FILLER PIC X(42)

VALUE ’ THE TABLE COULD NOT BE UNLOADED. EXITING.’.
02 FILLER PIC X(78) VALUE ’ ’.

01 UNLOADED.
02 FILLER PIC X(28)

348 Application Programming and SQL Guide

VALUE ’ DSNT495I SUCCESSFUL UNLOAD ’.
02 ROWS PIC 9(8).
02 FILLER PIC X(15) VALUE ’ ROWS OF TABLE ’.
02 TABLENAM PIC X(72) VALUE ’ ’.

01 BADTYPE.
02 FILLER PIC X(42)

VALUE ’ DSNT496I UNRECOGNIZED DATA TYPE CODE OF ’.
02 TYPCOD PIC 9(8).
02 FILLER PIC X(71) VALUE ’ ’.

01 MSGRETCD.
02 FILLER PIC X(42)

VALUE ’ DSNT497I RETURN CODE FROM MESSAGE ROUTINE’.
02 FILLER PIC X(9) VALUE ’DSNTIAR ’.
02 RETCODE PIC 9(8).
02 FILLER PIC X(62) VALUE ’ ’.

01 MSGNOCOL.
02 FILLER PIC X(120)

VALUE ’ DSNT498I ERROR, NO VALID COLUMNS FOUND’.
01 MSG-NOROW.

02 FILLER PIC X(120)
VALUE ’ DSNT499I NO ROWS FOUND IN TABLE OR VIEW’.

* WORKAREAS *

77 NOT-FOUND PIC S9(8) COMP VALUE +100.

* VARIABLES FOR ERROR-MESSAGE FORMATTING *

01 ERROR-MESSAGE.

02 ERROR-LEN PIC S9(4) COMP VALUE +960.
02 ERROR-TEXT PIC X(120) OCCURS 8 TIMES

INDEXED BY ERROR-INDEX.
77 ERROR-TEXT-LEN PIC S9(8) COMP VALUE +120.

* SQL DESCRIPTOR AREA *

01 SQLDA.

02 SQLDAID PIC X(8) VALUE ’SQLDA ’.
02 SQLDABC PIC S9(8) COMPUTATIONAL VALUE 33016.
02 SQLN PIC S9(4) COMPUTATIONAL VALUE 750.
02 SQLD PIC S9(4) COMPUTATIONAL VALUE 0.
02 SQLVAR OCCURS 1 TO 750 TIMES

DEPENDING ON SQLN.
03 SQLTYPE PIC S9(4) COMPUTATIONAL.
03 SQLLEN PIC S9(4) COMPUTATIONAL.
03 SQLDATA POINTER.
03 SQLIND POINTER.
03 SQLNAME.

49 SQLNAMEL PIC S9(4) COMPUTATIONAL.
49 SQLNAMEC PIC X(30).

*
* DATA TYPES FOUND IN SQLTYPE, AFTER REMOVING THE NULL BIT
*
77 VARCTYPE PIC S9(4) COMP VALUE +448.
77 CHARTYPE PIC S9(4) COMP VALUE +452.
77 VARLTYPE PIC S9(4) COMP VALUE +456.
77 VARGTYPE PIC S9(4) COMP VALUE +464.
77 GTYPE PIC S9(4) COMP VALUE +468.
77 LVARGTYP PIC S9(4) COMP VALUE +472.
77 FLOATYPE PIC S9(4) COMP VALUE +480.
77 DECTYPE PIC S9(4) COMP VALUE +484.
77 INTTYPE PIC S9(4) COMP VALUE +496.
77 HWTYPE PIC S9(4) COMP VALUE +500.
77 DATETYP PIC S9(4) COMP VALUE +384.
77 TIMETYP PIC S9(4) COMP VALUE +388.
77 TIMESTMP PIC S9(4) COMP VALUE +392.
*

Chapter 6. Coding SQL statements in COBOL application programs 349

01 RECPTR POINTER.
01 RECNUM REDEFINES RECPTR PICTURE S9(8) COMPUTATIONAL.
01 IRECPTR POINTER.
01 IRECNUM REDEFINES IRECPTR PICTURE S9(8) COMPUTATIONAL.
01 I PICTURE S9(4) COMPUTATIONAL.
01 J PICTURE S9(4) COMPUTATIONAL.
01 DUMMY PICTURE S9(4) COMPUTATIONAL.
01 MYTYPE PICTURE S9(4) COMPUTATIONAL.
01 COLUMN-IND PICTURE S9(4) COMPUTATIONAL.
01 COLUMN-LEN PICTURE S9(4) COMPUTATIONAL.
01 COLUMN-PREC PICTURE S9(4) COMPUTATIONAL.
01 COLUMN-SCALE PICTURE S9(4) COMPUTATIONAL.
01 INDCOUNT PIC S9(4) COMPUTATIONAL.
01 ROWCOUNT PIC S9(4) COMPUTATIONAL.
01 ERR-FOUND PICTURE X(1).
01 WORKAREA2.

02 WORKINDPTR POINTER OCCURS 750 TIMES.

* DECLARE CURSOR AND STATEMENT FOR DYNAMIC SQL

*

EXEC SQL DECLARE DT CURSOR FOR SEL END-EXEC.
EXEC SQL DECLARE SEL STATEMENT END-EXEC.

*

* SQL INCLUDE FOR SQLCA *

EXEC SQL INCLUDE SQLCA END-EXEC.
*
77 ONE PIC S9(4) COMP VALUE +1.
77 TWO PIC S9(4) COMP VALUE +2.
77 FOUR PIC S9(4) COMP VALUE +4.
77 QMARK PIC X(1) VALUE ’?’.
*
LINKAGE SECTION.
01 LINKAREA-IND.

02 IND PIC S9(4) COMP OCCURS 750 TIMES.
01 LINKAREA-REC.

02 REC1-LEN PIC S9(8) COMP.
02 REC1-CHAR PIC X(1) OCCURS 1 TO 32700 TIMES

DEPENDING ON REC1-LEN.
01 LINKAREA-QMARK.

02 INDREC PIC X(1).
/
PROCEDURE DIVISION USING LINKAREA-IND LINKAREA-REC.
*

* SQL RETURN CODE HANDLING *

EXEC SQL WHENEVER SQLERROR GOTO DBERROR END-EXEC.
EXEC SQL WHENEVER SQLWARNING GOTO DBERROR END-EXEC.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.

*

* MAIN PROGRAM ROUTINE *

SET IRECPTR TO ADDRESS OF REC1-CHAR(1).
* **OPEN FILES

MOVE ’N’ TO ERR-FOUND.
* **INITIALIZE
* ** ERROR FLAG

OPEN INPUT SYSIN

OUTPUT SYSPRINT
OUTPUT SYSREC01.

* **WRITE HEADER
WRITE MSGREC FROM HEADER

350 Application Programming and SQL Guide

AFTER ADVANCING 2 LINES.
* **GET FIRST INPUT

READ SYSIN RECORD INTO IOAREA.
* **MAIN ROUTINE

PERFORM PROCESS-INPUT THROUGH IND-RESULT.
*
PROG-END.
* **CLOSE FILES

CLOSE SYSIN
SYSPRINT
SYSREC01.

GOBACK.
/

* *
* PERFORMED SECTION: *
* PROCESSING FOR THE TABLE OR VIEW JUST READ *
* *

PROCESS-INPUT.
*

MOVE TNAME TO STMTTAB.
MOVE STMTBLD TO STMTCHAR.
MOVE +750 TO SQLN.
EXEC SQL PREPARE SEL INTO :SQLDA FROM :STMTBUF END-EXEC.

* *
* SET UP ADDRESSES IN THE SQLDA FOR DATA. *
* *

IF SQLD = ZERO THEN
WRITE MSGREC FROM MSGNOCOL

AFTER ADVANCING 2 LINES
MOVE ’Y’ TO ERR-FOUND
GO TO IND-RESULT.

MOVE ZERO TO ROWCOUNT.
MOVE ZERO TO REC1-LEN.
SET RECPTR TO IRECPTR.
MOVE ONE TO I.
PERFORM COLADDR UNTIL I > SQLD.

**
* *
* SET LENGTH OF OUTPUT RECORD. *
* EXEC SQL OPEN DT END-EXEC. *
* DO WHILE SQLCODE IS 0. *
* EXEC SQL FETCH DT USING DESCRIPTOR :SQLDA END-EXEC. *
* ADD IN MARKERS TO DENOTE NULLS. *
* WRITE THE DATA TO SYSREC01. *
* INCREMENT DATA RECORD COUNTER. *
* END. *
* *
**
* **OPEN CURSOR

EXEC SQL OPEN DT END-EXEC.
PERFORM BLANK-REC.
EXEC SQL FETCH DT USING DESCRIPTOR :SQLDA END-EXEC.

* **NO ROWS FOUND
* **PRINT ERROR MESSAGE

IF SQLCODE = NOT-FOUND
WRITE MSGREC FROM MSG-NOROW

AFTER ADVANCING 2 LINES
MOVE ’Y’ TO ERR-FOUND

ELSE
* **WRITE ROW AND
* **CONTINUE UNTIL
* **NO MORE ROWS

PERFORM WRITE-AND-FETCH

Chapter 6. Coding SQL statements in COBOL application programs 351

UNTIL SQLCODE IS NOT EQUAL TO ZERO.
*

EXEC SQL WHENEVER NOT FOUND GOTO CLOSEDT END-EXEC.
*
CLOSEDT.

EXEC SQL CLOSE DT END-EXEC.
*
**
* *
* INDICATE THE RESULTS OF THE UNLOAD OPERATION. *
* *
**
IND-RESULT.

IF ERR-FOUND = ’N’ THEN
MOVE TNAME TO TABLENAM
MOVE ROWCOUNT TO ROWS
WRITE MSGREC FROM UNLOADED

AFTER ADVANCING 2 LINES
ELSE

WRITE MSGREC FROM MSG-OTHER-ERR
AFTER ADVANCING 2 LINES

MOVE +0012 TO RETURN-CODE
GO TO PROG-END.

*
WRITE-AND-FETCH.
* ADD IN MARKERS TO DENOTE NULLS.

MOVE ONE TO INDCOUNT.
PERFORM NULLCHK UNTIL INDCOUNT = SQLD.
MOVE REC1-LEN TO REC01-LEN.
WRITE REC01 FROM LINKAREA-REC.
ADD ONE TO ROWCOUNT.
PERFORM BLANK-REC.
EXEC SQL FETCH DT USING DESCRIPTOR :SQLDA END-EXEC.

*
NULLCHK.

IF IND(INDCOUNT) < 0 THEN
SET ADDRESS OF LINKAREA-QMARK TO WORKINDPTR(INDCOUNT)
MOVE QMARK TO INDREC.

ADD ONE TO INDCOUNT.

* BLANK OUT RECORD TEXT FIRST *

BLANK-REC.

MOVE ONE TO J.
PERFORM BLANK-MORE UNTIL J > REC1-LEN.

BLANK-MORE.
MOVE ’ ’ TO REC1-CHAR(J).
ADD ONE TO J.

*
COLADDR.

SET SQLDATA(I) TO RECPTR.
**
*
* DETERMINE THE LENGTH OF THIS COLUMN (COLUMN-LEN)
* THIS DEPENDS UPON THE DATA TYPE. MOST DATA TYPES HAVE
* THE LENGTH SET, BUT VARCHAR, GRAPHIC, VARGRAPHIC, AND
* DECIMAL DATA NEED TO HAVE THE BYTES CALCULATED.
* THE NULL ATTRIBUTE MUST BE SEPARATED TO SIMPLIFY MATTERS.
*
**

MOVE SQLLEN(I) TO COLUMN-LEN.
* COLUMN-IND IS 0 FOR NO NULLS AND 1 FOR NULLS

DIVIDE SQLTYPE(I) BY TWO GIVING DUMMY REMAINDER COLUMN-IND.
* MYTYPE IS JUST THE SQLTYPE WITHOUT THE NULL BIT

MOVE SQLTYPE(I) TO MYTYPE.
SUBTRACT COLUMN-IND FROM MYTYPE.

* SET THE COLUMN LENGTH, DEPENDENT UPON DATA TYPE

352 Application Programming and SQL Guide

EVALUATE MYTYPE
WHEN CHARTYPE CONTINUE,
WHEN DATETYP CONTINUE,
WHEN TIMETYP CONTINUE,
WHEN TIMESTMP CONTINUE,
WHEN FLOATYPE CONTINUE,
WHEN VARCTYPE

ADD TWO TO COLUMN-LEN,
WHEN VARLTYPE

ADD TWO TO COLUMN-LEN,
WHEN GTYPE

MULTIPLY COLUMN-LEN BY TWO GIVING COLUMN-LEN,
WHEN VARGTYPE

PERFORM CALC-VARG-LEN,
WHEN LVARGTYP

PERFORM CALC-VARG-LEN,
WHEN HWTYPE

MOVE TWO TO COLUMN-LEN,
WHEN INTTYPE

MOVE FOUR TO COLUMN-LEN,
WHEN DECTYPE

PERFORM CALC-DECIMAL-LEN,
WHEN OTHER

PERFORM UNRECOGNIZED-ERROR,
END-EVALUATE.
ADD COLUMN-LEN TO RECNUM.
ADD COLUMN-LEN TO REC1-LEN.

**
* *
* IF THIS COLUMN CAN BE NULL, AN INDICATOR VARIABLE IS *
* NEEDED. WE ALSO RESERVE SPACE IN THE OUTPUT RECORD TO *
* NOTE THAT THE VALUE IS NULL. *
* *
**

MOVE ZERO TO IND(I).
IF COLUMN-IND = ONE THEN

SET SQLIND(I) TO ADDRESS OF IND(I)
SET WORKINDPTR(I) TO RECPTR
ADD ONE TO RECNUM
ADD ONE TO REC1-LEN.

*
ADD ONE TO I.

* PERFORMED PARAGRAPH TO CALCULATE COLUMN LENGTH
* FOR A DECIMAL DATA TYPE COLUMN
CALC-DECIMAL-LEN.

DIVIDE COLUMN-LEN BY 256 GIVING COLUMN-PREC
REMAINDER COLUMN-SCALE.

MOVE COLUMN-PREC TO COLUMN-LEN.
ADD ONE TO COLUMN-LEN.
DIVIDE COLUMN-LEN BY TWO GIVING COLUMN-LEN.

* PERFORMED PARAGRAPH TO CALCULATE COLUMN LENGTH
* FOR A VARGRAPHIC DATA TYPE COLUMN
CALC-VARG-LEN.

MULTIPLY COLUMN-LEN BY TWO GIVING COLUMN-LEN.
ADD TWO TO COLUMN-LEN.

* PERFORMED PARAGRAPH TO NOTE AN UNRECOGNIZED
* DATA TYPE COLUMN
UNRECOGNIZED-ERROR.
*
* ERROR MESSAGE FOR UNRECOGNIZED DATA TYPE
*

MOVE SQLTYPE(I) TO TYPCOD
MOVE ’Y’ TO ERR-FOUND
WRITE MSGREC FROM BADTYPE

AFTER ADVANCING 2 LINES
GO TO IND-RESULT.

*

Chapter 6. Coding SQL statements in COBOL application programs 353

* SQL ERROR OCCURRED - GET MESSAGE *

DBERROR.
* **SQL ERROR

MOVE ’Y’ TO ERR-FOUND.
MOVE SQLCODE TO MSG-PRINT-CODE.
IF SQLCODE < 0 THEN MOVE ’-’ TO MSG-MINUS.
WRITE MSGREC FROM MSG-SQLERR

AFTER ADVANCING 2 LINES.
CALL ’DSNTIAR’ USING SQLCA ERROR-MESSAGE ERROR-TEXT-LEN.
IF RETURN-CODE = ZERO

PERFORM ERROR-PRINT VARYING ERROR-INDEX
FROM 1 BY 1 UNTIL ERROR-INDEX GREATER THAN 8

ELSE
* **ERROR FOUND IN DSNTIAR
* **PRINT ERROR MESSAGE

MOVE RETURN-CODE TO RETCODE
WRITE MSGREC FROM MSGRETCD

AFTER ADVANCING 2 LINES.
GO TO IND-RESULT.

*

* PRINT MESSAGE TEXT *

ERROR-PRINT.

WRITE MSGREC FROM ERROR-TEXT (ERROR-INDEX)
AFTER ADVANCING 1 LINE.

Related information:

DB2 Program Directory

Sample COBOL program with CONNECT statements
This example demonstrates how to access distributed data by using CONNECT
statements in a COBOL program.

The following figure contains a sample COBOL program that uses two-phase
commit to access distributed data.

IDENTIFICATION DIVISION.
PROGRAM-ID. TWOPHASE.
AUTHOR.
REMARKS.

* *
* MODULE NAME = TWOPHASE *
* *
* DESCRIPTIVE NAME = DB2 SAMPLE APPLICATION USING *
* TWO PHASE COMMIT AND THE DRDA DISTRIBUTED *
* ACCESS METHOD WITH CONNECT STATEMENTS *
* *
* COPYRIGHT = 5665-DB2 (C) COPYRIGHT IBM CORP 1982, 1989 *
* REFER TO COPYRIGHT INSTRUCTIONS FORM NUMBER G120-2083 *
* *
* STATUS = VERSION 5 *
* *
* FUNCTION = THIS MODULE DEMONSTRATES DISTRIBUTED DATA ACCESS *
* USING 2 PHASE COMMIT BY TRANSFERRING AN EMPLOYEE *
* FROM ONE LOCATION TO ANOTHER. *
* *
* NOTE: THIS PROGRAM ASSUMES THE EXISTENCE OF THE *
* TABLE SYSADM.EMP AT LOCATIONS STLEC1 AND *
* STLEC2. *
* *
* MODULE TYPE = COBOL PROGRAM *
* PROCESSOR = DB2 PRECOMPILER, ENTERPRISE COBOL FOR Z/OS *

354 Application Programming and SQL Guide

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc/src/alltoc/db2z_prgdr.htm

* MODULE SIZE = SEE LINK EDIT *
* ATTRIBUTES = NOT REENTRANT OR REUSABLE *
* *
* ENTRY POINT = *
* PURPOSE = TO ILLUSTRATE 2 PHASE COMMIT *
* LINKAGE = INVOKE FROM DSN RUN *
* INPUT = NONE *
* OUTPUT = *
* SYMBOLIC LABEL/NAME = SYSPRINT *
* DESCRIPTION = PRINT OUT THE DESCRIPTION OF EACH *
* STEP AND THE RESULTANT SQLCA *
* *
* EXIT NORMAL = RETURN CODE 0 FROM NORMAL COMPLETION *
* *
* EXIT ERROR = NONE *
* *
* EXTERNAL REFERENCES = *
* ROUTINE SERVICES = NONE *
* DATA-AREAS = NONE *
* CONTROL-BLOCKS = *
* SQLCA - SQL COMMUNICATION AREA *
* *
* TABLES = NONE *
* *
* CHANGE-ACTIVITY = NONE *
* *
* *
* *

* PSEUDOCODE *
* *
* MAINLINE. *
* Perform CONNECT-TO-SITE-1 to establish *
* a connection to the local connection. *
* If the previous operation was successful Then *
* Do. *
* | Perform PROCESS-CURSOR-SITE-1 to obtain the *
* | information about an employee that is *
* | transferring to another location. *
* | If the information about the employee was obtained *
* | successfully Then *
* | Do. *
* | | Perform UPDATE-ADDRESS to update the information *
* | | to contain current information about the *
* | | employee. *
* | | Perform CONNECT-TO-SITE-2 to establish *
* | | a connection to the site where the employee is *
* | | transferring to. *
* | | If the connection is established successfully *
* | | Then *
* | | Do. *
* | | | Perform PROCESS-SITE-2 to insert the *
* | | | employee information at the location *
* | | | where the employee is transferring to. *
* | | End if the connection was established *
* | | successfully. *
* | End if the employee information was obtained *
* | successfully. *
* End if the previous operation was successful. *
* Perform COMMIT-WORK to COMMIT the changes made to STLEC1 *
* and STLEC2. *
* *
* PROG-END. *
* Close the printer. *
* Return. *
* *
* CONNECT-TO-SITE-1. *
* Provide a text description of the following step. *

Chapter 6. Coding SQL statements in COBOL application programs 355

* Establish a connection to the location where the *
* employee is transferring from. *
* Print the SQLCA out. *
* *
* PROCESS-CURSOR-SITE-1. *
* Provide a text description of the following step. *
* Open a cursor that will be used to retrieve information *
* about the transferring employee from this site. *
* Print the SQLCA out. *
* If the cursor was opened successfully Then *
* Do. *
* | Perform FETCH-DELETE-SITE-1 to retrieve and *
* | delete the information about the transferring *
* | employee from this site. *
* | Perform CLOSE-CURSOR-SITE-1 to close the cursor. *
* End if the cursor was opened successfully. *
* *

* FETCH-DELETE-SITE-1. *
* Provide a text description of the following step. *
* Fetch information about the transferring employee. *
* Print the SQLCA out. *
* If the information was retrieved successfully Then *
* Do. *
* | Perform DELETE-SITE-1 to delete the employee *
* | at this site. *
* End if the information was retrieved successfully. *
* *
* DELETE-SITE-1. *
* Provide a text description of the following step. *
* Delete the information about the transferring employee *
* from this site. *
* Print the SQLCA out. *
* *
* CLOSE-CURSOR-SITE-1. *
* Provide a text description of the following step. *
* Close the cursor used to retrieve information about *
* the transferring employee. *
* Print the SQLCA out. *
* *
* UPDATE-ADDRESS. *
* Update the address of the employee. *
* Update the city of the employee. *
* Update the location of the employee. *
* *
* CONNECT-TO-SITE-2. *
* Provide a text description of the following step. *
* Establish a connection to the location where the *
* employee is transferring to. *
* Print the SQLCA out. *
* *
* PROCESS-SITE-2. *
* Provide a text description of the following step. *
* Insert the employee information at the location where *
* the employee is being transferred to. *
* Print the SQLCA out. *
* *
* COMMIT-WORK. *
* COMMIT all the changes made to STLEC1 and STLEC2. *
* *

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT PRINTER, ASSIGN TO S-OUT1.

356 Application Programming and SQL Guide

DATA DIVISION.
FILE SECTION.
FD PRINTER

RECORD CONTAINS 120 CHARACTERS
DATA RECORD IS PRT-TC-RESULTS
LABEL RECORD IS OMITTED.

01 PRT-TC-RESULTS.
03 PRT-BLANK PIC X(120).

WORKING-STORAGE SECTION.

* Variable declarations *

01 H-EMPTBL.
05 H-EMPNO PIC X(6).
05 H-NAME.

49 H-NAME-LN PIC S9(4) COMP-4.
49 H-NAME-DA PIC X(32).

05 H-ADDRESS.
49 H-ADDRESS-LN PIC S9(4) COMP-4.
49 H-ADDRESS-DA PIC X(36).

05 H-CITY.
49 H-CITY-LN PIC S9(4) COMP-4.
49 H-CITY-DA PIC X(36).

05 H-EMPLOC PIC X(4).
05 H-SSNO PIC X(11).
05 H-BORN PIC X(10).
05 H-SEX PIC X(1).
05 H-HIRED PIC X(10).
05 H-DEPTNO PIC X(3).
05 H-JOBCODE PIC S9(3)V COMP-3.
05 H-SRATE PIC S9(5) COMP.
05 H-EDUC PIC S9(5) COMP.
05 H-SAL PIC S9(6)V9(2) COMP-3.
05 H-VALIDCHK PIC S9(6)V COMP-3.

01 H-EMPTBL-IND-TABLE.
02 H-EMPTBL-IND PIC S9(4) COMP OCCURS 15 TIMES.

* Includes for the variables used in the COBOL standard *
* language procedures and the SQLCA. *

EXEC SQL INCLUDE COBSVAR END-EXEC.
EXEC SQL INCLUDE SQLCA END-EXEC.

* Declaration for the table that contains employee information *

EXEC SQL DECLARE SYSADM.EMP TABLE
(EMPNO CHAR(6) NOT NULL,
NAME VARCHAR(32),
ADDRESS VARCHAR(36) ,
CITY VARCHAR(36) ,
EMPLOC CHAR(4) NOT NULL,
SSNO CHAR(11),
BORN DATE,
SEX CHAR(1),
HIRED CHAR(10),
DEPTNO CHAR(3) NOT NULL,
JOBCODE DECIMAL(3),
SRATE SMALLINT,
EDUC SMALLINT,

Chapter 6. Coding SQL statements in COBOL application programs 357

SAL DECIMAL(8,2) NOT NULL,
VALCHK DECIMAL(6))

END-EXEC.

* Constants *

77 SITE-1 PIC X(16) VALUE ’STLEC1’.
77 SITE-2 PIC X(16) VALUE ’STLEC2’.
77 TEMP-EMPNO PIC X(6) VALUE ’080000’.
77 TEMP-ADDRESS-LN PIC 99 VALUE 15.
77 TEMP-CITY-LN PIC 99 VALUE 18.

* Declaration of the cursor that will be used to retrieve *
* information about a transferring employee *

EXEC SQL DECLARE C1 CURSOR FOR
SELECT EMPNO, NAME, ADDRESS, CITY, EMPLOC,

SSNO, BORN, SEX, HIRED, DEPTNO, JOBCODE,
SRATE, EDUC, SAL, VALCHK

FROM SYSADM.EMP
WHERE EMPNO = :TEMP-EMPNO

END-EXEC.

PROCEDURE DIVISION.
A101-HOUSE-KEEPING.

OPEN OUTPUT PRINTER.

* An employee is transferring from location STLEC1 to STLEC2. *
* Retrieve information about the employee from STLEC1, delete *
* the employee from STLEC1 and insert the employee at STLEC2 *
* using the information obtained from STLEC1. *

MAINLINE.
PERFORM CONNECT-TO-SITE-1
IF SQLCODE IS EQUAL TO 0

PERFORM PROCESS-CURSOR-SITE-1
IF SQLCODE IS EQUAL TO 0

PERFORM UPDATE-ADDRESS
PERFORM CONNECT-TO-SITE-2
IF SQLCODE IS EQUAL TO 0

PERFORM PROCESS-SITE-2.
PERFORM COMMIT-WORK.

PROG-END.
CLOSE PRINTER.
GOBACK.

* Establish a connection to STLEC1 *

CONNECT-TO-SITE-1.

MOVE ’CONNECT TO STLEC1 ’ TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL

CONNECT TO :SITE-1
END-EXEC.
PERFORM PTSQLCA.

* When a connection has been established successfully at STLEC1,*

358 Application Programming and SQL Guide

* open the cursor that will be used to retrieve information *
* about the transferring employee. *

PROCESS-CURSOR-SITE-1.

MOVE ’OPEN CURSOR C1 ’ TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL

OPEN C1
END-EXEC.
PERFORM PTSQLCA.
IF SQLCODE IS EQUAL TO ZERO

PERFORM FETCH-DELETE-SITE-1
PERFORM CLOSE-CURSOR-SITE-1.

* Retrieve information about the transferring employee. *
* Provided that the employee exists, perform DELETE-SITE-1 to *
* delete the employee from STLEC1. *

FETCH-DELETE-SITE-1.

MOVE ’FETCH C1 ’ TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL

FETCH C1 INTO :H-EMPTBL:H-EMPTBL-IND
END-EXEC.
PERFORM PTSQLCA.
IF SQLCODE IS EQUAL TO ZERO

PERFORM DELETE-SITE-1.

* Delete the employee from STLEC1. *

DELETE-SITE-1.

MOVE ’DELETE EMPLOYEE ’ TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
MOVE ’DELETE EMPLOYEE ’ TO STNAME
EXEC SQL

DELETE FROM SYSADM.EMP
WHERE EMPNO = :TEMP-EMPNO

END-EXEC.
PERFORM PTSQLCA.

* Close the cursor used to retrieve information about the *
* transferring employee. *

CLOSE-CURSOR-SITE-1.

MOVE ’CLOSE CURSOR C1 ’ TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL

CLOSE C1
END-EXEC.
PERFORM PTSQLCA.

* Update certain employee information in order to make it *
* current. *

UPDATE-ADDRESS.

Chapter 6. Coding SQL statements in COBOL application programs 359

MOVE TEMP-ADDRESS-LN TO H-ADDRESS-LN.
MOVE ’1500 NEW STREET’ TO H-ADDRESS-DA.
MOVE TEMP-CITY-LN TO H-CITY-LN.
MOVE ’NEW CITY, CA 97804’ TO H-CITY-DA.
MOVE ’SJCA’ TO H-EMPLOC.

* Establish a connection to STLEC2 *

CONNECT-TO-SITE-2.

MOVE ’CONNECT TO STLEC2 ’ TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL

CONNECT TO :SITE-2
END-EXEC.
PERFORM PTSQLCA.

* Using the employee information that was retrieved from STLEC1 *
* and updated previously, insert the employee at STLEC2. *

PROCESS-SITE-2.

MOVE ’INSERT EMPLOYEE ’ TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL

INSERT INTO SYSADM.EMP VALUES
(:H-EMPNO,
:H-NAME,
:H-ADDRESS,
:H-CITY,
:H-EMPLOC,
:H-SSNO,
:H-BORN,
:H-SEX,
:H-HIRED,
:H-DEPTNO,
:H-JOBCODE,
:H-SRATE,
:H-EDUC,
:H-SAL,
:H-VALIDCHK)

END-EXEC.
PERFORM PTSQLCA.

* COMMIT any changes that were made at STLEC1 and STLEC2. *

COMMIT-WORK.

MOVE ’COMMIT WORK ’ TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL

COMMIT
END-EXEC.
PERFORM PTSQLCA.

* Include COBOL standard language procedures *

INCLUDE-SUBS.
EXEC SQL INCLUDE COBSSUB END-EXEC.

360 Application Programming and SQL Guide

Sample COBOL program using aliases for three-part names
You can access distributed data by using aliases for three-part names in a COBOL
program.

The following sample program demonstrates distributed access data using aliases
for three-part names with two-phase commit.

IDENTIFICATION DIVISION.
PROGRAM-ID. TWOPHASE.
AUTHOR.
REMARKS.

* *
* MODULE NAME = TWOPHASE *
* *
* DESCRIPTIVE NAME = DB2 SAMPLE APPLICATION USING *
* TWO PHASE COMMIT AND DRDA WITH *
* ALIASES FOR THREE-PART NAMES *
* *
* FUNCTION = THIS MODULE DEMONSTRATES DISTRIBUTED DATA ACCESS *
* USING 2 PHASE COMMIT BY TRANSFERRING AN EMPLOYEE *
* FROM ONE LOCATION TO ANOTHER. *
* *
* NOTE: THIS PROGRAM ASSUMES THE EXISTENCE OF THE *
* TABLE SYSADM.ALLEMPLOYEES AT LOCATIONS STLEC1
* AND STLEC2. *
* *
* MODULE TYPE = COBOL PROGRAM *
* PROCESSOR = DB2 PRECOMPILER, ENTERPRISE COBOL FOR Z/OS *
* MODULE SIZE = SEE LINK EDIT *
* ATTRIBUTES = NOT REENTRANT OR REUSABLE *
* *
* ENTRY POINT = *
* PURPOSE = TO ILLUSTRATE 2 PHASE COMMIT *
* LINKAGE = INVOKE FROM DSN RUN *
* INPUT = NONE *
* OUTPUT = *
* SYMBOLIC LABEL/NAME = SYSPRINT *
* DESCRIPTION = PRINT OUT THE DESCRIPTION OF EACH *
* STEP AND THE RESULTANT SQLCA *
* *
* EXIT NORMAL = RETURN CODE 0 FROM NORMAL COMPLETION *
* *
* EXIT ERROR = NONE *
* *
* EXTERNAL REFERENCES = *
* ROUTINE SERVICES = NONE *
* DATA-AREAS = NONE *
* CONTROL-BLOCKS = *
* SQLCA - SQL COMMUNICATION AREA *
* *
* TABLES = NONE *
* *
* CHANGE-ACTIVITY = NONE *
* *
* *
* *
* PSEUDOCODE *
* *
* MAINLINE. *
* Perform PROCESS-CURSOR-SITE-1 to obtain the information *
* about an employee that is transferring to another *
* location. *
* If the information about the employee was obtained *
* successfully Then *
* Do. *

Chapter 6. Coding SQL statements in COBOL application programs 361

* | Perform UPDATE-ADDRESS to update the information to *
* | contain current information about the employee. *
* | Perform PROCESS-SITE-2 to insert the employee *
* | information at the location where the employee is *
* | transferring to. *
* End if the employee information was obtained *
* successfully. *
* Perform COMMIT-WORK to COMMIT the changes made to STLEC1 *
* and STLEC2. *
* *
* PROG-END. *
* Close the printer. *
* Return. *
* *
* PROCESS-CURSOR-SITE-1. *
* Provide a text description of the following step. *
* Open a cursor that will be used to retrieve information *
* about the transferring employee from this site. *
* Print the SQLCA out. *
* If the cursor was opened successfully Then *
* Do. *
* | Perform FETCH-DELETE-SITE-1 to retrieve and *
* | delete the information about the transferring *
* | employee from this site. *
* | Perform CLOSE-CURSOR-SITE-1 to close the cursor. *
* End if the cursor was opened successfully. *
* *
* FETCH-DELETE-SITE-1. *
* Provide a text description of the following step. *
* Fetch information about the transferring employee. *
* Print the SQLCA out. *
* If the information was retrieved successfully Then *
* Do. *
* | Perform DELETE-SITE-1 to delete the employee *
* | at this site. *
* End if the information was retrieved successfully. *
* *
* DELETE-SITE-1. *
* Provide a text description of the following step. *
* Delete the information about the transferring employee *
* from this site. *
* Print the SQLCA out. *
* *
* CLOSE-CURSOR-SITE-1. *
* Provide a text description of the following step. *
* Close the cursor used to retrieve information about *
* the transferring employee. *
* Print the SQLCA out. *
* *
* UPDATE-ADDRESS. *
* Update the address of the employee. *
* Update the city of the employee. *
* Update the location of the employee. *
* *
* PROCESS-SITE-2. *
* Provide a text description of the following step. *
* Insert the employee information at the location where *
* the employee is being transferred to. *
* Print the SQLCA out. *
* *
* COMMIT-WORK. *
* COMMIT all the changes made to STLEC1 and STLEC2. *
* *

ENVIRONMENT DIVISION.

362 Application Programming and SQL Guide

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT PRINTER, ASSIGN TO S-OUT1.

DATA DIVISION.
FILE SECTION.
FD PRINTER

RECORD CONTAINS 120 CHARACTERS
DATA RECORD IS PRT-TC-RESULTS
LABEL RECORD IS OMITTED.

01 PRT-TC-RESULTS.
03 PRT-BLANK PIC X(120).

WORKING-STORAGE SECTION.

* Variable declarations *

01 H-EMPTBL.
05 H-EMPNO PIC X(6).
05 H-NAME.

49 H-NAME-LN PIC S9(4) COMP-4.
49 H-NAME-DA PIC X(32).

05 H-ADDRESS.
49 H-ADDRESS-LN PIC S9(4) COMP-4.
49 H-ADDRESS-DA PIC X(36).

05 H-CITY.
49 H-CITY-LN PIC S9(4) COMP-4.
49 H-CITY-DA PIC X(36).

05 H-EMPLOC PIC X(4).
05 H-SSNO PIC X(11).
05 H-BORN PIC X(10).
05 H-SEX PIC X(1).
05 H-HIRED PIC X(10).
05 H-DEPTNO PIC X(3).
05 H-JOBCODE PIC S9(3)V COMP-3.
05 H-SRATE PIC S9(5) COMP.
05 H-EDUC PIC S9(5) COMP.
05 H-SAL PIC S9(6)V9(2) COMP-3.
05 H-VALIDCHK PIC S9(6)V COMP-3.

01 H-EMPTBL-IND-TABLE.
02 H-EMPTBL-IND PIC S9(4) COMP OCCURS 15 TIMES.

* Includes for the variables used in the COBOL standard *
* language procedures and the SQLCA. *

EXEC SQL INCLUDE COBSVAR END-EXEC.
EXEC SQL INCLUDE SQLCA END-EXEC.

* Declaration for the table that contains employee information *

EXEC SQL DECLARE SYSADM.ALLEMPLOYEES TABLE
(EMPNO CHAR(6) NOT NULL,
NAME VARCHAR(32),
ADDRESS VARCHAR(36) ,
CITY VARCHAR(36) ,
EMPLOC CHAR(4) NOT NULL,
SSNO CHAR(11),
BORN DATE,
SEX CHAR(1),
HIRED CHAR(10),
DEPTNO CHAR(3) NOT NULL,

Chapter 6. Coding SQL statements in COBOL application programs 363

JOBCODE DECIMAL(3),
SRATE SMALLINT,
EDUC SMALLINT,
SAL DECIMAL(8,2) NOT NULL,
VALCHK DECIMAL(6))

END-EXEC.

* Constants *

77 TEMP-EMPNO PIC X(6) VALUE ’080000’.
77 TEMP-ADDRESS-LN PIC 99 VALUE 15.
77 TEMP-CITY-LN PIC 99 VALUE 18.

* Declaration of the cursor that will be used to retrieve *
* information about a transferring employee *
* EC1EMP is the alias for STLEC1.SYSADM.ALLEMPLOYEES *

EXEC SQL DECLARE C1 CURSOR FOR
SELECT EMPNO, NAME, ADDRESS, CITY, EMPLOC,

SSNO, BORN, SEX, HIRED, DEPTNO, JOBCODE,
SRATE, EDUC, SAL, VALCHK

FROM EC1EMP
WHERE EMPNO = :TEMP-EMPNO

END-EXEC.
PROCEDURE DIVISION.
A101-HOUSE-KEEPING.

OPEN OUTPUT PRINTER.

* An employee is transferring from location STLEC1 to STLEC2. *
* Retrieve information about the employee from STLEC1, delete *
* the employee from STLEC1 and insert the employee at STLEC2 *
* using the information obtained from STLEC1. *

MAINLINE.
PERFORM PROCESS-CURSOR-SITE-1
IF SQLCODE IS EQUAL TO 0

PERFORM UPDATE-ADDRESS
PERFORM PROCESS-SITE-2.

PERFORM COMMIT-WORK.

PROG-END.
CLOSE PRINTER.
GOBACK.

* Open the cursor that will be used to retrieve information *
* about the transferring employee. *

PROCESS-CURSOR-SITE-1.

MOVE ’OPEN CURSOR C1 ’ TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL

OPEN C1
END-EXEC.
PERFORM PTSQLCA.
IF SQLCODE IS EQUAL TO ZERO

PERFORM FETCH-DELETE-SITE-1
PERFORM CLOSE-CURSOR-SITE-1.

364 Application Programming and SQL Guide

* Retrieve information about the transferring employee. *
* Provided that the employee exists, perform DELETE-SITE-1 to *
* delete the employee from STLEC1. *

FETCH-DELETE-SITE-1.

MOVE ’FETCH C1 ’ TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL

FETCH C1 INTO :H-EMPTBL:H-EMPTBL-IND
END-EXEC. PERFORM PTSQLCA.
IF SQLCODE IS EQUAL TO ZERO

PERFORM DELETE-SITE-1.

* Delete the employee from STLEC1. *

DELETE-SITE-1.

MOVE ’DELETE EMPLOYEE ’ TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
MOVE ’DELETE EMPLOYEE ’ TO STNAME
EXEC SQL

DELETE FROM EC1EMP
WHERE EMPNO = :TEMP-EMPNO

END-EXEC.
PERFORM PTSQLCA.

* Close the cursor used to retrieve information about the *
* transferring employee. *

CLOSE-CURSOR-SITE-1.

MOVE ’CLOSE CURSOR C1 ’ TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL

CLOSE C1
END-EXEC.
PERFORM PTSQLCA.

* Update certain employee information in order to make it *
* current. *

UPDATE-ADDRESS.
MOVE TEMP-ADDRESS-LN TO H-ADDRESS-LN.
MOVE ’1500 NEW STREET’ TO H-ADDRESS-DA.
MOVE TEMP-CITY-LN TO H-CITY-LN.
MOVE ’NEW CITY, CA 97804’ TO H-CITY-DA.
MOVE ’SJCA’ TO H-EMPLOC.

**
* Using the employee information that was retrieved from STLEC1 *
* and updated previously, insert the employee at STLEC2. *
* EC2EMP is the alias for STLEC2.SYSADM.ALLEMPLOYEES *

PROCESS-SITE-2.

MOVE ’INSERT EMPLOYEE ’ TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL

Chapter 6. Coding SQL statements in COBOL application programs 365

INSERT INTO EC2EMP VALUES
(:H-EMPNO,
:H-NAME,
:H-ADDRESS,
:H-CITY,
:H-EMPLOC,
:H-SSNO,
:H-BORN,
:H-SEX,
:H-HIRED,
:H-DEPTNO,
:H-JOBCODE,
:H-SRATE,
:H-EDUC,
:H-SAL,
:H-VALIDCHK)

END-EXEC.
PERFORM PTSQLCA.

* COMMIT any changes that were made at STLEC1 and STLEC2. *

COMMIT-WORK.

MOVE ’COMMIT WORK ’ TO STNAME
WRITE PRT-TC-RESULTS FROM STNAME
EXEC SQL

COMMIT
END-EXEC.
PERFORM PTSQLCA.

* Include COBOL standard language procedures *

INCLUDE-SUBS.
EXEC SQL INCLUDE COBSSUB END-EXEC.

Example COBOL stored procedure with a GENERAL WITH
NULLS linkage convention
You can call a stored procedure that uses the GENERAL WITH NULLS linkage
convention from a COBOL program.

This example stored procedure does the following:
v Searches the DB2 SYSIBM.SYSROUTINES catalog table for a row that matches

the input parameters from the client program. The two input parameters contain
values for NAME and SCHEMA.

v Searches the DB2 catalog table SYSTABLES for all tables in which the value of
CREATOR matches the value of input parameter SCHEMA. The stored
procedure uses a cursor to return the table names.

The linkage convention for this stored procedure is GENERAL WITH NULLS.

The output parameters from this stored procedure contain the SQLCODE from the
SELECT operation, and the value of the RUNOPTS column retrieved from the
SYSIBM.SYSROUTINES table.

The CREATE PROCEDURE statement for this stored procedure might look like
this:

366 Application Programming and SQL Guide

CREATE PROCEDURE GETPRML(PROCNM CHAR(18) IN, SCHEMA CHAR(8) IN,
OUTCODE INTEGER OUT, PARMLST VARCHAR(254) OUT)
LANGUAGE COBOL
DETERMINISTIC
READS SQL DATA
EXTERNAL NAME "GETPRML"
COLLID GETPRML
ASUTIME NO LIMIT
PARAMETER STYLE GENERAL WITH NULLS
STAY RESIDENT NO
RUN OPTIONS "MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)"
WLM ENVIRONMENT SAMPPROG
PROGRAM TYPE MAIN
SECURITY DB2
RESULT SETS 2
COMMIT ON RETURN NO;

The following example is a COBOL stored procedure with linkage convention
GENERAL WITH NULLS.
CBL RENT
IDENTIFICATION DIVISION.
PROGRAM-ID. GETPRML.
AUTHOR. EXAMPLE.
DATE-WRITTEN. 03/25/98.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
DATA DIVISION.
FILE SECTION.
*
WORKING-STORAGE SECTION.
*

EXEC SQL INCLUDE SQLCA END-EXEC.
*

* DECLARE A HOST VARIABLE TO HOLD INPUT SCHEMA

01 INSCHEMA PIC X(8).

* DECLARE CURSOR FOR RETURNING RESULT SETS

*

EXEC SQL DECLARE C1 CURSOR WITH RETURN FOR
SELECT NAME FROM SYSIBM.SYSTABLES WHERE CREATOR=:INSCHEMA

END-EXEC.
*
LINKAGE SECTION.

* DECLARE THE INPUT PARAMETERS FOR THE PROCEDURE

01 PROCNM PIC X(18).
01 SCHEMA PIC X(8).

* DECLARE THE OUTPUT PARAMETERS FOR THE PROCEDURE

01 OUT-CODE PIC S9(9) USAGE BINARY.
01 PARMLST.

49 PARMLST-LEN PIC S9(4) USAGE BINARY.
49 PARMLST-TEXT PIC X(254).

* DECLARE THE STRUCTURE CONTAINING THE NULL
* INDICATORS FOR THE INPUT AND OUTPUT PARAMETERS.

01 IND-PARM.

03 PROCNM-IND PIC S9(4) USAGE BINARY.

Chapter 6. Coding SQL statements in COBOL application programs 367

03 SCHEMA-IND PIC S9(4) USAGE BINARY.
03 OUT-CODE-IND PIC S9(4) USAGE BINARY.
03 PARMLST-IND PIC S9(4) USAGE BINARY.

PROCEDURE DIVISION USING PROCNM, SCHEMA,
OUT-CODE, PARMLST, IND-PARM.

* If any input parameter is null, return a null value
* for PARMLST and set the output return code to 9999.

IF PROCNM-IND < 0 OR
SCHEMA-IND < 0

MOVE 9999 TO OUT-CODE
MOVE 0 TO OUT-CODE-IND
MOVE -1 TO PARMLST-IND

ELSE

* Issue the SQL SELECT against the SYSIBM.SYSROUTINES
* DB2 catalog table.

EXEC SQL
SELECT RUNOPTS INTO :PARMLST
FROM SYSIBM.SYSROUTINES
WHERE NAME=:PROCNM AND
SCHEMA=:SCHEMA

END-EXEC
MOVE 0 TO PARMLST-IND

* COPY SQLCODE INTO THE OUTPUT PARAMETER AREA

MOVE SQLCODE TO OUT-CODE
MOVE 0 TO OUT-CODE-IND.

*

* OPEN CURSOR C1 TO CAUSE DB2 TO RETURN A RESULT SET
* TO THE CALLER.

EXEC SQL OPEN C1
END-EXEC.

PROG-END.
GOBACK.

Example COBOL stored procedure with a GENERAL linkage
convention
You can call a stored procedure that uses the GENERAL linkage convention from a
COBOL program.

This example stored procedure does the following:
v Searches the catalog table SYSROUTINES for a row matching the input

parameters from the client program. The two input parameters contain values
for NAME and SCHEMA.

v Searches the DB2 catalog table SYSTABLES for all tables in which the value of
CREATOR matches the value of input parameter SCHEMA. The stored
procedure uses a cursor to return the table names.

This stored procedure is able to return a NULL value for the output host variables.

The linkage convention for this stored procedure is GENERAL.

The output parameters from this stored procedure contain the SQLCODE from the
SELECT operation, and the value of the RUNOPTS column retrieved from the
SYSROUTINES table.

368 Application Programming and SQL Guide

The CREATE PROCEDURE statement for this stored procedure might look like
this:
CREATE PROCEDURE GETPRML(PROCNM CHAR(18) IN, SCHEMA CHAR(8) IN,

OUTCODE INTEGER OUT, PARMLST VARCHAR(254) OUT)
LANGUAGE COBOL
DETERMINISTIC
READS SQL DATA
EXTERNAL NAME "GETPRML"
COLLID GETPRML
ASUTIME NO LIMIT
PARAMETER STYLE GENERAL
STAY RESIDENT NO
RUN OPTIONS "MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)"
WLM ENVIRONMENT SAMPPROG
PROGRAM TYPE MAIN
SECURITY DB2
RESULT SETS 2
COMMIT ON RETURN NO;

CBL RENT
IDENTIFICATION DIVISION.
PROGRAM-ID. GETPRML.
AUTHOR. EXAMPLE.
DATE-WRITTEN. 03/25/98.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
DATA DIVISION.
FILE SECTION.

WORKING-STORAGE SECTION.

EXEC SQL INCLUDE SQLCA END-EXEC.

* DECLARE A HOST VARIABLE TO HOLD INPUT SCHEMA

01 INSCHEMA PIC X(8).

* DECLARE CURSOR FOR RETURNING RESULT SETS

*

EXEC SQL DECLARE C1 CURSOR WITH RETURN FOR
SELECT NAME FROM SYSIBM.SYSTABLES WHERE CREATOR=:INSCHEMA

END-EXEC.
*
LINKAGE SECTION.

* DECLARE THE INPUT PARAMETERS FOR THE PROCEDURE

01 PROCNM PIC X(18).
01 SCHEMA PIC X(8).

* DECLARE THE OUTPUT PARAMETERS FOR THE PROCEDURE

01 OUT-CODE PIC S9(9) USAGE BINARY.
01 PARMLST.

49 PARMLST-LEN PIC S9(4) USAGE BINARY.
49 PARMLST-TEXT PIC X(254).

PROCEDURE DIVISION USING PROCNM, SCHEMA,
OUT-CODE, PARMLST.

* Issue the SQL SELECT against the SYSIBM.SYSROUTINES
* DB2 catalog table.

Chapter 6. Coding SQL statements in COBOL application programs 369

EXEC SQL
SELECT RUNOPTS INTO :PARMLST

FROM SYSIBM.ROUTINES
WHERE NAME=:PROCNM AND
SCHEMA=:SCHEMA

END-EXEC.

* COPY SQLCODE INTO THE OUTPUT PARAMETER AREA

MOVE SQLCODE TO OUT-CODE.

* OPEN CURSOR C1 TO CAUSE DB2 TO RETURN A RESULT SET
* TO THE CALLER.

EXEC SQL OPEN C1
END-EXEC.

PROG-END.
GOBACK.

Example COBOL program that calls a stored procedure
You can call the GETPRML stored procedure that uses the GENERAL WITH
NULLS linkage convention from a COBOL program on a z/OS system.

Because the stored procedure returns result sets, this program checks for result sets
and retrieves the contents of the result sets. The following figure contains the
example COBOL program that calls the GETPRML stored procedure.
IDENTIFICATION DIVISION.
PROGRAM-ID. CALPRML.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT REPOUT
ASSIGN TO UT-S-SYSPRINT.

DATA DIVISION.
FILE SECTION.
FD REPOUT

RECORD CONTAINS 127 CHARACTERS
LABEL RECORDS ARE OMITTED
DATA RECORD IS REPREC.

01 REPREC PIC X(127).

WORKING-STORAGE SECTION.

* MESSAGES FOR SQL CALL *

01 SQLREC.

02 BADMSG PIC X(34) VALUE
’ SQL CALL FAILED DUE TO SQLCODE = ’.

02 BADCODE PIC +9(5) USAGE DISPLAY.
02 FILLER PIC X(80) VALUE SPACES.

01 ERRMREC.
02 ERRMMSG PIC X(12) VALUE ’ SQLERRMC = ’.
02 ERRMCODE PIC X(70).
02 FILLER PIC X(38) VALUE SPACES.

01 CALLREC.
02 CALLMSG PIC X(28) VALUE

’ GETPRML FAILED DUE TO RC = ’.
02 CALLCODE PIC +9(5) USAGE DISPLAY.
02 FILLER PIC X(42) VALUE SPACES.

01 RSLTREC.
02 RSLTMSG PIC X(15) VALUE

370 Application Programming and SQL Guide

’ TABLE NAME IS ’.
02 TBLNAME PIC X(18) VALUE SPACES.
02 FILLER PIC X(87) VALUE SPACES.

* WORK AREAS *

01 PROCNM PIC X(18).
01 SCHEMA PIC X(8).
01 OUT-CODE PIC S9(9) USAGE COMP.
01 PARMLST.

49 PARMLEN PIC S9(4) USAGE COMP.
49 PARMTXT PIC X(254).

01 PARMBUF REDEFINES PARMLST.
49 PARBLEN PIC S9(4) USAGE COMP.
49 PARMARRY PIC X(127) OCCURS 2 TIMES.

01 NAME.
49 NAMELEN PIC S9(4) USAGE COMP.
49 NAMETXT PIC X(18).

77 PARMIND PIC S9(4) COMP.
77 I PIC S9(4) COMP.
77 NUMLINES PIC S9(4) COMP.

* DECLARE A RESULT SET LOCATOR FOR THE RESULT SET *
* THAT IS RETURNED. *

01 LOC USAGE SQL TYPE IS

RESULT-SET-LOCATOR VARYING.

* SQL INCLUDE FOR SQLCA *

EXEC SQL INCLUDE SQLCA END-EXEC.

PROCEDURE DIVISION.
*------------------
PROG-START.

OPEN OUTPUT REPOUT.
* OPEN OUTPUT FILE

MOVE ’DSN8EP2 ’ TO PROCNM.
* INPUT PARAMETER -- PROCEDURE TO BE FOUND

MOVE SPACES TO SCHEMA.
* INPUT PARAMETER -- SCHEMA IN SYSROUTINES

MOVE -1 TO PARMIND.
* THE PARMLST PARAMETER IS AN OUTPUT PARM.
* MARK PARMLST PARAMETER AS NULL, SO THE DB2
* REQUESTER DOES NOT HAVE TO SEND THE ENTIRE
* PARMLST VARIABLE TO THE SERVER. THIS
* HELPS REDUCE NETWORK I/O TIME, BECAUSE
* PARMLST IS FAIRLY LARGE.

EXEC SQL
CALL GETPRML(:PROCNM,

:SCHEMA,
:OUT-CODE,
:PARMLST INDICATOR :PARMIND)

END-EXEC.

* MAKE THE CALL
IF SQLCODE NOT EQUAL TO +466 THEN

* IF CALL RETURNED BAD SQLCODE
MOVE SQLCODE TO BADCODE
WRITE REPREC FROM SQLREC
MOVE SQLERRMC TO ERRMCODE
WRITE REPREC FROM ERRMREC

ELSE
PERFORM GET-PARMS
PERFORM GET-RESULT-SET.

PROG-END.

Chapter 6. Coding SQL statements in COBOL application programs 371

CLOSE REPOUT.
* CLOSE OUTPUT FILE

GOBACK.
PARMPRT.

MOVE SPACES TO REPREC.
WRITE REPREC FROM PARMARRY(I)

AFTER ADVANCING 1 LINE.
GET-PARMS.
* IF THE CALL WORKED,

IF OUT-CODE NOT EQUAL TO 0 THEN
* DID GETPRML HIT AN ERROR?

MOVE OUT-CODE TO CALLCODE
WRITE REPREC FROM CALLREC

ELSE
* EVERYTHING WORKED

DIVIDE 127 INTO PARMLEN GIVING NUMLINES ROUNDED
* FIND OUT HOW MANY LINES TO PRINT

PERFORM PARMPRT VARYING I
FROM 1 BY 1 UNTIL I GREATER THAN NUMLINES.

GET-RESULT-SET.

* ASSUME YOU KNOW THAT ONE RESULT SET IS RETURNED, *
* AND YOU KNOW THE FORMAT OF THAT RESULT SET. *
* ALLOCATE A CURSOR FOR THE RESULT SET, AND FETCH *
* THE CONTENTS OF THE RESULT SET. *

EXEC SQL ASSOCIATE LOCATORS (:LOC)
WITH PROCEDURE GETPRML

END-EXEC.
* LINK THE RESULT SET TO THE LOCATOR

EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :LOC
END-EXEC.

* LINK THE CURSOR TO THE RESULT SET
PERFORM GET-ROWS VARYING I
FROM 1 BY 1 UNTIL SQLCODE EQUAL TO +100.

GET-ROWS.
EXEC SQL FETCH C1 INTO :NAME
END-EXEC.
MOVE NAME TO TBLNAME.
WRITE REPREC FROM RSLTREC

AFTER ADVANCING 1 LINE.

372 Application Programming and SQL Guide

Chapter 7. Coding SQL statements in Fortran application
programs

When you code SQL statements in Fortran application programs, you should
follow certain guidelines.

Defining the SQL communications area, SQLSTATE, and SQLCODE in
Fortran

Fortran programs that contain SQL statements can include an SQL communications
area (SQLCA) to check whether an SQL statement executed successfully.
Alternatively, these programs can declare individual SQLCODE and SQLSTATE
host variables.

About this task

If you specify the SQL processing option STDSQL(YES), do not define an SQLCA.
If you do, DB2 ignores your SQLCA, and your SQLCA definition causes
compile-time errors. If you specify the SQL processing option STDSQL(NO),
include an SQLCA explicitly.

If your application contains SQL statements and does not include an SQL
communications area (SQLCA), you must declare individual SQLCODE and
SQLSTATE host variables. Your program can use these variables to check whether
an SQL statement executed successfully.

Procedure

To define the SQL communications area, SQLSTATE, and SQLCODE:

Choose one of the following actions:

Option Description

To define the SQL communications area: 1. Code the SQLCA directly in the program
or use the following SQL INCLUDE
statement to request a standard SQLCA
declaration:

EXEC SQL INCLUDE SQLCA

DB2 sets the SQLCODE and SQLSTATE
values in the SQLCA after each SQL
statement executes. Your application should
check these values to determine whether the
last SQL statement was successful.

© Copyright IBM Corp. 1983, 2013 373

Option Description

To declare SQLCODE and SQLSTATE host
variables:

1. Declare the SQLCODE variable within a
BEGIN DECLARE SECTION statement
and an END DECLARE SECTION
statement in your program declarations
as INTEGER*4.

This variable can also be called
SQLCOD.

2. Declare the SQLSTATE variable within a
BEGIN DECLARE SECTION statement
and an END DECLARE SECTION
statement in your program declarations
as CHARACTER*5.

This variable can also be called
SQLCOD.

Restriction: Do not declare an SQLSTATE
variable as an element of a structure.
Requirement: After you declare the
SQLCODE and SQLSTATE variables, ensure
that all SQL statements in the program are
within the scope of the declaration of these
variables.

Related tasks:
“Checking the execution of SQL statements” on page 204
“Checking the execution of SQL statements by using the SQLCA” on page 205
“Checking the execution of SQL statements by using SQLCODE and SQLSTATE”
on page 209
“Defining the items that your program can use to check whether an SQL statement
executed successfully” on page 137

Defining SQL descriptor areas in Fortran
If your program includes certain SQL statements, you must define at least one SQL
descriptor area (SQLDA). Depending on the context in which it is used, the
SQLDA stores information about prepared SQL statements or host variables. This
information can then be read by either the application program or DB2.

Procedure

To define SQL descriptor areas:

Call a subroutine that is written in C, PL/I, or assembler language and that uses
the INCLUDE SQLDA statement to define the SQLDA. The subroutine can also
include SQL statements for any dynamic SQL functions that you need.

Restrictions:

v You must place SQLDA declarations before the first SQL statement that
references the data descriptor, unless you use the TWOPASS SQL processing
option.

v You cannot use the SQL INCLUDE statement for the SQLDA, because it is not
supported in COBOL.

374 Application Programming and SQL Guide

Related tasks:
“Defining SQL descriptor areas” on page 137

Declaring host variables and indicator variables in Fortran
You can use host variables, host variable arrays, and host structures in SQL
statements in your program to pass data between DB2 and your application.

Procedure

To declare host variables, host variable arrays, and host structures:
1. Declare the variables according to the following rules and guidelines:

v When you declare a character host variable, do not use an expression to
define the length of the character variable. You can use a character host
variable with an undefined length (for example, CHARACTER *(*)). The
length of any such variable is determined when the associated SQL statement
executes.

v Host variables must be scalar variables; they cannot be elements of vectors or
arrays (subscripted variables).

v Be careful when calling subroutines that might change the attributes of a host
variable. Such alteration can cause an error while the program is running.

v If you specify the ONEPASS SQL processing option, you must explicitly
declare each host variable and each host variable array before using them in
an SQL statement. If you specify the TWOPASS precompiler option, you
must declare each host variable before using it in the DECLARE CURSOR
statement.

v If you specify the STDSQL(YES) SQL processing option, you must precede
the host language statements that define the host variables and host variable
arrays with the BEGIN DECLARE SECTION statement and follow the host
language statements with the END DECLARE SECTION statement.
Otherwise, these statements are optional.

v Ensure that any SQL statement that uses a host variable or host variable
array is within the scope of the statement that declares that variable or array.

v If you are using the DB2 precompiler, ensure that the names of host variables
and host variable arrays are unique within the program, even if the variables
and variable arrays are in different blocks, classes, procedures, functions, or
subroutines. You can qualify the names with a structure name to make them
unique.

2. Optional: Define any associated indicator variables, arrays, and structures.
Related tasks:
“Declaring host variables and indicator variables” on page 138

Host variables in Fortran
In Fortran programs, you can specify numeric, character, LOB, and ROWID host
variables. You can also specify result set and LOB locators.

Restrictions:

v Only some of the valid Fortran declarations are valid host variable declarations.
If the declaration for a variable is not valid, any SQL statement that references
the variable might result in the message UNDECLARED HOST VARIABLE.

Chapter 7. Coding SQL statements in Fortran application programs 375

v Fortran supports some data types with no SQL equivalent (for example,
REAL*16 and COMPLEX). In most cases, you can use Fortran statements to
convert between the unsupported data types and the data types that SQL allows.

v You can not use locators as column types.
The following locator data types are Fortran data types and SQL data types:
– Result set locator
– LOB locators

v Because Fortran does not support graphic data types, Fortran applications can
process only Unicode tables that use UTF-8 encoding.

Recommendations:

v Be careful of overflow. For example, if you retrieve an INTEGER column value
into a INTEGER*2 host variable and the column value is larger than 32767 or
-32768, you get an overflow warning or an error, depending on whether you
provided an indicator variable.

v Be careful of truncation. For example, if you retrieve an 80-character CHAR
column value into a CHARACTER*70 host variable, the rightmost ten characters
of the retrieved string are truncated. Retrieving a double-precision floating-point
or decimal column value into an INTEGER*4 host variable removes any
fractional value.

Numeric host variables

The following diagram shows the syntax for declaring numeric host variables.

�� INTEGER*2
*4

INTEGER
*4

REAL
REAL*8
DOUBLE PRECISION

�

,

variable-name
/ numeric-constant /

��

Restrictions:

v Fortran does not provide an equivalent for the decimal data type. To hold a
decimal value, use one of the following variables:
– An integer or floating-point variable, which converts the value. If you use an

integer variable, you lose the fractional part of the number. If the decimal
number can exceed the maximum value for an integer or you want to
preserve a fractional value, use a floating-point variable. Floating-point
numbers are approximations of real numbers. Therefore, when you assign a
decimal number to a floating-point variable, the result might be different from
the original number.

– A character string host variable. Use the CHAR function to retrieve a decimal
value into it.

v The SQL data type DECFLOAT has no equivalent in Fortran.

376 Application Programming and SQL Guide

Character host variables

The following diagram shows the syntax for declaring character host variables
other than CLOBs.

�� �

,

CHARACTER variable-name
*n *n / character-constant /

��

Result set locators

The following diagram shows the syntax for declaring result set locators.

�� �

,

SQL TYPE IS RESULT_SET_LOCATOR VARYING variable-name ��

LOB variables and locators

The following diagram shows the syntax for declaring BLOB and CLOB host
variables and locators.

�� SQL TYPE IS BINARY LARGE OBJECT (length)
BLOB K
CHARACTER LARGE OBJECT M
CHAR LARGE OBJECT G
CLOB

BLOB_LOCATOR
CLOB_LOCATOR

variable-name ��

ROWID host variables

The following diagram shows the syntax for declarations of ROWID variables.

�� SQL TYPE IS ROWID variable-name ��

Constants

The syntax for constants in Fortran programs differs from the syntax for constants
in SQL statements in the following ways:

Chapter 7. Coding SQL statements in Fortran application programs 377

v Fortran interprets a string of digits with a decimal point to be a real constant.
An SQL statement interprets such a string to be a decimal constant. Therefore,
use exponent notation when specifying a real (that is, floating-point) constant in
an SQL statement.

v In Fortran, a real (floating-point) constant that has a length of 8 bytes uses a D
as the exponent indicator (for example, 3.14159D+04). An 8-byte floating-point
constant in an SQL statement must use an E (for example, 3.14159E+04).

Related concepts:
“Host variables” on page 138
“Rules for host variables in an SQL statement” on page 148
“Large objects (LOBs)” on page 443
Related tasks:
“Determining whether a retrieved value in a host variable is null or truncated” on
page 151
“Inserting a single row by using a host variable” on page 154
“Inserting null values into columns by using indicator variables or arrays” on page
155
“Retrieving a single row of data into host variables” on page 148
“Updating data by using host variables” on page 154

Indicator variables in Fortran
An indicator variable is a 2-byte integer (INTEGER*2). You declare indicator
variables in the same way as host variables. You can mix the declarations of the
two types of variables.

The following diagram shows the syntax for declaring an indicator variable in
Fortran.

�� �

,

INTEGER*2 variable-name
/ numeric-constant /

��

Example

The following example shows a FETCH statement with the declarations of the host
variables that are needed for the FETCH statement and their associated indicator
variables.
EXEC SQL FETCH CLS_CURSOR INTO :CLSCD,
C :DAY :DAYIND,
C :BGN :BGNIND,
C :END :ENDIND

You can declare these variables as follows:
CHARACTER*7 CLSCD
INTEGER*2 DAY
CHARACTER*8 BGN, END
INTEGER*2 DAYIND, BGNIND, ENDIND

378 Application Programming and SQL Guide

Related concepts:
“Indicator variables, arrays, and structures” on page 140
Related tasks:
“Inserting null values into columns by using indicator variables or arrays” on page
155

Equivalent SQL and Fortran data types
When you declare host variables in your Fortran programs, the precompiler uses
equivalent SQL data types. When you retrieve data of a particular SQL data type
into a host variable, ensure that the host variable is of an equivalent data type.

The following table describes the SQL data type and the base SQLTYPE and
SQLLEN values that the precompiler uses for host variables in SQL statements.

Table 65. SQL data types, SQLLEN values, and SQLTYPE values that the precompiler uses for host variables in
Fortran programs

Fortran host variable data type
SQLTYPE of host
variable1 SQLLEN of host variable SQL data type

INTEGER*2 500 2 SMALLINT

INTEGER*4 496 4 INTEGER

REAL*4 480 4 FLOAT (single precision)

REAL*8 480 8 FLOAT (double precision)

CHARACTER*n 452 n CHAR(n)

SQL TYPE IS
RESULT_SET_LOCATOR

972 4 Result set locator. Do not use
this data type as a column type.

SQL TYPE IS BLOB_LOCATOR 960 4 BLOB locator. Do not use this
data type as a column type.

SQL TYPE IS CLOB_LOCATOR 964 4 CLOB locator. Do not use this
data type as a column type.

SQL TYPE IS BLOB(n)
1≤n≤2147483647

404 n BLOB(n)

SQL TYPE IS CLOB(n)
1≤n≤2147483647

408 n CLOB(n)

SQL TYPE IS ROWID 904 40 ROWID

Notes:

1. If a host variable includes an indicator variable, the SQLTYPE value is the base
SQLTYPE value plus 1.

The following table shows equivalent Fortran host variables for each SQL data
type. Use this table to determine the Fortran data type for host variables that you
define to receive output from the database. For example, if you retrieve
TIMESTAMP data, you can define a variable of type CHARACTER*n.

This table shows direct conversions between SQL data types and Fortran data
types. However, a number of SQL data types are compatible. When you do
assignments or comparisons of data that have compatible data types, DB2 converts
those compatible data types.

Chapter 7. Coding SQL statements in Fortran application programs 379

Table 66. Fortran host variable equivalents that you can use when retrieving data of a particular SQL data type

SQL data type Fortran host variable equivalent Notes

SMALLINT INTEGER*2

INTEGER INTEGER*4

BIGINT not supported

DECIMAL(p,s) or
NUMERIC(p,s)

no exact equivalent Use REAL*8

FLOAT(n) single precision REAL*4 1<=n<=21

FLOAT(n) double precision REAL*8 22<=n<=53

CHAR(n) CHARACTER*n 1<=n<=255

VARCHAR(n) no exact equivalent Use a character host variable that is large
enough to contain the largest expected
VARCHAR value.

BINARY not supported

VARBINARY not supported

GRAPHIC(n) not supported

VARGRAPHIC(n) not supported

DATE CHARACTER*n If you are using a date exit routine, n is
determined by that routine; otherwise, n
must be at least 10.

TIME CHARACTER*n If you are using a time exit routine, n is
determined by that routine. Otherwise, n
must be at least 6; to include seconds, n
must be at least 8.

TIMESTAMP CHARACTER*n n must be at least 19. To include
microseconds, n must be 26; if n is less
than 26, truncation occurs on the
microseconds part.

TIMESTAMP(0) CHARACTER*n n must be at least 19.

TIMESTAMP(p) p > 0 CHARACTER*n n must be at least 19. To include fractional
seconds, n must be 20+x where x is the
number of fractional seconds to include; if
x is less than p, truncation occurs on the
fractional seconds part.

TIMESTAMP(p) WITH TIME
ZONE

no exact equivalent Use a character host variable that is large
enough to contain the largest expected
timestamp with time zone value.

Result set locator SQL TYPE IS RESULT_SET_LOCATOR Use this data type only for receiving result
sets. Do not use this data type as a
column type.

BLOB locator SQL TYPE IS BLOB_LOCATOR Use this data type only to manipulate data
in BLOB columns. Do not use this data
type as a column type.1

CLOB locator SQL TYPE IS CLOB_LOCATOR Use this data type only to manipulate data
in CLOB columns. Do not use this data
type as a column type.1

DBCLOB locator not supported

BLOB(n) SQL TYPE IS BLOB(n) 1≤n≤21474836471

CLOB(n) SQL TYPE IS CLOB(n) 1≤n≤21474836471

380 Application Programming and SQL Guide

Table 66. Fortran host variable equivalents that you can use when retrieving data of a particular SQL data
type (continued)

SQL data type Fortran host variable equivalent Notes

DBCLOB(n) not supported

ROWID SQL TYPE IS ROWID

XML not supported

Related concepts:
“Compatibility of SQL and language data types” on page 144
“LOB host variable, LOB locator, and LOB file reference variable declarations” on
page 752

SQL statements in Fortran programs
You can code SQL statements in a Fortran program wherever you can place
executable statements. If the SQL statement is within an IF statement, the
precompiler generates any necessary THEN and END IF statements.

Fortran source statements must be fixed-length 80-byte records. The DB2
precompiler does not support free-form source input.

Each SQL statement in a Fortran program must begin with EXEC SQL. The EXEC
and SQL keywords must appear on one line, but the remainder of the statement
can appear on subsequent lines.

You might code the UPDATE statement in a Fortran program as follows:
EXEC SQL
C UPDATE DSN8B10.DEPT
C SET MGRNO = :MGRNUM
C WHERE DEPTNO = :INTDEPT

You cannot follow an SQL statement with another SQL statement or Fortran
statement on the same line.

Fortran does not require blanks to delimit words within a statement, but the SQL
language requires blanks. The rules for embedded SQL follow the rules for SQL
syntax, which require you to use one or more blanks as a delimiter.

Comments: You can include Fortran comment lines within embedded SQL
statements wherever you can use a blank, except between the keywords EXEC and
SQL. You can include SQL comments in any embedded SQL statement.

The DB2 precompiler does not support the exclamation point (!) as a comment
recognition character in Fortran programs.

Continuation for SQL statements: The line continuation rules for SQL statements
are the same as those for Fortran statements, except that you must specify EXEC
SQL on one line. The SQL examples in this topic have Cs in the sixth column to
indicate that they are continuations of EXEC SQL.

Declaring tables and views: Your Fortran program should also include the
DECLARE TABLE statement to describe each table and view the program accesses.

Chapter 7. Coding SQL statements in Fortran application programs 381

Dynamic SQL in a Fortran program: In general, Fortran programs can easily
handle dynamic SQL statements. SELECT statements can be handled if the data
types and the number of returned fields are fixed. If you want to use variable-list
SELECT statements, you need to use an SQLDA, as described in “Defining SQL
descriptor areas” on page 137.

You can use a Fortran character variable in the statements PREPARE and
EXECUTE IMMEDIATE, even if it is fixed-length.

Including code: To include SQL statements or Fortran host variable declarations
from a member of a partitioned data set, use the following SQL statement in the
source code where you want to include the statements:
EXEC SQL INCLUDE member-name

You cannot nest SQL INCLUDE statements. You cannot use the Fortran INCLUDE
compiler directive to include SQL statements or Fortran host variable declarations.

Margins: Code the SQL statements between columns 7 through 72, inclusive. If
EXEC SQL starts before the specified left margin, the DB2 precompiler does not
recognize the SQL statement.

Names: You can use any valid Fortran name for a host variable. Do not use
external entry names that begin with 'DSN' or host variable names that begin with
'SQL'. These names are reserved for DB2.

Do not use the word DEBUG, except when defining a Fortran DEBUG packet. Do
not use the words FUNCTION, IMPLICIT, PROGRAM, and SUBROUTINE to
define variables.

Sequence numbers: The source statements that the DB2 precompiler generates do
not include sequence numbers.

Statement labels: You can specify statement numbers for SQL statements in
columns 1 to 5. However, during program preparation, a labeled SQL statement
generates a Fortran CONTINUE statement with that label before it generates the
code that executes the SQL statement. Therefore, a labeled SQL statement should
never be the last statement in a DO loop. In addition, you should not label SQL
statements (such as INCLUDE and BEGIN DECLARE SECTION) that occur before
the first executable SQL statement, because an error might occur.

WHENEVER statement: The target for the GOTO clause in the SQL WHENEVER
statement must be a label in the Fortran source code and must refer to a statement
in the same subprogram. The WHENEVER statement only applies to SQL
statements in the same subprogram.

Special Fortran considerations: The following considerations apply to programs
written in Fortran:
v You cannot use the @PROCESS statement in your source code. Instead, specify

the compiler options in the PARM field.
v You cannot use the SQL INCLUDE statement to include the following

statements: PROGRAM, SUBROUTINE, BLOCK, FUNCTION, or IMPLICIT.

DB2 supports Version 3 Release 1 (or later) of VS Fortran with the following
restrictions:

382 Application Programming and SQL Guide

v The parallel option is not supported. Applications that contain SQL statements
must not use Fortran parallelism.

v You cannot use the byte data type within embedded SQL, because byte is not a
recognizable host data type.

Handling SQL error return codes in Fortran:

You can use the subroutine DSNTIR to convert an SQL return code into a text
message. DSNTIR builds a parameter list and calls DSNTIAR for you. DSNTIAR
takes data from the SQLCA, formats it into a message, and places the result in a
message output area that you provide in your application program. For concepts
and more information on the behavior of DSNTIAR, see “Displaying SQLCA fields
by calling DSNTIAR” on page 206.

You can also use the MESSAGE_TEXT condition item field of the GET
DIAGNOSTICS statement to convert an SQL return code into a text message.
Programs that require long token message support should code the GET
DIAGNOSTICS statement instead of DSNTIAR. For more information about GET
DIAGNOSTICS, see “Checking the execution of SQL statements by using the GET
DIAGNOSTICS statement” on page 211.

DSNTIR syntax:

CALL DSNTIR (error-length, message, return-code)

The DSNTIR parameters have the following meanings:

error-length
The total length of the message output area.

message
An output area, in VARCHAR format, in which DSNTIAR places the message
text. The first halfword contains the length of the remaining area; its minimum
value is 240.

The output lines of text are put into this area. For example, you could specify
the format of the output area as:
INTEGER ERRLEN /1320/
CHARACTER*132 ERRTXT(10)
INTEGER ICODE...
CALL DSNTIR (ERRLEN, ERRTXT, ICODE)

where ERRLEN is the total length of the message output area, ERRTXT is the
name of the message output area, and ICODE is the return code.

return-code
Accepts a return code from DSNTIAR.

An example of calling DSNTIR (which then calls DSNTIAR) from an application
appears in the DB2 sample assembler program DSN8BF3, which is contained in the
library DSN8B10.SDSNSAMP. See “DB2 sample applications” on page 1102 for
instructions on how to access and print the source code for the sample program.

Chapter 7. Coding SQL statements in Fortran application programs 383

Related tasks:
“Including dynamic SQL in your program” on page 159
“Embedding SQL statements in your application” on page 147
“Handling SQL error codes” on page 217
“Limiting CPU time for dynamic SQL statements by using the resource limit
facility” on page 202

Delimiters in SQL statements in Fortran programs
You must delimit SQL statements in your Fortran program so that DB2 knows
when a particular SQL statement ends.

Delimit an SQL statement in your Fortran program with the beginning keyword
EXEC SQL and an end of line or end of last continued line.
Related reference:
“Programming examples” on page 229

384 Application Programming and SQL Guide

Chapter 8. Coding SQL statements in PL/I application
programs

When you code SQL statements in PL/I application programs, you should follow
certain guidelines.

Defining the SQL communications area, SQLSTATE, and SQLCODE in
PL/I

PL/I programs that contain SQL statements can include an SQL communications
area (SQLCA) to check whether an SQL statement executed successfully.
Alternatively, these programs can declare individual SQLCODE and SQLSTATE
host variables.

About this task

If you specify the SQL processing option STDSQL(YES), do not define an SQLCA.
If you do, DB2 ignores your SQLCA, and your SQLCA definition causes
compile-time errors. If you specify the SQL processing option STDSQL(NO),
include an SQLCA explicitly.

If your application contains SQL statements and does not include an SQL
communications area (SQLCA), you must declare individual SQLCODE and
SQLSTATE host variables. Your program can use these variables to check whether
an SQL statement executed successfully.

Procedure

To define the SQL communications area, SQLSTATE, and SQLCODE:

Choose one of the following actions:

Option Description

To define the SQL communications area: 1. Code the SQLCA directly in the program
or use the following SQL INCLUDE
statement to request a standard SQLCA
declaration:

EXEC SQL INCLUDE SQLCA

DB2 sets the SQLCODE and SQLSTATE
values in the SQLCA after each SQL
statement executes. Your application should
check these values to determine whether the
last SQL statement was successful.

© Copyright IBM Corp. 1983, 2013 385

Option Description

To declare SQLCODE and SQLSTATE host
variables:

1. Declare the SQLCODE variable within a
BEGIN DECLARE SECTION statement
and an END DECLARE SECTION
statement in your program declarations
as BIN FIXED (31).

2. Declare the SQLSTATE variable within a
BEGIN DECLARE SECTION statement
and an END DECLARE SECTION
statement in your program declarations
as CHARACTER(5).

Restriction: Do not declare an SQLSTATE
variable as an element of a structure.
Requirement: After you declare the
SQLCODE and SQLSTATE variables, ensure
that all SQL statements in the program are
within the scope of the declaration of these
variables.

Related tasks:
“Checking the execution of SQL statements” on page 204
“Checking the execution of SQL statements by using the SQLCA” on page 205
“Checking the execution of SQL statements by using SQLCODE and SQLSTATE”
on page 209
“Defining the items that your program can use to check whether an SQL statement
executed successfully” on page 137

Defining SQL descriptor areas in PL/I
If your program includes certain SQL statements, you must define at least one SQL
descriptor area (SQLDA). Depending on the context in which it is used, the
SQLDA stores information about prepared SQL statements or host variables. This
information can then be read by either the application program or DB2.

Procedure

To define SQL descriptor areas:

Code the SQLDA directly in the program, or use the following SQL INCLUDE
statement to request a standard SQLDA declaration:
EXEC SQL INCLUDE SQLDA

Restriction: You must place SQLDA declarations before the first SQL statement
that references the data descriptor, unless you use the TWOPASS SQL processing
option.
Related tasks:
“Defining SQL descriptor areas” on page 137

Declaring host variables and indicator variables in PL/I
You can use host variables, host variable arrays, and host structures in SQL
statements in your program to pass data between DB2 and your application.

386 Application Programming and SQL Guide

Procedure

To declare host variables, host variable arrays, and host structures:
1. Declare the variables according to the following rules and guidelines:

v If you specify the ONEPASS SQL processing option, you must explicitly
declare each host variable and each host variable array before using them in
an SQL statement. If you specify the TWOPASS precompiler option, you
must declare each host variable before using it in the DECLARE CURSOR
statement.

v If you specify the STDSQL(YES) SQL processing option, you must precede
the host language statements that define the host variables and host variable
arrays with the BEGIN DECLARE SECTION statement and follow the host
language statements with the END DECLARE SECTION statement.
Otherwise, these statements are optional.

v Ensure that any SQL statement that uses a host variable or host variable
array is within the scope of the statement that declares that variable or array.

v If you are using the DB2 precompiler, ensure that the names of host variables
and host variable arrays are unique within the program, even if the variables
and variable arrays are in different blocks, classes, procedures, functions, or
subroutines. You can qualify the names with a structure name to make them
unique.

2. Optional: Define any associated indicator variables, arrays, and structures.
Related tasks:
“Declaring host variables and indicator variables” on page 138

Host variables in PL/I
In PL/I programs, you can specify numeric, character, graphic, binary, LOB, XML,
and ROWID host variables. You can also specify result set, table, and LOB locators
and LOB and XML file reference variables.

Restrictions:

v Only some of the valid PL/I declarations are valid host variable declarations.
The precompiler uses the data attribute defaults that are specified in the PL/I
DEFAULT statement. If the declaration for a host variable is not valid, any SQL
statement that references the variable might result in the message
UNDECLARED HOST VARIABLE.

v The alignment, scope, and storage attributes of host variables have the following
restrictions:
– A declaration with the EXTERNAL scope attribute and the STATIC storage

attribute must also have the INITIAL storage attribute.
– If you use the BASED storage attribute, you must follow it with a PL/I

element-locator-expression.
– Host variables can be STATIC, CONTROLLED, BASED, or AUTOMATIC

storage class, or options. However, CICS requires that programs be reentrant.

Although the precompiler uses only the names and data attributes of variables
and ignores the alignment, scope, and storage attributes, you should not ignore
these restrictions. If you do ignore them, you might have problems compiling
the PL/I source code that the precompiler generates.

v PL/I supports some data types with no SQL equivalent (COMPLEX and BIT
variables, for example). In most cases, you can use PL/I statements to convert
between the unsupported PL/I data types and the data types that SQL supports.

Chapter 8. Coding SQL statements in PL/I application programs 387

v You can not use locators as column types.
The following locator data types are PL/I data types as well as SQL data types:
– Result set locator
– Table locator
– LOB locators

v The precompiler does not support PL/I scoping rules.

Recommendations:

v Be careful of overflow. For example, if you retrieve an INTEGER column value
into a BIN FIXED(15) host variable and the column value is larger than 32767 or
smaller than -32768, you get an overflow warning or an error, depending on
whether you provided an indicator variable.

v Be careful of truncation. For example, if you retrieve an 80-character CHAR
column value into a CHAR(70) host variable, the rightmost ten characters of the
retrieved string are truncated. Retrieving a double-precision floating-point or
decimal column value into a BIN FIXED(31) host variable removes any fractional
part of the value. Similarly, retrieving a column value with a DECIMAL data
type into a PL/I decimal variable with a lower precision might truncate the
value.

Numeric host variables

You can specify the following forms of numeric host variables:
v Floating-point numbers (Hexadecimal and Decimal)
v Integers and small integers
v Decimal numbers

The following diagram shows the syntax for declaring numeric host variables.

�� DECLARE
DCL

�

variable-name
,

(variable-name)

BINARY
BIN
DECIMAL
DEC

�

�
(2)

FIXED
(precision)

(1)
,scale

FLOAT (precision)

Alignment and/or Scope and/or Storage
��

Notes:

1 You can specify a scale only for DECIMAL FIXED.

2 You can specify host variable attributes in any order that is acceptable to PL/I. For example, BIN
FIXED(31), BINARY FIXED(31), BIN(31) FIXED, and FIXED BIN(31) are all acceptable.

For binary floating-point or hexadecimal floating-point data types, use the FLOAT
SQL processing option to specify whether the host variable is in IEEE binary
floating-point or z/Architecture hexadecimal floating-point format. DB2 does not

388 Application Programming and SQL Guide

check if the format of the host variable contents match the format that you
specified with the FLOAT SQL processing option. Therefore, you need to ensure
that your floating-point host variable contents match the format that you specified
with the FLOAT SQL processing option. DB2 converts all floating-point input data
to z/Architecture hexadecimal floating-point format before storing it.

If the PL/I compiler that you are using does not support a decimal data type with
a precision greater than 15, use one of the following variable types for decimal
data:
v Decimal variables with precision less than or equal to 15, if the actual data

values fit. If you retrieve a decimal value into a decimal variable with a scale
that is less than the source column in the database, the fractional part of the
value might truncate.

v An integer or a floating-point variable, which converts the value. If you use an
integer variable, you lose the fractional part of the number. If the decimal
number can exceed the maximum value for an integer or you want to preserve a
fractional value, use a floating-point variable. Floating-point numbers are
approximations of real numbers. Therefore, when you assign a decimal number
to a floating-point variable, the result might be different from the original
number.

v A character string host variable. Use the CHAR function to retrieve a decimal
value into it.

To use the PL/I decimal floating-point host data types, you need to use the
FLOAT(DFP) and ARCH(7) compiler options and the DB2 coprocessor. The
maximum precision for extended DECIMAL FLOAT will be 34 (not 33 as it is for
hexadecimal float). The maximum precision for short DECIMAL FLOAT will be 7
(not 6 as it is for hexadecimal float).

Character host variables

You can specify the following forms of character host variables:
v Fixed-length strings
v Varying-length strings
v CLOBs

The following diagram shows the syntax for declaring character host variables,
other than CLOBs.

�� DECLARE
DCL

�

variable-name
,

(variable-name)

CHARACTER (length)
CHAR VARYING

VAR

�

�
Alignment and/or Scope and/or Storage

��

Graphic host variables

You can specify the following forms of character host variables:
v Fixed-length strings

Chapter 8. Coding SQL statements in PL/I application programs 389

v Varying-length strings
v DBCLOBs

The following diagram shows the syntax for declaring graphic host variables other
than DBCLOBs.

�� DECLARE
DCL

�

variable-name
,

(variable-name)

GRAPHIC (length)
(1) VARYING

WIDECHAR VAR

�

�
Alignment and/or Scope and/or Storage

��

Notes:

1 Use WIDECHAR only for UNICODE UTF-16 data. WIDECHAR is supported only by the DB2
coprocessor.

Binary host variables

You can specify the following forms of binary host variables:
v Fixed-length strings
v Varying-length strings
v BLOBs

The following diagram shows the syntax for declaring BINARY host variables.

�� DECLARE
DCL

�

variable-name
,

(variable-name)

SQL TYPE IS BINARY
VARBINARY
BINARY VARYING

�

�
(1)

(length) ; ��

Notes:

1 For BINARY host variables, the length must be in the range from 1 to 255. For VARBINARY host
variables, the length must be in the range from 1 to 32 704.

PL/I does not have variables that correspond to the SQL binary data types
BINARY and VARBINARY. To create host variables that can be used with these
data types, use the SQL TYPE IS clause.

When you reference a BINARY or VARBINARY host variable in an SQL statement,
you must use the variable that you specify in the SQL TYPE declaration. When
you reference the host variable in a host language statement, you must use the
variable that DB2 generates.

390 Application Programming and SQL Guide

Examples of binary variable declarations: The following table shows examples of
variables that DB2 generates when you declare binary host variables.

Table 67. Examples of BINARY and VARBINARY variable declarations for PL/I

Variable declaration that you include in
your PL/I program

Corresponding variable that DB2 generates
in the output source member

DCL BIN_VAR SQL TYPE IS BINARY(10); DCL BIN_VAR CHAR(10);

DCL VBIN_VAR SQL TYPE IS VARBINARY(10); DCL VBIN_VAR CHAR(10) VAR;

Result set locators

The following diagram shows the syntax for declaring result set locators.

�� DECLARE
DCL

�

variable-name
,

(variable-name)

SQL TYPE IS RESULT_SET_LOCATOR VARYING �

�
Alignment and/or Scope and/or Storage

��

Table locators

The following diagram shows the syntax for declaring table locators.

�� DCL
DECLARE

�

variable-name
,

(variable-name)

SQL TYPE IS TABLE LIKE table-name AS LOCATOR ��

LOB variables, locators, and file reference variables

The following diagram shows the syntax for declaring BLOB, CLOB, and DBCLOB
host variables, locators, and file reference variables.

Chapter 8. Coding SQL statements in PL/I application programs 391

�� DCL
(1)

DECLARE
�

variable-name
,

(variable-name)

SQL TYPE IS �

�
(2)

BINARY LARGE OBJECT (length)
BLOB K
CHARACTER LARGE OBJECT M
CHAR LARGE OBJECT G
CLOB

DBCLOB
BLOB_LOCATOR
CLOB_LOCATOR
DBCLOB_LOCATOR
BLOB_FILE
CLOB_FILE
DBCLOB_FILE

��

Notes:

1 A single PL/I declaration that contains a LOB variable declaration is limited to no more than
1000 lines of source code.

2 Variable attributes such as STATIC and AUTOMATIC are ignored if specified on a LOB variable
declaration.

Note: Variable attributes such as STATIC and AUTOMATIC are ignored if
specified on a LOB variable declaration.

XML data host and file reference variables

The following diagram shows the syntax for declaring BLOB, CLOB, and DBCLOB
host variables and file reference variables for XML data types.

�� DCL
DECLARE

�

variable-name
,

(variable-name)

SQL TYPE IS XML AS �

� BINARY LARGE OBJECT (length)
BLOB K
CHARACTER LARGE OBJECT M
CHAR LARGE OBJECT G
CLOB

DBCLOB
BLOB_FILE
CLOB_FILE
DBCLOB_FILE

��

392 Application Programming and SQL Guide

ROWID host variables

The following diagram shows the syntax for declaring ROWID host variables.

�� DCL
DECLARE

�

variable-name
,

(variable-name)

SQL TYPE IS ROWID ��

Related concepts:
“Host variables” on page 138
“Rules for host variables in an SQL statement” on page 148
“Large objects (LOBs)” on page 443

Decimal floating-point (DECFLOAT) (DB2 SQL)
Related tasks:
“Determining whether a retrieved value in a host variable is null or truncated” on
page 151
“Inserting a single row by using a host variable” on page 154
“Inserting null values into columns by using indicator variables or arrays” on page
155
“Retrieving a single row of data into host variables” on page 148
“Retrieving a single row of data into a host structure” on page 158
“Updating data by using host variables” on page 154

Host variable arrays in PL/I
In PL/I programs, you can specify numeric, character, graphic, binary, LOB, XML,
and ROWID host variable arrays. You can also specify LOB locators and LOB and
XML file reference variables.

Restrictions:

v Only some of the valid PL/I declarations are valid host variable declarations.
The precompiler uses the data attribute defaults that are specified in the PL/I
DEFAULT statement. If the declaration for a host variable is not valid, any SQL
statement that references the host variable array might result in the message
UNDECLARED HOST VARIABLE ARRAY.

v The alignment, scope, and storage attributes of host variable arrays have the
following restrictions:
– A declaration with the EXTERNAL scope attribute and the STATIC storage

attribute must also have the INITIAL storage attribute.
– If you use the BASED storage attribute, you must follow it with a PL/I

element-locator-expression.
– Host variables can be STATIC, CONTROLLED, BASED, or AUTOMATIC

storage class, or options. However, CICS requires that programs be reentrant.

Although the precompiler uses only the names and data attributes of variable
arrays and ignores the alignment, scope, and storage attributes, you should not
ignore these restrictions. If you do ignore them, you might have problems
compiling the PL/I source code that the precompiler generates.

Chapter 8. Coding SQL statements in PL/I application programs 393

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_decfloat.htm#db2z_decfloat

v You must specify the ALIGNED attribute when you declare varying-length
character arrays or varying-length graphic arrays that are to be used in
multiple-row INSERT and FETCH statements.

Numeric host variable arrays

The following diagram shows the syntax for declaring numeric host variable
arrays.

�� DECLARE
DCL

�

�

(1)
variable-name (dimension)

,

(variable-name)
,

(1)
(variable-name (dimension))

�

�
(3)

BINARY FIXED
BIN (precision)
DECIMAL (2)
DEC ,scale

FLOAT (precision)

�

�
Alignment and/or Scope and/or Storage

��

Notes:

1 dimension must be an integer constant between 1 and 32767.

2 You can specify the scale for only DECIMAL FIXED.

3 You can specify host variable array attributes in any order that is acceptable to PL/I. For
example, BIN FIXED(31), BINARY FIXED(31), BIN(31) FIXED, and FIXED BIN(31) are all
acceptable.

Example: The following example shows a declaration of an indicator array.
DCL IND_ARRAY(100) BIN FIXED(15); /* DCL ARRAY of 100 indicator variables */

To use the PL/I decimal floating-point host data types, you need to use the
FLOAT(DFP) and ARCH(7) compiler options and the DB2 coprocessor. The
maximum precision for extended DECIMAL FLOAT will be 34 (not 33 as it is for
hexadecimal float). The maximum precision for short DECIMAL FLOAT will be 7
(not 6 as it is for hexadecimal float).

Character host variable arrays

The following diagram shows the syntax for declaring character host variable
arrays other than CLOBs.

394 Application Programming and SQL Guide

�� DECLARE
DCL

�

�

(1)
variable-name (dimension)

,

(variable-name)
,

(1)
(variable-name (dimension))

�

� CHARACTER (length)
CHAR VARYING Alignment and/or Scope and/or Storage

VAR

��

Notes:

1 dimension must be an integer constant between 1 and 32767.

Example: The following example shows the declarations needed to retrieve 10
rows of the department number and name from the department table:
DCL DEPTNO(10) CHAR(3); /* Array of ten CHAR(3) variables */
DCL DEPTNAME(10) CHAR(29) VAR; /* Array of ten VARCHAR(29) variables */

Graphic host variable arrays

The following diagram shows the syntax for declaring graphic host variable arrays
other than DBCLOBs.

�� DECLARE
DCL

�

�

(1)
variable-name (dimension)

,

(variable-name)
,

(1)
(variable-name (dimension))

�

� GRAPHIC (length)
VARYING Alignment and/or Scope and/or Storage
VAR

��

Notes:

1 dimension must be an integer constant between 1 and 32767.

Binary host variable arrays

The following diagram shows the syntax for declaring binary variable arrays.

Chapter 8. Coding SQL statements in PL/I application programs 395

�� DCL
DECLARE

�

�

variable-name (dimension)
,

(variable-name)
,

(variable-name (dimension))

SQL TYPE IS BINARY
VARBINARY

��

LOB, locator, and file reference variable arrays

The following diagram shows the syntax for declaring BLOB, CLOB, and DBCLOB
host variable, locator, and file reference variable arrays.

�� DCL
DECLARE

�

�

(1)
variable-name (dimension)

,

(variable-name)
,

(1)
(variable-name (dimension))

SQL TYPE IS �

� BINARY LARGE OBJECT (length)
BLOB K
CHARACTER LARGE OBJECT M
CHAR LARGE OBJECT G
CLOB

DBCLOB
BLOB_LOCATOR
CLOB_LOCATOR
DBCLOB_LOCATOR
BLOB_FILE
CLOB_FILE
DBCLOB_FILE

��

Notes:

1 dimension must be an integer constant between 1 and 32767.

XML host and file reference variable arrays

The following diagram shows the syntax for declaring BLOB, CLOB, and DBCLOB
host variable arrays and file reference variable arrays for XML data types.

396 Application Programming and SQL Guide

�� DCL
DECLARE

�

�

(1)
variable-name (dimension)

,

(variable-name)
,

(1)
(variable-name (dimension))

SQL TYPE IS XML AS �

� BINARY LARGE OBJECT (length)
BLOB K
CHARACTER LARGE OBJECT M
CHAR LARGE OBJECT G
CLOB

DBCLOB
BLOB_FILE
CLOB_FILE
DBCLOB_FILE

��

Notes:

1 dimension must be an integer constant between 1 and 32767.

ROWID variable arrays

The following diagram shows the syntax for declaring ROWID variable arrays.

�� DCL
DECLARE

�

�

(1)
variable-name (dimension)

,

(variable-name)
,

(1)
(variable-name (dimension))

SQL TYPE IS ROWID ��

Notes:

1 dimension must be an integer constant between 1 and 32767.

Chapter 8. Coding SQL statements in PL/I application programs 397

Related concepts:
“Host variable arrays in an SQL statement” on page 156
“Host variable arrays” on page 139
“Large objects (LOBs)” on page 443

Decimal floating-point (DECFLOAT) (DB2 SQL)
Related tasks:
“Inserting multiple rows of data from host variable arrays” on page 157
“Retrieving multiple rows of data into host variable arrays” on page 157

Host structures in PL/I
A PL/I host structure is a structure that contains subordinate levels of scalars. You
can use the name of the structure as shorthand notation to reference the list of
scalars.

Requirements: Host structure declarations in PL/I must satisfy the following
requirements:
v Host structures are limited to two levels.
v You must terminate the host structure variable by ending the declaration with a

semicolon.

Example:
DCL 1 A,

2 B CHAR,
2 (C, D) CHAR;

DCL (E, F) CHAR;

v You can specify host variable attributes in any order that is acceptable to PL/I.
For example, BIN FIXED(31), BIN(31) FIXED, and FIXED BIN(31) are all
acceptable.

When you reference a host variable, you can qualify it with a structure name. For
example, you can specify STRUCTURE.FIELD.

Host structures

The following diagram shows the syntax for declaring host structures.

�� DECLARE
DCL

level-1 variable-name ,
Scope and/or storage

�

� �

�

,

level-2 var-1 data-type-specification
,

(var-2)

; ��

398 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_decfloat.htm#db2z_decfloat

Data types

The following diagram shows the syntax for data types that are used within
declarations of host structures.

�� CHARACTER
CHAR (integer) VARYING

VAR
GRAPHIC

(integer) VARYING
VAR

BINARY FIXED
BIN (precision)
DECIMAL , scale
DEC FLOAT

(precision)
SQL TYPE IS ROWID
LOB data type

��

LOB data types

The following diagram shows the syntax for LOB data types that are used within
declarations of host structures.

�� SQL TYPE IS CHARACTER LARGE OBJECT (length)
CHAR LARGE OBJECT K
CLOB M
DBCLOB G
BINARY LARGE OBJECT
BLOB
CLOB_LOCATOR
DBCLOB_LOCATOR
BLOB_LOCATOR
CLOB_FILE
DBCLOB_FILE
BLOB_FILE

��

LOB data types for XML data

The following diagram shows the syntax for LOB data types that are used within
declarations of host structures for XML data.

Chapter 8. Coding SQL statements in PL/I application programs 399

�� SQL TYPE IS XML AS BINARY LARGE OBJECT (length)
BLOB K
CHARACTER LARGE OBJECT M
CHAR LARGE OBJECT G
CLOB

DBCLOB
BLOB_FILE
CLOB_FILE
DBCLOB_FILE

��

Example

In the following example, B is the name of a host structure that contains the scalars
C1 and C2.
DCL 1 A,

2 B,
3 C1 CHAR(...),
3 C2 CHAR(...);

Related concepts:
“Host structures” on page 139

Indicator variables in PL/I
An indicator variable is a 2-byte integer (or an integer declared as BIN FIXED(15)).
An indicator variable array is an array of 2-byte integers. You declare indicator
variables in the same way as host variables. You can mix the declarations of the
two types of variables.

The following diagram shows the syntax for declaring an indicator variable in
PL/I.

�� DECLARE
DCL

�

,

(variable-name) BINARY
BIN

(1)
FIXED(15) ; ��

Notes:

1 You can specify host variable attributes in any order that is acceptable to PL/I. For example, BIN
FIXED(31), BIN(31) FIXED, and FIXED BIN(31) are all acceptable.

The following diagram shows the syntax for declaring an indicator array in PL/I.

400 Application Programming and SQL Guide

�� DECLARE
DCL

�

variable-name (dimension)
,

(1)
(variable-name (dimension))

BINARY
BIN

�

� FIXED(15) ;
Alignment and/or Scope and/or Storage

��

Notes:

1 dimension must be an integer constant between 1 and 32767.

Example

The following example shows a FETCH statement with the declarations of the host
variables that are needed for the FETCH statement and their associated indicator
variables.
EXEC SQL FETCH CLS_CURSOR INTO :CLS_CD,

:DAY :DAY_IND,
:BGN :BGN_IND,
:END :END_IND;

You can declare these variables as follows:
DCL CLS_CD CHAR(7);
DCL DAY BIN FIXED(15);
DCL BGN CHAR(8);
DCL END CHAR(8);
DCL (DAY_IND, BGN_IND, END_IND) BIN FIXED(15);

Related concepts:
“Indicator variables, arrays, and structures” on page 140
Related tasks:
“Inserting null values into columns by using indicator variables or arrays” on page
155

Equivalent SQL and PL/I data types
When you declare host variables in your PL/I programs, the precompiler uses
equivalent SQL data types. When you retrieve data of a particular SQL data type
into a host variable, you need to ensure that the host variable is of an equivalent
data type.

The following table describes the SQL data type and the base SQLTYPE and
SQLLEN values that the precompiler uses for host variables in SQL statements.

Table 68. SQL data types, SQLLEN values, and SQLTYPE values that the precompiler uses for host variables in PL/I
programs

PL/I host variable data type
SQLTYPE of host
variable1 SQLLEN of host variable SQL data type

BIN FIXED(n) 1<=n<=15 500 2 SMALLINT

BIN FIXED(n) 16<=n<=31 496 4 INTEGER

FIXED BIN(63) 492 8 BIGINT

DEC FIXED(p,s) 0<=p<=31 and
0<=s<=p2

484 p in byte 1, s in byte 2 DECIMAL(p,s)

Chapter 8. Coding SQL statements in PL/I application programs 401

Table 68. SQL data types, SQLLEN values, and SQLTYPE values that the precompiler uses for host variables in PL/I
programs (continued)

PL/I host variable data type
SQLTYPE of host
variable1 SQLLEN of host variable SQL data type

DEC FLOAT (p) where 1 <= p
<= 7

996/997 4 DECFLOAT(16)6

DEC FLOAT (p) where 8 <= p
<= 16

996/997 8 DECFLOAT(16)

DEC FLOAT (p) where 17 <= p 996/997 16 DECFLOAT(34)

BIN FLOAT(p) 1<=p<=21 480 4 REAL or FLOAT(n) 1<=n<=21

BIN FLOAT(p) 22<=p<=53 480 8 DOUBLE PRECISION or
FLOAT(n) 22<=n<=53

DEC FLOAT(m) 1<=m<=6 480 4 FLOAT (single precision)

DEC FLOAT(m) 7<=m<=16 480 8 FLOAT (double precision)

CHAR(n) 452 n CHAR(n)

CHAR(n) VARYING 1<=n<=255 448 n VARCHAR(n)

CHAR(n) VARYING n>255 456 n VARCHAR(n)

GRAPHIC(n) 468 n GRAPHIC(n)

GRAPHIC VARYING(n) 464 n VARGRAPHIC(n)

SQL TYPE IS BINARY(n),
1<=n<=255

912 n BINARY(n)

SQL TYPE IS VARBINARY(n),
1<=n<=32 704

908 n VARBINARY(n)

SQL TYPE IS
RESULT_SET_LOCATOR

972 4 Result set locator3

SQL TYPE IS TABLE LIKE
table-name AS LOCATOR

976 4 Table locator3

SQL TYPE IS BLOB_LOCATOR 960 4 BLOB locator3

SQL TYPE IS CLOB_LOCATOR 964 4 CLOB locator3

SQL TYPE IS
DBCLOB_LOCATOR

968 4 DBCLOB locator3

SQL TYPE IS BLOB(n)
1≤n≤2147483647

404 n BLOB(n)

SQL TYPE IS CLOB(n)
1≤n≤2147483647

408 n CLOB(n)

SQL TYPE IS DBCLOB(n)
1≤n≤10737418234

412 n DBCLOB(n)4

SQL TYPE IS XML AS BLOB(n) 404 0 XML

SQL TYPE IS XML AS CLOB(n) 408 0 XML

SQL TYPE IS XML AS
DBCLOB(n)

412 0 XML

SQL TYPE IS BLOB_FILE 916/917 267 BLOB file reference3

SQL TYPE IS CLOB_FILE 920/921 267 CLOB file reference3

SQL TYPE IS DBCLOB_FILE 924/925 267 DBCLOB file reference3

SQL TYPE IS XML AS
BLOB_FILE

916/917 267 XML BLOB file reference3

402 Application Programming and SQL Guide

||||

Table 68. SQL data types, SQLLEN values, and SQLTYPE values that the precompiler uses for host variables in PL/I
programs (continued)

PL/I host variable data type
SQLTYPE of host
variable1 SQLLEN of host variable SQL data type

SQL TYPE IS XML AS
CLOB_FILE

920/921 267 XML CLOB file reference3

SQL TYPE IS XML AS
DBCLOB_FILE

924/925 267 XML DBCLOB file reference3

SQL TYPE IS ROWID 904 40 ROWID

WIDECHAR(n) 468 n GRAPHIC(n)5

WIDECHAR VARYING(n) 464 n VARGRAPHIC(n)5

Notes:

1. If a host variable includes an indicator variable, the SQLTYPE value is the base SQLTYPE value plus 1.

2. If p=0, DB2 interprets it as DECIMAL(31). For example, DB2 interprets a PL/I data type of DEC FIXED(0,0) to be
DECIMAL(31,0), which equates to the SQL data type of DECIMAL(31,0).

3. Do not use this data type as a column type.

4. n is the number of double-byte characters.

5. CCSID 1200 is always assigned to WIDECHAR type host var.

6. The data type conversions can be used only if the DB2 coprocessor is used, and the PL/I compiler options
FLOAT(DFP) and ARCH(7) are specified.

The following table shows equivalent PL/I host variables for each SQL data type.
Use this table to determine the PL/I data type for host variables that you define to
receive output from the database. For example, if you retrieve TIMESTAMP data,
you can define a variable of type CHAR(n).

This table shows direct conversions between SQL data types and PL/I data types.
However, a number of SQL data types are compatible. When you do assignments
or comparisons of data that have compatible data types, DB2 converts those
compatible data types.

Table 69. PL/I host variable equivalents that you can use when retrieving data of a particular SQL data type

SQL data type PL/I host variable equivalent Notes

SMALLINT BIN FIXED(n) 1<=n<=15

INTEGER BIN FIXED(n) 16<=n<=31

BIGINT FIXED BIN(63)

DECIMAL(p,s) or
NUMERIC(p,s)

If p<16: DEC FIXED(p) or DEC
FIXED(p,s)

p is precision; s is scale. 1<=p<=31 and
0<=s<=p

If p>15, the PL/I compiler must support
31-digit decimal variables.

DECFLOAT(16) DEC FLOAT (p) 1 <= p <= 7

DECFLOAT(16) DEC FLOAT (p) 8 <= p <= 16

DECFLOAT(34) DEC FLOAT (p) 17 <= p

REAL or FLOAT(n) BIN FLOAT(p) or DEC FLOAT(m) 1<=n<=21, 1<=p<=21, and 1<=m<=6

DOUBLE PRECISION,
DOUBLE, or FLOAT(n)

BIN FLOAT(p) or DEC FLOAT(m) 22<=n<=53, 22<=p<=53, and 7<=m<=16

CHAR(n) CHAR(n) 1<=n<=255

VARCHAR(n) CHAR(n) VAR

Chapter 8. Coding SQL statements in PL/I application programs 403

||||

||||

|

Table 69. PL/I host variable equivalents that you can use when retrieving data of a particular SQL data
type (continued)

SQL data type PL/I host variable equivalent Notes

GRAPHIC(n) GRAPHIC(n) or WIDECHAR(n)2 n refers to the number of double-byte
characters, not to the number of bytes.

VARGRAPHIC(n) GRAPHIC(n) VARYING or WIDECHAR(n)
VARYING

n refers to the number of double-byte
characters, not to the number of bytes.

BINARY(n) SQL TYPE IS BINARY(n) 1<=n<=255

VARBINARY(n) SQL TYPE IS VARBINARY(n) 1<=n<=32 704

DATE CHAR(n) If you are using a date exit routine, that
routine determines n; otherwise, n must be
at least 10.

TIME CHAR(n) If you are using a time exit routine, that
routine determines n. Otherwise, n must
be at least 6; to include seconds, n must be
at least 8.

TIMESTAMP CHAR(n) n must be at least 19. To include
microseconds, n must be 26; if n is less
than 26, the microseconds part is
truncated.

TIMESTAMP(0) CHAR(n) n must be at least 19.

TIMESTAMP(p) p > 0 CHAR(n) n must be at least 19. To include fractional
seconds, n must be 20+x where x is the
number of fractional seconds to include; if
x is less than p, truncation occurs on the
fractional seconds part.

TIMESTAMP(0) WITH TIME
ZONE

CHAR(n) VAR n must be at least 25.

TIMESTAMP(p) WITH TIME
ZONE

CHAR(n) VAR n must be at least 26+p.

Result set locator SQL TYPE IS RESULT_SET_LOCATOR Use this data type only for receiving result
sets. Do not use this data type as a
column type.

Table locator SQL TYPE IS TABLE LIKE table-name AS
LOCATOR

Use this data type only in a user-defined
function or stored procedure to receive
rows of a transition table. Do not use this
data type as a column type.

BLOB locator SQL TYPE IS BLOB_LOCATOR Use this data type only to manipulate data
in BLOB columns. Do not use this data
type as a column type.2

CLOB locator SQL TYPE IS CLOB_LOCATOR Use this data type only to manipulate data
in CLOB columns. Do not use this data
type as a column type.2

DBCLOB locator SQL TYPE IS DBCLOB_LOCATOR Use this data type only to manipulate data
in DBCLOB columns. Do not use this data
type as a column type.2

BLOB(n) SQL TYPE IS BLOB(n) 1≤n≤21474836472

CLOB(n) SQL TYPE IS CLOB(n) 1≤n≤21474836472

DBCLOB(n) SQL TYPE IS DBCLOB(n) n is the number of double-byte characters.
1≤n≤10737418231

XML SQL TYPE IS XML AS BLOB(n) 1≤n≤2147483647

404 Application Programming and SQL Guide

|||
|

||
|
|
|

Table 69. PL/I host variable equivalents that you can use when retrieving data of a particular SQL data
type (continued)

SQL data type PL/I host variable equivalent Notes

XML SQL TYPE IS XML AS CLOB(n) 1≤n≤2147483647

XML SQL TYPE IS XML AS DBCLOB(n) n is the number of double-byte characters.
1≤n≤1073741823 2

BLOB file reference SQL TYPE IS BLOB_FILE Use this data type only to manipulate data
in BLOB columns. Do not use this data
type as a column type.2

CLOB file reference SQL TYPE IS CLOB_FILE Use this data type only to manipulate data
in CLOB columns. Do not use this data
type as a column type.2

DBCLOB file reference SQL TYPE IS DBCLOB_FILE Use this data type only to manipulate data
in DBCLOB columns. Do not use this data
type as a column type.2

XML BLOB file reference SQL TYPE IS XML AS BLOB_FILE Use this data type only to manipulate
XML data as BLOB files. Do not use this
data type as a column type.

XML CLOB file reference SQL TYPE IS XML AS CLOB_FILE Use this data type only to manipulate
XML data as CLOB files. Do not use this
data type as a column type.

XML DBCLOB file reference SQL TYPE IS XML AS DBCLOB_FILE Use this data type only to manipulate
XML data as DBCLOB files. Do not use
this data type as a column type.

ROWID SQL TYPE IS ROWID

Notes:

1. CCSID 1200 is always assigned to WIDECHAR type host var.

2. The data type conversions can be used only if the DB2 coprocessor is used, and the PL/I compiler options
FLOAT(DFP) and ARCH(7) are specified.

Related concepts:
“Compatibility of SQL and language data types” on page 144
“LOB host variable, LOB locator, and LOB file reference variable declarations” on
page 752
“Host variable data types for XML data in embedded SQL applications” on page
219

SQL statements in PL/I programs
You can code SQL statements in a PL/I program wherever you can use executable
statements.

The first statement of the PL/I program must be the PROCEDURE statement with
OPTIONS(MAIN), unless the program is a stored procedure. A stored procedure
application can run as a subroutine.

Each SQL statement in a PL/I program must begin with EXEC SQL and end with
a semicolon (;). The EXEC and SQL keywords must appear must appear on one
line, but the remainder of the statement can appear on subsequent lines.

You might code an UPDATE statement in a PL/I program as follows:

Chapter 8. Coding SQL statements in PL/I application programs 405

|

EXEC SQL UPDATE DSN8B10.DEPT
SET MGRNO = :MGR_NUM
WHERE DEPTNO = :INT_DEPT ;

Comments: You can include PL/I comments in embedded SQL statements
wherever you can use a blank, except between the keywords EXEC and SQL. You
can also include SQL comments in any SQL statement.

To include DBCS characters in comments, you must delimit the characters by a
shift-out and shift-in control character; the first shift-in character in the DBCS
string signals the end of the DBCS string.

Continuation for SQL statements: The line continuation rules for SQL statements
are the same as those for other PL/I statements, except that you must specify
EXEC SQL on one line.

Declaring tables and views: Your PL/I program should include a DECLARE
TABLE statement to describe each table and view the program accesses. You can
use the DB2 declarations generator (DCLGEN) to generate the DECLARE TABLE
statements.

Including code: You can use SQL statements or PL/I host variable declarations
from a member of a partitioned data set by using the following SQL statement in
the source code where you want to include the statements:
EXEC SQL INCLUDE member-name;

You cannot nest SQL INCLUDE statements. Do not use the PL/I %INCLUDE
statement to include SQL statements or host variable DCL statements. You must
use the PL/I preprocessor to resolve any %INCLUDE statements before you use
the DB2 precompiler. Do not use PL/I preprocessor directives within SQL
statements.

Margins: Code SQL statements in columns 2 through 72, unless you have specified
other margins to the DB2 precompiler. If EXEC SQL starts before the specified left
margin, the DB2 precompiler does not recognize the SQL statement.

Names: You can use any valid PL/I name for a host variable. Do not use external
entry names or access plan names that begin with 'DSN', and do not use host
variable names that begin with 'SQL'. These names are reserved for DB2.

Sequence numbers: The source statements that the DB2 precompiler generates do
not include sequence numbers. IEL0378I messages from the PL/I compiler identify
lines of code without sequence numbers. You can ignore these messages.

Statement labels: You can specify a statement label for executable SQL statements.
However, the INCLUDE text-file-name and END DECLARE SECTION statements
cannot have statement labels.

Whenever statement: The target for the GOTO clause in an SQL statement
WHENEVER must be a label in the PL/I source code and must be within the
scope of any SQL statements that WHENEVER affects.

Using double-byte character set (DBCS) characters: The following considerations
apply to using DBCS in PL/I programs with SQL statements:
v If you use DBCS in the PL/I source, DB2 rules for the following language

elements apply:

406 Application Programming and SQL Guide

– Graphic strings
– Graphic string constants
– Host identifiers
– Mixed data in character strings
– MIXED DATA option

v The PL/I preprocessor transforms the format of DBCS constants. If you do not
want that transformation, run the DB2 precompiler before the preprocessor.

v If you use graphic string constants or mixed data in dynamically prepared SQL
statements, and if your application requires the PL/I Version 2 (or later)
compiler, the dynamically prepared statements must use the PL/I mixed
constant format.
– If you prepare the statement from a host variable, change the string

assignment to a PL/I mixed string.
– If you prepare the statement from a PL/I string, change that to a host

variable, and then change the string assignment to a PL/I mixed string.
Example:
SQLSTMT = ’SELECT <dbdb> FROM table-name’M;
EXEC SQL PREPARE STMT FROM :SQLSTMT;

v If you want a DBCS identifier to resemble a PL/I graphic string, you must use a
delimited identifier.

v If you include DBCS characters in comments, you must delimit the characters
with a shift-out and shift-in control character. The first shift-in character signals
the end of the DBCS string.

v You can declare host variable names that use DBCS characters in PL/I
application programs. The rules for using DBCS variable names in PL/I follow
existing rules for DBCS SQL ordinary identifiers, except for length. The
maximum length for a host variable is 128 Unicode bytes in DB2. For
information about the rules for DBCS SQL ordinary identifiers, see the
information about SQL identifiers.
Restrictions:
– DBCS variable names must contain DBCS characters only. Mixing single-byte

character set (SBCS) characters with DBCS characters in a DBCS variable
name produces unpredictable results.

– A DBCS variable name cannot continue to the next line.
v The PL/I preprocessor changes non-Kanji DBCS characters into extended binary

coded decimal interchange code (EBCDIC) SBCS characters. To avoid this
change, use Kanji DBCS characters for DBCS variable names, or run the PL/I
compiler without the PL/I preprocessor.

Special PL/I considerations: The following considerations apply to programs
written in PL/I:
v When compiling a PL/I program that includes SQL statements, you must use

the PL/I compiler option CHARSET (60 EBCDIC).
v In unusual cases, the generated comments in PL/I can contain a semicolon. The

semicolon generates compiler message IEL0239I, which you can ignore.
v The generated code in a PL/I declaration can contain the ADDR function of a

field defined as character varying. This produces either message IBM105l l or
IBM1180l W, both of which you can ignore.

v The precompiler generated code in PL/I source can contain the NULL()
function. This produces message IEL0533I, which you can ignore unless you also
use NULL as a PL/I variable. If you use NULL as a PL/I variable in a DB2

Chapter 8. Coding SQL statements in PL/I application programs 407

application, you must also declare NULL as a built-in function (DCL NULL
BUILTIN;) to avoid PL/I compiler errors.

v The PL/I macro processor can generate SQL statements or host variable DCL
statements if you run the macro processor before running the DB2 precompiler.
If you use the PL/I macro processor, do not use the PL/I *PROCESS statement
in the source to pass options to the PL/I compiler. You can specify the needed
options on the COPTION parameter of the DSNH command or the option
PARM.PLI=options of the EXEC statement in the DSNHPLI procedure.

v Using the PL/I multitasking facility, in which multiple tasks execute SQL
statements, causes unpredictable results.

v PL/I WIDECHAR host data type is supported through the DB2 coprocessor
only.

v When you use PL/I WX widechar constant, DB2 supports only bigendian
format. Thus, when you assign a constant to the widechar type host variable in
PL/I, ensure that bigendian format is used. For example:
HVWC1 = ’003100320033006100620063’WX;

Equivalent to:
HVWC1 = ’123abc’;

HVWC1 is defined as a WIDECHAR type host variable.
v PL/I SQL Preprocessor option, CCSID0 and NOCCSID0, usage consideration

when used with the DB2 coprocessor.
– When you use CCSID0 (default), it promotes compatibility with older PL/I

programs, which used the DB2 precompiler. During program preparation, no
CCSID value is associated with the host variable except for the WIDECHAR
type host variable. For WIDECHAR type host variable, CCSID 1200 is always
assigned by the PL/I SQL Preprocessor.
During BIND and runtime, if no CCSID is associated with the host variable,
the BIND option, ENCODING, which is meant for the application data, is
used. If the ENCODING BIND option is not specified, then the default value
for the ENCODING BIND option is used.

– When you use NOCCSID0, a CCSID is associated with the host variable
during program preparation. The CCSID is derived from the following items
during program preparation:
- DECLARE :hv VARIABLE CCSID xxxx specified.
- Source CCSID, if no DECLARE VARIABLE ... CCSID xxxx is specified for

the host variable. During BIND time, note the CCSID assigned to the host
variable during program preparation is not known to the BIND process.
For host variable used in static SQL, ensuring accurate and matching
CCSID is assigned/derived through DECLARE VARIABLE ... CCSID xxxx,
source CCSID or ENCODING BIND option or the installation default
For parameter marker used in dynamic SQL, ensuring accurate CCSID for
the corresponding host variable is assigned/derived through DECLARE
VARIABLE ... CCSID xxxx, ENCODING BIND option or the installation
default. The source CCSID has no influence on parameter marker.

You can use the subroutine DSNTIAR to convert an SQL return code into a text
message. DSNTIAR takes data from the SQLCA, formats it into a message, and
places the result in a message output area that you provide in your application
program. For concepts and more information on the behavior of DSNTIAR, see
“Displaying SQLCA fields by calling DSNTIAR” on page 206.

408 Application Programming and SQL Guide

|
|

|
|
|

|

|

|

|

|
|

|
|
|
|
|

|
|
|
|

|
|
|

|

|
|
|

|
|
|

|
|
|
|

You can also use the MESSAGE_TEXT condition item field of the GET
DIAGNOSTICS statement to convert an SQL return code into a text message.
Programs that require long token message support should code the GET
DIAGNOSTICS statement instead of DSNTIAR. For more information about GET
DIAGNOSTICS, see “Checking the execution of SQL statements by using the GET
DIAGNOSTICS statement” on page 211.

DSNTIAR syntax:

CALL DSNTIAR (sqlca, message, lrecl);

The DSNTIAR parameters have the following meanings:

sqlca
An SQL communication area.

message
An output area, in VARCHAR format, in which DSNTIAR places the message
text. The first halfword contains the length of the remaining area; its minimum
value is 240.

The output lines of text, each line being the length specified in lrecl, are put
into this area. For example, you could specify the format of the output area as:
DCL DATA_LEN FIXED BIN(31) INIT(132);
DCL DATA_DIM FIXED BIN(31) INIT(10);
DCL 1 ERROR_MESSAGE AUTOMATIC,

3 ERROR_LEN FIXED BIN(15) UNAL INIT((DATA_LEN*DATA_DIM)),
3 ERROR_TEXT(DATA_DIM) CHAR(DATA_LEN);...

CALL DSNTIAR (SQLCA, ERROR_MESSAGE, DATA_LEN);

where ERROR_MESSAGE is the name of the message output area, DATA_DIM
is the number of lines in the message output area, and DATA_LEN is the
length of each line.

lrecl
A fullword containing the logical record length of output messages, between 72
and 240.

Because DSNTIAR is an assembler language program, you must include the
following directives in your PL/I application:
DCL DSNTIAR ENTRY OPTIONS (ASM,INTER,RETCODE);

An example of calling DSNTIAR from an application appears in the DB2 sample
assembler program DSN8BP3, contained in the library DSN8B10.SDSNSAMP. See
“DB2 sample applications” on page 1102 for instructions on how to access and
print the source code for the sample program.

CICS: If your CICS application requires CICS storage handling, you must use the
subroutine DSNTIAC instead of DSNTIAR. DSNTIAC has the following syntax:
CALL DSNTIAC (eib, commarea, sqlca, msg, lrecl);

DSNTIAC has extra parameters, which you must use for calls to routines that use
CICS commands.

eib EXEC interface block

commarea
communication area

Chapter 8. Coding SQL statements in PL/I application programs 409

For more information on these parameters, see the appropriate application
programming guide for CICS. The remaining parameter descriptions are the same
as those for DSNTIAR. Both DSNTIAC and DSNTIAR format the SQLCA in the
same way.

You must define DSNTIA1 in the CSD. If you load DSNTIAR or DSNTIAC, you
must also define them in the CSD. For an example of CSD entry generation
statements for use with DSNTIAC, see job DSNTEJ5A.

The assembler source code for DSNTIAC and job DSNTEJ5A, which assembles and
link-edits DSNTIAC, are in the data set prefix.SDSNSAMP.
Related concepts:
“DCLGEN (declarations generator)” on page 125
“Host variable arrays in an SQL statement” on page 156

SQL identifiers (DB2 SQL)
Related tasks:
“Including dynamic SQL in your program” on page 159
“Embedding SQL statements in your application” on page 147
“Handling SQL error codes” on page 217
“Limiting CPU time for dynamic SQL statements by using the resource limit
facility” on page 202

Delimiters in SQL statements in PL/I programs
You must delimit SQL statements in your PL/I program so that DB2 knows when
a particular SQL statement ends.

Delimit an SQL statement in your PL/I program with the beginning keyword EXEC
SQL and a Semicolon (;).

Programming examples in PL/I
You can write DB2 programs in PL/I. These programs can access a local or remote
DB2 subsystem and can execute static or dynamic SQL statements. This
information contains several such programming examples.

To prepare and run these applications, use the JCL in DSN910.SDSNSAMP as a
model for your JCL.
Related reference:
“Programming examples” on page 229

Example PL/I program that calls a stored procedure
You can call the GETPRML stored procedure that uses the GENERAL WITH
NULLS linkage convention from a PL/I program on a z/OS system.

The following figure contains the example PL/I program that calls the GETPRML
stored procedure.

410 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sqlidentifiers.htm#db2z_sqlidentifiers

*PROCESS SYSTEM(MVS);
CALPRML:

PROC OPTIONS(MAIN);

/**/
/* Declare the parameters used to call the GETPRML */
/* stored procedure. */
/**/
DECLARE PROCNM CHAR(18), /* INPUT parm -- PROCEDURE name */

SCHEMA CHAR(8), /* INPUT parm -- User’s schema */
OUT_CODE FIXED BIN(31),

/* OUTPUT -- SQLCODE from the */
/* SELECT operation. */

PARMLST CHAR(254) /* OUTPUT -- RUNOPTS for */
VARYING, /* the matching row in the */

/* catalog table SYSROUTINES */
PARMIND FIXED BIN(15);

/* PARMLST indicator variable */
/**/
/* Include the SQLCA */
/**/
EXEC SQL INCLUDE SQLCA;
/**/
/* Call the GETPRML stored procedure to retrieve the */
/* RUNOPTS values for the stored procedure. In this */
/* example, we request the RUNOPTS values for the */
/* stored procedure named DSN8EP2. */
/**/
PROCNM = ’DSN8EP2’;

/* Input parameter -- PROCEDURE to be found */
SCHEMA = ’ ’;

/* Input parameter -- SCHEMA in SYSROUTINES */
PARMIND = -1; /* The PARMLST parameter is an output parm. */

/* Mark PARMLST parameter as null, so the DB2 */
/* requester does not have to send the entire */
/* PARMLST variable to the server. This */
/* helps reduce network I/O time, because */
/* PARMLST is fairly large. */

EXEC SQL
CALL GETPRML(:PROCNM,

:SCHEMA,
:OUT_CODE,
:PARMLST INDICATOR :PARMIND);

IF SQLCODE¬=0 THEN /* If SQL CALL failed, */
DO;

PUT SKIP EDIT(’SQL CALL failed due to SQLCODE = ’,
SQLCODE) (A(34),A(14));

PUT SKIP EDIT(’SQLERRM = ’,
SQLERRM) (A(10),A(70));

END;
ELSE /* If the CALL worked, */

IF OUT_CODE¬=0 THEN /* Did GETPRML hit an error? */
PUT SKIP EDIT(’GETPRML failed due to RC = ’,

OUT_CODE) (A(33),A(14));
ELSE /* Everything worked. */

PUT SKIP EDIT(’RUNOPTS = ’, PARMLST) (A(11),A(200));
RETURN;

END CALPRML;

Figure 22. Calling a stored procedure from a PL/I program

Chapter 8. Coding SQL statements in PL/I application programs 411

Example PL/I stored procedure with a GENERAL linkage
convention
You can call a stored procedure that uses the GENERAL linkage convention from a
PL/I program.

This example stored procedure searches the DB2 SYSIBM.SYSROUTINES catalog
table for a row that matches the input parameters from the client program. The
two input parameters contain values for NAME and SCHEMA.

The linkage convention for this stored procedure is GENERAL.

The output parameters from this stored procedure contain the SQLCODE from the
SELECT operation, and the value of the RUNOPTS column retrieved from the
SYSIBM.SYSROUTINES table.

The CREATE PROCEDURE statement for this stored procedure might look like
this:
CREATE PROCEDURE GETPRML(PROCNM CHAR(18) IN, SCHEMA CHAR(8) IN,

OUTCODE INTEGER OUT, PARMLST VARCHAR(254) OUT)
LANGUAGE PLI
DETERMINISTIC
READS SQL DATA
EXTERNAL NAME "GETPRML"
COLLID GETPRML
ASUTIME NO LIMIT
PARAMETER STYLE GENERAL
STAY RESIDENT NO
RUN OPTIONS "MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)"
WLM ENVIRONMENT SAMPPROG
PROGRAM TYPE MAIN
SECURITY DB2
RESULT SETS 0
COMMIT ON RETURN NO;

The following example is a PL/I stored procedure with linkage convention
GENERAL.
*PROCESS SYSTEM(MVS);

GETPRML:
PROC(PROCNM, SCHEMA, OUT_CODE, PARMLST)

OPTIONS(MAIN NOEXECOPS REENTRANT);

DECLARE PROCNM CHAR(18), /* INPUT parm -- PROCEDURE name */
SCHEMA CHAR(8), /* INPUT parm -- User’s SCHEMA */

OUT_CODE FIXED BIN(31), /* OUTPUT -- SQLCODE from */
/* the SELECT operation. */

PARMLST CHAR(254) /* OUTPUT -- RUNOPTS for */
VARYING; /* the matching row in */

/* SYSIBM.SYSROUTINES */

EXEC SQL INCLUDE SQLCA;

/**/
/* Execute SELECT from SYSIBM.SYSROUTINES in the catalog. */
/**/
EXEC SQL

SELECT RUNOPTS INTO :PARMLST
FROM SYSIBM.SYSROUTINES
WHERE NAME=:PROCNM AND

SCHEMA=:SCHEMA;

412 Application Programming and SQL Guide

OUT_CODE = SQLCODE; /* return SQLCODE to caller */
RETURN;

END GETPRML;

Example PL/I stored procedure with a GENERAL WITH NULLS
linkage convention
You can call a stored procedure that uses the GENERAL WITH NULLS linkage
convention from a PL/I program.

This example stored procedure searches the DB2 SYSIBM.SYSROUTINES catalog
table for a row that matches the input parameters from the client program. The
two input parameters contain values for NAME and SCHEMA.

The linkage convention for this stored procedure is GENERAL WITH NULLS.

The output parameters from this stored procedure contain the SQLCODE from the
SELECT operation, and the value of the RUNOPTS column retrieved from the
SYSIBM.SYSROUTINES table.

The CREATE PROCEDURE statement for this stored procedure might look like
this:
CREATE PROCEDURE GETPRML(PROCNM CHAR(18) IN, SCHEMA CHAR(8) IN,

OUTCODE INTEGER OUT, PARMLST VARCHAR(254) OUT)
LANGUAGE PLI
DETERMINISTIC
READS SQL DATA
EXTERNAL NAME "GETPRML"
COLLID GETPRML
ASUTIME NO LIMIT
PARAMETER STYLE GENERAL WITH NULLS
STAY RESIDENT NO
RUN OPTIONS "MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)"
WLM ENVIRONMENT SAMPPROG
PROGRAM TYPE MAIN
SECURITY DB2
RESULT SETS 0
COMMIT ON RETURN NO;

The following example is a PL/I stored procedure with linkage convention
GENERAL WITH NULLS.
*PROCESS SYSTEM(MVS);

GETPRML:
PROC(PROCNM, SCHEMA, OUT_CODE, PARMLST, INDICATORS)

OPTIONS(MAIN NOEXECOPS REENTRANT);

DECLARE PROCNM CHAR(18), /* INPUT parm -- PROCEDURE name */
SCHEMA CHAR(8), /* INPUT parm -- User’s schema */

OUT_CODE FIXED BIN(31), /* OUTPUT -- SQLCODE from */
/* the SELECT operation. */

PARMLST CHAR(254) /* OUTPUT -- PARMLIST for */
VARYING; /* the matching row in */

/* SYSIBM.SYSROUTINES */
DECLARE 1 INDICATORS, /* Declare null indicators for */

/* input and output parameters. */
3 PROCNM_IND FIXED BIN(15),
3 SCHEMA_IND FIXED BIN(15),
3 OUT_CODE_IND FIXED BIN(15),
3 PARMLST_IND FIXED BIN(15);

Chapter 8. Coding SQL statements in PL/I application programs 413

EXEC SQL INCLUDE SQLCA;

IF PROCNM_IND<0 |
SCHEMA_IND<0 THEN

DO; /* If any input parm is NULL, */
OUT_CODE = 9999; /* Set output return code. */
OUT_CODE_IND = 0;

/* Output return code is not NULL.*/
PARMLST_IND = -1; /* Assign NULL value to PARMLST. */

END;
ELSE /* If input parms are not NULL, */
DO; /* */
/**/
/* Issue the SQL SELECT against the SYSIBM.SYSROUTINES */
/* DB2 catalog table. */
/**/

EXEC SQL
SELECT RUNOPTS INTO :PARMLST

FROM SYSIBM.SYSROUTINES
WHERE NAME=:PROCNM AND

SCHEMA=:SCHEMA;
PARMLST_IND = 0; /* Mark PARMLST as not NULL. */

OUT_CODE = SQLCODE; /* return SQLCODE to caller */
OUT_CODE_IND = 0;
OUT_CODE_IND = 0; /* Output return code is not NULL.*/

END;
RETURN;

END GETPRML;

414 Application Programming and SQL Guide

Chapter 9. Coding SQL statements in REXX application
programs

When you code SQL statements in REXX application programs, you should follow
certain guidelines.

Defining the SQL communications area, SQLSTATE, and SQLCODE in
REXX

When DB2 prepares a REXX program that contains SQL statements, DB2
automatically includes an SQLCA in the program.

About this task

The REXX SQLCA differs from the SQLCA for other languages. The REXX SQLCA
consists of a set of separate variables, rather than a structure.

The SQLCA has the following forms:
v A set of simple variables
v A set of compound variables that begin with the stem SQLCA

The simple variables is the default form of the SQLCA. Using CALL SQLEXEC
results in the compound stem variables. Otherwise, the attachment command used
determines the form of the SQLCA. If you use the ADDRESS DSNREXX ’CONNECT’
ssid syntax to connect to DB2, the SQLCA variables are a set of simple variables. If
you use the CALL SQLDBS ’ATTACH TO’ syntax to connect to DB2, the SQLCA
variables are compound variables that begin with the stem SQLCA.

Switching forms of the SQLCA within an application is not recommended.
Related tasks:
“Checking the execution of SQL statements” on page 204
“Checking the execution of SQL statements by using the SQLCA” on page 205
“Checking the execution of SQL statements by using SQLCODE and SQLSTATE”
on page 209
“Defining the items that your program can use to check whether an SQL statement
executed successfully” on page 137

Defining SQL descriptor areas in REXX
If your program includes certain SQL statements, you must define at least one SQL
descriptor area (SQLDA). Depending on the context in which it is used, the
SQLDA stores information about prepared SQL statements or host variables. This
information can then be read by either the application program or DB2.

Procedure

To define SQL descriptor areas:

Code the SQLDA declarations directly in your program.
Each SQLDA consists of a set of REXX variables with a common stem. The stem

© Copyright IBM Corp. 1983, 2013 415

must be a REXX variable name that contains no periods and is the same as the
value of descriptor-name that you specify when you use the SQLDA in an SQL
statement.

Restrictions:

v You must place SQLDA declarations before the first SQL statement that
references the data descriptor, unless you use the TWOPASS SQL processing
option.

v You cannot use the SQL INCLUDE statement for the SQLDA, because it is not
supported in COBOL.

Related tasks:
“Defining SQL descriptor areas” on page 137

Equivalent SQL and REXX data types
All REXX data is string data. Therefore, when a REXX program assigns input data
to a column, DB2 converts the data from a string type to the column type. When a
REXX program assigns column data to an output variable, DB2 converts the data
from the column type to a string type.

When you assign input data to a DB2 table column, you can either let DB2
determine the type that your input data represents, or you can use an SQLDA to
tell DB2 the intended type of the input data.

When a REXX program assigns data to a column, it can either let DB2 determine
the data type or use an SQLDA to specify the intended data type. If the program
lets DB2 assign a data type for the input data, DB2 bases its choice on the input
string format.

The following table shows the SQL data types that DB2 assigns to input data and
the corresponding formats for that data. The two SQLTYPE values that are listed
for each data type are the value for a column that does not accept null values and
the value for a column that accepts null values.

Table 70. SQL input data types and REXX data formats

SQL data type
assigned by DB2

SQLTYPE for
data type REXX input data format

INTEGER 496/497 A string of numerics that does not contain a decimal point or exponent
identifier. The first character can be a plus (+) or minus (-) sign. The
number that is represented must be between -2147483648 and 2147483647,
inclusive.

BIGINT 492/493 A string of numbers that does not contain a decimal point or an exponent
identifier. The first character can be a plus (+) or minus (-) sign. The
number that is represented must be between -9223372036854775808 and
-2147483648, inclusive, or between 2147483648 and 9223372036854775807.

DECIMAL(p,s) 484/485 One of the following formats:

v A string of numerics that contains a decimal point but no exponent
identifier. p represents the precision and s represents the scale of the
decimal number that the string represents. The first character can be a
plus (+) or minus (-) sign.

v A string of numerics that does not contain a decimal point or an
exponent identifier. The first character can be a plus (+) or minus (-)
sign. The number that is represented is less than -9223372036854775808
or greater than 9223372036854775807.

416 Application Programming and SQL Guide

Table 70. SQL input data types and REXX data formats (continued)

SQL data type
assigned by DB2

SQLTYPE for
data type REXX input data format

FLOAT 480/481 A string that represents a number in scientific notation. The string consists
of a series of numerics followed by an exponent identifier (an E or e
followed by an optional plus (+) or minus (-) sign and a series of
numerics). The string can begin with a plus (+) or minus (-) sign.

VARCHAR(n) 448/449 One of the following formats:

v A string of length n, enclosed in single or double quotation marks.

v The character X or x, followed by a string enclosed in single or double
quotation marks. The string within the quotation marks has a length of
2*n bytes and is the hexadecimal representation of a string of n
characters.

v A string of length n that does not have a numeric or graphic format, and
does not satisfy either of the previous conditions.

VARGRAPHIC(n) 464/465 One of the following formats:

v The character G, g, N, or n, followed by a string enclosed in single or
double quotation marks. The string within the quotation marks begins
with a shift-out character (X'0E') and ends with a shift-in character
(X'0F'). Between the shift-out character and shift-in character are n
double-byte characters.

v The characters GX, Gx, gX, or gx, followed by a string enclosed in single
or double quotation marks. The string within the quotation marks has a
length of 4*n bytes and is the hexadecimal representation of a string of n
double-byte characters.

For example, when DB2 executes the following statements to update the MIDINIT
column of the EMP table, DB2 must determine a data type for HVMIDINIT:
SQLSTMT="UPDATE EMP" ,

"SET MIDINIT = ?" ,
"WHERE EMPNO = ’000200’"

"EXECSQL PREPARE S100 FROM :SQLSTMT"
HVMIDINIT=’H’
"EXECSQL EXECUTE S100 USING" ,

":HVMIDINIT"

Because the data that is assigned to HVMIDINIT has a format that fits a character
data type, DB2 REXX Language Support assigns a VARCHAR type to the input
data.

If you do not assign a value to a host variable before you assign the host variable
to a column, DB2 returns an error code.
Related concepts:
“Compatibility of SQL and language data types” on page 144

SQL statements in REXX programs
You can code SQL statements in a REXX programs wherever you can use REXX
commands.

DB2 REXX Language Support supports all dynamic SQL statements and the
following static SQL statements:
v CALL
v CLOSE

Chapter 9. Coding SQL statements in REXX application programs 417

v CONNECT
v DECLARE CURSOR
v DESCRIBE prepared statement or table
v DESCRIBE CURSOR
v DESCRIBE INPUT
v DESCRIBE PROCEDURE
v EXECUTE
v EXECUTE IMMEDIATE
v FETCH
v OPEN
v PREPARE
v RELEASE connection
v SET CONNECTION
v SET CURRENT PACKAGE PATH
v SET CURRENT PACKAGESET
v SET host-variable = CURRENT DATE
v SET host-variable = CURRENT DEGREE
v SET host-variable = CURRENT MEMBER
v SET host-variable = CURRENT PACKAGESET
v SET host-variable = CURRENT PATH
v SET host-variable = CURRENT SERVER
v SET host-variable = CURRENT SQLID
v SET host-variable = CURRENT TIME
v SET host-variable = CURRENT TIMESTAMP
v SET host-variable = CURRENT TIMEZONE

Each SQL statement in a REXX program must begin with EXECSQL, in either
upper-, lower-, or mixed-case. One of the following items must follow EXECSQL:
v An SQL statement enclosed in single or double quotation marks.
v A REXX variable that contains an SQL statement. The REXX variable must not

be preceded by a colon.

For example, you can use either of the following methods to execute the COMMIT
statement in a REXX program:
EXECSQL "COMMIT"

rexxvar="COMMIT"
EXECSQL rexxvar

The following dynamic statements must be executed using EXECUTE IMMEDIATE
or PREPARE and EXECUTE under DSNREXX:
v DECLARE GLOBAL TEMPORARY TABLE
v SET CURRENT DEBUG MODE
v SET CURRENT DECFLOAT ROUNDING MODE
v SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
v SET CURRENT QUERY ACCELERATION
v SET CURRENT REFRESH AGE
v SET CURRENT ROUTINE VERSION
v SET SCHEMA

You cannot execute a SELECT, INSERT, UPDATE, MERGE, or DELETE statement
that contains host variables. Instead, you must execute PREPARE on the statement,

418 Application Programming and SQL Guide

with parameter markers substituted for the host variables, and then use the host
variables in an EXECUTE, OPEN, or FETCH statement. See “Host variables” on
page 138 for more information.

An SQL statement follows rules that apply to REXX commands. The SQL statement
can optionally end with a semicolon and can be enclosed in single or double
quotation marks, as in the following example:
’EXECSQL COMMIT’;

Comments: You cannot include REXX comments (/* ... */) or SQL comments (--)
within SQL statements. However, you can include REXX comments anywhere else
in the program.

Names:Continuation for SQL statements: SQL statements that span lines follow
REXX rules for statement continuation. You can break the statement into several
strings, each of which fits on a line, and separate the strings with commas or with
concatenation operators followed by commas. For example, either of the following
statements is valid:
EXECSQL ,

"UPDATE DSN8B10.DEPT" ,
"SET MGRNO = ’000010’" ,
"WHERE DEPTNO = ’D11’"

"EXECSQL " || ,
" UPDATE DSN8B10.DEPT " || ,
" SET MGRNO = ’000010’" || ,
" WHERE DEPTNO = ’D11’"

Including code: The EXECSQL INCLUDE statement is not valid for REXX. You
therefore cannot include externally defined SQL statements in a program.

Margins: Like REXX commands, SQL statements can begin and end anywhere on a
line.

You can use any valid REXX name that does not end with a period as a host
variable. However, host variable names should not begin with 'SQL', 'RDI', 'DSN',
'RXSQL', or 'QRW'. Variable names can be at most 64 bytes.

Nulls: A REXX null value and an SQL null value are different. The REXX language
has a null string (a string of length 0) and a null clause (a clause that contains only
blanks and comments). The SQL null value is a special value that is distinct from
all nonnull values and denotes the absence of a value. Assigning a REXX null
value to a DB2 column does not make the column value null.

Statement labels: You can precede an SQL statement with a label, in the same way
that you label REXX commands.

Handling errors and warnings: DB2 does not support the SQL WHENEVER
statement in a REXX program. To handle SQL errors and warnings, use the
following methods:
v To test for SQL errors or warnings, test the SQLCODE or SQLSTATE value and

the SQLWARN. values after each EXECSQL call. This method does not detect
errors in the REXX interface to DB2.

v To test for SQL errors or warnings or errors or warnings from the REXX
interface to DB2, test the REXX RC variable after each EXECSQL call. The
following table lists the values of the RC variable.

Chapter 9. Coding SQL statements in REXX application programs 419

You can also use the REXX SIGNAL ON ERROR and SIGNAL ON FAILURE
keyword instructions to detect negative values of the RC variable and transfer
control to an error routine.

Table 71. REXX return codes after SQL statements

Return code Meaning

0 No SQL warning or error occurred.

+1 An SQL warning occurred.

-1 An SQL error occurred.

-3 The first token after ADDRESS DSNREXX is in error. For a description of
the tokens allowed, see “Accessing the DB2 REXX language support
application programming interfaces.”

Related tasks:
“Including dynamic SQL in your program” on page 159
“Embedding SQL statements in your application” on page 147
“Handling SQL error codes” on page 217
“Limiting CPU time for dynamic SQL statements by using the resource limit
facility” on page 202

Delimiters in SQL statements in REXX programs
You must delimit SQL statements in your REXX program so that DB2 knows when
a particular SQL statement ends.

Delimit an SQL statement in your REXX program by preceding the statement with
EXECSQL. If the statement is in a literal string, enclose it in single or double
quotation marks.

Accessing the DB2 REXX language support application
programming interfaces

DB2 REXX Language Support includes several application programming interfaces
that enable your REXX program to connect to a DB2 subsystem and execute SQL
statements.

About this task

DB2 REXX Language Support includes the following application programming
interfaces:

DSNREXX CONNECT

Identifies the REXX task as a connected user of the specified DB2 subsystem.
The DSNREXX plan resources are allocated by establishing an allied thread.

You should not confuse the DSNREXX CONNECT command with the DB2
SQL CONNECT statement.

You must execute the DSNREXX CONNECT command before your REXX
program can execute SQL statements. Do not use the DSNREXX CONNECT
command from a stored procedure.

A currently connected REXX task must be disconnected before switching to a
different DB2 subsystem.

420 Application Programming and SQL Guide

The syntax of the DSNREXX CONNECT command is:

DSNREXX EXECSQL
Executes SQL statements in REXX programs.

The syntax of the DSNREXX EXECSQL command is:

DSNREXX DISCONNECT

Deallocates the DSNREXX plan and removes the REXX task as a connected
user of DB2.

You should execute the DSNREXX DISCONNECT command to release
resources that are held by DB2. Otherwise resources are not released until the
REXX task terminates.

Do not use the DSNREXX DISCONNECT command from a stored procedure.

The syntax of the DSNREXX DISCONNECT command is:

These application programming interfaces are available through the DSNREXX
host command environment. To make DSNREXX available to the application,
invoke the RXSUBCOM function. The syntax is:

�� 'CONNECT' 'subsystem-ID'
ADDRESS DSNREXX REXX-variable

��

Notes:

1. CALL SQLDBS 'ATTACH TO' ssid is an alternative to ADDRESS DSNREXX 'CONNECT' ssid.

2. The REXX-variable or 'subsystem-ID' string may also be a single member name in a data sharing group or the
group attachment name.

�� 'EXECSQL' "SQL-statement"
ADDRESS DSNREXX REXX-variable

��

Notes:

1. CALL 'SQLEXEC' "SQL-statement" is an alternative to ADDRESS DSNREXX 'EXECSQL' "SQL-statement".

2. 'EXECSQL' and "SQL-statement" can be enclosed in either single or double quotation marks.

�� 'DISCONNECT'
ADDRESS DSNREXX

��

Note: CALL SQLDBS 'DETACH' is an alternative to ADDRESS DSNREXX 'DISCONNECT'.

Chapter 9. Coding SQL statements in REXX application programs 421

The ADD function adds DSNREXX to the REXX host command environment table.
The DELETE function deletes DSNREXX from the REXX host command
environment table.

The following figure shows an example of REXX code that makes DSNREXX
available to an application.
’SUBCOM DSNREXX’ /* HOST CMD ENV AVAILABLE? */
IF RC THEN /* IF NOT, MAKE IT AVAILABLE */

S_RC = RXSUBCOM(’ADD’,’DSNREXX’,’DSNREXX’)
/* ADD HOST CMD ENVIRONMENT */

ADDRESS DSNREXX /* SEND ALL COMMANDS OTHER */
/* THAN REXX INSTRUCTIONS TO */
/* DSNREXX */
/* CALL CONNECT, EXECSQL, AND */
/* DISCONNECT INTERFACES */...

S_RC = RXSUBCOM(’DELETE’,’DSNREXX’,’DSNREXX’)
/* WHEN DONE WITH */
/* DSNREXX, REMOVE IT. */

Related concepts:
“REXX stored procedures” on page 642

Ensuring that DB2 correctly interprets character input data in
REXX programs

DB2 REXX Language Support might incorrectly interpret character literals as
graphic or numeric literals unless you mark them correctly.

Procedure

To ensure that DB2 correctly interprets character input data in REXX programs:

Precede and follow character literals with a double quotation mark, followed by a
single quotation mark, followed by another double quotation mark ("’").

Example: Specify the string the string 100 as "’"100"’".
Enclosing the string in apostrophes is not adequate, because REXX removes the
apostrophes when it assigns a literal to a variable. For example, suppose that you
want to pass the value in a host variable called stringvar to DB2. The value that
you want to pass is the string '100'. First, you assign the string to the host variable
by issuing the following REXX command:
stringvar = ’100’

After the command executes, stringvar contains the characters 100 (without the
apostrophes). DB2 REXX Language Support then passes the numeric value 100 to
DB2, which is not what you intended.
However, suppose that you write the following command:
stringvar = "’"100"’"

�� RXSUBCOM ('ADD' , 'DSNREXX' , 'DSNREXX')
'DELETE'

��

422 Application Programming and SQL Guide

In this case, REXX assigns the string '100' to stringvar, including the single
quotation marks. DB2 REXX Language Support then passes the string '100' to DB2,
which is the result that you want.

Passing the data type of an input data type to DB2 for REXX
programs

In certain situations, you should tell DB2 the data type to use for input data in a
REXX program. For example, if you are assigning or comparing input data to
columns of type SMALLINT, CHAR, or GRAPHIC, you should tell DB2 to use
those data types.

About this task

DB2 does not assign data types of SMALLINT, CHAR, or GRAPHIC to input data.
If you assign or compare this data to columns of type SMALLINT, CHAR, or
GRAPHIC, DB2 must do more work than if the data types of the input data and
columns match.

Procedure

To pass the data type of an input data type to DB2 for REXX programs:

Use an SQLDA.

Examples

Example of specifying CHAR as an input data type: Suppose that you want to
tell DB2 that the data with which you update the MIDINIT column of the EMP
table is of type CHAR, rather than VARCHAR. You need to set up an SQLDA that
contains a description of a CHAR column, and then prepare and execute the
UPDATE statement using that SQLDA, as shown in the following example.
INSQLDA.SQLD = 1 /* SQLDA contains one variable */
INSQLDA.1.SQLTYPE = 453 /* Type of the variable is CHAR, */

/* and the value can be null */
INSQLDA.1.SQLLEN = 1 /* Length of the variable is 1 */
INSQLDA.1.SQLDATA = ’H’ /* Value in variable is H */
INSQLDA.1.SQLIND = 0 /* Input variable is not null */
SQLSTMT="UPDATE EMP" ,

"SET MIDINIT = ?" ,
"WHERE EMPNO = ’000200’"

"EXECSQL PREPARE S100 FROM :SQLSTMT"
"EXECSQL EXECUTE S100 USING DESCRIPTOR :INSQLDA"

Example of specifying the input data type as DECIMAL with precision and
scale: Suppose that you want to tell DB2 that the data is of type DECIMAL with
precision and nonzero scale. You need to set up an SQLDA that contains a
description of a DECIMAL column, as shown in the following example.
INSQLDA.SQLD = 1 /* SQLDA contains one variable */
INSQLDA.1.SQLTYPE = 484 /* Type of variable is DECIMAL */
INSQLDA.1.SQLLEN.SQLPRECISION = 18 /* Precision of variable is 18 */
INSQLDA.1.SQLLEN.SQLSCALE = 8 /* Scale of variable is 8 */
INSQLDA.1.SQLDATA = 9876543210.87654321 /* Value in variable */

Chapter 9. Coding SQL statements in REXX application programs 423

Setting the isolation level of SQL statements in a REXX
program

Isolation levels specify the locking behavior for SQL statements. You can set the
isolation level for SQL statements in your REXX program to repeatable read (RR),
read stability (RS), cursor stability (CS), or uncommitted read (UR).

Procedure

To set the isolation level of SQL statements in a REXX program:

Execute the SET CURRENT PACKAGESET statement to select one of the following
DB2 REXX Language Support packages with the isolation level that you need.

Table 72. DB2 REXX Language Support packages and associated isolation levels

Package namea Isolation level

DSNREXRR Repeatable read (RR)

DSNREXRS Read stability (RS)

DSNREXCS Cursor stability (CS)

DSNREXUR Uncommitted read (UR)

Note:

1. These packages enable your program to access DB2 and are bound when you
install DB2 REXX Language Support.

For example, to change the isolation level to cursor stability, execute the following
SQL statement:
"EXECSQL SET CURRENT PACKAGESET=’DSNREXCS’"

Retrieving data from DB2 tables in REXX programs
All output data in REXX programs is string data. Although, you can determine the
data type that the data represents from its format and from the data type of the
column from which the data was retrieved.

About this task

The following table gives the format for each type of output data.

Table 73. SQL output data types and REXX data formats

SQL data type REXX output data format

SMALLINT
INTEGER
BIGINT

A string of numerics that does not contain leading zeroes, a decimal point, or
an exponent identifier. If the string represents a negative number, it begins
with a minus (-) sign. The numeric value is between -9223372036854775808 and
9223372036854775807, inclusive.

DECIMAL(p,s) A string of numerics with one of the following formats:

v Contains a decimal point but not an exponent identifier. The string is
padded with zeroes to match the scale of the corresponding table column. If
the value represents a negative number, it begins with a minus (-) sign.

v Does not contain a decimal point or an exponent identifier. The numeric
value is less than -9223372036854775808 or greater than
9223372036854775807. If the value is negative, it begins with a minus (-) sign.

424 Application Programming and SQL Guide

Table 73. SQL output data types and REXX data formats (continued)

SQL data type REXX output data format

FLOAT(n)
REAL
DOUBLE

A string that represents a number in scientific notation. The string consists of a
numeric, a decimal point, a series of numerics, and an exponent identifier. The
exponent identifier is an E followed by a minus (-) sign and a series of
numerics if the number is between -1 and 1. Otherwise, the exponent identifier
is an E followed by a series of numerics. If the string represents a negative
number, it begins with a minus (-) sign.

DECFLOAT REXX emulates the DECFLOAT data type with DOUBLE, so support for
DECFLOAT is limited to the REXX support for DOUBLE. The following special
values are not supported:
v INFINITY
v SNAN
v NAN

CHAR(n)
VARCHAR(n)

A character string of length n bytes. The string is not enclosed in single or
double quotation marks.

GRAPHIC(n)
VARGRAPHIC(n)

A string of length 2*n bytes. Each pair of bytes represents a double-byte
character. This string does not contain a leading G, is not enclosed in quotation
marks, and does not contain shift-out or shift-in characters.

Because you cannot use the SELECT INTO statement in a REXX procedure, to
retrieve data from a DB2 table you must prepare a SELECT statement, open a
cursor for the prepared statement, and then fetch rows into host variables or an
SQLDA using the cursor. The following example demonstrates how you can
retrieve data from a DB2 table using an SQLDA:
SQLSTMT= ,
’SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME,’ ,
’ WORKDEPT, PHONENO, HIREDATE, JOB,’ ,
’ EDLEVEL, SEX, BIRTHDATE, SALARY,’ ,
’ BONUS, COMM’ ,
’ FROM EMP’
EXECSQL DECLARE C1 CURSOR FOR S1
EXECSQL PREPARE S1 INTO :OUTSQLDA FROM :SQLSTMT
EXECSQL OPEN C1
Do Until(SQLCODE ¬= 0)

EXECSQL FETCH C1 USING DESCRIPTOR :OUTSQLDA
If SQLCODE = 0 Then Do

Line = ’’
Do I = 1 To OUTSQLDA.SQLD

Line = Line OUTSQLDA.I.SQLDATA
End I
Say Line
End

End

Cursors and statement names in REXX
In REXX applications that contain SQL statements, you must use a predefined set
of names for cursors or prepared statements.

The following names are valid for cursors and prepared statements in REXX
applications:

c1 to c100
Cursor names for DECLARE CURSOR, OPEN, CLOSE, and FETCH statements.
By default, c1 to c100 are defined with the WITH RETURN clause, and c51 to
c100 are defined with the WITH HOLD clause. You can use the ATTRIBUTES

Chapter 9. Coding SQL statements in REXX application programs 425

clause of the PREPARE statement to override these attributes or add additional
attributes. For example, you might want to add attributes to make your cursor
scrollable.

c101 to c200
Cursor names for ALLOCATE, DESCRIBE, FETCH, and CLOSE statements that
are used to retrieve result sets in a program that calls a stored procedure.

s1 to s100
Prepared statement names for DECLARE STATEMENT, PREPARE, DESCRIBE,
and EXECUTE statements.

Use only the predefined names for cursors and statements. When you associate a
cursor name with a statement name in a DECLARE CURSOR statement, the cursor
name and the statement must have the same number. For example, if you declare
cursor c1, you need to declare it for statement s1:
EXECSQL ’DECLARE C1 CURSOR FOR S1’

Do not use any of the predefined names as host variables names.

Programming examples in REXX
You can write DB2 programs in REXX. These programs can access a local or
remote DB2 subsystem and can execute static or dynamic SQL statements. This
information contains several such programming examples.

To prepare and run these applications, use the JCL in DSN910.SDSNSAMP as a
model for your JCL.
Related reference:
“Programming examples” on page 229

DB2 for z/OS Exchange

Sample DB2 REXX application
You can use a REXX application to accept a table name as input and produce a
SELECT, INSERT, or UPDATE SQL statement or a LOAD utility statement for the
specified table as output.

The following example shows a complete DB2 REXX application named DRAW.
DRAW must be invoked from the command line of an ISPF edit session. DRAW
takes a table or view name as input and produces a SELECT, INSERT, or UPDATE
SQL statement or a LOAD utility control statement that includes the columns of
the table as output.

DRAW syntax:

�� %DRAW object-name (
SSID=ssid SELECT

TYPE= INSERT
UPDATE
LOAD

��

DRAW parameters:

426 Application Programming and SQL Guide

http://www.ibm.com/developerworks/software/exchange/db2zos

object-name
The name of the table or view for which DRAW builds an SQL statement or
utility control statement. The name can be a one-, two-, or three-part name.
The table or view to which object-name refers must exist before DRAW can run.

object-name is a required parameter.

SSID=ssid
Specifies the name of the local DB2 subsystem.

S can be used as an abbreviation for SSID.

If you invoke DRAW from the command line of the edit session in SPUFI,
SSID=ssid is an optional parameter. DRAW uses the subsystem ID from the
DB2I Defaults panel.

TYPE=operation-type
The type of statement that DRAW builds.

T can be used as an abbreviation for TYPE.

operation-type has one of the following values:

SELECT
Builds a SELECT statement in which the result table contains all
columns of object-name.

S can be used as an abbreviation for SELECT.

INSERT
Builds a template for an INSERT statement that inserts values into all
columns of object-name. The template contains comments that indicate
where the user can place column values.

I can be used as an abbreviation for INSERT.

UPDATE
Builds a template for an UPDATE statement that updates columns of
object-name. The template contains comments that indicate where the
user can place column values and qualify the update operation for
selected rows.

U can be used as an abbreviation for UPDATE.

LOAD
Builds a template for a LOAD utility control statement for object-name.

L can be used as an abbreviation for LOAD.

TYPE=operation-type is an optional parameter. The default is TYPE=SELECT.

DRAW data sets:

Edit data set
The data set from which you issue the DRAW command when you are in an
ISPF edit session. If you issue the DRAW command from a SPUFI session, this
data set is the data set that you specify in field 1 of the main SPUFI panel
(DSNESP01). The output from the DRAW command goes into this data set.

DRAW return codes:

Return code
Meaning

0 Successful completion.

Chapter 9. Coding SQL statements in REXX application programs 427

12 An error occurred when DRAW edited the input file.

20 One of the following errors occurred:
v No input parameters were specified.
v One of the input parameters was not valid.
v An SQL error occurred when the output statement was generated.

Examples of DRAW invocation:

Generate a SELECT statement for table DSN8B10.EMP at the local subsystem. Use
the default DB2I subsystem ID.

The DRAW invocation is:
DRAW DSN8B10.EMP (TYPE=SELECT

The output is:
SELECT "EMPNO" , "FIRSTNME" , "MIDINIT" , "LASTNAME" , "WORKDEPT" ,

"PHONENO" , "HIREDATE" , "JOB" , "EDLEVEL" , "SEX" , "BIRTHDATE" ,
"SALARY" , "BONUS" , "COMM"

FROM DSN8B10.EMP

Generate a template for an INSERT statement that inserts values into table
DSN8B10.EMP at location SAN_JOSE. The local subsystem ID is DSN.

The DRAW invocation is:
DRAW SAN_JOSE.DSN8B10.EMP (TYPE=INSERT SSID=DSN

The output is:
INSERT INTO SAN_JOSE.DSN8B10.EMP ("EMPNO" , "FIRSTNME" , "MIDINIT" ,

"LASTNAME" , "WORKDEPT" , "PHONENO" , "HIREDATE" , "JOB" ,
"EDLEVEL" , "SEX" , "BIRTHDATE" , "SALARY" , "BONUS" , "COMM")
VALUES (

-- ENTER VALUES BELOW COLUMN NAME DATA TYPE
, -- EMPNO CHAR(6) NOT NULL
, -- FIRSTNME VARCHAR(12) NOT NULL
, -- MIDINIT CHAR(1) NOT NULL
, -- LASTNAME VARCHAR(15) NOT NULL
, -- WORKDEPT CHAR(3)
, -- PHONENO CHAR(4)
, -- HIREDATE DATE
, -- JOB CHAR(8)
, -- EDLEVEL SMALLINT
, -- SEX CHAR(1)
, -- BIRTHDATE DATE
, -- SALARY DECIMAL(9,2)
, -- BONUS DECIMAL(9,2)
) -- COMM DECIMAL(9,2)

Generate a template for an UPDATE statement that updates values of table
DSN8B10.EMP. The local subsystem ID is DSN.

The DRAW invocation is:
DRAW DSN8B10.EMP (TYPE=UPDATE SSID=DSN

The output is:
UPDATE DSN8B10.EMP SET
-- COLUMN NAME ENTER VALUES BELOW DATA TYPE

"EMPNO"= -- CHAR(6) NOT NULL
, "FIRSTNME"= -- VARCHAR(12) NOT NULL
, "MIDINIT"= -- CHAR(1) NOT NULL

428 Application Programming and SQL Guide

, "LASTNAME"= -- VARCHAR(15) NOT NULL
, "WORKDEPT"= -- CHAR(3)
, "PHONENO"= -- CHAR(4)
, "HIREDATE"= -- DATE
, "JOB"= -- CHAR(8)
, "EDLEVEL"= -- SMALLINT
, "SEX"= -- CHAR(1)
, "BIRTHDATE"= -- DATE
, "SALARY"= -- DECIMAL(9,2)
, "BONUS"= -- DECIMAL(9,2)
, "COMM"= -- DECIMAL(9,2)
WHERE

Generate a LOAD control statement to load values into table DSN8B10.EMP. The
local subsystem ID is DSN.

The draw invocation is:
DRAW DSN8B10.EMP (TYPE=LOAD SSID=DSN

The output is:
LOAD DATA INDDN SYSREC INTO TABLE DSN8B10.EMP
("EMPNO" POSITION(1) CHAR(6)
, "FIRSTNME" POSITION(8) VARCHAR
, "MIDINIT" POSITION(21) CHAR(1)
, "LASTNAME" POSITION(23) VARCHAR
, "WORKDEPT" POSITION(39) CHAR(3)

NULLIF(39)=’?’
, "PHONENO" POSITION(43) CHAR(4)

NULLIF(43)=’?’
, "HIREDATE" POSITION(48) DATE EXTERNAL

NULLIF(48)=’?’
, "JOB" POSITION(59) CHAR(8)

NULLIF(59)=’?’
, "EDLEVEL" POSITION(68) SMALLINT

NULLIF(68)=’?’
, "SEX" POSITION(71) CHAR(1)

NULLIF(71)=’?’
, "BIRTHDATE" POSITION(73) DATE EXTERNAL

NULLIF(73)=’?’
, "SALARY" POSITION(84) DECIMAL EXTERNAL(9,2)

NULLIF(84)=’?’
, "BONUS" POSITION(90) DECIMAL EXTERNAL(9,2)

NULLIF(90)=’?’
, "COMM" POSITION(96) DECIMAL EXTERNAL(9,2)

NULLIF(96)=’?’
)

DRAW source code:
/* REXX ***/
L1 = WHEREAMI()
/*
DRAW creates basic SQL queries by retrieving the description of a
table. You must specify the name of the table or view to be queried.
You can specify the type of query you want to compose. You might need
to specify the name of the DB2 subsystem.
>>--DRAW-----tablename-----|---------------------------|-------><

|-(-|-Ssid=subsystem-name-|-|
| +-Select-+ |
|-Type=-|-Insert-|----|

|-Update-|
+--Load--+

Ssid=subsystem-name
subsystem-name specified the name of a DB2 subsystem.

Select

Chapter 9. Coding SQL statements in REXX application programs 429

Composes a basic query for selecting data from the columns of a
table or view. If TYPE is not specified, SELECT is assumed.
Using SELECT with the DRAW command produces a query that would
retrieve all rows and all columns from the specified table. You
can then modify the query as needed.
A SELECT query of EMP composed by DRAW looks like this:

SELECT "EMPNO" , "FIRSTNME" , "MIDINIT" , "LASTNAME" , "WORKDEPT" ,
"PHONENO" , "HIREDATE" , "JOB" , "EDLEVEL" , "SEX" , "BIRTHDATE" ,
"SALARY" , "BONUS" , "COMM"

FROM DSN8B10.EMP
If you include a location qualifier, the query looks like this:

SELECT "EMPNO" , "FIRSTNME" , "MIDINIT" , "LASTNAME" , "WORKDEPT" ,
"PHONENO" , "HIREDATE" , "JOB" , "EDLEVEL" , "SEX" , "BIRTHDATE" ,
"SALARY" , "BONUS" , "COMM"

FROM STLEC1.DSN8B10.EMP

To use this SELECT query, type the other clauses you need. If
you are selecting from more than one table, use a DRAW command
for each table name you want represented.

Insert
Composes a basic query to insert data into the columns of a table
or view.
The following example shows an INSERT query of EMP that
DRAW composed:

INSERT INTO DSN8B10.EMP ("EMPNO" , "FIRSTNME" , "MIDINIT" , "LASTNAME" ,
"WORKDEPT" , "PHONENO" , "HIREDATE" , "JOB" , "EDLEVEL" , "SEX" ,
"BIRTHDATE" , "SALARY" , "BONUS" , "COMM")

VALUES (
-- ENTER VALUES BELOW COLUMN NAME DATA TYPE

, -- EMPNO CHAR(6) NOT NULL
, -- FIRSTNME VARCHAR(12) NOT NULL
, -- MIDINIT CHAR(1) NOT NULL
, -- LASTNAME VARCHAR(15) NOT NULL
, -- WORKDEPT CHAR(3)
, -- PHONENO CHAR(4)
, -- HIREDATE DATE
, -- JOB CHAR(8)
, -- EDLEVEL SMALLINT
, -- SEX CHAR(1)
, -- BIRTHDATE DATE
, -- SALARY DECIMAL(9,2)
, -- BONUS DECIMAL(9,2)
) -- COMM DECIMAL(9,2)

To insert values into EMP, type values to the left of the
column names.

Update
Composes a basic query to change the data in a table or view.
The following example shows an UPDATE query of EMP composed
by DRAW:

UPDATE DSN8B10.EMP SET
-- COLUMN NAME ENTER VALUES BELOW DATA TYPE

"EMPNO"= -- CHAR(6) NOT NULL
, "FIRSTNME"= -- VARCHAR(12) NOT NULL
, "MIDINIT"= -- CHAR(1) NOT NULL
, "LASTNAME"= -- VARCHAR(15) NOT NULL
, "WORKDEPT"= -- CHAR(3)
, "PHONENO"= -- CHAR(4)
, "HIREDATE"= -- DATE
, "JOB"= -- CHAR(8)
, "EDLEVEL"= -- SMALLINT
, "SEX"= -- CHAR(1)
, "BIRTHDATE"= -- DATE
, "SALARY"= -- DECIMAL(9,2)
, "BONUS"= -- DECIMAL(9,2)
, "COMM"= -- DECIMAL(9,2)
WHERE

To use this UPDATE query, type the changes you want to make to

430 Application Programming and SQL Guide

the right of the column names, and delete the lines you do not
need. Be sure to complete the WHERE clause.

Load
Composes a load statement to load the data in a table.
The following example shows a LOAD statement of EMP composed
by DRAW:

LOAD DATA INDDN SYSREC INTO TABLE DSN8B10 .EMP
("EMPNO" POSITION(1) CHAR(6)
, "FIRSTNME" POSITION(8) VARCHAR
, "MIDINIT" POSITION(21) CHAR(1)
, "LASTNAME" POSITION(23) VARCHAR
, "WORKDEPT" POSITION(39) CHAR(3)

NULLIF(39)=’?’
, "PHONENO" POSITION(43) CHAR(4)

NULLIF(43)=’?’
, "HIREDATE" POSITION(48) DATE EXTERNAL

NULLIF(48)=’?’
, "JOB" POSITION(59) CHAR(8)

NULLIF(59)=’?’
, "EDLEVEL" POSITION(68) SMALLINT

NULLIF(68)=’?’
, "SEX" POSITION(71) CHAR(1)

NULLIF(71)=’?’
, "BIRTHDATE" POSITION(73) DATE EXTERNAL

NULLIF(73)=’?’
, "SALARY" POSITION(84) DECIMAL EXTERNAL(9,2)

NULLIF(84)=’?’
, "BONUS" POSITION(90) DECIMAL EXTERNAL(9,2)

NULLIF(90)=’?’
, "COMM" POSITION(96) DECIMAL EXTERNAL(9,2)

NULLIF(96)=’?’
)

To use this LOAD statement, type the changes you want to make,
and delete the lines you do not need.

*/
L2 = WHEREAMI()

/**/
/* TRACE ?R */
/**/
Address ISPEXEC
"ISREDIT MACRO (ARGS) NOPROCESS"
If ARGS = "" Then
Do

Do I = L1+2 To L2-2;Say SourceLine(I);End
Exit (20)

End
Parse Upper Var Args Table "(" Parms
Parms = Translate(Parms," ",",")
Type = "SELECT" /* Default */
SSID = "" /* Default */
"VGET (DSNEOV01)"
If RC = 0 Then SSID = DSNEOV01
If (Parms <> "") Then
Do Until(Parms = "")
Parse Var Parms Var "=" Value Parms

If Var = "T" | Var = "TYPE" Then Type = Value
Else
If Var = "S" | Var = "SSID" Then SSID = Value
Else

Exit (20)
End
"CONTROL ERRORS RETURN"
"ISREDIT (LEFTBND,RIGHTBND) = BOUNDS"
"ISREDIT (LRECL) = DATA_WIDTH" /*LRECL*/
BndSize = RightBnd - LeftBnd + 1
If BndSize > 72 Then BndSize = 72
"ISREDIT PROCESS DEST"

Chapter 9. Coding SQL statements in REXX application programs 431

Select
When rc = 0 Then

’ISREDIT (ZDEST) = LINENUM .ZDEST’
When rc <= 8 Then /* No A or B entered */

Do
zedsmsg = ’Enter "A"/"B" line cmd’
zedlmsg = ’DRAW requires an "A" or "B" line command’
’SETMSG MSG(ISRZ001)’
Exit 12

End
When rc < 20 Then /* Conflicting line commands - edit sets message */

Exit 12
When rc = 20 Then

zdest = 0
Otherwise

Exit 12
End

SQLTYPE. = "UNKNOWN TYPE"
VCHTYPE = 448; SQLTYPES.VCHTYPE = ’VARCHAR’
CHTYPE = 452; SQLTYPES.CHTYPE = ’CHAR’
LVCHTYPE = 456; SQLTYPES.LVCHTYPE = ’VARCHAR’
VGRTYP = 464; SQLTYPES.VGRTYP = ’VARGRAPHIC’
GRTYP = 468; SQLTYPES.GRTYP = ’GRAPHIC’
LVGRTYP = 472; SQLTYPES.LVGRTYP = ’VARGRAPHIC’
FLOTYPE = 480; SQLTYPES.FLOTYPE = ’FLOAT’
DCTYPE = 484; SQLTYPES.DCTYPE = ’DECIMAL’
INTYPE = 496; SQLTYPES.INTYPE = ’INTEGER’
SMTYPE = 500; SQLTYPES.SMTYPE = ’SMALLINT’
DATYPE = 384; SQLTYPES.DATYPE = ’DATE’
TITYPE = 388; SQLTYPES.TITYPE = ’TIME’
TSTYPE = 392; SQLTYPES.TSTYPE = ’TIMESTAMP’
Address TSO "SUBCOM DSNREXX" /* HOST CMD ENV AVAILABLE? */
IF RC THEN /* NO, LET’S MAKE ONE */

S_RC = RXSUBCOM(’ADD’,’DSNREXX’,’DSNREXX’) /* ADD HOST CMD ENV */
Address DSNREXX "CONNECT" SSID
If SQLCODE ^= 0 Then Call SQLCA
Address DSNREXX "EXECSQL DESCRIBE TABLE :TABLE INTO :SQLDA"
If SQLCODE ^= 0 Then Call SQLCA
Address DSNREXX "EXECSQL COMMIT"
Address DSNREXX "DISCONNECT"
If SQLCODE ^= 0 Then Call SQLCA
Select

When (Left(Type,1) = "S") Then
Call DrawSelect

When (Left(Type,1) = "I") Then
Call DrawInsert

When (Left(Type,1) = "U") Then
Call DrawUpdate

When (Left(Type,1) = "L") Then
Call DrawLoad

Otherwise EXIT (20)
End
Do I = LINE.0 To 1 By -1

LINE = COPIES(" ",LEFTBND-1)||LINE.I
’ISREDIT LINE_AFTER ’zdest’ = DATALINE (Line)’

End
line1 = zdest + 1
’ISREDIT CURSOR = ’line1 0
Exit

/**/
WHEREAMI:; RETURN SIGL
/**/
/* Draw SELECT */
/**/
DrawSelect:

Line.0 = 0

432 Application Programming and SQL Guide

Line = "SELECT"
Do I = 1 To SQLDA.SQLD

If I > 1 Then Line = Line ’,’
ColName = ’"’SQLDA.I.SQLNAME’"’
Null = SQLDA.I.SQLTYPE//2
If Length(Line)+Length(ColName)+LENGTH(" ,") > BndSize THEN
Do

L = Line.0 + 1; Line.0 = L
Line.L = Line
Line = " "

End
Line = Line ColName

End I
If Line ^= "" Then
Do

L = Line.0 + 1; Line.0 = L
Line.L = Line
Line = " "

End
L = Line.0 + 1; Line.0 = L
Line.L = "FROM" TABLE
Return

/**/
/* Draw INSERT */
/**/
DrawInsert:

Line.0 = 0
Line = "INSERT INTO" TABLE "("
Do I = 1 To SQLDA.SQLD

If I > 1 Then Line = Line ’,’
ColName = ’"’SQLDA.I.SQLNAME’"’
If Length(Line)+Length(ColName) > BndSize THEN
Do

L = Line.0 + 1; Line.0 = L
Line.L = Line
Line = " "

End
Line = Line ColName
If I = SQLDA.SQLD Then Line = Line ’)’

End I
If Line ^= "" Then
Do

L = Line.0 + 1; Line.0 = L
Line.L = Line
Line = " "

End

L = Line.0 + 1; Line.0 = L
Line.L = " VALUES ("
L = Line.0 + 1; Line.0 = L
Line.L = ,
"-- ENTER VALUES BELOW COLUMN NAME DATA TYPE"
Do I = 1 To SQLDA.SQLD

If SQLDA.SQLD > 1 & I < SQLDA.SQLD Then
Line = " , --"

Else
Line = ") --"

Line = Line Left(SQLDA.I.SQLNAME,18)
Type = SQLDA.I.SQLTYPE
Null = Type//2
If Null Then Type = Type - 1
Len = SQLDA.I.SQLLEN
Prcsn = SQLDA.I.SQLLEN.SQLPRECISION
Scale = SQLDA.I.SQLLEN.SQLSCALE
Select
When (Type = CHTYPE ,

|Type = VCHTYPE ,
|Type = LVCHTYPE ,

Chapter 9. Coding SQL statements in REXX application programs 433

|Type = GRTYP ,
|Type = VGRTYP ,
|Type = LVGRTYP) THEN

Type = SQLTYPES.Type"("STRIP(LEN)")"
When (Type = FLOTYPE) THEN

Type = SQLTYPES.Type"("STRIP((LEN*4)-11) ")"
When (Type = DCTYPE) THEN

Type = SQLTYPES.Type"("STRIP(PRCSN)","STRIP(SCALE)")"
Otherwise

Type = SQLTYPES.Type
End
Line = Line Type
If Null = 0 Then
Line = Line "NOT NULL"
L = Line.0 + 1; Line.0 = L
Line.L = Line

End I
Return

/**/
/* Draw UPDATE */
/**/
DrawUpdate:

Line.0 = 1
Line.1 = "UPDATE" TABLE "SET"
L = Line.0 + 1; Line.0 = L
Line.L = ,
"-- COLUMN NAME ENTER VALUES BELOW DATA TYPE"
Do I = 1 To SQLDA.SQLD

If I = 1 Then
Line = " "

Else
Line = " ,"

Line = Line Left(’"’SQLDA.I.SQLNAME’"=’,21)
Line = Line Left(" ",20)
Type = SQLDA.I.SQLTYPE
Null = Type//2
If Null Then Type = Type - 1
Len = SQLDA.I.SQLLEN
Prcsn = SQLDA.I.SQLLEN.SQLPRECISION
Scale = SQLDA.I.SQLLEN.SQLSCALE
Select
When (Type = CHTYPE ,

|Type = VCHTYPE ,
|Type = LVCHTYPE ,
|Type = GRTYP ,
|Type = VGRTYP ,
|Type = LVGRTYP) THEN

Type = SQLTYPES.Type"("STRIP(LEN)")"
When (Type = FLOTYPE) THEN

Type = SQLTYPES.Type"("STRIP((LEN*4)-11) ")"
When (Type = DCTYPE) THEN

Type = SQLTYPES.Type"("STRIP(PRCSN)","STRIP(SCALE)")"
Otherwise

Type = SQLTYPES.Type
End
Line = Line "--" Type
If Null = 0 Then
Line = Line "NOT NULL"
L = Line.0 + 1; Line.0 = L
Line.L = Line

End I
L = Line.0 + 1; Line.0 = L
Line.L = "WHERE"
Return

434 Application Programming and SQL Guide

/**/
/* Draw LOAD */
/**/
DrawLoad:

Line.0 = 1
Line.1 = "LOAD DATA INDDN SYSREC INTO TABLE" TABLE
Position = 1
Do I = 1 To SQLDA.SQLD

If I = 1 Then
Line = " ("

Else
Line = " ,"

Line = Line Left(’"’SQLDA.I.SQLNAME’"’,20)
Line = Line "POSITION("RIGHT(POSITION,5)")"
Type = SQLDA.I.SQLTYPE
Null = Type//2
If Null Then Type = Type - 1
Len = SQLDA.I.SQLLEN
Prcsn = SQLDA.I.SQLLEN.SQLPRECISION
Scale = SQLDA.I.SQLLEN.SQLSCALE
Select
When (Type = CHTYPE ,

|Type = GRTYP) THEN
Type = SQLTYPES.Type"("STRIP(LEN)")"

When (Type = FLOTYPE) THEN
Type = SQLTYPES.Type"("STRIP((LEN*4)-11) ")"

When (Type = DCTYPE) THEN
Do

Type = SQLTYPES.Type "EXTERNAL"
Type = Type"("STRIP(PRCSN)","STRIP(SCALE)")"
Len = (PRCSN+2)%2

End
When (Type = DATYPE ,

|Type = TITYPE ,
|Type = TSTYPE) THEN

Type = SQLTYPES.Type "EXTERNAL"
Otherwise

Type = SQLTYPES.Type
End
If (Type = GRTYP ,

|Type = VGRTYP ,
|Type = LVGRTYP) THEN

Len = Len * 2
If (Type = VCHTYPE ,

|Type = LVCHTYPE ,
|Type = VGRTYP ,
|Type = LVGRTYP) THEN

Len = Len + 2
Line = Line Type
L = Line.0 + 1; Line.0 = L

Line.L = Line
If Null = 1 Then
Do

Line = " "
Line = Line Left(’’,20)
Line = Line " NULLIF("RIGHT(POSITION,5)")=’?’"
L = Line.0 + 1; Line.0 = L
Line.L = Line

End
Position = Position + Len + 1

End I
L = Line.0 + 1; Line.0 = L
Line.L = ")"
Return

/**/
/* Display SQLCA */
/**/

Chapter 9. Coding SQL statements in REXX application programs 435

SQLCA:
"ISREDIT LINE_AFTER "zdest" = MSGLINE ’SQLSTATE="SQLSTATE"’"
"ISREDIT LINE_AFTER "zdest" = MSGLINE ’SQLWARN ="SQLWARN.0",",

|| SQLWARN.1",",
|| SQLWARN.2",",
|| SQLWARN.3",",
|| SQLWARN.4",",
|| SQLWARN.5",",
|| SQLWARN.6",",
|| SQLWARN.7",",
|| SQLWARN.8",",
|| SQLWARN.9",",
|| SQLWARN.10"’"

"ISREDIT LINE_AFTER "zdest" = MSGLINE ’SQLERRD ="SQLERRD.1",",
|| SQLERRD.2",",
|| SQLERRD.3",",
|| SQLERRD.4",",
|| SQLERRD.5",",
|| SQLERRD.6"’"

"ISREDIT LINE_AFTER "zdest" = MSGLINE ’SQLERRP ="SQLERRP"’"
"ISREDIT LINE_AFTER "zdest" = MSGLINE ’SQLERRMC ="SQLERRMC"’"
"ISREDIT LINE_AFTER "zdest" = MSGLINE ’SQLCODE ="SQLCODE"’"
Exit 20

Example of how an indicator variable is used in a REXX program
The way that you use indicator variables for input host variables in REXX
programs is slightly different than the way that you use indicator variables in
other languages. When you want to pass a null value to a DB2 column, in addition
to putting a negative value in an indicator variable, you also need to put a valid
value in the corresponding host variable.

For example, the following statements set a value in the WORKDEPT column in
table EMP to null:
SQLSTMT="UPDATE EMP" ,

"SET WORKDEPT = ?"
HVWORKDEPT=’000’
INDWORKDEPT=-1
"EXECSQL PREPARE S100 FROM :SQLSTMT"
"EXECSQL EXECUTE S100 USING :HVWORKDEPT :INDWORKDEPT"

In the following program, the phone number for employee Haas is selected into
variable HVPhone. After the SELECT statement executes, if no phone number for
employee Haas is found, indicator variable INDPhone contains -1.
’SUBCOM DSNREXX’
IF RC THEN ,

S_RC = RXSUBCOM(’ADD’,’DSNREXX’,’DSNREXX’)
ADDRESS DSNREXX
’CONNECT’ ’DSN’
SQLSTMT = ,

"SELECT PHONENO FROM DSN8B10.EMP WHERE LASTNAME=’HAAS’"
"EXECSQL DECLARE C1 CURSOR FOR S1"
"EXECSQL PREPARE S1 FROM :SQLSTMT"
Say "SQLCODE from PREPARE is "SQLCODE
"EXECSQL OPEN C1"
Say "SQLCODE from OPEN is "SQLCODE
"EXECSQL FETCH C1 INTO :HVPhone :INDPhone"
Say "SQLCODE from FETCH is "SQLCODE
If INDPhone < 0 Then ,
Say ’Phone number for Haas is null.’
"EXECSQL CLOSE C1"
Say "SQLCODE from CLOSE is "SQLCODE
S_RC = RXSUBCOM(’DELETE’,’DSNREXX’,’DSNREXX’)

436 Application Programming and SQL Guide

Chapter 10. Creating and modifying DB2 objects

Your application program can create and manipulate DB2 objects, such as tables,
views, triggers, distinct types, user-defined functions, and stored procedures. You
must have the appropriate authorizations to create such objects.

Creating tables
Creating a table provides a logical place to store related data on a DB2 subsystem.

About this task

To create a table, use a CREATE TABLE statement that includes the following
elements:
v The name of the table
v A list of the columns that make up the table. For each column, specify the

following information:
– The column's name (for example, SERIAL).
– The data type and length attribute (for example, CHAR(8)).
– Optionally, a default value.
– Optionally, a referential constraint or check constraint.

Separate each column description from the next with a comma, and enclose the
entire list of column descriptions in parentheses.

Example: The following SQL statement creates a table named PRODUCT:
CREATE TABLE PRODUCT

(SERIAL CHAR(8) NOT NULL,
DESCRIPTION VARCHAR(60) DEFAULT,
MFGCOST DECIMAL(8,2),
MFGDEPT CHAR(3),
MARKUP SMALLINT,
SALESDEPT CHAR(3),
CURDATE DATE DEFAULT);

For more information about referential constraints, see “Referential constraints” on
page 449

For more information about check constraints, see “Check constraints” on page
447.

Identifying column defaults and constraining column inputs:

If you want to constrain the input or identify the default of a column, you can use
the following values:
v NOT NULL, when the column cannot contain null values.
v UNIQUE, when the value for each row must be unique, and the column cannot

contain null values.
v DEFAULT, when the column has one of the following DB2-assigned defaults:

– For numeric columns, 0 (zero) is the default value.
– For character or graphic fixed-length strings, blank is the default value.

© Copyright IBM Corp. 1983, 2013 437

– For binary fixed-length strings, a set of hexadecimal zeros is the default value.
– For variable-length strings, including LOB strings, the empty string (a string

of zero-length) is the default value.
– For datetime columns, the current value of the associated special register is

the default value.
v DEFAULT value, when you want to identify one of the following values as the

default value:
– A constant
– NULL
– SESSION_USER, which specifies the value of the SESSION_USER special

register at the time when a default value is needed for the column
– CURRENT SQLID, which specifies the value of the CURRENT SQLID special

register at the time when a default value is needed for the column
– The name of a cast function that casts a default value (of a built-in data type)

to the distinct type of a column

Data types
When you create a DB2 table, you define each column to have a specific data type.
The data type of a column determines what you can and cannot do with the
column.

When you perform operations on columns, the data must be compatible with the
data type of the referenced column. For example, you cannot insert character data,
such as a last name, into a column whose data type is numeric. Similarly, you
cannot compare columns that contain incompatible data types.

The data type for a column can be a distinct type, which is a user-defined data
type, or a DB2 built-in data type. As shown in the following figure, DB2 built-in
data types have four general categories: datetime, string, numeric, and row
identifier (ROWID).

438 Application Programming and SQL Guide

The following table shows whether operands of any two data types are compatible,
Y (Yes), or incompatible, N (No). Notes are indicated either as a superscript
number next to Y or N or as a value in the column of the table.

Built-in data types

floating point

DECIMAL

ROWID

16 bit 32 bit

single
precision

double
precision

fixed
length

varying
length

fixed
length

fixed length

varying
length

varying length

row identifier

exact approximate

SMALLINT INTEGER

REAL DOUBLE

TIME

GRAPHIC

BINARY

VARGRAPHIC

VARBINARY

VARCHAR DBCLOB

BLOB

CLOB

CHAR

DATE

DECFLOAT

decimal
floating point

XML

XML

64 bit

BIGINT

graphiccharacter

string

timestamp without
time zone

signed numeric

time timestampdate

datetime

timestamp
with time zone

TIMESTAMP WITHOUT
TIME ZONE

TIMESTAMP
WITH TIME ZONE

packed

decimalbinary integer

binary

Figure 23. DB2 built-in data types

Chapter 10. Creating and modifying DB2 objects 439

Table 74. Supported casts between built-in data types

Cast from
data type –

To data type1

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

D
E
C
I

M
A
L

D
E
C
F
L
O
A
T

R
E
A
L

D
O
U
B
L
E

C
H
A
R

V
A
R
C
H
A
R

C
L
O
B

G
R
A
P
H
I
C

V
A
R
G
R
A
P
H
I
C

D
B
C
L
O
B

B
I
N
A
R
Y

V
A
R
B
I
N
A
R
Y

B
L
O
B

D
A
T
E

T
I

M
E

T
I

M
E
S
T
A
M
P

W
I
T
H
O
U
T

T
I

M
E

Z
O
N
E

T
I

M
E
S
T
A
M
P

W
I
T
H

T
I

M
E

Z
O
N
E

R
O
W
I
D

X
M
L

SMALLINT Y Y Y Y Y Y Y Y Y

INTEGER Y Y Y Y Y Y Y Y Y

BIGINT Y Y Y Y Y Y Y Y Y

DECIMAL Y Y Y Y Y Y Y Y Y

DECFLOAT Y Y Y Y Y Y Y Y Y

REAL Y Y Y Y Y Y Y Y Y

DOUBLE Y Y Y Y Y Y Y Y Y

CHAR Y

VARCHAR Y

CLOB Y Y Y Y Y Y Y Y Y

GRAPHIC Y Y Y Y Y Y Y Y2 Y2 Y2 Y Y Y Y Y Y Y3 Y3 Y3 Y3

VARGRAPHIC Y Y Y Y Y Y Y Y2 Y2 Y2 Y Y Y Y Y Y Y Y Y Y3

DBCLOB Y2 Y2 Y2 Y Y Y Y Y Y

BINARY Y Y Y

VARBINARY Y Y Y

BLOB Y Y Y

DATE Y Y Y Y

TIME Y Y Y

TIMESTAMP
WITHOUT
TIME ZONE

Y Y Y Y Y Y

440 Application Programming and SQL Guide

Table 74. Supported casts between built-in data types (continued)

Cast from
data type –

To data type1

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

D
E
C
I

M
A
L

D
E
C
F
L
O
A
T

R
E
A
L

D
O
U
B
L
E

C
H
A
R

V
A
R
C
H
A
R

C
L
O
B

G
R
A
P
H
I
C

V
A
R
G
R
A
P
H
I
C

D
B
C
L
O
B

B
I
N
A
R
Y

V
A
R
B
I
N
A
R
Y

B
L
O
B

D
A
T
E

T
I

M
E

T
I

M
E
S
T
A
M
P

W
I
T
H
O
U
T

T
I

M
E

Z
O
N
E

T
I

M
E
S
T
A
M
P

W
I
T
H

T
I

M
E

Z
O
N
E

R
O
W
I
D

X
M
L

TIMESTAMP
WITH TIME
ZONE

Y Y Y Y Y Y

ROWID Y Y Y Y Y Y

XML Y

Note:

1. Other synonyms for the listed data types are considered to be the same as the synonym listed. Some exceptions
exist when the cast involves character string data if the subtype is FOR BIT DATA.

2. The result length for these casts is 3 * LENGTH(graphic string).

3. These data types are castable between each other only if the data is Unicode.

Related concepts:
“Distinct types” on page 493

Data types (DB2 SQL)

Storing LOB data in a table
DB2 handles LOB data differently than it handles other kinds of data. As a result,
in some cases, you need to take additional actions when you define LOB columns
and inset the LOB data.

Procedure

To store LOB data in DB2:

Chapter 10. Creating and modifying DB2 objects 441

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_datatypesintro.htm#db2z_datatypesintro

1. Define one or more columns of the appropriate LOB type and optionally a row
identifier (ROWID) column by executing a CREATE TABLE statement or one or
more ALTER TABLE statements.
Define only one ROWID column, even if the table is to have multiple LOB
columns. If you do not create a ROWID column before you define a LOB
column, DB2 creates an implicitly hidden ROWID column and appends it as
the last column of the table.
If you add a ROWID column after you add a LOB column, the table has two
ROWID columns: the implicitly-created, hidden, column and the
explicitly-created column. In this case, DB2 ensures that the values of the two
ROWID columns are always identical.
If DB2 implicitly creates the table space for this table or CURRENT RULES is
set to STD, DB2 creates the necessary auxiliary objects for you and you can
skip steps 2 and 3.

2. If you explicitly created the table space for this table and the CURRENT RULES
special register is not set to STD, create a LOB table space and auxiliary table
by using the CREATE LOB TABLESPACE and CREATE AUXILIARY TABLE
statements.
v If your base table is nonpartitioned, create one LOB table space and for each

column create one auxiliary table.
v If your base table is partitioned, create one LOB table space for each partition

and one auxiliary table for each column. For example, if your base table has
three partitions, you must create three LOB table spaces and three auxiliary
tables for each LOB column.

3. If you explicitly created the table space for this table and the CURRENT RULES
special register is not set to STD, create one index for each auxiliary table by
using the CREATE INDEX statement.

4. Insert the LOB data into DB2 by using one of the following techniques:
v If the total length of a LOB column and the base table row is less than 32 KB,

use the LOAD utility and specify the base table.
v Otherwise, use INSERT, UPDATE, or MERGE statements and specify the

base table. If you use the INSERT statement, ensure that you application has
enough storage available to hold the entire value that is to be put into the
LOB column.

Results

Example: Adding a CLOB column: Suppose that you want to add a resume for
each employee to the employee table. The employee resumes are no more than 5
MB in size. Because the employee resumes contain single-byte characters, you can
define the resumes to DB2 as CLOBs. You therefore need to add a column of data
type CLOB with a length of 5 MB to the employee table. If you want to define a
ROWID column explicitly, you must define it before you define the CLOB column.

First, execute an ALTER TABLE statement to add the ROWID column, and then
execute another ALTER TABLE statement to add the CLOB column. The following
statements create these columns:
ALTER TABLE EMP

ADD ROW_ID ROWID NOT NULL GENERATED ALWAYS;
COMMIT;
ALTER TABLE EMP

ADD EMP_RESUME CLOB(5M);
COMMIT;

442 Application Programming and SQL Guide

If you explicitly created the table space for this table and the CURRENT RULES
special register is not set to STD, you then need to define a LOB table space and an
auxiliary table to hold the employee resumes. You also need to define an index on
the auxiliary table. You must define the LOB table space in the same database as
the associated base table. The following statements create these objects:
CREATE LOB TABLESPACE RESUMETS

IN DSN8D11A
LOG NO

COMMIT;
CREATE AUXILIARY TABLE EMP_RESUME_TAB

IN DSN8D11A.RESUMETS
STORES DSN8B10.EMP
COLUMN EMP_RESUME;

CREATE UNIQUE INDEX XEMP_RESUME
ON EMP_RESUME_TAB;

COMMIT;

You can then load your employee resumes into DB2. In your application, you can
define a host variable to hold the resume, copy the resume data from a file into the
host variable, and then execute an UPDATE statement to copy the data into DB2.
Although the LOB data is stored in the auxiliary table, your UPDATE statement
specifies the name of the base table. The following code declares a host variable to
store the resume in the C language:
SQL TYPE is CLOB (5M) resumedata;

The following UPDATE statement copies the data into DB2:
UPDATE EMP SET EMP_RESUME=:resumedata

WHERE EMPNO=:employeenum;

In this statement, employeenum is a host variable that identifies the employee who
is associated with a resume.

Large objects (LOBs)
The term large object and the acronym LOB refer to DB2 objects that you can use to
store large amounts of data. A LOB is a varying-length character string that can
contain up to 2 GB - 1 of data.

The three LOB data types are:
v Binary large object (BLOB)

Use a BLOB to store binary data such as pictures, voice, and mixed media.
v Character large object (CLOB)

Use a CLOB to store SBCS or mixed character data, such as documents.
v Double-byte character large object (DBCLOB)

Use a DBCLOB to store data that consists of only DBCS data.

You can use DB2 to store LOB data, but this data is stored differently than other
kinds of data.

Although a table can have a LOB column, the actual LOB data is stored in a
another table, which called the auxiliary table. This auxiliary table exists in a
separate table space called a LOB table space. One auxiliary table must exist for
each LOB column. The table with the LOB column is called the base table. The
base table has a ROWID column that DB2 uses to locate the data in the auxiliary
table. The auxiliary table must have exactly one index.

Chapter 10. Creating and modifying DB2 objects 443

Implicitly hidden ROWID columns
If you do not create a ROWID column before you define a LOB column, DB2
creates an implicitly hidden ROWID column for you. This column is accessible
only if you reference the column directly. The column is not included in the results
of SELECT * statements or DESCRIBE statements.

DB2 assigns the GENERATED ALWAYS attribute and the name
DB2_GENERATED_ROWID_FOR_LOBSnn to a an implicitly hidden ROWID
column. DB2 appends the identifier nn only if the column name already exists in
the table. If so, DB2 appends 00 and increments by 1 until the name is unique
within the row.
Related reference:

ALTER TABLE (DB2 SQL)

ALTER VIEW (DB2 SQL)

CREATE TABLE (DB2 SQL)

select-clause (DB2 SQL)

Identity columns
An identity column contains a unique numeric value for each row in the table.
DB2 can automatically generate sequential numeric values for this column as rows
are inserted into the table. Thus, identity columns are ideal for primary key values,
such as employee numbers or product numbers.

Using identity columns as keys

If you define a column with the AS IDENTITY attribute, and with the
GENERATED ALWAYS and NO CYCLE attributes, DB2 automatically generates a
monotonically increasing or decreasing sequential number for the value of that
column when a new row is inserted into the table. However, for DB2 to guarantee
that the values of the identity column are unique, you should define a unique
index on that column.

You can use identity columns for primary keys that are typically unique sequential
numbers, for example, order numbers or employee numbers. By doing so, you can
avoid the concurrency problems that can result when an application generates its
own unique counter outside the database.

Recommendation: Set the values of the foreign keys in the dependent tables after
loading the parent table. If you use an identity column as a parent key in a
referential integrity structure, loading data into that structure could be quite
complicated. The values for the identity column are not known until the table is
loaded because the column is defined as GENERATED ALWAYS.

You might have gaps in identity column values for the following reasons:
v If other applications are inserting values into the same identity column
v If DB2 terminates abnormally before it assigns all the cached values
v If your application rolls back a transaction that inserts identity values

Defining an identity column

You can define an identity column as either GENERATED BY DEFAULT or
GENERATED ALWAYS:

444 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_altertable.htm#db2z_sql_altertable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_alterview.htm#db2z_sql_alterview
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtable.htm#db2z_sql_createtable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_selectclause.htm#db2z_sql_selectclause

v If you define the column as GENERATED BY DEFAULT, you can insert a value,
and DB2 provides a default value if you do not supply one.

v If you define the column as GENERATED ALWAYS, DB2 always generates a
value for the column, and you cannot insert data into that column. If you want
the values to be unique, you must define the identity column with GENERATED
ALWAYS and NO CYCLE and define a unique index on that column.

The values that DB2 generates for an identity column depend on how the column
is defined. The START WITH option determines the first value that DB2 generates.
The values advance by the INCREMENT BY value in ascending or descending
order.

The MINVALUE and MAXVALUE options determine the minimum and maximum
values that DB2 generates. The CYCLE or NO CYCLE option determines whether
DB2 wraps values when it has generated all values between the START WITH
value and MAXVALUE if the values are ascending, or between the START WITH
value and MINVALUE if the values are descending.

Example: Using GRANTED ALWAYS and CYCLE

Suppose that table T1 is defined with GENERATED ALWAYS and CYCLE:
CREATE TABLE T1

(CHARCOL1 CHAR(1),
IDENTCOL1 SMALLINT GENERATED ALWAYS AS IDENTITY

(START WITH -1,
INCREMENT BY 1,
CYCLE,
MINVALUE -3,
MAXVALUE 3));

Now suppose that you execute the following INSERT statement eight times:
INSERT INTO T1 (CHARCOL1) VALUES (’A’);

When DB2 generates values for IDENTCOL1, it starts with -1 and increments by 1
until it reaches the MAXVALUE of 3 on the fifth INSERT. To generate the value for
the sixth INSERT, DB2 cycles back to MINVALUE, which is -3. T1 looks like this
after the eight INSERTs are executed:
CHARCOL1 IDENTCOL1
======== =========
A -1
A 0
A 1
A 2
A 3
A -3
A -2
A -1

The value of IDENTCOL1 for the eighth INSERT repeats the value of IDENTCOL1
for the first INSERT.

Identity columns as primary keys

The SELECT from INSERT statement enables you to insert a row into a parent
table with its primary key defined as a DB2-generated identity column, and
retrieve the value of the primary or parent key. You can then use this generated
value as a foreign key in a dependent table.

Chapter 10. Creating and modifying DB2 objects 445

In addition, you can use the IDENTITY_VAL_LOCAL function to return the most
recently assigned value for an identity column.

Example: Using SELECT from INSERT

Suppose that an EMPLOYEE table and a DEPARTMENT table are defined in the
following way:
CREATE TABLE EMPLOYEE

(EMPNO INTEGER GENERATED ALWAYS AS IDENTITY
PRIMARY KEY NOT NULL,

NAME CHAR(30) NOT NULL,
SALARY DECIMAL(7,2) NOT NULL,
WORKDEPT SMALLINT);

CREATE TABLE DEPARTMENT
(DEPTNO SMALLINT NOT NULL PRIMARY KEY,
DEPTNAME VARCHAR(30),
MGRNO INTEGER NOT NULL,
CONSTRAINT REF_EMPNO FOREIGN KEY (MGRNO)

REFERENCES EMPLOYEE (EMPNO) ON DELETE RESTRICT);

ALTER TABLE EMPLOYEE ADD
CONSTRAINT REF_DEPTNO FOREIGN KEY (WORKDEPT)

REFERENCES DEPARTMENT (DEPTNO) ON DELETE SET NULL;

When you insert a new employee into the EMPLOYEE table, to retrieve the value
for the EMPNO column, you can use the following SELECT from INSERT
statement:
EXEC SQL

SELECT EMPNO INTO :hv_empno
FROM FINAL TABLE (INSERT INTO EMPLOYEE (NAME, SALARY, WORKDEPT)

VALUES (’New Employee’, 75000.00, 11));

The SELECT statement returns the DB2-generated identity value for the EMPNO
column in the host variable :hv_empno.

You can then use the value in :hv_empno to update the MGRNO column in the
DEPARTMENT table with the new employee as the department manager:
EXEC SQL

UPDATE DEPARTMENT
SET MGRNO = :hv_empno
WHERE DEPTNO = 11;

Related concepts:
“Rules for inserting data into an identity column” on page 651
Related tasks:
“Selecting values while inserting data” on page 655
Related reference:

IDENTITY_VAL_LOCAL (DB2 SQL)

Creating tables for data integrity
To ensure that only valid data is added to your tables, you can use constraints,
triggers, and unique indexes. For example, you might need to ensure that all items
in your inventory table have valid item numbers and to prevent items without
valid item numbers from being added.

446 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_identityvallocal.htm#db2z_bif_identityvallocal

Ways to maintain data integrity
When you add or modify data in a DB2 table, you need to ensure that the data is
valid. Two techniques that you can use to ensure valid data are constraints and
triggers.

Constraints are rules that limit the values that you can insert, delete, or update in a
table. There are two types of constraints:
v Check constraints determine the values that a column can contain. Check

constraints are discussed in “Check constraints.”
v Referential constraints preserve relationships between tables. Referential

constraints are discussed in “Referential constraints” on page 449. A specific type
of referential constraints, the informational referential constraint, is discussed in
“Informational referential constraints” on page 451.

Triggers are a series of actions that are invoked when a table is updated. Triggers
are discussed in “Creating triggers” on page 472.

Check constraints:

A check constraint is a rule that specifies the values that are allowed in one or more
columns of every row of a base table. For example, you can define a check
constraint to ensure that all values in a column that contains ages are positive
numbers.

Check constraints designate the values that specific columns of a base table can
contain, providing you a method of controlling the integrity of data entered into
tables. You can create tables with check constraints using the CREATE TABLE
statement, or you can add the constraints with the ALTER TABLE statement.
However, if the check integrity is compromised or cannot be guaranteed for a
table, the table space or partition that contains the table is placed in a check
pending state. Check integrity is the condition that exists when each row of a table
conforms to the check constraints defined on that table.

For example, you might want to make sure that no salary can be below 15000
dollars. To do this, you can create the following check constraint:
CREATE TABLE EMPSAL
(ID INTEGER NOT NULL,
SALARY INTEGER CHECK (SALARY >= 15000));

Using check constraints makes your programming task easier, because you do not
need to enforce those constraints within application programs or with a validation
routine. Define check constraints on one or more columns in a table when that
table is created or altered.

Check constraint considerations

The syntax of a check constraint is checked when the constraint is defined, but the
meaning of the constraint is not checked. The following examples show mistakes
that are not caught. Column C1 is defined as INTEGER NOT NULL.

Allowable but mistaken check constraints:

v A self-contradictory check constraint:
CHECK (C1 > 5 AND C1 < 2)

v Two check constraints that contradict each other:

Chapter 10. Creating and modifying DB2 objects 447

CHECK (C1 > 5)
CHECK (C1 < 2)

v Two check constraints, one of which is redundant:
CHECK (C1 > 0)
CHECK (C1 >= 1)

v A check constraint that contradicts the column definition:
CHECK (C1 IS NULL)

v A check constraint that repeats the column definition:
CHECK (C1 IS NOT NULL)

A check constraint is not checked for consistency with other types of constraints.
For example, a column in a dependent table can have a referential constraint with
a delete rule of SET NULL. You can also define a check constraint that prohibits
nulls in the column. As a result, an attempt to delete a parent row fails, because
setting the dependent row to null violates the check constraint.

Similarly, a check constraint is not checked for consistency with a validation
routine, which is applied to a table before a check constraint. If the routine requires
a column to be greater than or equal to 10 and a check constraint requires the same
column to be less than 10, table inserts are not possible. Plans and packages do not
need to be rebound after check constraints are defined on or removed from a table.

When check constraints are enforced

After check constraints are defined on a table, any change must satisfy those
constraints if it is made by:
v The LOAD utility with the option ENFORCE CONSTRAINT
v An SQL insert operation
v An SQL update operation

A row satisfies a check constraint if its condition evaluates either to true or to
unknown. A condition can evaluate to unknown for a row if one of the named
columns contains the null value for that row.

Any constraint defined on columns of a base table applies to the views defined on
that base table.

When you use ALTER TABLE to add a check constraint to already populated
tables, the enforcement of the check constraint is determined by the value of the
CURRENT RULES special register as follows:
v If the value is STD, the check constraint is enforced immediately when it is

defined. If a row does not conform, the check constraint is not added to the
table and an error occurs.

v If the value is DB2, the check constraint is added to the table description but its
enforcement is deferred. Because there might be rows in the table that violate
the check constraint, the table is placed in CHECK-pending status.

CHECK-pending status:

To maintain data integrity DB2 enforces check constraints and referential
constraints on data in a table. When these types of constraints are violated or
might be violated, DB2 places the table space or partition that contains the table in
CHECK-pending status.

448 Application Programming and SQL Guide

Table check violations place a table space or partition in CHECK-pending status
when any of these conditions exist:
v A check constraint is defined on a populated table using the ALTER TABLE

statement, and the value of the CURRENT RULES special register is DB2.
v The LOAD utility is run with CONSTRAINTS NO, and check constraints are

defined on the table.
v CHECK DATA is run on a table that contains violations of check constraints.
v A point-in-time RECOVER introduces violations of check constraints.

Referential constraints:

A referential constraint is a rule that specifies that the only valid values for a
particular column are those values that exist in another specified table column. For
example, a referential constraint can ensure that all customer IDs in a transaction
table exist in the ID column of a customer table.

A table can serve as the “master list” of all occurrences of an entity. In the sample
application, the employee table serves that purpose for employees; the numbers
that appear in that table are the only valid employee numbers. Likewise, the
department table provides a master list of all valid department numbers; the
project activity table provides a master list of activities performed for projects; and
so on.

The following figure shows the relationships that exist among the tables in the
sample application. Arrows point from parent tables to dependent tables.

When a table refers to an entity for which there is a master list, it should identify
an occurrence of the entity that actually appears in the master list; otherwise, either
the reference is invalid or the master list is incomplete. Referential constraints
enforce the relationship between a table and a master list.

CASCADE

CASCADE

RESTRICT

RESTRICT

RESTRICT

RESTRICT

RESTRICT

RESTRICT

SET
NULL

SET
NULL

DEPT

EMP

PROJ

ACT

PROJACT

EMPPROJACT

Figure 24. Relationships among tables in the sample application

Chapter 10. Creating and modifying DB2 objects 449

Restrictions on cycles of dependent tables:

A cycle is a set of two or more tables. The tables are ordered so that each is a
dependent of the one before it, and the first is a dependent of the last. Every table
in the cycle is a descendent of itself. DB2 restricts certain operations on cycles.

In the sample application, the employee and department tables are a cycle; each is
a dependent of the other.

DB2 does not allow you to create a cycle in which a delete operation on a table
involves that same table. Enforcing that principle creates rules about adding a
foreign key to a table:
v In a cycle of two tables, neither delete rule can be CASCADE.
v In a cycle of more than two tables, two or more delete rules must not be

CASCADE. For example, in a cycle with three tables, two of the delete rules
must be other than CASCADE. This concept is illustrated in The following
figure. The cycle on the left is valid because two or more of the delete rules are
not CASCADE. The cycle on the right is invalid because it contains two
cascading deletes.

Alternatively, a delete operation on a self-referencing table must involve the same
table, and the delete rule there must be CASCADE or NO ACTION.

Recommendation: Avoid creating a cycle in which all the delete rules are
RESTRICT and none of the foreign keys allows nulls. If you do this, no row of any
of the tables can ever be deleted.

Referential constraints on tables with multilevel security with row-level granularity:

You cannot use referential constraints on a security label column, which is used for
multilevel security with row-level granularity. However, you can use referential
constraints on other columns in the row.

DB2 does not enforce multilevel security with row-level granularity when it is
already enforcing referential constraints. Referential constraints are enforced when
the following situations occur:
v An insert operation is applied to a dependent table.
v An update operation is applied to a foreign key of a dependent table, or to the

parent key of a parent table.
v A delete operation is applied to a parent table. In addition to all referential

constraints being enforced, the DB2 system enforces all delete rules for all

TABLE1 TABLE1

TABLE2

Valid
cycle

Invalid
cycle

TABLE3 TABLE3TABLE2

RESTRICT CASCADE CASCADE CASCADE

SET NULL SET NULL

Figure 25. Valid and invalid delete cycles

450 Application Programming and SQL Guide

dependent rows that are affected by the delete operation. If all referential
constraints and delete rules are not satisfied, the delete operation will not
succeed.

v The LOAD utility with the ENFORCE CONSTRAINTS option is run on a
dependent table.

v The CHECK DATA utility is run.
Related concepts:

Multilevel security (Managing Security)

Informational referential constraints:

An informational referential constraint is a referential constraint that DB2 does not
enforce during normal operations. Use these constraints only when referential
integrity can be enforced by another means, such as when retrieving data from
other sources. These constraints might improve performance by enabling the query
to qualify for automatic query rewrite.

DB2 ignores informational referential constraints during insert, update, and delete
operations. Some utilities ignore these constraints; other utilities recognize them.
For example, CHECK DATA and LOAD ignore these constraints. QUIESCE
TABLESPACESET recognizes these constraints by quiescing all table spaces related
to the specified table space.

You should use this type of referential constraint only when an application process
verifies the data in a referential integrity relationship. For example, when inserting
a row in a dependent table, the application should verify that a foreign key exists
as a primary or unique key in the parent table. To define an informational
referential constraint, use the NOT ENFORCED option of the referential constraint
definition in a CREATE TABLE or ALTER TABLE statement.

Informational referential constraints are often useful, especially in a data
warehouse environment, for several reasons:
v To avoid the overhead of enforcement by DB2.

Typically, data in a data warehouse has been extracted and cleansed from other
sources. Referential integrity might already be guaranteed. In this situation,
enforcement by DB2 is unnecessary.

v To allow more queries to qualify for automatic query rewrite.
Automatic query rewrite is a process that examines a submitted query that
references source tables and, if appropriate, rewrites the query so that it executes
against a materialized query table that has been derived from those source
tables. This process uses informational referential constraints to determine
whether the query can use a materialized query table. Automatic query rewrite
results in a significant reduction in query run time, especially for
decision-support queries that operate over huge amounts of data.

Chapter 10. Creating and modifying DB2 objects 451

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_mls.htm#db2z_mls

Related tasks:

Using materialized query tables to improve SQL performance (DB2
Performance)
Related reference:

CREATE TABLE (DB2 SQL)

Defining a parent key and unique index
A parent key is either a primary key or a unique key in the parent table of a
referential constraint. The values of a parent key determine the valid values of the
foreign key in the constraint. You must create a unique index on a parent key.

About this task

The primary key of a table, if one exists, uniquely identifies each occurrence of an
entity in the table. The PRIMARY KEY clause of the CREATE TABLE or ALTER
TABLE statements identifies the column or columns of the primary key. Each
identified column must be defined as NOT NULL.

Another way to allow only unique values in a column is to specify the UNIQUE
clause when you create or alter a table.

A table that is to be a parent of dependent tables must have a primary or a unique
key; the foreign keys of the dependent tables refer to the primary or unique key.
Otherwise, a primary key is optional. Consider defining a primary key if each row
of your table does pertain to a unique occurrence of some entity. If you define a
primary key, an index must be created (the primary index) on the same set of
columns, in the same order as those columns. If you are defining referential
constraints for DB2 to enforce, takes steps to maintain data integrity read before
creating or altering any of the tables involved.

A table can have no more than one primary key. A primary key has the same
restrictions as index keys:
v The key can include no more than 64 columns.
v You cannot specify a column name twice.
v The sum of the column length attributes cannot be greater than 2000.

You define a list of columns as the primary key of a table with the PRIMARY KEY
clause in the CREATE TABLE statement.

To add a primary key to an existing table, use the PRIMARY KEY clause in an
ALTER TABLE statement. In this case, a unique index must already exist.

Recommendations for defining primary keys:

Consider the following items when you plan for primary keys:
v The theoretical model of a relational database suggests that every table should

have a primary key to uniquely identify the entities it describes. However, you
must weigh that model against the potential cost of index maintenance
overhead. DB2 does not require you to define a primary key for tables with no
dependents.

v Choose a primary key whose values will not change over time. Choosing a
primary key with persistent values enforces the good practice of having unique
identifiers that remain the same for the lifetime of the entity occurrence.

452 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_usemqtimprovesqlperf.htm#db2z_usemqtimprovesqlperf
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_usemqtimprovesqlperf.htm#db2z_usemqtimprovesqlperf
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtable.htm#db2z_sql_createtable

v A primary key column should not have default values unless the primary key is
a single TIMESTAMP column.

v Choose the minimum number of columns to ensure uniqueness of the primary
key.

v A view that can be updated that is defined on a table with a primary key should
include all columns of the key. Although this is necessary only if the view is
used for inserts, the unique identification of rows can be useful if the view is
used for updates, deletes, or selects.

v Drop a primary key later if you change your database or application using SQL.
Related concepts:
“Ways to maintain data integrity” on page 447
Related reference:

ALTER TABLE (DB2 SQL)

CREATE TABLE (DB2 SQL)

Parent key columns:

A parent key is either a primary key or a unique key in the parent table of a
referential constraint. This key consists of a column or set of columns. The values
of a parent key determine the valid values of the foreign key in the constraint.

If every row in a table represents relationships for a unique entity, the table should
have one column or a set of columns that provides a unique identifier for the rows
of the table. This column (or set of columns) is called the parent key of the table. To
ensure that the parent key does not contain duplicate values, you must create a
unique index on the column or columns that constitute the parent key. Defining
the parent key is called entity integrity, because it requires each entity to have a
unique key.

In some cases, using a timestamp as part of the key can be helpful, for example
when a table does not have a “natural” unique key or if arrival sequence is the
key.

Primary keys for some of the sample tables are:

Table Key Column
Employee table

EMPNO
Department table

DEPTNO
Project table

PROJNO

Table 75 shows part of the project table which has the primary key column,
PROJNO.

Table 75. Part of the project table with the primary key column, PROJNO

PROJNO PROJNAME DEPTNO

MA2100 WELD LINE AUTOMATION D01

MA2110 W L PROGRAMMING D11

Chapter 10. Creating and modifying DB2 objects 453

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_altertable.htm#db2z_sql_altertable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtable.htm#db2z_sql_createtable

Table 76 shows part of the project activity table, which has a primary key that
contains more than one column. The primary key is a composite key, which consists
of the PRONNO, ACTNO, and ACSTDATE columns.

Table 76. Part of the Project activities table with a composite primary key

PROJNO ACTNO ACSTAFF ACSTDATE ACENDATE

AD3100 10 .50 1982-01-01 1982-07-01

AD3110 10 1.00 1982-01-01 1983-01-01

AD3111 60 .50 1982-03-15 1982-04-15

Defining a foreign key
Use foreign keys to enforce referential relationships between tables. A foreign key is
a column or set of columns that references the parent key in the parent table.

Before you begin

The following prerequisites are met:
v The privilege set must include the ALTER or the REFERENCES privilege on the

columns of the parent key.
v A unique index exists on the parent key columns of the parent table.

Procedure

To define a foreign key, use one of the following approaches:
v Issue a CREATE TABLE statement and specify a FOREIGN KEY clause.

1. Choose a constraint name for the relationship that is defined by a foreign
key. If you do not choose a name, DB2 generates one from the name of the
first column of the foreign key, in the same way that it generates the name of
an implicitly created table space. For example, the names of the relationships
in which the employee-to-project activity table is a dependent would, by
default, be recorded (in column RELNAME of SYSIBM.SYSFOREIGNKEYS)
as EMPNO and PROJNO.
The name is used in error messages, queries to the catalog, and DROP
FOREIGN KEY statements. Hence, you might want to choose one if you are
experimenting with your database design and have more than one foreign
key that begins with the same column (otherwise DB2 generates the name).

2. Specify column names that identify the columns of the parent key. A foreign
key can refer to either a unique or a primary key of the parent table. If the
foreign key refers to a non-primary unique key, you must specify the column
names of the key explicitly. If the column names of the key are not specified
explicitly, the default is to refer to the column names of the primary key of
the parent table.

v Issue an ALTER TABLE statement and specify the FOREIGN KEY clause. You
can add a foreign key to an existing table; in fact, that is sometimes the only
way to proceed. To make a table self-referencing, you must add a foreign key
after creating it. When a foreign key is added to a populated table, the table
space is put into check pending status.

454 Application Programming and SQL Guide

Example

The following example shows a CREATE TABLE statement that specifies constraint
names REPAPA and REPAE for the foreign keys in the employee-to-project activity
table.
CREATE TABLE DSN8B10.EMPPROJACT

(EMPNO CHAR(6) NOT NULL,
PROJNO CHAR(6) NOT NULL,
ACTNO SMALLINT NOT NULL,
CONSTRAINT REPAPA FOREIGN KEY (PROJNO, ACTNO)

REFERENCES DSN8B10.PROJACT ON DELETE RESTRICT,
CONSTRAINT REPAE FOREIGN KEY (EMPNO)

REFERENCES DSN8B10.EMP ON DELETE RESTRICT)
IN DATABASE DSN8D11A;

What to do next

Although not required, an index on a foreign key is strongly recommended if rows
of the parent table are often deleted. The validity of the delete statement, and its
possible effect on the dependent table, can be checked through the index.

You can create an index on the columns of a foreign key in the same way you
create one on any other set of columns. Most often it is not a unique index. If you
do create a unique index on a foreign key, it introduces an additional constraint on
the values of the columns.

The index on the foreign key can be used on the dependent table for delete
operations on a parent table. For the index to qualify, the leading columns of the
index must be identical to and in the same order as all columns in the foreign key.
The index can include additional columns, but the leading columns match the
definition of the foreign key. Indexes that use expressions cannot be used for this
purpose.

A foreign key can also be the primary key; then the primary index is also a unique
index on the foreign key. In that case, every row of the parent table has at most
one dependent row. The dependent table might be used to hold information that
pertains to only a few of the occurrences of the entity described by the parent
table. For example, a dependent of the employee table might contain information
that applies only to employees working in a different country.

The primary key can share columns of the foreign key if the first n columns of the
foreign key are the same as the columns of the primary key. Again, the primary
index serves as an index on the foreign key. In the sample project activity table, the
primary index (on PROJNO, ACTNO, ACSTDATE) serves as an index on the
foreign key on PROJNO. It does not serve as an index on the foreign key on
ACTNO, because ACTNO is not the first column of the index.

Chapter 10. Creating and modifying DB2 objects 455

Related concepts:

Implications of adding parent or foreign keys (DB2 Administration Guide)
Related tasks:

Adding parent keys and foreign keys (DB2 Administration Guide)
Related reference:

CREATE TABLE (DB2 SQL)

ALTER TABLE (DB2 SQL)

SYSIBM.SYSFOREIGNKEYS table (DB2 SQL)

Maintaining referential integrity when using data encryption
If you use encrypted data in a referential constraint, the primary key of the parent
table and the foreign key of the dependent table must have the same encrypted
value.

About this task

The encrypted value should be extracted from the parent table (the primary key)
and used for the dependent table (the foreign key). You can do this in one of the
following two ways:
v Use the FINAL TABLE clause on a SELECT from UPDATE, SELECT from

INSERT, or SELECT from MERGE statement.
v Use the ENCRYPT_TDES function to encrypt the foreign key using the same

password as the primary key. The encrypted value of the foreign key will be the
same as the encrypted value of the primary key.

The SET ENCRYPTION PASSWORD statement sets the password that will be used
for the ENCRYPT_TDES function.
Related reference:

ENCRYPT_TDES (DB2 SQL)

ENCRYPTION PASSWORD (DB2 SQL)

Creating work tables for the EMP and DEPT sample tables
Before testing SQL statements that insert, update, and delete rows in the
DSN8B10.EMP and DSN8B10.DEPT sample tables, you should create duplicates of
these tables. Create duplicates so that the original sample tables remain intact.
These duplicate tables are called work tables.

About this task

This topic shows how to create the department and employee work tables and
how to fill a work table with the contents of another table:

Each of these topics assumes that you logged on by using your own authorization
ID. The authorization ID qualifies the name of each object that you create. For
example, if your authorization ID is SMITH, and you create table YDEPT, the name
of the table is SMITH.YDEPT. If you want to access table DSN8B10.DEPT, you
must refer to it by its complete name. If you want to access your own table
YDEPT, you need only to refer to it as YDEPT.

456 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_implicationsparentorforeignkeys.htm#db2z_implicationsparentorforeignkeys
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_addkeys.htm#db2z_addkeys
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtable.htm#db2z_sql_createtable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_altertable.htm#db2z_sql_altertable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsysforeignkeystable.htm#db2z_sysibmsysforeignkeystable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_encrypttdes.htm#db2z_bif_encrypttdes
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_encryptionpassword.htm#db2z_encryptionpassword

Use the following statements to create a new department table called YDEPT,
modeled after the existing table, DSN8B10.DEPT, and an index for YDEPT:
CREATE TABLE YDEPT

LIKE DSN8B10.DEPT;

CREATE UNIQUE INDEX YDEPTX
ON YDEPT (DEPTNO);

If you want DEPTNO to be a primary key, as in the sample table, explicitly define
the key. Use an ALTER TABLE statement, as in the following example:
ALTER TABLE YDEPT

PRIMARY KEY(DEPTNO);

You can use an INSERT statement to copy the rows of the result table of a
fullselect from one table to another. The following statement copies all of the rows
from DSN8B10.DEPT to your own YDEPT work table:
INSERT INTO YDEPT

SELECT *
FROM DSN8B10.DEPT;

For information about using the INSERT statement, see “Inserting rows by using
the INSERT statement” on page 647.

You can use the following statements to create a new employee table called YEMP:
CREATE TABLE YEMP

(EMPNO CHAR(6) PRIMARY KEY NOT NULL,
FIRSTNME VARCHAR(12) NOT NULL,
MIDINIT CHAR(1) NOT NULL,
LASTNAME VARCHAR(15) NOT NULL,
WORKDEPT CHAR(3) REFERENCES YDEPT

ON DELETE SET NULL,
PHONENO CHAR(4) UNIQUE NOT NULL,
HIREDATE DATE ,
JOB CHAR(8) ,
EDLEVEL SMALLINT ,
SEX CHAR(1) ,
BIRTHDATE DATE ,
SALARY DECIMAL(9, 2) ,
BONUS DECIMAL(9, 2) ,
COMM DECIMAL(9, 2));

This statement also creates a referential constraint between the foreign key in
YEMP (WORKDEPT) and the primary key in YDEPT (DEPTNO). It also restricts all
phone numbers to unique numbers.

If you want to change a table definition after you create it, use the ALTER TABLE
statement with a RENAME clause. If you want to change a table name after you
create it, use the RENAME statement.

You can change a table definition by using the ALTER TABLE statement only in
certain ways. For example, you can add and drop constraints on columns in a
table. You can also change the data type of a column within character data types,
within numeric data types, and within graphic data types. You can add a column
to a table. However, you cannot use the ALTER TABLE statement to drop a
column from a table.

Chapter 10. Creating and modifying DB2 objects 457

Related tasks:

Altering DB2 tables (DB2 Administration Guide)
Related reference:

ALTER TABLE (DB2 SQL)

RENAME (DB2 SQL)

Creating created temporary tables
Use created temporary tables when you need to store data for only the life of an
application process, but you want to share the table definition. DB2 does not
perform logging and locking operations for created temporary tables. Therefore,
SQL statements that use these tables can execute queries efficiently.

About this task

Each application process has its own instance of the created temporary table.

You create the definition of a created temporary table using the SQL CREATE
GLOBAL TEMPORARY TABLE statement.

Example: The following statement creates the definition of a table called
TEMPPROD:
CREATE GLOBAL TEMPORARY TABLE TEMPPROD

(SERIAL CHAR(8) NOT NULL,
DESCRIPTION VARCHAR(60) NOT NULL,
MFGCOST DECIMAL(8,2),
MFGDEPT CHAR(3),
MARKUP SMALLINT,
SALESDEPT CHAR(3),
CURDATE DATE NOT NULL);

Example: You can also create this same definition by copying the definition of a
base table (named PROD) by using the LIKE clause:
CREATE GLOBAL TEMPORARY TABLE TEMPPROD LIKE PROD;

The SQL statements in the previous examples create identical definitions for the
TEMPPROD table, but these tables differ slightly from the PROD sample table
PROD. The PROD sample table contains two columns, DESCRIPTION and
CURDATE, that are defined as NOT NULL WITH DEFAULT. Because created
temporary tables do not support non-null default values, the DESCRIPTION and
CURDATE columns in the TEMPPROD table are defined as NOT NULL and do
not have defaults.

After you run one of the two CREATE statements, the definition of TEMPPROD
exists, but no instances of the table exist. To create an instance of TEMPPROD, you
must use TEMPPROD in an application. DB2 creates an instance of the table when
TEMPPROD is specified in one of the following SQL statements:
v OPEN
v SELECT
v INSERT
v DELETE

Restriction: You cannot use the MERGE statement with created temporary tables.

458 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_altertables.htm#db2z_altertables
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_altertable.htm#db2z_sql_altertable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_rename.htm#db2z_sql_rename

An instance of a created temporary table exists at the current server until one of
the following actions occurs:
v The application process ends.
v The remote server connection through which the instance was created

terminates.
v The unit of work in which the instance was created completes.

When you run a ROLLBACK statement, DB2 deletes the instance of the created
temporary table. When you run a COMMIT statement, DB2 deletes the instance
of the created temporary table unless a cursor for accessing the created
temporary table is defined with the WITH HOLD clause and is open.

Example: Suppose that you create a definition of TEMPPROD and then run an
application that contains the following statements:
EXEC SQL DECLARE C1 CURSOR FOR SELECT * FROM TEMPPROD;
EXEC SQL INSERT INTO TEMPPROD SELECT * FROM PROD;
EXEC SQL OPEN C1;...
EXEC SQL COMMIT;...
EXEC SQL CLOSE C1;

When you run the INSERT statement, DB2 creates an instance of TEMPPROD and
populates that instance with rows from table PROD. When the COMMIT statement
runs, DB2 deletes all rows from TEMPPROD. However, assume that you change
the declaration of cursor C1 to the following declaration:
EXEC SQL DECLARE C1 CURSOR WITH HOLD

FOR SELECT * FROM TEMPPROD;

In this case, DB2 does not delete the contents of TEMPPROD until the application
ends because C1, a cursor that is defined with the WITH HOLD clause, is open
when the COMMIT statement runs. In either case, DB2 drops the instance of
TEMPPROD when the application ends.

To drop the definition of TEMPPROD, you must run the following statement:
DROP TABLE TEMPPROD;

Temporary tables
Use temporary tables when you need to store data for only the duration of an
application process. Depending on whether you want to share the table definition,
you can create a created temporary table or a declared temporary table.

The two kinds of temporary tables are:
v Created temporary tables, which you define using a CREATE GLOBAL

TEMPORARY TABLE statement
v Declared temporary tables, which you define using a DECLARE GLOBAL

TEMPORARY TABLE statement

SQL statements that use temporary tables can run faster because of the following
reasons:
v For created temporary tables, DB2 provides no logging. For declared temporary

tables, DB2 provides limited logging that can be further limited by the NOT
LOGGED option of the DECLARE GLOBAL TEMPORARY TABLE statement.

v For created temporary tables, DB2 provides no locking. For declared temporary
tables, DB2 provides limited locking.

Chapter 10. Creating and modifying DB2 objects 459

|
|
|

Temporary tables are especially useful when you need to sort or query
intermediate result tables that contain a large number of rows, but you want to
store only a small subset of those rows permanently.

Temporary tables can also return result sets from stored procedures. The following
topics provide more details about created temporary tables and declared temporary
tables:
v “Creating created temporary tables” on page 458
v “Creating declared temporary tables”

For more information, see “Writing an external procedure to return result sets to a
distributed client” on page 633.

Creating declared temporary tables
Use declared temporary tables when you need to store data for only the life of an
application process and do not need to share the table definition. The definition of
this table exists only while the application process runs. DB2 performs limited
logging and locking operations for declared temporary tables.

About this task

You create an instance of a declared temporary table by using the SQL DECLARE
GLOBAL TEMPORARY TABLE statement. That instance is known only to the
application process in which the table is declared, so you can declare temporary
tables with the same name in different applications. The qualifier for a declared
temporary table is SESSION.

Before you can define declared temporary tables, you must have a WORKFILE
database that has at least one table space with a 32-KB page size.

To create a declared temporary table, specify the DECLARE GLOBAL
TEMPORARY TABLE statement. In that statement, specify the columns that the
table is to contain by performing one of the following actions:
v Specify all the columns in the table.

Unlike columns of created temporary tables, columns of declared temporary
tables can include the WITH DEFAULT clause.

v Use a LIKE clause to copy the definition of a base table, created temporary table,
or view.
If the base table, created temporary table, or view from which you select
columns has identity columns, you can specify that the corresponding columns
in the declared temporary table are also identity columns. To include these
identity columns, specify the INCLUDING IDENTITY COLUMN ATTRIBUTES
clause when you define the declared temporary table.
If the source table has a row change timestamp column, you can specify that
those column attributes are inherited in the declared temporary table by
specifying INCLUDING ROW CHANGE TIMESTAMP COLUMN ATTRIBUTES.

v Use a fullselect to choose specific columns from a base table, created temporary
table, or view.
If you want the declared temporary table columns to inherit the defaults for
columns of the table or view that is named in the fullselect, specify the
INCLUDING COLUMN DEFAULTS clause. If you want the declared temporary
table columns to have default values that correspond to their data types, specify
the USING TYPE DEFAULTS clause.

460 Application Programming and SQL Guide

Example: The following statement defines a declared temporary table called
TEMPPROD by explicitly specifying the columns.
DECLARE GLOBAL TEMPORARY TABLE TEMPPROD

(SERIAL CHAR(8) NOT NULL WITH DEFAULT ’99999999’,
DESCRIPTION VARCHAR(60) NOT NULL,
PRODCOUNT INTEGER GENERATED ALWAYS AS IDENTITY,
MFGCOST DECIMAL(8,2),
MFGDEPT CHAR(3),
MARKUP SMALLINT,
SALESDEPT CHAR(3),
CURDATE DATE NOT NULL);

Example: The following statement defines a declared temporary table called
TEMPPROD by copying the definition of a base table. The base table has an
identity column that the declared temporary table also uses as an identity column.
DECLARE GLOBAL TEMPORARY TABLE TEMPPROD LIKE BASEPROD

INCLUDING IDENTITY COLUMN ATTRIBUTES;

Example: The following statement defines a declared temporary table called
TEMPPROD by selecting columns from a view. The view has an identity column
that the declared temporary table also uses as an identity column. The declared
temporary table inherits its default column values from the default column values
of a base table on which the view is based.
DECLARE GLOBAL TEMPORARY TABLE TEMPPROD

AS (SELECT * FROM PRODVIEW)
DEFINITION ONLY
INCLUDING IDENTITY COLUMN ATTRIBUTES
INCLUDING COLUMN DEFAULTS;

After you run a DECLARE GLOBAL TEMPORARY TABLE statement, the
definition of the declared temporary table exists as long as the application process
runs.

If you need to delete the definition before the application process completes, you
can do that with the DROP TABLE statement. For example, to drop the definition
of TEMPPROD, run the following statement:
DROP TABLE SESSION.TEMPPROD;

DB2 creates an empty instance of a declared temporary table when it runs the
DECLARE GLOBAL TEMPORARY TABLE statement. You can then perform the
following actions:
v Populate the declared temporary table by using INSERT statements
v Modify the table using searched or positioned UPDATE or DELETE statements
v Query the table using SELECT statements
v Create indexes on the declared temporary table

The ON COMMIT clause that you specify in the DECLARE GLOBAL
TEMPORARY TABLE statement determines whether DB2 keeps or deletes all the
rows from the table when you run a COMMIT statement in an application with a
declared temporary table. ON COMMIT DELETE ROWS, which is the default,
causes all rows to be deleted from the table at a commit point, unless a held cursor
is open on the table at the commit point. ON COMMIT PRESERVE ROWS causes
the rows to remain past the commit point.

Example: Suppose that you run the following statement in an application program:

Chapter 10. Creating and modifying DB2 objects 461

EXEC SQL DECLARE GLOBAL TEMPORARY TABLE TEMPPROD
AS (SELECT * FROM BASEPROD)
DEFINITION ONLY
INCLUDING IDENTITY COLUMN ATTRIBUTES
INCLUDING COLUMN DEFAULTS
ON COMMIT PRESERVE ROWS;

EXEC SQL INSERT INTO SESSION.TEMPPROD SELECT * FROM BASEPROD;...
EXEC SQL COMMIT;...

When DB2 runs the preceding DECLARE GLOBAL TEMPORARY TABLE
statement, DB2 creates an empty instance of TEMPPROD. The INSERT statement
populates that instance with rows from table BASEPROD. The qualifier, SESSION,
must be specified in any statement that references TEMPPROD. When DB2
executes the COMMIT statement, DB2 keeps all rows in TEMPPROD because
TEMPPROD is defined with ON COMMIT PRESERVE ROWS. When the program
ends, DB2 drops TEMPPROD.
Related reference:

DECLARE GLOBAL TEMPORARY TABLE (DB2 SQL)

Providing a unique key for a table
Use ROWID columns or identity columns to store unique values for each row in a
table.

About this task

Question: How can I provide a unique identifier for a table that has no unique
column?

Answer: Add a column with the data type ROWID or an identity column. ROWID
columns and identity columns contain a unique value for each row in the table.
You can define the column as GENERATED ALWAYS, which means that you
cannot insert values into the column, or GENERATED BY DEFAULT, which means
that DB2 generates a value if you do not specify one. If you define the ROWID or
identity column as GENERATED BY DEFAULT, you need to define a unique index
that includes only that column to guarantee uniqueness.

Fixing tables with incomplete definitions
If a table has an incomplete definition, you cannot load the table, insert data,
retrieve data, update data, or delete data. You can however drop the table, create
the primary index, and drop or create other indexes.

About this task

To check if a table has an incomplete definition, look at the STATUS column in
SYSIBM.SYSTABLES. The value I indicates that the definition is incomplete.

A table definition is incomplete in any of the following circumstances:
v If the table is defined with a primary or unique key and all of the following

conditions are true:
– The table space for the table was explicitly created.
– The statement is not being run with schema processor.

462 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_declareglobaltemptable.htm#db2z_sql_declareglobaltemptable

– The table does not have a primary or unique index for the defined primary or
unique key.

v If the table has a ROWID column that is defined as generated by default and
all of the following conditions are true:
– The table space for the table was explicitly created.
– The SET CURRENT RULES special register is not set to STD.
– No unique index is defined on the ROWID column.

v If the table has a LOB column and all of the following conditions are true:
– The table space for the table was explicitly created.
– The SET CURRENT RULES special register is not set to STD.
– No all auxiliary LOB objects are defined for the LOB column.

You can complete the table definition by performing one of the following actions,
depending on why the table definition was incomplete:
v Creating a primary index or altering the table to drop the primary key.
v Creating a unique index on the unique key or altering the table to drop the

unique key.
v Defining a unique index on the ROWID column.
v Creating the necessary LOB objects.

Example of creating a primary index: To create the primary index for the project
activity table, issue the following SQL statement:
CREATE UNIQUE INDEX XPROJAC1

ON DSN8B10.PROJACT (PROJNO, ACTNO, ACSTDATE);

Dropping tables
When you drop a table, you delete the data and the table definition. You also
delete all synonyms, views, indexes, referential constraints, and check constraints
that are associated with that table.

About this task

The following SQL statement drops the YEMP table:
DROP TABLE YEMP;

Use the DROP TABLE statement with care: Dropping a table is not equivalent to
deleting all its rows. When you drop a table, you lose more than its data and its
definition. You lose all synonyms, views, indexes, and referential and check
constraints that are associated with that table. You also lose all authorities that are
granted on the table.
Related reference:

DROP (DB2 SQL)

Defining a view
A view is a named specification of a result table. Use views to control which users
have access to certain data or to simplify writing SQL statements.

Chapter 10. Creating and modifying DB2 objects 463

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_drop.htm#db2z_sql_drop

About this task

Use the CREATE VIEW statement to define a view and give the view a name, just
as you do for a table. The view that is created with the following statement shows
each department manager's name with the department data in the DSN8B10.DEPT
table.
CREATE VIEW VDEPTM AS

SELECT DEPTNO, MGRNO, LASTNAME, ADMRDEPT
FROM DSN8B10.DEPT, DSN8B10.EMP

WHERE DSN8B10.EMP.EMPNO = DSN8B10.DEPT.MGRNO;

When a program accesses the data that is defined by a view, DB2 uses the view
definition to return a set of rows that the program can access with SQL statements.

Example: To see the departments that are administered by department D01 and
the managers of those departments, run the following statement, which returns
information from the VDEPTM view:
SELECT DEPTNO, LASTNAME

FROM VDEPTM
WHERE ADMRDEPT = ’DO1’;

When you create a view, you can reference the SESSION_USER and CURRENT
SQLID special registers in the CREATE VIEW statement. When referencing the
view, DB2 uses the value of the SESSION_USER or CURRENT SQLID special
register that belongs to the user of the SQL statement (SELECT, UPDATE, INSERT,
or DELETE) rather than the creator of the view. In other words, a reference to a
special register in a view definition refers to its run time value.

You can specify a period specification for a view, subject to certain restrictions.
Also, for a view that references an application-period temporal table or a
bitemporal table, you can specify a period clause for an update or delete operation
on the view.

A column in a view might be based on a column in a base table that is an identity
column. The column in the view is also an identity column,except under any of the
following circumstances:
v The column appears more than once in the view.
v The view is based on a join of two or more tables.
v The view is based on the union of two or more tables.
v Any column in the view is derived from an expression that refers to an identity

column.

You can use views to limit access to certain kinds of data, such as salary
information. Alternatively, you can use the IMPLICITLY HIDDEN clause of a
CREATE TABLE statement define a column of a table to be hidden from some
operations.

You can also use views for the following actions:
v Make a subset of a table's data available to an application. For example, a view

based on the employee table might contain rows only for a particular
department.

v Combine columns from two or more tables and make the combined data
available to an application. By using a SELECT statement that matches values in
one table with those in another table, you can create a view that presents data

464 Application Programming and SQL Guide

|
|
|
|

from both tables. However, you can only select data from this type of view. You
cannot update, delete, or insert data using a view that joins two or more
tables.

v Combine rows from two or more tables and make the combined data available
to an application. By using two or more subselects that are connected by a set
operator such as UNION, you can create a view that presents data from several
tables. However, you can only select data from this type of view. You cannot
update, delete, or insert data using a view that contains UNION operations.

v Present computed data, and make the resulting data available to an application.
You can compute such data using any function or operation that you can use in
a SELECT statement.

Related tasks:

Changing data by using views that reference temporal tables (DB2
Administration Guide)
Related information:

Implementing DB2 views (DB2 Administration Guide)

Views
A view does not contain data; it is a stored definition of a set of rows and
columns. A view can present any or all of the data in one or more tables.

Although you cannot modify an existing view, you can drop it and create a new
one if your base tables change in a way that affects the view. Dropping and
creating views does not affect the base tables or their data.

Restrictions when changing data through a view

Some views are read-only and thus cannot be used to update the table data. For
those views that are updatable, several restrictions apply.

Consider the following restrictions when changing data through a view:
v You must have the appropriate authorization to insert, update, or delete rows

using the view.
v When you use a view to insert a row into a table, the view definition must

specify all the columns in the base table that do not have a default value. The
row that is being inserted must contain a value for each of those columns.

v Views that you can use to update data are subject to the same referential
constraints and check constraints as the tables that you used to define the views.
You can use the WITH CHECK option of the CREATE VIEW statement to
specify the constraint that every row that is inserted or updated through the
view must conform to the definition of the view. You can select every row that is
inserted or updated through a view that is created with the WITH CHECK
option.

v For an update operation on a view that references an application-period
temporal table or a bitemporal table, the result table of the outer fullselect of the
view definition, explicitly or implicitly, must include the start and end columns
of the BUSINESS_TIME period.

v For an update or delete operation on a view that references an
application-period temporal table or a bitemporal table, the view must not be
defined with an INSTEAD OF trigger.

Chapter 10. Creating and modifying DB2 objects 465

|
|
|
|

|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_alteringviewstemporal.htm#db2z_alteringviewstemporal
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_alteringviewstemporal.htm#db2z_alteringviewstemporal
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_viewimplementation.htm#db2z_viewimplementation

For complex views, you can make insert, update and delete operations possible by
defining INSTEAD OF triggers.
Related tasks:
“Inserting, updating, and deleting data in views by using INSTEAD OF triggers”
on page 482

Changing data by using views that reference temporal tables (DB2
Administration Guide)
Related reference:

CREATE VIEW (DB2 SQL)

Dropping a view
When you drop a view, you also drop all views that are defined on that view. The
base table is not affected.

Example

The following SQL statement drops the VDEPTM view:
DROP VIEW VDEPTM;

Creating a common table expression
Creating a common table expression saves you the overhead of creating and
dropping a regular view that you need to use only once. Also, during statement
preparation, DB2 does not need to access the catalog for the view, which saves you
additional overhead.

About this task

Use the WITH clause to create a common table expression.

You can use a common table expression in a SELECT statement by using the WITH
clause at the beginning of the statement.

Example: WITH clause in a SELECT statement: The following statement finds the
department with the highest total pay. The query involves two levels of
aggregation. First, you need to determine the total pay for each department by
using the SUM function and order the results by using the GROUP BY clause. You
then need to find the department with highest total pay based on the total pay for
each department.
WITH DTOTAL (deptno, totalpay) AS

(SELECT deptno, sum(salary+bonus)
FROM DSN8810.EMP
GROUP BY deptno)

SELECT deptno
FROM DTOTAL

WHERE totalpay = (SELECT max(totalpay)
FROM DTOTAL);

The result table for the common table expression, DTOTAL, contains the
department number and total pay for each department in the employee table. The
fullselect in the previous example uses the result table for DTOTAL to find the
department with the highest total pay. The result table for the entire statement
looks similar to the following results:

466 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_alteringviewstemporal.htm#db2z_alteringviewstemporal
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_alteringviewstemporal.htm#db2z_alteringviewstemporal
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createview.htm#db2z_sql_createview

DEPTNO
======
D11

Using common table expressions with views:

You can use common table expressions before a fullselect in a CREATE VIEW
statement. This technique is useful if you need to use the results of a common
table expression in more than one query.

Example: Using a WITH clause in a CREATE VIEW statement: The following
statement finds the departments that have a greater-than-average total pay and
saves the results as the view RICH_DEPT:
CREATE VIEW RICH_DEPT (deptno) AS

WITH DTOTAL (deptno, totalpay) AS
(SELECT deptno, sum(salary+bonus)

FROM DSN8B10.EMP
GROUP BY deptno)

SELECT deptno
FROM DTOTAL

WHERE totalpay > (SELECT AVG(totalpay)
FROM DTOTAL);

The fullselect in the previous example uses the result table for DTOTAL to find the
departments that have a greater-than-average total pay. The result table is saved as
the RICH_DEPT view and looks similar to the following results:
DEPTNO
======
A00
D11
D21

Using common table expressions when you use INSERT:

You can use common table expressions before a fullselect in an INSERT statement.

Example: Using a common table expression in an INSERT statement: The
following statement uses the result table for VITALDEPT to find the manager's
number for each department that has a greater-than-average number of senior
engineers. Each manager's number is then inserted into the vital_mgr table.
INSERT INTO vital_mgr (mgrno)

WITH VITALDEPT (deptno, se_count) AS
(SELECT deptno, count(*)

FROM DSN8B10.EMP
WHERE job = ’senior engineer’
GROUP BY deptno)

SELECT d.manager
FROM DSN8B10.DEPT d, VITALDEPT s
WHERE d.deptno = s.deptno

AND s.se_count > (SELECT AVG(se_count)
FROM VITALDEPT);

Common table expressions
A common table expression is like a temporary view that is defined and used for the
duration of an SQL statement.

You can define a common table expression wherever you can have a fullselect
statement. For example, you can include a common table expression in a SELECT,
INSERT, SELECT INTO, or CREATE VIEW statement.

Chapter 10. Creating and modifying DB2 objects 467

Each common table expression must have a unique name and be defined only
once. However, you can reference a common table expression many times in the
same SQL statement. Unlike regular views or nested table expressions, which
derive their result tables for each reference, all references to common table
expressions in a given statement share the same result table.

You can use a common table expression in the following situations:
v When you want to avoid creating a view (when general use of the view is not

required, and positioned updates or deletes are not used)
v When the result table is based on host variables
v When the same result table needs to be shared in a fullselect
v When the results need to be derived using recursion

Examples of recursive common table expressions
Recursive SQL is very useful in bill of materials (BOM) applications.

Consider a table of parts with associated subparts and the quantity of subparts
required by each part. For more information about recursive SQL, refer to
“Creating recursive SQL by using common table expressions” on page 700.

For the examples in this topic, create the following table:
CREATE TABLE PARTLIST

(PART VARCHAR(8),
SUBPART VARCHAR(8),
QUANTITY INTEGER);

Assume that the PARTLIST table is populated with the values that are in the
following table:

Table 77. PARTLIST table

PART SUBPART QUANTITY

00 01 5

00 05 3

01 02 2

01 03 3

01 04 4

01 06 3

02 05 7

02 06 6

03 07 6

04 08 10

04 09 11

05 10 10

05 11 10

06 12 10

06 13 10

07 14 8

07 12 8

468 Application Programming and SQL Guide

Example 1: Single level explosion:

Single level explosion answers the question, "What parts are needed to build the
part identified by '01'?". The list will include the direct subparts, subparts of the
subparts and so on. However, if a part is used multiple times, its subparts are only
listed once.
WITH RPL (PART, SUBPART, QUANTITY) AS

(SELECT ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY
FROM PARTLIST ROOT
WHERE ROOT.PART = ’01’

UNION ALL
SELECT CHILD.PART, CHILD.SUBPART, CHILD.QUANTITY

FROM RPL PARENT, PARTLIST CHILD
WHERE PARENT.SUBPART = CHILD.PART)

SELECT DISTINCT PART, SUBPART, QUANTITY
FROM RPL
ORDER BY PART, SUBPART, QUANTITY;

The preceding query includes a common table expression, identified by the name
RPL, that expresses the recursive part of this query. It illustrates the basic elements
of a recursive common table expression.

The first operand (fullselect) of the UNION, referred to as the initialization
fullselect, gets the direct subparts of part '01'. The FROM clause of this fullselect
refers to the source table and will never refer to itself (RPL in this case). The result
of this first fullselect goes into the common table expression RPL. As in this
example, the UNION must always be a UNION ALL.

The second operand (fullselect) of the UNION uses RPL to compute subparts of
subparts by using the FROM clause to refer to the common table expression RPL
and the source table PARTLIST with a join of a part from the source table (child) to
a subpart of the current result contained in RPL (parent). The result goes then back
to RPL again. The second operand of UNION is used repeatedly until no more
subparts exist.

The SELECT DISTINCT in the main fullselect of this query ensures the same
part/subpart is not listed more than once.

The result of the query is shown in the following table:

Table 78. Result table for example 1

PART SUBPART QUANTITY

01 02 2

01 03 3

01 04 4

01 06 3

02 05 7

02 06 6

03 07 6

04 08 10

04 09 11

05 10 10

05 11 10

Chapter 10. Creating and modifying DB2 objects 469

Table 78. Result table for example 1 (continued)

PART SUBPART QUANTITY

06 12 10

06 13 10

07 12 8

07 14 8

Observe in the result that part '01' contains subpart '02' which contains subpart '06'
and so on. Further, notice that part '06' is reached twice, once through part '01'
directly and another time through part '02'. In the output, however, the subparts of
part '06' are listed only once (this is the result of using a SELECT DISTINCT).

Remember that with recursive common table expressions it is possible to introduce
an infinite loop. In this example, an infinite loop would be created if the search
condition of the second operand that joins the parent and child tables was coded
as follows:
WHERE PARENT.SUBPART = CHILD.SUBPART

This infinite loop is created by not coding what is intended. You should carefully
determining what to code so that there is a definite end of the recursion cycle.

The result produced by this example could be produced in an application program
without using a recursive common table expression. However, such an application
would require coding a different query for every level of recursion. Furthermore,
the application would need to put all of the results back in the database to order
the final result. This approach complicates the application logic and does not
perform well. The application logic becomes more difficult and inefficient for other
bill of material queries, such as summarized and indented explosion queries.

Example 2: Summarized explosion:

A summarized explosion answers the question, "What is the total quantity of each
part required to build part '01'?" The main difference from a single level explosion
is the need to aggregate the quantities. A single level explosion indicates the
quantity of subparts required for the part whenever it is required. It does not
indicate how many of each subpart is needed to build part '01'.
WITH RPL (PART, SUBPART, QUANTITY) AS

(
SELECT ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY

FROM PARTLIST ROOT
WHERE ROOT.PART = ’01’

UNION ALL
SELECT PARENT.PART, CHILD.SUBPART,

PARENT.QUANTITY*CHILD.QUANTITY
FROM RPL PARENT, PARTLIST CHILD
WHERE PARENT.SUBPART = CHILD.PART

)
SELECT PART, SUBPART, SUM(QUANTITY) AS "Total QTY Used"

FROM RPL
GROUP BY PART, SUBPART
ORDER BY PART, SUBPART;

In the preceding query, the select list of the second operand of the UNION in the
recursive common table expression, identified by the name RPL, shows the
aggregation of the quantity. To determine how many of each subpart is used, the

470 Application Programming and SQL Guide

quantity of the parent is multiplied by the quantity per parent of a child. If a part
is used multiple times in different places, it requires another final aggregation. This
is done by the grouping the parts and subparts in the common table expression
RPL and using the SUM column function in the select list of the main fullselect.

The result of the query is shown in the following table:

Table 79. Result table for example 2

PART SUBPART Total QTY Used

01 02 2

01 03 3

01 04 4

01 05 14

01 06 15

01 07 18

01 08 40

01 09 44

01 10 140

01 11 140

01 12 294

01 13 150

01 14 144

Consider the total quantity for subpart '06'. The value of 15 is derived from a
quantity of 3 directly for part '01' and a quantity of 6 for part '02' which is needed
two times by part '01'.

Example 3: Controlling depth:

You can control the depth of a recursive query to answer the question, "What are
the first two levels of parts that are needed to build part '01'?" For the sake of
clarity in this example, the level of each part is included in the result table.
WITH RPL (LEVEL, PART, SUBPART, QUANTITY) AS

(
SELECT 1, ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY

FROM PARTLIST ROOT
WHERE ROOT.PART = ’01’

UNION ALL
SELECT PARENT.LEVEL+1, CHILD.PART, CHILD.SUBPART, CHILD.QUANTITY

FROM RPL PARENT, PARTLIST CHILD
WHERE PARENT.SUBPART = CHILD.PART

AND PARENT.LEVEL < 2
)

SELECT PART, LEVEL, SUBPART, QUANTITY
FROM RPL;

This query is similar to the query in example 1. The column LEVEL is introduced
to count the level each subpart is from the original part. In the initialization
fullselect, the value for the LEVEL column is initialized to 1. In the subsequent
fullselect, the level from the parent table increments by 1. To control the number of
levels in the result, the second fullselect includes the condition that the level of the
parent must be less than 2. This ensures that the second fullselect only processes
children to the second level.

Chapter 10. Creating and modifying DB2 objects 471

The result of the query is shown in the following table:

Table 80. Result table for example 3

PART LEVEL SUBPART QUANTITY

01 1 02 2

01 1 03 3

01 1 04 4

01 1 06 3

02 2 05 7

02 2 06 6

03 2 07 6

04 2 08 10

04 2 09 11

06 2 12 10

06 2 13 10

Creating triggers
A trigger is a set of SQL statements that execute when a certain event occurs in a
table. Use triggers to control changes in DB2 databases. Triggers are more powerful
than constraints because they can monitor a broader range of changes and perform
a broader range of actions.

About this task

Using triggers for active data:

For example, a constraint can disallow an update to the salary column of the
employee table if the new value is over a certain amount. A trigger can monitor
the amount by which the salary changes, as well as the salary value. If the change
is above a certain amount, the trigger might substitute a valid value and call a
user-defined function to send a notice to an administrator about the invalid
update.

Triggers also move application logic into DB2, which can result in faster
application development and easier maintenance. For example, you can write
applications to control salary changes in the employee table, but each application
program that changes the salary column must include logic to check those changes.
A better method is to define a trigger that controls changes to the salary column.
Then DB2 does the checking for any application that modifies salaries.

Example of creating and using a trigger:

Triggers automatically execute a set of SQL statements whenever a specified event
occurs. These SQL statements can perform tasks such as validation and editing of
table changes, reading and modifying tables, or invoking functions or stored
procedures that perform operations both inside and outside DB2.

You create triggers using the CREATE TRIGGER statement. The following figure
shows an example of a CREATE TRIGGER statement.

472 Application Programming and SQL Guide

�1�
CREATE TRIGGER REORDER

�2� �3� �4�
AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS

�5�
REFERENCING NEW AS N_ROW
�6�
FOR EACH ROW MODE DB2SQL
�7�
WHEN (N_ROW.ON_HAND < 0.10 * N_ROW.MAX_STOCKED)
�8�
BEGIN ATOMIC
CALL ISSUE_SHIP_REQUEST(N_ROW.MAX_STOCKED -

N_ROW.ON_HAND,
N_ROW.PARTNO);

END

The parts of this trigger are:

�1� Trigger name (REORDER)

�2� Trigger activation time (AFTER)

�3� Triggering event (UPDATE)

�4� Subject table name (PARTS)

�5� New transition variable correlation name (N_ROW)

�6� Granularity (FOR EACH ROW)

�7� Trigger condition (WHEN...)

�8� Trigger body (BEGIN ATOMIC...END;)

When you execute this CREATE TRIGGER statement, DB2 creates a trigger
package called REORDER and associates the trigger package with table PARTS.
DB2 records the timestamp when it creates the trigger. If you define other triggers
on the PARTS table, DB2 uses this timestamp to determine which trigger to
activate first. The trigger is now ready to use.

After DB2 updates columns ON_HAND or MAX_STOCKED in any row of table
PARTS, trigger REORDER is activated. The trigger calls a stored procedure called
ISSUE_SHIP_REQUEST if, after a row is updated, the quantity of parts on hand is
less than 10% of the maximum quantity stocked. In the trigger condition, the
qualifier N_ROW represents a value in a modified row after the triggering event.

When you no longer want to use trigger REORDER, you can delete the trigger by
executing the statement:
DROP TRIGGER REORDER;

Executing this statement drops trigger REORDER and its associated trigger
package named REORDER.

If you drop table PARTS, DB2 also drops trigger REORDER and its trigger
package.

Parts of a trigger:

A trigger contains the following parts:
v trigger name
v subject table

Chapter 10. Creating and modifying DB2 objects 473

v trigger activation time
v triggering event
v granularity
v transition variables
v transition tables
v triggered action

Trigger name:

Use an ordinary identifier to name your trigger. You can use a qualifier or let DB2
determine the qualifier. When DB2 creates a trigger package for the trigger, it uses
the qualifier for the collection ID of the trigger package. DB2 uses these rules to
determine the qualifier:
v If you use static SQL to execute the CREATE TRIGGER statement, DB2 uses the

authorization ID in the bind option QUALIFIER for the package that contains
the CREATE TRIGGER statement. If the bind command does not include the
QUALIFIER option, DB2 uses the owner of the package.

v If you use dynamic SQL to execute the CREATE TRIGGER statement, DB2 uses
the authorization ID in special register CURRENT SCHEMA.

Subject table:

When you perform an insert, update, or delete operation on this table, the trigger
is activated. You must name a local table in the CREATE TRIGGER statement. You
cannot define a trigger on a catalog table or on a view.

Trigger activation time:

The two choices for trigger activation time are NO CASCADE BEFORE and
AFTER. NO CASCADE BEFORE means that the trigger is activated before DB2
makes any changes to the subject table, and that the triggered action does not
activate any other triggers. AFTER means that the trigger is activated after DB2
makes changes to the subject table and can activate other triggers. Triggers with an
activation time of NO CASCADE BEFORE are known as before triggers. Triggers
with an activation time of AFTER are known as after triggers.

Triggering event:

Every trigger is associated with an event. A trigger is activated when the triggering
event occurs in the subject table. The triggering event is one of the following SQL
operations:
v insert
v update
v delete

A triggering event can also be an update or delete operation that occurs as the
result of a referential constraint with ON DELETE SET NULL or ON DELETE
CASCADE.

Triggers are not activated as the result of updates made to tables by DB2 utilities,
with the exception of the LOAD utility when it is specified with the RESUME YES
and SHRLEVEL CHANGE options.

474 Application Programming and SQL Guide

When the triggering event for a trigger is an update operation, the trigger is called
an update trigger. Similarly, triggers for insert operations are called insert triggers,
and triggers for delete operations are called delete triggers.

The SQL statement that performs the triggering SQL operation is called the
triggering SQL statement. Each triggering event is associated with one subject table
and one SQL operation.

The following trigger is defined with an insert triggering event:
CREATE TRIGGER NEW_HIRE

AFTER INSERT ON EMP
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;
END

If the triggering SQL operation is an update operation, the event can be associated
with specific columns of the subject table. In this case, the trigger is activated only
if the update operation updates any of the specified columns.

The following trigger, PAYROLL1, which invokes user-defined function named
PAYROLL_LOG, is activated only if an update operation is performed on the
SALARY or BONUS column of table PAYROLL:
CREATE TRIGGER PAYROLL1

AFTER UPDATE OF SALARY, BONUS ON PAYROLL
FOR EACH STATEMENT MODE DB2SQL
BEGIN ATOMIC

VALUES(PAYROLL_LOG(USER, ’UPDATE’, CURRENT TIME, CURRENT DATE));
END

Granularity:

The triggering SQL statement might modify multiple rows in the table. The
granularity of the trigger determines whether the trigger is activated only once for
the triggering SQL statement or once for every row that the SQL statement
modifies. The granularity values are:
v FOR EACH ROW

The trigger is activated once for each row that DB2 modifies in the subject table.
If the triggering SQL statement modifies no rows, the trigger is not activated.
However, if the triggering SQL statement updates a value in a row to the same
value, the trigger is activated. For example, if an UPDATE trigger is defined on
table COMPANY_STATS, the following SQL statement will activate the trigger.
UPDATE COMPANY_STATS SET NBEMP = NBEMP;

v FOR EACH STATEMENT
The trigger is activated once when the triggering SQL statement executes. The
trigger is activated even if the triggering SQL statement modifies no rows.

Triggers with a granularity of FOR EACH ROW are known as row triggers.
Triggers with a granularity of FOR EACH STATEMENT are known as statement
triggers. Statement triggers can only be after triggers.

The following statement is an example of a row trigger:

Chapter 10. Creating and modifying DB2 objects 475

CREATE TRIGGER NEW_HIRE
AFTER INSERT ON EMP
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;
END

Trigger NEW_HIRE is activated once for every row inserted into the employee
table.

Transition variables:

When you code a row trigger, you might need to refer to the values of columns in
each updated row of the subject table. To do this, specify transition variables in the
REFERENCING clause of your CREATE TRIGGER statement. The two types of
transition variables are:
v Old transition variables, specified with the OLD transition-variable clause, capture

the values of columns before the triggering SQL statement updates them. You
can define old transition variables for update and delete triggers.

v New transition variables, specified with the NEW transition-variable clause,
capture the values of columns after the triggering SQL statement updates them.
You can define new transition variables for update and insert triggers.

The following example uses transition variables and invocations of the
IDENTITY_VAL_LOCAL function to access values that are assigned to identity
columns.

Suppose that you have created tables T and S, with the following definitions:
CREATE TABLE T

(ID SMALLINT GENERATED BY DEFAULT AS IDENTITY (START WITH 100),
C2 SMALLINT,
C3 SMALLINT,
C4 SMALLINT);

CREATE TABLE S
(ID SMALLINT GENERATED ALWAYS AS IDENTITY,
C1 SMALLINT);

Define a before insert trigger on T that uses the IDENTITY_VAL_LOCAL built-in
function to retrieve the current value of identity column ID, and uses transition
variables to update the other columns of T with the identity column value.
CREATE TRIGGER TR1

NO CASCADE BEFORE INSERT
ON T REFERENCING NEW AS N
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

SET N.C3 =N.ID;
SET N.C4 =IDENTITY_VAL_LOCAL();
SET N.ID =N.C2 *10;
SET N.C2 =IDENTITY_VAL_LOCAL();

END

Now suppose that you execute the following INSERT statement:
INSERT INTO S (C1) VALUES (5);

This statement inserts a row into S with a value of 5 for column C1 and a value of
1 for identity column ID. Next, suppose that you execute the following SQL
statement, which activates trigger TR1:

476 Application Programming and SQL Guide

INSERT INTO T (C2)
VALUES (IDENTITY_VAL_LOCAL());

This insert statement, and the subsequent activation of trigger TR1, have the
following results:
v The INSERT statement obtains the most recent value that was assigned to an

identity column (1), and inserts that value into column C2 of table T. 1 is the
value that DB2 inserted into identity column ID of table S.

v When the INSERT statement executes, DB2 inserts the value 100 into identity
column ID column of C2.

v The first statement in the body of trigger TR1 inserts the value of transition
variable N.ID (100) into column C3. N.ID is the value that identity column ID
contains after the INSERT statement executes.

v The second statement in the body of trigger TR1 inserts the null value into
column C4. By definition, the result of the IDENTITY_VAL_LOCAL function in
the triggered action of a before insert trigger is the null value.

v The third statement in the body of trigger TR1 inserts 10 times the value of
transition variable N.C2 (10*1) into identity column ID of table T. N.C2 is the
value that column C2 contains after the INSERT is executed.

v The fourth statement in the body of trigger TR1 inserts the null value into
column C2. By definition, the result of the IDENTITY_VAL_LOCAL function in
the triggered action of a before insert trigger is the null value.

Transition tables:

If you want to refer to the entire set of rows that a triggering SQL statement
modifies, rather than to individual rows, use a transition table. Like transition
variables, transition tables can appear in the REFERENCING clause of a CREATE
TRIGGER statement. Transition tables are valid for both row triggers and statement
triggers. The two types of transition tables are:
v Old transition tables, specified with the OLD TABLE transition-table-name clause,

capture the values of columns before the triggering SQL statement updates
them. You can define old transition tables for update and delete triggers.

v New transition tables, specified with the NEW TABLE transition-table-name
clause, capture the values of columns after the triggering SQL statement updates
them. You can define new transition variables for update and insert triggers.

The scope of old and new transition table names is the trigger body. If another
table exists that has the same name as a transition table, any unqualified reference
to that name in the trigger body points to the transition table. To reference the
other table in the trigger body, you must use the fully qualified table name.

The following example uses a new transition table to capture the set of rows that
are inserted into the INVOICE table:
CREATE TRIGGER LRG_ORDR

AFTER INSERT ON INVOICE
REFERENCING NEW TABLE AS N_TABLE
FOR EACH STATEMENT MODE DB2SQL
BEGIN ATOMIC

SELECT LARGE_ORDER_ALERT(CUST_NO,
TOTAL_PRICE, DELIVERY_DATE)
FROM N_TABLE WHERE TOTAL_PRICE > 10000;

END

Chapter 10. Creating and modifying DB2 objects 477

The SELECT statement in LRG_ORDER causes user-defined function
LARGE_ORDER_ALERT to execute for each row in transition table N_TABLE that
satisfies the WHERE clause (TOTAL_PRICE > 10000).

Triggered action:

When a trigger is activated, a triggered action occurs. Every trigger has one
triggered action, which consists of a trigger condition and a trigger body.

Trigger condition:

If you want the triggered action to occur only when certain conditions are true,
code a trigger condition. A trigger condition is similar to a predicate in a SELECT,
except that the trigger condition begins with WHEN, rather than WHERE. If you
do not include a trigger condition in your triggered action, the trigger body
executes every time the trigger is activated.

For a row trigger, DB2 evaluates the trigger condition once for each modified row
of the subject table. For a statement trigger, DB2 evaluates the trigger condition
once for each execution of the triggering SQL statement.

If the trigger condition of a before trigger has a fullselect, the fullselect cannot
reference the subject table.

The following example shows a trigger condition that causes the trigger body to
execute only when the number of ordered items is greater than the number of
available items:
CREATE TRIGGER CK_AVAIL

NO CASCADE BEFORE INSERT ON ORDERS
REFERENCING NEW AS NEW_ORDER
FOR EACH ROW MODE DB2SQL
WHEN (NEW_ORDER.QUANTITY >

(SELECT ON_HAND FROM PARTS
WHERE NEW_ORDER.PARTNO=PARTS.PARTNO))
BEGIN ATOMIC

VALUES(ORDER_ERROR(NEW_ORDER.PARTNO,
NEW_ORDER.QUANTITY));

END

Trigger body:

In the trigger body, you code the SQL statements that you want to execute
whenever the trigger condition is true. If the trigger body consists of more than
one statement, it must begin with BEGIN ATOMIC and end with END. You cannot
include host variables or parameter markers in your trigger body. If the trigger
body contains a WHERE clause that references transition variables, the comparison
operator cannot be LIKE.

The statements you can use in a trigger body depend on the activation time of the
trigger. For a list of valid SQL statements for triggers, see the "Allowable SQL
statements" table in the CREATE TRIGGER (DB2 SQL) topic.

The following list provides more detailed information about SQL statements that
are valid in triggers:
v fullselect, CALL, and VALUES

Use a fullselect or the VALUES statement in a trigger body to conditionally or
unconditionally invoke a user-defined function. Use the CALL statement to

478 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtrigger.htm#db2z_sql_createtrigger

invoke a stored procedure. See “Invoking a stored procedure or user-defined
function from a trigger” on page 480 for more information on invoking
user-defined functions and stored procedures from triggers.
A fullselect in the trigger body of a before trigger cannot reference the subject
table.

v SIGNAL
Use the SIGNAL statement in the trigger body to report an error condition and
back out any changes that are made by the trigger, as well as actions that result
from referential constraints on the subject table. When DB2 executes the SIGNAL
statement, it returns an SQLCA to the application with SQLCODE -438. The
SQLCA also includes the following values, which you supply in the SIGNAL
statement:
– A 5-character value that DB2 uses as the SQLSTATE
– An error message that DB2 places in the SQLERRMC field

In the following example, the SIGNAL statement causes DB2 to return an
SQLCA with SQLSTATE 75001 and terminate the salary update operation if an
employee's salary increase is over 20%:
CREATE TRIGGER SAL_ADJ

BEFORE UPDATE OF SALARY ON EMP
REFERENCING OLD AS OLD_EMP
NEW AS NEW_EMP
FOR EACH ROW MODE DB2SQL
WHEN (NEW_EMP.SALARY > (OLD_EMP.SALARY * 1.20))
BEGIN ATOMIC

SIGNAL SQLSTATE ’75001’
(’Invalid Salary Increase - Exceeds 20%’);

END

v SET transition-variable

Because before triggers operate on rows of a table before those rows are
modified, you cannot perform operations in the body of a before trigger that
directly modify the subject table. You can, however, use the SET
transition-variable statement to modify the values in a row before those values go
into the table. For example, this trigger uses a new transition variable to enter
today's date for the new employee's hire date:
CREATE TRIGGER HIREDATE

NO CASCADE BEFORE INSERT ON EMP
REFERENCING NEW AS NEW_VAR
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

SET NEW_VAR.HIRE_DATE = CURRENT_DATE;
END

v INSERT, DELETE (searched), UPDATE (searched), and MERGE
Because you can include INSERT, DELETE (searched), UPDATE (searched), and
MERGE statements in your trigger body, execution of the trigger body might
cause activation of other triggers. See “Trigger cascading” on page 484 for more
information.

If any SQL statement in the trigger body fails during trigger execution, DB2 rolls
back all changes that are made by the triggering SQL statement and the triggered
SQL statements. However, if the trigger body executes actions that are outside of
DB2's control or are not under the same commit coordination as the DB2
subsystem in which the trigger executes, DB2 cannot undo those actions. Examples
of external actions that are not under DB2's control are:
v Performing updates that are not under RRS commit control
v Sending an electronic mail message

Chapter 10. Creating and modifying DB2 objects 479

If the trigger executes external actions that are under the same commit
coordination as the DB2 subsystem under which the trigger executes, and an error
occurs during trigger execution, DB2 places the application process that issued the
triggering statement in a must-rollback state. The application must then execute a
rollback operation to roll back those external actions. Examples of external actions
that are under the same commit coordination as the triggering SQL operation are:
v Executing a distributed update operation
v From a user-defined function or stored procedure, executing an external action

that affects an external resource manager that is under RRS commit control.
Related reference:

CREATE TRIGGER (DB2 SQL)

LOAD (DB2 Utilities)

Invoking a stored procedure or user-defined function from a
trigger

A trigger body can include only SQL statements. To perform actions or use logic
that is not available in SQL statements, create user-defined functions or stored
procedures. Then invoke them from within the trigger body.

About this task

Restriction: You cannot include INSERT, UPDATE, DELETE, or MERGE
statements in stored procedures or user-defined functions that are invoked by a
BEFORE TRIGGER. These actions are not allowed, because BEFORE triggers must
not modify any table.

Procedure

To invoke a stored procedure or user-defined function from a trigger:
1. Ensure that the stored procedure or user-defined function is defined before the

trigger is defined.
v Define procedures by using the CREATE PROCEDURE statement.
v Define triggers by using the CREATE FUNCTION statement.

2. Invoke the user-defined function or stored procedure by performing one of the
following actions:
v To invoke a user-defined function, include the user-defined function in one

of the following statements in the trigger:

SELECT statement
Use a SELECT statement to execute the function conditionally. The
number of times that the user-defined function executes depends on
the number of rows in the result table of the SELECT statement. For
example, in the following trigger, the SELECT statement invokes
user-defined function LARGE_ORDER_ALERT. This function
executes once for each row in transition table N_TABLE with an
order price of more than 10000:
CREATE TRIGGER LRG_ORDR

AFTER INSERT ON INVOICE
REFERENCING NEW TABLE AS N_TABLE
FOR EACH STATEMENT MODE DB2SQL
BEGIN ATOMIC

SELECT LARGE_ORDER_ALERT(CUST_NO, TOTAL_PRICE, DELIVERY_DATE)
FROM N_TABLE WHERE TOTAL_PRICE > 10000;

END

480 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtrigger.htm#db2z_sql_createtrigger
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utl_load.htm#db2z_utl_load

VALUES statement
Use the VALUES statement to execute a function unconditionally.
The function executes once for each execution of a statement trigger
or once for each row in a row trigger. In the following example,
user-defined function PAYROLL_LOG executes every time the trigger
PAYROLL1 is activated. This trigger is activated when an update
operation occurs.
CREATE TRIGGER PAYROLL1

AFTER UPDATE ON PAYROLL
FOR EACH STATEMENT MODE DB2SQL
BEGIN ATOMIC

VALUES(PAYROLL_LOG(USER, ’UPDATE’,
CURRENT TIME, CURRENT DATE));

END

]
v To invoke a stored procedure, include a CALL statement in the trigger. The

parameters of this stored procedure call must be constants, transition
variables, table locators, or expressions.
If the parameter is a transition variable or table locator, and the CALL
statement is in a BEFORE or AFTER trigger, DB2 returns a warning.

3. To pass transition tables from the trigger to the user-defined function or stored
procedure, use table locators.
When you call a user-defined function or stored procedure from a trigger, you
might want to give the function or procedure access to the entire set of
modified rows. In this case, use table locators to pass a pointer to the old or
new transition table.
Most of the code for using a table locator is in the function or stored procedure
that receives the locator.
To pass the transition table from a trigger, specify the parameter TABLE
transition-table-name when you invoke the function or stored procedure. This
parameter causes DB2 to pass a table locator for the transition table to the
user-defined function or stored procedure. For example, the following trigger
passes a table locator for a transition table NEWEMPS to stored procedure
CHECKEMP:
CREATE TRIGGER EMPRAISE

AFTER UPDATE ON EMP
REFERENCING NEW TABLE AS NEWEMPS
FOR EACH STATEMENT MODE DB2SQL
BEGIN ATOMIC

CALL CHECKEMP(TABLE NEWEMPS);
END

Chapter 10. Creating and modifying DB2 objects 481

Related concepts:
“User-defined functions” on page 505

Triggers (Introduction to DB2 for z/OS)
Related tasks:
“Accessing transition tables in a user-defined function or stored procedure” on
page 536
“Creating a stored procedure” on page 544
“Defining a user-defined function” on page 502
Related reference:

CALL (DB2 SQL)

CREATE FUNCTION (DB2 SQL)

CREATE PROCEDURE (DB2 SQL)

select-statement (DB2 SQL)

VALUES (DB2 SQL)

Inserting, updating, and deleting data in views by using
INSTEAD OF triggers

INSTEAD OF triggers are triggers that execute instead of the INSERT, UPDATE, or
DELETE statement that activates the trigger. You can define these triggers on views
only. Use INSTEAD OF triggers to insert, update, and delete data in complex
views.

About this task

Complex views are those views that are defined on expressions or multiple tables.
In some cases, those views are read only. In these cases, INSTEAD OF triggers
make the insert, update and delete operations possible. If the complex view is not
read only, you can request an insert, update, or delete operation. However, DB2
automatically decides how to perform that operation on the base tables that are
referenced in the view. With INSTEAD OF triggers, you can define exactly how
DB2 is to execute an insert, update, or delete operation on the view. You no longer
leave the decision to DB2.

Procedure

To insert, update, or delete data in a view by using INSTEAD OF triggers:
1. Define one or more INSTEAD OF triggers on the view by using a CREATE

TRIGGER statement.
You can create one trigger for each of the following operations: INSERT,
UPDATE, and DELETE. These triggers define the action that DB2 is to take for
each of these operations.

2. Submit a INSERT, UPDATE, or DELETE statement on the view.
DB2 executes the appropriate INSTEAD OF trigger.

Results

Example: Suppose that you create the following view on the sample tables
DSN8B10.EMP and DSN8B10.DEPT:

482 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_triggers.htm#db2z_triggers
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_call.htm#db2z_sql_call
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createfunction.htm#db2z_sql_createfunction
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createprocedure.htm#db2z_sql_createprocedure
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_selectstatement.htm#db2z_sql_selectstatement
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_values.htm#db2z_sql_values

CREATE VIEW EMPV (EMPNO, FIRSTNME, MIDINIT, LASTNAME, PHONENO, HIREDATE,DEPTNAME)
AS SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, PHONENO, HIREDATE, DEPTNAME

FROM DSN8B10.EMP, DSN8B10.DEPT WHERE DSN8B10.EMP.WORKDEPT
= DSN8B10.DEPT.DEPTNO

Suppose that you also define the following three INSTEAD OF triggers:
CREATE TRIGGER EMPV_INSERT INSTEAD OF INSERT ON EMPV
REFERENCING NEW AS NEWEMP
FOR EACH ROW MODE DB2SQL

INSERT INTO DSN8B10.EMP (EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT,
PHONENO, HIREDATE)

VALUES(NEWEMP.EMPNO, NEWEMP.FIRSTNME, NEWEMP.MIDINIT, NEWEMP.LASTNAME,
COALESCE((SELECT D.DEPTNO FROM DSN8B10.DEPT AS D

WHERE D.DEPTNAME = NEWEMP.DEPTNAME),
RAISE_ERROR(’70001’, ’Unknown department name’)),

NEWEMP.PHONENO, NEWEMP.HIREDATE)

CREATE TRIGGER EMPV_UPDATE INSTEAD OF UPDATE ON EMPV
REFERENCING NEW AS NEWEMP OLD AS OLDEMP
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

UPDATE DSN8B10.EMP AS E
SET (E.FIRSTNME, E.MIDINIT, E.LASTNAME, E.WORKDEPT, E.PHONENO,

E.HIREDATE)
= (NEWEMP.FIRSTNME, NEWEMP.MIDINIT, NEWEMP.LASTNAME,
COALESCE((SELECT D.DEPTNO FROM DSN8B10.DEPT AS D

WHERE D.DEPTNAME = OLDEMP.DEPTNAME),
RAISE_ERROR (’70001’, ’Unknown department name’))

NEWEMP.PHONENO, NEWEMP.HIREDATE)
WHERE NEWEMP.EMPNO = E.EMPNO;
UPDATE DSN8B10.DEPT D SET D.DEPTNAME=NEWEMP.DEPTNAME
WHERE D.DEPTNAME=OLDEMP.DEPTNAME;

END

CREATE TRIGGER EMPV_DELETE INSTEAD OF DELETE ON EMPV
REFERENCING OLD AS OLDEMP
FOR EACH ROW MODE DB2SQL

DELETE FROM DSN8B10.EMP AS E WHERE E.EMPNO = OLDEMP.EMPNO

Because the view is on a query with an inner join, the view is read only. However,
the INSTEAD OF triggers makes insert, update, and delete operations possible.

The following table describes what happens for various insert, update, and delete
operations on the EMPV view.

Table 81. Results of INSTEAD OF triggers

SQL statement Result

INSERT INTO EMPV VALUES (...) The EMPV_INSERT trigger is activated. This
trigger inserts the row into the base table
DSN8B10.EMP if the department name
matches a value in the WORKDEPT column
in the DSN8B10.DEPT table. Otherwise, an
error is returned. If a query had been used
instead of a VALUES clause on the INSERT
statement, the trigger body would be
processed for each row from the query.

UPDATE EMPV
SET DEPTNAME=’PLANNING & STRATEGY’
WHERE DEPTNAME=’PLANNING’

The EMPV_UPDATE trigger is activated. This
trigger updates the DEPTNAME column in
the DSN8B10.DEPT for the any qualifying
rows.

Chapter 10. Creating and modifying DB2 objects 483

Table 81. Results of INSTEAD OF triggers (continued)

SQL statement Result

DELETE FROM EMPV
WHERE HIREDATE<’1910-01-01’

The EMPV_DELETE trigger is activated. This
trigger deletes the qualifying rows from the
DSN8B10.EMP table.

Related reference:

CREATE TRIGGER (DB2 SQL)

Trigger packages
A trigger package is a special type of package that is created only when you
execute a CREATE TRIGGER statement. A trigger package executes only when its
associated trigger is activated.

As with any other package, DB2 marks a trigger package invalid when you drop a
table, index, or view on which the trigger package depends. DB2 executes an
automatic rebind the next time the trigger is activated. However, if the automatic
rebind fails, DB2 does not mark the trigger package as inoperative.

Unlike other packages, a trigger package is freed if you drop the table on which
the trigger is defined, so you can re-create the trigger package only by recreating
the table and the trigger.

You can use the subcommand REBIND TRIGGER PACKAGE to rebind a trigger
package that DB2 has marked as inoperative. You can also use REBIND TRIGGER
PACKAGE to change the option values with which DB2 originally bound the
trigger package. You can change only a limited subset of the default bind options
that DB2 used when creating the package.
Related reference:

REBIND TRIGGER PACKAGE (DSN) (DB2 Commands)

Trigger cascading
When a trigger performs an SQL operation, it might modify the subject table or
other tables with triggers, therefore DB2 also activates those triggers. This situation
is called trigger cascading.

A trigger that is activated as the result of another trigger can be activated at the
same level as the original trigger or at a different level. Two triggers, A and B, are
activated at different levels if trigger B is activated after trigger A is activated and
completes before trigger A completes. If trigger B is activated after trigger A is
activated and completes after trigger A completes, then the triggers are at the same
level.

For example, in these cases, trigger A and trigger B are activated at the same level:
v Table X has two triggers that are defined on it, A and B. A is a before trigger and

B is an after trigger. An update to table X causes both trigger A and trigger B to
activate.

v Trigger A updates table X, which has a referential constraint with table Y, which
has trigger B defined on it. The referential constraint causes table Y to be
updated, which activates trigger B.

In these cases, trigger A and trigger B are activated at different levels:

484 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtrigger.htm#db2z_sql_createtrigger
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_rebindtriggerpackage.htm#db2z_cmd_rebindtriggerpackage

v Trigger A is defined on table X, and trigger B is defined on table Y. Trigger B is
an update trigger. An update to table X activates trigger A, which contains an
UPDATE statement on table B in its trigger body. This UPDATE statement
activates trigger B.

v Trigger A calls a stored procedure. The stored procedure contains an INSERT
statement for table X, which has insert trigger B defined on it. When the INSERT
statement on table X executes, trigger B is activated.

When triggers are activated at different levels, it is called trigger cascading. Trigger
cascading can occur only for after triggers because DB2 does not support cascading
of before triggers.

To prevent the possibility of endless trigger cascading, DB2 supports only 16 levels
of cascading of triggers, stored procedures, and user-defined functions. If a trigger,
user-defined function, or stored procedure at the 17th level is activated, DB2
returns SQLCODE -724 and backs out all SQL changes in the 16 levels of
cascading. However, as with any other SQL error that occurs during trigger
execution, if any action occurs that is outside the control of DB2, that action is not
backed out.

You can write a monitor program that issues IFI READS requests to collect DB2
trace information about the levels of cascading of triggers, user-defined functions,
and stored procedures in your programs.
Related tasks:

Invoking IFI from a monitor program (DB2 Performance)

Order of multiple triggers
You can create multiple triggers for the same subject table, event, and activation
time. The order in which those triggers are activated is the order in which the
triggers were created.

DB2 records the timestamp when each CREATE TRIGGER statement executes.
When an event occurs in a table that activates more than one trigger, DB2 uses the
stored timestamps to determine which trigger to activate first.

DB2 always activates all before triggers that are defined on a table before the after
triggers that are defined on that table, but within the set of before triggers, the
activation order is by timestamp, and within the set of after triggers, the activation
order is by timestamp.

In this example, triggers NEWHIRE1 and NEWHIRE2 have the same triggering
event (INSERT), the same subject table (EMP), and the same activation time
(AFTER). Suppose that the CREATE TRIGGER statement for NEWHIRE1 is run
before the CREATE TRIGGER statement for NEWHIRE2:
CREATE TRIGGER NEWHIRE1

AFTER INSERT ON EMP
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;
END

CREATE TRIGGER NEWHIRE2
AFTER INSERT ON EMP
REFERENCING NEW AS N_EMP
FOR EACH ROW MODE DB2SQL

Chapter 10. Creating and modifying DB2 objects 485

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_ififromprogram.htm#db2z_ififromprogram

BEGIN ATOMIC
UPDATE DEPTS SET NBEMP = NBEMP + 1

WHERE DEPT_ID = N_EMP.DEPT_ID;
END

When an insert operation occurs on table EMP, DB2 activates NEWHIRE1 first
because NEWHIRE1 was created first. Now suppose that someone drops and
re-creates NEWHIRE1. NEWHIRE1 now has a later timestamp than NEWHIRE2,
so the next time an insert operation occurs on EMP, NEWHIRE2 is activated before
NEWHIRE1.

If two row triggers are defined for the same action, the trigger that was created
earlier is activated first for all affected rows. Then the second trigger is activated
for all affected rows. In the previous example, suppose that an INSERT statement
with a fullselect inserts 10 rows into table EMP. NEWHIRE1 is activated for all 10
rows, then NEWHIRE2 is activated for all 10 rows.

Interactions between triggers and referential constraints
When you create triggers, you need to understand the interactions among the
triggers and constraints on your tables. You also need to understand the effect that
the order of processing of those constraints and triggers can have on the results.

In general, the following steps occur when triggering SQL statement S1 performs
an insert, update, or delete operation on table T1:
1. DB2 determines the rows of T1 to modify. Call that set of rows M1. The

contents of M1 depend on the SQL operation:
v For a delete operation, all rows that satisfy the search condition of the

statement for a searched delete operation, or the current row for a positioned
delete operation

v For an insert operation, the row identified by the VALUES statement, or the
rows identified by the result table of a SELECT clause within the INSERT
statement

v For an update operation, all rows that satisfy the search condition of the
statement for a searched update operation, or the current row for a
positioned update operation

2. DB2 processes all before triggers that are defined on T1, in order of creation.
Each before trigger executes the triggered action once for each row in M1. If
M1 is empty, the triggered action does not execute.
If an error occurs when the triggered action executes, DB2 rolls back all
changes that are made by S1.

3. DB2 makes the changes that are specified in statement S1 to table T1, unless an
INSTEAD OF trigger is defined for that action. If an appropriate INSTEAD OF
trigger is defined, DB2 executes the trigger instead of the statement and skips
the remaining steps in this list.
If an error occurs, DB2 rolls back all changes that are made by S1.

4. If M1 is not empty, DB2 applies all the following constraints and checks that
are defined on table T1:
v Referential constraints
v Check constraints
v Checks that are due to updates of the table through views defined WITH

CHECK OPTION

486 Application Programming and SQL Guide

Application of referential constraints with rules of DELETE CASCADE or
DELETE SET NULL are activated before delete triggers or before update
triggers on the dependent tables.
If any constraint is violated, DB2 rolls back all changes that are made by
constraint actions or by statement S1.

5. DB2 processes all after triggers that are defined on T1, and all after triggers on
tables that are modified as the result of referential constraint actions, in order of
creation.
Each after row trigger executes the triggered action once for each row in M1. If
M1 is empty, the triggered action does not execute.
Each after statement trigger executes the triggered action once for each
execution of S1, even if M1 is empty.

If any triggered actions contain SQL insert, update, or delete operations, DB2
repeats steps 1 through 5 for each operation.

If an error occurs when the triggered action executes, or if a triggered action is at
the 17th level of trigger cascading, DB2 rolls back all changes that are made in step
5 and all previous steps.

For example, table DEPT is a parent table of EMP, with these conditions:
v The DEPTNO column of DEPT is the primary key.
v The WORKDEPT column of EMP is the foreign key.
v The constraint is ON DELETE SET NULL.

Suppose the following trigger is defined on EMP:
CREATE TRIGGER EMPRAISE

AFTER UPDATE ON EMP
REFERENCING NEW TABLE AS NEWEMPS
FOR EACH STATEMENT MODE DB2SQL
BEGIN ATOMIC

VALUES(CHECKEMP(TABLE NEWEMPS));
END

Also suppose that an SQL statement deletes the row with department number E21
from DEPT. Because of the constraint, DB2 finds the rows in EMP with a
WORKDEPT value of E21 and sets WORKDEPT in those rows to null. This is
equivalent to an update operation on EMP, which has update trigger EMPRAISE.
Therefore, because EMPRAISE is an after trigger, EMPRAISE is activated after the
constraint action sets WORKDEPT values to null.

Interactions between triggers and tables that have multilevel
security with row-level granularity

A BEFORE trigger affects the value of the transition variable that is associated with
a security label column.

If a subject table has a security label column, the column in the transition table or
transition variable that corresponds to the security label column in the subject table
does not inherit the security label attribute. This means that the multilevel security
check with row-level granularity is not enforced for the transition table or the
transition variable. If you add a security label column to a subject table using the
ALTER TABLE statement, the rules are the same as when you add any column to a
subject table because the column in the transition table or the transition variable
that corresponds to the security label column does not inherit the security label
attribute.

Chapter 10. Creating and modifying DB2 objects 487

If the ID you are using does not have write-down privilege and you execute an
insert or update operation, the security label value of your ID is assigned to the
security label column for the rows that you are inserting or updating.

When a BEFORE trigger is activated, the value of the transition variable that
corresponds to the security label column is the security label of the ID if either of
the following conditions is true:
v The user does not have write-down privilege
v The value for the security label column is not specified

If the user does not have write-down privilege, and the trigger changes the
transition variable that corresponds to the security label column, the value of the
security label column is changed back to the security label value of the user before
the row is written to the page.
Related concepts:

Multilevel security (Managing Security)

Triggers that return inconsistent results
When you create triggers and write SQL statements that activate those triggers,
you need to ensure that executing those statements always produces the same
results.

Two common reasons that you can get inconsistent results are:
v Positioned UPDATE or DELETE statements that use uncorrelated subqueries

cause triggers to operate on a larger result table than you intended.
v DB2 does not always process rows in the same order, so triggers that propagate

rows of a table can generate different result tables at different times.

The following examples demonstrate these situations.

Example: Effect of an uncorrelated subquery on a triggered action: Suppose that
tables T1 and T2 look like this:
Table T1 Table T2

A1 B1
== ==
1 1
2 2

The following trigger is defined on T1:
CREATE TRIGGER TR1

AFTER UPDATE OF T1
FOR EACH ROW
MODE DB2SQL

BEGIN ATOMIC
DELETE FROM T2 WHERE B1 = 2;

END

Now suppose that an application executes the following statements to perform a
positioned update operation:
EXEC SQL BEGIN DECLARE SECTION;
long hv1;
EXEC SQL END DECLARE SECTION;...
EXEC SQL DECLARE C1 CURSOR FOR

SELECT A1 FROM T1
WHERE A1 IN (SELECT B1 FROM T2)

488 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_mls.htm#db2z_mls

FOR UPDATE OF A1;...
EXEC SQL OPEN C1;...
while(SQLCODE>=0 && SQLCODE!=100)
{

EXEC SQL FETCH C1 INTO :hv1;
UPDATE T1 SET A1=5 WHERE CURRENT OF C1;

}

When DB2 executes the FETCH statement that positions cursor C1 for the first
time, DB2 evaluates the subselect, SELECT B1 FROM T2, to produce a result table
that contains the two rows of column T2:
1
2

When DB2 executes the positioned UPDATE statement for the first time, trigger
TR1 is activated. When the body of trigger TR1 executes, the row with value 2 is
deleted from T2. However, because SELECT B1 FROM T2 is evaluated only once,
when the FETCH statement is executed again, DB2 finds the second row of T1,
even though the second row of T2 was deleted. The FETCH statement positions
the cursor to the second row of T1, and the second row of T1 is updated. The
update operation causes the trigger to be activated again, which causes DB2 to
attempt to delete the second row of T2, even though that row was already deleted.

To avoid processing of the second row after it should have been deleted, use a
correlated subquery in the cursor declaration:
DCL C1 CURSOR FOR

SELECT A1 FROM T1 X
WHERE EXISTS (SELECT B1 FROM T2 WHERE X.A1 = B1)
FOR UPDATE OF A1;

In this case, the subquery, SELECT B1 FROM T2 WHERE X.A1 = B1, is evaluated
for each FETCH statement. The first time that the FETCH statement executes, it
positions the cursor to the first row of T1. The positioned UPDATE operation
activates the trigger, which deletes the second row of T2. Therefore, when the
FETCH statement executes again, no row is selected, so no update operation or
triggered action occurs.

Example: Effect of row processing order on a triggered action: The following
example shows how the order of processing rows can change the outcome of an
after row trigger.

Suppose that tables T1, T2, and T3 look like this:
Table T1 Table T2 Table T3

A1 B1 C1
== == ==
1 (empty) (empty)
2

The following trigger is defined on T1:
CREATE TRIGGER TR1

AFTER UPDATE ON T1
REFERENCING NEW AS N
FOR EACH ROW
MODE DB2SQL

Chapter 10. Creating and modifying DB2 objects 489

BEGIN ATOMIC
INSERT INTO T2 VALUES(N.C1);
INSERT INTO T3 (SELECT B1 FROM T2);

END

Now suppose that a program executes the following UPDATE statement:
UPDATE T1 SET A1 = A1 + 1;

The contents of tables T2 and T3 after the UPDATE statement executes depend on
the order in which DB2 updates the rows of T1.

If DB2 updates the first row of T1 first, after the UPDATE statement and the
trigger execute for the first time, the values in the three tables are:
Table T1 Table T2 Table T3

A1 B1 C1
== == ==
2 2 2
2

After the second row of T1 is updated, the values in the three tables are:
Table T1 Table T2 Table T3

A1 B1 C1
== == ==
2 2 2
3 3 2

3

However, if DB2 updates the second row of T1 first, after the UPDATE statement
and the trigger execute for the first time, the values in the three tables are:
Table T1 Table T2 Table T3

A1 B1 C1
== == ==
1 3 3
3

After the first row of T1 is updated, the values in the three tables are:
Table T1 Table T2 Table T3

A1 B1 C1
== == ==
2 3 3
3 2 3

2

Sequence objects
A sequence is a user-defined object that generates a sequence of numeric values
according to the specification with which the sequence was created. Sequences,
unlike identity columns, are not associated with tables. Applications refer to a
sequence object to get its current or next value.

The sequence of numeric values is generated in a monotonically ascending or
descending order. The relationship between sequences and tables is controlled by
the application, not by DB2.

Your application can reference a sequence object and coordinate the value as keys
across multiple rows and tables. However, a table column that gets its values from
a sequence object does not necessarily have unique values in that column. Even if

490 Application Programming and SQL Guide

the sequence object has been defined with the NO CYCLE clause, some other
application might insert values into that table column other than values you obtain
by referencing that sequence object.

DB2 always generates sequence numbers in order of request. However, in a data
sharing group where the sequence values are cached by multiple DB2 members
simultaneously, the sequence value assignments might not be in numeric order.
Additionally, you might have gaps in sequence number values for the following
reasons:
v If DB2 terminates abnormally before it assigns all the cached values
v If your application rolls back a transaction that increments the sequence
v If the statement containing NEXT VALUE fails after it increments the sequence

You create a sequence object with the CREATE SEQUENCE statement, alter it with
the ALTER SEQUENCE statement, and drop it with the DROP SEQUENCE
statement. You grant access to a sequence with the GRANT (privilege) ON
SEQUENCE statement, and revoke access to the sequence with the REVOKE
(privilege) ON SEQUENCE statement.

The values that DB2 generates for a sequence depend on how the sequence is
created. The START WITH option determines the first value that DB2 generates.
The values advance by the INCREMENT BY value in ascending or descending
order.

The MINVALUE and MAXVALUE options determine the minimum and maximum
values that DB2 generates. The CYCLE or NO CYCLE option determines whether
DB2 wraps values when it has generated all values between the START WITH
value and MAXVALUE if the values are ascending, or between the START WITH
value and MINVALUE if the values are descending.

Keys across multiple tables: You can use the same sequence number as a key
value in two separate tables by first generating the sequence value with a NEXT
VALUE expression to insert the first row in the first table. You can then reference
this same sequence value with a PREVIOUS VALUE expression to insert the other
rows in the second table.

Example: Suppose that an ORDERS table and an ORDER_ITEMS table are defined
in the following way:
CREATE TABLE ORDERS

(ORDERNO INTEGER NOT NULL,
ORDER_DATE DATE DEFAULT,
CUSTNO SMALLINT
PRIMARY KEY (ORDERNO));

CREATE TABLE ORDER_ITEMS
(ORDERNO INTEGER NOT NULL,
PARTNO INTEGER NOT NULL,
QUANTITY SMALLINT NOT NULL,
PRIMARY KEY (ORDERNO,PARTNO),
CONSTRAINT REF_ORDERNO FOREIGN KEY (ORDERNO)

REFERENCES ORDERS (ORDERNO) ON DELETE CASCADE);

You create a sequence named ORDER_SEQ to use as key values for both the
ORDERS and ORDER_ITEMS tables:

Chapter 10. Creating and modifying DB2 objects 491

CREATE SEQUENCE ORDER_SEQ AS INTEGER
START WITH 1
INCREMENT BY 1
NO MAXVALUE
NO CYCLE
CACHE 20;

You can then use the same sequence number as a primary key value for the
ORDERS table and as part of the primary key value for the ORDER_ITEMS table:
INSERT INTO ORDERS (ORDERNO, CUSTNO)

VALUES (NEXT VALUE FOR ORDER_SEQ, 12345);

INSERT INTO ORDER_ITEMS (ORDERNO, PARTNO, QUANTITY)
VALUES (PREVIOUS VALUE FOR ORDER_SEQ, 987654, 2);

The NEXT VALUE expression in the first INSERT statement generates a sequence
number value for the sequence object ORDER_SEQ. The PREVIOUS VALUE
expression in the second INSERT statement retrieves that same value because it
was the sequence number most recently generated for that sequence object within
the current application process.

DB2 object relational extensions
With the object extensions of DB2, you can incorporate object-oriented concepts
and methodologies into your relational database by extending DB2 with richer sets
of data types and functions.

With those extensions, you can store instances of object-oriented data types in
columns of tables and operate on them using functions in SQL statements. In
addition, you can control the types of operations that users can perform on those
data types.

The object extensions that DB2 provides are:
v Large objects (LOBs)

The VARCHAR, VARGRAPHIC, and VARBINARY data types have a storage
limit of 32 KB. Although this might be sufficient for small- to medium-size text
data, applications often need to store large text documents. They might also
need to store a wide variety of additional data types such as audio, video,
drawings, mixed text and graphics, and images. DB2 provides three data types
to store these data objects as strings of up to 2 GB - 1 in size. The three data
types are binary large objects (BLOBs), character large objects (CLOBs), and
double-byte character large objects (DBCLOBs).
For a detailed discussion of LOBs, see “Large objects (LOBs)” on page 443.

v Distinct types
A distinct type is a user-defined data type that shares its internal representation
with a built-in data type but is considered to be a separate and incompatible
type for semantic purposes. For example, you might want to define a picture
type or an audio type, both of which have quite different semantics, but which
use the built-in data type BLOB for their internal representation.
For a detailed discussion of distinct types, see “Distinct types” on page 493.

v User-defined functions
The built-in functions that are supplied with DB2 are a useful set of functions,
but they might not satisfy all of your requirements. For those cases, you can use
user-defined functions. For example, a built-in function might perform a
calculation you need, but the function does not accept the distinct types you

492 Application Programming and SQL Guide

want to pass to it. You can then define a function based on a built-in function,
called a sourced user-defined function, that accepts your distinct types. You
might need to perform another calculation in your SQL statements for which no
built-in function exists. In that situation, you can define and write an SQL
function or an external function.
For a detailed discussion of user-defined functions, see “User-defined functions”
on page 505.

Creating a distinct type
Distinct types are useful when you want DB2 to handle certain data differently
than other data of the same data type. For example, even though all currencies can
be declared as type DECIMAL, you do not want euros to be compared to Japanese
yen.

Procedure

To create a distinct type:

Issue the CREATE DISTINCT TYPE statement. For example, you can create distinct
types for euros and yen by issuing the following SQL statements:
CREATE DISTINCT TYPE EURO AS DECIMAL(9,2);
CREATE DISTINCT TYPE JAPANESE_YEN AS DECIMAL(9,2);

Related reference:

CREATE TYPE (distinct) (DB2 SQL)

Distinct types
A distinct type is a user-defined data type that shares its internal representation
with a built-in data type (its source type), but is considered to be a separate and
incompatible data type for most operations.

Each distinct type has the same internal representation as a built-in data type.

Suppose you want to define some audio and video data in a DB2 table. You can
define columns for both types of data as BLOB, but you might want to use a data
type that more specifically describes the data. To do that, define distinct types. You
can then use those types when you define columns in a table or manipulate the
data in those columns. For example, you can define distinct types for the audio
and video data like this:
CREATE DISTINCT TYPE AUDIO AS BLOB (1M);
CREATE DISTINCT TYPE VIDEO AS BLOB (1M);

Then, your CREATE TABLE statement might look like this:
CREATE TABLE VIDEO_CATALOG;

(VIDEO_NUMBER CHAR(6) NOT NULL,
VIDEO_SOUND AUDIO,
VIDEO_PICS VIDEO,
ROW_ID ROWID NOT NULL GENERATED ALWAYS);

For more information on LOB data, see “Large objects (LOBs)” on page 443.

After you define distinct types and columns of those types, you can use those data
types in the same way you use built-in types. You can use the data types in
assignments, comparisons, function invocations, and stored procedure calls.
However, when you assign one column value to another or compare two column

Chapter 10. Creating and modifying DB2 objects 493

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtypedistinct.htm#db2z_sql_createtypedistinct

values, those values must be of the same distinct type. For example, you must
assign a column value of type VIDEO to a column of type VIDEO, and you can
compare a column value of type AUDIO only to a column of type AUDIO. When
you assign a host variable value to a column with a distinct type, you can use any
host data type that is compatible with the source data type of the distinct type. For
example, to receive an AUDIO or VIDEO value, you can define a host variable like
this:
SQL TYPE IS BLOB (1M) HVAV;

When you use a distinct type as an argument to a function, a version of that
function that accepts that distinct type must exist. For example, if function SIZE
takes a BLOB type as input, you cannot automatically use a value of type AUDIO
as input. However, you can create a sourced user-defined function that takes the
AUDIO type as input. For example:
CREATE FUNCTION SIZE(AUDIO)

RETURNS INTEGER
SOURCE SIZE(BLOB(1M));

Using distinct types in application programs: The main reason to use distinct
types is because DB2 enforces strong typing for distinct types. Strong typing ensures
that only functions, procedures, comparisons, and assignments that are defined for
a data type can be used.

For example, if you have defined a user-defined function to convert U.S. dollars to
euro currency, you do not want anyone to use this same user-defined function to
convert Japanese yen to euros because the U.S. dollars to euros function returns the
wrong amount. Suppose you define three distinct types:
CREATE DISTINCT TYPE US_DOLLAR AS DECIMAL(9,2);
CREATE DISTINCT TYPE EURO AS DECIMAL(9,2);
CREATE DISTINCT TYPE JAPANESE_YEN AS DECIMAL(9,2);

If a conversion function is defined that takes an input parameter of type
US_DOLLAR as input, DB2 returns an error if you try to execute the function with
an input parameter of type JAPANESE_YEN.

Example of distinct types, user-defined functions, and LOBs
You can create and use a distinct type based on a LOB data type.

The example in this topic demonstrates the following concepts:
v Creating a distinct type based on a LOB data type
v Defining a user-defined function with a distinct type as an argument
v Creating a table with a distinct type column that is based on a LOB type
v Defining a LOB table space, auxiliary table, and auxiliary index
v Inserting data from a host variable into a distinct type column based on a LOB

column
v Executing a query that contains a user-defined function invocation
v Casting a LOB locator to the input data type of a user-defined function

Suppose that you keep electronic mail documents that are sent to your company in
a DB2 table. The DB2 data type of an electronic mail document is a CLOB, but you
define it as a distinct type so that you can control the types of operations that are
performed on the electronic mail. The distinct type is defined like this:
CREATE DISTINCT TYPE E_MAIL AS CLOB(5M);

494 Application Programming and SQL Guide

You have also defined and written user-defined functions to search for and return
the following information about an electronic mail document:
v Subject
v Sender
v Date sent
v Message content
v Indicator of whether the document contains a user-specified string

The user-defined function definitions look like this:
CREATE FUNCTION SUBJECT(E_MAIL)

RETURNS VARCHAR(200)
EXTERNAL NAME ’SUBJECT’
LANGUAGE C
PARAMETER STYLE SQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION;

CREATE FUNCTION SENDER(E_MAIL)
RETURNS VARCHAR(200)
EXTERNAL NAME ’SENDER’
LANGUAGE C
PARAMETER STYLE SQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION;

CREATE FUNCTION SENDING_DATE(E_MAIL)
RETURNS DATE
EXTERNAL NAME ’SENDDATE’
LANGUAGE C
PARAMETER STYLE SQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION;

CREATE FUNCTION CONTENTS(E_MAIL)
RETURNS CLOB(1M)
EXTERNAL NAME ’CONTENTS’
LANGUAGE C
PARAMETER STYLE SQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION;

CREATE FUNCTION CONTAINS(E_MAIL, VARCHAR (200))
RETURNS INTEGER
EXTERNAL NAME ’CONTAINS’
LANGUAGE C
PARAMETER STYLE SQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION;

The table that contains the electronic mail documents is defined like this:
CREATE TABLE DOCUMENTS

(LAST_UPDATE_TIME TIMESTAMP,
DOC_ROWID ROWID NOT NULL GENERATED ALWAYS,
A_DOCUMENT E_MAIL);

Because the table contains a column with a source data type of CLOB, the table
requires an associated LOB table space, auxiliary table, and index on the auxiliary
table. Use statements like this to define the LOB table space, the auxiliary table,
and the index:

Chapter 10. Creating and modifying DB2 objects 495

CREATE LOB TABLESPACE DOCTSLOB
LOG YES
GBPCACHE SYSTEM;

CREATE AUX TABLE DOCAUX_TABLE
IN DOCTSLOB
STORES DOCUMENTS COLUMN A_DOCUMENT;

CREATE INDEX A_IX_DOC ON DOCAUX_TABLE;

To populate the document table, you write code that executes an INSERT
statement to put the first part of a document in the table, and then executes
multiple UPDATE statements to concatenate the remaining parts of the document.
For example:
EXEC SQL BEGIN DECLARE SECTION;

char hv_current_time[26];
SQL TYPE IS CLOB (1M) hv_doc;

EXEC SQL END DECLARE SECTION;
/* Determine the current time and put this value */
/* into host variable hv_current_time. */
/* Read up to 1 MB of document data from a file */
/* into host variable hv_doc. */...
/* Insert the time value and the first 1 MB of */
/* document data into the table. */
EXEC SQL INSERT INTO DOCUMENTS

VALUES(:hv_current_time, DEFAULT, E_MAIL(:hv_doc));

/* Although there is more document data in the */
/* file, read up to 1 MB more of data, and then */
/* use an UPDATE statement like this one to */
/* concatenate the data in the host variable */
/* to the existing data in the table. */
EXEC SQL UPDATE DOCUMENTS

SET A_DOCUMENT = A_DOCUMENT || E_MAIL(:hv_doc)
WHERE LAST_UPDATE_TIME = :hv_current_time;

Now that the data is in the table, you can execute queries to learn more about the
documents. For example, you can execute this query to determine which
documents contain the word "performance":
SELECT SENDER(A_DOCUMENT), SENDING_DATE(A_DOCUMENT),

SUBJECT(A_DOCUMENT)
FROM DOCUMENTS
WHERE CONTAINS(A_DOCUMENT,’performance’) = 1;

Because the electronic mail documents can be very large, you might want to use
LOB locators to manipulate the document data instead of fetching all of a
document into a host variable. You can use a LOB locator on any distinct type that
is defined on one of the LOB types. The following example shows how you can
cast a LOB locator as a distinct type, and then use the result in a user-defined
function that takes a distinct type as an argument:
EXEC SQL BEGIN DECLARE SECTION

long hv_len;
char hv_subject[200];
SQL TYPE IS CLOB_LOCATOR hv_email_locator;

EXEC SQL END DECLARE SECTION...
/* Select a document into a CLOB locator. */
EXEC SQL SELECT A_DOCUMENT, SUBJECT(A_DOCUMENT)

INTO :hv_email_locator, :hv_subject
FROM DOCUMENTS
WHERE LAST_UPDATE_TIME = :hv_current_time;

496 Application Programming and SQL Guide

...
/* Extract the subject from the document. The */
/* SUBJECT function takes an argument of type */
/* E_MAIL, so cast the CLOB locator as E_MAIL. */
EXEC SQL SET :hv_subject =

SUBJECT(CAST(:hv_email_locator AS E_MAIL));...

Arrays in SQL statements
An array is an ordered set of elements of a single built-in data type. An array can
have an associated user-defined array type, or it can be the result of an SQL
operation that returns an array value without an associated user-defined array
type.

Arrays can be ordinary arrays and associative arrays.

Ordinary arrays have a user-defined upper bound. Elements in the array can be
accessed and modified by their index value. Array elements are referenced in SQL
statements by using one-based indexing; for example, MYARRAY[1], MYARRAY[2],
and so on.

Associative arrays have no upper bound. Associative arrays contain an ordered set
of zero or more elements, where each element in the array is ordered by and can
be referenced by an associated index value. The data type of the index values can
be an integer or a character string, but all index values for the array have the same
data type.

Arrays can be used only in the following contexts:
v Parameters to SQL functions
v RETURN data types from SQL functions
v Parameters to SQL procedures
v SQL variables that are declared in SQL functions
v SQL variables that are declared in SQL procedures

You can create an array by creating an array type, and then defining an array
variable of that type. For example:
-- CREATE ORDINARY ARRAY TYPE INTARRAY
CREATE TYPE INTARRAY AS INTEGER ARRAY[100];
-- IN AN SQL PROCEDURE, DEFINE ARRAY INTA OF THE INTARRAY TYPE
DECLARE INTA INTARRAY;
-- CREATE ASSOCIATIVE ARRAY TYPE CHARARRAY
CREATE TYPE CHARARRAY AS CHAR(10) ARRAY[VARCHAR(10)];
-- IN AN SQL PROCEDURE, DEFINE ARRAY CHARA OF THE CHARARRAY TYPE
DECLARE CHARA CHARARRAY;

You cannot retrieve the contents of a column directly into an array. You need to
use the ARRAY_AGG function to create an array that is the intermediate result of a
SELECT statement, and then retrieve the contents of that array into an SQL array
variable or parameter. For example:
-- INTB IS AN OUT PARAMETER OF ORDINARY ARRAY TYPE INTARRAY.
-- COL2 IS AN INTEGER COLUMN.
-- ARRAY_AGG RETRIEVES THE VALUES FROM COL2, AND PUTS THEM INTO AN ARRAY.
SELECT ARRAY_AGG(COL2) INTO INTB FROM TABLE1;

You can retrieve data from an array by using the UNNEST specification to assign
array elements to an intermediate result table. For example:

Chapter 10. Creating and modifying DB2 objects 497

|

|
|
|
|

|

|
|
|
|

|
|
|
|
|

|

|

|

|

|

|

|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

-- IDS AND NAMES ARE ARRAYS OF TYPE INTARRAY.
INSERT INTO PERSONS(ID, NAME)

(SELECT T.I, T.N FROM UNNEST(IDS, NAMES) AS T(I, N));

To populate arrays, you use array constructors.

For example, this statement populates an ordinary array:
SET CHARA = ARRAY[’1’,’2’,’3’,’4’,’5’,’6’];

For example, these statements populate an associative array, which must be
populated one element at a time:
SET CANADACAPITALS[’Alberta’] = ’Edmonton’;
SET CANADACAPITALS[’Manitoba’] = ’Winnipeg’;
SET CANADACAPITALS[’Ontario’] = ’Toronto’;
SET CANADACAPITALS[’Nova Scotia’] = ’Halifax’;

A number of built-in functions are available for manipulating arrays. They are:

ARRAY_DELETE
Deletes elements from an array.

ARRAY_FIRST
Returns the minimum array index value of an array.

ARRAY_LAST
Returns the maximum array index value of an array.

ARRAY_NEXT
Returns the next larger array index value, relative to a specified array
index value.

ARRAY_PRIOR
Returns the next smaller array index value, relative to a specified array
index value.

CARDINALITY
Returns the number of elements in an array.

MAX_CARDINALITY
Returns the maximum number of elements that an array can contain.

TRIM_ARRAY
Deletes elements from the end of an ordinary array.

498 Application Programming and SQL Guide

|
|
|

|

|

|

|
|

|
|
|
|

|

|
|

|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|

Related concepts:

Array type comparisons (DB2 SQL)

Array type assignments (DB2 SQL)

Array types (DB2 SQL)
Related reference:

Array constructor (DB2 SQL)

ARRAY_AGG (DB2 SQL)

ARRAY_DELETE (DB2 SQL)

ARRAY_FIRST (DB2 SQL)

ARRAY_NEXT (DB2 SQL)

ARRAY_PRIOR (DB2 SQL)

CARDINALITY (DB2 SQL)

MAX_CARDINALITY (DB2 SQL)

TRIM_ARRAY (DB2 SQL)

Example of using arrays in an SQL procedure
An example demonstrates many of the ways that you can use arrays in a native
SQL procedure.

The example demonstrates how to:
v Create an associative array type.
v Create an ordinary array type.
v Create a stored procedure with arrays as parameters.
v Define arrays as SQL variables.
v Use the ARRAY_AGG built-in function in a cursor declaration, to assign the

rows of a single-column result table to elements of an array. Use the cursor to
retrieve the array into an SQL out parameter.

v Use an array constructor to initialize an array.
v Assign a constant or an expression to an array element.
v Use the UNNEST specification to generate the intermediate result table from an

array for a subselect within an INSERT statement.
v Use the ARRAY_AGG built-in function to assign the rows of a single column

result table to elements of an array, and then assign that array to an array SQL
OUT parameter.

v Use the CARDINALITY built-in function to determine how many times to
execute a WHILE loop.

v Use a parameter marker for an array variable and an array index in the WHERE
clause of a SELECT statement.

v Use the ARRAY_AGG built-in function in the SELECT list of a SELECT INTO
statement, and assign the resulting array to an array SQL OUT parameter.

v Update column values with array elements.

In this example, the pound sign (#) is used as the SQL terminator character.
--
-- CREATE ASSOCIATIVE ARRAY TYPES
--

Chapter 10. Creating and modifying DB2 objects 499

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|

|

|

|

|

|

|
|
|

|

|

|
|

|
|
|

|
|

|
|

|
|

|

|

|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_arraytypecomparisons.htm#db2z_arraytypecomparisons
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_arraytypeassignments.htm#db2z_arraytypeassignments
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_arraytypes.htm#db2z_arraytypes
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_arrayconstructor.htm#db2z_arrayconstructor
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_arrayagg.htm#db2z_bif_arrayagg
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_arraydelete.htm#db2z_bif_arraydelete
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_arrayfirst.htm#db2z_bif_arrayfirst
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_arraynext.htm#db2z_bif_arraynext
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_arrayprior.htm#db2z_bif_arrayprior
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_cardinality.htm#db2z_bif_cardinality
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_maxcardinality.htm#db2z_bif_maxcardinality
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_trimarray.htm#db2z_bif_trimarray

CREATE TYPE CHARARRAY AS CHAR(10) ARRAY[VARCHAR(3)]#
CREATE TYPE BIGINTARRAY AS BIGINT ARRAY[INTEGER]#
--
-- CREATE ORDINARY ARRAY TYPES
--
CREATE TYPE INTARRAY AS INTEGER ARRAY[100]#
CREATE TYPE STRINGARRAY AS VARCHAR(10) ARRAY[100]#
--
-- CREATE TABLES THAT ARE USED IN SQL PROCEDURE PROCESSPERSONS
--
CREATE TABLE PERSONS (ID INTEGER, NAME VARCHAR(10))#
CREATE TABLE ARRAYTEST (CHARCOL CHAR(10), INTCOL INT)#
-- SQL PROCEDURE PROCESSPERSONS HAS THREE ARRAY PARAMETERS:
-- OUTSETARRAY IS AN OUT PARAMETER OF ORDINARY ARRAY TYPE STRINGARRAY.
-- OUTSELECTWITHCURSOR IS AN OUT PARAMETER OF ORDINARY ARRAY TYPE STRINGARRAY.
-- OUTSELECTWITHARRAYAGG IS AN OUT PARAMETER OF ORDINARY ARRAY TYPE INTARRAY.
--
CREATE PROCEDURE PROCESSPERSONS(OUT OUTSETARRAY STRINGARRAY,

INOUT INT0 INT,
OUT OUTSELECTWITHCURSOR STRINGARRAY,

OUT OUTMAXCARDINALITY BIGINT,
OUT OUTSELECTWITHARRAYAGG INTARRAY)

ARRAYDEMO: BEGIN
-- DECLARE SQL VARIABLES OF ORDINARY ARRAY TYPES
DECLARE IDS_ORDARRAYVAR INTARRAY;
DECLARE INT_ORDARRAYVAR INTARRAY;
DECLARE NAMES_ORDARRAYVAR STRINGARRAY;
-- DECLARE SQL VARIABLES OF ASSOCIATIVE ARRAY TYPES
DECLARE CHAR_ASSOCARRAYVAR CHARARRAY;
DECLARE BIGINT_ASSOCARRAYVAR BIGINTARRAY;
-- DECLARE SCALAR SQL VARIABLES
DECLARE DECFLOAT_VAR DECFLOAT;
DECLARE BIGINT_VAR BIGINT;
DECLARE SMALLINT_VAR SMALLINT;
DECLARE INT_VAR INT DEFAULT 1;
DECLARE STMT_VAR_VAR CHAR(100);
-- DECLARE A CURSOR
DECLARE C2 CURSOR FOR S1;
--
-- THE RESULT TABLE OF CURSOR C1 IS AN ARRAY THAT IS POPULATED BY
-- RETRIEVING THE VALUES OF THE NAME COLUMN FROM TABLE PERSONS,
-- ORDERING THE VALUES BY ID, AND USING THE ARRAY_AGG FUNCTION
-- TO ASSIGN THE VALUES TO AN ARRAY.
--
DECLARE C1 CURSOR FOR SELECT ARRAY_AGG(NAME ORDER BY ID) FROM PERSONS

WHERE NAME LIKE ’J%’;
--
-- USE ARRAY CONSTRUCTORS TO INITIALIZE ARRAYS
--
SET IDS_ORDARRAYVAR = ARRAY[5,6,7];
SET NAMES_ORDARRAYVAR = ARRAY[’BOB’, ’ANN’, ’SUE’];
SET CHAR_ASSOCARRAYVAR[’001’]=’1’;
SET CHAR_ASSOCARRAYVAR[’002’]=’2’;
SET CHAR_ASSOCARRAYVAR[’003’]=’3’;
SET CHAR_ASSOCARRAYVAR[’004’]=’4’;
SET CHAR_ASSOCARRAYVAR[’005’]=’5’;
SET CHAR_ASSOCARRAYVAR[’006’]=’6’;
SET INT_ORDARRAYVAR = ARRAY[1,INTEGER(2),3+0,4,5,6] ;
SET BIGINT_ASSOCARRAYVAR[1] = ARRAY[9];
SET BIGINT_ASSOCARRAYVAR[3] = ARRAY[(SELECT 10 FROM SYSIBM.SYSDUMMY1)];
SET BIGINT_ASSOCARRAYVAR[5] = ARRAY[11+0];
SET BIGINT_ASSOCARRAYVAR[7] = ARRAY[(SELECT 12 FROM SYSIBM.SYSDUMMY1)];
SET BIGINT_ASSOCARRAYVAR[9] = ARRAY[13];
--
-- ASSIGN A CONSTANT TO AN ARRAY ELEMENT.
--
SET IDS_ORDARRAYVAR[4] = 8;

500 Application Programming and SQL Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

--
-- ASSIGN AN EXPRESSION TO AN ARRAY ELEMENT.
--
SET IDS_ORDARRAYVAR[5] = 8 * 4 ;

--
-- ASSIGN AN ARRAY ELEMENT TO ANOTHER ARRAY ELEMENT. USE AN EXPRESSION
-- TO IDENTIFY THE TARGET ARRAY ELEMENT.
--
SET NAMES_ORDARRAYVAR[1+INT_VAR] = NAMES_ORDARRAYVAR[5] ;
--
-- POPULATE THE PERSONS TABLE WITH AN INSERT STATEMENT WITH A SUBSELECT:
-- - USE UNNEST TO RETRIEVE VALUES FROM AN ARRAY INTO AN INTERMEDIATE RESULT
-- TABLE.
-- - INSERT THE VALUES FROM THE INTERMEDIATE RESULT TABLE INTO
-- THE PERSONS TABLE.
--
INSERT INTO PERSONS(ID, NAME)
(SELECT T.I, T.N FROM UNNEST(IDS_ORDARRAYVAR, NAMES_ORDARRAYVAR) AS T(I, N));

--
-- USE THE ARRAY_AGG FUNCTION TO CREATE AN ARRAY FROM THE RESULT
-- TABLE OF A SELECT. THEN ASSIGN THAT ARRAY TO AN SQL OUT PARAMETER.
--
SET OUTSETARRAY = (SELECT ARRAY_AGG(NAME ORDER BY ID)
FROM PERSONS
WHERE NAME LIKE ’%O%’);

--
-- USE THE CARDINALITY FUNCTION TO CONTROL THE NUMBER OF TIMES THAT
-- AN INSERT STATEMENT IS EXECUTED TO POPULATE TABLE ARRAYTEST
-- WITH ARRAY ELEMENTS.
--
SET SMALLINT_VAR = 1;
WHILE SMALLINT_VAR <= CARDINALITY(INT_ORDARRAYVAR) DO
INSERT INTO ARRAYTEST VALUES
(CHAR_ASSOCARRAYVAR[SMALLINT_VAR],
INT_ORDARRAYVAR[SMALLINT_VAR]);
SET SMALLINT_VAR = SMALLINT_VAR+1;
END WHILE;
--
-- DYNAMICALLY EXECUTE AN SQL SELECT STATEMENT WITH A PARAMETER MARKER
-- FOR AN ARRAY, AND A PARAMETER MARKER FOR THE ARRAY INDEX.
--
SET INT_VAR = 3;
SET STMT_VAR =
’SELECT INTCOL FROM ARRAYTEST WHERE INTCOL = ’ ||
’CAST(? AS INTARRAY)[?]’;
PREPARE S1 FROM STMT_VAR;
OPEN C2 USING INT_ORDARRAYVAR, INT_VAR;
FETCH C2 INTO INT0;
CLOSE C2;
--
-- USE A CURSOR TO FETCH AN ARRAY THAT IS CREATED WITH THE ARRAY_AGG FUNCTION
-- INTO AN ARRAY SQL OUT PARAMETER.
--
OPEN C1;
FETCH C1 INTO OUTSELECTWITHCURSOR;
CLOSE C1;
--
-- RETURN THE MAXIMUM CARDINALITY OF AN ARRAY USING THE MAX_CARDINALITY
-- FUNCTION, AND STORE THE VALUE IN AN SQL VARIABLE.
--
SET OUTMAXCARDINALITY = MAX_CARDINALITY(INT_ORDARRAYVAR);
--
-- IN A SELECT INTO STATEMENT, USE THE ARRAY_AGG FUNCTION TO
-- ASSIGN THE VALUES OF COLUMN INTCOL TO ARRAY ELEMENTS, AND ASSIGN
-- THOSE ELEMENTS TO ARRAY OUT PARAMETER OUTSELECTWITHARRAYAGG.
--
SELECT ARRAY_AGG(INTCOL) INTO OUTSELECTWITHARRAYAGG FROM ARRAYTEST;

Chapter 10. Creating and modifying DB2 objects 501

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

--
-- IN AN UPDATE STATEMENT, ASSIGN ARRAY ELEMENTS TO COLUMNS.
--
SET SMALLINT_VAR = 1;
WHILE SMALLINT_VAR <= CARDINALITY(INT_ORDARRAYVAR) DO
UPDATE ARRAYTEST
SET CHARCOL =
CHAR_ASSOCARRAYVAR[SMALLINT_VAR], INTCOL = INT_ORDARRAYVAR[SMALLINT_VAR];

SET SMALLINT_VAR = SMALLINT_VAR +1;
END WHILE;
END#

Related concepts:

Array type comparisons (DB2 SQL)

Array type assignments (DB2 SQL)
Related reference:

Array constructor (DB2 SQL)

ARRAY_AGG (DB2 SQL)

CARDINALITY (DB2 SQL)

MAX_CARDINALITY (DB2 SQL)

Defining a user-defined function
User-defined functions are small programs that you can write to perform an
operation. You can create your own external functions, sourced functions, or SQL
functions. You can then use that function wherever you can use a built-in function.

Procedure

To define a user-defined function:
1. Determine the characteristics of the user-defined function, such as the

user-defined function name, schema (qualifier), and number and data types of
the input parameters and the types of the values returned.

2. Execute a CREATE FUNCTION statement to register the information in the
DB2 catalog.

Results

If you discover after you define the function that any of these characteristics is not
appropriate for the function, you can use an ALTER FUNCTION statement to
change information in the definition. You cannot use ALTER FUNCTION to change
some of the characteristics of a user-defined function definition.

Examples

Example: Definition for an external user-defined scalar function: A programmer
develops a user-defined function that searches for a string of maximum length 200
in a CLOB value whose maximum length is 500 KB. This CREATE FUNCTION
statement defines the user-defined function:
CREATE FUNCTION FINDSTRING (CLOB(500K), VARCHAR(200))

RETURNS INTEGER
CAST FROM FLOAT
SPECIFIC FINDSTRINCLOB
EXTERNAL NAME ’FINDSTR’
LANGUAGE C

502 Application Programming and SQL Guide

|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|

|

|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_arraytypecomparisons.htm#db2z_arraytypecomparisons
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_arraytypeassignments.htm#db2z_arraytypeassignments
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_arrayconstructor.htm#db2z_arrayconstructor
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_arrayagg.htm#db2z_bif_arrayagg
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_cardinality.htm#db2z_bif_cardinality
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_maxcardinality.htm#db2z_bif_maxcardinality

PARAMETER STYLE SQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION
FENCED
STOP AFTER 3 FAILURES;

The output from the user-defined function is of type float, but users require integer
output for their SQL statements. The user-defined function is written in C and
contains no SQL statements. The function is defined to stop when the number of
abnormal terminations is equal to 3.

Example: Definition for an external user-defined scalar function that overloads
an operator: A programmer has written a user-defined function that overloads the
built-in SQL division operator (/). That is, this user-defined function is invoked
when an application program executes a statement like either of the following:
UPDATE TABLE1 SET INTCOL1=INTCOL2/INTCOL3;

UPDATE TABLE1 SET INTCOL1="/"(INTCOL2,INTCOL3);

The user-defined function takes two integer values as input. The output from the
user-defined function is of type integer. The user-defined function is in the MATH
schema, is written in assembler, and contains no SQL statements. This CREATE
FUNCTION statement defines the user-defined function:
CREATE FUNCTION MATH."/" (INT, INT)

RETURNS INTEGER
SPECIFIC DIVIDE
EXTERNAL NAME ’DIVIDE’
LANGUAGE ASSEMBLE
PARAMETER STYLE SQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION
FENCED;

Suppose that you want the FINDSTRING user-defined function to work on BLOB
data types, as well as CLOB types. You can define another instance of the
user-defined function that specifies a BLOB type as input:
CREATE FUNCTION FINDSTRING (BLOB(500K), VARCHAR(200))

RETURNS INTEGER
CAST FROM FLOAT
SPECIFIC FINDSTRINBLOB
EXTERNAL NAME ’FNDBLOB’
LANGUAGE C
PARAMETER STYLE SQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION
FENCED
STOP AFTER 3 FAILURES;

Each instance of FINDSTRING uses a different application program to implement
the user-defined function.

Example: Definition for a sourced user-defined function: Suppose you need a
user-defined function that finds a string in a value with a distinct type of BOAT.
BOAT is based on a BLOB data type. User-defined function FINDSTRING has
already been defined. FINDSTRING takes a BLOB data type and performs the
required function. The specific name for FINDSTRING is FINDSTRINBLOB.

Chapter 10. Creating and modifying DB2 objects 503

You can therefore define a sourced user-defined function based on FINDSTRING to
do the string search on values of type BOAT. This CREATE FUNCTION statement
defines the sourced user-defined function:
CREATE FUNCTION FINDSTRING (BOAT, VARCHAR(200))

RETURNS INTEGER
SPECIFIC FINDSTRINBOAT
SOURCE SPECIFIC FINDSTRINBLOB;

Example: Definition for an SQL user-defined function: You can define an SQL
user-defined function for the tangent of a value by using the existing built-in SIN
and COS functions:
CREATE FUNCTION TAN (X DOUBLE)

RETURNS DOUBLE
LANGUAGE SQL
CONTAINS SQL
NO EXTERNAL ACTION
DETERMINISTIC
RETURN SIN(X)/COS(X);

Example: Definition for an external user-defined table function: An application
programmer develops a user-defined function that receives two values and returns
a table. The two input values are:
v A character string of maximum length 30 that describes a subject
v A character string of maximum length 255 that contains text to search for

The user-defined function scans documents on the subject for the search string and
returns a list of documents that match the search criteria, with an abstract for each
document. The list is in the form of a two-column table. The first column is a
character column of length 16 that contains document IDs. The second column is a
varying-character column of maximum length 5000 that contains document
abstracts.

The user-defined function is written in COBOL, uses SQL only to perform queries,
always produces the same output for given input, and should not execute as a
parallel task. The program is reentrant, and successive invocations of the
user-defined function share information. You expect an invocation of the
user-defined function to return about 20 rows.

The following CREATE FUNCTION statement defines the user-defined function:
CREATE FUNCTION DOCMATCH (VARCHAR(30), VARCHAR(255))

RETURNS TABLE (DOC_ID CHAR(16), DOC_ABSTRACT VARCHAR(5000))
EXTERNAL NAME ’DOCMTCH’
LANGUAGE COBOL
PARAMETER STYLE SQL
READS SQL DATA
DETERMINISTIC
NO EXTERNAL ACTION
FENCED
SCRATCHPAD
FINAL CALL
DISALLOW PARALLEL
CARDINALITY 20;

504 Application Programming and SQL Guide

Related reference:
“Components of a user-defined function definition” on page 508

ALTER FUNCTION (external) (DB2 SQL)

ALTER FUNCTION (SQL scalar) (DB2 SQL)

User-defined functions
A user-defined function is an extension to the SQL language. A user-defined function
is a small program that you write, similar to a host language subprogram or
function. However, a user-defined function is often the better choice for an SQL
application because you can invoke it in an SQL statement.

This section contains information that applies to all user-defined functions and
specific information about user-defined functions in languages other than Java.

The types of user-defined functions are:
v Sourced user-defined functions, which are based on existing built-in functions or

user-defined functions
v External user-defined functions, which a programmer writes in a host language
v SQL user-defined functions, which contain the source code for the user-defined

function in the user-defined function definition

User-defined functions can also be categorized as user-defined scalar functions or
user-defined table functions:
v A user-defined scalar function returns a single-value answer each time it is

invoked
v A user-defined table function returns a table to the SQL statement that references

it

Creating and using a user-defined function involves these steps:
v Setting up the environment for user-defined functions

A systems administrator probably performs this step. The user-defined function
environment is shown in the following figure.

Function Program

Application Program
Address Space DB2 System

WLM-Established
Stored Procedures
Address Space

Program A

..

.
..
.

..

.
EXEC SQL
SELECT
F1(ARG1,ARG2)
FROM TB1;

Program B

Package B
SELECT...

Package A
SELECT
F1(ARG1,ARG2)
FROM TB1;

..

.

EXEC SQL
SELECT...

Invoking Program

Figure 26. The user-defined function environment

Chapter 10. Creating and modifying DB2 objects 505

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_alterfunctionexternal.htm#db2z_sql_alterfunctionexternal
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_alterfunctionsqlscalar.htm#db2z_sql_alterfunctionsqlscalar

It contains an application address space, from which a program invokes a
user-defined function; a DB2 system, where the packages from the user-defined
function are run; and a WLM-established address space, where the user-defined
function is executed. The steps for setting up and maintaining the user-defined
function environment are the same as for setting up and maintaining the
environment for stored procedures in WLM-established address spaces.

v Writing and preparing the user-defined function
This step is necessary only for an external user-defined function.
The person who performs this step is called the user-defined function
implementer.

v Defining the user-defined function to DB2
The person who performs this step is called the user-defined function definer.

v Invoking the user-defined function from an SQL application
The person who performs this step is called the user-defined function invoker.

Related concepts:

Java stored procedures and user-defined functions (DB2 Application
Programming for Java)

External user-defined functions
An external user-defined function is a function that is written in a programming
language. These functions can return a single value or a complete table.

You can write an external user-defined function in assembler, C, C++, COBOL,
PL/I, or Java™. User-defined functions that are written in COBOL can include
object-oriented extensions, just as other DB2 COBOL programs can. User-defined
functions that are written in Java follow coding guidelines and restrictions specific
to Java. For information about writing Java user-defined functions, see the topic
"Creating Java stored procedures and user-defined functions".

SQL scalar functions
An SQL scalar function is a user-defined function written in SQL and it returns a
single value each time it is invoked. There are two kinds of SQL scalar functions,
inline and non-inline.

All SQL scalar functions that were created prior to Version 10 are inline SQL scalar
function. Beginning with Version 10, SQL scalar functions may be created as either
inline or non-inline.

DB2 determines whether an SQL scalar function is inline or non-inline according to
whether or not the CREATE FUNCTION statement that defines the function makes
use of the enhanced features.

An SQL scalar function that is created without the use of any of the enhanced
features for the CREATE FUNCTION statement is considered to be an inline SQL
scalar function. All other SQL scalar functions will be considered to be a non-inline
SQL scalar function. One exception to this rule is that if the function could have
been defined prior to Version 10, except for the XML data type in the input
parameters or in the RETURNS parameter, then the function will still be
considered to be an inline SQL scalar function.

An inline SQL scalar function has a body with a single RETURN statement. The
RETURN statement can return either a NULL value or a simple expression that
does not reference a scalar fullselect. No package will be generated for an inline
SQL scalar function; during the preparation of an SQL statement that references the

506 Application Programming and SQL Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.java/src/tpc/imjcc_javaroutines.htm#imjcc_javaroutines
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.java/src/tpc/imjcc_javaroutines.htm#imjcc_javaroutines

function, the expression specified in the RETURN statement of the function is
simply inlined into that SQL statement. The versioning of SQL functions and the
new features for ALTER FUNCTION statement and enhanced BIND PACKAGE
DEPLOY command for non-inline SQL scalar functions do not apply to inline SQL
scalar functions.

A non-inline SQL scalar function can have a body with logic written in SQL PL
language. It can make use of any of the enhanced features for the CREATE
FUNCTION statement including the support for TABLE LOCATOR data type for
parameters, various new options, and enhanced RETURN statement that allows
reference to a scalar fullselect. A package is created for a non-inline SQL scalar
function. The versioning of SQL functions, new features for ALTER FUNCTION
statement, and enhanced BIND PACKAGE DEPLOY command do apply to
non-inline SQL scalar functions. Once the first version of an SQL function has been
created as non-inline, any subsequent version added or replaced for the function
will also be non-inline.

Non-inline SQL scalar functions include the following support for versioning and
source code management:
v Define multiple versions of an SQL scalar function, where one version is

considered the “active” version
v Activate a particular version of an SQL scalar function
v Alter the routine options that are associated with a version of an SQL scalar

function
v Define a new version of an SQL scalar function by specifying the same function

signature as the current version, and different routine options and function body
v Replace the definition of an existing version by specifying the same function

signature as the current version, and different routine options and function body
v Drop a version of an SQL scalar function.
v Fall back to a previous version without requiring an explicit rebind or recompile

You can deploy non-inline SQL scalar functions to multiple servers to allow a
wider community to use functions that have been thoroughly tested, without the
risk of changing the logic in the routine body. Use the Unified Debugger to
remotely debug non-inline SQL scalar functions that execute on DB2 for z/OS
servers.

To prepare an SQL scalar function for execution, you execute the CREATE
FUNCTION statement, either statically or dynamically.
Related tasks:
“Defining a user-defined function” on page 502
Related reference:

CREATE FUNCTION (SQL scalar) (DB2 SQL)

SQL table functions
An SQL table function is a function that is written exclusively in SQL statements
and returns a single result table.

An SQL table function can define a parameter as a distinct type, define a
parameter for a transition table (for example, the TABLE LIKE ... AS LOCATOR
syntax), and include a single SQL PL RETURN statement that returns a result table

Chapter 10. Creating and modifying DB2 objects 507

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createfunctionsqlscalar.htm#db2z_sql_createfunctionsqlscalar

The CREATE statement for an SQL table function is an executable statement that
can be dynamically prepared only if DYNAMICRULES run behavior is implicitly
or explicitly specified.

The ALTER statement for an SQL table function can be embedded in an application
program or issued interactively. The ALTER statement is an executable statement
that can be dynamically prepared only if DYNAMICRULES run behavior is
implicitly or explicitly specified.

Sourced functions
A sourced function is a function that invokes another function that already exists at
the server. The function inherits the attributes of the underlying source function.
The source function can be built-in, external, SQL, or sourced.

Use sourced functions to build upon existing built-in functions or other
user-defined functions. Sourced functions are useful to extend built-in aggregate
and scalar functions for use on distinct types.

To implement a sourced function, issue a CREATE FUNCTION statement with the
name of the function upon which you want to base the sourced function.
Related reference:

CREATE FUNCTION (sourced) (DB2 SQL)

Components of a user-defined function definition
The characteristics that you specify for a user-defined function depend on whether
the function is sourced, external, or SQL. You specify these characteristics in a
CREATE FUNCTION or ALTER FUNCTION statement.

The following table lists the characteristics of a user-defined function, the
corresponding parameters in the CREATE FUNCTION and ALTER FUNCTION
statements, and which parameters are valid for sourced, external, and SQL
user-defined functions.

Table 82. Characteristics of a user-defined function

Characteristic
CREATE FUNCTION or
ALTER FUNCTION option

Valid in
sourced
function?

Valid in
external
function?

Valid in
SQL
function?

User-defined function name none Yes Yes Yes

Input parameter types and
encoding schemes

none Yes Yes Yes

Output parameter types and
encoding schemes

RETURNS
RETURNS TABLE1

Yes Yes Yes2

Specific name SPECIFIC Yes Yes Yes

External name EXTERNAL NAME No Yes No

Language LANGUAGE ASSEMBLE
LANGUAGE C
LANGUAGE COBOL
LANGUAGE PLI
LANGUAGE JAVA
LANGUAGE SQL

No Yes3 Yes4

Deterministic or
non-deterministic

NOT DETERMINISTIC
DETERMINISTIC

No Yes Yes

508 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createfunctionsourced.htm#db2z_sql_createfunctionsourced

Table 82. Characteristics of a user-defined function (continued)

Characteristic
CREATE FUNCTION or
ALTER FUNCTION option

Valid in
sourced
function?

Valid in
external
function?

Valid in
SQL
function?

Types of SQL statements in
the function

NO SQL
CONTAINS SQL
READS SQL DATA
MODIFIES SQL DATA

No Yes5 Yes6

Name of source function SOURCE Yes No No

Parameter style PARAMETER STYLE SQL
PARAMETER STYLE JAVA

No Yes7 No

Address space for
user-defined functions

FENCED No Yes No

Call with null input RETURNS NULL ON NULL INPUT
CALLED ON NULL INPUT

No Yes Yes8

External actions EXTERNAL ACTION
NO EXTERNAL ACTION

No Yes Yes

Scratchpad specification NO SCRATCHPAD
SCRATCHPAD length

No Yes No

Call function after SQL
processing

NO FINAL CALL
FINAL CALL

No Yes No

Consider function for parallel
processing

ALLOW PARALLEL
DISALLOW PARALLEL

No Yes5 No

Package collection NO COLLID
COLLID collection-id

No Yes No

WLM environment WLM ENVIRONMENT name
WLM ENVIRONMENT name,*

No Yes No

CPU time for a function
invocation

ASUTIME NO LIMIT
ASUTIME LIMIT integer

No Yes No

Load module stays in
memory

STAY RESIDENT NO
STAY RESIDENT YES

No Yes No

Program type PROGRAM TYPE MAIN
PROGRAM TYPE SUB

No Yes No

Security SECURITY DB2
SECURITY USER
SECURITY DEFINER

No Yes No

run time options RUN OPTIONS options No Yes No

Pass DB2 environment
information

NO DBINFO
DBINFO

No Yes No

Expected number of rows
returned

CARDINALITY integer No Yes1 No

Function resolution is based
on the declared parameter
types

STATIC DISPATCH No No Yes

SQL expression that evaluates
to the value returned by the
function

none No No Yes

Encoding scheme for all
string parameters

PARAMETER CCSID EBCDIC
PARAMETER CCSID ASCII
PARAMETER CCSID UNICODE

No Yes Yes

Chapter 10. Creating and modifying DB2 objects 509

Table 82. Characteristics of a user-defined function (continued)

Characteristic
CREATE FUNCTION or
ALTER FUNCTION option

Valid in
sourced
function?

Valid in
external
function?

Valid in
SQL
function?

For functions that are defined
as LANGUAGE C, the
representation of VARCHAR
parameters and, if applicable,
the returned result.

PARAMETER VARCHAR NULTERM
PARAMETER VARCHAR STRUCTURE9

No Yes No

Number of abnormal
terminations before the
function is stopped

STOP AFTER SYSTEM DEFAULT
FAILURES
STOP AFTER n FAILURES
CONTINUE AFTER FAILURE

No Yes No

Identifies the list of package
collections that is to be used
when the stored procedure is
executed.

PACKAGE PATH package-path
NO PACKAGE PATH

No Yes No

Notes:

1. RETURNS TABLE and CARDINALITY are valid only for user-defined table functions. For a single query, you can
override the CARDINALITY value by specifying a CARDINALITY clause for the invocation of a user-defined
table function in the SELECT statement.

2. An SQL user-defined function can return only one scalar value.

3. LANGUAGE SQL is not valid for an external user-defined function.

4. Only LANGUAGE SQL is valid for an SQL user-defined function.

5. MODIFIES SQL DATA and ALLOW PARALLEL are not valid for user-defined table functions.

6. MODIFIES SQL DATA and NO SQL are not valid for SQL user-defined functions.

7. PARAMETER STYLE JAVA is valid only with LANGUAGE JAVA. PARAMETER STYLE SQL is valid only with
LANGUAGE values other than LANGUAGE JAVA.

8. RETURNS NULL ON NULL INPUT is not valid for an SQL user-defined function.

9. The PARAMETER VARCHAR clause can be specified in CREATE FUNCTION statements only.

Related reference:

CREATE FUNCTION (DB2 SQL)

Writing an external user-defined function
An external user-defined function is written in a programming language and is
similar to other SQL programs. You can include static or dynamic SQL statements,
IFI calls, and DB2 commands that are issued through IFI calls.

About this task

Your user-defined function can also access remote data using the following
methods:
v DRDA access using three-part names or aliases for three-part names
v DRDA access using CONNECT or SET CONNECTION statements

You can write an external user-defined function in assembler, C, C++, COBOL,
PL/I, or Java. User-defined functions that are written in COBOL can include
object-oriented extensions, just as other DB2 COBOL programs can. User-defined
functions that are written in Java follow coding guidelines and restrictions specific
to Java.

510 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createfunction.htm#db2z_sql_createfunction

Restrictions on user-defined function programs: Observe these restrictions when
you write a user-defined function:
v Because DB2 uses the Resource Recovery Services attachment facility (RRSAF) as

its interface with your user-defined function, you must not include RRSAF calls
in your user-defined function. DB2 rejects any RRSAF calls that it finds in a
user-defined function.

v If your user-defined function is not defined with parameters SCRATCHPAD or
EXTERNAL ACTION, the user-defined function is not guaranteed to execute
under the same task each time it is invoked.

v You cannot execute COMMIT or ROLLBACK statements in your user-defined
function.

v You must close all cursors that were opened within a user-defined scalar
function. DB2 returns an SQL error if a user-defined scalar function does not
close all cursors that it opened before it completes.

v When you choose the language in which to write a user-defined function
program, be aware of restrictions on the number of parameters that can be
passed to a routine in that language. User-defined table functions in particular
can require large numbers of parameters. Consult the programming guide for
the language in which you plan to write the user-defined function for
information about the number of parameters that can be passed.

v You cannot pass LOB file reference variables as parameters to user-defined
functions.

v User-defined functions cannot return LOB file reference variables.
v You cannot pass parameters with the type XML to user-defined functions. You

can specify tables or views that contain XML columns as table locator
parameters. However, you cannot reference the XML columns in the body of the
user-defined function.

Coding your user-defined function as a main program or as a subprogram: You
can code your user-defined function as either a main program or a subprogram.
The way that you code your program must agree with the way you defined the
user-defined function: with the PROGRAM TYPE MAIN or PROGRAM TYPE SUB
parameter. The main difference is that when a main program starts, Language
Environment allocates the application program storage that the external
user-defined function uses. When a main program ends, Language Environment
closes files and releases dynamically allocated storage.

If you code your user-defined function as a subprogram and manage the storage
and files yourself, you can get better performance. The user-defined function
should always free any allocated storage before it exits. To keep data between
invocations of the user-defined function, use a scratchpad.

You must code a user-defined table function that accesses external resources as a
subprogram. Also ensure that the definer specifies the EXTERNAL ACTION
parameter in the CREATE FUNCTION or ALTER FUNCTION statement. Program
variables for a subprogram persist between invocations of the user-defined
function, and use of the EXTERNAL ACTION parameter ensures that the
user-defined function stays in the same address space from one invocation to
another.

Parallelism considerations: If the definer specifies the parameter ALLOW
PARALLEL in the definition of a user-defined scalar function, and the invoking
SQL statement runs in parallel, the function can run under a parallel task. DB2
executes a separate instance of the user-defined function for each parallel task.

Chapter 10. Creating and modifying DB2 objects 511

When you write your function program, you need to understand how the
following parameter values interact with ALLOW PARALLEL so that you can
avoid unexpected results:
v SCRATCHPAD

When an SQL statement invokes a user-defined function that is defined with the
ALLOW PARALLEL parameter, DB2 allocates one scratchpad for each parallel
task of each reference to the function. This can lead to unpredictable or incorrect
results.
For example, suppose that the user-defined function uses the scratchpad to
count the number of times it is invoked. If a scratchpad is allocated for each
parallel task, this count is the number of invocations done by the parallel task
and not for the entire SQL statement, which is not the result that is wanted.

v FINAL CALL
If a user-defined function performs an external action, such as sending a note,
for each final call to the function, one note is sent for each parallel task instead
of once for the function invocation.

v EXTERNAL ACTION
Some user-defined functions with external actions can receive incorrect results if
the function is executed by parallel tasks.
For example, if the function sends a note for each initial call to the function, one
note is sent for each parallel task instead of once for the function invocation.

v NOT DETERMINISTIC
A user-defined function that is non-deterministic can generate incorrect results if
it is run under a parallel task.
For example, suppose that you execute the following query under parallel tasks:
SELECT * FROM T1 WHERE C1 = COUNTER();

COUNTER is a user-defined function that increments a variable in the
scratchpad every time it is invoked. Counter is non-deterministic because the
same input does not always produce the same output. Table T1 contains one
column, C1, that has the following values:
1
2
3
4
5
6
7
8
9
10

When the query is executed with no parallelism, DB2 invokes COUNTER once
for each row of table T1, and there is one scratchpad for counter, which DB2
initializes the first time that COUNTER executes. COUNTER returns 1 the first
time it executes, 2 the second time, and so on. The result table for the query has
the following values:
1
2
3
4
5
6

512 Application Programming and SQL Guide

7
8
9
10

Now suppose that the query is run with parallelism, and DB2 creates three
parallel tasks. DB2 executes the predicate WHERE C1 = COUNTER() for each
parallel task. This means that each parallel task invokes its own instance of the
user-defined function and has its own scratchpad. DB2 initializes the scratchpad
to zero on the first call to the user-defined function for each parallel task.
If parallel task 1 processes rows 1 to 3, parallel task 2 processes rows 4 to 6, and
parallel task 3 processes rows 7 to 10, the following results occur:
– When parallel task 1 executes, C1 has values 1, 2, and 3, and COUNTER

returns values 1, 2, and 3, so the query returns values 1, 2, and 3.
– When parallel task 2 executes, C1 has values 4, 5, and 6, but COUNTER

returns values 1, 2, and 3, so the query returns no rows.
– When parallel task 3, executes, C1 has values 7, 8, 9, and 10, but COUNTER

returns values 1, 2, 3, and 4, so the query returns no rows.

Thus, instead of returning the 10 rows that you might expect from the query,
DB2 returns only 3 rows.

Related concepts:

Java stored procedures and user-defined functions (DB2 Application
Programming for Java)

Parameters for external user-defined functions
To receive parameters from and pass parameters to an invoker of an external
user-defined function, you must understand the structure of the parameter list. You
must also understand the meaning of each parameter, and whether DB2 or your
user-defined function sets the value of each parameter.

The following figure shows the structure of the parameter list that DB2 passes to a
user-defined function. An explanation of each parameter follows.

Chapter 10. Creating and modifying DB2 objects 513

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.java/src/tpc/imjcc_javaroutines.htm#imjcc_javaroutines
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.java/src/tpc/imjcc_javaroutines.htm#imjcc_javaroutines

Input parameter values

DB2 obtains the input parameters from the invoker's parameter list, and your
user-defined function receives those parameters according to the rules of the host
language in which the user-defined function is written. The number of input
parameters is the same as the number of parameters in the user-defined function
invocation. If one of the parameters in the function invocation is an expression,
DB2 evaluates the expression and assigns the result of the expression to the
parameter.

Register 1

Parameter 1

Addresses of:

Parameter 2

Result 1
1

Result 2

Parameter 1 data

Data:

Parameter 2 data

Result 1 data

Result 2 data

.

Indicator 1

Indicator 2

Indicator 1

Indicator 2

Result indicator 1

Result indicator 2

Result

indicator 1
1

Result
indicator 2

SQLSTATESQLSTATE

Procedure
name Procedure name

Specific
name

Message
text

Scratchpad
2

Call type
3

DBINFO
4, 5

Specific name

Message text

Scratchpad

Call type

DBINFO

1. For a user-defined scalar function, only one result and one result indicator are passed.
2. Passed if the SCRATCHPAD option is specified in the user-defined function definition.
3. Passed if the FINAL CALL option is specified in a user-defined scalar function definition;

always passed for a user-defined table function.
4. For PL/I, this value is the address of a pointer to the DBINFO data.
5. Passed if the DBINFO option is specified in the user-defined function definition.

Figure 27. Parameter conventions for a user-defined function

514 Application Programming and SQL Guide

For all data types except LOBs, ROWIDs, locators, and VARCHAR (with C
language), see the tables listed in the following table for the host data types that
are compatible with the data types in the user-defined function definition.

Table 83. Listing of tables of compatible data types

Language Compatible data types table

Assembler “Compatibility of SQL and language data types”
on page 144

C “Compatibility of SQL and language data types”
on page 144

COBOL “Compatibility of SQL and language data types”
on page 144

PL/I “Compatibility of SQL and language data types”
on page 144

For LOBs, ROWIDs, and locators, see the following table for the assembler data
types that are compatible with the data types in the user-defined function
definition.

Table 84. Compatible assembler language declarations for LOBs, ROWIDs, and locators

SQL data type in definition Assembler declaration

TABLE LOCATOR
BLOB LOCATOR
CLOB LOCATOR
DBCLOB LOCATOR

DS FL4

BLOB(n) If n <= 65535:

var DS 0FL4
var_length DS FL4
var_data DS CLn

If n > 65535:

var DS 0FL4
var_length DS FL4
var_data DS CL65535

ORG var_data+(n-65535)

CLOB(n) If n <= 65535:

var DS 0FL4
var_length DS FL4
var_data DS CLn

If n > 65535:

var DS 0FL4
var_length DS FL4
var_data DS CL65535

ORG var_data+(n-65535)

DBCLOB(n) If n (=2*n) <= 65534:

var DS 0FL4
var_length DS FL4
var_data DS CLm

If n > 65534:

var DS 0FL4
var_length DS FL4
var_data DS CL65534

ORG var_data+(m-65534)

Chapter 10. Creating and modifying DB2 objects 515

Table 84. Compatible assembler language declarations for LOBs, ROWIDs, and
locators (continued)

SQL data type in definition Assembler declaration

ROWID DS HL2,CL40

For LOBs, ROWIDs, VARCHARs, and locators see the following table for the C
data types that are compatible with the data types in the user-defined function
definition.

Table 85. Compatible C language declarations for LOBs, ROWIDs, VARCHARs, and locators

SQL data type in definition1 C declaration

TABLE LOCATOR
BLOB LOCATOR
CLOB LOCATOR
DBCLOB LOCATOR

unsigned long

BLOB(n) struct
{unsigned long length;

char data[n];
} var;

CLOB(n) struct
{unsigned long length;

char var_data[n];
} var;

DBCLOB(n) struct
{unsigned long length;
sqldbchar data[n];
} var;

ROWID struct {
short int length;
char data[40];

} var;

VARCHAR(n)2 If PARAMETER VARCHAR NULTERM is
specified or implied:

char data[n+1];

If PARAMETER VARCHAR STRUCTURE is
specified:

struct
{short len;
char data[n];

} var;

Note:

1. The SQLUDF file, which is in data set DSNB10.SDSNC.H, includes the typedef
sqldbchar. Using sqldbchar lets you manipulate DBCS and Unicode UTF-16 data in the
same format in which it is stored in DB2. sqldbchar also makes applications easier to
port to other DB2 platforms.

2. This row does not apply to VARCHAR(n) FOR BIT DATA. BIT DATA is always passed
in a structured representation.

For LOBs, ROWIDs, and locators, see the following table for the COBOL data types
that are compatible with the data types in the user-defined function definition.

516 Application Programming and SQL Guide

Table 86. Compatible COBOL declarations for LOBs, ROWIDs, and locators

SQL data type in definition COBOL declaration

TABLE LOCATOR

BLOB LOCATOR

CLOB LOCATOR

DBCLOB LOCATOR

01 var PIC S9(9) COMP-5

BLOB(n) 01 var.
49 var-LENGTH PIC S9(9) COMP-5.
49 var-DATA PIC X(n).

CLOB(n)
01 var.

49 var-LENGTH PIC S9(9) COMP-5.
49 var-DATA PIC X(n).

DBCLOB(n)
01 var.

49 var-LENGTH PIC S9(9) COMP-5.
49 var-DATA PIC G(n) DISPLAY-1.

ROWID 01 var.
49 var-LEN PIC S9(4) COMP-5.
49 var-TEXT PIC X(40).

For LOBs, ROWIDs, and locators, see the following table for the PL/I data types
that are compatible with the data types in the user-defined function definition.

Table 87. Compatible PL/I declarations for LOBs, ROWIDs, and locators

SQL data type in definition PL/I

TABLE LOCATOR
BLOB LOCATOR
CLOB LOCATOR
DBCLOB LOCATOR

BIN FIXED(31)

BLOB(n) If n <= 32767:

01 var,
03 var_LENGTH

BIN FIXED(31),
03 var_DATA

CHAR(n);

If n > 32767:

01 var,
02 var_LENGTH

BIN FIXED(31),
02 var_DATA,

03 var_DATA1(n)
CHAR(32767),

03 var_DATA2
CHAR(mod(n,32767));

Chapter 10. Creating and modifying DB2 objects 517

Table 87. Compatible PL/I declarations for LOBs, ROWIDs, and locators (continued)

SQL data type in definition PL/I

CLOB(n) If n <= 32767:

01 var,
03 var_LENGTH

BIN FIXED(31),
03 var_DATA

CHAR(n);

If n > 32767:

01 var,
02 var_LENGTH

BIN FIXED(31),
02 var_DATA,

03 var_DATA1(n)
CHAR(32767),

03 var_DATA2
CHAR(mod(n,32767));

DBCLOB(n) If n <= 16383:

01 var,
03 var_LENGTH

BIN FIXED(31),
03 var_DATA

GRAPHIC(n);

If n > 16383:

01 var,
02 var_LENGTH

BIN FIXED(31),
02 var_DATA,

03 var_DATA1(n)
GRAPHIC(16383),

03 var_DATA2
GRAPHIC(mod(n,16383));

ROWID CHAR(40) VAR;

Result parameters: Set these values in your user-defined function before exiting.
For a user-defined scalar function, you return one result parameter. For a
user-defined table function, you return the same number of parameters as columns
in the RETURNS TABLE clause of the CREATE FUNCTION statement. DB2
allocates a buffer for each result parameter value and passes the buffer address to
the user-defined function. Your user-defined function places each result parameter
value in its buffer. You must ensure that the length of the value you place in each
output buffer does not exceed the buffer length. Use the SQL data type and length
in the CREATE FUNCTION statement to determine the buffer length.

See “Parameters for external user-defined functions” on page 513 to determine the
host data type to use for each result parameter value. If the CREATE FUNCTION
statement contains a CAST FROM clause, use a data type that corresponds to the
SQL data type in the CAST FROM clause. Otherwise, use a data type that
corresponds to the SQL data type in the RETURNS or RETURNS TABLE clause.

To improve performance for user-defined table functions that return many
columns, you can pass values for a subset of columns to the invoker. For example,
a user-defined table function might be defined to return 100 columns, but the
invoker needs values for only two columns. Use the DBINFO parameter to indicate

518 Application Programming and SQL Guide

to DB2 the columns for which you will return values. Then return values for only
those columns. See DBINFO for information about how to indicate the columns of
interest.

Input parameter indicators: These are SMALLINT values, which DB2 sets before it
passes control to the user-defined function. You use the indicators to determine
whether the corresponding input parameters are null. The number and order of the
indicators are the same as the number and order of the input parameters. On entry
to the user-defined function, each indicator contains one of these values:

0 The input parameter value is not null.

negative
The input parameter value is null.

Code the user-defined function to check all indicators for null values unless the
user-defined function is defined with RETURNS NULL ON NULL INPUT. A
user-defined function defined with RETURNS NULL ON NULL INPUT executes
only if all input parameters are not null.

Result indicators: These are SMALLINT values, which you must set before the
user-defined function ends to indicate to the invoking program whether each result
parameter value is null. A user-defined scalar function has one result indicator. A
user-defined table function has the same number of result indicators as the number
of result parameters. The order of the result indicators is the same as the order of
the result parameters. Set each result indicator to one of these values:

0 or positive
The result parameter is not null.

negative
The result parameter is null.

SQLSTATE value: This CHAR(5) value represents the SQLSTATE that is passed in
to the program from the database manager. The initial value is set to ‘00000'.
Although the SQLSTATE is usually not set by the program, it can be set as the
result SQLSTATE that is used to return an error or a warning. Returned values that
start with anything other than ‘00', ‘01', or ‘02' are error conditions.

User-defined function name: DB2 sets this value in the parameter list before the
user-defined function executes. This value is VARCHAR(257): 128 bytes for the
schema name, 1 byte for a period, and 128 bytes for the user-defined function
name. If you use the same code to implement multiple versions of a user-defined
function, you can use this parameter to determine which version of the function
the invoker wants to execute.

Specific name: DB2 sets this value in the parameter list before the user-defined
function executes. This value is VARCHAR(128) and is either the specific name
from the CREATE FUNCTION statement or a specific name that DB2 generated. If
you use the same code to implement multiple versions of a user-defined function,
you can use this parameter to determine which version of the function the invoker
wants to execute.

Diagnostic message: Your user-defined function can set this CHAR or VARCHAR
value to a character string of up to 1000 bytes before exiting. Use this area to pass
descriptive information about an error or warning to the invoker.

Chapter 10. Creating and modifying DB2 objects 519

DB2 allocates a buffer for this area and passes you the buffer address in the
parameter list. At least the first 17 bytes of the value you put in the buffer appear
in the SQLERRMC field of the SQLCA that is returned to the invoker. The exact
number of bytes depends on the number of other tokens in SQLERRMC. Do not
use X'FF' in your diagnostic message. DB2 uses this value to delimit tokens.

Scratchpad: If the definer specified SCRATCHPAD in the CREATE FUNCTION
statement, DB2 allocates a buffer for the scratchpad area and passes its address to
the user-defined function. Before the user-defined function is invoked for the first
time in an SQL statement, DB2 sets the length of the scratchpad in the first 4 bytes
of the buffer and then sets the scratchpad area to X'00'. DB2 does not reinitialize
the scratchpad between invocations of a correlated subquery.

You must ensure that your user-defined function does not write more bytes to the
scratchpad than the scratchpad length.

Call type: For a user-defined scalar function, if the definer specified FINAL CALL
in the CREATE FUNCTION statement, DB2 passes this parameter to the
user-defined function. For a user-defined table function, DB2 always passes this
parameter to the user-defined function.

On entry to a user-defined scalar function, the call type parameter has one of the
following values:

-1 This is the first call to the user-defined function for the SQL statement. For
a first call, all input parameters are passed to the user-defined function. In
addition, the scratchpad, if allocated, is set to binary zeros.

0 This is a normal call. For a normal call, all the input parameters are passed
to the user-defined function. If a scratchpad is also passed, DB2 does not
modify it.

1 This is a final call. For a final call, no input parameters are passed to the
user-defined function. If a scratchpad is also passed, DB2 does not modify
it.

This type of final call occurs when the invoking application explicitly
closes a cursor. When a value of 1 is passed to a user-defined function, the
user-defined function can execute SQL statements.

255 This is a final call. For a final call, no input parameters are passed to the
user-defined function. If a scratchpad is also passed, DB2 does not modify
it.

This type of final call occurs when the invoking application executes a
COMMIT or ROLLBACK statement, or when the invoking application
abnormally terminates. When a value of 255 is passed to the user-defined
function, the user-defined function cannot execute any SQL statements,
except for CLOSE CURSOR. If the user-defined function executes any close
cursor statements during this type of final call, the user-defined function
should tolerate SQLCODE -501 because DB2 might have already closed
cursors before the final call.

During the first call, your user-defined scalar function should acquire any system
resources it needs. During the final call, the user-defined scalar function should
release any resources it acquired during the first call. The user-defined scalar
function should return a result value only during normal calls. DB2 ignores any
results that are returned during a final call. However, the user-defined scalar
function can set the SQLSTATE and diagnostic message area during the final call.

520 Application Programming and SQL Guide

If an invoking SQL statement contains more than one user-defined scalar function,
and one of those user-defined functions returns an error SQLSTATE, DB2 invokes
all of the user-defined functions for a final call, and the invoking SQL statement
receives the SQLSTATE of the first user-defined function with an error.

On entry to a user-defined table function, the call type parameter has one of the
following values:

-2 This is the first call to the user-defined function for the SQL statement. A
first call occurs only if the FINAL CALL keyword is specified in the
user-defined function definition. For a first call, all input parameters are
passed to the user-defined function. In addition, the scratchpad, if
allocated, is set to binary zeros.

-1 This is the open call to the user-defined function by an SQL statement. If
FINAL CALL is not specified in the user-defined function definition, all
input parameters are passed to the user-defined function, and the
scratchpad, if allocated, is set to binary zeros during the open call. If
FINAL CALL is specified for the user-defined function, DB2 does not
modify the scratchpad.

0 This is a fetch call to the user-defined function by an SQL statement. For a
fetch call, all input parameters are passed to the user-defined function. If a
scratchpad is also passed, DB2 does not modify it.

1 This is a close call. For a close call, no input parameters are passed to the
user-defined function. If a scratchpad is also passed, DB2 does not modify
it.

2 This is a final call. This type of final call occurs only if FINAL CALL is
specified in the user-defined function definition. For a final call, no input
parameters are passed to the user-defined function. If a scratchpad is also
passed, DB2 does not modify it.

This type of final call occurs when the invoking application executes a
CLOSE CURSOR statement.

255 This is a final call. For a final call, no input parameters are passed to the
user-defined function. If a scratchpad is also passed, DB2 does not modify
it.

This type of final call occurs when the invoking application executes a
COMMIT or ROLLBACK statement, or when the invoking application
abnormally terminates. When a value of 255 is passed to the user-defined
function, the user-defined function cannot execute any SQL statements,
except for CLOSE CURSOR. If the user-defined function executes any close
cursor statements during this type of final call, the user-defined function
should tolerate SQLCODE -501 because DB2 might have already closed
cursors before the final call.

If a user-defined table function is defined with FINAL CALL, the user-defined
function should allocate any resources it needs during the first call and release
those resources during the final call that sets a value of 2.

If a user-defined table function is defined with NO FINAL CALL, the user-defined
function should allocate any resources it needs during the open call and release
those resources during the close call.

Chapter 10. Creating and modifying DB2 objects 521

During a fetch call, the user-defined table function should return a row. If the
user-defined function has no more rows to return, it should set the SQLSTATE to
02000.

During the close call, a user-defined table function can set the SQLSTATE and
diagnostic message area.

If a user-defined table function is invoked from a subquery, the user-defined table
function receives a CLOSE call for each invocation of the subquery within the
higher level query, and a subsequent OPEN call for the next invocation of the
subquery within the higher level query.

DBINFO: If the definer specified DBINFO in the CREATE FUNCTION statement,
DB2 passes the DBINFO structure to the user-defined function. DBINFO contains
information about the environment of the user-defined function caller. It contains
the following fields, in the order shown:

Location name length
An unsigned 2-byte integer field. It contains the length of the location name in
the next field.

Location name
A 128-byte character field. It contains the name of the location to which the
invoker is currently connected.

Authorization ID length
An unsigned 2-byte integer field. It contains the length of the authorization ID
in the next field.

Authorization ID
A 128-byte character field. It contains the authorization ID of the application
from which the user-defined function is invoked, padded on the right with
blanks. If this user-defined function is nested within other user-defined
functions, this value is the authorization ID of the application that invoked the
highest-level user-defined function.

Subsystem code page
A 48-byte structure that consists of 10 integer fields and an eight-byte reserved
area. These fields provide information about the CCSIDs of the subsystem from
which the user-defined function is invoked.

Table qualifier length
An unsigned 2-byte integer field. It contains the length of the table qualifier in
the next field. If the table name field is not used, this field contains 0.

Table qualifier
A 128-byte character field. It contains the qualifier of the table that is specified
in the table name field.

Table name length
An unsigned 2-byte integer field. It contains the length of the table name in the
next field. If the table name field is not used, this field contains 0.

Table name
A 128-byte character field. This field contains the name of the table for the
update or insert operation if the reference to the user-defined function in the
invoking SQL statement is in one of the following places:
v The right side of a SET clause in an update operation
v In the VALUES list of an insert operation

Otherwise, this field is blank.

522 Application Programming and SQL Guide

Column name length
An unsigned 2-byte integer field. It contains the length of the column name in
the next field. If no column name is passed to the user-defined function, this
field contains 0.

Column name
A 128-byte character field. This field contains the name of the column that the
update or insert operation modifies if the reference to the user-defined function
in the invoking SQL statement is in one of the following places:
v The right side of a SET clause in an update operation
v In the VALUES list of an insert operation

Otherwise, this field is blank.

Product information
An 8-byte character field that identifies the product on which the user-defined
function executes. This field has the form pppvvrrm, where:
v ppp is a 3-byte product code:

ARI DB2 Server for VSE & VM

DSN DB2 for z/OS

QSQ DB2 for i

SQL DB2 for Linux, UNIX, and Windows
v vv is a 2-digit version identifier.
v rr is a 2-digit release identifier.
v m is a 1-digit maintenance level identifier.

Reserved area
2 bytes.

Operating system
A 4-byte integer field. It identifies the operating system on which the program
that invokes the user-defined function runs. The value is one of these:

0 Unknown

1 OS/2

3 Windows

4 AIX®

5 Windows NT

6 HP-UX

7 Solaris

8 z/OS

13 Siemens Nixdorf

15 Windows 95

16 SCO UNIX

18 Linux

19 DYNIX/ptx®

24 Linux for S/390®

25 Linux for System z®

Chapter 10. Creating and modifying DB2 objects 523

26 Linux/IA64

27 Linux/PPC

28 Linux/PPC64

29 Linux/AMD64

400 iSeries®

Number of entries in table function column list
An unsigned 2-byte integer field.

Reserved area
26 bytes.

Table function column list pointer
If a table function is defined, this field is a pointer to an array that contains
1000 2-byte integers. DB2 dynamically allocates the array. If a table function is
not defined, this pointer is null.

Only the first n entries, where n is the value in the field entitled number of
entries in table function column list, are of interest. n is greater than or equal
to 0 and less than or equal to the number result columns defined for the
user-defined function in the RETURNS TABLE clause of the CREATE
FUNCTION statement. The values correspond to the numbers of the columns
that the invoking statement needs from the table function. A value of 1 means
the first defined result column, 2 means the second defined result column, and
so on. The values can be in any order. If n is equal to 0, the first array element
is 0. This is the case for a statement like the following one, where the invoking
statement needs no column values.
SELECT COUNT(*) FROM TABLE(TF(...)) AS QQ

This array represents an opportunity for optimization. The user-defined
function does not need to return all values for all the result columns of the
table function. Instead, the user-defined function can return only those
columns that are needed in the particular context, which you identify by
number in the array. However, if this optimization complicates the
user-defined function logic enough to cancel the performance benefit, you
might choose to return every defined column.

Unique application identifier
This field is a pointer to a string that uniquely identifies the application's
connection to DB2. The string is regenerated for each connection to DB2.

The string is the LUWID, which consists of a fully-qualified LU network name
followed by a period and an LUW instance number. The LU network name
consists of a 1- to 8-character network ID, a period, and a 1- to 8-character
network LU name. The LUW instance number consists of 12 hexadecimal
characters that uniquely identify the unit of work.

Reserved area
20 bytes.

If you write your user-defined function in C or C++, you can use the declarations
in member SQLUDF of DSNB10.SDSNC.H for many of the passed parameters. To
include SQLUDF, make these changes to your program:
v Put this statement in your source code:

#include <sqludf.h>

v Include the DSNB10.SDSNC.H data set in the SYSLIB concatenation for the
compiler step of your program preparation job.

524 Application Programming and SQL Guide

v Specify the NOMARGINS and NOSEQUENCE options in the compiler step of
your program preparation job.

Examples of receiving parameters in a user-defined function:

The following examples show how a user-defined function that is written in each
of the supported host languages receives the parameter list that is passed by DB2.

These examples assume that the user-defined function is defined with the
SCRATCHPAD, FINAL CALL, and DBINFO parameters.

Assembler: The follow figure shows the parameter conventions for a user-defined
scalar function that is written as a main program that receives two parameters and
returns one result. For an assembler language user-defined function that is a
subprogram, the conventions are the same. In either case, you must include the
CEEENTRY and CEEEXIT macros.
MYMAIN CEEENTRY AUTO=PROGSIZE,MAIN=YES,PLIST=OS

USING PROGAREA,R13

L R7,0(R1) GET POINTER TO PARM1
MVC PARM1(4),0(R7) MOVE VALUE INTO LOCAL COPY OF PARM1
L R7,4(R1) GET POINTER TO PARM2
MVC PARM2(4),0(R7) MOVE VALUE INTO LOCAL COPY OF PARM2
L R7,12(R1) GET POINTER TO INDICATOR 1
MVC F_IND1(2),0(R7) MOVE PARM1 INDICATOR TO LOCAL STORAGE
LH R7,F_IND1 MOVE PARM1 INDICATOR INTO R7
LTR R7,R7 CHECK IF IT IS NEGATIVE
BM NULLIN IF SO, PARM1 IS NULL
L R7,16(R1) GET POINTER TO INDICATOR 2
MVC F_IND2(2),0(R7) MOVE PARM2 INDICATOR TO LOCAL STORAGE
LH R7,F_IND2 MOVE PARM2 INDICATOR INTO R7
LTR R7,R7 CHECK IF IT IS NEGATIVE
BM NULLIN IF SO, PARM2 IS NULL

...
NULLIN L R7,8(R1) GET ADDRESS OF AREA FOR RESULT

MVC 0(9,R7),RESULT MOVE A VALUE INTO RESULT AREA
L R7,20(R1) GET ADDRESS OF AREA FOR RESULT IND
MVC 0(2,R7),=H’0’ MOVE A VALUE INTO INDICATOR AREA

...
CEETERM RC=0

* VARIABLE DECLARATIONS AND EQUATES *

R1 EQU 1 REGISTER 1
R7 EQU 7 REGISTER 7
PPA CEEPPA , CONSTANTS DESCRIBING THE CODE BLOCK

LTORG , PLACE LITERAL POOL HERE
PROGAREA DSECT

ORG *+CEEDSASZ LEAVE SPACE FOR DSA FIXED PART
PARM1 DS F PARAMETER 1
PARM2 DS F PARAMETER 2
RESULT DS CL9 RESULT
F_IND1 DS H INDICATOR FOR PARAMETER 1
F_IND2 DS H INDICATOR FOR PARAMETER 2
F_INDR DS H INDICATOR FOR RESULT

PROGSIZE EQU *-PROGAREA
CEEDSA , MAPPING OF THE DYNAMIC SAVE AREA
CEECAA , MAPPING OF THE COMMON ANCHOR AREA
END MYMAIN

Chapter 10. Creating and modifying DB2 objects 525

C or C++: For C or C++ user-defined functions, the conventions for passing
parameters are different for main programs and subprograms.

For subprograms, you pass the parameters directly. For main programs, you use
the standard argc and argv variables to access the input and output parameters:
v The argv variable contains an array of pointers to the parameters that are passed

to the user-defined function. All string parameters that are passed back to DB2
must be null terminated.
– argv[0] contains the address of the load module name for the user-defined

function.
– argv[1] through argv[n] contain the addresses of parameters 1 through n.

v The argc variable contains the number of parameters that are passed to the
external user-defined function, including argv[0].

The following figure shows the parameter conventions for a user-defined scalar
function that is written as a main program that receives two parameters and
returns one result.
#include <stdlib.h>
#include <stdio.h>

main(argc,argv)
int argc;
char *argv[];
{

/***/
/* Assume that the user-defined function invocation*/
/* included 2 input parameters in the parameter */
/* list. Also assume that the definition includes */
/* the SCRATCHPAD, FINAL CALL, and DBINFO options, */
/* so DB2 passes the scratchpad, calltype, and */
/* dbinfo parameters. */
/* The argv vector contains these entries: */
/* argv[0] 1 load module name */
/* argv[1-2] 2 input parms */
/* argv[3] 1 result parm */
/* argv[4-5] 2 null indicators */
/* argv[6] 1 result null indicator */
/* argv[7] 1 SQLSTATE variable */
/* argv[8] 1 qualified func name */
/* argv[9] 1 specific func name */
/* argv[10] 1 diagnostic string */
/* argv[11] 1 scratchpad */
/* argv[12] 1 call type */
/* argv[13] + 1 dbinfo */
/* ------ */
/* 14 for the argc variable */
/***/
if argc<>14
{

...
/**/
/* This section would contain the code executed if the */
/* user-defined function is invoked with the wrong number */
/* of parameters. */
/**/

}

/***/
/* Assume the first parameter is an integer. */
/* The following code shows how to copy the integer*/
/* parameter into the application storage. */
/***/

526 Application Programming and SQL Guide

int parm1;
parm1 = *(int *) argv[1];

/***/
/* Access the null indicator for the first */
/* parameter on the invoked user-defined function */
/* as follows: */
/***/
short int ind1;
ind1 = *(short int *) argv[4];

/***/
/* Use the following expression to assign */
/* ’xxxxx’ to the SQLSTATE returned to caller on */
/* the SQL statement that contains the invoked */
/* user-defined function. */
/***/
strcpy(argv[7],"xxxxx");

/***/
/* Obtain the value of the qualified function */
/* name with this expression. */
/***/
char f_func[28];
strcpy(f_func,argv[8]);
/***/
/* Obtain the value of the specific function */
/* name with this expression. */
/***/
char f_spec[19];
strcpy(f_spec,argv[9]);

/***/
/* Use the following expression to assign */
/* ’yyyyyyyy’ to the diagnostic string returned */
/* in the SQLCA associated with the invoked */
/* user-defined function. */
/***/
strcpy(argv[10],"yyyyyyyy");

/***/
/* Use the following expression to assign the */
/* result of the function. */
/***/
char l_result[11];
strcpy(argv[3],l_result);

...
}

The following figure shows the parameter conventions for a user-defined scalar
function written as a C subprogram that receives two parameters and returns one
result.
#pragma runopts(plist(os))
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <sqludf.h>

void myfunc(long *parm1, char parm2[11], char result[11],
short *f_ind1, short *f_ind2, short *f_indr,
char udf_sqlstate[6], char udf_fname[138],
char udf_specname[129], char udf_msgtext[71],
struct sqludf_scratchpad *udf_scratchpad,
long *udf_call_type,

Chapter 10. Creating and modifying DB2 objects 527

struct sql_dbinfo *udf_dbinfo);
{

/***/
/* Declare local copies of parameters */
/***/
int l_p1;
char l_p2[11];
short int l_ind1;
short int l_ind2;
char ludf_sqlstate[6]; /* SQLSTATE */
char ludf_fname[138]; /* function name */
char ludf_specname[129]; /* specific function name */
char ludf_msgtext[71] /* diagnostic message text*/
sqludf_scratchpad *ludf_scratchpad; /* scratchpad */
long *ludf_call_type; /* call type */
sqludf_dbinfo *ludf_dbinfo /* dbinfo */
/***/
/* Copy each of the parameters in the parameter */
/* list into a local variable to demonstrate */
/* how the parameters can be referenced. */
/***/

l_p1 = *parm1;
strcpy(l_p2,parm2);
l_ind1 = *f_ind1;
l_ind1 = *f_ind2;
strcpy(ludf_sqlstate,udf_sqlstate);
strcpy(ludf_fname,udf_fname);
strcpy(ludf_specname,udf_specname);
l_udf_call_type = *udf_call_type;
strcpy(ludf_msgtext,udf_msgtext);
memcpy(&ludf_scratchpad,udf_scratchpad,sizeof(ludf_scratchpad));
memcpy(&ludf_dbinfo,udf_dbinfo,sizeof(ludf_dbinfo));

...
}

The following figure shows the parameter conventions for a user-defined scalar
function that is written as a C++ subprogram that receives two parameters and
returns one result. This example demonstrates that you must use an extern "C"
modifier to indicate that you want the C++ subprogram to receive parameters
according to the C linkage convention. This modifier is necessary because the
CEEPIPI CALL_SUB interface, which DB2 uses to call the user-defined function,
passes parameters using the C linkage convention.
#pragma runopts(plist(os))
#include <stdlib.h>
#include <stdio.h>
#include <sqludf.h>

extern "C" void myfunc(long *parm1, char parm2[11],
char result[11], short *f_ind1, short *f_ind2, short *f_indr,
char udf_sqlstate[6], char udf_fname[138],
char udf_specname[129], char udf_msgtext[71],
struct sqludf_scratchpad *udf_scratchpad,
long *udf_call_type,
struct sql_dbinfo *udf_dbinfo);

{
/***/
/* Define local copies of parameters. */
/***/
int l_p1;
char l_p2[11];
short int l_ind1;
short int l_ind2;

528 Application Programming and SQL Guide

char ludf_sqlstate[6]; /* SQLSTATE */
char ludf_fname[138]; /* function name */
char ludf_specname[129]; /* specific function name */
char ludf_msgtext[71] /* diagnostic message text*/
sqludf_scratchpad *ludf_scratchpad; /* scratchpad */
long *ludf_call_type; /* call type */
sqludf_dbinfo *ludf_dbinfo /* dbinfo */
/***/
/* Copy each of the parameters in the parameter */
/* list into a local variable to demonstrate */
/* how the parameters can be referenced. */
/***/
l_p1 = *parm1;
strcpy(l_p2,parm2);
l_ind1 = *f_ind1;
l_ind1 = *f_ind2;
strcpy(ludf_sqlstate,udf_sqlstate);
strcpy(ludf_fname,udf_fname);
strcpy(ludf_specname,udf_specname);
l_udf_call_type = *udf_call_type;
strcpy(ludf_msgtext,udf_msgtext);
memcpy(&ludf_scratchpad,udf_scratchpad,sizeof(ludf_scratchpad));
memcpy(&ludf_dbinfo,udf_dbinfo,sizeof(ludf_dbinfo));

...
}

COBOL: The following figure shows the parameter conventions for a user-defined
table function that is written as a main program that receives two parameters and
returns two results. For a COBOL user-defined function that is a subprogram, the
conventions are the same.
CBL APOST,RES,RENT

IDENTIFICATION DIVISION.

...
DATA DIVISION.

...
LINKAGE SECTION.

* Declare each of the parameters *

01 UDFPARM1 PIC S9(9) USAGE COMP.
01 UDFPARM2 PIC X(10).

...

* Declare these variables for result parameters *

01 UDFRESULT1 PIC X(10).
01 UDFRESULT2 PIC X(10).

...

* Declare a null indicator for each parameter *

01 UDF-IND1 PIC S9(4) USAGE COMP.
01 UDF-IND2 PIC S9(4) USAGE COMP.

...

* Declare a null indicator for result parameter *

01 UDF-RIND1 PIC S9(4) USAGE COMP.
01 UDF-RIND2 PIC S9(4) USAGE COMP.

Chapter 10. Creating and modifying DB2 objects 529

...

* Declare the SQLSTATE that can be set by the *
* user-defined function *

01 UDF-SQLSTATE PIC X(5).

* Declare the qualified function name *

01 UDF-FUNC.

49 UDF-FUNC-LEN PIC 9(4) USAGE BINARY.
49 UDF-FUNC-TEXT PIC X(137).

* Declare the specific function name *

01 UDF-SPEC.

49 UDF-SPEC-LEN PIC 9(4) USAGE BINARY.
49 UDF-SPEC-TEXT PIC X(128).

* Declare SQL diagnostic message token *

01 UDF-DIAG.

49 UDF-DIAG-LEN PIC 9(4) USAGE BINARY.
49 UDF-DIAG-TEXT PIC X(1000).

* Declare the scratchpad *

01 UDF-SCRATCHPAD.

49 UDF-SPAD-LEN PIC 9(9) USAGE BINARY.
49 UDF-SPAD-TEXT PIC X(100).

* Declare the call type *

01 UDF-CALL-TYPE PIC 9(9) USAGE BINARY.

* CONSTANTS FOR DB2-EBCODING-SCHEME. *

77 SQLUDF-ASCII PIC 9(9) VALUE 1.
77 SQLUDF-EBCDIC PIC 9(9) VALUE 2.
77 SQLUDF-UNICODE PIC 9(9) VALUE 3.

* Structure used for DBINFO *

01 SQLUDF-DBINFO.
* location name length

05 DBNAMELEN PIC 9(4) USAGE BINARY.
* location name

05 DBNAME PIC X(128).
* authorization ID length

05 AUTHIDLEN PIC 9(4) USAGE BINARY.
* authorization ID

05 AUTHID PIC X(128).
* environment CCSID information

05 CODEPG PIC X(48).
05 CDPG-DB2 REDEFINES CODEPG.

10 DB2-CCSIDS OCCURS 3 TIMES.
15 DB2-SBCS PIC 9(9) USAGE BINARY.
15 DB2-DBCS PIC 9(9) USAGE BINARY.
15 DB2-MIXED PIC 9(9) USAGE BINARY.

10 ENCODING-SCHEME PIC 9(9) USAGE BINARY.
10 RESERVED PIC X(8).

* other platform-specific deprecated CCSID structures not included here
* schema name length

05 TBSCHEMALEN PIC 9(4) USAGE BINARY.
* schema name

05 TBSCHEMA PIC X(128).

530 Application Programming and SQL Guide

* table name length
05 TBNAMELEN PIC 9(4) USAGE BINARY.

* table name
05 TBNAME PIC X(128).

* column name length
05 COLNAMELEN PIC 9(4) USAGE BINARY.

* column name
05 COLNAME PIC X(128).

* product information
05 VER-REL PIC X(8).

* reserved for expansion
05 RESD0 PIC X(2).

* platform type
05 PLATFORM PIC 9(9) USAGE BINARY.

* number of entries in tfcolumn list array (tfcolumn, below)
05 NUMTFCOL PIC 9(4) USAGE BINARY.

* reserved for expansion
05 RESD1 PIC X(26).

* tfcolumn will be allocated dynamically if TF is defined
* otherwise this will be a null pointer

05 TFCOLUMN USAGE IS POINTER.
* Application identifier

05 APPL-ID USAGE IS POINTER.
* reserved for expansion

05 RESD2 PIC X(20). *
PROCEDURE DIVISION USING UDFPARM1, UDFPARM2, UDFRESULT1,

UDFRESULT2, UDF-IND1, UDF-IND2,
UDF-RIND1, UDF-RIND2,
UDF-SQLSTATE, UDF-FUNC, UDF-SPEC,
UDF-DIAG, UDF-SCRATCHPAD,
UDF-CALL-TYPE, SQLUDF-DBINFO.

PL/I: The following figure shows the parameter conventions for a user-defined
scalar function that is written as a main program that receives two parameters and
returns one result. For a PL/I user-defined function that is a subprogram, the
conventions are the same.
*PROCESS SYSTEM(MVS);
MYMAIN: PROC(UDF_PARM1, UDF_PARM2, UDF_RESULT,

UDF_IND1, UDF_IND2, UDF_INDR,
UDF_SQLSTATE, UDF_NAME, UDF_SPEC_NAME,
UDF_DIAG_MSG, UDF_SCRATCHPAD,
UDF_CALL_TYPE, UDF_DBINFO)

OPTIONS(MAIN NOEXECOPS REENTRANT);

DCL UDF_PARM1 BIN FIXED(31); /* first parameter */
DCL UDF_PARM2 CHAR(10); /* second parameter */
DCL UDF_RESULT CHAR(10); /* result parameter */
DCL UDF_IND1 BIN FIXED(15); /* indicator for 1st parm */
DCL UDF_IND2 BIN FIXED(15); /* indicator for 2nd parm */
DCL UDF_INDR BIN FIXED(15); /* indicator for result */
DCL UDF_SQLSTATE CHAR(5); /* SQLSTATE returned to DB2 */
DCL UDF_NAME CHAR(137) VARYING; /* Qualified function name */
DCL UDF_SPEC_NAME CHAR(128) VARYING; /* Specific function name */
DCL UDF_DIAG_MSG CHAR(70) VARYING; /* Diagnostic string */
DCL 01 UDF_SCRATCHPAD /* Scratchpad */

03 UDF_SPAD_LEN BIN FIXED(31),
03 UDF_SPAD_TEXT CHAR(100);

DCL UDF_CALL_TYPE BIN FIXED(31); /* Call Type */
DCL DBINFO PTR;

/* CONSTANTS FOR DB2_ENCODING_SCHEME */
DCL SQLUDF_ASCII BIN FIXED(15) INIT(1);
DCL SQLUDF_EBCDIC BIN FIXED(15) INIT(2);
DCL SQLUDF_MIXED BIN FIXED(15) INIT(3);

Chapter 10. Creating and modifying DB2 objects 531

DCL 01 UDF_DBINFO BASED(DBINFO), /* Dbinfo */
03 UDF_DBINFO_LLEN BIN FIXED(15), /* location length */
03 UDF_DBINFO_LOC CHAR(128), /* location name */
03 UDF_DBINFO_ALEN BIN FIXED(15), /* auth ID length */
03 UDF_DBINFO_AUTH CHAR(128), /* authorization ID */
03 UDF_DBINFO_CDPG, /* environment CCSID info */

05 DB2_CCSIDS(3),
07 R1 BIN FIXED(15), /* Reserved */
07 DB2_SBCS BIN FIXED(15), /* SBCS CCSID */
07 R2 BIN FIXED(15), /* Reserved */
07 DB2_DBCS BIN FIXED(15), /* DBCS CCSID */
07 R3 BIN FIXED(15), /* Reserved */
07 DB2_MIXED BIN FIXED(15), /* MIXED CCSID */

05 DB2_ENCODING_SCHEME BIN FIXED(31),
05 DB2_CCSID_RESERVED CHAR(8),

03 UDF_DBINFO_SLEN BIN FIXED(15), /* schema length */
03 UDF_DBINFO_SCHEMA CHAR(128), /* schema name */
03 UDF_DBINFO_TLEN BIN FIXED(15), /* table length */
03 UDF_DBINFO_TABLE CHAR(128), /* table name */
03 UDF_DBINFO_CLEN BIN FIXED(15), /* column length */
03 UDF_DBINFO_COLUMN CHAR(128), /* column name */
03 UDF_DBINFO_RELVER CHAR(8), /* DB2 release level */
03 UDF_DBINFO_RESERV0 CHAR(2), /* reserved */
03 UDF_DBINFO_PLATFORM BIN FIXED(31), /* database platform */
03 UDF_DBINFO_NUMTFCOL BIN FIXED(15), /* # of TF columns used */
03 UDF_DBINFO_RESERV1 CHAR(26), /* reserved */
03 UDF_DBINFO_TFCOLUMN PTR, /* -> TFcolumn list */
03 UDF_DBINFO_APPLID PTR, /* -> application id */
03 UDF_DBINFO_RESERV2 CHAR(20); /* reserved */

...

Related reference:

CREATE FUNCTION (external scalar) (DB2 SQL)

Making a user-defined function reentrant
A reentrant user-defined function is a function for which a single copy of the
function can be used concurrently by two or more processes.

About this task

Compiling and link-editing your user-defined function as reentrant is
recommended. (For an assembler program, you must also code the user-defined
function to be reentrant.) Reentrant user-defined functions have the following
advantages:
v The operating system does not need to load the user-defined function into

storage every time the user-defined function is called.
v Multiple tasks in a WLM-established stored procedures address space can share

a single copy of the user-defined function. This decreases the amount of virtual
storage that is needed for code in the address space.

Preparing user-defined functions that contain multiple programs: If your
user-defined function consists of several programs, you must bind each program
that contains SQL statements into a separate package. The definer of the
user-defined function must have EXECUTE authority for all packages that are part
of the user-defined function.

When the primary program of a user-defined function calls another program, DB2
uses the CURRENT PACKAGE PATH special register to determine the list of

532 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createfunctionexternalscalar.htm#db2z_sql_createfunctionexternalscalar

collections to search for the called program's package. The primary program can
change this collection ID by executing the statement SET CURRENT PACKAGE
PATH.

If the value of CURRENT PACKAGE PATH is blank or an empty string, DB2 uses
the CURRENT PACKAGESET special register to determine the collection to search
for the called program's package. The primary program can change this value by
executing the statement SET CURRENT PACKAGESET.

If both special registers CURRENT PACKAGE PATH and CURRENT
PACKAGESET contain a blank value, DB2 uses the method described in “Binding
an application plan” on page 947 to search for the package.

Special registers in a user-defined function or a stored
procedure

You can use all special registers in a user-defined function or a stored procedure.
However, you can modify only some of those special registers.

After a user-defined function or a stored procedure completes, DB2 restores all
special registers to the values they had before invocation.

The following table shows information that you need when you use special
registers in a user-defined function or stored procedure.

Table 88. Characteristics of special registers in a user-defined function or a stored procedure

Special register

Initial value when INHERIT
SPECIAL REGISTERS option
is specified

Initial value when DEFAULT
SPECIAL REGISTERS option
is specified

Routine can
use SET
statement to
modify?

CURRENT APPLICATION
COMPATIBILITY

The value of bind option
APPLCOMPAT for the
user-defined function or stored
procedure package

The value of bind option
APPLCOMPAT for the
user-defined function or stored
procedure package

Yes

CURRENT APPLICATION
ENCODING SCHEME

The value of bind option
ENCODING for the
user-defined function or stored
procedure package

The value of bind option
ENCODING for the
user-defined function or stored
procedure package

Yes

CURRENT CLIENT_ACCTNG Inherited from the invoking
application

Inherited from the invoking
application

Not applicable5

CURRENT
CLIENT_APPLNAME

Inherited from the invoking
application

Inherited from the invoking
application

Not applicable5

CURRENT CLIENT_USERID Inherited from the invoking
application

Inherited from the invoking
application

Not applicable5

CURRENT
CLIENT_WRKSTNNAME

Inherited from the invoking
application

Inherited from the invoking
application

Not applicable5

CURRENT DATE New value for each SQL
statement in the user-defined
function or stored procedure
package1

New value for each SQL
statement in the user-defined
function or stored procedure
package1

Not applicable5

CURRENT DEBUG MODE Inherited from the invoking
application

DISALLOW Yes

Chapter 10. Creating and modifying DB2 objects 533

|
|
|
|
|
|

|
|
|
|

|

Table 88. Characteristics of special registers in a user-defined function or a stored procedure (continued)

Special register

Initial value when INHERIT
SPECIAL REGISTERS option
is specified

Initial value when DEFAULT
SPECIAL REGISTERS option
is specified

Routine can
use SET
statement to
modify?

CURRENT DECFLOAT
ROUNDING MODE

Inherited from the invoking
application

The value of bind option
ROUNDING for the
user-defined function or stored
procedure package

Yes

CURRENT DEGREE CURRENT DEGREE2 The value of field CURRENT
DEGREE on installation panel
DSNTIP8

Yes

CURRENT EXPLAIN MODE Inherited from the invoking
application

NO Yes

CURRENT
GET_ACCEL_ARCHIVE

Inherited from the invoking
application

System default value Yes

CURRENT LOCALE LC_CTYPE Inherited from the invoking
application

The value of field CURRENT
LC_CTYPE on installation panel
DSNTIPF

Yes

CURRENT MAINTAINED
TABLE TYPES FOR
OPTIMIZATION

Inherited from the invoking
application

System default value Yes

CURRENT MEMBER New value for each SET
host-variable=CURRENT
MEMBER statement

New value for each SET
host-variable=CURRENT
MEMBER statement

Not applicable5

CURRENT OPTIMIZATION
HINT

The value of bind option
OPTHINT for the user-defined
function or stored procedure
package or inherited from the
invoking application6

The value of bind option
OPTHINT for the user-defined
function or stored procedure
package

Yes

CURRENT PACKAGE PATH An empty string if the routine
was defined with a COLLID
value; otherwise, inherited from
the invoking application4

An empty string, regardless of
whether a COLLID value was
specified for the routine4

Yes

CURRENT PACKAGESET Inherited from the invoking
application3

Inherited from the invoking
application3

Yes

CURRENT PATH The value of bind option PATH
for the user-defined function or
stored procedure package or
inherited from the invoking
application6

The value of bind option PATH
for the user-defined function or
stored procedure package

Yes

CURRENT PRECISION Inherited from the invoking
application

The value of field DECIMAL
ARITHMETIC on installation
panel DSNTIP4

Yes

CURRENT QUERY
ACCELERATION

Inherited from the invoking
application

System default value Yes

CURRENT REFRESH AGE Inherited from the invoking
application

System default value Yes

CURRENT ROUTINE VERSION Inherited from the invoking
application

The empty string Yes

534 Application Programming and SQL Guide

Table 88. Characteristics of special registers in a user-defined function or a stored procedure (continued)

Special register

Initial value when INHERIT
SPECIAL REGISTERS option
is specified

Initial value when DEFAULT
SPECIAL REGISTERS option
is specified

Routine can
use SET
statement to
modify?

CURRENT RULES Inherited from the invoking
application

The value of bind option
SQLRULES for the plan that
invokes a user-defined function
or stored procedure

Yes

CURRENT SCHEMA Inherited from the invoking
application

The value of CURRENT
SCHEMA when the routine is
entered

Yes

CURRENT SERVER Inherited from the invoking
application

Inherited from the invoking
application

Yes

CURRENT SQLID The primary authorization ID of
the application process or
inherited from the invoking
application7

The primary authorization ID of
the application process

Yes8

CURRENT TEMPORAL
BUSINESS_TIME

Inherited from the invoking
application

NULL Yes

CURRENT TEMPORAL
SYSTEM_TIME

Inherited from the invoking
application

NULL Yes

CURRENT TIME New value for each SQL
statement in the user-defined
function or stored procedure
package1

New value for each SQL
statement in the user-defined
function or stored procedure
package1

Not applicable5

CURRENT TIMESTAMP New value for each SQL
statement in the user-defined
function or stored procedure
package1

New value for each SQL
statement in the user-defined
function or stored procedure
package1

Not applicable5

CURRENT TIMESTAMP WITH
TIME ZONE

New value for each SQL
statement in the user-defined
function or stored procedure
package1

New value for each SQL
statement in the user-defined
function or stored procedure
package1

Not applicable5

CURRENT TIME ZONE Inherited from the invoking
application

Inherited from the invoking
application

Not applicable5

ENCRYPTION PASSWORD Inherited from the invoking
application

Inherited from the invoking
application

Yes

SESSION TIME ZONE Inherited from the invoking
application

The value of CURRENT TIME
ZONE when the routine is
entered

Yes

SESSION_USER or USER Primary authorization ID of the
application process

Primary authorization ID of the
application process

Not applicable5

Chapter 10. Creating and modifying DB2 objects 535

|
|
|
|
||

|
|
|
|
||

Table 88. Characteristics of special registers in a user-defined function or a stored procedure (continued)

Special register

Initial value when INHERIT
SPECIAL REGISTERS option
is specified

Initial value when DEFAULT
SPECIAL REGISTERS option
is specified

Routine can
use SET
statement to
modify?

Notes:

1. If the user-defined function or stored procedure is invoked within the scope of a trigger, DB2 uses the timestamp
for the triggering SQL statement as the timestamp for all SQL statements in the package.

2. DB2 allows parallelism at only one level of a nested SQL statement. If you set the value of the CURRENT
DEGREE special register to ANY, and parallelism is disabled, DB2 ignores the CURRENT DEGREE value.

3. If the routine definition includes a specification for COLLID, DB2 sets CURRENT PACKAGESET to the value of
COLLID. If both CURRENT PACKAGE PATH and COLLID are specified, the CURRENT PACKAGE PATH value
takes precedence and COLLID is ignored.

4. If the function definition includes a specification for PACKAGE PATH, DB2 sets CURRENT PACKAGE PATH to
the value of PACKAGE PATH.

5. Not applicable because no SET statement exists for the special register.

6. If a program within the scope of the invoking program issues a SET statement for the special register before the
user-defined function or stored procedure is invoked, the special register inherits the value from the SET
statement. Otherwise, the special register contains the value that is set by the bind option for the user-defined
function or stored procedure package.

7. If a program within the scope of the invoking program issues a SET CURRENT SQLID statement before the
user-defined function or stored procedure is invoked, the special register inherits the value from the SET
statement. Otherwise, CURRENT SQLID contains the authorization ID of the application process.

8. If the user-defined function or stored procedure package uses a value other than RUN for the DYNAMICRULES
bind option, the SET CURRENT SQLID statement can be executed. However, it does not affect the authorization
ID that is used for the dynamic SQL statements in the package. The DYNAMICRULES value determines the
authorization ID that is used for dynamic SQL statements.

Related concepts:

DYNAMICRULES bind option (DB2 Application programming and SQL)
Related reference:

BIND and REBIND options (DB2 Commands)

Special registers (DB2 SQL)

Accessing transition tables in a user-defined function or
stored procedure

If you want to refer to the entire set of rows that a triggering SQL statement
modifies, rather than to individual rows, use a transition table. You can reference a
transition table in user-defined functions and procedures that are invoked from a
trigger.

About this task

This topic describes how to access transition variables in a user-defined function,
but the same techniques apply to a stored procedure.

To access transition tables in a user-defined function, use table locators, which are
pointers to the transition tables. You declare table locators as input parameters in
the CREATE FUNCTION statement using the TABLE LIKE table-name AS
LOCATOR clause.

536 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_dynamicrulesbindoption.htm#db2z_dynamicrulesbindoption
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_specialregistersintro.htm#db2z_specialregistersintro

Procedure

To access transition tables in a user-defined function or stored procedure:
1. Declare input parameters to receive table locators. You must define each

parameter that receives a table locator as an unsigned 4-byte integer.
2. Declare table locators. You can declare table locators in assembler, C, C++,

COBOL, PL/I, and in an SQL procedure compound statement.
3. Declare a cursor to access the rows in each transition table.
4. Assign the input parameter values to the table locators.
5. Access rows from the transition tables using the cursors that are declared for

the transition tables.

Results

The following examples show how a user-defined function that is written in C,
C++, COBOL, or PL/I accesses a transition table for a trigger. The transition table,
NEWEMP, contains modified rows of the employee sample table. The trigger is
defined like this:
CREATE TRIGGER EMPRAISE

AFTER UPDATE ON EMP
REFERENCING NEW TABLE AS NEWEMPS
FOR EACH STATEMENT MODE DB2SQL
BEGIN ATOMIC

VALUES (CHECKEMP(TABLE NEWEMPS));
END;

The user-defined function definition looks like this:
CREATE FUNCTION CHECKEMP(TABLE LIKE EMP AS LOCATOR)

RETURNS INTEGER
EXTERNAL NAME ’CHECKEMP’
PARAMETER STYLE SQL
LANGUAGE language;

Assembler: The following example shows how an assembler program accesses rows
of transition table NEWEMPS.
CHECKEMP CSECT

SAVE (14,12) ANY SAVE SEQUENCE
LR R12,R15 CODE ADDRESSABILITY
USING CHECKEMP,R12 TELL THE ASSEMBLER
LR R7,R1 SAVE THE PARM POINTER
USING PARMAREA,R7 SET ADDRESSABILITY FOR PARMS
USING SQLDSECT,R8 ESTABLISH ADDRESSIBILITY TO SQLDSECT
L R6,PROGSIZE GET SPACE FOR USER PROGRAM
GETMAIN R,LV=(6) GET STORAGE FOR PROGRAM VARIABLES
LR R10,R1 POINT TO THE ACQUIRED STORAGE
LR R2,R10 POINT TO THE FIELD
LR R3,R6 GET ITS LENGTH
SR R4,R4 CLEAR THE INPUT ADDRESS
SR R5,R5 CLEAR THE INPUT LENGTH
MVCL R2,R4 CLEAR OUT THE FIELD
ST R13,FOUR(R10) CHAIN THE SAVEAREA PTRS
ST R10,EIGHT(R13) CHAIN SAVEAREA FORWARD
LR R13,R10 POINT TO THE SAVEAREA
USING PROGAREA,R13 SET ADDRESSABILITY
ST R6,GETLENTH SAVE THE LENGTH OF THE GETMAIN

...
**
* Declare table locator host variable TRIGTBL *
**

Chapter 10. Creating and modifying DB2 objects 537

TRIGTBL SQL TYPE IS TABLE LIKE EMP AS LOCATOR
**
* Declare a cursor to retrieve rows from the transition *
* table *
**

EXEC SQL DECLARE C1 CURSOR FOR X
SELECT LASTNAME FROM TABLE(:TRIGTBL LIKE EMP) X
WHERE SALARY > 100000

**
* Copy table locator for trigger transition table *
**

L R2,TABLOC GET ADDRESS OF LOCATOR
L R2,0(0,R2) GET LOCATOR VALUE
ST R2,TRIGTBL
EXEC SQL OPEN C1
EXEC SQL FETCH C1 INTO :NAME

...
EXEC SQL CLOSE C1...

PROGAREA DSECT WORKING STORAGE FOR THE PROGRAM
SAVEAREA DS 18F THIS ROUTINE’S SAVE AREA
GETLENTH DS A GETMAIN LENGTH FOR THIS AREA...
NAME DS CL24...

DS 0D
PROGSIZE EQU *-PROGAREA DYNAMIC WORKAREA SIZE
PARMAREA DSECT
TABLOC DS A INPUT PARAMETER FOR TABLE LOCATOR...

END CHECKEMP

C or C++: The following example shows how a C or C++ program accesses rows
of transition table NEWEMPS.
int CHECK_EMP(int trig_tbl_id)
{

...
/**/
/* Declare table locator host variable trig_tbl_id */
/**/
EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS TABLE LIKE EMP AS LOCATOR trig_tbl_id;
char name[25];

EXEC SQL END DECLARE SECTION;

...
/**/
/* Declare a cursor to retrieve rows from the transition */
/* table */
/**/
EXEC SQL DECLARE C1 CURSOR FOR

SELECT NAME FROM TABLE(:trig_tbl_id LIKE EMPLOYEE)
WHERE SALARY > 100000;

/**/
/* Fetch a row from transition table */
/**/
EXEC SQL OPEN C1;
EXEC SQL FETCH C1 INTO :name;

...
EXEC SQL CLOSE C1;

538 Application Programming and SQL Guide

...
}

COBOL: The following example shows how a COBOL program accesses rows of
transition table NEWEMPS.

IDENTIFICATION DIVISION.
PROGRAM-ID. CHECKEMP.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 NAME PIC X(24).

...
LINKAGE SECTION.

* Declare table locator host variable TRIG-TBL-ID *

01 TRIG-TBL-ID SQL TYPE IS TABLE LIKE EMP AS LOCATOR.

...
PROCEDURE DIVISION USING TRIG-TBL-ID.

...

* Declare cursor to retrieve rows from transition table *

EXEC SQL DECLARE C1 CURSOR FOR

SELECT NAME FROM TABLE(:TRIG-TBL-ID LIKE EMP)
WHERE SALARY > 100000 END-EXEC.

* Fetch a row from transition table *

EXEC SQL OPEN C1 END-EXEC.
EXEC SQL FETCH C1 INTO :NAME END-EXEC.

...
EXEC SQL CLOSE C1 END-EXEC.

...
PROG-END.
GOBACK.

PL/I: The following example shows how a PL/I program accesses rows of
transition table NEWEMPS.
CHECK_EMP: PROC(TRIG_TBL_ID) RETURNS(BIN FIXED(31))

OPTIONS(MAIN NOEXECOPS REENTRANT);
/**/
/* Declare table locator host variable TRIG_TBL_ID */
/**/
DECLARE TRIG_TBL_ID SQL TYPE IS TABLE LIKE EMP AS LOCATOR;
DECLARE NAME CHAR(24);

...
/**/
/* Declare a cursor to retrieve rows from the */
/* transition table */
/**/
EXEC SQL DECLARE C1 CURSOR FOR

SELECT NAME FROM TABLE(:TRIG_TBL_ID LIKE EMP)
WHERE SALARY > 100000;

/**/
/* Retrieve rows from the transition table */

Chapter 10. Creating and modifying DB2 objects 539

/**/
EXEC SQL OPEN C1;
EXEC SQL FETCH C1 INTO :NAME;

...
EXEC SQL CLOSE C1;

...
END CHECK_EMP;

Preparing an external user-defined function for execution
Because an external user-defined function is written in a programming language,
preparing it is similar to the way that you prepare any other application program.

Procedure

To prepare an external user-defined function for execution:
1. Precompile the user-defined function program and bind the DBRM into a

package. You need to do this only if your user-defined function contains SQL
statements. You do not need to bind a plan for the user-defined function.

2. Compile the user-defined function program and link-edit it with Language
Environment and RRSAF.
You must compile the program with a compiler that supports Language
Environment and link-edit the appropriate Language Environment components
with the user-defined function. You must also link-edit the user-defined
function with RRSAF.
The program preparation JCL samples DSNHASM, DSNHC, DSNHCPP,
DSNHICOB, and DSNHPLI show you how to precompile, compile, and
link-edit assembler, C, C++, COBOL, and PL/I DB2 programs. For
object-oriented programs in C++, see JCL sample DSNHCPP2 for program
preparation hints.

3. For a user-defined function that contains SQL statements, grant EXECUTE
authority on the user-defined function package to the function definer.

Abnormal termination of an external user-defined function
If an external user-defined function abnormally terminates, your program receives
SQLCODE -430 for invoking the statement.

DB2 also performs the following actions:
v Places the unit of work that contains the invoking statement in a must-rollback

state.
v Stops the user-defined function, and subsequent calls fail, in either of the

following situations:
– The number of abnormal terminations equals the STOP AFTER n FAILURES

value for the user-defined function.
– If the STOP AFTER n FAILURES option is not specified, the number of

abnormal terminations equals the default MAX ABEND COUNT value for the
subsystem.

You should include code in your program to check for a user-defined function
abend and to roll back the unit of work that contains the user-defined function
invocation.

540 Application Programming and SQL Guide

Saving information between invocations of a user-defined
function by using a scratchpad

If you create a scratchpad for a reentrant user-defined function, DB2 can use it to
preserve information between invocations of the function.

About this task

You can use a scratchpad to save information between invocations of a
user-defined function. To indicate that a scratchpad should be allocated when the
user-defined function executes, the function definer specifies the SCRATCHPAD
parameter in the CREATE FUNCTION statement.

The scratchpad consists of a 4-byte length field, followed by the scratchpad area.
The definer can specify the length of the scratchpad area in the CREATE
FUNCTION statement. The specified length does not include the length field. The
default size is 100 bytes. DB2 initializes the scratchpad for each function to binary
zeros at the beginning of execution for each subquery of an SQL statement and
does not examine or change the content thereafter. On each invocation of the
user-defined function, DB2 passes the scratchpad to the user-defined function. You
can therefore use the scratchpad to preserve information between invocations of a
reentrant user-defined function.

The following example demonstrates how to enter information in a scratchpad for
a user-defined function defined like this:
CREATE FUNCTION COUNTER()

RETURNS INT
SCRATCHPAD
FENCED
NOT DETERMINISTIC
NO SQL
NO EXTERNAL ACTION
LANGUAGE C
PARAMETER STYLE SQL
EXTERNAL NAME ’UDFCTR’;

The scratchpad length is not specified, so the scratchpad has the default length of
100 bytes, plus 4 bytes for the length field. The user-defined function increments
an integer value and stores it in the scratchpad on each execution.
#pragma linkage(ctr,fetchable)
#include <stdlib.h>
#include <stdio.h>
/* Structure scr defines the passed scratchpad for function ctr */

struct scr {
long len;
long countr;
char not_used[96];

};
/***/
/* Function ctr: Increments a counter and reports the value */
/* from the scratchpad. */
/* */
/* Input: None */
/* Output: INTEGER out the value from the scratchpad */
/***/
void ctr(

long *out, /* Output answer (counter) */
short *outnull, /* Output null indicator */
char *sqlstate, /* SQLSTATE */
char *funcname, /* Function name */
char *specname, /* Specific function name */

Chapter 10. Creating and modifying DB2 objects 541

char *mesgtext, /* Message text insert */
struct scr *scratchptr) /* Scratchpad */

{
out = ++scratchptr->countr; / Increment counter and */

/* copy to output variable */
outnull = 0; / Set output null indicator*/
return;

}
/* end of user-defined function ctr */

Example of creating and using a user-defined scalar function
You can create a user-defined scalar function that gets input from a table and puts
the output in a table.

Suppose that your organization needs a user-defined scalar function that calculates
the bonus that each employee receives. All employee data, including salaries,
commissions, and bonuses, is kept in the employee table, EMP. The input fields for
the bonus calculation function are the values of the SALARY and COMM columns.
The output from the function goes into the BONUS column. Because this function
gets its input from a DB2 table and puts the output in a DB2 table, a convenient
way to manipulate the data is through a user-defined function.

The user-defined function's definer and invoker determine that this new
user-defined function should have these characteristics:
v The user-defined function name is CALC_BONUS.
v The two input fields are of type DECIMAL(9,2).
v The output field is of type DECIMAL(9,2).
v The program for the user-defined function is written in COBOL and has a load

module name of CBONUS.

Because no built-in function or user-defined function exists on which to build a
sourced user-defined function, the function implementer must code an external
user-defined function. The implementer performs the following steps:
v Writes the user-defined function, which is a COBOL program
v Precompiles, compiles, and links the program
v Binds a package if the user-defined function contains SQL statements
v Tests the program thoroughly
v Grants execute authority on the user-defined function package to the definer

The user-defined function definer executes this CREATE FUNCTION statement to
register CALC_BONUS to DB2:
CREATE FUNCTION CALC_BONUS(DECIMAL(9,2),DECIMAL(9,2))

RETURNS DECIMAL(9,2)
EXTERNAL NAME ’CBONUS’
PARAMETER STYLE SQL
LANGUAGE COBOL;

The definer then grants execute authority on CALC_BONUS to all invokers.

User-defined function invokers write and prepare application programs that invoke
CALC_BONUS. An invoker might write a statement like this, which uses the
user-defined function to update the BONUS field in the employee table:
UPDATE EMP

SET BONUS = CALC_BONUS(SALARY,COMM);

An invoker can execute this statement either statically or dynamically.

542 Application Programming and SQL Guide

User-defined function samples that ship with DB2
To assist you in defining, implementing, and invoking your user-defined functions,
DB2 provides a number of sample user-defined functions. All sample user-defined
function code is in data set DSNB10.SDSNSAMP.

The following table summarizes the characteristics of the sample user-defined
functions.

Table 89. User-defined function samples shipped with DB2

User-defined function
name Language

Member that
contains source
code Purpose

ALTDATE1 C DSN8DUAD Converts the current date to a user-specified format

ALTDATE2 C DSN8DUCD Converts a date from one format to another

ALTTIME3 C DSN8DUAT Converts the current time to a user-specified format

ALTTIME4 C DSN8DUCT Converts a time from one format to another

DAYNAME C++ DSN8EUDN Returns the day of the week for a user-specified date

MONTHNAME C++ DSN8EUMN Returns the month for a user-specified date

CURRENCY C DSN8DUCY Formats a floating-point number as a currency value

TABLE_NAME C DSN8DUTI Returns the unqualified table name for a table, view,
or alias

TABLE_QUALIF C DSN8DUTI Returns the qualifier for a table, view, or alias

TABLE_LOCATION C DSN8DUTI Returns the location for a table, view, or alias

WEATHER C DSN8DUWF Returns a table of weather information from a
EBCDIC data set

Notes:

1. This version of ALTDATE has one input parameter, of type VARCHAR(13).

2. This version of ALTDATE has three input parameters, of type VARCHAR(17), VARCHAR(13), and
VARCHAR(13).

3. This version of ALTTIME has one input parameter, of type VARCHAR(14).

4. This version of ALTTIME has three input parameters, of type VARCHAR(11), VARCHAR(14), and VARCHAR(14).

Member DSN8DUWC contains a client program that shows you how to invoke the
WEATHER user-defined table function.

Member DSNTEJ2U shows you how to define and prepare the sample user-defined
functions and the client program.

Determining the authorization cache size for stored
procedures and user-defined functions

DB2 provides one routine-authorization cache for the subsystem. This cache stores
authorization IDs that have the EXECUTE privilege on routines after DB2 has
retrieved those IDs from the DB2 catalog and validated them. The size of this
cache is set by a subsystem parameter.

About this task

A routine is a stored procedure or user-defined function. When you execute one of
these routines, DB2 determines whether the authorization ID has the privilege to
execute that routine by searching the authorization cache. If DB2 cannot find the

Chapter 10. Creating and modifying DB2 objects 543

necessary privilege in the authorization cache, it searches the DB2 catalog. If DB2
finds the necessary privilege in the catalog, it stores the authorization ID in the
authorization cache for the next authorization check. Reading from the cache is
faster than reading from the catalog to determine authorization.

The size of the routine-authorization cache is set during installation or migration in
the ROUTINE AUTH CACHE field on installation panel DSNTIPP. This value is
stored in the subsystem parameter CACHERAC.

A maximum of five authorization IDs can be cached for each routine. To get the
most benefit from the authorization cache, consider using secondary authorization
IDs.

Procedure

To determine the authorization cache size:
1. Consider how many routines you plan to run concurrently. If you run a large

number of routines concurrently, the default value for CACHERAC is likely too
small. The default value of 100 KB is enough to hold about 690 routines. If
your cache is too small, entries in the cache are overwritten, and DB2 must
read them again from the DB2 catalog.

2. Use IBM Tivoli OMEGAMON XE for DB2 Performance Monitor on z/OS to
determine if your routine-authorization cache is being used effectively. If the
report from this tool shows that an authorization ID in the cache was
overwritten many times, consider increasing the value of CACHERAC.

Related reference:

Protection panel: DSNTIPP (DB2 Installation and Migration)

ROUTINE AUTH CACHE field (CACHERAC subsystem parameter) (DB2
Installation and Migration)

IBM Tivoli OMEGAMON XE for DB2 Performance Monitor on z/OS

Creating a stored procedure
A stored procedure is executable code that can be called by other programs. The
process for creating one depends on the type of procedure.

Before you begin

Before you can use the following types of stored procedures, you must configure
your DB2 for z/OS subsystem for running stored procedures during installation or
configure your DB2 for z/OS subsystem for running stored procedures during
migration.
v External stored procedures
v External SQL procedures
v Native SQL procedures that satisfy at least one of the following conditions:

– The native SQL procedure calls at least one external stored procedure,
external SQL procedure, or user-defined function.

– The native SQL procedure is defined with ALLOW DEBUG MODE or
DISALLOW DEBUG MODE.

v DB2-supplied stored procedures

544 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_dsntipp.htm#db2z_dsntipp
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_cacherac.htm#db2z_dsntipp12
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_cacherac.htm#db2z_dsntipp12
http://www.ibm.com/developerworks/wikis/display/tivolidoccentral/Tivoli+OMEGAMON+XE+for+DB2+Performance+Monitor+on+zOS
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_configuredb2fordb2routines.htm#db2z_configuredb2fordb2routines
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_configuredb2fordb2routines.htm#db2z_configuredb2fordb2routines
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_configuredb2fordb2routinesmigr.htm#db2z_configuredb2fordb2routinesmigr
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_configuredb2fordb2routinesmigr.htm#db2z_configuredb2fordb2routinesmigr

About this task

You can create one of the following types of stored procedures:

External stored procedures
A procedure that is written in a host language.

External SQL procedures
A procedure whose body is written entirely in SQL, but is created,
implemented, and executed like other external stored procedures.

Native SQL procedures
A procedure with a procedural body that is written entirely in SQL and is
created by issuing a single SQL statement, CREATE PROCEDURE. Native
SQL procedures do not have an associated external application program.

Procedure

To create a stored procedure, perform one of the following actions:
v “Creating a native SQL procedure” on page 561
v “Creating an external SQL procedure” on page 590
v “Creating an external stored procedure” on page 606
Related concepts:
“External stored procedures” on page 557
“SQL procedures” on page 552
Related tasks:

Implementing DB2 stored procedures (DB2 Administration Guide)
Related reference:

DB2 for z/OS Exchange

Stored procedures
A stored procedure is a compiled program that can execute SQL statements and is
stored at a local or remote DB2 server. You can invoke a stored procedure from an
application program or from the command line processor. A single call to a stored
procedure from a client application can access the database at the server several
times.

A typical stored procedure contains two or more SQL statements and some
manipulative or logical processing in a host language or SQL procedure
statements. You can call stored procedures from other applications or from the
command line. DB2 provides some stored procedures, but you can also create your
own.

A stored procedure provides a common piece of code that is written only once and
is maintained in a single instance that can be called from several different
applications. Host languages can easily call procedures that exist on a local system,
and SQL can call stored procedures that exist on remote systems. In fact, a major
benefit of procedures in SQL is that they can be used to enhance the performance
characteristics of distributed applications. With stored procedures, you can avoid
network transfer of large amounts of data obtained as part of intermediate results
in a long sequence of queries.

The following diagram illustrates the processing for an application that does not
use stored procedures. The client application embeds SQL statements and

Chapter 10. Creating and modifying DB2 objects 545

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_storedprocedureimplementation.htm#db2z_storedprocedureimplementation
http://www.ibm.com/developerworks/software/exchange/db2zos

communicates with the server separately for each statement. This application
design results in increased network traffic and processor costs.

The following diagram illustrates the processing for an application that uses stored
procedures. Because a stored procedure is used on the server, a series of SQL
statements can be executed with a single send and receive operation, reducing
network traffic and the cost of processing these statements.

Stored procedures are useful for client/server applications that do at least one of
the following things:
v Execute multiple remote SQL statements. Remote SQL statements can create

many network send and receive operations, which results in increased processor
costs. Stored procedures can encapsulate many of your application's SQL
statements into a single message to the DB2 server, reducing network traffic to a
single send and receive operation for a series of SQL statements. Locks on DB2
tables are not held across network transmissions, which reduces contention for
resources at the server.

v Access tables from a dynamic SQL environment where table privileges for the
application that is running are undesirable. Stored procedures allow static SQL
authorization from a dynamic environment.

Client DB2 for z/OS

EXEC SQL SELECT …

EXEC SQL UPDATE …

EXEC SQL INSERT …
Perform SQL processing

Perform SQL processing

Perform SQL processing

Figure 28. Processing without stored procedures

Figure 29. Processing with stored procedures

546 Application Programming and SQL Guide

v Access host variables for which you want to guarantee security and integrity.
Stored procedures remove SQL applications from the workstation, which
prevents workstation users from manipulating the contents of sensitive SQL
statements and host variables.

v Create a result set of rows to return to the client application.

Stored procedures that are written in embedded static SQL provide the following
additional advantages:
v Better performance because static SQL is prepared at precompile time and has

no run time overhead for access plan (package) generation.
v Encapsulation enables programmers to write applications that access data

without knowing the details of database objects.
v Improved security because access privileges are encapsulated within the

packages that are associated with the stored procedures. You can grant access to
run a stored procedure that selects data from tables, without granting SELECT
privilege to the user.

You can create one of the following types of stored procedures:

External stored procedures
A procedure that is written in a host language.

External SQL procedures
A procedure whose body is written entirely in SQL, but is created,
implemented, and executed like other external stored procedures.

Native SQL procedures
A procedure with a procedural body that is written entirely in SQL and is
created by issuing a single SQL statement, CREATE PROCEDURE. Native
SQL procedures do not have an associated external application program.

DB2 also provides a set of stored procedures that you can call in your application
programs to perform a number of utility, application programming, and
performance management functions. These procedures are called DB2-supplied
stored procedures. Typically, you create these procedures during installation or
migration.

Stored procedure parameters
You can pass information between a stored procedure and the calling application
program by using parameters. Applications pass the required parameters in the
SQL CALL statement. Optionally, the application can also include an indicator
variable with each parameter to allow for null values or to pass large output
parameter values.

You define the stored procedure parameters as part of the stored procedure
definition in the CREATE PROCEDURE statement. The stored procedure
parameters can be one of the following types:

IN Input-only parameters, which provide values to the stored procedure.

OUT Output-only parameters, which return values from the stored procedure to
the calling program.

INOUT
Input and output parameters, which provide values to and return values
from the stored procedure.

Chapter 10. Creating and modifying DB2 objects 547

If a stored procedure fails to set one or more of the OUT or INOUT parameters,
DB2 does not return an error. Instead, DB2 returns the output parameters to the
calling program, with the values that were established on entry to the stored
procedure.

Within a procedure body, the following rules apply to IN, OUT, and INOUT
parameters:
v You can use a parameter that you define as IN on the left side or right side of an

assignment statement. However, if you assign a value to an IN parameter, you
cannot pass the new value back to the caller. The IN parameter has the same
value before and after the SQL procedure is called.

v You can use a parameter that you define as OUT on the left side or right side of
an assignment statement. The last value that you assign to the parameter is the
value that is returned to the caller. The starting value of an OUT parameter is
NULL.

v You can use a parameter that you define as INOUT on the left side or right side
of an assignment statement. The caller determines the first value of the INOUT
parameter, and the last value that you assign to the parameter is the value that
is returned to the caller.

Restrictions:

v You cannot pass file reference variables as stored procedure parameters.
v You cannot pass parameters with the type XML to stored procedures. You can

specify tables or views that contain XML columns as table locator parameters.
However, you cannot reference the XML columns in the body of the stored
procedure.

Related tasks:
Chapter 14, “Calling a stored procedure from your application,” on page 787
“Passing large output parameters to stored procedures by using indicator
variables” on page 792
Related reference:

CALL (DB2 SQL)

CREATE PROCEDURE (DB2 SQL)

Example of a simple stored procedure
When an application that runs on a workstation calls a stored procedure on a DB2
server, the stored procedure updates a table based on the information that it
receives from the application.

Suppose that an application runs on a workstation client and calls a stored
procedure A on the DB2 server at location LOCA. Stored procedure A performs the
following operations:
1. Receives a set of parameters containing the data for one row of the employee to

project activity table (DSN8B10.EMPPROJACT). These parameters are input
parameters in the SQL statement CALL:
v EMP: employee number
v PRJ: project number
v ACT: activity ID
v EMT: percent of employee's time required
v EMS: date the activity starts
v EME: date the activity is due to end

548 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_call.htm#db2z_sql_call
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createprocedure.htm#db2z_sql_createprocedure

2. Declares a cursor, C1, with the option WITH RETURN, that is used to return a
result set containing all rows in EMPPROJACT to the workstation application
that called the stored procedure.

3. Queries table EMPPROJACT to determine whether a row exists where columns
PROJNO, ACTNO, EMSTDATE, and EMPNO match the values of parameters
PRJ, ACT, EMS, and EMP. (The table has a unique index on those columns.
There is at most one row with those values.)

4. If the row exists, executes an SQL statement UPDATE to assign the values of
parameters EMT and EME to columns EMPTIME and EMENDATE.1

5. If the row does not exist (SQLCODE +100), executes an SQL statement INSERT
to insert a new row with all the values in the parameter list.1

6. Opens cursor C1. This causes the result set to be returned to the caller when
the stored procedure ends.

7. Returns two parameters, containing these values:
v A code to identify the type of SQL statement last executed: UPDATE or

INSERT.
v The SQLCODE from that statement.

Note:

1. Alternatively, steps 4 and 5 can be accomplished with a single MERGE
statement.

The following figure illustrates the steps that are involved in executing this stored
procedure.

Chapter 10. Creating and modifying DB2 objects 549

Notes:

1. The workstation application uses the SQL CONNECT statement to create a
conversation with DB2.

2. DB2 creates a DB2 thread to process SQL requests.

1

2

3

4

5

6

7

8

9

10

EXEC SQL
CONNECT TO
LOCA;

EXEC SQL
CALL A(:EMP,
:PRJ,:ACT,:EMT,
:EMS,:EME,
:TYPE,:CODE);

EXEC SQL
COMMIT;
(or ROLLBACK)

Receive result set

Control returns
to application

Result of
COMMIT or
ROLLBACK

Notes User Workstation DB2 System DB2 Stored Procedures
Address Space

Create Thread

Get information
from SYSIBM.
SYSROUTINES

Prepare
parameter list and
pass control to
stored procedure

Stored Procedure A

EXEC SQL
DECLARE C1 CURSOR
WITH RETURN
FOR SELECT * FROM
EMPPROJACT;

USE SQL UPDATE to
update EMPPROJACT
with input parameter
values

If SQLCODE=+100,
use SQL INSERT to
add a row with the
values in the
parameter list

EXEC SQL OPEN C1;

Return output parameters
:TYPE and :CODE and
a result set that contains
all rows in EMPPROJACT

Figure 30. Stored procedure overview

550 Application Programming and SQL Guide

3. The SQL statement CALL tells the DB2 server that the application is going to
run a stored procedure. The calling application provides the necessary
parameters.

4. The plan for the client application contains information from catalog table
SYSIBM.SYSROUTINES about stored procedure A.

5. DB2 passes information about the request to the stored procedures address
space, and the stored procedure begins execution.

6. The stored procedure executes SQL statements.
DB2 verifies that the owner of the package or plan containing the SQL
statement CALL has EXECUTE authority for the package associated with the
DB2 stored procedure.
One of the SQL statements opens a cursor that has been declared WITH
RETURN. This causes a result set to be returned to the workstation
application when the procedure ends.
Any SQLCODE that is issued within an external stored procedure is not
returned to the workstation application in the SQLCA (as the result of the
CALL statement).

7. If an error is not encountered, the stored procedure assigns values to the
output parameters and exits.
Control returns to the DB2 stored procedures address space, and from there to
the DB2 system. If the stored procedure definition contains COMMIT ON
RETURN NO, DB2 does not commit or roll back any changes from the SQL in
the stored procedure until the calling program executes an explicit COMMIT
or ROLLBACK statement. If the stored procedure definition contains
COMMIT ON RETURN YES, and the stored procedure executed successfully,
DB2 commits all changes. The COMMIT statement closes the cursor unless it
is declared with the WITH HOLD option.

8. Control returns to the calling application, which receives the output
parameters and the result set. DB2 then:
v Closes all cursors that the stored procedure opened, except those that the

stored procedure opened to return result sets.
v Discards all SQL statements that the stored procedure prepared.
v Reclaims the working storage that the stored procedure used.
The application can call more stored procedures, or it can execute more SQL
statements. DB2 receives and processes the COMMIT or ROLLBACK request.
The COMMIT or ROLLBACK operation covers all SQL operations, whether
executed by the application or by stored procedures, for that unit of work.
If the application involves IMS or CICS, similar processing occurs based on
the IMS or CICS sync point rather than on an SQL COMMIT or ROLLBACK
statement.

9. DB2 returns a reply message to the application describing the outcome of the
COMMIT or ROLLBACK operation.

10. The workstation application executes the following steps to retrieve the
contents of table EMPPROJACT, which the stored procedure has returned in a
result set:
a. Declares a result set locator for the result set being returned.
b. Executes the ASSOCIATE LOCATORS statement to associate the result set

locator with the result set.
c. Executes the ALLOCATE CURSOR statement to associate a cursor with the

result set.
d. Executes the FETCH statement with the allocated cursor multiple times to

retrieve the rows in the result set.

Chapter 10. Creating and modifying DB2 objects 551

e. Executes the CLOSE statement to close the cursor.

SQL procedures
An SQL procedure is a stored procedure that contains only SQL statements.

The source code for these procedures (the SQL statements) is specified in an SQL
CREATE PROCEDURE statement. The part of the CREATE PROCEDURE
statement that contains SQL statements is called the procedure body.

DB2 for z/OS supports the following two types of SQL procedures:

Native SQL procedures
A procedure with a procedural body that is written entirely in SQL and is
created by issuing a single SQL statement, CREATE PROCEDURE. Native
SQL procedures do not have an associated external application program.

External SQL procedures
A procedure whose body is written entirely in SQL, but is created,
implemented, and executed like other external stored procedures.

Native SQL procedures

A native SQL procedure is a procedure whose body is written entirely in SQL. The
body is written in the SQL procedural language. A native SQL procedure is created
by issuing a single SQL statement, CREATE PROCEDURE. Native SQL procedures
do not require any other program preparation, such as precompiling, compiling, or
link-editing source code. Native SQL procedures are executed as SQL statements
that are bound in a DB2 package. Native SQL procedures do not have an
associated external application program.

Native SQL procedures have the following advantages:
v You can create them in one step.
v They do not run in a WLM environment.
v They might be eligible for zIIP redirect if they are invoked remotely through a

DRDA client.
v They usually perform better than external SQL procedures.
v They support more capabilities, such as nested compound statements, than

external SQL procedures.
v DB2 can manage multiple versions of these procedures for you.
v You can specify that the SQL procedure commits autonomously, without

committing the work of the calling application.

Starting in Version 9.1, all SQL procedures that are created without the FENCED or
EXTERNAL options in the CREATE PROCEDURE statement are native SQL
procedures.

External SQL procedures

An external stored procedure is a procedure that is written in a host language. An
external stored procedure is much like any other SQL application. It can include
static or dynamic SQL statements, IFI calls, and DB2 commands that are issued
through IFI. You prepare external stored procedures as you would normally
prepare application programs. You precompile, compile, and link-edit them. Then,
you bind the DBRM into a package. You also need to define the procedure to DB2

552 Application Programming and SQL Guide

|
|

by using the CREATE PROCEDURE statement. Thus, the source code for an
external stored procedure is separate from the definition for the stored procedure.

All SQL procedures that were created prior to Version 9.1 are external SQL
procedures. Starting in Version 9.1, you can create an external SQL procedure by
specifying FENCED or EXTERNAL in the CREATE PROCEDURE statement.

SQL procedure body:

The body of an SQL procedure contains one or more SQL statements. In the SQL
procedure body, you can also declare variables, condition handlers, reference
parameters, and reference variables.

Statements that you can include in an SQL procedure body

An SQL procedure consists of a single SQL procedure statement. That procedure
statement can be either an SQL control statement or another SQL statement. If the
SQL control statement is a compound statement or a CASE statement, the
procedure body can contain multiple statements. For native SQL procedures, you
can use nested compound statements.

How to code multiple statements in an SQL procedure

Use a semicolon character to separate SQL statements within an SQL procedure.

The procedure body has no terminating character. Therefore, if the procedure
contains only one statement, you do not need to put a semicolon after that
statement. If the procedure consists of a set of nested statements, you do not need
to put a semicolon after the outermost statement.

Variables in an SQL procedure

To store data that you use only within an SQL procedure, you can declare SQL
variables. SQL variables are the equivalent of host variables in external stored
procedures. SQL variables can have the same data types and lengths as SQL
procedure parameters.

An SQL variable declaration has the following form:
DECLARE SQL-variable-name data-type;

The declaration for an SQL variable for which you use a result locator has the
following form:
DECLARE SQL-variable-name data-type RESULT_SET_LOCATOR VARYING;

SQL variables in SQL procedures are subject to the following rules:
v SQL variable names, condition names, and label names must be less than or

equal to 128 bytes in length. The names can include alphanumeric characters
and the underscore character.

v SQL variable names must be unique. You cannot declare two SQL variables that
have the same name, regardless of case. For example, you cannot declare two
SQL variables named varx and VARX. (DB2 treats all SQL variable names as
uppercase.)

v SQL parameters, SQL variables, and SQL conditions should not include SQL
reserved words. Although doing so is not recommended, you can specify an
SQL reserved word as the name of an SQL parameter, SQL variable, or SQL

Chapter 10. Creating and modifying DB2 objects 553

condition in some contexts. If you specify a reserved word as the name of an
SQL parameter, SQL variable, or SQL condition in a context where its use could
be ambiguous, specify the name as a delimited identifier.

v When you use an SQL variable in an SQL statement, do not precede the variable
with a colon.

You can perform any operations on SQL variables that you can perform on host
variables in SQL statements.

Object references in an SQL procedure

To avoid ambiguity, qualify SQL variable names and other object names. Use the
following guidelines to determine when to qualify object names:
v Qualify column names with the associated table names or view names.
v When you use an SQL procedure parameter in the procedure body, qualify the

parameter name with the procedure name.
v Specify a label for each compound statement, and qualify all SQL variables with

the label name of the compound statement that declared them.

Calls to user-defined functions from an SQL procedure

When you call a user-defined function from an SQL procedure, ensure that you
pass parameters of the appropriate data type. The data type should be the same
data type or a data type that can be promoted to the data type of the function
definition. For example, DB2 can promote the data type CHAR to VARCHAR or
SMALLINT to BIGINT.
Related concepts:
“Nested compound statements in native SQL procedures” on page 564
“Stored procedure parameters” on page 547

Promotion of data types (DB2 SQL)

SQL control statements for external SQL procedures (DB2 SQL)

SQL control statements for SQL routines (DB2 SQL)
Related reference:

SQL-procedure-statement (DB2 SQL)

Examples of SQL procedures:

You can use CASE statements, compound statements, and nested statements within
an SQL procedure body.

Example: CASE statement: The following SQL procedure demonstrates how to use
a CASE statement. The procedure receives an employee's ID number and rating as
input parameters. The CASE statement modifies the employee's salary and bonus,
using a different UPDATE statement for each of the possible ratings.
CREATE PROCEDURE UPDATESALARY2
(IN EMPNUMBR CHAR(6),
IN RATING INT)
LANGUAGE SQL
MODIFIES SQL DATA
CASE RATING
WHEN 1 THEN
UPDATE CORPDATA.EMPLOYEE
SET SALARY = SALARY * 1.10, BONUS = 1000

554 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_promotionofdatatypes.htm#db2z_promotionofdatatypes
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sqlplexternalintro.htm#db2z_sqlplexternalintro
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sqlplnativeintro.htm#db2z_sqlplnativeintro
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sqlprocedurestatement4externalsqlpl.htm#db2z_sqlprocedurestatement4externalsqlpl

WHERE EMPNO = EMPNUMBR;
WHEN 2 THEN
UPDATE CORPDATA.EMPLOYEE
SET SALARY = SALARY * 1.05, BONUS = 500
WHERE EMPNO = EMPNUMBR;

ELSE
UPDATE CORPDATA.EMPLOYEE
SET SALARY = SALARY * 1.03, BONUS = 0
WHERE EMPNO = EMPNUMBR;

END CASE

Example: Compound statement with nested IF and WHILE statements: The
following example shows a compound statement that includes an IF statement, a
WHILE statement, and assignment statements. The example also shows how to
declare SQL variables, cursors, and handlers for classes of error codes.

The procedure receives a department number as an input parameter. A WHILE
statement in the procedure body fetches the salary and bonus for each employee in
the department, and uses an SQL variable to calculate a running total of employee
salaries for the department. An IF statement within the WHILE statement tests for
positive bonuses and increments an SQL variable that counts the number of
bonuses in the department. When all employee records in the department have
been processed, a NOT FOUND condition occurs. A NOT FOUND condition
handler makes the search condition for the WHILE statement false, so execution of
the WHILE statement ends. Assignment statements then assign the total employee
salaries and the number of bonuses for the department to the output parameters
for the stored procedure.

If any SQL statement in the compound statement P1 receives an error, the
SQLEXCEPTION handler receives control. The handler action sets the output
parameter DEPTSALARY to NULL. After the handler action has completed
successfully, the original error condition is resolved (SQLSTATE '00000', SQLCODE
0). Because this handler is an EXIT handler, execution passes to the end of the
compound statement, and the SQL procedure ends.
CREATE PROCEDURE RETURNDEPTSALARY
(IN DEPTNUMBER CHAR(3),
OUT DEPTSALARY DECIMAL(15,2),
OUT DEPTBONUSCNT INT)
LANGUAGE SQL
READS SQL DATA
P1: BEGIN

DECLARE EMPLOYEE_SALARY DECIMAL(9,2);
DECLARE EMPLOYEE_BONUS DECIMAL(9,2);
DECLARE TOTAL_SALARY DECIMAL(15,2) DEFAULT 0;
DECLARE BONUS_CNT INT DEFAULT 0;
DECLARE END_TABLE INT DEFAULT 0;
DECLARE C1 CURSOR FOR
SELECT SALARY, BONUS FROM CORPDATA.EMPLOYEE
WHERE WORKDEPT = DEPTNUMBER;

DECLARE CONTINUE HANDLER FOR NOT FOUND
SET END_TABLE = 1;
DECLARE EXIT HANDLER FOR SQLEXCEPTION
SET DEPTSALARY = NULL;
OPEN C1;
FETCH C1 INTO EMPLOYEE_SALARY, EMPLOYEE_BONUS;
WHILE END_TABLE = 0 DO
SET TOTAL_SALARY = TOTAL_SALARY + EMPLOYEE_SALARY + EMPLOYEE_BONUS;
IF EMPLOYEE_BONUS > 0 THEN
SET BONUS_CNT = BONUS_CNT + 1;
END IF;
FETCH C1 INTO EMPLOYEE_SALARY, EMPLOYEE_BONUS;
END WHILE;

Chapter 10. Creating and modifying DB2 objects 555

CLOSE C1;
SET DEPTSALARY = TOTAL_SALARY;
SET DEPTBONUSCNT = BONUS_CNT;

END P1

Example: Compound statement with dynamic SQL statements: The following
example shows a compound statement that includes dynamic SQL statements.

The procedure receives a department number (P_DEPT) as an input parameter. In
the compound statement, three statement strings are built, prepared, and executed:
v The first statement string executes a DROP statement to ensure that the table to

be created does not already exist. This table is named DEPT_deptno_T, where
deptno is the value of input parameter P_DEPT.

v The next statement string executes a CREATE statement to create
DEPT_deptno_T.

v The third statement string inserts rows for employees in department deptno into
DEPT_deptno_T.

Just as statement strings that are prepared in host language programs cannot
contain host variables, statement strings in SQL procedures cannot contain SQL
variables or stored procedure parameters. Therefore, the third statement string
contains a parameter marker that represents P_DEPT. When the prepared
statement is executed, parameter P_DEPT is substituted for the parameter marker.
CREATE PROCEDURE CREATEDEPTTABLE (IN P_DEPT CHAR(3))
LANGUAGE SQL
BEGIN
DECLARE STMT CHAR(1000);
DECLARE MESSAGE CHAR(20);
DECLARE TABLE_NAME CHAR(30);
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
SET MESSAGE = ’ok’;
SET TABLE_NAME = ’DEPT_’||P_DEPT||’_T’;
SET STMT = ’DROP TABLE ’||TABLE_NAME;
PREPARE S1 FROM STMT;
EXECUTE S1;
SET STMT = ’CREATE TABLE ’||TABLE_NAME||
’(EMPNO CHAR(6) NOT NULL, ’||
’FIRSTNME VARCHAR(6) NOT NULL, ’||
’MIDINIT CHAR(1) NOT NULL, ’||
’LASTNAME CHAR(15) NOT NULL, ’||
’SALARY DECIMAL(9,2))’;
PREPARE S2 FROM STMT;
EXECUTE S2;
SET STMT = ’INSERT INTO ’||TABLE_NAME ||
’SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, SALARY ’||
’FROM EMPLOYEE ’||
’WHERE WORKDEPT = ?’;
PREPARE S3 FROM STMT;
EXECUTE S3 USING P_DEPT;
END

Autonomous procedures
Autonomous procedures execute under their own units of work, separate from the
calling program, and commit when they finish without committing the work of the
calling program.

Autonomous procedures execute as separate units of work that are independent from
the calling application programs. Autonomous procedures follow the rules of the
COMMIT ON RETURN YES option for their changes before returning to the caller.

556 Application Programming and SQL Guide

|
|
|
|

|
|
|

However, their commit does not impact changes completed by the calling
application program. The calling application program controls when its own
updates are committed or rolled back.

If the calling application rolls back its own changes, the committed changes of the
autonomous procedure are not affected. Therefore, autonomous procedures are
useful for logging information about error conditions encountered by an
application program. When the application encounters the error and rolls back its
own changes, the committed changes of the autonomous procedure remain
available.

Autonomous procedures can be called by normal application programs, other
stored procedures, user-defined functions or triggers. Autonomous procedures can
complete the following types of work:
v Execute SQL statements
v Invoke another procedure, function, or trigger, as long as the number of nested

levels does not exceed 64, and the called procedure is not autonomous.
v Execute COMMIT and ROLLBACK statements that apply to the SQL operations

executed by nested processes within the autonomous procedure.

The following restrictions apply to autonomous procedures:
v Only native SQL procedures can be defined as autonomous.
v Autonomous procedures and nested procedure, triggers, and functions within

autonomous procedures cannot invoke other autonomous procedures.
v Autonomous procedures cannot see uncommitted changes from the calling

application.
v When multiple versions of a procedure exist, all versions must be defined as

autonomous.
v Autonomous procedures do not share locks with the calling application,

meaning that the autonomous procedure might timeouts because of lock
contention with the calling application.

v Parallelism is disabled for autonomous procedures. All statements in an
autonomous procedure and for any nested levels within are run in sequential
processing mode.

v DYNAMIC RESULT SETS 0 must be specified when autonomous procedures are
used.

v Stored procedure parameters must not be defined as a LOB data type, or any
distinct data type that is based on a LOB or XML value.

Related concepts:

Autonomous procedures (DB2 for z/OS What's New?)
Related tasks:

Controlling autonomous procedures (DB2 Administration Guide)

External stored procedures
An external stored procedure is a procedure that is written in a host language and
can contain SQL statements. The source code for external procedures is separate
from the definition.

An external stored procedure is much like any other SQL application. It can
include static or dynamic SQL statements, IFI calls, and DB2 commands that are
issued through IFI. You prepare external stored procedures as you would normally
prepare application programs. You precompile, compile, and link-edit them. Then,

Chapter 10. Creating and modifying DB2 objects 557

|
|
|

|
|
|
|
|
|

|
|
|

|

|
|

|
|

|

|

|
|

|
|

|
|

|
|
|

|
|
|

|
|

|
|

|

|

|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.wnew/src/tpc/db2z_11_autonomoustransaction.htm#db2z_11_autonomoustransaction
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_controlautonomousprocedure.htm#db2z_controlautonomousprocedure

you bind the DBRM into a package. You also need to define the procedure to DB2
by using the CREATE PROCEDURE statement. Thus, the source code for an
external stored procedure is separate from the definition for the stored procedure.

Language requirements for the external stored procedure and its caller

You can write an external stored procedure in Assembler, C, C++, COBOL, Java,
REXX, or PL/I. All programs must be designed to run using Language
Environment. Your COBOL and C++ stored procedures can contain object-oriented
extensions.

The program that calls the stored procedure can be in any language that supports
the SQL CALL statement. ODBC applications can use an escape clause to pass a
stored procedure call to DB2.
Related concepts:
“Object-oriented extensions in COBOL” on page 342
“REXX stored procedures” on page 642

Java stored procedures and user-defined functions (DB2 Application
Programming for Java)

Differences between SQL procedures and external procedures
SQL procedures are written entirely in SQL statements. External procedures are
written in a host language and can contain SQL statements. You can invoke both
types of procedures with an SQL CALL statement. However, you should consider
several important differences in behavior and preparation.

SQL procedures and external procedures consist of a procedure definition and the
code for the procedure program.

Both an SQL procedure definition and an external procedure definition specify the
following information:
v The procedure name.
v Input and output parameter attributes.
v The language in which the procedure is written. For an SQL procedure, the

language is SQL.
v Information that will be used when the procedure is called, such as run time

options, length of time that the procedure can run, and whether the procedure
returns result sets.

An SQL procedure and external procedure share the same rules for the use of
COMMIT and ROLLBACK statements in a procedure.

An SQL procedure and an external procedure differ in the following ways:
v How they handle errors:

– For an SQL procedure, DB2 automatically returns SQL conditions in the
SQLCA when the procedure does not include a RETURN statement or a
handler. For information about the various ways to handle errors in an SQL
procedure, see “Handling SQL conditions in an SQL procedure” on page 567.

– For an external stored procedure, DB2 does not return SQL conditions in the
SQLCA to the workstation application. If you use PARAMETER STYLE SQL
when you define an external procedure, you can set SQLSTATE to indicate an
error before the procedure ends. For valid SQLSTATE values, see “Parameters
for external user-defined functions” on page 513.

558 Application Programming and SQL Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.java/src/tpc/imjcc_javaroutines.htm#imjcc_javaroutines
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.java/src/tpc/imjcc_javaroutines.htm#imjcc_javaroutines

v How they specify the code for the stored procedure. An SQL procedure
definition contains the source code for the stored procedure. An external stored
procedure definition specifies the name of the stored procedure program.

v How you define the stored procedure. For native SQL procedures and external
procedures, you define the stored procedure to DB2 by executing the CREATE
PROCEDURE statement. For external SQL procedures, you define the stored
procedure to DB2 by preprocessing a CREATE PROCEDURE statement, then
executing the CREATE PROCEDURE statement dynamically. For all procedures,
you change the definition by executing the ALTER PROCEDURE statement. See
“Creating an external SQL procedure” on page 590 for more information about
defining an SQL procedure to DB2.
Example: The following example shows a definition for an SQL procedure.
CREATE PROCEDURE UPDATESALARY1 �1�
(IN EMPNUMBR CHAR(10), �2�
IN RATE DECIMAL(6,2))
LANGUAGE SQL �3�
UPDATE EMP �4�
SET SALARY = SALARY * RATE
WHERE EMPNO = EMPNUMBR

Notes:

�1� The stored procedure name is UPDATESALARY1.

�2� The two parameters have data types of CHAR(10) and DECIMAL(6,2).
Both are input parameters.

�3� LANGUAGE SQL indicates that this is an SQL procedure, so a
procedure body follows the other parameters.

�4� The procedure body consists of a single SQL UPDATE statement, which
updates rows in the employee table.

Example: The following example shows a definition for an equivalent external
stored procedure that is written in COBOL. The stored procedure program,
which updates employee salaries, is called UPDSAL.
CREATE PROCEDURE UPDATESALARY1 �1�
(IN EMPNUMBR CHAR(10), �2�
IN RATE DECIMAL(6,2))
LANGUAGE COBOL �3�
EXTERNAL NAME UPDSAL; �4�

Notes:

�1� The stored procedure name is UPDATESALARY1.

�2� The two parameters have data types of CHAR(10) and DECIMAL(6,2).
Both are input parameters.

�3� LANGUAGE COBOL indicates that this is an external procedure, so the
code for the stored procedure is in a separate, COBOL program.

�4� The name of the load module that contains the executable stored
procedure program is UPDSAL.

COMMIT and ROLLBACK statements in a stored procedure
When you issue COMMIT or ROLLBACK statements in your stored procedure,
DB2 commits or rolls back all changes within the unit of work. For procedures that
are not defined as autonomous, the committed or rolled back changes include
changes that the client application made before it called the stored procedure and

Chapter 10. Creating and modifying DB2 objects 559

|
|
|

DB2 work that the stored procedure does. For autonomous procedures, the
committed or rolled back changes include only work done by the stored
procedure’s unit of work.

If your stored procedure includes COMMIT or ROLLBACK statements, define it
with the one of the following clauses:
v CONTAINS SQL
v READS SQL DATA
v MODIFIES SQL DATA

The COMMIT ON RETURN clause in a stored procedure definition has no effect
on the COMMIT or ROLLBACK statements in the stored procedure code. If you
specify COMMIT ON RETURN YES when you define the stored procedure, DB2
issues a COMMIT statement when control returns from the stored procedure. This
action occurs regardless of whether the stored procedure contains COMMIT or
ROLLBACK statements.

If you specify AUTONOMOUS when you define the stored procedure, the
autonomous procedure is a separate unit of work from the calling application. DB2
issues a COMMIT statement when control returns from the stored procedure, but
only changes completed by the autonomous procedure are committed. Similarly,
COMMIT or ROLLBACK statements in the autonomous procedure code also have
no effect on work done by the calling application.

A ROLLBACK statement has the same effect on cursors in a stored procedure as it
has on cursors in stand-alone programs. A ROLLBACK statement closes all open
cursors. A COMMIT statement in a stored procedure closes cursors that are not
declared WITH HOLD and leaves open those cursors that are declared WITH
HOLD. The effect of COMMIT or ROLLBACK on cursors applies to cursors that
are declared in the calling application and to cursors that are declared in the stored
procedure.

Restriction: You cannot include COMMIT or ROLLBACK statements in a stored
procedure if any of the following conditions are true:
v The stored procedure is nested within a trigger or user-defined function.
v The stored procedure is called by a client that uses two-phase commit

processing.
v The client program uses a type 2 connection to connect to the remote server that

contains the stored procedure.
v DB2 is not the commit coordinator.

If a COMMIT or ROLLBACK statement in a stored procedure violates any of these
conditions, DB2 puts the transaction in a must-rollback state. Also, in this case, the
CALL statement fails.
Related reference:

CALL (DB2 SQL)

COMMIT (DB2 SQL)

ROLLBACK (DB2 SQL)

Special registers in a stored procedure
You can use all special registers in a stored procedure. However, you can modify
only some of those special registers. After a stored procedure completes, DB2
restores all special registers to the values that they had before invocation.

560 Application Programming and SQL Guide

|
|
|

|
|
|
|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_call.htm#db2z_sql_call
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_commit.htm#db2z_sql_commit
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_rollback.htm#db2z_sql_rollback

Creating a native SQL procedure
A native SQL procedure is a procedure whose body is written entirely in SQL and is
created by issuing a single SQL statement, CREATE PROCEDURE. Native SQL
procedures typically perform better and have more functionality than external SQL
procedures.

Before you begin

Before you create a native SQL procedure, Configure DB2 for running stored
procedures and user-defined functions during installation or Configure DB2 for
running stored procedures and user-defined functions during migration (DB2
Installation Guide) if the native SQL procedure satisfies at least one of the
following conditions:
v The native SQL procedure calls at least one external stored procedure, external

SQL procedure, or user-defined function.
v The native SQL procedure is defined with ALLOW DEBUG MODE or

DISALLOW DEBUG MODE. If you specify DISABLE DEBUG MODE, you do
not need to set up the stored procedure environment.

About this task

A native SQL procedure is a procedure whose body is written entirely in SQL. The
body is written in the SQL procedural language. A native SQL procedure is created
by issuing a single SQL statement, CREATE PROCEDURE. Native SQL procedures
do not require any other program preparation, such as precompiling, compiling, or
link-editing source code. Native SQL procedures are executed as SQL statements
that are bound in a DB2 package. Native SQL procedures do not have an
associated external application program.

Procedure

To create a native SQL procedure, perform one of the following actions:
v Use IBM Optim Development Studio to specify the source statements for the

SQL procedure and deploy the SQL procedure to DB2. IBM Optim Development
Studio also allows you to create copies of the procedure package as needed and
to deploy the procedure to remote servers.

v Manually deploy the native SQL procedure by completing the following steps:
1. Issue the CREATE PROCEDURE statement:

– Include the procedure body, which is written entirely in SQL, in the SQL
procedural language. For more information about what you can do within
the procedure body, see the following information:
- “Controlling the scope of variables in an SQL procedure” on page 562
- “Declaring cursors in an SQL procedure with nested compound

statements” on page 566
- “Handling SQL conditions in an SQL procedure” on page 567
- “Raising a condition within an SQL procedure by using the SIGNAL or

RESIGNAL statements” on page 577
– Do not include the FENCED or EXTERNAL keywords.
– You can specify the AUTONOMOUS keyword to enable the procedure to

commit without committing the work of the calling application.
Autonomous procedures cannot see uncommitted changes of the calling
application, and they cannot call other autonomous procedures.

Chapter 10. Creating and modifying DB2 objects 561

|
|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_configuredb2fordb2routines.htm#db2z_configuredb2fordb2routines
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_configuredb2fordb2routines.htm#db2z_configuredb2fordb2routines
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_configuredb2fordb2routinesmigr.htm#db2z_configuredb2fordb2routinesmigr
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_configuredb2fordb2routinesmigr.htm#db2z_configuredb2fordb2routinesmigr

When you issue this CREATE PROCEDURE statement, the first version of
this procedure is defined to DB2, and a package is implicitly bound with the
options that you specify on the CREATE PROCEDURE statement.

2. If the native SQL procedure contains one or more of the following statements
or references, make copies of the native SQL procedure package, as needed:
– CONNECT
– SET CURRENT PACKAGESET
– SET CURRENT PACKAGE PATH
– A table reference with a three-part name

3. If you plan to call the native SQL procedure at another DB2 server, deploy
the procedure to another DB2 for z/OS server. You can customize the bind
options at the same time.

4. Authorize the appropriate users to call the stored procedure.

What to do next

After you create a native SQL procedure, you can create one or more versions of it
as needed.
Related concepts:
“SQL procedures” on page 552
“SQL procedure body” on page 553
Related tasks:

Implementing DB2 stored procedures (DB2 Administration Guide)

Developing database routines (IBM Data Studio, IBM Optim Database
Administrator, IBM infoSphere Data Architect, IBM Optim Development Studio)
Related reference:

CREATE PROCEDURE (SQL - native) (DB2 SQL)

Controlling the scope of variables in an SQL procedure
Use nested compound statements within an SQL procedure to define the scope of
SQL variables. You can reference the variable only within the compound statement
in which it was declared and within any nested statements.

Procedure

To control the scope of a variable in an SQL procedure:
1. Declare the variable within the compound statement in which you want to

reference it. Ensure that the variable name is unique within the compound
statement, not including any nested statements. You can define variables with
the same name in other compound statements in the same SQL procedure.

2. Reference the variable within that compound statement or any nested
statements.

Recommendation: If multiple variables with the same name exist within an
SQL procedure, qualify the variable with the label from the compound
statement in which it was declared. Otherwise, you might accidentally reference
the wrong variable.
If the variable name is unqualified and multiple variables with that name exist
within the same scope, DB2 uses the variable in the innermost compound
statement.

562 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_storedprocedureimplementation.htm#db2z_storedprocedureimplementation
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.routines.doc/topics/croutines.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.routines.doc/topics/croutines.html
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createproceduresqlnative.htm#db2z_sql_createproceduresqlnative

Results

Example: The following example contains three declarations of the variable A.
One instance is declared in the outer compound statement, which has the label
OUTER1. The other instances are declared in the inner compound statements with
the labels INNER1 and INNER2. In the INNER1 compound statement, DB2
presumes that the unqualified references to A in the assignment statement and
UPDATE statement refer to the instance of A that is declared in the INNER1
compound statement. To refer to the instance of A that is declared in the OUTER1
compound statement, qualify the variable as OUTER1.A.
CREATE PROCEDURE P2 ()

LANGUAGE SQL

-- Outermost compound statement ------------------------
OUTER1: BEGIN �1�

DECLARE A INT DEFAULT 100;

-- Inner compound statement with label INNER1 ---
INNER1: BEGIN �2�

DECLARE A INT DEFAULT NULL;
DECLARE W INT DEFAULT NULL;

SET A = A + OUTER1.A; �3�

UPDATE T1 SET T1.B = 5
WHERE T1.B = A; �4�

SET OUTER1.A = 100; �5�

SET INNER1.A = 200; �6�
END INNER1; �7�
-- End of inner compound statement INNER1 ------

-- Inner compound statement with label INNER2 ---
INNER2: BEGIN �8�

DECLARE A INT DEFAULT NULL;
DECLARE Z INT DEFAULT NULL;

SET A = A + OUTER1.A;

END INNER2; �9�
-- End of inner compound statement INNER2 ------

SET OUTER1.A = 100; �10�

END OUTER1 �11�

The preceding example has the following parts:
1. The beginning of the outermost compound statement, which has the label

OUTER1.
2. The beginning of the inner compound statement with the label INNER1.
3. The unqualified variable A refers to INNER1.A.
4. The unqualified variable A refers to INNER1.A.
5. OUTER1.A is a valid reference, because this variable is referenced in a nested

compound statement.
6. INNER1.A is a valid reference, because this variable is referenced in the same

compound statement in which it is declared. You cannot reference INNER2.A,
because this variable is not in the scope of this compound statement.

7. The end of the inner compound statement with the label INNER1.
8. The beginning of the inner compound statement with the label INNER2.

Chapter 10. Creating and modifying DB2 objects 563

9. The end of the inner compound statement with the label INNER2.
10. OUTER1.A is a valid reference, because this variable is referenced in the same

compound statement in which it is declared. You cannot reference INNER1.A,
because this variable is declared in a nested statement and cannot be
referenced in the outer statement.

11. The end of the outermost compound statement, which has the label OUTER1.

Nested compound statements in native SQL procedures:

Nested compound statements are blocks of SQL statements that are contained by
other blocks of SQL statements in native SQL procedures. Use nested compound
statements to define condition handlers that execute more than one statement and
to define different scopes for variables and condition handlers.

The following pseudo code shows a basic structure of an SQL procedure with
nested compound statements:
CREATE PROCEDURE...

OUTERMOST: BEGIN
...

INNER1: BEGIN
...

INNERMOST: BEGIN
...
...
END INNERMOST;

END INNER1;
INNER2: BEGIN

...

...
END INNER2;

END OUTERMOST

In the preceding code, the OUTERMOST compound statement contains two nested
compound statements: INNER1 and INNER2. INNER1 contains one nested
compound statement: INNERMOST.
Related concepts:
“Handlers in an SQL procedure” on page 567
Related tasks:
“Defining condition handlers that execute more than one statement” on page 568

Statement labels for nested compound statements in native SQL procedures:

You can define a label for each compound statement in an SQL procedure. This
label enables you to reference this block of statements in other statements such as
the GOTO, LEAVE, and ITERATE SQL PL control statements. You can also use the
label to qualify a variable when necessary. Labels are not required.

A label name must meet the following criteria:
v Be unique within the compound statement, including any compound statements

that are nested within the compound statement.
v Not be the same as the name of the SQL procedure.

You can reference a label within the compound statement in which it is defined,
including any compound statements that are nested within that compound
statement.

564 Application Programming and SQL Guide

Example of statement labels: The following example shows several statement
labels and their scope:
CREATE PROCEDURE P1 ()

LANGUAGE SQL

--Outermost compound statement ------------------------
OUTER1: BEGIN �1�

--Inner compound statement with label INNER1 ---
INNER1: BEGIN �2�

IF...
ABC: LEAVE INNER1; �3�

ELSEIF
XYZ: LEAVE OUTER1; �4�

END IF

END INNER1;
--End of inner compound statement INNER1 ------

--Inner compound statement with label INNER2---
INNER2: BEGIN �5�

XYZ:...statement �6�
END INNER2;
-- End of inner compound statement INNER2 -----

END OUTER1 �7�

The preceding example has the following parts:
1. The beginning of the outermost compound statement, which is labeled

OUTER1
2. The beginning of an inner compound statement that is labeled INNER1
3. A LEAVE statement that is defined with the label ABC. This LEAVE statement

specifies that DB2 is to terminate processing of the compound statement
INNER1 and begin processing the next statement, which is INNER2. This
LEAVE statement cannot specify INNER2, because that label is not within the
scope of the INNER1 compound statement.

4. A LEAVE statement that is defined with the label XYZ. This LEAVE statement
specifies that DB2 is to terminate processing of the compound statement
OUTER1 and begin processing the next statement, if one exists. This example
does not show the next statement.

5. The beginning of an inner compound statement that is labeled INNER2.
6. A statement that is defined with the label XYZ. This label is acceptable even

though another statement in this procedure has the same label, because the two
labels are in different scopes. Neither label is contained within the scope of the
other.

7. The end of the outermost compound statement that is labeled OUTER1.

The following examples show valid and invalid uses of labels:

Invalid example of labels:
L1: BEGIN

L2: SET A = B;
L1: GOTO L2: --This duplicate use of the label L1 causes an error, because

--the same label is already used in the same scope.

END L1;

Valid example of labels:

Chapter 10. Creating and modifying DB2 objects 565

L1: BEGIN
L2: BEGIN

L4: BEGIN --This line contains the first use of the label L4
DECLARE A CHAR(5);
SET A = B;

END L4;
END L2;

L3: BEGIN
L4: BEGIN --This second use of the label L4 is valid, because

--it is used in a different scope.
DECLARE A CHAR(5);
SET A = B;

END L4;
END L3;

END L1;

Declaring cursors in an SQL procedure with nested compound
statements
When you declare a cursor in an SQL procedure that has nested compound
statements, you cannot necessarily reference the cursor anywhere in the procedure.
The scope of the cursor is constrained to the compound statement in which you
declare it.

Procedure

To declare a cursor in an SQL procedure with nested compound statements:

Specify the DECLARE CURSOR statement within the compound statement in
which you want to reference the cursor. Use a cursor name that is unique within
the SQL procedure.
You can reference the cursor within the compound statement in which it is
declared and within any nested statements. If the cursor is declared as a result set
cursor, even if the cursor is not declared in the outermost compound statement,
any calling application can reference it.

Example

In the following example, cursor X is declared in the outer compound statement.
This cursor can be referenced within the outer block in which it was declared and
within any nested compound statements.
CREATE PROCEDURE SINGLE_CSR

(INOUT IR1 INT, INOUT JR1 INT, INOUT IR2 INT, INOUT JR2 INT)
LANGUAGE SQL
DYNAMIC RESULT SETS 2
BEGIN

DECLARE I INT;
DECLARE J INT;
DECLARE X CURSOR WITH RETURN FOR --outer declaration for X

SELECT * FROM CSRT1;

SUB: BEGIN
OPEN X; --references X in outer block
FETCH X INTO I,J; --references X in outer block
SET IR1 = I;
SET JR1 = J;

END;

FETCH X INTO I,J; --references X in outer block

566 Application Programming and SQL Guide

SET IR2 = I;
SET JR2 = j;
CLOSE X;
END

Related reference:

CREATE PROCEDURE (SQL - native) (DB2 SQL)

DECLARE CURSOR (DB2 SQL)

Handling SQL conditions in an SQL procedure
In an SQL procedure, you can specify how the program should handle certain SQL
errors and SQL warnings.

About this task

If you do not include a handler or a RETURN statement in the SQL procedure,
DB2 automatically returns any SQL conditions to the caller in the SQLCA.

Procedure

To handle SQL conditions, use one of the following techniques:
v Include statements called handlers to tell the procedure to perform some other

action when an error or warning occurs.
v Include a RETURN statement in an SQL procedure to return an integer status

value to the caller.
v Include a SIGNAL statement or a RESIGNAL statement to raise a specific

SQLSTATE and to define the message text for that SQLSTATE.
v Force a negative SQLCODE to be returned by a procedure if a trigger calls the

procedure.

Handlers in an SQL procedure:

If an error occurs when an SQL procedure executes, the procedure ends unless you
include statements to tell the procedure to perform some other action. These
statements are called handlers.

Handlers are similar to WHENEVER statements in external SQL application
programs. Handlers tell the SQL procedure what to do when an error or warning
occurs, or when no more rows are returned from a query. In addition, you can
declare handlers for specific SQLSTATEs. You can refer to an SQLSTATE by its
number in a handler, or you can declare a name for the SQLSTATE and then use
that name in the handler.

The general form of a handler declaration is:
DECLARE handler-type HANDLER FOR condition SQL-procedure-statement;

In general, the way that a handler works is that when an error occurs that matches
condition, the SQL-procedure-statement executes. When the SQL-procedure-statement
completes, DB2 performs the action that is indicated by handler-type.

Types of handlers

The handler type determines what happens after the completion of the
SQL-procedure-statement. You can declare the handler type to be either CONTINUE
or EXIT:

Chapter 10. Creating and modifying DB2 objects 567

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createproceduresqlnative.htm#db2z_sql_createproceduresqlnative
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_declarecursor.htm#db2z_sql_declarecursor

CONTINUE
Specifies that after SQL-procedure-statement completes, execution continues with
the statement after the statement that caused the error.

EXIT
Specifies that after SQL-procedure-statement completes, execution continues at
the end of the compound statement that contains the handler.

Example: CONTINUE handler: This handler sets flag at_end when no more rows
satisfy a query. The handler then causes execution to continue after the statement
that returned no rows.
DECLARE CONTINUE HANDLER FOR NOT FOUND SET at_end=1;

Example: EXIT handler: This handler places the string 'Table does not exist' into
output parameter OUT_BUFFER when condition NO_TABLE occurs. NO_TABLE is
previously declared as SQLSTATE 42704 (name is an undefined name). The handler
then causes the SQL procedure to exit the compound statement in which the
handler is declared.
DECLARE NO_TABLE CONDITION FOR ’42704’;...
DECLARE EXIT HANDLER FOR NO_TABLE
SET OUT_BUFFER=’Table does not exist’;

Defining condition handlers that execute more than one statement:

A condition handler defines the action that an SQL procedure takes when a
particular condition occurs. You must specify the action as a single SQL procedure
statement.

About this task

To define a condition handler that executes more than one statement when the
specified condition occurs, specify a compound statement within the declaration of
that handler.

Example: The following example shows a condition handler that captures the
SQLSTATE value and sets a local flag to TRUE.
BEGIN

DECLARE SQLSTATE CHAR(5);
DECLARE PrvSQLState CHAR(5) DEFAULT ’00000’;
DECLARE ExceptState INT;
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION

BEGIN
SET PrvSQLState = SQLSTATE;
SET ExceptState = TRUE;

END;
...

END

Example: The following example declares a condition handler for SQLSTATE
72822. The subsequent SIGNAL statement is within the scope of this condition
handler and thus activates this handler. The condition handler tests the value of
the SQL variable VAR with an IF statement. Depending on the value of VAR, the
SQLSTATE is changed and the message text is set.
DECLARE EXIT HANDLER FOR SQLSTATE ’72822’

IF (VAR = ’OK’) THEN
RESIGNAL SQLSTATE ’72623’

SET MESSAGE_TEXT = ’Got SQLSTATE 72822’;
ELSE

568 Application Programming and SQL Guide

RESIGNAL SQLSTATE ’72319’
SET MESSAGE_TEXT = VAR;

END IF;

SIGNAL SQLSTATE ’72822’;

Controlling how errors are handled within different scopes in an SQL
procedure:

You can use nested compound statements in an SQL procedure to specify that
errors be handled differently within different scopes. You can also ensure that
condition handlers are checked only with a particular compound statement.

Procedure

To control how errors are handled within different scopes in an SQL procedure:
1. Optional: Declare a condition by specifying a DECLARE CONDITION

statement within the compound statement in which you want to reference it.
You can reference a condition in the declaration of a condition handler, a
SIGNAL statement, or a RESIGNAL statement.

Restriction: If multiple conditions with that name exist within the same scope,
you cannot explicitly refer to a condition that is not the most local in scope.
DB2 uses the condition in the innermost compound statement.

2. Declare a condition handler by specifying a DECLARE HANDLER statement
within the compound statement to which you want the condition handler to
apply. Within the declaration of the condition handler, you can specify a
previously defined condition.

Restriction: Condition handlers that are declared in the same compound
statement cannot handle conditions encountered in each other or themselves.

Results

Example: In the following example, a condition with the name ABC is declared
twice, and a condition named XYZ is declared once.
CREATE PROCEDURE...

DECLARE ABC CONDITION...

DECLARE XYZ CONDITION...
BEGIN

DECLARE ABC CONDITION...
SIGNAL ABC; �1�

END;

SIGNAL ABC; �2�

The following notes refer to the preceding example:
1. ABC refers to the condition that is declared in the innermost block. If this

statement were changed to SIGNAL XYZ, XYZ would refer to the XYZ
condition that is declared in the outermost block.

2. ABC refers to the condition that is declared in the outermost block.

Example: The following example contains multiple declarations of a condition
with the name FOO, and a single declaration of a condition with the name GORP.

Chapter 10. Creating and modifying DB2 objects 569

CREATE PROCEDURE MYTEST (INOUT A CHAR(1), INOUT B CHAR(1))
L1: BEGIN

DECLARE GORP CONDITION
FOR SQLSTATE ’33333’; -- defines a condition with the name GORP for SQLSTATE 33333

DECLARE EXIT HANDLER FOR GORP --defines a condition handler for SQLSTATE 33333
L2: BEGIN

DECLARE FOO CONDITION
FOR SQLSTATE ’12345’; --defines a condition with the name FOO for SQLSTATE 12345

DECLARE CONTINUE HANDLER FOR FOO --defines a condition handler for SQLSTATE 12345
L3: BEGIN
SET A = ’A’;
...more statements...
END L3;

SET B = ’B’;

IF...
SIGNAL FOO; --raises SQLSTATE 12345

ELSEIF
SIGNAL GORP; --raises SQLSTATE 33333

END IF;

END L2;

L4: BEGIN
DECLARE FOO CONDITION

FOR SQLSTATE ’54321’ --defines a condition with the name FOO for SQLSTATE 54321
DECLARE EXIT HANDLER FOR FOO...; --defines a condition handler for SQLSTATE 54321

SIGNAL FOO SET MESSAGE_TEXT = ’...’; --raises SQLSTATE 54321

L5: BEGIN
DECLARE FOO CONDITION

FOR SQLSTATE ’99999’; --defines a condition with the name FOO for SQLSTATE 99999
...more statements...

END L5;

END L4;

--At this point, the procedure cannot reference FOO, because this condition is not defined
--in this outer scope

END L1

Example: In the following example, the compound statement with the label
OUTER contains two other compound statements: INNER1A and INNER1B. The
INNER1A compound statement contains another compound statement, which has
the label INNER1A2, and the declaration for a condition handler HINNER1A. The
body of the condition handler HINNER1A contains another compound statement,
which defines another condition handler, HINNER1A_HANDLER.
OUTER:

BEGIN <=============.
-- Handler for OUTER |
DECLARE ... HANDLER -- HOUTER |

BEGIN <---. |
: | |

END; -- End of handler <---. |
: |
: |

|
-- Level 1 - first compound statement |
INNER1A: |

BEGIN <---------. |
-- Handler for INNER1A | |
DECLARE ... HANDLER -- HINNER1A | |

570 Application Programming and SQL Guide

BEGIN <------. | |
-- Handler for handler HINNER1A | |
DECLARE...HANDLER --HINNER1A_HANDLER| | |

BEGIN <---. | | |
: | | | |

END; -- End of handler <---. | | |
: | | |
: -- stmt that gets condition | | | �2�
: | | |
: -- more statements in handler | | |

END; -- End of HINNER1A handler<------. | |
| |

INNER1A2: | |
BEGIN <--. | |

DECLARE ... HANDLER...-- HINNER1A2 | | |
BEGIN; <---. | | |

: | | | |
END; -- End of handler <---. | | |

: | | |
: -- statement that gets condition | | | �1�
: | | |
: -- statement after statement | | |
: -- that encountered condition | | |

END INNER1A2; <--’ | |
: | |
: -- statements in INNER1A | |

END INNER1A; <---------’ |
|

-- Level 1 - second compound statement |
INNER1B: |

BEGIN <---------. |
-- Handler for handler INNER1B | |
DECLARE ...HANDLER -- HINNER1B | |

BEGIN <------. | |
-- Handler for HINNER1B -- | | |
DECLARE ...HANDLER --HINNER1B_HANDLER| | |

BEGIN <---. | | |
: | | | |

END; -- End of handler <---. | | |
: | | |
: -- statements in handler | | |

END; -- End of HINNER1B handler<-------. | |
: | |
: -- statements in INNER1B | |

END INNER1B; <---------’ |
|

: -- statements in OUTER |
END OUTER; <=============’

The following notes apply to the preceding example:
1. If an exception, warning, or NOT FOUND condition occurs within the

INNER1A2 compound statement, the most appropriate handler within that
compound statement is activated to handle the condition. Then, one of the
following actions occurs depending on the type of condition handler:
v If the condition handler (HINNER1A2) is an exit handler, control is returned

to the end of the compound statement that contained the condition handler.
v If the condition handler (HINNER1A2) is a continue handler, processing

continues with the statement after the statement that encountered the
condition.

If no appropriate handler exists in the INNER1A2 compound statement, DB2
considers the following handlers in the specified order:
a. The most appropriate handler within the INNER1A compound statement.

Chapter 10. Creating and modifying DB2 objects 571

b. The most appropriate handler within the OUTER compound statement.

If no appropriate handler exists in the OUTER compound statement, the
condition is an unhandled condition. If the condition is an exception condition,
the procedure terminates and returns an unhandled condition to the invoking
application. If the condition is a warning or NOT FOUND condition, the
procedure returns the unhandled warning condition to the invoking
application.

2. If an exception, warning, or NOT FOUND condition occurs within the body of
the condition handler HINNER1A, and the condition handler
HINNER1A_HANDLER is the most appropriate handler for the exception, that
handler is activated. Otherwise, the most appropriate handler within the
OUTER compound statement handles the condition. If no appropriate handler
exists within the OUTER compound statement, the condition is treated as an
unhandled condition.

Example: In the following example, when statement2 results in a NOT FOUND
condition, the appropriate condition handler is activated to handle the condition.
When the condition handler completes, the compound statement that contains that
condition handler terminates, because the condition handler is an EXIT handler.
Processing then continues with statement4.
BEGIN

DECLARE EXIT HANDLER FOR NOT FOUND
SET OUT_OF_DATA_FLAG = ON;

statement1...
statement2... --assume that this statement results in a NOT FOUND condition
statement3...

END;

statement4
...

Example: In the following example, DB2 checks for SQLSTATE 22H11 only for
statements inside the INNER compound statement. DB2 checks for
SQLEXCEPTION for all statements in both the OUTER and INNER blocks.
OUTER: BEGIN

DECLARE var1 INT;
DECLARE EXIT HANDLER FOR SQLEXCEPTION

RETURN -3;

INNER: BEGIN
DECLARE EXIT HANDLER FOR SQLSTATE ’22H11’

RETURN -1;
DECLARE C1 CURSOR FOR SELECT col1 FROM table1;
OPEN C1;
CLOSE C1;

:
: -- more statements

END INNER;
:
: -- more statements

Example: In the following example, DB2 checks for SQLSTATE 42704 only for
statements inside the A compound statement.
CREATE PROCEDURE EXIT_TEST ()

LANGUAGE SQL
BEGIN

DECLARE OUT_BUFFER VARCHAR(80);
DECLARE NO_TABLE CONDITION FOR SQLSTATE ’42704’;

A: BEGIN �1�

572 Application Programming and SQL Guide

DECLARE EXIT HANDLER FOR NO_TABLE �3�
BEGIN

SET OUT_BUFFER =’Table does not exist’; �4�
END;

-- Drop potentially nonexistent table:
DROP TABLE JAVELIN; �2�

B: SET OUT_BUFFER =’Table dropped successfully’;
END;
-- Copy OUT_BUFFER to some message table:
C: INSERT INTO MESSAGES VALUES (OUT_BUFFER); �5�

The following notes describe a possible flow for the preceding example:
1. A nested compound statement with label A confines the scope of the

NO_TABLE exit handler to the statements that are specified in the A compound
statement.

2. If the table JAVELIN does not exist, the DROP statement raises the NO_TABLE
condition.

3. The exit handler for NO_TABLE is activated.
4. The variable OUT_BUFFER is set to the string 'Table does not exist.'
5. Execution continues with the INSERT statement. No more statements in the A

compound statement are processed.

Example:

The following example illustrates the scope of different condition handlers.
CREATE PROCEDURE ERROR_HANDLERS(IN PARAM INTEGER)

LANGUAGE SQL
OUTER: BEGIN

DECLARE I INTEGER;
DECLARE SQLSTATE CHAR(5) DEFAULT ’00000’;

DECLARE EXIT HANDLER FOR
SQLSTATE VALUE ’38H02’,
SQLSTATE VALUE ’38H04’,
SQLSTATE VALUE ’38HI4’,
SQLSTATE VALUE ’38H06’

OUTER_HANDLER: BEGIN
DECLARE TEXT VARCHAR(70);
SET TEXT = SQLSTATE ||

’ RECEIVED AND MANAGED BY OUTER ERROR HANDLER’ ;
RESIGNAL SQLSTATE VALUE ’38HE0’

SET MESSAGE_TEXT = TEXT;
END OUTER_HANDLER;

INNER: BEGIN
DECLARE EXIT HANDLER FOR SQLSTATE VALUE ’38H03’

RESIGNAL SQLSTATE VALUE ’38HI3’
SET MESSAGE_TEXT = ’38H03 MANAGED BY INNER ERROR HANDLER’;

DECLARE EXIT HANDLER FOR SQLSTATE VALUE ’38H04’
RESIGNAL SQLSTATE VALUE ’38HI4’

SET MESSAGE_TEXT = ’38H04 MANAGED BY INNER ERROR HANDLER’;

DECLARE EXIT HANDLER FOR SQLSTATE VALUE ’38H05’
RESIGNAL SQLSTATE VALUE ’38HI5’

SET MESSAGE_TEXT = ’38H05 MANAGED BY INNER ERROR HANDLER’;

CASE PARAM
WHEN 1 THEN -- (1)

SIGNAL SQLSTATE VALUE ’38H01’

Chapter 10. Creating and modifying DB2 objects 573

SET MESSAGE_TEXT =
’EXAMPLE 1: ERROR SIGNALED FROM INNER COMPOUND STMT’;

WHEN 2 THEN -- (2)
SIGNAL SQLSTATE VALUE ’38H02’

SET MESSAGE_TEXT =
’EXAMPLE 2: ERROR SIGNALED FROM INNER COMPOUND STMT’;

WHEN 3 THEN -- (3)
SIGNAL SQLSTATE VALUE ’38H03’

SET MESSAGE_TEXT =
’EXAMPLE 3: ERROR SIGNALED FROM INNER COMPOUND STMT’;

WHEN 4 THEN -- (4)
SIGNAL SQLSTATE VALUE ’38H04’

SET MESSAGE_TEXT =
’EXAMPLE 4: ERROR SIGNALED FROM INNER COMPOUND STMT’;

ELSE
SET I = 1; /*Do not do anything */

END CASE;
END INNER;

CASE PARAM
WHEN 5 THEN -- (5)

SIGNAL SQLSTATE VALUE ’38H05’
SET MESSAGE_TEXT =

’EXAMPLE 5: ERROR SIGNALED FROM OUTER COMPOUND STMT’;
WHEN 6 THEN -- (6)

SIGNAL SQLSTATE VALUE ’38H06’
SET MESSAGE_TEXT =

’EXAMPLE 6: ERROR SIGNALED FROM OUTER COMPOUND STMT’;
ELSE -- (7)

SET I = 1; /*Do not do anything */
END CASE;

END OUTER

The following table summarizes the behavior of the preceding example:

Input
value
for
PARM Expected behavior

1 SQLSTATE 38H01 is signaled from the INNER compound statement. Because no
appropriate handler exists, the procedure terminates and returns the unhandled
exception condition, 38H01 with SQLCODE -438, to the calling application.

2 SQLSTATE 38H02 is signaled from the INNER compound statement. The
condition handler in the OUTER compound statement is activated. A RESIGNAL
statement, with SQLSTATE 38HE0, is issued from within the body of the
condition handler. This exception causes control to be returned to the end of the
OUTER compound statement with exception condition 38HE0 and SQLCODE
-438. The procedure terminates and returns the unhandled condition to the calling
application.

3 SQLSTATE 38H03 is signaled from the INNER compound statement. A condition
handler within the INNER compound statement is activated. A RESIGNAL
statement, with SQLSTATE 38HI3, is issued from within the body of the condition
handler. Because no appropriate handler exists, the procedure terminates and
returns the unhandled exception condition, 38HI3 with SQLCODE -438, to the
calling application.

574 Application Programming and SQL Guide

Input
value
for
PARM Expected behavior

4 SQLSTATE 38H04 is signaled from the INNER compound statement. A condition
handler within the INNER compound statement is activated. A RESIGNAL
statement, with SQLSTATE 38HI4, is issued from within the body of the condition
handler. A condition handler in the OUTER compound statement is activated. A
RESIGNAL statement, with SQLSTATE 38HE0, is issued from within the body of
the condition handler. This exception causes control to be returned to the end of
the OUTER compound statement with exception condition 38HE0 and SQLCODE
-438. The procedure terminates and returns the unhandled condition to the calling
application.

5 SQLSTATE 38H05 is signaled from the OUTER compound statement. Because no
appropriate handler exists, the procedure terminates and returns the unhandled
exception condition, 38H05 with SQLCODE -438, to the calling application.

6 SQLSTATE 38H06 is signaled from the OUTER compound statement. A condition
handler in the OUTER compound statement is activated. A RESIGNAL statement,
with SQLSTATE 38HE0, is issued from within the body of the condition handler.
This exception causes control to be returned to the end of the OUTER compound
statement with exception condition 38HE0 and SQLCODE -438. The procedure
terminates and returns the unhandled condition to the calling application.

7 The ELSE clause of the CASE statement executes and processes the SET statement.
A successful completion code is returned to the calling application.

Example: In the following example SQL procedure, the condition handler for
exception1 is not within the scope of the condition handler for exception0. If
exception condition exception1 is raised in the body of the condition handler for
exception0, no appropriate handler exists, and the procedure terminates with an
unhandled exception.
CREATE PROCEDURE divide (.....)
LANGUAGE SQL CONTAINS SQL
BEGIN

DECLARE dn_too_long CHAR(5) DEFAULT ’abcde’;

-- Declare condition names --------------------------
DECLARE exception0 CONDITION FOR SQLSTATE ’22001’;
DECLARE exception1 CONDITION FOR SQLSTATE ’xxxxx’;

-- Declare cursors ----------------------------------
DECLARE cursor1 CURSOR WITH RETURN FOR

SELECT * FROM dept;

-- Declare handlers ---------------------------------
DECLARE CONTINUE HANDLER FOR exception0

BEGIN
some SQL statement that causes an error ’xxxxx’

END

DECLARE CONTINUE HANDLER FOR exception1
BEGIN

...
END

-- Mainline of procedure ----------------------------
INSERT INTO DEPT (DEPTNO) VALUES (dn_too_long);

Chapter 10. Creating and modifying DB2 objects 575

-- Assume that this statement results in SQLSTATE ’22001’

OPEN CURSOR1;
END

Retrieving diagnostic information by using GET DIAGNOSTICS in a handler:

Handlers specify the action that an SQL procedure takes when a particular error or
condition occurs. In some cases, you want to retrieve additional diagnostic
information about the error or warning condition.

About this task

You can include a GET DIAGNOSTICS statement in a handler to retrieve error or
warning information. If you include GET DIAGNOSTICS, it must be the first
statement that is specified in the handler.

Example: Using GET DIAGNOSTICS to retrieve message text: Suppose that you
create an SQL procedure, named divide1, that computes the result of the division
of two integers. You include GET DIAGNOSTICS to return the text of the division
error message as an output parameter:
CREATE PROCEDURE divide1

(IN numerator INTEGER, IN denominator INTEGER,
OUT divide_result INTEGER, OUT divide_error VARCHAR(1000))
LANGUAGE SQL
BEGIN

DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
GET DIAGNOSTICS CONDITION 1 divide_error = MESSAGE_TEXT;

SET divide_result = numerator / denominator;
END

Ignoring a condition in an SQL procedure:

You can specify that you want to ignore errors or warnings within a particular
scope of statements in an SQL procedure. However, do so with caution.

Procedure

To ignore a condition in an SQL procedure:

Declare a condition handler that contains an empty compound statement.

Example

The following example shows a condition handler that is declared as a way of
ignoring a condition. Assume that your SQL procedure inserts rows into a table
that has a unique column. If the value to be inserted for that column already exists
in the table, the row is not inserted. However, in this case, you do not want DB2 to
notify the application about this condition, which is indicated by SQLSTATE 23505.

DECLARE CONTINUE HANDLER FOR SQLSTATE ’23505’
BEGIN -- ignore error for duplicate value
END;

576 Application Programming and SQL Guide

Related concepts:
“Handlers in an SQL procedure” on page 567
Related reference:

SQLSTATE values and common error codes (DB2 Codes)

Raising a condition within an SQL procedure by using the
SIGNAL or RESIGNAL statements
Within an SQL procedure, you can force a particular condition to occur with a
specific SQLSTATE and message text.

About this task

You can use either a SIGNAL or RESIGNAL statement to raise a condition with a
specific SQLSTATE and message text within an SQL procedure. The SIGNAL and
RESIGNAL statements differ in the following ways:
v You can use the SIGNAL statement anywhere within an SQL procedure. You

must specify the SQLSTATE value. In addition, you can use the SIGNAL
statement in a trigger body. For information about using the SIGNAL statement
in a trigger, see “Creating triggers” on page 472.

v You can use the RESIGNAL statement only within a handler of an SQL
procedure. If you do not specify the SQLSTATE value, DB2 uses the same
SQLSTATE value that activated the handler.

You can use any valid SQLSTATE value in a SIGNAL or RESIGNAL statement,
except an SQLSTATE class with '00' as the first two characters.

The following table summarizes the differences between issuing a RESIGNAL or
SIGNAL statement within the body of a condition handler. For each row in the
table, assume that the diagnostics area contains the following information when
the RESIGNAL or SIGNAL statement is issued:

RETURNED_SQLSTATE xxxxx
MESSAGE_TEXT ’this is my message’

Table 90. Example RESIGNAL and SIGNAL statements

Specify a new
condition?

Specify
message text?

Example RESIGNAL
statement...

Example SIGNAL
statement... Result

No No RESIGNAL

1

Not possible
RETURNED_SQLSTATE xxxxx

MESSAGE_TEXT 'this is my
message'

Yes No RESIGNAL ’98765’

2

SIGNAL ’98765’
RETURNED_SQLSTATE 98765

MESSAGE_TEXT 'APPLICATION
RAISED ERROR WITH
DIAGNOSTIC TEXT: this is my
message'

No Yes Not possible Not possible NA

Yes Yes RESIGNAL ’98765’
SET MESSAGE_TEXT
= ’xyz’

3

SIGNAL ’98765’
SET MESSAGE_TEXT
= ’xyz’

3

RETURNED_SQLSTATE 98765

MESSAGE_TEXT 'APPLICATION
RAISED ERROR WITH
DIAGNOSTIC TEXT: xyz'

Chapter 10. Creating and modifying DB2 objects 577

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.codes/src/tpc/db2z_sqlstatevalues.htm#db2z_sqlstatevalues

Note:

1. This statement raises the current condition with the existing SQLSTATE,
SQLCODE, message text, and tokens.

2. This statement raises a new condition (SQLSTATE '98765'). Existing message
text and tokens are reset. The SQLCODE is set to -438 for an error or 438 for a
warning.

3. This statement raises a new condition (SQLSTATE '98765') with new message
text ('xyz'). The SQLCODE is set to -438 for an error or 438 for a warning.

Example of the SIGNAL statement in an SQL procedure:

You can use the SIGNAL statement anywhere within an SQL procedure to raise a
particular condition.

The following example uses an ORDERS table and a CUSTOMERS table that are
defined in the following way:
CREATE TABLE ORDERS

(ORDERNO INTEGER NOT NULL,
PARTNO INTEGER NOT NULL,
ORDER_DATE DATE DEFAULT,
CUSTNO INTEGER NOT NULL,
QUANTITY SMALLINT NOT NULL,
CONSTRAINT REF_CUSTNO FOREIGN KEY (CUSTNO)

REFERENCES CUSTOMERS (CUSTNO) ON DELETE RESTRICT,
PRIMARY KEY (ORDERNO,PARTNO));

CREATE TABLE CUSTOMERS
(CUSTNO INTEGER NOT NULL,
CUSTNAME VARCHAR(30),
CUSTADDR VARCHAR(80),
PRIMARY KEY (CUSTNO));

Example: Using SIGNAL to set message text

Suppose that you have an SQL procedure for an order system that signals an
application error when a customer number is not known to the application. The
ORDERS table has a foreign key to the CUSTOMERS table, which requires that the
CUSTNO exist in the CUSTOMERS table before an order can be inserted:
CREATE PROCEDURE submit_order

(IN ONUM INTEGER, IN PNUM INTEGER,
IN CNUM INTEGER, IN QNUM INTEGER)
LANGUAGE SQL
MODIFIES SQL DATA
BEGIN

DECLARE EXIT HANDLER FOR SQLSTATE VALUE ’23503’
SIGNAL SQLSTATE ’75002’

SET MESSAGE_TEXT = ’Customer number is not known’;
INSERT INTO ORDERS (ORDERNO, PARTNO, CUSTNO, QUANTITY)

VALUES (ONUM, PNUM, CNUM, QNUM);
END

In this example, the SIGNAL statement is in the handler. However, you can use the
SIGNAL statement to invoke a handler when a condition occurs that will result in
an error.

578 Application Programming and SQL Guide

Related concepts:
“Example of the RESIGNAL statement in a handler”

Example of the RESIGNAL statement in a handler:

You can use the RESIGNAL statement in an SQL procedure to assign a different
value to the condition that activated the handler. T

Example: Using RESIGNAL to set an SQLSTATE valu

Suppose that you create an SQL procedure, named divide2, that computes the
result of the division of two integers. You include SIGNAL to invoke the handler
with an overflow condition that is caused by a zero divisor, and you include
RESIGNAL to set a different SQLSTATE value for that overflow condition:
CREATE PROCEDURE divide2

(IN numerator INTEGER, IN denominator INTEGER,
OUT divide_result INTEGER)
LANGUAGE SQL
BEGIN

DECLARE overflow CONDITION FOR SQLSTATE ’22003’;
DECLARE CONTINUE HANDLER FOR overflow

RESIGNAL SQLSTATE ’22375’;
IF denominator = 0 THEN

SIGNAL overflow;
ELSE

SET divide_result = numerator / denominator;
END IF;

END

Example: RESIGNAL in a nested compound statement

If the following SQL procedure is invoked with argument values 1, 0, and 0, the
procedure returns a value of 2 for RC and sets the oparm1 parameter to 650.
CREATE PROCEDURE resig4

(IN iparm1 INTEGER, INOUT oparm1 INTEGER, INOUT rc INTEGER)
LANGUAGE SQL
A1: BEGIN

DECLARE c1 INT DEFAULT 1;
DECLARE CONTINUE HANDLER FOR SQLSTATE VALUE ’01ABX’

BEGIN
.... some other statements
SET RC = 3; �6�

END;

A2: SET oparm1 = 5; �1�

A3: BEGIN
DECLARE c1 INT DEFAULT 1;
DECLARE CONTINUE HANDLER

FOR SQLSTATE VALUE ’01ABC’
BEGIN

SET RC = 1; �4�
RESIGNAL SQLSTATE VALUE ’01ABX’ �5�

SET MESSAGE_TEXT = ’get out of here’;
SET RC = 2; �7�

END;

A7: SET oparm1 = oparm1 + 110; �2�
SIGNAL SQLSTATE VALUE ’01ABC’ �3�

SET MESSAGE_TEXT = ’yikes’;

Chapter 10. Creating and modifying DB2 objects 579

SET oparm1 = oparm1 + 215; �8�
END;

SET oparm1 = oparm1 + 320; �9�
END

The following notes refer to the preceding example:
1. oparm1 is initially set to 5.
2. oparm1 is incremented by 110. The value of oparm1 is now 115.
3. The SIGNAL statement causes the condition handler that is contained in the A3

compound statement to be activated.
4. In this condition handler, RC is set to 1.
5. The RESIGNAL statement changes the SQLSTATE to 01ABX. This value causes

the continue handler in the A1 compound statement to be activated.
6. RC is set to 3 in this condition handler. Because this condition handler is a

continue handler, when the handler action completes, control returns to the SET
statement after the RESIGNAL statement.

7. RC is set to 2 in this condition handler. Because this condition handler is a
continue handler, control returns to the SET statement that follows the SIGNAL
statement that caused the condition handler to be activated.

8. oparm1 is incremented by 215. The value of oparm is now 330.
9. oparm1 is incremented by 320. The value of oparm is now 650.

How SIGNAL and RESIGNAL statements affect the diagnostics area:

When you issue a SIGNAL statement, a new logical diagnostics area is created.
When you issue a RESIGNAL statement, the current diagnostics area is updated.

When you issue a SIGNAL statement, a new diagnostics area is logically created.
In that diagnostics area, RETURNED_SQLSTATE is set to the SQLSTATE or
condition name specified. If you specified message text as part of the SIGNAL
statement, MESSAGE_TEXT in the diagnostics area is also set to the specified
value.

When you issue a RESIGNAL statement with a SQLSTATE value, condition name,
or message text, the current diagnostics area is updated with the specified
information.

Making copies of a package for a native SQL procedure
When you create a native SQL procedure, a package is implicitly bound with the
options that you specified on the CREATE PROCEDURE statement. If the native
SQL procedure performs certain actions, you need to explicitly make copies of that
package.

About this task

If the native SQL procedure performs one or more of the following actions, you
need to create copies of the package for that procedure:
v Uses a CONNECT statement to connect to a database server.
v Refers to a table with a three part name that includes a location other than the

current server or refers to an alias that resolves to such a name.
v Sets the CURRENT PACKAGESET special register to control which package is

invoked for that version of the procedure.

580 Application Programming and SQL Guide

v Sets the CURRENT PACKAGE PATH special register to control which package is
invoked for that version of the procedure.

The package for a version of a procedure has the following name:
location.collection-id.package-id.version-id where these variables have the following
values:

location
Value of the CURRENT SERVER special register

collection-id
Schema qualifier of the procedure

package-id
Procedure name

version-id
Version identifier

To make copies of a package for a native SQL procedure, specify the BIND
PACKAGE command with the COPY option. For copies that are created on the
current server, specify a different schema qualifier, which is the collection ID. For
the first copy that is created on a remote server, you can specify the same schema
qualifier. For other copies on that remote server, specify a different schema
qualifier.

If you later change the native SQL procedure, you might need to explicitly rebind
any local or remote copies of the package that exist for that version of the
procedure.

Example: Because the following native SQL procedure contains a CONNECT
statement, you must create a copy of the package at the target server, which in this
case is at location SAN_JOSE. The subsequent BIND command creates a copy of
the package for version ABC of the procedure TEST.MYPROC. This package is
created at location SAN_JOSE and is used by DB2 when this procedure is
executed.
CREATE PROCEDURE TEST.MYPROC VERSION ABC LANGUAGE SQL ...
BEGIN
...
CONNECT TO SAN_JOSE
...
END

BIND PACKAGE (SAN_JOSE.TEST) COPY(TEST.MYPROC) COPYVER(ABC) ACTION(ADD)

Example: The following native SQL procedure sets the CURRENT PACKAGESET
special register to ensure that DB2 uses the package with the collection ID COLL2
for this version of the procedure. Consequently, you must create such a package.
The subsequent BIND command creates this package with collection ID COLL2.
This package is a copy of the package for version ABC of the procedure
TEST.MYPROC. DB2 uses this package to process the SQL statements in this
procedure.
CREATE PROCEDURE TEST.MYPROC VERSION ABC LANGUAGE SQL ...
BEGIN
...
SET CURRENT PACKAGESET = ’COLL2’
...
END

Chapter 10. Creating and modifying DB2 objects 581

BIND PACKAGE(COLL2) COPY(TEST.MYPROC) COPYVER(ABC)
ACTION(ADD) QUALIFIER(XYZ)

Related tasks:
“Regenerating an existing version of a native SQL procedure” on page 589
“Replacing copies of a package for a version of a native SQL procedure”
Related reference:

ALTER PROCEDURE (SQL - native) (DB2 SQL)

Replacing copies of a package for a version of a native SQL procedure:

When you change a version of a native SQL procedure and the ALTER
PROCEDURE REPLACE statement contains certain options, you must replace any
local or remote copies of the package that exist for that version of the procedure.

About this task

If you specify any of the following ALTER PROCEDURE options, you must replace
copies of the package:
v REPLACE VERSION
v REGENERATE
v DISABLE DEBUG MODE
v QUALIFIER
v PACKAGE OWNER
v DEFER PREPARE
v NODEFER PREPARE
v CURRENT DATA
v DEGREE
v DYNAMICRULES
v APPLICATION ENCODING SCHEME
v WITH EXPLAIN
v WITHOUT EXPLAIN
v WITH IMMEDIATE WRITE
v WITHOUT IMMEDIATE WRITE
v ISOLATION LEVEL
v WITH KEEP DYNAMIC
v WITHOUT KEEP DYNAMIC
v OPTHINT
v SQL PATH
v RELEASE AT COMMIT
v RELEASE AT DEALLOCATE
v REOPT
v VALIDATE RUN
v VALIDATE BIND
v ROUNDING
v DATE FORMAT
v DECIMAL

582 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_alterproceduresqlnative.htm#db2z_sql_alterproceduresqlnative

v FOR UPDATE CLAUSE OPTIONAL
v FOR UPDATE CLAUSE REQUIRED
v TIME FORMAT

To replace copies of a package for a version of a native SQL procedure, specify the
BIND COPY ACTION(REPLACE) command with the appropriate package name
and version ID.

Creating a new version of a native SQL procedure
A new version of a native SQL procedure can have different parameter names,
procedure options, or procedure body.

About this task

All versions of a procedure must have the same procedure signature. Therefore,
each version of the procedure must have the same of the following items:
v Schema name
v Procedure name
v Number of parameters
v Data types for corresponding parameters

When any single version of a procedure is defined as autonomous, all versions
must be defined as autonomous.

Procedure

To create a new version of a procedure:

Issue the ALTER PROCEDURE statement with the following items:
v The name of the native SQL procedure for which you want to create a new

version.
v The ADD VERSION clause with a name for the new version.
v The parameter list of the procedure that you want to alter. This parameter list

must be the same as the original procedure.
v Any procedure options. These options can be different than the options for other

versions of this procedure. If you do not specify a value for a particular option,
the default value is used, regardless of the value that is used by the current
active version of this procedure.

v A procedure body. This body can be different than the procedure body for other
versions of this procedure.

Example

For example, the following CREATE PROCEDURE statement defines a new native
SQL procedure called UPDATE_BALANCE. The version of the procedure is V1,
and it is the active version.
CREATE PROCEDURE
UPDATE_BALANCE
(IN CUSTOMER_NO INTEGER,
IN AMOUNT DECIMAL(9,2))
VERSION V1
LANGUAGE SQL
READS SQL DATA
BEGIN
DECLARE CUSTOMER_NAME CHAR(20);
SELECT CUSTNAME

Chapter 10. Creating and modifying DB2 objects 583

|
|

INTO CUSTOMER_NAME
FROM ACCOUNTS
WHERE CUSTNO = CUSTOMER_NO;
END

The following ALTER PROCEDURE statement creates a new version of the
UPDATE_BALANCE procedure. The version name of the new version is V2. This
new version has a different procedure body.
ALTER PROCEDURE
UPDATE_BALANCE
ADD VERSION V2
(IN CUSTOMER_NO INTEGER,
IN AMOUNT DECIMAL (9,2))
MODIFIES SQL DATA
BEGIN
UPDATE ACCOUNTS
SET BAL = BAL + AMOUNT
WHERE CUSTNO = CUSTOMER_NO;
END

What to do next

After you create a new version, if you want that version to be invoked by all
subsequent calls to this procedure, you need to make that version the active
version.

Multiple versions of native SQL procedures:

You can define multiple versions of a native SQL procedure. DB2 maintains this
version information for you.

One or more versions of a procedure can exist at any point in time at the current
server, but only one version of a procedure is considered the active version. When
you first create a procedure, that initial version is considered the active version of
the procedure.

Using multiple versions of a native SQL procedure has the following advantages:
v You can keep the existing version of a procedure active while you create another

version. When the other version is ready, you can make it the active one.
v When you make another version of a procedure active, you do not need to

change any existing calls to that procedure.
v You can easily switch back to a previous version of a procedure if the version

that you switched to does not work as planned.
v You can drop an unneeded version of a procedure.

A new version of a native SQL procedure can have different values for the
following items:
v Parameter names
v Procedure options (except for the AUTONOMOUS option, which must be

specified for all versions or none)
v Procedure body

Restrictions:

v A new version of a native SQL procedure cannot have different values for the
following items:
– Number of parameters

584 Application Programming and SQL Guide

|
|

– Parameter data types
– Parameter attributes for character data
– Parameter CCSIDs
– Whether a parameter is an input or output parameter, as defined by the IN,

OUT, and INOUT options

If you need to specify different values for any of the preceding items, create a
new native SQL procedure, instead of a new version.

v When the AUTONOMOUS option is specified for one version of a procedure, it
must be specified for every version of that procedure.

Deploying a native SQL procedure to another DB2 for z/OS
server
When deploying a native SQL procedure to another DB2 for z/OS server, you can
change the bind options to better match the deploying environment. The procedure
logic remains the same. This deployment process is useful when you want to move
a procedure from a test system to a production system.

Before you begin

Requirements:

v The remote server must be properly defined in the communications database of
the DB2 subsystem from which you deploy the native SQL procedure.

v The target DB2 subsystem must be operating at a PTF level that is compatible
with the PTF level of the local DB2 subsystem.

Procedure

To deploy a native SQL procedure to another DB2 for z/OS server:

Issue the BIND PACKAGE command with the following options:

DEPLOY
Specify the name of the procedure whose logic you want to use on the target
server.

Tip: When specifying the parameters for the DEPLOY option, consider the
following naming rules for native SQL procedures:
v The collection ID is the same as the schema name in the original CREATE

PROCEDURE statement.
v The package ID is the same as the procedure name in the original CREATE

PROCEDURE statement.

COPYVER
Specify the version of the procedure whose logic you want to use on the target
server.

ACTION(ADD) or ACTION(REPLACE)
Specify whether you want DB2 to create a new version of the native SQL
procedure and its associated package or to replace the specified version.

Optionally, you can also specify the bind options QUALIFIER or OWNER if want
to change them.

Chapter 10. Creating and modifying DB2 objects 585

|
|

Example

Example of deploying the same version of a procedure at another location: The
following BIND command creates a native SQL procedure with the name
PRODUCTION.MYPROC at the CHICAGO location. This procedure is created
from the procedure TEST.MYPROC at the current site. Both native SQL procedures
have the same content and version, ABC. However, the package for the procedure
CHICAGO.PRODUCTION.MYPROC has XYZ as its qualifier.
CREATE PROCEDURE TEST.MYPROC VERSION ABC LANGUAGE SQL ...
BEGIN
...
END

BIND PACKAGE(CHICAGO.PRODUCTION) DEPLOY(TEST.MYPROC) COPYVER(ABC)
ACTION(ADD) QUALIFIER(XYZ)

Example of replacing a version of a procedure at another location: The following
BIND command replaces version ABC of the procedure PRODUCTION.MYPROC
at the CHICAGO location with version ABC of the procedure TEST.MYPROC at
the current site.
BIND PACKAGE(CHICAGO.PRODUCTION) DEPLOY(TEST.MYPROC) COPYVER(ABC)

ACTION(REPLACE) REPLVER(ABC)

Related concepts:

Communications database for the server (Managing Security)
Related reference:

BIND and REBIND options (DB2 Commands)

BIND PACKAGE (DSN) (DB2 Commands)

Scenario for deployment (DB2 9 for z/OS Stored Procedures: Through the
CALL and Beyond)

Migrating an external SQL procedure to a native SQL
procedure

Native SQL procedures typically perform better, have more functionality, and are
easier to maintain than external SQL procedures.

Before you begin

If you created the external SQL procedure in a previous release of DB2, consider
the release incompatibilities for applications that use stored procedures. For
information about the release incompatibilities, see “Application and SQL release
incompatibilities” on page 1. Examine your external SQL procedure source code,
and make any necessary adjustments.

Procedure

To migrate an external SQL procedure to a native SQL procedure:
1. Find and save the existing CREATE PROCEDURE and GRANT EXECUTE

statements for the existing external SQL procedure.
2. Drop the existing external SQL procedure by using the DROP PROCEDURE

statement.

586 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_cdb4server.htm#db2z_cdb4server
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_bindpackage.htm#db2z_cmd_bindpackage
http://www.redbooks.ibm.com/redbooks/SG247604/26-29.htm
http://www.redbooks.ibm.com/redbooks/SG247604/26-29.htm

3. Re-create the procedure as a native SQL procedure by using the same CREATE
PROCEDURE statement that you used to originally create the procedure, with
both of the following changes:
v If the procedure was defined with the options FENCED or EXTERNAL,

remove these keywords.
v Either remove the WLM ENVIRONMENT keyword, or add the FOR DEBUG

MODE clause.
v If the procedure body contains statements with unqualified names that could

refer to either a column or an SQL variable or parameter, qualify these
names. Otherwise, you might need to change the statement.
DB2 resolves these names differently depending on whether the procedure is
an external SQL procedure or a native SQL procedure. For external SQL
procedures, DB2 first treats the name as a variable or parameter if one exists
with that name. For native SQL procedures, DB2 first treats the name as a
column if a column exists with that name. For example, consider the
following statement:
CREATE PROCEDURE P1 (INOUT C1 INT) ... SELECT C1 INTO xx FROM T1

In the preceding example, if P1 is an external SQL procedure, C1 is a
parameter. For native SQL procedures, C1 is a column in table T1. If such a
column does not exist, C1 is a parameter.

4. Issue the same GRANT EXECUTE statements that you used to originally grant
privileges for this stored procedure.

5. Increase the value of the TIME parameter on the job statement for applications
that call stored procedures.

Important: This change is necessary because time for SQL external stored
procedures is charged to the WLM address space, while time for native SQL
stored procedures is charged to the address space of the task.

6. Test your new native SQL procedure.
Related tasks:

Implementing DB2 stored procedures (DB2 Administration Guide)
Related reference:

CREATE PROCEDURE (SQL - external) (DB2 SQL)

CREATE PROCEDURE (SQL - native) (DB2 SQL)

DROP (DB2 SQL)

GRANT (function or procedure privileges) (DB2 SQL)

Using the DB2 precompiler to assist you in converting an
external SQL procedure to a native SQL procedure
The DB2 precompiler can be useful when considering any conversion of an
external SQL procedure to a native SQL procedure.

About this task

Use the DB2 precompiler to inspect the SQL procedure source from a native SQL
PL perspective. A listing is produced that helps to isolate problems and
incompatibilities between external and native SQL procedure coding. Source
changes can then be made before making any changes in DB2.

Chapter 10. Creating and modifying DB2 objects 587

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_storedprocedureimplementation.htm#db2z_storedprocedureimplementation
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createproceduresqlexternal.htm#db2z_sql_createproceduresqlexternal
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createproceduresqlnative.htm#db2z_sql_createproceduresqlnative
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_drop.htm#db2z_sql_drop
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_grantfunctionorprocedureprivileges.htm#db2z_sql_grantfunctionorprocedureprivileges

Procedure

To inspect the quality of native SQL PL source coding using the DB2 precompiler:
1. Copy the original SQL PL source code to a FB80 data set. Reformat the source

as needed to fit within the precompiler margins.
2. Precompile the SQL PL source by executing program DSNHPSM with the

HOST(SQLPL) option.
3. Inspect the produced listing (SYSPRINT). Pay attention to error and warning

messages.
4. Modify the SQL PL source to address coding problems that are identified by

messages in the listing.
5. Repeat steps 1 through 4 until all error and warning messages are resolved.

Address informational messages as needed.
6. Copy the modified SQL PL source file back to its original source format,

reformatting as needed.

Results

Sample JCL DSNTEJ67 demonstrates this process for an external SQL procedure
that was produced using the DB2 SQL procedure processor DSNTPSMP.
Related reference:
“Sample programs to help you prepare and run external SQL procedures” on page
605

Changing an existing version of a native SQL procedure
You can change an option or the procedure body for a particular version of a
native SQL procedure. If you want to keep a copy of that stored procedure,
consider creating a new version instead of changing the existing version.

Procedure

To change an existing version of a native SQL procedure:

Issue the ALTER PROCEDURE statement with the REPLACE VERSION clause.
Any option that you do not explicitly specify inherits the system default values.
This inheritance occurs even if those options were explicitly specified for a prior
version by using a CREATE PROCEDURE statement, ALTER PROCEDURE
statement, or REBIND command.

Example

The following ALTER PROCEDURE statement updates version V2 of the
UPDATE_BALANCE procedure.
ALTER PROCEDURE
TEST.UPDATE_BALANCE
REPLACE VERSION V2
(IN CUSTOMER_NO INTEGER,
IN AMOUNT DECIMAL(9,2))
MODIFIES SQL DATA
ASUTIME LIMIT 100
BEGIN
UPDATE ACCOUNTS

588 Application Programming and SQL Guide

SET BAL = BAL + AMOUNT
WHERE CUSTNO = CUSTOMER_NO
AND CUSTSTAT = ’A’;
END

Related tasks:
“Creating a new version of a native SQL procedure” on page 583
Related reference:

REBIND PACKAGE (DSN) (DB2 Commands)

ALTER PROCEDURE (SQL - native) (DB2 SQL)

CREATE PROCEDURE (SQL - native) (DB2 SQL)

Regenerating an existing version of a native SQL procedure
When you apply DB2 maintenance that changes how native SQL procedures are
generated, you need to regenerate any affected procedures. When you regenerate a
version of a native SQL procedure, DB2 rebinds the associated package for that
version of the procedure.

About this task

ALTER PROCEDURE REGENERATE is different than the REBIND PACKAGE
command. When you specify REBIND PACKAGE, DB2 rebinds only the
non-control SQL statements. Use this command when you think rebinding will
improve the access path. When you specify ALTER PROCEDURE REGENERATE,
DB2 rebinds the SQL control statements as well as the non-control statements.

Procedure

To regenerate an existing version of a native SQL procedure:
1. Issue the ALTER PROCEDURE statement with the REGENERATE clause and

specify the version to be regenerated.
2. If copies of the package for the specified version of the procedure exist at

remote sites, replace those packages. Issue the BIND PACKAGE command with
the COPY option and appropriate location for each remote package.

3. If copies of the package for the specified version of the procedure exist locally
with different schema names, replace those packages. Issue the BIND
PACKAGE command with the COPY option and appropriate schema for each
local package.

Example

The following ALTER PROCEDURE statement regenerates the active version of the
UPDATE_SALARY_1 procedure.
ALTER PROCEDURE UPDATE_SALARY_1
REGENERATE ACTIVE VERSION

Removing an existing version of a native SQL procedure
You can drop a particular version of a native SQL procedure without dropping the
other versions of the procedure.

Chapter 10. Creating and modifying DB2 objects 589

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_rebindpackage.htm#db2z_cmd_rebindpackage
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_alterproceduresqlnative.htm#db2z_sql_alterproceduresqlnative
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createproceduresqlnative.htm#db2z_sql_createproceduresqlnative

Before you begin

Before you remove an existing version of a native SQL procedure, ensure that the
version is not active. If the version is the active version, designate a different active
version before proceeding.

Procedure

To remove an existing version of a native SQL procedure:

Issue the ALTER PROCEDURE statement with the DROP VERSION clause and the
name of the version that you want to drop. If you instead want to drop all
versions of the procedure, use the DROP statement.

Example of dropping a version that is not active: The following statement drops
the OLD_PRODUCTION version of the P1 procedure.
ALTER PROCEDURE P1 DROP VERSION OLD_PRODUCTION

Example of dropping an active version: Assume that the OLD_PRODUCTION
version of the P1 procedure is the active version. The following example first
switches the active version to NEW_PRODUCTION and then drops the
OLD_PRODUCTION version.
ALTER PROCEDURE P1 ACTIVATE VERSION NEW_PRODUCTION;
ALTER PROCEDURE P1 DROP VERSION OLD_PRODUCTION;

Related tasks:
“Designating the active version of a native SQL procedure” on page 801

Creating an external SQL procedure
An external SQL procedure is a procedure whose body is written entirely in SQL.
The body is written in the SQL procedural language. However, an external SQL
procedure is created, implemented, and executed like other external stored
procedures. All SQL procedures that were created prior to Version 9 are external
SQL procedures.

Before you begin

Before you create an external SQL procedure, Configure DB2 for running stored
procedures and user-defined functions during installation or Configure DB2 for
running stored procedures and user-defined functions during migration (DB2
Installation Guide).

Procedure

To create an external SQL procedure:
1. Use one of the following methods to create the external SQL procedure:

v IBM Optim Development Studio. See Developing database routines (IBM
Data Studio, IBM Optim Database Administrator, IBM infoSphere Data
Architect, IBM Optim Development Studio).

v JCL
v The DB2 for z/OS SQL procedure processor (DSNTPSMP)
The preceding methods that you use to create an external SQL procedure
perform the following actions:

590 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_configuredb2fordb2routines.htm#db2z_configuredb2fordb2routines
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_configuredb2fordb2routines.htm#db2z_configuredb2fordb2routines
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_configuredb2fordb2routinesmigr.htm#db2z_configuredb2fordb2routinesmigr
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_configuredb2fordb2routinesmigr.htm#db2z_configuredb2fordb2routinesmigr
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.routines.doc/topics/croutines.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.routines.doc/topics/croutines.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.routines.doc/topics/croutines.html

v Convert the external SQL procedure source statements into a C language
program by using the DB2 precompiler

v Create an executable load module and a DB2 package from the C language
program.

v Define the external SQL procedure to DB2 by issuing a CREATE
PROCEDURE statement either statically or dynamically.

Restriction: If you plan to use the DB2 stored procedure debugger or the
Unified Debugger, do not use JCL. Use either IBM Optim Development Studio
or DSNTPSMP.
If you plan to use IBM Optim Development Studio or DSNTPSMP, you must
set up support for external SQL procedures.

2. Authorize the appropriate users to use the stored procedure by issuing the
GRANT EXECUTE statement.

Example

For examples of how to prepare and run external SQL procedures, see “Sample
programs to help you prepare and run external SQL procedures” on page 605.
Related concepts:
“SQL procedures” on page 552
Related tasks:

Implementing DB2 stored procedures (DB2 Administration Guide)
Related reference:

CREATE PROCEDURE (SQL - external) (DB2 SQL)

GRANT (function or procedure privileges) (DB2 SQL)

Creating an external SQL procedure by using DSNTPSMP
The SQL procedure processor, DSNTPSMP, is one of several methods that you can
use to create and prepare an external SQL procedure. DSNTPSMP is a REXX stored
procedure that you can invoke from your application program.

Before you begin

Set up support for external SQL procedures.

Also ensure that you have the required authorizations, as indicated in the
following table, for invoking DSNTPSMP.

Table 91. Required authorizations for invoking DSNTPSMP

Required authorization Associated syntax for the authorization

Procedure privilege to run application
programs that invoke the stored procedure.

EXECUTE ON PROCEDURE
SYSPROC.DSNTPSMP

Collection privilege to use BIND to create
packages in the specified collection. You can
use an asterisk (*) as the identifier for a
collection.

CREATE ON COLLECTION collection-id

Package privilege to use BIND or REBIND to
bind packages in the specified collection.

BIND ON PACKAGE collection-id.*

System privilege to use BIND with the ADD
option to create packages and plans.

BINDADD

Chapter 10. Creating and modifying DB2 objects 591

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_enableextsqlstprocs.htm#db2z_enableextsqlstprocs
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_storedprocedureimplementation.htm#db2z_storedprocedureimplementation
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createproceduresqlexternal.htm#db2z_sql_createproceduresqlexternal
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_grantfunctionorprocedureprivileges.htm#db2z_sql_grantfunctionorprocedureprivileges
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_enableextsqlstprocs.htm#db2z_enableextsqlstprocs

Table 91. Required authorizations for invoking DSNTPSMP (continued)

Required authorization Associated syntax for the authorization

Schema privilege to create, alter, or drop
stored procedures in the specified schema.
The BUILDOWNER authorization ID must
have the CREATEIN privilege on the schema.
You can use an asterisk (*) as the identifier
for a schema.

CREATEIN, ALTERIN, DROPIN ON
SCHEMA schema-name

Table privileges to select or delete from,
insert into, or update the specified catalog
tables.

SELECT ON TABLE
SYSIBM.SYSROUTINES

SELECT ON TABLE SYSIBM.SYSPARMS

SELECT, INSERT, UPDATE, DELETE ON
TABLE SYSIBM.SYSROUTINES_SRC

SELECT, INSERT, UPDATE, DELETE ON
TABLE SYSIBM.SYSROUTINES_OPTS

ALL ON TABLE SYSIBM.SYSPSMOUT

Any privileges that are required for the SQL
statements and that are contained within the
SQL procedure body. These privileges must
be associated with the OWNER
authorization-id that is specified in your bind
options. The default owner is the user that is
invoking DSNTPSMP.

Syntax varies depending on the SQL
procedure body

Procedure

To create an external SQL procedure by using DSNTPSMP:
1. Write an application program that calls DSNTPSMP. Include the following

items in your program:
v A CLOB host variable that contains a CREATE PROCEDURE statement for

the external SQL procedure. That statement should include the FENCED
keyword or the EXTERNAL keyword, and the procedure body, which is
written in SQL.
Alternatively, instead of defining a host variable for the CREATE
PROCEDURE statement, you can store the statement in a data set member.

v An SQL CALL statement with the BUILD function. The CALL statement
should use the proper syntax for invoking DSNTPSMP.
Pass the SQL procedure source to DSNTPSMP as one of the following input
parameters:

SQL-procedure-source
Use this parameter if you defined a host variable in your application to
contain the CREATE PROCEDURE statement.

source-data-set-name
Use this parameter if you stored the CREATE PROCEDURE statement in
a data set.

v Based on the return value from the CALL statement, issue either an SQL
COMMIT or a ROLLBACK statement. If the return value is 0 or 4, issue a
COMMIT statement. Otherwise, issue a ROLLBACK statement.
You must process the result set before issuing the COMMIT or ROLLBACK
statement.
A QUERYLEVEL request must be followed by the COMMIT statement.

592 Application Programming and SQL Guide

2. Precompile, compile, and link-edit the application program.
3. Bind a package for the application program.
4. Run the application program.
Related concepts:
“SQL procedure body” on page 553
Related reference:

CREATE PROCEDURE (SQL - external) (DB2 SQL)

DB2 for z/OS SQL procedure processor (DSNTPSMP):

The SQL procedure processor, DSNTPSMP, is a REXX stored procedure that you
can use to prepare an external SQL procedure for execution.

You can also use DSNTPSMP to perform selected steps in the preparation process
or delete an existing external SQL procedure. DSNTPSMP is the only preparation
method for enabling external SQL procedures to be debugged with either the SQL
Debugger or the Unified Debugger.

DSNTPSMP requires that your system EBCDIC CCSID also be compatible with the
C compiler. Using an incompatible CCSID results in compile-time errors. Examples
of incompatible CCSIDs include 290, 930, 1026, and 1155. If your system EBCDIC
CCSID is not compatible, do not just change it. Contact IBM Software Support for
help.

Sample startup procedure for a WLM address space for DSNTPSMP:

You must run DSNTPSMP in a WLM-established stored procedures address space.
You should run only DSNTPSMP in that address space, and you must limit the
address space to run only one task concurrently.

This example shows how to set up a WLM address space for DSNTPSMP.

Recommendation: Use the core WLM environment DSNWLM_REXX. Job
DSNTIJMV creates an address space procedure called DSNWLMR for this
environment.

The following example shows sample JCL for a startup procedure for the address
space in which DSNTPSMP runs.
//DSNWLMR PROC DB2SSN=DSN,NUMTCB=1,APPLENV=DSNWLM_REXX �1�
//*
//WLMTPSMP EXEC PGM=DSNX9WLM,TIME=1440, �2�
// PARM=’&DB2SSN,&NUMTCB,&APPLENV’,
// REGION=0M,DYNAMNBR=10
//STEPLIB DD DISP=SHR,DSN=DSN1010.SDSNEXIT �3�
// DD DISP=SHR,DSN=DSN1010.SDSNLOAD
// DD DISP=SHR,DSN=CBC.SCCNCMP
// DD DISP=SHR,DSN=CEE.SCEERUN
// DD DISP=SHR,DSN=DSN1010.DBRMLIB.DATA �3�
//SYSEXEC DD DISP=SHR,DSN=DSN1010.SDSNCLST �4�
//SYSTSPRT DD SYSOUT=A
//CEEDUMP DD SYSOUT=A
//SYSABEND DD DUMMY
//*
//SQLDBRM DD DISP=SHR,DSN=DSN1010.DBRMLIB.DATA �5�
//SQLCSRC DD DISP=SHR,DSN=DSN1010.SRCLIB.DATA �6�
//SQLLMOD DD DISP=SHR,DSN=DSN1010.RUNLIB.LOAD �7�
//SQLLIBC DD DISP=SHR,DSN=CEE.SCEEH.H �8�

Chapter 10. Creating and modifying DB2 objects 593

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createproceduresqlexternal.htm#db2z_sql_createproceduresqlexternal

// DD DISP=SHR,DSN=CEE.SCEEH.SYS.H
//SQLLIBL DD DISP=SHR,DSN=CEE.SCEELKED �9�
// DD DISP=SHR,DSN=DSN1010.SDSNLOAD
//SYSMSGS DD DISP=SHR,DSN=CEE.SCEEMSGP(EDCPMSGE) �10�
//*
//* DSNTPSMP Configuration File - CFGTPSMP (optional) �11�
//* A site-provided sequential data set or member, used to
//* define customized operation of DSNTPSMP in this APPLENV
//*
//* CFGTPSMP DD DISP=SHR,DSN=
//*
//SQLSRC DD UNIT=SYSALLDA,SPACE=(23440,(20,20)), �12�
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=23440)
//SQLPRINT DD UNIT=SYSALLDA,SPACE=(23476,(20,20)),
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=23476)
//SQLTERM DD UNIT=SYSALLDA,SPACE=(23476,(20,20)),
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=23476)
//SQLOUT DD UNIT=SYSALLDA,SPACE=(23476,(20,20)),
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=23476)
//SQLCPRT DD UNIT=SYSALLDA,SPACE=(23476,(20,20)),
// DCB=(RECFM=VB,LRECL=137,BLKSIZE=23476)
//SQLUT1 DD UNIT=SYSALLDA,SPACE=(23440,(20,20)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=23440)
//SQLUT2 DD UNIT=SYSALLDA,SPACE=(23440,(20,20)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=23440)
//SQLCIN DD UNIT=SYSALLDA,SPACE=(32000,(20,20))
//SQLLIN DD UNIT=SYSALLDA,SPACE=(3200,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSMOD DD UNIT=SYSALLDA,SPACE=(23440,(20,20)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=23440)
//SQLDUMMY DD DUMMY

Notes:

�1� APPLENV specifies the application environment in which DSNTPSMP
runs. To ensure that DSNTPSMP always uses the correct data sets and
parameters for preparing each external SQL procedure, you can set up
different application environments for preparing stored procedures with
different program preparation requirements. For example, if all payroll
applications use the same set of data sets during program preparation, you
could set up an application environment called PAYROLL for preparing
only payroll applications. The startup procedure for PAYROLL would point
to the data sets that are used for payroll applications.

DB2SSN specifies the DB2 subsystem name.

NUMTCB specifies the number of programs that can run concurrently in
the address space. You should always set NUMTCB to 1 to ensure that
executions of DSNTPSMP occur serially.

�2� WLMTPSMP specifies the address space in which DSNTPSMP runs.

DYNAMNBR reserves space for dynamic allocation of data sets during the
SQL procedure preparation process.

�3� STEPLIB specifies the DB2 load libraries, the z/OS C/C++ compiler library,
and the Language Environment run time library that DSNTPSMP uses
when it runs. At least one library must not be APF authorized.

�4� SYSEXEC specifies the library that contains the REXX exec DSNTPSMP.

�5� SQLDBRM is an output data set that specifies the library into which
DSNTPSMP puts the DBRM that it generates when it precompiles your
external SQL procedure.

�6� SQLCSRC is an output data set that specifies the library into which

594 Application Programming and SQL Guide

DSNTPSMP puts the C source code that it generates from the external SQL
procedure source code. This data set should have a logical record length of
80.

�7� SQLLMOD is an output data set that specifies the library into which
DSNTPSMP puts the load module that it generates when it compiles and
link-edits your external SQL procedure.

�8� SQLLIBC specifies the library that contains standard C header files. This
library is used during compilation of the generated C program.

�9� SQLLIBL specifies the following libraries, which DSNTPSMP uses when it
link-edits the external SQL procedure:
v Language Environment link-edit library
v DB2 load library

�10� SYSMSGS specifies the library that contains messages that are used by the
C prelink-edit utility.

�11� CFGTPSMP specifies an optional data set that you can use to customize
DSNTPSMP, including specifying the compiler level. For details on all of
the options that you can set in this file and how to set them, see the
DSNTPSMP CLIST comments.

�12� The DD statements that follow describe work file data sets that are used by
DSNTPSMP.

Related tasks:

Converting from the AMI-based MQ functions to the MQI-based MQ functions
(DB2 Installation and Migration)

CALL statement syntax for invoking DSNTPSMP:

You can invoke the SQL procedure processor, DSNTPSMP, from an application
program by using an SQL CALL statement. DSNTPSMP prepares an external SQL
procedure.

The following diagrams show the syntax of invoking DSNTPSMP through the SQL
CALL statement:

�� CALL SYSPROC.DSNTPSMP (function , SQL-procedure-name , SQL-procedure-source ,
empty-string

�

� bind-options ,
empty-string

compiler-options ,
empty-string

precompiler-options ,
empty-string

�

� prelink-options ,
empty-string

link-options ,
empty-string

alter-statement ,
empty-string

�

� source-data-set-name ,
empty-string

build-owner ,
empty-string

build-utility ,
empty-string

return-code) ��

Figure 31. DSNTPSMP syntax

Chapter 10. Creating and modifying DB2 objects 595

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_convertamimq2mqimq.htm#db2z_convertamimq2mqimq
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_convertamimq2mqimq.htm#db2z_convertamimq2mqimq

Note: You must specify:
v The DSNTPSMP parameters in the order listed
v The empty string if an optional parameter is not required for the function
v The options in the order: bind, compiler, precompiler, prelink, and link

The DSNTPSMP parameters are:

function
A VARCHAR(20) input parameter that identifies the task that you want
DSNTPSMP to perform. The tasks are:

BUILD
Creates the following objects for an external SQL procedure:
v A DBRM, in the data set that DD name SQLDBRM points to
v A load module, in the data set that DD name SQLLMOD points to
v The C language source code for the external SQL procedure, in the data

set that DD name SQLCSRC points to
v The stored procedure package
v The stored procedure definition

The following input parameters are required for the BUILD function:
SQL-procedure name
SQL-procedure-source or source-data-set-name

If you choose the BUILD function, and an external SQL procedure with
name SQL-procedure-name already exists, DSNTPSMP issues an error
message and terminates.

BUILD_DEBUG
Creates the following objects for an external SQL procedure and includes
the preparation necessary to debug the external SQL procedure with the
SQL Debugger and the Unified Debugger:
v A DBRM, in the data set that DD name SQLDBRM points to
v A load module, in the data set that DD name SQLLMOD points to
v The C language source code for theexternal SQL procedure, in the data

set that DD name SQLCSRC points to
v The stored procedure package
v The stored procedure definition

The following input parameters are required for the BUILD_DEBUG
function:

SQL-procedure name
SQL-procedure-source or source-data-set-name

If you choose the BUILD_DEBUG function, and an external SQL procedure
with name SQL-procedure-name already exists, DSNTPSMP issues an error
message and terminates.

�� �

,

' option ' ��

Figure 32. CALL DSNTPSMP bind-options, compiler-options, precompiler-options, prelink-options, link-options

596 Application Programming and SQL Guide

REBUILD
Replaces all objects that were created by the BUILD function for an
external SQL procedure, if it exists, otherwise creates those objects.

The following input parameters are required for the REBUILD function:
SQL-procedure name
SQL-procedure-source or source-data-set-name

REBUILD_DEBUG
Replaces all objects that were created by the BUILD_DEBUG function for
an external SQL procedure, if it exists, otherwise creates those objects, and
includes the preparation necessary to debug the external SQL procedure
with the SQL Debugger and the Unified Debugger.

The following input parameters are required for the REBUILD_DEBUG
function:

SQL-procedure name
SQL-procedure-source or source-data-set-name

REBIND
Binds the external SQL procedure package for an existing external SQL
procedure.

The following input parameter is required for the REBIND function:
SQL-procedure name

DESTROY
Deletes the following objects for an existing external SQL procedure:
v The DBRM, from the data set that DD name SQLDBRM points to
v The load module, from the data set that DD name SQLLMOD points to
v The C language source code for the external SQL procedure, from the

data set that DD name SQLCSRC points to
v The stored procedure package
v The stored procedure definition

The following input parameter is required for the DESTROY function:
SQL-procedure name

ALTER
Updates the registration for an existing external SQL procedure.

The following input parameters are required for the ALTER function:
SQL-procedure name
alter-statement

ALTER_REBUILD
Updates an existing external SQL procedure.

The following input parameters are required for the ALTER_REBUILD
function:

SQL-procedure name
SQL-procedure-source or source-data-set-name

ALTER_REBUILD_DEBUG
Updates an existing external SQL procedure, and includes the preparation
necessary to debug the external SQL procedure with the SQL Debugger
and the Unified Debugger.

The following input parameters are required for the
ALTER_REBUILD_DEBUG function:

SQL-procedure name

Chapter 10. Creating and modifying DB2 objects 597

SQL-procedure-source or source-data-set-name

ALTER_REBIND
Updates the registration and binds the SQL package for an existing
external SQL procedure.

The following input parameters are required for the ALTER_REBIND
function:

SQL-procedure name
alter-statement

QUERYLEVEL
Obtains the interface level of the build utility invoked. No other input is
required.

SQL-procedure-name
A VARCHAR(261) input parameter that specifies the external SQL procedure
name.

The name can be qualified or unqualified. The name must match the procedure
name that is specified within the CREATE PROCEDURE statement that is
provided in SQL-procedure-source or that is obtained from source-data-set-name.
In addition, the name must match the procedure name that is specified within
the ALTER PROCEDURE statement that is provided in alter-statement. Do not
mix qualified and unqualified references.

SQL-procedure-source
A CLOB(2M) input parameter that contains the CREATE PROCEDURE
statement for the external SQL procedure. If you specify an empty string for
this parameter, you need to specify the name source-data-set-name of a data set
that contains the external SQL procedure source code.

bind-options
A VARCHAR(1024) input parameter that contains the options that you want to
specify for binding the external SQL procedure package. Do not specify the
MEMBER or LIBRARY option for the DB2 BIND PACKAGE command.

compiler-options
A VARCHAR(255) input parameter that contains the options that you want to
specify for compiling the C language program that DB2 generates for the
external SQL procedure.

precompiler-options
A VARCHAR(255) input parameter that contains the options that you want to
specify for precompiling the C language program that DB2 generates for the
external SQL procedure. Do not specify the HOST option.

prelink-options
A VARCHAR(255) input parameter that contains the options that you want to
specify for prelinking the C language program that DB2 generates for the
external SQL procedure.

link-options
A VARCHAR(255) input parameter that contains the options that you want to
specify for linking the C language program that DB2 generates for the external
SQL procedure.

alter-statement
A VARCHAR(32672) input parameter that contains the SQL ALTER
PROCEDURE statement to process with the ALTER or ALTER_REBIND
function.

598 Application Programming and SQL Guide

source-data-set-name
A VARCHAR(80) input parameter that contains the name of a z/OS sequential
data set or partitioned data set member that contains the source code for the
external SQL procedure. If you specify an empty string for this parameter, you
need to provide the external SQL procedure source code in
SQL-procedure-source.

build-owner
A VARCHAR(130) input parameter that contains the SQL identifier to serve as
the build owner for newly created SQL stored procedures.

When this parameter is not specified, the value defaults to the value in the
CURRENT SQLID special register when the build utility is invoked.

build-utility
A VARCHAR(255) input parameter that contains the name of the build utility
that is invoked. The qualified form of the name is suggested, for example,
SYSPROC.DSNTPSMP.

return-code
A VARCHAR(255) output parameter in which DB2 puts the return code from
the DSNTPSMP invocation. The values are:

0 Successful invocation. The calling application can optionally retrieve the
result set and then issue the required SQL COMMIT statement.

4 Successful invocation, but warnings occurred. The calling application
should retrieve the warning messages in the result set and then issue the
required SQL COMMIT statement.

8 Failed invocation. The calling application should retrieve the error
messages in the result set and then issue the required SQL ROLLBACK
statement.

99x
Where x is a digit between 0 and 9. Failed invocation with severe errors.
The calling application should retrieve the error messages in the result set
and then issue the required SQL ROLLBACK statement. To view error
messages that are not in the result set, see the job log of the address space
for the DSNTPSMP execution.

999 Unknown severe internal error

998 APF environment setup error

997 DSNREXX setup error

996 Global temporary table setup error

995 Internal REXX programming error

1.2x
Where x is a digit between 0 and 9. Level of DSNTPSMP when request is
QUERYLEVEL. The calling application can retrieve the result set for
additional information about the release and service level and then issue
the required SQL COMMIT statement.

Chapter 10. Creating and modifying DB2 objects 599

Related reference:
“Descriptions of SQL processing options” on page 931

BIND and REBIND options (DB2 Commands)

Compiler Options (C/C++) (XL C/C++ User's Guide)

Binder options reference (MVS Program Management: User's Guide and
Reference)

Examples of invoking the SQL procedure processor (DSNTPSMP):

You can invoke the BUILD, DESTROY, REBUILD, and REBIND functions of
DSNTPSMP.

DSNTPSMP BUILD function: Call DSNTPSMP to build an external SQL procedure.
The information that DSNTPSMP needs is listed in the following table:

Table 92. The functions DSNTPSMP needs to BUILD an SQL procedure

Function BUILD

External SQL procedure
name

MYSCHEMA.SQLPROC

Source location String in CLOB host variable procsrc

Bind options VALIDATE(BIND)

Compiler options SOURCE, LIST, LONGNAME, RENT

Precompiler options SOURCE, XREF, STDSQL(NO)

Prelink options None specified

Link options AMODE=31, RMODE=ANY, MAP, RENT

Build utility SYSPROC.DSNTPSMP

Return value String returned in varying-length host variable returnval

The CALL statement is:
EXEC SQL CALL SYSPROC.DSNTPSMP(’BUILD’,’MYSCHEMA.SQLPROC’,:procsrc,
’VALIDATE(BIND)’,
’SOURCE,LIST,LONGNAME,RENT’,
’SOURCE,XREF,STDSQL(NO)’,
’’,
’AMODE=31,RMODE=ANY,MAP,RENT’,
’’,’’,’’,’SYSPROC.DSNTPSMP’,
:returnval);

DSNTPSMP DESTROY function: Call DSNTPSMP to delete an external SQL
procedure definition and the associated load module. The information that
DSNTPMSP needs is listed in the following table:

Table 93. The functions DSNTPSMP needs to DESTROY an SQL procedure

Function DESTROY

External SQL procedure name MYSCHEMA.OLDPROC

Return value String returned in varying-length host
variable returnval

The CALL statement is:

600 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/cbcug1b0/4.0?DN=SC09-4767-11&DT=20120802022433&SHELF=&CASE=&PATH=/bookmgr/
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2b1b0/6.0?ACTION=MATCHES&REQUEST=binder+options+reference&TYPE=FUZZY&SHELF=&DT=20110610105152&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2b1b0/6.0?ACTION=MATCHES&REQUEST=binder+options+reference&TYPE=FUZZY&SHELF=&DT=20110610105152&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT

EXEC SQL CALL SYSPROC.DSNTPSMP(’DESTROY’,’MYSCHEMA.OLDPROC’,’’,
’’,’’,’’,’’,’’,
’’,’’,’’,’’,
:returnval);

DSNTPSMP REBUILD function: Call DSNTPSMP to re-create an existing external
SQL procedure. The information that DSNTPMSP needs is listed in the following
table:

Table 94. The functions DSNTPSMP needs to REBUILD an SQL procedure

Function REBUILD

External SQL procedure name MYSCHEMA.SQLPROC

Bind options VALIDATE(BIND)

Compiler options SOURCE, LIST, LONGNAME, RENT

Precompiler options SOURCE, XREF, STDSQL(NO)

Prelink options None specified

Link options AMODE=31, RMODE=ANY, MAP, RENT

Source data set name Member PROCSRC of partitioned data set
DSNB10.SDSNSAMP

Return value String returned in varying-length host variable
returnval

The CALL statement is:
EXEC SQL CALL SYSPROC.DSNTPSMP(’REBUILD’,’MYSCHEMA.SQLPROC’,’’,
’VALIDATE(BIND)’,
’SOURCE,LIST,LONGNAME,RENT’,
’SOURCE,XREF,STDSQL(NO)’,
’’,
’AMODE=31,RMODE=ANY,MAP,RENT’,
’’,’DSNB10.SDSNSAMP(PROCSRC)’,’’,’’,
:returnval);

If you want to re-create an existing external SQL procedure for debugging with the
SQL Debugger and the Unified Debugger, use the following CALL statement,
which includes the REBUILD_DEBUG function:
EXEC SQL CALL SYSPROC.DSNTPSMP(’REBUILD_DEBUG’,’MYSCHEMA.SQLPROC’,’’,
’VALIDATE(BIND)’,
’SOURCE,LIST,LONGNAME,RENT’,
’SOURCE,XREF,STDSQL(NO)’,
’’,
’AMODE=31,RMODE=ANY,MAP,RENT’,
’’,’DSNB10.SDSNSAMP(PROCSRC)’,’’,’’,
:returnval);

DSNTPSMP REBIND function: Call DSNTPSMP to rebind the package for an
existing external SQL procedure. The information that DSNTPMSP needs is listed
in the following table:

Table 95. The functions DSNTPSMP needs to REBIND an SQL procedure

Function REBIND

ExternalSQL procedure name MYSCHEMA.SQLPROC

Bind options VALIDATE(RUN), ISOLATION(RR)

Return value String returned in varying-length host variable returnval

Chapter 10. Creating and modifying DB2 objects 601

The CALL statement is:
EXEC SQL CALL SYSPROC.DSNTPSMP(’REBIND’,’MYSCHEMA.SQLPROC’,’’,
’VALIDATE(RUN),ISOLATION(RR)’,’’,’’,’’,’’,
’’,’’,’’,’’,
:returnval);

Result set that the SQL procedure processor (DSNTPSMP) returns:

DSNTPSMP returns one result set that contains messages and listings. You can
write your client program to retrieve information from this result set. Because
DSNTPSMP is a stored procedure, use the same technique that you would use to
write a program to receive result sets from any stored procedure.

Each row of the result set contains the following information:

Processing step
The step in the DSNTPSMP function process to which the message applies.

DD name
The DD statement that identifies the data set that contains the message.

Sequence number
The sequence number of a line of message text within a message.

Message
A line of message text.

Rows in the message result set are ordered by processing step, DD name, and
sequence number.

For an example of how to process a result set from DSNTPSMP, see the DB2
sample program DSNTEJ65.
Related concepts:
“DB2 for z/OS SQL procedure processor (DSNTPSMP)” on page 593

Job DSNTEJ65 (DB2 Installation and Migration)
Related tasks:
“Writing a program to receive the result sets from a stored procedure” on page 804

Creating an external SQL procedure by using JCL
Using JCL is one of several ways that you can create and prepare an external SQL
procedure.

About this task

Restriction: You cannot use JCL to prepare an external SQL procedure for
debugging with the DB2 stored procedure debugger or the Unified Debugger. If
you plan to use either of these debugging tools, use either DSNTPSMP or IBM
Optim Development Studio to create the external SQL procedure.

Procedure

To create an external SQL procedure by using JCL, include the following job steps
in your JCL job:
1. Issue a CREATE PROCEDURE statement that includes either the FENCED

keyword or the EXTERNAL keyword and the procedure body, which is written
in SQL.

602 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_dsntej65.htm#db2z_dsntej65

Alternatively, you can issue the CREATE PROCEDURE statement dynamically
by using an application such as SPUFI, DSNTEP2, DSNTIAD, or the command
line processor.

Tip: If the routine body of the CREATE PROCEDURE statement contains
embedded semicolons, change the default SQL terminator character from a
semicolon to some other special character, such as the percent sign (%).
This statement defines the stored procedure to DB2. DB2 stores the definition in
the DB2 catalog.

2. Run program DSNHPC with the HOST(SQL) option.
This program converts the external SQL procedure source statements into a C
language program. DSNHPC also writes a new CREATE PROCEDURE
statement in the data set that is specified in the SYSUT1 DD statement.

3. Precompile, compile, and link-edit the generated C program by using one of
the following techniques:
v The DB2 precompiler and JCL instructions to compile and link-edit the

program
v The SQL statement coprocessor
When you perform this step, specify the following settings:
v Give the DBRM the same name as the name of the load module for the

external SQL procedure.
v Specify MARGINS(1,80) for the MARGINS SQL processing option.
v Specify the NOSEQ compiler option.
This process produces an executable C language program.

4. Bind the resulting DBRM into a package.

Example

Suppose that you define an external SQL procedure by issuing the following
CREATE PROCEDURE statement dynamically:
CREATE PROCEDURE DEVL7083.EMPDTLSS
(
IN PEMPNO CHAR(6)
,OUT PFIRSTNME VARCHAR(12)
,OUT PMIDINIT CHAR(1)
,OUT PLASTNAME VARCHAR(15)
,OUT PWORKDEPT CHAR(3)
,OUT PHIREDATE DATE
,OUT PSALARY DEC(9,2)
,OUT PSQLCODE INTEGER
)
RESULT SETS 0
MODIFIES SQL DATA
FENCED
NO DBINFO
WLM ENVIRONMENT DB9AWLMR
STAY RESIDENT NO
COLLID DEVL7083
PROGRAM TYPE MAIN
RUN OPTIONS ’TRAP(OFF),RPTOPTS(OFF)’
COMMIT ON RETURN NO
LANGUAGE SQL
BEGIN
DECLARE SQLCODE INTEGER;
DECLARE SQLSTATE CHAR(5);
SELECT

FIRSTNME

Chapter 10. Creating and modifying DB2 objects 603

, MIDINIT
, LASTNAME
, WORKDEPT
, HIREDATE
, SALARY

INTO PFIRSTNME
, PMIDINIT
, PLASTNAME
, PWORKDEPT
, PHIREDATE
, PSALARY

FROM EMP
WHERE EMPNO = PEMPNO
;
DECLARE EXIT HANDLER FOR SQLEXCEPTION SET PSQLCODE = SQLCODE;
END

You can use JCL that is similar to the following JCL to prepare the procedure:
//ADMF001S JOB (999,POK),’SQL C/L/B/E’,CLASS=A,MSGCLASS=T, 00000001
// NOTIFY=ADMF001,TIME=1440,REGION=0M 00000002
/*JOBPARM SYSAFF=SC63,L=9999 00000003
// JCLLIB ORDER=(DB9AU.PROCLIB) 00000004
//* 00250000
//JOBLIB DD DSN=DB9A9.SDSNEXIT,DISP=SHR 00260000
// DD DSN=DB9A9.SDSNLOAD,DISP=SHR 00270000
// DD DSN=CEE.SCEERUN,DISP=SHR 00270001
//*-- 00900000
//* STEP 01: PRECOMP, COMP, LKED AN SQL PROCEDURE 01080000
//*-- 00900000
//SQL01 EXEC DSNHSQL,MEM=EMPDTLSS,
// PARM.PC=’HOST(SQL),SOURCE,XREF,MAR(1,80),STDSQL(NO)’,
// PARM.PCC=’HOST(C),SOURCE,XREF,MAR(1,80),STDSQL(NO)’,
// PARM.C=’SOURCE LIST MAR(1,80) NOSEQ LO RENT’,
// PARM.LKED=’AMODE=31,RMODE=ANY,MAP,RENT’
//PC.SYSLIB DD DUMMY
//PC.SYSUT2 DD DSN=&&SPDML,DISP=(,PASS), <=MAKE IT PERMANENT, IF YOU
// UNIT=SYSDA,SPACE=(TRK,1), WANT TO USE IT LATER
// DCB=(RECFM=FB,LRECL=80)
//PC.SYSIN DD DISP=SHR,DSN=SG247083.PROD.DDL(&MEM.)
//PC.SYSCIN DD DISP=SHR,DSN=SG247083.TEST.C.SOURCE(&MEM.)
//PCC.SYSIN DD DISP=SHR,DSN=SG247083.TEST.C.SOURCE(&MEM.)
//PCC.SYSLIB DD DUMMY
//PCC.DBRMLIB DD DISP=SHR,DSN=SG247083.DEVL.DBRM(&MEM.)
//LKED.SYSLMOD DD DISP=SHR,DSN=SG247083.DEVL.LOAD(&MEM.)
//LKED.SYSIN DD * INCLUDE SYSLIB(DSNRLI) NAME EMPDTLSS(R)
/*
//*-- 00900000
//* STEP 02: BIND THE PROGRAM 01290000
//*-- 01280000
//SQL02 EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT) 01300000
//DBRMLIB DD DSN=SG247083.DEVL.DBRM,DISP=SHR 01310000
//SYSTSPRT DD SYSOUT=* 01320000
//SYSPRINT DD SYSOUT=* 01330000
//SYSUDUMP DD SYSOUT=* 01340000
//SYSOUT DD SYSOUT=* 01350000
//REPORT DD SYSOUT=* 01360000
//SYSIN DD * 01370000
//SYSTSIN DD * 01390000
DSN SYSTEM(DB9A) 01400000
BIND PACKAGE(DEVL7083) MEMBER(EMPDTLSS) VALIDATE(BIND) - 01410000
OWNER(DEVL7083)
END 01460000
//* 01550000

604 Application Programming and SQL Guide

Related concepts:
“SQL procedure body” on page 553

Command line processor (DB2 Commands)
Related tasks:
“Changing SPUFI defaults” on page 1049
“Creating an external SQL procedure by using DSNTPSMP” on page 591

Developing database routines (IBM Data Studio, IBM Optim Database
Administrator, IBM infoSphere Data Architect, IBM Optim Development Studio)
Related reference:
“Descriptions of SQL processing options” on page 931
“DSNTEP2 and DSNTEP4” on page 1118
“DSNTIAD” on page 1116

BIND PACKAGE (DSN) (DB2 Commands)

CREATE PROCEDURE (SQL - external) (DB2 SQL)

Sample programs to help you prepare and run external SQL
procedures
DB2 provides sample jobs to help you prepare and run external SQL procedures.
All samples are in data set DSNB10.SDSNSAMP. Before you can run the samples,
you must customize them for your installation.

See the prolog of each sample for specific instructions.

The following table lists the sample jobs that DB2 provides for external SQL
procedures.

Table 96. External SQL procedure samples shipped with DB2

Member that
contains
source code Contents Purpose

DSNHSQL JCL procedure Precompiles, compiles, prelink-edits, and link-edits an
external SQL procedure

DSNTEJ63 JCL job Invokes JCL procedure DSNHSQL to prepare external
SQL procedure DSN8ES1 for execution

DSN8ES1 External SQL
procedure

A stored procedure that accepts a department number
as input and returns a result set that contains salary
information for each employee in that department

DSNTEJ64 JCL job Prepares client program DSN8ED3 for execution

DSN8ED3 C program Calls SQL procedure DSN8ES1

DSN8ES2 External SQL
procedure

A stored procedure that accepts one input parameter
and returns two output parameters. The input
parameter specifies a bonus to be awarded to
managers. The external SQL procedure updates the
BONUS column of DSNB10.SDSNSAMP. If no SQL
error occurs when the external SQL procedure runs,
the first output parameter contains the total of all
bonuses awarded to managers and the second output
parameter contains a null value. If an SQL error
occurs, the second output parameter contains an
SQLCODE.

Chapter 10. Creating and modifying DB2 objects 605

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_commandlineprocessor.htm#db2z_commandlineprocessor
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.routines.doc/topics/croutines.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.routines.doc/topics/croutines.html
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_bindpackage.htm#db2z_cmd_bindpackage
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createproceduresqlexternal.htm#db2z_sql_createproceduresqlexternal

Table 96. External SQL procedure samples shipped with DB2 (continued)

Member that
contains
source code Contents Purpose

DSN8ED4 C program Calls the SQL procedure processor, DSNTPSMP, to
prepare DSN8ES2 for execution

DSN8WLMP JCL procedure A sample startup procedure for the WLM-established
stored procedures address space in which DSNTPSMP
runs

DSN8ED5 C program Calls external SQL procedure DSN8ES2

DSNTEJ65 JCL job Prepares and executes programs DSN8ED4 and
DSN8ED5.

DSNTEJ65 uses DSNTPSMP, the SQL procedure
processor, which requires that the default EBCDIC
CCSID that is used by DB2 also be compatible with
the C compiler. Do not run DSNTEJ65 if the default
EBCDIC CCSID for DB2 is not compatible with the C
compiler. Examples of incompatible CCSIDs include
290, 930, 1026, and 1155.

DSNTEJ67 JCL job Prepares an existing external SQL procedure (sample
DSN8.DSN8ES2) for conversion to a native SQL
procedure.

DSNTEJ67 obtains the source of external SQL
procedure DSN8.DSN8ES2 from the catalog and
formats it into a data set. DSNTEJ67 executes
DSNHPSM with HOST(SQLPL), obtains a listing for
the source, and replaces the offending procedure
options in the source data set.

DSNTIJRT JCL job Prepares a DB2 for z/OS server for operation with the
SQL Debugger and the Unified Debugger

Creating an external stored procedure
An external stored procedure is a procedure that is written in a host language and
can contain SQL statements. The source code for external procedures is separate
from the definition.

Before you begin

Before you create an external procedure, Configure DB2 for running stored
procedures and user-defined functions during installation or Configure DB2 for
running stored procedures and user-defined functions during migration (DB2
Installation Guide).

About this task

Restriction: These instructions do not apply to Java stored procedures. The process
for creating a Java stored procedure is different. The preparation process varies
depending on what the procedure contains.

Procedure

To create an external stored procedure:

606 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_configuredb2fordb2routines.htm#db2z_configuredb2fordb2routines
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_configuredb2fordb2routines.htm#db2z_configuredb2fordb2routines
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_configuredb2fordb2routinesmigr.htm#db2z_configuredb2fordb2routinesmigr
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_configuredb2fordb2routinesmigr.htm#db2z_configuredb2fordb2routinesmigr
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.java/src/tpc/imjcc_javaroutines.htm#imjcc_javaroutines

1. Write the external stored procedure body in assembler, C, C++, COBOL, REXX,
or PL/I.
Ensure that the procedure body that you write follows the guidelines for
external stored procedures that are described in the following information:
v “Accessing other sites in an external procedure” on page 630
v “Accessing non-DB2 resources in your stored procedure” on page 630
v “Writing an external procedure to access IMS databases” on page 632
v “Writing an external procedure to return result sets to a distributed client” on

page 633
v “Restrictions when calling other programs from an external stored

procedure” on page 634
v “External stored procedures as main programs and subprograms” on page

636
v “Data types in stored procedures” on page 638
v “COMMIT and ROLLBACK statements in a stored procedure” on page 559

Restrictions:

v Do not include explicit attachment facility calls. External stored procedures
that run in a WLM-established address space use Resource Recovery Services
attachment facility (RRSAF) calls implicitly. If an external stored procedure
makes an explicit attachment facility call, DB2 rejects the call.

v Do not include SRRCMIT or SRRBACK service calls. If an external stored
procedure invokes either SRRCMIT or SRRBACK, DB2 puts the transaction
in a state where a rollback operation is required and the CALL statement
fails.

For REXX procedures, continue with step 3 on page 608.
2. For assembler, C, C++, COBOL, or PL/I stored procedures, prepare the external

procedure by completing the following tasks:
a. Precompile, compile, and link-edit the application by using one of the

following techniques:
v The DB2 precompiler and JCL instructions to compile and link-edit the

program
v The SQL statement coprocessor

Recommendation: Compile and link-edit code as reentrant.
Link-edit the application by using DSNRLI, the language interface module
for the Resource Recovery Services attachment facility, or DSNULI, the
Universal language interface module. You must specify the parameter
AMODE(31) when you link-edit the application with either of these
modules. (24-bit applications are not supported.)
If you want to make the stored procedure reentrant, see “Creating an
external stored procedure as reentrant” on page 635
If you want to run your procedure as a z/OS-authorized program, you
must also perform the following tasks when you link-edit the application:
v Indicate that the load module can use restricted system services by

specifying the parameter value AC=1.
v Put the load module for the stored procedure in an APF-authorized

library.

Chapter 10. Creating and modifying DB2 objects 607

You can compile COBOL stored procedures with either the DYNAM or
NODYNAM COBOL compiler options. If you use DYNAM, ensure that the
correct DB2 language interface module is loaded dynamically by performing
one of the following actions:
v Specify the ATTACH(RRSAF) SQL processing option.
v Copy the DSNRLI module into a load library that is concatenated in front

of the DB2 libraries. Use the member name DSNHLI.
b. Bind the DBRM into a DB2 package by issuing the BIND PACKAGE

command.
If you want to control access to a stored procedure package, specify the
ENABLE bind option with the system connection type of the calling
application.
Stored procedures require only a package. You do not need to bind a plan
for the stored procedure or bind the stored procedure package to the plan
for the calling application. For remote access scenarios, you need a package
at both the requester and server sites.
For more information about stored procedure packages, see “Packages and
plans for external stored procedures” on page 628. The following example
BIND PACKAGE command binds the DBRM EMPDTL1P to the collection
DEVL7083.
BIND PACKAGE(DEVL7083) -
MEMBER(EMPDTL1P) ACT(REP) ISO(UR) ENCODING(EBCDIC) -
OWNER(DEVL7083) LIBRARY(’SG247083.DEVL.DBRM’)

3. Define the stored procedure to DB2 by issuing the CREATE PROCEDURE
statement with the EXTERNAL option. Use the EXTERNAL NAME clause to
specify the name of the load module for the program that runs when this
procedure is called.
If you want to run your procedure as a z/OS-authorized program, specify an
appropriate environment with the WLM ENVIRONMENT option. The stored
procedure must run in an address space with a startup procedure in which all
libraries in the STEPLIB concatenation are APF-authorized.
If you want environment information to be passed to the stored procedure
when it is invoked, specify the DBINFO and PARAMETER STYLE SQL options
in the CREATE PROCEDURE statement. When the procedure is invoked, DB2
passes the DBINFO structure, which contains environment information, to the
stored procedure. For more information about PARAMETER STYLE, see
“Defining the linkage convention for an external stored procedure” on page
610.
If you compiled the stored procedure as reentrant, specify the STAY RESIDENT
YES option in the CREATE PROCEDURE statement. This option makes the
procedure remain resident in storage.

4. Authorize the appropriate users to use the stored procedure by issuing the
GRANT EXECUTE statement.

Example: The following statement allows an application that runs under the
authorization ID JONES to call stored procedure SPSCHEMA.STORPRCA:
GRANT EXECUTE ON PROCEDURE SPSCHEMA.STORPRCA TO JONES;

Example of defining a C stored procedure

Suppose that you have written and prepared a stored procedure that has the
following characteristics:
v The name of the stored procedure is B.

608 Application Programming and SQL Guide

v The stored procedure has the following two parameters:
– An integer input parameter that is named V1
– A character output parameter of length 9 that is named V2

v The stored procedure is written in the C language.
v The stored procedure contains no SQL statements.
v The same input always produces the same output.
v The load module name is SUMMOD.
v The package collection name is SUMCOLL.
v The stored procedure is to run for no more than 900 CPU service units.
v The parameters can have null values.
v The stored procedure is to be deleted from memory when it completes.
v The stored procedure needs the following Language Environment runtime

options:
MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)

v The stored procedure is part of the WLM application environment that is named
PAYROLL.

v The stored procedure runs as a main program.
v The stored procedure does not access non-DB2 resources, so it does not need a

special RACF environment.
v The stored procedure can return at most 10 result sets.
v When control returns to the client program, DB2 does not commit updates

automatically.

The following CREATE PROCEDURE statement defines the stored procedure to
DB2:
CREATE PROCEDURE B(IN V1 INTEGER, OUT V2 CHAR(9))

LANGUAGE C
DETERMINISTIC
NO SQL
EXTERNAL NAME SUMMOD
COLLID SUMCOLL
ASUTIME LIMIT 900
PARAMETER STYLE GENERAL WITH NULLS
STAY RESIDENT NO
RUN OPTIONS ’MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)’
WLM ENVIRONMENT PAYROLL
PROGRAM TYPE MAIN
SECURITY DB2
DYNAMIC RESULT SETS 10
COMMIT ON RETURN NO;

What to do next

You can now invoke the stored procedure from an application program or
command line processor.

Chapter 10. Creating and modifying DB2 objects 609

Related concepts:
“Universal language interface” on page 117

Java stored procedures and user-defined functions (DB2 Application
Programming for Java)
Related tasks:

Implementing DB2 stored procedures (DB2 Administration Guide)
Related reference:

BIND and REBIND options (DB2 Commands)

CREATE PROCEDURE (external) (DB2 SQL)

GRANT (function or procedure privileges) (DB2 SQL)

C programming (DB2 9 for z/OS Stored Procedures: Through the CALL and
Beyond)

COBOL programming (DB2 9 for z/OS Stored Procedures: Through the CALL
and Beyond)

Four release levels: Sample scenario (DB2 9 for z/OS Stored Procedures:
Through the CALL and Beyond)

REXX programming (DB2 9 for z/OS Stored Procedures: Through the CALL
and Beyond)

Defining the linkage convention for an external stored procedure
A linkage convention specifies the rules for the parameter list that is passed by the
program that calls the external stored procedure. For example, the convention can
specify whether the calling program can pass null values for input parameters.

Procedure

To define the linkage convention for a stored procedure:

When you define the stored procedure with the CREATE PROCEDURE statement,
specify one of the following values for the PARAMETER STYLE option:
v GENERAL
v GENERAL WITH NULLS
v SQL

SQL is the default.

Linkage conventions for external stored procedures:

The linkage convention for a stored procedure can be either GENERAL, GENERAL
WITH NULLS, or SQL. These linkage conventions apply to only external stored
procedures.

GENERAL
Specify the GENERAL linkage convention when you do not want the
calling program to pass null values for input parameters (IN or INOUT) to
the stored procedure. If you specify GENERAL, ensure that the stored
procedure contains a variable declaration for each parameter that is passed
in the CALL statement.

610 Application Programming and SQL Guide

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.java/src/tpc/imjcc_javaroutines.htm#imjcc_javaroutines
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.java/src/tpc/imjcc_javaroutines.htm#imjcc_javaroutines
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_storedprocedureimplementation.htm#db2z_storedprocedureimplementation
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createprocedureexternal.htm#db2z_sql_createprocedureexternal
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_grantfunctionorprocedureprivileges.htm#db2z_sql_grantfunctionorprocedureprivileges
http://www.redbooks.ibm.com/redbooks/SG247604/ch11.htm
http://www.redbooks.ibm.com/redbooks/SG247604/ch11.htm
http://www.redbooks.ibm.com/redbooks/SG247604/ch10.htm
http://www.redbooks.ibm.com/redbooks/SG247604/ch10.htm
http://www.redbooks.ibm.com/redbooks/SG247604/wwhelp/wwhimpl/js/html/wwhelp.htm?href=18-2-1.htm
http://www.redbooks.ibm.com/redbooks/SG247604/wwhelp/wwhimpl/js/html/wwhelp.htm?href=18-2-1.htm
http://www.redbooks.ibm.com/redbooks/SG247604/ch12.htm
http://www.redbooks.ibm.com/redbooks/SG247604/ch12.htm

The following figure shows the structure of the parameter list for
PARAMETER STYLE GENERAL.

GENERAL WITH NULLS
Specify the GENERAL WITH NULLS linkage convention when you want
to allow the calling program to supply a null value for any parameter that
is passed to the stored procedure. If you specify GENERAL WITH NULLS,
ensure that the stored procedure performs the following tasks:
v Declares a variable for each parameter that is passed in the CALL

statement.
v Declares a null indicator structure that contains an indicator variable for

each parameter.
v On entry, examines all indicator variables that are associated with input

parameters to determine which parameters contain null values.
v On exit, assigns values to all indicator variables that are associated with

output variables. If the output variable returns a null value to the caller,
assign the associated indicator variable a negative number. Otherwise,
assign a value of 0 to the indicator variable.

In the CALL statement in the calling application, follow each parameter
with its indicator variable. Use one of the following forms:
v host-variable :indicator-variable

v host-variable INDICATOR :indicator-variable

The following figure shows the structure of the parameter list for
PARAMETER STYLE GENERAL WITH NULLS.

Parameter 2 data

Parameter datan

Parameter 1

Addresses of: Data:

Parameter 2

Parameter n

Parameter 1 data

...

Register 1

Figure 33. Parameter convention GENERAL for a stored procedure

Chapter 10. Creating and modifying DB2 objects 611

SQL Specify the SQL linkage convention when you want both of the following
conditions:
v The calling program to be able to supply a null value for any parameter

that is passed to the stored procedure.
v DB2 to pass input and output parameters to the stored procedure that

contain the following information:
– The SQLSTATE that is to be returned to DB2. This value is a CHAR(5)

parameter that represents the SQLSTATE that is passed into the
program from the database manager. The initial value is set to ‘00000'.
Although the SQLSTATE is usually not set by the program, it can be
set as the result SQLSTATE that is used to return an error or a
warning. Returned values that start with anything other than ‘00', ‘01',
or ‘02' are error conditions.

– The qualified name of the stored procedure. This is a VARCHAR(128)
value.

– The specific name of the stored procedure. The specific name is a
VARCHAR(128) value that is the same as the unqualified name.

– The SQL diagnostic string that is to be returned to DB2. This is a
VARCHAR(1000) value. Use this area to pass descriptive information
about an error or warning to the caller.

Restriction: You cannot use the SQL linkage convention for a REXX
language stored procedure.

The following figure shows the structure of the parameter list for
PARAMETER STYLE SQL.

Parameter 2 data

Parameter datan

.

..

Indicator 1

Indicator 2

Indicator n

Register 1

Parameter 1

Addresses of: Data:

Parameter 2

Parameter n

Parameter 1 data

...

Indicator
array

Figure 34. Parameter convention GENERAL WITH NULLS for a stored procedure

612 Application Programming and SQL Guide

Related concepts:
“Examples of programs that call stored procedures” on page 230
Related reference:

CREATE PROCEDURE (external) (DB2 SQL)

SQLSTATE values and common error codes (DB2 Codes)

Example of GENERAL linkage convention:

Specify the GENERAL linkage convention when you do not want the calling
program to pass null values for input parameters (IN or INOUT) to the stored
procedure.

The following examples demonstrate how an assembler, C, COBOL, or PL/I stored
procedure uses the GENERAL linkage convention to receive parameters.

For these examples, assume that a COBOL application has the following parameter
declarations and CALL statement:
**
* PARAMETERS FOR THE SQL STATEMENT CALL *
**
01 V1 PIC S9(9) USAGE COMP.
01 V2 PIC X(9).

1

2

For PL/I, this value is the address of a pointer to the DBINFO data.

Passed if the DBINFO option is specified in the user-defined function definition

DBINFO
1, 2

DBINFO

Register 1

Parameter 1

Addresses of:

Parameter 2

Parameter 1 data

Parameter 2 data

.

..

.

Indicator 1

Indicator 2

Indicator 1

Indicator 2

Indicator nIndicator n

SQLSTATESQLSTATE

Procedure
name

Procedure name

Specific
name

Diagnostic
data

Specific name

Diagnostic data

...

Parameter datanParameter n

Data:

Figure 35. Parameter convention SQL for a stored procedure

Chapter 10. Creating and modifying DB2 objects 613

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createprocedureexternal.htm#db2z_sql_createprocedureexternal
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.codes/src/tpc/db2z_sqlstatevalues.htm#db2z_sqlstatevalues

...
EXEC SQL CALL A (:V1, :V2) END-EXEC.

In the CREATE PROCEDURE statement, the parameters are defined as follows:
IN V1 INT, OUT V2 CHAR(9)

Assembler example: The following example shows how a stored procedure that is
written in assembler language receives these parameters.

* CODE FOR AN ASSEMBLER LANGUAGE STORED PROCEDURE THAT USES *
* THE GENERAL LINKAGE CONVENTION. *

A CEEENTRY AUTO=PROGSIZE,MAIN=YES,PLIST=OS

USING PROGAREA,R13

* BRING UP THE LANGUAGE ENVIRONMENT. *

...

* GET THE PASSED PARAMETER VALUES. THE GENERAL LINKAGE CONVENTION*
* FOLLOWS THE STANDARD ASSEMBLER LINKAGE CONVENTION: *
* ON ENTRY, REGISTER 1 POINTS TO A LIST OF POINTERS TO THE *
* PARAMETERS. *

L R7,0(R1) GET POINTER TO V1
MVC LOCV1(4),0(R7) MOVE VALUE INTO LOCAL COPY OF V1

...
L R7,4(R1) GET POINTER TO V2
MVC 0(9,R7),LOCV2 MOVE A VALUE INTO OUTPUT VAR V2

...
CEETERM RC=0

* VARIABLE DECLARATIONS AND EQUATES *

R1 EQU 1 REGISTER 1
R7 EQU 7 REGISTER 7
PPA CEEPPA , CONSTANTS DESCRIBING THE CODE BLOCK

LTORG , PLACE LITERAL POOL HERE
PROGAREA DSECT

ORG *+CEEDSASZ LEAVE SPACE FOR DSA FIXED PART
LOCV1 DS F LOCAL COPY OF PARAMETER V1
LOCV2 DS CL9 LOCAL COPY OF PARAMETER V2

...
PROGSIZE EQU *-PROGAREA

CEEDSA , MAPPING OF THE DYNAMIC SAVE AREA
CEECAA , MAPPING OF THE COMMON ANCHOR AREA
END A

C example: The following figure shows how a stored procedure that is written in
the C language receives these parameters.
#pragma runopts(PLIST(OS))
#pragma options(RENT)
#include <stdlib.h>
#include <stdio.h>
/***/
/* Code for a C language stored procedure that uses the */
/* GENERAL linkage convention. */
/***/
main(argc,argv)

614 Application Programming and SQL Guide

int argc; /* Number of parameters passed */
char *argv[]; /* Array of strings containing */

/* the parameter values */
{

long int locv1; /* Local copy of V1 */
char locv2[10]; /* Local copy of V2 */

/* (null-terminated) */

...
/***/
/* Get the passed parameters. The GENERAL linkage convention */
/* follows the standard C language parameter passing */
/* conventions: */
/* - argc contains the number of parameters passed */
/* - argv[0] is a pointer to the stored procedure name */
/* - argv[1] to argv[n] are pointers to the n parameters */
/* in the SQL statement CALL. */
/***/
if(argc==3) /* Should get 3 parameters: */
{ /* procname, V1, V2 */

locv1 = *(int *) argv[1];
/* Get local copy of V1 */

...
strcpy(argv[2],locv2);

/* Assign a value to V2 */

...
}

}

COBOL example: The following figure shows how a stored procedure that is
written in the COBOL language receives these parameters.
CBL RENT
IDENTIFICATION DIVISION.
**
* CODE FOR A COBOL LANGUAGE STORED PROCEDURE THAT USES THE *
* GENERAL LINKAGE CONVENTION. *
**
PROGRAM-ID. A.

...
DATA DIVISION.

...
LINKAGE SECTION.
**
* DECLARE THE PARAMETERS PASSED BY THE SQL STATEMENT *
* CALL HERE. *
**
01 V1 PIC S9(9) USAGE COMP.
01 V2 PIC X(9).

...
PROCEDURE DIVISION USING V1, V2.
**
* THE USING PHRASE INDICATES THAT VARIABLES V1 AND V2 *
* WERE PASSED BY THE CALLING PROGRAM. *
**

...
**
* ASSIGN A VALUE TO OUTPUT VARIABLE V2 *
**

MOVE ’123456789’ TO V2.

Chapter 10. Creating and modifying DB2 objects 615

PL/I example: The following figure shows how a stored procedure that is written
in the PL/I language receives these parameters.
*PROCESS SYSTEM(MVS);
A: PROC(V1, V2) OPTIONS(MAIN NOEXECOPS REENTRANT);
/***/
/* Code for a PL/I language stored procedure that uses the */
/* GENERAL linkage convention. */
/***/
/***/
/* Indicate on the PROCEDURE statement that two parameters */
/* were passed by the SQL statement CALL. Then declare the */
/* parameters in the following section. */
/***/

DCL V1 BIN FIXED(31),
V2 CHAR(9);

...
V2 = ’123456789’; /* Assign a value to output variable V2 */

Example of GENERAL WITH NULLS linkage convention:

Specify the GENERAL WITH NULLS linkage convention when you want to allow
the calling program to supply a null value for any parameter that is passed to the
stored procedure.

The following examples demonstrate how an assembler, C, COBOL, or PL/I stored
procedure uses the GENERAL WITH NULLS linkage convention to receive
parameters.

For these examples, assume that a C application has the following parameter
declarations and CALL statement:
/**/
/* Parameters for the SQL statement CALL */
/**/

long int v1;
char v2[10]; /* Allow an extra byte for */

/* the null terminator */
/**/
/* Indicator structure */
/**/

struct indicators {
short int ind1;
short int ind2;

} indstruc;

...
indstruc.ind1 = 0; /* Remember to initialize the */

/* input parameter’s indicator*/
/* variable before executing */
/* the CALL statement */

EXEC SQL CALL B (:v1 :indstruc.ind1, :v2 :indstruc.ind2);

...

In the CREATE PROCEDURE statement, the parameters are defined as follows:
IN V1 INT, OUT V2 CHAR(9)

Assembler example: The following figure shows how a stored procedure that is
written in assembler language receives these parameters.

616 Application Programming and SQL Guide

* CODE FOR AN ASSEMBLER LANGUAGE STORED PROCEDURE THAT USES *
* THE GENERAL WITH NULLS LINKAGE CONVENTION. *

B CEEENTRY AUTO=PROGSIZE,MAIN=YES,PLIST=OS

USING PROGAREA,R13

* BRING UP THE LANGUAGE ENVIRONMENT. *

...

* GET THE PASSED PARAMETER VALUES. THE GENERAL WITH NULLS LINKAGE*
* CONVENTION IS AS FOLLOWS: *
* ON ENTRY, REGISTER 1 POINTS TO A LIST OF POINTERS. IF N *
* PARAMETERS ARE PASSED, THERE ARE N+1 POINTERS. THE FIRST *
* N POINTERS ARE THE ADDRESSES OF THE N PARAMETERS, JUST AS *
* WITH THE GENERAL LINKAGE CONVENTION. THE N+1ST POINTER IS *
* THE ADDRESS OF A LIST CONTAINING THE N INDICATOR VARIABLE *
* VALUES. *

L R7,0(R1) GET POINTER TO V1
MVC LOCV1(4),0(R7) MOVE VALUE INTO LOCAL COPY OF V1
L R7,8(R1) GET POINTER TO INDICATOR ARRAY
MVC LOCIND(2*2),0(R7) MOVE VALUES INTO LOCAL STORAGE
LH R7,LOCIND GET INDICATOR VARIABLE FOR V1
LTR R7,R7 CHECK IF IT IS NEGATIVE
BM NULLIN IF SO, V1 IS NULL

...
L R7,4(R1) GET POINTER TO V2
MVC 0(9,R7),LOCV2 MOVE A VALUE INTO OUTPUT VAR V2
L R7,8(R1) GET POINTER TO INDICATOR ARRAY
MVC 2(2,R7),=H(0) MOVE ZERO TO V2’S INDICATOR VAR

...
CEETERM RC=0

* VARIABLE DECLARATIONS AND EQUATES *

R1 EQU 1 REGISTER 1
R7 EQU 7 REGISTER 7
PPA CEEPPA , CONSTANTS DESCRIBING THE CODE BLOCK

LTORG , PLACE LITERAL POOL HERE
PROGAREA DSECT

ORG *+CEEDSASZ LEAVE SPACE FOR DSA FIXED PART
LOCV1 DS F LOCAL COPY OF PARAMETER V1
LOCV2 DS CL9 LOCAL COPY OF PARAMETER V2
LOCIND DS 2H LOCAL COPY OF INDICATOR ARRAY

...
PROGSIZE EQU *-PROGAREA

CEEDSA , MAPPING OF THE DYNAMIC SAVE AREA
CEECAA , MAPPING OF THE COMMON ANCHOR AREA
END B

C example: The following figure shows how a stored procedure that is written in
the C language receives these parameters.
#pragma options(RENT)
#pragma runopts(PLIST(OS))
#include <stdlib.h>
#include <stdio.h>
/***/
/* Code for a C language stored procedure that uses the */
/* GENERAL WITH NULLS linkage convention. */

Chapter 10. Creating and modifying DB2 objects 617

/***/
main(argc,argv)

int argc; /* Number of parameters passed */
char *argv[]; /* Array of strings containing */

/* the parameter values */
{

long int locv1; /* Local copy of V1 */
char locv2[10]; /* Local copy of V2 */

/* (null-terminated) */
short int locind[2]; /* Local copy of indicator */

/* variable array */
short int *tempint; /* Used for receiving the */

/* indicator variable array */

...
/***/
/* Get the passed parameters. The GENERAL WITH NULLS linkage */
/* convention is as follows: */
/* - argc contains the number of parameters passed */
/* - argv[0] is a pointer to the stored procedure name */
/* - argv[1] to argv[n] are pointers to the n parameters */
/* in the SQL statement CALL. */
/* - argv[n+1] is a pointer to the indicator variable array */
/***/
if(argc==4) /* Should get 4 parameters: */
{ /* procname, V1, V2, */

/* indicator variable array */
locv1 = *(int *) argv[1];

/* Get local copy of V1 */
tempint = argv[3]; /* Get pointer to indicator */

/* variable array */
locind[0] = *tempint;

/* Get 1st indicator variable */
locind[1] = *(++tempint);

/* Get 2nd indicator variable */
if(locind[0]<0) /* If 1st indicator variable */
{ /* is negative, V1 is null */

...
}

...
strcpy(argv[2],locv2);

/* Assign a value to V2 */
(++tempint) = 0; / Assign 0 to V2’s indicator */

/* variable */
}

}

COBOL example: The following figure shows how a stored procedure that is
written in the COBOL language receives these parameters.
CBL RENT
IDENTIFICATION DIVISION.
**
* CODE FOR A COBOL LANGUAGE STORED PROCEDURE THAT USES THE *
* GENERAL WITH NULLS LINKAGE CONVENTION. *
**
PROGRAM-ID. B.

...
DATA DIVISION.

...
LINKAGE SECTION.
**

618 Application Programming and SQL Guide

* DECLARE THE PARAMETERS AND THE INDICATOR ARRAY THAT *
* WERE PASSED BY THE SQL STATEMENT CALL HERE. *
**
01 V1 PIC S9(9) USAGE COMP.
01 V2 PIC X(9).
*
01 INDARRAY.

10 INDVAR PIC S9(4) USAGE COMP OCCURS 2 TIMES.

...
PROCEDURE DIVISION USING V1, V2, INDARRAY.
**
* THE USING PHRASE INDICATES THAT VARIABLES V1, V2, AND *
* INDARRAY WERE PASSED BY THE CALLING PROGRAM. *
**

...

* TEST WHETHER V1 IS NULL *

IF INDARRAY(1) < 0
PERFORM NULL-PROCESSING.

...
**
* ASSIGN A VALUE TO OUTPUT VARIABLE V2 *
* AND ITS INDICATOR VARIABLE *
**

MOVE ’123456789’ TO V2.
MOVE ZERO TO INDARRAY(2).

PL/I example: The following figure shows how a stored procedure that is written
in the PL/I language receives these parameters.
*PROCESS SYSTEM(MVS);
A: PROC(V1, V2, INDSTRUC) OPTIONS(MAIN NOEXECOPS REENTRANT);
/***/
/* Code for a PL/I language stored procedure that uses the */
/* GENERAL WITH NULLS linkage convention. */
/***/
/***/
/* Indicate on the PROCEDURE statement that two parameters */
/* and an indicator variable structure were passed by the SQL */
/* statement CALL. Then declare them in the following section.*/
/* For PL/I, you must declare an indicator variable structure, */
/* not an array. */
/***/

DCL V1 BIN FIXED(31),
V2 CHAR(9);

DCL
01 INDSTRUC,

02 IND1 BIN FIXED(15),
02 IND2 BIN FIXED(15);

...
IF IND1 < 0 THEN
CALL NULLVAL; /* If indicator variable is negative */

/* then V1 is null */

...
V2 = ’123456789’; /* Assign a value to output variable V2 */
IND2 = 0; /* Assign 0 to V2’s indicator variable */

Chapter 10. Creating and modifying DB2 objects 619

Example of SQL linkage convention:

Specify the SQL linkage convention when you want diagnostic information to be
passed in the parameters and allow null values.

The following examples demonstrate how an assembler, C, COBOL, or PL/I stored
procedure uses the SQL linkage convention to receive parameters. These examples
also show how a stored procedure receives the DBINFO structure.

For these examples, assume that a C application has the following parameter
declarations and CALL statement:
/**/
/* Parameters for the SQL statement CALL */
/**/

long int v1;
char v2[10]; /* Allow an extra byte for */

/* the null terminator */
/**/
/* Indicator variables */
/**/

short int ind1;
short int ind2;

...
ind1 = 0; /* Remember to initialize the */

/* input parameter’s indicator*/
/* variable before executing */
/* the CALL statement */

EXEC SQL CALL B (:v1 :ind1, :v2 :ind2);

...

In the CREATE PROCEDURE statement, the parameters are defined as follows:
IN V1 INT, OUT V2 CHAR(9)

Assembler example: The following figure shows how a stored procedure that is
written in assembler language receives these parameters.

* CODE FOR AN ASSEMBLER LANGUAGE STORED PROCEDURE THAT USES
*
* THE SQL LINKAGE CONVENTION. *

B CEEENTRY AUTO=PROGSIZE,MAIN=YES,PLIST=OS

USING PROGAREA,R13

* BRING UP THE LANGUAGE ENVIRONMENT.
*

...

* GET THE PASSED PARAMETER VALUES. THE SQL LINKAGE *
* CONVENTION IS AS FOLLOWS:
*
* ON ENTRY, REGISTER 1 POINTS TO A LIST OF POINTERS. IF N
*
* PARAMETERS ARE PASSED, THERE ARE 2N+4 POINTERS. THE FIRST
*
* N POINTERS ARE THE ADDRESSES OF THE N PARAMETERS, JUST AS
*
* WITH THE GENERAL LINKAGE CONVENTION. THE NEXT N POINTERS ARE
*

620 Application Programming and SQL Guide

* THE ADDRESSES OF THE INDICATOR VARIABLE VALUES. THE LAST
*
* 4 POINTERS (5, IF DBINFO IS PASSED) ARE THE ADDRESSES OF
*
* INFORMATION ABOUT THE STORED PROCEDURE ENVIRONMENT AND
*
* EXECUTION RESULTS.
*

L R7,0(R1) GET POINTER TO V1
MVC LOCV1(4),0(R7) MOVE VALUE INTO LOCAL COPY OF V1
L R7,8(R1) GET POINTER TO 1ST INDICATOR VARIABLE
MVC LOCI1(2),0(R7) MOVE VALUE INTO LOCAL STORAGE
L R7,20(R1) GET POINTER TO STORED PROCEDURE

NAME
MVC LOCSPNM(20),0(R7) MOVE VALUE INTO LOCAL STORAGE
L R7,24(R1) GET POINTER TO DBINFO
MVC LOCDBINF(DBINFLN),0(R7)

* MOVE VALUE INTO LOCAL STORAGE
LH R7,LOCI1 GET INDICATOR VARIABLE FOR V1
LTR R7,R7 CHECK IF IT IS NEGATIVE
BM NULLIN IF SO, V1 IS NULL

...
L R7,4(R1) GET POINTER TO V2
MVC 0(9,R7),LOCV2 MOVE A VALUE INTO OUTPUT VAR V2
L R7,12(R1) GET POINTER TO INDICATOR VAR 2
MVC 0(2,R7),=H’0’ MOVE ZERO TO V2’S INDICATOR VAR
L R7,16(R1) GET POINTER TO SQLSTATE
MVC 0(5,R7),=CL5’xxxxx’ MOVE xxxxx TO SQLSTATE

...
CEETERM RC=0

* VARIABLE DECLARATIONS AND EQUATES
*

R1 EQU 1 REGISTER 1
R7 EQU 7 REGISTER 7
PPA CEEPPA , CONSTANTS DESCRIBING THE CODE BLOCK

LTORG , PLACE LITERAL POOL HERE
PROGAREA DSECT

ORG *+CEEDSASZ LEAVE SPACE FOR DSA FIXED PART
LOCV1 DS F LOCAL COPY OF PARAMETER V1
LOCV2 DS CL9 LOCAL COPY OF PARAMETER V2
LOCI1 DS H LOCAL COPY OF INDICATOR 1
LOCI2 DS H LOCAL COPY OF INDICATOR 2
LOCSQST DS CL5 LOCAL COPY OF SQLSTATE
LOCSPNM DS H,CL27 LOCAL COPY OF STORED PROC NAME
LOCSPSNM DS H,CL18 LOCAL COPY OF SPECIFIC NAME
LOCDIAG DS H,CL1000 LOCAL COPY OF DIAGNOSTIC DATA
LOCDBINF DS 0H LOCAL COPY OF DBINFO DATA
DBNAMELN DS H DATABASE NAME LENGTH
DBNAME DS CL128 DATABASE NAME
AUTHIDLN DS H APPL AUTH ID LENGTH
AUTHID DS CL128 APPL AUTH ID
ASC_SBCS DS F ASCII SBCS CCSID
ASC_DBCS DS F ASCII DBCS CCSID
ASC_MIXD DS F ASCII MIXED CCSID
EBC_SBCS DS F EBCDIC SBCS CCSID
EBC_DBCS DS F EBCDIC DBCS CCSID
EBC_MIXD DS F EBCDIC MIXED CCSID
UNI_SBCS DS F UNICODE SBCS CCSID
UNI_DBCS DS F UNICODE DBCS CCSID
UNI_MIXD DS F UNICODE MIXED CCSID
ENCODE DS F PROCEDURE ENCODING SCHEME

Chapter 10. Creating and modifying DB2 objects 621

RESERV0 DS CL20 RESERVED
TBQUALLN DS H TABLE QUALIFIER LENGTH
TBQUAL DS CL128 TABLE QUALIFIER
TBNAMELN DS H TABLE NAME LENGTH
TBNAME DS CL128 TABLE NAME
CLNAMELN DS H COLUMN NAME LENGTH
COLNAME DS CL128 COLUMN NAME
RELVER DS CL8 DBMS RELEASE AND VERSION
RESERV1 DS CL2 RESERVED
PLATFORM DS F DBMS OPERATING SYSTEM
NUMTFCOL DS H NUMBER OF TABLE FUNCTION COLS USED
RESERV2 DS CL26 RESERVED
TFCOLNUM DS A POINTER TO TABLE FUNCTION COL LIST
APPLID DS A POINTER TO APPLICATION ID
RESERV3 DS CL20 RESERVED
DBINFLN EQU *-LOCDBINF LENGTH OF DBINFO

...
PROGSIZE EQU *-PROGAREA

CEEDSA , MAPPING OF THE DYNAMIC SAVE AREA
CEECAA , MAPPING OF THE COMMON ANCHOR AREA
END B

C example: The following figure shows how a stored procedure that is written as
a main program in the C language receives these parameters.
#pragma runopts(plist(os))
#include <;stdlib.h>
#include <;stdio.h>

main(argc,argv)
int argc;
char *argv[];

{
int parm1;
short int ind1;
char p_proc[28];
char p_spec[19];
/***/
/* Assume that the SQL CALL statement included */
/* 3 input/output parameters in the parameter list.*/
/* The argv vector will contain these entries: */
/* argv[0] 1 contains load module */
/* argv[1-3] 3 input/output parms */
/* argv[4-6] 3 null indicators */
/* argv[7] 1 SQLSTATE variable */
/* argv[8] 1 qualified proc name */
/* argv[9] 1 specific proc name */
/* argv[10] 1 diagnostic string */
/* argv[11] + 1 dbinfo */
/* ------ */
/* 12 for the argc variable */
/***/
if argc<>12 {

...
/* We end up here when invoked with wrong number of parms */
}

/***/
/* Assume the first parameter is an integer. */
/* The following code shows how to copy the integer*/
/* parameter into the application storage. */
/***/
parm1 = *(int *) argv[1];
/***/
/* We can access the null indicator for the first */

622 Application Programming and SQL Guide

/* parameter on the SQL CALL as follows: */
/***/
ind1 = *(short int *) argv[4];
/***/
/* We can use the following expression */
/* to assign ’xxxxx’ to the SQLSTATE returned to */
/* caller on the SQL CALL statement. */
/***/
strcpy(argv[7],"xxxxx/0");
/***/
/* We obtain the value of the qualified procedure */
/* name with this expression. */
/***/
strcpy(p_proc,argv[8]);
/***/
/* We obtain the value of the specific procedure */
/* name with this expression. */
/***/
strcpy(p_spec,argv[9]);
/***/
/* We can use the following expression to assign */
/* ’yyyyyyyy’ to the diagnostic string returned */
/* in the SQLDA associated with the CALL statement.*/
/***/
strcpy(argv[10],"yyyyyyyy/0");...

}

The following figure shows how a stored procedure that is written as a
subprogram in the C language receives these parameters.
#pragma linkage(myproc,fetchable)
#include <stdlib.h>
#include <stdio.h>
#include <sqludf.h>

void myproc(*parm1 int, /* assume INT for PARM1
*/

parm2 char[11], /* assume CHAR(10) parm2
*/...

p_ind1 short int, / null indicator for parm1
*/

p_ind2 short int, / null indicator for parm2
*/...

p_sqlstate char[6], /* SQLSTATE returned to DB2
*/

p_proc char[28], /* Qualified stored proc name
*/

p_spec char[19], /* Specific stored proc name
*/

p_diag char[1001], /* Diagnostic string
*/

struct sqludf_dbinfo *udf_dbinfo); /* DBINFO
*/

{
int l_p1;
char[11] l_p2;
short int l_ind1;
short int l_ind2;
char[6] l_sqlstate;
char[28] l_proc;
char[19] l_spec;
char[71] l_diag;
sqludf_dbinfo *ludf_dbinfo;

Chapter 10. Creating and modifying DB2 objects 623

...
/***/
/* Copy each of the parameters in the parameter */
/* list into a local variable, just to demonstrate */
/* how the parameters can be referenced. */
/***/
l_p1 = *parm1;

strcpy(l_p2,parm2);

l_ind1 = *p_ind1;

l_ind1 = *p_ind2;

strcpy(l_sqlstate,p_sqlstate);

strcpy(l_proc,p_proc);

strcpy(l_spec,p_spec);

strcpy(l_diag,p_diag);
memcpy(&ludf_dbinfo,udf_dbinfo,sizeof(ludf_dbinfo));...

}

COBOL example: The following figure shows how a stored procedure that is
written in the COBOL language receives these parameters.
CBL RENT
IDENTIFICATION DIVISION....
DATA DIVISION....
LINKAGE SECTION.
* Declare each of the parameters
01 PARM1 ...
01 PARM2
* Declare a null indicator for each parameter
01 P-IND1 PIC S9(4) USAGE COMP.
01 P-IND2 PIC S9(4) USAGE COMP....
* Declare the SQLSTATE that can be set by stored proc
01 P-SQLSTATE PIC X(5).
* Declare the qualified procedure name
01 P-PROC.

49 P-PROC-LEN PIC 9(4) USAGE BINARY.
49 P-PROC-TEXT PIC X(27).

* Declare the specific procedure name
01 P-SPEC.

49 P-SPEC-LEN PIC 9(4) USAGE BINARY.
49 P-SPEC-TEXT PIC X(18).

* Declare SQL diagnostic message token
01 P-DIAG.

49 P-DIAG-LEN PIC 9(4) USAGE BINARY.
49 P-DIAG-TEXT PIC X(1000).

* Structure used for DBINFO *

01 SQLUDF-DBINFO.
* Location name length

05 DBNAMELEN PIC 9(4) USAGE BINARY.
* Location name

05 DBNAME PIC X(128).
* authorization ID length

05 AUTHIDLEN PIC 9(4) USAGE BINARY.

624 Application Programming and SQL Guide

* authorization ID
05 AUTHID PIC X(128).

* environment CCSID information
05 CODEPG PIC X(48).
05 CDPG-DB2 REDEFINES CODEPG.

10 DB2-CCSIDS OCCURS 3 TIMES.
15 DB2-SBCS PIC 9(9) USAGE BINARY.
15 DB2-DBCS PIC 9(9) USAGE BINARY.
15 DB2-MIXED PIC 9(9) USAGE BINARY.

10 ENCODING-SCHEME PIC 9(9) USAGE BINARY.
10 RESERVED PIC X(20).

* other platform-specific
deprecated CCSID structures not included here
* schema name length

05 TBSCHEMALEN PIC 9(4) USAGE BINARY.
* schema name

05 TBSCHEMA PIC X(128).
* table name length

05 TBNAMELEN PIC 9(4) USAGE BINARY.
* table name

05 TBNAME PIC X(128).
* column name length

05 COLNAMELEN PIC 9(4) USAGE BINARY.
* column name

05 COLNAME PIC X(128).
* product information

05 VER-REL PIC X(8).
* reserved

05 RESD0 PIC X(2).
* platform type

05 PLATFORM PIC 9(9) USAGE BINARY.
* number of entries in the TF column list array (tfcolumn, below)

05 NUMTFCOL PIC 9(4) USAGE BINARY.
* reserved

05 RESD1 PIC X(26).
* tfcolumn will be allocated dynamically of it is defined
* otherwise this will be a null pointer

05 TFCOLUMN USAGE IS POINTER.
* application identifier

05 APPL-ID USAGE IS POINTER.
* reserved

05 RESD2 PIC X(20).
*...
PROCEDURE DIVISION USING PARM1, PARM2,

P-IND1, P-IND2,
P-SQLSTATE, P-PROC, P-SPEC, P-DIAG,
SQLUDF-DBINFO....

PL/I example: The following figure shows how a stored procedure that is written
in the PL/I language receives these parameters.
*PROCESS SYSTEM(MVS);
MYMAIN: PROC(PARM1, PARM2, ...,

P_IND1, P_IND2, ...,
P_SQLSTATE, P_PROC, P_SPEC, P_DIAG, DBINFO)

OPTIONS(MAIN NOEXECOPS REENTRANT);

DCL PARM1 ... /* first parameter */
DCL PARM2 ... /* second parameter */...
DCL P_IND1 BIN FIXED(15);/* indicator for 1st parm */
DCL P_IND2 BIN FIXED(15);/* indicator for 2nd parm */...
DCL P_SQLSTATE CHAR(5); /* SQLSTATE to return to DB2 */

Chapter 10. Creating and modifying DB2 objects 625

DCL 01 P_PROC CHAR(27) /* Qualified procedure name */
VARYING;

DCL 01 P_SPEC CHAR(18) /* Specific stored proc */
VARYING;

DCL 01 P_DIAG CHAR(1000) /* Diagnostic string */
VARYING;

DCL DBINFO PTR;

DCL 01 SP_DBINFO BASED(DBINFO),
/* Dbinfo */

03 UDF_DBINFO_LLEN BIN FIXED(15), /* location length */
03 UDF_DBINFO_LOC CHAR(128), /* location name */
03 UDF_DBINFO_ALEN BIN FIXED(15), /* auth ID length */
03 UDF_DBINFO_AUTH CHAR(128), /* authorization ID */
03 UDF_DBINFO_CCSID, /* CCSIDs for DB2 for z/OS */
05 R1 BIN FIXED(15), /* Reserved */
05 UDF_DBINFO_ASBCS BIN FIXED(15), /* ASCII SBCS CCSID */
05 R2 BIN FIXED(15), /* Reserved */
05 UDF_DBINFO_ADBCS BIN FIXED(15), /* ASCII DBCS CCSID */
05 R3 BIN FIXED(15), /* Reserved */
05 UDF_DBINFO_AMIXED BIN FIXED(15), /* ASCII MIXED CCSID */
05 R4 BIN FIXED(15), /* Reserved */
05 UDF_DBINFO_ESBCS BIN FIXED(15), /* EBCDIC SBCS CCSID */
05 R5 BIN FIXED(15), /* Reserved */
05 UDF_DBINFO_EDBCS BIN FIXED(15), /* EBCDIC DBCS CCSID */
05 R6 BIN FIXED(15), /* Reserved */
05 UDF_DBINFO_EMIXED BIN FIXED(15), /* EBCDIC MIXED CCSID*/
05 R7 BIN FIXED(15), /* Reserved */
05 UDF_DBINFO_USBCS BIN FIXED(15), /* Unicode SBCS CCSID

*/
05 R8 BIN FIXED(15), /* Reserved */
05 UDF_DBINFO_UDBCS BIN FIXED(15), /* Unicode DBCS CCSID

*/
05 R9 BIN FIXED(15), /* Reserved */
05 UDF_DBINFO_UMIXED BIN FIXED(15), /* Unicode MIXED CCSID*/
05 UDF_DBINFO_ENCODE BIN FIXED(31), /* SP encode scheme */
05 UDF_DBINFO_RESERV0 CHAR(20), /* reserved

*/
03 UDF_DBINFO_SLEN BIN FIXED(15), /* schema length */
03 UDF_DBINFO_SCHEMA CHAR(128), /* schema name */
03 UDF_DBINFO_TLEN BIN FIXED(15), /* table length */
03 UDF_DBINFO_TABLE CHAR(128), /* table name */
03 UDF_DBINFO_CLEN BIN FIXED(15), /* column length */
03 UDF_DBINFO_COLUMN CHAR(128), /* column name */
03 UDF_DBINFO_RELVER CHAR(8), /* DB2 release level */
03 UDF_DBINFO_RESERV0 CHAR(2), /* reserved */
03 UDF_DBINFO_PLATFORM BIN FIXED(31), /* database platform*/
03 UDF_DBINFO_NUMTFCOL BIN FIXED(15), /* # of TF cols used*/
03 UDF_DBINFO_RESERV1 CHAR(26), /* reserved */
03 UDF_DBINFO_TFCOLUMN PTR, /* -> table fun col list */
03 UDF_DBINFO_APPLID PTR, /* -> application id */
03 UDF_DBINFO_RESERV2 CHAR(20); /* reserved */...

DBINFO structure
Use the DBINFO structure to pass environment information to user-defined
functions and stored procedures. Some fields in the structure are not used for
stored procedures.

DBINFO is a structure that contains information such as the name of the current
server, the application run time authorization ID and identification of the version
and release of the database manager that invoked the procedure.

The DBINFO structure includes the following information:

626 Application Programming and SQL Guide

Location name length
An unsigned 2-byte integer field. It contains the length of the location name in
the next field.

Location name
A 128-byte character field. It contains the name of the location to which the
invoker is currently connected.

Authorization ID length
An unsigned 2-byte integer field. It contains the length of the authorization ID
in the next field.

Authorization ID
A 128-byte character field. It contains the authorization ID of the application
from which the stored procedure is invoked, padded on the right with blanks.
If this stored procedure is nested within other routines (user-defined functions
or stored procedures), this value is the authorization ID of the application that
invoked the highest-level routine.

Subsystem code page
A 48-byte structure that consists of 10 integer fields and an eight-byte reserved
area. These fields provide information about the CCSIDs of the subsystem from
which the stored procedure is invoked.

Table qualifier length
An unsigned 2-byte integer field. This field contains 0.

Table qualifier
A 128-byte character field. This field is not used for stored procedures.

Table name length
An unsigned 2-byte integer field. This field contains 0.

Table name
A 128-byte character field. This field is not used for stored procedures.

Column name length
An unsigned 2-byte integer field. This field contains 0.

Column name
A 128-byte character field. This field is not used for stored procedures.

Product information
An 8-byte character field that identifies the product on which the stored
procedure executes. This field has the form pppvvrrm, where:
v ppp is a 3-byte product code:

ARI DB2 Server for VSE & VM

DSN DB2 for z/OS

QSQ DB2 for i

SQL DB2 for Linux, UNIX, and Windows
v vv is a two-digit version identifier.
v rr is a two-digit release identifier.
v m is a one-digit maintenance level identifier.

Reserved area
2 bytes.

Chapter 10. Creating and modifying DB2 objects 627

Operating system
A 4-byte integer field. It identifies the operating system on which the program
that invokes the user-defined function runs. The value is one of these:

0 Unknown

1 OS/2

3 Windows

4 AIX

5 Windows NT

6 HP-UX

7 Solaris

8 z/OS

13 Siemens Nixdorf

15 Windows 95

16 SCO UNIX

18 Linux

19 DYNIX/ptx

24 Linux for S/390

25 Linux for System z

26 Linux/IA64

27 Linux/PPC

28 Linux/PPC64

29 Linux/AMD64

400 iSeries

Number of entries in table function column list
An unsigned 2-byte integer field. This field contains 0.

Reserved area
26 bytes.

Table function column list pointer
This field is not used for stored procedures.

Unique application identifier
This field is a pointer to a string that uniquely identifies the application's
connection to DB2. The string is regenerated at for each connection to DB2.

The string is the LUWID, which consists of a fully-qualified LU network name
followed by a period and an LUW instance number. The LU network name
consists of a one- to eight-character network ID, a period, and a one- to
eight-character network LU name. The LUW instance number consists of 12
hexadecimal characters that uniquely identify the unit of work.

Reserved area
20 bytes.

Packages and plans for external stored procedures
An external stored procedure must have an associated package. The calling
application can use either a plan or a package.

628 Application Programming and SQL Guide

As part of the process of creating an external stored procedure, you prepare the
procedure, which means that you precompile, compile, link-edit, and bind the
application. The result of this process is a DB2 package. You do not need to create
a DB2 plan for an external procedure. The procedure runs under the caller's thread
and uses the plan from the client program that calls it.

The calling application can use a DB2 package or plan to execute the CALL
statement.

Both the stored procedure package and the calling application plan or package
must exist on the server before you run the calling application.

The following figure shows this relationship between a client program and a stored
procedure. In the figure, the client program, which was bound into package A,
issues a CALL statement to program B. Program B is an external stored procedure
in a WLM address space. This external stored procedure was bound into package
B.

You can control access to the stored procedure package by specifying the ENABLE
bind option when you bind the package.

In the following situations, the stored procedure might use more than one package:
v You bind a DBRM several times into several versions of the same package, all of

which have the same package name but reside in different package collections.
Your stored procedure can switch from one version to another by using the SET
CURRENT PACKAGESET statement.

v The stored procedure calls another program that contains SQL statements. This
program has an associated package. This package must exist at the location
where the stored procedure is defined and at the location where the SQL
statements are executed.

Client Program DB2 System Address Space

User ID=yyyy User ID=yyyy User ID=xxxx

Program A

..

.

EXEC SQL
CALL B

Package
A

Package
B

CALL B

Program
B

Figure 36. Stored procedure run time environment

Chapter 10. Creating and modifying DB2 objects 629

Related reference:

BIND and REBIND options (DB2 Commands)

BIND PACKAGE (DSN) (DB2 Commands)

SET CURRENT PACKAGESET (DB2 SQL)

Accessing other sites in an external procedure
External procedures can access tables at other DB2 locations.

About this task

Stored procedures can access tables at other DB2 locations by using three-part
object names or CONNECT statements.
Related concepts:
“Accessing distributed data by using three-part table names” on page 867

Accessing non-DB2 resources in your stored procedure
Applications that run in a stored procedures address space can access any
resources that are available to z/OS address spaces. For example, they can access
VSAM files, flat files, APPC/MVS conversations, and IMS or CICS transactions.

About this task

Accessing these resources from a stored procedure can be useful if you want to
update older applications. Suppose that you have existing applications that access
non-DB2 resources, but you want to use newer DB2 applications to access the same
data. You do not need to rewrite the application or migrate the data to DB2.
Instead, you can use stored procedures to execute the existing program or access
the non-DB2 data directly.

When a stored procedure runs, the stored procedure uses the Recoverable Resource
Manager Services (RRS) for commitment control. When DB2 commits or rolls back
work, DB2 coordinates all updates that are made to recoverable resources by other
RRS compliant resource managers in the z/OS system.

Procedure

To access non-DB2 resources in your stored procedure:
1. Consider serializing access to non-DB2 resources within your application. Not

all non-DB2 resources can tolerate concurrent access by multiple TCBs in the
same address space.

2. To access CICS, use one of the following methods:
v Stored procedure DSNACICS
v Message Queue Interface (MQI) for asynchronous execution of CICS

transactions
v External CICS interface (EXCI) for synchronous execution of CICS

transactions
v Advanced Program-to-Program Communication (APPC), using the Common

Programming Interface Communications (CPI Communications) application
programming interface

If your system is running a release of CICS that uses z/OS RRS, z/OS RRS
controls commitment of all resources.

3. To access IMS DL/I data, use one of the following methods

630 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_bindpackage.htm#db2z_cmd_bindpackage
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_setcurrentpackageset.htm#db2z_sql_setcurrentpackageset

v Open Database Access interface (ODBA)
v Stored procedures DSNAIMS and DSNAIMS2

If your system is not running a release of IMS that uses z/OS RRS, take one of
the following actions:
v Use the CICS EXCI interface to run a CICS transaction synchronously. That

CICS transaction can, in turn, access DL/I data.
v Invoke IMS transactions asynchronously using the MQI.
v Use APPC through the Common Programming Interface (CPI)

Communications application programming interface.
4. Determine which of the following authorization IDs you want to use to access

the non-DB2 resources.

Table 97. Authorization IDs for accessing non-DB2 resources from a stored procedure

ID that you want to use to access the
non-DB2 resources

SECURITY value to specify in the CREATE
PROCEDURE statement

The authorization ID that is associated with
the stored procedures address space

SECURITY DB2

The authorization ID under which the CALL
statement is executed

SECURITY USER

The authorization ID under which the
CREATE PROCEDURE statement is executed

SECURITY DEFINER

5. Issue the CREATE PROCEDURE statement with the appropriate SECURITY
option that you determined in the previous step.

Results

When the stored procedure runs, DB2 establishes a RACF environment for
accessing non-DB2 resources and uses the specified authorization ID to access
protected z/OS resources.

Chapter 10. Creating and modifying DB2 objects 631

Related tasks:
Chapter 14, “Calling a stored procedure from your application,” on page 787

Implementing RRS for stored procedures during installation (DB2 Installation
and Migration)

Controlling stored procedure access to non-DB2 resources by using RACF
(Managing Security)
Related reference:

DSNACICS stored procedure (DB2 Administration Guide)

DSNAIMS stored procedure (DB2 Administration Guide)

DSNAIMS2 stored procedure (DB2 Administration Guide)

CREATE PROCEDURE (SQL - external) (DB2 SQL)

APPC/MVS Configuration (Multiplatform APPC Configuration Guide)
Related information:

Accessing CICS and IMS (DB2 9 for z/OS Stored Procedures: Through the
CALL and Beyond)

External CICS interface (EXCI) (CICS Transaction Server for z/OS)

Writing an external procedure to access IMS databases
IMS Open Database Access (ODBA) support lets a DB2 stored procedure connect
to an IMS DBCTL or IMS DB/DC system and issue DL/I calls to access IMS
databases.

About this task

ODBA support uses RRS for syncpoint control of DB2 and IMS resources.
Therefore, stored procedures that use ODBA can run only in WLM-established
stored procedures address spaces.

When you write a stored procedure that uses ODBA, follow the rules for writing
an IMS application program that issues DL/I calls.

IMS work that is performed in a stored procedure is in the same commit scope as
the stored procedure. As with any other stored procedure, the calling application
commits work.

A stored procedure that uses ODBA must issue a DPSB PREP call to deallocate a
PSB when all IMS work under that PSB is complete. The PREP keyword tells IMS
to move inflight work to an indoubt state. When work is in the indoubt state, IMS
does not require activation of syncpoint processing when the DPSB call is executed.
IMS commits or backs out the work as part of RRS two-phase commit when the
stored procedure caller executes COMMIT or ROLLBACK.

A sample COBOL stored procedure and client program demonstrate accessing IMS
data using the ODBA interface. The stored procedure source code is in member
DSN8EC1 and is prepared by job DSNTEJ61. The calling program source code is in
member DSN8EC1 and is prepared and executed by job DSNTEJ62. All code is in
data set DSNB10.SDSNSAMP.

The startup procedure for a stored procedures address space in which stored
procedures that use ODBA run must include a DFSRESLB DD statement and an

632 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_implementrrs.htm#dbz_implementrrs
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_implementrrs.htm#dbz_implementrrs
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_manageaccess2nondb2.htm#db2z_manageaccess2nondb2
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_manageaccess2nondb2.htm#db2z_manageaccess2nondb2
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_sp_admindsnacics.htm#db2z_sp_admindsnacics
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_sp_admindsnaims.htm#db2z_sp_admindsnaims
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_sp_dsnaims2.htm#db2z_sp_dsnaims2
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createproceduresqlexternal.htm#db2z_sql_createproceduresqlexternal
http://www.redbooks.ibm.com/abstracts/GG244485.html
http://www.redbooks.ibm.com/redbooks/SG247604/ch23.htm
http://www.redbooks.ibm.com/redbooks/SG247604/ch23.htm
https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/topic/com.ibm.cics.ts.applicationprogramming.doc/topics/dfhp39z.html

extra data set in the STEPLIB concatenation.
Related concepts:

Installation step 19: Configure DB2 for running stored procedures and
user-defined functions (DB2 Installation and Migration)

Migration step 22: Configure DB2 for running stored procedures and
user-defined functions (DB2 Installation and Migration)
Related information:

Application programming design

Writing an external procedure to return result sets to a
distributed client
An external procedure can return multiple query result sets to a distributed client
if the value of DYNAMIC RESULT SETS in the stored procedure definition is
greater than 0.

About this task

For each result set you want returned, your stored procedure must:
v Declare a cursor with the option WITH RETURN.
v Open the cursor.
v If the cursor is scrollable, ensure that the cursor is positioned before the first row

of the result table.
v Leave the cursor open.

When the stored procedure ends, DB2 returns the rows in the query result set to
the client.

DB2 does not return result sets for cursors that are closed before the stored
procedure terminates. The stored procedure must execute a CLOSE statement for
each cursor associated with a result set that should not be returned to the DRDA
client.

Example: Declaring a cursor to return a result set: Suppose you want to return a
result set that contains entries for all employees in department D11. First, declare a
cursor that describes this subset of employees:
EXEC SQL DECLARE C1 CURSOR WITH RETURN FOR

SELECT * FROM DSN8B10.EMP
WHERE WORKDEPT=’D11’;

Then, open the cursor:
EXEC SQL OPEN C1;

DB2 returns the result set and the name of the SQL cursor for the stored procedure
to the client.

Use meaningful cursor names for returning result sets: The name of the cursor
that is used to return result sets is made available to the client application through
extensions to the DESCRIBE statement.

Use cursor names that are meaningful to the DRDA client application, especially
when the stored procedure returns multiple result sets.

Objects from which you can return result sets: You can use any of these objects
in the SELECT statement that is associated with the cursor for a result set:

Chapter 10. Creating and modifying DB2 objects 633

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_configuredb2fordb2routines.htm#db2z_configuredb2fordb2routines
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_configuredb2fordb2routines.htm#db2z_configuredb2fordb2routines
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_configuredb2fordb2routinesmigr.htm#db2z_configuredb2fordb2routinesmigr
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_configuredb2fordb2routinesmigr.htm#db2z_configuredb2fordb2routinesmigr
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims11.doc.apg/ims_newapplicationprogrammingdesign.htm

v Tables, synonyms, views, created temporary tables, declared temporary tables,
and aliases defined at the local DB2 subsystem

Returning a subset of rows to the client: If you execute FETCH statements with a
result set cursor, DB2 does not return the fetched rows to the client program. For
example, if you declare a cursor WITH RETURN and then execute the statements
OPEN, FETCH, and FETCH, the client receives data beginning with the third row
in the result set. If the result set cursor is scrollable and you fetch rows with it, you
need to position the cursor before the first row of the result table after you fetch
the rows and before the stored procedure ends.

Using a temporary table to return result sets: You can use a created temporary
table or declared temporary table to return result sets from a stored procedure.
This capability can be used to return nonrelational data to a DRDA client.

For example, you can access IMS data from a stored procedure in the following
way:
v Use APPC/MVS to issue an IMS transaction.
v Receive the IMS reply message, which contains data that should be returned to

the client.
v Insert the data from the reply message into a temporary table.
v Open a cursor against the temporary table. When the stored procedure ends, the

rows from the temporary table are returned to the client.
Related tasks:
“Writing a program to receive the result sets from a stored procedure” on page 804

Restrictions when calling other programs from an external
stored procedure
An external procedure can consist of more than one program, each with its own
package. Your stored procedure can call other programs, stored procedures, or
user-defined functions. Use the facilities of your programming language to call
other programs.

If the stored procedure calls other programs that contain SQL statements, each of
those called programs must have a DB2 package. The owner of the package or
plan that contains the CALL statement must have EXECUTE authority for all
packages that the other programs use.

When a stored procedure calls another program, DB2 determines which collection
the package of the called program belongs to in one of the following ways:
v If the stored procedure definition contains PACKAGE PATH with a specified list

of collection IDs, DB2 uses those collection IDs. If you also specify COLLID, DB2
ignores that clause.

v If the stored procedure definition contains COLLID collection-id, DB2 uses
collection-id.

v If the stored procedure executes SET CURRENT PACKAGE PATH and contains
the NO COLLID option, DB2 uses the CURRENT PACKAGE PATH special
register. The package of the called program comes from the list of collections in
the CURRENT PACKAGE PATH special register. For example, assume that
CURRENT PACKAGE PATH contains the list COLL1, COLL2, COLL3, COLL4.
DB2 searches for the first package (in the order of the list) that exists in these
collections.

v If the stored procedure does not execute SET CURRENT PACKAGE PATH and
instead executes SET CURRENT PACKAGESET, DB2 uses the CURRENT

634 Application Programming and SQL Guide

PACKAGESET special register. The package of the called program comes from
the collection that is specified in the CURRENT PACKAGESET special register.

v If both of the following conditions are true, DB2 uses the collection ID of the
package that contains the SQL statement CALL:
– the stored procedure does not execute SET CURRENT PACKAGE PATH or

SET CURRENT PACKAGESET
– the stored procedure definition contains the NO COLLID option
When control returns from the stored procedure, the value of the CURRENT
PACKAGESET special register is reset.DB2 restores the value of the CURRENT
PACKAGESET special register to the value that it contained before the client
program executed the SQL statement CALL.

Creating an external stored procedure as reentrant
Reentrant code is code for which a single copy can be used concurrently by two or
more processes. For improved performance, prepare your stored procedures to be
reentrant whenever possible

About this task

Reentrant stored procedures can improve performance for the following reasons:
v A reentrant stored procedure does not need to be loaded into storage every time

that it is called.
v A single copy of the stored procedure can be shared by multiple tasks in the

stored procedures address space. This sharing decreases the amount of virtual
storage that is used for code in the stored procedures address space.

Procedure

To create an external stored procedure as reentrant:
1. Compile the procedure as reentrant and link-edit it as reentrant and reusable.

For instructions on compiling programs to be reentrant, see the information for
the programming language that you are using. For C and C++ procedures, you
can use the z/OS binder to produce reentrant and reusable load modules.
If your stored procedure cannot be reentrant, link-edit it as non-reentrant and
non-reusable. The non-reusable attribute prevents multiple tasks from using a
single copy of the stored procedure at the same time.

2. Specify STAY RESIDENT YES in the CREATE PROCEDURE or ALTER
PROCEDURE statement for the stored procedure. This option makes a
reentrant stored procedure remain in storage.
A non-reentrant stored procedure must not remain in storage. You therefore
need to specify STAY RESIDENT NO in the CREATE PROCEDURE or ALTER
PROCEDURE statement for a non-reentrant stored procedure. STAY RESIDENT
NO is the default.

Chapter 10. Creating and modifying DB2 objects 635

Related concepts:

Making programs reentrant (Enterprise COBOL for z/OS Programming Guide)
Related reference:

Compiler options (COBOL) (Enterprise COBOL for z/OS Programming Guide)

ALTER PROCEDURE (external) (DB2 SQL)

CREATE PROCEDURE (external) (DB2 SQL)

Binder options reference (MVS Program Management: User's Guide and
Reference)

OPTIONS(REENTRANT) (Enterprise PL/I for z/OS Compiler and Runtime
Migration Guide)

Compile-time option descriptions (PL/I) (Enterprise PL/I for z/OS
Programming Guide:)

Reentrancy (XL C/C++ User's Guide)

External stored procedures as main programs and subprograms
A stored procedure that runs in a WLM-established address space and uses
Language Environment Release 1.7 or a subsequent release can be either a main
program or a subprogram. A stored procedure that runs as a subprogram can
perform better because Language Environment does less processing for it.

In general, a subprogram must do the following extra tasks that Language
Environment performs for a main program:
v Initialization and cleanup processing
v Allocating and freeing storage
v Closing all open files before exiting

When you code stored procedures as subprograms, follow these rules:
v Follow the language rules for a subprogram. For example, you cannot perform

I/O operations in a PL/I subprogram.
v Avoid using statements that terminate the Language Environment enclave when

the program ends. Examples of such statements are STOP or EXIT in a PL/I
subprogram, or STOP RUN in a COBOL subprogram. If the enclave terminates
when a stored procedure ends, and the client program calls another stored
procedure that runs as a subprogram, Language Environment must build a new
enclave. As a result, the benefits of coding a stored procedure as a subprogram
are lost.

v In COBOL stored procedures that are defined as PROGRAM TYPE SUB and
STAY RESIDENT YES, if you use stored procedure parameters as host variables,
set the SQL-INIT-FLAG variable to 0. This variable is generated by the DB2
precompiler. Setting it to 0 ensures that the SQLDA is updated with the current
addresses.

The following table summarizes the characteristics that define a main program and
a subprogram.

636 Application Programming and SQL Guide

http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/igy3pg50/4.1.7
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/igy3pg50/2.4?DT=20090820210412
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_alterprocedureexternal.htm#db2z_sql_alterprocedureexternal
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createprocedureexternal.htm#db2z_sql_createprocedureexternal
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2b1b0/6.0?ACTION=MATCHES&REQUEST=binder+options+reference&TYPE=FUZZY&SHELF=&DT=20110610105152&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2b1b0/6.0?ACTION=MATCHES&REQUEST=binder+options+reference&TYPE=FUZZY&SHELF=&DT=20110610105152&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/c1472841/4.1.3.9?ACTION=MATCHES&REQUEST=reentrant&TYPE=FUZZY&SHELF=&DT=20110908033423&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/c1472841/4.1.3.9?ACTION=MATCHES&REQUEST=reentrant&TYPE=FUZZY&SHELF=&DT=20110908033423&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/i1191451/1.1.1?ACTION=MATCHES&REQUEST=compile-time+option&TYPE=FUZZY&SHELF=&DT=20110908014642&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/i1191451/1.1.1?ACTION=MATCHES&REQUEST=compile-time+option&TYPE=FUZZY&SHELF=&DT=20110908014642&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/cbcug1b0/A.10?DN=SC09-4767-11&DT=20120802022433&SHELF=&CASE=&PATH=/bookmgr/

Table 98. Characteristics of main programs and subprograms

Language Main program Subprogram

Assembler MAIN=YES is specified in the
invocation of the CEEENTRY
macro.

MAIN=NO is specified in the
invocation of the CEEENTRY
macro.

C Contains a main() function. Pass
parameters to it through argc and
argv.

A fetchable function. Pass
parameters to it explicitly.

COBOL A COBOL program that ends with
GOBACK

A dynamically loaded subprogram
that ends with GOBACK

PL/I Contains a procedure declared with
OPTIONS(MAIN)

A procedure declared with
OPTIONS(FETCHABLE)

The following code shows an example of coding a C stored procedure as a
subprogram.
/**/
/* This C subprogram is a stored procedure that uses linkage */
/* convention GENERAL and receives 3 parameters. */
/**/
#pragma linkage(cfunc,fetchable)
#include <stdlib.h>
void cfunc(char p1[11],long *p2,short *p3)
{

/**/
/* Declare variables used for SQL operations. These variables */
/* are local to the subprogram and must be copied to and from */
/* the parameter list for the stored procedure call. */
/**/
EXEC SQL BEGIN DECLARE SECTION;

char parm1[11];
long int parm2;
short int parm3;

EXEC SQL END DECLARE SECTION;

/***/
/* Receive input parameter values into local variables. */
/***/
strcpy(parm1,p1);
parm2 = *p2;
parm3 = *p3;
/***/
/* Perform operations on local variables. */
/***/

...
/***/
/* Set values to be passed back to the caller. */
/***/
strcpy(parm1,"SETBYSP");
parm2 = 100;
parm3 = 200;
/***/
/* Copy values to output parameters. */
/***/
strcpy(p1,parm1);
*p2 = parm2;
*p3 = parm3;

}

The following code shows an example of coding a C++ stored procedure as a
subprogram.

Chapter 10. Creating and modifying DB2 objects 637

/**/
/* This C++ subprogram is a stored procedure that uses linkage */
/* convention GENERAL and receives 3 parameters. */
/* The extern statement is required. */
/**/
extern "C" void cppfunc(char p1[11],long *p2,short *p3);
#pragma linkage(cppfunc,fetchable)
#include <stdlib.h>
EXEC SQL INCLUDE SQLCA;
void cppfunc(char p1[11],long *p2,short *p3)
{

/**/
/* Declare variables used for SQL operations. These variables */
/* are local to the subprogram and must be copied to and from */
/* the parameter list for the stored procedure call. */
/**/
EXEC SQL BEGIN DECLARE SECTION;

char parm1[11];
long int parm2;
short int parm3;

EXEC SQL END DECLARE SECTION;

/***/
/* Receive input parameter values into local variables. */
/***/
strcpy(parm1,p1);
parm2 = *p2;
parm3 = *p3;
/***/
/* Perform operations on local variables. */
/***/

...
/***/
/* Set values to be passed back to the caller. */
/***/
strcpy(parm1,"SETBYSP");
parm2 = 100;
parm3 = 200;
/***/
/* Copy values to output parameters. */
/***/
strcpy(p1,parm1);
*p2 = parm2;
*p3 = parm3;

}

Data types in stored procedures
A stored procedure that is written in any language except REXX must declare each
parameter that is passed to it. The definition for that stored procedure must also
contain a compatible SQL data type declaration for each parameter.

For languages other than REXX

For all data types except LOBs, ROWIDs, locators, and VARCHARs (for C
language), see the tables listed in the following table for the host data types that
are compatible with the data types in the stored procedure definition. You cannot
have XML parameters in an external procedure.

For LOBs, ROWIDs, VARCHARs, and locators, the following table shows
compatible declarations for the assembler language.

638 Application Programming and SQL Guide

Table 99. Compatible assembler language declarations for LOBs, ROWIDs, and locators

SQL data type in definition Assembler declaration

TABLE LOCATOR
BLOB LOCATOR
CLOB LOCATOR
DBCLOB LOCATOR

DS FL4

BLOB(n) If n <= 65535:
var DS 0FL4
var_length DS FL4
var_data DS CLn
If n > 65535:
var DS 0FL4
var_length DS FL4
var_data DS CL65535
ORG var_data+(n-65535)

CLOB(n) If n <= 65535:
var DS 0FL4
var_length DS FL4
var_data DS CLn
If n > 65535:
var DS 0FL4
var_length DS FL4
var_data DS CL65535
ORG var_data+(n-65535)

DBCLOB(n) If m (=2*n) <= 65534:
var DS 0FL4
var_length DS FL4
var_data DS CLm
If m > 65534:
var DS 0FL4
var_length DS FL4
var_data DS CL65534
ORG var_data+(m-65534)

ROWID DS HL2,CL40

VARCHAR(n) If PARAMETER VARCHAR NULTERM is
specified or implied:

char data[n+1];

If PARAMETER VARCHAR STRUCTURE is
specified:

struct
{short len;
char data[n];

} var;

Note:

1. This row does not apply to VARCHAR(n) FOR BIT DATA. BIT DATA is always passed
in a structured representation.

For LOBs, ROWIDs, and locators, the following table shows compatible
declarations for the C language.

Table 100. Compatible C language declarations for LOBs, ROWIDs, and locators

SQL data type in definition C declaration

TABLE LOCATOR
BLOB LOCATOR
CLOB LOCATOR
DBCLOB LOCATOR

unsigned long

Chapter 10. Creating and modifying DB2 objects 639

Table 100. Compatible C language declarations for LOBs, ROWIDs, and locators (continued)

SQL data type in definition C declaration

BLOB(n) struct
{unsigned long length;
char data[n];

} var;

CLOB(n) struct
{unsigned long length;
char var_data[n];

} var;

DBCLOB(n) struct
{unsigned long length;
sqldbchar data[n];
} var;

ROWID struct
{short int length;
char data[40];

} var;

For LOBs, ROWIDs, and locators, the following table shows compatible
declarations for COBOL.

Table 101. Compatible COBOL declarations for LOBs, ROWIDs, and locators

SQL data type in definition COBOL declaration

TABLE LOCATOR
BLOB LOCATOR
CLOB LOCATOR
DBCLOB LOCATOR

01 var PIC S9(9) COMP-5.

BLOB(n) 01 var.
49 var-LENGTH PIC S9(9) COMP-5.
49 var-DATA PIC X(n).

CLOB(n) 01 var.
49 var-LENGTH PIC S9(9) COMP-5.
49 var-DATA PIC X(n).

DBCLOB(n) 01 var.
49 var-LENGTH PIC S9(9) COMP-5.
49 var-DATA PIC G(n) DISPLAY-1.

ROWID 01 var.
49 var-LEN PIC S9(4) COMP-5.
49 var-DATA PIC X(40).

For LOBs, ROWIDs, and locators, the following table shows compatible
declarations for PL/I.

Table 102. Compatible PL/I declarations for LOBs, ROWIDs, and locators

SQL data type in definition PL/I

TABLE LOCATOR
BLOB LOCATOR
CLOB LOCATOR
DBCLOB LOCATOR

BIN FIXED(31)

640 Application Programming and SQL Guide

Table 102. Compatible PL/I declarations for LOBs, ROWIDs, and locators (continued)

SQL data type in definition PL/I

BLOB(n) If n <= 32767:

01 var,
03 var_LENGTH

BIN FIXED(31),
03 var_DATA

CHAR(n);

If n > 32767:

01 var,
02 var_LENGTH

BIN FIXED(31),
02 var_DATA,

03 var_DATA1(n)
CHAR(32767),

03 var_DATA2
CHAR(mod(n,32767));

CLOB(n) If n <= 32767:

01 var,
03 var_LENGTH

BIN FIXED(31),
03 var_DATA

CHAR(n);

If n > 32767:

01 var,
02 var_LENGTH

BIN FIXED(31),
02 var_DATA,

03 var_DATA1(n)
CHAR(32767),

03 var_DATA2
CHAR(mod(n,32767));

DBCLOB(n) If n <= 16383:

01 var,
03 var_LENGTH

BIN FIXED(31),
03 var_DATA

GRAPHIC(n);

If n > 16383:

01 var,
02 var_LENGTH

BIN FIXED(31),
02 var_DATA,

03 var_DATA1(n)
GRAPHIC(16383),

03 var_DATA2
GRAPHIC(mod(n,16383));

ROWID CHAR(40) VAR

Tables of results: Each high-level language definition for stored procedure
parameters supports only a single instance (a scalar value) of the parameter. There
is no support for structure, array, or vector parameters. Because of this, the SQL
statement CALL limits the ability of an application to return some kinds of tables.
For example, an application might need to return a table that represents multiple
occurrences of one or more of the parameters passed to the stored procedure.

Chapter 10. Creating and modifying DB2 objects 641

Because the SQL statement CALL cannot return more than one set of parameters,
use one of the following techniques to return such a table:
v Put the data that the application returns in a DB2 table. The calling program can

receive the data in one of these ways:
– The calling program can fetch the rows from the table directly. Specify FOR

FETCH ONLY or FOR READ ONLY on the SELECT statement that retrieves
data from the table. A block fetch can retrieve the required data efficiently.

– The stored procedure can return the contents of the table as a result set. See
“Writing an external procedure to return result sets to a distributed client” on
page 633 and “Writing a program to receive the result sets from a stored
procedure” on page 804 for more information.

v Convert tabular data to string format and return it as a character string
parameter to the calling program. The calling program and the stored procedure
can establish a convention for interpreting the content of the character string. For
example, the SQL statement CALL can pass a 1920-byte character string
parameter to a stored procedure, which enables the stored procedure to return a
24x80 screen image to the calling program.

Related concepts:
“Compatibility of SQL and language data types” on page 144

Installation step 19: Configure DB2 for running stored procedures and
user-defined functions (DB2 Installation and Migration)

Migration step 22: Configure DB2 for running stored procedures and
user-defined functions (DB2 Installation and Migration)

REXX stored procedures
A REXX stored procedure is similar to any other REXX procedure and follows the
same rules as stored procedures in other languages. A REXX stored procedure
receives input parameters, executes REXX commands, optionally executes SQL
statements, and returns at most one output parameter. However, a few differences
exist.

A REXX stored procedure is different from other REXX procedures in the following
ways:
v A REXX stored procedure must not execute any of the following DSNREXX

commands that are used for the DB2 subsystem thread attachment:
ADDRESS DSNREXX CONNECT
ADDRESS DSNREXX DISCONNECT
CALL SQLDBS ATTACH TO
CALL SQLDBS DETACH

When you execute SQL statements in your stored procedure, DB2 establishes the
connection for you.

v A REXX stored procedure must run in a WLM-established stored procedures
address space.

v A language REXX stored procedure executes in a background TSO/E REXX
environment provided by the TSO/E environment service IKJTSOEV.

Unlike other stored procedures, you do not prepare REXX stored procedures for
execution. REXX stored procedures run using one of four packages that are bound
during the installation of DB2 REXX Language Support. The current isolation level
at which the stored procedure runs depends on the package that DB2 uses when
the stored procedure runs:

642 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_configuredb2fordb2routines.htm#db2z_configuredb2fordb2routines
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_configuredb2fordb2routines.htm#db2z_configuredb2fordb2routines
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_configuredb2fordb2routinesmigr.htm#db2z_configuredb2fordb2routinesmigr
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_configuredb2fordb2routinesmigr.htm#db2z_configuredb2fordb2routinesmigr

Package name
Isolation level

DSNREXRR
Repeatable read (RR)

DSNREXRS
Read stability (RS)

DSNREXCS
Cursor stability (CS)

DSNREXUR
Uncommitted read (UR)

This topic shows an example of a REXX stored procedure that executes DB2
commands. The stored procedure performs the following actions:
v Receives one input parameter, which contains a DB2 command.
v Calls the IFI COMMAND function to execute the command.
v Extracts the command result messages from the IFI return area and places the

messages in a created temporary table. Each row of the temporary table contains
a sequence number and the text of one message.

v Opens a cursor to return a result set that contains the command result messages.
v Returns the unformatted contents of the IFI return area in an output parameter.

The following example shows the definition of the stored procedure.
CREATE PROCEDURE COMMAND(IN CMDTEXT VARCHAR(254), OUT CMDRESULT VARCHAR(32704))

LANGUAGE REXX
EXTERNAL NAME COMMAND
NO COLLID
ASUTIME NO LIMIT
PARAMETER STYLE GENERAL
STAY RESIDENT NO
RUN OPTIONS ’TRAP(ON)’
WLM ENVIRONMENT WLMENV1
SECURITY DB2
DYNAMIC RESULT SETS 1
COMMIT ON RETURN NO;

The following example shows the COMMAND stored procedure that executes DB2
commands.
/* REXX */
PARSE UPPER ARG CMD /* Get the DB2 command text */

/* Remove enclosing quotation marks */
IF LEFT(CMD,2) = ""’" & RIGHT(CMD,2) = "’"" THEN
CMD = SUBSTR(CMD,2,LENGTH(CMD)-2)
ELSE
IF LEFT(CMD,2) = """’" & RIGHT(CMD,2) = "’""" THEN
CMD = SUBSTR(CMD,3,LENGTH(CMD)-4)
COMMAND = SUBSTR("COMMAND",1,18," ")

/**/
/* Set up the IFCA, return area, and output area for the */
/* IFI COMMAND call. */
/**/

IFCA = SUBSTR(’00’X,1,180,’00’X)
IFCA = OVERLAY(D2C(LENGTH(IFCA),2),IFCA,1+0)
IFCA = OVERLAY("IFCA",IFCA,4+1)
RTRNAREASIZE = 262144 /*1048572*/
RTRNAREA = D2C(RTRNAREASIZE+4,4)LEFT(’ ’,RTRNAREASIZE,’ ’)
OUTPUT = D2C(LENGTH(CMD)+4,2)||’0000’X||CMD
BUFFER = SUBSTR(" ",1,16," ")

/**/

Chapter 10. Creating and modifying DB2 objects 643

/* Make the IFI COMMAND call. */
/**/

ADDRESS LINKPGM "DSNWLIR COMMAND IFCA RTRNAREA OUTPUT"
WRC = RC
RTRN= SUBSTR(IFCA,12+1,4)
REAS= SUBSTR(IFCA,16+1,4)
TOTLEN = C2D(SUBSTR(IFCA,20+1,4))

/**/
/* Set up the host command environment for SQL calls. */
/**/

"SUBCOM DSNREXX" /* Host cmd env available? */
IF RC THEN /* No--add host cmd env */

S_RC = RXSUBCOM(’ADD’,’DSNREXX’,’DSNREXX’)

/**/
/* Set up SQL statements to insert command output messages */
/* into a temporary table. */
/**/

SQLSTMT=’INSERT INTO SYSIBM.SYSPRINT(SEQNO,TEXT) VALUES(?,?)’
ADDRESS DSNREXX "EXECSQL DECLARE C1 CURSOR FOR S1"
IF SQLCODE ¬= 0 THEN CALL SQLCA
ADDRESS DSNREXX "EXECSQL PREPARE S1 FROM :SQLSTMT"
IF SQLCODE ¬= 0 THEN CALL SQLCA

/**/
/* Extract messages from the return area and insert them into */
/* the temporary table. */
/**/

SEQNO = 0
OFFSET = 4+1
DO WHILE (OFFSET < TOTLEN)

LEN = C2D(SUBSTR(RTRNAREA,OFFSET,2))
SEQNO = SEQNO + 1
TEXT = SUBSTR(RTRNAREA,OFFSET+4,LEN-4-1)
ADDRESS DSNREXX "EXECSQL EXECUTE S1 USING :SEQNO,:TEXT"
IF SQLCODE ¬= 0 THEN CALL SQLCA
OFFSET = OFFSET + LEN

END
/**/
/* Set up a cursor for a result set that contains the command */
/* output messages from the temporary table. */
/**/

SQLSTMT=’SELECT SEQNO,TEXT FROM SYSIBM.SYSPRINT ORDER BY SEQNO’
ADDRESS DSNREXX "EXECSQL DECLARE C2 CURSOR FOR S2"
IF SQLCODE ¬= 0 THEN CALL SQLCA
ADDRESS DSNREXX "EXECSQL PREPARE S2 FROM :SQLSTMT"
IF SQLCODE ¬= 0 THEN CALL SQLCA

/**/
/* Open the cursor to return the message output result set to */
/* the caller. */
/**/

ADDRESS DSNREXX "EXECSQL OPEN C2"
IF SQLCODE ¬= 0 THEN CALL SQLCA
S_RC = RXSUBCOM(’DELETE’,’DSNREXX’,’DSNREXX’) /* REMOVE CMD ENV */
EXIT SUBSTR(RTRNAREA,1,TOTLEN+4)

/**/
/* Routine to display the SQLCA */
/**/

SQLCA:
SAY ’SQLCODE =’SQLCODE
SAY ’SQLERRMC =’SQLERRMC
SAY ’SQLERRP =’SQLERRP
SAY ’SQLERRD =’SQLERRD.1’,’,

|| SQLERRD.2’,’,
|| SQLERRD.3’,’,
|| SQLERRD.4’,’,
|| SQLERRD.5’,’,
|| SQLERRD.6

644 Application Programming and SQL Guide

SAY ’SQLWARN =’SQLWARN.0’,’,
|| SQLWARN.1’,’,
|| SQLWARN.2’,’,
|| SQLWARN.3’,’,
|| SQLWARN.4’,’,
|| SQLWARN.5’,’,
|| SQLWARN.6’,’,
|| SQLWARN.7’,’,
|| SQLWARN.8’,’,
|| SQLWARN.9’,’,
|| SQLWARN.10

SAY ’SQLSTATE=’SQLSTATE
SAY ’SQLCODE =’SQLCODE
EXIT ’SQLERRMC =’SQLERRMC’;’ ,
|| ’SQLERRP =’SQLERRP’;’ ,
|| ’SQLERRD =’SQLERRD.1’,’,

|| SQLERRD.2’,’,
|| SQLERRD.3’,’,
|| SQLERRD.4’,’,
|| SQLERRD.5’,’,
|| SQLERRD.6’;’ ,

|| ’SQLWARN =’SQLWARN.0’,’,
|| SQLWARN.1’,’,
|| SQLWARN.2’,’,
|| SQLWARN.3’,’,
|| SQLWARN.4’,’,
|| SQLWARN.5’,’,
|| SQLWARN.6’,’,
|| SQLWARN.7’,’,
|| SQLWARN.8’,’,
|| SQLWARN.9’,’,
|| SQLWARN.10’;’ ,

|| ’SQLSTATE=’SQLSTATE’;’

Related reference:
“Calling a stored procedure from a REXX procedure” on page 793

TSO/E services available under IKJTSOEV (TSO/E Programming Services)

Modifying an external stored procedure definition
You can modify the definition of an external stored procedure or the stored
procedure source code. In either case, you need to prepare the stored procedure
again.

Procedure

To modify an external stored procedure definition:
1. Issue the ALTER PROCEDURE statement with the appropriate options. This

new definition replaces the existing definition.
2. Prepare the external stored procedure again, as you did when you originally

created the external stored procedure.

Example

Suppose that an existing C stored procedure was defined with the following
statement:
CREATE PROCEDURE B(IN V1 INTEGER, OUT V2 CHAR(9))

LANGUAGE C
DETERMINISTIC
NO SQL
EXTERNAL NAME SUMMOD
COLLID SUMCOLL
ASUTIME LIMIT 900

Chapter 10. Creating and modifying DB2 objects 645

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ikj4b770/3.4

PARAMETER STYLE GENERAL WITH NULLS
STAY RESIDENT NO
RUN OPTIONS ’MSGFILE(OUTFILE),RPTSTG(ON),RPTOPTS(ON)’
WLM ENVIRONMENT PAYROLL
PROGRAM TYPE MAIN
SECURITY DB2
DYNAMIC RESULT SETS 10
COMMIT ON RETURN NO;

Assume that you need to make the following changes to the stored procedure
definition:
v The stored procedure selects data from DB2 tables but does not modify DB2

data.
v The parameters can have null values, and the stored procedure can return a

diagnostic string.
v The length of time that the stored procedure runs is unlimited.
v If the stored procedure is called by another stored procedure or a user-defined

function, the stored procedure uses the WLM environment of the caller.

The following ALTER PROCEDURE statement makes these changes:
ALTER PROCEDURE B

READS SQL DATA
ASUTIME NO LIMIT
PARAMETER STYLE SQL
WLM ENVIRONMENT (PAYROLL,*);

Related reference:

ALTER PROCEDURE (external) (DB2 SQL)

Creating multiple versions of external procedures and external
SQL procedures

For native SQL procedures, you can use DB2 to create and maintain multiple
versions of the procedure. For external SQL procedures and other external
procedures, you must manually maintain multiple versions of the procedures.

Procedure

To create multiple versions of external procedures and external SQL procedures,
use one of the following techniques:
v Define multiple procedures with the same name in different schemas. You can

subsequently use the SQL path to determine which version of the procedure is
to be used by a calling program.

v Define multiple versions of the executable code. You can subsequently use a
particular version by specifying the name of the load module for the version
that you want to use on the EXTERNAL clause of the CREATE PROCEDURE
statement or ALTER PROCEDURE statement.

v Define multiple packages for a procedure. You can subsequently use the
COLLID option, the CURRENT PACKAGESET special register, or the CURRENT
PACKAGE PATH special register to specify which version of the procedure is to
be used by the calling application.

v Set up multiple WLM environments to use different versions of a procedure.

646 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_alterprocedureexternal.htm#db2z_sql_alterprocedureexternal

Chapter 11. Adding and modifying data

Your application program can add, modify, or delete data in any DB2 table for
which you have the appropriate access.

Inserting data into tables
You can use several different methods to insert data into a table. Decide which
method to use based on the amount of data that you need to insert and the other
operations that your program needs to perform.

About this task

Besides using stand-alone INSERT statements, you can use the following ways to
insert data into a table:
v You can user the MERGE statement to insert new data and update existing data

in the same operation. .
v You can write an application program to prompt for and enter large amounts of

data into a table.
v You can also use the DB2 LOAD utility to enter data from other sources.
Related tasks:
“Inserting data and updating data in a single operation” on page 653
Related reference:

LOAD (DB2 Utilities)

Inserting rows by using the INSERT statement
One way to insert data into tables is to use the SQL INSERT statement. This
method is useful for inserting small amounts of data or inserting data from
another table or view.

About this task

Use an INSERT statement to add new rows to a table or view. Using an INSERT
statement, you can do the following actions:
v Specify the column values to insert a single row. You can specify constants, host

variables, expressions, DEFAULT, or NULL by using the VALUES clause.
v In an application program, specify arrays of column values to insert multiple

rows into a table. Use host variable arrays in the VALUES clause of the INSERT
FOR n ROWS statement to add multiple rows of column values to a table.

v Include a SELECT statement in the INSERT statement to tell DB2 that another
table or view contains the data for the new row or rows.

In each case, for every row that you insert, you must provide a value for any
column that does not have a default value. For a column that meets one of the
following conditions, specify DEFAULT to tell DB2 to insert the default value for
that column:
v The column is nullable.
v The column is defined with a default value.

© Copyright IBM Corp. 1983, 2013 647

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utl_load.htm#db2z_utl_load

v The column has data type ROWID. ROWID columns always have default
values.

v The column is an identity column. Identity columns always have default values.
v The column is a row change timestamp column.

The values that you can insert into a ROWID column, an identity column, or a row
change timestamp column depend on whether the column is defined with
GENERATED ALWAYS or GENERATED BY DEFAULT.

Inserting a single row:

You can use the VALUES clause of the INSERT statement to insert a single row of
column values into a table. You can either name all of the columns for which you
are providing values, or you can omit the list of column names. If you omit the
column name list, you must specify values for all of the columns.

Recommendation: For static INSERT statements, name all of the columns for
which you are providing values for the following reasons:
v Your INSERT statement is independent of the table format. (For example, you do

not need to change the statement when a column is added to the table.)
v You can verify that you are specifying the values in order.
v Your source statements are more self-descriptive.

If you do not name the columns in a static INSERT statement, and a column is
added to the table, an error can occur if the INSERT statement is rebound. An
error will occur after any rebind of the INSERT statement unless you change the
INSERT statement to include a value for the new column. This is true even if the
new column has a default value.

When you list the column names, you must specify their corresponding values in
the same order as in the list of column names.

Example: The following statement inserts information about a new department
into the YDEPT table.
INSERT INTO YDEPT (DEPTNO, DEPTNAME, MGRNO, ADMRDEPT, LOCATION)

VALUES (’E31’, ’DOCUMENTATION’, ’000010’, ’E01’, ’ ’);

After inserting a new department row into your YDEPT table, you can use a
SELECT statement to see what you have loaded into the table. The following SQL
statement shows you all of the new department rows that you have inserted:
SELECT *

FROM YDEPT
WHERE DEPTNO LIKE ’E%’
ORDER BY DEPTNO;

The result table looks similar to the following output:
DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION
====== ==================================== ====== ======== ===========
E01 SUPPORT SERVICES 000050 A00 -----------
E11 OPERATIONS 000090 E01 -----------
E21 SOFTWARE SUPPORT 000100 E01 -----------
E31 DOCUMENTATION 000010 E01 -----------

648 Application Programming and SQL Guide

Example: The following statement inserts information about a new employee into
the YEMP table. Because the WORKDEPT column is a foreign key, the value that is
inserted for that column (E31) must be a value in the primary key column, which
is DEPTNO in the YDEPT table.
INSERT INTO YEMP

VALUES (’000400’, ’RUTHERFORD’, ’B’, ’HAYES’, ’E31’, ’5678’, ’1998-01-01’,
’MANAGER’, 16, ’M’, ’1970-07-10’, 24000, 500, 1900);

Example: The following statement also inserts a row into the YEMP table. Because
the unspecified columns allow null values, DB2 inserts null values into the
columns that you do not specify.
INSERT INTO YEMP

(EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT, PHONENO, JOB)
VALUES (’000410’, ’MILLARD’, ’K’, ’FILLMORE’, ’D11’, ’4888’, ’MANAGER’);

Related concepts:
“Rules for inserting data into an identity column” on page 651
“Rules for inserting data into a ROWID column” on page 650
Related tasks:
“Inserting multiple rows of data from host variable arrays” on page 157
“Inserting rows into a table from another table”
Related reference:

CREATE TABLE (DB2 SQL)

Inserting rows into a table from another table
You can copy one or more rows from one table into another table.

About this task

Use a fullselect within an INSERT statement to select rows from one table to insert
into another table.

Example: The following SQL statement creates a table named TELE:
CREATE TABLE TELE

(NAME2 VARCHAR(15) NOT NULL,
NAME1 VARCHAR(12) NOT NULL,
PHONE CHAR(4));

The following statement copies data from DSN8B10.EMP into the newly created
table:
INSERT INTO TELE

SELECT LASTNAME, FIRSTNME, PHONENO
FROM DSN8B10.EMP
WHERE WORKDEPT = ’D21’;

The two previous statements create and fill a table, TELE, that looks similar to the
following table:
NAME2 NAME1 PHONE
=============== ============ =====
PULASKI EVA 7831
JEFFERSON JAMES 2094
MARINO SALVATORE 3780
SMITH DANIEL 0961
JOHNSON SYBIL 8953
PEREZ MARIA 9001
MONTEVERDE ROBERT 3780

Chapter 11. Adding and modifying data 649

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtable.htm#db2z_sql_createtable

The CREATE TABLE statement example creates a table which, at first, is empty.
The table has columns for last names, first names, and phone numbers, but does
not have any rows.

The INSERT statement fills the newly created table with data that is selected from
the DSN8B10.EMP table: the names and phone numbers of employees in
department D21.

Example: The following CREATE statement creates a table that contains an
employee's department name and phone number. The fullselect within the INSERT
statement fills the DLIST table with data from rows that are selected from two
existing tables, DSN8B10.DEPT and DSN8B10.EMP.
CREATE TABLE DLIST

(DEPT CHAR(3) NOT NULL,
DNAME VARCHAR(36) ,
LNAME VARCHAR(15) NOT NULL,
FNAME VARCHAR(12) NOT NULL,
INIT CHAR ,
PHONE CHAR(4));

INSERT INTO DLIST
SELECT DEPTNO, DEPTNAME, LASTNAME, FIRSTNME, MIDINIT, PHONENO

FROM DSN8B10.DEPT, DSN8B10.EMP
WHERE DEPTNO = WORKDEPT;

Rules for inserting data into a ROWID column
A ROWID column contains unique values that identify each row in a table.
Whether you can insert data into a ROWID column and how that data gets
inserted depends on how the column is defined.

AROWID column is a column that is defined with a ROWID data type. You must
have a column with a ROWID data type in a table that contains a LOB column.
The ROWID column is stored in the base table and is used to look up the actual
LOB data in the LOB table space. In addition, a ROWID column enables you to
write queries that navigate directly to a row in a table. For information about using
ROWID columns for direct-row access, see “Specifying direct row access by using
row IDs” on page 748.

Before you insert data into a ROWID column, you must know how the ROWID
column is defined. ROWID columns can be defined as GENERATED ALWAYS or
GENERATED BY DEFAULT. GENERATED ALWAYS means that DB2 generates a
value for the column, and you cannot insert data into that column. If the column is
defined as GENERATED BY DEFAULT, you can insert a value, and DB2 provides a
default value if you do not supply one.

Example: Suppose that tables T1 and T2 have two columns: an integer column and
a ROWID column. For the following statement to run successfully, ROWIDCOL2
must be defined as GENERATED BY DEFAULT.
INSERT INTO T2 (INTCOL2,ROWIDCOL2)

SELECT * FROM T1;

If ROWIDCOL2 is defined as GENERATED ALWAYS, you cannot insert the
ROWID column data from T1 into T2, but you can insert the integer column data.
To insert only the integer data, use one of the following methods:
v Specify only the integer column in your INSERT statement, as in the following

statement:
INSERT INTO T2 (INTCOL2)

SELECT INTCOL1 FROM T1;

650 Application Programming and SQL Guide

v Specify the OVERRIDING USER VALUE clause in your INSERT statement to tell
DB2 to ignore any values that you supply for system-generated columns, as in
the following statement:
INSERT INTO T2 (INTCOL2,ROWIDCOL2) OVERRIDING USER VALUE

SELECT * FROM T1;

Rules for inserting data into an identity column
An identity column contains a unique numeric value for each row in the table.
Whether you can insert data into an identity column and how that data gets
inserted depends on how the column is defined.

An identity column is a numeric column, defined in a CREATE TABLE or ALTER
TABLE statement, that has ascending or descending values. For an identity column
to be as useful as possible, its values should also be unique. The column has a
SMALLINT, INTEGER, or DECIMAL(p,0) data type and is defined with the AS
IDENTITY clause. The AS IDENTITY clause specifies that the column is an identity
column. For information about using identity columns to uniquely identify rows,
see “Identity columns” on page 444

Before you insert data into an identity column, you must know how the column is
defined. Identity columns are defined with the GENERATED ALWAYS or
GENERATED BY DEFAULT clause. GENERATED ALWAYS means that DB2
generates a value for the column, and you cannot insert data into that column. If
the column is defined as GENERATED BY DEFAULT, you can insert a value, and
DB2 provides a default value if you do not supply one.

Example: Suppose that tables T1 and T2 have two columns: a character column
and an integer column that is defined as an identity column. For the following
statement to run successfully, IDENTCOL2 must be defined as GENERATED BY
DEFAULT.
INSERT INTO T2 (CHARCOL2,IDENTCOL2)

SELECT * FROM T1;

If IDENTCOL2 is defined as GENERATED ALWAYS, you cannot insert the identity
column data from T1 into T2, but you can insert the character column data. To
insert only the character data, use one of the following methods:
v Specify only the character column in your INSERT statement, as in the following

statement:
INSERT INTO T2 (CHARCOL2)

SELECT CHARCOL1 FROM T1;

v Specify the OVERRIDING USER VALUE clause in your INSERT statement to tell
DB2 to ignore any values that you supply for system-generated columns, as in
the following statement:
INSERT INTO T2 (CHARCOL2,IDENTCOL2) OVERRIDING USER VALUE

SELECT * FROM T1;

Restrictions when assigning values to columns with distinct
types
Certain conditions are required when you assign a column value to another
column or when you assign a constant to a column of a distinct type. If the
conditions are not met, you cannot assign the value.

When assigning a column value to another column or a constant to a column of a
distinct type, the type of the value that is to be assigned must match the column
type, or you must be able to cast one type to the other. Otherwise, you cannot
assign the value.

Chapter 11. Adding and modifying data 651

If you need to assign a value of one distinct type to a column of another distinct
type, a function must exist that converts the value from one type to another.
Because DB2 provides cast functions only between distinct types and their source
types, you must write the function to convert from one distinct type to another.

Assigning column values to columns with different distinct types

Suppose tables JAPAN_SALES and JAPAN_SALES_03 are defined like this:
CREATE TABLE JAPAN_SALES

(PRODUCT_ITEM INTEGER,
MONTH INTEGER CHECK (MONTH BETWEEN 1 AND 12),
YEAR INTEGER CHECK (YEAR > 1990),
TOTAL JAPANESE_YEN);

CREATE TABLE JAPAN_SALES_03
(PRODUCT_ITEM INTEGER,
TOTAL US_DOLLAR);

You need to insert values from the TOTAL column in JAPAN_SALES into the
TOTAL column of JAPAN_SALES_03. Because INSERT statements follow
assignment rules, DB2 does not let you insert the values directly from one column
to the other because the columns are of different distinct types. Suppose that a
user-defined function called US_DOLLAR has been written that accepts values of
type JAPANESE_YEN as input and returns values of type US_DOLLAR. You can
then use this function to insert values into the JAPAN_SALES_03 table:
INSERT INTO JAPAN_SALES_03

SELECT PRODUCT_ITEM, US_DOLLAR(TOTAL)
FROM JAPAN_SALES
WHERE YEAR = 2003;

Assigning column values with distinct types to host variables

The rules for assigning distinct types to host variables or host variables to columns
of distinct types differ from the rules for constants and columns.

You can assign a column value of a distinct type to a host variable if you can
assign a column value of the distinct type's source type to the host variable. In the
following example, you can assign SIZECOL1 and SIZECOL2, which has distinct
type SIZE, to host variables of type double and short because the source type of
SIZE, which is INTEGER, can be assigned to host variables of type double or short.
EXEC SQL BEGIN DECLARE SECTION;

double hv1;
short hv2;

EXEC SQL END DECLARE SECTION;
CREATE DISTINCT TYPE SIZE AS INTEGER;
CREATE TABLE TABLE1 (SIZECOL1 SIZE, SIZECOL2 SIZE);...
SELECT SIZECOL1, SIZECOL2

INTO :hv1, :hv2
FROM TABLE1;

Assigning host variable values to columns with distinct types

When you assign a value in a host variable to a column with a distinct type, the
type of the host variable must be able to cast to the distinct type.

In this example, values of host variable hv2 can be assigned to columns SIZECOL1
and SIZECOL2, because C data type short is equivalent to DB2 data type
SMALLINT, and SMALLINT is promotable to data type INTEGER. However,

652 Application Programming and SQL Guide

values of hv1 cannot be assigned to SIZECOL1 and SIZECOL2, because C data
type double, which is equivalent to DB2 data type DOUBLE, is not promotable to
data type INTEGER.
EXEC SQL BEGIN DECLARE SECTION;

double hv1;
short hv2;

EXEC SQL END DECLARE SECTION;
CREATE DISTINCT TYPE SIZE AS INTEGER;
CREATE TABLE TABLE1 (SIZECOL1 SIZE, SIZECOL2 SIZE);...
INSERT INTO TABLE1

VALUES (:hv1,:hv1); /* Invalid statement */
INSERT INTO TABLE1

VALUES (:hv2,:hv2); /* Valid statement */

Related concepts:

Promotion of data types (DB2 SQL)

Inserting data and updating data in a single operation
You can update existing data and insert new data in a single operation. This
operation is useful when you want to update a table with a set of rows, some of
which are changes to existing rows and some of which are new rows.

About this task

You can update existing data and insert new data in a single operation by using
the MERGE statement.

For example, an application might request a set of rows from a database, enable a
user to modify the data through a GUI, and then store the modified data in the
database. Some of this modified data is updates to existing rows, and some of this
data is new rows. You can do these update and insert operations in one step.

To update existing data and inserting new data, specify a MERGE statement with
the WHEN MATCHED and WHEN NOT MATCHED clauses. These clauses
specify how DB2 handles matched and unmatched data. If DB2 finds a matching
row, that row is updated. If DB2 does not find a matching row, a new row is
inserted.

Example: Suppose that you need to update the inventory at a car dealership. You
need to add new car models to the inventory and update information about car
models that are already in the inventory.

You could make these changes with the following series of statements:
UPDATE INVENTORY

SET QUANTITY = QUANTITY + :hv_delta
WHERE MODEL = :hv_model;

--begin pseudo code
if sqlcode >= 0
then do

GD
if rc = 0 then INSERT..

end
-- end pseudo code

GET DIAGNOSTICS :rc = ROW_COUNT;

Chapter 11. Adding and modifying data 653

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_promotionofdatatypes.htm#db2z_promotionofdatatypes

IF rc = 0 THEN
INSERT INTO INVENTORY VALUES (:hv_model, :hv_delta);
END IF;

The MERGE statement simplifies the update and the insert into a single statement:
MERGE INTO INVENTORY
USING (VALUES (:hv_model, :hv_delta)) AS SOURCE(MODEL, DELTA)
ON INVENTORY.MODEL = SOURCE.MODEL

WHEN MATCHED THEN UPDATE SET QUANTITY = QUANTITY + SOURCE.DELTA
WHEN NOT MATCHED THEN INSERT VALUES (SOURCE.MODEL, SOURCE.DELTA)

NOT ATOMIC CONTINUE ON SQLEXCEPTION;

Selecting values while merging data
When you update existing data and insert new data in a single merge operation,
you can select values from those rows at the same time.

About this task

You can select values from rows that are being merged by specifying the MERGE
statement in the FROM clause of the SELECT statement. When you merge one or
more rows into a table, you can retrieve:
v The value of an automatically generated column such as a ROWID or identity

column
v Any default values for columns
v All values for a merged row, without specifying individual column names
v Calculated values based on the changes to merged rows

Specify the FINAL TABLE clause with SELECT FROM MERGE statements. The
FINAL TABLE consists of the rows of the table or view after the merge occurs.

Example: Suppose that you need to input data into the STOCK table, which
contains company stock symbols and stock prices from your stock portfolio. Some
of your input data refers to companies that are already in the STOCK table; some
of the data refers to companies that you are adding to your stock portfolio. If the
stock symbol exists in the SYMBOL column of the STOCK table, you need to
update the PRICE column. If the company stock symbol is not yet in the STOCK
table, you need to insert a new row with the stock symbol and the stock price.
Furthermore, you need to add a new value DELTA to your output to show the
change in stock price.

Suppose that the STOCK table contains the data that is shown in Table 103.

Table 103. STOCK table before SELECT FROM MERGE statement

SYMBOL PRICE

XCOM 95.00

YCOM 24.50

Now, suppose that :hv_symbol and :hv_price are host variable arrays that contain
updated data that corresponds to the data that is shown in Table 103. Table 104
shows the host variable data for stock activity.

Table 104. Host variable arrays of stock activity

hv_symbol hv_price

XCOM 97.00

654 Application Programming and SQL Guide

Table 104. Host variable arrays of stock activity (continued)

hv_symbol hv_price

NEWC 30.00

XCOM 107.00

NEWC is new to the STOCK table, so its symbol and price need to be inserted into
the STOCK table. The rows for XCOM in Table 104 on page 654represent changed
stock prices, so these values need to be updated in the STOCK table. Also, the
output needs to show the change in stock prices as a DELTA value.

The following SELECT FROM MERGE statement updates the price of XCOM,
inserts the symbol and price for NEWC, and returns an output that includes a
DELTA value for the change in stock price.
SELECT SYMBOL, PRICE, DELTA FROM FINAL TABLE

(MERGE INTO STOCK AS S INCLUDE (DELTA DECIMAL(5,20)
USING ((:hv_symbol, :hv_price) FOR :hv_nrows ROWS) AS R (SYMBOL, PRICE)
ON S.SYMBOL = R.SYMBOL

WHEN MATCHED THEN UPDATE SET
DELTA = R.PRICE - S.PRICE, PRICE=R.PRICE

WHEN NOT MATCHED THEN INSERT
(SYMBOL, PRICE, DELTA) VALUES (R.SYMBOL, R.PRICE, R.PRICE)

NOT ATOMIC CONTINUE ON SQLEXCEPTION);

The INCLUDE clause specifies that an additional column, DELTA, can be returned
in the output without adding a column to the STOCK table. The UPDATE portion
of the MERGE statement sets the DELTA value to the differential of the previous
stock price with the value set for the update operation. The INSERT portion of the
MERGE statement sets the DELTA value to the same value as the PRICE column.

After the SELECT FROM MERGE statement is processed, the STOCK table
contains the data that is shown in Table 105.

Table 105. STOCK table after SELECT FROM MERGE statement

SYMBOL PRICE

XCOM 107.00

YCOM 24.50

NEWC 30.00

The following output of the SELECT FROM MERGE statement includes both
updates to XCOM and a DELTA value for each output row.
SYMBOL PRICE DELTA
=============================
XCOM 97.00 2.00
NEWC 30.00 30.00
XCOM 107.00 10.00

Selecting values while inserting data
When you insert rows into a table, you can select values from those rows at the
same time.

About this task

You can select values from rows that are being inserted by specifying the INSERT
statement in the FROM clause of the SELECT statement. When you insert one or
more new rows into a table, you can retrieve:

Chapter 11. Adding and modifying data 655

v The value of an automatically generated column such as a ROWID or identity
column

v Any default values for columns
v All values for an inserted row, without specifying individual column names
v All values that are inserted by a multiple-row INSERT operation
v Values that are changed by a BEFORE INSERT trigger

Example: In addition to examples that use the DB2 sample tables, the examples in
this topic use an EMPSAMP table that has the following definition:
CREATE TABLE EMPSAMP

(EMPNO INTEGER GENERATED ALWAYS AS IDENTITY,
NAME CHAR(30),
SALARY DECIMAL(10,2),
DEPTNO SMALLINT,
LEVEL CHAR(30),
HIRETYPE VARCHAR(30) NOT NULL WITH DEFAULT ’New Hire’,
HIREDATE DATE NOT NULL WITH DEFAULT);

Assume that you need to insert a row for a new employee into the EMPSAMP
table. To find out the values for the generated EMPNO, HIRETYPE, and
HIREDATE columns, use the following SELECT FROM INSERT statement:
SELECT EMPNO, HIRETYPE, HIREDATE

FROM FINAL TABLE (INSERT INTO EMPSAMP (NAME, SALARY, DEPTNO, LEVEL)
VALUES(’Mary Smith’, 35000.00, 11, ’Associate’));

The SELECT statement returns the DB2-generated identity value for the EMPNO
column, the default value 'New Hire' for the HIRETYPE column, and the value of
the CURRENT DATE special register for the HIREDATE column.

Recommendation: Use the SELECT FROM INSERT statement to insert a row into
a parent table and retrieve the value of a primary key that was generated by DB2
(a ROWID or identity column). In another INSERT statement, specify this
generated value as a value for a foreign key in a dependent table.

Result table of the INSERT operation:

The rows that are inserted into the target table produce a result table whose
columns can be referenced in the SELECT list of the query. The columns of the
result table are affected by the columns, constraints, and triggers that are defined
for the target table:
v The result table includes DB2-generated values for identity columns, ROWID

columns, or row change timestamp columns.
v Before DB2 generates the result table, it enforces any constraints that affect the

insert operation (that is, check constraints, unique index constraints, and
referential integrity constraints).

v The result table includes any changes that result from a BEFORE trigger that is
activated by the insert operation. An AFTER trigger does not affect the values in
the result table.

Example: Suppose that a BEFORE INSERT trigger is created on table EMPSAMP
to give all new employees at the Associate level a $5000 increase in salary. The
trigger has the following definition:
CREATE TRIGGER NEW_ASSOC

NO CASCADE BEFORE INSERT ON EMPSAMP
REFERENCING NEW AS NEWSALARY
FOR EACH ROW MODE DB2SQL

656 Application Programming and SQL Guide

WHEN (NEWSALARY.LEVEL = ’ASSOCIATE’)
BEGIN ATOMIC

SET NEWSALARY.SALARY = NEWSALARY.SALARY + 5000.00;
END;

The INSERT statement in the FROM clause of the following SELECT statement
inserts a new employee into the EMPSAMP table:
SELECT NAME, SALARY

FROM FINAL TABLE (INSERT INTO EMPSAMP (NAME, SALARY, LEVEL)
VALUES(’Mary Smith’, 35000.00, ’Associate’));

The SELECT statement returns a salary of 40000.00 for Mary Smith instead of the
initial salary of 35000.00 that was explicitly specified in the INSERT statement.

Selecting values when you insert a single row:

When you insert a new row into a table, you can retrieve any column in the result
table of the SELECT FROM INSERT statement. When you embed this statement in
an application, you retrieve the row into host variables by using the SELECT ...
INTO form of the statement.

Example: You can retrieve all the values for a row that is inserted into a structure:
EXEC SQL SELECT * INTO :empstruct

FROM FINAL TABLE (INSERT INTO EMPSAMP (NAME, SALARY, DEPTNO, LEVEL)
VALUES(’Mary Smith’, 35000.00, 11, ’Associate’));

For this example, :empstruct is a host variable structure that is declared with
variables for each of the columns in the EMPSAMP table.

Selecting values when you insert data into a view:

If the INSERT statement references a view that is defined with a search condition,
that view must be defined with the WITH CASCADED CHECK OPTION option.
When you insert data into the view, the result table of the SELECT FROM INSERT
statement includes only rows that satisfy the view definition.

Example: Because view V1 is defined with the WITH CASCADED CHECK
OPTION option, you can reference V1 in the INSERT statement:
CREATE VIEW V1 AS

SELECT C1, I1 FROM T1 WHERE I1 > 10
WITH CASCADED CHECK OPTION;

SELECT C1 FROM
FINAL TABLE (INSERT INTO V1 (I1) VALUES(12));

The value 12 satisfies the search condition of the view definition, and the result
table consists of the value for C1 in the inserted row.

If you use a value that does not satisfy the search condition of the view definition,
the insert operation fails, and DB2 returns an error.

Selecting values when you insert multiple rows:

In an application program, to retrieve values from the insertion of multiple rows,
declare a cursor so that the INSERT statement is in the FROM clause of the
SELECT statement of the cursor.

Chapter 11. Adding and modifying data 657

Example: Inserting rows with ROWID values: To see the values of the ROWID
columns that are inserted into the employee photo and resume table, you can
declare the following cursor:
EXEC SQL DECLARE CS1 CURSOR FOR

SELECT EMP_ROWID
FROM FINAL TABLE (INSERT INTO DSN8B10.EMP_PHOTO_RESUME (EMPNO)

SELECT EMPNO FROM DSN8B10.EMP);

Example: Using the FETCH FIRST clause: To see only the first five rows that are
inserted into the employee photo and resume table, use the FETCH FIRST clause:
EXEC SQL DECLARE CS2 CURSOR FOR

SELECT EMP_ROWID
FROM FINAL TABLE (INSERT INTO DSN8B10.EMP_PHOTO_RESUME (EMPNO)

SELECT EMPNO FROM DSN8B10.EMP)
FETCH FIRST 5 ROWS ONLY;

Example: Using the INPUT SEQUENCE clause: To retrieve rows in the order in
which they are inserted, use the INPUT SEQUENCE clause:
EXEC SQL DECLARE CS3 CURSOR FOR

SELECT EMP_ROWID
FROM FINAL TABLE (INSERT INTO DSN8B10.EMP_PHOTO_RESUME (EMPNO)

VALUES(:hva_empno)
FOR 5 ROWS)

ORDER BY INPUT SEQUENCE;

The INPUT SEQUENCE clause can be specified only if an INSERT statement is in
the FROM clause of the SELECT statement. In this example, the rows are inserted
from an array of employee numbers.

Example: Inserting rows with multiple encoding CCSIDs: Suppose that you want
to populate an ASCII table with values from an EBCDIC table and then see
selected values from the ASCII table. You can use the following cursor to select the
EBCDIC columns, populate the ASCII table, and then retrieve the ASCII values:
EXEC SQL DECLARE CS4 CURSOR FOR

SELECT C1, C2
FROM FINAL TABLE (INSERT INTO ASCII_TABLE

SELECT * FROM EBCDIC_TABLE);

Selecting an additional column when you insert data:

You can use the INCLUDE clause to introduce a new column to the result table but
not add a column to the target table.

Example: Suppose that you need to insert department number data into the
project table. Suppose also, that you want to retrieve the department number and
the corresponding manager number for each department. Because MGRNO is not a
column in the project table, you can use the INCLUDE clause to include the
manager number in your result but not in the insert operation. The following
SELECT FROM INSERT statement performs the insert operation and retrieves the
data.
DECLARE CS1 CURSOR FOR
SELECT manager_num, projname FROM FINAL TABLE

(INSERT INTO PROJ (DEPTNO) INCLUDE(manager_num CHAR(6))
SELECT DEPTNO, MGRNO FROM DEPT);

Result table of the cursor when you insert multiple rows:

658 Application Programming and SQL Guide

In an application program, when you insert multiple rows into a table, you declare
a cursor so that the INSERT statement is in the FROM clause of the SELECT
statement of the cursor. The result table of the cursor is determined during OPEN
cursor processing. The result table may or may not be affected by other processes
in your application.

Effect on cursor sensitivity:

When you declare a scrollable cursor, the cursor must be declared with the
INSENSITIVE keyword if an INSERT statement is in the FROM clause of the
cursor specification. The result table is generated during OPEN cursor processing
and does not reflect any future changes. You cannot declare the cursor with the
SENSITIVE DYNAMIC or SENSITIVE STATIC keywords.

Effect of searched updates and deletes:

When you declare a non-scrollable cursor, any searched updates or deletes do not
affect the result table of the cursor. The rows of the result table are determined
during OPEN cursor processing.

Example: Assume that your application declares a cursor, opens the cursor,
performs a fetch, updates the table, and then fetches additional rows:
EXEC SQL DECLARE CS1 CURSOR FOR

SELECT SALARY
FROM FINAL TABLE (INSERT INTO EMPSAMP (NAME, SALARY, LEVEL)

SELECT NAME, INCOME, BAND FROM OLD_EMPLOYEE);
EXEC SQL OPEN CS1;
EXEC SQL FETCH CS1 INTO :hv_salary;
/* print fetch result */
...
EXEC SQL UPDATE EMPSAMP SET SALARY = SALARY + 500;
while (SQLCODE == 0) {

EXEC SQL FETCH CS1 INTO :hv_salary;
/* print fetch result */
...

}

The fetches that occur after the updates return the rows that were generated when
the cursor was opened. If you use a simple SELECT (with no INSERT statement in
the FROM clause), the fetches might return the updated values, depending on the
access path that DB2 uses.

Effect of WITH HOLD:

When you declare a cursor with the WITH HOLD option and open the cursor, all
of the rows are inserted into the target table. The WITH HOLD option has no
effect on the SELECT FROM INSERT statement of the cursor definition. After your
application performs a commit, you can continue to retrieve all of the inserted
rows.

Example: Assume that the employee table in the DB2 sample application has five
rows. Your application declares a WITH HOLD cursor, opens the cursor, fetches
two rows, performs a commit, and then fetches the third row successfully:
EXEC SQL DECLARE CS2 CURSOR WITH HOLD FOR

SELECT EMP_ROWID
FROM FINAL TABLE (INSERT INTO DSN8B10.EMP_PHOTO_RESUME (EMPNO)

SELECT EMPNO FROM DSN8B10.EMP);
EXEC SQL OPEN CS2; /* Inserts 5 rows */
EXEC SQL FETCH CS2 INTO :hv_rowid; /* Retrieves ROWID for 1st row */

Chapter 11. Adding and modifying data 659

EXEC SQL FETCH CS2 INTO :hv_rowid; /* Retrieves ROWID for 2nd row */
EXEC SQL COMMIT; /* Commits 5 rows */
EXEC SQL FETCH CS2 INTO :hv_rowid; /* Retrieves ROWID for 3rd row */

Effect of SAVEPOINT and ROLLBACK:

A savepoint is a point in time within a unit of recovery to which relational
database changes can be rolled back. You can set a savepoint with the SAVEPOINT
statement.

When you set a savepoint prior to opening the cursor and then roll back to that
savepoint, all of the insertions are undone.

Example: Assume that your application declares a cursor, sets a savepoint, opens
the cursor, sets another savepoint, rolls back to the second savepoint, and then rolls
back to the first savepoint:
EXEC SQL DECLARE CS3 CURSOR FOR

SELECT EMP_ROWID
FROM FINAL TABLE (INSERT INTO DSN8B10.EMP_PHOTO_RESUME (EMPNO)

SELECT EMPNO FROM DSN8B10.EMP);
EXEC SQL SAVEPOINT A ON ROLLBACK RETAIN CURSORS; /* Sets 1st savepoint */
EXEC SQL OPEN CS3;
EXEC SQL SAVEPOINT B ON ROLLBACK RETAIN CURSORS; /* Sets 2nd savepoint */
...
EXEC SQL ROLLBACK TO SAVEPOINT B; /* Rows still in DSN8B10.EMP_PHOTO_RESUME */
...
EXEC SQL ROLLBACK TO SAVEPOINT A; /* All inserted rows are undone */

What happens if an error occurs: In an application program, when you insert one
or more rows into a table by using the SELECT FROM INSERT statement, the
result table of the insert operation may or may not be affected, depending on
where the error occurred in the application processing.

During SELECT INTO processing: If the insert processing or the select processing
fails during a SELECT INTO statement, no rows are inserted into the target table,
and no rows are returned from the result table of the insert operation.

Example: Assume that the employee table of the DB2 sample application has one
row, and that the SALARY column has a value of 9 999 000.00.
EXEC SQL SELECT EMPNO INTO :hv_empno

FROM FINAL TABLE (INSERT INTO EMPSAMP (NAME, SALARY)
SELECT FIRSTNAME || MIDINIT || LASTNAME,

SALARY + 10000.00
FROM DSN8B10.EMP)

The addition of 10000.00 causes a decimal overflow to occur, and no rows are
inserted into the EMPSAMP table.

During OPEN cursor processing: If the insertion of any row fails during the
OPEN cursor processing, all previously successful insertions are undone. The result
table of the insert is empty.

During FETCH processing: If the FETCH statement fails while retrieving rows
from the result table of the insert operation, a negative SQLCODE is returned to
the application, but the result table still contains the original number of rows that
was determined during the OPEN cursor processing. At this point, you can undo
all of the inserts.

660 Application Programming and SQL Guide

Example: Assume that the result table contains 100 rows and the 90th row that is
being fetched from the cursor returns a negative SQLCODE:
EXEC SQL DECLARE CS1 CURSOR FOR

SELECT EMPNO
FROM FINAL TABLE (INSERT INTO EMPSAMP (NAME, SALARY)

SELECT FIRSTNAME || MIDINIT || LASTNAME, SALARY + 10000.00
FROM DSN8B10.EMP);

EXEC SQL OPEN CS1; /* Inserts 100 rows */
while (SQLCODE == 0)

EXEC SQL FETCH CS1 INTO :hv_empno;
if (SQLCODE == -904) /* If SQLCODE is -904, undo all inserts */

EXEC SQL ROLLBACK;
else /* Else, commit inserts */

EXEC SQL COMMIT;

Related concepts:
“Held and non-held cursors” on page 718
“Rules for host variables in an SQL statement” on page 148
“Identity columns” on page 444
“Types of cursors” on page 715
Related tasks:
“Inserting multiple rows of data from host variable arrays” on page 157
“Retrieving a set of rows by using a cursor” on page 715
“Undoing selected changes within a unit of work by using savepoints” on page 27
Related reference:
“Command line processor BIND command” on page 945

Preserving the order of a derived table
When you specify SELECT FROM INSERT, SELECT FROM UPDATE, SELECT
FROM DELETE, or SELECT FROM MERGE, you can preserve the order of the
derived table. This action ensures that the result rows of a fullselect follow the
same order as the result table of a subquery within the fullselect.

About this task

To preserve the order of the derived table specify the ORDER OF clause with the
ORDER BY clause. These two clauses ensure that the result rows of a fullselect
follow the same order as the result table of a subquery within the fullselect.

You can use the ORDER OF clause in any query that uses an ORDER BY clause,
but the ORDER OF clause is most useful with queries that contain a set operator,
such as UNION.

Example: The following example retrieves the following rows:
v Rows of table T1 in no specified order
v Rows of table T2 in the order of the first column in table T2

The example query then performs a UNION ALL operation on the results of the
two subqueries. The ORDER BY ORDER OF UTABLE clause in the query specifies
that the fullselect result rows are to be returned in the same order as the result
rows of the UNION ALL statement.
SELECT * FROM

(SELECT * FROM T1
UNION ALL

(SELECT * FROM T2 ORDER BY 1)
) AS UTABLE

ORDER BY ORDER OF UTABLE;

Chapter 11. Adding and modifying data 661

Example: The following example joins data from table T1 to the result table of a
nested table expression. The nested table expression is ordered by the second
column in table T2. The ORDER BY ORDER OF TEMP clause in the query specifies
that the fullselect result rows are to be returned in the same order as the nested
table expression.
SELECT T1.C1, T1.C2, TEMP.Cy, TEMP.Cx
FROM T1, (SELECT T2.C1, T2.C2 FROM T2 ORDER BY 2) as TEMP(Cx, Cy)
WHERE Cy = T1.C1
ORDER BY ORDER OF TEMP;

Alternatively, you can produce the same result by explicitly stating the ORDER BY
column TEMP.Cy in the fullselect instead of using the ORDER OF syntax.
SELECT T1.C1, T1.C2, TEMP.Cy, TEMP.Cx
FROM T1, (SELECT T2.C1, T2.C2 FROM T2 ORDER BY 2) as TEMP(Cx, Cy)
WHERE Cy = T1.C1
ORDER BY TEMP.Cy;

Adding data to the end of a table
In a relational database, the rows of a table are not ordered, and thus, the table has
no “end.” However, depending on your goal, you can perform several actions to
simulate adding data to the end of a table.

About this task

Question: How can I add data to the end of a table?

Answer: Though the question is often asked, it has no meaning in a relational
database. The rows of a base table are not ordered; hence, the table does not have
an “end”.

However, depending on your goal, you can perform one of the following actions to
simulate adding data to the end of a table:
v If your goal is to get a result table that is ordered according to when the rows

were inserted, define a unique index on a TIMESTAMP column in the table
definition. Then, when you retrieve data from the table, use an ORDER BY
clause that names that column. The newest insert appears last.

v If your goal is for DB2 to insert rows in the next available free space, without
preserving clustering order, specify the APPEND YES option when you create or
alter the table. Specifying this option might reduce the time it takes to insert
rows, because DB2 does not spend time searching for free space.

Storing data that does not have a tabular format
DB2 provides several options for you to store large volumes of data that is not
defined as a set of columns in a table.

About this task

Question: How can I store a large volume of data that is not defined as a set of
columns in a table?

Answer: You can store the data in a table in a binary string, a LOB, or an XML
column.

662 Application Programming and SQL Guide

Updating table data
You can change a column value to another value or remove the column value
altogether.

About this task

To change the data in a table, use the UPDATE statement. You can also use the
UPDATE statement to remove a value from a column (without removing the row)
by changing the column value to null.

Example: Suppose that an employee relocates. To update several items of the
employee's data in the YEMP work table to reflect the move, you can execute the
following statement:
UPDATE YEMP

SET JOB = ’MANAGER ’,
PHONENO =’5678’
WHERE EMPNO = ’000400’;

You cannot update rows in a created temporary table, but you can update rows in
a declared temporary table.

The SET clause names the columns that you want to update and provides the
values that you want to assign to those columns. You can replace a column value
in the SET clause with any of the following items:
v A null value

The column to which you assign the null value must not be defined as NOT
NULL.

v An expression, which can be any of the following items:
– A column
– A constant
– A scalar fullselect
– A host variable
– A special register

v A default value
If you specify DEFAULT, DB2 determines the value based on how the
corresponding column is defined in the table.

In addition, you can replace one or more column values in the SET clause with the
column values in a row that is returned by a fullselect.

Next, identify the rows to update:
v To update a single row, use a WHERE clause that locates one, and only one,

row.
v To update several rows, use a WHERE clause that locates only the rows that you

want to update.

If you omit the WHERE clause, DB2 updates every row in the table or view with
the values that you supply.

If DB2 finds an error while executing your UPDATE statement (for example, an
update value that is too large for the column), it stops updating and returns an
error. No rows in the table change. Rows that were already changed, if any, are

Chapter 11. Adding and modifying data 663

restored to their previous values. If the UPDATE statement is successful,
SQLERRD(3) is set to the number of rows that are updated.

Example: The following statement supplies a missing middle initial and changes
the job for employee 000200.
UPDATE YEMP

SET MIDINIT = ’H’, JOB = ’FIELDREP’
WHERE EMPNO = ’000200’;

The following statement gives everyone in department D11 a raise of 400.00. The
statement can update several rows.
UPDATE YEMP

SET SALARY = SALARY + 400.00
WHERE WORKDEPT = ’D11’;

The following statement sets the salary for employee 000190 to the average salary
and sets the bonus to the minimum bonus for all employees.
UPDATE YEMP

SET (SALARY, BONUS) =
(SELECT AVG(SALARY), MIN(BONUS)

FROM EMP)
WHERE EMPNO = ’000190’;

Selecting values while updating data
When you update rows in a table, you can select the updated values from those
rows at the same time.

About this task

You can select values from rows that are being updated by specifying the UPDATE
statement in the FROM clause of the SELECT statement. When you update one or
more rows in a table, you can retrieve:
v The value of an automatically generated column such as a ROWID or identity

column
v Any default values for columns
v All values for an updated row, without specifying individual column names

In most cases, you want to use the FINAL TABLE clause with SELECT FROM
UPDATE statements. The FINAL TABLE consists of the rows of the table or view
after the update occurs.

Example: Suppose that all clerks for a company are receiving 5 percent raises. You
can use the following SELECT FROM UPDATE statement to increase the salary of
each designer by 5 percent and to retrieve the total increase in salary for the
company.
SELECT SUM(SALARY) INTO :salary FROM FINAL TABLE

(UPDATE EMP SET SALARY = SALARY * 1.05
WHERE JOB = ’DESIGNER’);

To retrieve row-by-row output of updated data, use a cursor with a SELECT
FROM UPDATE statement.

Example: Suppose that all designers for a company are receiving a 30 percent
increase in their bonus. You can use the following SELECT FROM UPDATE
statement to increase the bonus of each clerk by 30 percent and to retrieve the
bonus for each clerk.

664 Application Programming and SQL Guide

DECLARE CS1 CURSOR FOR
SELECT LASTNAME, BONUS FROM FINAL TABLE
(UPDATE EMP SET BONUS = BONUS * 1.3
WHERE JOB = ’CLERK’);

FETCH CS1 INTO :lastname, :bonus;

You can use the INCLUDE clause to introduce a new column to the result table but
not add the column to the target table.

Example: Suppose that sales representatives received a 20 percent increase in their
commission. You need to update the commission (COMM) of sales representatives
(SALESREP) in the EMP table and that you need to retrieve the old commission
and the new commission for each sales representative. You can use the following
SELECT FROM UPDATE statement to perform the update and to retrieve the
required data.
DECLARE CS2 CURSOR FOR
SELECT LASTNAME, COMM, old_comm FROM FINAL TABLE

(UPDATE EMP INCLUDE(old_comm DECIMAL (7,2))
SET COMM = COMM * 1.2, old_comm = COMM
WHERE JOB = ’SALESREP’);

Updating thousands of rows
When you update large volumes of data, consider certain recommended actions to
increase concurrency.

About this task

Question: Are there any special techniques for updating large volumes of data?

Answer: Yes. When updating large volumes of data using a cursor, you can
minimize the amount of time that you hold locks on the data by declaring the
cursor with the HOLD option and by issuing commits frequently.

Deleting data from tables
You can delete data from a table by deleting one or more rows from the table, by
deleting all rows from the table, or by dropping columns from the table.

Procedure

To delete one or more rows in a table:
v Use the DELETE statement with a WHERE clause to specify a search condition.

The DELETE statement removes zero or more rows of a table, depending on
how many rows satisfy the search condition that you specify in the WHERE
clause.
You can use DELETE with a WHERE clause to remove only selected rows from
a declared temporary table, but not from a created temporary table.
The following DELETE statement deletes each row in the YEMP table that has
an employee number '000060'.
DELETE FROM YEMP

WHERE EMPNO = ’000060’;

When this statement executes, DB2 deletes any row from the YEMP table that
meets the search condition.

Chapter 11. Adding and modifying data 665

|

|
|

|

|

|

|
|
|

|
|

|
|

|
|

|
|

If DB2 finds an error while executing your DELETE statement, it stops deleting
data and returns error codes in the SQLCODE and SQLSTATE variables or
related fields in the SQLCA. The data in the table does not change.
If the DELETE is successful, SQLERRD(3) in the SQLCA contains the number of
deleted rows. This number includes only the number of deleted rows in the
table that is specified in the DELETE statement. Rows that are deleted (in other
tables) according to the CASCADE rule are not included in SQLERRD(3).

To delete every row in a table:
v Use the DELETE statement without specifying a WHERE clause.

With segmented table spaces, deleting all rows of a table is very fast.
The following DELETE statement deletes every row in the YDEPT table:
DELETE FROM YDEPT;

If the statement executes, the table continues to exist (that is, you can insert rows
into it), but it is empty. All existing views and authorizations on the table remain
intact when using DELETE.

v Use the TRUNCATE statement.
The TRUNCATE statement can provide the following advantages over a
DELETE statement:
– The TRUNCATE statement can ignore delete triggers
– The TRUNCATE statement can perform an immediate commit
– The TRUNCATE statement can keep storage allocated for the table
The TRUNCATE statement does not, however, reset the count for an
automatically generated value for an identity column on the table. If 14872 was
the next identity column value to be generated before a TRUNCATE statement,
14872 would be the next value generated after the TRUNCATE statement.
Suppose that you need to empty the data from an old inventory table, regardless
of any existing delete triggers, and you need to make the space that is allocated
for the table available for other uses. Use the following TRUNCATE statement.
TRUNCATE INVENTORY_TABLE

IGNORE DELETE TRIGGERS
DROP STORAGE;

Suppose that you need to empty the data from an old inventory table
permanently, regardless of any existing delete triggers, and you need to preserve
the space that is allocated for the table. You need the emptied data to be
completely unavailable, so that a ROLLBACK statement cannot return the data.
Use the following TRUNCATE statement.
TRUNCATE INVENTORY_TABLE

REUSE STORAGE
IGNORE DELETE TRIGGERS
IMMEDIATE;

v Use the DROP TABLE statement.
DROP TABLE drops the specified table and all related views and authorizations,
which can invalidate plans and packages.

To drop columns from a table:
v Use the ALTER TABLE statement with the DROP COLUMN clause.

Because dropping a column from a table is a pending change to the definition of
the table, the table space is placed in advisory REORG-pending status (AREOR).
When the pending change is applied (by running the REORG utility with the
SHRLEVEL CHANGE or REFERENCE options), the column is dropped from the
table, and any dependent packages and statements in the dynamic statement
cache are invalidated.

666 Application Programming and SQL Guide

|
|
|

|
|
|
|
|

|

|

|

|

|
|
|

|

|
|

|

|

|

|
|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|

|
|
|

|

|
|
|
|
|
|

Related concepts:

SQL communication area (SQLCA) (DB2 SQL)
Related tasks:
“Dropping tables” on page 463
Related reference:

DROP (DB2 SQL)

TRUNCATE (DB2 SQL)

ALTER TABLE (DB2 SQL)

Selecting values while deleting data
When you delete rows from a table, you can select the values from those rows at
the same time.

About this task

You can select values from rows that are being deleted by specifying the DELETE
statement in the FROM clause of the SELECT statement. When you delete one or
more rows in a table, you can retrieve:
v Any default values for columns
v All values for a deleted row, without specifying individual column names
v Calculated values based on deleted rows

When you use a SELECT FROM DELETE statement, you must use the FROM OLD
TABLE clause to retrieve deleted values. The OLD TABLE consists of the rows of
the table or view before the delete occurs.

Example: Suppose that a company is eliminating all operator positions and that
the company wants to know how much salary money it will save by eliminating
these positions. You can use the following SELECT FROM DELETE statement to
delete operators from the EMP table and to retrieve the sum of operator salaries.
SELECT SUM(SALARY) INTO :salary FROM OLD TABLE

(DELETE FROM EMP
WHERE JOB = ’OPERATOR’);

To retrieve row-by-row output of deleted data, use a cursor with a SELECT FROM
DELETE statement.

Example: Suppose that a company is eliminating all analyst positions and that the
company wants to know how many years of experience each analyst had with the
company. You can use the following SELECT FROM DELETE statement to delete
analysts from the EMP table and to retrieve the experience of each analyst.
DECLARE CS1 CURSOR FOR
SELECT YEAR(CURRENT DATE - HIREDATE) FROM OLD TABLE

(DELETE FROM EMP
WHERE JOB = ’ANALYST’);

FETCH CS1 INTO :years_of_service;

If you need to retrieve calculated data based on the data that you delete but not
add that column to the target table.

Example: Suppose that you need to delete managers from the EMP table and that
you need to retrieve the salary and the years of employment for each manager.
You can use the following SELECT FROM DELETE statement to perform the delete
operation and to retrieve the required data.

Chapter 11. Adding and modifying data 667

|

|

|

|

|

|

|

|

|

|
|

|

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sqlcommunicationsareaintro.htm#db2z_sqlcommunicationsareaintro
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_drop.htm#db2z_sql_drop
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_truncate.htm#db2z_sql_truncate
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_altertable.htm#db2z_sql_altertable

DECLARE CS2 CURSOR FOR
SELECT LASTNAME, SALARY, years_employed FROM OLD TABLE

(DELETE FROM EMP INCLUDE(years_employed INTEGER)
SET years_employed = YEAR(CURRENT DATE - HIREDATE)
WHERE JOB = ’MANAGER’);

668 Application Programming and SQL Guide

|
|
|
|
|

|

Chapter 12. Accessing data

Your program can use a number of different techniques to read data from any DB2
tables for which you have read access. The simplest technique is to use basic SQL
SELECT statements. However, you should choose the technique that works best for
your situation and performs well.
Related concepts:

Investigating SQL performance by using EXPLAIN (DB2 Performance)

Interpreting data access by using EXPLAIN (DB2 Performance)
Related tasks:

Writing efficient SQL queries (DB2 Performance)

Generating visual representations of access plans

Determining which tables you have access to
You can ask DB2 to list the tables that a specific authorization ID has access to.

About this task

The contents of the DB2 catalog tables can be a useful reference tool when you
begin to develop an SQL statement or an application program.

The catalog table, SYSIBM.SYSTABAUTH, lists table privileges that are granted to
authorization IDs. To display the tables that you have authority to access (by
privileges granted either to your authorization ID or to PUBLIC), you can execute
an SQL statement similar to the one shown in the following example. To do this,
you must have the SELECT privilege on SYSIBM.SYSTABAUTH.

Example: The following statement displays the tables that the current user has
authority to access:
SELECT DISTINCT TCREATOR, TTNAME

FROM SYSIBM.SYSTABAUTH
WHERE GRANTEE IN (USER, ’PUBLIC’, ’PUBLIC*’) AND GRANTEETYPE = ’ ’;

In this query, the predicate GRANTEETYPE = ’ ’ selects authorization IDs.

Exception: If your DB2 subsystem uses an exit routine for access control
authorization, you cannot rely on catalog queries to tell you the tables that you can
access. When such an exit routine is installed, both RACF and DB2 control table
access.

Displaying information about the columns for a given table
You can ask DB2 to list the columns in a particular table and certain information
about those columns.

About this task

The catalog table, SYSIBM.SYSCOLUMNS, describes every column of every table.

© Copyright IBM Corp. 1983, 2013 669

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_useexplain2capturesqlinfo.htm#db2z_useexplain2capturesqlinfo
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_interpretdataaccess.htm#db2z_interpretdataaccess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_programsqlperf.htm#db2z_programsqlperf
http://publib.boulder.ibm.com/infocenter/dstudio/v4r1/topic/com.ibm.datatools.qrytune.sngqry.doc/topics/reviewingapg.html

Example: Suppose that you want to display information about table
DSN8B10.DEPT. If you have the SELECT privilege on SYSIBM.SYSCOLUMNS, you
can use the following statement:
SELECT NAME, COLTYPE, SCALE, LENGTH

FROM SYSIBM.SYSCOLUMNS
WHERE TBNAME = ’DEPT’
AND TBCREATOR = ’DSN8B10’;

If you display column information about a table that includes LOB or ROWID
columns, the LENGTH field for those columns contains the number of bytes that
those column occupy in the base table. The LENGTH field does not contain the
length of the LOB or ROWID data.

Example: To determine the maximum length of data for a LOB or ROWID column,
include the LENGTH2 column in your query:
SELECT NAME, COLTYPE, LENGTH, LENGTH2

FROM SYSIBM.SYSCOLUMNS
WHERE TBNAME = ’EMP_PHOTO_RESUME’
AND TBCREATOR = ’DSN8B10’;

Retrieving data by using the SELECT statement
The simplest way to retrieve data is to use the SQL SELECT statement to specify a
result table. You can specify the columns and rows that you want to retrieve.

About this task

Consider developing SQL statements similar to the examples in this section, and
then running them dynamically using SPUFI, the command line processor, or DB2
Query Management Facility (DB2 QMF).

You do not need to know the column names to select DB2 data. Use an asterisk (*)
in the SELECT clause to indicate that you want to retrieve all columns of each
selected row of the named table. Implicitly hidden columns, such as ROWID
columns and XML document ID columns, are not included in the result of the
SELECT * statement. To view the values of these columns, you must specify the
column name.

Example: SELECT *: The following SQL statement selects all columns from the
department table:
SELECT *

FROM DSN8B10.DEPT;

The result table looks similar to the following output:
DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION
====== ============================== ====== ======== ========
A00 SPIFFY COMPUTER SERVICES DIV. 000010 A00 --------
B01 PLANNING 000020 A00 --------
C01 INFORMATION CENTER 000030 A00 --------
D01 DEVELOPMENT CENTER ------ A00 --------
D11 MANUFACTURING CENTER 000060 D01 --------
D21 ADMINISTRATION SYSTEMS 000070 D01 --------
E01 SUPPORT SERVICES 000050 A00 --------
E11 OPERATIONS 000090 E01 --------
E21 SOFTWARE SUPPORT 000100 E01 --------
F22 BRANCH OFFICE F2 ------ E01 --------
G22 BRANCH OFFICE G2 ------ E01 --------

670 Application Programming and SQL Guide

H22 BRANCH OFFICE H2 ------ E01 --------
I22 BRANCH OFFICE I2 ------ E01 --------
J22 BRANCH OFFICE J2 ------ E01 --------

Because the example does not specify a WHERE clause, the statement retrieves
data from all rows.

The dashes for MGRNO and LOCATION in the result table indicate null values.

SELECT * is recommended mostly for use with dynamic SQL and view definitions.
You can use SELECT * in static SQL, but doing so is not recommended because of
host variable compatibility and performance reasons.Suppose that you add a
column to the table to which SELECT * refers. If you have not defined a receiving
host variable for that column, an error occurs.

If you list the column names in a static SELECT statement instead of using an
asterisk, you can avoid the problem that sometimes occurs with SELECT *. You can
also see the relationship between the receiving host variables and the columns in
the result table.

Selecting some columns: SELECT column-name:

Select the column or columns you want to retrieve by naming each column. All
columns appear in the order you specify, not in their order in the table.

Example: SELECT column-name: The following SQL statement retrieves only the
MGRNO and DEPTNO columns from the department table:
SELECT MGRNO, DEPTNO

FROM DSN8B10.DEPT;

The result table looks similar to the following output:
MGRNO DEPTNO
====== ======
000010 A00
000020 B01
000030 C01
------ D01
000050 E01
000060 D11
000070 D21
000090 E11
000100 E21
------ F22
------ G22
------ H22
------ I22
------ J22

With a single SELECT statement, you can select data from one column or as many
as 750 columns.

To SELECT data from implicitly hidden columns, such as ROWID and XML
document ID, look up the column names in SYSIBM.SYSCOLUMNS and specify
these names in the SELECT list. For example, suppose that you create and
populate the following table:
CREATE TABLE MEMBERS (MEMBERID INTEGER,

BIO XML,
REPORT XML,
RECOMMENDATIONS XML);

Chapter 12. Accessing data 671

DB2 generates one additional implicitly hidden XML document ID column. To
retrieve data in all columns, including the generated XML document ID column,
first look up the name of the generated column in SYSIBM.SYSCOLUMNS.
Suppose the name is DB2_GENERATED_DOCID_FOR_XML. Then, specify the
following statement:
SELECT DB2_GENERATED_DOCID_FOR_XML, MEMBERID, BIO,

REPORT, RECOMMENDATIONS FROM MEMBERS

Selecting rows using search conditions: WHERE:

Use a WHERE clause to select the rows that meet certain conditions. A WHERE
clause specifies a search condition. A search condition consists of one or more
predicates. A predicate specifies a test that you want DB2 to apply to each table
row.

DB2 evaluates a predicate for each row as true, false, or unknown. Results are
unknown only if an operand is null.

If a search condition contains a column of a distinct type, the value to which that
column is compared must be of the same distinct type, or you must cast the value
to the distinct type.

The following table lists the type of comparison, the comparison operators, and an
example of each type of comparison that you can use in a predicate in a WHERE
clause.

Table 106. Comparison operators used in conditions

Type of comparison Comparison operator Example

Equal to = DEPTNO = 'X01'

Not equal to <> DEPTNO <> 'X01'

Less than < AVG(SALARY) < 30000

Less than or equal to <= AGE <= 25

Not less than >= AGE >= 21

Greater than > SALARY > 2000

Greater than or equal to >= SALARY >= 5000

Not greater than <= SALARY <= 5000

Equal to null IS NULL PHONENO IS NULL

Not equal to another
value or one value is
equal to null

IS DISTINCT FROM PHONENO IS DISTINCT FROM
:PHONEHV

Similar to another value LIKE NAME LIKE ' or STATUS LIKE 'N_'

At least one of two
conditions

OR HIREDATE < '1965-01-01' OR SALARY
< 16000

Both of two conditions AND HIREDATE < '1965-01-01' AND
SALARY < 16000

Between two values BETWEEN SALARY BETWEEN 20000 AND 40000

Equals a value in a set IN (X, Y, Z) DEPTNO IN ('B01', 'C01', 'D01')

Note: SALARY BETWEEN 20000 AND 40000 is equivalent to SALARY >= 20000 AND
SALARY <= 40000.

672 Application Programming and SQL Guide

You can also search for rows that do not satisfy one of the preceding conditions by
using the NOT keyword before the specified condition.

You can search for rows that do not satisfy the IS DISTINCT FROM predicate by
using either of the following predicates:
v value 1 IS NOT DISTINCT FROM value 2

v NOT(value 1 IS DISTINCT FROM value 2)

Both of these forms of the predicate create an expression for which one value is
equal to another value or both values are equal to null.
Related concepts:
“Distinct types” on page 493
“Host variables” on page 138
“Remote servers and distributed data” on page 31
“Subqueries” on page 703

Predicates (DB2 SQL)
Related tasks:

Coding SQL statements to avoid unnecessary processing (DB2 Performance)

Selecting derived columns
In an SQL SELECT statement, you can select columns that are not actual columns
in a table. Instead, you can specify “columns” that are derived from a constant, an
expression, or a function.

About this task

Example: SELECT with an expression: This SQL statement generates a result table
in which the second column is a derived column that is generated by adding the
values of the SALARY, BONUS, and COMM columns.
SELECT EMPNO, (SALARY + BONUS + COMM)

FROM DSN8B10.EMP;

Derived columns in a result table, such as (SALARY + BONUS + COMM), do not
have names. You can use the AS clause to give a name to an unnamed column of
the result table. For information about using the AS clause, see “Naming result
columns” on page 675.

To order the rows in a result table by the values in a derived column, specify a
name for the column by using the AS clause, and specify that name in the ORDER
BY clause. For information about using the ORDER BY clause, see “Ordering the
result table rows” on page 676.

Selecting XML data
You can select all XML data that is stored in a particular column or only a subset
of data from an XML column.

About this task

You can select all XML data that is stored in a particular column by specifying
SELECT column name or SELECT *, just as you would for columns of any other

Chapter 12. Accessing data 673

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_predicatesoverview.htm#db2z_predicatesoverview
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_codequerysimply.htm#db2z_codequerysimply

data type. Alternatively, you can select only a subset of data from an XML column
by using an XPath expression in a SELECT statement. XPath expressions identify
specific nodes in an XML document.

To select a subset of data in an XML column, specify the XMLQUERY function in
your SELECT statement with the following parameters:
v An XPath expression that is embedded in a character string constant. Specify an

XPath expression that identifies which XML data to return.
v Any additional values to pass to the XPath expression, including the XML

column name. Specify these values after the PASSING keyword.

Example: Suppose that you store purchase orders as XML documents in the
POrder column in the PurchaseOrders table. You need to find in each purchase
order the items whose product name is equal to a name in the Product table. You
can use the following statement to find these values:
SELECT XMLQUERY(’//item[productName = $n]’

PASSING PO.POrder,
P.name AS "n")

FROM PurchaseOrders PO, Product P;

This statement returns the item elements in the POrder column that satisfy the
criteria in the XPath expression.
Related concepts:

Overview of XPath (DB2 Programming for XML)
Related reference:

XMLQUERY (DB2 SQL)

Formatting the result table
An SQL statement returns data in a table called a result table. You can specify
certain attributes of the result table, such as the column names, how the rows are
ordered, and whether the rows are numbered.

Result tables
The data that is retrieved by an SQL statement is always in the form of a table,
which is called a result table. Like the tables from which you retrieve the data, a
result table has rows and columns. A program fetches this data one row at a time.

Example result table: Assume that you issue the following SELECT statement,
which retrieves the last name, first name, and phone number of employees in
department D11 from the sample employee table:
SELECT LASTNAME, FIRSTNME, PHONENO

FROM DSN8B10.EMP
WHERE WORKDEPT = ’D11’
ORDER BY LASTNAME;

The result table looks similar to the following output:
LASTNAME FIRSTNME PHONENO
================ ============== ==========
ADAMSON BRUCE 4510
BROWN DAVID 4501
JOHN REBA 0672
JONES WILLIAM 0942
LUTZ JENNIFER 0672
PIANKA ELIZABETH 3782
SCOUTTEN MARILYN 1682

674 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.xml/src/tpc/db2z_xpxqoverview.htm#db2z_xpxqoverview
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_xmlquery.htm#db2z_bif_xmlquery

STERN IRVING 6432
WALKER JAMES 2986
YAMAMOTO KIYOSHI 2890
YOSHIMURA MASATOSHI 2890

Eliminating redundant duplicate rows in the result table
If a query result table contains multiple identical rows, you can ask DB2 to remove
these redundant rows. For example, a query might return multiple rows for each
employee when one row per employee is sufficient for your program.

About this task

The DISTINCT keyword removes redundant duplicate rows from your result table,
so that each row contains unique data.

Example: SELECT DISTINCT: The following SELECT statement lists unique
department numbers for administrative departments:
SELECT DISTINCT ADMRDEPT

FROM DSN8B10.DEPT;

The result table looks similar to the following output:
ADMRDEPT
========
A00
D01
E01

Restriction: You cannot use the DISTINCT keyword with LOB columns or XML
columns.
Related tasks:

Coding SQL statements to avoid unnecessary processing (DB2 Performance)
Related reference:

select-clause (DB2 SQL)

Naming result columns
You can provide your own names for the result table columns for a SELECT
statement. This capability is particularly useful for a column that is derived from
an expression or a function.

About this task

With the AS clause, you can name result columns in a SELECT statement.

The following examples show different ways to use the AS clause.

Example: SELECT with AS CLAUSE: The following example of the SELECT
statement gives the expression SALARY+BONUS+COMM the name TOTAL_SAL.
SELECT SALARY+BONUS+COMM AS TOTAL_SAL

FROM DSN8B10.EMP
ORDER BY TOTAL_SAL;

Example: CREATE VIEW with AS clause: You can specify result column names in
the select-clause of a CREATE VIEW statement. You do not need to supply the
column list of CREATE VIEW, because the AS keyword names the derived column.
The columns in the view EMP_SAL are EMPNO and TOTAL_SAL.

Chapter 12. Accessing data 675

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_codequerysimply.htm#db2z_codequerysimply
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_selectclause.htm#db2z_sql_selectclause

CREATE VIEW EMP_SAL AS
SELECT EMPNO,SALARY+BONUS+COMM AS TOTAL_SAL

FROM DSN8B10.EMP;

Example: set operator with AS clause: You can use the AS clause with set
operators, such as UNION. In this example, the AS clause is used to give the same
name to corresponding columns of tables in a UNION. The third result column
from the union of the two tables has the name TOTAL_VALUE, even though it
contains data that is derived from columns with different names:
SELECT ’On hand’ AS STATUS, PARTNO, QOH * COST AS TOTAL_VALUE

FROM PART_ON_HAND
UNION ALL
SELECT ’Ordered’ AS STATUS, PARTNO, QORDER * COST AS TOTAL_VALUE

FROM ORDER_PART
ORDER BY PARTNO, TOTAL_VALUE;

The column STATUS and the derived column TOTAL_VALUE have the same name
in the first and second result tables. They are combined in the union of the two
result tables, which is similar to the following partial output:
STATUS PARTNO TOTAL_VALUE
======= ====== ===========
On hand 00557 345.60
Ordered 00557 150.50
.
.
.

Example: GROUP BY derived column: You can use the AS clause in a FROM
clause to assign a name to a derived column that you want to refer to in a GROUP
BY clause. This SQL statement names HIREYEAR in the nested table expression,
which lets you use the name of that result column in the GROUP BY clause:
SELECT HIREYEAR, AVG(SALARY)

FROM (SELECT YEAR(HIREDATE) AS HIREYEAR, SALARY
FROM DSN8B10.EMP) AS NEWEMP

GROUP BY HIREYEAR;

You cannot use GROUP BY with a name that is defined with an AS clause for the
derived column YEAR(HIREDATE) in the outer SELECT, because that name does
not exist when the GROUP BY runs. However, you can use GROUP BY with a
name that is defined with an AS clause in the nested table expression, because the
nested table expression runs before the GROUP BY that references the name.
Related tasks:
“Combining result tables from multiple SELECT statements” on page 680
“Defining a view” on page 463
“Summarizing group values” on page 685
Related reference:

select-clause (DB2 SQL)

Ordering the result table rows
If you want to guarantee that the rows in your result table are ordered in a
particular way, you must specify the order in the SELECT statement. Otherwise,
DB2 can return the rows in any order.

676 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_selectclause.htm#db2z_sql_selectclause

About this task

To retrieve rows in a specific order, use the ORDER BY clause. Using ORDER BY is
the only way to guarantee that your rows are ordered as you want them. The
following topics show you how to use the ORDER BY clause.

Specifying the sort key in the ORDER BY clause:

The order of the selected rows depends on the sort keys that you identify in the
ORDER BY clause. A sort key can be a column name, an integer that represents the
number of a column in the result table, or an expression. DB2 orders the rows by
the first sort key, followed by the second sort key, and so on.

You can list the rows in ascending or descending order. Null values appear last in
an ascending sort and first in a descending sort.

DB2 sorts strings in the collating sequence associated with the encoding scheme of
the table. DB2 sorts numbers algebraically and sorts datetime values
chronologically.

Restriction: You cannot use the ORDER BY clause with LOB or XML columns.

Example: ORDER BY clause with a column name as the sort key: Retrieve the
employee numbers, last names, and hire dates of employees in department A00 in
ascending order of hire dates:
SELECT EMPNO, LASTNAME, HIREDATE

FROM DSN8B10.EMP
WHERE WORKDEPT = ’A00’
ORDER BY HIREDATE ASC;

The result table looks similar to the following output:
EMPNO LASTNAME HIREDATE
===== ========= ==========
000110 LUCCHESI 1958-05-16
000120 O’CONNELL 1963-12-05
000010 HAAS 1965-01-01
200010 HEMMINGER 1965-01-01
200120 ORLANDO 1972-05-05

Example: ORDER BY clause with an expression as the sort key: The following
subselect retrieves the employee numbers, salaries, commissions, and total
compensation (salary plus commission) for employees with a total compensation
greater than 40000. Order the results by total compensation:
SELECT EMPNO, SALARY, COMM, SALARY+COMM AS "TOTAL COMP"

FROM DSN8B10.EMP
WHERE SALARY+COMM > 40000
ORDER BY SALARY+COMM;

The intermediate result table looks similar to the following output:
EMPNO SALARY COMM TOTAL COMP
====== ======== ======= ==========
000030 38250.00 3060.00 41310.00
000050 40175.00 3214.00 43389.00
000020 41250.00 3300.00 44550.00
000110 46500.00 3720.00 50220.00
200010 46500.00 4220.00 50720.00
000010 52750.00 4220.00 56970.00

Chapter 12. Accessing data 677

Referencing derived columns in the ORDER BY clause:

If you use the AS clause to name an unnamed column in a SELECT statement, you
can use that name in the ORDER BY clause.

Example: ORDER BY clause that uses a derived column: The following SQL
statement orders the selected information by total salary:
SELECT EMPNO, (SALARY + BONUS + COMM) AS TOTAL_SAL

FROM DSN8B10.EMP
ORDER BY TOTAL_SAL;

Numbering the rows in a result table
DB2 does not number the rows in the result table for a query unless you explicitly
request that the rows be numbered.

About this task

To number the rows in a result table, include the ROW_NUMBER specification in
your query. If you want to ensure that the rows are in a particular order, include
an ORDER BY clause after the OVER keyword. Otherwise, the rows are numbered
in an arbitrary order.

Example

Suppose that you want a list of employees and salaries from department D11 in
the sample EMP table. You can return a numbered list that is ordered by last name
by submitting the following query:
SELECT ROW_NUMBER() OVER (ORDER BY LASTNAME) AS NUMBER,
WORKDEPT, LASTNAME, SALARY
FROM DSN8910.EMP
WHERE WORKDEPT=’D11’

This query returns the following result:
---------+---------+---------+---------+---------+---------+-----
NUMBER WORKDEPT LASTNAME SALARY
---------+---------+---------+---------+---------+---------+-----

1 D11 ADAMSON 25280.00
2 D11 BROWN 27740.00
3 D11 JOHN 29840.00
4 D11 JONES 18270.00
5 D11 LUTZ 29840.00
6 D11 PIANKA 22250.00
7 D11 SCOUTTEN 21340.00
8 D11 STERN 32250.00
9 D11 WALKER 20450.00
10 D11 YAMAMOTO 24680.00
11 D11 YOSHIMURA 24680.00

Related reference:

OLAP specification (DB2 SQL)

Ranking the rows
You can request that DB2 calculate the ordinal rank of each row in the result set
based on a particular column. For example, you can rank finishing times for a
marathon to determine the first, second, and third place finishers.

About this task

To rank rows, use one of the following ranking specifications in an SQL statement:

678 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_olapspecification.htm#db2z_olapspecification

RANK
Returns a rank number for each row value. Use this specification if you
want rank numbers to be skipped when duplicate row values exist. For
example, suppose the top five finishers in a marathon have the following
times:
v 2:31:57
v 2:34:52
v 2:34:52
v 2:37:26
v 2:38:01

When you use the RANK specification, DB2 returns the following rank
numbers:

Table 107. Example of values returned when you specify RANK

Value Rank number

2:31:57 1

2:34:52 2

2:34:52 2

2:37:26 4

2:38:01 5

DENSE_RANK
Returns a rank number for each row value. Use this specification if you do
not want rank numbers to be skipped when duplicate row values exist. For
example, when you specify DENSE_RANK with the same times that are
listed in the description of RANK, DB2 returns the following rank
numbers:

Table 108. Example of values returned when you specify RANK

Value Rank number

2:31:57 1

2:34:52 2

2:34:52 2

2:37:26 3

2:38:01 4

Example: Suppose that you had the following values in the DATA column of table
T1:
DATA

100
35
23
8
8
6

Suppose that you use the following RANK specification:

Chapter 12. Accessing data 679

SELECT DATA,
RANK() OVER (ORDER BY DATA DESC) AS RANK_DATA
FROM T1
ORDER BY RANK_DATA;

DB2 returns the following ranked data:
DATA RANK_DATA

100 1
35 2
23 3
8 4
8 4
6 6

Suppose that you use the following DENSE_RANK specification on the same data:
SELECT DATA,

DENSE_RANK() OVER (ORDER BY DATA DESC) AS RANK_DATA
FROM T1
ORDER BY RANK_DATA;

DB2 returns the following ranked data:
DATA RANK_DATA

100 1
36 2
23 3
8 4
8 4
6 5

In the example with the RANK specification, two equal values are both ranked as
4. The next rank number is 6. Number 5 is skipped.

In the example with the DENSE_RANK option, those two equal values are also
ranked as 4. However, the next rank number is 5. With DENSE_RANK, no gaps
exist in the sequential rank numbering.
Related reference:

OLAP specification (DB2 SQL)

Combining result tables from multiple SELECT statements
When you combine the results of multiple SELECT statements, you can choose
what to include in the result table. You can include all rows, only rows that are in
the result table of both SELECT statements, or only rows that are unique to the
result table of the first SELECT statement.

About this task

To combine two or more SELECT statements to form a single result table, use one
of the following key words:

UNION
Returns all of the values from the result table of each SELECT statement. If
you want all duplicate rows to be repeated in the result table, specify
UNION ALL. If you want redundant duplicate rows to be eliminated from
the result table, specify UNION or UNION DISTINCT.

EXCEPT
Returns all rows from the first result table (R1) that are not also in the

680 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_olapspecification.htm#db2z_olapspecification

second result table (R2). If you want all duplicate rows from R1 to be
contained in the result table, specify EXCEPT ALL. If you want redundant
duplicate rows in R1 to be eliminated from the result table, specify
EXCEPT or EXCEPT DISTINCT.

INTERSECT
Returns rows that are in the result table of both SELECT statements. If you
want all duplicate rows to be contained in the result table, specify
INTERSECT ALL. If you want redundant duplicate rows to be eliminated
from the result table, specify INTERSECT or INTERSECT DISTINCT.

When you specify one of the preceding set operators (UNION, EXCEPT, or
INTERSECT), DB2 processes each SELECT statement to form an interim result
table, and then combines the interim result table of each statement. If the nth
column of the first result table (R1) and the nth column of the second result table
(R2) have the same result column name, the nth column of the result table has that
same result column name. If the nth column of R1 and the nth column of R2 do
not have the same names, the result column is unnamed.

Examples: Assume that you want to combine the results of two SELECT
statements that return the following result tables:

R1 result table
COL1 COL2
a a
a b
a c

R2 result table
COL1 COL2
a b
a c
a d

A UNION operation combines the two result tables and returns four rows:
COL1 COL2
a a
a b
a c
a d

An EXCEPT operation combines the two result tables and returns one row
The result of the EXCEPT operation depends on the which SELECT
statement is included before the EXCEPT keyword in the SQL statement. If
the SELECT statement that returns the R1 result table is listed first, the
result is a single row:
COL1 COL2
a a

If the SELECT statement that returns the R2 result table is listed first, the
final result is a different row:
COL1 COL2
a d

An INTERSECT operation combines the two result tables and returns two rows:
COL1 COL2
a b
a c

Eliminating redundant duplicate rows when combining result tables:

Chapter 12. Accessing data 681

To eliminate redundant duplicate rows when combining result tables, specify one
of the following keywords:
v UNION or UNION DISTINCT
v EXCEPT or EXCEPT DISTINCT
v INTERSECT or INTERSECT DISTINCT

To order the entire result table, specify the ORDER BY clause at the end.

Examples: Assume that you have the following tables to manage stock at two
book stores.

Table 109. STOCKA

ISBN TITLE AUTHOR NOBEL PRIZE

8778997709 For Whom the Bell Tolls Hemmingway N

4599877699 The Good Earth Buck Y

9228736278 A Tale of Two Cities Dickens N

1002387872 Beloved Morrison Y

4599877699 The Good Earth Buck Y

0087873532 The Labyrinth of Solitude Paz Y

Table 110. STOCKB

ISBN TITLE AUTHOR NOBEL PRIZE

6689038367 The Grapes of Wrath Steinbeck Y

2909788445 The Silent Cry Oe Y

1182983745 Light in August Faulkner Y

9228736278 A Tale of Two Cities Dickens N

1002387872 Beloved Morrison Y

Example 1: UNION clause: Suppose that you want a list of books whose authors
have won the Nobel Prize and that are in stock at either store. The following SQL
statement returns these books in order by author name without redundant
duplicate rows:
SELECT TITLE, AUTHOR

FROM STOCKA
WHERE NOBELPRIZE = ’Y’

UNION
SELECT TITLE, AUTHOR

FROM STOCKB
WHERE NOBELPRIZE = ’Y’
ORDER BY AUTHOR

This statement returns the following final result table:

Table 111. Result of UNION

TITLE AUTHOR

The Good Earth Buck

Light in August Faulkner

Beloved Morrison

The Silent Cry Oe

682 Application Programming and SQL Guide

Table 111. Result of UNION (continued)

TITLE AUTHOR

The Labyrinth of Solitude Paz

The Grapes of Wrath Steinbeck

Example 2: EXCEPT: Suppose that you want a list of books that are only in
STOCKA. The following SQL statement returns the book names that are in
STOCKA only without any redundant duplicate rows:
SELECT TITLE

FROM STOCKA
EXCEPT
SELECT TITLE

FROM STOCKB
ORDER BY TITLE;

This statement returns the following result table:

Table 112. Result of EXCEPT

TITLE

For Whom the Bell Tolls

The Good Earth

The Labyrinth of Solitude

Example 3: INTERSECT: Suppose that you want a list of books that are in both
STOCKA and in STOCKB. The following statement returns a list of all books from
both of these tables with redundant duplicate rows are removed.
SELECT TITLE

FROM STOCKA
INTERSECT
SELECT TITLE

FROM STOCKB
ORDER BY TITLE;

This statement returns the following result table:

Table 113. Result of INTERSECT

TITLE

A Tale of Two Cities

Beloved

Keeping all duplicate rows when combining result tables:

To keep all duplicate rows when combining result tables, specify ALL with one of
the following set operator keywords:
v UNION ALL
v EXCEPT ALL
v INTERSECT ALL

To order the entire result table, specify the ORDER BY clause at the end.

Examples: The following examples use the STOCKA and STOCK B tables.

Chapter 12. Accessing data 683

Example: UNION ALL: The following SQL statement returns a list of books that
won Nobel prizes and are in stock at either store, with duplicates included.
SELECT TITLE, AUTHOR

FROM STOCKA
WHERE NOBELPRIZE = ’Y’

UNION ALL
SELECT TITLE, AUTHOR

FROM STOCKB
WHERE NOBELPRIZE = ’Y’
ORDER BY AUTHOR

This statement returns the following result table:

Table 114. Result of UNION ALL

TITLE AUTHOR

The Good Earth Buck

The Good Earth Buck

Light in August Faulkner

Beloved Morrison

Beloved Morrison

The Silent Cry Oe

The Labyrinth of Solitude Paz

The Grapes of Wrath Steinbeck

Example: EXCEPT ALL: Suppose that you want a list of books that are only in
STOCKA. The following SQL statement returns the book names that are in
STOCKA only with all duplicate rows:
SELECT TITLE

FROM STOCKA
EXCEPT ALL
SELECT TITLE

FROM STOCKB
ORDER BY TITLE;

This statement returns the following result table:

Table 115. Result of EXCEPT ALL

TITLE

For Whom the Bell Tolls

The Good Earth

The Good Earth

The Labyrinth of Solitude

Example: INTERSECT ALL clause: Suppose that you want a list of books that are
in both STOCKA and in STOCKB, including any duplicate matches. The following
statement returns a list of titles that are in both stocks, including duplicate
matches. In this case, one match exists for "A Tale of Two Cities" and one match
exists for "Beloved."

684 Application Programming and SQL Guide

SELECT TITLE
FROM STOCKA

INTERSECT ALL
SELECT TITLE

FROM STOCKB
ORDER BY TITLE;

This statement returns the following result table:

Table 116. Result of INTERSECT ALL

TITLE

A Tale of Two Cities

Beloved

Summarizing group values
You can group rows in the result table by the values of one or more columns or by
the results of an expression. You can then apply aggregate functions to each group.

About this task

To summarize group values, use GROUP BY.

Except for the columns that are named in the GROUP BY clause, the SELECT
statement must specify any other selected columns as an operand of one of the
aggregate functions.

Example: GROUP BY clause using one column: The following SQL statement
lists, for each department, the lowest and highest education level within that
department:
SELECT WORKDEPT, MIN(EDLEVEL), MAX(EDLEVEL)

FROM DSN8B10.EMP
GROUP BY WORKDEPT;

If a column that you specify in the GROUP BY clause contains null values, DB2
considers those null values to be equal. Thus, all nulls form a single group.

When it is used, the GROUP BY clause follows the FROM clause and any WHERE
clause, and it precedes the ORDER BY clause.

You can group the rows by the values of more than one column.

Example: GROUP BY clause using more than one column: The following
statement finds the average salary for men and women in departments A00 and
C01:
SELECT WORKDEPT, SEX, AVG(SALARY) AS AVG_SALARY

FROM DSN8B10.EMP
WHERE WORKDEPT IN (’A00’, ’C01’)
GROUP BY WORKDEPT, SEX;

The result table looks similar to the following output:
WORKDEPT SEX AVG_SALARY
======== === ==============
A00 F 49625.00000000
A00 M 35000.00000000
C01 F 29722.50000000

Chapter 12. Accessing data 685

DB2 groups the rows first by department number and then (within each
department) by sex before it derives the average SALARY value for each group.

You can also group the rows by the results of an expression

Example: GROUP BY clause using a expression: The following statement groups
departments by their leading characters, and lists the lowest and highest education
level for each group:
SELECT SUBSTR(WORKDEPT,1,1), MIN(EDLEVEL), MAX(EDLEVEL)

FROM DSN8B10.EMP
GROUP BY SUBSTR(WORKDEPT,1,1);

Filtering groups
If you group rows in the result table, you can also specify a search condition that
each retrieved group must satisfy. The search condition tests properties of each
group rather than properties of individual rows in the group.

About this task

To filter groups, use the HAVING clause to specify a search condition. The
HAVING clause acts like a WHERE clause for groups, and it contains the same
kind of search conditions that you specify in a WHERE clause.

Example: HAVING clause: The following SQL statement includes a HAVING
clause that specifies a search condition for groups of work departments in the
employee table:
SELECT WORKDEPT, AVG(SALARY) AS AVG_SALARY

FROM DSN8B10.EMP
GROUP BY WORKDEPT
HAVING COUNT(*) > 1
ORDER BY WORKDEPT;

The result table looks similar to the following output:
WORKDEPT AVG_SALARY
======== ==============
A00 40850.00000000
C01 29722.50000000
D11 25147.27272727
D21 25668.57142857
E11 21020.00000000
E21 24086.66666666

Compare the preceding example with the second example shown in “Summarizing
group values” on page 685. The clause, HAVING COUNT(*) > 1, ensures that only
departments with more than one member are displayed. In this case, departments
B01 and E01 do not display because the HAVING clause tests a property of the
group.

Example: HAVING clause used with a GROUP BY clause: Use the HAVING
clause to retrieve the average salary and minimum education level of women in
each department for which all female employees have an education level greater
than or equal to 16. Assuming that you want results from only departments A00
and D11, the following SQL statement tests the group property, MIN(EDLEVEL):

686 Application Programming and SQL Guide

SELECT WORKDEPT, AVG(SALARY) AS AVG_SALARY,
MIN(EDLEVEL) AS MIN_EDLEVEL
FROM DSN8B10.EMP
WHERE SEX = ’F’ AND WORKDEPT IN (’A00’, ’D11’)
GROUP BY WORKDEPT
HAVING MIN(EDLEVEL) >= 16;

The result table looks similar to the following output:
WORKDEPT AVG_SALARY MIN_EDLEVEL
======== ============== ===========
A00 49625.00000000 18
D11 25817.50000000 17

When you specify both GROUP BY and HAVING, the HAVING clause must follow
the GROUP BY clause. A function in a HAVING clause can include DISTINCT if
you have not used DISTINCT anywhere else in the same SELECT statement. You
can also connect multiple predicates in a HAVING clause with AND or OR, and
you can use NOT for any predicate of a search condition.

Finding rows that were changed within a specified period of
time

You can filter rows based on the time that they were updated. For example, you
might want to find all rows in a particular table that have been changed in the last
7 days.

About this task

To find the rows that were changed within a specified period of time, specify the
ROW CHANGE TIMESTAMP expression in the predicate of your SQL statement.

Recommendation: Ensure that the table has a ROW CHANGE TIMESTAMP
column that was defined prior to the time period that you want to query. This
column ensures that DB2 returns only those rows that were updated in the given
time period.

If the table does not have a ROW CHANGE TIMESTAMP column, DB2 returns all
rows on each page that has had any changes within the given time period. In this
case, your result set can contain rows that have not been updated in the give time
period, if other rows on that page have been updated or inserted.

Example: Suppose that the TAB table has a ROW CHANGE TIMESTAMP column
and that you want to return all of the records that have changed in the last 30
days. The following query returns all of those rows.
SELECT * FROM TAB
WHERE ROW CHANGE TIMESTAMP FOR TAB <= CURRENT TIMESTAMP AND
ROW CHANGE TIMESTAMP FOR TAB >= CURRENT TIMESTAMP - 30 days;

Example: Suppose that you want to return all of the records that have changed
since 9:00 AM January 1, 2004. The following query returns all of those rows.

SELECT * FROM TAB
WHERE ROW CHANGE TIMESTAMP FOR TAB >= ’2004-01-01-09.00.00’;

Chapter 12. Accessing data 687

Related reference:

ROW CHANGE expression (DB2 SQL)

CREATE TABLE (DB2 SQL)

Joining data from more than one table
Sometimes the information that you want to see is not in a single table. To form a
row of the result table, you might want to retrieve some column values from one
table and some column values from another table.

About this task

You can use a SELECT statement to retrieve and join column values from two or
more tables into a single row.

A join operation typically matches a row of one table with a row of another on the
basis of a join condition. DB2 supports the following types of joins: inner join, left
outer join, right outer join, and full outer join. You can specify joins in the FROM
clause of a query.

Nested table expressions and user-defined table functions in joins:

An operand of a join can be more complex than the name of a single table. You
can specify one of the following items as a join operand:

nested table expression
A fullselect that is enclosed in parentheses and followed by a correlation name.
The correlation name lets you refer to the result of that expression.

Using a nested table expression in a join can be helpful when you want to
create a temporary table to use in a join. You can specify the nested table
expression as either the right or left operand of a join, depending on which
unmatched rows you want included.

user-defined table function
A user-defined function that returns a table.

Using a nested table expression in a join can be helpful when you want to
perform some operation on the values in a table before you join them to
another table.

Example of using correlated references: In the following SELECT statement, the
correlation name that is used for the nested table expression is CHEAP_PARTS.
You can use this correlation name to refer to the columns that are returned by the
expression. In this case, those correlated references are CHEAP_PARTS.PROD# and
CHEAP_PARTS.PRODUCT.
SELECT CHEAP_PARTS.PROD#, CHEAP_PARTS.PRODUCT

FROM (SELECT PROD#, PRODUCT
FROM PRODUCTS
WHERE PRICE < 10) AS CHEAP_PARTS;

The result table looks similar to the following output:
PROD# PRODUCT
===== ===========
505 SCREWDRIVER
30 RELAY

688 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_rowchangeexpression.htm#db2z_rowchangeexpression
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtable.htm#db2z_sql_createtable

The correlated references are valid because they do not occur in the table
expression where CHEAP_PARTS is defined. The correlated references are from a
table specification at a higher level in the hierarchy of subqueries.

Example of using a nested table expression as the right operand of a join: The
following query contains a fullselect (in bold) as the right operand of a left outer
join with the PROJECTS table. The correlation name is TEMP. In this case the
unmatched rows from the PROJECTS table are included, but the unmatched rows
from the nested table expression are not.
SELECT PROJECT, COALESCE(PROJECTS.PROD#, PRODNUM) AS PRODNUM,

PRODUCT, PART, UNITS
FROM PROJECTS LEFT JOIN

(SELECT PART,
COALESCE(PARTS.PROD#, PRODUCTS.PROD#) AS PRODNUM,
PRODUCTS.PRODUCT

FROM PARTS FULL OUTER JOIN PRODUCTS
ON PARTS.PROD# = PRODUCTS.PROD#) AS TEMP ON PROJECTS.PROD# = PRODNUM;

Example of using a nested table expression as the left operand of a join: The
following query contains a fullselect as the left operand of a left outer join with the
PRODUCTS table. The correlation name is PARTX. In this case the unmatched
rows from the nested table expression are included, but the unmatched rows from
the PRODUCTS table are not.
SELECT PART, SUPPLIER, PRODNUM, PRODUCT

FROM (SELECT PART, PROD# AS PRODNUM, SUPPLIER
FROM PARTS
WHERE PROD# < ’200’) AS PARTX

LEFT OUTER JOIN PRODUCTS
ON PRODNUM = PROD#;

The result table looks similar to the following output:
PART SUPPLIER PRODNUM PRODUCT
======= ============ ======= ==========
WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
OIL WESTERN_CHEM 160 ----------

Because PROD# is a character field, DB2 does a character comparison to determine
the set of rows in the result. Therefore, because the characters '30' are greater than
'200', the row in which PROD# is equal to '30' does not appear in the result.

Example: Using a table function as an operand of a join: Suppose that
CVTPRICE is a table function that converts the prices in the PRODUCTS table to
the currency that you specify and returns the PRODUCTS table with the prices in
those units. You can obtain a table of parts, suppliers, and product prices with the
prices in your choice of currency by executing a query similar to the following
query:
SELECT PART, SUPPLIER, PARTS.PROD#, Z.PRODUCT, Z.PRICE

FROM PARTS, TABLE(CVTPRICE(:CURRENCY)) AS Z
WHERE PARTS.PROD# = Z.PROD#;

Correlated references in table specifications in joins:

Use correlation names to refer to the results of a nested table expression. After you
specify the correlation name for an expression, any subsequent reference to this
correlation name is called a correlated reference.

Chapter 12. Accessing data 689

You can include correlated references in nested table expressions or as arguments
to table functions. The basic rule that applies for both of these cases is that the
correlated reference must be from a table specification at a higher level in the
hierarchy of subqueries. You can also use a correlated reference and the table
specification to which it refers in the same FROM clause if the table specification
appears to the left of the correlated reference and the correlated reference is in one
of the following clauses:
v A nested table expression that is preceded by the keyword TABLE
v The argument of a table function

For more information about correlated references, see “Correlation names in
references” on page 708.

A table function or a table expression that contains correlated references to other
tables in the same FROM clause cannot participate in a full outer join or a right
outer join. The following examples illustrate valid uses of correlated references in
table specifications.

Example: In this example, the correlated reference T.C2 is valid because the table
specification, to which it refers, T, is to its left.
SELECT T.C1, Z.C5

FROM T, TABLE(TF3(T.C2)) AS Z
WHERE T.C3 = Z.C4;

If you specify the join in the opposite order, with T following TABLE(TF3(T.C2),
T.C2 is invalid.

Example: In this example, the correlated reference D.DEPTNO is valid because the
nested table expression within which it appears is preceded by TABLE, and the
table specification D appears to the left of the nested table expression in the FROM
clause.
SELECT D.DEPTNO, D.DEPTNAME,

EMPINFO.AVGSAL, EMPINFO.EMPCOUNT
FROM DEPT D,

TABLE(SELECT AVG(E.SALARY) AS AVGSAL,
COUNT(*) AS EMPCOUNT
FROM EMP E
WHERE E.WORKDEPT=D.DEPTNO) AS EMPINFO;

If you remove the keyword TABLE, D.DEPTNO is invalid.

Joining more than two tables
Joins are not limited to two tables. You can join more than two tables in a single
SQL statement.

About this task

To join more than two tables, specify join conditions that include columns from all
of the relevant tables.

Example: Suppose that you want a result table that shows employees who have
projects that they are responsible for, their projects, and their department names.
You need to join three tables to get all the information. You can use the following
SELECT statement:
SELECT EMPNO, LASTNAME, DEPTNAME, PROJNO

FROM DSN8B10.EMP, DSN8B10.PROJ, DSN8B10.DEPT
WHERE EMPNO = RESPEMP
AND WORKDEPT = DSN8B10.DEPT.DEPTNO;

690 Application Programming and SQL Guide

The result table looks similar to the following output:
EMPNO LASTNAME DEPTNAME PROJNO
====== ========= =========================== ======
000010 HAAS SPIFFY COMPUTER SERVICE DIV AD3100
000010 HAAS SPIFFY COMPUTER SERVICE DIV MA2100
000020 THOMPSON PLANNING PL2100
000030 KWAN INFORMATION CENTER IF1000
000030 KWAN INFORMATION CENTER IF2000
000050 GEYER SUPPORT SERVICES OP1000
000050 GEYER SUPPORT SERVICES OP2000
000060 STERN MANUFACTURING SYSTEMS MA2110
000070 PULASKI ADMINISTRATION SYSTEMS AD3110
000090 HENDERSON OPERATIONS OP1010
000100 SPENSER SOFTWARE SUPPORT OP2010
000150 ADAMSON MANUFACTURING SYSTEMS MA2112
000160 PIANKA MANUFACTURING SYSTEMS MA2113
000220 LUTZ MANUFACTURING SYSTEMS MA2111
000230 JEFFERSON ADMINISTRATION SYSTEMS AD3111
000250 SMITH ADMINISTRATION SYSTEMS AD3112
000270 PEREZ ADMINISTRATION SYSTEMS AD3113
000320 MEHTA SOFTWARE SUPPORT OP2011
000330 LEE SOFTWARE SUPPORT OP2012
000340 GOUNOT SOFTWARE SUPPORT OP2013

DB2 determines the intermediate and final results of the previous query by
performing the following logical steps:
1. Join the employee and project tables on the employee number, dropping the

rows with no matching employee number in the project table.
2. Join the intermediate result table with the department table on matching

department numbers.
3. Process the select list in the final result table, leaving only four columns.

Joining more than two tables by using more than one join type:

When joining more than two tables, you do not have to use the same join type for
every join.

To join tables by using more than one join type, specify the join types in the FROM
clause.

Example: Suppose that you want a result table that shows the following items:
v employees whose last name begins with 'S' or a letter that comes after 'S' in the

alphabet
v the department names for the these employees
v any projects that these employees are responsible for

You can use the following SELECT statement:
SELECT EMPNO, LASTNAME, DEPTNAME, PROJNO

FROM DSN8B10.EMP INNER JOIN DSN8B10.DEPT
ON WORKDEPT = DSN8B10.DEPT.DEPTNO

LEFT OUTER JOIN DSN8B10.PROJ
ON EMPNO = RESPEMP

WHERE LASTNAME > ’S’;

The result table looks like similar to the following output:
EMPNO LASTNAME DEPTNAME PROJNO
====== ========= ====================== ======
000020 THOMPSON PLANNING PL2100
000060 STERN MANUFACTURING SYSTEMS MA2110
000100 SPENSER SOFTWARE SUPPORT OP2010

Chapter 12. Accessing data 691

000170 YOSHIMURA MANUFACTURING SYSTEMS ------
000180 SCOUTTEN MANUFACTURING SYSTEMS ------
000190 WALKER MANUFACTURING SYSTEMS ------
000250 SMITH ADMINISTRATION SYSTEMS AD3112
000280 SCHNEIDER OPERATIONS ------
000300 SMITH OPERATIONS ------
000310 SETRIGHT OPERATIONS ------
200170 YAMAMOTO MANUFACTURING SYSTEMS ------
200280 SCHWARTZ OPERATIONS ------
200310 SPRINGER OPERATIONS ------
200330 WONG SOFTWARE SUPPORT ------

DB2 determines the intermediate and final results of the previous query by
performing the following logical steps:
1. Join the employee and department tables on matching department numbers,

dropping the rows where the last name begins with a letter before 'S in the
alphabet'.

2. Join the intermediate result table with the project table on the employee
number, keeping the rows for which no matching employee number exists in
the project table.

3. Process the select list in the final result table, leaving only four columns.

Inner joins
An inner join is a method of combining two tables that discards rows of either table
that do not match any row of the other table. The matching is based on the join
condition.

To request an inner join, execute a SELECT statement in which you specify the
tables that you want to join in the FROM clause, and specify a WHERE clause or
an ON clause to indicate the join condition. The join condition can be any simple
or compound search condition that does not contain a subquery reference.

In the simplest type of inner join, the join condition is column1=column2.

Example

You can join the PARTS and PRODUCTS tables in sample data from joins on the
PROD# column to get a table of parts with their suppliers and the products that
use the parts.

To do this, you can use either one of the following SELECT statements:
SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT

FROM PARTS, PRODUCTS
WHERE PARTS.PROD# = PRODUCTS.PROD#;

SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT
FROM PARTS INNER JOIN PRODUCTS

ON PARTS.PROD# = PRODUCTS.PROD#;

The result table looks like the following output:
PART SUPPLIER PROD# PRODUCT
======= ============ ===== =========
WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY
BLADES ACE_STEEL 205 SAW

Three things about this example:

692 Application Programming and SQL Guide

v A part in the parts table (OIL) has product (#160), which is not in the products
table. A product (SCREWDRIVER, #505) has no parts listed in the parts table.
Neither OIL nor SCREWDRIVER appears in the result of the join.
In contrast, an outer join includes rows in which the values in the joined columns
do not match.

v You can explicitly specify that this join is an inner join (not an outer join). Use
INNER JOIN in the FROM clause instead of the comma, and use ON to specify
the join condition (rather than WHERE) when you explicitly join tables in the
FROM clause.

v If you do not specify a WHERE clause in the first form of the query, the result
table contains all possible combinations of rows for the tables that are identified
in the FROM clause. You can obtain the same result by specifying a join
condition that is always true in the second form of the query, as in the following
statement:
SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT

FROM PARTS INNER JOIN PRODUCTS
ON 1=1;

Regardless of whether you omit the WHERE clause or specify a join condition
that is always true, the number of rows in the result table is the product of the
number of rows in each table.

You can specify more complicated join conditions to obtain different sets of results.
For example, to eliminate the suppliers that begin with the letter A from the table
of parts, suppliers, product numbers, and products, write a query like the
following query:
SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT

FROM PARTS INNER JOIN PRODUCTS
ON PARTS.PROD# = PRODUCTS.PROD#
AND SUPPLIER NOT LIKE ’A%’;

The result of the query is all rows that do not have a supplier that begins with A.
The result table looks like the following output:
PART SUPPLIER PROD# PRODUCT
======= ============ ===== ==========
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY

Example of joining a table to itself by using an inner join

Joining a table to itself is useful to show relationships between rows. The following
example returns a list of major projects from the PROJ table and the projects that
are part of those major projects.

In this example, A indicates the first instance of table DSN8B10.PROJ, and B
indicates the second instance of this table. The join condition is such that the value
in column PROJNO in table DSN8B10.PROJ A must be equal to a value in column
MAJPROJ in table DSN8B10.PROJ B.

The following SQL statement joins table DSN8B10.PROJ to itself and returns the
number and name of each major project followed by the number and name of the
project that is part of it:
SELECT A.PROJNO, A.PROJNAME, B.PROJNO, B.PROJNAME

FROM DSN8B10.PROJ A, DSN8B10.PROJ B
WHERE A.PROJNO = B.MAJPROJ;

Chapter 12. Accessing data 693

The result table looks similar to the following output:
PROJNO PROJNAME PROJNO PROJNAME
====== ======================== ======= ========================
AD3100 ADMIN SERVICES AD3110 GENERAL AD SYSTEMS
AD3110 GENERAL AD SYSTEMS AD3111 PAYROLL PROGRAMMING
AD3110 GENERAL AD SYSTEMS AD3112 PERSONNEL PROGRAMMG...
OP2010 SYSTEMS SUPPORT OP2013 DB/DC SUPPORT

In this example, the comma in the FROM clause implicitly specifies an inner join,
and it acts the same as if the INNER JOIN keywords had been used. When you
use the comma for an inner join, you must specify the join condition on the
WHERE clause. When you use the INNER JOIN keywords, you must specify the
join condition on the ON clause.
Related reference:
“Sample data for joins” on page 699

from-clause (DB2 SQL)

Outer joins
An outer join is a method of combining two or more tables so that the result
includes unmatched rows of one of the tables, or of both tables. The matching is
based on the join condition.

DB2 supports three types of outer joins:

full outer join
Includes unmatched rows from both tables. If any column of the result table
does not have a value, that column has the null value in the result table.

left outer join
Includes rows from the table that is specified before LEFT OUTER JOIN that
have no matching values in the table that is specified after LEFT OUTER JOIN.

right outer join
Includes rows from the table that is specified after RIGHT OUTER JOIN that
have no matching values in the table that is specified before RIGHT OUTER
JOIN.

The following table illustrates how the PARTS and PRODUCTS tables in “Sample
data for joins” on page 699 can be combined using the three outer join functions.

694 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_fromclause.htm#db2z_sql_fromclause

The result table contains data that is joined from all of the tables, for rows that
satisfy the search conditions.

The result columns of a join have names if the outermost SELECT list refers to
base columns. However, if you use a function (such as COALESCE or VALUE) to
build a column of the result, that column does not have a name unless you use the
AS clause in the SELECT list.

Full outer join
An full outer join is a method of combining tables so that the result includes
unmatched rows of both tables.

If you are joining two tables and want the result set to include unmatched rows
from both tables, use a FULL OUTER JOIN clause. The matching is based on the
join condition. If any column of the result table does not have a value, that column
has the null value in the result table.

The join condition for a full outer join must be a simple search condition that
compares two columns or an invocation of a cast function that has a column name
as its argument.

Example: The following query performs a full outer join of the PARTS and
PRODUCTS tables in “Sample data for joins” on page 699:
SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT

FROM PARTS FULL OUTER JOIN PRODUCTS
ON PARTS.PROD# = PRODUCTS.PROD#;

The result table from the query looks similar to the following output:
PART SUPPLIER PROD# PRODUCT
======= ============ ===== ==========
WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY

PART PROD#
WIRE
MAGNETS
BLADES
PLASTIC
OIL

10
10
205
30
160

PROD# PRICE
505
10
205
30

3.70
45.75
18.90
7.55

PART PROD# PRICE
WIRE
MAGNETS
BLADES
PLASTIC
OIL

10
10
205
30
160

45.75
45.75
18.90
7.55
(null)

PARTS

Unmatched
row

Unmatched
rowMatches

PRODUCTS

LEFT OUTER JOIN FULL OUTER JOIN RIGHT OUTER JOIN

PART PROD# PRICE
WIRE
MAGNETS
BLADES
PLASTIC
(null)

10
10
205
30
505

45.75
45.75
18.90
7.55
3.70

PART PROD# PRICE
WIRE
MAGNETS
BLADES
PLASTIC
OIL
(null)

10
10
205
30
160
505

45.75
45.75
18.90
7.55
(null)
3.70

Figure 37. Three outer joins from the PARTS and PRODUCTS tables

Chapter 12. Accessing data 695

BLADES ACE_STEEL 205 SAW
OIL WESTERN_CHEM 160 -----------
------- ------------ --- SCREWDRIVER

Example of using COALESCE or VALUE: COALESCE is the keyword that is
specified by the SQL standard as a synonym for the VALUE function. This
function, by either name, can be particularly useful in full outer join operations
because it returns the first non-null value from the pair of join columns.

The product number in the result of the example for “Full outer join” on page 695
is null for SCREWDRIVER, even though the PRODUCTS table contains a product
number for SCREWDRIVER. If you select PRODUCTS.PROD# instead, PROD# is
null for OIL. If you select both PRODUCTS.PROD# and PARTS.PROD#, the result
contains two columns, both of which contain some null values. You can merge data
from both columns into a single column, eliminating the null values, by using the
COALESCE function.

With the same PARTS and PRODUCTS tables, the following example merges the
non-null data from the PROD# columns:
SELECT PART, SUPPLIER,

COALESCE(PARTS.PROD#, PRODUCTS.PROD#) AS PRODNUM, PRODUCT
FROM PARTS FULL OUTER JOIN PRODUCTS

ON PARTS.PROD# = PRODUCTS.PROD#;

The result table looks similar to the following output:
PART SUPPLIER PRODNUM PRODUCT
======= ============ ======= ===========
WIRE ACWF 10 GENERATOR
MAGNETS BATEMAN 10 GENERATOR
PLASTIC PLASTIK_CORP 30 RELAY
BLADES ACE_STEEL 205 SAW
OIL WESTERN_CHEM 160 -----------
------- ------------ 505 SCREWDRIVER

The AS clause (AS PRODNUM) provides a name for the result of the COALESCE
function.

Left outer join
A left outer join is a method of combining tables. The result includes unmatched
rows from only the table that is specified before the LEFT OUTER JOIN clause.

If you are joining two tables and want the result set to include unmatched rows
from only one table, use a LEFT OUTER JOIN clause or a RIGHT OUTER JOIN
clause. The matching is based on the join condition.

The clause LEFT OUTER JOIN includes rows from the table that is specified before
LEFT OUTER JOIN that have no matching values in the table that is specified after
LEFT OUTER JOIN.

As in an inner join, the join condition can be any simple or compound search
condition that does not contain a subquery reference.

Example: The following example uses the tables in “Sample data for joins” on
page 699. To include rows from the PARTS table that have no matching values in
the PRODUCTS table, and to include prices that exceed 10.00, run the following
query:

696 Application Programming and SQL Guide

SELECT PART, SUPPLIER, PARTS.PROD#, PRODUCT, PRICE
FROM PARTS LEFT OUTER JOIN PRODUCTS

ON PARTS.PROD#=PRODUCTS.PROD#
AND PRODUCTS.PRICE>10.00;

The result table looks similar to the following output:
PART SUPPLIER PROD# PRODUCT PRICE
======= ============ ===== ========== =====
WIRE ACWF 10 GENERATOR 45.75
MAGNETS BATEMAN 10 GENERATOR 45.75
PLASTIC PLASTIK_CORP 30 ----------- -------
BLADES ACE_STEEL 205 SAW 18.90
OIL WESTERN_CHEM 160 ----------- -------

A row from the PRODUCTS table is in the result table only if its product number
matches the product number of a row in the PARTS table and the price is greater
than 10.00 for that row. Rows in which the PRICE value does not exceed 10.00 are
included in the result of the join, but the PRICE value is set to null.

In this result table, the row for PROD# 30 has null values on the right two columns
because the price of PROD# 30 is less than 10.00. PROD# 160 has null values on
the right two columns because PROD# 160 does not match another product
number.

Right outer join
A right outer join is a method of combining tables. The result includes unmatched
rows from only the table that is specified after the RIGHT OUTER JOIN clause.

If you are joining two tables and want the result set to include unmatched rows
from only one table, use a LEFT OUTER JOIN clause or a RIGHT OUTER JOIN
clause. The matching is based on the join condition.

The clause RIGHT OUTER JOIN includes rows from the table that is specified after
RIGHT OUTER JOIN that have no matching values in the table that is specified
before RIGHT OUTER JOIN.

As in an inner join, the join condition can be any simple or compound search
condition that does not contain a subquery reference.

Example: The following example uses the tables in “Sample data for joins” on
page 699. To include rows from the PRODUCTS table that have no corresponding
rows in the PARTS table, execute this query:
SELECT PART, SUPPLIER, PRODUCTS.PROD#, PRODUCT, PRICE

FROM PARTS RIGHT OUTER JOIN PRODUCTS
ON PARTS.PROD# = PRODUCTS.PROD#

AND PRODUCTS.PRICE>10.00;

The result table looks similar to the following output:
PART SUPPLIER PROD# PRODUCT PRICE
======= ============ ===== ========== =====
WIRE ACWF 10 GENERATOR 45.75
MAGNETS BATEMAN 10 GENERATOR 45.75
BLADES ACE_STEEL 205 SAW 18.90
---------- ------------ 30 RELAY 7.55
---------- ------------ 505 SCREWDRIVER 3.70

A row from the PARTS table is in the result table only if its product number
matches the product number of a row in the PRODUCTS table and the price is
greater than 10.00 for that row.

Chapter 12. Accessing data 697

Because the PRODUCTS table can have rows with nonmatching product numbers
in the result table, and the PRICE column is in the PRODUCTS table, rows in
which PRICE is less than or equal to 10.00 are included in the result. The PARTS
columns contain null values for these rows in the result table.

SQL rules for statements that contain join operations
Typically, DB2 performs a join operation first, before it evaluates the other clauses
of the SELECT statement.

SQL rules dictate that the result of a SELECT statement look as if the clauses had
been evaluated in this order:
v FROM
v WHERE
v GROUP BY
v HAVING
v SELECT

A join operation is part of a FROM clause; therefore, for the purpose of predicting
which rows will be returned from a SELECT statement that contains a join
operation, assume that the join operation is performed first.

Example: Suppose that you want to obtain a list of part names, supplier names,
product numbers, and product names from the PARTS and PRODUCTS tables. You
want to include rows from either table where the PROD# value does not match a
PROD# value in the other table, which means that you need to do a full outer join.
You also want to exclude rows for product number 10. Consider the following
SELECT statement:
SELECT PART, SUPPLIER,

VALUE(PARTS.PROD#,PRODUCTS.PROD#) AS PRODNUM, PRODUCT
FROM PARTS FULL OUTER JOIN PRODUCTS

ON PARTS.PROD# = PRODUCTS.PROD#
WHERE PARTS.PROD# <> ’10’ AND PRODUCTS.PROD# <> ’10’;

The following result is not what you wanted:
PART SUPPLIER PRODNUM PRODUCT
======= ============ ======= ===========
PLASTIC PLASTIK_CORP 30 RELAY
BLADES ACE_STEEL 205 SAW

DB2 performs the join operation first. The result of the join operation includes
rows from one table that do not have corresponding rows from the other table.
However, the WHERE clause then excludes the rows from both tables that have
null values for the PROD# column.

The following statement is a correct SELECT statement to produce the list:
SELECT PART, SUPPLIER,

VALUE(X.PROD#, Y.PROD#) AS PRODNUM, PRODUCT
FROM

(SELECT PART, SUPPLIER, PROD# FROM PARTS WHERE PROD# <> ’10’) X
FULL OUTER JOIN
(SELECT PROD#, PRODUCT FROM PRODUCTS WHERE PROD# <> ’10’) Y
ON X.PROD# = Y.PROD#;

For this statement, DB2 applies the WHERE clause to each table separately. DB2
then performs the full outer join operation, which includes rows in one table that
do not have a corresponding row in the other table. The final result includes rows
with the null value for the PROD# column and looks similar to the following
output:

698 Application Programming and SQL Guide

PART SUPPLIER PRODNUM PRODUCT
======= ============ ======= ===========
OIL WESTERN_CHEM 160 -----------
BLADES ACE_STEEL 205 SAW
PLASTIC PLASTIK_CORP 30 RELAY
------- ------------ 505 SCREWDRIVER

Sample data for joins
You can use the sample PARTS table and the PRODUCTS table to practice various
types of joins.

The examples in these topics use the following two tables to show various types of
joins:

The PARTS table The PRODUCTS table
PART PROD# SUPPLIER PROD# PRODUCT PRICE
======= ===== ============ ===== =========== =====
WIRE 10 ACWF 505 SCREWDRIVER 3.70
OIL 160 WESTERN_CHEM 30 RELAY 7.55
MAGNETS 10 BATEMAN 205 SAW 18.90
PLASTIC 30 PLASTIK_CORP 10 GENERATOR 45.75
BLADES 205 ACE_STEEL

Optimizing retrieval for a small set of rows
When you need only a few of the thousands of rows that satisfy a query, you can
tell DB2 to optimize its retrieval process to return only a specified number of rows.

About this task

Question: How can I tell DB2 that I want only a few of the thousands of rows that
satisfy a query?

Answer: Use OPTIMIZE FOR n ROWS or FETCH FIRST n ROWS ONLY.

DB2 usually optimizes queries to retrieve all rows that qualify. But sometimes you
want to retrieve only the first few rows. For example, to retrieve the first row that
is greater than or equal to a known value, code:
SELECT column list FROM table
WHERE key >= value
ORDER BY key ASC

Even with the ORDER BY clause, DB2 might fetch all the data first and sort it
afterwards, which could be wasteful. Instead, you can write the query in one of the
following ways:
SELECT * FROM table
WHERE key >= value
ORDER BY key ASC
OPTIMIZE FOR 1 ROW

SELECT * FROM table
WHERE key >= value
ORDER BY key ASC
FETCH FIRST n ROWS ONLY

Use OPTIMIZE FOR 1 ROW to influence the access path. OPTIMIZE FOR 1 ROW
tells DB2 to select an access path that returns the first qualifying row quickly.

Use FETCH FIRST n ROWS ONLY to limit the number of rows in the result table
to n rows. FETCH FIRST n ROWS ONLY has the following benefits:

Chapter 12. Accessing data 699

v When you use FETCH statements to retrieve data from a result table, FETCH
FIRST n ROWS ONLY causes DB2 to retrieve only the number of rows that you
need. This can have performance benefits, especially in distributed applications.
If you try to execute a FETCH statement to retrieve the n+1st row, DB2 returns a
+100 SQLCODE.

v When you use FETCH FIRST ROW ONLY in a SELECT INTO statement, you
never retrieve more than one row. Using FETCH FIRST ROW ONLY in a
SELECT INTO statement can prevent SQL errors that are caused by
inadvertently selecting more than one value into a host variable.

When you specify FETCH FIRST n ROWS ONLY but not OPTIMIZE FOR n ROWS,
OPTIMIZE FOR n ROWS is implied. When you specify FETCH FIRST n ROWS
ONLY and OPTIMIZE FOR m ROWS, and m is less than n, DB2 optimizes the
query for m rows. If m is greater than n, DB2 optimizes the query for n rows.
Related concepts:

Optimization for large and small result sets (Introduction to DB2 for z/OS)
Related tasks:

Optimizing retrieval for a small set of rows (DB2 Application programming
and SQL)

Fetching a limited number of rows (DB2 Performance)
Related reference:

optimize-clause (DB2 SQL)

fetch-first-clause (DB2 SQL)

Creating recursive SQL by using common table expressions
Queries that use recursion are useful in applications like bill-of-materials
applications, network planning applications, and reservation systems.

About this task

You can use common table expressions to create recursive SQL If a fullselect of a
common table expression contains a reference to itself in a FROM clause, the
common table expression is a recursive common table expression.

Recursive common table expressions must follow these rules:
v The first fullselect of the first union (the initialization fullselect) must not include

a reference to the common table expression.
v Each fullselect that is part of the recursion cycle must:

– Start with SELECT or SELECT ALL. SELECT DISTINCT is not allowed.
– Include only one reference to the common table expression that is part of the

recursion cycle in its FROM clause.
– Not include aggregate functions, a GROUP BY clause, or a HAVING clause.

v The column names must be specified after the table name of the common table
expression.

v The data type, length, and CCSID of each column from the common table
expression must match the data type, length, and CCSID of each corresponding
column in the iterative fullselect.

v If you use the UNION keyword, specify UNION ALL instead of UNION.
v You cannot specify INTERSECT or EXCEPT.

700 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_optimizationforlargeandsmallresults.htm#db2z_optimizationforlargeandsmallresults
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_optimizeretrievalsmallset.htm#db2z_optimizeretrievalsmallset
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_optimizeretrievalsmallset.htm#db2z_optimizeretrievalsmallset
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_fetchfirstnrows.htm#db2z_fetchfirstnrows
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_optimizeforclause.htm#db2z_sql_optimizeforclause
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_fetchfirstclause.htm#db2z_sql_fetchfirstclause

v Outer joins must not be part of any recursion cycle.
v A subquery must not be part of any recursion cycle.

Important: You should be careful to avoid an infinite loop when you use a
recursive common table expression. DB2 issues a warning if one of the following
items is not found in the iterative fullselect of a recursive common table
expression:
v An integer column that increments by a constant
v A predicate in the WHERE clause in the form of counter_column < constant or

counter_column < :host variable

See “Examples of recursive common table expressions” on page 468 for examples
of bill-of-materials applications that use recursive common table expressions.

Updating data as it is retrieved from the database
As you retrieve rows, you can update them at the same time.

About this task

Question: How can I update rows of data as I retrieve them?

Answer: On the SELECT statement, use the FOR UPDATE clause without a column
list, or the FOR UPDATE OF clause with a column list. For a more efficient
program, specify a column list with only those columns that you intend to update.
Then use the positioned UPDATE statement. The clause WHERE CURRENT OF
identifies the cursor that points to the row you want to update.

Avoiding decimal arithmetic errors
When you request that DB2 perform a decimal operation, errors might occur if
DB2 does not use the appropriate precision and scale.

About this task

For static SQL statements, the simplest way to avoid a division error is to override
DEC31 rules by specifying the precompiler option DEC(15). In some cases you can
avoid a division error by specifying D31.s, where s is a number between 1 and 9
and represents the minimum scale to be used for division operations. This
specification reduces the probability of errors for statements that are embedded in
the program.

If the dynamic SQL statements have bind, define, or invoke behavior and the value
of the installation option for USE FOR DYNAMICRULES on panel DSNTIP4 is
NO, you can use the precompiler option DEC(15), DEC15, or D15.s to override
DEC31 rules, where s is a number between 1 and 9.

For a dynamic statement, or for a single static statement, use the scalar function
DECIMAL to specify values of the precision and scale for a result that causes no
errors.

Before you execute a dynamic statement, set the value of special register
CURRENT PRECISION to DEC15 or D15.s, where s is a number between 1 and 9.

Even if you use DEC31 rules, multiplication operations can sometimes cause
overflow because the precision of the product is greater than 31. To avoid overflow

Chapter 12. Accessing data 701

from multiplication of large numbers, use the MULTIPLY_ALT built-in function
instead of the multiplication operator.

Precision for operations with decimal numbers
DB2 accepts two sets of rules for determining the precision and scale of the result
of an operation with decimal numbers.
v DEC15 rules allow a maximum precision of 15 digits in the result of an

operation. DEC15 rules are in effect when both operands have a precision of 15
or less, or unless the DEC31 rules apply.

v DEC31 rules allow a maximum precision of 31 digits in the result. DEC31 rules
are in effect if any of the following conditions is true:
– Either operand of the operation has a precision greater than 15 digits.
– The operation is in a dynamic SQL statement, and any of the following

conditions is true:
- The current value of special register CURRENT PRECISION is DEC31 or

D31.s, where s is a number between 1 and 9 and represents the minimum
scale to be used for division operations.

- The installation option for DECIMAL ARITHMETIC on panel DSNTIP4 is
DEC31, 31, or D31.s, where s is a number between 1 and 9; the installation
option for USE FOR DYNAMICRULES on panel DSNTIP4 is YES; and the
value of CURRENT PRECISION has not been set by the application.

- The SQL statement has bind, define, or invoke behavior; the statement is in
an application that is precompiled with option DEC(31); the installation
option for USE FOR DYNAMICRULES on panel DSNTIP4 is NO; and the
value of CURRENT PRECISION has not been set by the application. See
“DYNAMICRULES bind option” on page 957 for an explanation of bind,
define, and invoke behavior.

– The operation is in an embedded (static) SQL statement that you precompiled
with the DEC(31), DEC31, or D31.s option, or with the default for that option
when the installation option DECIMAL ARITHMETIC is DEC31 or 31. s is a
number between 1 and 9 and represents the minimum scale to be used for
division operations. See “Processing SQL statements” on page 916 for
information about precompiling and for a list of all precompiler options.

Recommendation: To reduce the chance of overflow, or when dealing with a
precision greater than 15 digits, choose DEC31 or D31.s , wheres is a number
between 1 and 9 and represents the minimum scale to be used for division
operations.

Controlling how DB2 rounds decimal floating point numbers
You can specify a default rounding mode that DB2 is to use for all DECFLOAT
values.

Procedure

To control how DB2 rounds decimal floating point numbers:

Set the CURRENT DECFLOAT ROUNDING MODE special register.

702 Application Programming and SQL Guide

Related reference:

CURRENT DECFLOAT ROUNDING MODE (DB2 SQL)

SET CURRENT DECFLOAT ROUNDING MODE (DB2 SQL)

Implications of using SELECT *
Generally, you should use SELECT * only when you want to select all columns,
except for hidden columns. Otherwise, specify the specific columns that you want
to view.

Question: What are the implications of using SELECT * ?

Answer: Generally, you should select only the columns you need because DB2 is
sensitive to the number of columns selected. Use SELECT * only when you are
sure you want to select all columns, except hidden columns. (Hidden columns are
not returned when you specify SELECT *.) One alternative to selecting all columns
is to use views defined with only the necessary columns, and use SELECT * to
access the views. Avoid SELECT * if all the selected columns participate in a sort
operation (SELECT DISTINCT and SELECT...UNION, for example).

Subqueries
When you need to narrow your search condition based on information in an
interim table, you can use a subquery. For example, you might want to find all
employee numbers in one table that also exist for a given project in a second table.

Conceptual overview of subqueries:

Suppose that you want a list of the employee numbers, names, and commissions of
all employees who work on a particular project, whose project number is MA2111.
The first part of the SELECT statement is easy to write:
SELECT EMPNO, LASTNAME, COMM

FROM DSN8B10.EMP
WHERE EMPNO

...

However, you cannot proceed because the DSN8B10.EMP table does not include
project number data. You do not know which employees are working on project
MA2111 without issuing another SELECT statement against the
DSN8B10.EMPPROJACT table.

You can use a subquery to solve this problem. A subquery is a subselect or a
fullselect in a WHERE clause. The SELECT statement that surrounds the subquery
is called the outer SELECT.
SELECT EMPNO, LASTNAME, COMM

FROM DSN8B10.EMP
WHERE EMPNO IN

(SELECT EMPNO
FROM DSN8B10.EMPPROJACT
WHERE PROJNO = ’MA2111’);

To better understand the results of this SQL statement, imagine that DB2 goes
through the following process:
1. DB2 evaluates the subquery to obtain a list of EMPNO values:

Chapter 12. Accessing data 703

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_currentdecfloatroundingmode.htm#db2z_currentdecfloatroundingmode
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_setcurrentdecfloatroundingmode.htm#db2z_sql_setcurrentdecfloatroundingmode

(SELECT EMPNO
FROM DSN8B10.EMPPROJACT
WHERE PROJNO = ’MA2111’);

The result is in an interim result table, similar to the one in the following
output:
from EMPNO

=====
200
200
220

2. The interim result table then serves as a list in the search condition of the outer
SELECT. Effectively, DB2 executes this statement:
SELECT EMPNO, LASTNAME, COMM

FROM DSN8B10.EMP
WHERE EMPNO IN
(’000200’, ’000220’);

As a consequence, the result table looks similar to the following output:
EMPNO LASTNAME COMM
====== ======== ====
000200 BROWN 2217
000220 LUTZ 2387

Correlated and uncorrelated subqueries:

Subqueries supply information that is needed to qualify a row (in a WHERE
clause) or a group of rows (in a HAVING clause). The subquery produces a result
table that is used to qualify the row or group of selected rows.

A subquery executes only once, if the subquery is the same for every row or
group. This kind of subquery is uncorrelated, which means that it executes only
once. For example, in the following statement, the content of the subquery is the
same for every row of the table DSN8B10.EMP:
SELECT EMPNO, LASTNAME, COMM

FROM DSN8B10.EMP
WHERE EMPNO IN

(SELECT EMPNO
FROM DSN8B10.EMPPROJACT
WHERE PROJNO = ’MA2111’);

Subqueries that vary in content from row to row or group to group are correlated
subqueries. For information about correlated subqueries, see “Correlated
subqueries” on page 707.

Subqueries and predicates:

A predicate is an element of a search condition that specifies a condition that is true,
false, or unknown about a given row or group. A subquery, which is a SELECT
statement within the WHERE or HAVING clause of another SQL statement, is
always part of a predicate. The predicate is of the form:
operand operator (subquery)

A WHERE or HAVING clause can include predicates that contain subqueries. A
predicate that contains a subquery, like any other search predicate, can be enclosed
in parentheses, can be preceded by the keyword NOT, and can be linked to other
predicates through the keywords AND and OR. For example, the WHERE clause
of a query can look something like the following clause:

704 Application Programming and SQL Guide

WHERE X IN (subquery1) AND (Y > SOME (subquery2) OR Z IS NULL)

Subqueries can also appear in the predicates of other subqueries. Such subqueries
are nested subqueries at some level of nesting. For example, a subquery within a
subquery within an outer SELECT has a nesting level of 2. DB2 allows nesting
down to a level of 15, but few queries require a nesting level greater than 1.

The relationship of a subquery to its outer SELECT is the same as the relationship
of a nested subquery to a subquery, and the same rules apply, except where
otherwise noted.

The subquery result table:

A subquery must produce a result table that has the same number of columns as
the number of columns on the left side of the comparison operator. For example,
both of the following SELECT statements are acceptable:
SELECT EMPNO, LASTNAME

FROM DSN8B10.EMP
WHERE SALARY =
(SELECT AVG(SALARY)

FROM DSN8B10.EMP);

SELECT EMPNO, LASTNAME
FROM DSN8B10.EMP
WHERE (SALARY, BONUS) IN
(SELECT AVG(SALARY), AVG(BONUS)

FROM DSN8B10.EMP);

Except for a subquery of a basic predicate, the result table can contain more than
one row. For more information, see “Places where you can include a subquery.”

Places where you can include a subquery
You can specify a subquery in either a WHERE clause or a HAVING clause.

You can specify a subquery in either a WHERE or HAVING clause by using one of
the following items:

Basic predicate in a subquery:

You can use a subquery immediately after any of the comparison operators. If you
do, the subquery can return at most one value. DB2 compares that value with the
value to the left of the comparison operator.

Example: The following SQL statement returns the employee numbers, names, and
salaries for employees whose education level is higher than the average
company-wide education level.
SELECT EMPNO, LASTNAME, SALARY

FROM DSN8B10.EMP
WHERE EDLEVEL >

(SELECT AVG(EDLEVEL)
FROM DSN8B10.EMP);

Quantified predicate in a subquery: ALL, ANY, or SOME:

You can use a subquery after a comparison operator, followed by the keyword
ALL, ANY, or SOME. The number of columns and rows that the subquery can
return for a quantified predicate depends on the type of quantified predicate:

Chapter 12. Accessing data 705

v For = SOME, = ANY, or <> ALL, the subquery can return one or many rows and
one or many columns. The number of columns in the result table must match
the number of columns on the left side of the operator.

v For all other quantified predicates, the subquery can return one or many rows,
but no more than one column.

See the information about quantified predicates, including what to do if a
subquery that returns one or more null values gives you unexpected results.

ALL predicate:

Use ALL to indicate that the operands on the left side of the comparison must
compare in the same way with all of the values that the subquery returns. For
example, suppose that you use the greater-than comparison operator with ALL:
WHERE column > ALL (subquery)

To satisfy this WHERE clause, the column value must be greater than all of the
values that the subquery returns. A subquery that returns an empty result table
satisfies the predicate.

Now suppose that you use the <> operator with ALL in a WHERE clause like this:
WHERE (column1, column1, ... columnn) <> ALL (subquery)

To satisfy this WHERE clause, each column value must be unequal to all of the
values in the corresponding column of the result table that the subquery returns. A
subquery that returns an empty result table satisfies the predicate.

ANY or SOME predicate:

Use ANY or SOME to indicate that the values on the left side of the operator must
compare in the indicated way to at least one of the values that the subquery
returns. For example, suppose that you use the greater-than comparison operator
with ANY:
WHERE expression > ANY (subquery)

To satisfy this WHERE clause, the value in the expression must be greater than at
least one of the values (that is, greater than the lowest value) that the subquery
returns. A subquery that returns an empty result table does not satisfy the
predicate.

Now suppose that you use the = operator with SOME in a WHERE clause like
this:
WHERE (column1, column1, ... columnn) = SOME (subquery)

To satisfy this WHERE clause, each column value must be equal to at least one of
the values in the corresponding column of the result table that the subquery
returns. A subquery that returns an empty result table does not satisfy the
predicate.

IN predicate in a subquery:

You can use IN to say that the value or values on the left side of the IN operator
must be among the values that are returned by the subquery. Using IN is
equivalent to using = ANY or = SOME.

706 Application Programming and SQL Guide

Example: The following query returns the names of department managers:
SELECT EMPNO,LASTNAME

FROM DSN8B10.EMP
WHERE EMPNO IN

(SELECT DISTINCT MGRNO
FROM DSN8B10.DEPT);

EXISTS predicate in a subquery:

When you use the keyword EXISTS, DB2 checks whether the subquery returns one
or more rows. Returning one or more rows satisfies the condition; returning no
rows does not satisfy the condition.

Example: The search condition in the following query is satisfied if any project that
is represented in the project table has an estimated start date that is later than 1
January 2005:
SELECT EMPNO,LASTNAME

FROM DSN8B10.EMP
WHERE EXISTS

(SELECT *
FROM DSN8B10.PROJ
WHERE PRSTDATE > ’2005-01-01’);

The result of the subquery is always the same for every row that is examined for
the outer SELECT. Therefore, either every row appears in the result of the outer
SELECT or none appears. A correlated subquery is more powerful than the
uncorrelated subquery that is used in this example because the result of a
correlated subquery is evaluated for each row of the outer SELECT.

As shown in the example, you do not need to specify column names in the
subquery of an EXISTS clause. Instead, you can code SELECT *. You can also use
the EXISTS keyword with the NOT keyword in order to select rows when the data
or condition that you specify does not exist; that is, you can code the following
clause:
WHERE NOT EXISTS (SELECT ...);

Related reference:

Quantified predicate (DB2 SQL)

Correlated subqueries
A correlated subquery is a subquery that DB2 reevaluates when it examines a new
row (in a WHERE clause) or a group of rows (in a HAVING clause) as it executes
the outer SELECT statement.

In an uncorrelated subquery, DB2 executes the subquery once, substitutes the result
of the subquery in the right side of the search condition, and evaluates the outer
SELECT based on the value of the search condition.

User-defined functions in correlated subqueries: Use care when you invoke a
user-defined function in a correlated subquery, and that user-defined function uses
a scratchpad. DB2 does not refresh the scratchpad between invocations of the
subquery. This can cause undesirable results because the scratchpad keeps values
across the invocations of the subquery.

An example of a correlated subquery

Chapter 12. Accessing data 707

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_qualifiedpredicate.htm#db2z_qualifiedpredicate

Suppose that you want a list of all the employees whose education levels are
higher than the average education levels in their respective departments. To get
this information, DB2 must search the DSN8B10.EMP table. For each employee in
the table, DB2 needs to compare the employee's education level to the average
education level for that employee's department.

For this example, you need to use a correlated subquery, which differs from an
uncorrelated subquery. An uncorrelated subquery compares the employee's
education level to the average of the entire company, which requires looking at the
entire table. A correlated subquery evaluates only the department that corresponds
to the particular employee.

In the subquery, you tell DB2 to compute the average education level for the
department number in the current row. The following query performs this action:
SELECT EMPNO, LASTNAME, WORKDEPT, EDLEVEL

FROM DSN8B10.EMP X
WHERE EDLEVEL >

(SELECT AVG(EDLEVEL)
FROM DSN8B10.EMP
WHERE WORKDEPT = X.WORKDEPT);

A correlated subquery looks like an uncorrelated one, except for the presence of
one or more correlated references. In the example, the single correlated reference is
the occurrence of X.WORKDEPT in the WHERE clause of the subselect. In this
clause, the qualifier X is the correlation name that is defined in the FROM clause of
the outer SELECT statement. X designates rows of the first instance of
DSN8B10.EMP. At any time during the execution of the query, X designates the
row of DSN8B10.EMP to which the WHERE clause is being applied.

Consider what happens when the subquery executes for a given row of
DSN8B10.EMP. Before it executes, X.WORKDEPT receives the value of the
WORKDEPT column for that row. Suppose, for example, that the row is for
Christine Haas. Her work department is A00, which is the value of WORKDEPT
for that row. Therefore, the following is the subquery that is executed for that row:
(SELECT AVG(EDLEVEL)

FROM DSN8B10.EMP
WHERE WORKDEPT = ’A00’);

The subquery produces the average education level of Christine's department. The
outer SELECT then compares this average to Christine's own education level. For
some other row for which WORKDEPT has a different value, that value appears in
the subquery in place of A00. For example, in the row for Michael L Thompson,
this value is B01, and the subquery for his row delivers the average education level
for department B01.

The result table that is produced by the query is similar to the following output:
EMPNO LASTNAME WORKDEPT EDLEVEL
====== ========= ======== =======
000010 HASS A00 18
000030 KWAN C01 20
000070 PULASKI D21 16
000090 HENDERSON E11 16

Correlation names in references
A correlation name is a name that you specify for a table, view, nested table
expression or table function. This name is valid only within the context in which it
is defined. Use correlation names to avoid ambiguity, to establish correlated
references, or to use shorter names for tables or views.

708 Application Programming and SQL Guide

A correlated reference can appear in a subquery, in a nested table expression, or as
an argument of a user-defined table function. For information about correlated
references in nested table expressions and table functions, see “Joining data from
more than one table” on page 688. In a subquery, the reference should be of the
form X.C, where X is a correlation name and C is the name of a column in the
table that X represents.

Any number of correlated references can appear in a subquery, with no restrictions
on variety. For example, you can use one correlated reference in the outer SELECT,
and another in a nested subquery.

When you use a correlated reference in a subquery, the correlation name can be
defined in the outer SELECT or in any of the subqueries that contain the reference.
Suppose, for example, that a query contains subqueries A, B, and C, and that A
contains B and B contains C. The subquery C can use a correlation reference that is
defined in B, A, or the outer SELECT.

You can define a correlation name for each table name in a FROM clause. Specify
the correlation name after its table name. Leave one or more blanks between a
table name and its correlation name. You can include the word AS between the
table name and the correlation name to increase the readability of the SQL
statement.

The following example demonstrates the use of a correlated reference in the search
condition of a subquery:
SELECT EMPNO, LASTNAME, WORKDEPT, EDLEVEL

FROM DSN8B10.EMP AS X
WHERE EDLEVEL >

(SELECT AVG(EDLEVEL)
FROM DSN8B10.EMP
WHERE WORKDEPT = X.WORKDEPT);

The following example demonstrates the use of a correlated reference in the select
list of a subquery:
UPDATE BP1TBL T1

SET (KEY1, CHAR1, VCHAR1) =
(SELECT VALUE(T2.KEY1,T1.KEY1), VALUE(T2.CHAR1,T1.CHAR1),

VALUE(T2.VCHAR1,T1.VCHAR1)
FROM BP2TBL T2
WHERE (T2.KEY1 = T1.KEY1))

WHERE KEY1 IN
(SELECT KEY1

FROM BP2TBL T3
WHERE KEY2 > 0);

Using correlated subqueries in an UPDATE statement:

Use correlation names in an UPDATE statement to refer to the rows that you are
updating. The subquery for which you specified a correlation name is called a
correlated subquery.

For example, when all activities of a project must complete before September 2006,
your department considers that project to be a priority project. Assume that you
have added the PRIORITY column to DSN8B10.PROJ. You can use the following
SQL statement to evaluate the projects in the DSN8B10.PROJ table, and write a 1 (a
flag to indicate PRIORITY) in the PRIORITY column for each priority project:

Chapter 12. Accessing data 709

UPDATE DSN8B10.PROJ X
SET PRIORITY = 1
WHERE DATE(’2006-09-01’) >

(SELECT MAX(ACENDATE)
FROM DSN8B10.PROJACT
WHERE PROJNO = X.PROJNO);

As DB2 examines each row in the DSN8B10.PROJ table, it determines the
maximum activity end date (the ACENDATE column) for all activities of the
project (from the DSN8B10.PROJACT table). If the end date of each activity that is
associated with the project is before September 2006, the current row in the
DSN8B10.PROJ table qualifies, and DB2 updates it.

Using correlated subqueries in a DELETE statement:

Use correlation names in a DELETE statement to refer to the rows that you are
deleting. The subquery for which you specified a correlation name is called a
correlated subquery. DB2 evaluates the correlated subquery once for each row in the
table that is named in the DELETE statement to decide whether to delete the row.

Using tables with no referential constraints:

Suppose that a department considers a project to be complete when the combined
amount of time currently spent on it is less than or equal to half of a person's time.
The department then deletes the rows for that project from the DSN8B10.PROJ
table. In the examples in this topic, PROJ and PROJACT are independent tables;
that is, they are separate tables with no referential constraints defined on them.
DELETE FROM DSN8B10.PROJ X

WHERE .5 >
(SELECT SUM(ACSTAFF)

FROM DSN8B10.PROJACT
WHERE PROJNO = X.PROJNO);

To process this statement, DB2 determines for each project (represented by a row in
the DSN8B10.PROJ table) whether the combined staffing for that project is less
than 0.5. If it is, DB2 deletes that row from the DSN8B10.PROJ table.

To continue this example, suppose that DB2 deletes a row in the DSN8B10.PROJ
table. You must also delete rows that are related to the deleted project in the
DSN8B10.PROJACT table. To do this, use a statement similar to this statement:
DELETE FROM DSN8B10.PROJACT X

WHERE NOT EXISTS
(SELECT *

FROM DSN8B10.PROJ
WHERE PROJNO = X.PROJNO);

DB2 determines, for each row in the DSN8B10.PROJACT table, whether a row with
the same project number exists in the DSN8B10.PROJ table. If not, DB2 deletes the
row from DSN8B10.PROJACT.

Using a single table:

A subquery of a searched DELETE statement (a DELETE statement that does not
use a cursor) can reference the same table from which rows are deleted. In the
following statement, which deletes the employee with the highest salary from each
department, the employee table appears in the outer DELETE and in the subselect:

710 Application Programming and SQL Guide

DELETE FROM YEMP X
WHERE SALARY = (SELECT MAX(SALARY) FROM YEMP Y

WHERE X.WORKDEPT =Y.WORKDEPT);

This example uses a copy of the employee table for the subquery.

The following statement, without a correlated subquery, yields equivalent results:
DELETE FROM YEMP

WHERE (SALARY, WORKDEPT) IN (SELECT MAX(SALARY), WORKDEPT
FROM YEMP
GROUP BY WORKDEPT);

Using tables with referential constraints:

DB2 restricts delete operations for dependent tables that are involved in referential
constraints. If a DELETE statement has a subquery that references a table that is
involved in the deletion, make the last delete rule in the path to that table
RESTRICT or NO ACTION. This action ensures that the result of the subquery is
not materialized before the deletion occurs. However, if the result of the subquery
is materialized before the deletion, the delete rule can also be CASCADE or SET
NULL.

Example: Without referential constraints, the following statement deletes
departments from the department table whose managers are not listed correctly in
the employee table:
DELETE FROM DSN8B10.DEPT THIS

WHERE NOT DEPTNO =
(SELECT WORKDEPT

FROM DSN8B10.EMP
WHERE EMPNO = THIS.MGRNO);

With the referential constraints that are defined for the sample tables, this
statement causes an error because the result table for the subquery is not
materialized before the deletion occurs. Because DSN8B10.EMP is a dependent
table of DSN8B10.DEPT, the deletion involves the table that is referred to in the
subquery, and the last delete rule in the path to EMP is SET NULL, not RESTRICT
or NO ACTION. If the statement could execute, its results would depend on the
order in which DB2 accesses the rows. Therefore, DB2 prohibits the deletion.

Restrictions when using distinct types with UNION, EXCEPT,
and INTERSECT

DB2 enforces strong typing of distinct types with UNION, EXCEPT, and
INTERSECT. When you use these keywords to combine column values from
several tables, the combined columns must be of the same types. If a column is a
distinct type, the corresponding column must be the same distinct type.

Example: Suppose that you create a view that combines the values of the
US_SALES, EUROPEAN_SALES, and JAPAN_SALES tables. The TOTAL columns
in the three tables are of different distinct types. Before you combine the table
values, you must convert the types of two of the TOTAL columns to the type of
the third TOTAL column. Assume that the US_DOLLAR type has been chosen as
the common distinct type. Because DB2 does not generate cast functions to convert
from one distinct type to another, two user-defined functions must exist:
v A function called EURO_TO_US that converts values of type EURO to type

US_DOLLAR

Chapter 12. Accessing data 711

v A function called YEN_TO_US that converts values of type JAPANESE_YEN to
type US_DOLLAR

Then you can execute a query like this to display a table of combined sales:
SELECT PRODUCT_ITEM, MONTH, YEAR, TOTAL
FROM US_SALES
UNION
SELECT PRODUCT_ITEM, MONTH, YEAR, EURO_TO_US(TOTAL)
FROM EUROPEAN_SALES
UNION
SELECT PRODUCT_ITEM, MONTH, YEAR, YEN_TO_US(TOTAL)
FROM JAPAN_SALES;

Because the result type of both the YEN_TO_US function and the EURO_TO_US
function is US_DOLLAR, you have satisfied the requirement that the distinct types
of the combined columns are the same.

Comparison of distinct types
You can compare an object with a distinct type only to an object with exactly the
same distinct type. You cannot compare data of a distinct type directly to data of
its source type. However, you can compare a distinct type to its source type by
using a cast function.

The basic rule for comparisons is that the data types of the operands must be
compatible. The compatibility rule defines, for example, that all numeric types
(SMALLINT, INTEGER, FLOAT, and DECIMAL) are compatible. That is, you can
compare an INTEGER value with a value of type FLOAT. However, you cannot
compare an object of a distinct type to an object of a different type. You can
compare an object with a distinct type only to an object with exactly the same
distinct type.

For example, suppose you want to know which products sold more than
$100 000.00 in the US in the month of July in 2003 (7/03). Because you cannot
compare data of type US_DOLLAR with instances of data of the source type of
US_DOLLAR (DECIMAL) directly, you must use a cast function to cast data from
DECIMAL to US_DOLLAR or from US_DOLLAR to DECIMAL. Whenever you
create a distinct type, DB2 creates two cast functions, one to cast from the source
type to the distinct type and the other to cast from the distinct type to the source
type. For distinct type US_DOLLAR, DB2 creates a cast function called DECIMAL
and a cast function called US_DOLLAR. When you compare an object of type
US_DOLLAR to an object of type DECIMAL, you can use one of those cast
functions to make the data types identical for the comparison. Suppose table
US_SALES is defined like this:
CREATE TABLE US_SALES

(PRODUCT_ITEM INTEGER,
MONTH INTEGER CHECK (MONTH BETWEEN 1 AND 12),
YEAR INTEGER CHECK (YEAR > 1990),
TOTAL US_DOLLAR);

Then you can cast DECIMAL data to US_DOLLAR like this:
SELECT PRODUCT_ITEM

FROM US_SALES
WHERE TOTAL > US_DOLLAR(100000.00)
AND MONTH = 7
AND YEAR = 2003;

The casting satisfies the requirement that the compared data types are identical.

712 Application Programming and SQL Guide

You cannot use host variables in statements that you prepare for dynamic
execution. As explained in “Dynamically executing an SQL statement by using
PREPARE and EXECUTE” on page 186, you can substitute parameter markers for
host variables when you prepare a statement, and then use host variables when
you execute the statement.

If you use a parameter marker in a predicate of a query, and the column to which
you compare the value represented by the parameter marker is of a distinct type,
you must cast the parameter marker to the distinct type, or cast the column to its
source type.

For example, suppose that distinct type CNUM is defined like this:
CREATE DISTINCT TYPE CNUM AS INTEGER;

Table CUSTOMER is defined like this:
CREATE TABLE CUSTOMER

(CUST_NUM CNUM NOT NULL,
FIRST_NAME CHAR(30) NOT NULL,
LAST_NAME CHAR(30) NOT NULL,
PHONE_NUM CHAR(20) WITH DEFAULT,
PRIMARY KEY (CUST_NUM));

In an application program, you prepare a SELECT statement that compares the
CUST_NUM column to a parameter marker. Because CUST_NUM is of a distinct
type, you must cast the distinct type to its source type:
SELECT FIRST_NAME, LAST_NAME, PHONE_NUM FROM CUSTOMER

WHERE CAST(CUST_NUM AS INTEGER) = ?

Alternatively, you can cast the parameter marker to the distinct type:
SELECT FIRST_NAME, LAST_NAME, PHONE_NUM FROM CUSTOMER

WHERE CUST_NUM = CAST (? AS CNUM)

Nested SQL statements
An SQL statement can explicitly invoke user-defined functions or stored
procedures or can implicitly activate triggers that invoke user-defined functions or
stored procedures. This situation is known as nesting of SQL statements. DB2
supports as many as to 64 levels of nesting.

The following example shows SQL statement nesting.
Trigger TR1 is defined on table T3:
CREATE TRIGGER TR1
AFTER UPDATE ON T3
FOR EACH STATEMENT MODE DB2SQL
BEGIN ATOMIC
CALL SP3(PARM1);
END

Program P1 (nesting level 1) contains:
SELECT UDF1(C1) FROM T1;
UDF1 (nesting level 2) contains:
CALL SP2(C2);
SP2 (nesting level 3) contains:
UPDATE T3 SET C3=1;
SP3 (nesting level 4) contains:
SELECT UDF4(C4) FROM T4;...
SP16 (nesting level 16) cannot invoke stored procedures
or user-defined functions

Chapter 12. Accessing data 713

Be aware of the following DB2 restrictions on nested SQL statements:
v Restrictions for SELECT statements:

When you execute a SELECT statement on a table, you cannot execute INSERT,
UPDATE, MERGE, or DELETE statements on the same table at a lower level of
nesting.
For example, suppose that you execute this SQL statement at level 1 of nesting:
SELECT UDF1(C1) FROM T1;

You cannot execute this SQL statement at a lower level of nesting:
INSERT INTO T1 VALUES(...);

v Restrictions for SELECT FROM FINAL TABLE statements that specify INSERT,
UPDATE, or DELETE statements to change data:
When you execute this type of statement, an error occurs if both of the following
conditions exist:
– The SELECT statement that modifies data (by specifying INSERT, UPDATE,

or DELETE) activates an AFTER TRIGGER.
– The AFTER TRIGGER results in additional nested SQL operations that modify

the table that is the target of the original SELECT statement that modifies
data.

v Restrictions for INSERT, UPDATE, MERGE, and DELETE statements:
When you execute an INSERT, UPDATE, MERGE, or DELETE statement on a
table, you cannot access that table from a user-defined function or stored
procedure that is at a lower level of nesting.
For example, suppose that you execute this SQL statement at level 1 of nesting:
DELETE FROM T1 WHERE UDF3(T1.C1) = 3;

You cannot execute this SELECT statement at a lower level of nesting:
SELECT * FROM T1;

If the AFTER trigger is not activated by an INSERT, UPDATE, or DELETE data
change statement that is specified in a data-change-table-reference SELECT FROM
FINAL TABLE, the preceding list of restrictions do not apply to SQL statements
that are executed at a lower level of nesting as a result of an after trigger. For
example, suppose an UPDATE statement at nesting level 1 activates an after
update trigger, which calls a stored procedure. The stored procedure executes two
SQL statements that reference the triggering table: one SELECT statement and one
INSERT statement. In this situation, both the SELECT and the INSERT statements
can be executed even though they are at nesting level 3.

Although trigger activations count in the levels of SQL statement nesting, the
previous restrictions on SQL statements do not apply to SQL statements that are
executed in the trigger body.

Example: Suppose that trigger TR1 is defined on table T1:
CREATE TRIGGER TR1
AFTER INSERT ON T1
FOR EACH STATEMENT MODE DB2SQL
BEGIN ATOMIC
UPDATE T1 SET C1=1;
END

Now suppose that you execute this SQL statement at level 1 of nesting:
INSERT INTO T1 VALUES(...);

714 Application Programming and SQL Guide

Although the UPDATE statement in the trigger body is at level 2 of nesting and
modifies the same table that the triggering statement updates, DB2 can execute the
INSERT statement successfully.

Retrieving a set of rows by using a cursor
In an application program, you can retrieve a set of rows from a table or a result
table that is returned by a stored procedure. You can retrieve one or more rows at
a time.

About this task

Use either of the following types of cursors to retrieve rows from a result table:
v A row-positioned cursor retrieves at most a single row at a time from the result

table into host variables. At any point in time, the cursor is positioned on at
most a single row. For information about how to use a row-positioned cursor,
see “Accessing data by using a row-positioned cursor” on page 719.

v A rowset-positioned cursor retrieves zero, one, or more rows at a time, as a
rowset, from the result table into host variable arrays. At any point in time, the
cursor can be positioned on a rowset. You can reference all of the rows in the
rowset, or only one row in the rowset, when you use a positioned DELETE or
positioned UPDATE statement. For information about how to use a
rowset-positioned cursor, see “Accessing data by using a rowset-positioned
cursor” on page 724.

Cursors
A cursor is a mechanism that points to one or more rows in a set of rows. The rows
are retrieved from a table or in a result set that is returned by a stored procedure.
Your application program can use a cursor to retrieve rows from a table.

About this task

Cursors bound with cursor stability that are used in block fetch operations are
particularly vulnerable to reading data that has already changed. In a block fetch,
database access prefetches rows ahead of the row retrieval controlled by the
application. During that time the cursor might close, and the locks might be
released, before the application receives the data. Thus, it is possible for the
application to fetch a row of values that no longer exists, or to miss a recently
inserted row. In many cases, that is acceptable; a case for which it is not acceptable
is said to require data currency.

If your application requires data currency for a cursor, you need to prevent block
fetching for the data to which it points. To prevent block fetching for a distributed
cursor, declare the cursor with the FOR UPDATE clause.

Types of cursors
You can declare row-positioned or rowset-positioned cursors in a number of ways.
These cursors can be scrollable or not scrollable, held or not held, or returnable or
not returnable.

In addition, you can declare a returnable cursor in a stored procedure by including
the WITH RETURN clause; the cursor can return result sets to a caller of the stored
procedure.

Scrollable and non-scrollable cursors:

Chapter 12. Accessing data 715

When you declare a cursor, you tell DB2 whether you want the cursor to be
scrollable or non-scrollable by including or omitting the SCROLL clause. This
clause determines whether the cursor moves sequentially forward through the
result table or can move randomly through the result table.

Using a non-scrollable cursor:

The simplest type of cursor is a non-scrollable cursor. A non-scrollable cursor can
be either row-positioned or rowset-positioned. A row-positioned non-scrollable
cursor moves forward through its result table one row at a time. Similarly, a
rowset-positioned non-scrollable cursor moves forward through its result table one
rowset at a time.

A non-scrollable cursor always moves sequentially forward in the result table.
When the application opens the cursor, the cursor is positioned before the first row
(or first rowset) in the result table. When the application executes the first FETCH,
the cursor is positioned on the first row (or first rowset). When the application
executes subsequent FETCH statements, the cursor moves one row ahead (or one
rowset ahead) for each FETCH. After each FETCH statement, the cursor is
positioned on the row (or rowset) that was fetched.

After the application executes a positioned UPDATE or positioned DELETE
statement, the cursor stays at the current row (or rowset) of the result table. You
cannot retrieve rows (or rowsets) backward or move to a specific position in a
result table with a non-scrollable cursor.

Using a scrollable cursor:

To make a cursor scrollable, you declare it as scrollable. A scrollable cursor can be
either row-positioned or rowset-positioned. To use a scrollable cursor, you execute
FETCH statements that indicate where you want to position the cursor.

If you want to order the rows of the cursor's result set, and you also want the
cursor to be updatable, you need to declare the cursor as scrollable, even if you
use it only to retrieve rows (or rowsets) sequentially. You can use the ORDER BY
clause in the declaration of an updatable cursor only if you declare the cursor as
scrollable.

Declaring a scrollable cursor:

To indicate that a cursor is scrollable, you declare it with the SCROLL keyword.
The following examples show a characteristic of scrollable cursors: the sensitivity.

The following figure shows a declaration for an insensitive scrollable cursor.
EXEC SQL DECLARE C1 INSENSITIVE SCROLL CURSOR FOR

SELECT DEPTNO, DEPTNAME, MGRNO
FROM DSN8B10.DEPT
ORDER BY DEPTNO

END-EXEC.

Declaring a scrollable cursor with the INSENSITIVE keyword has the following
effects:
v The size, the order of the rows, and the values for each row of the result table

do not change after the application opens the cursor.

716 Application Programming and SQL Guide

v The result table is read-only. Therefore, you cannot declare the cursor with the
FOR UPDATE clause, and you cannot use the cursor for positioned update or
delete operations.

The following figure shows a declaration for a sensitive static scrollable cursor.
EXEC SQL DECLARE C2 SENSITIVE STATIC SCROLL CURSOR FOR

SELECT DEPTNO, DEPTNAME, MGRNO
FROM DSN8B10.DEPT
ORDER BY DEPTNO

END-EXEC.

Declaring a cursor as SENSITIVE STATIC has the following effects:
v When the application executes positioned UPDATE and DELETE statements

with the cursor, those changes are visible in the result table.
v When the current value of a row no longer satisfies the SELECT statement that

was used in the cursor declaration, that row is no longer visible in the result
table.

v When a row of the result table is deleted from the underlying table, that row is
no longer visible in the result table.

v Changes that are made to the underlying table by other cursors or other
application processes can be visible in the result table, depending on whether
the FETCH statements that you use with the cursor are FETCH INSENSITIVE or
FETCH SENSITIVE statements.

The following figure shows a declaration for a sensitive dynamic scrollable cursor.
EXEC SQL DECLARE C2 SENSITIVE DYNAMIC SCROLL CURSOR FOR

SELECT DEPTNO, DEPTNAME, MGRNO
FROM DSN8B10.DEPT
ORDER BY DEPTNO

END-EXEC.

Declaring a cursor as SENSITIVE DYNAMIC has the following effects:
v When the application executes positioned UPDATE and DELETE statements

with the cursor, those changes are visible. In addition, when the application
executes insert, update, or delete operations (within the application but outside
the cursor), those changes are visible.

v All committed inserts, updates, and deletes by other application processes are
visible.

v Because the FETCH statement executes against the base table, the cursor needs
no temporary result table. When you define a cursor as SENSITIVE DYNAMIC,
you cannot specify the INSENSITIVE keyword in a FETCH statement for that
cursor.

v If you specify an ORDER BY clause for a SENSITIVE DYNAMIC cursor, DB2
might choose an index access path if the ORDER BY is fully satisfied by an
existing index. However, a dynamic scrollable cursor that is declared with an
ORDER BY clause is not updatable.

Static scrollable cursor:

Both the INSENSITIVE cursor and the SENSITIVE STATIC cursor follow the static
cursor model:
v The size of the result table does not grow after the application opens the cursor.

Rows that are inserted into the underlying table are not added to the result
table.

Chapter 12. Accessing data 717

v The order of the rows does not change after the application opens the cursor.
If the cursor declaration contains an ORDER BY clause, and the columns that are
in the ORDER BY clause are updated after the cursor is opened, the order of the
rows in the result table does not change.

Dynamic scrollable cursor:

When you declare a cursor as SENSITIVE, you can declare it either STATIC or
DYNAMIC. The SENSITIVE DYNAMIC cursor follows the dynamic cursor model:
v The size and contents of the result table can change with every fetch.

The base table can change while the cursor is scrolling on it. If another
application process changes the data, the cursor sees the newly changed data
when it is committed. If the application process of the cursor changes the data,
the cursor sees the newly changed data immediately.

v The order of the rows can change after the application opens the cursor.
If the cursor declaration contains an ORDER BY clause, and columns that are in
the ORDER BY clause are updated after the cursor is opened, the order of the
rows in the result table changes.

Related concepts:
“FETCH statement interaction between row and rowset positioning” on page 743

Held and non-held cursors
A held cursor does not close after a commit operation. A cursor that is not held
closes after a commit operation. You specify whether you want a cursor to be held
or not held by including or omitting the WITH HOLD clause when you declare the
cursor.

After a commit operation, the position of a held cursor depends on its type:
v A non-scrollable cursor that is held is positioned after the last retrieved row and

before the next logical row. The next row can be returned from the result table
with a FETCH NEXT statement.

v A static scrollable cursor that is held is positioned on the last retrieved row. The
last retrieved row can be returned from the result table with a FETCH
CURRENT statement.

v A dynamic scrollable cursor that is held is positioned after the last retrieved row
and before the next logical row. The next row can be returned from the result
table with a FETCH NEXT statement. DB2 returns SQLCODE +231 for a FETCH
CURRENT statement.

A held cursor can close when:
v You issue a CLOSE cursor, ROLLBACK, or CONNECT statement
v You issue a CAF CLOSE function call or an RRSAF TERMINATE THREAD

function call
v The application program terminates.

If the program abnormally terminates, the cursor position is lost. To prepare for
restart, your program must reposition the cursor.

The following restrictions apply to cursors that are declared WITH HOLD:
v Do not use DECLARE CURSOR WITH HOLD with the new user signon from a

DB2 attachment facility, because all open cursors are closed.
v Do not declare a WITH HOLD cursor in a thread that might become inactive. If

you do, its locks are held indefinitely.

718 Application Programming and SQL Guide

IMS

You cannot use DECLARE CURSOR...WITH HOLD in message processing
programs (MPP) and message-driven batch message processing (BMP). Each
message is a new user for DB2; whether or not you declare them using WITH
HOLD, no cursors continue for new users. You can use WITH HOLD in
non-message-driven BMP and DL/I batch programs.

CICS

In CICS applications, you can use DECLARE CURSOR...WITH HOLD to indicate
that a cursor should not close at a commit or sync point. However, SYNCPOINT
ROLLBACK closes all cursors, and end-of-task (EOT) closes all cursors before DB2
reuses or terminates the thread. Because pseudo-conversational transactions usually
have multiple EXEC CICS RETURN statements and thus span multiple EOTs, the
scope of a held cursor is limited. Across EOTs, you must reopen and reposition a
cursor declared WITH HOLD, as if you had not specified WITH HOLD.

You should always close cursors that you no longer need. If you let DB2 close a
CICS attachment cursor, the cursor might not close until the CICS attachment
facility reuses or terminates the thread.

If the CICS application is using a protected entry thread, this thread will continue
to hold resources, even when the task that has used these resources ends. These
resources will not be released until the protected thread terminates.

The following cursor declaration causes the cursor to maintain its position in the
DSN8B10.EMP table after a commit point:
EXEC SQL

DECLARE EMPLUPDT CURSOR WITH HOLD FOR
SELECT EMPNO, LASTNAME, PHONENO, JOB, SALARY, WORKDEPT

FROM DSN8B10.EMP
WHERE WORKDEPT < ’D11’
ORDER BY EMPNO

END-EXEC.

Accessing data by using a row-positioned cursor
A row-positioned cursor is a cursor that points to a single row and retrieves at
most a single row at a time from the result table. You can specify a fetch request to
specify which rows to retrieve, relative to the current cursor position.

Procedure

To access data by using a row-positioned cursor:
1. Execute a DECLARE CURSOR statement to define the result table on which the

cursor operates. See “Declaring a row cursor” on page 720.
2. Execute an OPEN CURSOR to make the cursor available to the application. See

“Opening a row cursor” on page 721.
3. Specify what the program is to do when all rows have been retrieved. See

“Specifying the action that the row cursor is to take when it reaches the end of
the data” on page 722.

4. Execute multiple SQL statements to retrieve data from the table or modify
selected rows of the table. See “Executing SQL statements by using a row
cursor” on page 722.

Chapter 12. Accessing data 719

5. Execute a CLOSE CURSOR statement to make the cursor unavailable to the
application. See “Closing a row cursor” on page 724.

Results

Your program can have several cursors, each of which performs the previous steps.

Declaring a row cursor
Before you can use a row-positioned cursor to retrieve rows, you must declare the
cursor. When you declare a cursor, you identify a set of rows that are to be
accessed with the cursor.

About this task

To declare a row cursor, issue a DECLARE CURSOR statement. The DECLARE
CURSOR statement names a cursor and specifies a SELECT statement. The
SELECT statement defines the criteria for the rows that are to make up the result
table.

The following example shows a simple form of the DECLARE CURSOR statement:
EXEC SQL

DECLARE C1 CURSOR FOR
SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, SALARY

FROM DSN8B10.EMP
END-EXEC.

You can use this cursor to list select information about employees.

More complicated cursors might include WHERE clauses or joins of several tables.
For example, suppose that you want to use a cursor to list employees who work
on a certain project. Declare a cursor like this to identify those employees:
EXEC SQL

DECLARE C2 CURSOR FOR
SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, SALARY

FROM DSN8B10.EMP X
WHERE EXISTS

(SELECT *
FROM DSN8B10.PROJ Y
WHERE X.EMPNO=Y.RESPEMP
AND Y.PROJNO=:GOODPROJ);

Declaring cursors for tables that use multilevel security: You can declare a
cursor that retrieves rows from a table that uses multilevel security with row-level
granularity. However, the result table for the cursor contains only those rows that
have a security label value that is equivalent to or dominated by the security label
value of your ID.

Updating a column: You can update columns in the rows that you retrieve.
Updating a row after you use a cursor to retrieve it is called a positioned update. If
you intend to perform any positioned updates on the identified table, include the
FOR UPDATE clause. The FOR UPDATE clause has two forms:
v The first form is FOR UPDATE OF column-list. Use this form when you know in

advance which columns you need to update.
v The second form is FOR UPDATE, with no column list. Use this form when you

might use the cursor to update any of the columns of the table.

720 Application Programming and SQL Guide

For example, you can use this cursor to update only the SALARY column of the
employee table:
EXEC SQL

DECLARE C1 CURSOR FOR
SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, SALARY

FROM DSN8B10.EMP X
WHERE EXISTS

(SELECT *
FROM DSN8B10.PROJ Y
WHERE X.EMPNO=Y.RESPEMP
AND Y.PROJNO=:GOODPROJ)

FOR UPDATE OF SALARY;

If you might use the cursor to update any column of the employee table, define
the cursor like this:
EXEC SQL

DECLARE C1 CURSOR FOR
SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, SALARY

FROM DSN8B10.EMP X
WHERE EXISTS

(SELECT *
FROM DSN8B10.PROJ Y
WHERE X.EMPNO=Y.RESPEMP
AND Y.PROJNO=:GOODPROJ)

FOR UPDATE;

DB2 must do more processing when you use the FOR UPDATE clause without a
column list than when you use the FOR UPDATE clause with a column list.
Therefore, if you intend to update only a few columns of a table, your program
can run more efficiently if you include a column list.

The precompiler options NOFOR and STDSQL affect the use of the FOR UPDATE
clause in static SQL statements. If you do not specify the FOR UPDATE clause in a
DECLARE CURSOR statement, and you do not specify the STDSQL(YES) option or
the NOFOR precompiler options, you receive an error if you execute a positioned
UPDATE statement.

You can update a column of the identified table even though it is not part of the
result table. In this case, you do not need to name the column in the SELECT
statement. When the cursor retrieves a row (using FETCH) that contains a column
value you want to update, you can use UPDATE ... WHERE CURRENT OF to
identify the row that is to be updated.

Read-only result table: Some result tables cannot be updated—for example, the
result of joining two or more tables.
Related concepts:

Multilevel security (Managing Security)
Related reference:
“Descriptions of SQL processing options” on page 931

DECLARE CURSOR (DB2 SQL)

select-statement (DB2 SQL)

Opening a row cursor
After you declare a row cursor, you need to tell DB2 that you are ready to process
the first row of the result table. This action is called opening the cursor.

Chapter 12. Accessing data 721

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_mls.htm#db2z_mls
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_declarecursor.htm#db2z_sql_declarecursor
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_selectstatement.htm#db2z_sql_selectstatement

About this task

To open a row cursor, execute the OPEN statement in your program. DB2 then
uses the SELECT statement within DECLARE CURSOR to identify a set of rows. If
you use host variables in the search condition of that SELECT statement, DB2 uses
the current value of the variables to select the rows. The result table that satisfies
the search condition might contain zero, one, or many rows. An example of an
OPEN statement is:
EXEC SQL

OPEN C1
END-EXEC.

If you use the CURRENT DATE, CURRENT TIME, or CURRENT TIMESTAMP
special registers in a cursor, DB2 determines the values in those special registers
only when it opens the cursor. DB2 uses the values that it obtained at OPEN time
for all subsequent FETCH statements.

Two factors that influence the amount of time that DB2 requires to process the
OPEN statement are:
v Whether DB2 must perform any sorts before it can retrieve rows
v Whether DB2 uses parallelism to process the SELECT statement of the cursor

Specifying the action that the row cursor is to take when it
reaches the end of the data
Your program must be coded to recognize and handle an end-of-data condition
whenever you use a row cursor to fetch a row.

About this task

To determine whether the program has retrieved the last row of data, test the
SQLCODE field for a value of 100 or the SQLSTATE field for a value of '02000'.
These codes occur when a FETCH statement has retrieved the last row in the result
table and your program issues a subsequent FETCH. For example:
IF SQLCODE = 100 GO TO DATA-NOT-FOUND.

An alternative to this technique is to code the WHENEVER NOT FOUND
statement. The WHENEVER NOT FOUND statement causes your program to
branch to another part that then issues a CLOSE statement. For example, to branch
to label DATA-NOT-FOUND when the FETCH statement does not return a row,
use this statement:
EXEC SQL

WHENEVER NOT FOUND GO TO DATA-NOT-FOUND
END-EXEC.

For more information about the WHENEVER NOT FOUND statement, see
“Checking the execution of SQL statements” on page 204.

Executing SQL statements by using a row cursor
You can use row cursors to execute FETCH statements, positioned UPDATE
statements, and positioned DELETE statements.

About this task

Execute a FETCH statement for one of the following purposes:
v To copy data from a row of the result table into one or more host variables

722 Application Programming and SQL Guide

v To position the cursor before you perform a positioned update or positioned
delete operation

The following example shows a FETCH statement that retrieves selected columns
from the employee table:
EXEC SQL

FETCH C1 INTO
:HV-EMPNO, :HV-FIRSTNME, :HV-MIDINIT, :HV-LASTNAME, :HV-SALARY :IND-SALARY

END-EXEC.

The SELECT statement within DECLARE CURSOR statement identifies the result
table from which you fetch rows, but DB2 does not retrieve any data until your
application program executes a FETCH statement.

When your program executes the FETCH statement, DB2 positions the cursor on a
row in the result table. That row is called the current row. DB2 then copies the
current row contents into the program host variables that you specify on the INTO
clause of FETCH. This sequence repeats each time you issue FETCH, until you
process all rows in the result table.

The row that DB2 points to when you execute a FETCH statement depends on
whether the cursor is declared as a scrollable or non-scrollable.

When you query a remote subsystem with FETCH, consider using block fetch for
better performance. Block fetch processes rows ahead of the current row. You
cannot use a block fetch when you perform a positioned update or delete
operation.

After your program has executed a FETCH statement to retrieve the current row,
you can use a positioned UPDATE statement to modify the data in that row. An
example of a positioned UPDATE statement is:
EXEC SQL

UPDATE DSN8B10.EMP
SET SALARY = 50000
WHERE CURRENT OF C1

END-EXEC.

A positioned UPDATE statement updates the row on which the cursor is
positioned.

A positioned UPDATE statement is subject to these restrictions:
v You cannot update a row if your update violates any unique, check, or

referential constraints.
v You cannot use an UPDATE statement to modify the rows of a created

temporary table. However, you can use an UPDATE statement to modify the
rows of a declared temporary table.

v If the right side of the SET clause in the UPDATE statement contains a fullselect,
that fullselect cannot include a correlated name for a table that is being updated.

v You cannot use an SQL data change statement in the FROM clause of a SELECT
statement that defines a cursor that is used in a positioned UPDATE statement.

v A positioned UPDATE statement will fail if the value of the security label
column of the row where the cursor is positioned is not equivalent to the
security label value of your user id. If your user id has write down privilege, a
positioned UPDATE statement will fail if the value of the security label column
of the row where the cursor is positioned does not dominate the security label
value of your user id.

Chapter 12. Accessing data 723

After your program has executed a FETCH statement to retrieve the current row,
you can use a positioned DELETE statement to delete that row. A example of a
positioned DELETE statement looks like this:
EXEC SQL

DELETE FROM DSN8B10.EMP
WHERE CURRENT OF C1

END-EXEC.

A positioned DELETE statement deletes the row on which the cursor is positioned.

A positioned DELETE statement is subject to these restrictions:
v You cannot use a DELETE statement with a cursor to delete rows from a created

temporary table. However, you can use a DELETE statement with a cursor to
delete rows from a declared temporary table.

v After you have deleted a row, you cannot update or delete another row using
that cursor until you execute a FETCH statement to position the cursor on
another row.

v You cannot delete a row if doing so violates any referential constraints.
v You cannot use an SQL data change statement in the FROM clause of a SELECT

statement that defines a cursor that is used in a positioned DELETE statement.
v A positioned DELETE statement will fail if the value of the security label column

of the row where the cursor is positioned is not equivalent to the security label
value of your user id. If your user id has write down privilege, a positioned
DELETE statement will fail if the value of the security label column of the row
where the cursor is positioned does not dominate the security label value of
your user id.

Closing a row cursor
Close a row cursor when it finishes processing rows if you want to free the
resources or if you want to use the cursor again. Otherwise, you can let DB2
automatically close the cursor when the current transaction terminates or when
your program terminates.

About this task

To free the resources that are held by the cursor, close the cursor explicitly by
issuing the CLOSE statement.

If you want to use the rowset cursor again, reopen it.

Procedure

To close a row cursor:

Issue a CLOSE statement. An example of a CLOSE statement looks like this:
EXEC SQL

CLOSE C1
END-EXEC.

Accessing data by using a rowset-positioned cursor
A rowset-positioned cursor is a cursor that can return one or more rows for a
single fetch operation. The cursor is positioned on the set of rows that are to be
fetched.

724 Application Programming and SQL Guide

Procedure

To access data by using a rowset-positioned cursor:
1. Execute a DECLARE CURSOR statement to define the result table on which the

cursor operates. See “Declaring a rowset cursor.”
2. Execute an OPEN CURSOR to make the cursor available to the application. See

“Opening a rowset cursor.”
3. Specify what the program is to do when all rows have been retrieved. See

“Specifying the action that the rowset cursor is to take when it reaches the end
of the data” on page 726.

4. Execute multiple SQL statements to retrieve data from the table or modify
selected rows of the table. See “Executing SQL statements by using a rowset
cursor” on page 726.

5. Execute a CLOSE CURSOR statement to make the cursor unavailable to the
application. See “Closing a rowset cursor” on page 730.

Results

Your program can have several cursors, each of which performs the previous steps.

Declaring a rowset cursor
Before you can use a rowset-positioned cursor to retrieve rows, you must declare a
cursor that is enabled to fetch rowsets. When you declare a cursor, you identify a
set of rows that are to be accessed with the cursor.

About this task

For restrictions that apply to rowset-positioned cursors and row-positioned cursors,
see “Declaring a row cursor” on page 720.

Procedure

To declare a rowset cursor:

Use the WITH ROWSET POSITIONING clause in the DECLARE CURSOR
statement. The following example shows how to declare a rowset cursor:
EXEC SQL

DECLARE C1 CURSOR WITH ROWSET POSITIONING FOR
SELECT EMPNO, LASTNAME, SALARY

FROM DSN8B10.EMP
END-EXEC.

Opening a rowset cursor
After you declare a rowset cursor, you need to tell DB2 that you are ready to
process the first rowset of the result table. This action is called opening the cursor.

About this task

To open a rowset cursor, execute the OPEN statement in your program. DB2 then
uses the SELECT statement within DECLARE CURSOR to identify the rows in the
result table. For more information about the OPEN CURSOR process, see “Opening
a row cursor” on page 721.

Chapter 12. Accessing data 725

Specifying the action that the rowset cursor is to take when it
reaches the end of the data
Your program must be coded to recognize and handle an end-of-data condition
whenever you use a rowset cursor to fetch rows.

About this task

To determine whether the program has retrieved the last row of data in the result
table, test the SQLCODE field for a value of +100 or the SQLSTATE field for a
value of '02000'. With a rowset cursor, these codes occur when a FETCH statement
retrieves the last row in the result table. However, when the last row has been
retrieved, the program must still process the rows in the last rowset through that
last row. For an example of end-of-data processing for a rowset cursor, see
“Examples of fetching rows by using cursors” on page 744.

To determine the number of retrieved rows, use either of the following values:
v The contents of the SQLERRD(3) field in the SQLCA
v The contents of the ROW_COUNT item of GET DIAGNOSTICS

For information about GET DIAGNOSTICS, see “Checking the execution of SQL
statements by using the GET DIAGNOSTICS statement” on page 211.

If you declare the cursor as dynamic scrollable, and SQLCODE has the value +100,
you can continue with a FETCH statement until no more rows are retrieved.
Additional fetches might retrieve more rows because a dynamic scrollable cursor is
sensitive to updates by other application processes. For information about dynamic
cursors, see “Types of cursors” on page 715.

Executing SQL statements by using a rowset cursor
You can use rowset cursors to execute multiple-row FETCH statements, positioned
UPDATE statements, and positioned DELETE statements.

About this task

You can execute these static SQL statements when you use a rowset cursor:
v A multiple-row FETCH statement that copies a rowset of column values into

either of the following data areas:
– Host variable arrays that are declared in your program
– Dynamically-allocated arrays whose storage addresses are put into an SQL

descriptor area (SQLDA), along with the attributes of the columns that are to
be retrieved

v After either form of the multiple-row FETCH statement, you can issue:
– A positioned UPDATE statement on the current rowset
– A positioned DELETE statement on the current rowset

You must use the WITH ROWSET POSITIONING clause of the DECLARE
CURSOR statement if you plan to use a rowset-positioned FETCH statement.

The following example shows a FETCH statement that retrieves 20 rows into host
variable arrays that are declared in your program:
EXEC SQL

FETCH NEXT ROWSET FROM C1
FOR 20 ROWS
INTO :HVA-EMPNO, :HVA-LASTNAME, :HVA-SALARY :INDA-SALARY

END-EXEC.

726 Application Programming and SQL Guide

When your program executes a FETCH statement with the ROWSET keyword, the
cursor is positioned on a rowset in the result table. That rowset is called the current
rowset. The dimension of each of the host variable arrays must be greater than or
equal to the number of rows to be retrieved.

Suppose that you want to dynamically allocate the storage needed for the arrays of
column values that are to be retrieved from the employee table. You must:
1. Declare an SQLDA structure and the variables that reference the SQLDA.
2. Dynamically allocate the SQLDA and the arrays needed for the column values.
3. Set the fields in the SQLDA for the column values to be retrieved.
4. Open the cursor.
5. Fetch the rows.

You must first declare the SQLDA structure. The following SQL INCLUDE
statement requests a standard SQLDA declaration:
EXEC SQL INCLUDE SQLDA;

Your program must also declare variables that reference the SQLDA structure, the
SQLVAR structure within the SQLDA, and the DECLEN structure for the precision
and scale if you are retrieving a DECIMAL column. For C programs, the code
looks like this:
struct sqlda *sqldaptr;
struct sqlvar *varptr;
struct DECLEN {

unsigned char precision;
unsigned char scale;
};

Before you can set the fields in the SQLDA for the column values to be retrieved,
you must dynamically allocate storage for the SQLDA structure. For C programs,
the code looks like this:
sqldaptr = (struct sqlda *) malloc (3 * 44 + 16);

The size of the SQLDA is SQLN * 44 + 16, where the value of the SQLN field is the
number of output columns.

You must set the fields in the SQLDA structure for your FETCH statement.
Suppose you want to retrieve the columns EMPNO, LASTNAME, and SALARY.
The C code to set the SQLDA fields for these columns looks like this:

strcpy(sqldaptr->sqldaid,"SQLDA");
sqldaptr->sqldabc = 148; /* number bytes of storage allocated for the SQLDA */
sqldaptr->sqln = 3; /* number of SQLVAR occurrences */
sqldaptr->sqld = 3;
varptr = (struct sqlvar *) (&(sqldaptr->sqlvar[0])); /* Point to first SQLVAR */
varptr->sqltype = 452; /* data type CHAR(6) */
varptr->sqllen = 6;
varptr->sqldata = (char *) hva1;
varptr->sqlind = (short *) inda1;
varptr->sqlname.length = 8;
memcpy(varptr->sqlname.data, "\x00\x00\x00\x00\x00\x01\x00\x14",varptr->sqlname.length);
varptr = (struct sqlvar *) (&(sqldaptr->sqlvar[0]) + 1); /* Point to next SQLVAR */
varptr->sqltype = 448; /* data type VARCHAR(15) */
varptr->sqllen = 15;
varptr->sqldata = (char *) hva2;
varptr->sqlind = (short *) inda2;
varptr->sqlname.length = 8;
memcpy(varptr->sqlname.data, "\x00\x00\x00\x00\x00\x01\x00\x14",varptr->sqlname.length);
varptr = (struct sqlvar *) (&(sqldaptr->sqlvar[0]) + 2); /* Point to next SQLVAR */
varptr->sqltype = 485; /* data type DECIMAL(9,2) */

Chapter 12. Accessing data 727

((struct DECLEN *) &(varptr->sqllen))->precision = 9;
((struct DECLEN *) &(varptr->sqllen))->scale = 2;
varptr->sqldata = (char *) hva3;
varptr->sqlind = (short *) inda3;
varptr->sqlname.length = 8;
memcpy(varptr->sqlname.data, "\x00\x00\x00\x00\x00\x01\x00\x14",varptr->sqlname.length);

The SQLDA structure has these fields:
v SQLDABC indicates the number of bytes of storage that are allocated for the

SQLDA. The storage includes a 16-byte header and 44 bytes for each SQLVAR
field. The value is SQLN x 44 + 16, or 148 for this example.

v SQLN is the number of SQLVAR occurrences (or the number of output columns).
v SQLD is the number of variables in the SQLDA that are used by DB2 when

processing the FETCH statement.
v Each SQLVAR occurrence describes a host variable array or buffer into which the

values for a column in the result table are to be returned. Within each SQLVAR:
– SQLTYPE indicates the data type of the column.
– SQLLEN indicates the length of the column. If the data type is DECIMAL,

this field has two parts: the PRECISION and the SCALE.
– SQLDATA points to the first element of the array for the column values. For

this example, assume that your program allocates the dynamic variable arrays
hva1, hva2, and hva3, and their indicator arrays inda1, inda2, and inda3.

– SQLIND points to the first element of the array of indicator values for the
column. If SQLTYPE is an odd number, this attribute is required. (If SQLTYPE
is an odd number, null values are allowed for the column.)

– SQLNAME has two parts: the LENGTH and the DATA. The LENGTH is 8.
The first two bytes of the DATA field is X'0000'. Bytes 5 and 6 of the DATA
field are a flag indicating whether the variable is an array or a FOR n ROWS
value. Bytes 7 and 8 are a two-byte binary integer representation of the
dimension of the array.

You can open the cursor only after all of the fields have been set in the output
SQLDA:
EXEC SQL OPEN C1;

After the OPEN statement, the program fetches the next rowset:
EXEC SQL

FETCH NEXT ROWSET FROM C1
FOR 20 ROWS
USING DESCRIPTOR :*sqldaptr;

The USING clause of the FETCH statement names the SQLDA that describes the
columns that are to be retrieved.

After your program executes a FETCH statement to establish the current rowset,
you can use a positioned UPDATE statement with either of the following clauses:
v Use WHERE CURRENT OF to modify all of the rows in the current rowset
v Use FOR ROW n OF ROWSET to modify row n in the current rowset

An example of a positioned UPDATE statement that uses the WHERE CURRENT
OF clause is:

728 Application Programming and SQL Guide

EXEC SQL
UPDATE DSN8B10.EMP

SET SALARY = 50000
WHERE CURRENT OF C1

END-EXEC.

When the UPDATE statement is executed, the cursor must be positioned on a row
or rowset of the result table. If the cursor is positioned on a row, that row is
updated. If the cursor is positioned on a rowset, all of the rows in the rowset are
updated.

An example of a positioned UPDATE statement that uses the FOR ROW n OF
ROWSET clause is:
EXEC SQL

UPDATE DSN8B10.EMP
SET SALARY = 50000
FOR CURSOR C1 FOR ROW 5 OF ROWSET

END-EXEC.

When the UPDATE statement is executed, the cursor must be positioned on a
rowset of the result table. The specified row (in the example, row 5) of the current
rowset is updated.

After your program executes a FETCH statement to establish the current rowset,
you can use a positioned DELETE statement with either of the following clauses:
v Use WHERE CURRENT OF to delete all of the rows in the current rowset
v Use FOR ROW n OF ROWSET to delete row n in the current rowset

An example of a positioned DELETE statement that uses the WHERE CURRENT
OF clause is:
EXEC SQL

DELETE FROM DSN8B10.EMP
WHERE CURRENT OF C1

END-EXEC.

When the DELETE statement is executed, the cursor must be positioned on a row
or rowset of the result table. If the cursor is positioned on a row, that row is
deleted, and the cursor is positioned before the next row of its result table. If the
cursor is positioned on a rowset, all of the rows in the rowset are deleted, and the
cursor is positioned before the next rowset of its result table.

An example of a positioned DELETE statement that uses the FOR ROW n OF
ROWSET clause is:
EXEC SQL

DELETE FROM DSN8B10.EMP
FOR CURSOR C1 FOR ROW 5 OF ROWSET

END-EXEC.

When the DELETE statement is executed, the cursor must be positioned on a
rowset of the result table. The specified row of the current rowset is deleted, and
the cursor remains positioned on that rowset. The deleted row (in the example,
row 5 of the rowset) cannot be retrieved or updated.

Chapter 12. Accessing data 729

Related concepts:
“Dynamic SQL” on page 159
Related tasks:
“Executing SQL statements by using a row cursor” on page 722
Related reference:

SQL descriptor area (SQLDA) (DB2 SQL)

Specifying the number of rows in a rowset:

If you do not explicitly specify the number of rows in a rowset, DB2 implicitly
determines the number of rows based on the last fetch request.

About this task

To explicitly set the size of a rowset, use the FOR n ROWS clause in the FETCH
statement. If a FETCH statement specifies the ROWSET keyword, and not the FOR
n ROWS clause, the size of the rowset is implicitly set to the size of the rowset that
was most recently specified in a prior FETCH statement. If a prior FETCH
statement did not specify the FOR n ROWS clause or the ROWSET keyword, the
size of the current rowset is implicitly set to 1. For examples of rowset positioning,
see Table 119 on page 743.

Closing a rowset cursor
Close a rowset cursor when it finishes processing rows if you want to free the
resources or if you want to use the cursor again. Otherwise, you can let DB2
automatically close the cursor when the current transaction terminates or when
your program terminates.

About this task

To free the resources held by the cursor, close the cursor explicitly by issuing the
CLOSE statement.

If you want to use the rowset cursor again, reopen it.

Procedure

To close a rowset cursor:

Issue a CLOSE statement.

Retrieving rows by using a scrollable cursor
A scrollable cursor is cursor that can be moved in both a forward and a backward
direction. Scrollable cursors can be either row-positioned or rowset-positioned.

About this task

When you open any cursor, the cursor is positioned before the first row of the
result table. You move a scrollable cursor around in the result table by specifying a
fetch orientation keyword in a FETCH statement. A fetch orientation keyword
indicates the absolute or relative position of the cursor when the FETCH statement
is executed. The following table lists the fetch orientation keywords that you can
specify and their meanings. These keywords apply to both row-positioned
scrollable cursors and rowset-positioned scrollable cursors.

730 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sqldescriptorareaintro.htm#db2z_sqldescriptorareaintro

Table 117. Positions for a scrollable cursor

Keyword in FETCH statement Cursor position when FETCH is executed1

BEFORE Before the first row

FIRST or ABSOLUTE +1 On the first row

LAST or ABSOLUTE -1 On the last row

AFTER After the last row

ABSOLUTE2 On an absolute row number, from before the first
row forward or from after the last row backward

RELATIVE2 On the row that is forward or backward a relative
number of rows from the current row

CURRENT On the current row

PRIOR or RELATIVE -1 On the previous row

NEXT On the next row (default)

Notes:

1. The cursor position applies to both row position and rowset position, for example, before
the first row or before the first rowset.

2. For more information about ABSOLUTE and RELATIVE, see the FETCH statement
syntax.

Example: To use the cursor that is declared in “Types of cursors” on page 715 to
fetch the fifth row of the result table, use a FETCH statement like this:
EXEC SQL FETCH ABSOLUTE +5 C1 INTO :HVDEPTNO, :DEPTNAME, :MGRNO;

To fetch the fifth row from the end of the result table, use this FETCH statement:
EXEC SQL FETCH ABSOLUTE -5 C1 INTO :HVDEPTNO, :DEPTNAME, :MGRNO;

Related concepts:
“Types of cursors” on page 715
Related reference:

FETCH (DB2 SQL)

Comparison of scrollable cursors
Whether a scrollable cursor can view the changes that are made to the data by
other processes or cursors depends on how the cursor is declared. It also depends
on the type of fetch operation that is executed.

When you declare a cursor as SENSITIVE STATIC, changes that other processes or
cursors make to the underlying table can be visible to the result table of the cursor.
Whether those changes are visible depends on whether you specify SENSITIVE or
INSENSITIVE when you execute FETCH statements with the cursor. When you
specify FETCH INSENSITIVE, changes that other processes or other cursors make
to the underlying table are not visible in the result table. When you specify FETCH
SENSITIVE, changes that other processes or cursors make to the underlying table
are visible in the result table.

When you declare a cursor as SENSITIVE DYNAMIC, changes that other processes
or cursors make to the underlying table are visible to the result table after the
changes are committed.

The following table summarizes the sensitivity values and their effects on the
result table of a scrollable cursor.

Chapter 12. Accessing data 731

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_fetch.htm#db2z_sql_fetch

Table 118. How sensitivity affects the result table for a scrollable cursor

DECLARE
sensitivity FETCH INSENSITIVE FETCH SENSITIVE

INSENSITIVE No changes to the underlying
table are visible in the result
table. Positioned UPDATE and
DELETE statements using the
cursor are not allowed.

Not valid.

SENSITIVE STATIC Only positioned updates and
deletes that are made by the
cursor are visible in the result
table.

All updates and deletes are visible
in the result table. Inserts made by
other processes are not visible in
the result table.

SENSITIVE
DYNAMIC

Not valid. All committed changes are visible
in the result table, including
updates, deletes, inserts, and
changes in the order of the rows.

Scrolling through a table in any direction
Use a scrollable cursor to move through the table in both a forward and a
backward direction.

About this task

Question: How can I fetch rows from a table in any direction?

Answer: Declare your cursor as scrollable. When you select rows from the table,
you can use the various forms of the FETCH statement to move to an absolute row
number, move ahead or back a certain number of rows, to the first or last row,
before the first row or after the last row, forward, or backward. You can use any
combination of these FETCH statements to change direction repeatedly.

You can use code like the following example to move forward in the department
table by 10 records, backward five records, and forward again by three records:
/**************************/
/* Declare host variables */
/**************************/
EXEC SQL BEGIN DECLARE SECTION;

char[37] hv_deptname;
EXEC SQL END DECLARE SECTION;
/**/
/* Declare scrollable cursor to retrieve department names */
/**/
EXEC SQL DECLARE C1 SCROLL CURSOR FOR

SELECT DEPTNAME FROM DSN8B10.DEPT;...
/**/
/* Open the cursor and position it before the start of */
/* the result table. */
/**/
EXEC SQL OPEN C1;
EXEC SQL FETCH BEFORE FROM C1;
/**/
/* Fetch first 10 rows */
/**/
for(i=0;i<10;i++)
{

EXEC SQL FETCH NEXT FROM C1 INTO :hv_deptname;
}

732 Application Programming and SQL Guide

/**/
/* Save the value in the tenth row */
/**/
tenth_row=hv_deptname;
/**/
/* Fetch backward 5 rows */
/**/
for(i=0;i<5;i++)
{

EXEC SQL FETCH PRIOR FROM C1 INTO :hv_deptname;
}
/**/
/* Save the value in the fifth row */
/**/
fifth_row=hv_deptname;
/**/
/* Fetch forward 3 rows */
/**/
for(i=0;i<3;i++)
{

EXEC SQL FETCH NEXT FROM C1 INTO :hv_deptname;
}
/**/
/* Save the value in the eighth row */
/**/
eighth_row=hv_deptname;
/**/
/* Close the cursor */
/**/
EXEC SQL CLOSE C1;

Determining the number of rows in the result table for a static
scrollable cursor
You can determine how many rows are in the result table of an INSENSITIVE or
SENSITIVE STATIC scrollable cursor.

About this task

To determine the number of rows in the result table for a static scrollable cursor,
execute a FETCH statement, such as FETCH AFTER, that positions the cursor after
the last row. You can then examine the fields SQLERRD(1) and SQLERRD(2) in the
SQLCA (fields sqlerrd[0] and sqlerrd[1] for C and C++) for the number of rows in
the result table. Alternatively, you can use the GET DIAGNOSTICS statement to
retrieve the number of rows in the ROW_COUNT statement item.

Removing a delete hole or update hole
If you try to fetch data from a delete hole or an update hole, DB2 issues an SQL
warning. If you try to update or to delete a delete hole or delete an update hole,
DB2 issues an SQL error.

About this task

You can remove a delete hole only by opening the scrollable cursor, setting a
savepoint, executing a positioned DELETE statement with the scrollable cursor,
and rolling back to the savepoint.

You can convert an update hole back to a result table row by updating the row in
the base table, as shown in the following figure. You can update the base table
with a searched UPDATE statement in the same application process, or a searched
or positioned UPDATE statement in another application process. After you update

Chapter 12. Accessing data 733

the base table, if the row qualifies for the result table, the update hole disappears.

A hole becomes visible to a cursor when a cursor operation returns a non-zero
SQLCODE. The point at which a hole becomes visible depends on the following
factors:
v Whether the scrollable cursor creates the hole
v Whether the FETCH statement is FETCH SENSITIVE or FETCH INSENSITIVE

If the scrollable cursor creates the hole, the hole is visible when you execute a
FETCH statement for the row that contains the hole. The FETCH statement can be
FETCH INSENSITIVE or FETCH SENSITIVE.

If an update or delete operation outside the scrollable cursor creates the hole, the
hole is visible at the following times:
v If you execute a FETCH SENSITIVE statement for the row that contains the hole,

the hole is visible when you execute the FETCH statement.
v If you execute a FETCH INSENSITIVE statement, the hole is not visible when

you execute the FETCH statement. DB2 returns the row as it was before the
update or delete operation occurred. However, if you follow the FETCH
INSENSITIVE statement with a positioned UPDATE or DELETE statement, the
hole becomes visible.

Holes in the result table of a scrollable cursor:

A hole in the result table means that the result table does not shrink to fill the
space of deleted rows. It also does not shrink to fill the space of rows that have
been updated and no longer satisfy the search condition. You cannot access a
delete or update hole. However, you can remove holes in specific situations.

In some situations, you might not be able to fetch a row from the result table of a
scrollable cursor, depending on how the cursor is declared:
v Scrollable cursors that are declared as INSENSITIVE or SENSITIVE STATIC

follow a static model, which means that DB2 determines the size of the result
table and the order of the rows when you open the cursor.
Deleting or updating rows after a static cursor is open can result in holes in the
result table. See “Removing a delete hole or update hole” on page 733.

Figure 38. Removing an update hole

734 Application Programming and SQL Guide

v Scrollable cursors that are declared as SENSITIVE DYNAMIC follow a dynamic
model, which means that the size and contents of the result table, and the order
of the rows, can change after you open the cursor.
A dynamic cursor scrolls directly on the base table. If the current row of the
cursor is deleted or if it is updated so that it no longer satisfies the search
condition, and the next cursor operation is FETCH CURRENT, then DB2 issues
an SQL warning.

The following examples demonstrate how delete and update holes can occur when
you use a SENSITIVE STATIC scrollable cursor.

Creating a delete hole with a static scrollable cursor:

Suppose that table A consists of one integer column, COL1, which has the values
shown in the following figure.
Now suppose that you declare the following SENSITIVE STATIC scrollable cursor,

which you use to delete rows from A:
EXEC SQL DECLARE C3 SENSITIVE STATIC SCROLL CURSOR FOR

SELECT COL1
FROM A
FOR UPDATE OF COL1;

Now you execute the following SQL statements:
EXEC SQL OPEN C3;
EXEC SQL FETCH ABSOLUTE +3 C3 INTO :HVCOL1;
EXEC SQL DELETE FROM A WHERE CURRENT OF C3;

The positioned delete statement creates a delete hole, as shown in the following
figure.

After you execute the positioned delete statement, the third row is deleted from
the result table, but the result table does not shrink to fill the space that the deleted
row creates.

Figure 39. Values for COL1 of table A

Figure 40. Delete hole

Chapter 12. Accessing data 735

Creating an update hole with a static scrollable cursor

Suppose that you declare the following SENSITIVE STATIC scrollable cursor,
which you use to update rows in A:
EXEC SQL DECLARE C4 SENSITIVE STATIC SCROLL CURSOR FOR

SELECT COL1
FROM A
WHERE COL1<6;

Now you execute the following SQL statements:
EXEC SQL OPEN C4;
UPDATE A SET COL1=COL1+1;

The searched UPDATE statement creates an update hole, as shown in the following
figure.

After you execute the searched UPDATE statement, the last row no longer qualifies
for the result table, but the result table does not shrink to fill the space that the
disqualified row creates.

Accessing XML or LOB data quickly by using FETCH WITH
CONTINUE

Use the FETCH WITH CONTINUE statement to improve the performance of some
queries that reference XML and LOB columns with unknown or very large
maximum lengths.

About this task

FETCH WITH CONTINUE breaks XML and LOB values into manageable pieces
and processes the pieces one at a time to avoid the following buffer allocation
problems:
v Allocating overly large or unnecessary space for buffers. If some LOB values are

shorter than the maximum length for values in a column, you can waste buffer
space if you allocate enough space for the maximum length. The buffer
allocation problem can be even worse for XML data because an XML column
does not have a defined maximum length. If you use FETCH WITH
CONTINUE, you can allocate more appropriate buffer space for the actual
length of the XML and LOB values.

v Truncating very large XML and LOB data. If a very large XML or LOB value
does not fit in the host variable buffer space that is provided by the application
program, DB2 truncates the value. If the application program retries this fetch
with a larger buffer, two problems exist. First, when using a non-scrollable
cursor, you cannot re-fetch the current row without closing, reopening, and
repositioning the cursor to the row that was truncated. Second, if you do not use
FETCH WITH CONTINUE, DB2 does not return the actual length of the entire

Figure 41. Update hole

736 Application Programming and SQL Guide

value to the application program. Thus, DB2 does not know how large a buffer
to reallocate. If you use FETCH WITH CONTINUE, DB2 preserves the truncated
portion of the data for subsequent retrieval and returns the actual length of the
entire data value so that the application can reallocate a buffer of the appropriate
size.

DB2 provides two methods for using FETCH WITH CONTINUE with LOB and
XML data:
v “Dynamically allocating buffers when fetching XML and LOB data”
v “Moving data through fixed-size buffers when fetching XML and LOB data” on

page 738

Dynamically allocating buffers when fetching XML and LOB data
If you specify FETCH WITH CONTINUE, DB2 returns information about which
data does not fit in the buffer. Your application can then use the information about
the truncated data to allocate an appropriate target buffer and execute a fetch
operation with the CURRENT CONTINUE clause to retrieve the remaining data.

Procedure

To use dynamic buffer allocation for LOB and XML data:
1. Use an initial FETCH WITH CONTINUE to fetch data into a pre-allocated

buffer of a moderate size.
2. If the value is too large to fit in the buffer, use the length information that is

returned by DB2 to allocate the appropriate amount of storage.
3. Use a single FETCH CURRENT CONTINUE statement to retrieve the

remainder of the data.

Example

Suppose that table T1 was created with the following statement:
CREATE TABLE T1 (C1 INT, C2 CLOB(100M), C3 CLOB(32K), C4 XML);

A row exists in T1 where C1 contains a valid integer, C2 contains 10MB of data, C3
contains 32KB of data, and C4 contains 4MB of data.

Now, suppose that you declare CURSOR1, prepare and describe statement
DYNSQLSTMT1 with descriptor sqlda, and open CURSOR1 with the following
statements:
EXEC SQL DECLARE CURSOR1 CURSOR FOR DYNSQLSTMT1;
EXEC SQL PREPARE DYNSQLSTMT1 FROM ’SELECT * FROM T1’;
EXEC SQL DESCRIBE DYNSQLSTMT1 INTO DESCRIPTOR :SQLDA;
EXEC SQL OPEN CURSOR1;

Next, suppose that you allocate moderately sized buffers (32 KB for each CLOB or
XML column) and set data pointers and lengths in SQLDA. Then, you use the
following FETCH WITH CONTINUE statement:
EXEC SQL FETCH WITH CONTINUE CURSOR1 INTO DESCRIPTOR :SQLDA;

Because C2 and C4 contain data that do not fit in the buffer, some of the data is
truncated. Your application can use the information that DB2 returns to allocate
large enough buffers for the remaining data and reset the data pointers and length
fields in SQLDA. At that point, you can resume the fetch and complete the process
with the following FETCH CURRENT CONTINUE statement and CLOSE CURSOR
statement:

Chapter 12. Accessing data 737

EXEC SQL FETCH CURRENT CONTINUE CURSOR1 INTO DESCRIPTOR :SQLDA;
EXEC SQL CLOSE CURSOR1;

The application needs to concatenate the two returned pieces of the data value.
One technique is to move the first piece of data to the dynamically-allocated larger
buffer before the FETCH CONTINUE. Set the SQLDATA pointer in the SQLDA
structure to point immediately after the last byte of this truncated value. DB2 then
writes the remaining data to this location and thus completes the concatenation.

Moving data through fixed-size buffers when fetching XML and
LOB data
If you use the WITH CONTINUE clause, DB2 returns information about which
data does not fit in the buffer. Your application can then use repeated FETCH
CURRENT CONTINUE operations to effectively “stream”large XML and LOB data
through a fixed-size buffer, one piece at a time.

Procedure

To use fixed buffer allocation for LOB and XML data, perform the following steps:
1. Use an initial FETCH WITH CONTINUE to fetch data into a pre-allocated

buffer of a moderate size.
2. If the value is too large to fit in the buffer, use as many FETCH CONTINUE

statements as necessary to process all of the data through a fixed buffer.
After each FETCH operation, check whether a column was truncated by first
examining the SQLWARN1 field in the returned SQLCA. If that field contains a
'W' value, at least one column in the returned row has been truncated. To then
determine if a particular LOB or XML column was truncated, your application
must compare the value that is returned in the length field with the declared
length of the host variable. If a column is truncated, continue to use FETCH
CONTINUE statements until all of the data has been retrieved.
After you fetch each piece of the data, move it out of the buffer to make way
for the next fetch. Your application can write the pieces to an output file or
reconstruct the entire data value in a buffer above the 2-GB bar.

Results

Example: Suppose that table T1 was created with the following statement:
CREATE TABLE T1 (C1 INT, C2 CLOB(100M), C3 CLOB(32K), C4 XML);

A row exists in T1 where C2 contains 10 MB of data.

Now, suppose that you declare a 32 KB section CLOBHV:
EXEC SQL BEGIN DECLARE SECTION

DECLARE CLOBHV SQL TYPE IS CLOB(32767);
EXEC SQL END DECLARE SECTION.

Next, suppose that you use the following statements to declare and open
CURSOR1 and to FETCH WITH CONTINUE:
EXEC SQL DECLARE CURSOR1 CURSOR FOR SELECT C2 FROM T1;
EXEC SQL OPEN CURSOR1;
EXEC SQL FETCH WITH CONTINUE CURSOR1 INTO :CLOBHV;

As each piece of the data value is fetched, move it from the buffer to the output
file.

738 Application Programming and SQL Guide

Because the 10 MB value in C2 does not fit into the 32 KB buffer, some of the data
is truncated. Your application can loop through the following FETCH CURRENT
CONTINUE:
EXEC SQL FETCH CURRENT CONTINUE CURSOR1 INTO :CLOBHV;

After each FETCH operation, you can determine if the data was truncated by first
checking if the SQLWARN1 field in the returned SQLCA contains a 'W' value. If so,
then check if the length value, which is returned in CLOBHV_LENGTH, is greater
than the declared length of 32767. (CLOBHV_LENGTH is declared as part of the
precompiler expansion of the CLOBHV declaration.) If the value is greater, that
value has been truncated and more data can be retrieved with the next FETCH
CONTINUE operation.

When all of the data has moved to the output file, you can close the cursor:
EXEC SQL CLOSE CURSOR1;

Determining the attributes of a cursor by using the SQLCA
An SQL communications area (SQLCA) is an area that is set apart for communication
with DB2 and consists of a collection of variables. Using the SQLCA is one way to
get information about any open cursors. Alternatively, you can use the GET
DIAGNOSTICS statement.

About this task

After you open a cursor, you can determine the following attributes of the cursor
by checking the following SQLWARN and SQLERRD fields of the SQLCA:

SQLWARN1
Indicates whether the cursor is scrollable or non-scrollable.

SQLWARN4
Indicates whether the cursor is insensitive (I), sensitive static (S), or sensitive
dynamic (D).

SQLWARN5
Indicates whether the cursor is read-only, readable and deletable, or readable,
deletable, and updatable.

SQLERRD(1) and SQLERRD(2)
These two fields together contain a double byte integer that represents the
number of rows in the result table of a cursor when the cursor is positioned
after the last row. The cursor is positioned after the last row when the
SQLCODE is 100. These fields are not set for dynamic scrollable cursors.

SQLERRD(3)
The number of rows in the result table when the SELECT statement of the
cursor contains a data change statement.

If the OPEN statement executes with no errors or warnings, DB2 does not set
SQLWARN0 when it sets SQLWARN1, SQLWARN4, or SQLWARN5.

Chapter 12. Accessing data 739

Related reference:

Description of SQLCA fields (DB2 SQL)

Determining the attributes of a cursor by using the GET
DIAGNOSTICS statement

Using the GET DIAGNOSTICS statement is one way to get information about any
open cursors. Alternatively, you can use the SQLCA.

About this task

After you open a cursor, you can determine the following attributes of the cursor
by checking these GET DIAGNOSTICS items:

DB2_SQL_ATTR_CURSOR_HOLD
Indicates whether the cursor can be held open across commits (Y or N)

DB2_SQL_ATTR_CURSOR_ROWSET
Indicates whether the cursor can use rowset positioning (Y or N)

DB2_SQL_ATTR_CURSOR_SCROLLABLE
Indicates whether the cursor is scrollable (Y or N)

DB2_SQL_ATTR_CURSOR_SENSITIVITY
Indicates whether the cursor is insensitive or sensitive to changes that are
made by other processes (I or S)

DB2_SQL_ATTR_CURSOR_TYPE
Indicates whether the cursor is forward (F) declared static (S for INSENSITIVE
or SENSITIVE STATIC) or dynamic (D for SENSITIVE DYNAMIC)

For more information about the GET DIAGNOSTICS statement, see “Checking the
execution of SQL statements by using the GET DIAGNOSTICS statement” on page
211.

Scrolling through previously retrieved data
To scroll backward through data, use a scrollable cursor, or use a ROWID column
or identity column to retrieve data in reverse order.

About this task

Question: When a program retrieves data from the database, how can the program
scroll backward through the data?

Answer: Use one of the following techniques:
v Use a scrollable cursor.
v If the table contains a ROWID or an identity column, retrieve the values from

that column into an array. Then use the ROWID or identity column values to
retrieve the rows in reverse order.

Using a scrollable cursor: Using a scrollable cursor to fetch backward through
data involves these basic steps:
1. Declare the cursor with the SCROLL keyword.
2. Open the cursor.
3. Execute a FETCH statement to position the cursor at the end of the result table.

740 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_descriptionofsqlcafields.htm#db2z_descriptionofsqlcafields

4. In a loop, execute FETCH statements that move the cursor backward and then
retrieve the data.

5. When you have retrieved all the data, close the cursor.

You can use code like the following example to retrieve department names in
reverse order from table DSN8B10.DEPT:
/**************************/
/* Declare host variables */
/**************************/
EXEC SQL BEGIN DECLARE SECTION;

char[37] hv_deptname;
EXEC SQL END DECLARE SECTION;
/**/
/* Declare scrollable cursor to retrieve department names */
/**/
EXEC SQL DECLARE C1 SCROLL CURSOR FOR

SELECT DEPTNAME FROM DSN8B10.DEPT;...
/**/
/* Open the cursor and position it after the end of the */
/* result table. */
/**/
EXEC SQL OPEN C1;
EXEC SQL FETCH AFTER FROM C1;
/**/
/* Fetch rows backward until all rows are fetched. */
/**/
while(SQLCODE==0) {

EXEC SQL FETCH PRIOR FROM C1 INTO :hv_deptname;

...
}
EXEC SQL CLOSE C1;

Using a ROWID or identity column: If your table contains a ROWID column or
an identity column, you can use that column to rapidly retrieve the rows in reverse
order. When you perform the original SELECT, you can store the ROWID or
identity column value for each row you retrieve. Then, to retrieve the values in
reverse order, you can execute SELECT statements with a WHERE clause that
compares the ROWID or identity column value to each stored value.

For example, suppose you add ROWID column DEPTROWID to table
DSN8B10.DEPT. You can use code like the following example to select all
department names, then retrieve the names in reverse order:
/**************************/
/* Declare host variables */
/**************************/
EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS ROWID hv_dept_rowid;
char[37] hv_deptname;

EXEC SQL END DECLARE SECTION;
/***************************/
/* Declare other variables */
/***************************/
struct rowid_struct {

short int length;
char data[40]; /* ROWID variable structure */

}
struct rowid_struct rowid_array[200];

/* Array to hold retrieved */
/* ROWIDs. Assume no more */
/* than 200 rows will be */
/* retrieved. */

Chapter 12. Accessing data 741

short int i,j,n;
/***/
/* Declare cursor to retrieve department names */
/***/
EXEC SQL DECLARE C1 CURSOR FOR

SELECT DEPTNAME, DEPTROWID FROM DSN8B10.DEPT;...
/**/
/* Retrieve the department name and ROWID from DEPT table */
/* and store the ROWID in an array. */
/**/
EXEC SQL OPEN C1;
i=0;
while(SQLCODE==0) {

EXEC SQL FETCH C1 INTO :hv_deptname, :hv_dept_rowid;
rowid_array[i].length=hv_dept_rowid.length;
for(j=0;j<hv_dept_rowid.length;j++)

rowid_array[i].data[j]=hv_dept_rowid.data[j];
i++;

}
EXEC SQL CLOSE C1;
n=i-1; /* Get the number of array elements */
/**/
/* Use the ROWID values to retrieve the department names */
/* in reverse order. */
/**/
for(i=n;i>=0;i--) {

hv_dept_rowid.length=rowid_array[i].length;
for(j=0;j<hv_dept_rowid.length;j++)

hv_dept_rowid.data[j]=rowid_array[i].data[j];
EXEC SQL SELECT DEPTNAME INTO :hv_deptname

FROM DSN8B10.DEPT
WHERE DEPTROWID=:hv_dept_rowid;

}

Updating previously retrieved data
To scroll backward through data and update it, use a scrollable cursor that is
declared with the FOR UPDATE clause.

About this task

Question: How can you scroll backward and update data that was retrieved
previously?

Answer: Use a scrollable cursor that is declared with the FOR UPDATE clause.

Procedure

To update previously retrieved data:
1. Declare the cursor with the SENSITIVE STATIC SCROLL keywords.
2. Open the cursor.
3. Execute a FETCH statement to position the cursor at the end of the result table.
4. FETCH statements that move the cursor backward, until you reach the row that

you want to update.
5. Execute the UPDATE WHERE CURRENT OF statement to update the current

row.
6. Repeat steps 4 and 5 until you have update all the rows that you need to.
7. When you have retrieved and updated all the data, close the cursor.

742 Application Programming and SQL Guide

FETCH statement interaction between row and rowset
positioning

When you declare a cursor with the WITH ROWSET POSITIONING clause, you
can intermix row-positioned FETCH statements with rowset-positioned FETCH
statements.

The following table shows the interaction between row and rowset positioning for
a scrollable cursor. Assume that you declare the scrollable cursor on a table with 15
rows.

Table 119. Interaction between row and rowset positioning for a scrollable cursor

Keywords in FETCH statement Cursor position when FETCH is executed

FIRST On row 1

FIRST ROWSET On a rowset of size 1, consisting of row 1

FIRST ROWSET FOR 5 ROWS On a rowset of size 5, consisting of rows 1, 2, 3, 4,
and 5

CURRENT ROWSET On a rowset of size 5, consisting of rows 1, 2, 3, 4,
and 5

CURRENT On row 1

NEXT (default) On row 2

NEXT ROWSET On a rowset of size 1, consisting of row 3

NEXT ROWSET FOR 3 ROWS On a rowset of size 3, consisting of rows 4, 5, and
6

NEXT ROWSET On a rowset of size 3, consisting of rows 7, 8, and
9

LAST On row 15

LAST ROWSET FOR 2 ROWS On a rowset of size 2, consisting of rows 14 and
15

PRIOR ROWSET On a rowset of size 2, consisting of rows 12 and
13

ABSOLUTE 2 On row 2

ROWSET STARTING AT ABSOLUTE 2
FOR 3 ROWS

On a rowset of size 3, consisting of rows 2, 3, and
4

RELATIVE 2 On row 4

ROWSET STARTING AT ABSOLUTE 2
FOR 4 ROWS

On a rowset of size 4, consisting of rows 2, 3, 4,
and 5

RELATIVE -1 On row 1

ROWSET STARTING AT ABSOLUTE 3
FOR 2 ROWS

On a rowset of size 2, consisting of rows 3 and 4

ROWSET STARTING AT RELATIVE 4 On a rowset of size 2, consisting of rows 7 and 8

PRIOR On row 6

ROWSET STARTING AT ABSOLUTE 13
FOR 5 ROWS

On a rowset of size 3, consisting of rows 13, 14,
and 15

FIRST ROWSET On a rowset of size 5, consisting of rows 1, 2, 3, 4,
and 5

Chapter 12. Accessing data 743

Related reference:

FETCH (DB2 SQL)

Examples of fetching rows by using cursors
You can use SQL statements that you include in a COBOL program to define and
use non-scrollable cursor for row-positioned updates, scrollable cursors to retrieve
rows backward, non-scrollable cursors for rowset-positioned updates, and
scrollable cursors for rowset-positioned operations.

The following example shows how to update a row by using a cursor.
**
* Declare a cursor that will be used to update *
* the JOB column of the EMP table. *
**
EXEC SQL
DECLARE THISEMP CURSOR FOR

SELECT EMPNO, LASTNAME,
WORKDEPT, JOB

FROM DSN8B10.EMP
WHERE WORKDEPT = ’D11’

FOR UPDATE OF JOB
END-EXEC.
**
* Open the cursor *
**
EXEC SQL
OPEN THISEMP
END-EXEC.
**
* Indicate what action to take when all rows *
* in the result table have been fetched. *
**
EXEC SQL
WHENEVER NOT FOUND

GO TO CLOSE-THISEMP
END-EXEC.
**
* Fetch a row to position the cursor. *
**
EXEC SQL
FETCH FROM THISEMP

INTO :EMP-NUM, :NAME2,
:DEPT, :JOB-NAME

END-EXEC.
**
* Update the row where the cursor is positioned. *
**
EXEC SQL
UPDATE DSN8B10.EMP

SET JOB = :NEW-JOB
WHERE CURRENT OF THISEMP

END-EXEC....
**
* Branch back to fetch and process the next row. *
**...
**
* Close the cursor *
**

744 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_fetch.htm#db2z_sql_fetch

CLOSE-THISEMP.
EXEC SQL

CLOSE THISEMP
END-EXEC.

The following example shows how to retrieve data backward with a cursor.
**
* Declare a cursor to retrieve the data backward *
* from the EMP table. The cursor has access to *
* changes by other processes. *
**
EXEC SQL
DECLARE THISEMP SENSITIVE STATIC SCROLL CURSOR FOR

SELECT EMPNO, LASTNAME, WORKDEPT, JOB
FROM DSN8B10.EMP

END-EXEC.
**
* Open the cursor *
**
EXEC SQL
OPEN THISEMP
END-EXEC.
**
* Indicate what action to take when all rows *
* in the result table have been fetched. *
**
EXEC SQL
WHENEVER NOT FOUND GO TO CLOSE-THISEMP
END-EXEC.
**
* Position the cursor after the last row of the *
* result table. This FETCH statement cannot *
* include the SENSITIVE or INSENSITIVE keyword *
* and cannot contain an INTO clause. *
**
EXEC SQL
FETCH AFTER FROM THISEMP
END-EXEC.
**
* Fetch the previous row in the table. *
**
EXEC SQL
FETCH SENSITIVE PRIOR FROM THISEMP

INTO :EMP-NUM, :NAME2, :DEPT, :JOB-NAME
END-EXEC.
**
* Check that the fetched row is not a hole *
* (SQLCODE +222). If not, print the contents. *
**
IF SQLCODE IS GREATER THAN OR EQUAL TO 0 AND

SQLCODE IS NOT EQUAL TO +100 AND
SQLCODE IS NOT EQUAL TO +222 THEN
PERFORM PRINT-RESULTS....

**
* Branch back to fetch the previous row. *
**...
**
* Close the cursor *
**
CLOSE-THISEMP.
EXEC SQL

CLOSE THISEMP
END-EXEC.

Chapter 12. Accessing data 745

The following example shows how to update an entire rowset with a cursor.
**
* Declare a rowset cursor to update the JOB *
* column of the EMP table. *
**
EXEC SQL
DECLARE EMPSET CURSOR
WITH ROWSET POSITIONING FOR
SELECT EMPNO, LASTNAME, WORKDEPT, JOB
FROM DSN8B10.EMP
WHERE WORKDEPT = ’D11’

FOR UPDATE OF JOB
END-EXEC.
**
* Open the cursor. *
**
EXEC SQL
OPEN EMPSET
END-EXEC.
**
* Indicate what action to take when end-of-data *
* occurs in the rowset being fetched. *
**
EXEC SQL
WHENEVER NOT FOUND

GO TO CLOSE-EMPSET
END-EXEC.
**
* Fetch next rowset to position the cursor. *
**
EXEC SQL
FETCH NEXT ROWSET FROM EMPSET

FOR :SIZE-ROWSET ROWS
INTO :HVA-EMPNO, :HVA-LASTNAME,

:HVA-WORKDEPT, :HVA-JOB
END-EXEC.
**
* Update rowset where the cursor is positioned. *
**
UPDATE-ROWSET.
EXEC SQL

UPDATE DSN8B10.EMP
SET JOB = :NEW-JOB
WHERE CURRENT OF EMPSET

END-EXEC.
END-UPDATE-ROWSET....
**
* Branch back to fetch the next rowset. *
**...
**
* Update the remaining rows in the current *
* rowset and close the cursor. *
**
CLOSE-EMPSET.
PERFORM UPDATE-ROWSET.
EXEC SQL

CLOSE EMPSET
END-EXEC.

The following example shows how to update specific rows with a rowset cursor.

* Declare a static scrollable rowset cursor. *

746 Application Programming and SQL Guide

EXEC SQL
DECLARE EMPSET SENSITIVE STATIC SCROLL CURSOR

WITH ROWSET POSITIONING FOR
SELECT EMPNO, WORKDEPT, JOB

FROM DSN8B10.EMP
FOR UPDATE OF JOB

END-EXEC.

* Open the cursor. *

EXEC SQL

OPEN EMPSET
END-EXEC.

* Fetch next rowset to position the cursor. *

EXEC SQL

FETCH SENSITIVE NEXT ROWSET FROM EMPSET
FOR :SIZE-ROWSET ROWS
INTO :HVA-EMPNO,

:HVA-WORKDEPT :INDA-WORKDEPT,
:HVA-JOB :INDA-JOB

END-EXEC.

* Process fetch results if no error and no hole. *

IF SQLCODE >= 0

EXEC SQL GET DIAGNOSTICS
:HV-ROWCNT = ROW_COUNT

END-EXEC
PERFORM VARYING N FROM 1 BY 1 UNTIL N > HV-ROWCNT

IF INDA-WORKDEPT(N) NOT = -3
EVALUATE HVA-WORKDEPT(N)

WHEN (’D11’)
PERFORM UPDATE-ROW

WHEN (’E11’)
PERFORM DELETE-ROW

END-EVALUATE
END-IF

END-PERFORM
IF SQLCODE = 100

GO TO CLOSE-EMPSET
END-IF

ELSE
EXEC SQL GET DIAGNOSTICS

:HV-NUMCOND = NUMBER
END-EXEC
PERFORM VARYING N FROM 1 BY 1 UNTIL N > HV-NUMCOND

EXEC SQL GET DIAGNOSTICS CONDITION :N
:HV-SQLCODE = DB2_RETURNED_SQLCODE,
:HV-ROWNUM = DB2_ROW_NUMBER

END-EXEC
DISPLAY "SQLCODE = " HV-SQLCODE
DISPLAY "ROW NUMBER = " HV-ROWNUM

END-PERFORM
GO TO CLOSE-EMPSET

END-IF.
...

* Branch back to fetch and process *
* the next rowset. *
***...

* Update row N in current rowset. *

Chapter 12. Accessing data 747

UPDATE-ROW.
EXEC SQL

UPDATE DSN8B10.EMP
SET JOB = :NEW-JOB
FOR CURSOR EMPSET FOR ROW :N OF ROWSET

END-EXEC.
END-UPDATE-ROW.

* Delete row N in current rowset. *

DELETE-ROW.

EXEC SQL
DELETE FROM DSN8B10.EMP
WHERE CURRENT OF EMPSET FOR ROW :N OF ROWSET

END-EXEC.
END-DELETE-ROW....

* Close the cursor. *

CLOSE-EMPSET.
EXEC SQL

CLOSE EMPSET
END-EXEC.

Specifying direct row access by using row IDs
For some applications, you can use the value of a ROWID column to navigate
directly to a row.

About this task

When you select a ROWID column, the value implicitly contains the location of the
retrieved row. If you use the value from the ROWID column in the search
condition of a subsequent query, DB2 can choose to navigate directly to that row.

Example: Suppose that an EMPLOYEE table is defined in the following way:
CREATE TABLE EMPLOYEE

(EMP_ROWID ROWID NOT NULL GENERATED ALWAYS,
EMPNO SMALLINT,
NAME CHAR(30),
SALARY DECIMAL(7,2),
WORKDEPT SMALLINT);

The following code uses the SELECT from INSERT statement to retrieve the value
of the ROWID column from a new row that is inserted into the EMPLOYEE table.
This value is then used to reference that row for the update of the SALARY
column.
EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS ROWID hv_emp_rowid;
short hv_dept, hv_empno;
char hv_name[30];
decimal(7,2) hv_salary;

EXEC SQL END DECLARE SECTION;
...
EXEC SQL

SELECT EMP_ROWID INTO :hv_emp_rowid
FROM FINAL TABLE (INSERT INTO EMPLOYEE

VALUES (DEFAULT, :hv_empno, :hv_name, :hv_salary, :hv_dept));
EXEC SQL

UPDATE EMPLOYEE

748 Application Programming and SQL Guide

SET SALARY = SALARY + 1200
WHERE EMP_ROWID = :hv_emp_rowid;

EXEC SQL COMMIT;

For DB2 to be able to use direct row access for the update operation, the SELECT
from INSERT statement and the UPDATE statement must execute within the same
unit of work. If these statements execute in different units of work, the ROWID
value for the inserted row might change due to a REORG of the table space before
the update operation. Alternatively, you can use a SELECT from MERGE
statement. The MERGE statement performs INSERT and UPDATE operations as
one coordinated statement.

ROWID columns as keys:

If you define a column in a table to have the ROWID data type, DB2 provides a
unique value for each row in the table only if you define the column as
GENERATED ALWAYS. The purpose of the value in the ROWID column is to
uniquely identify rows in the table.

You can use a ROWID column to write queries that navigate directly to a row,
which can be useful in situations where high performance is a requirement. This
direct navigation, without using an index or scanning the table space, is called
direct row access. In addition, a ROWID column is a requirement for tables that
contain LOB columns. This topic discusses the use of a ROWID column in direct
row access.

Requirement: To use direct row access, you must use a retrieved ROWID value
before you commit. When your application commits, it releases its claim on the
table space. After the commit, a REORG on your table space might execute and
change the physical location of the rows.

Restriction: In general, you cannot use a ROWID column as a key that is to be
used as a single column value across multiple tables. The ROWID value for a
particular row in a table might change over time due to a REORG of the table
space. In particular, you cannot use a ROWID column as part of a parent key or
foreign key.

The value that you retrieve from a ROWID column is a varying-length character
value that is not monotonically ascending or descending (the value is not always
increasing or not always decreasing). Therefore, a ROWID column does not
provide suitable values for many types of entity keys, such as order numbers or
employee numbers.

Specifying direct row access by using RIDs:

When you specify a particular row ID, or RID, DB2 can navigate directly to the
specified row for those queries that qualify for direct row access.

Before you begin this task, ensure that the query qualifies for direct row access. To
qualify, the search condition must be a Boolean term, stage 1 predicate that fits one
of the following criteria:
v A simple Boolean term predicate of the following form:

RID (table designator) = noncolumn expression

Where the noncolumn expression contains a result of a RID function.

Chapter 12. Accessing data 749

v A compound Boolean term that combines several simple predicates by using the
AND operator, where one of the simple predicates fits the first criteria.

To specify direct row access by using RIDs, specify the RID function in the search
condition of a SELECT, DELETE, or UPDATE statement.

The RID function returns the RID of a row, which you can use to uniquely identify
a row.

Restriction: Because DB2 might reuse RID numbers when the REORG utility is
run, the RID function might return different values when invoked for a row
multiple times.

If you specify a RID and DB2 cannot locate the row through direct row access, DB2
does not switch to another access method. Instead, DB2 returns no rows.
Related concepts:

Direct row access (PRIMARY_ACCESSTYPE='D') (DB2 Performance)

Row ID values (DB2 SQL)

ROWID data type (Introduction to DB2 for z/OS)
Related reference:

RID (DB2 SQL)

ROWID columns
A ROWID column uniquely identifies each row in a table. This column enables
queries to be written that navigate directly to a row in the table because the
column implicitly contains the location of the row.

You can define a ROWID column as either GENERATED BY DEFAULT or
GENERATED ALWAYS:
v If you define the column as GENERATED BY DEFAULT, you can insert a value.

DB2 provides a default value if you do not supply one. However, to be able to
insert an explicit value (by using the INSERT statement with the VALUES
clause), you must create a unique index on that column.

v If you define the column as GENERATED ALWAYS (which is the default), DB2
always generates a unique value for the column. You cannot insert data into that
column. In this case, DB2 does not require an index to guarantee unique values.

Related concepts:
“Rules for inserting data into a ROWID column” on page 650

Direct row access (PRIMARY_ACCESSTYPE='D') (DB2 Performance)

ROWID data type (Introduction to DB2 for z/OS)
Related tasks:

Specifying direct row access by using row IDs (DB2 Application programming
and SQL)

Ways to manipulate LOB data
You can use SQL statements, LOB locators, and LOB file reference variables in your
application programs to manipulate LOB data that is stored in DB2.

750 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_directrowaccess.htm#db2z_directrowaccess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_rowidvalues.htm#db2z_rowidvalues
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_rowiddatatype.htm#db2z_rowiddatatype
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_rid.htm#db2z_bif_rid
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_directrowaccess.htm#db2z_directrowaccess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_rowiddatatype.htm#db2z_rowiddatatype
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_specifydirectrowaccess.htm#db2z_specifydirectrowaccess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_specifydirectrowaccess.htm#db2z_specifydirectrowaccess

For example, you can use the following statements to extract information about an
employee's department from the resume:
EXEC SQL BEGIN DECLARE SECTION;

char employeenum[6];
long deptInfoBeginLoc;
long deptInfoEndLoc;
SQL TYPE IS CLOB_LOCATOR resume;
SQL TYPE IS CLOB_LOCATOR deptBuffer;

EXEC SQL END DECLARE SECTION;...
EXEC SQL DECLARE C1 CURSOR FOR

SELECT EMPNO, EMP_RESUME FROM EMP;...
EXEC SQL FETCH C1 INTO :employeenum, :resume;...
EXEC SQL SET :deptInfoBeginLoc =

POSSTR(:resume.data, ’Department Information’);

EXEC SQL SET :deptInfoEndLoc =
POSSTR(:resume.data, ’Education’);

EXEC SQL SET :deptBuffer =
SUBSTR(:resume, :deptInfoBeginLoc,
:deptInfoEndLoc - :deptInfoBeginLoc);

These statements use host variables of data type large object locator (LOB locator).
LOB locators let you manipulate LOB data without moving the LOB data into host
variables. By using LOB locators, you need much smaller amounts of memory for
your programs.

You can also use LOB file reference variables when you are working with LOB
data. You can use LOB file reference variables to insert LOB data from a file into a
DB2 table or to retrieve LOB data from a DB2 table.

Sample LOB applications: The following table lists the sample programs that DB2
provides to assist you in writing applications to manipulate LOB data. All
programs reside in data set DSNB10.SDSNSAMP.

Table 120. LOB samples shipped with DB2

Member that
contains
source code Language Function

DSNTEJ7 JCL Demonstrates how to create a table with LOB columns, an
auxiliary table, and an auxiliary index. Also demonstrates
how to load LOB data that is 32 KB or less into a LOB table
space.

DSN8DLPL C Demonstrates the use of LOB locators and UPDATE
statements to move binary data into a column of type
BLOB.

DSN8DLRV C Demonstrates how to use a locator to manipulate data of
type CLOB.

DSNTEP2 PL/I Demonstrates how to allocate an SQLDA for rows that
include LOB data and use that SQLDA to describe an input
statement and fetch data from LOB columns.

Chapter 12. Accessing data 751

Related concepts:
“LOB file reference variables” on page 761

Phase 7: Accessing LOB data (DB2 Installation and Migration)
Related tasks:
“Saving storage when manipulating LOBs by using LOB locators” on page 757

LOB host variable, LOB locator, and LOB file reference
variable declarations

When you write applications to manipulate LOB data, you need to declare host
variables to hold the LOB data or LOB locator. Alternatively, you need to declare
LOB file reference variables to point to the LOB data.

You can declare LOB host variables and LOB locators in assembler, C, C++,
COBOL, Fortran, and PL/I. Additionally, you can declare LOB file reference
variables in assembler, C, C++, COBOL, and PL/I. REXX does not support LOB
host variable, LOB locators, or LOB file reference variables. For each host variable,
locator, or file reference variable of SQL type BLOB, CLOB, or DBCLOB that you
declare, DB2 generates an equivalent declaration that uses host language data
types. When you refer to a LOB host variable, LOB locator, or LOB file reference
variable in an SQL statement, you must use the variable that you specified in the
SQL type declaration. When you refer to the host variable in a host language
statement, you must use the variable that DB2 generates.

DB2 supports host variable declarations for LOBs with lengths of up to 2 GB - 1.
However, the size of a LOB host variable is limited by the restrictions of the host
language and the amount of storage available to the program.

Declare LOB host variables that are referenced by the precompiler in SQL
statements by using the SQL TYPE IS BLOB, SQL TYPE IS CLOB, or SQL TYPE IS
DBCLOB keywords.

LOB host variables that are referenced only by an SQL statement that uses a
DESCRIPTOR should use the same form as declared by the precompiler. In this
form, the LOB host-variable-array consists of a 31-bit length, followed by the data,
followed by another 31-bit length, followed by the data, and so on. The 31-bit
length must be fullword aligned.

Example: Suppose that you want to allocate a LOB array of 10 elements, each with
a length of 5 bytes. You need to allocate the following bytes for each element, for a
total of 120 bytes:
v 4 bytes for the 31-bit integer
v 5 bytes for the data
v 3 bytes to force fullword alignment

The following examples show you how to declare LOB host variables in each
supported language. In each table, the left column contains the declaration that
you code in your application program. The right column contains the declaration
that DB2 generates.

Declarations of LOB host variables in assembler

The following table shows assembler language declarations for some typical LOB
types.

752 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_dsntej7x.htm#db2z_dsntej7x

Table 121. Example of assembler LOB variable declarations

You declare this variable DB2 generates this variable

clob_var SQL TYPE IS CLOB 40000K clob_var DS 0FL4
clob_var_length DS FL4
clob_var_data DS CL655351

ORG clob_var_data +(40960000-65535)

dbclob_var SQL TYPE IS DBCLOB 4000K dbclob_var DS 0FL4
dbclob_var_length DS FL4
dbclob_var_data DS GL655342

ORG dbclob_var_data+(8192000-65534)

blob_var SQL TYPE IS BLOB 1M blob_var DS 0FL4
blob_var_length DS FL4
blob_var_data DS CL655351

ORG blob_var_data+(1048476-65535)

clob_loc SQL TYPE IS CLOB_LOCATOR clob_loc DS FL4

dbclob_loc SQL TYPE IS DBCLOB_LOCATOR dbclob_loc DS FL4

blob_loc SQL TYPE IS BLOB_LOCATOR blob_loc DS FL4

clob_file SQL TYPE IS CLOB_FILE clob_file DS FL4

dbclob_file SQL TYPE IS DBCLOB_FILE dbclob_file DS FL4

blob_file SQL TYPE IS BLOB_FILE blob_file DS FL4

Notes:

1. Because assembler language allows character declarations of no more than 65535 bytes, DB2 separates the host
language declarations for BLOB and CLOB host variables that are longer than 65535 bytes into two parts.

2. Because assembler language allows graphic declarations of no more than 65534 bytes, DB2 separates the host
language declarations for DBCLOB host variables that are longer than 65534 bytes into two parts.

Declarations of LOB host variables in C

The following table shows C and C++ language declarations for some typical LOB
types.

Table 122. Examples of C language variable declarations

You declare this variable DB2 generates this variable

SQL TYPE IS BLOB (1M) blob_var; struct {
unsigned long length;
char data[1048576];

} blob_var;

SQL TYPE IS CLOB(400K) clob_var; struct {
unsigned long length;
char data[409600];

} clob_var;

SQL TYPE IS DBCLOB (4000K) dbclob_var; struct {
unsigned long length;
sqldbchar data[4096000];

} dbclob_var;

SQL TYPE IS BLOB_LOCATOR blob_loc; unsigned long blob_loc;

SQL TYPE IS CLOB_LOCATOR clob_loc; unsigned long clob_loc;

SQL TYPE IS DBCLOB_LOCATOR dbclob_loc; unsigned long dbclob_loc;

Chapter 12. Accessing data 753

Table 122. Examples of C language variable declarations (continued)

You declare this variable DB2 generates this variable

SQL TYPE IS BLOB_FILE FBLOBhv; #pragma pack(full)
struct {
unsigned long name_length;
unsigned long data_length;
unsigned long file_options;
char name??(255??);
} FBLOBhv ;
#pragma pack(reset)

SQL TYPE IS CLOB_FILE FCLOBhv; #pragma pack(full)
struct {
unsigned long name_length;
unsigned long data_length;
unsigned long file_options;
char name??(255??);
} FCLOBhv ;
#pragma pack(reset)

SQL TYPE IS DBCLOB_FILE FDBCLOBhv; #pragma pack(full)
struct {
unsigned long name_length;
unsigned long data_length;
unsigned long file_options;
char name??(255??);
} FDBCLOBhv ;
#pragma pack(reset)

Declarations of LOB host variables in COBOL

The declarations that are generated for COBOL depend on whether you use the
DB2 precompiler or the DB2 coprocessor. The following table shows COBOL
declarations that the DB2 precompiler generates for some typical LOB types. The
declarations that the DB2 coprocessor generates might be different.

Table 123. Examples of COBOL variable declarations by the DB2 precompiler

You declare this variable DB2 precompiler generates this variable

01 BLOB-VAR
SQL TYPE IS BLOB(1M).

01 BLOB-VAR.
49 BLOB-VAR-LENGTH PIC S9(9) COMP-5.
49 BLOB-VAR-DATA PIC X(1048576).

01 CLOB-VAR
SQL TYPE IS CLOB(40000K).

01 CLOB-VAR.
49 CLOB-VAR-LENGTH PIC S9(9) COMP-5.
49 CLOB-VAR-DATA PIC X(40960000).

01 DBCLOB-VAR
SQL TYPE IS DBCLOB(4000K).

01 DBCLOB-VAR.
49 DBCLOB-VAR-LENGTH PIC S9(9) COMP-5
49 DBCLOB-VAR-DATA PIC G(40960000)
DISPLAY-1.

01 BLOB-LOC
SQL TYPE IS BLOB-LOCATOR.

01 BLOB-LOC PIC S9(9) COMP-5.

01 CLOB-LOC
SQLTYPE IS CLOB-LOCATOR.

01 CLOB-LOC PIC S9(9) COMP-5.

01 DBCLOB-LOC
SQLTYPE IS DBCLOB-LOCATOR.

01 DBCLOB-LOC PIC S9(9) COMP-5.

01 BLOB-FILE
SQLTYPE IS BLOB-FILE.

01 BLOB-FILE.
49 BLOB-FILE-NAME-LENGTH PIC S9(9) COMP-5 SYNC.
49 BLOB-FILE-DATA-LENGTH PIC S9(9) COMP-5.
49 BLOB-FILE-FILE-OPTION PIC S9(9) COMP-5.
49 BLOB-FILE-NAME PIC X(255) .

754 Application Programming and SQL Guide

Table 123. Examples of COBOL variable declarations by the DB2 precompiler (continued)

You declare this variable DB2 precompiler generates this variable

01 CLOB-FILE
SQLTYPE IS CLOB-FILE.

01 CLOB-FILE.
49 CLOB-FILE-NAME-LENGTH PIC S9(9) COMP-5 SYNC.
49 CLOB-FILE-DATA-LENGTH PIC S9(9) COMP-5.
49 CLOB-FILE-FILE-OPTION PIC S9(9) COMP-5.
49 CLOB-FILE-NAME PIC X(255) .

01 DBCLOB-FILE
SQLTYPE IS DBCLOB-FILE.

01 DBCLOB-FILE.
49 DBCLOB-FILE-NAME-LENGTH PIC S9(9) COMP-5 SYNC.
49 DBCLOB-FILE-DATA-LENGTH PIC S9(9) COMP-5.
49 DBCLOB-FILE-FILE-OPTION PIC S9(9) COMP-5.
49 DBCLOB-FILE-NAME PIC X(255) .

Declarations of LOB host variables in Fortran

The following table shows Fortran declarations for some typical LOB types.

Table 124. Examples of Fortran variable declarations

You declare this variable DB2 generates this variable

SQL TYPE IS BLOB(1M) blob_var CHARACTER blob_var(1048580)
INTEGER*4 blob_var_LENGTH
CHARACTER blob_var_DATA
EQUIVALENCE(blob_var(1),
+ blob_var_LENGTH)
EQUIVALENCE(blob_var(5),
+ blob_var_DATA)

SQL TYPE IS CLOB(40000K) clob_var CHARACTER clob_var(4096004)
INTEGER*4 clob_var_length
CHARACTER clob_var_data
EQUIVALENCE(clob_var(1),
+ clob_var_length)
EQUIVALENCE(clob_var(5),
+ clob_var_data)

SQL TYPE IS BLOB_LOCATOR blob_loc INTEGER*4 blob_loc

SQL TYPE IS CLOB_LOCATOR clob_loc INTEGER*4 clob_loc

Declarations of LOB host variables in PL/I

The declarations that are generated for PL/I depend on whether you use the DB2
precompiler or the DB2 coprocessor. The following table shows PL/I declarations
that the DB2 precompiler generates for some typical LOB types. The declarations
that the DB2 coprocessor generates might be different.

Table 125. Examples of PL/I variable declarations by the DB2 precompiler

You declare this variable DB2 precompiler generates this variable

DCL BLOB_VAR
SQL TYPE IS BLOB (1M);

DCL 1 BLOB_VAR,
2 BLOB_VAR_LENGTH FIXED BINARY(31),
2 BLOB_VAR_DATA,1

3 BLOB_VAR_DATA1(32)
CHARACTER(32767),

3 BLOB_VAR_DATA2
CHARACTER(1048576-32*32767);

Chapter 12. Accessing data 755

Table 125. Examples of PL/I variable declarations by the DB2 precompiler (continued)

You declare this variable DB2 precompiler generates this variable

DCL CLOB_VAR
SQL TYPE IS CLOB (40000K);

DCL 1 CLOB_VAR,
2 CLOB_VAR_LENGTH FIXED BINARY(31),
2 CLOB_VAR_DATA,1

3 CLOB_VAR_DATA1(1250)
CHARACTER(32767),

3 CLOB_VAR_DATA2
CHARACTER(40960000-1250*32767);

DCL DBCLOB_VAR
SQL TYPE IS DBCLOB (4000K);

DCL 1 DBCLOB_VAR,
2 DBCLOB_VAR_LENGTH FIXED BINARY(31),
2 DBCLOB_VAR_DATA,2

3 DBCLOB_VAR_DATA1(250)
GRAPHIC(16383),

3 DBCLOB_VAR_DATA2
GRAPHIC(4096000-250*16383);

DCL blob_loc
SQL TYPE IS BLOB_LOCATOR;

DCL blob_loc FIXED BINARY(31);

DCL clob_loc
SQL TYPE IS CLOB_LOCATOR;

DCL clob_loc FIXED BINARY(31);

DCL dbclob_loc SQL TYPE IS
DBCLOB_LOCATOR;

DCL dbclob_loc FIXED BINARY(31);

DCL blob_file
SQL TYPE IS BLOB_FILE;

DCL 1 blob_file,
2 blob_file_NAME_LENGTH BIN FIXED(31)

ALIGNED,
2 blob_file_DATA_LENGTH BIN FIXED(31),
2 blob_file_FILE_OPTIONS BIN FIXED(31),
2 blob_file_NAME CHAR(255) ;

DCL clob_file
SQL TYPE IS CLOB_FILE;

DCL 1 clob_file,
2 clob_file_NAME_LENGTH BIN FIXED(31)

ALIGNED,
2 clob_file_DATA_LENGTH BIN FIXED(31),
2 clob_file_FILE_OPTIONS BIN FIXED(31),
2 clob_file_NAME CHAR(255) ;

DCL dbclob_file SQL TYPE IS
DBCLOB_FILE;

DCL 1 dbclob_file,
2 dbclob_file_NAME_LENGTH BIN FIXED(31)

ALIGNED,
2 dbclob_file_DATA_LENGTH BIN FIXED(31),
2 dbclob_file_FILE_OPTIONS BIN FIXED(31),
2 dbclob_file_NAME CHAR(255) ;

Notes:

1. For BLOB or CLOB host variables that are greater than 32767 bytes in length, DB2 creates PL/I host language
declarations in the following way:

v If the length of the LOB is greater than 32767 bytes and evenly divisible by 32767, DB2 creates an array of
32767-byte strings. The dimension of the array is length/32767.

v If the length of the LOB is greater than 32767 bytes but not evenly divisible by 32767, DB2 creates two
declarations: The first is an array of 32767 byte strings, where the dimension of the array, n, is length/32767.
The second is a character string of length length-n*32767.

2. For DBCLOB host variables that are greater than 16383 double-byte characters in length, DB2 creates PL/I host
language declarations in the following way:

v If the length of the LOB is greater than 16383 characters and evenly divisible by 16383, DB2 creates an array of
16383-character strings. The dimension of the array is length/16383.

v If the length of the LOB is greater than 16383 characters but not evenly divisible by 16383, DB2 creates two
declarations: The first is an array of 16383 byte strings, where the dimension of the array, m, is length/16383.
The second is a character string of length length-m*16383.

756 Application Programming and SQL Guide

Related concepts:
“LOB file reference variables” on page 761
Related tasks:
“Saving storage when manipulating LOBs by using LOB locators”

LOB and XML materialization
Materialization means that DB2 puts the data that is selected into a buffer for
processing. This action can slow performance. Because LOB values can be very
large, DB2 avoids materializing LOB data until absolutely necessary.

Beginning in Version 10, LOB and XML materialization has been reduced or
eliminated within DB2 for several local and distributed cases including utilities
(LOAD and cross-loader). Some of the cases where materialization has been
eliminated or reduced include during DRDA streaming, file reference variable
processing, CCSID conversion and distributed XML fetch processing. However,
whether the values will be materialized and how much will be materialized also
depends on the number and size of each LOB or XML.

DB2 stores LOB values in contiguous storage. DB2 must materialize LOBs when
your application program performs the following actions:
v Calls a user-defined function with a LOB as an argument
v Moves a LOB into or out of a stored procedure
v Assigns a LOB host variable to a LOB locator host variable

The amount of storage that is used for LOB and XML materialization depends on a
number of factors including:
v The size of the LOBs
v The number of LOBs that need to be materialized in a statement

DB2 loads LOBs into virtual pools above the bar. If insufficient space is available
for LOB materialization, your application receives SQLCODE -904.

Although you cannot completely avoid LOB materialization, you can minimize it
by using LOB locators, rather than LOB host variables in your application
programs.
Related tasks:
“Saving storage when manipulating LOBs by using LOB locators”

Saving storage when manipulating LOBs by using LOB
locators

LOB locators let you manipulate LOB data without retrieving the data from the
DB2 table. By using locators, you avoid needing to allocate the large amounts of
storage that are needed for host variables to hold LOB data.

About this task

To retrieve LOB data from a DB2 table, you can define host variables that are large
enough to hold all of the LOB data. This requires your application to allocate large
amounts of storage, and requires DB2 to move large amounts of data, which can
be inefficient or impractical. Instead, you can use LOB locators. LOB locators let
you manipulate LOB data without retrieving the data from the DB2 table. Using
LOB locators for LOB data retrieval is a good choice in the following situations:

Chapter 12. Accessing data 757

v When you move only a small part of a LOB to a client program
v When the entire LOB does not fit in the application's memory
v When the program needs a temporary LOB value from a LOB expression but

does not need to save the result
v When performance is important

A LOB locator is associated with a LOB value or expression, not with a row in a
DB2 table or a physical storage location in a table space. Therefore, after you select
a LOB value using a locator, the value in the locator normally does not change
until the current unit of work ends. However the value of the LOB itself can
change.

If you want to remove the association between a LOB locator and its value before a
unit of work ends, execute the FREE LOCATOR statement. To keep the association
between a LOB locator and its value after the unit of work ends, execute the
HOLD LOCATOR statement. After you execute a HOLD LOCATOR statement, the
locator keeps the association with the corresponding value until you execute a
FREE LOCATOR statement or the program ends.

If you execute HOLD LOCATOR or FREE LOCATOR dynamically, you cannot use
EXECUTE IMMEDIATE.
Related reference:

FREE LOCATOR (DB2 SQL)

HOLD LOCATOR (DB2 SQL)

Indicator variables and LOB locators
DB2 uses indicator variables for LOB locators differently than it uses indicator
variables for host variables.

For host variables other than LOB locators, when you select a null value into a
host variable, DB2 assigns a negative value to the associated indicator variable.
However, for LOB locators, DB2 uses indicator variables differently. A LOB locator
is never null. When you select a LOB column using a LOB locator and the LOB
column contains a null value, DB2 assigns a null value to the associated indicator
variable. The value in the LOB locator does not change. In a client/server
environment, this null information is recorded only at the client.

When you use LOB locators to retrieve data from columns that can contain null
values, define indicator variables for the LOB locators, and check the indicator
variables after you fetch data into the LOB locators. If an indicator variable is null
after a fetch operation, you cannot use the value in the LOB locator.

Valid assignments for LOB locators
Although you usually use LOB locators to assign data to and retrieve data from
LOB columns, you can also use LOB locators to assign data to non-LOB columns.

You can use LOB locators to make the following assignments:
v A CLOB or DBCLOB locator can be assigned to a CHAR, VARCHAR,

GRAPHIC, or VARGRAPHIC column. However, you cannot fetch data from
CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC columns into a CLOB or
DBCLOB locators.

758 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_freelocator.htm#db2z_sql_freelocator
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_holdlocator.htm#db2z_sql_holdlocator

v A BLOB locator can be assigned to a BINARY or VARBINARY column.
However, you cannot fetch data from a BINARY or VARBINARY column into a
BLOB locator.

Avoiding character conversion for LOB locators
In certain situations, DB2 materializes the entire LOB value and converts it to the
encoding scheme of a particular SQL statement. This extra processing can degrade
performance and should be avoided.

About this task

You can use a VALUES INTO or SET statement to obtain the results of functions
that operate on LOB locators, such as LENGTH or SUBSTR. VALUES INTO and
SET statements are processed in the application encoding scheme for the plan or
package that contains the statement. If that encoding scheme is different from the
encoding scheme of the LOB data, the entire LOB value is materialized and
converted to the encoding scheme of the statement. This materialization and
conversion processing can cause performance degradation.

To avoid the character conversion, SELECT from the SYSIBM.SYSDUMMYA,
SYSIBM.SYSDUMMYE, or SYSIBM.SYSDUMMYU sample table. These dummy
tables perform functions similar to SYSIBM.SYSDUMMY1, and are each associated
with an encoding scheme:

SYSIBM.SYSDUMMYA
ASCII

SYSIBM.SYSDUMMYE
EBCDIC

SYSIBM.SYSDUMMYU
Unicode

By using these tables, you can obtain the same result as you would with a
VALUES INTO or SET statement.

Example

Suppose that the encoding scheme of the following statement is EBCDIC:
SET : unicode_hv = SUBSTR(:Unicode_lob_locator,X,Y);

DB2 must materialize the LOB that is specified by :Unicode_lob_locator and
convert that entire LOB to EBCDIC before executing the statement. To avoid
materialization and conversion, you can execute the following statement, which
produces the same result but is processed by the Unicode encoding scheme of the
table:
SELECT SUBSTR(:Unicode_lob_locator,X,Y) INTO :unicode_hv

FROM SYSIBM.SYSDUMMYU;

Deferring evaluation of a LOB expression to improve
performance

DB2 does not move any bytes of a LOB value until a program assigns a LOB
expression to a target destination. When you use a LOB locator with string
functions and operators, DB2 does not evaluate the expression until the time of
assignment. This deferred evaluation can improve performance.

Chapter 12. Accessing data 759

About this task

The following example is a C language program that defers evaluation of a LOB
expression. The program runs on a client and modifies LOB data at a server. The
program searches for a particular resume (EMPNO = '000130') in the
EMP_RESUME table. It then uses LOB locators to rearrange a copy of the resume
(with EMPNO = 'A00130'). In the copy, the Department Information Section
appears at the end of the resume. The program then inserts the copy into
EMP_RESUME without modifying the original resume.

Because the program in the following figure uses LOB locators, rather than placing
the LOB data into host variables, no LOB data is moved until the INSERT
statement executes. In addition, no LOB data moves between the client and the
server.
EXEC SQL INCLUDE SQLCA;

/**************************/
/* Declare host variables */ �1�
/**************************/
EXEC SQL BEGIN DECLARE SECTION;

char userid[9];
char passwd[19];
long HV_START_DEPTINFO;
long HV_START_EDUC;
long HV_RETURN_CODE;
SQL TYPE IS CLOB_LOCATOR HV_NEW_SECTION_LOCATOR;
SQL TYPE IS CLOB_LOCATOR HV_DOC_LOCATOR1;
SQL TYPE IS CLOB_LOCATOR HV_DOC_LOCATOR2;
SQL TYPE IS CLOB_LOCATOR HV_DOC_LOCATOR3;

EXEC SQL END DECLARE SECTION;

/***/
/* Delete any instance of "A00130" from previous */
/* executions of this sample */
/***/
EXEC SQL DELETE FROM EMP_RESUME WHERE EMPNO = ’A00130’;

/***/
/* Use a single row select to get the document */ �2�
/***/
EXEC SQL SELECT RESUME

INTO :HV_DOC_LOCATOR1
FROM EMP_RESUME
WHERE EMPNO = ’000130’

AND RESUME_FORMAT = ’ascii’;
/***/
/* Use the POSSTR function to locate the start of */
/* sections "Department Information" and "Education" */ �3�
/***/
EXEC SQL SET :HV_START_DEPTINFO =

POSSTR(:HV_DOC_LOCATOR1, ’Department Information’);

EXEC SQL SET :HV_START_EDUC =
POSSTR(:HV_DOC_LOCATOR1, ’Education’);

/***/
/* Replace Department Information section with nothing */
/***/
EXEC SQL SET :HV_DOC_LOCATOR2 =

SUBSTR(:HV_DOC_LOCATOR1, 1, :HV_START_DEPTINFO -1)
|| SUBSTR (:HV_DOC_LOCATOR1, :HV_START_EDUC);

/***/
/* Associate a new locator with the Department */
/* Information section */
/***/

760 Application Programming and SQL Guide

EXEC SQL SET :HV_NEW_SECTION_LOCATOR =
SUBSTR(:HV_DOC_LOCATOR1, :HV_START_DEPTINFO,
:HV_START_EDUC -:HV_START_DEPTINFO);

/***/
/* Append the Department Information to the end */
/* of the resume */
/***/
EXEC SQL SET :HV_DOC_LOCATOR3 =

:HV_DOC_LOCATOR2 || :HV_NEW_SECTION_LOCATOR;
/***/
/* Store the modified resume in the table. This is */ �4�
/* where the LOB data really moves. */
/***/
EXEC SQL INSERT INTO EMP_RESUME VALUES (’A00130’, ’ascii’,

:HV_DOC_LOCATOR3, DEFAULT);

/*********************/
/* Free the locators */ �5�
/*********************/
EXEC SQL FREE LOCATOR :HV_DOC_LOCATOR1, :HV_DOC_LOCATOR2, :HV_DOC_LOCATOR3;

Notes:

�1� Declare the LOB locators here.

�2� This SELECT statement associates LOB locator HV_DOC_LOCATOR1 with
the value of column RESUME for employee number 000130.

�3� The next five SQL statements use LOB locators to manipulate the resume
data without moving the data.

�4� Evaluation of the LOB expressions in the previous statements has been
deferred until execution of this INSERT statement.

�5� Free all LOB locators to release them from their associated values.

LOB file reference variables
In a host application, you can use a file reference variable to insert a LOB or XML
value from a file into a DB2 table. You can also use a file reference variable to
select a LOB or XML value from a DB2 table into a file.

The file reference variables are BLOB_FILE, CLOB_FILE, or DBCLOB_FILE. For
COBOL, the file reference variables are BLOB-FILE, CLOB-FILE, or DBCLOB-FILE.

When you use a file reference variable, you can select or insert an entire LOB or
XML value without contiguous application storage to contain the entire LOB or
XML value. LOB file reference variables move LOB or XML values from the
database server to an application or from an application to the database server
without going through the application's memory. Furthermore, LOB file reference
variables bypass the host language limitation on the maximum size allowed for
dynamic storage to contain a LOB value.

You can declare LOB or XML values as LOB file reference variables or LOB file
reference arrays for applications that are written in C, COBOL, PL/I, and
assembler. The LOB file reference variables do not contain LOB data; they
represent a file that contains LOB data. Database queries, updates, and inserts can
use file reference variables to store or retrieve column values. As with other host
variables, a LOB file reference variable can have an associated indicator variable.

Chapter 12. Accessing data 761

DB2-generated LOB file reference variable constructs
For each LOB file reference variable that an application declares for a LOB or XML
value, DB2 generates an equivalent construct that uses the host language data
types. When an application references a LOB file reference variable, it must use the
equivalent construct that DB2 generates; otherwise the DB2 precompiler issues an
error.

The construct describes the following properties of the file:

Data type
BLOB, CLOB, or DBCLOB. This property is specified when the variable is
declared by using the BLOB_FILE, CLOB_FILE, or DBCLOB_FILE data
type.

For COBOL, the data types are BLOB-FILE, CLOB-FILE, or DBCLOB-FILE.

Direction
This property must be specified by the application program at run time as
part of the file option property. The direction property can have the
following values:

Input Used as a data source on an EXECUTE, OPEN, UPDATE, INSERT,
DELETE, SET, or MERGE statement.

Output
Used as the target of data on a FETCH statement or a SELECT
INTO statement.

File name
This property must be specified by the application program at run time.
The file name property can have the following values:
v The complete path name of the file. This is recommended.

File name length
This property must be specified by the application program at run time.

File options
An application must assign one of the file options to a file reference
variable before the application can use that variable. File options are set by
the INTEGER value in a field in the file reference variable construct. One
of the following values must be specified for each file reference variable:
v Input (from application to database):

SQL_FILE_READ
A regular file that can be opened, read, and closed.

v Output (from database to application):

SQL_FILE_CREATE
If the file does not exists, a new file is created. If the file already
exists, an error is returned.

SQL_FILE_OVERWRITE
If the file does not exists, a new file is created. If the file already
exists, it is overwritten.

SQL_FILE_APPEND
If the file does not exists, a new file is created. If the file already
exists, the output is appended to the existing file.

Data length
The length, in bytes, of the new data written to the file

762 Application Programming and SQL Guide

Examples of declaring file reference variables
You can declare a file reference variable in C, COBOL, and PL/I, and declare the
file reference variable construct that DB2 generates.

C Example: Consider the following C declaration:
EXEC SQL BEGIN DECLARE SECTION

SQL TYPE IS CLOB_FILE hv_text_file;
CHAR hv_thesis_title[64];

EXEC SQL END DECLARE SECTION

That declaration results in the following DB2-generated construct:
EXEC SQL BEGIN DECLARE SECTION

/* SQL TYPE IS CLOB_FILE hv_text_file; */
struct {

unsigned long name_length; // File name length
unsigned long data_length; // Data length
unsigned long file_options; // File options
char name [255]; // File name

} hv_text_file;
char hv_thesis_title[64]

With the DB2-generated construct, you can use the following code to select from a
CLOB column in the database into a new file that is referenced by :hv_text_file.
The file name must be an absolute path.
strcopy(hv_text_file.name, "/u/gainer/papers/sigmod.94");

hv_text_file.name_length = strlen("/u/gainer/papers/sigmod.94");
hv_text_file.file_options = SQL_FILE_CREATE;

EXEC SQL SELECT CONTENT INTO :hv_text_file FROM PAPERS
WHERE TITLE = ’The Relational Theory Behind Juggling’;

Similarly, you can use the following code to insert the data from a file that is
referenced by :hv_text_file into a CLOB column. The file name must be an
absolute path.
strcopy(hv_text_file.name, "/u/gainer/patents/chips.13");

hv_text_file.name_length = strlen("/u/gainer/patents/chips.13");
hv_text_file.file_options = SQL_FILE_READ;

strcopy(:hv_patent_title, "A Method for Pipelining Chip Consumption");

EXEC SQL INSERT INTO PATENTS(TITLE, TEXT)
VALUES(:hv_patent_title, :hv_text_file);

COBOL Example: Consider the following COBOL declaration:
01 MY-FILE SQL TYPE IS BLOB-FILE

That declaration results in the following DB2-generated construct:
01 MY-FILE.

49 MY-FILE-NAME-LENGTH PIC S9(9) COMP-5.
49 MY-FILE-DATA-LENGTH PIC S9(9) COMP-5.
49 MY-FILE-FILE-OPTION PIC S9(9) COMP-5.
49 MY-FILE-NAME PIC(255);

PL/I Example: Consider the following PL/I declaration:
DCL MY_FILE SQL TYPE IS CLOB_FILE

That declaration results in the following DB2-generated construct:

Chapter 12. Accessing data 763

DCL 1 MY_FILE,
3 MY_FILE_NAME_LENGTH BINARY FIXED (31) UNALIGNED,
3 MY_FILE_DATA_LENGTH BINARY FIXED (31) UNALIGNED,
3 MY_FILE_FILE_OPTIONS BINARY FIXED (31) UNALIGNED,
3 MY_FILE_NAME CHAR(255);

For examples of how to declare file reference variables for XML data in C, COBOL,
and PL/I, see “Host variable data types for XML data in embedded SQL
applications” on page 219.

Referencing a sequence object
A sequence object is a user-defined object that generates a sequence of numeric
values according to the specification with which the sequence was created. You can
retrieve the next or previous value in the sequence.

About this task

You reference a sequence by using the NEXT VALUE expression or the PREVIOUS
VALUE expression, specifying the name of the sequence:
v A NEXT VALUE expression generates and returns the next value for the

specified sequence. If a query contains multiple instances of a NEXT VALUE
expression with the same sequence name, the sequence value increments only
once for that query. The ROLLBACK statement has no effect on values already
generated.

v A PREVIOUS VALUE expression returns the most recently generated value for
the specified sequence for a previous NEXT VALUE expression that specified the
same sequence within the current application process. The value of the
PREVIOUS VALUE expression persists until the next value is generated for the
sequence, the sequence is dropped, or the application session ends. The
COMMIT statement and the ROLLBACK statement have no effect on this value.

You can specify a NEXT VALUE or PREVIOUS VALUE expression in a SELECT
clause, within a VALUES clause of an insert operation, within the SET clause of an
update operation (with certain restrictions), or within a SET host-variable statement.

Retrieving thousands of rows
When retrieving large numbers of rows, consider the possibilities for lock
escalation and other locking issues.

About this task

Question: Are there any special techniques for fetching and displaying large
volumes of data?

Answer: There are no special techniques; but for large numbers of rows, efficiency
can become very important. In particular, you need to be aware of locking
considerations, including the possibilities of lock escalation.

If your program allows input from a terminal before it commits the data and
thereby releases locks, it is possible that a significant loss of concurrency results.

764 Application Programming and SQL Guide

Determining when a row was changed
If a table has a ROW CHANGE TIMESTAMP column, you can determine when a
row was changed.

Procedure

To determine when a row was changed:

Issue a SELECT statement with the ROW CHANGE TIMESTAMP column in the
column list. If a qualifying row does not have a value for the ROW CHANGE
TIMESTAMP column, DB2 returns the time that the page in which that row resides
was updated.

Example

Suppose that you issue the following statements to create, populate, and alter a
table:
CREATE TABLE T1 (C1 INTEGER NOT NULL);
INSERT INTO T1 VALUES (1);
ALTER TABLE T1 ADD COLUMN C2 NOT NULL GENERATED ALWAYS

FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP;
SELECT T1.C2 FROM T1 WHERE T1.C1 = 1;

Because the ROW CHANGE TIMESTAMP column was added after the data was
inserted, the following statement returns the time that the page was last modified:
SELECT T1.C2 FROM T1 WHERE T1.C1 = 1;

Assume that you then issue the following statement:
INSERT INTO T1(C1) VALUES (2);

Assume that this row is added to the same page as the first row. The following
statement returns the time that value "2" was inserted into the table:
SELECT T1.C2 FROM T1 WHERE T1.C1 = 2;

Because the row with value "1" still does not have a value for the ROW CHANGE
TIMESTAMP column, the following statement still returns the time that the page
was last modified, which in this case is the time that value "2" was inserted:
SELECT T1.C2 FROM T1 WHERE T1.C1 = 1;

Related reference:

CREATE TABLE (DB2 SQL)

Checking whether an XML column contains a certain value
You can determine which rows contain any fragment of XML data that you specify.

Procedure

To check whether an XML column contains a certain value:

Specify the XMLEXISTS predicate in the WHERE clause of your SQL statement.
Include the following parameters for the XMLEXISTS predicate:
v An XPath expression that is embedded in a character string literal. Specify an

XPath expression that identifies the XML data that you are looking for. If the
result of the XPath expression is an empty sequence, XMLEXISTS returns false.

Chapter 12. Accessing data 765

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtable.htm#db2z_sql_createtable

If the result is not empty, XMLEXISTS returns true. If the evaluation of the
XPath expression returns an error, XMLEXISTS returns an error.

v The XML column name. Specify this value after the PASSING keyword.

Example

Suppose that you want to return only purchase orders that have a billing address.
Assume that column XMLPO stores the XML purchase order documents and that
the billTo nodes within these documents contain any billing addresses. You can
use the following SELECT statement with the XMLEXISTS predicate:
SELECT XMLPO FROM T1

WHERE XMLEXISTS (’declare namespace ipo="http://www.example.com/IPO";
/ipo:purchaseOrder[billTo]’
PASSING XMLPO);

Related reference:

XMLEXISTS predicate (DB2 SQL)

Accessing DB2 data that is not in a table
You can access DB2 data that is not in a table by returning the value of an SQL
expression in a host variable.

About this task

The expression does not include a column of a table. The three ways to return a
value in a host variable are shown in the following examples.

Example: To set the contents of a host variable to the value of an expression, use
the SET host-variable assignment statement:
EXEC SQL SET :hvrandval = RAND(:hvrand);

Example: To return the value of an expression in a host variable, use the VALUES
INTO statement:
EXEC SQL VALUES RAND(:hvrand)

INTO :hvrandval;

Example: To select the expression from the DB2-provided EBCDIC table, named
SYSIBM.SYSDUMMY1, which consists of one row, use the following statement:
EXEC SQL SELECT RAND(:hvrand)

INTO :hvrandval
FROM SYSIBM.SYSDUMMY1;

Ensuring that queries perform sufficiently
It is important to make sure that any individual queries that are included in your
program are not slowing down the performance of your program.

Procedure

To ensure that queries perform sufficiently:
1. Tune each query in your program by following the general tuning guidelines

for how to write efficient queries.

766 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_xmlexistspredicate.htm#db2z_xmlexistspredicate

2. If you suspect that a query is not as efficient as it could be, monitor its
performance. You can use a number of different functions and techniques to
monitor SQL performance, including the SQL EXPLAIN statement and SQL
optimization tools.

Related concepts:

Investigating SQL performance by using EXPLAIN (DB2 Performance)

Interpreting data access by using EXPLAIN (DB2 Performance)
Related tasks:

Programming applications for performance (DB2 Performance)

Investigating access path problems (DB2 Performance)

Generating visual representations of access plans
Related reference:

EXPLAIN (DB2 SQL)

InfoSphere Optim Query Workload Tuner
Related information:

Tuning SQL with Optim Query Tuner, Part 1: Understanding access paths

Items to include in a batch DL/I program
When you use a batch DL/I program with DB2, you must include certain items in
your program.

A batch DL/I program can issue:
v Any IMS batch call, except ROLS, SETS, and SYNC calls. ROLS and SETS calls

provide intermediate backout point processing, which DB2 does not support.
The SYNC call provides commit point processing without identifying the
commit point with a value. IMS does not allow a SYNC call in batch, and
neither does the DB2 DL/I batch support.
Issuing a ROLS, SETS, or SYNC call in an application program causes a system
abend X'04E' with the reason code X'00D44057' in register 15.

v GSAM calls.
v IMS system services calls.
v Any SQL statements, except COMMIT and ROLLBACK. IMS and CICS

environments do not allow those SQL statements; however, IMS and CICS do
allow ROLLBACK TO SAVEPOINT. You can use the IMS CHKP call to commit
data and the IMS ROLL or ROLB to roll back changes.
Issuing a COMMIT statement causes SQLCODE -925; issuing a ROLLBACK
statement causes SQLCODE -926. Those statements also return SQLSTATE
'2D521'.

v Any call to a standard or traditional access method (for example, QSAM, VSAM,
and so on).

The restart capabilities for DB2 and IMS databases, as well as for sequential data
sets that are accessed through GSAM, are available through the IMS Checkpoint
and Restart facility.

DB2 allows access to both DB2 and DL/I data through the use of the following
DB2 and IMS facilities:

Chapter 12. Accessing data 767

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_useexplain2capturesqlinfo.htm#db2z_useexplain2capturesqlinfo
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_interpretdataaccess.htm#db2z_interpretdataaccess
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_programapplicationperformance.htm#db2z_programapplicationperformance
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_investigateaccesspaths.htm#db2z_investigateaccesspaths
http://publib.boulder.ibm.com/infocenter/dstudio/v4r1/topic/com.ibm.datatools.qrytune.sngqry.doc/topics/reviewingapg.html
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_explain.htm#db2z_sql_explain
http://pic.dhe.ibm.com/infocenter/dstudio/v4r1/topic/com.ibm.datatools.qrytune.nav.doc/topics/helpindex_qt.html
https://ltsbwass001.sby.ibm.com/cms/developerworks/data/library/techarticle/dm-1006optimquerytuner1/index.html

v IMS synchronization calls, which commit and abnormally terminate units of
recovery

v The DB2 IMS attachment facility, which handles the two-phase commit protocol
and enables both systems to synchronize a unit of recovery during a restart after
a failure

v The IMS log, which is used to record the instant of commit

In a data sharing environment, DL/I batch supports group attachment or subgroup
attachment. You can specify a group attachment name instead of a subsystem
name in the SSN parameter of the DDITV02 data set for the DL/I batch job.

Requirements for using DB2 in a DL/I batch job

Using DB2 in a DL/I batch job requires the following changes to the application
program and the job step JCL:
v Add SQL statements to your application program to gain access to DB2 data.

You must then precompile the application program and bind the resulting
DBRM into a package.

v Before you run the application program, use JOBLIB, STEPLIB, or link book to
access the DB2 load library, so that DB2 modules can be loaded.

v In a data set that is specified by a DDITV02 DD statement, specify the program
name and plan name for the application, and the connection name for the DL/I
batch job.
In an input data set or in a subsystem member, specify information about the
connection between DB2 and IMS. The input data set name is specified with a
DDITV02 DD statement. The subsystem member name is specified by the
parameter SSM= on the DL/I batch invocation procedure.

v Optionally specify an output data set using the DDOTV02 DD statement. You
might need this data set to receive messages from the IMS attachment facility
about indoubt threads and diagnostic information.

Program design considerations for using DL/I batch

Address spaces in DL/I batch:
A DL/I batch region is independent of both the IMS control region and the
CICS address space. The DL/I batch region loads the DL/I code into the
application region along with the application program.

Commits in DL/I batch:
Commit IMS batch applications frequently so that you do not use resources
for an extended time.

SQL statements and IMS calls in DL/I batch:
DL/I batch applications cannot use the SQL COMMIT and ROLLBACK
statements; otherwise, you get an SQL error code. DLI/I batch applications
also cannot use ROLS, SETS, and SYNC calls; otherwise the application
program abnormally terminates.

Checkpoint calls in DL/I batch:
Write your program with SQL statements and DL/I calls, and use
checkpoint calls. The frequency of checkpoints depends on the application
design. All checkpoints that are issued by a batch application program
must be unique. At a checkpoint, DL/I positioning is lost, DB2 cursors are
closed (with the possible exception of cursors that are defined as WITH
HOLD), commit duration locks are freed (again with some exceptions), and
database changes are considered permanent to both IMS and DB2.

768 Application Programming and SQL Guide

Application program synchronization in DL/I batch:
You can design an application program without using IMS checkpoints. In
that case, if the program abnormally terminates before completing, DB2
backs out any updates, and you can use the IMS batch backout utility to
back out the DL/I changes.

You can also have IMS dynamically back out the updates within the same
job. You must specify the BKO parameter as 'Y' and allocate the IMS log to
DASD.

You could have a problem if the system on which the job is run fails after
the program terminates but before the job step ends. If you do not have a
checkpoint call before the program ends, DB2 commits the unit of work
without involving IMS. If the system fails before DL/I commits the data,
the DB2 data is out of synchronization with the DL/I changes. If the
system fails during DB2 commit processing, the DB2 data could be
indoubt. When you restart the application program, use the XRST call to
obtain checkpoint information and resolve any DB2 indoubt work units.

Recommendation: Always issue a symbolic checkpoint at the end of any
update job to coordinate the commit of the outstanding unit of work for
IMS and DB2.

Checkpoint and XRST considerations in DL/I batch:
If you use an XRST call, DB2 assumes that any checkpoint that is issued is
a symbolic checkpoint. The options of the symbolic checkpoint call differ
from the options of a basic checkpoint call. Using the incorrect form of the
checkpoint call can cause problems.

If you do not use an XRST call, DB2 assumes that any checkpoint call that
is issued is a basic checkpoint.

To make restart easier, use EBCDIC characters for checkpoint IDs.

When an application program needs to be restartable, you must use
symbolic checkpoint and XRST calls. If you use an XRST call, it must be
the first IMS call that is issued, and it must occur before any SQL
statement. Also, you must use only one XRST call.

Synchronization call abends in DL/I batch:
If the application program contains an incorrect IMS synchronization call
(CHKP, ROLB, ROLL, or XRST), causing IMS to issue a bad status code in
the PCB, DB2 abends the application program. Be sure to test these calls
before placing the programs in production.

Related concepts:
“Input and output data sets for DL/I batch jobs” on page 978

Multiple system consistency (DB2 Administration Guide)
Related tasks:
Chapter 17, “Preparing an application to run on DB2 for z/OS,” on page 913

Chapter 12. Accessing data 769

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_multiplesystemconsistency.htm#db2z_multiplesystemconsistency

770 Application Programming and SQL Guide

Chapter 13. Invoking a user-defined function

You can use a user-defined function wherever you can use a built-in function.

Before you begin

Before you invoke a user-defined function, review the following:
v How DB2 resolves functions
v Cases when DB2 casts arguments for a user-defined function
v Abnormal termination of an external user-defined function
v Syntax for invoking a table function, which is in the from-clause
v Syntax for invoking a user-defined scalar function, which is explained in

function invocation

About this task

You can invoke a sourced or external user-defined scalar function in an SQL
statement wherever you use an expression. For a table function, you can invoke
the user-defined function only in the FROM clause of a SELECT statement. The
invoking SQL statement can be in a stand alone program, a stored procedure, a
trigger body, or another user-defined function.

Recommendations for invoking user-defined functions:

Invoke user-defined functions with external actions and nondeterministic
user-defined functions from select lists: Invoking user-defined functions with
external action from a select list and nondeterministic user-defined functions from
a select list is preferred to invoking these user-defined functions from a predicate.

The access path that DB2 chooses for a predicate determines whether a
user-defined function in that predicate is executed. To ensure that DB2 executes the
external action for each row of the result table, put the user-defined function
invocation in the SELECT list.

Invoking a nondeterministic user-defined function from a predicate can yield
undesirable results. The following example demonstrates this idea.

Suppose that you execute this query:
SELECT COUNTER(), C1, C2 FROM T1 WHERE COUNTER() = 2;

Table T1 looks like this:
C1 C2
-- --
1 b
2 c
3 a

COUNTER is a user-defined function that increments a variable in the scratchpad
each time it is invoked.

DB2 invokes an instance of COUNTER in the predicate 3 times. Assume that
COUNTER is invoked for row 1 first, for row 2 second, and for row 3 third. Then

© Copyright IBM Corp. 1983, 2013 771

COUNTER returns 1 for row 1, 2 for row 2, and 3 for row 3. Therefore, row 2
satisfies the predicate WHERE COUNTER()=2, so DB2 evaluates the SELECT list
for row 2. DB2 uses a different instance of COUNTER in the select list from the
instance in the predicate. Because the instance of COUNTER in the select list is
invoked only once, it returns a value of 1. Therefore, the result of the query is:
COUNTER() C1 C2
--------- -- --

1 2 c

This is not the result you might expect.

The results can differ even more, depending on the order in which DB2 retrieves
the rows from the table. Suppose that an ascending index is defined on column C2.
Then DB2 retrieves row 3 first, row 1 second, and row 2 third. This means that
row 1 satisfies the predicate WHERE COUNTER()=2. The value of COUNTER in
the select list is again 1, so the result of the query in this case is:
COUNTER() C1 C2
--------- -- --

1 1 b

Understand the interaction between scrollable cursors and nondeterministic
user-defined functions or user-defined functions with external actions: When you
use a scrollable cursor, you might retrieve the same row multiple times while the
cursor is open. If the select list of the cursor's SELECT statement contains a
user-defined function, that user-defined function is executed each time you retrieve
a row. Therefore, if the user-defined function has an external action, and you
retrieve the same row multiple times, the external action is executed multiple times
for that row.

A similar situation occurs with scrollable cursors and nondeterministic functions.
The result of a nondeterministic user-defined function can be different each time
you execute the user-defined function. If the select list of a scrollable cursor
contains a nondeterministic user-defined function, and you use that cursor to
retrieve the same row multiple times, the results can differ each time you retrieve
the row.

A nondeterministic user-defined function in the predicate of a scrollable cursor's
SELECT statement does not change the result of the predicate while the cursor is
open. DB2 evaluates a user-defined function in the predicate only once while the
cursor is open.

772 Application Programming and SQL Guide

Related concepts:
“Abnormal termination of an external user-defined function” on page 540
“Cases when DB2 casts arguments for a user-defined function” on page 784
“How DB2 resolves functions” on page 774

Function invocation (DB2 SQL)
Related reference:

from-clause (DB2 SQL)

Determining the authorization ID for invoking user-defined functions
The authorization ID under which a user-defined function is invoked depends on
whether the function was invoked statically or dynamically.

If your user-defined function is invoked:
The authorization ID under which the
user-defined function is invoked is:

statically The owner of the package that contains the
user-defined function invocation.

dynamically Dependent upon the value of bind
parameter DYNAMICRULES for the
package that contains the function
invocation.

If the SQL statements in the user-defined
function package execute: The authorization ID is:

statically The owner of the user-defined function
package

dynamically dependent upon the value of
DYNAMICRULES with which the
user-defined function package was bound.

The DYNAMICRULES bind parameter influences a number of characteristics of an
application program.
Related concepts:
“DYNAMICRULES bind option” on page 957

Ensuring that DB2 executes the intended user-defined function
Multiple functions with the same name can exist in the same schema or in different
schemas. You should take certain actions to ensure that DB2 chooses the correct
function to execute.

About this task

When you use the following techniques, you can simplify function resolution:
v When you invoke a function, use the qualified name. This causes DB2 to search

for functions only in the schema you specify. This has two advantages:
– DB2 is less likely to choose a function that you did not intend to use. Several

functions might fit the invocation equally well. DB2 picks the function whose
schema name is earliest in the SQL path, which might not be the function you
want.

Chapter 13. Invoking a user-defined function 773

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_functioninvocation.htm#db2z_functioninvocation
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_fromclause.htm#db2z_sql_fromclause

– The number of candidate functions is smaller, so DB2 takes less time for
function resolution.

v Cast parameters in a user-defined function invocation to the types in the
user-defined function definition. For example, if an input parameter for
user-defined function FUNC is defined as DECIMAL(13,2), and the value you
want to pass to the user-defined function is an integer value, cast the integer
value to DECIMAL(13,2):
SELECT FUNC(CAST (INTCOL AS DECIMAL(13,2))) FROM T1;

v Use the data type BIGINT for numeric parameters in a user-defined function. If
you use BIGINT as the parameter type, when you invoke the function, you can
pass in SMALLINT, INTEGER, or BIGINT values. If you use SMALLINT or
REAL as the parameter type, you must pass parameters of the same types. For
example, if user-defined function FUNC is defined with a parameter of type
SMALLINT, only an invocation with a parameter of type SMALLINT resolves
correctly. The following call does not resolve to FUNC because the constant 123
is of type INTEGER, not SMALLINT:
SELECT FUNC(123) FROM T1;

v Avoid defining user-defined function string parameters with fixed-length string
types. If you define a parameter with a fixed-length string type (CHAR,
GRAPHIC, or BINARY), you can invoke the user-defined function only with a
fixed-length string parameter. However, if you define the parameter with a
varying-length string type (VARCHAR, VARGRAPHIC, or VARBINARY), you
can invoke the user-defined function with either a fixed-length string parameter
or a varying-length string parameter.
If you must define parameters for a user-defined function as CHAR or BINARY,
and you call the user-defined function from a C program or SQL procedure, you
need to cast the corresponding parameter values in the user-defined function
invocation to CHAR or BINARY to ensure that DB2 invokes the correct function.
For example, suppose that a C program calls user-defined function CVRTNUM,
which takes one input parameter of type CHAR(6). Also suppose that you
declare host variable empnumbr as char empnumbr[6]. When you invoke
CVRTNUM, cast empnumbr to CHAR:
UPDATE EMP
SET EMPNO=CVRTNUM(CHAR(:empnumbr))
WHERE EMPNO = :empnumbr;

How DB2 resolves functions
Function resolution is the process by which DB2 determines which user-defined
function or built-in function to execute. You need to understand the function
resolution process that DB2 uses to ensure that you invoke the user-defined
function that you want to invoke.

Several user-defined functions with the same name but different numbers or types
of parameters can exist in a DB2 subsystem. Several user-defined functions with
the same name can have the same number of parameters, as long as the data types
of any of the first 30 parameters are different. In addition, several user-defined
functions might have the same name as a built-in function. When you invoke a
function, DB2 must determine which user-defined function or built-in function to
execute.

DB2 performs these steps for function resolution:
1. Determines if any function instances are candidates for execution. If no

candidates exist, DB2 issues an SQL error message.

774 Application Programming and SQL Guide

2. Compares the data types of the input parameters to determine which
candidates fit the invocation best.
DB2 does not compare data types for input parameters that are untyped
parameter markers.
For a qualified function invocation, if there are no parameter markers in the
invocation, the result of the data type comparison is one best fit. That best fit is
the choice for execution. If there are parameter markers in the invocation, there
might be more than one best fit. DB2 issues an error if there is more than one
best fit.
For an unqualified function invocation, DB2 might find multiple best fits
because the same function name with the same input parameters can exist in
different schemas, or because there are parameter markers in the invocation.

3. If two or more candidates fit the unqualified function invocation equally well
because the same function name with the same input parameters exists in
different schemas, DB2 chooses the user-defined function whose schema name
is earliest in the SQL path.
For example, suppose functions SCHEMA1.X and SCHEMA2.X fit a function
invocation equally well. Assume that the SQL path is:
"SCHEMA2", "SYSPROC", "SYSIBM", "SCHEMA1", "SYSFUN"

Then DB2 chooses function SCHEMA2.X.
If two or more candidates fit the unqualified function invocation equally well
because the function invocation contains parameter markers, DB2 issues an
error.

The remainder of this section discusses details of the function resolution process
and gives suggestions on how you can ensure that DB2 picks the right function.

How DB2 chooses candidate functions:

An instance of a user-defined function is a candidate for execution only if it meets
all of the following criteria:
v If the function name is qualified in the invocation, the schema of the function

instance matches the schema in the function invocation.
If the function name is unqualified in the invocation, the schema of the function
instance matches a schema in the invoker's SQL path.

v The name of the function instance matches the name in the function invocation.
v The number of input parameters in the function instance matches the number of

input parameters in the function invocation.
v The function invoker is authorized to execute the function instance.
v The type of each of the input parameters in the function invocation matches or

is promotable to the type of the corresponding parameter in the function instance.
If an input parameter in the function invocation is an untyped parameter
marker, DB2 considers that parameter to be a match or promotable.
For a function invocation that passes a transition table, the data type, length,
precision, and scale of each column in the transition table must match exactly
the data type, length, precision, and scale of each column of the table that is
named in the function instance definition. For information about transition
tables, see “Creating triggers” on page 472.

v The create timestamp for a user-defined function must be older than the BIND
or REBIND timestamp for the package or plan in which the user-defined
function is invoked.

Chapter 13. Invoking a user-defined function 775

If DB2 authorization checking is in effect, and DB2 performs an automatic rebind
on a plan or package that contains a user-defined function invocation, any
user-defined functions that were created after the original BIND or REBIND of
the invoking plan or package are not candidates for execution.
If you use an access control authorization exit routine, some user-defined
functions that were not candidates for execution before the original BIND or
REBIND of the invoking plan or package might become candidates for execution
during the automatic rebind of the invoking plan or package.
If a user-defined function is invoked during an automatic rebind, and that
user-defined function is invoked from a trigger body and receives a transition
table, then the form of the invoked function that DB2 uses for function selection
includes only the columns of the transition table that existed at the time of the
original BIND or REBIND of the package or plan for the invoking program.
During an automatic rebind, DB2 does not consider built-in functions for
function resolution if those built-in functions were introduced in a later release
of DB2 than the release in which the BIND or REBIND of the invoking plan or
package occurred.
When you explicitly bind or rebind a plan or package, the plan or package
receives a release dependency marker. When DB2 performs an automatic rebind
of a query that contains a function invocation, a built-in function is a candidate
for function resolution only if the release dependency marker of the built-in
function is the same as or lower than the release dependency marker of the plan
or package that contains the function invocation.

Example: Suppose that in this statement, the data type of A is SMALLINT:
SELECT USER1.ADDTWO(A) FROM TABLEA;

Two instances of USER1.ADDTWO are defined: one with an input parameter of
type INTEGER and one with an input parameter of type DECIMAL. Both function
instances are candidates for execution because the SMALLINT type is promotable
to either INTEGER or DECIMAL. However, the instance with the INTEGER type is
a better fit because INTEGER is higher in the list than DECIMAL.

How DB2 chooses the best fit among candidate functions:

More than one function instance might be a candidate for execution. In that case,
DB2 determines which function instances are the best fit for the invocation by
comparing parameter data types.

If the data types of all parameters in a function instance are the same as those in
the function invocation, that function instance is a best fit. If no exact match exists,
DB2 compares data types in the parameter lists from left to right, using this
method:
1. DB2 compares the data types of the first parameter in the function invocation

to the data type of the first parameter in each function instance.
If the first parameter in the invocation is an untyped parameter marker, DB2
does not do the comparison.

2. For the first parameter, if one function instance has a data type that fits the
function invocation better than the data types in the other instances, that
function is a best fit.

3. If the data types of the first parameter are the same for all function instances,
or if the first parameter in the function invocation is an untyped parameter
marker, DB2 repeats this process for the next parameter. DB2 continues this
process for each parameter until it finds a best fit.

776 Application Programming and SQL Guide

Example of function resolution: Suppose that a program contains the following
statement:
SELECT FUNC(VCHARCOL,SMINTCOL,DECCOL) FROM T1;

In user-defined function FUNC, VCHARCOL has data type VARCHAR,
SMINTCOL has data type SMALLINT, and DECCOL has data type DECIMAL.
Also suppose that two function instances with the following definitions meet the
appropriate criteria and are therefore candidates for execution.
Candidate 1:
CREATE FUNCTION FUNC(VARCHAR(20),INTEGER,DOUBLE)

RETURNS DECIMAL(9,2)
EXTERNAL NAME ’FUNC1’
PARAMETER STYLE SQL
LANGUAGE COBOL;

Candidate 2:
CREATE FUNCTION FUNC(VARCHAR(20),REAL,DOUBLE)

RETURNS DECIMAL(9,2)
EXTERNAL NAME ’FUNC2’
PARAMETER STYLE SQL
LANGUAGE COBOL;

DB2 compares the data type of the first parameter in the user-defined function
invocation to the data types of the first parameters in the candidate functions.
Because the first parameter in the invocation has data type VARCHAR, and both
candidate functions also have data type VARCHAR, DB2 cannot determine the
better candidate based on the first parameter. Therefore, DB2 compares the data
types of the second parameters.

The data type of the second parameter in the invocation is SMALLINT. INTEGER,
which is the data type of candidate 1, is a better fit to SMALLINT than REAL,
which is the data type of candidate 2. Therefore, candidate 1 is the DB2 choice for
execution.
Related concepts:

Promotion of data types (DB2 SQL)
Related tasks:
“Creating triggers” on page 472
Related information:

Exit routines (DB2 Administration Guide)

Checking how DB2 resolves functions by using
DSN_FUNCTION_TABLE

Because multiple user-defined functions can have the same name, you should
ensure that DB2 invokes the function that you intended to invoke. One way to
check that the correct function was invoked is to use a function table called
DSN_FUNCTION_TABLE.

Procedure

To check how DB2 resolves a function by using DSN_FUNCTION_TABLE:
1. If your_userID.DSN_FUNCTION_TABLE does not already exist, create this table

by following the instructions in DSN_FUNCTION_TABLE (DB2 Performance).

Chapter 13. Invoking a user-defined function 777

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_promotionofdatatypes.htm#db2z_promotionofdatatypes
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_writingexitroutine.htm#db2z_writingexitroutine
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_dsnfunctiontable.htm#db2z_dsnfunctiontable

2. Populate your_userID.DSN_FUNCTION_TABLE with information about which
functions are invoked by a particular SQL statement by performing one of the
following actions:
v Execute the EXPLAIN statement on the SQL statement.
v Ensure that the program that contains the SQL statement is bound with

EXPLAIN(YES) and run the program.

DB2 puts a row in your_userID.DSN_FUNCTION_TABLE for each function that
is referenced in each SQL statement.

3. Check the rows that were added to your_userID.DSN_FUNCTION_TABLE to
ensure that the appropriate function was invoked. Use the following columns
to help you find applicable rows: QUERYNO, APPLNAME, PROGNAM,
COLLID, and EXPLAIN_TIME.

Related reference:

BIND and REBIND options (DB2 Commands)

EXPLAIN (DB2 SQL)

DSN_FUNCTION_TABLE
The function table, DSN_FUNCTION_TABLE, contains descriptions of functions
that are used in specified SQL statements.

PSPI

Recommendation: Do not manually insert data into system-maintained EXPLAIN
tables, and use care when deleting obsolete EXPLAIN table data. The data is
intended to be manipulated only by the DB2 EXPLAIN function and optimization
tools. Certain optimization tools depend on instances of the various EXPLAIN
tables. Be careful not to delete data from or drop instances EXPLAIN tables that
are created for these tools.

Qualifiers

Your subsystem or data sharing group can contain more than one of these tables:

SYSIBM
One instance of each EXPLAIN table can be created with the SYSIBM
qualifier. DB2 and SQL optimization tools might use these tables. These
tables are created when you run job DSNTIJSG when you install or migrate
DB2.

userID You can create additional instances of EXPLAIN tables that are qualified by
user ID. These tables are populated with statement cost information when
you issue the EXPLAIN statement or bind. They are also populated when
you specify EXPLAIN(YES) or EXPLAIN(ONLY) in a BIND or REBIND
command. SQL optimization tools might also create EXPLAIN tables that
are qualified by a user ID. You can find the SQL statement for creating an
instance of these tables in member DSNTESC of the SDSNSAMP library.

Sample CREATE TABLE statement

You can find a sample CREATE TABLE statement for each EXPLAIN table in
member DSNTESC of the SDSNSAMP library.

778 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_explain.htm#db2z_sql_explain

Column descriptions

PSPI

The following table describes the columns of DSN_FUNCTION_TABLE.

Table 126. Descriptions of columns in DSN_FUNCTION_TABLE

Column name Data type Description

QUERYNO INTEGER NOT
NULL WITH
DEFAULT

A number that identifies the statement that is being explained. The
origin of the value depends on the context of the row:

For rows produced by EXPLAIN statements
The number specified in the QUERYNO clause, which is an
optional part of the SELECT, INSERT, UPDATE, MERGE,
and DELETE statement syntax.

For rows not produced by EXPLAIN statements
DB2 assigns a number that is based on the line number of
the SQL statement in the source program.

When the values of QUERYNO are based on the statement number
in the source program, values that exceed 32767 are reported as 0.
However, in certain rare cases, the value is not guaranteed to be
unique.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, if the QUERYNO clause is specified, then
its value is used by DB2. Otherwise DB2 assigns a number based on
the line number of the SQL statement in the non-inline SQL
function, native SQL procedure.

QBLOCKNO INTEGER NOT
NULL WITH
DEFAULT

A number that identifies each query block within a query. The value
of the numbers are not in any particular order, nor are they
necessarily consecutive.

APPLNAME VARCHAR(24) NOT
NULL WITH
DEFAULT

The name of the application plan for the row. Applies only to
embedded EXPLAIN statements that are executed from a plan or to
statements that are explained when binding a plan. A blank
indicates that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

PROGNAME VARCHAR(128)
NOT NULL WITH
DEFAULT

The name of the program or package containing the statement being
explained. Applies only to embedded EXPLAIN statements and to
statements explained as the result of binding a plan or package. A
blank indicates that the column is not applicable.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

Chapter 13. Invoking a user-defined function 779

Table 126. Descriptions of columns in DSN_FUNCTION_TABLE (continued)

Column name Data type Description

COLLID VARCHAR(128)
NOT NULL WITH
DEFAULT

The collection ID:

DSNDYNAMICSQLCACHE
The row originates from the dynamic statement cache

DSNEXPLAINMODEYES
The row originates from an application that specifies YES
for the value of the CURRENT EXPLAIN MODE special
register.

DSNEXPLAINMODEEXPLAIN
The row originates from an application that specifies
EXPLAIN for the value of the CURRENT EXPLAIN MODE
special register.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

GROUP_MEMBER VARCHAR(24) NOT
NULL WITH
DEFAULT

The member name of the DB2 that executed EXPLAIN. The column
is blank if the DB2 subsystem was not in a data sharing
environment when EXPLAIN was executed.

EXPLAIN_TIME TIMESTAMP NOT
NULL WITH
DEFAULT

The time when the EXPLAIN information was captured:

All cached statements
When the statement entered the cache, in the form of a
full-precision timestamp value.

Non-cached static statements
When the statement was bound, in the form of a full
precision timestamp value.

Non-cached dynamic statements
When EXPLAIN was executed, in the form of a value
equivalent to a CHAR(16) representation of the time
appended by 4 zeros.

SCHEMA_NAME VARCHAR(128)
NOT NULL WITH
DEFAULT

The schema name of the function invoked in the explained
statement.

FUNCTION_NAME VARCHAR(128)
NOT NULL WITH
DEFAULT

The name of the function invoked in the explained statement.

SPEC_FUNC_NAME VARCHAR(128)
NOT NULL WITH
DEFAULT

The specific name of the function invoked in the explained
statement.

FUNCTION_TYPE CHAR(2) NOT
NULL WITH
DEFAULT

The type of function invoked in the explained statement. Possible
values are:
CU Column function
SU Scalar function
TU Table function

VIEW_CREATOR VARCHAR(128)
NOT NULL WITH
DEFAULT

If the function specified in the FUNCTION_NAME column is
referenced in a view definition, the creator of the view. Otherwise,
blank.

VIEW_NAME VARCHAR(128)
NOT NULL WITH
DEFAULT

If the function specified in the FUNCTION_NAME column is
referenced in a view definition, the name of the view. Otherwise,
blank.

780 Application Programming and SQL Guide

Table 126. Descriptions of columns in DSN_FUNCTION_TABLE (continued)

Column name Data type Description

PATH VARCHAR(2048)
NOT NULL WITH
DEFAULT

The value of the SQL path that was used to resolve the schema
name of the function.

FUNCTION_TEXT VARCHAR(1500)
NOT NULL WITH
DEFAULT

The text of the function reference (the function name and
parameters). If the function reference is over 100 bytes, this column
contains the first 100 bytes. For functions specified in infix notation,
FUNCTION_TEXT contains only the function name. For example,
for a function named /, which overloads the SQL divide operator, if
the function reference is A/B, FUNCTION_TEXT contains only /.

FUNC_VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

For a version of a non-inline SQL scalar function, this column
contains the version identifier. For all other cases, this column
contains a zero length string. A version of a non-inline SQL scalar
function is defined in the SYSIBM.SYSROUTINES table with
ORIGIN='Q', FUNCTION_TYPE='S', INLINE='N', and VERSION
column containing the version identifier.

SECURE CHAR(1) NOT
NULL WITH
DEFAULT

Whether the user-defined function is secure.

SECTNOI INTEGER NOT
NULL WITH
DEFAULT

The section number of the statement. The value is taken from the
same column in SYSPACKSTMT or SYSSTMT tables and can be used
to join tables to reconstruct the access path for the statement. This
column is applicable only for static statements. The default value of
-1 indicates EXPLAIN information that was captured in Version 9 or
earlier.

VERSION VARCHAR(122)
NOT NULL WITH
DEFAULT

The version identifier for the package. Applies only to an embedded
EXPLAIN statement executed from a package or to a statement that
is explained when binding a package. A blank indicates that the
column is not applicable.

When the SQL statement is embedded in a non-inline SQL function
or native SQL procedure, this column is not used and is blank.

Chapter 13. Invoking a user-defined function 781

Table 126. Descriptions of columns in DSN_FUNCTION_TABLE (continued)

Column name Data type Description

EXPANSION_REASON CHAR(2) NOT
NULL WITH
DEFAULT

This column applies to only statements that reference archive tables
or temporal tables. For other statements, this column is blank.

Indicates the effect of the CURRENT TEMPORAL BUSINESS_TIME
special register, the CURRENT TEMPORAL SYSTEM_TIME special
register, and the SYSIBMADM.GET_ARCHIVE built-in global
variable. These items are controlled by the BUSTIMESENSITIVE,
SYSTIMESENSITIVE, and ARCHIVESENSITIVE bind options.

DB2 implicitly adds certain syntax to the query if one of the
following conditions are true:

v The SYSIBMADM.GET_ARCHIVE global variable is set to Y and
the ARCHIVESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL BUSINESS_TIME special register is
not null and the BUSTIMESENSITIVE bind option is set to YES

v The CURRENT TEMPORAL SYSTEM_TIME special register is not
null and the SYSTIMESENSITIVE bind option is set to YES

This column can have one of the following values:

A The query contains implicit query transformation as a result
of the SYSIBMADM.GET_ARCHIVE built-in global variable.

B The query contains implicit query transformation as a result
of the CURRENT TEMPORAL BUSINESS_TIME special
register.

S The query contains implicit query transformation as a result
of the CURRENT TEMPORAL SYSTEM_TIME special
register.

SB The query contains implicit query transformation as a result
of the CURRENT TEMPORAL SYSTEM_TIME special
register and the CURRENT TEMPORAL BUSINESS_TIME
special register.

blank The query does not contain implicit query transformation.

PSPI

Related tasks:

Checking how DB2 resolves functions by using DSN_FUNCTION_TABLE (DB2
Application programming and SQL)

Restrictions when passing arguments with distinct types to functions
Because DB2 enforces strong typing when you pass arguments to a function, you
must follow certain rules when passing arguments with distinct types to functions.

Adhere to the following rules:
v You can pass arguments that have distinct types to a function if either of the

following conditions is true:
– A version of the function that accepts those distinct types is defined.

This also applies to infix operators. If you want to use one of the five built-in
infix operators (||, /, *, +, -) with your distinct types, you must define a
version of that operator that accepts the distinct types.

782 Application Programming and SQL Guide

||
|
|

|
|

|
|
|
|
|

|
|

|
|

|
|

|
|

|

||
|

||
|
|

||
|
|

||
|
|
|

||

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_checkfunctionresolution.htm#db2z_checkfunctionresolution
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_checkfunctionresolution.htm#db2z_checkfunctionresolution

– You can cast your distinct types to the argument types of the function.
v If you pass arguments to a function that accepts only distinct types, the

arguments you pass must have the same distinct types as in the function
definition. If the types are different, you must cast your arguments to the
distinct types in the function definition.
If you pass constants or host variables to a function that accepts only distinct
types, you must cast the constants or host variables to the distinct types that the
function accepts.

The following examples demonstrate how to use distinct types as arguments in
function invocations.

Example: Defining a function with distinct types as arguments: Suppose that you
want to invoke the built-in function HOUR with a distinct type that is defined like
this:
CREATE DISTINCT TYPE FLIGHT_TIME AS TIME;

The HOUR function takes only the TIME or TIMESTAMP data type as an
argument, so you need a sourced function that is based on the HOUR function that
accepts the FLIGHT_TIME data type. You might declare a function like this:
CREATE FUNCTION HOUR(FLIGHT_TIME)

RETURNS INTEGER
SOURCE SYSIBM.HOUR(TIME);

Example: Casting function arguments to acceptable types: Another way you can
invoke the HOUR function is to cast the argument of type FLIGHT_TIME to the
TIME data type before you invoke the HOUR function. Suppose table
FLIGHT_INFO contains column DEPARTURE_TIME, which has data type
FLIGHT_TIME, and you want to use the HOUR function to extract the hour of
departure from the departure time. You can cast DEPARTURE_TIME to the TIME
data type, and then invoke the HOUR function:
SELECT HOUR(CAST(DEPARTURE_TIME AS TIME)) FROM FLIGHT_INFO;

Example: Using an infix operator with distinct type arguments: Suppose you want
to add two values of type US_DOLLAR. Before you can do this, you must define a
version of the + function that accepts values of type US_DOLLAR as operands:
CREATE FUNCTION "+"(US_DOLLAR,US_DOLLAR)

RETURNS US_DOLLAR
SOURCE SYSIBM."+"(DECIMAL(9,2),DECIMAL(9,2));

Because the US_DOLLAR type is based on the DECIMAL(9,2) type, the source
function must be the version of + with arguments of type DECIMAL(9,2).

Example: Casting constants and host variables to distinct types to invoke a
user-defined function: Suppose function CDN_TO_US is defined like this:
CREATE FUNCTION EURO_TO_US(EURO)

RETURNS US_DOLLAR
EXTERNAL NAME ’CDNCVT’
PARAMETER STYLE SQL
LANGUAGE C;

This means that EURO_TO_US accepts only the EURO type as input. Therefore, if
you want to call CDN_TO_US with a constant or host variable argument, you
must cast that argument to distinct type EURO:
SELECT * FROM US_SALES

WHERE TOTAL = EURO_TO_US(EURO(:H1));

Chapter 13. Invoking a user-defined function 783

SELECT * FROM US_SALES
WHERE TOTAL = EURO_TO_US(EURO(10000));

Cases when DB2 casts arguments for a user-defined function
In certain situations, when you invoke a user-defined function, DB2 casts your
input argument values to different data types and lengths.

Whenever you invoke a user-defined function, DB2 assigns your input argument
values to parameters with the data types and lengths in the user-defined function
definition.

When you invoke a user-defined function that is sourced on another function, DB2
casts your arguments to the data types and lengths of the sourced function.

The following example demonstrates what happens when the parameter
definitions of a sourced function differ from those of the function on which it is
sourced.

Suppose that external user-defined function TAXFN1 is defined like this:
CREATE FUNCTION TAXFN1(DEC(6,0))

RETURNS DEC(5,2)
PARAMETER STYLE SQL
LANGUAGE C
EXTERNAL NAME TAXPROG;

Sourced user-defined function TAXFN2, which is sourced on TAXFN1, is defined
like this:
CREATE FUNCTION TAXFN2(DEC(8,2))

RETURNS DEC(5,0)
SOURCE TAXFN1;

You invoke TAXFN2 using this SQL statement:
UPDATE TB1

SET SALESTAX2 = TAXFN2(PRICE2);

TB1 is defined like this:
CREATE TABLE TB1

(PRICE1 DEC(6,0),
SALESTAX1 DEC(5,2),
PRICE2 DEC(9,2),
SALESTAX2 DEC(7,2));

Now suppose that PRICE2 has the DECIMAL(9,2) value 0001234.56. DB2 must first
assign this value to the data type of the input parameter in the definition of
TAXFN2, which is DECIMAL(8,2). The input parameter value then becomes
001234.56. Next, DB2 casts the parameter value to a source function parameter,
which is DECIMAL(6,0). The parameter value then becomes 001234. (When you
cast a value, that value is truncated, rather than rounded.)

Now, if TAXFN1 returns the DECIMAL(5,2) value 123.45, DB2 casts the value to
DECIMAL(5,0), which is the result type for TAXFN2, and the value becomes 00123.
This is the value that DB2 assigns to column SALESTAX2 in the UPDATE
statement.

784 Application Programming and SQL Guide

Casting of parameter markers

You can use untyped parameter markers in a function invocation. However, DB2
cannot compare the data types of untyped parameter markers to the data types of
candidate functions. Therefore, DB2 might find more than one function that
qualifies for invocation. If this happens, an SQL error occurs. To ensure that DB2
picks the right function to execute, cast the parameter markers in your function
invocation to the data types of the parameters in the function that you want to
execute. For example, suppose that two versions of function FX exist. One version
of FX is defined with a parameter of type of DECIMAL(9,2), and the other is
defined with a parameter of type INTEGER. You want to invoke FX with a
parameter marker, and you want DB2 to execute the version of FX that has a
DECIMAL(9,2) parameter. You need to cast the parameter marker to a
DECIMAL(9,2) type by using a CAST specification:

SELECT FX(CAST(? AS DECIMAL(9,2))) FROM T1;

Related concepts:

Assignment and comparison (DB2 SQL)

Chapter 13. Invoking a user-defined function 785

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_assignmentandcomparison.htm#db2z_assignmentandcomparison

786 Application Programming and SQL Guide

Chapter 14. Calling a stored procedure from your application

To run a stored procedure, you can either call it from a client program or invoke it
from the command line processor.

Before you begin

Before you call a stored procedure, ensure that you have all of the following
authorizations that are required to run the stored procedure:
v Authorization to execute the stored procedure that is referenced in the CALL

statement.
The authorizations that you need depend on whether the form of the CALL
statement is CALL procedure-name or CALL :host-variable.

v Authorization to execute any triggers or user-defined functions that the stored
procedure invokes.

v Authorization to execute the stored procedure package and any packages under
the stored procedure package.
For example, if the stored procedure invokes any user-defined functions, you
need authorization to execute the packages for those user-defined functions.

About this task

An application program that calls a stored procedure can perform one or more of
the following actions:
v Call more than one stored procedure.
v Call a single stored procedure more than once at the same or at different levels

of nesting. However, do not assume that the variables for the stored procedures
persist between calls.
If a stored procedure runs as a main program, before each call, Language
Environment reinitializes the storage that is used by the stored procedure.
Program variables for the stored procedure do not persist between calls.
If a stored procedure runs as a subprogram, Language Environment does not
initialize the storage between calls. Program variables for the stored procedure
can persist between calls. However, you should not assume that your program
variables are available from one stored procedure call to another call for the
following reasons:
– Stored procedures from other users can run in an instance of Language

Environment between two executions of your stored procedure.
– Consecutive executions of a stored procedure might run in different stored

procedure address spaces.
– The z/OS operator might refresh Language Environment between two

executions of your stored procedure.
v Call a local or remote stored procedure.

If both the client and server application environments support two-phase
commit, the coordinator controls updates between the application, the server,
and the stored procedures. If either side does not support two-phase commit,
updates fail.

v Mix CALL statements with other SQL statements.
v Use any of the DB2 attachment facilities.

© Copyright IBM Corp. 1983, 2013 787

DB2 runs stored procedures under the DB2 thread of the calling application, which
means that the stored procedures are part of the caller's unit of work.

JDBC and ODBC applications: These instructions do not apply to JDBC and
ODBC applications. Instead, see the following information for how to call stored
procedures from those applications:
v For ODBC applications, see Stored procedure calls in a DB2 ODBC application

(DB2 Programming for ODBC).
v For JDBC applications, see Calling stored procedures in JDBC applications (DB2

Application Programming for Java)

Procedure

To call a stored procedure from your application:
1. Assign values to the IN and INOUT parameters.
2. Optional: To improve application performance, initialize the length of LOB

output parameters to zero.
3. If the stored procedure exists at a remote location, perform the following

actions:
a. Assign values to the OUT parameters.

When you call a stored procedure at a remote location, the local DB2
server cannot determine whether the parameters are input (IN) or output
(OUT or INOUT) parameters. Therefore, you must initialize the values of
all output parameters before you call a stored procedure at a remote
location.

b. Optional: Issue an explicit CONNECT statement to connect to the remote
server.
If you do not issue this statement explicitly, you can implicitly connect to
the server by using a three-part name to identify the stored procedure in
the next step.
The advantage of issuing an explicit CONNECT statement is that your
CALL statement, which is described in the next step, is portable to other
operating systems. The advantage of implicitly connecting is that you do
not need to issue this extra CONNECT statement.

Requirement: When deciding whether to implicitly or explicitly connect to
the remote server, consider the requirement for programs that execute the
ASSOCIATE LOCATORS or DESCRIBE PROCEDURE statements. You
must use the same form of the procedure name on the CALL statement
and on the ASSOCIATE LOCATORS or DESCRIBE PROCEDURE
statement.

4. Invoke the stored procedure with the SQL CALL statement. Make sure that
you pass parameter data types that are compatible.
If the stored procedure exists on a remote server and you did not issue an
explicit CONNECT statement, specify a three-part name to identify the stored
procedure, and implicitly connect to the server where the stored procedure is
located.
For native SQL procedures, the active version of the stored procedure is
invoked by default. Optionally, you can specify a version of the stored
procedure other than the active version.
To allow null values for parameters, use indicator variables.

5. Optional: Retrieve the status of the procedure.

788 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.odbc/src/tpc/db2z_odbcspcall.htm#db2z_odbcspcall
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.odbc/src/tpc/db2z_odbcspcall.htm#db2z_odbcspcall
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.java/src/tpc/imjcc_tjvcscsp.htm#imjcc_tjvcscsp
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.java/src/tpc/imjcc_tjvcscsp.htm#imjcc_tjvcscsp

6. Process any output, including the OUT and INOUT parameters.
7. If the stored procedure returns multiple result sets, retrieve those result sets.

Recommendation: Close the result sets after you retrieve them, and issue
frequent commits to prevent DB2 storage shortages and EDM POOL FULL
conditions.

8. For PL/I applications, also perform the following actions:
a. Include the run time option NOEXECOPS in your source code.
b. Specify the compile-time option SYSTEM(MVS).

These additional steps ensure that the linkage conventions work correctly on
z/OS.

9. For C applications, include the following line in your source code:
#pragma runopts(PLIST(OS))

This code ensures that the linkage conventions work correctly on z/OS.
This option is not applicable to other operating systems. If you plan to use a
C stored procedure on other platforms besides z/OS, use one of the forms of
conditional compilation, as shown in the following example, to include this
option only when you compile on z/OS.

Form 1:
#ifdef MVS
#pragma runopts(PLIST(OS))
#endif

Form 2:
#ifndef WKSTN
#pragma runopts(PLIST(OS))
#endif

10. Prepare the application as you would any other application by precompiling,
compiling, and link-editing the application and binding the DBRM.
If the application calls a remote stored procedure, perform the following
additional steps when you bind the DBRM:
v Bind the DBRM into a package at the local DB2 server. Use the bind option

DBPROTOCOL(DRDA). If the stored procedure name cannot be resolved
until run time, also specify the bind option VALIDATE(RUN). The stored
procedure name might not be resolved at run time if you use a variable for
the stored procedure name or if the stored procedure exists on a remote
server.

v Bind the DBRM into a package at the remote DB2 server. If your client
program accesses multiple servers, bind the program at each server.

v Bind all packages into a plan at the local DB2 server. Use the bind option
DBPROTOCOL(DRDA).

11. Ensure that stored procedure completed successfully.
If a stored procedure abnormally terminates, DB2 performs the following
actions:
v The calling program receives an SQL error as notification that the stored

procedure failed.
v DB2 places the calling program's unit of work in a must-rollback state.
v DB2 stops the stored procedure, and subsequent calls fail, in either of the

following conditions:

Chapter 14. Calling a stored procedure from your application 789

– The number of abnormal terminations equals the STOP AFTER n
FAILURES value for the stored procedure.

– The number of abnormal terminations equals the default MAX ABEND
COUNT value for the subsystem.

v The stored procedure does not handle the abend condition, and DB2
refreshes the environment for Language Environment to recover the storage
that the application uses. In most cases, the environment does not need to
restart.

v A data set is allocated in the DD statement CEEDUMP in the JCL procedure
that starts the stored procedures address space. In this case, Language
Environment writes a small diagnostic dump to this data set. Use the
information in the dump to debug the stored procedure.

v In a data sharing environment, the stored procedure is placed in STOPABN
status only on the member where the abends occurred. A calling program
can invoke the stored procedure from other members of the data sharing
group. The status on all other members is STARTED.

Example

Example of simple CALL statement: The following example shows a simple
CALL statement that you might use to invoke stored procedure A:
EXEC SQL CALL A (:EMP, :PRJ, :ACT, :EMT, :EMS, :EME, :TYPE, :CODE);

In this example, :EMP, :PRJ, :ACT, :EMT, :EMS, :EME, :TYPE, and :CODE are host
variables that you have declared earlier in your application program.

Example of using a host structure for multiple parameter values: Instead of
passing each parameter separately, as shown in the example of a simple CALL
statement, you can pass them together as a host structure. For example, assume
that you defined the following host structure in your application:
struct {

char EMP[7];
char PRJ[7];
short ACT;
short EMT;
char EMS[11];
char EME[11];

} empstruc;

You can then issue the following CALL statement to invoke stored procedure A:
EXEC SQL CALL A (:empstruc, :TYPE, :CODE);

Examples of calling a remote stored procedure: Suppose that stored procedure A
is in schema SCHEMAA at remote location LOCA. To invoke stored procedure A,
you can explicitly or implicitly connect to the server:
v The following example shows how to explicitly connect to LOCA and then issue

a CALL statement:
EXEC SQL CONNECT TO LOCA;
EXEC SQL CALL SCHEMAA.A (:EMP, :PRJ, :ACT, :EMT, :EMS, :EME,

:TYPE, :CODE);

v The following example shows how to implicitly connect to LOCA by specifying
the three-part name for stored procedure A in the CALL statement:
EXEC SQL CALL LOCA.SCHEMAA.A (:EMP, :PRJ, :ACT, :EMT, :EMS,

:EME, :TYPE, :CODE);

790 Application Programming and SQL Guide

Example of passing parameters that can have null values: The preceding
examples assume that none of the input parameters can have null values. The
following example shows how to allow for null values for the parameters by
passing indicator variables in the parameter list:
EXEC SQL CALL A (:EMP :IEMP, :PRJ :IPRJ, :ACT :IACT,

:EMT :IEMT, :EMS :IEMS, :EME :IEME,
:TYPE :ITYPE, :CODE :ICODE);

In this example, :IEMP, :IPRJ, :IACT, :IEMT, :IEMS, :IEME, :ITYPE, and :ICODE are
indicator variables for the parameters.

Example of passing string constants and null values: The following example
CALL statement passes integer and character string constants, a null value, and
several host variables:
EXEC SQL CALL A (’000130’, ’IF1000’, 90, 1.0, NULL, ’2009-10-01’,

:TYPE, :CODE);

Example of using a host variable for the stored procedure name: The following
example CALL statement uses a host variable for the name of the stored
procedure:
EXEC SQL CALL :procnm (:EMP, :PRJ, :ACT, :EMT, :EMS, :EME,

:TYPE, :CODE);

Assume that the stored procedure name is A. The host variable procnm is a
character variable of length 255 or less that contains the value 'A'. Use this
technique if you do not know in advance the name of the stored procedure, but
you do know the parameter list convention.

Example of using an SQLDA to pass parameters in a single structure: The
following example CALL statement shows how to pass parameters in a single
structure, the SQLDA, rather than as separate host variables:
EXEC SQL CALL A USING DESCRIPTOR :sqlda;

sqlda is the name of an SQLDA.

One advantage of using an SQLDA is that you can change the encoding scheme of
the stored procedure parameter values. For example, if the subsystem on which the
stored procedure runs has an EBCDIC encoding scheme, and you want to retrieve
data in ASCII CCSID 437, you can specify the CCSIDs for the output parameters in
the SQLVAR fields of the SQLDA.

This technique for overriding the CCSIDs of parameters is the same as the
technique for overriding the CCSIDs of variables. This technique involves
including dynamic SQL for varying-list SELECT statements in your program.
When you use this technique, the defined encoding scheme of the parameter must
be different from the encoding scheme that you specify in the SQLDA. Otherwise,
no conversion occurs.

The defined encoding scheme for the parameter is the encoding scheme that you
specify in the CREATE PROCEDURE statement. If you do not specify an encoding
scheme in this statement, the defined encoding scheme for the parameter is the
default encoding scheme for the subsystem.

Chapter 14. Calling a stored procedure from your application 791

Example of a reusable CALL statement: Because the following example CALL
statement uses a host variable name for the stored procedure and an SQLDA for
the parameter list, it can be reused to call different stored procedures with different
parameter lists:
EXEC SQL CALL :procnm USING DESCRIPTOR :sqlda;

Your client program must assign a stored procedure name to the host variable
procnm and load the SQLDA with the parameter information before issuing the
SQL CALL statement.
Related concepts:
“Stored procedure parameters” on page 547
Related tasks:
“Including dynamic SQL for varying-list SELECT statements in your program” on
page 167
Chapter 17, “Preparing an application to run on DB2 for z/OS,” on page 913

Managing authorization for stored procedures (Managing Security)

Temporarily overriding the active version of a native SQL procedure (DB2
Application programming and SQL)
Related reference:

Statements (DB2 SQL)

Sample scenarios of program preparations (DB2 9 for z/OS Stored Procedures:
Through the CALL and Beyond)

Passing large output parameters to stored procedures by using
indicator variables

If any output parameters occupy a large amount of storage, passing the entire
storage area to a stored procedure can degrade performance. Instead, consider
using indicator variables in the calling program to pass only a 2-byte area to the
stored procedure and receive the entire area from the stored procedure.

About this task

You can use the following procedure regardless of whether the linkage convention
for the stored procedure is GENERAL, GENERAL WITH NULLS, or SQL.

Procedure

To pass large output parameters to stored procedures by using indicator variables:
1. Declare an indicator variable for every large output parameter in the stored

procedure. If you are using the GENERAL WITH NULLS or SQL linkage
convention, you must declare indicator variables for all of your parameters. In
this case, you do not need to declare another indicator variable.

2. Assign a negative value to each indicator variable that is associated with a
large output variable.

3. Include the indicator variables in the CALL statement.

Example

For example, suppose that a stored procedure that is defined with the GENERAL
linkage convention takes one integer input parameter and one character output

792 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_protectstoredprocedure.htm#db2z_protectstoredprocedure
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_tempoverrideactiveversionsp.htm#db2z_tempoverrideactiveversionsp
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_tempoverrideactiveversionsp.htm#db2z_tempoverrideactiveversionsp
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_statementsintro.htm#db2z_sql_statementsintro
http://www.redbooks.ibm.com/redbooks/SG247604/wwhelp/wwhimpl/js/html/wwhelp.htm?href=17-2-2.htm
http://www.redbooks.ibm.com/redbooks/SG247604/wwhelp/wwhimpl/js/html/wwhelp.htm?href=17-2-2.htm

parameter of length 6000. You do not want to pass the 6000 byte storage area to
the stored procedure. The following example PL/I program passes only 2 bytes to
the stored procedure for the output variable and receives all 6000 bytes from the
stored procedure:
DCL INTVAR BIN FIXED(31); /* This is the input variable */
DCL BIGVAR(6000); /* This is the output variable */
DCL I1 BIN FIXED(15); /* This is an indicator variable */...
I1 = -1; /* Setting I1 to -1 causes only */

/* a two byte area representing */
/* I1 to be passed to the */
/* stored procedure, instead of */
/* the 6000 byte area for BIGVAR*/

EXEC SQL CALL PROCX(:INTVAR, :BIGVAR INDICATOR :I1);

Related reference:
“Linkage conventions for external stored procedures” on page 610

Data types for calling stored procedures
The data types that are available for calling applications are the same as the data
types that are used when retrieving or updating stored procedures.

The format of the parameters that you pass in the CALL statement in an
application must be compatible with the data types of the parameters in the
CREATE PROCEDURE statement.

For languages other than REXX

For all data types except LOBs, ROWIDs, locators, and VARCHARs (for C
language), see the tables listed in the following table for the host data types that
are compatible with the data types in the stored procedure definition.

Table 127. Listing of tables of compatible data types

Language Compatible data types table

Assembler “Equivalent SQL and assembler data types” on
page 240

C “Equivalent SQL and C data types” on page 280

COBOL “Equivalent SQL and COBOL data types” on
page 331

PL/I “Equivalent SQL and PL/I data types” on page
401

Calling a stored procedure from a REXX procedure
The format of the parameters that you pass in the CALL statement in a REXX
procedure must be compatible with the data types of the parameters in the
CREATE PROCEDURE statement.

The following table lists each SQL data type that you can specify for the
parameters in the CREATE PROCEDURE statement and the corresponding format
for a REXX parameter that represents that data type.

Chapter 14. Calling a stored procedure from your application 793

Table 128. Parameter formats for a CALL statement in a REXX procedure

SQL data type REXX format

SMALLINT
INTEGER
BIGINT

A string of numerics that does not contain a decimal point or exponent identifier.
The first character can be a plus or minus sign. This format also applies to
indicator variables that are passed as parameters.

DECIMAL(p,s)
NUMERIC(p,s)

A string of numerics that has a decimal point but no exponent identifier. The first
character can be a plus or minus sign.

REAL
FLOAT(n)
DOUBLE
DECFLOAT

A string that represents a number in scientific notation. The string consists of a
series of numerics followed by an exponent identifier (an E or e followed by an
optional plus or minus sign and a series of numerics).

CHARACTER(n)
VARCHAR(n)
VARCHAR(n) FOR BIT DATA

A string of length n, enclosed in single quotation marks.

GRAPHIC(n)
VARGRAPHIC(n)

The character G followed by a string enclosed in single quotation marks. The
string within the quotation marks begins with a shift-out character (X'0E') and
ends with a shift-in character (X'0F'). Between the shift-out character and shift-in
character are n double-byte characters.

BINARY
VARBINARY

Recommendation: Pass BINARY and VARBINARY values by using the SQLDA.

If you specify an SQLDA when you call the stored procedure, set the SQLTYPE in
the SQLDA. SQLDATA is a string of characters.

If you use host variables, the REXX format of BINARY and VARBINARY data is
BX followed by a string that is enclosed in a single quotation mark.

DATE A string of length 10, enclosed in single quotation marks. The format of the string
depends on the value of field DATE FORMAT that you specify when you install
DB2.

TIME A string of length 8, enclosed in single quotation marks. The format of the string
depends on the value of field TIME FORMAT that you specify when you install
DB2.

TIMESTAMP A string of length 19 to 32, enclosed in single quotation marks. The string has the
format yyyy-mm-dd-hh.mm.ss or yyyy-mm-dd-hh.mm.ss.nnnnnnnnnnnn, where the
number of fractional second digits can range from 0 to 12.

TIMESTAMP WITH TIME
ZONE

A string of length 148 to 161, enclosed in single quotation marks. The string has
the format yyyymm- dd-hh.mm.ss.nnnnnnnnnnnn±th:tm or yyyymm-
dd-hh.mm.ss.nnnnnnnnnnnn ±th:tm, where the number of fractional second digits
can range from 0 to 12

XML No equivalent.

The following figure demonstrates how a REXX procedure calls the stored
procedure in “REXX stored procedures” on page 642. The REXX procedure
performs the following actions:
v Connects to the DB2 subsystem that was specified by the REXX procedure

invoker.
v Calls the stored procedure to execute a DB2 command that was specified by the

REXX procedure invoker.
v Retrieves rows from a result set that contains the command output messages.
/* REXX */
PARSE ARG SSID COMMAND /* Get the SSID to connect to */

/* and the DB2 command to be */
/* executed */

/**/

794 Application Programming and SQL Guide

/* Set up the host command environment for SQL calls. */
/**/

"SUBCOM DSNREXX" /* Host cmd env available? */
IF RC THEN /* No--make one */

S_RC = RXSUBCOM(’ADD’,’DSNREXX’,’DSNREXX’)
/**/
/* Connect to the DB2 subsystem. */
/**/

ADDRESS DSNREXX "CONNECT" SSID
IF SQLCODE ¬= 0 THEN CALL SQLCA
PROC = ’COMMAND’
RESULTSIZE = 32703
RESULT = LEFT(’ ’,RESULTSIZE,’ ’)

/**/
/* Call the stored procedure that executes the DB2 command. */
/* The input variable (COMMAND) contains the DB2 command. */
/* The output variable (RESULT) will contain the return area */
/* from the IFI COMMAND call after the stored procedure */
/* executes. */
/**/

ADDRESS DSNREXX "EXECSQL" ,
"CALL" PROC "(:COMMAND, :RESULT)"
IF SQLCODE < 0 THEN CALL SQLCA
SAY ’RETCODE =’RETCODE
SAY ’SQLCODE =’SQLCODE
SAY ’SQLERRMC =’SQLERRMC
SAY ’SQLERRP =’SQLERRP
SAY ’SQLERRD =’SQLERRD.1’,’,

|| SQLERRD.2’,’,
|| SQLERRD.3’,’,
|| SQLERRD.4’,’,
|| SQLERRD.5’,’,
|| SQLERRD.6

SAY ’SQLWARN =’SQLWARN.0’,’,
|| SQLWARN.1’,’,
|| SQLWARN.2’,’,
|| SQLWARN.3’,’,
|| SQLWARN.4’,’,
|| SQLWARN.5’,’,
|| SQLWARN.6’,’,
|| SQLWARN.7’,’,
|| SQLWARN.8’,’,
|| SQLWARN.9’,’,
|| SQLWARN.10

SAY ’SQLSTATE=’SQLSTATE
SAY C2X(RESULT) "’"||RESULT||"’"

/**/
/* Display the IFI return area in hexadecimal. */
/**/

OFFSET = 4+1
TOTLEN = LENGTH(RESULT)
DO WHILE (OFFSET < TOTLEN)

LEN = C2D(SUBSTR(RESULT,OFFSET,2))
SAY SUBSTR(RESULT,OFFSET+4,LEN-4-1)
OFFSET = OFFSET + LEN

END
/**/
/* Get information about result sets returned by the */
/* stored procedure. */
/**/

ADDRESS DSNREXX "EXECSQL DESCRIBE PROCEDURE :PROC INTO :SQLDA"
IF SQLCODE ¬= 0 THEN CALL SQLCA
DO I = 1 TO SQLDA.SQLD

SAY "SQLDA."I".SQLNAME ="SQLDA.I.SQLNAME";"
SAY "SQLDA."I".SQLTYPE ="SQLDA.I.SQLTYPE";"
SAY "SQLDA."I".SQLLOCATOR ="SQLDA.I.SQLLOCATOR";"

END I

Chapter 14. Calling a stored procedure from your application 795

/**/
/* Set up a cursor to retrieve the rows from the result */
/* set. */
/**/

ADDRESS DSNREXX "EXECSQL ASSOCIATE LOCATOR (:RESULT) WITH PROCEDURE :PROC"
IF SQLCODE ¬= 0 THEN CALL SQLCA
SAY RESULT
ADDRESS DSNREXX "EXECSQL ALLOCATE C101 CURSOR FOR RESULT SET :RESULT"
IF SQLCODE ¬= 0 THEN CALL SQLCA
CURSOR = ’C101’
ADDRESS DSNREXX "EXECSQL DESCRIBE CURSOR :CURSOR INTO :SQLDA"
IF SQLCODE ¬= 0 THEN CALL SQLCA

/**/
/* Retrieve and display the rows from the result set, which */
/* contain the command output message text. */
/**/

DO UNTIL(SQLCODE ¬= 0)
ADDRESS DSNREXX "EXECSQL FETCH C101 INTO :SEQNO, :TEXT"
IF SQLCODE = 0 THEN

DO
SAY TEXT

END
END
IF SQLCODE ¬= 0 THEN CALL SQLCA
ADDRESS DSNREXX "EXECSQL CLOSE C101"
IF SQLCODE ¬= 0 THEN CALL SQLCA
ADDRESS DSNREXX "EXECSQL COMMIT"
IF SQLCODE ¬= 0 THEN CALL SQLCA

/**/
/* Disconnect from the DB2 subsystem. */
/**/

ADDRESS DSNREXX "DISCONNECT"
IF SQLCODE ¬= 0 THEN CALL SQLCA

/**/
/* Delete the host command environment for SQL. */
/**/

S_RC = RXSUBCOM(’DELETE’,’DSNREXX’,’DSNREXX’) /* REMOVE CMD ENV */
RETURN

/**/
/* Routine to display the SQLCA */
/**/

SQLCA:
TRACE O
SAY ’SQLCODE =’SQLCODE
SAY ’SQLERRMC =’SQLERRMC
SAY ’SQLERRP =’SQLERRP
SAY ’SQLERRD =’SQLERRD.1’,’,

|| SQLERRD.2’,’,
|| SQLERRD.3’,’,
|| SQLERRD.4’,’,
|| SQLERRD.5’,’,
|| SQLERRD.6

SAY ’SQLWARN =’SQLWARN.0’,’,
|| SQLWARN.1’,’,
|| SQLWARN.2’,’,
|| SQLWARN.3’,’,
|| SQLWARN.4’,’,
|| SQLWARN.5’,’,
|| SQLWARN.6’,’,
|| SQLWARN.7’,’,
|| SQLWARN.8’,’,
|| SQLWARN.9’,’,
|| SQLWARN.10

SAY ’SQLSTATE=’SQLSTATE
EXIT

796 Application Programming and SQL Guide

Related concepts:
“REXX stored procedures” on page 642

Preparing a client program that calls a remote stored procedure
If you call a remote stored procedure from an embedded SQL application, you
need to do a few extra steps when you prepare the client program. You do not
need to do any extra steps when you prepare the stored procedure.

Before you begin

For an ODBC or CLI application, ensure that the DB2 packages and plan that are
associated with the ODBC driver are bound to DB2. These packages and plan must
be bound before you can run your application.

Procedure

To prepare a client program that calls a remote stored procedure:
1. Precompile, compile, and link-edit the client program on the local DB2

subsystem.
2. Bind the resulting DBRM into a package at the local DB2 subsystem by using

the BIND PACKAGE command with the option DBPROTOCOL(DRDA).

Recommendation: If you have packages that contain SQL CALL statements
that you bound before DB2 Version 6, rebind them in DB2 Version 6 or later to
get better performance from those packages. Rebinding lets DB2 obtain some
information from the catalog at bind time that it obtained at run time before
Version 6. Therefore, after you rebind your packages, they run more efficiently
because DB2 can do fewer catalog searches at run time.

3. Bind the same DBRM, the one for the client program, into a package at the
remote location by using the BIND PACKAGE command and specifying a
location name. If your client program needs to access multiple servers, bind the
program at each server.

Example: Suppose that you want a client program to call a stored procedure at
location LOCA. You precompile the program to produce DBRM A. Then you
can use the following command to bind DBRM A into package collection
COLLA at location LOCA:
BIND PACKAGE (LOCA.COLLA) MEMBER(A)

4. Bind all packages into a plan on the local DB2 subsystem. Specify the bind
option DBPROTOCOL(DRDA).

5. Bind any stored procedures that run under DB2 ODBC on a remote DB2
database server as a package at the remote site. Those procedures do not need
to be bound into the DB2 ODBC plan.

Chapter 14. Calling a stored procedure from your application 797

Related tasks:

Binding DBRMs to create packages (DB2 Programming for ODBC)
Related reference:

BIND PACKAGE (DSN) (DB2 Commands)

How DB2 determines which stored procedure to run
A procedure is uniquely identified by its name and its qualifying schema name.
You can tell DB2 exactly which stored procedure to run by qualifying it with its
schema name when you call it. Otherwise, DB2 determines which stored procedure
to run.

However, if you do not qualify the stored procedure name, DB2 uses the following
method to determine which stored procedure to run:
1. DB2 searches the list of schema names from the PATH bind option or the

CURRENT PATH special register from left to right until it finds a schema name
for which a stored procedure definition exists with the name in the CALL
statement.
DB2 uses schema names from the PATH bind option for CALL statements of
the following form:
CALL procedure-name

DB2 uses schema names from the CURRENT PATH special register for CALL
statements of the following form:
CALL host-variable

2. When DB2 finds a stored procedure definition, DB2 executes that stored
procedure if the following conditions are true:
v The caller is authorized to execute the stored procedure.
v The stored procedure has the same number of parameters as in the CALL

statement.

If both conditions are not true, DB2 continues to go through the list of schemas
until it finds a stored procedure that meets both conditions or reaches the end
of the list.

3. If DB2 cannot find a suitable stored procedure, it returns an SQL error code for
the CALL statement.

Calling different versions of a stored procedure from a single
application

You can call different versions of a stored procedure from the same application
program, even though those versions all have the same load module name.

Procedure

To call different versions of a stored procedure from a single application:
1. When you define each version of the stored procedure, use the same stored

procedure name but different schema names, different COLLID values, and
different WLM environments.

2. In the program that invokes the stored procedure, specify the unqualified
stored procedure name in the CALL statement.

798 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.odbc/src/tpc/db2z_bipkg.htm#db2z_bipkg
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_bindpackage.htm#db2z_cmd_bindpackage

3. Use the SQL path to indicate which version of the stored procedure that the
client program should call. You can choose the SQL path in several ways:
v If the client program is not an ODBC or JDBC application, use one of the

following methods:
– Use the CALL procedure-name form of the CALL statement. When you bind

plans or packages for the program that calls the stored procedure, bind
one plan or package for each version of the stored procedure that you
want to call. In the PATH bind option for each plan or package, specify
the schema name of the stored procedure that you want to call.

– Use the CALL host-variable form of the CALL statement. In the client
program, use the SET PATH statement to specify the schema name of the
stored procedure that you want to call.

v If the client program is an ODBC or JDBC application, choose one of the
following methods:
– Use the SET PATH statement to specify the schema name of the stored

procedure that you want to call.
– When you bind the stored procedure packages, specify a different

collection for each stored procedure package. Use the COLLID value that
you specified when defining the stored procedure to DB2.

4. When you run the client program, specify the plan or package with the PATH
value that matches the schema name of the stored procedure that you want to
call.

Results

For example, suppose that you want to write one program, PROGY, that calls one
of two versions of a stored procedure named PROCX. The load module for both
stored procedures is named SUMMOD. Each version of SUMMOD is in a different
load library. The stored procedures run in different WLM environments, and the
startup JCL for each WLM environment includes a STEPLIB concatenation that
specifies the correct load library for the stored procedure module.

First, define the two stored procedures in different schemas and different WLM
environments:
CREATE PROCEDURE TEST.PROCX(IN V1 INTEGER, OUT V2 CHAR(9))

LANGUAGE C
EXTERNAL NAME SUMMOD
WLM ENVIRONMENT TESTENV;

CREATE PROCEDURE PROD.PROCX(IN V1 INTEGER, OUT V2 CHAR(9))
LANGUAGE C
EXTERNAL NAME SUMMOD
WLM ENVIRONMENT PRODENV;

When you write CALL statements for PROCX in program PROGY, use the
unqualified form of the stored procedure name:
CALL PROCX(V1,V2);

Bind two plans for PROGY. In one BIND statement, specify PATH(TEST). In the
other BIND statement, specify PATH(PROD).

To call TEST.PROCX, execute PROGY with the plan that you bound with
PATH(TEST). To call PROD.PROCX, execute PROGY with the plan that you bound
with PATH(PROD).

Chapter 14. Calling a stored procedure from your application 799

Invoking multiple instances of a stored procedure
Your application program can issue multiple CALL statements to the same local or
remote stored procedure. Assume that your stored procedure returns result sets
and the calling application leaves those result sets open before the next call to that
same stored procedure. In that case, each CALL statement invokes a unique
instance of the stored procedure.

Before you begin

To invoke multiple instances of the following stored procedures, ensure that both
the client and server are in DB2 Version 8 new-function mode or later:
v Remote stored procedures
v Local stored procedures that have SQL to access a remote site

About this task

When you invoke multiple instances of a stored procedure, each instance runs
serially within the same DB2 thread and opens its own result sets. These multiple
calls invoke multiple instances of any packages that are invoked while running the
stored procedure. These instances are invoked at either the same or different level
of nesting under one DB2 connection or thread.

For local stored procedures that issue remote SQL, instances of the applications are
created at the remote server site. These instances are created regardless of whether
result sets exist or are left open between calls.

If you call too many instances of a stored procedure or if you open too many
cursors, DB2 storage shortages and EDM POOL FULL conditions might occur. If
the stored procedure issues remote SQL statements to another DB2 server, these
conditions can occur at both the DB2 client and at the DB2 server.

Procedure

To invoke multiple instances of a stored procedure:
1. To optimize storage usage and prevent storage shortages, ensure that you

specify appropriate values for the following two subsystem parameters:

MAX_ST_PROC
Controls the maximum number of stored procedure instances that you
can call within the same thread.

MAX_NUM_CUR
Controls the maximum number of cursors that can be opened by the
same thread.

When either of the values from these subsystem parameters is exceeded while
an application is running, the CALL statement or the OPEN statement receives
SQLCODE -904.

2. In your application, issue CALL statements to the stored procedure.
3. In the calling application for the stored procedure, close the result sets and

issue frequent commits. Even read-only applications should perform these
actions.
Applications that fail to close result sets or issue an adequate number of
commits might terminate abnormally with DB2 storage shortage and EDM
POOL FULL conditions.

800 Application Programming and SQL Guide

Related reference:

MAX OPEN CURSORS field (MAX_NUM_CUR subsystem parameter) (DB2
Installation and Migration)

MAX STORED PROCS field (MAX_ST_PROC subsystem parameter) (DB2
Installation and Migration)

CALL (DB2 SQL)

Designating the active version of a native SQL procedure
When a native SQL procedure is called, DB2 uses the version that is designated as
the active version.

About this task

When you create a native SQL procedure, that first version is by default the active
version. If you create additional versions of a stored procedure, you can designate
another version to be the active version.

Exception: If an existing active version is still being used by a process, the new
active version is not used until the next call to that procedure.

To designate the active version of a native SQL procedure, issue an ALTER
PROCEDURE statement with the following items:
v The name of the native SQL procedure for which you want to change the active

version.
v The ACTIVATE VERSION clause with the name of the version that you want to

be active.

When the ALTER statement is committed, the new version of the procedure
becomes the active version and is used by the next call for that procedure.

Example: The following ALTER PROCEDURE statement makes version V2 of the
UPDATE_BALANCE procedure the active version.
ALTER PROCEDURE UPDATE_BALANCE
ACTIVATE VERSION V2;

Temporarily overriding the active version of a native SQL procedure
If you want a particular call to a native SQL procedure to use a version other than
the active version, you can temporarily override the active version. Such an
override might be helpful when you are testing a new version of a native SQL
procedure.

About this task

Recommendation: If you want all calls to a native SQL procedure to use a
particular version, do not temporarily override the active version in every call.
Instead, make that version the active version. Otherwise, performance might be
slower.

Procedure

To temporarily override the active version of a native SQL procedure, specify the
following statements in your program:

Chapter 14. Calling a stored procedure from your application 801

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_maxnumcur.htm#db2z_dsntipx06
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_maxnumcur.htm#db2z_dsntipx06
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_maxstproc.htm#db2z_dsntipx07
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_maxstproc.htm#db2z_dsntipx07
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_call.htm#db2z_sql_call

1. The SET CURRENT ROUTINE VERSION statement with the name of the
version of the procedure that you want to use. If the specified version does not
exist, the active version is used.

2. The CALL statement with the name of the procedure.

Example

The following CALL statement invokes version V1 of the UPDATE_BALANCE
procedure, regardless of what the current active version of that procedure is.
SET CURRENT ROUTINE VERSION = V1;
SET procname = ’UPDATE_BALANCE’;
CALL :procname USING DESCRIPTOR :x;

Specifying the number of stored procedures that can run concurrently
Multiple stored procedures can run concurrently, each under its own z/OS task
control block (TCB). The z/OS Workload Manager (WLM) manages how many
concurrent stored procedures can run in an address space. The number of
concurrent stored procedures in an address space cannot exceed the value of the
NUMTCB field that was specified on the DSNTIPX installation panel, during DB2
installation.

Procedure

You can override that value in the following ways:
v Edit the JCL procedures that start stored procedures address spaces, and modify

the value of the NUMTCB parameter.
v Specify the following parameter in the Start Parameters field of the Create An

Application Environment panel when you set up a WLM application
environment:
NUMTCB=number-of-TCBs

Special cases:

– For REXX stored procedures, you must set the NUMTCB parameter to 1.
– Stored procedures that invoke utilities can invoke only one utility at a time in

a single address space. Consequently, the value of the NUMTCB parameter is
forced to 1 for those procedures.

Related concepts:

Installation step 19: Configure DB2 for running stored procedures and
user-defined functions (DB2 Installation and Migration)

Migration step 22: Configure DB2 for running stored procedures and
user-defined functions (DB2 Installation and Migration)
Related tasks:

Maximizing the number of procedures or functions that run in an address
space (DB2 Performance)

Retrieving the procedure status
When an SQL procedure returns control to the calling program, it also returns the
procedure status. The status is an integer value that indicates the success of the
procedure.

802 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_configuredb2fordb2routines.htm#db2z_configuredb2fordb2routines
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_configuredb2fordb2routines.htm#db2z_configuredb2fordb2routines
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_configuredb2fordb2routinesmigr.htm#db2z_configuredb2fordb2routinesmigr
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_configuredb2fordb2routinesmigr.htm#db2z_configuredb2fordb2routinesmigr
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_maximizenumberudfspconcurrently.htm#db2z_controladressspacestorage
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_maximizenumberudfspconcurrently.htm#db2z_controladressspacestorage

About this task

DB2 sets the status to 0 or -1 depending on the value of the SQLCODE.
Alternatively, an SQL procedure can set the integer status value by using the
RETURN statement. In this case, DB2 sets the SQLCODE in the SQLCA to 0.

Procedure

To retrieve the procedure status, perform one of the following actions in the calling
program:
v Issue the GET DIAGNOSTICS statement with the DB2_RETURN_STATUS item.

The specified host variable in the GET DIAGNOSTICS statement is set to one of
the following values:

0 This value indicates that the procedure returned with an SQLCODE that
is greater or equal to zero. You can access the value directly from the
SQLCA by retrieving the value of SQLERRD(1). For C applications,
retrieve SQLERRD[0].

-1 This value indicates that the procedure returned with an SQLCODE that
is less than zero. In this case, the SQLERRD(1) value in the SQLCA is
not set. DB2 returns -1 only.

n Any value other than 0 or -1 is the return value that was explicitly set in
the procedure with the RETURN statement.

Example of using GET DIAGNOSTICS to retrieve the return status: The
following SQL code creates an SQL procedure that is named TESTIT, which calls
another SQL procedure that is named TRYIT. The TRYIT procedure returns a
status value. The TESTIT procedure retrieves that value with the
DB2_RETURN_STATUS item of the GET DIAGNOSTICS statement.
CREATE PROCEDURE TESTIT ()

LANGUAGE SQL
A1:BEGIN
DECLARE RETVAL INTEGER DEFAULT 0;

...
CALL TRYIT;
GET DIAGNOSTICS RETVAL = DB2_RETURN_STATUS;
IF RETVAL <> 0 THEN

...
LEAVE A1;

ELSE
...

END IF;
END A1

v Retrieve the value of SQLERRD(1) in the SQLCA. For C applications, retrieve
SQLERRD[0]. This field contains the integer value that was set by the RETURN
statement in the SQL procedure. This method is not applicable if the status was
set by DB2.

Chapter 14. Calling a stored procedure from your application 803

Related concepts:

SQL communication area (SQLCA) (DB2 SQL)
Related reference:

GET DIAGNOSTICS (DB2 SQL)

Writing a program to receive the result sets from a stored procedure
You can write a program to receive results set from a stored procedure for either a
fixed number of result sets, for which you know the contents, or a variable number
of result sets, for which you do not know the contents.

About this task

A program for a fixed number of result sets is simpler to write than a program for
a variable number of result sets. However, if you write a program for a variable
number of result sets, you do not need to make modifications to the program if the
stored procedure changes.

If your program calls an SQL procedure that returns result sets, you must write the
program for a fixed number of result sets.

In the following steps, you do not need to connect to the remote location when
you execute these statements:
v DESCRIBE PROCEDURE
v ASSOCIATE LOCATORS
v ALLOCATE CURSOR
v DESCRIBE CURSOR
v FETCH
v CLOSE

Procedure

To write a program to receive the result sets from a stored procedure:
1. Declare a locator variable for each result set that is to be returned.

If you do not know how many result sets are to be returned, declare enough
result set locators for the maximum number of result sets that might be
returned.

2. Call the stored procedure and check the SQL return code.
If the SQLCODE from the CALL statement is +466, the stored procedure has
returned result sets.

3. Determine how many result sets the stored procedure is returning.
If you already know how many result sets the stored procedure returns, skip
this step.
Use the SQL statement DESCRIBE PROCEDURE to determine the number of
result sets. DESCRIBE PROCEDURE places information about the result sets in
an SQLDA. Make this SQLDA large enough to hold the maximum number of
result sets that the stored procedure might return. When the DESCRIBE
PROCEDURE statement completes, the fields in the SQLDA contain the
following values:
v SQLD contains the number of result sets that are returned by the stored

procedure.
v Each SQLVAR entry gives the following information about a result set:

804 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sqlcommunicationsareaintro.htm#db2z_sqlcommunicationsareaintro
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_getdiagnostics.htm#db2z_sql_getdiagnostics

– The SQLNAME field contains the name of the SQL cursor that is used by
the stored procedure to return the result set.

– The SQLIND field contains the value -1, which indicates that no estimate
of the number of rows in the result set is available.

– The SQLDATA field contains the value of the result set locator, which is
the address of the result set.

4. Link result set locators to result sets by performing one of the following
actions:
v Use the ASSOCIATE LOCATORS statement. You must embed this statement

in an application or SQL procedure. The ASSOCIATE LOCATORS statement
assigns values to the result set locator variables. If you specify more locators
than the number of result sets that are returned, DB2 ignores the extra
locators.

v If you executed the DESCRIBE PROCEDURE statement previously, the result
set locator values are in the SQLDATA fields of the SQLDA. You can copy
the values from the SQLDATA fields to the result set locators manually, or
you can execute the ASSOCIATE LOCATORS statement to do it for you.

The stored procedure name that you specify in an ASSOCIATE LOCATORS
statement or DESCRIBE PROCEDURE statement must match the stored
procedure name in the CALL statement as follows:
v If the name is unqualified in the CALL statement, do not qualify it.
v If the name is qualified with a schema name in the CALL statement, qualify

it with the schema name.
v If the name is qualified with a location name and schema name in the CALL

statement, qualify it with a location name and schema name.
5. Allocate cursors for fetching rows from the result sets.

Use the SQL statement ALLOCATE CURSOR to link each result set with a
cursor. Execute one ALLOCATE CURSOR statement for each result set. The
cursor names can differ from the cursor names in the stored procedure.
To use the ALLOCATE CURSOR statement, you must embed it in an
application or SQL procedure.

6. Determine the contents of the result sets.
If you already know the format of the result set, skip this step.
Use the SQL statement DESCRIBE CURSOR to determine the format of a result
set and put this information in an SQLDA. For each result set, you need an
SQLDA that is big enough to hold descriptions of all columns in the result set.
You can use DESCRIBE CURSOR for only those cursors for which you executed
ALLOCATE CURSOR previously.
After you execute DESCRIBE CURSOR, if the cursor for the result set is
declared WITH HOLD, the high-order bit of byte 8 of field SQLDAID in the
SQLDA is set to 1.

7. Fetch rows from the result sets into host variables by using the cursors that you
allocated with the ALLOCATE CURSOR statements. Fetching rows from a
result set is the same as fetching rows from a table.
If you executed the DESCRIBE CURSOR statement, perform the following steps
before you fetch the rows:
a. Allocate storage for host variables and indicator variables. Use the contents

of the SQLDA from the DESCRIBE CURSOR statement to determine how
much storage you need for each host variable.

b. Put the address of the storage for each host variable in the appropriate
SQLDATA field of the SQLDA.

Chapter 14. Calling a stored procedure from your application 805

c. Put the address of the storage for each indicator variable in the appropriate
SQLIND field of the SQLDA.

Example

The following examples show C language code that accomplishes each of these
steps. Coding for other languages is similar.

The following example demonstrates how to receive result sets when you know
how many result sets are returned and what is in each result set.
/***/
/* Declare result set locators. For this example, */
/* assume you know that two result sets will be returned. */
/* Also, assume that you know the format of each result set. */
/***/

EXEC SQL BEGIN DECLARE SECTION;
static volatile SQL TYPE IS RESULT_SET_LOCATOR *loc1, *loc2;
EXEC SQL END DECLARE SECTION;

...
/***/
/* Call stored procedure P1. */
/* Check for SQLCODE +466, which indicates that result sets */
/* were returned. */
/***/

EXEC SQL CALL P1(:parm1, :parm2, ...);
if(SQLCODE==+466)
{
/***/
/* Establish a link between each result set and its */
/* locator using the ASSOCIATE LOCATORS. */
/***/

EXEC SQL ASSOCIATE LOCATORS (:loc1, :loc2) WITH PROCEDURE P1;

...
/***/
/* Associate a cursor with each result set. */
/***/

EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :loc1;
EXEC SQL ALLOCATE C2 CURSOR FOR RESULT SET :loc2;

/***/
/* Fetch the result set rows into host variables. */
/***/

while(SQLCODE==0)
{

EXEC SQL FETCH C1 INTO :order_no, :cust_no;

...
}
while(SQLCODE==0)
{

EXEC SQL FETCH C2 :order_no, :item_no, :quantity;

...
}

}

The following example demonstrates how to receive result sets when you do not
know how many result sets are returned or what is in each result set.
/***/
/* Declare result set locators. For this example, */
/* assume that no more than three result sets will be */
/* returned, so declare three locators. Also, assume */

806 Application Programming and SQL Guide

/* that you do not know the format of the result sets. */
/***/

EXEC SQL BEGIN DECLARE SECTION;
static volatile SQL TYPE IS RESULT_SET_LOCATOR *loc1, *loc2, *loc3;
EXEC SQL END DECLARE SECTION;

...

/***/
/* Call stored procedure P2. */
/* Check for SQLCODE +466, which indicates that result sets */
/* were returned. */
/***/

EXEC SQL CALL P2(:parm1, :parm2, ...);
if(SQLCODE==+466)
{
/***/
/* Determine how many result sets P2 returned, using the */
/* statement DESCRIBE PROCEDURE. :proc_da is an SQLDA */
/* with enough storage to accommodate up to three SQLVAR */
/* entries. */
/***/

EXEC SQL DESCRIBE PROCEDURE P2 INTO :proc_da;

...
/***/
/* Now that you know how many result sets were returned, */
/* establish a link between each result set and its */
/* locator using the ASSOCIATE LOCATORS. For this example, */
/* we assume that three result sets are returned. */
/***/

EXEC SQL ASSOCIATE LOCATORS (:loc1, :loc2, :loc3) WITH PROCEDURE P2;

...
/***/
/* Associate a cursor with each result set. */
/***/

EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :loc1;
EXEC SQL ALLOCATE C2 CURSOR FOR RESULT SET :loc2;
EXEC SQL ALLOCATE C3 CURSOR FOR RESULT SET :loc3;

/***/
/* Use the statement DESCRIBE CURSOR to determine the */
/* format of each result set. */
/***/

EXEC SQL DESCRIBE CURSOR C1 INTO :res_da1;
EXEC SQL DESCRIBE CURSOR C2 INTO :res_da2;
EXEC SQL DESCRIBE CURSOR C3 INTO :res_da3;

...
/***/
/* Assign values to the SQLDATA and SQLIND fields of the */
/* SQLDAs that you used in the DESCRIBE CURSOR statements. */
/* These values are the addresses of the host variables and */
/* indicator variables into which DB2 will put result set */
/* rows. */
/***/

...
/***/
/* Fetch the result set rows into the storage areas */
/* that the SQLDAs point to. */
/***/

while(SQLCODE==0)
{

EXEC SQL FETCH C1 USING :res_da1;

Chapter 14. Calling a stored procedure from your application 807

...
}
while(SQLCODE==0)
{

EXEC SQL FETCH C2 USING :res_da2;

...
}
while(SQLCODE==0)
{

EXEC SQL FETCH C3 USING :res_da3;

...
}

}

The following example demonstrates how you can use an SQL procedure to
receive result sets. The logic assumes that no handler exists to intercept the +466
SQLCODE, such as DECLARE CONTINUE HANDLER FOR SQLWARNING Such a
handler causes SQLCODE to be reset to zero. Then the test for IF SQLCODE = 466
is never true and the statements in the IF body are never executed.
DECLARE RESULT1 RESULT_SET_LOCATOR VARYING;
DECLARE RESULT2 RESULT_SET_LOCATOR VARYING;
DECLARE AT_END, VAR1, VAR2 INT DEFAULT 0;
DECLARE SQLCODE INTEGER DEFAULT 0;
DECLARE CONTINUE HANDLER FOR NOT FOUND SET AT_END = 99;
SET TOTAL1 = 0;
SET TOTAL2 = 0;
CALL TARGETPROCEDURE();
IF SQLCODE = 466 THEN

ASSOCIATE RESULT SET LOCATORS(RESULT1,RESULT2)
WITH PROCEDURE SPDG3091;

ALLOCATE RSCUR1 CURSOR FOR RESULT1;
ALLOCATE RSCUR2 CURSOR FOR RESULT2;
WHILE AT_END = 0 DO

FETCH RSCUR1 INTO VAR1;
SET TOTAL1 = TOTAL1 + VAR1;
SET VAR1 = 0; /* Reset so the last value fetched is not added after AT_END */

END WHILE;
SET AT_END = 0; /* Reset for next loop */
WHILE AT_END = 0 DO

FETCH RSCUR2 INTO VAR2;
SET TOTAL2 = TOTAL2 + VAR2;
SET VAR2 = 0; /* Reset so the last value fetched is not added after AT_END */

END WHILE;
END IF;

808 Application Programming and SQL Guide

Related concepts:
“Examples of programs that call stored procedures” on page 230
Related reference:

ALLOCATE CURSOR (DB2 SQL)

ASSOCIATE LOCATORS (DB2 SQL)

CALL (DB2 SQL)

DESCRIBE CURSOR (DB2 SQL)

DESCRIBE PROCEDURE (DB2 SQL)

SQL descriptor area (SQLDA) (DB2 SQL)

DB2-supplied stored procedures
DB2 provides some stored procedures that you can call in your application
programs to perform a number of utility and application programming functions.
Typically, these procedures are created during installation or migration.

The following table lists all of the DB2-supplied stored procedures.

Table 129. DB2-supplied stored procedures

Stored procedure name Description

ADMIN_COMMAND_DB2 The ADMIN_COMMAND_DB2 stored procedure is an
administrative enablement routine. It executes one or more DB2
commands on a connected DB2 subsystem or on a DB2 data sharing
group member and returns the command output messages.

ADMIN_COMMAND_DSN The ADMIN_COMMAND_DSN stored procedure is an
administrative enablement routine. It executes a BIND, REBIND, or
FREE DSN subcommand and then returns the output from the
subcommand.

ADMIN_COMMAND_UNIX The ADMIN_COMMAND_UNIX stored procedure is an
administrative enablement routine. It executes a USS command and
returns the output from the command.

ADMIN_DS_BROWSE The ADMIN_DS_BROWSE stored procedure is an administrative
enablement routine. It returns either text or binary records from one
of the following entities:

v a physical sequential (PS) data set

v a generation data set (GDS)

v a partitioned data set (PDS)

v a partitioned data set extended (PDSE) member.

This stored procedure supports only data sets with LRECL=80 and
RECFM=FB.

ADMIN_DS_DELETE The ADMIN_DS_DELETE stored procedure is an administrative
enablement routine. It deletes one of the following entities:

v a physical sequential (PS) data set

v a partitioned data set (PDS)

v a partitioned data set extended (PDSE)

v a generation data set (GDS)

v a member of a PDS or PDSE

Chapter 14. Calling a stored procedure from your application 809

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_allocatecursor.htm#db2z_sql_allocatecursor
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_associatelocators.htm#db2z_sql_associatelocators
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_call.htm#db2z_sql_call
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_describecursor.htm#db2z_sql_describecursor
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_describeprocedure.htm#db2z_sql_describeprocedure
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sqldescriptorareaintro.htm#db2z_sqldescriptorareaintro

Table 129. DB2-supplied stored procedures (continued)

Stored procedure name Description

ADMIN_DS_LIST The ADMIN_DS_LIST stored procedure is an administrative
enablement routine. It returns a list of one of the following items:

v data set names

v generation data groups (GDG)

v partitioned data set (PDS) members

v partitioned data set extended (PDSE) members

v generation data sets of a GDG

ADMIN_DS_RENAME The ADMIN_DS_RENAME stored procedure is an administrative
enablement routine. It renames one of the following entities:

v a physical sequential (PS) data set

v a partitioned data set (PDS)

v a partitioned data set extended (PDSE)

v a member of a PDS or PDSE

ADMIN_DS_SEARCH The ADMIN_DS_SEARCH stored procedure is an administrative
enablement routine. It determines if one of the following items is
cataloged:

v a physical sequential (PS) data set

v a partitioned data set (PDS)

v a partitioned data set extended (PDSE)

v a generation data group (GDG)

v a generation data set (GDS)

Alternatively, ADMIN_DS_SEARCH determines if a library member
of a cataloged PDS or PDSE exists.

ADMIN_DS_WRIT The ADMIN_DS_WRITE stored procedure is an administrative
enablement routine. It writes either text or binary records that are
passed in a global temporary table to one of the following entities:

v a physical sequential (PS) data set

v partitioned data set (PDS) member

v partitioned data set extended (PDSE) member

v generation data set (GDS)

ADMIN_DS_WRITE can either append or replace an existing PS
data set, PDS member, PDSE member, or GDS. ADMIN_DS_WRITE
can create one of the following entities:

v a PS data set

v PDS data set or member

v PDSE data set or member

v GDS for an existing generation data group (GDG) as needed

This stored procedure supports only data sets with LRECL=80 and
RECFM=FB.

ADMIN_INFO_HOST The ADMIN_INFO_HOST stored procedure is an administrative
enablement routine. It returns the host name of a connected DB2
subsystem or the host name of every member of a data sharing
group.

ADMIN_INFO_SSID The ADMIN_INFO_SSID stored procedure is an administrative
enablement routine. It returns the subsystem ID of the connected
DB2 subsystem.

810 Application Programming and SQL Guide

Table 129. DB2-supplied stored procedures (continued)

Stored procedure name Description

ADMIN_JOB_CANCEL The ADMIN_JOB_CANCEL stored procedure is an administrative
enablement routine. It purges or cancels a job.

ADMIN_JOB_FETCH The ADMIN_JOB_FETCH stored procedure is an administrative
enablement routine. It retrieves the output from the JES spool.

ADMIN_JOB_QUERY The ADMIN_JOB_QUERY stored procedure is an administrative
enablement routine. It displays the status and completion
information of a job.

ADMIN_JOB_SUBMIT The ADMIN_JOB_SUBMIT stored procedure is an administrative
enablement routine. It submits a job to a JES2 or JES3 system.

ADMIN_TASK_ADD The ADMIN_TASK_ADD stored procedure is an administrative task
scheduler routine. It adds a task to the task list of the administrative
task scheduler.

ADMIN_TASK_REMOVE The ADMIN_TASK_REMOVE stored procedure is an administrative
task scheduler routine. It removes a task from the task list of the
administrative task scheduler.

ADMIN_UTL_SCHEDULE The ADMIN_UTL_SCHEDULE stored procedure is an
administrative enablement routine. It executes utilities in parallel.

ADMIN_UTL_SORT The ADMIN_UTL_SORT stored procedure is an administrative
enablement routine. It sorts database objects for parallel utility
execution using JCL or the ADMIN_UTL_SCHEDULE stored
procedure.

DSNACCOR The real-time statistics stored procedure, DSNACCOR, queries the
DB2 real-time statistics tables. This information helps you determine
when you should run COPY, REORG, or RUNSTATS utility jobs, or
enlarge your DB2 data sets.

DSNACCOX The enhanced DB2 real-time statistics stored procedure,
DSNACCOX, makes recommendations to help you maintain your
DB2 databases.

The DSNACCOX stored procedure replaces the previous
DSNACCOR stored procedure, beginning in Version 9.

DSNACICS The CICS transaction invocation stored procedure, DSNACICS,
invokes CICS transactions from a remote workstation.

DSNAEXP The DB2 EXPLAIN stored procedure, DSN8EXP, invokes the
EXPLAIN function on an SQL statement without requiring you to
have the authorization to execute that SQL statement.

The DSNAEXP stored procedure replaces the previous DSN8EXP
stored procedure, beginning in Version 8. DSN8EXP handles SQL
statements of up to 32,700 bytes in length. DSNAEXP can handle
longer statements.

DSNAHVPM The DSNAHVPM stored procedure is used by Optimization Service
Center for DB2 for z/OS to convert host variables in a static SQL
statement to typed parameter markers.

DSNAIMS The IMS transactions stored procedure, DSNAIMS, invokes IMS
transactions and commands, without requiring a DB2 subsystem to
maintain its own connection to IMS.

DSNAIMS2 The IMS transactions stored procedure 2, DSNAIMS2, performs the
same function as DSNAIMS, except that DSNAIMS2 also includes
multi-segment input support for IMS transactions.

Chapter 14. Calling a stored procedure from your application 811

Table 129. DB2-supplied stored procedures (continued)

Stored procedure name Description

DSNLEUSR The SYSIBM.USERNAMES encryption stored procedure,
DSNLEUSR, stores encrypted values in the NEWAUTHID and
PASSWORD fields of the SYSIBM.USERNAMES catalog table.

DSNTBIND The DSNTBIND stored procedure binds Java stored procedures.

DSNTPSMP The DB2 for z/OS SQL procedure processor, DSNTPSMP, is a REXX
stored procedure that prepares external SQL procedures for
execution.

DSNUTILS The utilities stored procedure for EBCDIC input, DSNUTILS,
invokes DB2 utilities from a local or remote client program. This
stored procedure accepts utility control statements that are encoded
in EBCDIC.

DSNUTILU The utilities stored procedure for Unicode input, DSNUTILU,
invokes DB2 utilities from a local or remote client program. This
stored procedure accepts utility control statements that are encoded
in Unicode.

DSNWSPM The DSNWSPM stored procedure formats IFCID 148 records.

DSNWZP The subsystem parameter stored procedure, DSNWZP, is used by
the DB2-supplied stored procedure WLM_REFRESH.

GET_CONFIG The GET_CONFIG stored procedure is a common SQL API stored
procedure. It returns information about the data server
configuration, including information about the following items:

v the data sharing group

v the DB2 subsystem parameters

v the DDF status and configuration

v the connected DB2 subsystem

v the RLF tables

v the active log data sets

v the last DB2 restart

This stored procedure is used primarily by DB2 tools.

GET_MESSAGE The GET_MESSAGE stored procedure is a common SQL API stored
procedure. It returns the short message text for an SQL code. This
stored procedure is used primarily by DB2 tools.

GET_SYSTEM_INFO The GET_SYSTEM_INFO stored procedure is a common SQL API
stored procedure. It returns system information, including
information about the following items:

v operating system

v product information

v PTF level of each DB2 module

v the SMP/E APPLY status of the requested SYSMOD

v WLM classification rules that apply to the DB2 workload for
subsystem types DB2 and DDF

This stored procedure is used primarily by DB2 tools

SQLJ.ALTER_JAVA_PATH The SQLJ.ALTER_JAVA_PATH stored procedure specifies the class
resolution path that the JVM searches to resolve class references.
This action is needed if a JAR that you have installed refers to
classes in other installed JARs.

SQLJ.DB2_INSTALL_JAR The SQLJ.DB2_INSTALL_JAR stored procedure installs a set of Java
classes into a local or remote catalog.

812 Application Programming and SQL Guide

Table 129. DB2-supplied stored procedures (continued)

Stored procedure name Description

SQLJ.DB2_REMOVE_JAR The SQLJ.DB2_REMOVE_JAR stored procedure removes a Java JAR
file and its classes from a local or remote catalog.

SQLJ.DB2_REPLACE_JAR The SQLJ.DB2_REPLACE_JAR stored procedure replaces a
previously installed JAR file in a local or remote catalog.

SQLJ.DB2_UPDATEJARINFO The SQLJ.DB2_UPDATEJARINFO stored procedure inserts class,
class source, and associated options for a previously installed JAR
file in a local or remote catalog.

SQLJ.INSTALL_JAR The SQLJ.INSTALL_JAR stored procedure installs a set of Java
classes into the current SQL catalog and schema.

SQLJ.REMOVE_JAR The SQLJ.REMOVE_JAR stored procedure removes a Java JAR file
and its classes from a specified, local catalog.

SQLJ.REPLACE_JAR The SQLJ.REPLACE_JAR stored procedure replaces a previously
installed JAR file in a local catalog.

WLM_REFRESH The WLM environment refresh stored procedure, WLM_REFRESH,
refreshes a WLM environment from a remote workstation.

WLM_SET_CLIENT_INFO The WLM_SET_CLIENT_INFO stored procedure sets client
information that is associated with the current connection at the DB2
server.

XSR_ADDSCHEMADOC The add XML schema document stored procedure,
XSR_ADDSCHEMADOC, adds every XML schema other than the
primary XML schema document to the XSR.

XSR_COMPLETE The XML schema registration completion stored procedure,
XSR_COMPLETE, is the final stored procedure to be called as part
of the XML schema registration process. The XML schema
registration process registers XML schemas with the XSR.

XSR_REGISTER The XML schema registration stored procedure, XSR_REGISTER, is
the first stored procedure to be called as part of the XML schema
registration process. The XML schema registration process registers
XML schemas with the XSR.

XSR_REMOVE The XML schema removal stored procedure, XSR_REMOVE,
removes all components of an XML schema.

Related reference:

DB2-supplied stored procedures and user-defined functions (DB2 Installation
and Migration)

Source code for activating DB2-supplied stored procedures (DB2 9 for z/OS
Stored Procedures: Through the CALL and Beyond)
Related information:

Stored procedures for administration (DB2 Administration Guide)

WLM_REFRESH stored procedure
The WLM_REFRESH stored procedure refreshes a WLM environment. This stored
procedure can recycle the environment in which it runs and in any other WLM
environment.

Chapter 14. Calling a stored procedure from your application 813

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_db2suppliedspsandudfs.htm#db2z_db2suppliedspsandudfs
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_db2suppliedspsandudfs.htm#db2z_db2suppliedspsandudfs
http://www.redbooks.ibm.com/redbooks/SG247604/wwhelp/wwhimpl/js/html/wwhelp.htm?href=24-5-1.htm
http://www.redbooks.ibm.com/redbooks/SG247604/wwhelp/wwhimpl/js/html/wwhelp.htm?href=24-5-1.htm
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_adminstoredprocedures.htm#db2z_adminstoredprocedures

Environment for WLM_REFRESH

WLM_REFRESH runs in a WLM-established stored procedures address space. The
load module for WLM_REFRESH, DSNTWR, must reside in an APF-authorized
library.

Recommendation: Use WLM environment DSNWLM_GENERAL for running
WLM_REFRESH. Installation job DSNTIJMV creates an address space procedure
called DSNWLMG for this environment.

Authorization required for WLM_REFRESH

To execute the CALL statement, the SQL authorization ID of the process must have
READ access or higher to the z/OS Security Server System Authorization Facility
(SAF) resource profile ssid.WLM_REFRESH.WLM-environment-name in resource
class DSNR. This is a different resource profile from the ssid.WLMENV.WLM-
environment-name resource profile, which DB2 uses to determine whether a stored
procedure or user-defined function is authorized to run in the specified WLM
environment.

WLM_REFRESH uses an extended MCS console to monitor the operating system
response to a WLM environment refresh request. The privilege to create an
extended MCS console is controlled by the resource profile MVS.MCSOPER.* in the
OPERCMDS class. If the MVS.MCSOPER.* profile exists, or if the specific profile
MVS.MCSOPER.DSNTWR exists, the task ID that is associated with the WLM
environment in which WLM_REFRESH runs must have READ access to it.

If the MVS.VARY.* profile exists, or if the specific profile MVS.VARY.WLM exists,
the task ID that is associated with the WLM environment in which
WLM_REFRESH runs must have CONTROL access to it.

WLM_REFRESH syntax diagram

The WLM_REFRESH stored procedure refreshes a WLM environment.
WLM_REFRESH can recycle the environment in which it runs, as well as any other
WLM environment.

The following syntax diagram shows the SQL CALL statement for invoking
WLM_REFRESH. The linkage convention for WLM_REFRESH is GENERAL WITH
NULLS.

�� CALL WLM_REFRESH (WLM-environment, ssid ,
NULL
' '

status-message, return-code) ��

WLM_REFRESH option descriptions

WLM-environment
Specifies the name of the WLM environment that you want to refresh. This is
an input parameter of type VARCHAR(32).

814 Application Programming and SQL Guide

ssid
Specifies the subsystem ID of the DB2 subsystem with which the WLM
environment is associated. If this parameter is NULL or blank, DB2 uses one of
the following values for this parameter:
v In a non-data sharing environment, DB2 uses the subsystem ID of the

subsystem on which WLM_REFRESH runs.
v In a data sharing environment, DB2 uses the group attach name for the data

sharing group in which WLM_REFRESH runs.

This is an input parameter of type VARCHAR(4).

status-message
Contains an informational message about the execution of the WLM refresh.
This is an output parameter of type VARCHAR(120).

return-code
Contains the return code from the WLM_REFRESH call, which is one of the
following values:

0 WLM_REFRESH executed successfully.

4 One of the following conditions exists:
v The SAF resource profile ssid.WLM_REFRESH.wlm-environment is not

defined in resource class DSNR.
v The SQL authorization ID of the process (CURRENT SQLID) is not

defined to SAF.
v The wait time to obtain a response from z/OS was exceeded.

8 The SQL authorization ID of the process (CURRENT SQLID) is not
authorized to refresh the WLM environment.

990 DSNTWR received an unexpected SQLCODE while determining the
current SQLID.

993 One of the following conditions exists:
v The WLM-environment parameter value is null, blank, or contains

invalid characters.
v The ssid value contains invalid characters.

994 The extended MCS console was not activated within the number of
seconds indicated by message DSNT5461.

995 DSNTWR is not running as an authorized program.

996 DSNTWR could not activate an extended MCS console. See message
DSNT533I for more information.

997 DSNTWR made an unsuccessful request for a message from its
extended MCS console. See message DSNT533I for more information.

998 The extended MCS console for DSNTWR posted an alert. See message
DSNT534I for more information.

999 The operating system denied an authorized WLM_REFRESH request.
See message DSNT545I for more information.

return-code is an output parameter of type INTEGER.

Example of WLM_REFRESH invocation

Suppose that you want to refresh WLM environment WLMENV1, which is
associated with a DB2 subsystem with ID DSN. Assume that you already have

Chapter 14. Calling a stored procedure from your application 815

READ access to the DSN.WLM_REFRESH.WLMENV1 SAF profile. The CALL
statement for WLM_REFRESH looks like this:
strcpy(WLMENV,"WLMENV1");
strcpy(SSID,"DSN");
EXEC SQL CALL SYSPROC.WLM_REFRESH(:WLMENV, :SSID, :MSGTEXT, :RC);

For a complete example of setting up access to an SAF profile and calling
WLM_REFRESH, see job DSNTEJ6W, which is in data set prefix.SDSNSAMP.
Related information:

Controlling Extended MCS Consoles Using RACF (z/OS MVS Planning:
Operations)

WLM_SET_CLIENT_INFO stored procedure
This procedure allows the caller to set client information that is associated with the
current connection at the DB2 for z/OS server.

The following DB2 for z/OS client special registers can be changed:
v CURRENT CLIENT_ACCTNG
v CURRENT CLIENT_USERID
v CURRENT CLIENT_WRKSTNNAME
v CURRENT CLIENT_APPLNAME

The existing behavior of the CLIENT_ACCTNG register is unchanged. It gets its
value from the accounting token for DSN requesters, and from the accounting
string for SQL and other requesters.

Setting the CLIENT_ACCTNG special register updates the suffix portion of the
accounting string. The accounting suffix information is limited to 255 bytes for
distributed clients

This procedure is not under transaction control and client information changes
made by the procedure are independent of committing or rolling back units of
work.

Environment

WLM_SET_CLIENT_INFO runs in a WLM-established stored procedures address
space.

Authorization

To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges on each
package that the stored procedure uses:
v The EXECUTE privilege on the package for DSNADMSI
v Ownership of the package
v PACKADM authority for the package collection
v SYSADM authority

Syntax

816 Application Programming and SQL Guide

|
|
|

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2g3a0/6.2
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2g3a0/6.2

�� WLM_SET_CLIENT_INFO (client_userid , client_wrkstnname ,
NULL NULL

�

� client_applname , client_acctstr)
NULL NULL

��

The schema is SYSPROC.

Procedure parameters

client_userid
An input argument of type VARCHAR(255) that specifies the user ID for the
client. If NULL is specified, the value remains unchanged. If an empty string
(") is specified, the user ID for the client is reset to the default value.

If the value specified exceeds 128 bytes, it is truncated to 128 bytes.

client_wrkstnname
An input argument of type VARCHAR(255) that specifies the workstation
name for the client. If NULL is specified, the value remains unchanged. If an
empty string (") is specified, the workstation name for the client is reset to the
default value.

client_applname
An input argument of type VARCHAR(255) that specifies the application name
for the client. If NULL is specified, the value remains unchanged. If an empty
string (") is specified, the application name for the client is reset to the default
value.

client_acctstr
An input argument of type VARCHAR(255) that specifies the accounting string
for the client. If NULL is specified, the value remains unchanged. If an empty
string (") is specified, the accounting string for the client is reset to the default
value.

Examples

Set the user ID, workstation name, application name, and accounting string for the
client.

strcpy(user_id, "db2user");
strcpy(wkstn_name, "mywkstn");
strcpy(appl_name, "db2bp.exe");
strcpy(acct_str, "myacctstr");
iuser_id = 0;
iwkstn_name = 0;
iappl_name = 0;
iacct_str = 0;
EXEC SQL CALL SYSPROC.WLM_SET_CLIENT_INFO(:user_id:iuser_id, :wkstn_name:iwkstn_name,

:appl_name:iappl_name, :acct_str:iacct_str);

Set the user ID to db2user for the client without setting the other client attributes.
strcpy(user_id, "db2user");
iuser_id = 0;
iwkstn_name = -1;
iappl_name = -1;
iacct_str = -1;
EXEC SQL CALL SYSPROC.WLM_SET_CLIENT_INFO(:user_id:iuser_id, :wkstn_name:iwkstn_name,

:appl_name:iappl_name, :acct_str:iacct_str);

Chapter 14. Calling a stored procedure from your application 817

|

Reset the user ID for the client to blank without modifying the values of the other
client attributes.

strcpy(user_id, "");
iuser_id = 0;
iwkstn_name = -1;
iappl_name = -1;
iacct_str = -1;
EXEC SQL CALL SYSPROC.WLM_SET_CLIENT_INFO(:user_id:iuser_id, :wkstn_name:iwkstn_name,

:appl_name:iappl_name, :acct_str:iacct_str);

DSN_WLM_APPLENV stored procedure
This procedure provides a convenient way to define, install, and activate a new
WLM application environment for DB2.

Environment

DSN_WLM_APPLENV runs in a WLM-established stored procedures address
space.

Authorization

To execute the CALL DSN_WLM_APPLENV statement, the owner of the package
or plan that contains the CALL statement must have one or more of the following
privileges on each package that the stored procedure uses:
v The EXECUTE privilege on the DSN_WLM_APPLENV stored procedure
v Ownership of the stored procedure
v SYSADM authority

If the RACF facility class is active and a profile has been defined for the
MVSADMIN.WLM.POLICY facility class, then the caller of the stored procedure
needs the following access:
v ACCESS(READ) for action WLMINFO:

PERMIT MVSADMIN.WLM.POLICY CLASS(FACILITY) ID(user) ACCESS(READ)

v ACCESS(UPDATE) for action ADD, ADD_ACTIVATE, ACTIVATE:
PERMIT MVSADMIN.WLM.POLICY CLASS(FACILITY) ID(user) ACCESS(UPDATE)

Syntax

CALL DSN_WLM_APPLENV(action, policyid, wlmoptions, return-code, message)

�� CALL DSN_WLM_APPLENV (action policyid wlmoptions return-code message) ��

Procedure parameters

ACTION
An input parameter of type VARCHAR(20) that identifies the type of action to
be performed. This is a required parameter and supports the following values:

ADD
The stored procedure will install a new WLM application environment to

818 Application Programming and SQL Guide

an existing WLM service definition without activating a service policy. The
new WLM application environment will be available only on the next
activation of a WLM policy.

ADD_ACTIVATE
The stored procedure will install a new WLM application environment to
an existing WLM service definition and automatically activate a WLM
service policy to enable the new WLM application environment.

ACTIVATE
The stored procedure will activate a WLM service policy.

WLMINFO
The stored procedure will query the existing WLM service definition and
return basic information. For example, the service definition name,
timestamp in the local time the service definition was installed, user ID of
the service administrator that installed the service definition, name of the
system on which the service definition was installed from, and number of
application environment currently defined.

If the action specified is ADD or ADD_ACTIVATE, the WLMOPTIONS input
parameter is also required.

POLICYID
An input parameter of type VARCHAR(8) that identifies the WLM service
policy to be activated. It can be 1-8 characters long or the word ACTIVE. If the
policy specified is ACTIVE, the active service policy is used. This parameter is
required if the action specified is ADD_ACTIVATE or ACTIVATE, otherwise it
is ignored and can be set to NULL or an empty string.

WLMOPTIONS
An input parameter of type VARCHAR(4000). This parameter is required if the
action specified is ADD or ADD_ACTIVATE, otherwise it is ignored and can be
set to NULL or an empty string. The following WLM options are supported
and should be separated by one or more spaces:

WLMNAME(name)
WLMNAME is the defined name for an application environment. It can be
1-32 characters long. It cannot begin with the letters SYS. This is a required
option.

DESCRIPTION(description)
DESCRIPTION is a 32-character area describing the application
environment. This option is not required and can be set to an empty value.
For example,
DESCRIPTION()

PROCNAME(procedure-name)
PROCNAME defines the JCL procedure that WLM uses to start server
address spaces for the application environment. It can be 1-8 characters
long. This is a required option.

STARTPARM(start-up-parameters)
STARTPARM contains the parameters that WLM will use to start the JCL
procedure. The parameters can be up to 115 characters. If the parameters
include the subsystem name, the symbol &IWMSSNM can be used to
cause WLM to substitute the subsystem name instead of typing the
subsystem name directly. This option is useful because multiple instances
of the subsystem with different names can use the application
environment. For example:

Chapter 14. Calling a stored procedure from your application 819

STARTPARM(DB2SSN=&IWMSSNM,APPLENV=WLMENV1,NUMTCB=1)

This option is not required and can be set to an empty value.

WLMOPT(WLM_MANAGED|SINGLE_SERVER)
WLMOPT tells WLM to limit the number of server address spaces. For
example, if a server address space requires exclusive use of a resource,
only a single address space can exist. For DB2 routines, you can set a limit
of 1 address space per system if required by the routine. Note that if there
are multiple DB2 subsystems on a given system, WLM will create 1 server
for each DB2 subsystem that calls the routines. A limit of 1 address space
per sysplex does not apply to DB2 routines.

This option is not required and can be set to an empty value. The default
is WLM_MANAGED.

Examples

Example: Returning the basic information of the WLM service definition:
CALL SYSPROC.DSN_WLM_APPLENV(’WLMINFO’, NULL, NULL, ?, ?)

Here is an example of the output:
RETURN_CODE: 0
MESSAGE: DSNT051I DSNTWLMS ACTIVE WLM SERVICE DEFINITION

SERVICE DEFINITION NAME WLMSAMPL
INSTALLED ON 2010-01-25-07.11.57.764052
INSTALLED BY SYSADM
INSTALLED FROM LABEC130
NUMBER OF APPL ENVIRONMENT 12

DSNT023I DSNTWLMS DISPLAY WLM INFORMATION SUCCESSFUL

Example: Identifying the action and WLM options:
CALL SYSPROC.DSN_WLM_APPLENV(’ADD_ACTIVATE’,

’ACTIVE’,
’WLMNAME(DSNWLM_SAMPLE)
DESCRIPTION(DB2 SAMPLE WLM ENVIRONMENT)
PROCNAME(DSNWLMS)
STARTPARM(DB2SSN=&IWMSSNM,APPLENV=’’DSNWLM_SAMPLE’’)
WLMOPT(WLM_MANAGED)’, ?, ?)

Here is an example of the output:
RETURN_CODE: 0
MESSAGE: DSNT023I DSNTWLMS ADD WLM APPLICATION ENVIRONMENT DSNWLM_SAMPLE SUCCESSFUL

APPLICATION ENVIRONMENT NAME : DSNWLM_SAMPLE
DESCRIPTION : DB2 SAMPLE WLM ENVIRONMENT
SUBSYSTEM TYPE : DB2
PROCEDURE NAME : DSNWLMS
START PARAMETERS : DB2SSN=&IWMSSNM,APPLENV=’DSNWLM_SAMPLE’

STARTING OF SERVER ADDRESS SPACES FOR A SUBSYSTEM INSTANCE:
(x) MANAGED BY WLM
() LIMITED TO A SINGLE ADDRESS SPACE PER SYSTEM
() LIMITED TO A SINGLE ADDRESS SPACE PER SYSPLEX

DSNT023I DSNTWLMS ACTIVATE WLM POLICY WLMPOLY1 SUCCESSFUL

DSNACICS stored procedure
The CICS transaction invocation stored procedure (DSNACICS) invokes CICS
server programs.

820 Application Programming and SQL Guide

DSNACICS gives workstation applications a way to invoke CICS server
programs while using TCP/IP as their communication protocol. The workstation
applications use TCP/IP and DB2 Connect to connect to a DB2 for z/OS
subsystem, and then call DSNACICS to invoke the CICS server programs.

The DSNACICS input parameters require knowledge of various CICS resource
definitions with which the workstation programmer might not be familiar. For this
reason, DSNACICS invokes the DSNACICX user exit routine. The system
programmer can write a version of DSNACICX that checks and overrides the
parameters that the DSNACICS caller passes. If no user version of DSNACICX is
provided, DSNACICS invokes the default version of DSNACICX, which does not
modify any parameters.

Environment

DSNACICS runs in a WLM-established stored procedure address space and uses
the Resource Recovery Services attachment facility to connect to DB2.

If you use CICS Transaction Server for OS/390® Version 1 Release 3 or later, you
can register your CICS system as a resource manager with recoverable resource
management services (RRMS). When you do that, changes to DB2 databases that
are made by the program that calls DSNACICS and the CICS server program that
DSNACICS invokes are in the same two-phase commit scope. This means that
when the calling program performs an SQL COMMIT or ROLLBACK, DB2 and
RRS inform CICS about the COMMIT or ROLLBACK.

If the CICS server program that DSNACICS invokes accesses DB2 resources, the
server program runs under a separate unit of work from the original unit of work
that calls the stored procedure. This means that the CICS server program might
deadlock with locks that the client program acquires.

Authorization

To execute the CALL statement, the owner of the package or plan that contains the
CALL statement must have one or more of the following privileges:
v The EXECUTE privilege on stored procedure DSNACICS
v Ownership of the stored procedure
v SYSADM authority

The CICS server program that DSNACICS calls runs under the same user ID as
DSNACICS. That user ID depends on the SECURITY parameter that you specify
when you define DSNACICS.

The DSNACICS caller also needs authorization from an external security system,
such as RACF, to use CICS resources.

Syntax

The following syntax diagram shows the SQL CALL statement for invoking this
stored procedure.

Because the linkage convention for DSNACICS is GENERAL WITH NULLS, if you
pass parameters in host variables, you need to include a null indicator with every

Chapter 14. Calling a stored procedure from your application 821

host variable. Null indicators for input host variables must be initialized before
you execute the CALL statement.

�� CALL DSNACICS (parm-level ,
NULL

pgm-name ,
NULL

CICS-applid ,
NULL

CICS-level ,
NULL

�

� connect-type ,
NULL

netname ,
NULL

mirror-trans ,
NULL

COMMAREA ,
NULL

COMMAREA-total-len ,
NULL

�

� sync-opts ,
NULL

return-code, msg-area) ��

Option descriptions

parm-level
Specifies the level of the parameter list that is supplied to the stored procedure.
This is an input parameter of type INTEGER. The value must be 1.

pgm-name
Specifies the name of the CICS program that DSNACICS invokes. This is the
name of the program that the CICS mirror transaction calls, not the CICS
transaction name.

This is an input parameter of type CHAR(8).

CICS-applid
Specifies the applid of the CICS system to which DSNACICS connects.

This is an input parameter of type CHAR(8).

CICS-level
Specifies the level of the target CICS subsystem:

1 The CICS subsystem is CICS for MVS/ESA Version 4 Release 1, CICS
Transaction Server for OS/390 Version 1 Release 1, or CICS Transaction
Server for OS/390 Version 1 Release 2.

2 The CICS subsystem is CICS Transaction Server for OS/390 Version 1
Release 3 or later.

This is an input parameter of type INTEGER.

connect-type
Specifies whether the CICS connection is generic or specific. Possible values are
GENERIC or SPECIFIC.

This is an input parameter of type CHAR(8).

netname
If the value of connection-type is SPECIFIC, specifies the name of the specific
connection that is to be used. This value is ignored if the value of
connection-type is GENERIC.

This is an input parameter of type CHAR(8).

mirror-trans
Specifies the name of the CICS mirror transaction to invoke. This mirror
transaction calls the CICS server program that is specified in the pgm-name
parameter. mirror-trans must be defined to the CICS server region, and the

822 Application Programming and SQL Guide

CICS resource definition for mirror-trans must specify DFHMIRS as the
program that is associated with the transaction.

If this parameter contains blanks, DSNACICS passes a mirror transaction
parameter value of null to the CICS EXCI interface. This allows an installation
to override the transaction name in various CICS user-replaceable modules. If a
CICS user exit routine does not specify a value for the mirror transaction
name, CICS invokes CICS-supplied default mirror transaction CSMI.

This is an input parameter of type CHAR(4).

COMMAREA
Specifies the communication area (COMMAREA) that is used to pass data
between the DSNACICS caller and the CICS server program that DSNACICS
calls.

This is an input/output parameter of type VARCHAR(32704). In the length
field of this parameter, specify the number of bytes that DSNACICS sends to
the CICS server program.

commarea-total-len
Specifies the total length of the COMMAREA that the server program needs.

This is an input parameter of type INTEGER. This length must be greater than
or equal to the value that you specify in the length field of the COMMAREA
parameter and less than or equal to 32704. When the CICS server program
completes, DSNACICS passes the server program's entire COMMAREA, which
is commarea-total-len bytes in length, to the stored procedure caller.

sync-opts
Specifies whether the calling program controls resource recovery, using
two-phase commit protocols that are supported by RRS. Possible values are:

1 The client program controls commit processing. The CICS server region
does not perform a syncpoint when the server program returns control
to CICS. Also, the server program cannot take any explicit syncpoints.
Doing so causes the server program to abnormally terminate.

2 The target CICS server region takes a syncpoint on successful
completion of the server program. If this value is specified, the server
program can take explicit syncpoints.

When CICS has been set up to be an RRS resource manager, the client
application can control commit processing using SQL COMMIT requests. DB2
for z/OS ensures that CICS is notified to commit any resources that the CICS
server program modifies during two-phase commit processing.

When CICS has not been set up to be an RRS resource manager, CICS forces
syncpoint processing of all CICS resources at completion of the CICS server
program. This commit processing is not coordinated with the commit
processing of the client program.

This option is ignored when CICS-level is 1. This is an input parameter of type
INTEGER.

return-code
Return code from the stored procedure. Possible values are:

0 The call completed successfully.

12 The request to run the CICS server program failed. The msg-area
parameter contains messages that describe the error.

This is an output parameter of type INTEGER.

Chapter 14. Calling a stored procedure from your application 823

msg-area
Contains messages if an error occurs during stored procedure execution. The
first messages in this area are generated by the stored procedure. Messages
that are generated by CICS or the DSNACICX user exit routine might follow
the first messages. The messages appear as a series of concatenated, viewable
text strings.

This is an output parameter of type VARCHAR(500).

User exit routine

DSNACICS always calls user exit routine DSNACICX. You can use DSNACICX to
change the values of DSNACICS input parameters before you pass those
parameters to CICS. If you do not supply your own version of DSNACICX,
DSNACICS calls the default DSNACICX, which modifies no values and does an
immediate return to DSNACICS. The source code for the default version of
DSNACICX is in member DSNASCIX in data set prefix.SDSNSAMP. The source
code for a sample version of DSNACICX that is written in COBOL is in member
DSNASCIO in data set prefix.SDSNSAMP.

Example

The following PL/I example shows the variable declarations and SQL CALL
statement for invoking the CICS transaction that is associated with program
CICSPGM1.
/***********************/
/* DSNACICS PARAMETERS */
/***********************/
DECLARE PARM_LEVEL BIN FIXED(31);
DECLARE PGM_NAME CHAR(8);
DECLARE CICS_APPLID CHAR(8);
DECLARE CICS_LEVEL BIN FIXED(31);
DECLARE CONNECT_TYPE CHAR(8);
DECLARE NETNAME CHAR(8);
DECLARE MIRROR_TRANS CHAR(4);
DECLARE COMMAREA_TOTAL_LEN BIN FIXED(31);
DECLARE SYNC_OPTS BIN FIXED(31);
DECLARE RET_CODE BIN FIXED(31);
DECLARE MSG_AREA CHAR(500) VARYING;

DECLARE1 COMMAREA BASED(P1),
3 COMMAREA_LEN BIN FIXED(15),
3COMMAREA_INPUT CHAR(30),
3 COMMAREA_OUTPUT CHAR(100);

/***/
/* INDICATOR VARIABLES FOR DSNACICS PARAMETERS */
/***/
DECLARE 1 IND_VARS,

3 IND_PARM_LEVEL BIN FIXED(15),
3 IND_PGM_NAME BIN FIXED(15),
3 IND_CICS_APPLID BIN FIXED(15),
3 IND_CICS_LEVEL BIN FIXED(15),
3 IND_CONNECT_TYPE BINFIXED(15),
3 IND_NETNAME BIN FIXED(15),
3 IND_MIRROR_TRANSBIN FIXED(15),
3 IND_COMMAREA BIN FIXED(15),
3 IND_COMMAREA_TOTAL_LEN BIN FIXED(15),
3 IND_SYNC_OPTS BIN FIXED(15),
3 IND_RETCODE BIN FIXED(15),
3 IND_MSG_AREA BIN FIXED(15);

824 Application Programming and SQL Guide

/**************************/
/* LOCAL COPY OF COMMAREA */
/**************************/
DECLARE P1 POINTER;
DECLARE COMMAREA_STG CHAR(130) VARYING;

/**/
/* ASSIGN VALUES TO INPUT PARAMETERS PARM_LEVEL, PGM_NAME, */
/* MIRROR_TRANS, COMMAREA, COMMAREA_TOTAL_LEN, AND SYNC_OPTS. */
/* SET THE OTHER INPUT PARAMETERS TO NULL. THE DSNACICX */
/* USER EXIT MUST ASSIGN VALUES FOR THOSE PARAMETERS. */
/**/
PARM_LEVEL = 1;
IND_PARM_LEVEL = 0;

PGM_NAME = ’CICSPGM1’;
IND_PGM_NAME = 0 ;

MIRROR_TRANS = ’MIRT’;
IND_MIRROR_TRANS = 0;

P1 = ADDR(COMMAREA_STG);
COMMAREA_INPUT = ’THIS IS THE INPUT FOR CICSPGM1’;
COMMAREA_OUTPUT = ’ ’;
COMMAREA_LEN = LENGTH(COMMAREA_INPUT);
IND_COMMAREA = 0;

COMMAREA_TOTAL_LEN = COMMAREA_LEN + LENGTH(COMMAREA_OUTPUT);
IND_COMMAREA_TOTAL_LEN = 0;

SYNC_OPTS= 1;
IND_SYNC_OPTS = 0;

IND_CICS_APPLID= -1;
IND_CICS_LEVEL = -1;
IND_CONNECT_TYPE = -1;
IND_NETNAME = -1;
/***/
/* INITIALIZE
OUTPUT PARAMETERS TO NULL. */
/***/
IND_RETCODE = -1;
IND_MSG_AREA= -1;
/***/
/* CALL DSNACICS TO INVOKE CICSPGM1. */
/***/
EXEC SQL
CALL SYSPROC.DSNACICS(:PARM_LEVEL :IND_PARM_LEVEL,

:PGM_NAME :IND_PGM_NAME,
:CICS_APPLID :IND_CICS_APPLID,
:CICS_LEVEL :IND_CICS_LEVEL,
:CONNECT_TYPE :IND_CONNECT_TYPE,
:NETNAME :IND_NETNAME,
:MIRROR_TRANS :IND_MIRROR_TRANS,
:COMMAREA_STG :IND_COMMAREA,
:COMMAREA_TOTAL_LEN :IND_COMMAREA_TOTAL_LEN,
:SYNC_OPTS :IND_SYNC_OPTS,
:RET_CODE :IND_RETCODE,
:MSG_AREA :IND_MSG_AREA);

Output

DSNACICS places the return code from DSNACICS execution in the return-code
parameter. If the value of the return code is non-zero, DSNACICS puts its own
error messages and any error messages that are generated by CICS and the
DSNACICX user exit routine in the msg-area parameter.

Chapter 14. Calling a stored procedure from your application 825

The COMMAREA parameter contains the COMMAREA for the CICS server
program that DSNACICS calls. The COMMAREA parameter has a VARCHAR
type. Therefore, if the server program puts data other than character data in the
COMMAREA, that data can become corrupted by code page translation as it is
passed to the caller. To avoid code page translation, you can change the
COMMAREA parameter in the CREATE PROCEDURE statement for DSNACICS to
VARCHAR(32704) FOR BIT DATA. However, if you do so, the client program
might need to do code page translation on any character data in the COMMAREA
to make it readable.

Restrictions

Because DSNACICS uses the distributed program link (DPL) function to invoke
CICS server programs, server programs that you invoke through DSNACICS can
contain only the CICS API commands that the DPL function supports.

Debugging

If you receive errors when you call DSNACICS, ask your system administrator to
add a DSNDUMP DD statement in the startup procedure for the address space in
which DSNACICS runs. The DSNDUMP DD statement causes DB2 to generate an

SVC dump whenever DSNACICS issues an error message.
Related information:

Accessing CICS systems through stored procedure DSNACICS (DB2 9 for z/OS
Stored Procedures: Through the CALL and Beyond)

The API commands (CICS Transaction Server for z/OS)

The DSNACICX user exit routine
Use DSNACICX to change the values of DSNACICS input parameters before you
pass those parameters to CICS.

General considerations

The DSNACICX exit routine must follow these rules:
v It can be written in assembler, COBOL, PL/I, or C.
v It must follow the Language Environment calling linkage when the caller is an

assembler language program.
v The load module for DSNACICX must reside in an authorized program library

that is in the STEPLIB concatenation of the stored procedure address space
startup procedure.
You can replace the default DSNACICX in the prefix.SDSNLOAD, library, or you
can put the DSNACICX load module in a library that is ahead of
prefix.SDSNLOAD in the STEPLIB concatenation. It is recommended that you
put DSNACICX in the prefix.SDSNEXIT library. Sample installation job
DSNTIJEX contains JCL for assembling and link-editing the sample source code
for DSNACICX into prefix.SDSNEXIT. You need to modify the JCL for the
libraries and the compiler that you are using.

v The load module must be named DSNACICX.
v The exit routine must save and restore the caller's registers. Only the contents of

register 15 can be modified.

826 Application Programming and SQL Guide

http://www.redbooks.ibm.com/redbooks/SG247604/wwhelp/wwhimpl/js/html/wwhelp.htm?href=23-1-2a.htm
http://www.redbooks.ibm.com/redbooks/SG247604/wwhelp/wwhimpl/js/html/wwhelp.htm?href=23-1-2a.htm
http://pic.dhe.ibm.com/infocenter/cicsts/v4r1/topic/com.ibm.cics.ts.doc/eyup2/topics/eyup2km.html

v It must be written to be reentrant and link-edited as reentrant.
v It must be written and link-edited to execute as AMODE(31),RMODE(ANY).
v DSNACICX can contain SQL statements. However, if it does, you need to

change the DSNACICS procedure definition to reflect the appropriate SQL access
level for the types of SQL statements that you use in the user exit routine.

Specifying the exit routine

DSNACICS always calls an exit routine named DSNACICX. DSNACICS calls your
DSNACICX exit routine if it finds it before the default DSNACICX exit routine.
Otherwise, it calls the default DSNACICX exit routine.

When the exit routine is taken

The DSNACICX exit routine is taken whenever DSNACICS is called. The exit
routine is taken before DSNACICS invokes the CICS server program.

Loading a new version of the exit routine

DB2 loads DSNACICX only once, when DSNACICS is first invoked. If you change
DSNACICX, you can load the new version by quiescing and then resuming the
WLM application environment for the stored procedure address space in which
DSNACICS runs:
VARY WLM,APPLENV=DSNACICS-applenv-name,QUIESCE VARY
WLM,APPLENV=DSNACICS-applenv-name,RESUME

Parameter list

At invocation, registers are set as described in the following table

Table 130. Registers at invocation of DSNACICX

Register Contains

1 Address of pointer to the exit parameter list
(XPL).

13 Address of the register save area.

14 Return address.

15 Address of entry point of exit routine.

The following table shows the contents of the DSNACICX exit parameter list, XPL.
Member DSNDXPL in data set prefix.SDSNMACS contains an assembler language
mapping macro for XPL. Sample exit routine DSNASCIO in data set
prefix.SDSNSAMP includes a COBOL mapping macro for XPL.

Table 131. Contents of the XPL exit parameter list

Name Hex offset Data type Description

Corresponding
DSNACICS
parameter

XPL_EYEC 0 Character, 4 bytes Eye-catcher: 'XPL '

XPL_LEN 4 Character, 4 bytes Length of the exit
parameter list

XPL_LEVEL 8 4-byte integer Level of the
parameter list

parm-level

Chapter 14. Calling a stored procedure from your application 827

Table 131. Contents of the XPL exit parameter list (continued)

Name Hex offset Data type Description

Corresponding
DSNACICS
parameter

XPL_PGMNAME C Character, 8 bytes Name of the CICS
server program

pgm-name

XPL_CICSAPPLID 14 Character, 8 bytes CICS VTAM® applid CICS-applid

XPL_CICSLEVEL 1C 4-byte integer Level of CICS code CICS-level

XPL_CONNECTTYPE 20 Character, 8 bytes Specific or generic
connection to CICS

connect-type

XPL_NETNAME 28 Character, 8 bytes Name of the specific
connection to CICS

netname

XPL_MIRRORTRAN 30 Character, 8 bytes Name of the mirror
transaction that
invokes the CICS
server program

mirror-trans

XPL_COMMAREAPTR 38 Address, 4 bytes Address of the
COMMAREA

1

XPL_COMMINLEN 3C 4-byte integer Length of the
COMMAREA that is
passed to the server
program

2

XPL_COMMTOTLEN 40 4-byte integer Total length of the
COMMAREA that is
returned to the caller

commarea-total-len

XPL_SYNCOPTS 44 4-byte integer Syncpoint control
option

sync-opts

XPL_RETCODE 48 4-byte integer Return code from the
exit routine

return-code

XPL_MSGLEN 4C 4-byte integer Length of the output
message area

return-code

XPL_MSGAREA 50 Character, 256 bytes Output message area msg-area3

Notes:

1. The area that this field points to is specified by DSNACICS parameter
COMMAREA. This area does not include the length bytes.

2. This is the same value that the DSNACICS caller specifies in the length bytes of
the COMMAREA parameter.

3. Although the total length of msg-area is 500 bytes, DSNACICX can use only 256
bytes of that area.

DSNAIMS stored procedure
DSNAIMS is a stored procedure that allows DB2 applications to invoke IMS
transactions and commands easily, without maintaining their own connections to
IMS.

828 Application Programming and SQL Guide

DSNAIMS uses the IMS Open Transaction Manager Access (OTMA) API to
connect to IMS and execute the transactions.

Environment

DSNAIMS runs in a WLM-established stored procedures address space. DSNAIMS
requires DB2 with RRSAF enabled and IMS version 7 or later with OTMA Callable
Interface enabled.

To use a two-phase commit process, you must have IMS Version 8 with UQ70789
or later.

Authorization

To set up and run DSNAIMS, you must be authorized the perform the following
steps:
1. Use the job DSNTIJIM to issue the CREATE PROCEDURE statement for

DSNAIMS and to grant the execution of DSNAIMS to PUBLIC. DSNTIJIM is
provided in the SDSNSAMP data set. You need to customize DSNTIJIM to fit
the parameters of your system.

2. Ensure that OTMA C/I is initialized.

Syntax

The following syntax diagram shows the SQL CALL statement for invoking this
stored procedure:

�� CALL SYSPROC.DSNAIMS (dsnaims-function, dsnaims-2pc ,
NULL

xcf-group-name, �

� xcf-ims-name, racf-userid, racf-groupid ,
NULL

ims-lterm ,
NULL

ims-modname ,
NULL

�

� ims-tran-name ,
NULL

ims-data-in ,
NULL

ims-data-out ,
NULL

otma-tpipe-name ,
NULL

�

� otma-dru-name ,
NULL

user-data-in ,
NULL

user-data-out, status-message, return-code) ��

Option descriptions

dsnaims-function
A string that indicates whether the transaction is send-only, receive-only, or
send-and-receive. Possible values are:

SENDRECV
Sends and receives IMS data. SENDRECV invokes an IMS transaction
or command and returns the result to the caller. The transaction can be
an IMS full function or a fast path. SENDRECV does not support
multiple iterations of a conversational transaction

SEND Sends IMS data. SEND invokes an IMS transaction or command, but
does not receive IMS data. If result data exists, it can be retrieved with

Chapter 14. Calling a stored procedure from your application 829

the RECEIVE function. A send-only transaction cannot be an IMS fast
path transaction or a conversations transaction.

RECEIVE
Receives IMS data. The data can be the result of a transaction or
command initiated by the SEND function or an unsolicited output
message from an IMS application. The RECEIVE function does not
initiate an IMS transaction or command.

dsnaims-2pc
Specifies whether to use a two-phase commit process to perform the
transaction syncpoint service. Possible values are Y or N. For N, commits and
rollbacks that are issued by the IMS transaction do not affect commit and
rollback processing in the DB2 application that invokes DSNAIMS.
Furthermore, IMS resources are not affected by commits and rollbacks that are
issued by the calling DB2 application. If you specify Y, you must also specify
SENDRECV. To use a two-phase commit process, you must set the IMS control
region parameter (RRS) to Y.

This parameter is optional. The default is N.

xcf-group-name
Specifies the XCF group name that the IMS OTMA joins. You can obtain this
name by viewing the GRNAME parameter in IMS PROCLIB member
DFSPBxxx or by using the IMS command /DISPLAY OTMA.

xcf-ims-name
Specifies the XCF member name that IMS uses for the XCF group. If IMS is not
using the XRF or RSR feature, you can obtain the XCF member name from the
OTMANM parameter in IMS PROCLIB member DFSPBxxx. If IMS is using the
XRF or RSR feature, you can obtain the XCF member name from the USERVAR
parameter in IMS PROCLIB member DFSPBxxx.

racf-userid
Specifies the RACF user ID that is used for IMS to perform the transaction or
command authorization checking. This parameter is required if DSNAIMS is
running APF-authorized. If DSNAIMS is running unauthorized, this parameter
is ignored and the EXTERNAL SECURITY setting for the DSNAIMS stored
procedure definition determines the user ID that is used by IMS.

racf-groupid
Specifies the RACF group ID that is used for IMS to perform the transaction or
command authorization checking. This field is used for stored procedures that
are APF-authorized. It is ignored for other stored procedures.

ims-lterm
Specifies an IMS LTERM name that is used to override the LTERM name in the
I/O program communication block of the IMS application program.

This field is used as an input and an output field:
v For SENDRECV, the value is sent to IMS on input and can be updated by

IMS on output.
v For SEND, the parameter is IN only.
v For RECEIVE, the parameter is OUT only.

An empty or NULL value tells IMS to ignore the parameter.

ims-modname
Specifies the formatting map name that is used by the server to map output
data streams, such as 3270 streams. Although this invocation does not have
IMS MFS support, the input MODNAME can be used as the map name to

830 Application Programming and SQL Guide

define the output data stream. This name is an 8-byte message output
descriptor name that is placed in the I/O program communication block.
When the message is inserted, IMS places this name in the message prefix with
the map name in the program communication block of the IMS application
program.

For SENDRECV, the value is sent to IMS on input, and can be updated on
output. For SEND, the parameter is IN only. For RECEIVE it is OUT only. IMS
ignores the parameter when it is an empty or NULL value.

ims-tran-name
Specifies the name of an IMS transaction or command that is sent to IMS. If
the IMS command is longer than eight characters, specify the first eight
characters (including the "/" of the command). Specify the remaining
characters of the command in the ims-tran-name parameter. If you use an empty
or NULL value, you must specify the full transaction name or command in the
ims-data-in parameter.

ims-data-in
Specifies the data that is sent to IMS. This parameter is required in each of the
following cases:
v Input data is required for IMS
v No transaction name or command is passed in ims-tran-name

v The command is longer than eight characters

This parameter is ignored when for RECEIVE functions.

ims-data-out
Data returned after successful completion of the transaction. This parameter is
required for SENDRECV and RECEIVE functions. The parameter is ignored for
SEND functions.

The length of ims-data-out is 32,000 bytes. If the data that is returned from IMS
is greater than the length of ims-data-out, the data will be truncated.

otma-tpipe-name
Specifies an 8-byte user-defined communication session name that IMS uses for
the input and output data for the transaction or the command in a SEND or a
RECEIVE function. If the otma_tpipe_name parameter is used for a SEND
function to generate an IMS output message, the same otma_pipe_name must
be used to retrieve output data for the subsequent RECEIVE function.

otma-dru-name
Specifies the name of an IMS user-defined exit routine, OTMA destination
resolution user exit routine, if it is used. This IMS exit routine can format part
of the output prefix and can determine the output destination for an IMS
ALT_PCB output. If an empty or null value is passed, IMS ignores this
parameter.

user-data-in
This optional parameter contains any data that is to be included in the IMS
message prefix, so that the data can be accessed by IMS OTMA user exit
routines (DFSYIOE0 and DFSYDRU0) and can be tracked by IMS log records.
IMS applications that run in dependent regions do not access this data. The
specified user data is not included in the output message prefix. You can use
this parameter to store input and output correlator tokens or other information.
This parameter is ignored for RECEIEVE functions.

user-data-out
On output, this field contains the user-data-in in the IMS output prefix. IMS

Chapter 14. Calling a stored procedure from your application 831

user exit routines (DFSYIOE0 and DFSYDRU0) can also create user-data-out for
SENDRECV and RECEIVE functions. The parameter is not updated for SEND
functions.

The length of user-data-out is 1,022 bytes. If the data that is returned from IMS
is greater than the length of user-data-out, the data will be truncated.

status-message
Indicates any error message that is returned from the transaction or command,
OTMA, RRS, or DSNAIMS.

return-code
Indicates the return code that is returned for the transaction or command,
OTMA, RRS, or DSNAIMS.

Examples

The following examples show how to call DSNAIMS.

Example 1: Sample parameters for executing an IMS command:
CALL SYSPROC.DSNAIMS("SENDRECV", "N", "IMS7GRP", "IMS7TMEM",

"IMSCLNM", "", "", "", "", "",
"/LOG Hello World.", ims_data_out, "", "", "",
user_out, error_message, rc)

Example 2: Sample parameters for executing an IMS IVTNO transaction:
CALL SYSPROC.DSNAIMS("SENDRECV", "N", "IMS7GRP", "IMS7TMEM",

"IMSCLNM", "", "", "", "", "",
"IVTNO DISPLAY LAST1 "", ims_data_out
"", "", "", user_out, error_message, rc)

Example 3: Sample parameters for send-only IMS transaction:
CALL SYSPROC.DSNAIMS("SEND", "N", "IMS7GRP", "IMS7TMEM",

"IMSCLNM", "", "", "", "", "",
"IVTNO DISPLAY LAST1 "", ims_data_out,
"DSNAPIPE", "", "", user_out, error_message, rc)

Example 4: Sample parameters for receive-only IMS transaction:
CALL SYSPROC.DSNAIMS("RECEIVE", "N", "IMS7GRP", "IMS7TMEM",

"IMSCLNM", "", "", "", "", "",
"IVTNO DISPLAY LAST1 "", ims_data_out,
"DSNAPIPE", "", "", user_out, error_message, rc)

Connecting to multiple IMS subsystems with DSNAIMS

By default DSNAIMS connects to only one IMS subsystem at a time. The first
request to DSNAIMS determines to which IMS subsystem the stored procedure
connects. DSNAIMS attempts to reconnect to IMS only in the following cases:
v IMS is restarted and the saved connection is no longer valid
v WLM loads another DSNAIMS task

To connect to multiple IMS subsystems simultaneously, perform the following
steps:
1. Make a copy of the DB2-supplied job DSNTIJIM and customize it to your

environment.
2. Change the procedure name from SYSPROC.DSNAIMS to another name, such

as DSNAIMSB.
3. Do no change the EXTERNAL NAME option. Leave it as DSNAIMS.

832 Application Programming and SQL Guide

4. Run the new job to create a second instance of the stored procedure.
5. To ensure that you connect to the intended IMS target, consistently use the XFC

group and member names that you associate with each stored procedure
instance. For example:
CALL SYSPROC.DSNAIMS("SENDRECV", "N", "IMS7GRP", "IMS7TMEM", ...)
CALL SYSPROC.DSNAIMSB("SENDRECV", "N", "IMS8GRP", "IMS8TMEM", ...)

Related concepts:

OTMA C/I initialization
Related information:

Accessing IMS databases from DB2 stored procedures (DB2 9 for z/OS Stored
Procedures: Through the CALL and Beyond)

DSNAIMS2 stored procedure
DSNAIMS2 is a stored procedure that allows DB2 applications to invoke IMS
transactions and commands easily, without maintaining their own connections to
IMS. DSNAIMS2 includes multi-segment input support for IMS transactions.

DSNAIMS2 uses the IMS Open Transaction Manager Access (OTMA) API
to connect to IMS and execute the transactions.

When you define the DSNAIMS2 stored procedure to your DB2 subsystem, you
can use the name DSNAIMS in your application if you prefer. Customize DSNTIJI2
to define the stored procedure to your DB2 subsystem as DSNAIMS; however, the
EXTERNAL NAME option must still be DSNAIMS2.

Environment

DSNAIMS2 runs in a WLM-established stored procedures address space.
DSNAIMS2 requires DB2 with RRSAF enabled and IMS version 7 or later with
OTMA Callable Interface enabled.

To use a two-phase commit process, you must have IMS Version 8 with UQ70789
or later.

Authorization

To set up and run DSNAIMS2, you must be authorized the perform the following
steps:
1. Use the job DSNTIJI2 to issue the CREATE PROCEDURE statement for

DSNAIMS2 and to grant the execution of DSNAIMS2 to PUBLIC. DSNTIJI2 is
provided in the SDSNSAMP data set. You need to customize DSNTIJI2 to fit
the parameters of your system.

2. Ensure that OTMA C/I is initialized.

Syntax

The following syntax diagram shows the SQL CALL statement for invoking this
stored procedure:

Chapter 14. Calling a stored procedure from your application 833

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims12.doc.ccg/ims_otma_ciinit.htm
http://www.redbooks.ibm.com/redbooks/SG247604/wwhelp/wwhimpl/js/html/wwhelp.htm?href=23-2.htm
http://www.redbooks.ibm.com/redbooks/SG247604/wwhelp/wwhimpl/js/html/wwhelp.htm?href=23-2.htm

�� CALL SYSPROC.DSNAIMS2 (dsnaims-function, dsnaims-2pc ,
NULL

xcf-group-name, �

� xcf-ims-name, racf-userid, racf-groupid ,
NULL

ims-lterm ,
NULL

ims-modname ,
NULL

�

� ims-tran-name ,
NULL

ims-data-in ,
NULL

ims-data-out ,
NULL

otma-tpipe-name ,
NULL

�

� otma-dru-name ,
NULL

user-data-in ,
NULL

user-data-out, status-message, otma-data-inseg ,
NULL

�

� return-code) ��

Option descriptions

dsnaims-function
A string that indicates whether the transaction is send-only, receive-only, or
send-and-receive. Possible values are:

SENDRECV
Sends and receives IMS data. SENDRECV invokes an IMS transaction
or command and returns the result to the caller. The transaction can be
an IMS full function or a fast path. SENDRECV does not support
multiple iterations of a conversational transaction

SEND Sends IMS data. SEND invokes an IMS transaction or command, but
does not receive IMS data. If result data exists, it can be retrieved with
the RECEIVE function. A send-only transaction cannot be an IMS fast
path transaction or a conversations transaction.

RECEIVE
Receives IMS data. The data can be the result of a transaction or
command initiated by the SEND function or an unsolicited output
message from an IMS application. The RECEIVE function does not
initiate an IMS transaction or command.

dsnaims-2pc
Specifies whether to use a two-phase commit process to perform the
transaction syncpoint service. Possible values are Y or N. For N, commits and
rollbacks that are issued by the IMS transaction do not affect commit and
rollback processing in the DB2 application that invokes DSNAIMS2.
Furthermore, IMS resources are not affected by commits and rollbacks that are
issued by the calling DB2 application. If you specify Y, you must also specify
SENDRECV. To use a two-phase commit process, you must set the IMS control
region parameter (RRS) to Y.

This parameter is optional. The default is N.

xcf-group-name
Specifies the XCF group name that the IMS OTMA joins. You can obtain this
name by viewing the GRNAME parameter in IMS PROCLIB member
DFSPBxxx or by using the IMS command /DISPLAY OTMA.

xcf-ims-name
Specifies the XCF member name that IMS uses for the XCF group. If IMS is not
using the XRF or RSR feature, you can obtain the XCF member name from the
OTMANM parameter in IMS PROCLIB member DFSPBxxx. If IMS is using the

834 Application Programming and SQL Guide

XRF or RSR feature, you can obtain the XCF member name from the USERVAR
parameter in IMS PROCLIB member DFSPBxxx.

racf-userid
Specifies the RACF user ID that is used for IMS to perform the transaction or
command authorization checking. This parameter is required if DSNAIMS2 is
running APF-authorized. If DSNAIMS2 is running unauthorized, this
parameter is ignored and the EXTERNAL SECURITY setting for the
DSNAIMS2 stored procedure definition determines the user ID that is used by
IMS.

racf-groupid
Specifies the RACF group ID that is used for IMS to perform the transaction or
command authorization checking. This field is used for stored procedures that
are APF-authorized. It is ignored for other stored procedures.

ims-lterm
Specifies an IMS LTERM name that is used to override the LTERM name in the
I/O program communication block of the IMS application program.

This field is used as an input and an output field:
v For SENDRECV, the value is sent to IMS on input and can be updated by

IMS on output.
v For SEND, the parameter is IN only.
v For RECEIVE, the parameter is OUT only.

An empty or NULL value tells IMS to ignore the parameter.

ims-modname
Specifies the formatting map name that is used by the server to map output
data streams, such as 3270 streams. Although this invocation does not have
IMS MFS support, the input MODNAME can be used as the map name to
define the output data stream. This name is an 8-byte message output
descriptor name that is placed in the I/O program communication block.
When the message is inserted, IMS places this name in the message prefix with
the map name in the program communication block of the IMS application
program.

For SENDRECV, the value is sent to IMS on input, and can be updated on
output. For SEND, the parameter is IN only. For RECEIVE it is OUT only. IMS
ignores the parameter when it is an empty or NULL value.

ims-tran-name
Specifies the name of an IMS transaction or command that is sent to IMS. If
the IMS command is longer than eight characters, specify the first eight
characters (including the "/" of the command). Specify the remaining
characters of the command in the ims-tran-name parameter. If you use an empty
or NULL value, you must specify the full transaction name or command in the
ims-data-in parameter.

ims-data-in
Specifies the data that is sent to IMS. This parameter is required in each of the
following cases:
v Input data is required for IMS
v No transaction name or command is passed in ims-tran-name

v The command is longer than eight characters

This parameter is ignored when for RECEIVE functions.

Chapter 14. Calling a stored procedure from your application 835

ims-data-out
Data returned after successful completion of the transaction. This parameter is
required for SENDRECV and RECEIVE functions. The parameter is ignored for
SEND functions.

The length of ims-data-out is 32,000 bytes. If the data that is returned from IMS
is greater than the length of ims-data-out, the data will be truncated.

otma-tpipe-name
Specifies an 8-byte user-defined communication session name that IMS uses for
the input and output data for the transaction or the command in a SEND or a
RECEIVE function. If the otma_tpipe_name parameter is used for a SEND
function to generate an IMS output message, the same otma_pipe_name must
be used to retrieve output data for the subsequent RECEIVE function.

otma-dru-name
Specifies the name of an IMS user-defined exit routine, OTMA destination
resolution user exit routine, if it is used. This IMS exit routine can format part
of the output prefix and can determine the output destination for an IMS
ALT_PCB output. If an empty or null value is passed, IMS ignores this
parameter.

user-data-in
This optional parameter contains any data that is to be included in the IMS
message prefix, so that the data can be accessed by IMS OTMA user exit
routines (DFSYIOE0 and DFSYDRU0) and can be tracked by IMS log records.
IMS applications that run in dependent regions do not access this data. The
specified user data is not included in the output message prefix. You can use
this parameter to store input and output correlator tokens or other information.
This parameter is ignored for RECEIEVE functions.

user-data-out
On output, this field contains the user-data-in in the IMS output prefix. IMS
user exit routines (DFSYIOE0 and DFSYDRU0) can also create user-data-out for
SENDRECV and RECEIVE functions. The parameter is not updated for SEND
functions.

The length of user-data-out is 1,022 bytes. If the data that is returned from IMS
is greater than the length of user-data-out, the data will be truncated.

status-message
Indicates any error message that is returned from the transaction or command,
OTMA, RRS, or DSNAIMS2.

otma-data-inseg
Specifies the number of segments followed by the lengths of the segments to
be sent to IMS. All values should be separated by semicolons. This field is
required to send multi-segment input to IMS. For single-segment transactions
and commands, set the field to NULL, "0" or "0;".

return-code
Indicates the return code that is returned for the transaction or command,
OTMA, RRS, or DSNAIMS2.

Examples

The following examples show how to call DSNAIMS2.

Example 1: Sample parameters for executing a multi-segment IMS transaction:

836 Application Programming and SQL Guide

CALL SYSPROC.DSNAIMS2("SEND","N","IMS7GRP","IMS7TMEM",
"IMSCLNM","","","","","",
"PART 1ST SEGMENT FROM CI 2ND SEGMENT FROM CI ",
ims_data_out,"","","",user_out, error_message,
"2;25;20",rc)

Example 2: Sample parameters for executing a single-segment IMS IVTNO
transaction:
CALL SYSPROC.DSNAIMS2("SEND","N","IMS7GRP","IMS7TMEM",

"IMSCLNM","","","","","IVTNO",
"DISPLAY LAST1",ims_data_out,"","","",
user_out, error_message,NULL,rc)

Connecting to multiple IMS subsystems with DSNAIMS2

By default DSNAIMS2 connects to only one IMS subsystem at a time. The first
request to DSNAIMS2 determines to which IMS subsystem the stored procedure
connects. DSNAIMS2 attempts to reconnect to IMS only in the following cases:
v IMS is restarted and the saved connection is no longer valid
v WLM loads another DSNAIMS2 task

To connect to multiple IMS subsystems simultaneously, perform the following
steps:
1. Make a copy of the DB2-supplied job DSNTIJI2 and customize it to your

environment.
2. Change the procedure name from SYSPROC.DSNAIMS2 to another name, such

as DSNAIMS2B.
3. Do not change the EXTERNAL NAME option. Leave it as DSNAIMS2.
4. Change the name of the stored procedure in the grant statement in job

DSNTIJI2.
5. Run the new job to create a second instance of the stored procedure.
6. To ensure that you connect to the intended IMS target, consistently use the XFC

group and member names that you associate with each stored procedure
instance. For example:
CALL SYSPROC.DSNAIMS2("SENDRECV", "N", "IMS7GRP", "IMS7TMEM", ...)
CALL SYSPROC.DSNAIMS2B("SENDRECV", "N", "IMS8GRP", "IMS8TMEM", ...)

Related concepts:

OTMA C/I initialization
Related information:

Accessing IMS databases from DB2 stored procedures (DB2 9 for z/OS Stored
Procedures: Through the CALL and Beyond)

DSNACCOR stored procedure (deprecated)
The DB2 real-time statistics stored procedure (DSNACCOR) is a sample stored
procedure that makes recommendations to help you maintain your DB2 databases.
The DSNACCOX stored procedure replaces the DSNACCOR stored procedure,
which is deprecated, and provides improved recommendations. You can continue
to use the DSNACCOR stored procedure. However, DSNACCOR is not enhanced

Chapter 14. Calling a stored procedure from your application 837

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.ims12.doc.ccg/ims_otma_ciinit.htm
http://www.redbooks.ibm.com/redbooks/SG247604/wwhelp/wwhimpl/js/html/wwhelp.htm?href=23-2.htm
http://www.redbooks.ibm.com/redbooks/SG247604/wwhelp/wwhimpl/js/html/wwhelp.htm?href=23-2.htm

with new fields, improved formulas, and other enhancements in found in the
DSNACCOX stored procedure, including the option to select the formula that is
used for making recommendations.

PSPI

In particular, DSNACCOR performs the following actions:
v Recommends when you should reorganize, image copy, or update statistics for

table spaces or index spaces
v Indicates when a data set has exceeded a specified threshold for the number of

extents that it occupies.
v Indicates whether objects are in a restricted state

DSNACCOR uses data from the SYSIBM.SYSTABLESPACESTATS and
SYSIBM.SYSSYSINDEXSPACESTATS real-time statistics tables to make its
recommendations. DSNACCOR provides its recommendations in a result set.

DSNACCOR uses the set of criteria that are shown in “DSNACCOR formulas for
recommending actions” on page 847 to evaluate table spaces and index spaces. By
default, DSNACCOR evaluates all table spaces and index spaces in the subsystem
that have entries in the real-time statistics tables. However, you can override this
default through input parameters.

Important information about DSNACCOR recommendations:

v DSNACCOR makes recommendations based on general formulas that require
input from the user about the maintenance policies for a subsystem. These
recommendations might not be accurate for every installation.

v If the real-time statistics tables contain information for only a small percentage
of your DB2 subsystem, the recommendations that DSNACCOR makes might
not be accurate for the entire subsystem.

v Before you perform any action that DSNACCOR recommends, ensure that the
object for which DSNACCOR makes the recommendation is available, and that
the recommended action can be performed on that object. For example, before
you can perform an image copy on an index, the index must have the COPY
YES attribute.

Environment

DSNACCOR must run in a WLM-established stored procedure address space. The
DSNWLM_GENERAL core WLM environment is a suitable environment for this
stored procedure.

DSNACCOR is installed and configured by installation job DSNTIJRT, which binds
the package for DSNACCOR with isolation UR to avoid lock contention.

Authorization required

To execute the CALL DSNACCOR statement, the owner of the package or plan
that contains the CALL statement must have one or more of the following
privileges on each package that the stored procedure uses:
v The EXECUTE privilege on the package for DSNACCOR
v Ownership of the package
v PACKADM authority for the package collection

838 Application Programming and SQL Guide

v SYSADM authority

The owner of the package or plan that contains the CALL statement must also
have:
v SELECT authority on the real-time statistics tables
v Select authority on catalog tables
v The DISPLAY system privilege

Syntax diagram

The following syntax diagram shows the CALL statement for invoking
DSNACCOR. Because the linkage convention for DSNACCOR is GENERAL WITH
NULLS, if you pass parameters in host variables, you need to include a null
indicator with every host variable. Null indicators for input host variables must be
initialized before you execute the CALL statement.

�� CALL DSNACCOR (QueryType ,
NULL

ObjectType ,
NULL

ICType ,
NULL

StatsSchema ,
NULL

�

� CatlgSchema ,
NULL

LocalSchema ,
NULL

ChkLvl ,
NULL

Criteria ,
NULL

Restricted ,
NULL

�

� CRUpdatedPagesPct ,
NULL

CRChangesPct ,
NULL

CRDaySncLastCopy ,
NULL

ICRUpdatedPagesPct ,
NULL

�

� ICRChangesPct ,
NULL

CRIndexSize ,
NULL

RRTInsDelUpdPct ,
NULL

RRTUnclustInsPct ,
NULL

�

� RRTDisorgLOBPct ,
NULL

RRTMassDelLimit ,
NULL

RRTIndRefLimit ,
NULL

RRIInsertDeletePct ,
NULL

�

� RRIAppendInsertPct ,
NULL

RRIPseudoDeletePct ,
NULL

RRIMassDelLimit ,
NULL

RRILeafLimit ,
NULL

�

� RRINumLevelsLimit ,
NULL

SRTInsDelUpdPct ,
NULL

SRTInsDelUpdAbs ,
NULL

SRTMassDelLimit ,
NULL

�

� SRIInsDelUpdPct ,
NULL

SRIInsDelUpdAbs ,
NULL

SRIMassDelLimit ,
NULL

ExtentLimit ,
NULL

�

� LastStatement, ReturnCode, ErrorMsg, IFCARetCode, IFCAResCode, ExcessBytes) ��

Option descriptions

In the following option descriptions, the default value for an input parameter is
the value that DSNACCOR uses if you specify a null value.

QueryType
Specifies the types of actions that DSNACCOR recommends. This field
contains one or more of the following values. Each value is enclosed in single
quotation marks and separated from other values by a space.

ALL Makes recommendations for all of the following actions.

COPY Makes a recommendation on whether to perform an image copy.

Chapter 14. Calling a stored procedure from your application 839

RUNSTATS
Makes a recommendation on whether to perform RUNSTATS.

REORG
Makes a recommendation on whether to perform REORG. Choosing
this value causes DSNACCOR to process the EXTENTS value also.

EXTENTS
Indicates when data sets have exceeded a user-specified extents limit.

RESTRICT
Indicates which objects are in a restricted state.

QueryType is an input parameter of type VARCHAR(40). The default is ALL.

ObjectType
Specifies the types of objects for which DSNACCOR recommends actions:

ALL Table spaces and index spaces.

TS Table spaces only.

IX Index spaces only.

ObjectType is an input parameter of type VARCHAR(3). The default is ALL.

ICType
Specifies the types of image copies for which DSNACCOR is to make
recommendations:

F Full image copy.

I Incremental image copy. This value is valid for table spaces only.

B Full image copy or incremental image copy.

ICType is an input parameter of type VARCHAR(1). The default is B.

StatsSchema
Specifies the qualifier for the real-time statistics table names. StatsSchema is an
input parameter of type VARCHAR(128). The default is SYSIBM.

CatlgSchema
Specifies the qualifier for DB2 catalog table names. CatlgSchema is an input
parameter of type VARCHAR(128). The default is SYSIBM.

LocalSchema
Specifies the qualifier for the names of tables that DSNACCOR creates.
LocalSchema is an input parameter of type VARCHAR(128). The default is
DSNACC.

ChkLvl
Specifies the types of checking that DSNACCOR performs, and indicates
whether to include objects that fail those checks in the DSNACCOR
recommendations result set. This value is the sum of any combination of the
following values:

0 DSNACCOR performs none of the following actions.

1 For objects that are listed in the recommendations result set, check the
SYSTABLESPACE or SYSINDEXES catalog tables to ensure that those
objects have not been deleted. If value 16 is not also chosen, exclude
rows for the deleted objects from the recommendations result set.

840 Application Programming and SQL Guide

DSNACCOR excludes objects from the recommendations result set if
those objects are not in the SYSTABLESPACE or SYSINDEXES catalog
tables.

When this setting is specified, DSNACCOR does not use
EXTENTS>ExtentLimit to determine whether a LOB table space should
be reorganized.

2 For index spaces that are listed in the recommendations result set,
check the SYSTABLES, SYSTABLESPACE, and SYSINDEXES catalog
tables to determine the name of the table space that is associated with
each index space.

Choosing this value causes DSNACCOR to also check for rows in the
recommendations result set for objects that have been deleted but have
entries in the real-time statistics tables (value 1). This means that if
value 16 is not also chosen, rows for deleted objects are excluded from
the recommendations result set.

4 Check whether rows that are in the DSNACCOR recommendations
result set refer to objects that are in the exception table. For
recommendations result set rows that have corresponding exception
table rows, copy the contents of the QUERYTYPE column of the
exception table to the INEXCEPTTABLE column of the
recommendations result set.

8 Check whether objects that have rows in the recommendations result
set are restricted. Indicate the restricted status in the OBJECTSTATUS
column of the result set. A row is added to the result set for each
object that has a restricted state, even if a row for the same object is
already included in the result set because utility operations are
recommended. So, the result set might contain duplicate rows for the
same object when you specify this option.

16 For objects that are listed in the recommendations result set, check the
SYSTABLESPACE or SYSINDEXES catalog tables to ensure that those
objects have not been deleted (value 1). In result set rows for deleted
objects, specify the word ORPHANED in the OBJECTSTATUS column.

32 Exclude rows from the DSNACCOR recommendations result set for
index spaces for which the related table spaces have been
recommended for REORG. Choosing this value causes DSNACCOR to
perform the actions for values 1 and 2.

64 For index spaces that are listed in the DSNACCOR recommendations
result set, check whether the related table spaces are listed in the
exception table. For recommendations result set rows that have
corresponding exception table rows, copy the contents of the
QUERYTYPE column of the exception table to the INEXCEPTTABLE
column of the recommendations result set.

ChkLvl is an input parameter of type INTEGER. The default is 7 (values
1+2+4).

Criteria
Narrows the set of objects for which DSNACCOR makes recommendations.
This value is the search condition of an SQL WHERE clause. Criteria is an
input parameter of type VARCHAR(4096). The default is that DSNACCOR
makes recommendations for all table spaces and index spaces in the
subsystem. The search condition can use any column in the result set and
wildcards are allowed.

Chapter 14. Calling a stored procedure from your application 841

Restricted
A parameter that is reserved for future use. Specify the null value for this
parameter. Restricted is an input parameter of type VARCHAR(80).

CRUpdatedPagesPct
Specifies a criterion for recommending a full image copy on a table space or
index space. If the following condition is true for a table space, DSNACCOR
recommends an image copy:

The total number of distinct updated pages, divided by the total number of
preformatted pages (expressed as a percentage) is greater than
CRUpdatedPagesPct.

See item 2 in Figure 42 on page 848. If both of the following conditions are true
for an index space, DSNACCOR recommends an image copy:
v The total number of distinct updated pages, divided by the total number of

preformatted pages (expressed as a percentage) is greater than
CRUpdatedPagesPct.

v The number of active pages in the index space or partition is greater than
CRIndexSize. See items 2 and 3 in Figure 43 on page 848.

CRUpdatedPagesPct is an input parameter of type INTEGER. The default is 20.

CRChangesPct
Specifies a criterion for recommending a full image copy on a table space or
index space. If the following condition is true for a table space, DSNACCOR
recommends an image copy:

The total number of insert, update, and delete operations since the last
image copy, divided by the total number of rows or LOBs in a table space
or partition (expressed as a percentage) is greater than CRChangesPct.

See item 3 in Figure 42 on page 848. If both of the following conditions are true
for an index table space, DSNACCOR recommends an image copy:
v The total number of insert and delete operations since the last image copy,

divided by the total number of entries in the index space or partition
(expressed as a percentage) is greater than CRChangesPct.

v The number of active pages in the index space or partition is greater than
CRIndexSize.

See items 2 and 4 in Figure 43 on page 848. CRChangesPct is an input
parameter of type INTEGER. The default is 10.

CRDaySncLastCopy
Specifies a criterion for recommending a full image copy on a table space or
index space. If the number of days since the last image copy is greater than
this value, DSNACCOR recommends an image copy. (See item 1 in Figure 42
on page 848 and item 1 in Figure 43 on page 848.) CRDaySncLastCopy is an
input parameter of type INTEGER. The default is 7.

ICRUpdatedPagesPct
Specifies a criterion for recommending an incremental image copy on a table
space. If the following condition is true, DSNACCOR recommends an
incremental image copy:

The number of distinct pages that were updated since the last image copy,
divided by the total number of active pages in the table space or partition
(expressed as a percentage) is greater than CRUpdatedPagesPct.

(See item 1 in Figure 44 on page 848.) ICRUpdatedPagesPct is an input
parameter of type INTEGER. The default is 1.

842 Application Programming and SQL Guide

ICRChangesPct
Specifies a criterion for recommending an incremental image copy on a table
space. If the following condition is true, DSNACCOR recommends an
incremental image copy:

The ratio of the number of insert, update, or delete operations since the last
image copy, to the total number of rows or LOBs in a table space or
partition (expressed as a percentage) is greater than ICRChangesPct.

(See item 2 in Figure 44 on page 848.) ICRChangesPct is an input parameter of
type INTEGER. The default is 1.

CRIndexSize
Specifies, when combined with CRUpdatedPagesPct or CRChangesPct, a criterion
for recommending a full image copy on an index space. (See items 2, 3, and 4
in Figure 43 on page 848.) CRIndexSize is an input parameter of type INTEGER.
The default is 50.

RRTInsDelUpdPct
Specifies a criterion for recommending that the REORG utility is to be run on a
table space. If the following condition is true, DSNACCOR recommends
running REORG:

The sum of insert, update, and delete operations since the last REORG,
divided by the total number of rows or LOBs in the table space or partition
(expressed as a percentage) is greater than RRTInsDelUpdPct

(See item 1 in Figure 45 on page 849.) RRTInsDelUpdPct is an input parameter
of type INTEGER. The default is 20.

RRTUnclustInsPct
Specifies a criterion for recommending that the REORG utility is to be run on a
table space. If the following condition is true, DSNACCOR recommends
running REORG:

The number of unclustered insert operations, divided by the total number
of rows or LOBs in the table space or partition (expressed as a percentage)
is greater than RRTUnclustInsPct.

(See item 2 in Figure 45 on page 849.) RRTUnclustInsPct is an input parameter
of type INTEGER. The default is 10.

RRTDisorgLOBPct
Specifies a criterion for recommending that the REORG utility is to be run on a
table space. If the following condition is true, DSNACCOR recommends
running REORG:

The number of imperfectly chunked LOBs, divided by the total number of
rows or LOBs in the table space or partition (expressed as a percentage) is
greater than RRTDisorgLOBPct.

(See item 3 in Figure 45 on page 849.) RRTDisorgLOBPct is an input parameter
of type INTEGER. The default is 10.

RRTMassDelLimit
Specifies a criterion for recommending that the REORG utility is to be run on a
table space. If one of the following values is greater than RRTMassDelLimit,
DSNACCOR recommends running REORG:
v The number of mass deletes from a segmented or LOB table space since the

last REORG or LOAD REPLACE
v The number of dropped tables from a nonsegmented table space since the

last REORG or LOAD REPLACE

Chapter 14. Calling a stored procedure from your application 843

(See item 5 in Figure 45 on page 849.) RRTMassDelLimit is an input parameter
of type INTEGER. The default is 0.

RRTIndRefLimit
Specifies a criterion for recommending that the REORG utility is to be run on a
table space. If the following value is greater than RRTIndRefLimit, DSNACCOR
recommends running REORG:

The total number of overflow records that were created since the last
REORG or LOAD REPLACE, divided by the total number of rows or LOBs
in the table space or partition (expressed as a percentage)

(See item 4 in Figure 45 on page 849.) RRTIndRefLimit is an input parameter of
type INTEGER. The default is 10.

RRIInsertDeletePct
Specifies a criterion for recommending that the REORG utility is to be run on
an index space. If the following value is greater than RRIInsertDeletePct,
DSNACCOR recommends running REORG:

The sum of the number of index entries that were inserted and deleted
since the last REORG, divided by the total number of index entries in the
index space or partition (expressed as a percentage)

(See item 1 in Figure 46 on page 849.) This is an input parameter of type
INTEGER. The default is 20.

RRIAppendInsertPct
Specifies a criterion for recommending that the REORG utility is to be run on
an index space. If the following value is greater than RRIAppendInsertPct,
DSNACCOR recommends running REORG:

The number of index entries that were inserted since the last REORG,
REBUILD INDEX, or LOAD REPLACE with a key value greater than the
maximum key value in the index space or partition, divided by the number
of index entries in the index space or partition (expressed as a percentage)

(See item 2 in Figure 46 on page 849.) RRIInsertDeletePct is an input parameter
of type INTEGER. The default is 10.

RRIPseudoDeletePct
Specifies a criterion for recommending that the REORG utility is to be run on
an index space. If the following value is greater than RRIPseudoDeletePct,
DSNACCOR recommends running REORG:

The number of index entries that were pseudo-deleted since the last
REORG, REBUILD INDEX, or LOAD REPLACE, divided by the number of
index entries in the index space or partition (expressed as a percentage)

(See item 3 in Figure 46 on page 849.) RRIPseudoDeletePct is an input parameter
of type INTEGER. The default is 10.

RRIMassDelLimit
Specifies a criterion for recommending that the REORG utility is to be run on
an index space. If the number of mass deletes from an index space or partition
since the last REORG, REBUILD, or LOAD REPLACE is greater than this
value, DSNACCOR recommends running REORG.

(See item 4 in Figure 46 on page 849.) RRIMassDelLimit is an input parameter
of type INTEGER. The default is 0.

RRILeafLimit
Specifies a criterion for recommending that the REORG utility is to be run on

844 Application Programming and SQL Guide

an index space. If the following value is greater than RRILeafLimit,
DSNACCOR recommends running REORG:

The number of index page splits that occurred since the last REORG,
REBUILD INDEX, or LOAD REPLACE that resulted in a large separation
between the parts of the original page, divided by the total number of
active pages in the index space or partition (expressed as a percentage)

(See item 5 in Figure 46 on page 849.) RRILeafLimit is an input parameter of
type INTEGER. The default is 10.

RRINumLevelsLimit
Specifies a criterion for recommending that the REORG utility is to be run on
an index space. If the following value is greater than RRINumLevelsLimit,
DSNACCOR recommends running REORG:

The number of levels in the index tree that were added or removed since
the last REORG, REBUILD INDEX, or LOAD REPLACE

(See item 6 in Figure 46 on page 849.) RRINumLevelsLimit is an input parameter
of type INTEGER. The default is 0.

SRTInsDelUpdPct
Specifies, when combined with SRTInsDelUpdAbs, a criterion for
recommending that the RUNSTATS utility is to be run on a table space. If both
of the following conditions are true, DSNACCOR recommends running
RUNSTATS:
v The number of insert, update, or delete operations since the last RUNSTATS

on a table space or partition, divided by the total number of rows or LOBs
in table space or partition (expressed as a percentage) is greater than
SRTInsDelUpdPct.

v The sum of the number of inserted and deleted index entries since the last
RUNSTATS on an index space or partition is greater than SRTInsDelUpdAbs.

(See items 1 and 2 in Figure 47 on page 849.) SRTInsDelUpdPct is an input
parameter of type INTEGER. The default is 20.

SRTInsDelUpdAbs
Specifies, when combined with SRTInsDelUpdPct, a criterion for recommending
that the RUNSTATS utility is to be run on a table space. If both of the
following conditions are true, DSNACCOR recommends running RUNSTATS:
v The number of insert, update, and delete operations since the last

RUNSTATS on a table space or partition, divided by the total number of
rows or LOBs in table space or partition (expressed as a percentage) is
greater than SRTInsDelUpdPct.

v The sum of the number of inserted and deleted index entries since the last
RUNSTATS on an index space or partition is greater than SRTInsDelUpdAbs.

(See items 1 and 2 in Figure 47 on page 849.) SRTInsDelUpdAbs is an input
parameter of type INTEGER. The default is 0.

SRTMassDelLimit
Specifies a criterion for recommending that the RUNSTATS utility is to be run
on a table space. If the following condition is true, DSNACCOR recommends
running RUNSTATS:
v The number of mass deletes from a table space or partition since the last

REORG or LOAD REPLACE is greater than SRTMassDelLimit.

(See item 3 in Figure 47 on page 849.) SRTMassDelLimit is an input parameter
of type INTEGER. The default is 0.

Chapter 14. Calling a stored procedure from your application 845

SRIInsDelUpdPct
Specifies, when combined with SRIInsDelUpdAbs, a criterion for recommending
that the RUNSTATS utility is to be run on an index space. If both of the
following conditions are true, DSNACCOR recommends running RUNSTATS:
v The number of inserted and deleted index entries since the last RUNSTATS

on an index space or partition, divided by the total number of index entries
in the index space or partition (expressed as a percentage) is greater than
SRIInsDelUpdPct.

v The sum of the number of inserted and deleted index entries since the last
RUNSTATS on an index space or partition is greater than SRIInsDelUpdAbs.

(See items 1 and 2 in Figure 48 on page 849.) SRIInsDelUpdPct is an input
parameter of type INTEGER. The default is 20.

SRIInsDelUpdAbs
Specifies, when combined with SRIInsDelUpdPct, a criterion for recommending
that the RUNSTATS utility is to be run on an index space. If the following
condition is true, DSNACCOR recommends running RUNSTATS:
v The number of inserted and deleted index entries since the last RUNSTATS

on an index space or partition, divided by the total number of index entries
in the index space or partition (expressed as a percentage) is greater than
SRIInsDelUpdPct.

v The sum of the number of inserted and deleted index entries since the last
RUNSTATS on an index space or partition is greater than SRIInsDelUpdAbs,

(See items 1 and 2 in Figure 48 on page 849.) SRIInsDelUpdAbs is an input
parameter of type INTEGER. The default is 0.

SRIMassDelLimit
Specifies a criterion for recommending that the RUNSTATS utility is to be run
on an index space. If the number of mass deletes from an index space or
partition since the last REORG, REBUILD INDEX, or LOAD REPLACE is
greater than this value, DSNACCOR recommends running RUNSTATS.

(See item 3 in Figure 48 on page 849.) SRIMassDelLimit is an input parameter of
type INTEGER. The default is 0.

ExtentLimit
Specifies a criterion for recommending that the REORG utility is to be run on a
table space or index space. Also specifies that DSNACCOR is to warn the user
that the table space or index space has used too many extents. DSNACCOR
recommends running REORG, and altering data set allocations if the following
condition is true:
v The number of physical extents in the index space, table space, or partition

is greater than ExtentLimit.

(See Figure 49 on page 850.) ExtentLimit is an input parameter of type
INTEGER. The default is 50.

LastStatement
When DSNACCOR returns a severe error (return code 12), this field contains
the SQL statement that was executing when the error occurred. LastStatement is
an output parameter of type VARCHAR(8012).

ReturnCode
The return code from DSNACCOR execution. Possible values are:

0 DSNACCOR executed successfully. The ErrorMsg parameter contains
the approximate percentage of the total number of objects in the
subsystem that have information in the real-time statistics tables.

846 Application Programming and SQL Guide

4 DSNACCOR completed, but one or more input parameters might be
incompatible. The ErrorMsg parameter contains the input parameters
that might be incompatible.

8 DSNACCOR terminated with errors. The ErrorMsg parameter contains
a message that describes the error.

12 DSNACCOR terminated with severe errors. The ErrorMsg parameter
contains a message that describes the error. The LastStatement
parameter contains the SQL statement that was executing when the
error occurred.

14 DSNACCOR terminated because it could not access one or more of the
real-time statistics tables. The ErrorMsg parameter contains the names
of the tables that DSNACCOR could not access.

15 DSNACCOR terminated because it encountered a problem with one of
the declared temporary tables that it defines and uses.

16 DSNACCOR terminated because it could not define a declared
temporary table. No table spaces were defined in the TEMP database.

NULL DSNACCOR terminated but could not set a return code.

ReturnCode is an output parameter of type INTEGER.

ErrorMsg
Contains information about DSNACCOR execution. If DSNACCOR runs
successfully (ReturnCode=0), this field contains the approximate percentage of
objects in the subsystem that are in the real-time statistics tables. Otherwise,
this field contains error messages. ErrorMsg is an output parameter of type
VARCHAR(1331).

IFCARetCode
Contains the return code from an IFI COMMAND call. DSNACCOR issues
commands through the IFI interface to determine the status of objects.
IFCARetCode is an output parameter of type INTEGER.

IFCAResCode
Contains the reason code from an IFI COMMAND call. IFCAResCode is an
output parameter of type INTEGER.

ExcessBytes
Contains the number of bytes of information that did not fit in the IFI return
area after an IFI COMMAND call. ExcessBytes is an output parameter of type
INTEGER.

DSNACCOR formulas for recommending actions

The following formulas specify the criteria that DSNACCOR uses for its
recommendations and warnings. The variables in italics are DSNACCOR input
parameters. The capitalized variables are columns of the
SYSIBM.SYSTABLESPACESTATS or SYSIBM.SYSINDEXSPACESTATS tables. The
numbers to the right of selected items are reference numbers for the option
descriptions in “Option descriptions” on page 839.

The figure below shows the formula that DSNACCOR uses to recommend a full
image copy on a table space.

Chapter 14. Calling a stored procedure from your application 847

The figure below shows the formula that DSNACCOR uses to recommend a full
image copy on an index space.

The figure below shows the formula that DSNACCOR uses to recommend an
incremental image copy on a table space.

The figure below shows the formula that DSNACCOR uses to recommend a
REORG on a table space. If the table space is a LOB table space, and CHCKLVL=1,
the formula does not include EXTENTS>ExtentLimit.

((QueryType=’COPY’ OR QueryType=’ALL’) AND
(ObjectType=’TS’ OR ObjectType=’ALL’) AND
ICType=’F’) AND
(COPYLASTTIME IS NULL OR
REORGLASTTIME>COPYLASTTIME OR
LOADRLASTTIME>COPYLASTTIME OR
(CURRENT DATE-COPYLASTTIME)>CRDaySncLastCopy OR �1�
(COPYUPDATEDPAGES*100)/NACTIVE>CRUpdatedPagesPct OR �2�
(COPYCHANGES*100)/TOTALROWS>CRChangesPct) �3�

Figure 42. DSNACCOR formula for recommending a full image copy on a table space

((QueryType=’COPY’ OR QueryType=’ALL’) AND
(ObjectType=’IX’ OR ObjectType=’ALL’) AND
(ICType=’F’ OR ICType=’B’)) AND
(COPYLASTTIME IS NULL OR
REORGLASTTIME>COPYLASTTIME OR
LOADRLASTTIME>COPYLASTTIME OR
REBUILDLASTTIME>COPYLASTTIME OR
(CURRENT DATE-COPYLASTTIME)>CRDaySncLastCopy OR �1�
(NACTIVE>CRIndexSize AND �2�
((COPYUPDATEDPAGES*100)/NACTIVE>CRUpdatedPagesPct OR �3�
(COPYCHANGES*100)/TOTALENTRIES>CRChangesPct))) �4�

Figure 43. DSNACCOR formula for recommending a full image copy on an index space

((QueryType=’COPY’ OR QueryType=’ALL’) AND
(ObjectType=’TS’ OR ObjectType=’ALL’) AND
ICType=’I’ AND
COPYLASTTIME IS NOT NULL) AND
(LOADRLASTTIME>COPYLASTTIME OR
REORGLASTTIME>COPYLASTTIME OR
(COPYUPDATEDPAGES*100)/NACTIVE>ICRUpdatedPagesPct OR �1�
(COPYCHANGES*100)/TOTALROWS>ICRChangesPct)) �2�

Figure 44. DSNACCOR formula for recommending an incremental image copy on a table space

848 Application Programming and SQL Guide

The figure below shows the formula that DSNACCOR uses to recommend a
REORG on an index space.

The figure below shows the formula that DSNACCOR uses to recommend
RUNSTATS on a table space.

The figure below shows the formula that DSNACCOR uses to recommend
RUNSTATS on an index space.

The figure below shows the formula that DSNACCOR uses to that too many index
space or table space extents have been used.

((QueryType=’REORG’ OR QueryType=’ALL’) AND
(ObjectType=’TS’ OR ObjectType=’ALL’)) AND
(REORGLASTTIME IS NULL OR
((REORGINSERTS+REORGDELETES+REORGUPDATES)*100)/TOTALROWS>RRTInsDelUpdPct OR �1�
(REORGUNCLUSTINS*100)/TOTALROWS>RRTUnclustInsPct OR �2�
(REORGDISORGLOB*100)/TOTALROWS>RRTDisorgLOBPct OR �3�
((REORGNEARINDREF+REORGFARINDREF)*100)/TOTALROWS>RRTIndRefLimit OR �4�
REORGMASSDELETE>RRTMassDelLimit OR �5�
EXTENTS>ExtentLimit) �6�

Figure 45. DSNACCOR formula for recommending a REORG on a table space

((QueryType=’REORG’ OR QueryType=’ALL’) AND
(ObjectType=’IX’ OR ObjectType=’ALL’)) AND
(REORGLASTTIME IS NULL OR
((REORGINSERTS+REORGDELETES)*100)/TOTALENTRIES>RRIInsertDeletePct OR �1�
(REORGAPPENDINSERT*100)/TOTALENTRIES>RRIAppendInsertPct OR �2�
(REORGPSEUDODELETES*100)/TOTALENTRIES>RRIPseudoDeletePct OR �3�
REORGMASSDELETE>RRIMassDeleteLimit OR �4�
(REORGLEAFFAR*100)/NACTIVE>RRILeafLimit OR �5�
REORGNUMLEVELS>RRINumLevelsLimit OR �6�
EXTENTS>ExtentLimit) �7�

Figure 46. DSNACCOR formula for recommending a REORG on an index space

((QueryType=’RUNSTATS’ OR QueryType=’ALL’) AND
(ObjectType=’TS’ OR ObjectType=’ALL’)) AND
(STATSLASTTIME IS NULL OR
(((STATSINSERTS+STATSDELETES+STATSUPDATES)*100)/TOTALROWS>SRTInsDelUpdPct AND �1�
(STATSINSERTS+STATSDELETES+STATSUPDATES)>SRTInsDelUpdAbs) OR �2�
STATSMASSDELETE>SRTMassDeleteLimit) �3�

Figure 47. DSNACCOR formula for recommending RUNSTATS on a table space

((QueryType=’RUNSTATS’ OR QueryType=’ALL’) AND
(ObjectType=’IX’ OR ObjectType=’ALL’)) AND
(STATSLASTTIME IS NULL OR
(((STATSINSERTS+STATSDELETES)*100)/TOTALENTRIES>SRIInsDelUpdPct AND �1�
(STATSINSERTS+STATSDELETES)>SRIInsDelUpdPct) OR �2�
STATSMASSDELETE>SRIInsDelUpdAbs) �3�

Figure 48. DSNACCOR formula for recommending RUNSTATS on an index space

Chapter 14. Calling a stored procedure from your application 849

Using an exception table

An exception table is an optional, user-created DB2 table that you can use to place
information in the INEXCEPTTABLE column of the recommendations result set.
You can put any information in the INEXCEPTTABLE column, but the most
common use of this column is to filter the recommendations result set. Each row in
the exception table represents an object for which you want to provide information
for the recommendations result set.

To create the exception table, execute a CREATE TABLE statement similar to the
following one. You can include other columns in the exception table, but you must
include at least the columns that are shown.
CREATE TABLE DSNACC.EXCEPT_TBL
(DBNAME CHAR(8) NOT NULL,
NAME CHAR(8) NOT NULL,
QUERYTYPE CHAR(40))
CCSID EBCDIC;

The meanings of the columns are:

DBNAME
The database name for an object in the exception table.

NAME
The table space name or index space name for an object in the exception table.

QUERYTYPE
The information that you want to place in the INEXCEPTTABLE column of the
recommendations result set.

If you put a null value in this column, DSNACCOR puts the value YES in the
INEXCEPTTABLE column of the recommendations result set row for the object
that matches the DBNAME and NAME values.

Recommendation: If you plan to put many rows in the exception table, create a
nonunique index on DBNAME, NAME, and QUERYTYPE.

After you create the exception table, insert a row for each object for which you
want to include information in the INEXCEPTTABLE column.

Example: Suppose that you want the INEXCEPTTABLE column to contain the
string 'IRRELEVANT' for table space STAFF in database DSNDB04. You also want
the INEXCEPTTABLE column to contain 'CURRENT' for table space DSN8S11D in
database DSN8D11A. Execute these INSERT statements:
INSERT INTO DSNACC.EXCEPT_TBL VALUES(’DSNDB04 ’, ’STAFF ’, ’IRRELEVANT’);
INSERT INTO DSNACC.EXCEPT_TBL VALUES(’DSN8D11A’, ’DSN8S11D’, ’CURRENT’);

To use the contents of INEXCEPTTABLE for filtering, include a condition that
involves the INEXCEPTTABLE column in the search condition that you specify in
your Criteria input parameter.

Example: Suppose that you want to include all rows for database DSNDB04 in
the recommendations result set, except for those rows that contain the string

EXTENTS>ExtentLimit

Figure 49. DSNACCOR formula for warning that too many data set extents for a table space or index space are used

850 Application Programming and SQL Guide

'IRRELEVANT' in the INEXCEPTTABLE column. You might include the following
search condition in your Criteria input parameter:
DBNAME=’DSNDB04’ AND INEXCEPTTABLE<>’IRRELEVANT’

Example

The following COBOL example that shows variable declarations and an SQL CALL
for obtaining recommendations for objects in databases DSN8D11A and
DSN8D11L. This example also outlines the steps that you need to perform to
retrieve the two result sets that DSNACCOR returns.
WORKING-STORAGE SECTION....

* DSNACCOR PARAMETERS *

01 QUERYTYPE.

49 QUERYTYPE-LN PICTURE S9(4) COMP VALUE 40.
49 QUERYTYPE-DTA PICTURE X(40) VALUE ’ALL’.

01 OBJECTTYPE.
49 OBJECTTYPE-LN PICTURE S9(4) COMP VALUE 3.
49 OBJECTTYPE-DTA PICTURE X(3) VALUE ’ALL’.

01 ICTYPE.
49 ICTYPE-LN PICTURE S9(4) COMP VALUE 1.
49 ICTYPE-DTA PICTURE X(1) VALUE ’B’.

01 STATSSCHEMA.
49 STATSSCHEMA-LN PICTURE S9(4) COMP VALUE 128.
49 STATSSCHEMA-DTA PICTURE X(128) VALUE ’SYSIBM’.

01 CATLGSCHEMA.
49 CATLGSCHEMA-LN PICTURE S9(4) COMP VALUE 128.

49 CATLGSCHEMA-DTA PICTURE X(128) VALUE ’SYSIBM’.
01 LOCALSCHEMA.

49 LOCALSCHEMA-LN PICTURE S9(4) COMP VALUE 128.
49 LOCALSCHEMA-DTA PICTURE X(128) VALUE ’DSNACC’.

01 CHKLVL PICTURE S9(9) COMP VALUE +3.
01 CRITERIA.

49 CRITERIA-LN PICTURE S9(4) COMP VALUE 4096.
49 CRITERIA-DTA PICTURE X(4096) VALUE SPACES.

01 RESTRICTED.
49 RESTRICTED-LN PICTURE S9(4) COMP VALUE 80.
49 RESTRICTED-DTA PICTURE X(80) VALUE SPACES.

01 CRUPDATEDPAGESPCT PICTURE S9(9) COMP VALUE +0.
01 CRCHANGESPCT PICTURE S9(9) COMP VALUE +0.
01 CRDAYSNCLASTCOPY PICTURE S9(9) COMP VALUE +0.
01 ICRUPDATEDPAGESPCT PICTURE S9(9) COMP VALUE +0.
01 ICRCHANGESPCT PICTURE S9(9) COMP VALUE +0.
01 CRINDEXSIZE PICTURE S9(9) COMP VALUE +0.
01 RRTINSDELUPDPCT PICTURE S9(9) COMP VALUE +0.
01 RRTUNCLUSTINSPCT PICTURE S9(9) COMP VALUE +0.
01 RRTDISORGLOBPCT PICTURE S9(9) COMP VALUE +0.
01 RRTMASSDELLIMIT PICTURE S9(9) COMP VALUE +0.
01 RRTINDREFLIMIT PICTURE S9(9) COMP VALUE +0.
01 RRIINSERTDELETEPCT PICTURE S9(9) COMP VALUE +0.
01 RRIAPPENDINSERTPCT PICTURE S9(9) COMP VALUE +0.
01 RRIPSEUDODELETEPCT PICTURE S9(9) COMP VALUE +0.
01 RRIMASSDELLIMIT PICTURE S9(9) COMP VALUE +0.
01 RRILEAFLIMIT PICTURE S9(9) COMP VALUE +0.
01 RRINUMLEVELSLIMIT PICTURE S9(9) COMP VALUE +0.
01 SRTINSDELUPDPCT PICTURE S9(9) COMP VALUE +0.
01 SRTINSDELUPDABS PICTURE S9(9) COMP VALUE +0.
01 SRTMASSDELLIMIT PICTURE S9(9) COMP VALUE +0.
01 SRIINSDELUPDPCT PICTURE S9(9) COMP VALUE +0.
01 SRIINSDELUPDABS PICTURE S9(9) COMP VALUE +0.
01 SRIMASSDELLIMIT PICTURE S9(9) COMP VALUE +0.
01 EXTENTLIMIT PICTURE S9(9) COMP VALUE +0.

Chapter 14. Calling a stored procedure from your application 851

01 LASTSTATEMENT.
49 LASTSTATEMENT-LN PICTURE S9(4) COMP VALUE 8012.
49 LASTSTATEMENT-DTA PICTURE X(8012) VALUE SPACES.

01 RETURNCODE PICTURE S9(9) COMP VALUE +0.
01 ERRORMSG.

49 ERRORMSG-LN PICTURE S9(4) COMP VALUE 1331.
49 ERRORMSG-DTA PICTURE X(1331) VALUE SPACES.

01 IFCARETCODE PICTURE S9(9) COMP VALUE +0.
01 IFCARESCODE PICTURE S9(9) COMP VALUE +0.
01 EXCESSBYTES PICTURE S9(9) COMP VALUE +0.

* INDICATOR VARIABLES. *
* INITIALIZE ALL NON-ESSENTIAL INPUT *
* VARIABLES TO -1, TO INDICATE THAT THE *
* INPUT VALUE IS NULL. *

01 QUERYTYPE-IND PICTURE S9(4) COMP-4 VALUE +0.
01 OBJECTTYPE-IND PICTURE S9(4) COMP-4 VALUE +0.
01 ICTYPE-IND PICTURE S9(4) COMP-4 VALUE +0.
01 STATSSCHEMA-IND PICTURE S9(4) COMP-4 VALUE -1.
01 CATLGSCHEMA-IND PICTURE S9(4) COMP-4 VALUE -1.
01 LOCALSCHEMA-IND PICTURE S9(4) COMP-4 VALUE -1.
01 CHKLVL-IND PICTURE S9(4) COMP-4 VALUE -1.
01 CRITERIA-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RESTRICTED-IND PICTURE S9(4) COMP-4 VALUE -1.
01 CRUPDATEDPAGESPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 CRCHANGESPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 CRDAYSNCLASTCOPY-IND PICTURE S9(4) COMP-4 VALUE -1.
01 ICRUPDATEDPAGESPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 ICRCHANGESPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 CRINDEXSIZE-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRTINSDELUPDPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRTUNCLUSTINSPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRTDISORGLOBPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRTMASSDELLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRTINDREFLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRIINSERTDELETEPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRIAPPENDINSERTPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRIPSEUDODELETEPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRIMASSDELLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRILEAFLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 RRINUMLEVELSLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 SRTINSDELUPDPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 SRTINSDELUPDABS-IND PICTURE S9(4) COMP-4 VALUE -1.
01 SRTMASSDELLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 SRIINSDELUPDPCT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 SRIINSDELUPDABS-IND PICTURE S9(4) COMP-4 VALUE -1.
01 SRIMASSDELLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 EXTENTLIMIT-IND PICTURE S9(4) COMP-4 VALUE -1.
01 LASTSTATEMENT-IND PICTURE S9(4) COMP-4 VALUE +0.
01 RETURNCODE-IND PICTURE S9(4) COMP-4 VALUE +0.
01 ERRORMSG-IND PICTURE S9(4) COMP-4 VALUE +0.
01 IFCARETCODE-IND PICTURE S9(4) COMP-4 VALUE +0.
01 IFCARESCODE-IND PICTURE S9(4) COMP-4 VALUE +0.
01 EXCESSBYTES-IND PICTURE S9(4) COMP-4 VALUE +0.

PROCEDURE DIVISION....

* SET VALUES FOR DSNACCOR INPUT PARAMETERS: *
* - USE THE CHKLVL PARAMETER TO CAUSE DSNACCOR TO CHECK *
* FOR ORPHANED OBJECTS AND INDEX SPACES WITHOUT *
* TABLE SPACES, BUT INCLUDE THOSE OBJECTS IN THE *
* RECOMMENDATIONS RESULT SET (CHKLVL=1+2+16=19) *
* - USE THE CRITERIA PARAMETER TO CAUSE DSNACCOR TO *
* MAKE RECOMMENDATIONS ONLY FOR OBJECTS IN DATABASES *
* DSN8D11A AND DSN8D11L. *

852 Application Programming and SQL Guide

* - FOR THE FOLLOWING PARAMETERS, SET THESE VALUES, *
* WHICH ARE LOWER THAN THE DEFAULTS: *
* CRUPDATEDPAGESPCT 4 *
* CRCHANGESPCT 2 *
* RRTINSDELUPDPCT 2 *
* RRTUNCLUSTINSPCT 5 *
* RRTDISORGLOBPCT 5 *
* RRIAPPENDINSERTPCT 5 *
* SRTINSDELUPDPCT 5 *
* SRIINSDELUPDPCT 5 *
* EXTENTLIMIT 3 *

MOVE 19 TO CHKLVL.
MOVE SPACES TO CRITERIA-DTA.
MOVE ’DBNAME = ’’DSN8D11A’’ OR DBNAME = ’’DSN8D11L’’’

TO CRITERIA-DTA.
MOVE 46 TO CRITERIA-LN.
MOVE 4 TO CRUPDATEDPAGESPCT.
MOVE 2 TO CRCHANGESPCT.
MOVE 2 TO RRTINSDELUPDPCT.
MOVE 5 TO RRTUNCLUSTINSPCT.
MOVE 5 TO RRTDISORGLOBPCT.
MOVE 5 TO RRIAPPENDINSERTPCT.
MOVE 5 TO SRTINSDELUPDPCT.
MOVE 5 TO SRIINSDELUPDPCT.
MOVE 3 TO EXTENTLIMIT.

* INITIALIZE OUTPUT PARAMETERS *

MOVE SPACES TO LASTSTATEMENT-DTA.
MOVE 1 TO LASTSTATEMENT-LN.
MOVE 0 TO RETURNCODE-O2.
MOVE SPACES TO ERRORMSG-DTA.
MOVE 1 TO ERRORMSG-LN.
MOVE 0 TO IFCARETCODE.
MOVE 0 TO IFCARESCODE.
MOVE 0 TO EXCESSBYTES.

* SET THE INDICATOR VARIABLES TO 0 FOR NON-NULL INPUT *
* PARAMETERS (PARAMETERS FOR WHICH YOU DO NOT WANT *
* DSNACCOR TO USE DEFAULT VALUES) AND FOR OUTPUT *
* PARAMETERS. *

MOVE 0 TO CHKLVL-IND.
MOVE 0 TO CRITERIA-IND.
MOVE 0 TO CRUPDATEDPAGESPCT-IND.
MOVE 0 TO CRCHANGESPCT-IND.
MOVE 0 TO RRTINSDELUPDPCT-IND.
MOVE 0 TO RRTUNCLUSTINSPCT-IND.
MOVE 0 TO RRTDISORGLOBPCT-IND.
MOVE 0 TO RRIAPPENDINSERTPCT-IND.
MOVE 0 TO SRTINSDELUPDPCT-IND.
MOVE 0 TO SRIINSDELUPDPCT-IND.
MOVE 0 TO EXTENTLIMIT-IND.
MOVE 0 TO LASTSTATEMENT-IND.
MOVE 0 TO RETURNCODE-IND.
MOVE 0 TO ERRORMSG-IND.
MOVE 0 TO IFCARETCODE-IND.
MOVE 0 TO IFCARESCODE-IND.
MOVE 0 TO EXCESSBYTES-IND....

* CALL DSNACCOR *

EXEC SQL
CALL SYSPROC.DSNACCOR
(:QUERYTYPE :QUERYTYPE-IND,

Chapter 14. Calling a stored procedure from your application 853

:OBJECTTYPE :OBJECTTYPE-IND,
:ICTYPE :ICTYPE-IND,
:STATSSCHEMA :STATSSCHEMA-IND,
:CATLGSCHEMA :CATLGSCHEMA-IND,
:LOCALSCHEMA :LOCALSCHEMA-IND,
:CHKLVL :CHKLVL-IND,
:CRITERIA :CRITERIA-IND,
:RESTRICTED :RESTRICTED-IND,
:CRUPDATEDPAGESPCT :CRUPDATEDPAGESPCT-IND,
:CRCHANGESPCT :CRCHANGESPCT-IND,
:CRDAYSNCLASTCOPY :CRDAYSNCLASTCOPY-IND,
:ICRUPDATEDPAGESPCT :ICRUPDATEDPAGESPCT-IND,
:ICRCHANGESPCT :ICRCHANGESPCT-IND,
:CRINDEXSIZE :CRINDEXSIZE-IND,
:RRTINSDELUPDPCT :RRTINSDELUPDPCT-IND,
:RRTUNCLUSTINSPCT :RRTUNCLUSTINSPCT-IND,
:RRTDISORGLOBPCT :RRTDISORGLOBPCT-IND,
:RRTMASSDELLIMIT :RRTMASSDELLIMIT-IND,
:RRTINDREFLIMIT :RRTINDREFLIMIT-IND,
:RRIINSERTDELETEPCT :RRIINSERTDELETEPCT-IND,
:RRIAPPENDINSERTPCT :RRIAPPENDINSERTPCT-IND,
:RRIPSEUDODELETEPCT :RRIPSEUDODELETEPCT-IND,
:RRIMASSDELLIMIT :RRIMASSDELLIMIT-IND,
:RRILEAFLIMIT :RRILEAFLIMIT-IND,
:RRINUMLEVELSLIMIT :RRINUMLEVELSLIMIT-IND,
:SRTINSDELUPDPCT :SRTINSDELUPDPCT-IND,
:SRTINSDELUPDABS :SRTINSDELUPDABS-IND,
:SRTMASSDELLIMIT :SRTMASSDELLIMIT-IND,
:SRIINSDELUPDPCT :SRIINSDELUPDPCT-IND,
:SRIINSDELUPDABS :SRIINSDELUPDABS-IND,
:SRIMASSDELLIMIT :SRIMASSDELLIMIT-IND,
:EXTENTLIMIT :EXTENTLIMIT-IND,
:LASTSTATEMENT :LASTSTATEMENT-IND,
:RETURNCODE :RETURNCODE-IND,
:ERRORMSG :ERRORMSG-IND,
:IFCARETCODE :IFCARETCODE-IND,
:IFCARESCODE :IFCARESCODE-IND,
:EXCESSBYTES :EXCESSBYTES-IND)

END-EXEC.

* ASSUME THAT THE SQL CALL RETURNED +466, WHICH MEANS THAT *
* RESULT SETS WERE RETURNED. RETRIEVE RESULT SETS. *

* LINK EACH RESULT SET TO A LOCATOR VARIABLE

EXEC SQL ASSOCIATE LOCATORS (:LOC1, :LOC2)
WITH PROCEDURE SYSPROC.DSNACCOR

END-EXEC.
* LINK A CURSOR TO EACH RESULT SET

EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :LOC1
END-EXEC.
EXEC SQL ALLOCATE C2 CURSOR FOR RESULT SET :LOC2
END-EXEC.

* PERFORM FETCHES USING C1 TO RETRIEVE ALL ROWS FROM FIRST RESULT SET
* PERFORM FETCHES USING C2 TO RETRIEVE ALL ROWS FROM SECOND RESULT SET

Output

If DSNACCOR executes successfully, in addition to the output parameters
described in “Option descriptions” on page 839, DSNACCOR returns two result
sets.

Figure 50. Example of DSNACCOR invocation

854 Application Programming and SQL Guide

The first result set contains the results from IFI COMMAND calls that DSNACCOR
makes. The following table shows the format of the first result set.

Table 132. Result set row for first DSNACCOR result set

Column name Data type Contents

RS_SEQUENCE INTEGER Sequence number of the output line

RS_DATA CHAR(80) A line of command output

The result set contains rows for table spaces, index spaces, or partitions, if both of
the following conditions are true for the object:
v If the Criteria input parameter contains a search condition, and the search

condition is true for the table space, index space, or partition.
v DSNACCOR recommends at least one action for the table space, index space, or

partition.

The result set contains one row for each nonpartitioned table space or
nonpartitioning index space. For partitioned table spaces or partitioning indexes,
the result set contains one row for each partition. If ChkLvl 8 is specified, the result
set might contain additional rows, including duplicate rows for the same object.

The following table shows the columns of a result set row.

Table 133. Result set row for second DSNACCOR result set

Column name Data type Description

DBNAME CHAR(8) Name of the database that contains the object.

NAME CHAR(8) Table space or index space name.

PARTITION INTEGER Data set number or partition number.

OBJECTTYPE CHAR(2) DB2 object type:

v TS for a table space

v IX for an index space

OBJECTSTATUS CHAR(36) Status of the object:

v ORPHANED, if the object is an index space with no
corresponding table space, or if the object does not exist

v If the object is in a restricted state, one of the following
values:

– TS=restricted-state, if OBJECTTYPE is TS

– IX=restricted-state, if OBJECTTYPE is IX

restricted-state is one of the status codes that appear in
DISPLAY DATABASE output.
Related information:

DSNT362I (DB2 Messages)

-DISPLAY DATABASE (DB2) (DB2 Commands)

v A, if the object is in an advisory state.

v L, if the object is a logical partition, but not in an advisory
state.

v AL, if the object is a logical partition and in an advisory
state.

Chapter 14. Calling a stored procedure from your application 855

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.msgs/src/tpc/dsnt362i.htm#dsnt362i
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_displaydatabase.htm#db2z_cmd_displaydatabase

Table 133. Result set row for second DSNACCOR result set (continued)

Column name Data type Description

IMAGECOPY CHAR(3) COPY recommendation:
v If OBJECTTYPE is TS: FUL (full image copy), INC

(incremental image copy), or NO
v If OBJECTTYPE is IX: YES or NO

RUNSTATS CHAR(3) RUNSTATS recommendation: YES or NO.

EXTENTS CHAR(3) Indicates whether the data sets for the object have exceeded
ExtentLimit: YES or NO.

REORG CHAR(3) REORG recommendation: YES or NO.

INEXCEPTTABLE CHAR(40) A string that contains one of the following values:

v Text that you specify in the QUERYTYPE column of the
exception table.

v YES, if you put a row in the exception table for the object
that this result set row represents, but you specify NULL in
the QUERYTYPE column.

v NO, if the exception table exists but does not have a row for
the object that this result set row represents.

v Null, if the exception table does not exist, or if the ChkLvl
input parameter does not include the value 4.

ASSOCIATEDTS CHAR(8) If OBJECTTYPE is IX and the ChkLvl input parameter includes
the value 2, this value is the name of the table space that is
associated with the index space. Otherwise null.

COPYLASTTIME TIMESTAMP Timestamp of the last full or incremental image copy on the
object. Null if COPY was never run, or if the last COPY
execution was terminated.

LOADRLASTTIME TIMESTAMP Timestamp of the last LOAD REPLACE on the object. Null if
LOAD REPLACE was never run, or if the last LOAD
REPLACE execution was terminated.

REBUILDLASTTIME TIMESTAMP Timestamp of the last REBUILD INDEX on the object. Null if
REBUILD INDEX was never run, or if the last REBUILD
INDEX execution was terminated.

CRUPDPGSPCT INTEGER If OBJECTTYPE is TS or IX and IMAGECOPY is YES, the ratio
of distinct updated pages to preformatted pages, expressed as
a percentage. Otherwise null.

CRCPYCHGPCT INTEGER If OBJECTTYPE is TS and IMAGECOPY is YES, the ratio of
the total number insert, update, and delete operations since
the last image copy to the total number of rows or LOBs in the
table space or partition, expressed as a percentage. If
OBJECTTYPE is IX and IMAGECOPY is YES, the ratio of the
total number of insert and delete operations since the last
image copy to the total number of entries in the index space or
partition, expressed as a percentage. Otherwise null.

CRDAYSCELSTCPY INTEGER If OBJECTTYPE is TS or IX and IMAGECOPY is YES, the
number of days since the last image copy. Otherwise null.

CRINDEXSIZE INTEGER If OBJECTTYPE is IX and IMAGECOPY is YES, the number of
active pages in the index space or partition. Otherwise null.

REORGLASTTIME TIMESTAMP Timestamp of the last REORG on the object. Null if REORG
was never run, or if the last REORG execution was terminated.

856 Application Programming and SQL Guide

Table 133. Result set row for second DSNACCOR result set (continued)

Column name Data type Description

RRTINSDELUPDPCT INTEGER If OBJECTTYPE is TS and REORG is YES, the ratio of the sum
of insert, update, and delete operations since the last REORG
to the total number of rows or LOBs in the table space or
partition, expressed as a percentage. Otherwise null.

RRTUNCINSPCT INTEGER If OBJECTTYPE is TS and REORG is YES, the ratio of the
number of unclustered insert operations to the total number of
rows or LOBs in the table space or partition, expressed as a
percentage. Otherwise null.

RRTDISORGLOBPCT INTEGER If OBJECTTYPE is TS and REORG is YES, the ratio of the
number of imperfectly chunked LOBs to the total number of
rows or LOBs in the table space or partition, expressed as a
percentage. Otherwise null.

RRTMASSDELETE INTEGER If OBJECTTYPE is TS, REORG is YES, and the table space is a
segmented table space or LOB table space, the number of mass
deletes since the last REORG or LOAD REPLACE. If
OBJECTTYPE is TS, REORG is YES, and the table space is
nonsegmented, the number of dropped tables since the last
REORG or LOAD REPLACE. Otherwise null.

RRTINDREF INTEGER If OBJECTTYPE is TS, REORG is YES, the ratio of the total
number of overflow records that were created since the last
REORG or LOAD REPLACE to the total number of rows or
LOBs in the table space or partition, expressed as a percentage.
Otherwise null.

RRIINSDELPCT INTEGER If OBJECTTYPE is IX and REORG is YES, the ratio of the total
number of insert and delete operations since the last REORG
to the total number of index entries in the index space or
partition, expressed as a percentage. Otherwise null.

RRIAPPINSPCT INTEGER If OBJECTTYPE is IX and REORG is YES, the ratio of the
number of index entries that were inserted since the last
REORG, REBUILD INDEX, or LOAD REPLACE that had a key
value greater than the maximum key value in the index space
or partition, to the number of index entries in the index space
or partition, expressed as a percentage. Otherwise null.

RRIPSDDELPCT INTEGER If OBJECTTYPE is IX and REORG is YES, the ratio of the
number of index entries that were pseudo-deleted (the RID
entry was marked as deleted) since the last REORG, REBUILD
INDEX, or LOAD REPLACE to the number of index entries in
the index space or partition, expressed as a percentage.
Otherwise null.

RRIMASSDELETE INTEGER If OBJECTTYPE is IX and REORG is YES, the number of mass
deletes from the index space or partition since the last REORG,
REBUILD, or LOAD REPLACE. Otherwise null.

RRILEAF INTEGER If OBJECTTYPE is IX and REORG is YES, the ratio of the
number of index page splits that occurred since the last
REORG, REBUILD INDEX, or LOAD REPLACE in which the
higher part of the split page was far from the location of the
original page, to the total number of active pages in the index
space or partition, expressed as a percentage. Otherwise null.

RRINUMLEVELS INTEGER If OBJECTTYPE is IX and REORG is YES, the number of levels
in the index tree that were added or removed since the last
REORG, REBUILD INDEX, or LOAD REPLACE. Otherwise
null.

Chapter 14. Calling a stored procedure from your application 857

Table 133. Result set row for second DSNACCOR result set (continued)

Column name Data type Description

STATSLASTTIME TIMESTAMP Timestamp of the last RUNSTATS on the object. Null if
RUNSTATS was never run, or if the last RUNSTATS execution
was terminated.

SRTINSDELUPDPCT INTEGER If OBJECTTYPE is TS and RUNSTATS is YES, the ratio of the
total number of insert, update, and delete operations since the
last RUNSTATS on a table space or partition, to the total
number of rows or LOBs in the table space or partition,
expressed as a percentage. Otherwise null.

SRTINSDELUPDABS INTEGER If OBJECTTYPE is TS and RUNSTATS is YES, the total number
of insert, update, and delete operations since the last
RUNSTATS on a table space or partition. Otherwise null.

SRTMASSDELETE INTEGER If OBJECTTYPE is TS and RUNSTATS is YES, the number of
mass deletes from the table space or partition since the last
REORG or LOAD REPLACE. Otherwise null.

SRIINSDELPCT INTEGER If OBJECTTYPE is IX and RUNSTATS is YES, the ratio of the
total number of insert and delete operations since the last
RUNSTATS on the index space or partition, to the total
number of index entries in the index space or partition,
expressed as a percentage. Otherwise null.

SRIINSDELABS INTEGER If OBJECTTYPE is IX and RUNSTATS is YES, the number
insert and delete operations since the last RUNSTATS on the
index space or partition. Otherwise null.

SRIMASSDELETE INTEGER If OBJECTTYPE is IX and RUNSTATS is YES, the number of
mass deletes from the index space or partition since the last
REORG, REBUILD INDEX, or LOAD REPLACE. Otherwise,
this value is null.

TOTALEXTENTS SMALLINT If EXTENTS is YES, the number of physical extents in the table
space, index space, or partition. Otherwise, this value is null.

PSPI

Related reference:

CREATE DATABASE (DB2 SQL)

CREATE TABLESPACE (DB2 SQL)

XSR_REGISTER stored procedure
The XSR_REGISTER procedure is the first stored procedure to be called as part of
the XML schema registration process, which registers XML schemas with the XSR.

The user that calls this stored procedure is considered the creator of this XML
schema. DB2 obtains the namespace attribute from the schema document when
XSR_COMPLETE is invoked.

Environment for XSR_REGISTER

XSR_REGISTER runs in a WLM-established stored procedures address space.

858 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createdatabase.htm#db2z_sql_createdatabase
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtablespace.htm#db2z_sql_createtablespace

Recommendation: Use WLM environment DSNWLM_XML for running
XSR_REGISTER. The startup procedure for this environment, DSNWLMX, can be
configured during installation, using installation panel DSNTIPRJ, XML schema
processing routines.

Authorization required for XSR_REGISTER

The user ID of the caller of the procedure must have the EXECUTE privilege on
the XSR_REGISTER stored procedure.

XSR_REGISTER syntax diagram

The following syntax diagram shows the CALL statement for invoking
XSR_REGISTER.

XSR_REGISTER option descriptions

rschema
An input argument of type VARCHAR(128) that specifies the SQL schema for
the XML schema. If a value is specified, it must be SYSXSR. Rules for valid
characters and delimiters that apply to any SQL identifier also apply to this
argument.

name
An input and output argument of type VARCHAR(128) that specifies the name
of the XML schema. The complete SQL identifier for the XML schema is
"rschema.name" and should be unique among all objects in the XSR. This
argument accepts a NULL value. When a NULL value is provided for this
argument, a unique value is generated and stored within the XSR. Rules for
valid characters and delimiters that apply to any SQL identifier also apply to
this argument.

schemalocation
An input argument of type VARCHAR(1000), which can have a NULL value,
that indicates the schema location of the primary XML schema document. This
argument is the "external name" of the XML schema, that is, the primary
document can be identified in the XML instance documents with the
xsi:schemaLocation attribute.

content
An input parameter of type BLOB(30M) that contains the content of the
primary XML schema document. This argument cannot have a NULL value; an
XML schema document must be supplied. The content of the XML schema
document must be encoded in Unicode.

docproperty
An input parameter of type BLOB(5M) that indicates the properties for the

��
SYSPROC

CALL . XSR_REGISTER (rschema ,
NULL

name ,
NULL

schemalocation ,
NULL

�

� content , docproperty)
NULL

��

Chapter 14. Calling a stored procedure from your application 859

primary XML schema document. This parameter can have a NULL value;
otherwise, the value is an XML document.

Example of XSR_REGISTER

The following example calls the XSR_REGISTER stored procedure:
CALL SYSPROC.XSR_REGISTER(

’SYSXSR’,
’POschema’,
’http://myPOschema/PO.xsd’,
:content_host_var,
:docproperty_host_var)

In this example, XSR_REGISTER folds the name POschema to uppercase, so the
registered schema name is POSCHEMA. If you do not want XSR_REGISTER to
fold POschema to uppercase, you need to delimit the name with double quotation
marks ("), as in the following example.

CALL SYSPROC.XSR_REGISTER(
’SYSXSR’,
’"POschema"’,
’http://myPOschema/PO.xsd’,
:content_host_var,
:docproperty_host_var)

Related concepts:

Command line processor (DB2 Commands)

Example of XML schema registration and removal using stored procedures
(DB2 Programming for XML)

XSR_ADDSCHEMADOC stored procedure
The XSR_ADDSCHEMADOC stored procedure adds every XML schema, other
than the primary XML schema document, to the XSR.

Each XML schema in the XSR can consist of one or more XML schema documents.
When an XML schema consists of multiple documents, you need to call
XSR_ADDSCHEMADOC for the additional documents.

Environment for XSR_ADDSCHEMADOC

XSR_ADDSCHEMADOC runs in a WLM-established stored procedures address
space.

Recommendation: Use WLM environment DSNWLM_XML for running
XSR_ADDSCHEMADOC. The startup procedure for this environment, DSNWLMX,
can be configured during installation, using installation panel DSNTIPRJ, XML
schema processing routines.

Authorization required for XSR_ADDSCHEMADOC

The user ID of the caller of the procedure must have the EXECUTE privilege on
the XSR_ADDSCHEMADOC stored procedure.

860 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_commandlineprocessor.htm#db2z_commandlineprocessor
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.xml/src/tpc/db2z_xsrstoredprocexample.htm#db2z_xsrstoredprocexample
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.xml/src/tpc/db2z_xsrstoredprocexample.htm#db2z_xsrstoredprocexample

XSR_ADDSCHEMADOC syntax diagram

The following syntax diagram shows the CALL statement for invoking
XSR_ADDSCHEMADOC.

XSR_ADDSCHEMADOC option descriptions

rschema
An input argument of type VARCHAR(128) that specifies the SQL schema for
the XML schema. If a value is specified, it must be SYSXSR. Rules for valid
characters and delimiters that apply to any SQL identifier also apply to this
argument.

name
An input argument of type VARCHAR(128) that specifies the name of the XML
schema. The complete SQL identifier for the XML schema is "rschema.name".
The XML schema name must already exist as a result of calling the
XSR_REGISTER stored procedure, and XML schema registration cannot yet be
completed. This argument cannot have a NULL value. Rules for valid
characters and delimiters that apply to any SQL identifier also apply to this
argument.

schemalocation
An input argument of type VARCHAR(1000), which can have a NULL value,
that indicates the schema location of the primary XML schema document to
which the XML schema document is being added. This argument is the
"external name" of the XML schema, that is, the primary document can be
identified in the XML instance documents with the xsi:schemaLocation
attribute. The document that references the schemalocation must use valid a
URI format.

content
An input parameter of type BLOB(30M) that contains the content of the XML
schema document being added. This argument cannot have a NULL value. An
XML schema document must be supplied. The content of the XML schema
document must be encoded in Unicode.

docproperty
An input parameter of type BLOB(5M) that indicates the properties for the
XML schema document being added. This parameter can have a NULL value;
otherwise, the value is an XML document.

Example of XSR_ADDSCHEMADOC

The following example calls the XSR_ADDSCHEMADOC stored procedure:

��
SYSPROC

CALL . XSR_ADDSCHEMADOC (rschema ,
NULL

name , schemalocation ,
NULL

�

� content , docproperty)
NULL

��

Chapter 14. Calling a stored procedure from your application 861

CALL SYSPROC.XSR_ADDSCHEMADOC(
’SYSXSR’,
’POschema’,
’http://myPOschema/PO.xsd’,
:schema_content,
:schema_properties)

In this example, XSR_ADDSCHEMADOC folds the name POschema to uppercase,
so the name of the XML schema that is added is POSCHEMA. If you do not want
XSR_ADDSCHEMADOC to fold POschema to uppercase, you need to delimit the
name with double quotation marks ("), as in the following example.
CALL SYSPROC.XSR_ADDSCHEMADOC(

’SYSXSR’,
’"POschema"’,
’http://myPOschema/PO.xsd’,
:schema_content,
:schema_properties)

Command line processor (DB2 Commands)

Example of XML schema registration and removal using stored procedures
(DB2 Programming for XML)

XSR_COMPLETE stored procedure
The XSR_COMPLETE procedure is the final stored procedure to be called as part
of the XML schema registration process, which registers XML schemas with the
XSR.

An XML schema is not available for validation until the schema registration
completes through a call to this stored procedure.

Environment for XSR_COMPLETE

XSR_COMPLETE requires a WLM-established stored procedures address space that
is configured for running Java routines.

Recommendation: Use WLM environment DSNWLM_JAVA for running
XSR_COMPLETE. The startup procedure for this environment, DSNWLMJ, can be
configured during installation, using installation panel DSNTIPRH, XML schema
processing routines.

Authorization required for XSR_COMPLETE

The user ID of the caller of the procedure must have the EXECUTE privilege on
the XSR_COMPLETE stored procedure.

XSR_COMPLETE syntax diagram

The following syntax diagram shows the CALL statement for invoking
XSR_COMPLETE.

862 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_commandlineprocessor.htm#db2z_commandlineprocessor
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.xml/src/tpc/db2z_xsrstoredprocexample.htm#db2z_xsrstoredprocexample
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.xml/src/tpc/db2z_xsrstoredprocexample.htm#db2z_xsrstoredprocexample

��
SYSPROC

CALL . XSR_COMPLETE (rschema , name , schemaproperties , �

� issuedfordecomposition) ��

XSR_COMPLETE option descriptions

rschema
An input argument of type VARCHAR(128) that specifies the SQL schema for
the XML schema. If a value is specified, it must be SYSXSR. Rules for valid
characters and delimiters that apply to any SQL identifier also apply to this
argument.

name
An input argument of type VARCHAR(128) that specifies the name of the XML
schema. The complete SQL identifier for the XML schema, for which a
completion check is to be performed, is rschema.name. The XML schema name
must already exist as a result of calling the XSR_REGISTER stored procedure.
This argument cannot have a NULL value. Rules for valid characters and
delimiters that apply to any SQL identifier also apply to this argument.

schemaproperties
An input argument of type BLOB(5M) that specifies properties, if any,
associated with the XML schema. The value for this argument is either NULL,
if there are no associated properties, or an XML document representing the
properties for the XML schema.

isusedfordecomposition
This value must be zero. XML schema decomposition is not supported.

Example of XSR_COMPLETE

The following example calls the XSR_COMPLETE stored procedure:
CALL SYSPROC.XSR_COMPLETE(

’SYSXSR’,
’POschema’,
:schemaproperty_host_var,
0)

In this example, XSR_COMPLETE folds the name POschema to uppercase, so the
name of the XML schema for which registration is completed is POSCHEMA. If
you do not want XSR_COMPLETE to fold POschema to uppercase, you need to
delimit the name with double quotation marks ("), as in the following example.

CALL SYSPROC.XSR_COMPLETE(
’SYSXSR’,
’"POschema"’,
:schemaproperty_host_var,
0)

Chapter 14. Calling a stored procedure from your application 863

Related concepts:

Example of XML schema registration and removal using stored procedures
(DB2 Programming for XML)

Command line processor (DB2 Commands)
Related tasks:

Additional steps for enabling the stored procedures and objects for XML
schema support (DB2 Installation and Migration)

XSR_REMOVE stored procedure
The XSR_REMOVE procedure is used to remove all components of an XML
schema. After the XML schema is removed, you can reuse the name of the
removed XML schema when you register a new XML schema.

Environment for XSR_REMOVE

XSR_REMOVE runs in a WLM-established stored procedures address space.

Recommendation: Use WLM environment DSNWLM_XML for running
XSR_REMOVE. The startup procedure for this environment, DSNWLMX, can be
configured during installation, using installation panel DSNTIPRJ, XML schema
processing routines.

Authorization required for XSR_REMOVE

The user ID of the caller of the procedure must have the EXECUTE privilege on
the XSR_REMOVE stored procedure.

XSR_REMOVE syntax diagram

The following syntax diagram shows the CALL statement for invoking
XSR_REMOVE.

XSR_REMOVE option descriptions

rschema
An input argument of type VARCHAR (128) that specifies the SQL schema for
the XML schema. If a value is specified, it must be SYSXSR. Rules for valid
characters and delimiters that apply to any SQL identifier also apply to this
argument.

name
An input argument of type VARCHAR (128) that specifies the name of the
XML schema. The complete SQL identifier for the XML schema, for which a
completion check is to be performed, is "rschema.name". The XML schema
name must already exist as a result of calling the XSR_REGISTER stored
procedure, and XML schema registration cannot yet be completed. This
argument cannot have a NULL value. Rules for valid characters and delimiters
that apply to any SQL identifier also apply to this argument.

��
SYSPROC

CALL . XSR_REMOVE (rschema ,
NULL

name) ��

864 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.xml/src/tpc/db2z_xsrstoredprocexample.htm#db2z_xsrstoredprocexample
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.xml/src/tpc/db2z_xsrstoredprocexample.htm#db2z_xsrstoredprocexample
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_commandlineprocessor.htm#db2z_commandlineprocessor
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_enablexmlstprocs.htm#db2z_enablexmlstprocs
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_enablexmlstprocs.htm#db2z_enablexmlstprocs

XSR_REMOVE notes

If you run XSR_REMOVE against an XML schema that is part of an XML type
modifier for a table column, an error occurs.

Example of XSR_REMOVE

The following example calls the XSR_REMOVE stored procedure:
CALL SYSPROC.XSR_REMOVE(

’SYSXSR’,
’POschema’)

In this example, XSR_REMOVE folds the name POschema to uppercase, so the
name of the XML schema that is removed is POSCHEMA. If you do not want
XSR_REMOVE to fold POschema to uppercase, you need to delimit the name with
double quotation marks ("), as in the following example.

CALL SYSPROC.XSR_REMOVE(
’SYSXSR’,
’"POschema"’)

Related concepts:

Command line processor (DB2 Commands)

Example of XML schema registration and removal using stored procedures
(DB2 Programming for XML)

XML schema validation with an XML type modifier (DB2 Programming for
XML)

Chapter 14. Calling a stored procedure from your application 865

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_commandlineprocessor.htm#db2z_commandlineprocessor
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.xml/src/tpc/db2z_xsrstoredprocexample.htm#db2z_xsrstoredprocexample
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.xml/src/tpc/db2z_xsrstoredprocexample.htm#db2z_xsrstoredprocexample
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.xml/src/tpc/db2z_validatewithxmlmodifier.htm#db2z_validatewithxmlmodifier
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.xml/src/tpc/db2z_validatewithxmlmodifier.htm#db2z_validatewithxmlmodifier

866 Application Programming and SQL Guide

Chapter 15. Coding methods for distributed data

You can access distributed data by using three-part table names or explicit connect
statements.

Three-part table names are described in “Accessing distributed data by using
three-part table names.” Explicit connect statements are described in “Accessing
distributed data by using explicit CONNECT statements” on page 870.

These two methods of coding applications for distributed access are illustrated by
the following example.

Example: Spiffy Computer has a master project table that supplies information
about all projects that are currently active throughout the company. Spiffy has
several branches in various locations around the world, each a DB2 location that
maintains a copy of the project table named DSN8B10.PROJ. The main branch
location occasionally inserts data into all copies of the table. The application that
makes the inserts uses a table of location names. For each row that is inserted, the
application executes an INSERT statement in DSN8B10.PROJ for each location.

Copying a table from a remote location: To copy a table from one location to
another, you can either write your own application program or use the DB2
DataPropagator product.

Accessing distributed data by using three-part table names
You can use three-part table names to access data at a remote location through
DRDA access.

When you use three-part table names, you must create copies of the package that
you used at the local site at all possible remote locations that could be accessed by
the three-part table name references. You must also explicitly or generically specify
remote packages in the PKLIST of the PLAN that is used by the application.

Recommendation: Always use an alias, which resolves to a three-part table name,
rather than specifying a specific three-part table name in an SQL statement. Using
an alias will permit you to physically move the location of the table as needed. By
using an alias, you can drop and re-create the alias by specifying the tables's new
remote location and then rebind the packages of the application.

In a three-part table name, the first part denotes the location. The local DB2 makes
and breaks an implicit connection to a remote server as needed.

When a three-part name is parsed and forwarded to a remote location, any special
register settings are automatically propagated to remote server. This allows the
SQL statements to process the same way no matter at what site a statement is run.

Example

The following example assumes that all systems involved implement two-phase
commit. This example suggests updating several systems in a loop and ending the
unit of work by committing only when the loop is complete. Updates are
coordinated across the entire set of systems.

© Copyright IBM Corp. 1983, 2013 867

Spiffy's application uses a location name to construct a three-part table name in an
INSERT statement. It then prepares the statement and executes it dynamically. The
values to be inserted are transmitted to the remote location and substituted for the
parameter markers in the INSERT statement.

The following overview shows how the application uses aliases for three-part
names:
Read in the alias values
Do for all locations

Read location name
Set up statement to prepare
Prepare statement

a Execute statement
End loop
Commit

After the application obtains the next alias of a remote table to be inserted, For
example, REGION1PROJ (which is the DSN8B10.PROJ table at location
SAN_JOSE), it creates the following character string:
INSERT INTO REGION1PROJ VALUES (?,?,?,?,?,?,?,?)

The alias is created as follows:
CREATE ALIAS REGION1PROJ FOR SAN_JOSE.DSN8B10.PROJ

The application assigns the character string to the variable INSERTX and then
executes these statements:
EXEC SQL

PREPARE STMT1 FROM :INSERTX;
EXEC SQL

EXECUTE STMT1 USING :PROJNO, :PROJNAME, :DEPTNO, :RESPEMP,
:PRSTAFF, :PRSTDATE, :PRENDATE, :MAJPROJ;

The host variables for Spiffy's project table match the declaration for the sample
project table.

To keep the data consistent at all locations, the application commits the work only
when the loop has executed for all locations. Either every location has committed
the INSERT or, if a failure has prevented any location from inserting, all other
locations have rolled back the INSERT. (If a failure occurs during the commit
process, the entire unit of work can be indoubt.)

Three-part names and multiple servers

Recommendation: Always use an asterisk (*) for the location name in a pklist.
Never use the explicit location name unless you are sure that no other location
could ever be accessed.

The following steps are recommended:
1. Bind the DBRM into a package at the local DB2.
2. Bind package copy at the first target site of the alias.
3. Bind package copy at the target site.

868 Application Programming and SQL Guide

Related concepts:
“Dynamic SQL” on page 159

Aliases (DB2 SQL)

Synonyms (DB2 SQL)
Related tasks:
“Binding packages at a remote location” on page 942
Related reference:

Project table (DSN8B10.PROJ) (Introduction to DB2 for z/OS)

Accessing remote declared temporary tables by using
three-part table names

You can access a remote declared temporary table by using a three-part name.
However, if you combine explicit CONNECT statements and three-part names in
your application, a reference to a remote declared temporary table must be a
forward reference.

In a CREATE GLOBAL TEMPORARY TABLE or DECLARE GLOBAL
TEMPORARY TABLE statement, you cannot specify an alias that resolves to a
three-part name object at a remote location. You also cannot specify a three-part
name object even if the location of the three-part name refers to the location where
the object is being created or declared.

Example

You can perform the following series of actions, which includes a forward
reference to a declared temporary table:
EXEC SQL CONNECT TO CHICAGO; /* Connect to the remote site */
EXEC SQL

DECLARE GLOBAL TEMPORARY TABLE T1 /* Define the temporary table */
(CHARCOL CHAR(6) NOT NULL) /* at the remote site */
ON COMMIT DROP TABLE;

EXEC SQL CONNECT RESET; /* Connect back to local site */
EXEC SQL INSERT INTO CHICAGO.SESSION.T1

(VALUES ’ABCDEF’); /* Access the temporary table*/
/* at the remote site (forward reference) */

However, you cannot perform the following series of actions, which includes a
backward reference to the declared temporary table:
EXEC SQL

DECLARE GLOBAL TEMPORARY TABLE T1 /* Define the temporary table */
(CHARCOL CHAR(6) NOT NULL) /* at the local site (ATLANTA)*/
ON COMMIT DROP TABLE;

EXEC SQL CONNECT TO CHICAGO; /* Connect to the remote site */
EXEC SQL INSERT INTO ATLANTA.SESSION.T1

(VALUES ’ABCDEF’); /* Cannot access temp table */
/* from the remote site (backward reference)*/

Example using an alias

You can perform the following series of actions, which includes a forward
reference to a declared temporary table using an alias. First you need to declare the
alias at the requester. The name you give the alias must resolve to match the real
name.
CREATE APPLT1 FOR CHICAGO.SESSION.T1

Chapter 15. Coding methods for distributed data 869

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_lealiases.htm#db2z_lealiases
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_lesynonyms.htm#db2z_lesynonyms
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_sampletablesprojectmain.htm#db2z_sampletablesprojectmain

The CONNECT and DECLARE statements refer to the real declared temp table.
EXEC SQL CONNECT TO CHICAGO;
EXEC SQL DECLARE GLOBAL TEMPORARY TABLE T1
(CHARCOL CHAR(6) NOT NULL)
ON COMMIT DROP TABLE;

EXEC SQL CONNECT RESET;
EXEC SQL INSERT INTO APPLT1 VALUES (’ABCDEF’);

Accessing distributed data by using explicit CONNECT statements
When you use explicit CONNECT statements to access distributed data, the
application program explicitly connects to each new server.

About this task

You must bind the DBRMs for the SQL statements to be executed at the server to
packages that reside at that server.

The following example assumes that all systems involved implement two-phase
commit. This example suggests updating several systems in a loop and ending the
unit of work by committing only when the loop is complete. Updates are
coordinated across the entire set of systems.

In this example, Spiffy's application executes CONNECT for each server in turn,
and the server executes INSERT. In this case, the tables to be updated each have
the same name, although each table is defined at a different server. The application
executes the statements in a loop, with one iteration for each server.

The application connects to each new server by means of a host variable in the
CONNECT statement. CONNECT changes the special register CURRENT SERVER
to show the location of the new server. The values to insert in the table are
transmitted to a location as input host variables.

The following overview shows how the application uses explicit CONNECTs:
Read input values
Do for all locations

Read location name
Connect to location
Execute insert statement

End loop
Commit
Release all

For example, the application inserts a new location name into the variable
LOCATION_NAME and executes the following statements:
EXEC SQL

CONNECT TO :LOCATION_NAME;
EXEC SQL

INSERT INTO DSN8B10.PROJ VALUES (:PROJNO, :PROJNAME, :DEPTNO, :RESPEMP,
:PRSTAFF, :PRSTDATE, :PRENDATE, :MAJPROJ);

To keep the data consistent at all locations, the application commits the work only
when the loop has executed for all locations. Either every location has committed
the INSERT or, if a failure has prevented any location from inserting, all other
locations have rolled back the INSERT. (If a failure occurs during the commit
process, the entire unit of work can be indoubt.)

870 Application Programming and SQL Guide

The host variables for Spiffy's project table match the declaration for the sample
project table. LOCATION_NAME is a character-string variable of length 16.
Related reference:

Project table (DSN8B10.PROJ) (Introduction to DB2 for z/OS)

Specifying a location alias name for multiple sites
You can override the location name that an application uses to access a server.

About this task

DB2 uses the DBALIAS value in the SYSIBM.LOCATIONS table to override the
location name that an application uses to access a server.

For example, suppose that an employee database is deployed across two sites and
that both sites make themselves known as location name EMPLOYEE. To access
each site, insert a row for each site into SYSIBM.LOCATIONS with the location
names SVL_EMPLOYEE and SJ_EMPLOYEE. Both rows contain EMPLOYEE as the
DBALIAS value. When an application issues a CONNECT TO SVL_EMPLOYEE
statement, DB2 searches the SYSIBM.LOCATIONS table to retrieve the location and
network attributes of the database server. Because the DBALIAS value is not blank,
DB2 uses the alias EMPLOYEE, and not the location name, to access the database.

If the application uses fully qualified object names in its SQL statements, DB2
sends the statements to the remote server without modification. For example,
suppose that the application issues the statement SELECT * FROM
SVL_EMPLOYEE.authid.table with the fully-qualified object name. However, DB2
accesses the remote server by using the EMPLOYEE alias. The remote server must
identify itself as both SVL_EMPLOYEE and EMPLOYEE; otherwise, it rejects the
SQL statement with a message indicating that the database is not found. If the
remote server is DB2, the location SVL_EMPLOYEE might be defined as a location
alias for EMPLOYEE. DB2 z/OS servers are defined with this alias by using the
DDF ALIAS statement of the DSNJU003 change log inventory utility. DB2 locally
executes any SQL statements that contain fully qualified object names if the
high-level qualifier is the location name or any of its alias names.

Releasing connections
When you connect to remote locations explicitly, you must also terminate those
connections explicitly.

About this task

To break the connections, you can use the RELEASE statement. The RELEASE
statement differs from the CONNECT statement in the following ways:
v While the CONNECT statement makes an immediate connection, the RELEASE

statement does not immediately break a connection. The RELEASE statement
labels connections for release at the next commit point. A connection that has
been labeled for release is in the release-pending state and can still be used before
the next commit point.

v While the CONNECT statement connects to exactly one remote system, you can
use the RELEASE statement to specify a single connection or a set of connections
for release at the next commit point.

Chapter 15. Coding methods for distributed data 871

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_sampletablesprojectmain.htm#db2z_sampletablesprojectmain

Example

By using the RELEASE statement, you can place any of the following connections
in the release-pending state:
v A specific connection that the next unit of work does not use:

EXEC SQL RELEASE SPIFFY1;

v The current SQL connection, whatever its location name:
EXEC SQL RELEASE CURRENT;

v All connections except the local connection:
EXEC SQL RELEASE ALL;

Transmitting mixed data
Mixed data is data that contains both character and graphic data.

About this task

If you transmit mixed data between your local system and a remote system, put
the data in varying-length character strings instead of fixed-length character
strings.

Converting mixed data: When ASCII MIXED data or Unicode MIXED data is
converted to EBCDIC MIXED, the converted string is longer than the source string.
An error occurs if that conversion is performed on a fixed-length input host
variable. The remedy is to use a varying-length string variable with a maximum
length that is sufficient to contain the expansion.

Identifying the server at run time
You can request the location name of the system to which you are connected.

About this task

The special register CURRENT SERVER contains the location name of the system
you are connected to. You can assign that name to a host variable with a statement
like this:
EXEC SQL SET :CS = CURRENT SERVER;

SQL limitations at dissimilar servers
When you execute SQL statements on a remote server that is running another DB2
family product, certain limitations exist. Generally, a program that uses DRDA
access can use SQL statements and clauses that are supported by a remote server,
even if they are not supported by the local server.

The following examples suggest what to expect from dissimilar servers:
v They support SELECT, INSERT, UPDATE, DELETE, DECLARE CURSOR, and

FETCH, but details vary.
Example: DB2 for Linux, UNIX, and Windows and DB2 for i support a form of
INSERT that allows for multiple rows of input data. In this case, the VALUES
clause is followed by multiple lists in parentheses. Each list represents the values
to be inserted for a row of data. DB2 for z/OS does not support this form of
INSERT.

v Data definition statements vary more widely.

872 Application Programming and SQL Guide

Example: DB2 for z/OS supports ROWID columns; DB2 for Linux, UNIX, and
Windows does not support ROWID columns. Any data definition statements
that use ROWID columns cannot run across all platforms.

v Statements can have different limits.
Example: A query in DB2 for z/OS can have 750 columns; for other systems, the
maximum is higher. But a query using 750 or fewer columns could execute in all
systems.

v Some statements are not sent to the server but are processed completely by the
requester. You cannot use those statements in a remote package even though the
server supports them.

v In general, if a statement to be executed at a remote server contains host
variables, a DB2 requester assumes them to be input host variables unless it
supports the syntax of the statement and can determine otherwise. If the
assumption is not valid, the server rejects the statement.

Related reference:

Characteristics of SQL statements in DB2 for z/OS (DB2 SQL)

Support for executing long SQL statements in a distributed
environment

A distributed application can send prepared SQL statements exceed 32 KB in size.
If the statements exceed 32 KB in size, the server must support these long
statements.

If a distributed application assigns an SQL statement to a DBCLOB (UTF-16)
variable and sends the prepared statement to a remote server, the remote DB2
server converts it to UTF-8. If the remote server does not support UTF-8, the
requester converts the statement to the system EBCDIC CCSID before sending it to
the remote server.

Distributed queries against ASCII or Unicode tables
When you perform a distributed query, the server determines the encoding scheme
of the result table.

When a distributed query against an ASCII or Unicode table arrives at the DB2 for
z/OS server, the server indicates in the reply message that the columns of the
result table contain ASCII or Unicode data, rather than EBCDIC data. The reply
message also includes the CCSIDs of the data to be returned. The CCSID of data
from a column is the CCSID that was in effect when the column was defined.

The encoding scheme in which DB2 returns data depends on two factors:
v The encoding scheme of the requesting system.

If the requester is ASCII or Unicode, the returned data is ASCII or Unicode. If
the requester is EBCDIC, the returned data is EBCDIC, even though it is stored
at the server as ASCII or Unicode. However, if the SELECT statement that is
used to retrieve the data contains an ORDER BY clause, the data displays in
ASCII or Unicode order.

v Whether the application program overrides the CCSID for the returned data. The
ways to do this are as follows:
– For static SQL

Chapter 15. Coding methods for distributed data 873

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_characteristicsofsqlstmts.htm#db2z_characteristicsofsqlstmts

You can bind a plan or package with the ENCODING bind option to control
the CCSIDs for all static data in that plan or package. For example, if you
specify ENCODING(UNICODE) when you bind a package at a remote DB2
for z/OS system, the data that is returned in host variables from the remote
system is encoded in the default Unicode CCSID for that system.

– For static or dynamic SQL
An application program can specify overriding CCSIDs for individual host
variables in DECLARE VARIABLE statements.
An application program that uses an SQLDA can specify an overriding
CCSID for the returned data in the SQLDA. When the application program
executes a FETCH statement, you receive the data in the CCSID that is
specified in the SQLDA.

Related tasks:
“Setting the CCSID for host variables” on page 142
Related reference:

BIND and REBIND options (DB2 Commands)

Restrictions when using scrollable cursors to access distributed data
The restrictions that exist for scrollable cursors depend on what the requestor and
the server support.

If a DB2 for z/OS server processes an OPEN cursor statement for a scrollable
cursor, and the OPEN cursor statement comes from a requester that does not
support scrollable cursors, the DB2 for z/OS server returns an SQL error. However,
if a stored procedure at the server uses a scrollable cursor to return a result set, the
down-level requester can access data through that cursor. The DB2 for z/OS server
converts the scrollable result set cursor to a non-scrollable cursor. The requester can
retrieve the data using sequential FETCH statements.

Restrictions when using rowset-positioned cursors to access
distributed data

The restrictions that exist for row-positioned cursors depend on what the requestor
and the server support.

If a DB2 for z/OS server processes an OPEN cursor statement for a
rowset-positioned cursor, and the OPEN cursor statement comes from a requester
that does not support rowset-positioned cursors, the DB2 for z/OS server returns
an SQL error. However, if a stored procedure at the server uses a rowset-positioned
cursor to return a result set, the down-level requester can access data through that
cursor by using row-positioned FETCH statements.

WebSphere MQ with DB2
WebSphere® MQ is a message handling system that enables applications to
communicate in a distributed environment across different operating systems and
networks.

WebSphere MQ handles the communication from one program to another by using
application programming interfaces (APIs). You can use any of the following APIs
to interact with the WebSphere MQ message handling system:
v Message Queue Interface (MQI)

874 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions

v WebSphere MQ classes for Java
v WebSphere MQ classes for Java Message Service (JMS)

DB2 provides its own application programming interface to the WebSphere MQ
message handling system through a set of external user-defined functions, which
are called DB2 MQ functions. You can use these functions in SQL statements to
combine DB2 database access with WebSphere MQ message handling. The DB2
MQ functions use the MQI.
Related reference:

WebSphere MQ information center

WebSphere MQ messages
WebSphere MQ uses messages to pass information between applications.

Messages consist of the following parts:
v The message attributes, which identify the message and its properties.
v The message data, which is the application data that is carried in the message.
Related concepts:
“DB2 MQ functions and DB2 MQ XML stored procedures” on page 877

WebSphere MQ message handling
Conceptually, the WebSphere MQ message handling system takes a piece of
information (the message) and sends it to its destination. MQ guarantees delivery,
despite any network disruptions that might occur.

In WebSphere MQ, a destination is called a message queue, and a queue resides in
a queue manager. Applications can put messages on queues or get messages from
them.

DB2 communicates with the WebSphere message handling system through a set of
external user-defined functions, which are called DB2 MQ functions. These
functions use the MQI.

When you send a message, you must specify the following three components:

message data
Defines what is sent from one program to another.

service
Defines where the message is going to or coming from. The parameters for
managing a queue are defined in the service, which is typically defined by
a system administrator. The complexity of the parameters in the service is
hidden from the application program.

policy Defines how the message is handled. Policies control such items as:
v The attributes of the message, for example, the priority.
v Options for send and receive operations, for example, whether an

operation is part of a unit of work.

The default service and policy are set as part of defining the WebSphere MQ
configuration for a particular installation of DB2. (This action is typically
performed by a system administrator.) DB2 provides the default service
DB2.DEFAULT.SERVICE and the default policy DB2.DEFAULT.POLICY.

Chapter 15. Coding methods for distributed data 875

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

Related tasks:

Additional steps for enabling WebSphere MQ user-defined functions (DB2
Installation and Migration)
Related reference:

WebSphere MQ information center

WebSphere MQ message handling with the MQI:

One way to send and receive WebSphere MQ messages from DB2 applications is to
use the DB2 MQ functions that use MQI.

These MQI-based functions use the services and policies that are defined in two
DB2 tables, SYSIBM.MQSERVICE_TABLE and SYSIBM.MQPOLICY_TABLE. These
tables are user-managed and are typically created and maintained by a system
administrator. Each table contains a row for the default service and policy that are
provided by DB2.

The application program does not need know the details of the services and
policies that are defined in these tables. The application need only specify which
service and policy to use for each message that it sends and receives. The
application specifies this information when it calls a DB2 MQ function.
Related concepts:
“DB2 MQ functions and DB2 MQ XML stored procedures” on page 877
Related reference:
“DB2 MQ tables” on page 880

DB2 MQI services:

A service describes a destination to which an application sends messages or from
which an application receives messages. DB2 Message Queue Interface (MQI)
services are defined in the DB2 table SYSIBM.MQSERVICE_TABLE.

The MQI-based DB2 MQ functions use the services that are defined in the DB2
table SYSIBM.MQSERVICE_TABLE. This table is user-managed and is typically
created and maintained by a system administrator. This table contains a row for
each defined service, including your customized services and the default service
that is provided by DB2.

The application program does not need know the details of the defined services.
When an application program calls an MQI-based DB2 MQ function, the program
selects a service from SYSIBM.MQSERVICE_TABLE by specifying it as a parameter.
Related concepts:
“DB2 MQ functions and DB2 MQ XML stored procedures” on page 877
“WebSphere MQ message handling” on page 875
Related reference:
“DB2 MQ tables” on page 880

DB2 MQI policies:

A policy controls how the MQ messages are handled. DB2 Message Queue
Interface (MQI) policies are defined in the DB2 table SYSIBM.MQPOLICY_TABLE.

876 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_enablemqseriesudfs.htm#db2z_enablemqseriesudfs
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_enablemqseriesudfs.htm#db2z_enablemqseriesudfs
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

The MQI-based DB2 MQ functions use the policies that are defined in the DB2
table SYSIBM.MQPOLICY_TABLE. This table is user-managed and is typically
created and maintained by a system administrator. This table contains a row for
each defined policy, including your customized policies and the default policy that
is provided by DB2.

The application program does not need know the details of the defined policies.
When an application program calls an MQI-based DB2 MQ function, the program
selects a policy from SYSIBM.MQPOLICY_TABLE by specifying it as a parameter.
Related concepts:
“DB2 MQ functions and DB2 MQ XML stored procedures”
“WebSphere MQ message handling” on page 875
Related reference:
“DB2 MQ tables” on page 880

DB2 MQ functions and DB2 MQ XML stored procedures
You can use the DB2 MQ functions and stored procedures to send messages to a
message queue or to receive messages from the message queue.

The DB2 MQ functions support the following types of operations:
v Send and forget, where no reply is needed.
v Read or receive, where one or all messages are either read without removing

them from the queue, or received and removed from the queue.
v Request and response, where a sending application needs a response to a

request.
v Publish and subscribe, where messages are assigned to specific publisher

services and are sent to queues. Applications that subscribe to the corresponding
subscriber service can monitor specific messages.

You can use the DB2 MQ functions and stored procedures to send messages to a
message queue or to receive messages from the message queue. You can send a
request to a message queue and receive a response, and you can also publish
messages to the WebSphere MQ publisher and subscribe to messages that have
been published with specific topics. The DB2 MQ XML functions and stored
procedures enable you to query XML documents and then publish the results to a
message queue.

The DB2 MQ functions include scalar functions, table functions, and XML-specific
functions. For each of these functions, you can call a version that uses the MQI.
The function signatures are the same. However, the qualifying schema names are
different. To call an MQI-based function, specify the schema name DB2MQ.

Requirement: Before you can call the version of these functions that uses MQI ,
you need to populate the DB2 MQ tables.

The following table describes the DB2 MQ scalar functions.

Table 134. DB2 MQ scalar functions

Scalar function Description

MQREAD (receive-service,
service-policy)

MQREAD returns a message in a VARCHAR variable from the MQ location
specified by receive-service, using the policy defined in service-policy. This
operation does not remove the message from the head of the queue but instead
returns it. If no messages are available to be returned, a null value is returned.

Chapter 15. Coding methods for distributed data 877

Table 134. DB2 MQ scalar functions (continued)

Scalar function Description

MQREADCLOB (receive-service,
service-policy)

MQREADCLOB returns a message in a CLOB variable from the MQ location
specified by receive-service, using the policy defined in service-policy. This
operation does not remove the message from the head of the queue but instead
returns it. If no messages are available to be returned, a null value is returned.

MQRECEIVE (receive-service,
service-policy, correlation-id)

MQRECEIVE returns a message in a VARCHAR variable from the MQ location
specified by receive-service, using the policy defined in service-policy. This
operation removes the message from the queue. If correlation-id is specified, the
first message with a matching correlation identifier is returned; if correlation-id is
not specified, the message at the beginning of queue is returned. If no messages
are available to be returned, a null value is returned.

MQRECEIVECLOB (receive-service,
service-policy, correlation-id)

MQRECEIVECLOB returns a message in a CLOB variable from the MQ location
specified by receive-service, using the policy defined in service-policy. This
operation removes the message from the queue. If correlation-id is specified, the
first message with a matching correlation identifier is returned; if correlation-id is
not specified, the message at the head of queue is returned. If no messages are
available to be returned, a null value is returned.

MQSEND (send-service,
service-policy, msg-data, correlation-id)

MQSEND sends the data in a VARCHAR or CLOB variable msg-data to the MQ
location specified by send-service, using the policy defined in service-policy. An
optional user-defined message correlation identifier can be specified by
correlation-id. The return value is 1 if successful or 0 if not successful.

Notes:

1. You can send or receive messages in VARCHAR variables or CLOB variables. The maximum length for a message
in a VARCHAR variable is 32 KB. The maximum length for a message in a CLOB variable is 2 MB.

2.

The following table describes the MQ table functions that DB2 can use.

Table 135. DB2 MQ table functions

Table function Description

MQREADALL (receive-service,
service-policy, num-rows)

MQREADALL returns a table that contains the messages and message metadata
in VARCHAR variables from the MQ location specified by receive-service, using
the policy defined in service-policy. This operation does not remove the messages
from the queue. If num-rows is specified, a maximum of num-rows messages is
returned; if num-rows is not specified, all available messages are returned.

MQREADALLCLOB (receive-service,
service-policy, num-rows)

MQREADALLCLOB returns a table that contains the messages and message
metadata in CLOB variables from the MQ location specified by receive-service,
using the policy defined in service-policy. This operation does not remove the
messages from the queue. If num-rows is specified, a maximum of num-rows
messages is returned; if num-rows is not specified, all available messages are
returned.

MQRECEIVEALL (receive-service,
service-policy, correlation-id,
num-rows)

MQRECEIVEALL returns a table that contains the messages and message
metadata in VARCHAR variables from the MQ location specified by
receive-service, using the policy defined in service-policy. This operation removes
the messages from the queue. If correlation-id is specified, only those messages
with a matching correlation identifier are returned; if correlation-id is not
specified, all available messages are returned. If num-rows is specified, a
maximum of num-rows messages is returned; if num-rows is not specified, all
available messages are returned.

878 Application Programming and SQL Guide

Table 135. DB2 MQ table functions (continued)

Table function Description

MQRECEIVEALLCLOB
(receive-service, service-policy,
correlation-id, num-rows)

MQRECEIVEALLCLOB returns a table that contains the messages and message
metadata in CLOB variables from the MQ location specified by receive-service,
using the policy defined in service-policy. This operation removes the messages
from the queue. If correlation-id is specified, only those messages with a
matching correlation identifier are returned; if correlation-id is not specified, all
available messages are returned. If num-rows is specified, a maximum of
num-rows messages is returned; if num-rows is not specified, all available
messages are returned.

Notes:

1. You can send or receive messages in VARCHAR variables or CLOB variables. The maximum length for a message
in a VARCHAR variable is 32 KB. The maximum length for a message in a CLOB variable is 2 MB.

2. The first column of the result table of a DB2 MQ table function contains the message.

3.

Related concepts:
“DB2-supplied stored procedures” on page 809
Related tasks:

Additional steps for enabling WebSphere MQ user-defined functions (DB2
Installation and Migration)
Related reference:

MQREADALL (DB2 SQL)

MQREADALLCLOB (DB2 SQL)

MQRECEIVEALL (DB2 SQL)

MQRECEIVEALLCLOB (DB2 SQL)

WebSphere MQ information center

Generating XML documents from existing tables and sending
them to an MQ message queue

You can send data from a DB2 table to the MQ message queue. First put the data
in an XML document and then send that document to the message queue.

Procedure

To generate XML documents from existing tables and send them to an MQ
message queue:
1. Compose an XML document by using the DB2 XML publishing functions.
2. Cast the XML document to type VARCHAR or CLOB.
3. Send the document to an MQ message queue by using the appropriate DB2

MQ function.

Chapter 15. Coding methods for distributed data 879

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_enablemqseriesudfs.htm#db2z_enablemqseriesudfs
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_enablemqseriesudfs.htm#db2z_enablemqseriesudfs
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_mqreadall.htm#db2z_bif_mqreadall
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_mqreadallclob.htm#db2z_bif_mqreadallclob
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_mqreceiveall.htm#db2z_bif_mqreceiveall
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_mqreceiveallclob.htm#db2z_bif_mqreceiveallclob
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

Related concepts:
“DB2 MQ functions and DB2 MQ XML stored procedures” on page 877

Functions for constructing XML values (DB2 Programming for XML)

Shredding XML documents from an MQ message queue
When you retrieve XML data from an MQ message queue, you can shred that data
into DB2 tables for easy retrievability.

About this task

Procedure

To shred XML documents from an MQ message queue:
1. Retrieve the XML document from an MQ message queue by using the

appropriate MQ function.
2. Shred the retrieved message to DB2 tables by using the XML decomposition

stored procedure (XDBDECOMPXML).
Related concepts:
“DB2 MQ functions and DB2 MQ XML stored procedures” on page 877

DB2 MQ tables
The DB2 MQ tables contain service and policy definitions that are used by the
Message Queue Interface (MQI) based DB2 MQ functions. You must populate the
DB2 MQ tables before you can use these MQI-based functions.

The DB2 MQ tables are SYSIBM.MQSERVICE_TABLE and
SYSIBM.MQPOLICY_TABLE. These tables are user-managed. You need to create
them during the installation or migration process. Installation job DSNTIJRT
creates these tables with one default row in each table.

If you previously used the AMI-based DB2 MQ functions, you used AMI
configuration files instead of these tables. To use the MQI-based DB2 MQ
functions, you need to move the data from those configuration files to the DB2
tables SYSIBM.MQSERVICE_TABLE and SYSIBM.MQPOLICY_TABLE .

The following table describes the columns for SYSIBM.MQSERVICE_TABLE.

Table 136. SYSIBM.MQSERVICE_TABLE column descriptions

Column name Description

SERVICENAME This column contains the service name, which is an
optional input parameter of the MQ functions.

This column is the primary key for the
SYSIBM.MQSERVICE_TABLE table.

QUEUEMANAGER This column contains the name of the queue manager
where the MQ functions are to establish a connection.

INPUTQUEUE This column contains the name of the queue from which
the MQ functions are to send and retrieve messages.

880 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.xml/src/tpc/db2z_publishfuncs.htm#db2z_publishfuncs

Table 136. SYSIBM.MQSERVICE_TABLE column descriptions (continued)

Column name Description

CODEDCHARSETID This column contains the character set identifier for
character data in the messages that are sent and received
by the MQ functions.

This column corresponds to the CodedCharSetId field in
the message descriptor structure (MQMD). MQ functions
use the value in this column to set the CodedCharSetId
field.

The default value for this column is 0, which sets the
CodedCharSetId field of the MQMD to the value
MQCCSI_Q_MGR.

ENCODING This column contains the encoding value for the numeric
data in the messages that are sent and received by the
MQ functions.

This column corresponds to the Encoding field in the
message descriptor structure (MQMD). MQ functions use
the value in this column to set the Encoding field.

The default value for this column is 0, which sets the
Encoding field in the MQMD to the value
MQENC_NATIVE.

DESCRIPTION This column contains the description of the service.

The following table describes the columns for SYSIBM.MQPOLICY_TABLE.

Table 137. SYSIBM.MQPOLICY_TABLE column descriptions

Column name Description

POLICYNAME This column contains the policy name, which is an
optional input parameter of the MQ functions.

This column is the primary key for the
SYSIBM.MQPOLICY_TABLE table.

SEND_PRIORITY This column contains the priority of the message.

This column corresponds to the Priority field in the
message descriptor structure (MQMD). MQ functions use
the value in this column to set the Priority field.

The default value for this column is -1, which sets the
Priority field in the MQMD to the value
MQQPRI_PRIORITY_AS_Q_DEF.

Chapter 15. Coding methods for distributed data 881

Table 137. SYSIBM.MQPOLICY_TABLE column descriptions (continued)

Column name Description

SEND_PERSISTENCE This column indicates whether the message persists
despite any system failures or instances of restarting the
queue manager.

This column corresponds to the Persistence field in the
message descriptor structure (MQMD). MQ functions use
the value in this column to set the Persistence field.

This column can have the following values:

Q Sets the Persistence field in the MQMD to the value
MQPER_PERSISTENCE_AS_Q_DEF. This value is the
default.

Y Sets the Persistence field in the MQMD to the value
MQPER_PERSISTENT.

N Sets the Persistence field in the MQMD to the value
MQPER_NOT_ PERSISTENT.

SEND_EXPIRY This column contains the message expiration time, in
tenths of a second.

This column corresponds to the Expiry field in the
message descriptor structure (MQMD). MQ functions use
the value in this column to set the Expiry field.

The default value is -1, which sets the Expiry field to the
value MQEI_UNLIMITED.

SEND_RETRY_COUNT This column contains the number of times that the MQ
function is to try to send a message if the procedure fails.

The default value is 5.

SEND_RETRY_INTERVAL This column contains the interval, in milliseconds,
between each attempt to send a message.

The default value is 1000.

SEND_NEW_CORRELID This column specifies how the correlation identifier is to
be set if a correlation identifier is not passed as an input
parameter in the MQ function. The correlation identifier
is set in the CorrelId field in the message descriptor
structure (MQMD).

This column can have one of the following values:

N Sets the CorrelId field in the MQMD to binary zeros.
This value is the default.

Y Specifies that the queue manager is to generate a
new correlation identifier and set the CorrelId field
in the MQMD to that value. This 'Y' value is
equivalent to setting the
MQPMO_NEW_CORREL_ID option in the Options
field in the put message options structure (MQPMO).

882 Application Programming and SQL Guide

Table 137. SYSIBM.MQPOLICY_TABLE column descriptions (continued)

Column name Description

SEND_RESPONSE_MSGID This column specifies how the MsgId field in the message
descriptor structure (MQMD) is to be set for report and
reply messages.

This column corresponds to the Report field in the
MQMD. MQ functions use the value in this column to set
the Report field.

This column can have one of the following values:

N Sets the MQRO_NEW_MSG_ID option in the Report
field in the MQMD. This value is the default.

P Sets the MQRO_PASS_MSG_ID option in the Report
field in the MQMD.

SEND_RESPONSE_CORRELID This column specifies how the CorrelID field in the
message descriptor structure (MQMD) is to be set for
report and reply messages.

This column corresponds to the Report field in the
MQMD. MQ functions use the value in this column to set
the Report field.

This column can have one of the following values:

C Sets the MQRO_COPY_MSG_ID_TO_CORREL_ID
option in the Report field in the MQMD. This value
is the default.

P Sets the MQRO_PASS_CORREL_ID option in the
Report field in the MQMD.

SEND_EXCEPTION_ACTION This column specifies what to do with the original
message when it cannot be delivered to the destination
queue.

This column corresponds to the Report field in the
message descriptor structure (MQMD). MQ functions use
the value in this column to set the Report field.

This column can have one of the following values:

Q Sets the MQRO_DEAD_LETTER_Q option in the
Report field in the MQMD. This value is the default.

D Sets the MQRO_DISCARD_MSG option in the Report
field in the MQMD.

P Sets the MQRO_PASS_DISCARD_AND_EXPIRY
option in the Report field in the MQMD.

Chapter 15. Coding methods for distributed data 883

Table 137. SYSIBM.MQPOLICY_TABLE column descriptions (continued)

Column name Description

SEND_REPORT_EXCEPTION This column specifies whether an exception report
message is to be generated when a message cannot be
delivered to the specified destination queue and if so,
what that report message should contain.

This column corresponds to the Report field in the
message descriptor structure (MQMD). MQ functions use
the value in this column to set the Report field.

This column can have one of the following values:

N Specifies that an exception report message is not to
be generated. No options in the Report field are set.
This value is the default.

E Sets the MQRO_EXCEPTION option in the Report
field in the MQMD.

D Sets the MQRO_EXCEPTION_WITH_DATA option in
the Report field in the MQMD.

F Sets the MQRO_EXCEPTION_WITH_FULL_DATA
option in the Report field in the MQMD.

SEND_REPORT_COA This column specifies whether the queue manager is to
send a confirm-on-arrival (COA) report message when
the message is placed in the destination queue, and if so,
what that COA message is to contain.

This column corresponds to the Report field in the
message descriptor structure (MQMD). MQ functions use
the value in this column to set the Report field.

This column can have one of the following values:

N Specifies that a COA message is not to be sent. No
options in the Report field are set. This value is the
default

C Sets the MQRO_COA option in the Report field in
the MQMD

D Sets the MQRO_COA_WITH_DATA option in the
Report field in the MQMD.

F Sets the MQRO_COA_WITH_FULL_DATA option in
the Report field in the MQMD.

884 Application Programming and SQL Guide

Table 137. SYSIBM.MQPOLICY_TABLE column descriptions (continued)

Column name Description

SEND_REPORT_COD This column specifies whether the queue manager is to
send a confirm-on-delivery (COD) report message when
an application retrieves and deletes a message from the
destination queue, and if so, what that COD message is
to contain.

This column corresponds to the Report field in the
message descriptor structure (MQMD). MQ functions use
the value in this column to set the Report field.

This column can have one of the following values:

N Specifies that a COD message is not to be sent. No
options in the Report field are set. This value is the
default.

C Sets the MQRO_COD option in the Report field in
the MQMD.

D Sets the MQRO_COD_WITH_DATA option in the
Report field in the MQMD.

F Sets the MQRO_COD_WITH_FULL_DATA option in
the Report field in the MQMD.

SEND_REPORT_EXPIRY This column specifies whether the queue manager is to
send an expiration report message if a message is
discarded before it is delivered to an application, and if
so, what that message is to contain.

This column corresponds to the Report field in the
message descriptor structure (MQMD). MQ functions use
the value in this column to set the Report field.

This column can have one of the following values:

N Specifies that an expiration report message is not to
be sent. No options in the Report field are set.This
value is the default.

C Sets the MQRO_EXPIRATION option in the Report
field in the MQMD.

D Sets the MQRO_EXPIRATION_WITH_DATA option
in the Report field in the MQMD.

F Sets the MQRO_EXPIRATION_WITH_FULL_DATA
option in the Report field in the MQMD.

Chapter 15. Coding methods for distributed data 885

Table 137. SYSIBM.MQPOLICY_TABLE column descriptions (continued)

Column name Description

SEND_REPORT_ACTION This column specifies whether the receiving application
sends a positive action notification (PAN), a negative
action notification (NAN), or both.

This column corresponds to the Report field in the
message descriptor structure (MQMD). MQ functions use
the value in this column to set the Report field.

This column can have one of the following values:

N Specifies that neither notification is to be sent. No
options in the Report field are set. This value is the
default.

P Sets the MQRO_PAN option in the Report field in
the MQMD.

T Sets the MQRO_NAN option in the Report field in
the MQMD.

B Sets both the MQRO_PAN and MQRO_NAN options
in the Report field in the MQMD.

SEND_MSG_TYPE This column contains the type of message.

This column corresponds to the MsqType field in the
message descriptor structure (MQMD). MQ functions use
the value in this column to set the MsqType field.

This column can have one of the following values:

DTG
Sets the MsgType field in the MQMD to
MQMT_DATAGRAM. This value is the default.

REQ
Sets the MsgType field in the MQMD to
MQMT_REQUEST.

RLY
Sets the MsgType field in the MQMD to
MQMT_REPLY.

RPT
Sets the MsgType field in the MQMD to
MQMT_REPORT.

REPLY_TO_Q This column contains the name of the message queue to
which the application that issued the MQGET call is to
send reply and report messages.

This column corresponds to the ReplyToQ field in the
message descriptor structure (MQMD). MQ functions use
the value in this column to set the ReplyToQ field.

The default value for this column is SAME AS INPUT_Q,
which sets the name to the queue name that is defined in
the service that was used for sending the message. If no
service was specified, the name is set to
DB2MQ_DEFAULT_Q, which is the name of the input
queue for the default service.

886 Application Programming and SQL Guide

Table 137. SYSIBM.MQPOLICY_TABLE column descriptions (continued)

Column name Description

REPLY_TO_QMGR This column contains the name of the queue manager to
which the reply and report messages are to be sent.

This column corresponds to the ReplyToQMgr field in the
message descriptor structure (MQMD). MQ functions use
the value in this column to set the ReplyToQMgr field.

The default value for this column is SAME AS
INPUT_QMGR, which sets the name to the queue
manager name that is defined in the service that was
used for sending the message. If no service was specified,
the name is set to the name of the queue manager for the
default service.

RCV_WAIT_INTERVAL This column contains the time, in milliseconds, that DB2
is to wait for messages to arrive in the queue.

This column corresponds to the WaitInterval field in the
get message options structure (MQGMO). MQ functions
use the value in this column to set the WaitInterval field.

The default is 10.

RCV_CONVERT This column indicates whether to convert the application
data in the message to conform to the CodedCharSetId
and Encoding values of the specified MQ service.

This column corresponds to the Options field in the get
message options structure (MQGMO). MQ functions use
the value in this column to set the Options field.

This column can have one of the following values:

Y Sets the MQGMO_CONVERT option in the Options
field in the MQGMO. This value is the default.

N Specifies that no data is to be converted.

RCV_ACCEPT_TRUNC_MSG This column specifies the behavior of the MQ function
when oversized messages are retrieved.

This column corresponds to the Options field in the get
message options structure (MQGMO). MQ functions use
the value in this column to set the Options field.

This column can have one of the following values:

Y Sets the MQGMO_ACCEPT_TRUNCATED_MSG
option in the Options field in the MQGMO. This
value is the default.

N Specifies that no messages are to be truncated. If the
message is too large to fit in the buffer, the MQ
function terminates with an error.

Recommendation: Set this column to Y. In this case, if
the message buffer is too small to hold the complete
message, the MQ function can fill the buffer with as
much of the message as the buffer can hold.

Chapter 15. Coding methods for distributed data 887

Table 137. SYSIBM.MQPOLICY_TABLE column descriptions (continued)

Column name Description

REV_OPEN_SHARED This column specifies the input queue mode when
messages are retrieved.

This column corresponds to the Options parameter for an
MQOPEN call. MQ functions use the value in this
column to set the Options parameter.

This column can have one of the following values:

S Sets the MQOO_INPUT_SHARED option. This value
is the default.

E Sets the MQ option MQOO_INPUT_EXCLUSIVE
option.

D Sets the MQ option MQOO_INPUT_AS_Q_DEF
option.

SYNCPOINT This column indicates whether the MQ function is to
operate within the protocol for a normal unit of work.

This column can have one of the following values:

Y Specifies that the MQ function is to operate within
the protocol for a normal unit of work. Use this
value for two-phase commit environments. This
value is the default.

N Specifies that the MQ function is to operate outside
the protocol for a normal unit of work. Use this
value for one-phase commit environments.

DESC This column contains the description of the policy.

Related reference:

Core WLM environments for DB2-supplied routines (DB2 Installation and
Migration)

WebSphere MQ information center

Basic messaging with WebSphere MQ
The most basic form of messaging with the DB2 MQ functions occurs when all
database applications connect to the same DB2 database server. Clients can be local
to the database server or distributed in a network environment.

In a simple scenario, client A invokes the MQSEND function to send a user-defined
string to the location that is defined by the default service. DB2 executes the MQ
functions that perform this operation on the database server. At some later time,
client B invokes the MQRECEIVE function to remove the message at the head of
the queue that is defined by the default service, and return it to the client. DB2
executes the MQ functions that perform this operation on the database server.

Database clients can use simple messaging in a number of ways:
v Data collection

Information is received in the form of messages from one or more sources. An
information source can be any application. The data is received from queues and
stored in database tables for additional processing.

v Workload distribution

888 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_corewlmenvironments.htm#db2z_corewlmenvironments
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_corewlmenvironments.htm#db2z_corewlmenvironments
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

Work requests are posted to a queue that is shared by multiple instances of the
same application. When an application instance is ready to perform some work,
it receives a message that contains a work request from the head of the queue.
Multiple instances of the application can share the workload that is represented
by a single queue of pooled requests.

v Application signaling
In a situation where several processes collaborate, messages are often used to
coordinate their efforts. These messages might contain commands or requests for
work that is to be performed. For more information about this technique, see
“Application to application connectivity with WebSphere MQ” on page 891.

The following scenario extends basic messaging to incorporate remote messaging.
Assume that machine A sends a message to machine B.
1. The DB2 client executes an MQSEND function call, specifying a target service

that has been defined to be a remote queue on machine B.
2. The MQ functions perform the work to send the message. The WebSphere MQ

server on machine A accepts the message and guarantees that it will deliver it
to the destination that is defined by the service and the current MQ
configuration of machine A. The server determines that the destination is a
queue on machine B. The server then attempts to deliver the message to the
WebSphere MQ server on machine B, trying again as needed.

3. The WebSphere MQ server on machine B accepts the message from the server
on machine A and places it in the destination queue on machine B.

4. A WebSphere MQ client on machine B requests the message at the head of the
queue.

Sending messages with WebSphere MQ
When you send messages with WebSphere MQ, you choose what data to send,
where to send it and when to send it. This type of messaging is called send and
forget; the sender sends a message and relies on WebSphere MQ to ensure that the
message reaches its destination.

About this task

To send messages with WebSphere MQ, use MQSEND.

If you send more than one column of information, separate the columns with the
characters || ’ ’ ||.

Example: MQSEND (LASTNAME || ’ ’ || FIRSTNAME)

The following examples use the DB2MQ schema for two-phase commit, with the
default service DB2.DEFAULT.SERVICE and the default policy
DB2.DEFAULT.POLICY.

Example: The following SQL SELECT statement sends a message that consists of
the string "Testing msg":
SELECT DB2MQ.MQSEND (’Testing msg’)

FROM SYSIBM.SYSDUMMY1;
COMMIT;

The MQSEND function is invoked once because SYSIBM.SYSDUMMY1 has only
one row. Because this MQSEND function uses two-phase commit, the COMMIT
statement ensures that the message is added to the queue.

Chapter 15. Coding methods for distributed data 889

When you use single-phase commit, you do not need to use a COMMIT statement.
For example:
SELECT DB2MQ.MQSEND (’Testing msg’)

FROM SYSIBM.SYSDUMMY1;

The MQ operation causes the message to be added to the queue.

Example: Assume that you have an EMPLOYEE table, with VARCHAR columns
LASTNAME, FIRSTNAME, and DEPARTMENT. To send a message that contains
this information for each employee in DEPARTMENT 5LGA, issue the following
SQL SELECT statement:
SELECT DB2MQ.MQSEND (LASTNAME || ’ ’ || FIRSTNAME || ’ ’ || DEPARTMENT)

FROM EMPLOYEE WHERE DEPARTMENT = ’5lGA’;
COMMIT;

Message content can be any combination of SQL statements, expressions, functions,
and user-specified data. Because this MQSEND function uses two-phase commit,
the COMMIT statement ensures that the message is added to the MQ queue.
Related reference:

MQSEND (DB2 SQL)

Retrieving messages with WebSphere MQ
With WebSphere MQ, programs can read or receive messages. Both reading and
receiving operations return the message at the start of the queue. However, the
reading operation does not remove the message from the queue, whereas the
receiving operation does.

About this task

A message that is retrieved using a receive operation can be retrieved only once,
whereas a message that is retrieved using a read operation allows the same
message to be retrieved many times.

The following examples use the DB2MQ2N schema for two-phase commit, with
the default service DB2.DEFAULT.SERVICE and the default policy
DB2.DEFAULT.POLICY.

Example: The following SQL SELECT statement reads the message at the head of
the queue that is specified by the default service and policy:
SELECT DB2MQ2N.MQREAD()

FROM SYSIBM.SYSDUMMY1;

The MQREAD function is invoked once because SYSIBM.SYSDUMMY1 has only
one row. The SELECT statement returns a VARCHAR(4000) string. If no messages
are available to be read, a null value is returned. Because MQREAD does not
change the queue, you do not need to use a COMMIT statement.

Example: The following SQL SELECT statement causes the contents of a queue to
be materialized as a DB2 table:
SELECT T.*

FROM TABLE(DB2MQ2N.MQREADALL()) T;

The result table T of the table function consists of all the messages in the queue,
which is defined by the default service, and the metadata about those messages.

890 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_mqsend.htm#db2z_bif_mqsend

The first column of the materialized result table is the message itself, and the
remaining columns contain the metadata. The SELECT statement returns both the
messages and the metadata.

To return only the messages, issue the following statement:
SELECT T.MSG

FROM TABLE(DB2MQ2N.MQREADALL()) T;

The result table T of the table function consists of all the messages in the queue,
which is defined by the default service, and the metadata about those messages.
This SELECT statement returns only the messages.

Example: The following SQL SELECT statement receives (removes) the message at
the head of the queue:
SELECT DB2MQ2N.MQRECEIVE()

FROM SYSIBM.SYSDUMMY1;
COMMIT;

The MQRECEIVE function is invoked once because SYSIBM.SYSDUMMY1 has
only one row. The SELECT statement returns a VARCHAR(4000) string. Because
this MQRECEIVE function uses two-phase commit, the COMMIT statement
ensures that the message is removed from the queue. If no messages are available
to be retrieved, a null value is returned, and the queue does not change.

Example: Assume that you have a MESSAGES table with a single
VARCHAR(2000) column. The following SQL INSERT statement inserts all of the
messages from the default service queue into the MESSAGES table in your DB2
database:
INSERT INTO MESSAGES

SELECT T.MSG
FROM TABLE(DB2MQ2N.MQRECEIVEALL()) T;

COMMIT;

The result table T of the table function consists of all the messages in the default
service queue and the metadata about those messages. The SELECT statement
returns only the messages. The INSERT statement stores the messages into a table
in your database.

Application to application connectivity with WebSphere MQ
Application-to-application connectivity is typically used when putting together a
diverse set of application subsystems. To facilitate application integration,
WebSphere MQ provides the means to interconnect applications.

The following two scenarios are very common when interconnecting applications:
v Request-and-reply communication method
v Publish-and-subscribe method

Request-and-reply communication method:

The request-and-reply method enables one application to request the services of
another application. One way to do this is for the requester to send a message to
the service provider to request that some work be performed. When the work has
been completed, the provider might decide to send results, or just a confirmation

Chapter 15. Coding methods for distributed data 891

of completion, back to the requester. Unless the requester waits for a reply before
continuing, WebSphere MQ must provide a way to associate the reply with its
request.

WebSphere MQ provides a correlation identifier to correlate messages in an
exchange between a requester and a provider. The requester marks a message with
a known correlation identifier. The provider marks its reply with the same
correlation identifier. To retrieve the associated reply, the requester provides that
correlation identifier when receiving messages from the queue. The first message
with a matching correlation identifier is returned to the requester.

The following examples use the DB2MQ schema for single-phase commit.

Example: The following SQL SELECT statement sends a message consisting of the
string "Msg with corr id" to the service MYSERVICE, using the policy MYPOLICY
with correlation identifier CORRID1:
SELECT DB2MQ.MQSEND (’MYSERVICE’, ’MYPOLICY’, ’Msg with corr id’, ’CORRID1’)

FROM SYSIBM.SYSDUMMY1;

The MQSEND function is invoked once because SYSIBM.SYSDUMMY1 has only
one row. Because this MQSEND uses single-phase commit, WebSphere MQ adds
the message to the queue, and you do not need to use a COMMIT statement.

Example: The following SQL SELECT statement receives the first message that
matches the identifier CORRID1 from the queue that is specified by the service
MYSERVICE, using the policy MYPOLICY:
SELECT DB2MQ.MQRECEIVE (’MYSERVICE’, ’MYPOLICY’, ’CORRID1’)

FROM SYSIBM.SYSDUMMY1;

The SELECT statement returns a VARCHAR(4000) string. If no messages are
available with this correlation identifier, a null value is returned, and the queue
does not change.

Publish-and-subscribe method:

Another common method of application integration is for one application to notify
other applications about events of interest. An application can do this by sending a
message to a queue that is monitored by other applications. The message can
contain a user-defined string or can be composed from database columns.

Simple data publication: In many cases, only a simple message needs to be sent
using the MQSEND function. When a message needs to be sent to multiple
recipients concurrently, the distribution list facility of the MQSeries® AMI can be
used.

You define distribution lists by using the AMI administration tool. A distribution list
comprises a list of individual services. A message that is sent to a distribution list
is forwarded to every service defined within the list. Publishing messages to a
distribution list is especially useful when there are multiple services that are
interested in every message.

Example: The following example shows how to send a message to the distribution
list "InterestedParties":
SELECT DB2MQ.MQSEND (’InterestedParties’,’Information of general interest’)

FROM SYSIBM.SYSDUMMY1;

892 Application Programming and SQL Guide

To receive published messages, you must first register your application's interest in
messages of a given topic and indicate the name of the subscriber service to which
messages are sent. An AMI subscriber service defines a broker service and a
receiver service. The broker service is how the subscriber communicates with the
publish-and-subscribe broker. The receiver service is the location where messages
that match the subscription request are sent.

Example: The following statement subscribes to the topic ALL_EMP and indicates
that messages be sent to the subscriber service, "aSubscriber":
SELECT DB2MQ.MQSUBSCRIBE (’aSubscriber’,’ALL_EMP’)

FROM SYSIBM.SYSDUMMY1;

When an application is subscribed, messages published with the topic, ALL_EMP,
are forwarded to the receiver service that is defined by the subscriber service. An
application can have multiple concurrent subscriptions. Messages that match the
subscription topic can be retrieved by using any of the standard message retrieval
functions.

Example: The following statement non-destructively reads the first message, where
the subscriber service, "aSubscriber", defines the receiver service as
"aSubscriberReceiver":
SELECT DB2MQ.MQREAD (’aSubscriberReceiver’)

FROM SYSIBM.SYSDUMMY1;

To display both the messages and the topics with which they are published, you
can use one of the table functions.

Example: The following statement receives the first five messages from
"aSubscriberReceiver" and display both the message and the topic for each of the
five messages:
SELECT t.msg, t.topic

FROM table (DB2MQ.MQRECEIVEALL (’aSubscriberReceiver’,5)) t;

Example: To read all of the messages with the topic ALL_EMP, issue the following
statement:
SELECT t.msg

FROM table (DB2MQ.MQREADALL (’aSubscriberReceiver’)) t
WHERE t.topic = ’ALL_EMP’;

Note: If you use MQRECEIVEALL with a constraint, your application receives the
entire queue, not just those messages that are published with the topic ALL_EMP.
This is because the table function is performed before the constraint is applied.

When you are no longer interested in having your application subscribe to a
particular topic, you must explicitly unsubscribe.

Example: The following statement unsubscribes from the ALL_EMP topic of the
"aSubscriber" subscriber service:
SELECT DB2MQ.MQUNSUBSCRIBE (’aSubscriber’, ’ALL_EMP’)

FROM SYSIBM.SYSDUMMY1;

After you issue the preceding statement, the publish-and-subscribe broker no
longer delivers messages that match the ALL_EMP topic to the "aSubscriber"
subscriber service.

Chapter 15. Coding methods for distributed data 893

Automated Publication: Another important method in application message
publishing is automated publication. Using the trigger facility within DB2 for
z/OS, you can automatically publish messages as part of a trigger invocation.
Although other techniques exist for automated message publication, the
trigger-based approach gives you more freedom in constructing the message
content and more flexibility in defining the actions of a trigger. As with the use of
any trigger, you must be aware of the frequency and cost of execution.

Example: The following example shows how you can use the MQSeries functions
of DB2 for z/OS with a trigger to publish a message each time a new employee is
hired:
CREATE TRIGGER new_employee AFTER INSERT ON DSN8B10.EMP

REFERENCING NEW AS n
FOR EACH ROW MODE DB2SQL
SELECT DB2MQ.MQPUBLISH (’HR_INFO_PUB’, current date || ’ ’ ||

LASTNAME || ’ ’ || DEPARTMENT, ’NEW_EMP’);

Any users or applications that subscribe to the HR_INFO_PUB service with a
registered interest in the NEW_EMP topic will receive a message that contains the
date, the name, and the department of each new employee when rows are inserted
into the DSN8B10.EMP table.

Asynchronous messaging in DB2 for z/OS
Programs can communicate with each other by sending data in messages rather
than using constructs like synchronous remote procedure calls. With asynchronous
messaging, the program that sends the message proceeds with its processing after
sending the message, without waiting for a reply.

If the program needs information from the reply, the program suspends processing
and waits for a reply message. If the messaging programs use an intermediate
queue that holds messages, the requestor program and the receiver program do
not need to be running at the same time. The requestor program places a request
message on a queue and then exits. The receiver program retrieves the request
from the queue and processes the request.

Asynchronous operations require that the service provider is capable of accepting
requests from clients without notice. An asynchronous listener is a program that
monitors message transporters, such as WebSphere MQ, and performs actions
based on the message type. An asynchronous listener can use WebSphere MQ to
receive all messages that are sent to an endpoint. An asynchronous listener can
also register a subscription with a publish or subscribe infrastructure to restrict the
messages that are received to messages that satisfy specified constraints.

Examples: The following examples show some common uses of asynchronous
messaging:

Message accumulator
You can accumulate the messages that are sent asynchronously so that the
listener checks for messages and stores those messages automatically in a
database. This database, which acts as a message accumulator, can save all
messages for a particular endpoint, such as an audit trail. The
asynchronous listener can subscribe to a subset of messages, such as save
only high value stock trades. The message accumulator stores entire
messages, and does not provide for selection, transformation, or mapping
of message contents to database structures. The message accumulator does
not reply to messages.

894 Application Programming and SQL Guide

Message event handler
The asynchronous event handler listens for messages and invokes the
appropriate handler (such as a stored procedure) for the message endpoint.
You can call any arbitrary stored procedure. The asynchronous listener lets
you select, map, or reformat message contents for insertion into one or
more database structures.

Asynchronous messaging has the following benefits:
v The client and database do not need to be available at the same time. If the

client is available intermittently, or if the client fails between the time the request
is issued and the response is sent, it is still possible for the client to receive the
reply. Or, if the client is on a mobile computer and becomes disconnected from
the database, and if a response is sent, the client can still receive the reply.

v The content of the messages in the database contain information about when to
process particular requests. The messages in the database use priorities and the
request contents to determine how to schedule the requests.

v An asynchronous message listener can delegate a request to a different node. It
can forward the request to a second computer to complete the processing. When
the request is complete, the second computer returns a response directly to the
endpoint that is specified in the message.

v An asynchronous listener can respond to a message from a supplied client, or
from a user-defined application. The number of environments that can act as a
database client is greatly expanded. Clients such as factory automation
equipment, pervasive devices, or embedded controllers can communicate with
DB2 either directly through WebSphere MQ or through some gateway that
supports WebSphere MQ.

MQListener in DB2 for z/OS
DB2 for z/OS provides an asynchronous listener, MQListener. MQListener is a
framework for tasks that read from WebSphere MQ queues and call DB2 stored
procedures with messages as those messages arrive.

MQListener combines messaging with database operations. You can configure the
MQListener daemon to listen to the WebSphere MQ message queues that you
specify in a configuration database. MQListener reads the messages that arrive
from the queue and calls DB2 stored procedures using the messages as input
parameters. If the message requires a reply, MQListener creates a reply from the
output that is generated by the stored procedure. The message retrieval order is
fixed at the highest priority first, and then within each priority the first message
received is the first message served.

MQListener runs as a single multi-threaded process on z/OS UNIX System
Services. Each thread or task establishes a connection to its configured message
queue for input. Each task also connects to a DB2 database on which to run the
stored procedure. The information about the queue and the stored procedure is
stored in a table in the configuration database. The combination of the queue and
the stored procedure is a task.

MQListener tasks are grouped together into named configurations. By default, the
configuration name is empty. If you do not specify the name of a configuration for
a task, MQListener uses the configuration with an empty name.

Transaction support: There is support for both one-phase and two-phase commit
environments. A one-phase commit environment is where DB interactions and MQ

Chapter 15. Coding methods for distributed data 895

interactions are independent. A two-phase commit environment is where DB
interactions and MQ interactions are combined in a single unit of work.

'db2mqln1' is the name of the executable for one phase and 'db2mqln2' is the name
of the executable for two phase.

Logical ordering of messages: The two-phase commit version of the MQListener
stored procedure processes messages that are in a group in logical order. The
single-phase commit version of the MQListener stored procedure processes
messages that are in a group in physical order.

Stored Procedure Interface: The stored procedure interface for MQListener takes
the incoming message as input and returns the reply, which might be NULL, as
output:
schema.proc(in inMsg inMsgType, out outMsg outMsgType)

The data type for inMsgType and the data type for outMsgType can be VARCHAR,
VARBINARY, CLOB, or BLOB of any length and are determined at startup. The
input data type and output data type can be different data types. If an incoming
message is a request and has a specified reply-to queue, the message in outMsg
will be sent to the specified queue. The incoming message can be one of the
following message types:
v Datagram
v Datagram with report requested
v Request message with reply
v Request message with reply and report requested

Configuring MQListener in DB2 for z/OS:

Before you can use MQListener, you must configure your database environment so
that your applications can use messaging with database operations. You must also
configure WebSphere MQ for MQListener.

About this task

Use the following procedure to configure the environment for MQListener and to
develop a simple application that receives a message, inserts the message in a
table, and creates a simple response message:
1. Configure MQListener to run in the DB2 environment.
2. Configure WebSphere MQ for MQListener.
3. Configure MQListener task.
4. Create the sample stored procedure to work with MQListener.
5. Run a simple MQListener application.

Configuring MQListener to run in the DB2 environment:

Configure your database environment so that your applications can use messaging
with database operations.

Customize and run installation job DSNTIJML, which is located in
prefix.SDSNSAMP data set. The job will do the following tasks:
1. Untar and create the necessary files and libraries in z/OS UNIX System

Services under the path where MQListener is installed.

896 Application Programming and SQL Guide

2. Create the MQListener configuration table (SYSMQL.LISTENERS) in the default
database DSNDB04.

3. Bind the DBRM's to the plan DB2MQLSN.

Note: The default path of MQListener is /usr/lpp/db2mql_910 for DB2 Version 9,
/usr/lpp/db2a10/mql for DB2 Version 10, and /usr/lpp/db2b10/mql for DB2
Version 11. The location of the tar file mqlsn.tar.Z is at the default path of
MQListener. If MQListener is not installed in the default path, replace all
occurrences of the string of the default path in the samples DSNTEJML, DSNTEJSP
and DSNTIJML with the path name where MQListener is installed before you run
DSNTIJML.

Note: The default path of MQListener is /usr/lpp/db2mql_910 for DB2 Version 9
and /usr/lpp/db2a10/mql for DB2 Version 10. The location of the tar file
mqlsn.tar.Z is at the default path of MQListener. If MQListener is not installed in
the default path, replace all occurrences of the string of the default path in the
samples DSNTEJML, DSNTEJSP and DSNTIJML with the path name where
MQListener is installed before you run DSNTIJML.

The samples DSNTEJML, DSNTEJSP and DSNTIJML are located in
prefix.SDSNSAMP data set.

Ensure that the person who runs the installation job has required authority to
create the configuration table and to bind the DBRM's.

Follow the instructions in the README file that is created in the MQListener
installation path in z/OS UNIX System Services to complete the configuration
process.

Configuring WebSphere MQ for MQListener:

You can run a simple MQListener application with a simple WebSphere MQ
configuration. More complex applications might need a more complex
configuration. Configure at least two kinds of WebSphere MQ entities: the queue
manager and some local queues. Configure these entities for use in such instances
as transaction management, deadletter queue, backout queue, and backout retry
threshold.

To configure WebSphere MQ for a simple MQListener application, complete the
following steps:
1. Create MQSeries QueueManager. Define the MQSeries subsystem to z/OS and

then issue the following command from a z/OS console to start the queue
manager:
<command-prefix-string> START QMGR

command-prefix-string is the command prefix for the MQSeries subsystem.
2. Create Queues under MQSeries QueueManager:

In a simple MQListener application, you typically use the following WebSphere
MQ queues:

Deadletter queue
The deadletter queue in WebSphere MQ holds messages that cannot be
processed. MQListener uses this queue to hold replies that cannot be
delivered, for example, because the queue to which the replies should be

Chapter 15. Coding methods for distributed data 897

|
|
|
|
|
|
|

|
|
|
|
|
|

sent is full. A deadletter queue is useful in any MQ installation especially
for recovering messages that are not sent.

Backout queue
For MQListener tasks that use two-phase commit, the backout queue
serves a similar purpose as the deadletter queue. MQListener places the
original request in the backout queue after the request is rolled back a
specified number of times (called the backout threshold).

Administration queue
The administration queue is used for routing control messages, such as
shutdown and restart, to MQListener. If you do not supply an
administration queue, the only way to shut down MQListener is to issue a
kill command.

Application input and output queues
The application uses input queues and output queues. The application
receives messages from the input queue and sends replies and exceptions
to the output queue.

Create your local queues by using CSQUTIL utility or by using MQSeries
operations and control panels from ISPF (csqorexx). The following is an example of
the JCL that is used to create your local queues. In this example, MQND is the
name of the queue manager:
//*
//* ADMIN_Q : Admin queue
//* BACKOUT_Q : Backout queue
//* IN_Q : Input queue having a backout queue with threshold=3
//* REPLY_Q : output queue or reply queue
//* DEADLLETTER_Q: Dead letter queue
//*
//DSNTECU EXEC PGM=CSQUTIL,PARM=’MQND’
//STEPLIB DD DSN=MQS.SCSQANLE,DISP=SHR
// DD DSN=MQS.SCSQAUTH,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

COMMAND DDNAME(CREATEQ)
/*
//CREATEQ DD *

DEFINE QLOCAL(’ADMIN_Q’) REPLACE +
DESCR(’INPUT-OUTPUT’) +
PUT(ENABLED) +
DEFPRTY(0) +
DEFPSIST(NO) +
SHARE +
DEFSOPT(SHARED) +
GET(ENABLED)

DEFINE QLOCAL(’BACKOUT_Q’) REPLACE +
DESCR(’INPUT-OUTPUT’) +
PUT(ENABLED) +
DEFPRTY(0) +
DEFPSIST(NO) +
SHARE +
DEFSOPT(SHARED) +
GET(ENABLED)

DEFINE QLOCAL(’REPLY_Q’) REPLACE +
DESCR(’INPUT-OUTPUT’) +
PUT(ENABLED) +
DEFPRTY(0) +
DEFPSIST(NO) +
SHARE +
DEFSOPT(SHARED) +
GET(ENABLED)

DEFINE QLOCAL(’IN_Q’) REPLACE +

898 Application Programming and SQL Guide

DESCR(’INPUT-OUTPUT’) +
PUT(ENABLED) +
DEFPRTY(0) +
DEFPSIST(NO) +
SHARE +
DEFSOPT(SHARED) +
GET(ENABLED) +
BOQNAME(’BACKOUT_Q’) +
BOTHRESH(3)

DEFINE QLOCAL(’DEADLETTER_Q’) REPLACE +
DESCR(’INPUT-OUTPUT’) +
PUT(ENABLED) +
DEFPRTY(0) +
DEFPSIST(NO) +
SHARE +
DEFSOPT(SHARED) +
GET(ENABLED)

ALTER QMGR DEADQ (’DEADLETTER_Q’) REPLACE
/*

Environment variables for logging and tracing MQListener:

Two environment variables control logging and tracing for MQListener. These
variables are defined in the file .profile.

MQLSNTRC
When this ENV variable is set to 1, it will write function entry, data, and
exit points to a unique HFS or zFS file. A unique trace file will be
generated whenever any of the MQListener commands are run. This trace
file will be used by IBM software support for debugging if the customer
reports any problem. Unless requested, this variable should not be defined.

MQLSNLOG
The log file contains diagnostic information about the major events. This
ENV variable is set to the name of the file where all log information will
be written. All instances of MQListener daemon running one or more tasks
will share the same file. For monitoring MQListener daemon, this variable
should always be set. When MQListener daemon is running, open the
log/trace files only in read mode (use cat/more/tail commands in z/OS
UNIX System Services to open the files) as they are used by the daemon
process for writing.

Refer to the README file for more details about these variables.

Configuration table: SYSMQL.LISTENERS:

If you use MQListener, you must create the MQListener configuration table
SYSMQL.LISTENERS by running installation job DSNTIJML.

The following table describes each of the columns of the configuration table
SYSMQL.LISTENERS.

Table 138. Description of columns in the SYSMQL.LISTENERS table

Column name Description

CONFIGURATIONNAME The configuration name. The configuration name enables
you to group several tasks into the same configuration.
A single instance of MQListener can run all of the tasks
that are defined within a configuration name.

QUEUEMANAGER The name of the WebSphere MQ subsystem that contains
the queues that are to be used.

Chapter 15. Coding methods for distributed data 899

Table 138. Description of columns in the SYSMQL.LISTENERS table (continued)

Column name Description

INPUTQUEUE The name of the queue in the WebSphere MQ subsystem
that is to be monitored for incoming messages. The
combination of the input queue and the queue manager
are unique within a configuration

PROCNODE Currently unused

PROCSCHEMA The schema name of the stored procedure that will be
called by MQListener

PROCNAME The name of the stored procedure that will be called by
MQListener

PROCTYPE Currently unused

NUMINSTANCES The number of duplicate instances of a single task that
are to run in this configuration

WAITMILLIS The time MQListener waits (in milliseconds) after
processing the current message before it looks for the
next message

MINQUEDEPTH Currently unused

Configuring MQListener tasks:

As part of configuring MQListener in DB2 for z/OS, you must configure at least
one MQListener task.

About this task

Use the MQListener command, db2mqln1 or db2mqln2, to configure MQListener
tasks. Issue the command from z/OS UNIX System Services command line in any
directory. Alternatively, You can put the command in a file, grant execute
permission and use the BPXBATCH utility to invoke the script from JCL. The
sample script files are provided and are located in /MQListener-install-path/
mqlsn/listener/script directory in z/OS UNIX System Services. Sample JCL
(DSNTEJML) is also provided that invokes the script files and is located in
prefix.SDSNSAMP. The add parameter with the db2mqln1 or db2mqln2 command
updates a row in the DB2 table SYSMQL.LISTENERS.
v To add an MQListener configuration, issue the following command:

db2mqln1/db2mqln2 add
-ssID <subsystem name>
-config <configuration name>
-queueManager <queuemanager name>
-inputQueue <inputqueue name>
-procName <stored-procedure name>
-procSchema <stored-procedure schema name>
-numInstances <number of instances>

v To display information about the configuration, issue the following command:
db2mqln1/db2mqln2 show

-ssID <subsystem name>
-config <configuration name>

To display information about all the configurations, issue the following
command:
db2mqln1/db2mqln2 show

-ssID <subsystem name>
-config all

900 Application Programming and SQL Guide

v To remove the messaging tasks, issue the following command:
db2mqln1/db2mqln2 remove

-ssID <subsystem name>
-config <configuration name>
-queueManager <queuemanager name>
-inputQueue <inputqueue name>

v To run the MQListener task, issue the following command:
db2mqln1/db2mqln2 run

-ssID <subsystem name>
-config <configuration name>
-adminQueue <adminqueue name>
-adminQMgr <adminqueuemanager name>

v To shutdown the MQListener daemon, issue the following command:
db2mqln1/db2mqln2 admin

-adminQueue <adminqueue name>
-adminQMgr <adminqueuemanager name>
-adminCommand shutdown

v To restart the MQListener daemon, issue the following command:
db2mqln1/db2mqln2 admin

-adminQueue <adminqueue name>
-adminQMgr <adminqueuemanager name>
-adminCommand restart

v To get help with the command and the valid parameters, issue the following
command:
db2mqln1/db2mqln2 help

v To get help for a particular parameter, issue the following command, where
'command' is a specific parameter:
db2mqln1/db2mqln2 help <command>

Restriction:

v Use the same queue manager for the request queue and the reply queue.
v MQListener does not support logical messages that are composed of multiple

physical messages. MQListener processes physical messages independently.

Creating a sample stored procedure to use with MQ Listener:

You can create a sample stored procedure, APROC, that can be used by
MQListener to store a message in a table. The stored procedure returns the string
OK if the message is successfully inserted into the table.

Procedure

The following steps create DB2 objects that you can use with MQListener
applications:
1. Create a table using SPUFI, DSNTEP2, or the command line processor in the

subsystem where you want to run MQListener:
CREATE TABLE PROCTABLE (MSG VARCHAR(25) CHECK (MSG NOT LIKE ’FAIL%’));

The table contains a check constraint so that messages that start with the
characters FAIL cannot be inserted into the table. The check constraint is used
to demonstrate the behavior of MQListener when the stored procedure fails.

2. Create the following SQL procedure and define it to the same DB2 subsystem:
CREATE PROCEDURE TEST.APROC (

IN PIN VARCHAR(25),
OUT POUT VARCHAR(2))

Chapter 15. Coding methods for distributed data 901

LANGUAGE SQL
FENCED
NOT DETERMINISTIC
NO DBINFO
COLLID TESTLSRN
WLM ENVIRONMENT TESTWLMX
ASUTIME NO LIMIT
STAY RESIDENT NO
PROGRAM TYPE MAIN
SECURITY USER
PROCEDURE1: BEGIN

INSERT INTO PROCTABLE VALUES(PIN);
SET POUT = ’OK’;

END PROCEDURE1

TESTLSRN is the name of the collection that is used for this stored procedure
and TESTWLMX is the name of the WLM environment where this stored
procedure will run.

3. Optional: Bind the collection TESTLSRN to the plan DB2MQLSN, which is used
by MQListener:
BIND PLAN(DB2MQLSN) +

PKLIST(LSNR.*,TESTLSRN.*) +
ACTION(REP) DISCONNECT(EXPLICIT);

If your application calls a stored procedure or user defined function that is
defined with the COLLID option, the application does not need to include the
collection ID in its plan. Thus, this step is optional.

MQListener error processing:

MQListener reads from WebSphere MQ message queues and calls DB2 stored
procedures with those messages. If any errors occur during this process and the
message is to be sent to the deadletter queue, MQListener returns a reason code to
the deadletter queue.

Specifically, MQListener performs the following actions:
v prefixes the message with an MQ dead letter header (MQDLH) structure
v sets the reason field in the MQDLH structure to the appropriate reason code
v sends the message to the deadletter queue

The following table describes the reason codes that the MQListener daemon
returns.

Table 139. Reason codes that MQListener returns

Reason code Explanation

900 The call to a stored procedure was successful but an error occurred during the DB2
commit process and either of the following conditions were true:

v No exception report was requested.1

v An exception report was requested, but could not be delivered.

This reason code applies only to one-phase commit environments.

901 The call to the specified stored procedure failed and the disposition of the MQ message is
that an exception report be generated and the original message be sent the deadletter
queue.

902 Application Programming and SQL Guide

Table 139. Reason codes that MQListener returns (continued)

Reason code Explanation

902 All of the following conditions occurred:

v The disposition of the MQ message is that an exception report is not to be generated. 1

v The stored procedure was called unsuccessfully the number of times that is specified as
the backout threshold.

v The name of the backout queue is the same as the deadletter queue.

This reason code applies only to two-phase commit environments.

MQRC_TRUNCATED_
MSG__FAILED

The size of the MQ message is greater than the input parameter of the stored procedure
that is to be invoked. In one-phase commit environments, this oversized message is sent to
the dead letter queue. In two-phase commit environments, this oversized message is sent
to the deadletter queue only when the message cannot be delivered to the backout queue.

Note:

1. To specify that the receiver application generate exception reports if errors
occur, set the report field in the MQMD structure that was used when sending
the message to one of the following values:
v MQRO_EXCEPTION
v MQRO_EXCEPTION_WITH_DATA
v MQRO_EXCEPTION_WITH_FULL_DATA

Related reference:

WebSphere MQ information center

MQListener examples:

The application receives a message, inserts the message into a table, and generates
a simple response message.

To simulate a processing failure, the application includes a check constraint on the
table that contains the message. The constraint prevents any string that begins with
the characters 'fail' from being inserted into the table. If you attempt to insert a
message that violates the check constraint, the example application returns an error
message and re-queues the failing message to the backout queue.

In this example, the following assumptions are made:
v MQListener is installed and configured for subsystem DB7A.
v MQND is the name of MQSeries subsystem that is defined. The Queue Manager

is running, and the following local queues are defined in the DB7A subsystem:
ADMIN_Q : Admin queue
BACKOUT_Q : Backout queue
IN_Q : Input queue that has a backout queue withthreshold = 3
REPLY_Q : Output queue or Reply queue
DEADLLETTER_Q : Dead letter queue

v The person who is running the MQListener daemon has execute permission on
the DB2MQLSN plan.

Before you run the MQListener daemon, add the following configuration, named
ACFG, to the configuration table by issuing the following command:
db2mqln2 add

-ssID DB7A
-config ACFG

Chapter 15. Coding methods for distributed data 903

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

-queueManager MQND
-inputQueue IN_Q
-procName APROC
-procSchema TEST

Run the MQListener daemon for two-phase commit for the added configuration
'ACFG'. To run MQListener with all of the tasks specified in a configuration, issue
the following command:
db2mqln2 run

-ssID DB7A
-config ACFG
-adminQueue ADMIN_Q
-adminQMgr MQND

The following examples show how to use MQListener to send a simple message
and then inspect the results of the message in the WebSphere MQ queue manager
and the database. The examples include queries to determine if the input queue
contains a message or to determine if a record is placed in the table by the stored
procedure.

MQListener example 1: Running a simple application:

1. Start with a clean database table by issuing the following SQL statement:
delete from PROCTABLE

2. Send a datagram to the input queue, 'IN_Q', with the message as 'sample
message'. Refer to WebSphere MQ sample CSQ4BCK1 to send a message to the
queue. Specify the MsgType option for 'Message Descriptor' as
'MQMT_DATAGRAM'.

3. Query the table by using the following statement to verify that the sample
message is inserted:
select * from PROCTABLE

4. Display the number of messages that remain on the input queue to verify that
the message has been removed. Issue the following command from a z/OS
console:
/-MQND display queue(’In_Q’) curdepth

MQListener example 2: Sending requests to the input queue and inspecting the
reply:

1. Start with a clean database table by issuing the following SQL statement:
delete from PROCTABLE

2. Send a request to the input queue, 'IN_Q', with the message as 'another sample
message'. Refer to WebSphere MQ sample CSQ4BCK1 to send a message to the
queue. Specify the MsgType option for 'Message Descriptor' as
'MQMT_REQUEST' and the queue name for ReplytoQ option.

3. Query the table by using the following statement to verify that the sample
message is inserted:
select * from PROCTABLE

4. Display the number of messages that remain on the input queue to verify that
the message has been removed. Issue the following command from a z/OS
console:
/-MQND display queue(’In_Q’) curdepth

5. Look at the ReplytoQ name that you specified when you sent the request
message for the reply by using the WebSphere MQ sample program CSQ4BCJ1.
Verify that the string 'OK' is generated by the stored procedure.

904 Application Programming and SQL Guide

MQListener example 3: Testing an unsuccessful insert operation: If you send a
message that starts with the string 'fail', the constraint in the table definition is
violated, and the stored procedure fails.
1. Start with a clean database table by issuing the following SQL statement:

delete from PROCTABLE

2. Send a request to the input queue, 'IN_Q', with the message as 'failing sample
message'. Refer to WebSphere MQ sample CSQ4BCK1 to send a message to the
queue. Specify the MsgType option for 'Message Descriptor' as
'MQMT_REQUEST' and the queue name for ReplytoQ option.

3. Query the table by using the following statement to verify that the sample
message is not inserted:
select * from PROCTABLE

4. Display the number of messages that remain on the input queue to verify that
the message has been removed. Issue the following command from a z/OS
console:
/-MQND display queue(’In_Q’) curdepth

5. Look at the Backout queue and find the original message by using the
WebSphere MQ sample program CSQ4BCJ1.

Note: In this example, if a request message with added options for 'exception
report' is sent (the Report option is specified for 'Message Descriptor'), an
exception report is sent to the reply queue and the original message is sent to the
deadletter queue.

Chapter 15. Coding methods for distributed data 905

906 Application Programming and SQL Guide

Chapter 16. DB2 as a web services consumer and provider

Web services are a set of resources and components that applications can use over
HTTP. You can use DB2 as a web services provider and a web services consumer.

DB2 as a web services consumer

DB2 can act as a client for web services, which enables you to be a consumer of
web services in your DB2 applications.

SOAP web services Simple Object Access Protocol (SOAP) is an XML protocol that
consists of the following characteristics:
v An envelope that defines a framework for describing the contents of a message

and how to process the message
v A set of encoding rules for expressing instances of application-defined data types
v A convention for representing SOAP requests and responses

A set of SOAP functions is provided by DB2 and is installed and configured when
you install or migrate DB2.

REST web services The Representational State Transfer (REST) protocol provides
access to web-based content directly from SQL statements through HTTP requests.
A set of basic sample REST user-defined functions can be installed with DB2. These
functions provide access to web-based content through the HTTP GET, POST, PUT,
and DELETE methods.

DB2 as a web services provider

You can enable your DB2 data and applications as web services through the Web
Services Object Runtime Framework (WORF). You can define a web service in DB2
by using a Document Access Definition Extension (DADX). In the DADX file, you
can define web services based on SQL statements and stored procedures. Based on
your definitions in the DADX file, WORF performs the following actions:
v Handles the connection to DB2 and the execution of the SQL and the stored

procedure call
v Converts the result to a web service
v Handles the generation of any Web Services Definition Language (WSDL) and

UDDI (Universal Description, Discovery, and Integration) information that the
client application needs

For more information about using DB2 as a web services provider, see DB2
Information Integrator Application Developer's Guide.
Related concepts:

Sample REST user-defined functions (DB2 Installation and Migration)

Deprecated: The SOAPHTTPV and SOAPHTTPC user-defined functions
DB2 provides user-defined functions that allow you to work with SOAP and
consume web services in SQL statements. The user-defined functions are two
varieties of SOAPHTTPV for VARCHAR data and two varieties of SOAPHTTPC
for CLOB data.

© Copyright IBM Corp. 1983, 2013 907

|
|
|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_samplerestudfs.htm#db2z_samplerestudfs

Restriction: SOAPHTTPV and SOAPHTTPC user-defined functions have been
deprecated. Use SOAPHTTPNV and SOAPHTTPNC user-defined functions
instead.

The user-defined functions perform the following actions:
1. Compose a SOAP request
2. Post the request to the service endpoint
3. Receive the SOAP response
4. Return the content of the SOAP body

When a consumer receives the result of a web services request, the SOAP envelope
is stripped and the XML document is returned. An application program can
process the result data and perform a variety of operations, including inserting or
updating a table with the result data.

SOAPHTTPV and SOAPHTTPC are user-defined functions that enable DB2 to
work with SOAP and to consume web services in SQL statements. These functions
are overloaded functions that are used for VARCHAR or CLOB data of different
sizes, depending on the SOAP body. Web services can be invoked in one of four
ways, depending on the size of the input data and the result data. SOAPHTTPV
returns VARCHAR(32672) data and SOAPHTTPC returns CLOB(1M) data. Both
functions accept either VARCHAR(32672) or CLOB(1M) as the input body.

Example: The following example shows an HTTP post header that posts a SOAP
request envelope to a host. The SOAP envelope body shows a temperature request
for Barcelona.
POST /soap/servlet/rpcrouter HTTP/1.0
Host: services.xmethods.net
Connection: Keep-Alive User-Agent: DB2SOAP/1.0
Content-Type: text/xml; charset="UTF-8"
SOAPAction: ""
Content-Length: 410

<?xml version=’1.0’ encoding=’UTF-8’?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/

xmlns:SOAP-ENC=http://schemas.xmlsoap.org/soap/encoding/
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xmlns:xsd=http://www.w3.org/2001/XMLSchema >

<SOAP-ENV:Body>
<ns:getTemp xmlns:ns="urn:xmethods-Temperature">

<city>Barcelona</city>
</ns:getTemp>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Example: The following example is the result of the preceding example. This
example shows the HTTP response header with the SOAP response envelope. The
result shows that the temperature is 85 degrees Fahrenheit in Barcelona.
HTTP/1.1 200 OK
Date: Wed, 31 Jul 2002 22:06:41 GMT
Server: Enhydra-MultiServer/3.5.2
Status: 200
Content-Type: text/xml; charset=utf-8
Servlet-Engine: Lutris Enhydra Application Server/3.5.2

(JSP 1.1; Servlet 2.2; Java™ 1.3.1_04;
Linux 2.4.7-10smp i386; java.vendor=Sun Microsystems Inc.)

Content-Length: 467
Set-Cookie:JSESSIONID=JLEcR34rBc2GTIkn-0F51ZDk;Path=/soap
X-Cache: MISS from www.xmethods.net

908 Application Programming and SQL Guide

Keep-Alive: timeout=15, max=10
Connection: Keep-Alive

<?xml version=’1.0’ encoding=’UTF-8’?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xmlns:xsd=http://www.w3.org/2001/XMLSchema >

<SOAP-ENV:Body>
<ns1:getTempResponse xmlns:ns1="urn:xmethods-Temperature"
SOAP-ENV:encodingStyle=http://schemas.xmlsoap.org/soap/encoding/ >

<return xsi:type="xsd:float">85</return>
</ns1:getTempResponse>

</SOAP-ENV:Body></SOAP-ENV:Envelope>

Example: The following example shows how to insert the result from a web
service into a table
INSERT INTO MYTABLE(XMLCOL) VALUES (DB2XML.SOAPHTTPC(

’http://www.myserver.com/services/db2sample/list.dadx/SOAP’,
’http://tempuri.org/db2sample/list.dadx’
’<listDepartments xmlns="http://tempuri.org/db2sample/listdadx">

<deptno>A00</deptno>
</ListDepartments>’))

The SOAPHTTPNV and SOAPHTTPNC user-defined functions
DB2 provides SOAPHTTPNV and SOAPHTTPNC user-defined functions that
allow you to work with SOAP and consume web services in SQL statements. The
user-defined functions are two varieties of SOAPHTTPNV for VARCHAR data and
two varieties of SOAPHTTPNC for CLOB data.

The user-defined functions perform the following actions:
1. Post the input SOAP request to the service endpoint
2. Receive and return the SOAP response

SOAPHTTPNV and SOAPHTTPNC allow you to specify a complete SOAP
message as input and return complete SOAP messages from the specified web
service as a CLOB or VARCHAR representation of the returned XML data. .
SOAPHTTPNV returns VARCHAR(32672) data and SOAPHTTPNC returns
CLOB(1M) data. Both functions accept either VARCHAR(32672) or CLOB(1M) as
the input body.

SOAPHTTPNV and SOAPHTTPNC user-defined functions can support SOAP 1.1
or SOAP 1.2. Check with your system administrator to determine which levels of
SOAP are supported by the user-defined functions in your environment.

Example

The following example shows how to insert the complete result from a web service
into a table using SOAPHTTPNC.
INSERT INTO EMPLOYEE(XMLCOL)

VALUES (DB2XML.SOAPHTTPNC(
’http://www.myserver.com/services/db2sample/list.dadx/SOAP’,
’http://tempuri.org/db2sample/list.dadx’,
’<?xml version="1.0" encoding="UTF-8" ?>’ ||
’<SOAP-ENV:Envelope ’ ||
’xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" ’ ||
’xmlns:xsd="http://www.w3.org/2001/XMLSchema" ’ ||
’xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">’ ||
’<SOAP-ENV:Body>’ ||
’<listDepartments xmlns="http://tempuri.org/db2sample/list.dadx">

Chapter 16. DB2 as a web services consumer and provider 909

<deptNo>A00</deptNo>
</listDepartments>’ ||
’</SOAP-ENV:Body>’ ||
’</SOAP-ENV:Envelope>’))

Related tasks:

Additional steps for enabling web service user-defined functions (DB2
Installation and Migration)

SQLSTATEs for DB2 as a web services consumer
DB2 returns SQLSTATE values for error conditions that are related to using DB2 as
a web services consumer.

The following tables show possible SQLSTATE values.

Table 140. SQLSTATE values for SOAPHTTPV and SOAPHTTPC user-defined functions

SQLSTATE Description

38301 An unexpected NULL value was pass as input to the function.

38302 The function was unable to allocate space.

38304 An unknown protocol was specified ion the endpoint URL.

38305 An invalid URL was specified on the endpoint URL.

38306 An error occurred while attempting to create a TCP/IP socket.

38307 An error occurred while attempting to bind a TCP/IP socket.

38308 The function could not resolve the specified host name.

38309 An error occurred while attempting to connect to the specified server.

38310 An error occurred while attempting to retrieve information from the
protocol.

38311 An error occurred while attempting to set socket options.

38312 The function received unexpected data returned for the web service.

38313 The web service did not return data of the proper content type.

38314 An error occurred while initializing the XML parser.

38315 An error occurred while creating the XML parser.

38316 An error occurred while establishing a handler for the XML parser.

38317 The XML parser encountered an error while parsing the result data.

38318 The XML parser could not convert the result data to the database code
page.

38319 The function could not allocate memory when creating a TCP/IP socket.

38320 An error occurred while attempting to send the request to the specified
server.

38321 The function was unable to send the entire request to the specified server.

38322 An error occurred while attempting to read the result data from the
specified server.

38323 An error occurred while waiting for data to be returned from the specified
server.

38324 The function encountered an internal error while attempting to format the
input message.

38325 The function encountered an internal error while attempting to add
namespace information to the input message.

910 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_enablewebsvcudfs.htm#db2z_enablewebsvcudfs
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_enablewebsvcudfs.htm#db2z_enablewebsvcudfs

Table 140. SQLSTATE values for SOAPHTTPV and SOAPHTTPC user-defined
functions (continued)

SQLSTATE Description

38327 The XML parser could not strip the SOAP envelope from the result
message.

38328 An error occurred while processing an SSL connection.

Table 141. SQLSTATE values for SOAPHTTPNV and SOAPHTTPNC user-defined functions

SQLSTATE Description

38350 An unexpected NULL value was specified for the endpoint, action, or
SOAP input.

38351 A dynamic memory allocation error.

38352 An unknown or unsupported transport protocol.

38353 An invalid URL was specified.

38354 An error occurred while resolving the hostname.

38355 A memory exception for socket.

38356 An error occurred during socket connect.

38357 An error occurred while setting socket options.

38358 An error occurred during input/output control (ioctl) to verify HTTPS
enablement.

38359 An error occurred while reading from the socket.

38360 An error occurred due to socket timeout.

38361 No response from the specified host.

38362 An error occurred due to an unexpected HTTP return or content type

38363 The TCP/IP stack was not enabled for HTTPS.

Related tasks:

Additional steps for enabling web service user-defined functions (DB2
Installation and Migration)

Chapter 16. DB2 as a web services consumer and provider 911

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_enablewebsvcudfs.htm#db2z_enablewebsvcudfs
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_enablewebsvcudfs.htm#db2z_enablewebsvcudfs

912 Application Programming and SQL Guide

Chapter 17. Preparing an application to run on DB2 for z/OS

To prepare and run applications that contain embedded static SQL statements or
dynamic SQL statements, you must precompile, compile, link-edit, and bind them.

About this task

You can perform these steps by using one of the following methods:

Productivity hint: To avoid rework, first test your SQL statements using SPUFI.
Then compile your program without SQL statements, and resolve all compiler
errors. Finally, proceed with the preparation and the DB2 precompiler or with the
host compiler that supports that DB2 coprocessor.

The following types of applications require different methods of program
preparation:
v Applications that contain ODBC calls
v Applications in interpreted languages, such as REXX
v Java applications, which can contain JDBC calls or embedded SQL statements

For information about running REXX programs, which you do not prepare for
execution, see “Running a DB2 REXX application” on page 1026.

Steps in program preparation:

The following topics provide details on preparing and running a DB2 application:
“Processing SQL statements” on page 916
“Compiling and link-editing an application” on page 940
“Binding an application” on page 941
Chapter 18, “Running an application on DB2 for z/OS,” on page 1023.

Binding a package is not necessary in all cases. These instructions assume that you
bind some of your DBRMs into packages and include a package list in your plan.

If you use CICS, you might need additional steps; see:
v “Translating command-level statements in a CICS program” on page 927
v “Example of calling applications in a command procedure” on page 1036

For more information about when to bind a package, see “DB2 program
preparation overview” on page 976.

Preparing applications by using JCL procedures:

A number of methods are available for preparing an application to run. You can:
v Use DB2 interactive (DB2I) panels, which lead you step by step through the

preparation process.
v Submit a background job using JCL (which the program preparation panels can

create for you).
v Start the DSNH CLIST in TSO foreground or background.
v Use TSO prompters and the DSN command processor.
v Use JCL procedures added to your SYS1.PROCLIB (or equivalent) at DB2

installation time.

© Copyright IBM Corp. 1983, 2013 913

v For C and C++ only, you can invoke the coprocessor from UNIX System Services
and, if the DBRM is generated in a HFS file, you can use the command line
processor to bind the resulting DBRM. Optionally, you can also copy the DBRM
into a partitioned data set member by using the oput and oget commands and
then bind it by using conventional JCL.

This topic describes how to use JCL procedures to prepare a program.

For information about using the DB2I panels, see Chapter 17, “Preparing an
application to run on DB2 for z/OS,” on page 913.

Preparing applications by the DB2 Program:

If you develop programs using TSO and ISPF, you can prepare them to run by
using the DB2 Program Preparation panels. These panels guide you step by step
through the process of preparing your application to run. Other ways of preparing
a program to run are available, but using DB2 Interactive (DB2I) is the easiest
because it leads you automatically from task to task.

Important: If your C++ program satisfies both of the following conditions, you
must use a JCL procedure to prepare it:
v The program consists of more than one data set or member.
v More than one data set or member contains SQL statements.

To prepare an application by using the DB2 Program Preparation panels:
1. If you want to display or suppress message IDs during program preparation,

specify one of the following commands on the ISPF command line:

TSO PROFILE MSGID
Message IDs are displayed

TSO PROFILE NOMSGID
Message IDs are supressed

2. Open the DB2I Primary Option Menu.
3. Select the option that corresponds to the Program Preparation panel.
4. Complete the Program Preparation panel and any subsequent panels. After you

complete each panel, DB2I automatically displays the next appropriate panel.

Preparation guidelines for DL/I batch programs:

Use the following guidelines when you prepare a program to access DB2 and DL/I
in a batch program:
v “Processing SQL statements by using the DB2 precompiler” on page 918
v “Binding a batch program” on page 954
v “Compiling and link-editing an application” on page 940
v “Loading and running a batch program” on page 1030

914 Application Programming and SQL Guide

Related concepts:

Command line processor (DB2 Commands)

TSO attachment facility (Introduction to DB2 for z/OS)
Related reference:

DSNH (TSO CLIST) (DB2 Commands)

Setting the DB2I defaults
When you use the DB2 Interactive (DB2I) panels to prepare an application, you can
specify the default values that DB2I is to use. These defaults values can include the
default application language and default JCL JOB statement. Otherwise, DB2I uses
the system default values that were set at installation time.

Procedure

To set the DB2I defaults:

As DB2I leads you through a series a panels, enter the default values that you
want on the following panels when they are displayed.

Table 142. DB2I panels to use to set default values

If you want to set the following default values... Use this panel

v subsystem ID

v number of additional times to attempt to connect to
DB2

v programming language

v number of lines on each page of listing or SPUFI
output

v lowest level of message to return to you during the
BIND phase

v SQL string delimiter for COBOL programs

v how to represent decimal separators

v smallest value of the return code (from precompile,
compile, link-edit, or bind) that prevents later steps
from running

v default number of input entry rows to generate on the
initial display of ISPF panels

v user ID to associate with the trusted connection for the
current DB2I session

DB2I Defaults Panel 1 panel

v default JOB statement

v symbol used to delimit a string in a COBOL statement
in a COBOL application

v whether DCLGEN generates a picture clause that has
the form PIC G(n) DISPLAY-1 or PIC N(n).

DB2I Defaults Panel 2 panel

Chapter 17. Preparing an application to run on DB2 for z/OS 915

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_commandlineprocessor.htm#db2z_commandlineprocessor
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_tsoattachmentfacility.htm#db2z_tsoattachmentfacility
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_dsnh.htm#db2z_cmd_dsnh

Table 142. DB2I panels to use to set default values (continued)

If you want to set the following default values... Use this panel

The following package and plan characteristics

v isolation level

v whether to check authorization at run time or at bind
time

v when to release locks on resources

v whether to obtain EXPLAIN information about how
SQL statements in the plan or package execute

v whether you need data currency for ambiguous cursors
opened at remote locations

v whether to use parallel processing

v whether DB2 determines access paths at bind time and
again at execution time

v whether to defer preparation of dynamic SQL
statements

v whether DB2 keeps dynamic SQL statements after
commit points

v the application encoding scheme

v whether you want to use optimization hints to
determine access paths

v when DB2 writes the changes for updated group buffer
pool-dependent pages

v whether run time (RUN) or bind time (BIND) rules
apply to dynamic SQL statements at run time

v whether to continue to create a package after finding
SQL errors (packages only)

v when to acquire locks on resources (plans only)

v whether a CONNECT (Type 2) statement executes
according to DB2 rules (DB2) or the SQL standard
(STD). (plans only)

v which remote connections end during a commit or a
rollback (plans only)

Defaults for Bind Package panel

Defaults for Bind Plan panel

Related reference:
“DB2I Defaults Panel 1” on page 990
“DB2I Defaults Panel 2” on page 993
“Defaults for Bind Package and Defaults for Rebind Package panels” on page 1002
“Defaults for Bind Plan and Defaults for Rebind Plan panels” on page 1005

Processing SQL statements
The first step in preparing an SQL application to run is to process the SQL
statements in the program. To process the statements, use either the DB2
precompiler or the DB2 coprocessor. During this step, the SQL statements are
replaced with calls to DB2 language interface modules, and a DBRM is created.

About this task

For assembler or Fortran applications, use the DB2 precompiler to prepare the SQL
statements.

916 Application Programming and SQL Guide

For C, C++, COBOL, or PL/I applications, you can use one of the following
techniques to process SQL statements:
v Use the DB2 precompiler before you compile your program.

You can use this technique with any supported version of C or C++, COBOL, or
PL/I.

v Invoke the DB2 coprocessor for the host language that you are using as you
compile your program. You can use the DB2 coprocessor with C, C++, COBOL,
and PL/I host compilers. To invoke the DB2 coprocessor, specify the SQL
compiler option followed by its suboptions, which are those options that are
defined for the DB2 precompiler. Some DB2 precompiler options are ignored.
– For C or C++, you need IBM z/OS Version 1 Release 8 C/C++ or later. For C

and C++, you can also invoke the coprocessor from UNIX System Services on
z/OS to generate a DBRM in either a partitioned data set or an HFS file.

– For COBOL, you need Enterprise COBOL for z/OS Version 3 Release 4 or
later to use this technique.

– For PL/I, you need Enterprise PL/I for z/OS Version 3 Release 4 or later to
use this technique.

CICS: If the application contains CICS commands, you must translate the program
before you compile it.

DB2 version in DSNHDECP module: When you process SQL statements in your
program, if the DB2 version in DSNHDECP is the default system-provided version,
DB2 issues a warning and processing continues. In this case, ensure that the
information in DSNHDECP that DB2 uses accurately reflects your environment.

SQL statement processing:

Because most compilers do not recognize SQL statements, you can prevent
compiler errors by using either the DB2 precompiler or the DB2 coprocessor.

The precompiler scans the program and returns modified source code, which you
can then compile and link edit. The precompiler also produces a DBRM (database
request module). You can bind this DBRM to a package using the BIND
subcommand. When you complete these steps, you can run your DB2 application.

Alternatively, you can use the DB2 coprocessor for the host language. The DB2
coprocessor performs DB2 precompiler functions at compile time. When you use
the DB2 coprocessor, the compiler (rather than the precompiler) scans the program
and returns the modified source code. The DB2 coprocessor also produces a
DBRM.

Chapter 17. Preparing an application to run on DB2 for z/OS 917

Related concepts:

Using the DB2 C/C++ precompiler (XL C/C++ Programming Guide)

DB2 coprocessor (Enterprise COBOL for z/OS Programming Guide)
“Differences between the DB2 precompiler and the DB2 coprocessor” on page 928
“DB2 program preparation overview” on page 976
Related tasks:
“Translating command-level statements in a CICS program” on page 927
Related reference:

Enterprise COBOL for z/OS
Related information:

DB2 Program Directory

Processing SQL statements by using the DB2 precompiler
The DB2 precompiler scans a program and copies all of the SQL statements and
host variable information into a DBRM (database request module). The
precompiler also returns source code that has been modified so that the SQL
statements do not cause errors when you compile the program.

About this task

After the SQL statements and host variable information are copied into a DBRM
and the modified source code is returned, you can compile and link-edit this
modified source code.

Before you run the DB2 precompiler, use DCLGEN to obtain accurate SQL
DECLARE TABLE statements. The precompiler checks table and column references
against SQL DECLARE TABLE statements in the program, not the actual tables
and columns.

DB2 does not need to be active when you precompile your program.

You do not need to precompile the program on the same DB2 subsystem on which
you bind the DBRM and run the program. You can bind a DBRM and run it on a
DB2 subsystem at the previous release level, if the original program does not use
any properties of DB2 that are unique to the current release. You can also run
applications on the current release that were previously bound on subsystems at
the previous release level.

Procedure

To process SQL statements by using the DB2 precompiler:
1. Ensure that your program is ready to be processed by the DB2 precompiler by

performing the following actions: For information about the criteria for
programs that are passed to the precompiler, see “Input to the DB2
precompiler” on page 921.

2. If you plan to run multiple precompilation jobs and are not using the
DFSMSdfp partitioned data set extended (PDSE), change the DB2 language
preparation procedures (DSNHCOB, DSNHCOB2, DSNHICOB, DSNHFOR,
DSNHC, DSNHPLI, DSNHASM, DSNHSQL) to specify the DISP=OLD
parameter instead of the DISP=SHR parameter. The DB2 language preparation
procedures in job DSNTIJMV use the DISP=OLD parameter to enforce data

918 Application Programming and SQL Guide

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/cbcpg1d0/7.4.1.2?ACTION=MATCHES&REQUEST=c%2Fc%2B%2B+precompiler&TYPE=FUZZY&SHELF=&DT=20120802234732&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/igy3pg50/3.2.1
http://www.ibm.com/software/awdtools/cobol/zos/library/
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc/src/alltoc/db2z_prgdr.htm

integrity. However, the installation process converts the DISP=OLD parameter
for the DBRM library data set to DISP=SHR, which can cause data integrity
problems when you run multiple precompilation jobs.

3. Start the precompile process by using one of the following methods:
v DB2I panels. Use the Precompile panel or the DB2 Program Preparation

panels.
v The DSNH command procedure (a TSO CLIST).
v JCL procedures that are supplied with DB2. For more information about this

method, see “DB2-supplied JCL procedures for preparing an application” on
page 981.

Recommendation: Specify the SOURCE and XREF precompiler options to get
complete diagnostic output from the DB2 precompiler. This output is useful if
you need to precompile and compile program source statements several times
before they are error-free and ready to link-edit.
The output that is returned from the DB2 precompiler is described in “Output
from the DB2 precompiler” on page 923.

Results

Preparing a program with object-oriented extensions by using JCL:

If your C++ or Enterprise COBOL for z/OS program satisfies both of these
conditions, you need special JCL to prepare it:
v The program consists of more than one data set or member.
v More than one data set or member contains SQL statements.

You must precompile the contents of each data set or member separately, but the
prelinker must receive all of the compiler output together.

JCL procedure DSNHCPP2, which is in member DSNTIJMV of data set
DSNB10.SDSNSAMP, shows you one way to do this for C++.

Precompiling a batch program: When you add SQL statements to an application
program, you must precompile the application program and bind the resulting
DBRM into a package, as described in Chapter 17, “Preparing an application to run
on DB2 for z/OS,” on page 913.
Related concepts:
“DCLGEN (declarations generator)” on page 125
Related reference:

DSNH (TSO CLIST) (DB2 Commands)

Data sets that the precompiler uses
When you invoke the precompiler you need to provide data sets that contain input
for the precompiler, such as the host programming statements and SQL statements.
You also need to provide data sets where the precompiler can store its output, such
as the modified source code and diagnostics messages.

Chapter 17. Preparing an application to run on DB2 for z/OS 919

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_dsnh.htm#db2z_cmd_dsnh

Table 143. DD statements and data sets that the DB2 precompiler uses

DD statement Data set description Required?

DBRMLIB Output data set, which
contains the SQL statements
and host variable
information that the DB2
precompiler extracted from
the source program. It is
called Database Request
Module (DBRM). This data
set becomes the input to the
DB2 bind process. The DCB
attributes of the data set are
RECFM FB, LRECL 80.
DBRMLIB has to be a PDS
and a member name must be
specified. You can use
IEBCOPY, IEHPROGM, TSO
commands, COPY and
DELETE, or PDS
management tools for
maintaining the data set.

Yes

STEPLIB Step library for the job step.
In this DD statement, you
can specify the name of the
library for the precompiler
load module, DSNHPC, and
the name of the library for
your DB2 application
programming defaults
member, DSNHDECP.
Recommendation: Always
use the STEPLIB DD
statement to specify the
library where your DB2
DSNHDECP module resides
to ensure that the proper
application defaults are used
by the DB2 precompiler. The
library that contains your
DB2 DSNHDECP module
needs to be allocated ahead
of the prefix.SDSNLOAD
library.

No, but recommended

SYSCIN Output data set, which
contains the modified source
that the DB2 precompiler
writes out. This data set
becomes the input data set to
the compiler or assembler.
This data set must have
attributes RECFM F or FB,
and LRECL 80. SYSCIN can
be a PDS or a sequential data
set. If a PDS is used, the
member name must be
specified.

Yes

920 Application Programming and SQL Guide

Table 143. DD statements and data sets that the DB2 precompiler uses (continued)

DD statement Data set description Required?

SYSIN Input data set, which
contains statements in the
host programming language
and embedded SQL
statements. This data set
must have the attributes
RECFM F or FB, LRECL 80.
SYSIN can be a PDS or a
sequential data set. If a PDS
is used, the member name
must be specified.

Yes

SYSLIB INCLUDE library, which
contains additional SQL and
host language statements.
The DB2 precompiler
includes the member or
members that are referenced
by SQL INCLUDE
statements in the SYSIN
input from this DD
statement. Multiple data sets
can be specified, but they
must be partitioned data sets
with attributes RECFM F or
FB, LRECL 80. SQL
INCLUDE statements cannot
be nested.

No

SYSPRINT Output data set, which
contains the output listing
from the DB2 precompiler.
This data set must have an
LRECL of 133 and a RECFM
of FBA. SYSPRINT must be a
sequential data set

Yes

SYSTERM Terminal output file, which
contains diagnostic messages
from the DB2 precompiler.
SYSTERM) must be a
sequential data set

No

Input to the DB2 precompiler
The primary input for the precompiler consists of statements in the host
programming language and embedded SQL statements.

You can use the SQL INCLUDE statement to get secondary input from the include
library, SYSLIB. The SQL INCLUDE statement reads input from the specified
member of SYSLIB until it reaches the end of the member.

Another preprocessor, such as the PL/I macro preprocessor, can generate source
statements for the precompiler. Any preprocessor that runs before the precompiler
must be able to pass on SQL statements. Similarly, other preprocessors can process
the source code, after you precompile and before you compile or assemble.

Input to the DB2 precompiler has the following restrictions:

Chapter 17. Preparing an application to run on DB2 for z/OS 921

v The size of a source program that DB2 can precompile is limited by the region
size and the virtual memory available to the precompiler. These amounts vary
with each system installation.

v The forms of source statements that can pass through the precompiler are
limited. For example, constants, comments, and other source syntax that are not
accepted by the host compilers (such as a missing right brace in C) can interfere
with precompiler source scanning and cause errors. To check for such
unacceptable source statements, run the host compiler before the precompiler.
You can ignore the compiler error messages for SQL statements or comment out
the SQL statements. After the source statements are free of unacceptable
compiler errors, you can then uncomment any SQL statements that you
previously commented out and continue with the normal DB2 program
preparation process for that host language.

v You must write host language statements and SQL statements using the same
margins, as specified in the precompiler option MARGINS.

v The input data set, SYSIN, must have the attributes RECFM F or FB, LRECL 80.
v SYSLIB must be a partitioned data set, with attributes RECFM F or FB, LRECL

80.
v Input from the INCLUDE library cannot contain other precompiler INCLUDE

statements.

Starting the precompiler dynamically when using JCL
procedures
You can call the precompiler from an assembler program by using a macro.

About this task

You can call the precompiler from an assembler program by using one of the
macro instructions ATTACH, CALL, LINK, or XCTL.

To call the precompiler, specify DSNHPC as the entry point name. You can pass
three address options to the precompiler; the following topics describe their
formats. The options are addresses of:
v A precompiler option list
v A list of alternative DD names for the data sets that the precompiler uses
v A page number to use for the first page of the compiler listing on SYSPRINT
Related reference:

Using macros(MVS Assembler Services Reference)

Precompiler option list format:

When you call the precompiler, you can specify a number of options, in a list, for
SQL statement processing. You must specify that option list in a particular format.

The option list must begin on a 2-byte boundary. The first 2 bytes contain a binary
count of the number of bytes in the list (excluding the count field). The remainder
of the list is EBCDIC and can contain precompiler option keywords, separated by
one or more blanks, a comma, or both.

DD name list format:

When you call the precompiler, you can specify a list of alternative DD names for
the data sets that the precompiler uses. You must specify this list in a particular
format.

922 Application Programming and SQL Guide

http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/iea2a9c1/1.8?ACTION=MATCHES&REQUEST=using+macros&TYPE=FUZZY&SHELF=&DT=20120814062041&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT

The DD name list must begin on a 2-byte boundary. The first 2 bytes contain a
binary count of the number of bytes in the list (excluding the count field). Each
entry in the list is an 8-byte field, left-justified, and padded with blanks if needed.

The following table gives the following sequence of entries:

Table 144. DDNAME list entries

Entry Standard ddname Usage

1 Not applicable

2 Not applicable

3 Not applicable

4 SYSLIB Library input

5 SYSIN Source input

6 SYSPRINT Diagnostic listing

7 Not applicable

8 SYSUT1 Work data

9 SYSUT2 Work data

10 SYSUT3 Work data

11 Not applicable

12 SYSTERM Diagnostic listing

13 Not applicable

14 SYSCIN Changed source output

15 Not applicable

16 DBRMLIB DBRM output

Page number format:

When you call the precompiler, you can specify a page number to use for the first
page of the compiler listing on SYSPRINT. You must specify this page number in a
particular format.

A 6-byte field beginning on a 2-byte boundary contains the page number. The first
2 bytes must contain the binary value 4 (the length of the remainder of the field).
The last 4 bytes contain the page number in character or zoned-decimal format.

The precompiler adds 1 to the last page number that is used in the precompiler
listing and puts this value into the page-number field before returning control to
the calling routine. Thus, if you call the precompiler again, page numbering is
continuous.

Output from the DB2 precompiler
The major output from the DB2 precompiler is a database request module (DBRM).
However, the DB2 precompiler also produces modified source statements, a list of
source statements, a list of statements that refer to host names and columns, and
diagnostics.

Specifically, the precompiler produces the following types of output:

Chapter 17. Preparing an application to run on DB2 for z/OS 923

listing output
The DB2 precompiler writes the following information in the SYSPRINT data
set:
v Precompiler source listing

If the DB2 precompiler option SOURCE is specified, a source listing is
produced. The source listing includes precompiler source statements, with
line numbers that are assigned by the precompiler.

v Precompiler diagnostics
The precompiler produces diagnostic messages that include precompiler line
numbers of statements that have errors.

v Precompiler cross-reference listing
If the DB2 precompiler option XREF is specified, a cross-reference listing is
produced. The cross-reference listing shows the precompiler line numbers of
SQL statements that refer to host names and columns.

The SYSPRINT data set has an LRECL of 133 and a RECFM of FBA. This data
set uses the CCSID of the source program. Statement numbers in the output of
the precompiler listing are displayed as they appear in the listing.

Terminal diagnostics
If a terminal output file, SYSTERM, exists, the DB2 precompiler writes
diagnostic messages to it. A portion of the source statement accompanies the
messages in this file. You can often use the SYSTERM file instead of the
SYSPRINT file to find errors. This data set uses EBCDIC.

Modified source statements
The DB2 precompiler writes the source statements that it processes to SYSCIN,
the input data set to the compiler or assembler. This data set must have
attributes RECFM F or FB, and LRECL 80. The modified source code contains
calls to the DB2 language interface. The SQL statements that the calls replace
appear as comments. This data set uses the CCSID of the source program.

Database request modules
The database request module (DBRM) is a data set that contains the SQL
statements and host variable information that is extracted from the source
program, along with information that identifies the program and ties the
DBRM to the translated source statements. It becomes the input to the bind
process.

The data set requires space to hold all the SQL statements plus space for each
host variable name and some header information. The header information
alone requires approximately two records for each DBRM, 20 bytes for each
SQL record, and 6 bytes for each host variable.

For an exact format of the DBRM, see the DBRM mapping macros,
DSNXDBRM and DSNXNBRM, in library prefix.SDSNMACS. The DCB
attributes of the data set are RECFM FB, LRECL 80. The precompiler sets the
characteristics. You can use IEBCOPY, IEHPROGM, TSOCOPY and DELETE
commands, or other PDS management tools for maintaining these data sets.

Restriction: Do not modify the contents of the DBRM. If you do, unpredictable
results can occur. DB2 does not support modified DBRMs.

In a DBRM, the SQL statements and the list of host variable names use the
UTF-8 character encoding scheme.

All other character fields in a DBRM use EBCDIC. The current release marker
(DBRMMRIC) in the header of a DBRM is marked according to the release of
the precompiler, regardless of the value of NEWFUN.

924 Application Programming and SQL Guide

Processing SQL statements by using the DB2 coprocessor
As an alternative to the DB2 precompiler, you can use the DB2 coprocessor to
process SQL statements. The DB2 coprocessor performs DB2 precompiler functions
at compile time.

About this task

Exception: For PL/I, the DB2 coprocessor is called from the PL/I SQL
preprocessor instead of the compiler.

The DB2 coprocessor has fewer restrictions on SQL programs than the DB2
precompiler. When you process SQL statements with the DB2 coprocessor, you can
do the following things in your program:
v Use fully qualified names for structured host variables.
v Include SQL statements at any level of a nested program, instead of in only the

top-level source file.(Although you can include SQL statements at any level of a
nested program, you must compile the entire program as one unit.)

v Use nested SQL INCLUDE statements.
v For C or C++ programs only: Write applications with variable length format.
v For C or C++ programs only: Use codepage-dependent characters, such as left

and right brackets, without using tri-graph notation when the programs use
different code pages.

To process SQL statements by using the DB2 coprocessor, perform one of the
following actions:
v Submit a JCL job to process that SQL statement. Include the following

information:
– Specify the SQL compiler option when you compile your program:

The SQL compiler option indicates that you want the compiler to invoke the
DB2 coprocessor. Specify a list of SQL processing options in parentheses after
the SQL keyword. Table 146 on page 931 lists the options that you can specify.
For COBOL and PL/I, enclose the list of SQL processing options in single or
double quotation marks. For PL/I, separate options in the list by a comma,
blank, or both.

Examples:

C/C++
SQL(APOSTSQL STDSQL(NO))

COBOL
SQL("APOSTSQL STDSQL(NO)")

PL/I
PP(SQL("APOSTSQL,STDSQL(NO)")

– For PL/I programs that use BIGINT or LOB data types, specify the following
compiler options when you compile your program: LIMITS(FIXEDBIN(63),
FIXEDDEC(31))

– If needed, increase the user's region size so that it can accommodate more
memory for the DB2 coprocessor.

– Include DD statements for the following data sets in the JCL for your compile
step:

Chapter 17. Preparing an application to run on DB2 for z/OS 925

- DB2 load library (prefix.SDSNLOAD)
The DB2 coprocessor calls DB2 modules to process the SQL statements. You
therefore need to include the name of the DB2 load library data set in the
STEPLIB concatenation for the compiler step.

- DBRM library
The DB2 coprocessor produces a DBRM. DBRMs and the DBRM library are
described in “Output from the DB2 precompiler” on page 923. You need to
include a DBRMLIB DD statement that specifies the DBRM library data set.

- Library for SQL INCLUDE statements
If your program contains SQL INCLUDE member-name statements that
specify secondary input to the source program, you need to also specify the
data set for member-name. Include the name of the data set that contains
member-name in the SYSLIB concatenation for the compiler step.

v

For C/C++ only: Invoke the DB2 coprocessor from UNIX System Services on
z/OS. If you invoke the C/C++ DB2 coprocessor from UNIX System Services,
you can choose to have the DBRM generated in a partitioned data set or an HFS
file.
When you invoke the DB2 coprocessor, include the following information:
– Specify the SQL compiler option.

The SQL compiler option indicates that you want the compiler to invoke the
DB2 coprocessor. Specify a list of SQL processing options in parentheses after
the SQL keyword. Table 146 on page 931 lists the options that you can specify.

– Specify a location for the DBRM as the parameter for the dbrmlib option. You
can specify one of the following items:
- The name of a partitioned data set

Example: The following example invokes the C/C++ DB2 coprocessor to
compile (with the c89 compiler) a sample C program and requests that the
resulting DBRM is stored in the test member of the userid.dbrmlib.data
data set:

c89 -Wc,"sql,dbrmlib(//’userid.dbrmlib.data(test)’),langlvl(extended)" -c t.c

- The name of an HFS file
The file name can be qualified, partially qualified, or unqualified. The file
path can contain a maximum of 1024 characters, and the file name can
contain a maximum of 255 characters. The first 8 characters of the file
name, not including the file extension, should be unique within the file
system.
Assume that your directory structure is /u/USR001/c/example and that your
current working directory is /u/USR001/c. The following table shows
examples of how to specify the HFS file names with the dbrmlib option
and how the file names are resolved.

Table 145. How to specify HFS files to store DBRMs

If you specify... The DBRM is generated in...

dbrmlib(/u/USR001/sample.dbrm) /u/USR001/sample.dbrm

dbrmlib(example/sample.dbrm) /u/USR001/c/example/sample.dbrm

dbrmlib(../sample.dbrm) /u/USR001/sample.dbrm

dbrmlib(sample.dbrm) /u/USR001/c/sample.dbrm

926 Application Programming and SQL Guide

Example: The following example invokes the DB2 coprocessor to compile
(with the c89 compiler) a sample C program and requests that the resulting
DBRM is stored in the file test.dbrm in the tmp directory:
c89 -Wc,"sql,dbrmlib(/tmp/test.dbrm),langlvl(extended)" -c t.c

If you request that the DBRM be generated in an HFS file, you can bind the
resulting DBRM by using the command line processor BIND command. For
more information about using the command line processor BIND command,
see “Binding a DBRM that is in an HFS file to a package or collection” on
page 944. Optionally, you can also copy the DBRM into a partitioned data set
member by using the oput and oget commands and then bind the DBRM by
using conventional JCL.

Support for compiling a COBOL program that includes SQL from
an assembler program
The COBOL compiler provides a facility that enables you to invoke the COBOL
compiler by using an assembler program.

If you intend to use the DB2 coprocessor and start the COBOL compiler from an
assembler program as part of your DB2 application preparation, you can use the
SQL compiler option and provide the alternate DBRMLIB DD name the same way
that you can specify other alternate DD names. The DB2 coprocessor creates the
DBRM member according to your DBRM PDS library and the DBRM member that
you specified using the alternate DBRMLIB DD name.

To use the alternate DBRMLIB DD name, Enterprise COBOL V4.1 and above is
required.
Related reference:

IBM System z Enterprise Development Tools & Compilers

Translating command-level statements in a CICS program
You can translate CICS applications with the CICS command language translator
as a part of the program preparation process. CICS command language translators
are available only for assembler, C, COBOL, and PL/I languages.

About this task

CICS:

Prepare your CICS program in either of these sequences:
Use the DB2 precompiler first, followed by the CICS Command Language
Translator. This sequence is the preferred method of program preparation and
the one that the DB2I Program Preparation panels support. If you use the DB2I
panels for program preparation, you can specify translator options
automatically, rather than needing to provide a separate option string.
Use the CICS command language translator first, followed by the DB2
precompiler. This sequence results in a warning message from the CICS
translator for each EXEC SQL statement that it encounters. The warning
messages have no effect on the result. If you are using double-byte character
sets (DBCS), precompiling is recommended before translating, as described
previously.

Chapter 17. Preparing an application to run on DB2 for z/OS 927

http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/index.jsp

Program and process requirements: Use the DB2 precompiler before the CICS
translator to prevent the precompiler from mistaking CICS translator output for
graphic data.

If your source program is in COBOL, you must specify a string delimiter that is
the same for the DB2 precompiler, COBOL compiler, and CICS translator. The
defaults for the DB2 precompiler and COBOL compiler are not compatible with the
default for the CICS translator.

If the SQL statements in your source program refer to host variables that a pointer
stored in the CICS TWA addresses, you must make the host variables addressable
to the TWA before you execute those statements. For example, a COBOL
application can issue the following statement to establish addressability to the
TWA:
EXEC CICS ADDRESS

TWA (address-of-twa-area)
END-EXEC

You can run CICS applications only from CICS address spaces. This restriction
applies to the RUN option on the second program DSN command processor. All of
those possibilities occur in TSO.

To prepare an application program, you can append JCL from a job that is created
by the DB2 Program Preparation panels to the JCL for the CICS command
language translator. To run the prepared program under CICS, you might need to
define programs and transactions to CICS. Your system programmer must make
the appropriate CICS resource or table entries.

prefix.SDSNSAMP contains examples of the JCL that is used to prepare and run a
CICS program that includes SQL statements. The set of JCL includes:
v PL/I macro phase
v DB2 precompiling
v CICS Command Language Translation
v Compiling of the host language source statements
v Link-editing of the compiler output
v Binding of the DBRM
v Running of the prepared application.
Related reference:
“Sample applications in CICS” on page 1110
Related information:

Resource Definition Guide (CICS Transaction Server for z/OS)

Differences between the DB2 precompiler and the DB2
coprocessor

The DB2 precompiler and DB2 coprocessor have architectural differences. You
cannot switch from one to the other without considering those differences and
adjusting your program accordingly.

Recommendation: Use the coprocessor instead of the precompiler when using
Unicode variables in COBOL or PL/I applications.

Depending on whether you use the DB2 precompiler or the DB2 coprocessor,
ensure that you account for the following differences:
v Differences in handling source CCSIDs:

928 Application Programming and SQL Guide

https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp?topic=/com.ibm.cics.ts.resourcedefinition.doc/topics/dfha4_overview.html

The DB2 precompiler and DB2 coprocessor convert the SQL statements of your
source program to UTF-8 for parsing.
The precompiler or DB2 coprocessor uses the source CCSID(n) value to convert
from that CCSID to CCSID 1208 (UTF-8). The CCSID value must be an EBCDIC
CCSID. If you want to prepare a source program that is written in a CCSID that
cannot be directly converted to or from CCSID 1208, you must create an indirect
conversion.

v Differences in handling host variable CCSIDs:
– COBOL:

DB2 precompiler:
The DB2 precompiler sets CCSIDs for alphanumeric host variables only
when the program includes an explicit DECLARE :hv VARIABLE
statement.

DB2 coprocessor:
The COBOL compiler with National Character Support always sets
CCSIDs for alphanumeric variables, including host variables that are used
within SQL, to the source CCSID. Alternatively, you can specify that you
want the COBOL DB2 coprocessor to handle CCSIDs the same way as the
precompiler.

Recommendation: If you have problems with host variable CCSIDs, use the
DB2 precompiler or change your application to include the DECLARE :hv
VARIABLE statement to overwrite the CCSID that is specified by the COBOL
compiler.

Example: Assume that DB2 has mapped a FOR BIT DATA column to a host
variable in the following way:
01 hv1 pic x(5).
01 hv2 pic x(5).

EXEC SQL CREATE TABLE T1 (colwbit char(5) for bit data,
rowid char(5)) END-EXEC.

EXEC SQL
INSERT INTO T1 VALUES (:hv1, :hv2)
END-EXEC.

DB2 precompiler: In the modified source from the DB2 precompiler, hv1 and
hv2 are represented to DB2 through SQLDA in the following way, without
CCSIDs:
for hv1: NO CCSID

20 SQL-PVAR-NAMEL1 PIC S9(4) COMP-4 VALUE +0.
20 SQL-PVAR-NAMEC1 PIC X(30) VALUE ’ ’.

for hv2: NO CCSID

20 SQL-PVAR-NAMEL2 PIC S9(4) COMP-4 VALUE +0.
20 SQL-PVAR-NAMEC2 PIC X(30) VALUE ’ ’

DB2 coprocessor: In the modified source from the DB2 coprocessor with the
National Character Support for COBOL, hv1 and hv2 are represented to DB2
in the following way, with CCSIDs: (Assume that the source CCSID is 1140.)
for hv1 and hv2, the value for CCSID is set to ’1140’ (’474’x) in input SQLDA
of the INSERT statement.

’7F00000474000000007F’x

Chapter 17. Preparing an application to run on DB2 for z/OS 929

To ensure that no discrepancy exists between the column with FOR BIT
DATA and the host variable with CCSID 1140, add the following statement
for :hv1 or use the DB2 precompiler:
EXEC SQL DECLARE : hv1 VARIABLE FOR BIT DATA END-EXEC.

for hv1 declared with for bit data. The value in SQL---AVAR-NAME-DATA is
set to ’FFFF’x for CCSID instead of ’474x’.

’7F0000FFFF000000007F’x <<= with DECLARE :hv1 VARIABLE FOR BIT DATA
vs.
’7F00000474000000007F’x <<= without

– PL/I

DB2 coprocessor:
You can specify whether CCSIDs are to be associated with host variables
by using the following PL/I SQL preprocessor options:

CCSID0
Specifies that the PL/I SQL preprocessor is not to set the CCSIDs for
all host variables unless they are defined with the SQL DECLARE :hv
VARIABLE statement.

NOCCSID0
Specifies that the PL/I SQL preprocessor is to set the CCSIDs for all
host variables.

Related concepts:

z/OS: Unicode Services User’s Guide and Reference
Related reference:
“Descriptions of SQL processing options” on page 931

Enterprise COBOL for z/OS

SQL preprocessor options (PL/I) (Enterprise PL/I for z/OS Programming
Guide:)

Options for SQL statement processing
Use SQL processing options to specify how the DB2 precompiler and the DB2
coprocessor interpret and process input, and how they present output.

If you are using the DB2 precompiler, specify SQL processing options in one of the
following ways:
v With DSNH operands
v With the PARM.PC option of the EXEC JCL statement
v On DB2I panels

If you are using the DB2 coprocessor, specify SQL processing options in one of the
following ways:
v For C or C++, specify the options as the argument of the SQL compiler option.
v For COBOL, specify the options as the argument of the SQL compiler option.
v For PL/I, specify the options as the argument of the PP(SQL('option,...'))

compiler option.

For examples of how to specify the DB2 coprocessor options, see “Processing SQL
statements by using the DB2 coprocessor” on page 925

930 Application Programming and SQL Guide

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2unb0/CONTENTS?DN=SA22-7649-14&DT=20110614141050&SHELF=&CASE=&FS=TRUE&PATH=/bookmgr/
http://www.ibm.com/software/awdtools/cobol/zos/library/
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/i1191451/1.2.3.2?ACTION=MATCHES&REQUEST=sql+preprocessor&TYPE=FUZZY&SHELF=&DT=20110908014642&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/i1191451/1.2.3.2?ACTION=MATCHES&REQUEST=sql+preprocessor&TYPE=FUZZY&SHELF=&DT=20110908014642&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT

DB2 assigns default values for any SQL processing options for which you do not
explicitly specify a value. Those defaults are the values that are specified on the
APPLICATION PROGRAMMING DEFAULTS installation panels.

Descriptions of SQL processing options
You can specify any SQL processing options regardless of whether you use the
DB2 precompiler or the DB2 coprocessor. However, the DB2 coprocessor might
ignore certain options because host language compiler options exist that provide
the same information.

The following table shows the options that you can specify when you use the DB2
precompiler or DB2 coprocessor. The table also includes abbreviations for those
options and indicates which options are ignored for a particular host language or
by the DB2 coprocessor. This table uses a vertical bar (|) to separate mutually
exclusive options, and brackets ([]) to indicate that you can sometimes omit the
enclosed option.

Table 146. SQL processing options

Option keyword Meaning

APOST1 Indicates that the DB2 precompiler is to use the apostrophe (') as the string delimiter
in host language statements that it generates.

This option is not available in all languages.

APOST and QUOTE are mutually exclusive options. The default is in the field
STRING DELIMITER on Application Programming Defaults Panel 1 during
installation. If STRING DELIMITER is the apostrophe ('), APOST is the default.

APOSTSQL Recognizes the apostrophe (') as the string delimiter and the double quotation mark
(") as the SQL escape character within SQL statements.

APOSTSQL and QUOTESQL are mutually exclusive options. The default is in the
field SQL STRING DELIMITER on Application Programming Defaults Panel 1
during installation. If SQL STRING DELIMITER is the apostrophe ('), APOSTSQL is
the default.

ATTACH(TSO|CAF|RRSAF) Specifies the attachment facility that the application uses to access DB2. TSO, CAF,
and RRSAF applications that load the attachment facility can use this option to
specify the correct attachment facility, instead of coding a dummy DSNHLI entry
point.

This option is not available for Fortran applications.

The default is ATTACH(TSO).

Chapter 17. Preparing an application to run on DB2 for z/OS 931

Table 146. SQL processing options (continued)

Option keyword Meaning

CCSID(n)5 Specifies the numeric value n of the CCSID in which the source program is written.
The number n must be an EBCDIC CCSID.

The default setting is the EBCDIC system CCSID as specified on the panel DSNTIPF
during installation.

The DB2 coprocessor uses the following process to determine the CCSID of the
source statements:

1. If the CCSID of the source program is specified by a compiler option, such as
the COBOL CODEPAGE compiler option, the DB2 coprocessor uses that CCSID.

2. If the CCSID is not specified by a compiler option:

a. If the CCSID suboption of the SQL compiler option is specified and contains
a valid EBCDIC CCSID, that CCSID is used.

b. If the CCSID suboption of the SQL compiler option is not specified, and the
compiler supports an option for specifying the CCSID, such as the COBOL
CODEPAGE compiler option, the default for the CCSID compiler option is
used.

c. If the CCSID suboption of the SQL compiler option is not specified, and the
compiler does not support an option for specifying the CCSID, the default
CCSID from DSNHDECP or a user-specified application defaults module is
used.

d. If the CCSID suboption of the SQL option is specified and contains an invalid
CCSID, compilation terminates.

CCSID supersedes the GRAPHIC and NOGRAPHIC SQL processing options.

If you specify CCSID(1026) or CCSID(1155), the DB2 coprocessor does not support
the code point 'FC'X for the double quotation mark (").

COMMA Recognizes the comma (,) as the decimal point indicator in decimal or floating point
literals in the following cases:

v For static SQL statements in COBOL programs

v For dynamic SQL statements, when the value of installation parameter DYNRULS
is NO and the package or plan that contains the SQL statements has
DYNAMICRULES bind, define, or invoke behavior.

COMMA and PERIOD are mutually exclusive options. The default (COMMA or
PERIOD) is chosen under DECIMAL POINT IS on Application Programming
Defaults Panel 1 during installation.

CONNECT(2|1)
CT(2|1)

Determines whether to apply type 1 or type 2 CONNECT statement rules.
CONNECT(2) Default: Apply rules for the CONNECT (Type 2) statement
CONNECT(1) Apply rules for the CONNECT (Type 1) statement

If you do not specify the CONNECT option when you precompile a program, the
rules of the CONNECT (Type 2) statement apply.

DATE(ISO|USA
|EUR|JIS|LOCAL)

Specifies that date output should always be returned in a particular format,
regardless of the format that is specified as the location default.

The default is specified in the field DATE FORMAT on Application Programming
Defaults Panel 2 during installation.

The default format is determined by the installation defaults of the system where
the program is bound, not by the installation defaults of the system where the
program is precompiled.

You cannot use the LOCAL option unless you have a date exit routine.

932 Application Programming and SQL Guide

Table 146. SQL processing options (continued)

Option keyword Meaning

DEC(15|31)
DEC15 | DEC31
D15.s | D31.s

Specifies the maximum precision for decimal arithmetic operations.

The default is in the field DECIMAL ARITHMETIC on Application Programming
Defaults Panel 1 during installation.

If the form Dpp.s is specified, pp must be either 15 or 31, and s, which represents the
minimum scale to be used for division, must be a number between 1 and 9.

DECP(name) name represents the 1 to 8 character name of the application defaults data-only load
module that is to be used.

The default name DSNHDECP is used if this parameter is omitted.

FLAG(I|W|E|S)1 Suppresses diagnostic messages below the specified severity level (Informational,
Warning, Error, and Severe error for severity codes 0, 4, 8, and 12 respectively).

The default setting is FLAG(I).

FLOAT(S390|IEEE) Determines whether the contents of floating-point host variables in assembler, C,
C++, or PL/I programs are in IEEE floating-point format or z/Architecture
hexadecimal floating-point format. DB2 ignores this option if the value of HOST is
anything other than ASM, C, CPP, or PLI.

The default setting is FLOAT(S390).

GRAPHIC This option is no longer used for SQL statement processing. Use the CCSID option
instead.

Indicates that the source code might use mixed data, and that X'0E'and X'0F' are
special control characters (shift-out and shift-in) for EBCDIC data.

GRAPHIC and NOGRAPHIC are mutually exclusive options. The default
(GRAPHIC or NOGRAPHIC) is specified in the field MIXED DATA on Application
Programming Defaults Panel 1 during installation.

Chapter 17. Preparing an application to run on DB2 for z/OS 933

Table 146. SQL processing options (continued)

Option keyword Meaning

HOST1(ASM|C[(FOLD)]|
CPP[(FOLD)]|
IBMCOB|
PLI|
FORTRAN|
SQL|
SQLPL)

Defines the host language that contains the SQL statements.

Use IBMCOB for Enterprise COBOL for z/OS.

For C, specify:
v C if you do not want DB2 to fold lowercase letters in SBCS SQL ordinary

identifiers to uppercase
v C(FOLD) if you want DB2 to fold lowercase letters in SBCS SQL ordinary

identifiers to uppercase

For C++, specify:
v CPP if you do not want DB2 to fold lowercase letters in SBCS SQL ordinary

identifiers to uppercase
v CPP(FOLD) if you want DB2 to fold lowercase letters in SBCS SQL ordinary

identifiers to uppercase

For SQL procedural language, specify:

v SQL, to perform syntax checking and conversion to a generated C program for an
external SQL procedure.

v SQLPL, to perform syntax checking for a native SQL procedure.

If you omit the HOST option, the DB2 precompiler issues a level-4 diagnostic
message and uses the default value for this option.

The default is in the field LANGUAGE DEFAULT on Application Programming
Defaults Panel 1 during installation.

This option also sets the language-dependent defaults.

LEVEL[(aaaa)]
L

Defines the level of a module, where aaaa is any alphanumeric value of up to seven
characters. This option is not recommended for general use, and the DSNH CLIST
and the DB2I panels do not support it.

For assembler, C, C++, Fortran, and PL/I, you can omit the suboption (aaaa). The
resulting consistency token is blank. For COBOL, you need to specify the suboption.

LINECOUNT1(n)
LC

Defines the number of lines per page to be n for the DB2 precompiler listing. This
includes header lines that are inserted by the DB2 precompiler. The default setting is
LINECOUNT(60).

MARGINS1(m,n[,c])
MAR

Specifies what part of each source record contains host language or SQL statements.
For assembler, this option also specifies where column continuations begin. The first
option (m) is the beginning column for statements. The second option (n) is the
ending column for statements. The third option (c) specifies where assembler
continuations begin. Otherwise, the DB2 precompiler places a continuation indicator
in the column immediately following the ending column. Margin values can range
from 1 to 80.

Default values depend on the HOST option that you specify.

The DSNH CLIST and the DB2I panels do not support this option. In assembler, the
margin option must agree with the ICTL instruction, if presented in the source.

934 Application Programming and SQL Guide

Table 146. SQL processing options (continued)

Option keyword Meaning

NEWFUN(V11|V10|V9|V8) Indicates whether to accept the function syntax that is new for the current version of
DB2.

NEWFUN(V11)
Specifies that any syntax up to V11 will be allowed.

NEWFUN(V10)
Specifies that any syntax up to V10 will be allowed.

NEWFUN(V9)
Specifies that any syntax up to V9 will be allowed. V9 is supported, but
causes the precompilation process to support only a V9 level of function.

NEWFUN(V8)
Specifies that any syntax up to V8 will be allowed. V8 is supported, but
causes the precompilation process to support only a V8 level of function.

The NEWFUN option applies only to the precompilation process by either the
precompiler or the DB2 coprocessor, regardless of the current migration mode. You
are responsible for ensuring that you bind the resulting DBRM on a subsystem in
the correct migration mode.

NOFOR In static SQL, eliminates the need for the FOR UPDATE or FOR UPDATE OF clause
in DECLARE CURSOR statements. When you use NOFOR, your program can make
positioned updates to any columns that the program has DB2 authority to update.

When you do not use NOFOR, if you want to make positioned updates to any
columns that the program has DB2 authority to update, you need to specify FOR
UPDATE with no column list in your DECLARE CURSOR statements. The FOR
UPDATE clause with no column list applies to static or dynamic SQL statements.

Regardless of whether you use NOFOR, you can specify FOR UPDATE OF with a
column list to restrict updates to only the columns that are named in the clause, and
you can specify the acquisition of update locks.

You imply NOFOR when you use the option STDSQL(YES).

If the resulting DBRM is very large, you might need extra storage when you specify
NOFOR or use the FOR UPDATE clause with no column list.

NOGRAPHIC This option is no longer used for SQL statement processing. Use the CCSID option
instead.

Indicates the use of X'0E'and X'0F' in a string, but not as control characters.

GRAPHIC and NOGRAPHIC are mutually exclusive options. The default
(GRAPHIC or NOGRAPHIC) is specified in the field MIXED DATA on Application
Programming Defaults Panel 1 during installation.

The NOGRAPHIC option applies to only EBCDIC data.

NOOPTIONS
NOOPTN

Suppresses the DB2 precompiler options listing.

NOPADNTSTR Indicates that output host variables that are NUL-terminated strings are not padded
with blanks. That is, additional blanks are not inserted before the NUL-terminator is
placed at the end of the string.

PADNTSTR and NOPADNTSTR are mutually exclusive options. The default
(PADNTSTR or NOPADNTSTR) is specified in the field PAD NUL-TERMINATED
on Application Programming Defaults Panel 2 during installation.

This option applies to only C and C++ applications.

Chapter 17. Preparing an application to run on DB2 for z/OS 935

|

|
|

|
|

|
|
|

|
|
|

Table 146. SQL processing options (continued)

Option keyword Meaning

NOSOURCE2

NOS
Suppresses the DB2 precompiler source listing. This is the default.

NOXREF Suppresses the DB2 precompiler cross-reference listing. This is the default.

ONEPASS
ON

Processes in one pass, to avoid the additional processing time for making two
passes. Declarations must appear before SQL references.

Default values depend on the HOST option specified.

ONEPASS and TWOPASS are mutually exclusive options.

OPTIONS1

OPTN
Lists DB2 precompiler options. This is the default.

PADNTSTR Indicates that output host variables that are NUL-terminated strings are padded
with blanks with the NUL-terminator placed at the end of the string.

PADNTSTR and NOPADNTSTR are mutually exclusive options. The default
(PADNTSTR or NOPADNTSTR) is specified in the field PAD NUL-TERMINATED
on Application Programming Defaults Panel 2 during installation.

This option applies to only C and C++ applications.

PERIOD Recognizes the period (.) as the decimal point indicator in decimal or floating point
literals in the following cases:

v For static SQL statements in COBOL programs

v For dynamic SQL statements, when the value of installation parameter DYNRULS
is NO and the package or plan that contains the SQL statements has
DYNAMICRULES bind, define, or invoke behavior.

COMMA and PERIOD are mutually exclusive options. The default (COMMA or
PERIOD) is specified in the field DECIMAL POINT IS on Application Programming
Defaults Panel 1 during installation.

QUOTE1

Q
Indicates that the DB2 precompiler is to use the quotation mark (") as the string
delimiter in host language statements that it generates.

QUOTE is valid only for COBOL applications. QUOTE is not valid for either of the
following combinations of precompiler options:

v CCSID(1026) and HOST(IBMCOB)

v CCSID(1155) and HOST(IBMCOB)

The default is specified in the field STRING DELIMITER on Application
Programming Defaults Panel 1 during installation. If STRING DELIMITER is the
double quotation mark (") or DEFAULT, QUOTE is the default.

APOST and QUOTE are mutually exclusive options.

QUOTESQL Recognizes the double quotation mark (") as the string delimiter and the apostrophe
(') as the SQL escape character within SQL statements. This option applies only to
COBOL.

The default is specified in the field SQL STRING DELIMITER on Application
Programming Defaults Panel 1 during installation. If SQL STRING DELIMITER is
the double quotation mark (") or DEFAULT, QUOTESQL is the default.

APOSTSQL and QUOTESQL are mutually exclusive options.

SOURCE1

S
Lists DB2 precompiler source and diagnostics.

936 Application Programming and SQL Guide

Table 146. SQL processing options (continued)

Option keyword Meaning

SQL(ALL|DB2) Indicates whether the source contains SQL statements other than those recognized
by DB2 for z/OS.

SQL(ALL) is recommended for application programs whose SQL statements must
execute on a server other that DB2 for z/OS using DRDA access. SQL(ALL)
indicates that the SQL statements in the program are not necessarily for DB2 for
z/OS. Accordingly, the SQL statement processor then accepts statements that do not
conform to the DB2 syntax rules. The SQL statement processor interprets and
processes SQL statements according to distributed relational database architecture
(DRDA) rules. The SQL statement processor also issues an informational message if
the program attempts to use IBM SQL reserved words as ordinary identifiers.
SQL(ALL) does not affect the limits of the SQL statement processor.

SQL(DB2), the default, means to interpret SQL statements and check syntax for use
by DB2 for z/OS. SQL(DB2) is recommended when the database server is DB2 for
z/OS.

STDSQL(NO|YES)3 Indicates to which rules the output statements should conform.

STDSQL(YES)3 indicates that the precompiled SQL statements in the source program
conform to certain rules of the SQL standard. STDSQL(NO) indicates conformance
to DB2 rules.

The default is specified in the field STD SQL LANGUAGE on Application
Programming Defaults Panel 2 during installation.

STDSQL(YES) automatically implies the NOFOR option.

TIME(ISO|USA|EUR|JIS|
LOCAL)

Specifies that time output always return in a particular format, regardless of the
format that is specified as the location default.

The default is specified in the field TIME FORMAT on Application Programming
Defaults Panel 2 during installation.

The default format is determined by the installation defaults of the system where
the program is bound, not by the installation defaults of the system where the
program is precompiled.

You cannot use the LOCAL option unless you have a time exit routine.

TWOPASS
TW

Processes in two passes, so that declarations need not precede references. Default
values depend on the HOST option that is specified.

ONEPASS and TWOPASS are mutually exclusive options.

For the DB2 coprocessor, you can specify the TWOPASS option for only PL/I
applications. For C/C++ and COBOL applications, the DB2 coprocessor uses the
ONEPASS option.

VERSION(aaaa|AUTO) Defines the version identifier of a package, program, and the resulting DBRM. A
version identifier is an SQL identifier of up to 64 EBCDIC bytes.

When you specify VERSION, the SQL statement processor creates a version
identifier in the program and DBRM. This affects the size of the load module and
DBRM. DB2 uses the version identifier when you bind the DBRM to a package.

If you do not specify a version at precompile time, an empty string is the default
version identifier. If you specify AUTO, the SQL statement processor uses the
consistency token to generate the version identifier. If the consistency token is a
timestamp, the timestamp is converted into ISO character format and is used as the
version identifier. The timestamp that is used is based on the store clock value.

Chapter 17. Preparing an application to run on DB2 for z/OS 937

Table 146. SQL processing options (continued)

Option keyword Meaning

XREF6 Includes a sorted cross-reference listing of symbols that are used in SQL statements
in the listing output.

Notes:

1. The DB2 coprocessor ignores this option when the DB2 coprocessor is invoked by the compiler to prepare the
application.

2. This option is always in effect when the DB2 coprocessor is invoked by the compiler to prepare the application.

3. You can use STDSQL(86) as in prior releases of DB2. The SQL statement processor treats it the same as
STDSQL(YES).

4. Precompiler options do not affect ODBC behavior.

5. For certain compilers, there is another compiler option that can suppress the CODEPAGE compiler option (for
COBOL) to be passed to the DB2 coprocessor. In which case, the source CCSID will be resolved to the CCSID
suboption of the SQL compiler option or to the default CCSID from DSNHDECP.

6. The DB2 coprocessor ignores this option when the DB2 coprocessor is invoked by the compiler to prepare the
application. However, if you are using PL/I V4.1 or later, it is supported.

Related concepts:
“Precision for operations with decimal numbers” on page 702

Datetime values (DB2 SQL)
Related tasks:
“Creating a package version” on page 943
“Setting the program level” on page 957
Related reference:
“Defaults for SQL processing options”

Defaults for SQL processing options
Some SQL statement processing options have default values that are based on
values that are specified on the DB2I Application Programming Defaults panels.

The following table shows those options and defaults.

Table 147. IBM-supplied installation default SQL statement processing options. The installer can change these
defaults.

Install option Install default
Equivalent SQL statement
processing option

Available SQL statement
processing options

STRING DELIMITER quotation mark (") QUOTE APOSTQUOTE

SQL STRING DELIMITER quotation mark (") QUOTESQL APOSTSQLQUOTESQL

DECIMAL POINT IS PERIOD PERIOD COMMAPERIOD

DATE FORMAT ISO DATE(ISO) DATE(ISO|USA|
EUR|JIS|LOCAL)

DECIMAL ARITHMETIC DEC15 DEC(15) DEC(15|31)

MIXED DATA NO CCSID(n) CCSID(n)

LANGUAGE DEFAULT COBOL HOST(COBOL) HOST(ASM|C[(FOLD)]|
CPP[(FOLD)]|IBMCOB|
FORTRAN|PLI)

STD SQL LANGUAGE NO STDSQL(NO) STDSQL(YES|NO|86)

TIME FORMAT ISO TIME(ISO) TIME(IS|USA|EUR|
JIS|LOCAL)

938 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_datetimeintro.htm#db2z_datetimeintro

Table 147. IBM-supplied installation default SQL statement processing options (continued). The installer can change
these defaults.

Install option Install default
Equivalent SQL statement
processing option

Available SQL statement
processing options

Notes: For dynamic SQL statements, another application programming default, USE FOR DYNAMICRULES,
determines whether DB2 uses the application programming default or the SQL statement processor option for the
following installation options:
v STRING DELIMITER
v SQL STRING DELIMITER
v DECIMAL POINT IS
v DECIMAL ARITHMETIC

If the value of USE FOR DYNAMICRULES is YES, dynamic SQL statements use the application programming
defaults. If the value of USE FOR DYNAMICRULES is NO, dynamic SQL statements in packages or plans with bind,
define, and invoke behavior use the SQL statement processor options.

Some SQL statement processor options have default values based on the host
language. Some options do not apply to some languages. The following table
shows the language-dependent options and defaults.

Table 148. Language-dependent DB2 precompiler options and defaults

HOST value Defaults

ASM APOST1, APOSTSQL1, PERIOD1, TWOPASS, MARGINS(1,71,16)

C or CPP APOST1, APOSTSQL1, PERIOD1, ONEPASS, MARGINS(1,72)

IBMCOB QUOTE2, QUOTESQL2, PERIOD, ONEPASS1, MARGINS(8,72)1

FORTRAN APOST1, APOSTSQL1, PERIOD1, ONEPASS1, MARGINS(1,72)1

PLI APOST1, APOSTSQL1, PERIOD1, ONEPASS, MARGINS(2,72)

SQL or SQLPL APOST1, APOSTSQL1, PERIOD1, ONEPASS, MARGINS(1,72)

Notes:

1. Forced for this language; no alternative is allowed.

2. The default is chosen on Application Programming Defaults Panel 1 during installation. The IBM-supplied
installation defaults for string delimiters are QUOTE (host language delimiter) and QUOTESQL (SQL escape
character). The installer can replace the IBM-supplied defaults with other defaults. The precompiler options that
you specify override any defaults that are in effect.

SQL statement processing defaults for dynamic statements

Generally, dynamic statements use the defaults that are specified during
installation. However, if the value of application defaults module parameter
DYNRULS is NO, you can use these options for dynamic SQL statements in
packages or plans with bind, define, or invoke behavior:
v COMMA or PERIOD
v APOST or QUOTE
v APOSTSQL or QUOTESQL
v DEC(15) or DEC(31)
Related concepts:
“DYNAMICRULES bind option” on page 957

SQL options for DRDA access
Certain SQL statement processing options are relevant when you prepare a
package to be run with DRDA access.

Chapter 17. Preparing an application to run on DB2 for z/OS 939

The following SQL statement processing options are relevant for DRDA access:

CONNECT
Use CONNECT(2), explicitly or by default.

CONNECT(1) causes your CONNECT statements to allow only the restricted
function known as “remote unit of work”. Be particularly careful to avoid
CONNECT(1) if your application updates more than one DBMS in a single
unit of work.

SQL
Use SQL(ALL) explicitly for a package that runs on a server that is not DB2 for
z/OS. The precompiler then accepts any statement that obeys DRDA rules.

Use SQL(DB2), explicitly or by default, if the server is DB2 for z/OS only. The
precompiler then rejects any statement that does not obey the rules of DB2 for
z/OS.

Compiling and link-editing an application
If you use the DB2 precompiler, your next step in the program preparation process
is to compile and link-edit your program. As with the precompile step, you have a
choice of methods.

About this task

You can use one of the following methods to compile and link-edit an application:
v DB2I panels
v The DSNH command procedure (a TSO CLIST)
v JCL procedures supplied with DB2
v JCL procedures supplied with a host language compiler

If you use the DB2 coprocessor, you process SQL statements as you compile your
program. For programs other than C and C++ programs, you must use JCL
procedures when you use the DB2 coprocessor. For C and C++ programs, you can
use either JCL procedures or UNIX System Services on z/OS to invoke the DB2
coprocessor.

The purpose of the link-edit step is to produce an executable load module. To
enable your application to interface with the DB2 subsystem, you must use a
link-edit procedure that builds a load module that satisfies environment-specific
requirements.

TSO and batch: Include the DB2 TSO attachment facility language interface
module (DSNELI) or DB2 call attachment facility language interface module
(DSNALI) or the Universal Language Interface module (DSNULI).

IMS: Include the DB2 IMS (Version 1 Release 3 or later) language interface module
(DFSLI000), which contains the DSNHLI entry point. Also, the IMS RESLIB must
precede the SDSNLOAD library in the link list, JOBLIB, or STEPLIB
concatenations.

IMS and DB2 share a common alias name, DSNHLI, for the language interface
module. You must do the following when you concatenate your libraries:
v If you use IMS, be sure to concatenate the IMS library first so that the

application program compiles with the correct IMS version of DSNHLI.

940 Application Programming and SQL Guide

v If you run your application program only under DB2, be sure to concatenate the
DB2 library first.

CICS: Include the DB2 CICS language interface module (DSNCLI) or the
Universal Language Interface module (DSNULI). You can link DSNCLI with your
program in either 24-bit or 31-bit addressing mode (AMODE=31), but DSNULI
must be linked with your program in 31-bit addressing mode (AMODE=31). If
your application runs in 31-bit addressing mode, you should link-edit the DSNCLI
or DSNULI stub to your application with the attributes AMODE=31 and
RMODE=ANY so that your application can run above the 16-MB line.

You also need the CICS EXEC interface module that is appropriate for the
programming language. CICS requires that this module be the first control section
(CSECT) in the final load module.

The size of the executable load module that is produced by the link-edit step varies
depending on the values that the SQL statement processor inserts into the source
code of the program.

Link-editing a batch program: DB2 has language interface routines for each
unique supported environment. DB2 requires the IMS language interface routine
for DL/I batch. You need to have DFSLI000 link-edited with the application
program.
Related concepts:
“Universal language interface” on page 117
Related tasks:
Chapter 17, “Preparing an application to run on DB2 for z/OS,” on page 913
Related reference:

DSNH (TSO CLIST) (DB2 Commands)
Related information:

CICS DB2 program preparation steps (CICS Transaction Server for z/OS)

Binding an application
You must bind the DBRM that is produced by the SQL statement processor to a
package before your DB2 application can run.

About this task

Each package that you bind can contain only one DBRM.

Exception: You do not need to bind a DBRM if the only SQL statement in the
program is SET CURRENT PACKAGESET.

Because you do not need a plan or package to execute the SET CURRENT
PACKAGESET statement, the ENCODING bind option does not affect the SET
CURRENT PACKAGESET statement. An application that needs to provide a host
variable value in an encoding scheme other than the system default encoding
scheme must use the DECLARE VARIABLE statement to specify the encoding
scheme of the host variable.

Chapter 17. Preparing an application to run on DB2 for z/OS 941

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_dsnh.htm#db2z_cmd_dsnh
https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/topic/com.ibm.cics.ts.doc/dfhtk/topics/dfhtk20.html

You must bind plans locally, regardless of whether they reference packages that
run remotely. However, you must bind the packages that run at remote locations at
those remote locations.

For C and C++ programs whose corresponding DBRMs are in HFS files, you can
use the command line processor to bind the DBRMs to packages. Optionally, you
can also copy the DBRM into a partitioned data set member by using the oput and
oget commands and then bind it by using conventional JCL.

From a DB2 requester, you can run a plan by specifying it in the RUN
subcommand, but you cannot run a package directly. You must include the
package in a plan and then run the plan.

Develop a naming convention and strategy for the most effective and efficient use
of your plans and packages.
v To bind a new plan or package, other than a trigger package, use the

subcommand BIND PLAN or BIND PACKAGE with the option
ACTION(REPLACE).
To bind a new trigger package, re-create the trigger associated with the trigger
package.

Binding a DBRM to a package
You can bind a DBRM to a package and then bind that package to a plan.

About this task

When you bind a package, you specify the collection to which the package
belongs. The collection is not a physical entity, and you do not create it; the
collection name is merely a convenient way of referring to a group of packages.

To bind a package, you must have the proper authorization.

Binding packages at a remote location
When your application accesses data through remote access, you must bind copies
of your requester application packages at any location which will be accessed by
the application.

About this task

If a local stored procedure uses a cursor to access data, and the cursor-related
statement is bound in a separate package under the stored procedure, you must
bind this separate package both locally and remotely. In addition, the invoker or
owner of the stored procedure must be authorized to execute both local and
remote packages. At your local requesting system, you must bind a plan whose
package list includes all those packages, local and remote.

To bind a package at a remote DB2 system, you must have all the privileges or
authority there that you would need to bind the package on your local system. To
bind a package at another type of a system, such as DB2 Server for VSE & VM,
you need any privileges that the other system requires to execute its SQL
statements and use its data objects.

The bind process for a remote package is the same as for a local package, except
that the local communications database must be able to recognize the location
name that you use as resolving to a remote location.

942 Application Programming and SQL Guide

Example:

To bind the DBRM PROGA at the location PARIS, in the collection GROUP1, use:
BIND PACKAGE(PARIS.GROUP1) COPY(GROUP1.PROGA)

Then, include the remote package in the package list of a local plan, such as
PLANB, by using:
BIND PLAN (PLANB) PKLIST (*.GROUP1.*)

The ENCODING bind option has the following effect on a remote application:
v If you bind a package locally, which is recommended, and you specify the

ENCODING bind option for the local package, the ENCODING bind option for
the local package applies to the remote application.

v If you do not bind a package locally, and you specify the ENCODING bind
option for the plan, the ENCODING bind option for the plan applies to the
remote application.

v If you do not specify an ENCODING bind option for the package or plan at the
local site, the value of APPLICATION ENCODING that was specified on
installation panel DSNTIPF at the local site applies to the remote application.

When you bind or rebind, DB2 checks authorizations, reads and updates the
catalog, and creates the package in the directory at the remote site. DB2 does not
read or update catalogs or check authorizations at the local site.

If you specify the option EXPLAIN(YES) or EXPLAIN(ONLY) and you do not
specify the option SQLERROR(CONTINUE), PLAN_TABLE must exist at the
location that is specified on the BIND or REBIND subcommand. This location
could also be the default location.

If you bind with the option COPY, the COPY privilege must exist locally. DB2
performs authorization checking, reads and updates the catalog, and creates the
package in the directory at the remote site. DB2 reads the catalog records that are
related to the copied package at the local site. DB2 converts values that are
returned from the remote site in ISO format if all of the following conditions are
true:
v If the local site is installed with time or date format LOCAL
v A package is created at a remote site with the COPY option
v The SQL statement does not specify a different format.

After you bind a package, you can rebind, free, or bind it with the REPLACE
option using either a local or a remote bind.

Creating a package version
If you want to run different versions of a program without needing to make
changes to the associated application plan, use package versions. This technique is
useful if you need to make changes to your program without causing an
interruption to the availability of the program.

About this task

You can create a different package version for each version of the program. Each
package has the same package name and collection name, but a different version
number is associated with each package. The plan that includes that package
includes all versions of that package. Thus, you can run a program that is

Chapter 17. Preparing an application to run on DB2 for z/OS 943

associated with any one of the package versions without having to rebind the
application plan, rename the plan, or change any RUN subcommands that use it.

Procedure

To create a package version:
1. Precompile your program with the option VERSION(version-identifier).
2. Bind the resulting DBRM with the same collection name and package name as

any existing versions of that package. When you run the program, DB2 uses
the package version that you specified when you precompiled it.

Example

Suppose that you bound a plan with the following statement:
BIND PLAN (PLAN1) PKLIST (COLLECT.*)

The following steps show how to create two versions of a package, one for each of
two programs.

Step number For package version 1 For package version 2

1 Precompile program 1. Specify
VERSION(1).

Precompile program version 2.
Specify VERSION(2).

2 Bind the DBRM with the collection
name COLLECT and the package
name PACKA.

Bind the DBRM with the collection
name COLLECT and package name
PACKA.

3 Link-edit program 1 into your
application.

Link-edit program 2 into your
application.

4 Run the application; it uses
program 1 and PACKA, VERSION
1.

Run the application; it uses
program 2 and PACKA, VERSION
2.

Binding a DBRM that is in an HFS file to a package or collection
If DBRMs are in z/OS UNIX HFS files, you can use the command line processor to
bind the DBRMs to packages at the target DB2 server. Optionally, you can also
copy the DBRM into a partitioned data set member by using the TSO/E oput and
oget commands and then bind the DBRM by using conventional JCL.

About this task

Only DBRMs for C and C++ programs can be generated to HFS files.

Restrictions:

You cannot specify the REBIND command with the command line processor.
Alternatively, specify the BIND command with the ACTION(REPLACE) option.

You cannot specify the FREE PACKAGE command with the command line
processor. Alternatively, specify the DROP PACKAGE statement to drop the
existing packages.

Procedure

To bind a DBRM that is in an HFS file to a package or collection:
1. Invoke the command line processor and connect to the target DB2 server.

944 Application Programming and SQL Guide

2. Specify the BIND command with the appropriate options.
Related concepts:

Command line processor (DB2 Commands)
Related tasks:
“Processing SQL statements by using the DB2 coprocessor” on page 925
Related reference:
“Command line processor BIND command”

Command line processor BIND command:

Use the command line processor BIND command to bind DBRMs that are in z/OS
UNIX HFS files to packages.

The following diagram shows the syntax for the command line processor BIND
command.

�� BIND dbrm-file-name
(1)

-COLLECTION collection-name

(2)
options-clause ��

Notes:

1 If you do not specify a collection, DB2 uses NULLID.

2 You can specify the options after collection-name in any order.

options-clause:

Chapter 17. Preparing an application to run on DB2 for z/OS 945

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_commandlineprocessor.htm#db2z_commandlineprocessor

��
QUALIFIER(ID that is used during connect)

QUALIFIER(qualifier-name)

OWNER(ID that is used during connect)

OWNER(authorization-ID)
�

�
NODEFER(PREPARE)

DEFERPREPARE(INHERITFROMPLAN)
DEFER(PREPARE)

ACTION (REPLACE)

ACTION (REPLACE) REPLVER(version-id)
(ADD)

�

�
CURRENTDATA (YES)

CURRENTDATA (NO)
ALL

DBPROTOCOL(DRDA)

DBPROTOCOL(PRIVATE)

DEGREE(1)

DEGREE(ANY)
�

�
DYNAMICRULES(RUN)

DYNAMICRULES(BIND)
DEFINEBIND
DEFINERUN
INVOKEBIND
INVOKERUN

ENCODING (ASCII)
EBCDIC
UNICODE
ccsid

EXPLAIN(NO)

EXPLAIN(YES)
ALL
ONLY

�

�
IMMEDWRITE(NO)

IMMEDWRITE(YES)
PH1
INHERITFROMPLAN

KEEPDYNAMIC(NO)

KEEPDYNAMIC(YES)

ISOLATION(CS)

ISOLATION(RR)
RS
UR
NC

�

�

(1)
REOPT(NONE)

(2)
REOPT(ALWAYS)

RELEASE(COMMIT)

RELEASE(DEALLOCATE)
RELEASE(INHERITFROMPLAN)

OPTHINT('hint-ID')
�

�
SQLERROR(NOPACKAGE)

SQLERROR(CONTINUE)
CHECK

VALIDATE(RUN)

VALIDATE(BIND) path-clause
��

Notes:

1 You can specify NOREOPT(VARS) as a synonym of REOPT(NONE).

2 You can specify REOPT(VARS) as a synonym of REOPT(ALWAYS).

path-clause:

946 Application Programming and SQL Guide

��

�

PATH()

,

PATH(schema-name)
USER

��

The following options are unique to this diagram:

CURRENTDATA (ALL)
Specifies that for all cursors data currency is required and block fetching is
inhibited.

SQLERROR(CHECK)
Specifies that the command line processor is to only check for SQL errors in
the DBRM. No package is generated.

IMMEDWRITE(PH1)
Specifies that normal write activity is done. This option is equivalent to
IMMEDWRITE(NO).

EXPLAIN(ALL)
Specifies that DB2 is to insert information into the appropriate EXPLAIN
tables. This option is equivalent to EXPLAIN (YES).

Related reference:

BIND and REBIND options (DB2 Commands)

Binding an application plan
An application plan can include package lists.

About this task

To bind an application plan, use the BIND PLAN subcommand with at least one of
the following options:

MEMBER
Specify this option to bind DBRMs to a package and then bind the package list
to a plan. After the keyword MEMBER, specify the member names of the
DBRMS.

PKLIST
Specify this option to include package lists in the plan. After the keyword
PKLIST, specify the names of the packages to include in the package list. To
include an entire collection of packages in the list, use an asterisk after the
collection name. For example, PKLIST(GROUP1.*).

The resulting plan consists of the following information:
v Any programs that are associated with DBRMs in the MEMBER list
v Any programs that are associated with packages and collections that are

identified in PKLIST

Specifying the package list for the PKLIST option of BIND PLAN:

The order in which you specify packages in a package list can affect run time
performance. Searching for the specific package involves searching the DB2

Chapter 17. Preparing an application to run on DB2 for z/OS 947

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions

directory, which can be costly. When you use collection-id.* with the PKLIST
keyword, you should specify first the collections in which DB2 is most likely to
find a package.

For example, assume that you perform the following bind:
BIND PLAN (PLAN1) PKLIST (COLL1.*, COLL2.*, COLL3.*, COLL4.*)

Then you execute program PROG1. DB2 does the following package search:
1. Checks to see if program PROG1 is bound as part of the plan
2. Searches for COLL1.PROG1.timestamp

3. If it does not find COLL1.PROG1.timestamp, searches for
COLL2.PROG1.timestamp

4. If it does not find COLL2.PROG1.timestamp, searches for
COLL3.PROG1.timestamp

5. If it does not find COLL3.PROG1.timestamp, searches for
COLL4.PROG1.timestamp.

When both special registers CURRENT PACKAGE PATH and CURRENT
PACKAGESET contain an empty string: If you do not set these special registers,
DB2 searches for a DBRM or a package in one of these sequences:
v At the local location (if CURRENT SERVER is blank or specifies that location

explicitly), the order is:
1. All packages that are already allocated to the plan while the plan is running.
2. All unallocated packages that are explicitly specified in, and all collections

that are completely included in, the package list of the plan. DB2 searches for
packages in the order that they appear in the package list.

v At a remote location, the order is:
1. All packages that are already allocated to the plan at that location while the

plan is running.
2. All unallocated packages that are explicitly specified in, and all collections

that are completely included in, the package list of the plan, whose locations
match the value of CURRENT SERVER. DB2 searches for packages in the
order that they appear in the package list.

If you use the BIND PLAN option DEFER(PREPARE), DB2 does not search all
collections in the package list.

If the order of search is not important: In many cases, the order in which DB2
searches the packages is not important to you and does not affect performance. For
an application that runs only at your local DB2 system, you can name every
package differently and include them all in the same collection. The package list on
your BIND PLAN subcommand can read:
PKLIST (collection.*)

You can add packages to the collection even after binding the plan. DB2 lets you
bind packages having the same package name into the same collection only if their
version IDs are different.

If your application uses DRDA access, you must bind some packages at remote
locations. Use the same collection name at each location, and identify your package
list as:
PKLIST (*.collection.*)

948 Application Programming and SQL Guide

If you use an asterisk for part of a name in a package list, DB2 checks the
authorization for the package to which the name resolves at run time. To avoid the
checking at run time in the preceding example, you can grant EXECUTE authority
for the entire collection to the owner of the plan before you bind the plan.
Related tasks:

Improving performance for applications that access distributed data (DB2
Performance)
Related reference:

BIND PLAN (DSN) (DB2 Commands)

CURRENT PACKAGE PATH (DB2 SQL)

CURRENT PACKAGESET (DB2 SQL)

How DB2 identifies packages at run time
The DB2 precompiler or DB2 coprocessor identifies each call to DB2 with a
consistency token. The same consistency token identifies the DBRM that the SQL
statement processor produces and the package to which you bound the DBRM.

When you run the program, DB2 uses the consistency token in matching the call to
DB2 to the correct DBRM. Usually, the consistency token is in an internal DB2
format. You can override that token if you want.

You also need other identifiers. The consistency token alone does not necessarily
identify a unique package. You can bind the same DBRM to many packages, at
different locations and in different collections, and you can include all those
packages in the package list of the same plan. All those packages will have the
same consistency token. You can specify a particular location or a particular
collection at run time.
Related tasks:
“Setting the program level” on page 957

Specifying the location of the package that DB2 is to use
When your program executes SQL statements, DB2 uses the value in the
CURRENT SERVER special register to determine the location of the necessary
package. If the current server is your local DB2 subsystem and it does not have a
location name, the value in the special register is blank.

About this task

You can change the value of CURRENT SERVER by using the SQL CONNECT
statement in your program. If you do not use CONNECT, the value of CURRENT
SERVER is the location name of your local DB2 subsystem (or blank, if your DB2
subsystem has no location name).

Specifying the package collection that DB2 is to use
To ensure that DB2 uses the intended package collection and does not waste time
searching, explicitly specify the package collection that you want DB2 to use.

About this task

You can use the special register CURRENT PACKAGE PATH or CURRENT
PACKAGESET (if CURRENT PACKAGE PATH is not set) to specify the collections
that are to be used for package resolution. The CURRENT PACKAGESET special

Chapter 17. Preparing an application to run on DB2 for z/OS 949

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tunedistributedapps.htm#db2z_tunedistributedapps
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_tunedistributedapps.htm#db2z_tunedistributedapps
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_bindplan.htm#db2z_cmd_bindplan
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_currentpackagepath.htm#db2z_currentpackagepath
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_currentpackageset.htm#db2z_currentpackageset

register contains the name of a single collection, and the CURRENT PACKAGE
PATH special register contains a list of collection names.

If you do not set these registers, they contain an empty string when your
application begins to run, and they remain as an empty string. In this case, DB2
searches the available collections.

However, explicitly specifying the intended collection by using the special registers
can avoid a potentially costly search through a package list that has many
qualifying entries. In addition, DB2 uses the values in these special registers for
applications that do not run under a plan.

When you call a stored procedure, the special register CURRENT PACKAGESET
contains the value that you specified for the COLLID parameter when you defined
the stored procedure. If the routine was defined without a value for the COLLID
parameter, the value of the special register is inherited from the calling program.
Also, the special register CURRENT PACKAGE PATH contains the value that you
specified for the PACKAGE PATH parameter when you defined the stored
procedure. When the stored procedure returns control to the calling program, DB2
restores this register to the value that it contained before the call.
Related tasks:
“Binding an application plan” on page 947
“Overriding the values that DB2 uses to resolve package lists”

Overriding the values that DB2 uses to resolve package lists
DB2 resolves package lists by searching the available collections in a particular
order. To avoid this search, you can specify the values that DB2 should use for
package resolution.

About this task

If you set the special register CURRENT PACKAGE PATH or CURRENT
PACKAGESET, DB2 skips the check for programs that are part of a plan and uses
the values in these registers for package resolution.

If you set CURRENT PACKAGE PATH, DB2 uses the value of CURRENT
PACKAGE PATH as the collection name list for package resolution. For example, if
CURRENT PACKAGE PATH contains the list COLL1, COLL2, COLL3, COLL4,
DB2 searches for the first package that exists in the following order:

COLL1.PROG1.timestamp
COLL2.PROG1.timestamp
COLL3.PROG1.timestamp
COLL4.PROG1.timestamp

If you set CURRENT PACKAGESET and not CURRENT PACKAGE PATH, DB2
uses the value of CURRENT PACKAGESET as the collection for package
resolution. For example, if CURRENT PACKAGESET contains COLL5, DB2 uses
COLL5.PROG1.timestamp for the package search.

When CURRENT PACKAGE PATH is set, the server that receives the request
ignores the collection that is specified by the request and instead uses the value of
CURRENT PACKAGE PATH at the server to resolve the package. Specifying a
collection list with the CURRENT PACKAGE PATH special register can avoid the
need to issue multiple SET CURRENT PACKAGESET statements to switch
collections for the package search.

950 Application Programming and SQL Guide

The following table shows examples of the relationship between the CURRENT
PACKAGE PATH special register and the CURRENT PACKAGESET special
register.

Table 149. Scope of CURRENT PACKAGE PATH

Example What happens

SET CURRENT PACKAGESET
SELECT ... FROM T1 ...

The collection in PACKAGESET determines which
package is invoked.

SET CURRENT PACKAGE PATH
SELECT ... FROM T1 ...

The collections in PACKAGE PATH determine which
package is invoked.

SET CURRENT PACKAGESET
SET CURRENT PACKAGE PATH
SELECT ... FROM T1 ...

The collections in PACKAGE PATH determine which
package is invoked.

SET CURRENT PACKAGE PATH
CONNECT TO S2 ...
SELECT ... FROM T1 ...

PACKAGE PATH at server S2 is an empty string
because it has not been explicitly set. The values from
the PKLIST bind option of the plan that is at the
requester determine which package is invoked.1

SET CURRENT PACKAGE PATH
= ’A,B’

CONNECT TO S2 ...
SET CURRENT PACKAGE PATH

= ’X,Y’
SELECT ... FROM T1 ...

The collections in PACKAGE PATH that are set at
server S2 determine which package is invoked.

SET CURRENT PACKAGE PATH
SELECT ... FROM
S2.QUAL.T1 ...

Three-part table name. On implicit connection to
server S2, PACKAGE PATH at server S2 is inherited
from the local server. The collections in PACKAGE
PATH at server S2 determine which package is
invoked.

Notes:

1. When CURRENT PACKAGE PATH is set at the requester (and not at the remote server),
DB2 passes one collection at a time from the list of collections to the remote server until
a package is found or until the end of the list. Each time a package is not found at the
server, DB2 returns an error to the requester. The requester then sends the next collection
in the list to the remote server.

Bind process for remote access
You can use different bind processes to access data at a remote server.

Example

Suppose that CHIEMP is an alias for table CHICAGO.DSN8B10.EMP. Access data
at a remoter server by using the following query:
SELECT * FROM CHIEMP

WHERE EMPNO = ’0001000’;

If you bind the DBRM that contains the statement by using the following process,
you access the server using remote access:

Local-bind DRDA access process:

1. Bind the DBRM into a package at the local DB2.
2. Bind package copy at the CHICAGO test site.
3. When the application is completed testing, bind DBRM into a package

at the local production site.

Chapter 17. Preparing an application to run on DB2 for z/OS 951

4. Bind package copy to the CHICAGO production site.

Example

Suppose that you need to access data at a remote server CHICAGO, by using the
following SELECT statements:
EXEC SQL SELECT * FROM CHIEMP

WHERE EMPNO = ’0001000’;

where CHIEMP is an alias for table CHICAGO.DSN8B10.EMP.

Suppose that the query is bound locally. You need to BIND PACKAGE COPY the
query to the remote server site. Now that you have both a local and a remote
package, you must have a plan that has both the local and remote packages in the
package list.

Example

Suppose that you need to call a stored procedure at the remote server ATLANTA,
by using the following CONNECT and CALL statements:
EXEC SQL

CONNECT TO ATLANTA;
EXEC SQL

CALL procedure_name (parameter_list);

The parameter list is a list of host variables that is passed to the stored procedure
and into which it returns the results of its execution. To execute, the stored
procedure must already exist at the ATLANTA server.

Bind options for remote access
Binding a package to run at a remote location is like binding a package to run at
your local DB2 subsystem. Binding a plan to run the package is like binding any
other plan. However, a few differences exist.

For the general instructions, see Chapter 17, “Preparing an application to run on
DB2 for z/OS,” on page 913.

BIND PLAN options for DRDA access

The following options of BIND PLAN are particularly relevant to binding a plan
that uses DRDA access:

DISCONNECT
For most flexibility, use DISCONNECT(EXPLICIT), explicitly or by default.
That requires you to use RELEASE statements in your program to explicitly
end connections.

The other values of the option are also useful.
DISCONNECT(AUTOMATIC) ends all remote connections during a
commit operation, without the need for RELEASE statements in your
program.
DISCONNECT(CONDITIONAL) ends remote connections during a
commit operation except when an open cursor defined as WITH HOLD is
associated with the connection.

SQLRULES
Use SQLRULES(DB2), explicitly or by default.

952 Application Programming and SQL Guide

SQLRULES(STD) applies the rules of the SQL standard to your CONNECT
statements, so that CONNECT TO x is an error if you are already connected to
x. Use STD only if you want that statement to return an error code.

If your program selects LOB data from a remote location, and you bind the
plan for the program with SQLRULES(DB2), the format in which you retrieve
the LOB data with a cursor is restricted. After you open the cursor to retrieve
the LOB data, you must retrieve all of the data using a LOB variable, or
retrieve all of the data using a LOB locator variable. If the value of SQLRULES
is STD, this restriction does not exist.

If you intend to switch between LOB variables and LOB locators to retrieve
data from a cursor, execute the SET SQLRULES=STD statement before you
connect to the remote location.

CURRENTDATA
Use CURRENTDATA(NO) to force block fetch for ambiguous cursors.

ENCODING
Use this option to control the encoding scheme that is used for static SQL
statements in the plan and to set the initial value of the CURRENT
APPLICATION ENCODING SCHEME special register.

For applications that execute remotely and use explicit CONNECT statements,
DB2 uses the ENCODING value for the plan. For applications that execute
remotely and use implicit CONNECT statements, DB2 uses the ENCODING
value for the package that is at the site where a statement executes.

BIND PACKAGE options for DRDA access

The following options of BIND PACKAGE are relevant to binding a package to be
run using DRDA access:

location-name
Name the location of the server at which the package runs.

The privileges needed to run the package must be granted to the owner of the
package at the server. If you are not the owner, you must also have SYSCTRL
authority or the BINDAGENT privilege that is granted locally.

SQLERROR
Use SQLERROR(CONTINUE) if you used SQL(ALL) when precompiling.
That creates a package even if the bind process finds SQL errors, such as
statements that are valid on the remote server but that the precompiler did not
recognize. Otherwise, use SQLERROR(NOPACKAGE), explicitly or by default.

CURRENTDATA
Use CURRENTDATA(NO) to force block fetch for ambiguous cursors.

OPTIONS
When you make a remote copy of a package using BIND PACKAGE with the
COPY option, use this option to control the default bind options that DB2 uses.
Specify:

COMPOSITE to cause DB2 to use any options you specify in the BIND
PACKAGE command. For all other options, DB2 uses the options of the
copied package. COMPOSITE is the default.
COMMAND to cause DB2 to use the options you specify in the BIND
PACKAGE command. For all other options, DB2 uses the defaults for the
server on which the package is bound. This helps ensure that the server
supports the options with which the package is bound.

Chapter 17. Preparing an application to run on DB2 for z/OS 953

ENCODING
Use this option to control the encoding scheme that is used for static SQL
statements in the package and to set the initial value of the CURRENT
APPLICATION ENCODING SCHEME special register.

The default ENCODING value for a package that is bound at a remote DB2 for
z/OS server is the system default for that server. The system default is
specified at installation time in the APPLICATION ENCODING field of panel
DSNTIPF.

For applications that execute remotely and use explicit CONNECT statements,
DB2 uses the ENCODING value for the plan. For applications that execute
remotely and use implicit CONNECT statements, DB2 uses the ENCODING
value for the package that is at the site where a statement executes.

Related concepts:

Bind options for locks (DB2 Performance)
Related tasks:

BIND options for distributed applications (DB2 Performance)
Related reference:

BIND and REBIND options (DB2 Commands)

Checking which BIND PACKAGE options a particular server
supports
You can request only the options of the BIND PACKAGE command that are
supported by the server by specifying those options at the requester.

About this task

To find out which options are supported by a specific server DBMS, refer to the
documentation provided for that server.

For specific DB2 bind information, refer to the following documentation:
v For guidance in using DB2 bind options and performing a bind process, see

Chapter 17, “Preparing an application to run on DB2 for z/OS,” on page 913.
v For the syntax of DB2 BIND command, see the topics BIND PACKAGE (DSN)

(DB2 Commands) and BIND PLAN (DSN) (DB2 Commands).
v For the syntax of DB2 REBIND command, see the topics REBIND PACKAGE

(DSN) (DB2 Commands) and REBIND PLAN (DSN) (DB2 Commands).

Binding a batch program
Before a batch program can issue SQL statements, a DB2 plan must exist.

About this task

The owner of the plan or package must have all the privileges that are required to
execute the SQL statements embedded in it.

You can specify the plan name to DB2 in one of the following ways:
v In the DDITV02 input data set.
v In subsystem member specification.
v By default; the plan name is then the application load module name that is

specified in DDITV02.

954 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_bindoptions4locks.htm#db2z_bindoptions4locks
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_bindoptions4dist.htm#db2z_bindoptions4dist
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_bindpackage.htm#db2z_cmd_bindpackage
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_bindpackage.htm#db2z_cmd_bindpackage
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_bindplan.htm#db2z_cmd_bindplan
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_rebindpackage.htm#db2z_cmd_rebindpackage
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_rebindpackage.htm#db2z_cmd_rebindpackage
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_rebindplan.htm#db2z_cmd_rebindplan

DB2 passes the plan name to the IMS attach package. If you do not specify a plan
name in DDITV02, and a resource translation table (RTT) does not exist or the
name is not in the RTT, DB2 uses the passed name as the plan name. If the name
exists in the RTT, the name translates to the plan that is specified for the RTT.

Recommendation: Give the DB2 plan the same name as that of the application
load module, which is the IMS attachment facility default. The plan name must be
the same as the program name.

Conversion of DBRMs that are bound to a plan to DBRMs that
are bound to a package

You must bind all DBRMs into a package, and bind the packages into a plan. One
package can have only one DBRM.

The default REBIND PLAN COLLID (*) option converts all plans with DBRMs into
plans with a package list. You can use this technique for local applications only. If
the plan that you specify already contains both DBRMs and package lists, the
newly converted package entries will be inserted into the front of the existing
package list.

Example: converting all plans

The following examples converts all DBRMs that are bound with plan X into
packages under collection ID: DSN_DEFAULT_COLLID_X.
REBIND PLAN(X) COLLID(*);

Example: specifying a collection ID

The following examples converts DBRMs that are bound with plan X into packages
under the my_collection collection ID.
REBIND PLAN(x) COLLID(’my_collection’);

Example: rebinding multiple plans which may contain DBRMs

In the following example, BIND will traverse through each plan that is specified in
the REBIND PLAN command statement and will convert the DBRMs accordingly,
and until none of the DBRMs are bound with plans.
REBIND PLAN (X1, X2, X3) COLLID (collection_id|*);

Example: rebinding all plans which may contain DBRMs

In the following example, BIND will traverse through all plans that are specified in
the SYSPLAN table and will convert the DBRMs accordingly, and until none of the
DBRMs are bound with plans.
REBIND PLAN (*) COLLID (collection_id|*);

Example: specifying a package list

The following examples converts all DBRMs that are bound with plan X into
packages under collection ID: DSN_DEFAULT_COLLID_X.
v If plan X does not have a package list, the newly converted package entries will

be appended to the front of package list Z and then package list Z will be added
to plan X.

Chapter 17. Preparing an application to run on DB2 for z/OS 955

|
|
|
|
|

v If plan X has both a package list and DBRMs, the newly converted package
entries will be appended to the front of package list Z and then package list Z
will replace the existing package list.

v If plan X has only a package list, then package list Z will replace the existing
package list.

REBIND PLAN (x) COLLID (collection_id|*) PKLIST(Z);

Example: specifying no package list

The following examples converts all DBRMs that are bound with plan X into
packages under collection ID: DSN_DEFAULT_COLLID_X.
v If plan X has both a package list and DBRMs, the existing package list will be

deleted, and the new package list will be bound into plan X.
v If plan X has only DBRMs, the DBRMs will be converted into packages

accordingly and added to plan X. The NOPKLIST option will be ignored.
v If plan X does not have DBRMs, then the existing package list, if any, will be

deleted.
REBIND PLAN (x) COLLID (collection_id|*) NOPKLIST;

Converting an existing plan into packages to run remotely
If you have an existing application that you want to run at a remote location by
using remote access, you need a new plan that includes those remote packages in
its package list.

Procedure

To turn an existing plan with member DBRMs into packages to run remotely,
perform the following actions for each remote location:
1. Choose a name for a collection to contain member DBRMs, such as REMOTE1.
2. Convert the plan into a plan with a package list of packages.

REBIND PLAN(REMOTE1)COLLID(*)

Specifying COLLID(*) produces the packages under the collection of
DSN_DEFAULT_COLLID_planname.

3. Query SYSIBM.SYSPACKDEP, to see if any of the packages have a dependency
on an alias. That alias is a definition for a 3-part name.
a. For each of the packages that have a dependency on an alias:

BIND PACKAGE(location.remote_server_collid)
COPY(DSN_DEFAULT_COLLID_planname.pgkid)
COPYVER(...) OPTIONS(COMPOSITE)

4. Adjust the location's package list. If prior to this process, the plan had no
package list, after 2 it will have a package list containing
DSN_DEFAULT_COLLID_planname.pgkid.
REBIND PLAN PKLIST
(*.DSN_DEFAULT_COLLID_planname.pgkid* *.remote_server_collid.*)

Results

When you now run the existing application at your local DB2 system using the
new application plan, these things happen:
v You connect immediately to the remote location that is named in the

CURRENTSERVER option.

956 Application Programming and SQL Guide

|

|

|
|

v DB2 searches for the package in the collection REMOTE1 at the remote location.
v Any UPDATE, DELETE, or INSERT statements in your application affect tables

at the remote location.
v Any results from SELECT statements are returned to your existing application

program, which processes them as though they came from your local DB2
system.

Setting the program level
The program level defines the level for a particular module. This information is
stored in the consistency token, which is in an internal DB2 format. Overriding the
program level in the consistency token is possible, if needed, but generally not
recommended.

Procedure

To override the construction of the consistency token by DB2:

Use the LEVEL (aaaa) option. DB2 uses the value that you choose for aaaa to
generate the consistency token. Although this method is not recommended for
general use and the DSNH CLIST or the DB2 Program Preparation panels do not
support it, this method enables you to perform the following actions:
1. Change the source code (but not the SQL statements) in the DB2 precompiler

output of a bound program.
2. Compile and link-edit the changed program.
3. Run the application without rebinding a plan or package.

DYNAMICRULES bind option
The DYNAMICRULES bind option and the run time environment determine the
values for the dynamic SQL attributes.

The BIND or REBIND option DYNAMICRULES determines what values apply at
run time for the following dynamic SQL attributes:
v The authorization ID that is used to check authorization
v The qualifier that is used for unqualified objects
v The source for application programming options that DB2 uses to parse and

semantically verify dynamic SQL statements
v Whether dynamic SQL statements can include GRANT, REVOKE, ALTER,

CREATE, DROP, and RENAME statements

In addition, the run time environment of a package controls how dynamic SQL
statements behave at run time. The two possible run time environments are:
v The package runs as part of a stand-alone program.
v The package runs as a stored procedure or user-defined function package, or it

runs under a stored procedure or user-defined function.
A package that runs under a stored procedure or user-defined function is a
package whose associated program meets one of the following conditions:
– The program is called by a stored procedure or user-defined function.
– The program is in a series of nested calls that start with a stored procedure or

user-defined function.

Dynamic SQL statement behavior:

Chapter 17. Preparing an application to run on DB2 for z/OS 957

The dynamic SQL attributes that are determined by the value of the
DYNAMICRULES bind option and the run time environment are collectively called
the dynamic SQL statement behavior. The four behaviors are:
v Run behavior
v Bind behavior
v Define behavior
v Invoke behavior

The following table shows the combination of DYNAMICRULES value and run
time environment that yield each dynamic SQL behavior.

Table 150. How DYNAMICRULES and the run time environment determine dynamic SQL
statement behavior

DYNAMICRULES value

Behavior of dynamic SQL
statements in a stand-alone
program environment

Behavior of dynamic SQL
statements in a user-defined
function or stored procedure
environment

BIND Bind behavior Bind behavior

RUN Run behavior Run behavior

DEFINEBIND Bind behavior Define behavior

DEFINERUN Run behavior Define behavior

INVOKEBIND Bind behavior Invoke behavior

INVOKERUN Run behavior Invoke behavior

Note: The BIND and RUN values can be specified for packages and plans. The other
values can be specified only for packages.

The following table shows the dynamic SQL attribute values for each type of
dynamic SQL behavior.

Table 151. Definitions of dynamic SQL statement behaviors

Dynamic SQL attribute

Setting for dynamic SQL attributes

Bind behavior Run behavior Define behavior Invoke behavior

Authorization ID Plan or package
owner

Current SQLID User-defined
function or stored
procedure owner

Authorization ID of
invoker1

Default qualifier for
unqualified objects

Bind OWNER or
QUALIFIER value

CURRENT
SCHEMA

User-defined
function or stored
procedure owner

Authorization ID of
invoker

CURRENT SQLID2 Not applicable Applies Not applicable Not applicable

Source for application
programming options

Determined by
DSNHDECP or a
user-specified
application defaults
module parameter
DYNRULS3

Install panel
DSNTIP4

Determined by
DSNHDECP or a
user-specified
application defaults
module parameter
DYNRULS3

Determined by
DSNHDECP or a
user-specified
application defaults
module parameter
DYNRULS3

Can execute GRANT,
REVOKE, CREATE,
ALTER, DROP, RENAME?

No Yes No No

958 Application Programming and SQL Guide

Table 151. Definitions of dynamic SQL statement behaviors (continued)

Dynamic SQL attribute

Setting for dynamic SQL attributes

Bind behavior Run behavior Define behavior Invoke behavior

Notes:

1. If the invoker is the primary authorization ID of the process or the CURRENT SQLID value, secondary
authorization IDs are also checked if they are needed for the required authorization. Otherwise, only one ID, the
ID of the invoker, is checked for the required authorization.

2. DB2 uses the value of CURRENT SQLID as the authorization ID for dynamic SQL statements only for plans and
packages that have run behavior. For the other dynamic SQL behaviors, DB2 uses the authorization ID that is
associated with each dynamic SQL behavior, as shown in this table.

The value to which CURRENT SQLID is initialized is independent of the dynamic SQL behavior. For stand-alone
programs, CURRENT SQLID is initialized to the primary authorization ID.

You can execute the SET CURRENT SQLID statement to change the value of CURRENT SQLID for packages with
any dynamic SQL behavior, but DB2 uses the CURRENT SQLID value only for plans and packages with run
behavior.

3. The value of DSNHDECP or a user-specified application defaults module parameter DYNRULS, which you
specify in field USE FOR DYNAMICRULES in installation panel DSNTIP4, determines whether DB2 uses the SQL
statement processing options or the application programming defaults for dynamic SQL statements. See “Options
for SQL statement processing” on page 930 for more information.

Determining the authorization cache size for plans
You can specify the size of the cache when you bind the plan. The default
CACHESIZE value is 1024 or the size that is specified at installation time.

About this task

The CACHESIZE option (optional) enables you to specify the size of the cache to
acquire for the plan. DB2 uses this cache for caching the authorization IDs of those
users that are running a plan. An authorization ID/role can take up to 128 bytes of
storage. DB2 uses the CACHESIZE value to determine the amount of storage to
acquire for the authorization cache. DB2 acquires storage from the EDM storage
pool. .

The size of the cache that you specify depends on the number of individual
authorization IDs that are actively using the plan. Required overhead takes 32
bytes, and each authorization ID takes up 10 bytes (assuming as 8 byte variable
length field) of storage. The minimum cache size is 256 bytes (enough for 22
entries and overhead information) and the maximum is 4096 bytes (enough for 406
entries and overhead information). You should specify size in multiples of 256
bytes; otherwise, the specified value rounds up to the next highest value that is a
multiple of 256.

If you run the plan infrequently, or if authority to run the plan is granted to
PUBLIC, you might want to turn off caching for the plan so that DB2 does not use
unnecessary storage. To do this, specify a value of 0 for the CACHESIZE option.

Any plan that you run repeatedly is a good candidate for tuning by using the
CACHESIZE option. Also, if you have a plan that a large number of users run
concurrently, you might want to use a larger CACHESIZE.

Authorization cache
DB2 uses the authorization cache for caching the authorization IDs of those users
that are running a plan.

Chapter 17. Preparing an application to run on DB2 for z/OS 959

When DB2 determines that you have the EXECUTE privilege on a plan, package
collection, stored procedure, or user-defined function, DB2 can cache your
authorization ID. When you run the plan, package, stored procedure, or
user-defined function, DB2 can check your authorization more quickly.

Determining the authorization cache size for packages
DB2 provides a single package authorization cache for an entire DB2 subsystem.
The DB2 installation process sets the size of the package authorization cache by
entering a size in field PACKAGE AUTH CACHE of DB2 installation panel
DSNTIPP.

About this task

A 32-KB authorization cache is large enough to hold authorization information for
about 375 package collections.
Related reference:

Protection panel: DSNTIPP (DB2 Installation and Migration)

PACKAGE AUTH CACHE field (CACHEPAC subsystem parameter) (DB2
Installation and Migration)

Dynamic plan selection
It is beneficial to use dynamic plan selection and packages together. You can
convert individual programs in an application that contains many programs and
plans, one at a time, to use a combination of plans and packages. This process
reduces the number of plans per application; having fewer plans reduces the effort
that is needed to maintain the dynamic plan exit routine.

CICSYou can use packages and dynamic plan selection together, but when you
dynamically switch plans, the following conditions must exist:
v All special registers, including CURRENT PACKAGESET, must contain their

initial values.
v The value in the CURRENT DEGREE special register cannot have changed

during the current transaction.

Assume that you develop the following programs and DBRMs:

Table 152. Example programs and DBRMs

Program Name DBRM Name

MAIN MAIN

PROGA PLANA

PROGB PKGB

PROGC PLANC

You could create packages using the following bind statement:
BIND PACKAGE(PKGB) MEMBER(PKGB)

The following scenario illustrates thread association for a task that runs program
MAIN. Suppose that you execute the following SQL statements in the indicated
order. For each SQL statement, the resulting event is described.
1. EXEC CICS START TRANSID(MAIN)

960 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_dsntipp.htm#db2z_dsntipp
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_cachepac.htm#db2z_dsntipp11
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_cachepac.htm#db2z_dsntipp11

TRANSID(MAIN) executes program MAIN.
2. EXEC SQL SELECT...

Program MAIN issues an SQL SELECT statement. The default dynamic plan
exit routine selects plan MAIN.

3. EXEC CICS LINK PROGRAM(PROGA)

Program PROGA is invoked.
4. EXEC SQL SELECT...

DB2 does not call the default dynamic plan exit routine, because the program
does not issue a sync point. The plan is MAIN.

5. EXEC CICS LINK PROGRAM(PROGB)

Program PROGB is invoked.
6. EXEC SQL SELECT...

DB2 does not call the default dynamic plan exit routine, because the program
does not issue a sync point. The plan is MAIN and the program uses package
PKGB.

7. EXEC CICS SYNCPOINT

DB2 calls the dynamic plan exit routine when the next SQL statement
executes.

8. EXEC CICS LINK PROGRAM(PROGC)

Program PROGC is invoked.
9. EXEC SQL SELECT...

DB2 calls the default dynamic plan exit routine and selects PLANC.
10. EXEC SQL SET CURRENT SQLID = ’ABC’

The CURRENT SQLID special register is assigned the value 'ABC.'
11. EXEC CICS SYNCPOINT

DB2 does not call the dynamic plan exit routine when the next SQL statement
executes because the previous statement modifies the special register
CURRENT SQLID.

12. EXEC CICS RETURN

Control returns to program PROGB.
13. EXEC SQL SELECT...

CICS With packages, you probably do not need dynamic plan selection and its
accompanying exit routine. A package that is listed within a plan is not accessed
until it is executed. However, you can use dynamic plan selection and packages
together, which can reduce the number of plans in an application and the effort to
maintain the dynamic plan exit routine.

Rebinding an application
You need to rebind an application if you want to change any bind options. You
also need to rebind an application when you make changes that affect the plan or
package, such as creating an index, but you have not changed the SQL statements.

About this task

In some cases, DB2 automatically rebinds the plan or package for you.

If you change the SQL statements, you need to replace the plan or package.

Chapter 17. Preparing an application to run on DB2 for z/OS 961

Rebinding a package
You need to rebind a package when you make changes that affect the package but
that do not involve changes to the SQL statements. For example, if you create a
new index, you need to rebind the package. If you change the SQL, you need to
use the BIND PACKAGE command with the ACTION(REPLACE) option.

About this task

To rebind a package, other than a trigger package, use the REBIND subcommand.
To rebind a trigger package, use the REBIND TRIGGER PACKAGE subcommand.
You can change any of bind options for a package when you rebind it.

The following table clarifies which packages are bound, depending on how you
specify collection-id (coll-id), package-id (pkg-id), and version-id (ver-id) on the
REBIND PACKAGE subcommand.

REBIND PACKAGE does not apply to packages for which you do not have the
BIND privilege. An asterisk (*) used as an identifier for collections, packages, or
versions does not apply to packages at remote sites.

Table 153. Behavior of REBIND PACKAGE specification. "All" means all collections,
packages, or versions at the local DB2 server for which the authorization ID that issues the
command has the BIND privilege.

Input
Collections
affected

Packages
affected Versions affected

* all all all

..(*) all all all

. all all all

..(ver-id) all all ver-id

..() all all empty string

coll-id.* coll-id all all

coll-id.*.(*) coll-id all all

coll-id.*.(ver-id) coll-id all ver-id

coll-id.*.() coll-id all empty string

coll-id.pkg-id.(*) coll-id pkg-id all

coll-id.pkg-id coll-id pkg-id empty string

coll-id.pkg-id.() coll-id pkg-id empty string

coll-id.pkg-id.(ver-id) coll-id pkg-id ver-id

.pkg-id.() all pkg-id all

*.pkg-id all pkg-id empty string

*.pkg-id.() all pkg-id empty string

*.pkg-id.(ver-id) all pkg-id ver-id

Example: The following example shows the options for rebinding a package at the
remote location. The location name is SNTERSA. The collection is GROUP1, the

962 Application Programming and SQL Guide

package ID is PROGA, and the version ID is V1. The connection types shown in
the REBIND subcommand replace connection types that are specified on the
original BIND subcommand.
REBIND PACKAGE(SNTERSA.GROUP1.PROGA.(V1)) ENABLE(CICS,REMOTE)

You can use the asterisk on the REBIND subcommand for local packages, but not
for packages at remote sites. Any of the following commands rebinds all versions
of all packages in all collections, at the local DB2 system, for which you have the
BIND privilege.
REBIND PACKAGE (*)
REBIND PACKAGE (*.*)
REBIND PACKAGE (*.*.(*))

Either of the following commands rebinds all versions of all packages in the local
collection LEDGER for which you have the BIND privilege.
REBIND PACKAGE (LEDGER.*)
REBIND PACKAGE (LEDGER.*.(*))

Either of the following commands rebinds the empty string version of the package
DEBIT in all collections, at the local DB2 system, for which you have the BIND
privilege.
REBIND PACKAGE (*.DEBIT)
REBIND PACKAGE (*.DEBIT.())

Related tasks:

Reusing and comparing access paths at bind and rebind (DB2 Performance)
Related reference:

BIND and REBIND options (DB2 Commands)

REBIND PACKAGE (DSN) (DB2 Commands)

Rebinding a plan
You need to rebind a plan when you make changes that affect the plan but that do
not involve changes to the SQL statements. For example, if you create a new index,
you need to rebind the plan. If you change the SQL, you need to use the BIND
PLAN command with the ACTION(REPLACE) option.

About this task

To rebind a plan use the REBIND subcommand. You can change any of bind
options for that plan.

When you rebind a plan, use the PKLIST keyword to replace any previously
specified package list. Omit the PKLIST keyword to use of the previous package
list for rebinding. Use the NOPKLIST keyword to delete any package list that was
specified when the plan was previously bound.

Example: Rebinds PLANA and changes the package list:
REBIND PLAN(PLANA) PKLIST(GROUP1.*) MEMBER(ABC)

Example: Rebinds the plan and drops the entire package list:
REBIND PLAN(PLANA) NOPKLIST

Chapter 17. Preparing an application to run on DB2 for z/OS 963

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_reusecompareaccesspaths.htm#db2z_reusecompareaccesspaths
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_rebindpackage.htm#db2z_cmd_rebindpackage

Related reference:

BIND and REBIND options (DB2 Commands)

Rebinding lists of plans and packages
In some situations, you need to rebind a set of plans or packages that cannot be
described by using asterisks. For example, if a rebind operation terminates, you
can generate a rebind subcommand for each object that was not bound.

About this task

One situation in which this technique is useful is to complete a rebind operation
that has terminated due to lack of resources. A rebind for many objects, such as
REBIND PACKAGE (*) for an ID with SYSADM authority, terminates if a needed
resource becomes unavailable. As a result, some objects are successfully rebound
and others are not. If you repeat the subcommand, DB2 attempts to rebind all the
objects again. But if you generate a rebind subcommand for each object that was
not rebound, and issue those subcommands, DB2 does not repeat any work that
was already done and is not likely to run out of resources.

For a description of the technique and several examples of its use, see “Sample
program to create REBIND subcommands for lists of plans and packages.”

Generating lists of REBIND commands
To generate a list of REBIND subcommands for a set of packages that cannot be
described, use asterisks, and use information in the DB2 catalog. You can then
issue the list of subcommands through DSN.

About this task

The following list is an overview of the procedures for REBIND PACKAGE:
1. Use DSNTIAUL to generate the REBIND PACKAGE subcommands for the

selected packages.
2. Use DSNTEDIT CLIST to delete extraneous blanks from the REBIND

PACKAGE subcommands.
3. Use TSO edit commands to add DSN commands to the sequential data set.
4. Use DSN to execute the REBIND PACKAGE subcommands for the selected

packages.

Sample program to create REBIND subcommands for lists of
plans and packages
If you cannot use asterisks to identify a list of packages or plans that you want to
rebind, you might be able to create the needed REBIND subcommands
automatically, by using the sample program DSNTIAUL.

One situation in which this technique might be useful is when a resource becomes
unavailable during a rebind of many plans or packages. DB2 normally terminates
the rebind and does not rebind the remaining plans or packages. Later, however,
you might want to rebind only the objects that remain to be rebound. You can
build REBIND subcommands for the remaining plans or packages by using
DSNTIAUL to select the plans or packages from the DB2 catalog and to create the
REBIND subcommands. You can then submit the subcommands through the DSN
command processor, as usual.

964 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions

You might first need to edit the output from DSNTIAUL so that DSN can accept it
as input. The CLIST DSNTEDIT can perform much of that task for you.

This section contains the following topics:
v “Generating lists of REBIND commands” on page 964
v “Sample SELECT statements for generating REBIND commands”
v “Sample JCL for running lists of REBIND commands” on page 967

Sample SELECT statements for generating REBIND commands
You can select specific plans or packages to be rebound and concatenate the
REBIND subcommand syntax around the plan or package names. You can also
convert a varying-length string to a fixed-length string, and append additional
blanks to the REBIND PLAN and REBIND PACKAGE subcommands, so that the
DSN command processor can accept the record length as valid input.

Building REBIND subcommands: The examples that follow illustrate the following
techniques:
v Using SELECT to select specific packages or plans to be rebound
v Using the CONCAT operator to concatenate the REBIND subcommand syntax

around the plan or package names
v Using the SUBSTR function to convert a varying-length string to a fixed-length

string
v Appending additional blanks to the REBIND PLAN and REBIND PACKAGE

subcommands, so that the DSN command processor can accept the record length
as valid input

If the SELECT statement returns rows, then DSNTIAUL generates REBIND
subcommands for the plans or packages identified in the returned rows. Put those
subcommands in a sequential data set, where you can then edit them.

For REBIND PACKAGE subcommands, delete any extraneous blanks in the
package name, using either TSO edit commands or the DB2 CLIST DSNTEDIT.

For both REBIND PLAN and REBIND PACKAGE subcommands, add the DSN
command that the statement needs as the first line in the sequential data set, and
add END as the last line, using TSO edit commands. When you have edited the
sequential data set, you can run it to rebind the selected plans or packages.

If the SELECT statement returns no qualifying rows, then DSNTIAUL does not
generate REBIND subcommands.

The examples in this topic generate REBIND subcommands that work in DB2 for
z/OS Version 11. You might need to modify the examples for prior releases of DB2
that do not allow all of the same syntax.

Example: REBIND all plans without terminating because of unavailable
resources.

SELECT SUBSTR(’REBIND PLAN(’CONCAT NAME
CONCAT’) ’,1,45)

FROM SYSIBM.SYSPLAN;

Example: REBIND all versions of all packages without terminating because of
unavailable resources.

SELECT SUBSTR(’REBIND PACKAGE(’CONCAT COLLID CONCAT’.’
CONCAT NAME CONCAT’.(*)) ’,1,55)

FROM SYSIBM.SYSPACKAGE;

Chapter 17. Preparing an application to run on DB2 for z/OS 965

Example: REBIND all plans bound before a given date and time.
SELECT SUBSTR(’REBIND PLAN(’CONCAT NAME

CONCAT’) ’,1,45)
FROM SYSIBM.SYSPLAN
WHERE BINDDATE <= ’yymmdd’ OR

(BINDDATE <= ’yymmdd’ AND
BINDTIME <= ’hhmmssth’);

where yymmdd represents the date portion and hhmmssth represents the
time portion of the timestamp string.

If the date specified is after 2000, you need to include another condition
that includes plans that were bound before year 2000:
WHERE

BINDDATE >= ’830101’ OR
BINDDATE <= ’yymmdd’ OR
(BINDDATE <= ’yymmdd’ AND
BINDTIME <= ’hhmmssth’);

Example: REBIND all versions of all packages bound before a given date and
time.

SELECT SUBSTR(’REBIND PACKAGE(’CONCAT COLLID CONCAT’.’
CONCAT NAME CONCAT’.(*)) ’,1,55)

FROM SYSIBM.SYSPACKAGE
WHERE BINDTIME <= ’timestamp’;

where timestamp is an ISO timestamp string.

Example: REBIND all plans bound since a given date and time.
SELECT SUBSTR(’REBIND PLAN(’CONCAT NAME

CONCAT’) ’,1,45)
FROM SYSIBM.SYSPLAN
WHERE BINDDATE >= ’yymmdd’ AND

BINDTIME >= ’hhmmssth’;

where yymmdd represents the date portion and hhmmssth represents the
time portion of the timestamp string.

Example: REBIND all versions of all packages bound since a given date and
time.

SELECT SUBSTR(’REBIND PACKAGE(’CONCAT COLLID
CONCAT’.’CONCAT NAME
CONCAT’.(*)) ’,1,55)

FROM SYSIBM.SYSPACKAGE
WHERE BINDTIME >= ’timestamp’;

where timestamp is an ISO timestamp string.

Example: REBIND all plans bound within a given date and time range.
SELECT SUBSTR(’REBIND PLAN(’CONCAT NAME

CONCAT’) ’,1,45)
FROM SYSIBM.SYSPLAN
WHERE
(BINDDATE >= ’yymmdd’ AND
BINDTIME >= ’hhmmssth’) AND
BINDDATE <= ’yymmdd’ AND
BINDTIME <= ’hhmmssth’);

where yymmdd represents the date portion and hhmmssth represents the
time portion of the timestamp string.

966 Application Programming and SQL Guide

Example: REBIND all versions of all packages bound within a given date and
time range.

SELECT SUBSTR(’REBIND PACKAGE(’CONCAT COLLID CONCAT’.’
CONCAT NAME CONCAT’.(*)) ’,1,55)

FROM SYSIBM.SYSPACKAGE
WHERE BINDTIME >= ’timestamp1’ AND
BINDTIME <= ’timestamp2’;

where timestamp1 and timestamp2 are ISO timestamp strings.

Example: REBIND all invalid versions of all packages.
SELECT SUBSTR(’REBIND PACKAGE(’CONCAT COLLID CONCAT’.’

CONCAT NAME CONCAT’.(*)) ’,1,55)
FROM SYSIBM.SYSPACKAGE
WHERE VALID = ’N’;

Example: REBIND all plans bound with ISOLATION level of cursor stability.
SELECT SUBSTR(’REBIND PLAN(’CONCAT NAME

CONCAT’) ’,1,45)
FROM SYSIBM.SYSPLAN
WHERE ISOLATION = ’S’;

Example: REBIND all versions of all packages that allow CPU and/or I/O
parallelism.

SELECT SUBSTR(’REBIND PACKAGE(’CONCAT COLLID CONCAT’.’
CONCAT NAME CONCAT’.(*)) ’,1,55)

FROM SYSIBM.SYSPACKAGE
WHERE DEGREE=’ANY’;

Sample JCL for running lists of REBIND commands
You can use JCL to rebind all versions of all packages that are bound within a
specified date and time period.

You specify the date and time period for which you want packages to be rebound
in a WHERE clause of the SELECT statement that contains the REBIND command.
In The following example, the WHERE clause looks like the following clause:
WHERE BINDTIME >= ’YYYY-MM-DD-hh.mm.ss’ AND

BINDTIME <= ’YYYY-MM-DD-hh.mm.ss’

The date and time period has the following format:

YYYY The four-digit year. For example: 2008.

MM The two-digit month, which can be a value between 01 and 12.

DD The two-digit day, which can be a value between 01 and 31.

hh The two-digit hour, which can be a value between 01 and 24.

mm The two-digit minute, which can be a value between 00 and 59.

ss The two-digit second, which can be a value between 00 and 59.
//REBINDS JOB MSGLEVEL=(1,1),CLASS=A,MSGCLASS=A,USER=SYSADM,
// REGION=1024K
//***/
//SETUP EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(DSN)
RUN PROGRAM(DSNTIAUL) PLAN(DSNTIB11) PARMS(’SQL’) -

LIB(’DSNB10.RUNLIB.LOAD’)
END
//SYSPRINT DD SYSOUT=*

Chapter 17. Preparing an application to run on DB2 for z/OS 967

//SYSUDUMP DD SYSOUT=*
//SYSPUNCH DD SYSOUT=*
//SYSREC00 DD DSN=SYSADM.SYSTSIN.DATA,
// UNIT=SYSDA,DISP=SHR

//***/
//*
//* GENER= ’<SUBCOMMANDS TO REBIND ALL PACKAGES BOUND IN YYYY
//*
//***/
//SYSIN DD *
SELECT SUBSTR(’REBIND PACKAGE(’CONCAT COLLID CONCAT’.’

CONCAT NAME CONCAT’.(*)) ’,1,55)
FROM SYSIBM.SYSPACKAGE
WHERE BINDTIME >= ’YYYY-MM-DD-hh.mm.ss’ AND

BINDTIME <= ’YYYY-MM-DD-hh.mm.ss’;
/*
//***/
//*
//* STRIP THE BLANKS OUT OF THE REBIND SUBCOMMANDS
//*
//***/
//STRIP EXEC PGM=IKJEFT01
//SYSPROC DD DSN=SYSADM.DSNCLIST,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSTSIN DD *
DSNTEDIT SYSADM.SYSTSIN.DATA
//SYSIN DD DUMMY
/*
//***/
//*
//* PUT IN THE DSN COMMAND STATEMENTS
//*
//***/
//EDIT EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
EDIT ’SYSADM.SYSTSIN.DATA’ DATA NONUM
TOP
INSERT DSN SYSTEM(DSN)
BOTTOM
INSERT END
TOP
LIST * 99999
END SAVE
/*

//***/
//*
//* EXECUTE THE REBIND PACKAGE SUBCOMMANDS THROUGH DSN
//*
//***/
//LOCAL EXEC PGM=IKJEFT01
//DBRMLIB DD DSN=DSNB10.DBRMLIB.DATA,
// DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD DSN=SYSADM.SYSTSIN.DATA,
// UNIT=SYSDA,DISP=SHR
/*

The following example shows some sample JCL for rebinding all plans bound
without specifying the DEGREE keyword on BIND with DEGREE(ANY).

968 Application Programming and SQL Guide

//REBINDS JOB MSGLEVEL=(1,1),CLASS=A,MSGCLASS=A,USER=SYSADM,
// REGION=1024K
//***/
//SETUP EXEC TSOBATCH
//SYSPRINT DD SYSOUT=*
//SYSPUNCH DD SYSOUT=*
//SYSREC00 DD DSN=SYSADM.SYSTSIN.DATA,
// UNIT=SYSDA,DISP=SHR
//***/
//*
//* REBIND ALL PLANS THAT WERE BOUND WITHOUT SPECIFYING THE DEGREE
//* KEYWORD ON BIND WITH DEGREE(ANY)
//*
//***/
//SYSTSIN DD *
DSN S(DSN)
RUN PROGRAM(DSNTIAUL) PLAN(DSNTIB11) PARM(’SQL’)
END
//SYSIN DD *
SELECT SUBSTR(’REBIND PLAN(’CONCAT NAME

CONCAT’) DEGREE(ANY) ’,1,45)
FROM SYSIBM.SYSPLAN
WHERE DEGREE = ’ ’;

/*
//***/
//*
//* PUT IN THE DSN COMMAND STATEMENTS
//*
//***/
//EDIT EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
EDIT ’SYSADM.SYSTSIN.DATA’ DATA NONUM
TOP
INSERT DSN S(DSN)
BOTTOM
INSERT END
TOP
LIST * 99999
END SAVE
/*
//***/
//*
//* EXECUTE THE REBIND SUBCOMMANDS THROUGH DSN
//*
//***/
//REBIND EXEC PGM=IKJEFT01
//STEPLIB DD DSN=SYSADM.TESTLIB,DISP=SHR
// DD DSN=DSNB10.SDSNLOAD,DISP=SHR
//DBRMLIB DD DSN=SYSADM.DBRMLIB.DATA,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSTSIN DD DSN=SYSADM.SYSTSIN.DATA,DISP=SHR
//SYSIN DD DUMMY
/*

Automatic rebinding
Automatic rebind might occur if an authorized user invokes a package under some
situations. These situations include when the attributes of the data on which the
package depends change, or if the environment in which the package executes
changes. Whether the automatic rebind occurs depends on the value of the ABIND
subsystem parameter.

Chapter 17. Preparing an application to run on DB2 for z/OS 969

In general, the option values that are used for an automatic rebind are the values
that were used during the most recent bind process. Exceptions are:
v If an option is no longer supported, the automatic rebind option process

substitutes a supported option.
v If an option does not have an existing value, the default bind option is used.
v The automatic rebind value for APCOMPARE and APREUSE is NONE.
v If there is no existing value for the APPLCOMPAT bind option, the

APPLCOMPAT subsystem parameter is used.
v If there is no existing value for the DESCSTAT bind option, the DESCSTAT

subsystem parameter is used.

If a package has previous or original copies as a result of rebinding with the
PLANMGMT(BASIC) or PLANMGMT(EXTENDED) options or having the
PLANMGMT subsystem parameter set to BASIC or EXTENDED, those copies are
not affected by automatic rebind. Automatic rebind replaces only the current copy.

In most cases, DB2 marks a package that needs to be automatically rebound as
invalid. A few common situations in which DB2 marks a package as invalid are:
v When a package is dropped
v When a plan depends on the execute privilege of a package that is dropped
v When a table, index, or view on which the package depends is dropped
v When the authorization of the owner to access a table, index, or view on which

the package depends is revoked
v When the authorization to execute a stored procedure is revoked from a package

owner, and the package uses the CALL procedure-name form of the CALL
statement to call the stored procedure

v When a table on which the package depends is altered to add a TIME,
TIMESTAMP, or DATE column

v When a table is altered to add a self-referencing constraint or a constraint with a
delete rule of SET NULL or CASCADE

v When the limit key value of a partitioned index on which the package depends
is altered

v When the definition of an index on which the package depends is altered from
NOT PADDED to PADDED

v When the definition of an index on which the package depends is altered from
PADDED to NOT PADDED

v When the AUDIT attribute of a table on which the package depends is altered
v When the length attribute of a CHAR, VARCHAR, GRAPHIC, VARGRAPHIC,

BINARY, or VARBINARY column in a table on which the package depends is
altered

v When the data type, precision, or scale of a column in a table on which the
package depends is altered

v When a package depends on a view that DB2 cannot regenerate after a column
in the underlying table is altered

v When a created temporary table on which the package depends is altered to add
a column

v When a user-defined function on which the package depends is altered
v When a column is renamed in a table on which a package is dependent
v When a plan or package depends on a procedure that is regenerated

970 Application Programming and SQL Guide

|

|
|

|
|

v When a column is dropped from a table which a package references. Package
invalidation occurs when the pending definition change is applied to the table,
unless the table space is created with the DEFINE NO option. In this case, the
package invalidation occurs at when the ALTER TABLE DROP COLUMN
statement is issued.

Whether a package is valid is recorded in column VALID of catalog tables
SYSPLAN and SYSPACKAGE.

In the following cases, DB2 automatically rebinds a package that has not been
marked as invalid if the ABIND subsystem parameter is set to YES (the default):
v A package that is bound on a release of DB2 that is more recent than the release

in which it is being run. This situation can happen in a data sharing
environment or after a DB2 subsystem has fallen back to a previous release of
DB2.

v A package that was bound prior to DB2 Version 6 Release 1. Packages that are
bound prior to Version 6 Release 1 are automatically rebound when they are run
on the current release of DB2.

v A package that has a location dependency and runs at a location other than the
one at which it was bound. This situation can happen when members of a data
sharing group are defined with location names, and a package runs on a
different member from the one on which it was bound.

In the following cases, DB2 automatically rebinds a package that has not been
marked as invalid if the ABIND subsystem parameter is set to COEXIST:
v The subsystem on which the package runs is in a data sharing group.
v The package was previously bound on the current DB2 release and is now

running on the previous DB2 release.

If the ABIND subsystem parameter is set to NO and you attempt to execute a
package that requires a rebind, but cannot be automatically rebound, DB2 returns
an error.

DB2 marks a package as inoperative if an automatic rebind fails. Whether a package
is operative is recorded in column OPERATIVE of SYSPLAN and SYSPACKAGE.

Whether EXPLAIN runs during automatic rebind depends on the value of the field
EXPLAIN PROCESSING on installation panel DSNTIPO, and on whether you
specified EXPLAIN(YES). Automatic rebind fails for all EXPLAIN errors except
“PLAN_TABLE not found.”

The SQLCA is not available during automatic rebind. Therefore, if you encounter
lock contention during an automatic rebind, DSNT501I messages cannot
accompany any DSNT376I messages that you receive. To see the matching
DSNT501I messages, you must issue the subcommand REBIND PLAN or REBIND
PACKAGE.

If an autobind occurs while running in ACCESS(MAINT) mode the autobind is run
under the authorization id of SYSOPR. If SYSOPR is not defined as an installation
SYSOPR the autobind fails.

Chapter 17. Preparing an application to run on DB2 for z/OS 971

|
|
|
|
|

Related reference:

AUTO BIND field (ABIND subsystem parameter) (DB2 Installation and
Migration)

Application compatibility of packages
You can change the application compatibility setting for a package when your
applications are ready to run with the features and behavior of a DB2 version.

When your DB2 environment has been migrated to new-function mode you can
run applications with the features and behavior of either previous versions or the
current version. For static SQL, the behavior is determined by the application
compatibility value of a package. For dynamic SQL, the behavior is determined by
the APPLICATION COMPATIBILITY special register. If no application
compatibility value is set, then the default value is determined by the
APPLCOMPAT subsystem parameter. The default APPLCOMPAT value for a new
installation is set to the current DB2 version. The default APPLCOMPAT value for
a migrated environment is set to the previous DB2 version.

Tip: When you migrate your DB2 environment to a new version, leave the
APPLCOMPAT subsystem parameter set to the previous DB2 version. Update the
application compatibility value for your packages individually. Do not change the
APPLCOMPAT subsystem parameter value to the value for the new version until
all applications use the features and behavior of the new version.

The compatibility value of your applications is determined by the following
methods.
1. For static SQL, the value of the APPLCOMPAT column for the package in the

catalog table SYSIBM.SYSPACKAGE. This value is set when you bind a
package.

2. For static SQL, the value of the APPLCOMPAT option that is issued with the
BIND or REBIND of a package.

3. For dynamic SQL, the value that is set for the CURRENT APPLICATION
COMPATIBILITY special register. The initial value of CURRENT
APPLICATION COMPATIBILITY is determined by the value of the
APPLCOMPAT bind parameter for the package.

4. If no other application compatibility value is set, the default value is set by the
subsystem parameter APPLCOMPAT.

5. During the automatic bind of a package, the application compatibility value is
set to the previous value. If no previous value is available, then it is set to the
APPLCOMPAT subsystem parameter value.

Example: When you migrate a DB2 Version 10 new-function mode environment to
DB2 Version 11 new-function mode, the initial application compatibility value is set
to ’V10R1’. The following example shows the results of using a ’V11R1’ function
while in DB2 Version 11 new-function mode with application compatibility set to
’V10R1’. In this example the CREATE TYPE statement is successful but the
CREATE PROCEDURE statement results in SQLCODE -4743.
CREATE TYPE PHONENUMBERS AS VARCHAR(12) ARRAY ??(1000000??)

DSNT400I SQLCODE = 000, SUCCESSFUL EXECUTION

CREATE PROCEDURE FIND_CUSTOMERS(
IN NUMBERS_IN KRAMSC01.PHONENUMBERS,
IN AREA_CODE CHAR(3),
OUT NUMBERS_OUT KRAMSC01.PHONENUMBERS)

972 Application Programming and SQL Guide

|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|

|
|

|
|
|
|

|
|

|
|
|

|
|
|
|
|
|

|

|

|
|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_abind.htm#db2z_dsntipo08
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_abind.htm#db2z_dsntipo08

BEGIN
SET NUMBERS_OUT =

(SELECT ARRAY_AGG(T.NUM)
FROM UNNEST(NUMBERS_IN) AS T(NUM)
WHERE SUBSTR(T.NUM, 1, 3) = AREA_CODE);

END

DSNT408I SQLCODE = -4743, ERROR: ATTEMPT TO USE A FUNCTION WHEN THE
APPLICATION COMPATIBILITY SETTING IS SET FOR A PREVIOUS LEVEL

Related reference:

SYSIBM.SYSPACKAGE table (DB2 SQL)

BIND and REBIND options (DB2 Commands)

CURRENT APPLICATION COMPATIBILITY (DB2 SQL)

APPL COMPAT LEVEL field (APPLCOMPAT subsystem parameter) (DB2
Installation and Migration)

V10R1 application compatibility
When you set the application compatibility value to V10R1, applications that
attempt to use functions and features that are introduced in DB2 Version 11 or later
might behave differently or receive an error.

When your DB2 Version 11 environment is migrated to new-function mode, you
can run individual applications with some of the features and behavior of Version
10. Your applications can continue to experience V10R1 behavior while in Version
11 new-function mode. Then, you can migrate each application to a new
application compatibility value separately until all are migrated. If application
compatibility is set to V10R1 and you attempt to use the new functions of a later
version, SQL might behave differently or result in a negative SQLCODE, such as

SQLCODE -4743. PSPI

You can run package level accounting or monitor traces with IFCID 0239 and
review field QPACINCOMPAT, which indicates an SQL incompatible change. If a
trace is started for IFCID 0366 or IFCID 0376 and application compatibility is set
for a previous version, details about features and functions that have a change in

behavior are written. PSPI

A migrated DB2 Version 11 environment in conversion mode behaves with V10R1
application compatibility. This behavior ensures that fallback to a previous version
of DB2 is successful. For each DB2 version, application and SQL incompatibilities
are described in the migration information for that version.

The following table shows many of the features and functions that are controlled
by application compatibility, and the results if you specify V10R1. If a behavior
difference is traced, then the IFCID trace function code is shown.

Table 154. Behavior of V10R1 application compatibility

Feature or Function
Result with V10R1 application
compatibility

IFCID 0366 or IFCID
0376 trace function code

An implicit insert or update of an XML document
node

SQLCODE -20345 1101

A predicate expression with an explicit cast or an
operation with an invalid value that does not
affect the results of XPath processing

SQLCODE -20345 1102

Chapter 17. Preparing an application to run on DB2 for z/OS 973

|
|
|
|
|
|

|
|

|

|

|

|

|
|

|

|
|
|

|
|
|
|
|
|
|

|

|
|
|
|

|

|
|
|
|

|
|
|

||

|
|
|
|
|

|
|
||

|
|
|

||

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsyspackagetable.htm#db2z_sysibmsyspackagetable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_currentapplicationcompatibility.htm#db2z_currentapplicationcompatibility
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_applcompat.htm#db2z_ipf_applcompat
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_applcompat.htm#db2z_ipf_applcompat

Table 154. Behavior of V10R1 application compatibility (continued)

Feature or Function
Result with V10R1 application
compatibility

IFCID 0366 or IFCID
0376 trace function code

How the resource limit facility uses ASUTIME
value for nested routines

SQLCODE -905 is issued only when
the ASUTIME limit of the top-level
calling package is encountered.

1103

The lengths of values that are returned from
CURRENT CLIENT_USERID, CURRENT
CLIENT_WRKSTNNAME, CURRENT
CLIENT_APPLNAME, or CURRENT
CLIENT_ACCTNG special register are longer
than the Version 10 limits.

The special register values are
truncated to the Version 10 maximum
lengths and padded with blanks

1104, 1105, 1106, 1107

A CAST(string as TIMESTAMP) specification with
an input string of length of 8 or an input string of
length 13

An explicit cast specification from
string as TIMESTAMP interprets an
8-byte character string as a Store Clock
value and a 13-byte string as a
GENERATE_UNIQUE value. CAST
result might be incorrect.

1109

Invocation of the SPACE or VARCHAR built-in
function when the result is defined as
VARCHAR(32765), VARCHAR(32766), or
VARCHAR(32767)

No error 1110, 1111

Specification of bind option
DBPROTOCOL(DRDACBF)

DSNT298I

A period specification that follows the name of a
view in the FROM clause of a query

SQLCODE -4743

A period clause that follows the name of a target
view in an UPDATE or DELETE statement

SQLCODE -4743

A SET CURRENT TEMPORAL SYSTEM_TIME
statement

SQLCODE -4743

A SET CURRENT TEMPORAL BUSINESS_TIME
statement

SQLCODE -4743

A SET SYSIBMADM.MOVE_TO_ARCHIVE or
SET SYSIBMADM.GET_ARCHIVE assignment
statement

SQLCODE -4743

Use of array operations and built-in functions
such as

v Use of the UNNEST collection-derived-table

v Use of the ARRAY_FIRST, ARRAY_LAST,
ARRAY_NEXT, ARRAY_PRIOR, ARRAY_AGG,
TRIM_ARRAY, CARDINALITY,
MAX_CARDINALITY built-in functions

v A SET assignment-statement of an array
element as a target table

v A CAST specification with a parameter marker
as the source and an array as the data type

SQLCODE -4743

An aggregate function that contains the keyword
DISTINCT and references a column that is
defined with a column mask

SQLCODE -20478

A reference to an alias for a sequence object or a
public alias for a sequence object

SQLCODE -4743

A SELECT with a table function reference that
includes a typed correlation clause

SQLCODE -4743

974 Application Programming and SQL Guide

|

|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|
|

|
|
|

|

|
|
|

|
|
|
|
|
|

|

|
|
|
|

||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
||

|
|
|

||

|
|

|

|
|
|
|

|
|

|
|

||

|
|
|

||

|
|
||

|
|
||

Table 154. Behavior of V10R1 application compatibility (continued)

Feature or Function
Result with V10R1 application
compatibility

IFCID 0366 or IFCID
0376 trace function code

A CALL statement that specifies an autonomous
procedure

SQLCODE -4743

Related concepts:

Application and SQL release incompatibilities (DB2 Installation and Migration)

Specifying the rules that apply to SQL behavior at run time
You can specify whether DB2 rules or SQL standard rules apply to SQL behavior at
run time.

About this task

Not only does SQLRULES specify the rules under which a type 2 CONNECT
statement executes, but it also sets the initial value of the special register
CURRENT RULES when the database server is the local DB2 system. When the
server is not the local DB2 system, the initial value of CURRENT RULES is DB2.
After binding a plan, you can change the value in CURRENT RULES in an
application program by using the statement SET CURRENT RULES.

CURRENT RULES determines the SQL rules, DB2 or SQL standard, that apply to
SQL behavior at run time. For example, the value in CURRENT RULES affects the
behavior of defining check constraints by issuing the ALTER TABLE statement on a
populated table:
v If CURRENT RULES has a value of STD and no existing rows in the table

violate the check constraint, DB2 adds the constraint to the table definition.
Otherwise, an error occurs and DB2 does not add the check constraint to the
table definition.
If the table contains data and is already in a check pending status, the ALTER
TABLE statement fails.

v If CURRENT RULES has a value of DB2, DB2 adds the constraint to the table
definition, defers the enforcing of the check constraints, and places the table
space or partition in CHECK-pending status.

You can use the statement SET CURRENT RULES to control the action that the
statement ALTER TABLE takes. Assuming that the value of CURRENT RULES is
initially STD, the following SQL statements change the SQL rules to DB2, add a
check constraint, defer validation of that constraint, place the table in
CHECK-pending status, and restore the rules to STD.
EXEC SQL

SET CURRENT RULES = ’DB2’;
EXEC SQL

ALTER TABLE DSN8B10.EMP
ADD CONSTRAINT C1 CHECK (BONUS <= 1000.0);

EXEC SQL
SET CURRENT RULES = ’STD’;

See “Check constraints” on page 447 for information about check constraints.

Chapter 17. Preparing an application to run on DB2 for z/OS 975

|

|
|
|
|
|

|
|
||

|

|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_relincompatapplsqlfromv10.htm#db2z_relincompatapplsqlfromv10

You can also use CURRENT RULES in host variable assignments. For example, if
you want to store the value of the CURRENT RULES special register at a
particular point in time, you can use assign the value to a host variable, as in the
following statement:
SET :XRULE = CURRENT RULES;

You can also use CURRENT RULES as the argument of a search-condition. For
example, the following statement retrieves rows where the COL1 column contains
the same value as the CURRENT RULES special register.
SELECT * FROM SAMPTBL WHERE COL1 = CURRENT RULES;

DB2 program preparation overview
Before you can run an application program on DB2 for z/OS, you need to prepare
it. To prepare the program, create a load module, possibly one or more packages,
and an application plan.

If your application program includes SQL statements, you need to process those
SQL statements by using either the DB2 precompiler or the DB2 coprocessor that is
provided with a compiler. Both the precompiler and the coprocessor perform the
following actions:
v Replaces the SQL statements in your source programs with calls to DB2

language interface modules
v Creates a database request module (DBRM), which communicates your SQL

requests to DB2 during the bind process

The following figure illustrates the program preparation process when you use the
DB2 precompiler. After you process SQL statements in your source program by
using the DB2 precompiler, you create a load module, possibly one or more
packages, and an application plan. Creating a load module involves compiling the
modified source code that is produced by the precompiler into an object program,
and link-editing the object program to create a load module. Creating a package or
an application plan, a process unique to DB2, involves binding one or more
DBRMs, which are created by the DB2 precompiler, using the BIND PACKAGE
command.

976 Application Programming and SQL Guide

The following figure illustrates the program preparation process when you use the
DB2 coprocessor. The process is similar to the process for the DB2 precompiler,
except that the DB2 coprocessor does not create modified source for your
application program.

DB2
Precompiler

Compile or
Assemble

Link edit

DBRM

Package

Plan

Source
Program

Modified
Source

Object
Program

Load
Module

Bind Package Bind Plan

Figure 51. Program preparation with the DB2 precompiler

Chapter 17. Preparing an application to run on DB2 for z/OS 977

Input and output data sets for DL/I batch jobs
DL/I batch jobs require an input data set with DD name DDITV02 and an output
data set with DD name DDOTV02.

DB2 DL/I batch input:

Before you can run a DL/I batch job, you need to provide values for a number of
input parameters. The input parameters are positional and delimited by commas.

You can specify values for the following parameters using a DDITV02 data set or a
subsystem member:
SSN,LIT,ESMT,RTT,REO,CRC

You can specify values for the following parameters only in a DDITV02 data set:
CONNECTION_NAME,PLAN,PROG

If you use the DDITV02 data set and specify a subsystem member, the values in
the DDITV02 DD statement override the values in the specified subsystem
member. If you provide neither, DB2 abnormally terminates the application
program with system abend code X'04E' and a unique reason code in register 15.

DDITV02 is the DD name for a data set that has DCB options of LRECL=80 and
RECFM=F or FB.

A subsystem member is a member in the IMS procedure library. Its name is
derived by concatenating the value of the SSM parameter to the value of the

Compile and
process SQL

Link edit

Plan

Bind package Bind plan

Source
program

DBRM

Package

Load
module

Object
program

Figure 52. Program preparation with the DB2 coprocessor

978 Application Programming and SQL Guide

IMSID parameter. You specify the SSM parameter and the IMSID parameter when
you invoke the DLIBATCH procedure, which starts the DL/I batch processing
environment.

The meanings of the input parameters are:

Field Content

SSN Specifies the name of the DB2 subsystem. This value is required. You must
specify a name in order to make a connection to DB2.

The SSN value can be from one to four characters long.

If the value in the SSN parameter is the name of an active subsystem in
the data sharing group, the application attaches to that subsystem. If the
SSN parameter value is not the name of an active subsystem, but the value
is a group attachment name, the application attaches to an active DB2
subsystem in the data sharing group.

LIT Specifies a language interface token. DB2 requires a language interface
token to route SQL statements when operating in the online IMS
environment. Because a batch application program can connect to only one
DB2 system, DB2 does not use the LIT value.

The LIT value can be from zero to four characters long.

Recommendation: Specify the LIT value as SYS1.

You can omit the LIT value by entering SSN,,ESMT.

ESMT Specifies the name of the DB2 initialization module, DSNMIN10. This
value is required.

The ESMT value must be eight characters long.

RTT Specifies the resource translation table. This value is optional.

The RTT can be from zero to eight characters long.

REO Specifies the region error option. This option determines what to do if DB2
is not operational or the plan is not available. The three options are:
v R, the default, results in returning an SQL return code to the application

program. The most common SQLCODE issued in this case is -923
(SQLSTATE '57015').

v Q results in an abend in the batch environment; however, in the online
environment, this value places the input message in the queue again.

v A results in an abend in both the batch environment and the online
environment.

If the application program uses the XRST call, and if coordinated recovery
is required on the XRST call, REO is ignored. In that case, the application
program terminates abnormally if DB2 is not operational.

The REO value can be from zero to one character long.

CRC Specifies the command recognition character. Because DB2 commands are
not supported in the DL/I batch environment, the command recognition
character is not used at this time.

The CRC value can be from zero to one character long.

Chapter 17. Preparing an application to run on DB2 for z/OS 979

CONNECTION_NAME
Represents the name of the job step that coordinates DB2 activities. This
value is optional. If you do not specify this option, the connection name
defaults are:

Type of application
Default connection name

Batch job
Job name

Started task
Started task name

TSO user
TSO authorization ID

If a batch update job fails, you must use a separate job to restart the batch
job. The connection name used in the restart job must be the same as the
name that is used in the batch job that failed. Alternatively, if the default
connection name is used, the restart job must have the same job name as
the batch update job that failed.

DB2 requires unique connection names. If two applications try to connect
with the same connection name, the second application program fails to
connect to DB2.

The CONNECTION_NAME value can be from one to eight characters
long.

PLAN Specifies the DB2 plan name. This value is optional. If you do not specify
the plan name, the application program module name is checked against
the optional resource translation table. If the resource translation table has
a match, the translated name is used as the DB2 plan name. If no match
exists in the resource translation table, the application program module
name is used as the plan name.

The PLAN value can be from zero to eight characters long.

PROG Specifies the application program name. This value is required. It identifies
the application program that is to be loaded and to receive control.

The PROG value can be from one to eight characters long.

Example: An example of the fields in the record is shown below:
DSN,SYS1,DSNMIN10,,R,-,BATCH001,DB2PLAN,PROGA

DB2 DL/I batch output:

In an online IMS environment, DB2 sends unsolicited status messages to the
master terminal operator (MTO) and records on indoubt processing and diagnostic
information to the IMS log. In a batch environment, DB2 sends this information to
the output data set that is specified in the DDOTV02 DD statement. Ensure that
the output data set has DCB options of RECFM=V or VB, LRECL=4092, and
BLKSIZE of at least LRECL + 4. If the DD statement is missing, DB2 issues the
message IEC130I and continues processing without any output.

You might want to save and print the data set, as the information is useful for
diagnostic purposes. You can use the IMS module, DFSERA10, to print the
variable-length data set records in both hexadecimal and character format.

980 Application Programming and SQL Guide

Related concepts:

Submitting work to be processed (DB2 Data Sharing Planning and
Administration)

DB2-supplied JCL procedures for preparing an application
You can precompile and prepare an application program using a DB2-supplied JCL
procedure.

DB2 has a unique JCL procedure for each supported language, with appropriate
defaults for starting the DB2 precompiler and host language compiler or assembler.
The procedures are in prefix.SDSNSAMP member DSNTIJMV, which installs the
procedures.

Table 155. Procedures for precompiling programs

Language Procedure Invocation included in...

High-level assembler DSNHASM DSNTEJ2A

C DSNHC DSNTEJ2D

C++ DSNHCPPDSNHCPP22 DSNTEJ2EN/A

Enterprise COBOL DSNHICOB DSNTEJ2C1

Fortran DSNHFOR DSNTEJ2F

PL/I DSNHPLI DSNTEJ2P

SQL DSNHSQL DSNTEJ63

Notes:

1. You must customize these programs to invoke the procedures that are listed in this table.

2. This procedure demonstrates how you can prepare an object-oriented program that
consists of two data sets or members, both of which contain SQL.

If you use the PL/I macro processor, you must not use the PL/I *PROCESS
statement in the source to pass options to the PL/I compiler. You can specify the
needed options on the PARM.PLI= parameter of the EXEC statement in the
DSNHPLI procedure.

JCL to include the appropriate interface code when using the
DB2-supplied JCL procedures

To include the proper interface code when you submit the JCL procedures, use an
INCLUDE SYSLIB statement in your link-edit JCL. The statement should specify
the correct language interface module for the environment.

TSO, batch
//LKED.SYSIN DD *

INCLUDE SYSLIB(member)
/*

member must be DSNELI or DSNULI, except for FORTRAN, in which case member
must be DSNHFT.

Chapter 17. Preparing an application to run on DB2 for z/OS 981

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_submitworkprocessed.htm#db2z_submitworkprocessed
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.dshare/src/tpc/db2z_submitworkprocessed.htm#db2z_submitworkprocessed

IMS
//LKED.SYSIN DD *

INCLUDE SYSLIB(DFSLI000)
ENTRY (specification)

/*

DFSLI000 is the module for DL/I batch attach.

ENTRY specification varies depending on the host language. Include one of the
following:

DLITCBL, for COBOL applications
PLICALLA, for PL/I applications
The program name, for assembler language applications.

Recommendation: For COBOL applications, specify the PSB linkage directly on
the PROCEDURE DIVISION statement instead of on a DLITCBL entry point. When
you specify the PSB linkage directly on the PROCEDURE DIVISION statement,
you can either omit the ENTRY specification or specify the application program
name instead of the DLITCBL entry point.

CICS
//LKED.SYSIN DD *

INCLUDE SYSLIB(member)
/*

member must be DSNCLI or DSNULI.
Related concepts:
“Universal language interface” on page 117
Related tasks:
“Making the CAF language interface (DSNALI) available” on page 43
“Compiling and link-editing an application” on page 940

Tailoring DB2-supplied JCL procedures for preparing CICS
programs

Instead of using the DB2 Program Preparation panels to prepare your CICS
program, you can tailor CICS-supplied JCL procedures to do that. To tailor a CICS
procedure, you need to add some steps and change some DD statements.

About this task

Make changes as needed to perform the following actions:
v Process the program with the DB2 precompiler.
v Bind the application plan. You can do this any time after you precompile the

program. You can bind the program either online by the DB2I panels or as a
batch step in this or another z/OS job.

v Include a DD statement in the linkage editor step to access the DB2 load library.
v Be sure the linkage editor control statements contain an INCLUDE statement for

the DB2 language interface module.

The following example illustrates the necessary changes. This example assumes the
use of a COBOL program. For any other programming language, change the CICS
procedure name and the DB2 precompiler options.

982 Application Programming and SQL Guide

//TESTC01 JOB
//*
//***
//* DB2 PRECOMPILE THE COBOL PROGRAM
//***

(1) //PC EXEC PGM=DSNHPC,
(1) // PARM=’HOST(COB2),XREF,SOURCE,FLAG(I),APOST’
(1) //STEPLIB DD DISP=SHR,DSN=prefix.SDSNEXIT
(1) // DD DISP=SHR,DSN=prefix.SDSNLOAD
(1) //DBRMLIB DD DISP=OLD,DSN=USER.DBRMLIB.DATA(TESTC01)
(1) //SYSCIN DD DSN=&&DSNHOUT,DISP=(MOD,PASS),UNIT=SYSDA,
(1) // SPACE=(800,(500,500))
(1) //SYSLIB DD DISP=SHR,DSN=USER.SRCLIB.DATA
(1) //SYSPRINT DD SYSOUT=*
(1) //SYSTERM DD SYSOUT=*
(1) //SYSUDUMP DD SYSOUT=*
(1) //SYSUT1 DD SPACE=(800,(500,500),,,ROUND),UNIT=SYSDA
(1) //SYSUT2 DD SPACE=(800,(500,500),,,ROUND),UNIT=SYSDA
(1) //SYSIN DD DISP=SHR,DSN=USER.SRCLIB.DATA(TESTC01)
(1) //*

//**
//*** BIND THIS PROGRAM.
//**

(2) //BIND EXEC PGM=IKJEFT01,
(2) // COND=((4,LT,PC))
(2) //STEPLIB DD DISP=SHR,DSN=prefix.SDSNEXIT
(2) // DD DISP=SHR,DSN=prefix.SDSNLOAD
(2) //DBRMLIB DD DISP=OLD,DSN=USER.DBRMLIB.DATA(TESTC01)
(2) //SYSPRINT DD SYSOUT=*
(2) //SYSTSPRT DD SYSOUT=*
(2) //SYSUDUMP DD SYSOUT=*
(2) //SYSTSIN DD *
(2) DSN S(DSN)
(2) BIND PLAN(TESTC01) MEMBER(TESTC01) ACTION(REP) RETAIN ISOLATION(CS)
(2) END

//**
//* COMPILE THE COBOL PROGRAM
//**

(3) //CICS EXEC DFHEITVL
(4) //TRN.SYSIN DD DSN=&&DSNHOUT,DISP=(OLD,DELETE)
(5) //LKED.SYSLMOD DD DSN=USER.RUNLIB.LOAD
(6) //LKED.CICSLOAD DD DISP=SHR,DSN=prefix.SDFHLOAD

//LKED.SYSIN DD *
(7) INCLUDE CICSLOAD(DSNCLI)

NAME TESTC01(R)
//**

The procedure accounts for these steps:
Step 1. Precompile the program. The output of the DB2 precompiler becomes
the input to the CICS command language translator.
Step 2. Bind the application plan.
Step 3. Call the CICS procedure to translate, compile, and link-edit a COBOL
program. This procedure has several options that you need to consider.
Step 4. Reflect an application load library in the data set name of the
SYSLMOD DD statement. You must include the name of this load library in the
DFHRPL DD statement of the CICS run time JCL.
Step 5. Name the CICS load library that contains the module DSNCLI.
Step 6. Direct the linkage editor to include the CICS-DB2 language interface
module (DSNCLI). In this example, the order of the various control sections
(CSECTs) is of no concern because the structure of the procedure automatically
satisfies any order requirements.

Chapter 17. Preparing an application to run on DB2 for z/OS 983

For more information about the procedure DFHEITVL, other CICS procedures, or
CICS requirements for application programs, please see the appropriate CICS
manual.

If you are preparing a particularly large or complex application, you can use
another preparation method. For example, if your program requires four of your
own link-edit include libraries, you cannot prepare the program with DB2I,
because DB2I limits the number of include libraries to three, plus language, IMS or
CICS, and DB2 libraries. Therefore, you would need another preparation method.
Be careful to use the correct language interface.

DB2I primary option menu
The DB2I Primary Option menu is the starting point for all DB2I tasks.

Figure 53 shows an example of the DB2I Primary Option Menu. From this point,
you can access all of the DB2I panels without passing through panels that you do
not need. For example, to bind a program, enter the number that corresponds to
BIND/REBIND/FREE to reach the BIND PLAN panel without seeing the ones
previous to it.

The following descriptions explain the functions on the DB2I Primary Option
Menu.

1 SPUFI
Lets you develop and execute one or more SQL statements interactively.
For further information, see “Executing SQL by using SPUFI” on page
1043.

2 DCLGEN
Lets you generate C, COBOL, or PL/I data declarations of tables. For
further information, see “DCLGEN (declarations generator)” on page 125.

3 PROGRAM PREPARATION
Lets you prepare and run an application program to run. For more
information, see “DB2 Program Preparation panel” on page 986.

4 PRECOMPILE
Lets you convert embedded SQL statements into statements that your host
language can process. For further information, see “Precompile panel” on
page 994.

DSNEPRI DB2I PRIMARY OPTION MENU SSID: DSN
COMMAND ===> 3_

Select one of the following DB2 functions and press ENTER.

1 SPUFI (Process SQL statements)
2 DCLGEN (Generate SQL and source language declarations)
3 PROGRAM PREPARATION (Prepare a DB2 application program to run)
4 PRECOMPILE (Invoke DB2 precompiler)
5 BIND/REBIND/FREE (BIND, REBIND, or FREE plans or packages)
6 RUN (RUN an SQL program)
7 DB2 COMMANDS (Issue DB2 commands)
8 UTILITIES (Invoke DB2 utilities)
D DB2I DEFAULTS (Set global parameters)
X EXIT (Leave DB2I)

Figure 53. Initiating program preparation through DB2I. Specify Program Preparation on the
DB2I Primary Option Menu.

984 Application Programming and SQL Guide

5 BIND/REBIND/FREE
Lets you bind, rebind, or free a package or application plan. For more
information, see “Bind/Rebind/Free Selection panel” on page 1012.

6 RUN
Lets you run an application program in a TSO or batch environment. For
more information, see “DB2I Run panel” on page 1024.

7 DB2 COMMANDS
Lets you issue DB2 commands.

8 UTILITIES
Lets you call DB2 utility programs.

D DB2I DEFAULTS
Lets you set DB2I defaults. See “DB2I Defaults Panel 1” on page 990.

X EXIT
Lets you exit DB2I.

DB2I panels that are used for program preparation
DB2I contains a set of panels that let you prepare an application for execution.

The following table describes each of the panels that you need to use to prepare an
application.

Table 156. DB2I panels used for program preparation

Panel name Panel description

DB2 Program
Preparation“DB2 Program
Preparation panel” on page
986

Lets you choose specific program preparation functions to
perform. For the functions that you choose, you can also
display the associated panels to specify options for performing
those functions.

This panel also lets you change the DB2I default values and
perform other precompile and prelink functions.

DB2I Defaults Panel 1“DB2I
Defaults Panel 1” on page
990

Lets you change many of the system defaults that are set at
DB2 installation time.

DB2I Defaults Panel 2“DB2I
Defaults Panel 2” on page
993

Lets you change your default job statement and set additional
COBOL options.

Precompile“Precompile
panel” on page 994

Lets you specify values for precompile functions.

You can reach this panel directly from the DB2I Primary
Option Menu or from the DB2 Program Preparation panel. If
you reach this panel from the Program Preparation panel,
many of the fields contain values from the Primary and
Precompile panels.

Bind Package“Bind Package
panel” on page 996

Lets you change many options when you bind a package.

You can reach this panel directly from the DB2I Primary
Option Menu or from the DB2 Program Preparation panel. If
you reach this panel from the DB2 Program Preparation panel,
many of the fields contain values from the Primary and
Precompile panels.

Chapter 17. Preparing an application to run on DB2 for z/OS 985

Table 156. DB2I panels used for program preparation (continued)

Panel name Panel description

Bind Plan“Bind Plan panel”
on page 999

Lets you change options when you bind an application plan.

You can reach this panel directly from the DB2I Primary
Option Menu or as a part of the program preparation process.
This panel also follows the Bind Package panels.

Defaults for Bind or Rebind
Package or Plan
panels“Defaults for Bind
Package and Defaults for
Rebind Package panels” on
page 1002

Let you change the defaults for BIND or REBIND PACKAGE
or PLAN.

System Connection Types
panel“System Connection
Types panel” on page 1007

Lets you specify a system connection type.

This panel displays if you choose to enable or disable
connections on the Bind or Rebind Package or Plan panels.

Panels for entering lists of
values“Panels for entering
lists of values” on page
1008

Let you enter or modify an unlimited number of values. A list
panel looks similar to an ISPF edit session and lets you scroll
and use a limited set of commands.

Program Prep: Compile,
Prelink, Link, and
Run“Program Preparation:
Compile, Link, and Run
panel” on page 1009

Lets you perform the last two steps in the program
preparation process (compile and link-edit).

This panel also lets you do the PL/I MACRO PHASE for
programs that require this option.

For TSO programs, the panel also lets you run programs.

DB2 Program Preparation panel
The DB2 Program Preparation panel lets you choose which specific program
preparation function to perform.

For the functions you choose, you can also choose to display the associated panels
to specify options for performing those functions. Some of the functions you can
select are:

Precompile
The panel for this function lets you control the DB2 precompiler.

Bind a package
The panel for this function lets you bind your program's DBRM to a
package and change your defaults for binding the packages.

Bind a plan
The panel for this function lets you create your program's application plan
and change your defaults for binding the plans.

Compile, link, and run
The panel for these functions let you control the compiler or assembler and
the linkage editor.

TSO and batch: For TSO programs, you can use the program preparation
programs to control the host language run time processor and the program
itself.

986 Application Programming and SQL Guide

The Program Preparation panel also lets you change the DB2I default values, and
perform other precompile and prelink functions.

On the DB2 Program Preparation panel, shown in the following figure, enter the
name of the source program data set (this example uses SAMPLEPG.COBOL) and
specify the other options you want to include. When finished, press ENTER to
view the next panel.

The following explains the functions on the DB2 Program Preparation panel and
how to complete the necessary fields in order to start program preparation.

1 INPUT DATA SET NAME
Lets you specify the input data set name. The input data set name can be a
PDS or a sequential data set, and can also include a member name. If you
do not enclose the data set name in apostrophes, a standard TSO prefix
(user ID) qualifies the data set name.

The input data set name you specify is used to precompile, bind, link-edit,
and run the program.

2 DATA SET NAME QUALIFIER
Lets you qualify temporary data set names involved in the program
preparation process. Use any character string from 1 to 8 characters that
conforms to normal TSO naming conventions. (The default is TEMP.)

For programs that you prepare in the background or that use EDITJCL for
the PREPARATION ENVIRONMENT option, DB2 creates a data set named
tsoprefix.qualifier.CNTL to contain the program preparation JCL. The name
tsoprefix represents the prefix TSO assigns, and qualifier represents the value
you enter in the DATA SET NAME QUALIFIER field. If a data set with
this name already exists, DB2 deletes it.

3 PREPARATION ENVIRONMENT
Lets you specify whether program preparation occurs in the foreground or
background. You can also specify EDITJCL, in which case you are able to
edit and then submit the job. Use:

FOREGROUND to use the values you specify on the Program
Preparation panel and to run immediately.

DSNEPP01 DB2 PROGRAM PREPARATION SSID: DSN
COMMAND ===>_

Enter the following:
1 INPUT DATA SET NAME ===> SAMPLEPG.COBOL
2 DATA SET NAME QUALIFIER ===> TEMP (For building data set names)
3 PREPARATION ENVIRONMENT ===> FOREGROUND (FOREGROUND, BACKGROUND, EDITJCL)
4 RUN TIME ENVIRONMENT ... ===> TSO (TSO, CAF, CICS, IMS, RRSAF)
5 OTHER DSNH OPTIONS ===>

(Optional DSNH keywords)
Select functions: Display panel? Perform function?
6 CHANGE DEFAULTS ===> Y (Y/N)
7 PL/I MACRO PHASE ===> N (Y/N) ===> N (Y/N)
8 PRECOMPILE ===> Y (Y/N) ===> Y (Y/N)
9 CICS COMMAND TRANSLATION ===> N (Y/N)
10 BIND PACKAGE ===> Y (Y/N) ===> Y (Y/N)
11 BIND PLAN............... ===> Y (Y/N) ===> Y (Y/N)
12 COMPILE OR ASSEMBLE ===> Y (Y/N) ===> Y (Y/N)
13 PRELINK................. ===> N (Y/N) ===> N (Y/N)
14 LINK.................... ===> N (Y/N) ===> Y (Y/N)
15 RUN..................... ===> N (Y/N) ===> Y (Y/N)

Figure 54. The DB2 Program Preparation panel. Enter the source program data set name
and other options.

Chapter 17. Preparing an application to run on DB2 for z/OS 987

BACKGROUND to create and submit a file containing a DSNH CLIST
that runs immediately using the JOB control statement from either the
DB2I Defaults panel or your site's SUBMIT exit. The file is saved.
EDITJCL to create and open a file containing a DSNH CLIST in edit
mode. You can then submit the CLIST or save it.

4 RUN TIME ENVIRONMENT
Lets you specify the environment (TSO, CAF, CICS, IMS, RRSAF) in which
your program runs.

All programs are prepared under TSO, but can run in any of the
environments. If you specify CICS, IMS, or RRSAF, then you must set the
RUN field to NO because you cannot run such programs from the
Program Preparation panel. If you set the RUN field to YES, you can
specify only TSO or CAF.

(Batch programs also run under the TSO Terminal Monitor Program. You
therefore need to specify TSO in this field for batch programs.)

5 OTHER DSNH OPTIONS
Lets you specify a list of DSNH options that affect the program
preparation process, and that override options specified on other panels. If
you are using CICS, these can include options you want to specify to the
CICS command translator.

If you specify options in this field, separate them by commas. You can
continue listing options on the next line, but the total length of the option
list can be no more than 70 bytes.

Fields 6 through 15 let you select the function to perform and to choose whether to
show the DB2I panels for the functions you select. Use Y for YES, or N for NO.

If you are willing to accept default values for all the steps, enter N under Display
panel? for all the other preparation panels listed.

To make changes to the default values, entering Y under Display panel? for any
panel you want to see. DB2I then displays each of the panels that you request.
After all the panels display, DB2 proceeds with the steps involved in preparing
your program to run.

Variables for all functions used during program preparation are maintained
separately from variables entered from the DB2I Primary Option Menu. For
example, the bind plan variables you enter on the Program Preparation panel are
saved separately from those on any Bind Plan panel that you reach from the
Primary Option Menu.

6 CHANGE DEFAULTS
Lets you specify whether to change the DB2I defaults. Enter Y in the
Display panel? field next to this option; otherwise enter N. Minimally, you
should specify your subsystem identifier and programming language on
the Defaults panel.

7 PL/I MACRO PHASE
Lets you specify whether to display the “Program Preparation: Compile,
Link, and Run” panel to control the PL/I macro phase by entering PL/I
options in the OPTIONS field of that panel. That panel also displays for
options COMPILE OR ASSEMBLE, LINK, and RUN.

988 Application Programming and SQL Guide

This field applies to PL/I programs only. If your program is not a PL/I
program or does not use the PL/I macro processor, specify N in the
Perform function field for this option, which sets the Display panel? field
to the default N.

8 PRECOMPILE
Lets you specify whether to display the Precompile panel. To see this panel
enter Y in the Display panel? field next to this option; otherwise enter N.

9 CICS COMMAND TRANSLATION
Lets you specify whether to use the CICS command translator. This field
applies to CICS programs only.

IMS and TSO: If you run under TSO or IMS, ignore this step; this allows
the Perform function field to default to N.

CICS: If you are using CICS and have precompiled your program, you
must translate your program using the CICS command translator.

The command translator does not have a separate DB2I panel. You can
specify translation options on the Other Options field of the DB2 Program
Preparation panel, or in your source program if it is not an assembler
program.

Because you specified a CICS run time environment, the Perform function
column defaults to Y. Command translation takes place automatically after
you precompile the program.

10 BIND PACKAGE
Lets you specify whether to display the Bind Package panel. To see it,
enter Y in the Display panel? field next to this option; otherwise, enter N.

11 BIND PLAN
Lets you specify whether to display the Bind Plan panel. To see it, enter Y
in the Display panel? field next to this option; otherwise, enter N.

12 COMPILE OR ASSEMBLE
Lets you specify whether to display the “Program Preparation: Compile,
Link, and Run” panel. To see this panel enter Y in the Display panel? field
next to this option; otherwise, enter N.

13 PRELINK
Lets you use the prelink utility to make your C, C++, or Enterprise COBOL
for z/OS program reentrant. This utility concatenates compile-time
initialization information from one or more text decks into a single
initialization unit. To use the utility, enter Y in the Display panel? field next
to this option; otherwise, enter N. If you request this step, then you must
also request the compiler step and the link-edit step.

14 LINK
Lets you specify whether to display the “Program Preparation: Compile,
Link, and Run” panel. To see it, enter Y in the Display panel? field next to
this option; otherwise, enter N. If you specify Y in the Display panel? field
for the COMPILE OR ASSEMBLE option, you do not need to make any
changes to this field; the panel displayed for COMPILE OR ASSEMBLE is
the same as the panel displayed for LINK. You can make the changes you
want to affect the link-edit step at the same time you make the changes to
the compiler step.

Chapter 17. Preparing an application to run on DB2 for z/OS 989

15 RUN
Lets you specify whether to run your program. The RUN option is
available only if you specify TSO or CAF for RUN TIME ENVIRONMENT.

If you specify Y in the Display panel? field for the COMPILE OR
ASSEMBLE or LINK option, you can specify N in this field, because the
panel displayed for COMPILE OR ASSEMBLE and for LINK is the same as
the panel displayed for RUN.

IMS and CICS: IMS and CICS programs cannot run using DB2I. If you are
using IMS or CICS, use N in these fields.

TSO and batch: If you are using TSO and want to run your program, you
must enter Y in the Perform function column next to this option. You can
also indicate that you want to specify options and values to affect the
running of your program, by entering Y in the Display panel column.

Pressing ENTER takes you to the first panel in the series you specified, in this
example to the DB2I Defaults panel. If, at any point in your progress from panel to
panel, you press the END key, you return to this first panel, from which you can
change your processing specifications. Asterisks (*) in the Display panel? column of
rows 7 through 14 indicate which panels you have already examined. You can see
a panel again by writing a Y over an asterisk.
Related reference:
“Bind Package panel” on page 996
“Bind Plan panel” on page 999
“DB2I Defaults Panel 1”
“Defaults for Bind Package and Defaults for Rebind Package panels” on page 1002
“Defaults for Bind Plan and Defaults for Rebind Plan panels” on page 1005
“Precompile panel” on page 994
“Program Preparation: Compile, Link, and Run panel” on page 1009

DSNH (TSO CLIST) (DB2 Commands)

Language Environment Programming Guide (z/OS Language Environment
Programming Guide)

DB2I Defaults Panel 1
DB2I Defaults Panel 1 lets you change many of the system default values that were
set at DB2 installation time.

The following figure shows the fields that affect the processing of the other DB2I
panels.

990 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_dsnh.htm#db2z_cmd_dsnh
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea21c0/APPENDIX1.1?ACTION=MATCHES&REQUEST=prelinking+an+application&TYPE=FUZZY&SHELF=&DT=20110618162445&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea21c0/APPENDIX1.1?ACTION=MATCHES&REQUEST=prelinking+an+application&TYPE=FUZZY&SHELF=&DT=20110618162445&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT

The following explains the fields on DB2I Defaults Panel 1.

1 DB2 NAME
Lets you specify the DB2 subsystem that processes your DB2I requests. If
you specify a different DB2 subsystem, its identifier displays in the SSID
(subsystem identifier) field located at the top, right side of your screen. The
default is DSN.

2 DB2 CONNECTION RETRIES
Lets you specify the number of additional times to attempt to connect to
DB2, if DB2 is not up when the program issues the DSN command. The
program preparation process does not use this option.

Use a number from 0 to 120. The default is 0. Connections are attempted at
30-second intervals.

3 APPLICATION LANGUAGE
Lets you specify the default programming language for your application
program. You can specify any of the following languages:
ASM

For High Level Assembler/z/OS
C For C language
CPP

For C++
IBMCOB

For Enterprise COBOL for z/OS. This option is the default.
FORTRAN

For VS Fortran
PLI

For PL/I

If you specify IBMCOB, DB2 prompts you for more COBOL defaults on
panel DSNEOP02. See “DB2I Defaults Panel 2” on page 993.

You cannot specify FORTRAN for IMS or CICS programs.

4 LINES/PAGE OF LISTING
Lets you specify the number of lines to print on each page of listing or
SPUFI output. The default is 60.

5 MESSAGE LEVEL
Lets you specify the lowest level of message to return to you during the
BIND phase of the preparation process. Use:

DSNEOP01 DB2I DEFAULTS PANEL 1
COMMAND ===>_

Change defaults as desired:

1 DB2 NAME ===> DSN (Subsystem identifier)
2 DB2 CONNECTION RETRIES ===> 0 (How many retries for DB2 connection)
3 APPLICATION LANGUAGE ===> IBMCOB (ASM, C, CPP, IBMCOB, FORTRAN, PLI)
4 LINES/PAGE OF LISTING ===> 60 (A number from 5 to 999)
5 MESSAGE LEVEL ===> I (Information, Warning, Error, Severe)
6 SQL STRING DELIMITER ===> DEFAULT (DEFAULT, ’ or ")
7 DECIMAL POINT ===> . (. or ,)
8 STOP IF RETURN CODE >= ===> 8 (Lowest terminating return code)
9 NUMBER OF ROWS ===> 20 (For ISPF Tables)
10 AS USER ===> (User ID to associate with trusted connection)

Figure 55. DB2I Defaults Panel 1

Chapter 17. Preparing an application to run on DB2 for z/OS 991

I For all information, warning, error, and severe error messages
W For warning, error, and severe error messages
E For error and severe error messages
S For severe error messages only

6 SQL STRING DELIMITER
Lets you specify the symbol used to delimit a string in SQL statements in
COBOL programs. This option is valid only when the application language
is IBMCOB. Use:
DEFAULT

To use the default defined at installation time
' For an apostrophe
" For a quotation mark

7 DECIMAL POINT
Lets you specify how your host language source program represents
decimal separators and how SPUFI displays decimal separators in its
output. Use a comma (,) or a period (.). The default is a period (.).

8 STOP IF RETURN CODE >=
Lets you specify the smallest value of the return code (from precompile,
compile, link-edit, or bind) that will prevent later steps from running. Use:
4 To stop on warnings and more severe errors.
8 To stop on errors and more severe errors. The default is 8.

9 NUMBER OF ROWS
Lets you specify the default number of input entry rows to generate on the
initial display of ISPF panels. The number of rows with non-blank entries
determines the number of rows that appear on later displays.

10 AS USER
Lets you specify a user ID to associate with the trusted connection for the
current DB2I session.

DB2 establishes the trusted connection for the user that you specify if the
following conditions are true:
v The primary authorization ID that DB2 obtains after running the

connection exit is allowed to use the trusted connection without
authentication.

v The security label, if defined either implicitly or explicitly in the trusted
context for the user, is defined in RACF for the user.

After DB2 establishes the trusted connection, the primary authorization ID,
any secondary authorization IDs, any role, and any security label that is
associated with the user ID that is specified in the AS USER field are used
for the trusted connection. DB2 uses this security label to verify multilevel
security for the user.

If the primary authorization ID that is associated with the user ID that is
specified in the AS USER field is not allowed to use the trusted connection
or requires authentication information, the connection request fails. If DB2
cannot verify the security label, the connection request also fails.

The value that you enter in this field is retained only for the length of the
DB2I session. The field is reset to blank when you exit DB2I.

Suppose that the default programming language is PL/I and the default number of
lines per page of program listing is 60. Your program is in COBOL, so you want to
change field 3, APPLICATION LANGUAGE. You also want to print 80 lines to the
page, so you need to change field 4, LINES/PAGE OF LISTING, as well. Figure 55
on page 991

992 Application Programming and SQL Guide

on page 991 shows the entries that you make in DB2I Defaults Panel 1 to make
these changes. In this case, pressing ENTER takes you to DB2 Defaults Panel 2.

DB2I Defaults Panel 2
After you press Enter on the DB2I Defaults Panel 1, the DB2I Defaults Panel 2 is
displayed. If you chose IBMCOB as the language on the DB2I Defaults Panel 1,
three fields are displayed. Otherwise, only the first field is displayed.

The following figure shows the DB2I Defaults Panel 2 when IBMCOB is selected.

1 DB2I JOB STATEMENT
Lets you change your default job statement. Specify a job control
statement, and optionally, a JOBLIB statement to use either in the
background or the EDITJCL program preparation environment. Use a
JOBLIB statement to specify run time libraries that your application
requires. If your program has a SUBMIT exit routine, DB2 uses that
routine. If that routine builds a job control statement, you can leave this
field blank.

2 COBOL STRING DELIMITER
Lets you specify the symbol used to delimit a string in a COBOL statement
in a COBOL application. Use:
DEFAULT

To use the default defined at installation time
' For an apostrophe
" For a quotation mark

Leave this field blank to accept the default value.

3 DBCS SYMBOL FOR DCLGEN
Lets you enter either G (the default) or N, to specify whether DCLGEN
generates a picture clause that has the form PIC G(n) DISPLAY-1 or PIC
N(n).

Leave this field blank to accept the default value.

Pressing ENTER takes you to the next panel you specified on the DB2 Program
Preparation panel, in this case, to the Precompile panel.

DSNEOP02 DB2I DEFAULTS PANEL 2
COMMAND ===>_

Change defaults as desired:

1 DB2I JOB STATEMENT: (Optional if your site has a SUBMIT exit)
===> //USRT001A JOB (ACCOUNT),’NAME’
===> //*
===> //*
===> //*

COBOL DEFAULTS: (For IBMCOB)
2 COBOL STRING DELIMITER ===> DEFAULT (DEFAULT, ’ or ")
3 DBCS SYMBOL FOR DCLGEN ===> G (G/N - Character in PIC clause)

Figure 56. DB2I Defaults Panel 2

Chapter 17. Preparing an application to run on DB2 for z/OS 993

Precompile panel
After you set the DB2I defaults, you can precompile your application. You can
reach the Precompile panel by specifying it as a part of the program preparation
process from the DB2 Program Preparation panel. Or you can reach it directly from
the DB2I Primary Option Menu.

The way you choose to reach the panel determines the default values of the fields
it contains. The following figure shows the Precompile panel.

The following explains the functions on the Precompile panel, and how to enter
the fields for preparing to precompile.

1 INPUT DATA SET
Lets you specify the data set name of the source program and SQL
statements to precompile.

If you reached this panel through the DB2 Program Preparation panel, this
field contains the data set name specified there. You can override it on this
panel.

If you reached this panel directly from the DB2I Primary Option Menu,
you must enter the data set name of the program you want to precompile.
The data set name can include a member name. If you do not enclose the
data set name with apostrophes, a standard TSO prefix (user ID) qualifies
the data set name.

2 INCLUDE LIBRARY
Lets you enter the name of a library containing members that the
precompiler should include. These members can contain output from
DCLGEN. If you do not enclose the name in apostrophes, a standard TSO
prefix (user ID) qualifies the name.

You can request additional INCLUDE libraries by entering DSNH CLIST
parameters of the form PnLIB(dsname), where n is 2, 3, or 4) on the OTHER
OPTIONS field of this panel or on the OTHER DSNH OPTIONS field of
the Program Preparation panel.

3 DSNAME QUALIFIER
Lets you specify a character string that qualifies temporary data set names
during precompile. Use any character string from 1 to 8 characters in
length that conforms to normal TSO naming conventions.

DSNETP01 PRECOMPILE SSID: DSN
COMMAND ===>_

Enter precompiler data sets:
1 INPUT DATA SET ===> SAMPLEPG.COBOL
2 INCLUDE LIBRARY ... ===> SRCLIB.DATA

3 DSNAME QUALIFIER .. ===> TEMP (For building data set names)
4 DBRM DATA SET ===>

Enter processing options as desired:
5 WHERE TO PRECOMPILE ===> FOREGROUND (FOREGROUND, BACKGROUND, or EDITJCL)
6 VERSION ===>

(Blank, VERSION, or AUTO)
7 OTHER OPTIONS ===>

Figure 57. The Precompile panel. Specify the include library, if any, that your program should
use, and any other options you need.

994 Application Programming and SQL Guide

If you reached this panel through the DB2 Program Preparation panel, this
field contains the data set name qualifier specified there. You can override
it on this panel.

If you reached this panel from the DB2I Primary Option Menu, you can
either specify a DSNAME QUALIFIER or let the field take its default
value, TEMP.

IMS and TSO: For IMS and TSO programs, DB2 stores the precompiled
source statements (to pass to the compiler or assemble step) in a data set
named tsoprefix.qualifier.suffix. A data set named tsoprefix.qualifier.PCLIST
contains the precompiler print listing.

For programs prepared in the background or that use the PREPARATION
ENVIRONMENT option EDITJCL (on the DB2 Program Preparation panel),
a data set named tsoprefix.qualifier.CNTL contains the program preparation
JCL.

In these examples, tsoprefix represents the prefix TSO assigns, often the
same as the authorization ID. qualifier represents the value entered in the
DSNAME QUALIFIER field. suffix represents the output name, which is
one of the following: COBOL, FORTRAN, C, PLI, ASM, DECK, CICSIN,
OBJ, or DATA. In the Precompile Panel that is shown above, the data set
tsoprefix.TEMP.COBOL contains the precompiled source statements, and
tsoprefix.TEMP.PCLIST contains the precompiler print listing. If data sets
with these names already exist, then DB2 deletes them.

CICS: For CICS programs, the data set tsoprefix.qualifier.suffix receives the
precompiled source statements in preparation for CICS command
translation.

If you do not plan to do CICS command translation, the source statements
in tsoprefix.qualifier.suffix, are ready to compile. The data set
tsoprefix.qualifier.PCLIST contains the precompiler print listing.

When the precompiler completes its work, control passes to the CICS
command translator. Because there is no panel for the translator, translation
takes place automatically. The data set tsoprefix.qualifier.CXLIST contains the
output from the command translator.

4 DBRM DATA SET
Lets you name the DBRM library data set for the precompiler output. The
data set can also include a member name.

When you reach this panel, the field is blank. When you press ENTER,
however, the value contained in the DSNAME QUALIFIER field of the
panel, concatenated with DBRM, specifies the DBRM data set:
qualifier.DBRM.

You can enter another data set name in this field only if you allocate and
catalog the data set before doing so. This is true even if the data set name
that you enter corresponds to what is otherwise the default value of this
field.

The precompiler sends modified source code to the data set qualifier.host,
where host is the language specified in the APPLICATION LANGUAGE
field of DB2I Defaults panel 1.

5 WHERE TO PRECOMPILE
Lets you indicate whether to precompile in the foreground or background.
You can also specify EDITJCL, in which case you are able to edit and then
submit the job.

Chapter 17. Preparing an application to run on DB2 for z/OS 995

If you reached this panel from the DB2 Program Preparation panel, the
field contains the preparation environment specified there. You can
override that value if you want.

If you reached this panel directly from the DB2I Primary Option Menu,
you can either specify a processing environment or allow this field to take
its default value. Use:

FOREGROUND to immediately precompile the program with the
values you specify in these panels.
BACKGROUND to create and immediately submit to run a file
containing a DSNH CLIST using the JOB control statement from either
DB2I Defaults Panel 2 or your site's SUBMIT exit. The file is saved.
EDITJCL to create and open a file containing a DSNH CLIST in edit
mode. You can then submit the CLIST or save it.

6 VERSION
Lets you specify the version of the program and its DBRM. If the version
contains the maximum number of characters permitted (64), you must
enter each character with no intervening blanks from one line to the next.
This field is optional.

7 OTHER OPTIONS
Lets you enter any option that the DSNH CLIST accepts, which gives you
greater control over your program. The DSNH options you specify in this
field override options specified on other panels. The option list can
continue to the next line, but the total length of the list can be no more
than 70 bytes.

Related reference:

DSNH (TSO CLIST) (DB2 Commands)

Bind Package panel
The Bind Package panel is the first of two DB2I panels that request information
about how you want to bind a package.

You can reach the Bind Package panel either directly from the DB2I Primary
Option Menu, or as a part of the program preparation process. If you enter the
Bind Package panel from the Program Preparation panel, many of the Bind
Package entries contain values from the Primary and Precompile panels. Figure 58
on page 997 shows the Bind Package panel.

996 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_dsnh.htm#db2z_cmd_dsnh

The following information explains the functions on the Bind Package panel and
how to fill the necessary fields in order to bind your program.

1 LOCATION NAME
Lets you specify the system at which to bind the package. You can use
from 1 to 16 characters to specify the location name. The location name
must be defined in the catalog table SYSIBM.LOCATIONS. The default is
the local DBMS.

2 COLLECTION-ID
Lets you specify the collection the package is in. You can use from 1 to 128
characters to specify the collection, and the first character must be
alphabetic. This field is scrollable.

3 DBRM: COPY:
Lets you specify whether you are creating a new package (DBRM) or
making a copy of a package that already exists (COPY). Use:

DBRM
To create a new package. You must specify values in the LIBRARY,
PASSWORD, and MEMBER fields.

COPY
To copy an existing package. You must specify values in the
COLLECTION-ID and PACKAGE-ID fields. (The VERSION field is
optional.)

4 MEMBER or COLLECTION-ID
MEMBER (for new packages): If you are creating a new package, this
option lets you specify the DBRM to bind. You can specify a member name
from 1 to 128 characters. This field is scrollable. The default name depends
on the input data set name.
v If the input data set is partitioned, the default name is the member name

of the input data set specified in the INPUT DATA SET NAME field of
the DB2 Program Preparation panel.

v If the input data set is sequential, the default name is the second
qualifier of this input data set.

DSNEBP07 BIND PACKAGE SSID: DSN

COMMAND ===>_

Specify output location and collection names:
1 LOCATION NAME ===> (Defaults to local)
2 COLLECTION-ID ===> > (Required)

Specify package source (DBRM or COPY):
3 DBRM: COPY: ===> DBRM (Specify DBRM or COPY)
4 MEMBER or COLLECTION-ID ===> >
5 PASSWORD or PACKAGE-ID .. ===> >
6 LIBRARY or VERSION ===>

(Blank, or COPY version-id)
7 -- OPTIONS ===> (COMPOSITE or COMMAND)

Enter options as desired:
8 CHANGE CURRENT DEFAULTS? ===> NO (NO or YES)
9 ENABLE/DISABLE CONNECTIONS? ===> NO (NO or YES)

10 OWNER OF PACKAGE (AUTHID).. ===> > (Leave blank for primary ID)
11 QUALIFIER ===> > (Leave blank for OWNER)
12 ACTION ON PACKAGE ===> REPLACE (ADD or REPLACE)
13 INCLUDE PATH? ===> NO (NO or YES)
14 REPLACE VERSION ===> (Replacement version-id)

Figure 58. The Bind Package panel

Chapter 17. Preparing an application to run on DB2 for z/OS 997

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|

COLLECTION-ID (for copying a package): If you are copying a package,
this option specifies the collection ID that contains the original package.
You can specify a collection ID from 1 to 128 characters, which must be
different from the collection ID specified on the PACKAGE ID field. This
field is scrollable.

5 PASSWORD or PACKAGE-ID
PASSWORD (for new packages): If you are creating a new package, this
lets you enter password for the library you list in the LIBRARY field. You
can use this field only if you reached the Bind Package panel directly from
the DB2 Primary Option Menu. This field is scrollable.

PACKAGE-ID (for copying packages): If you are copying a package, this
option lets you specify the name of the original package. You can enter a
package ID from 1 to 128 characters. This field is scrollable.

6 LIBRARY or VERSION
LIBRARY (for new packages): If you are creating a new package, this lets
you specify the names of the libraries that contain the DBRMs specified on
the MEMBER field for the bind process. Libraries are searched in the order
specified and must in the catalog tables.

VERSION (for copying packages): If you are copying a package, this
option lets you specify the version of the original package. You can specify
a version ID from 1 to 64 characters.

7 OPTIONS
Lets you specify which bind options DB2 uses when you issue BIND
PACKAGE with the COPY option. Specify:
v COMPOSITE (default) to cause DB2 to use any options you specify in

the BIND PACKAGE command. For all other options, DB2 uses the
options of the copied package.

v COMMAND to cause DB2 to use the options you specify in the BIND
PACKAGE command. For all other options, DB2 uses the following
values:
– For a local copy of a package, DB2 uses the defaults for the local DB2

subsystem.
– For a remote copy of a package, DB2 uses the defaults for the server

on which the package is bound.

8 CHANGE CURRENT DEFAULTS?
Lets you specify whether to change the current defaults for binding
packages. If you enter YES in this field, you see the Defaults for Bind
Package panel as your next step. You can enter your new preferences there;
for instructions, see “Defaults for Bind Package and Defaults for Rebind
Package panels” on page 1002.

9 ENABLE/DISABLE CONNECTIONS?
Lets you specify whether you want to enable and disable system
connections types to use with this package. This is valid only if the
LOCATION NAME field names your local DB2 system.

Placing YES in this field displays a panel (shown in Figure 64 on page
1007) that lets you specify whether various system connections are valid
for this application. You can specify connection names to further identify
enabled connections within a connection type. A connection name is valid
only when you also specify its corresponding connection type.

The default enables all connection types.

998 Application Programming and SQL Guide

|
|
|
|
|

|
|
|
|

|
|
|

10 OWNER OF PACKAGE (AUTHID)
Lets you specify the primary authorization ID of the owner of the new
package. That ID is the name owning the package, and the name
associated with all accounting and trace records produced by the package.

The owner must have the privileges required to run SQL statements
contained in the package.

The default is the primary authorization ID of the bind process.

The field is scrollable, and the maximum field length is 128.

11 QUALIFIER
Lets you specify the default schema for unqualified tables, views, indexes,
and aliases. You can specify a schema name from 1 to 128 characters. The
default is the authorization ID of the package owner. This field is
scrollable.

12 ACTION ON PACKAGE
Lets you specify whether to replace an existing package or create a new
one. Use:

REPLACE (default) to replace the package named in the PACKAGE-ID
field if it already exists, and add it if it does not. (Use this option if you
are changing the package because the SQL statements in the program
changed. If only the SQL environment changes but not the SQL
statements, you can use REBIND PACKAGE.)
ADD to add the package named in the PACKAGE-ID field, only if it
does not already exist.

13 INCLUDE PATH?
Indicates whether you will supply a list of schema names that DB2
searches when it resolves unqualified distinct type, user-defined function,
and stored procedure names in SQL statements. The default is NO. If you
specify YES, DB2 displays a panel in which you specify the names of
schemas for DB2 to search.

14 REPLACE VERSION
Lets you specify whether to replace a specific version of an existing
package or create a new one. If the package and the version named in the
PACKAGE-ID and VERSION fields already exist, you must specify
REPLACE. You can specify a version ID from 1 to 64 characters. The
default version ID is that specified in the VERSION field.

Bind Plan panel
The Bind Plan panel is the first of two DB2I panels that request information about
how you want to bind an application plan.

Like the Precompile panel, you can reach the Bind Plan panel either directly from
the DB2I Primary Option Menu, or as a part of the program preparation process.
You must have an application plan, even if you bind your application to packages;
this panel also follows the Bind Package panels.

If you enter the Bind Plan panel from the Program Preparation panel, many of the
Bind Plan entries contain values from the Primary and Precompile panels.

Chapter 17. Preparing an application to run on DB2 for z/OS 999

|

|
|
|
|

The following explains the functions on the Bind Plan panel and how to fill the
necessary fields in order to bind your program.

1 LOCATION NAME
Lets you specify the remote system where the package that is named in the
PACKAGE ID field is bound. The location name must be defined in the
catalog table SYSIBM.LOCATIONS. The default is the local DBMS.

2 COLLECTION ID
Lets you specify the collection that includes the package that is to be
bound into the plan.

The field is scrollable, and the maximum field length is 128.

3 PACKAGE ID
Lets you specify the name of the package that is to be bound into the plan.

4 ADDITIONAL PACKAGE LISTS
Lets you include a list of additional packages in the plan. If you specify
YES, a separate panel displays, where you must enter the package location,
collection name, and package name for each package to include in the
plan. This list is optional.

5 PLAN NAME
Lets you name the application plan to create. You can specify a name from
1 to 8 characters, and the first character must be alphabetic. If there are no
errors, the bind process prepares the plan and enters its description into
the EXPLAIN table.

If you reached this panel through the DB2 Program Preparation panel, the
default for this field depends on the value you entered in the INPUT
DATA SET NAME field of that panel.

If you reached this panel directly from the DB2 Primary Option Menu, you
must include a plan name if you want to create an application plan. The
default name for this field depends on the input data set:
v If the input data set is partitioned, the default name is the member

name.
v If the input data set is sequential, the default name is the second

qualifier of the data set name.

DSNEBP02 BIND PLAN SSID: DSN
COMMAND ===>_

Enter primary package list:
1 LOCATION NAME ===> (Defaults to local)
2 COLLECTION ID ===> > (Required)
3 PACKAGE ID ===> (Package ID or *)
4 ADDITIONAL PACKAGE LISTS .. ===> NO (YES to include more packages)

Enter options as desired:
5 PLAN NAME ===> (Required to create a plan)
6 CHANGE CURRENT DEFAULTS?.. ===> NO (NO or YES)
7 ENABLE/DISABLE CONNECTIONS? ===> NO (NO or YES)
8 OWNER OF PLAN (AUTHID)..... ===> > (Leave blank for your primary ID)
9 QUALIFIER ===> > (For tables, views, and aliases)
10 CACHESIZE ===> 0 (Blank, or value 0-4096)
11 ACTION ON PLAN ===> REPLACE (REPLACE or ADD)
12 RETAIN EXECUTION AUTHORITY. ===> NO (YES to retain user list)
13 CURRENT SERVER ===> (Location name)
14 INCLUDE PATH? ===> NO (NO or YES)

Figure 59. The Bind Plan panel

1000 Application Programming and SQL Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

6 CHANGE CURRENT DEFAULTS?
Lets you specify whether to change the current defaults for binding plans.
If you enter YES in this field, you see the Defaults for Bind Plan panel as
your next step. You can enter your new preferences there.

7 ENABLE/DISABLE CONNECTIONS?
Lets you specify whether you want to enable and disable system
connections types to use with this package. This is valid only if the
LOCATION NAME field names your local DB2 system.

Placing YES in this field displays a panel (shown in Figure 64 on page
1007) that lets you specify whether various system connections are valid
for this application. You can specify connection names to further identify
enabled connections within a connection type. A connection name is valid
only when you also specify its corresponding connection type.

The default enables all connection types.

8 OWNER OF PLAN (AUTHID)
Lets you specify the primary authorization ID of the owner of the new
plan. That ID is the name owning the plan, and the name associated with
all accounting and trace records produced by the plan.

The owner must have the privileges required to run SQL statements
contained in the plan.

The field is scrollable, and the maximum field length is 128.

9 QUALIFIER
Lets you specify the default schema for unqualified tables, views, and
aliases. You can specify a schema name from 1 to 128 characters, which
must conform to the rules for SQL identifiers. If you leave this field blank,
the default qualifier is the authorization ID of the plan owner. This field is
scrollable.

Lets you specify the default schema for unqualified tables, views, and
aliases. You can specify a schema name from 1 to 8 characters, which must
conform to the rules for SQL identifiers. If you leave this field blank, the
default qualifier is the authorization ID of the plan owner.

10 CACHESIZE
Lets you specify the size (in bytes) of the authorization cache. Valid values
are in the range 0 to 4096. Values that are not multiples of 256 round up to
the next highest multiple of 256. A value of 0 indicates that DB2 does not
use an authorization cache. The default is 1024.

Each concurrent user of a plan requires 8 bytes of storage, with an
additional 32 bytes for overhead.

11 ACTION ON PLAN
Lets you specify whether this is a new or changed application plan. Use:

REPLACE (default) to replace the plan named in the PLAN NAME
field if it already exists, and add the plan if it does not exist.
ADD to add the plan named in the PLAN NAME field, only if it does
not already exist.

12 RETAIN EXECUTION AUTHORITY
Lets you choose whether or not those users with the authority to bind or
run the existing plan are to keep that authority over the changed plan. This
applies only when you are replacing an existing plan.

Chapter 17. Preparing an application to run on DB2 for z/OS 1001

|

|
|
|
|
|

|
|
|
|

If the plan ownership changes and you specify YES, the new owner grants
BIND and EXECUTE authority to the previous plan owner.

If the plan ownership changes and you do not specify YES, then everyone
but the new plan owner loses EXECUTE authority (but not BIND
authority), and the new plan owner grants BIND authority to the previous
plan owner.

13 CURRENT SERVER
Lets you specify the initial server to receive and process SQL statements in
this plan. You can specify a name from 1 to 16 characters, which you must
previously define in the catalog table SYSIBM.LOCATIONS.

If you specify a remote server, DB2 connects to that server when the first
SQL statement executes. The default is the name of the local DB2
subsystem.

14 INCLUDE PATH?
Indicates whether you will supply a list of schema names that DB2
searches when it resolves unqualified distinct type, user-defined function,
and stored procedure names in SQL statements. The default is NO. If you
specify YES, DB2 displays a panel in which you specify the names of
schemas for DB2 to search.

When you finish making changes to this panel, press ENTER to go to the second
of the program preparation panels, Program Prep: Compile, Link, and Run.
Related concepts:
“Authorization cache” on page 959
Related reference:
“Defaults for Bind Plan and Defaults for Rebind Plan panels” on page 1005

BIND and REBIND options (DB2 Commands)

Defaults for Bind Package and Defaults for Rebind Package
panels

These DB2I panels lets you change your defaults for BIND PACKAGE and
REBIND PACKAGE options.

On the following panel, enter new defaults for binding a package.

1002 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions

On the following panel, enter new defaults for rebinding a package.

With a few minor exceptions, the options on this panel are the same as the options
for the defaults for rebinding a package. However, the defaults for REBIND
PACKAGE are different from those shown in the preceding figure, and you can
specify SAME in any field to specify the values used the last time the package was
bound. For rebinding, the default value for all fields is SAME.

DSNEBP10 DEFAULTS FOR BIND PACKAGE SSID: DSN
COMMAND ===> _
----------------- Use the UP/DOWN keys to access all options ------------------

More: +
Change default options as necessary:

1 ISOLATION LEVEL ===> (CS, RR, RS, UR, or NC)
2 VALIDATION TIME ===> (RUN or BIND)
3 RESOURCE RELEASE TIME ... ===> (COMMIT, DEALLOCATE, or

INHERITFROMPLAN)
4 EXPLAIN PATH SELECTION .. ===> (NO or YES)
5 DATA CURRENCY ===> (NO or YES)
6 PARALLEL DEGREE ===> (1 or ANY)
7 SQLERROR PROCESSING ===> (NOPACKAGE or CONTINUE)
8 REOPTIMIZE FOR INPUT VARS ===> (ALWAYS, NONE, ONCE, or AUTO)
9 DEFER PREPARE ===> (NO, YES, or INHERITFROMPLAN)
10 KEEP DYN SQL PAST COMMIT ===> (NO or YES)
11 APPLICATION ENCODING ... ===> (Blank, ASCII, EBCDIC,

UNICODE, or ccsid)
12 OPTIMIZATION HINT ===> > (Blank or ’hint-id’)
13 IMMEDIATE WRITE ===> (YES, NO, or INHERITFROMPLAN)
14 DYNAMIC RULES ===> (RUN, BIND, DEFINE, or INVOKE)
15 DBPROTOCOL ===> (blank, DRDA, or DRDACBF)
16 ACCESS PATH REUSE ===> NONE (ERROR, NONE, or WARN)
17 ACCESS PATH COMPARISON .. ===> NONE (ERROR, NONE, or WARN)
18 SYSTEM_TIME SENSITIVE ... ===> (blank, NO, or YES)
19 BUSINESS_TIME SENSITIVE . ===> (blank, NO, or YES)
20 ARCHIVE SENSITIVE ===> (blank, NO, or YES)
21 APPLICATION COMPATIBILITY ===> (blank, V10R1, or V11R1)

PRESS: ENTER to continue UP/DOWN to scroll RETURN to EXIT

Figure 60. The Defaults for Bind Package panel

Chapter 17. Preparing an application to run on DB2 for z/OS 1003

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

The following table lists the fields on the Defaults for Bind Package and Defaults
for Rebind Package panels, and the corresponding bind and rebind options.

Table 157. Defaults for Bind Package and Defaults for Rebind Package panel fields and
corresponding bind or rebind options

Field name Bind or rebind option

ACCESS PATH COMPARISON APCOMPARE

ACCESS PATH RETAIN DUPS APRETAINDUP

ACCESS PATH REUSE APREUSE

APPLICATION COMPATIBILITY APPLCOMPAT

APPLICATION ENCODING ENCODING

ARCHIVE SENSITIVE ARCHIVESENSITIVE

BUSINESS_TIME SENSITIVE BUSTINESENSITIVE

DATA CURRENCY CURRENTDATA

DBPROTOCOL DBPROTOCOL

DEFER PREPARE DEFER and NODEFER

DYNAMIC RULES DYNAMICRULES

EXPLAIN PATH SELECTION EXPLAIN

IMMEDIATE WRITE IMMEDWRITE

ISOLATION LEVEL ISOLATION

DSNEBP11 DEFAULTS FOR REBIND PACKAGE SSID: DSN
COMMAND ===> _
----------------- Use the UP/DOWN keys to access all options ------------------

More: +
Change default options as necessary:

1 ISOLATION LEVEL ===> (SAME, CS, RR, RS, UR, or NC)
2 PLAN VALIDATION TIME ===> (SAME, RUN, or BIND)
3 RESOURCE RELEASE TIME ... ===> (SAME, DEALLOCATE, COMMIT,

or INHERITFROMPLAN)
4 EXPLAIN PATH SELECTION .. ===> (SAME, NO, or YES)
5 DATA CURRENCY ===> (SAME, NO, or YES)
6 PARALLEL DEGREE ===> (SAME, 1 or ANY)
7 REOPTIMIZE FOR INPUT VARS ===> (SAME, ALWAYS, NONE, ONCE, AUTO)
8 DEFER PREPARE ===> (SAME, NO, YES,

or INHERITFROMPLAN)
9 KEEP DYN SQL PAST COMMIT ===> (SAME, NO, or YES)
10 APPLICATION ENCODING ... ===> (SAME, Blank, ASCII, EBCDIC,

UNICODE, or ccsid)
11 OPTIMIZATION HINT ===> > (Blank or ’hint-id’)
12 IMMEDIATE WRITE ===> (SAME, NO, YES,

or INHERITFROMPLAN)
13 DBPROTOCOL ===> (blank, DRDA, or DRDACBF)
14 DYNAMIC RULES ===> (SAME, RUN, BIND,

DEFINERUN, DEFINEBIND,
INVOKERUN or INVOKEBIND)

15 PLAN MANAGEMENT ===> (DEFAULT, BASIC, EXTENDED, OFF)
16 ACCESS PATH REUSE ===> (DEFAULT, ERROR, NONE, or WARN)
17 ACCESS PATH COMPARISON .. ===> (DEFAULT, ERROR, NONE, or WARN)
18 ACCESS PATH RETAIN DUPS . ===> (DEFAULT, NO, OR YES)
19 SYSTEM_TIME SENSITIVE ... ===> (SAME, NO, or YES)
20 BUSINESS_TIME SENSITIVE . ===> (SAME, NO, or YES)
21 ARCHIVE SENSITIVE ===> (SAME, NO, or YES)
22 APPLICATION COMPATIBILITY ===> (SAME, V10R1, or V11R1)

PRESS: ENTER to continue UP/DOWN to scroll RETURN to EXIT

Figure 61. The Defaults for Rebind Package panel

1004 Application Programming and SQL Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptapcompare.htm#db2z_bindoptapcompare
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptapretaindup.htm#db2z_bindoptapretaindup
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptapreuse.htm#db2z_bindoptapreuse
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptapplcompat.htm#db2z_bindoptapplcompat
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptencoding.htm#db2z_bindoptencoding
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptarchivesensitive.htm#db2z_bindoptarchivesensitive
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptbustimesensitive.htm#db2z_bindoptbustimesensitive
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptcurrentdata.htm#db2z_bindoptcurrentdata
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptdbprotocol.htm#db2z_bindoptdbprotocol
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptdeferandnodefer.htm#db2z_bindoptdefernandnodefer
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptdynamicrules.htm#db2z_bindoptdynamicrules
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptexplain.htm#db2z_bindoptexplain
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptimmedwrite.htm#db2z_bindoptimmedwrite
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptisolation.htm#db2z_bindoptisolation

Table 157. Defaults for Bind Package and Defaults for Rebind Package panel fields and
corresponding bind or rebind options (continued)

Field name Bind or rebind option

KEEP DYN SQL PAST COMMIT KEEPDYNAMIC

OPTIMIZATION HINT OPTHINT

PARALLEL DEGREE DEGREE

PLAN MANAGEMENT PLANMGMT

REOPTIMIZE FOR INPUT VARS REOPT

RESOURCE RELEASE TIME RELEASE

SQLERROR PROCESSING SQLERROR

SYSTEM_TIME SENSITIVE SYSTIMESENSITIVE

VALIDATION TIME and PLAN
VALIDATION TIME

VALIDATE

Related concepts:
“DYNAMICRULES bind option” on page 957

Parallel processing (DB2 Performance)

Investigating SQL performance by using EXPLAIN (DB2 Performance)
Related tasks:
“Setting the isolation level of SQL statements in a REXX program” on page 424
Related reference:

BIND and REBIND options (DB2 Commands)

Defaults for Bind Plan and Defaults for Rebind Plan panels
These DB2I panels let you change your defaults for BIND PLAN and REBIND
PLAN options.

On the following panel, enter new defaults for binding a plan.

DSNEBP10 DEFAULTS FOR BIND PLAN SSID: DSN
COMMAND ===>

Change default options as necessary:

1 ISOLATION LEVEL ===> RR (RR, RS, CS, or UR)
2 VALIDATION TIME ===> RUN (RUN or BIND)
3 RESOURCE RELEASE TIME ... ===> COMMIT (COMMIT or DEALLOCATE)
4 EXPLAIN PATH SELECTION .. ===> NO (NO or YES)
5 DATA CURRENCY ===> NO (NO or YES)
6 PARALLEL DEGREE ===> 1 (1 or ANY)
7 REOPTIMIZE FOR INPUT VARS ===> NONE (ALWAYS, NONE, ONCE, AUTO)
8 DEFER PREPARE ===> NO (NO or YES)
9 KEEP DYN SQL PAST COMMIT. ===> NO (NO or YES)
10 APPLICATION ENCODING ... ===> (Blank, ASCII, EBCDIC,

UNICODE, or ccsid)
11 OPTIMIZATION HINT ===> > (Blank or ’hint-id’)
12 IMMEDIATE WRITE ===> NO (YES, NO)
13 DYNAMIC RULES ===> RUN (RUN or BIND)
14 SQLRULES................. ===> DB2 (DB2 or STD)
15 DISCONNECT ===> EXPLICIT (EXPLICIT, AUTOMATIC,

or CONDITIONAL)

Figure 62. The Defaults for Bind Plan panel

Chapter 17. Preparing an application to run on DB2 for z/OS 1005

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptkeepdynamic.htm#db2z_bindoptkeepdynamic
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptopthint.htm#db2z_bindoptopthint
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptdegree.htm#db2z_bindoptdegree
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptplanmgmt.htm#db2z_bindoptplanmgmt
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptreopt.htm#db2z_bindoptreopt
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptrelease.htm#db2z_bindoptrelease
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptsqlerror.htm#db2z_bindoptsqlerror
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptsystimesensitive.htm#db2z_bindoptsystimesensitive
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptvalidate.htm#db2z_bindoptvalidate
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_parallelprocessing.htm#db2z_parallelprocessing
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_useexplain2capturesqlinfo.htm#db2z_useexplain2capturesqlinfo
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions

On the following panel, enter new defaults for rebinding a plan.

The following table lists the fields on the Defaults for Bind Package and Defaults
for Rebind Package, and the corresponding bind and rebind options.

Table 158. Defaults for Bind Plan and Defaults for Rebind Plan panel fields and
corresponding bind or rebind options

Field name Bind or rebind option

APPLICATION ENCODING ENCODING

DATA CURRENCY CURRENTDATA

DBPROTOCOL DBPROTOCOL

DEFER PREPARE DEFER and NODEFER

DISCONNECT DISCONNECT

DYNAMIC RULES DYNAMICRULES

EXPLAIN PATH SELECTION EXPLAIN

IMMEDIATE WRITE IMMEDWRITE

ISOLATION LEVEL ISOLATION

KEEP DYN SQL PAST COMMIT KEEPDYNAMIC

OPTIMIZATION HINT OPTHINT

PARALLEL DEGREE DEGREE

REOPTIMIZE FOR INPUT VARS REOPT

RESOURCE ACQUISITION TIME ACQUIRE

RESOURCE RELEASE TIME RELEASE

VALIDATION TIME and PLAN
VALIDATION TIME

VALIDATE

DSNEBP11 DEFAULTS FOR REBIND PLAN SSID: DSN
COMMAND ===>

Change default options as necessary:

1 ISOLATION LEVEL ===> (SAME, RR, RS, CS, or UR)
2 PLAN VALIDATION TIME ===> (SAME, RUN, or BIND)
3 RESOURCE RELEASE TIME ... ===> (SAME, DEALLOCATE, or COMMIT)
4 EXPLAIN PATH SELECTION .. ===> (SAME, NO, or YES)
5 DATA CURRENCY ===> (SAME, NO, or YES)
6 PARALLEL DEGREE ===> (SAME, 1 or ANY)
7 REOPTIMIZE FOR INPUT VARS ===> (SAME, ALWAYS, NONE, ONCE, AUTO)
8 DEFER PREPARE ===> (SAME, NO, or YES)
9 KEEP DYN SQL PAST COMMIT. ===> (SAME, NO, or YES)
10 APPLICATION ENCODING ... ===> (SAME, Blank, ASCII, EBCDIC,

UNICODE, or ccsid)
11 OPTIMIZATION HINT ===> > (SAME, ’hint-id’)
12 IMMEDIATE WRITE ===> (SAME, YES, NO)
13 SQLRULES ===> (SAME, DB2 or STD)
14 DYNAMIC RULES ===> (SAME, RUN, or BIND)
15 RESOURCE ACQUISITION TIME ===> (SAME, ALLOCATE, or USE)
16 DISCONNECT ===> (SAME, EXPLICIT, AUTOMATIC,

or CONDITIONAL)

Figure 63. The Defaults for Rebind Plan panel

1006 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptencoding.htm#db2z_bindoptencoding
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptcurrentdata.htm#db2z_bindoptcurrentdata
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptdbprotocol.htm#db2z_bindoptdbprotocol
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptdeferandnodefer.htm#db2z_bindoptdefernandnodefer
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptdisconnect.htm#db2z_bindoptdisconnect
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptdynamicrules.htm#db2z_bindoptdynamicrules
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptexplain.htm#db2z_bindoptexplain
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptimmedwrite.htm#db2z_bindoptimmedwrite
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptisolation.htm#db2z_bindoptisolation
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptkeepdynamic.htm#db2z_bindoptkeepdynamic
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptopthint.htm#db2z_bindoptopthint
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptdegree.htm#db2z_bindoptdegree
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptreopt.htm#db2z_bindoptreopt
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptacquire.htm#db2z_bindoptacquire
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptrelease.htm#db2z_bindoptrelease
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindoptvalidate.htm#db2z_bindoptvalidate

Related concepts:
“Authorization cache” on page 959
“DYNAMICRULES bind option” on page 957

Parallel processing (DB2 Performance)

Investigating SQL performance by using EXPLAIN (DB2 Performance)
Related tasks:
“Setting the isolation level of SQL statements in a REXX program” on page 424
“Specifying the rules that apply to SQL behavior at run time” on page 975

System Connection Types panel
The System Connection Types panel lets you specify which types of connections
can use a plan or package.

This panel displays if you enter YES for ENABLE/DISABLE CONNECTIONS? on
the Bind or Rebind Package or Plan panels. For the Bind or Rebind Package panel,
the REMOTE option does not display as it does in the following panel.

To enable or disable connection types (that is, allow or prevent the connection from
running the package or plan), enter the following information.

1 ENABLE ALL CONNECTION TYPES?
Lets you enter an asterisk (*) to enable all connections. After that entry, you
can ignore the rest of the panel.

2 ENABLE/DISABLE SPECIFIC CONNECTION TYPES
Lets you specify a list of types to enable or disable; you cannot enable
some types and disable others in the same operation. If you list types to
enable, enter E; that disables all other connection types. If you list types to
disable, enter D; that enables all other connection types.

For each connection type that follows, enter Y (yes) if it is on your list, N
(no) if it is not. The connection types are:
v BATCH for a TSO connection
v DB2CALL for a CAF connection
v RRSAF for an RRSAF connection
v CICS for a CICS connection
v IMS for all IMS connections: DLIBATCH, IMSBMP, and IMSMPP

DSNEBP13 SYSTEM CONNECTION TYPES FOR BIND ... SSID: DSN
COMMAND ===>

Select system connection types to be Enabled/Disabled:

1 ENABLE ALL CONNECTION TYPES? ===> (* to enable all types)
or
2 ENABLE/DISABLE SPECIFIC CONNECTION TYPES ===> (E/D)

BATCH ===> (Y/N) SPECIFY CONNECTION NAMES?
DB2CALL ===> (Y/N)
RRSAF ===> (Y/N)
CICS ===> (Y/N) ===> N (Y/N)
IMS ===> (Y/N)
DLIBATCH ===> (Y/N) ===> N (Y/N)
IMSBMP ===> (Y/N) ===> N (Y/N)
IMSMPP ===> (Y/N) ===> N (Y/N)
REMOTE ===> (Y/N)

Figure 64. The System Connection Types panel

Chapter 17. Preparing an application to run on DB2 for z/OS 1007

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_parallelprocessing.htm#db2z_parallelprocessing
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_useexplain2capturesqlinfo.htm#db2z_useexplain2capturesqlinfo

v DLIBATCH for a DL/I Batch Support Facility connection
v IMSBMP for an IMS connection to a BMP region
v IMSMPP for an IMS connection to an MPP or IFP region
v REMOTE for all remote locations or no remote locations

For each connection type that has a second arrow, under SPECIFY
CONNECTION NAMES?, enter Y if you want to list specific connection
names of that type. Leave N (the default) if you do not. If you use Y in
any of those fields, you see another panel on which you can enter the
connection names.

If you use the DISPLAY command under TSO on this panel, you can determine
what you have currently defined as “enabled” or “disabled” in your ISPF
DSNSPFT library (member DSNCONNS). The information does not reflect the
current state of the DB2 Catalog.

If you type DISPLAY ENABLED on the command line, you get the connection
names that are currently enabled for your TSO connection types. For example:
Display OF ALL connection name(s) to be ENABLED

CONNECTION SUBSYSTEM
CICS1 ENABLED
CICS2 ENABLED
CICS3 ENABLED
CICS4 ENABLED
DLI1 ENABLED
DLI2 ENABLED
DLI3 ENABLED
DLI4 ENABLED
DLI5 ENABLED

Related reference:
“Panels for entering lists of values”

BIND and REBIND options (DB2 Commands)

Panels for entering lists of values
Some fields in DB2I panels are associated with command keywords that accept
multiple values. Those fields lead you to a list panel that lets you enter or modify
multiple values.

A list panel looks like an ISPF edit session and lets you scroll and use a limited set
of commands.

The format of each list panel varies, depending on the content and purpose for the
panel. The following figure shows a generic sample of a list panel:

1008 Application Programming and SQL Guide

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions

All of the list panels let you enter limited commands in two places:
v On the system command line, prefixed by ====>

v In a special command area, identified by """"

On the system command line, you can use:

END Saves all entered variables, exits the table, and continues to process.

CANCEL
Discards all entered variables, terminates processing, and returns to the
previous panel.

SAVE Saves all entered variables and remains in the table.

In the special command area, you can use:

Inn Insert nn lines after this one.

Dnn Delete this and the following lines for nn lines.

Rnn Repeat this line nn number of times.

The default for nn is 1.

When you finish with a list panel, specify END to same the current panel values
and continue processing.

Program Preparation: Compile, Link, and Run panel
The Compile, Link, and Run panel lets you perform the last two steps in the
program preparation process (compile and link-edit). This panel also lets you
perform the PL/I MACRO PHASE for programs that require this option.

For TSO programs, the panel also lets you run programs.

panelid Specific subcommand function SSID: DSN
COMMAND ===>_ SCROLL ===>

Subcommand operand values:

CMD
"""" value ...
"""" value ...
""""
""""
""""
""""

Figure 65. Generic example of a DB2I list panel

Chapter 17. Preparing an application to run on DB2 for z/OS 1009

1,2 INCLUDE LIBRARY
Lets you specify up to two libraries containing members for the compiler
to include. The members can also be output from DCLGEN. You can leave
these fields blank. There is no default.

3 OPTIONS
Lets you specify compiler, assembler, or PL/I macro processor options. You
can also enter a list of compiler or assembler options by separating entries
with commas, blanks, or both. You can leave these fields blank. There is no
default.

4,5,6 INCLUDE LIBRARY
Lets you enter the names of up to three libraries containing members for
the linkage editor to include. You can leave these fields blank. There is no
default.

7 LOAD LIBRARY
Lets you specify the name of the library to hold the load module. The
default value is RUNLIB.LOAD.

If the load library specified is a PDS, and the input data set is a PDS, the
member name specified in INPUT DATA SET NAME field of the Program
Preparation panel is the load module name. If the input data set is
sequential, the second qualifier of the input data set is the load module
name.

You must complete this field if you request LINK or RUN on the Program
Preparation panel.

8 PRELINK OPTIONS
Lets you enter a list of prelinker options. Separate items in the list with
commas, blanks, or both. You can leave this field blank. There is no
default.

The prelink utility applies only to programs using C, C++, and Enterprise
COBOL for z/OS.

9 LINK OPTIONS
Lets you enter a list of link-edit options. Separate items in the list with
commas, blanks, or both.

DSNEPP02 PROGRAM PREP: COMPILE, PRELINK, LINK, AND RUN SSID: DSN
COMMAND ===>_

Enter compiler or assembler options:
1 INCLUDE LIBRARY ===> SRCLIB.DATA
2 INCLUDE LIBRARY ===>
3 OPTIONS ===> NUM, OPTIMIZE, ADV

Enter linkage editor options:
4 INCLUDE LIBRARY ===> SAMPLIB.COBOL
5 INCLUDE LIBRARY ===>
6 INCLUDE LIBRARY ===>
7 LOAD LIBRARY .. ===> RUNLIB.LOAD
8 PRELINK OPTIONS ===>
9 LINK OPTIONS... ===>
Enter run options:
10 PARAMETERS ===> D01, D02, D03/
11 SYSIN DATA SET ===> TERM
12 SYSPRINT DS ... ===> TERM

Figure 66. The Program Preparation: Compile, Link, and Run panel

1010 Application Programming and SQL Guide

To prepare a program that uses 31-bit addressing and runs above the
16-megabyte line, specify the following link-edit options: AMODE=31,
RMODE=ANY.

10 PARAMETERS
Lets you specify a list of parameters you want to pass either to your host
language run time processor, or to your application. Separate items in the
list with commas, blanks, or both. You can leave this field blank.

If you are preparing an IMS or CICS program, you must leave this field
blank; you cannot use DB2I to run IMS and CICS programs.

Use a slash (/) to separate the options for your run time processor from
those for your program.
v For PL/I and Fortran, run time processor parameters must appear on

the left of the slash, and the application parameters must appear on the
right.
run time processor parameters / application parameters

v For COBOL, reverse this order. run time processor parameters must
appear on the right of the slash, and the application parameters must
appear on the left.

v For assembler and C, there is no supported run time environment, and
you need not use a slash to pass parameters to the application program.

11 SYSIN DATA SET
Lets you specify the name of a SYSIN (or in Fortran, FT05F001) data set for
your application program, if it needs one. If you do not enclose the data
set name in apostrophes, a standard TSO prefix (user ID) and suffix is
added to it. The default for this field is TERM.

If you are preparing an IMS or CICS program, you must leave this field
blank; you cannot use DB2I to run IMS and CICS programs.

12 SYSPRINT DS
Lets you specify the names of a SYSPRINT (or in Fortran, FT06F001) data
set for your application program, if it needs one. If you do not enclose the
data set name in apostrophes, a standard TSO prefix (user ID) and suffix is
added to it. The default for this field is TERM.

If you are preparing an IMS or CICS program, you must leave this field
blank; you cannot use DB2I to run IMS and CICS programs.

Your application could need other data sets besides SYSIN and SYSPRINT. If so,
remember to catalog and allocate them before you run your program.

When you press ENTER after entering values in this panel, DB2 compiles and
link-edits the application. If you specified in the DB2 Program Preparation panel
that you want to run the application, DB2 also runs the application.
Related reference:

Language Environment Programming Guide (z/OS Language Environment
Programming Guide)

DB2I panels that are used to rebind and free plans and packages
A set of DB2I panels lets you bind, rebind, or free packages.

Chapter 17. Preparing an application to run on DB2 for z/OS 1011

http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea21c0/APPENDIX1.1?ACTION=MATCHES&REQUEST=prelinking+an+application&TYPE=FUZZY&SHELF=&DT=20110618162445&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea21c0/APPENDIX1.1?ACTION=MATCHES&REQUEST=prelinking+an+application&TYPE=FUZZY&SHELF=&DT=20110618162445&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT

Table 159 describes additional panels that you can use to Rebind and Free packages
and plans. It also describes the Run panel, which you can use to run application
programs that have already been prepared.

Table 159. DB2I panels used to rebind and free plans and packages and used to Run
application programs

Panel Panel description

“Bind/Rebind/Free
Selection panel”

The BIND/REBIND/FREE panel lets you select the BIND,
REBIND, or FREE, PLAN, PACKAGE, or TRIGGER PACKAGE
process that you need.

“Rebind Package panel”
on page 1013

The Rebind Package panel lets you change options when you
rebind a package.

“Rebind Trigger Package
panel” on page 1015

The Rebind Trigger Package panel lets you change options when
you rebind a trigger package.

“Rebind Plan panel” on
page 1018

The Rebind Plan panel lets you change options when you
rebind an application plan.

“Free Package panel” on
page 1020

The Free Package panel lets you change options when you free a
package.

“Free Plan panel” on page
1021

The Free Plan panel lets you change options when you free an
application plan.

“DB2I Run panel” on
page 1024

The Run panel lets you start an application program. You
should use this panel if you have already prepared the program
and you only want to run it.

You can also run a program by using the "Program Prep:
Compile, Prelink, Link, and Run" panel.

Bind/Rebind/Free Selection panel
The Bind/Rebind/Free selection panel lets choose whether to bind, rebind, or free
plans and packages.

This panel lets you select the process you need.

1 BIND PLAN
Lets you build an application plan. You must have an application plan to

DSNEBP01 BIND/REBIND/FREE SSID: DSN
COMMAND ===>_

Select one of the following and press ENTER:

1 BIND PLAN (Add or replace an application plan)

2 REBIND PLAN (Rebind existing application plan or plans)

3 FREE PLAN (Erase application plan or plans)

4 BIND PACKAGE (Add or replace a package)

5 REBIND PACKAGE (Rebind existing package or packages)

6 REBIND TRIGGER PACKAGE (Rebind existing package or packages)

7 FREE PACKAGE (Erase a package or packages)

Figure 67. The Bind/Rebind/Free selection panel

1012 Application Programming and SQL Guide

allocate DB2 resources and support SQL requests during run time. If you
select this option, the Bind Plan panel displays. For more information, see
“Bind Plan panel” on page 999.

2 REBIND PLAN
Lets you rebuild an application plan when changes to it affect the plan but
the SQL statements in the program are the same. For example, you should
rebind when you change authorizations, create a new index that the plan
uses, or use RUNSTATS. If you select this option, the Rebind Plan panel
displays. For more information, see “Rebind Plan panel” on page 1018.

3 FREE PLAN
Lets you delete plans from DB2. If you select this option, the Free Plan
panel displays. For more information, see “Free Plan panel” on page 1021.

4 BIND PACKAGE
Lets you build a package. If you select this option, the Bind Package panel
displays. For more information, see “Bind Package panel” on page 996.

5 REBIND PACKAGE
Lets you rebuild a package when changes to it affect the package but the
SQL statements in the program are the same. For example, you should
rebind when you change authorizations, create a new index that the
package uses, or use RUNSTATS. If you select this option, the Rebind
Package panel displays. For more information, see “Rebind Package
panel.”

6 REBIND TRIGGER PACKAGE
Lets you rebuild a trigger package when you need to change options for
the package. When you execute CREATE TRIGGER, DB2 binds a trigger
package using a set of default options. You can use REBIND TRIGGER
PACKAGE to change those options. For example, you can use REBIND
TRIGGER PACKAGE to change the isolation level for the trigger package.
If you select this option, the Rebind Trigger Package panel displays. For
more information, see “Rebind Trigger Package panel” on page 1015.

7 FREE PACKAGE
Lets you delete a specific version of a package, all versions of a package,
or whole collections of packages from DB2. If you select this option, the
Free Package panel displays. For more information, see “Free Package
panel” on page 1020.

Rebind Package panel
The Rebind Package panel is the first of two panels that you use to rebind a
package. This panel lets you specify options for rebinding the package.

The following figure shows the rebind package options.

Chapter 17. Preparing an application to run on DB2 for z/OS 1013

This panel lets you choose options for rebinding a package.

1 Rebind all local packages
Lets you rebind all packages on the local DBMS. To do so, place an asterisk
(*) in this field; otherwise, leave it blank.

2 LOCATION NAME
Lets you specify where to bind the package. If you specify a location name,
you should use from 1 to 16 characters, and you must have defined it in
the catalog table SYSIBM.LOCATIONS.

3 COLLECTION-ID
Lets you specify the collection of the package to rebind. You must specify a
collection ID from 1 to 128 characters, or an asterisk (*) to rebind all
collections in the local DB2 system. You cannot use the asterisk to rebind a
remote collection. This field is scrollable.

4 PACKAGE-ID
Lets you specify the name of the package to rebind. You must specify a
package ID from 1 to 8 characters, or an asterisk (*) to rebind all packages
in the specified collections in the local DB2 system. You cannot use the
asterisk to rebind a remote package.

The field is scrollable, and the maximum field length is 128.

5 VERSION-ID
Lets you specify the version of the package to rebind. You must specify a
version ID from 1 to 64 characters, or an asterisk (*) to rebind all versions
in the specified collections and packages in the local DB2 system. You
cannot use the asterisk to rebind a remote version.

6 ADDITIONAL PACKAGES?
Lets you indicate whether to name more packages to rebind. Use YES to
specify more packages on an additional panel, described on “Panels for
entering lists of values” on page 1008. The default is NO.

7 CHANGE CURRENT DEFAULTS?
Lets you indicate whether to change the binding defaults. Use:

NO (default) to retain the binding defaults of the previous package.
YES to change the binding defaults from the previous package. For
information about the defaults for binding packages, see “Defaults for
Bind Package and Defaults for Rebind Package panels” on page 1002.

DSNEBP08 REBIND PACKAGE SSID: DSN
COMMAND ===>_

1 Rebind all local packages ===> (* to rebind all packages)

or
Enter package name(s) to be rebound:

2 LOCATION NAME ===> (Defaults to local)
3 COLLECTION-ID ===> > (Required)
4 PACKAGE-ID ===> > (Required)
5 VERSION-ID ===>

(*, Blank, (), or version-id)
6 ADDITIONAL PACKAGES? ===> (Yes to include more packages)

Enter options as desired ===>
7 CHANGE CURRENT DEFAULTS?... ===> (NO or YES)
8 OWNER OF PACKAGE (AUTHID).. ===> > (SAME, new OWNER)
9 QUALIFIER ===> > (SAME, new QUALIFIER)

10 ENABLE/DISABLE CONNECTIONS? ===> (NO or YES)
11 INCLUDE PATH? ===> (SAME, DEFAULT, or YES)

Figure 68. The Rebind Package panel

1014 Application Programming and SQL Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

8 OWNER OF PACKAGE (AUTHID)
Lets you change the authorization ID for the package owner. The owner
must have the required privileges to execute the SQL statements in the
package. The default is the existing package owner.

The field is scrollable, and the maximum field length is 128.

9 QUALIFIER
Lets you specify the default schema for all unqualified table names, views,
indexes, and aliases in the package. You can specify a schema name from 1
to 8 characters, which must conform to the rules for the SQL short
identifier. The default is the existing qualifier name.

The field is scrollable, and the maximum field length is 128.

10 ENABLE/DISABLE CONNECTIONS?
Lets you specify whether you want to enable and disable system
connections types to use with this package. This is valid only if the
LOCATION NAME field names your local DB2 system.

Placing YES in this field displays a panel (shown in Figure 64 on page
1007) that lets you specify whether various system connections are valid
for this application.

The default is the values used for the previous package.

11 INCLUDE PATH?
Indicates which one of the following actions you want to perform:
v Request that DB2 uses the same schema names as when the package was

bound for resolving unqualified distinct type, user-defined function, and
stored procedure names in SQL statements. Choose SAME to perform
this action. This is the default.

v Supply a list of schema names that DB2 searches when it resolves
unqualified distinct type, user-defined function, and stored procedure
names in SQL statements. Choose YES to perform this action.

v Request that DB2 resets the SQL path to SYSIBM, SYSFUN, SYSPROC,
and the package owner. Choose DEFAULT to perform this action.

If you specify YES, DB2 displays a panel in which you specify the names
of schemas for DB2 to search.

Related reference:

BIND and REBIND options (DB2 Commands)

Rebind Trigger Package panel
The Rebind Trigger Package panel specifies options for rebinding a trigger
package.

The following figure shows those options.

Chapter 17. Preparing an application to run on DB2 for z/OS 1015

|

|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions

This panel lets you choose options for rebinding a trigger package.

1 Rebind all trigger packages
Lets you rebind all packages on the local DBMS. To do so, place an asterisk
(*) in this field; otherwise, leave it blank.

2 LOCATION NAME
Lets you specify where to bind the trigger package. If you specify a
location name, you should use from 1 to 16 characters, and you must have
defined it in the catalog table SYSIBM.LOCATIONS.

3 COLLECTION-ID (SCHEMA NAME)
Lets you specify the collection of the trigger package to rebind. You must
specify a collection ID from 1 to 128 characters, or an asterisk (*) to rebind
all collections in the local DB2 system. You cannot use the asterisk to
rebind a remote collection. This field is scrollable.

4 PACKAGE-ID
Lets you specify the name of the trigger package to rebind. You must
specify a package ID from 1 to 128 characters, or an asterisk (*) to rebind
all trigger packages in the specified collections in the local DB2 system.
You cannot use the asterisk to rebind a remote trigger package. This field is
scrollable.

5 ISOLATION LEVEL
Lets you specify how far to isolate your application from the effects of
other running applications. The default is the value used for the old trigger
package.

6 RESOURCE RELEASE TIME
Lets you specify COMMIT or DEALLOCATE to tell when to release locks
on resources. The default is that used for the old trigger package.

7 EXPLAIN PATH SELECTION
Lets you specify YES or NO for whether to obtain EXPLAIN information
about how SQL statements in the package execute. The default is the value
used for the old trigger package.

DSNEBP19 REBIND TRIGGER PACKAGE SSID: DSN
COMMAND ===>_

1 Rebind all trigger packages ===> (* to rebind all packages)

or
Enter trigger package name(s) to be rebound:

2 LOCATION NAME ===> (Defaults to local)
3 COLLECTION-ID (SCHEMA NAME) ===> > (Required)
4 PACKAGE-ID (TRIGGER NAME).. ===> > (Required)

Enter options as desired ===>
5 ISOLATION LEVEL ===> SAME (SAME, RR, RS, CS, UR, or NC)
6 RESOURCE RELEASE TIME ===> SAME (SAME, DEALLOCATE, or COMMIT)
7 EXPLAIN PATH SELECTION ===> SAME (SAME, NO, or YES)
8 DATA CURRENCY ===> SAME (SAME, NO, or YES)
9 IMMEDIATE WRITE OPTION ===> SAME (SAME, NO, YES)
10 PLAN MANAGEMENT ===> DEFAULT (DEFAULT, BASIC, EXTENDED, OFF)
11 ACCESS PATH REUSE ===> DEFAULT (DEFAULT, ERROR, NONE, or WARN)
12 ACCESS PATH COMPARISON ===> DEFAULT (DEFAULT, ERROR, NONE, or WARN)
13 ACCESS PATH RETAIN DUPS ... ===> DEFAULT (DEFAULT, NO, or YES)
14 SYSTEM_TIME SENSITIVE ===> SAME (SAME, NO, or YES)
15 BUSINESS_TIME SENSITIVE ... ===> SAME (SAME, NO, or YES)
16 ARCHIVE SENSITIVE ===> SAME (SAME, NO, or YES)
17 APPLICATION COMPATIBILITY . ===> SAME (SAME, V10R1, V11R1)

Figure 69. The Rebind Trigger Package panel

1016 Application Programming and SQL Guide

|
|
|
|

|
|
|
|

|
|
|
|
|

The bind process inserts information into the table owner.PLAN_TABLE,
where owner is the authorization ID of the plan or package owner. If you
defined owner.DSN_STATEMNT_TABLE, DB2 also inserts information
about the cost of statement execution into that table. If you specify YES in
this field and BIND in the VALIDATION TIME field, and if you do not
correctly define PLAN_TABLE, the bind fails.

8 DATA CURRENCY
Lets you specify YES or NO for whether you need data currency for
ambiguous cursors opened at remote locations. The default is the value
used for the old trigger package.

Data is current if the data within the host structure is identical to the data
within the base table. Data is always current for local processing.

9 IMMEDIATE WRITE OPTION
Specifies when DB2 writes the changes for updated group buffer
pool-dependent pages. This field applies only to a data sharing
environment. The values that you can specify are:

SAME Choose the value of IMMEDIATE WRITE that you specified when
you bound the trigger package. SAME is the default.

NO Write the changes at or before phase 1 of the commit process. If the
transaction is rolled back later, write the additional changes that
are caused by the rollback at the end of the abort process.

PH1 is equivalent to NO.

YES Write the changes immediately after group buffer pool-dependent
pages are updated.

10 PLAN MANAGEMENT
Specifies the PLANMGMT option to use for rebinding the trigger.
DEFAULT means to take the default setting for this option when rebinding
for the old trigger package.

11 ACCESS PATH REUSE
Specifies the APREUSE option to use for rebinding the trigger. DEFAULT
means to take the default setting for this option when rebinding for the old
trigger package.

12 ACCESS PATH COMPARISON
Specifies the APCOMPARE option to use for rebinding the trigger.
DEFAULT means to take the default setting for this option when rebinding
for the old trigger package.

13 ACCESS PATH RETAIN DUPS
Specifies the APRETAINDUP option to use for rebinding the trigger.
DEFAULT means to take the default setting for this option when rebinding
for the old trigger package.

14 SYSTEM_TIME SENSITIVE
Specifies the SYSTIMESENSITIVE option to use for rebinding the trigger.
SAME means to take the previous setting for this option when rebinding
the old trigger package.

15 BUSINESS_TIME SENSITIVE
Specifies the BUSTIMESENSITIVE option to use for rebinding the trigger.
SAME means to take the previous setting for this option when rebinding
the old trigger package.

Chapter 17. Preparing an application to run on DB2 for z/OS 1017

|
|
|
|

|
|
|
|

16 ARCHIVE SENSITIVE
Specifies the ARCHIVESENSITIVE option to use for rebinding the trigger.
SAME means to take the previous setting for this option when rebinding
the old trigger package.

17 APPLICATION COMPATIBILITY
Specifies the APPLCOMPAT option to use for rebinding the trigger. The
default is SAME, which means that the option is not specified in the
generated REBIND TRIGGER statement.

Related reference:

BIND and REBIND options (DB2 Commands)

Rebind Plan panel
The Rebind Plan panel is the first of two panels that you use to rebind a plan. This
panel lets you specify options for rebinding the plan.

The following figure shows the rebind plan options.

This panel lets you specify options for rebinding your plan.

1 PLAN NAME
Lets you name the application plan to rebind. You can specify a name from
1 to 8 characters, and the first character must be alphabetic. Do not begin
the name with DSN, because it could create name conflicts with DB2. If
there are no errors, the bind process prepares the plan and enters its
description into the EXPLAIN table.

If you leave this field blank, the bind process occurs but produces no plan.

2 ADDITIONAL PLANS?
Lets you indicate whether to name more plans to rebind. Use YES to
specify more plans on an additional panel, described at “Panels for
entering lists of values” on page 1008. The default is NO.

3 CHANGE CURRENT DEFAULTS?
Lets you indicate whether to change the binding defaults. Use:

NO (default) to retain the binding defaults of the previous plan.
YES to change the binding defaults from the previous plan.

DSNEBP03 REBIND PLAN SSID: DSN
COMMAND ===>_

Enter plan name(s) to be rebound:
1 PLAN NAME ===> (* to rebind all plans)
2 ADDITIONAL PLANS? ===> NO (Yes to include more plans)

Enter options as desired:
3 CHANGE CURRENT DEFAULTS?... ===> NO (NO or YES)
4 OWNER OF PLAN (AUTHID)..... ===> SAME > (SAME, new OWNER)
5 QUALIFIER ===> SAME > (SAME, new QUALIFIER)
6 CACHESIZE ===> SAME (SAME, or value 0-4096)
7 ENABLE/DISABLE CONNECTIONS? ===> NO (NO or YES)
8 INCLUDE PACKAGE LIST?...... ===> SAME (SAME, NO, or YES)
9 CURRENT SERVER ===> (Location name)

10 INCLUDE PATH? ===> SAME (SAME, DEFAULT, or YES)

Figure 70. The Rebind Plan panel

1018 Application Programming and SQL Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions

4 OWNER OF PLAN (AUTHID)
Lets you change the authorization ID for the plan owner. The owner must
have the required privileges to execute the SQL statements in the plan. The
default is the existing plan owner.

The field is scrollable, and the maximum field length is 128.

5 QUALIFIER
Lets you specify the default schema for all unqualified table names, views,
indexes, and aliases in the plan. You can specify a schema name from 1 to
128 characters, which must conform to the rules for the SQL identifier. The
default is the authorization ID. This field is scrollable.

6 CACHESIZE
Lets you specify the size (in bytes) of the authorization cache. Valid values
are in the range 0 to 4096. Values that are not multiples of 256 round up to
the next highest multiple of 256. A value of 0 indicates that DB2 does not
use an authorization cache. The default is the cache size specified for the
previous plan.

Each concurrent user of a plan requires 8 bytes of storage, with an
additional 32 bytes for overhead.

7 ENABLE/DISABLE CONNECTIONS?
Lets you specify whether you want to enable and disable system
connections types to use with this plan. This is valid only for rebinding on
your local DB2 system.

Placing YES in this field displays a panel (shown in Figure 64 on page
1007) that lets you specify whether various system connections are valid
for this application.

The default is the values used for the previous plan.

8 INCLUDE PACKAGE LIST?
Lets you include a list of collections and packages in the plan. If you
specify YES, a separate panel displays on which you must enter the
package location, collection name, and package name for each package to
include in the plan (see “Panels for entering lists of values” on page 1008).
This field can either add a package list to a plan that did not have one, or
replace an existing package list.

You can specify a location name from 1 to 16 characters, a collection ID
from 1 to 18 characters, and a package ID from 1 to 8 characters. Separate
two or more package list parameters with a comma. If you specify a
location name, it must be in the catalog table SYSIBM.LOCATIONS. The
default location is the package list used for the previous plan.

9 CURRENT SERVER
Lets you specify the initial server to receive and process SQL statements in
this plan. You can specify a name from 1 to 16 characters, which you must
previously define in the catalog table SYSIBM.LOCATIONS.

If you specify a remote server, DB2 connects to that server when the first
SQL statement executes. The default is the name of the local DB2
subsystem.

10 INCLUDE PATH?
Indicates which one of the following actions you want to perform:

Chapter 17. Preparing an application to run on DB2 for z/OS 1019

|

|
|
|
|

v Request that DB2 uses the same schema names as when the plan was
bound for resolving unqualified distinct type, user-defined function, and
stored procedure names in SQL statements. Choose SAME to perform
this action. This is the default.

v Supply a list of schema names that DB2 searches when it resolves
unqualified distinct type, user-defined function, and stored procedure
names in SQL statements. Choose YES to perform this action.

v Request that DB2 resets the SQL path to SYSIBM, SYSFUN, SYSPROC,
and the plan owner. Choose DEFAULT to perform this action.

If you specify YES, DB2 displays a panel in which you specify the names
of schemas for DB2 to search.

Related reference:
“Defaults for Bind Plan and Defaults for Rebind Plan panels” on page 1005

BIND and REBIND options (DB2 Commands)

Free Package panel
The DB2I Free Package panel is the first of two panels through which you can
specify options for freeing an application package.

The following figure shows the free package options.

This panel lets you specify options for erasing packages.

1 Free ALL packages
Lets you free (erase) all packages for which you have authorization or to
which you have BINDAGENT authority. To do so, place an asterisk (*) in
this field; otherwise, leave it blank.

2 LOCATION NAME
Lets you specify the location name of the DBMS to free the package. You
can specify a name from 1 to 16 characters.

3 COLLECTION-ID
Lets you specify the collection from which you want to delete packages for
which you own or have BINDAGENT privileges. You can specify a name
from 1 to 128 characters, or an asterisk (*) to free all collections in the local
DB2 system. You cannot use the asterisk to free a remote collection. This
field is scrollable.

DSNEBP18 FREE PACKAGE SSID: DSN
COMMAND ===>_

1 Free ALL packages ===> (* to free authorized packages)

or
Enter package name(s) to be freed:

2 LOCATION NAME ===> (Defaults to local)
3 COLLECTION-ID ===> > (Required)
4 PACKAGE-ID ===> >(* to free all packages)
5 VERSION-ID ===>

(*, Blank, (), or version-id)
6 ADDITIONAL PACKAGES?....... ===> (Yes to include more packages)
7 PLAN MANAGEMENT SCOPE ===> ALL (ALL or INACTIVE)

Figure 71. The Free Package panel

1020 Application Programming and SQL Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions

4 PACKAGE-ID
Lets you specify the name of the package to free. You can specify a name
from 1 to 128 characters, or an asterisk (*) to free all packages in the
specified collections in the local DB2 system. You cannot use the asterisk to
free a remote package. The name you specify must be in the DB2 catalog
tables. This field is scrollable.

5 VERSION-ID
Lets you specify the version of the package to free. You can specify an
identifier from 1 to 64 characters, or an asterisk (*) to free all versions of
the specified collections and packages in the local DB2 system. You cannot
use the asterisk to free a remote version.

6 ADDITIONAL PACKAGES?
Lets you indicate whether to name more packages to free. Use YES to
specify more packages on an additional panel, described in “Panels for
entering lists of values” on page 1008. The default is NO.

7 PLAN MANAGEMENT SCOPE
Specifies whether DB2 frees all copies of the package, or only the inactive
previous and original copies. This value corresponds to the
PLANMGMTSCOPE option. The default value is ALL.

Free Plan panel
The DB2I Free Plan panel is the first of two panels through which you can specify
options for freeing an application plan.

Figure 72 shows the free plan options.

This panel lets you specify options for freeing plans.

1 PLAN NAME
Lets you name the application plan to delete from DB2. Use an asterisk to
free all plans for which you have BIND authority. You can specify a name
from 1 to 8 characters, and the first character must be alphabetic.

If there are errors, the free process terminates for that plan and continues
with the next plan.

2 ADDITIONAL PLANS?
Lets you indicate whether to name more plans to free. Use YES to specify
more plans on an additional panel, described in “Panels for entering lists
of values” on page 1008. The default is NO.

DSNEBP09 FREE PLAN SSID: DSN
COMMAND ===>_

Enter plan name(s) to be freed:
1 PLAN NAME ===> (* to free all authorized plans)
2 ADDITIONAL PLANS? ===> (Yes to include more plans)

Figure 72. The Free Plan panel

Chapter 17. Preparing an application to run on DB2 for z/OS 1021

|
|
|
|
|

1022 Application Programming and SQL Guide

Chapter 18. Running an application on DB2 for z/OS

You can run your application after you have processed the SQL statements,
compiled and link-edited the application, and bound the application.

About this task

At run time, DB2 verifies that the information in the application plan and its
associated packages is consistent with the corresponding information in the DB2
catalog. If any destructive changes, such as DROP or REVOKE, occur (either to the
data structures that your application accesses or to the binder's authority to access
those data structures), DB2 automatically rebinds packages or the plan as needed.

Establishing a test environment: This topic describes how to design a test data
structure and how to fill tables with test data.

CICSBefore you run an application, ensure that the following two conditions are
met:
v The corresponding entries in the SNT and RACF control areas authorize your

application to run.
v The program and its transaction code are defined in the CICS CSD.

The system administrator is responsible for these functions.

DSN command processor
The DSN command processor is a TSO command processor that runs in TSO
foreground or under TSO in a JES-initiated batch environment.

It uses the TSO attachment facility to access DB2. The DSN command processor
provides an alternative method for running programs that access DB2 in a TSO
environment.

When you run an application by using the DSN command processor, that
application can run in a trusted connection if DB2 finds a matching trusted context.

You can use the DSN command processor implicitly during program development
for functions such as:
v Using the declarations generator (DCLGEN)
v Running the BIND, REBIND, and FREE subcommands on DB2 plans and

packages for your program
v Using SPUFI (SQL Processor Using File Input) to test some of the SQL functions

in the program

The DSN command processor runs with the TSO terminal monitor program (TMP).
Because the TMP runs in either foreground or background, DSN applications run
interactively or as batch jobs.

The DSN command processor can provide these services to a program that runs
under it:
v Automatic connection to DB2
v Attention key support

© Copyright IBM Corp. 1983, 2013 1023

v Translation of return codes into error messages

Limitations of the DSN command processor:

When using DSN services, your application runs under the control of DSN.
Because TSO executes the ATTACH macro to start DSN, and DSN executes the
ATTACH macro to start a part of itself, your application gains control that is two
task levels below TSO.

Because your program depends on DSN to manage your connection to DB2:
v If DB2 is down, your application cannot begin to run.
v If DB2 terminates, your application also terminates.
v An application can use only one plan.

If these limitations are too severe, consider having your application use the call
attachment facility or Resource Recovery Services attachment facility. For more
information about these attachment facilities, see “Call attachment facility” on page
39 and “Resource Recovery Services attachment facility” on page 71.

DSN return code processing: At the end of a DSN session, register 15 contains the
highest value that is placed there by any DSN subcommand that is used in the
session or by any program that is run by the RUN subcommand. Your run time
environment might format that value as a return code. The value does not,
however, originate in DSN.

DB2I Run panel
The DB2I Run panel lets you start an application program that can contain SQL
statements.

You can reach the Run panel only through the DB2I Primary Options Menu. You
can accomplish the same task using the “Program Preparation: Compile, Link, and
Run” panel. You should use this panel if you have already prepared the program
and simply want to run it. Figure 73 shows the run options.

This panel lets you run existing application programs.

1 DATA SET NAME
Lets you specify the name of the partitioned data set that contains the load
module. If the module is in a data set that the operating system can find,
you can specify the member name only. There is no default.

If you do not enclose the name in apostrophes, a standard TSO prefix (user
ID) and suffix (.LOAD) is added.

DSNERP01 RUN SSID: DSN
COMMAND ===>_

Enter the name of the program you want to run:
1 DATA SET NAME ===>
2 PASSWORD..... ===> (Required if data set is password protected)

Enter the following as desired:
3 PARAMETERS .. ===>
4 PLAN NAME ... ===> (Required if different from program name)
5 WHERE TO RUN ===> (FOREGROUND, BACKGROUND, or EDITJCL)

Figure 73. The Run panel

1024 Application Programming and SQL Guide

2 PASSWORD
Lets you specify the data set password if needed. The RUN processor does
not check whether you need a password. If you do not enter a required
password, your program does not run.

3 PARAMETERS
Lets you specify a list of parameters you want to pass either to your host
language run time processor, or to your application. You should separate
items in the list with commas, blanks, or both. You can leave this field
blank.

Use a slash (/) to separate the options for your run time processor from
those for your program.
v For PL/I and Fortran, run time processor parameters must appear on

the left of the slash, and the application parameters must appear on the
right.
run time processor parameters / application parameters

v For COBOL, reverse this order. run time processor parameters must
appear on the right of the slash, and the application parameters must
appear on the left.

v For assembler and C, there is no supported run time environment, and
you need not use the slash to pass parameters to the application
program.

4 PLAN NAME
Lets you specify the name of the plan to which the program is bound. The
default is the member name of the program.

5 WHERE TO RUN
Lets you indicate whether to run in the foreground or background. You can
also specify EDITJCL, in which case you are able to edit the job control
statement before you run the program. Use:

FOREGROUND to immediately run the program in the foreground
with the specified values.
BACKGROUND to create and immediately submit to run a file
containing a DSNH CLIST using the JOB control statement from either
DB2I Defaults Panel 2 or your site's SUBMIT exit. The program runs in
the background.
EDITJCL to create and open a file containing a DSNH CLIST in edit
mode. You can then submit the CLIST or save it. The program runs in
the background.

Running command processors
To run a command processor (CP), use the following commands from the
TSO ready prompt or as a TSO TMP:
DSN SYSTEM (DB2-subsystem-name)
RUN CP PLAN (plan-name)

The RUN subcommand prompts you for more input. The end the DSN
processor, use the END command.

Running a program in TSO foreground
Use the DB2I RUN panel to run a program in TSO foreground. Alternatively, you
can issue the DSN command, followed by the RUN subcommand of DSN.

Chapter 18. Running an application on DB2 for z/OS 1025

About this task

Before running the program, be sure to allocate any data sets that your program
needs.

The following example shows how to start a TSO foreground application. The
name of the application is SAMPPGM, and ssid is the system ID:
TSO Prompt: READY
Enter: DSN SYSTEM(ssid)
DSN Prompt: DSN
Enter: RUN PROGRAM(SAMPPGM) -

PLAN(SAMPLAN) -
LIB(SAMPPROJ.SAMPLIB) -
PARMS(’/D01 D02 D03’)...

(Here the program runs and might prompt you for input)
DSN Prompt: DSN
Enter: END
TSO Prompt: READY

This sequence also works in ISPF option 6. You can package this sequence in a
CLIST. DB2 does not support access to multiple DB2 subsystems from a single
address space.

The PARMS keyword of the RUN subcommand enables you to pass parameters to
the run time processor and to your application program:
PARMS (’/D01, D02, D03’)

The slash (/) indicates that you are passing parameters. For some languages, you
pass parameters and run time options in the form PARMS('parameters/run
time-options). An example of the PARMS keyword might be:
PARMS (’D01, D02, D03/’)

Check your host language publications for the correct form of the PARMS option.

Running a DB2 REXX application
You run DB2 REXX applications under TSO. You do not precompile, compile,
link-edit, or bind DB2 REXX applications before you run them.

About this task

In a batch environment, you might use statements like these to invoke application
REXXPROG:
//RUNREXX EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSEXEC DD DISP=SHR,DSN=SYSADM.REXX.EXEC
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
%REXXPROG parameters

The SYSEXEC data set contains your REXX application, and the SYSTSIN data set
contains the command that you use to invoke the application.

Invoking programs through the Interactive System Productivity Facility
You can use ISPF to invoke programs that connect to DB2 through the call
attachment facility (CAF).

1026 Application Programming and SQL Guide

About this task

The ISPF/CAF sample connection manager programs (DSN8SPM and DSN8SCM)
take advantage of the ISPLINK SELECT services, letting each routine make its own
connection to DB2 and establish its own thread and plan.

With the same modular structure as in the previous example, using CAF is likely
to provide greater efficiency by reducing the number of CLISTs. This does not
mean, however, that any DB2 function executes more quickly.

Disadvantages: Compared to the modular structure using DSN, the structure
using CAF is likely to require a more complex program, which in turn might
require assembler language subroutines. For more information, see “Call
attachment facility” on page 39.

ISPF
The Interactive System Productivity Facility (ISPF) helps you to construct and
execute dialogs. DB2 includes a sample application that illustrates how to use ISPF
through the call attachment facility (CAF).

Each scenario has advantages and disadvantages in terms of efficiency, ease of
coding, ease of maintenance, and overall flexibility.

Using ISPF and the DSN command processor

There are some restrictions on how you make and break connections to DB2 in any
structure. If you use the PGM option of ISPF SELECT, ISPF passes control to your
load module by the LINK macro; if you use CMD, ISPF passes control by the
ATTACH macro.

The DSN command processor permits only single task control block (TCB)
connections. Take care not to change the TCB after the first SQL statement. ISPF
SELECT services change the TCB if you started DSN under ISPF, so you cannot
use these to pass control from load module to load module. Instead, use LINK,
XCTL, or LOAD.

The following figure shows the task control blocks that result from attaching the
DSN command processor below TSO or ISPF.

Chapter 18. Running an application on DB2 for z/OS 1027

Notes:
1. The RUN command with the CP option causes DSN to attach your program

and create a new TCB.
2. The RUN command without the CP option causes DSN to link to your

program.

If you are in ISPF and running under DSN, you can perform an ISPLINK to
another program, which calls a CLIST. In turn, the CLIST uses DSN and another
application. Each such use of DSN creates a separate unit of recovery (process or
transaction) in DB2.

All such initiated DSN work units are unrelated, with regard to isolation (locking)
and recovery (commit). It is possible to deadlock with yourself; that is, one unit
(DSN) can request a serialized resource (a data page, for example) that another
unit (DSN) holds incompatibly.

A COMMIT in one program applies only to that process. There is no facility for
coordinating the processes.
Related concepts:

Dynamic SQL and the ISPF/CAF application (DB2 Installation and Migration)

Printing options for the sample application listings (DB2 Installation and
Migration)
“DB2 sample applications” on page 1102
“DSN command processor” on page 1023

Invoking a single SQL program through ISPF and DSN
When you invoke a single SQL program through ISPF and DSN, you should first
invoke ISPF, which displays the data and selection panels. When you select the
program on the selection panel, ISPF calls a CLIST that runs the program.

TSO or ISPF

ATTACH

ATTACH

ATTACH

DSN initialization
load module
Alias=DSN

DSN main load
module

LINK Ordinary
application
program

Application
command
processor

(See Note 2)

(See Note 1)

Figure 74. DSN task structure

1028 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ivpdynsql.htm#db2z_ivpdynsql
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_printoptssmpappl.htm#db2z_printoptssmpappl
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_printoptssmpappl.htm#db2z_printoptssmpappl

About this task

A corresponding CLIST might contain:
DSN

RUN PROGRAM(MYPROG) PLAN(MYPLAN)
END

The application has one large load module and one plan.

Disadvantages: For large programs of this type, you want a more modular design,
making the plan more flexible and easier to maintain. If you have one large plan,
you must rebind the entire plan whenever you change a module that includes SQL
statements. To achieve a more modular construction when all parts of the program
use SQL, consider using packages. See “DB2 program preparation overview” on
page 976 You cannot pass control to another load module that makes SQL calls by
using ISPLINK; rather, you must use LINK, XCTL, or LOAD and BALR.

If you want to use ISPLINK, then call ISPF to run under DSN:
DSN

RUN PROGRAM(ISPF) PLAN(MYPLAN)
END

You then need to leave ISPF before you can start your application.

Furthermore, the entire program is dependent on DB2; if DB2 is not running, no
part of the program can begin or continue to run.

Invoking multiple SQL programs through ISPF and DSN
You can break a large application into several different functions. Each function
communicates through a common pool of shared variables, which is controlled by
ISPF.

About this task

You might write some functions as separately compiled and loaded programs,
others as EXECs or CLISTs. You can start any of those programs or functions
through the ISPF SELECT service, and you can start that from a program, a CLIST,
or an ISPF selection panel.

When you use the ISPF SELECT service, you can specify whether ISPF should
create a new ISPF variable pool before calling the function. You can also break a
large application into several independent parts, each with its own ISPF variable
pool.

You can call different parts of the program in different ways. For example, you can
use the PGM option of ISPF SELECT:
PGM(program-name) PARM(parameters)

Alternatively, you can use the CMD option:
CMD(command)

For a part that accesses DB2, the command can name a CLIST that starts DSN:
DSN

RUN PROGRAM(PART1) PLAN(PLAN1) PARM(input from panel)
END

Chapter 18. Running an application on DB2 for z/OS 1029

Breaking the application into separate modules makes it more flexible and easier to
maintain. Furthermore, some of the application might be independent of DB2;
portions of the application that do not call DB2 can run, even if DB2 is not
running. A stopped DB2 database does not interfere with parts of the program that
refer only to other databases.

Disadvantages: The modular application, on the whole, has to do more work. It
calls several CLISTs, and each one must be located, loaded, parsed, interpreted,
and executed. It also makes and breaks connections to DB2 more often than the
single load module. As a result, you might lose some efficiency.

Loading and running a batch program
You can run a DL/I batch program by running module DSNMTV01, which loads
your application, or by running the application program directly.

About this task

To run a program using DB2, you need a DB2 plan. The bind process creates the
DB2 plan. DB2 first verifies whether the DL/I batch job step can connect to batch
job DB2. Then DB2 verifies whether the application program can access DB2 and
enforce user identification of batch jobs accessing DB2.

The two ways to submit DL/I batch applications to DB2 are:
v The DL/I batch procedure can run module DSNMTV01 as the application

program. DSNMTV01 loads the “real” application program.
v The DL/I batch procedure can run your application program without using

module DSNMTV01. To accomplish this, perform the following actions:
– Specify SSM= in the DL/I batch procedure.
– In the batch region of your application JCL, specify the following information:

- MBR=application-name
- SSM=DB2 subsystem name

Submitting a DL/I batch application using DSNMTV01: The following skeleton
JCL example illustrates a COBOL application program, IVP8CP22, that runs using
DB2 DL/I batch support.
v The first step uses the standard DLIBATCH IMS procedure.
v The second step shows how to use the DFSERA10 IMS program to print the

contents of the DDOTV02 output data set.
//ISOCS04 JOB 3000,ISOIR,MSGLEVEL=(1,1),NOTIFY=ISOIR,
// MSGCLASS=T,CLASS=A
//JOBLIB DD DISP=SHR,
// DSN=prefix.SDSNLOAD
//* **
//*
//* THE FOLLOWING STEP SUBMITS COBOL JOB IVP8CP22, WHICH UPDATES
//* BOTH DB2 AND DL/I DATABASES.
//*
//* **
//UPDTE EXEC DLIBATCH,DBRC=Y,LOGT=SYSDA,COND=EVEN,
// MBR=DSNMTV01,PSB=IVP8CA,BKO=Y,IRLM=N//G.STEPLIB DD
// DD
// DD DSN=prefix.SDSNLOAD,DISP=SHR
// DD DSN=prefix.RUNLIB.LOAD,DISP=SHR
// DD DSN=SYS1.COB2LIB,DISP=SHR
// DD DSN=IMS.PGMLIB,DISP=SHR
//G.DDOTV02 DD DSN=&TEMP1,DISP=(NEW,PASS,DELETE),

1030 Application Programming and SQL Guide

// SPACE=(TRK,(1,1),RLSE),UNIT=SYSDA,
// DCB=(RECFM=VB,BLKSIZE=4096,LRECL=4092)
//G.DDITV02 DD *

SSDQ,SYS1,DSNMIN10,,A,-,BATCH001,,IVP8CP22
/*
//***
//*** ALWAYS ATTEMPT TO PRINT OUT THE DDOTV02 DATA SET ***
//***
//STEP3 EXEC PGM=DFSERA10,COND=EVEN
//STEPLIB DD DSN=IMS.RESLIB,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=&TEMP1,DISP=(OLD,DELETE)
//SYSIN DD *
CONTROL CNTL K=000,H=8000
OPTION PRINT
/*
//

Submitting a DL/I batch application without using DSNMTV01: The skeleton
JCL in the following example illustrates a COBOL application program, IVP8CP22,
that runs using DB2 DL/I batch support.
//TEPCTEST JOB ’USER=ADMF001’,MSGCLASS=A,MSGLEVEL=(1,1),
// TIME=1440,CLASS=A,USER=SYSADM,PASSWORD=SYSADM
//*******************************
//BATCH EXEC DLIBATCH,PSB=IVP8CA,MBR=IVP8CP22,
// BKO=Y,DBRC=N,IRLM=N,SSM=SSDQ
//*******************************
//SYSPRINT DD SYSOUT=A
//REPORT DD SYSOUT=*
//G.DDOTV02 DD DSN=&TEMP,DISP=(NEW,PASS,DELETE),
// SPACE=(CYL,(10,1),RLSE),
// UNIT=SYSDA,DCB=(RECFM=VB,BLKSIZE=4096,LRECL=4092)
//G.DDITV02 DD *
SSDQ,SYS1,DSNMIN10,,Q,",DSNMTES1,,IVP8CP22
//G.SYSIN DD *
/*
//**
//* ALWAYS ATTEMPT TO PRINT OUT THE DDOTV02 DATA SET
//**
//PRTLOG EXEC PGM=DFSERA10,COND=EVEN
//STEPLIB DD DSN=IMS.RESLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSUT1 DD DSN=&TEMP,DISP=(OLD,DELETE)
//SYSIN DD *
CONTROL CNTL K=000,H=8000
OPTION PRINT
/*

Authorization for running a batch DL/I program
When a DL/I batch application tries to run the first SQL statement, DB2 checks
whether the authorization ID has the EXECUTE privilege for the plan. DB2 uses
the same ID for subsequent authorization checks and also identifies records from
the accounting and performance traces.

The primary authorization ID is the value of the USER parameter on the job
statement, if that is available. If that parameter is not available, the primary
authorization ID is the TSO logon name if the job is submitted. Otherwise, the
primary authorization ID is the IMS PSB name. In that case, however, the ID must
not begin with the string “SYSADM” because this string causes the job to
abnormally terminate. The batch job is rejected if you try to change the
authorization ID in an exit routine.

Chapter 18. Running an application on DB2 for z/OS 1031

Restarting a batch program
To restart a batch program that updates data, first run the IMS Batch Backout
utility, followed by a restart job indicating the last successful checkpoint ID.

About this task

For guidelines on finding the last successful checkpoint, see “Finding the DL/I
batch checkpoint ID” on page 1033.

JCL example of a batch backout: The skeleton JCL example that follows illustrates
a batch backout for PSB=IVP8CA.
//ISOCS04 JOB 3000,ISOIR,MSGLEVEL=(1,1),NOTIFY=ISOIR,
// MSGCLASS=T,CLASS=A
//* *
//* *
//* BACKOUT TO LAST CHKPT. *
//* IF RC=0028 LOG WITH NO-UPDATE *
//* *
//* - *
//BACKOUT EXEC PGM=DFSRRC00,
// PARM=’DLI,DFSBBO00,IVP8CA,,,,,,,,,,,Y,N,,Y’,
// REGION=2600K,COND=EVEN |
//* ---> DBRC ON
//STEPLIB DD DSN=IMS.RESLIB,DISP=SHR
//IMS DD DSN=IMS.PSBLIB,DISP=SHR
// DD DSN=IMS.DBDLIB,DISP=SHR
//*
//* IMSLOGR DD data set is required
//* IEFRDER DD data set is required
//DFSVSAMP DD *
OPTIONS,LTWA=YES
2048,7
1024,7
/*
//SYSIN DD DUMMY
/*

JCL example of restarting a DL/I batch job: Operational procedures can restart a
DL/I batch job step for an application program using IMS XRST and symbolic
CHKP calls.

You cannot restart a BMP application program in a DB2 DL/I batch environment.
The symbolic checkpoint records are not accessed, causing an IMS user abend
U0102.

To restart a batch job that terminated abnormally or prematurely, find the
checkpoint ID for the job on the z/OS system log or from the SYSOUT listing of
the failing job. Before you restart the job step, place the checkpoint ID in the
CKPTID=value option of the DLIBATCH procedure, submit the job. If the default
connection name is used (that is, you did not specify the connection name option
in the DDITV02 input data set), the job name of the restart job must be the same as
the failing job. Refer to the following skeleton example, in which the last
checkpoint ID value was IVP80002:
//ISOCS04 JOB 3000,OJALA,MSGLEVEL=(1,1),NOTIFY=OJALA,
// MSGCLASS=T,CLASS=A
//* **
//*
//* THE FOLLOWING STEP RESTARTS COBOL PROGRAM IVP8CP22, WHICH UPDATES
//* BOTH DB2 AND DL/I DATABASES, FROM CKPTID=IVP80002.
//*

1032 Application Programming and SQL Guide

//* **
//RSTRT EXEC DLIBATCH,DBRC=Y,COND=EVEN,LOGT=SYSDA,
// MBR=DSNMTV01,PSB=IVP8CA,BKO=Y,IRLM=N,CKPTID=IVP80002
//G.STEPLIB DD
// DD
// DD DSN=prefix.SDSNLOAD,DISP=SHR
// DD DSN=prefix.RUNLIB.LOAD,DISP=SHR
// DD DSN=SYS1.COB2LIB,DISP=SHR
// DD DSN=IMS.PGMLIB,DISP=SHR
//* other program libraries
//* G.IEFRDER data set required
//* G.IMSLOGR data set required
//G.DDOTV02 DD DSN=&TEMP2,DISP=(NEW,PASS,DELETE),
// SPACE=(TRK,(1,1),RLSE),UNIT=SYSDA,
// DCB=(RECFM=VB,BLKSIZE=4096,LRECL=4092)
//G.DDITV02 DD *

DB2X,SYS1,DSNMIN10,,A,-,BATCH001,,IVP8CP22
/*
//***
//*** ALWAYS ATTEMPT TO PRINT OUT THE DDOTV02 DATA SET ***
//***
//STEP8 EXEC PGM=DFSERA10,COND=EVEN
//STEPLIB DD DSN=IMS.RESLIB,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=&TEMP2,DISP=(OLD,DELETE)
//SYSIN DD *
CONTROL CNTL K=000,H=8000
OPTION PRINT
/*
//

Finding the DL/I batch checkpoint ID
When an application program issues an IMS CHKP call, IMS sends the checkpoint
ID to the z/OS console and the SYSOUT listing in message DFS0540I.

About this task

IMS also records the checkpoint ID in the type X'41' IMS log record. Symbolic
CHKP calls also create one or more type X'18' records on the IMS log. XRST uses
the type X'18' log records to reposition DL/I databases and return information to
the application program.

During the commit process the application program checkpoint ID is passed to
DB2. If a failure occurs during the commit process, creating an indoubt work unit,
DB2 remembers the checkpoint ID. You can use the following techniques to find
the last checkpoint ID:
v Look at the SYSOUT listing for the job step to find message DFS0540I, which

contains the checkpoint IDs that are issued. Use the last listed checkpoint ID.
v Look at the z/OS console log to find message DFS0540I that contains the

checkpoint ID that is issued for this batch program. Use the last listed
checkpoint ID.

v Submit the IMS Batch Backout utility to back out the DL/I databases to the last
(default) checkpoint ID. When the batch backout finishes, message DFS395I
provides the last valid IMS checkpoint ID. Use this checkpoint ID on restart.

v When restarting DB2, issue the command -DISPLAY THREAD(*) TYPE(INDOUBT) to
obtain a possible indoubt unit of work (connection name and checkpoint ID). If
you restarted the application program from this checkpoint ID, the program
could work because the checkpoint is recorded on the IMS log; however, the
program could fail with an IMS user abend U102 because IMS did not finish

Chapter 18. Running an application on DB2 for z/OS 1033

logging the information before the failure. In that case, restart the application
program from the previous checkpoint ID.

DB2 performs one of two actions automatically when restarted, if the failure occurs
outside the indoubt period: it either backs out the work unit to the prior
checkpoint, or it commits the data without any assistance. If the operator then
issues the following command, no work unit information is displayed:
-DISPLAY THREAD(*) TYPE(INDOUBT)

Running stored procedures from the command line processor
As an alternative to calling a stored procedure from an application program, you
can use the command line processor to invoke stored procedures.

Procedure

To run a stored procedure from the command line processor:
1. Invoke the command line processor and connect to the appropriate DB2

subsystem. For more information about how to perform these tasks, see
Command line processor (DB2 Commands).

2. Specify the CALL statement in the form that is acceptable for the command line
processor.

Related tasks:
Chapter 14, “Calling a stored procedure from your application,” on page 787

Implementing DB2 stored procedures (DB2 Administration Guide)

Command line processor CALL statement
Use the command line processor CALL statement to invoke stored procedures from
the command line processor.

Use the following syntax for the command line processor CALL statement.

��
(1)

CALL procedure-name

�

()
,

(2) (3) (4)
parameter

��

Notes:

1 If you specify an unqualified stored procedure name, DB2 searches the
schema list in the CURRENT PATH special register. DB2 searches this list for
a stored procedure with the specified number of input and output
parameters.

2 Specify a question mark (?) as a placeholder for each output parameter.

3 For non-numeric, BLOB, or CLOB input parameters, enclose each value in
single quotation marks ('). The exception is if the data is a BLOB or CLOB
value that is to be read from a file. In that case, use the notation file://fully
qualified file name.

4 Specify the input and output parameters in the order that they are specified
in the signature for the stored procedure.

1034 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_commandlineprocessor.htm#db2z_commandlineprocessor
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_storedprocedureimplementation.htm#db2z_storedprocedureimplementation

Example: Assume that the TEST.DEPT_MEDIAN stored procedure was created
with the following statement:
CREATE PROCEDURE TEST.DEPT_MEDIAN
(IN DEPTNUMBER SMALLINT, OUT MEDIANSALARY INT)

To invoke the stored procedure from the command line processor, you can specify
the following CALL statement:
CALL TEST.DEPT_MEDIAN(51, ?)

Assume that the stored procedure returns a value of 25,000. The following
information is displayed by the command line processor:
Value of output parameters

Parameter Name : MEDIANSALARY
Parameter Value : 25000

Example: Suppose that stored procedure TEST.BLOBSP is defined with one input
parameter of type BLOB and one output parameter. You can invoke this stored
procedure from the command line processor with the following statement:
CALL TEST.BLOBSP(file:///tmp/photo.bmp,?)

The command line processor reads the contents from /tmp/photo.bmp as the
input parameter. Alternatively, you can invoke this stored procedure by specifying
the input parameter in the CALL statement itself, as in the following example:
CALL TEST.BLOBSP(’abcdef’,?)

Example of running a batch DB2 application in TSO
Most application programs that are written for the batch environment run under
the TSO Terminal Monitor Program (TMP) in background mode.

The following figure shows the JCL statements that you need in order to start such
a job. The list that follows explains each statement.
//jobname JOB USER=MY DB2ID
//GO EXEC PGM=IKJEFT01,DYNAMNBR=20
//STEPLIB DD DSN=prefix.SDSNEXIT,DISP=SHR
// DD DSN=prefix.SDSNLOAD,DISP=SHR...
//SYSTSPRT DD SYSOUT=A
//SYSTSIN DD *
DSN SYSTEM (ssid)
RUN PROG (SAMPPGM) -

PLAN (SAMPLAN) -
LIB (SAMPPROJ.SAMPLIB) -
PARMS (’/D01 D02 D03’)

END
/*

v The JOB option identifies this as a job card. The USER option specifies the DB2
authorization ID of the user.

v The EXEC statement calls the TSO Terminal Monitor Program (TMP).
v The STEPLIB statement specifies the library in which the DSN Command

Processor load modules and DSNHDECP or a user-specified application defaults
module reside. It can also reference the libraries in which user applications, exit
routines, and the customized DSNHDECP module reside. The customized
DSNHDECP module is created during installation.

v Subsequent DD statements define additional files that are needed by your
program.

Chapter 18. Running an application on DB2 for z/OS 1035

v The DSN command connects the application to a particular DB2 subsystem.
v The RUN subcommand specifies the name of the application program to run.
v The PLAN keyword specifies plan name.
v The LIB keyword specifies the library that the application should access.
v The PARMS keyword passes parameters to the run time processor and the

application program.
v END ends the DSN command processor.

Usage notes
v Keep DSN job steps short.
v

Recommendation: Do not use DSN to call the EXEC command processor to run
CLISTs that contain ISPEXEC statements; results are unpredictable.

v If your program abends or gives you a non-zero return code, DSN terminates.
v You can use a group attachment or subgroup attachment name instead of a

specific ssid to connect to a member of a data sharing group.
Related reference:

Using the TSO TMP in batch mode (TSO/E User's Guide)

Example of calling applications in a command procedure
As an alternative to foreground or batch calls to an application, you can run a TSO
or batch application by using a command procedure (CLIST).

The following CLIST calls a DB2 application program named MYPROG. ssid
represents the DB2 subsystem name, or group attachment or subgroup attachment
name.
PROC 0 /* INVOCATION OF DSN FROM A CLIST */

DSN SYSTEM(ssid) /* INVOKE DB2 SUBSYSTEM ssid */
IF &LASTCC = 0 THEN /* BE SURE DSN COMMAND WAS SUCCESSFUL */

DO /* IF SO THEN DO DSN RUN SUBCOMMAND */
DATA /* ELSE OMIT THE FOLLOWING: */

RUN PROGRAM(MYPROG)
END

ENDDATA /* THE RUN AND THE END ARE FOR DSN */
END

EXIT

IMS: To run a message-driven program

First, ensure that you can respond to the program's interactive requests for data
and that you can recognize the expected results. Then, enter the transaction code
that is associated with the program. Users of the transaction code must be
authorized to run the program.

To run a non-message-driven program

CICSTo run a program

First, ensure that the corresponding entries in the SNT and RACF control areas
allow run authorization for your application. The system administrator is
responsible for these functions.

1036 Application Programming and SQL Guide

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/IKJ4C260/CCONTENTS

Submit the job control statements that are needed to run the program.

Also, be sure to define to CICS the transaction code that is assigned to your
program and the program itself.

Make a new copy of the program

Issue the NEWCOPY command if CICS has not been reinitialized since the
program was last bound and compiled.

Chapter 18. Running an application on DB2 for z/OS 1037

1038 Application Programming and SQL Guide

Chapter 19. Testing and debugging an application program on
DB2 for z/OS

Depending on the situation, testing your application program might involve setting
up a test environment, testing SQL statements, debugging your programs, and
reading output from the precompiler.
Related tasks:

Modeling a production environment on a test subsystem (DB2 Performance)

Modeling your production system statistics in a test subsystem (DB2
Performance)

Designing a test data structure
When you test an application that accesses DB2 data, you should have DB2 data
available for testing. To do this, you can create test tables and views.

About this task
v Test views of existing tables: If your application does not change a set of DB2

data and the data exists in one or more production-level tables, you might
consider using a view of existing tables.

v Test tables: To create a test table, you need a database and table space. Talk with
your DBA to make sure that a database and table spaces are available for your
use.
If the data that you want to change already exists in a table, consider using the
LIKE clause of CREATE TABLE. If you want others besides yourself to have
ownership of a table for test purposes, you can specify a secondary ID as the
owner of the table. You can do this with the SET CURRENT SQLID statement.

If your location has a separate DB2 system for testing, you can create the test
tables and views on the test system and then test your program thoroughly on that
system. This information assumes that you do all testing on a separate system, and
that the person who created the test tables and views has an authorization ID of
TEST. The table names are TEST.EMP, TEST.PROJ and TEST.DEPT.
Related concepts:

Authorization IDs (Managing Security)
Related tasks:

Modeling a production environment on a test subsystem (DB2 Performance)

Modeling your production system statistics in a test subsystem (DB2
Performance)
Related reference:

SET CURRENT SQLID (DB2 SQL)

Analyzing application data needs
To design tests of an application, you need to determine the type of data that the
application uses and how the application accesses that data.

© Copyright IBM Corp. 1983, 2013 1039

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_modelproductionenvironment.htm#db2z_modelproductionenvironment
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_usestatistics2modelproductionsys.htm#db2z_usestatistics2modelproductionsys
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_usestatistics2modelproductionsys.htm#db2z_usestatistics2modelproductionsys
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.seca/src/tpc/db2z_authorizationid.htm#db2z_authorizationid
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_modelproductionenvironment.htm#db2z_modelproductionenvironment
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_usestatistics2modelproductionsys.htm#db2z_usestatistics2modelproductionsys
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_usestatistics2modelproductionsys.htm#db2z_usestatistics2modelproductionsys
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_setcurrentsqlid.htm#db2z_sql_setcurrentsqlid

About this task

This information assumes that you do all testing on a separate system, and that the
person who created the test tables and views has an authorization ID of TEST. The
table names are TEST.EMP, TEST.PROJ and TEST.DEPT.

To design test tables and views, first analyze the data needs of your application.

Procedure

To analyze the data needs of your application:
1. List the data that your application accesses and describe how it accesses each

data item. For example, suppose that you are testing an application that
accesses the DSN8B10.EMP, DSN8B10.DEPT, and DSN8B10.PROJ tables. You
might record the information about the data as shown in Table 160.

Table 160. Description of the application data

Table or view name Insert rows? Delete rows? Column name Data type
Update
access?

DSN8B10.EMP No No EMPNO CHAR(6) No

LASTNAME VARCHAR(15) No

WORKDEPT CHAR(3) Yes

PHONENO CHAR(4) Yes

JOB DECIMAL(3) Yes

DSN8B10.DEPT No No DEPTNO CHAR(3) No

MGRNO CHAR (6) No

DSN8B10.PROJ Yes Yes PROJNO CHAR(6) No

DEPTNO CHAR(3) Yes

RESPEMP CHAR(6) Yes

PRSTAFF DECIMAL(5,2) Yes

PRSTDATE DECIMAL(6) Yes

PRENDATE DECIMAL(6) Yes

2. Determine the test tables and views that you need to test your application.
Create a test table on your list when either of the following conditions exists:
v The application modifies data in the table.
v You need to create a view that is based on a test table because your

application modifies data in the view.
To continue the example, create these test tables:
v TEST.EMP, with the following format:

EMPNO LASTNAME WORKDEPT PHONENO JOB
...

...
...

...
...

v TEST.PROJ, with the same columns and format as DSN8B10.PROJ, because
the application inserts rows into the DSN8B10.PROJ table.

To support the example, create a test view of the DSN8B10.DEPT table.
v TEST.DEPT view, with the following format:

1040 Application Programming and SQL Guide

DEPTNO MGRNO
...

...

Because the application does not change any data in the DSN8B10.DEPT table,
you can base the view on the table itself (rather than on a test table). However,
a safer approach is to have a complete set of test tables and to test the program
thoroughly using only test data.

Authorization for test tables and applications
Before you can create a table, you need to be authorized to create tables and to use
the table space in which the table is to reside. You must also have authority to
bind and run programs that you want to test.

Your DBA can grant you the necessary authorization to create and access tables
and to bind and run programs.

If you intend to use existing tables and views (either directly or as the basis for a
view), you need privileges to access those tables and views. Your DBA can grant
those privileges.

To create a view, you must have authorization for each table and view on which
you base the view. You then have the same privileges over the view that you have
over the tables and views on which you based the view. Before trying the
examples, have your DBA grant you the privileges to create new tables and views
and to access existing tables. Obtain the names of tables and views that you are
authorized to access (as well as the privileges you have for each table) from your
DBA.

Example SQL statements to create a comprehensive test
structure

You need to create a storage group, database, table space, and table to use as a test
structure for your SQL application.

The following SQL statements show how to create a complete test structure to
contain a small table named SPUFINUM. The test structure consists of:
v A storage group named SPUFISG
v A database named SPUFIDB
v A table space named SPUFITS in database SPUFIDB and using storage group

SPUFISG
v A table named SPUFINUM within the table space SPUFITS
CREATE STOGROUP SPUFISG

VOLUMES (user-volume-number)
VCAT DSNCAT ;

CREATE DATABASE SPUFIDB ;

CREATE TABLESPACE SPUFITS
IN SPUFIDB
USING STOGROUP SPUFISG ;

CREATE TABLE SPUFINUM
(XVAL CHAR(12) NOT NULL,

ISFLOAT FLOAT,
DEC30 DECIMAL(3,0),

Chapter 19. Testing and debugging an application program on DB2 for z/OS 1041

DEC31 DECIMAL(3,1),
DEC32 DECIMAL(3,2),
DEC33 DECIMAL(3,3),
DEC10 DECIMAL(1,0),
DEC11 DECIMAL(1,1),
DEC150 DECIMAL(15,0),
DEC151 DECIMAL(15,1),
DEC1515 DECIMAL(15,15))

IN SPUFIDB.SPUFITS ;

Related reference:

CREATE DATABASE (DB2 SQL)

CREATE STOGROUP (DB2 SQL)

CREATE TABLE (DB2 SQL)

CREATE TABLESPACE (DB2 SQL)

Populating the test tables with data
To populate test tables, use SQL INSERT statements or the LOAD utility.

About this task

You can put test data into a table in several ways:
v INSERT ... VALUES (an SQL statement) puts one row into a table each time the

statement executes.
v INSERT ... SELECT (an SQL statement) obtains data from an existing table

(based on a SELECT clause) and puts it into the table that is identified in the
INSERT statement.

v MERGE (an SQL statement) puts new data into a table and updates existing
data.

v The LOAD utility obtains data from a sequential file (a non-DB2 file), formats it
for a table, and puts it into a table.

v The DB2 sample UNLOAD program (DSNTIAUL) can unload data from a table
or view and build control statements for the LOAD utility.

v The UNLOAD utility can unload data from a table and build control statements
for the LOAD utility.

Related concepts:
“DB2 sample applications” on page 1102
Related tasks:
“Inserting rows by using the INSERT statement” on page 647
“Inserting rows into a table from another table” on page 649
“Inserting data and updating data in a single operation” on page 653
Related reference:

LOAD (DB2 Utilities)

UNLOAD (DB2 Utilities)

Methods for testing SQL statements
You can test your SQL statements by using SQL Processing Using File Input
(SPUFI) or the command line processor.

1042 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createdatabase.htm#db2z_sql_createdatabase
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createstogroup.htm#db2z_sql_createstogroup
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtable.htm#db2z_sql_createtable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtablespace.htm#db2z_sql_createtablespace
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utl_load.htm#db2z_utl_load
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utl_unload.htm#db2z_utl_unload

Test with SPUFI:You can use SPUFI (an interface between ISPF and DB2) to test
SQL statements in a TSO/ISPF environment. With SPUFI panels, you can put SQL
statements into a data set that DB2 subsequently executes. The SPUFI Main panel
has several functions that enable you to:
v Name an input data set to hold the SQL statements that are passed to DB2 for

execution
v Name an output data set to contain the results of executing the SQL statements
v Specify SPUFI processing options

Test with the command line processor: You can use the command line processor
to test SQL statements from UNIX System Services on z/OS.

SQL statements that are executed under SPUFI or the command line processor
operate on actual tables (in this case, the tables that you created for testing).
Consequently, before you access DB2 data:
v Make sure that all tables and views that your SQL statements refer to exist.
v If the tables or views do not exist, create them (or have your database

administrator create them). You can use SPUFI or the command line processor to
issue the CREATE statements that are used to create the tables and views that
you need for testing.

Related concepts:

Command line processor (DB2 Commands)
Related tasks:
“Executing SQL by using SPUFI”

Executing SQL by using SPUFI
You can execute SQL statements in a TSO session by using the SPUFI (SQL
processor using file input) facility.

About this task

Before you use SPUFI, allocate an input data set to store the SQL statements that
you want to execute, if such a data set does not already exist.

Important: Ensure that the TSO terminal CCSID matches the DB2 CCSID. If these
CCSIDs do not match, data corruption can occur. If SPUFI issues the warning
message DSNE345I, terminate your SPUFI session and notify the system
administrator.

Before you begin this task, you can specify whether TSO message IDs are
displayed by using the TSO PROFILE command. To view message IDs, type TSO
PROFILE MSGID on the ISPF command line. To suppress message IDs, type TSO
PROFILE NOMSGID.

These instructions assume that ISPF is available to you.

To execute SQL by using SPUFI:

Procedure
1. Open SPUFI and specify the initial options.
2. Optional: “Changing SPUFI defaults” on page 1049
3. Enter SQL statements in SPUFI.

Chapter 19. Testing and debugging an application program on DB2 for z/OS 1043

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_commandlineprocessor.htm#db2z_commandlineprocessor

4. Process SQL statements with SPUFI.

Results

Opening SPUFI and specifying initial options:

To being using SPUFI, you need to open and fill out the SPUFI panel.

To open SPUFI and specify initial options:
1. Select SPUFI from the DB2I Primary Option Menu as shown in Figure 53 on

page 984.The SPUFI panel is displayed.
2. Specify the input data set name and output data set name.An example of a

SPUFI panel in which an input data set and output data set have been specified
is shown in the following figure.

3. Optional: Specify new values in any of the other fields on the SPUFI panel. For
more information about these fields, see “The SPUFI panel” on page 1047.

Entering SQL statements in SPUFI:

After you open SPUFI, specify the initial options, and optionally change any SPUFI
defaults, you can enter one or more SQL statements to execute.

Before you begin this task, you must complete the task "Opening SPUFI and
specifying initial options."

If the input data set that you specified on the SPUFI panel already contains all of
the SQL statements that you want to execute, you can bypass this editing step by
specifying NO for the EDIT INPUT field on the SPUFI panel.

To enter SQL statements by using SPUFI:
1. If the EDIT panel is not already open, on the SPUFI panel, specify Y in the

EDIT INPUT field and press ENTER. If the input data set that you specified is
empty, an empty EDIT panel opens. Otherwise, if the input data set contained
SQL statements, those SQL statements are displayed in an EDIT panel.

DSNESP01 SPUFI SSID: DSN
===>
Enter the input data set name: (Can be sequential or partitioned)
1 DATA SET NAME..... ===> EXAMPLES(XMP1)
2 VOLUME SERIAL..... ===> (Enter if not cataloged)
3 DATA SET PASSWORD. ===> (Enter if password protected)

Enter the output data set name: (Must be a sequential data set)
4 DATA SET NAME..... ===> RESULT

Specify processing options:
5 CHANGE DEFAULTS... ===> Y (Y/N - Display SPUFI defaults panel?)
6 EDIT INPUT........ ===> Y (Y/N - Enter SQL statements?)
7 EXECUTE........... ===> Y (Y/N - Execute SQL statements?)
8 AUTOCOMMIT........ ===> Y (Y/N - Commit after successful run?)
9 BROWSE OUTPUT..... ===> Y (Y/N - Browse output data set?)

For remote SQL processing:
10 CONNECT LOCATION ===>

PRESS: ENTER to process END to exit HELP for more information

Figure 75. The SPUFI panel filled in

1044 Application Programming and SQL Guide

2. On the EDIT panel, use the ISPF EDIT program to enter or edit any SQL
statements that you want to execute. Move the cursor to the first blank input
line, and enter the first part of an SQL statement. You can enter the rest of the
SQL statement on subsequent lines, as shown in the following figure:

Consider the following rules and recommendations when editing this input
data set:
v Indent your lines and enter your statements on several lines to make your

statements easier to read. Entering your statements on multiple lines does
not change how your statements are processed.

v Do not put more than one SQL statement on a single line. If you do, the first
statement executes, but DB2 ignores the other SQL statements on the same
line. You can put more than one SQL statement in the input data set. DB2
executes the statements in the order in which you placed them in the data
set.

v End each SQL statement with the statement terminator that you specified on
the CURRENT SPUFI DEFAULTS panel.

v Save the data set every 10 minutes or so by entering the SAVE command.
3. Press the END PF key. The data set is saved, and the SPUFI panel is displayed.

Processing SQL statements with SPUFI:

You can use SPUFI to submit the SQL statements in a data set to DB2.

Before you begin this task, you must:
v Complete the task "Opening SPUFI and specifying initial options."
v Ensure that the input data set contains the SQL statements that you want to

execute.

To process SQL statements by using SPUFI:
1. On the SPUFI panel, specify YES in the EXECUTE field.
2. If you did not just finish using the EDIT panel to edit the input data set as

described in "Entering SQL statements in SPUFI," specify NO In the EDIT
INPUT field.

3. Press Enter.
SPUFI passes the input data set to DB2 for processing. DB2 executes the SQL
statement in the input data set and sends the output to the output data set.
The output data set opens.
Your SQL statement might take a long time to execute, depending on how large
a table DB2 must search, or on how many rows DB2 must process. In this case,
you can interrupt the processing by pressing the PA1 key. Then respond to the
message that asks you if you really want to stop processing. This action cancels
the executing SQL statement. Depending on how much of the input data set

EDIT --------userid.EXAMPLES(XMP1) --------------------- COLUMNS 001 072
COMMAND INPUT ===> SAVE SCROLL ===> PAGE
********************************** TOP OF DATA ***********************
000100 SELECT LASTNAME, FIRSTNME, PHONENO
000200 FROM DSN8B10.EMP
000300 WHERE WORKDEPT= ’D11’
000400 ORDER BY LASTNAME;
********************************* BOTTOM OF DATA *********************

Figure 76. The edit panel: After entering an SQL statement

Chapter 19. Testing and debugging an application program on DB2 for z/OS 1045

DB2 was able to process before you interrupted its processing, DB2 might not
have opened the output data set yet, or the output data set might contain all or
part of the results data that are produced so far.

For information about how to interpret the output in the output data set, see
“Output from SPUFI” on page 1056.

SQL statements that exceed resource limit thresholds:

Your system administrator might use the DB2 resource limit facility (governor) to
set time limits for processing SQL statements in SPUFI. Those limits can be error
limits or warning limits.

If you execute an SQL statement through SPUFI that runs longer than this error
time limit, SPUFI terminates processing of that SQL statement and all statements
that follow in the SPUFI input data set. SPUFI displays a panel that lets you
commit or roll back the previously uncommitted changes that you have made.
That panel is shown in the following figure.

If you execute an SQL statement through SPUFI that runs longer than the warning
time limit for predictive governing, SPUFI displays the SQL STATEMENT
RESOURCE LIMIT EXCEEDED panel. On this panel, you can tell DB2 to continue
executing that statement, or stop processing that statement and continue to the
next statement in the SPUFI input data set. That panel is shown in the following
figure.

DSNESP04 SQL STATEMENT RESOURCE LIMIT EXCEEDED SSID: DSN
===>

The following SQL statement has encountered an SQLCODE of -905 or -495:

Statement text

Your SQL statement has exceeded the resource utilization threshold set
by your site administrator.

You must ROLLBACK or COMMIT all the changes made since the last COMMIT.
SPUFI processing for the current input file will terminate immediately
after the COMMIT or ROLLBACK is executed.

1 NEXT ACTION ===> (Enter COMMIT or ROLLBACK)

PRESS: ENTER to process HELP for more information

Figure 77. The resource limit facility error panel

1046 Application Programming and SQL Guide

Related tasks:

Controlling resource usage (DB2 Performance)
Related reference:

ISPF User's Guide Vol II (z/OS V1R7.0 ISPF User's Guide Vol II)

SPUFI
You can use SPUFI to execute SQL statements dynamically.

SPUFI can execute SQL statements that retrieve Unicode UTF-16 graphic data.
However, SPUFI might not be able to display some characters, if those characters
have no mapping in the target SBCS EBCDIC CCSID.

Content of a SPUFI input data set
A SPUFI input data set can contain SQL statements, comments, and SPUFI control
statements.

You can put comments about SQL statements either on separate lines or on the
same line. In either case, use two hyphens (--) to begin a comment. Specify any
text other than #SET TERMINATOR or #SET TOLWARN after the comment
marker. DB2 ignores everything else to the right of the two hyphens.

The SPUFI panel
The SPUFI panel is the first panel that you need to fill out to run the SPUFI
application.

After you complete any fields on the SPUFI panel and press Enter, those settings
are saved. When the SPUFI panel displays again, the data entry fields on the panel
contain the values that you previously entered. You can specify data set names and
processing options each time the SPUFI panel is displayed, as needed. Values that
you do not change remain in effect.

The following descriptions explain the fields that are available on the SPUFI panel.

1,2,3 INPUT DATA SET NAME
Identify the input data set in fields 1 through 3. This data set contains one

DSNESP05 SQL STATEMENT RESOURCE LIMIT EXCEEDED SSID: DSN
===>

The following SQL statement has encountered an SQLCODE of 495:

Statement text

You can now either CONTINUE executing this statement or BYPASS the execution
of this statement. SPUFI processing for the current input file will continue
after the CONTINUE or BYPASS processing is completed.

1 NEXT ACTION ===> (Enter CONTINUE or BYPASS)

PRESS: ENTER to process HELP for more information

Figure 78. The resource limit facility warning panel

Chapter 19. Testing and debugging an application program on DB2 for z/OS 1047

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_improveresoureusage.htm#db2z_improveresoureusage
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ispzu290/5.3.3.1?ACTION=MATCHES&REQUEST=allocating+data+sets&TYPE=FUZZY&SHELF=&DT=20110601022517&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT

or more SQL statements that you want to execute. Allocate this data set
before you use SPUFI, if one does not already exist. Consider the following
rules:
v The name of the data set must conform to standard TSO naming

conventions.
v The data set can be empty before you begin the session. You can then

add the SQL statements by editing the data set from SPUFI.
v The data set can be either sequential or partitioned, but it must have the

following DCB characteristics:
– A record format (RECFM) of either F or FB.
– A logical record length (LRECL) of either 79 or 80. Use 80 for any

data set that the EXPORT command of DB2 QMF did not create.
v Data in the data set can begin in column 1. It can extend to column 71 if

the logical record length is 79, and to column 72 if the logical record
length is 80. SPUFI assumes that the last 8 bytes of each record are for
sequence numbers.

If you use this panel a second time, the name of the data set you
previously used displays in the field DATA SET NAME. To create a new
member of an existing partitioned data set, change only the member name.

4 OUTPUT DATA SET NAME
Enter the name of a data set to receive the output of the SQL statement.
You do not need to allocate the data set before you do this.

If the data set exists, the new output replaces its content. If the data set
does not exist, DB2 allocates a data set on the device type specified on the
CURRENT SPUFI DEFAULTS panel and then catalogs the new data set.
The device must be a direct-access storage device, and you must be
authorized to allocate space on that device.

Attributes required for the output data set are:
v Organization: sequential
v Record format: F, FB, FBA, V, VB, or VBA
v Record length: 80 to 32768 bytes, not less than the input data set

“Executing SQL by using SPUFI” on page 1043 shows the simplest choice,
entering RESULT. SPUFI allocates a data set named userid.RESULT and
sends all output to that data set. If a data set named userid.RESULT already
exists, SPUFI sends DB2 output to it, replacing all existing data.

5 CHANGE DEFAULTS
Enables you to change control values and characteristics of the output data
set and format of your SPUFI session. If you specify Y(YES) you can look
at the SPUFI defaults panel. See “Changing SPUFI defaults” on page 1049
for more information about the values you can specify and how they affect
SPUFI processing and output characteristics. You do not need to change
the SPUFI defaults for this example.

6 EDIT INPUT
To edit the input data set, leave Y(YES) on line 6. You can use the ISPF
editor to create a new member of the input data set and enter SQL
statements in it. (To process a data set that already contains a set of SQL
statements you want to execute immediately, enter N (NO). Specifying N
bypasses the step 3 described in “Executing SQL by using SPUFI” on page
1043.)

1048 Application Programming and SQL Guide

7 EXECUTE
To execute SQL statements contained in the input data set, leave Y(YES) on
line 7.

SPUFI handles the SQL statements that can be dynamically prepared.

8 AUTOCOMMIT
To make changes to the DB2 data permanent, leave Y(YES) on line 8.
Specifying Y makes SPUFI issue COMMIT if all statements execute
successfully. If all statements do not execute successfully, SPUFI issues a
ROLLBACK statement, which deletes changes already made to the file
(back to the last commit point).

If you specify N, DB2 displays the SPUFI COMMIT OR ROLLBACK panel
after it executes the SQL in your input data set. That panel prompts you to
COMMIT, ROLLBACK, or DEFER any updates made by the SQL. If you
enter DEFER, you neither commit nor roll back your changes.

9 BROWSE OUTPUT
To look at the results of your query, leave Y(YES) on line 9. SPUFI saves
the results in the output data set. You can look at them at any time, until
you delete or write over the data set.

10 CONNECT LOCATION
Specify the name of the database server, if applicable, to which you want
to submit SQL statements. SPUFI then issues a type 2 CONNECT
statement to this server.

SPUFI is a locally bound package. SQL statements in the input data set can
process only if the CONNECT statement is successful. If the connect
request fails, the output data set contains the resulting SQL return codes
and error messages.

Related reference:

Characteristics of SQL statements in DB2 for z/OS (DB2 SQL)

COMMIT (DB2 SQL)

ROLLBACK (DB2 SQL)

Changing SPUFI defaults
Before you execute SQL statements in SPUFI, you can change the default execution
behavior, such as the SQL terminator and the isolation level.

About this task

SPUFI provides default values the first time that you use SPUFI for all options
except the DB2 subsystem name. Any changes that you make to these values
remain in effect until you change the values again.

Procedure

To change the SPUFI defaults:
1. On the SPUFI panel, specify YES in the CHANGE DEFAULTS field.
2. Press Enter. The CURRENT SPUFI DEFAULTS panel opens. The following

figure shows the initial default values.

Chapter 19. Testing and debugging an application program on DB2 for z/OS 1049

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_characteristicsofsqlstmts.htm#db2z_characteristicsofsqlstmts
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_commit.htm#db2z_sql_commit
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_rollback.htm#db2z_sql_rollback

3. Specify any new values in the fields of this panel. All fields must contain a
value.

4. Press Enter. SPUFI saves your changes and one of the following panels or data
sets open:
v The CURRENT SPUFI DEFAULTS - PANEL 2 panel. This panel opens if you

specified YES in the CHANGE PLAN NAMES field.
v EDIT panel. This panel opens if you specified YES in the EDIT INPUT field

on the SPUFI panel.
v Output data set. This data set opens if you specified NO in the EDIT INPUT

field on the SPUFI panel.
v SPUFI panel. This panel opens if you specified NO for all of the processing

options on the SPUFI panel.
If you press the END key on the CURRENT SPUFI DEFAULTS panel, the
SPUFI panel is displayed, and you lose all the changes that you made on the
CURRENT SPUFI DEFAULTS panel.

5. If the CURRENT SPUFI DEFAULTS - PANEL 2 panel opens, specify values for
the fields on that panel and press Enter. All fields must contain a value.

Important: If you specify an invalid or incorrect plan name, SPUFI might
experience operational errors or your data might be contaminated.

SPUFI saves your changes and one of the following panels or data sets open:
v EDIT panel. This panel opens if you specified YES in the EDIT INPUT field

on the SPUFI panel.
v Output data set. This data set opens if you specified NO in the EDIT INPUT

field on the SPUFI panel.
v SPUFI panel. This panel opens if you specified NO for all of the processing

options on the SPUFI panel.

DSNESP02 CURRENT SPUFI DEFAULTS SSID: DSN
===>
Enter the following to control your SPUFI session:
1 SQL TERMINATOR .. ===> ; (SQL Statement Terminator)
2 ISOLATION LEVEL ===> RR (RR=Repeatable Read, CS=Cursor Stability)

UR=Uncommitted Read)
3 MAX SELECT LINES ===> 250 (Maximum lines to be returned from a SELECT)
4 ALLOW SQL WARNINGS===> NO (Continue fetching after SQL warning)
5 CHANGE PLAN NAMES ===> NO (Change the plan names used by SPUFI)
6 SQL FORMAT ===> SQL (SQL, SQLCOMNT, or SQLPL)
Output data set characteristics:
7 SPACE UNIT ===> TRK (TRK or CYL)
8 PRIMARY SPACE ... ===> 5 (Primary space allocation 1-999)
9 SECONDARY SPACE . ===> 6 (Secondary space allocation 0-999)
10 RECORD LENGTH ... ===> 4092 (LRECL= logical record length)
11 BLOCKSIZE ===> 4096 (Size of one block)
12 RECORD FORMAT.... ===> VB (RECFM= F, FB, FBA, V, VB, or VB)
13 DEVICE TYPE...... ===> SYSDA (Must be a DASD unit name)
Output format characteristics:
14 MAX NUMERIC FIELD ===> 33 (Maximum width for numeric field)
15 MAX CHAR FIELD .. ===> 80 (Maximum width for character field)
16 COLUMN HEADING .. ===> NAMES (NAMES, LABELS, ANY, or BOTH)

PRESS: ENTER to process END to exit HELP for more information

Figure 79. The SPUFI defaults panel

1050 Application Programming and SQL Guide

Results

Next, continue with one of the following tasks:
v If you want to add SQL statements to the input data set or edit the SQL

statements in the input data set, enter SQL statements in SPUFI.
v Otherwise if the input data set already contains the SQL statements that you

want to execute, process SQL statements with SPUFI.
Related reference:
“CURRENT SPUFI DEFAULTS panel”
“CURRENT SPUFI DEFAULTS - PANEL 2 panel” on page 1054

CURRENT SPUFI DEFAULTS panel
Use the CURRENT SPUFI DEFAULTS panel to specify SPUFI default values.

The following descriptions explain the information on the CURRENT SPUFI
DEFAULTS panel.

1 SQL TERMINATOR
Specify the character that you use to end each SQL statement. You can
specify any character except the characters listed in the following table. A
semicolon (;) is the default SQL terminator.

Table 161. Invalid special characters for the SQL terminator

Name Character
Hexadecimal

representation

blank X'40'

comma , X'5E'

double quote " X'7F'

left parenthesis (X'4D'

right parenthesis) X'5D'

single quote ' X'7D'

underscore _ X'6D'

Use a character other than a semicolon if you plan to execute a statement
that contains embedded semicolons. For example, suppose you choose the
character # as the statement terminator. Then a CREATE TRIGGER
statement with embedded semicolons looks like the following statement:
CREATE TRIGGER NEW_HIRE

AFTER INSERT ON EMP
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;
END#

A CREATE PROCEDURE statement with embedded semicolons looks like
the following statement:
CREATE PROCEDURE PROC1 (IN PARM1 INT, OUT SCODE INT)

LANGUAGE SQL
BEGIN

DECLARE SQLCODE INT;
DECLARE EXIT HANDLER FOR SQLEXCEPTION

SET SCODE = SQLCODE;
UPDATE TBL1 SET COL1 = PARM1;

END #

Chapter 19. Testing and debugging an application program on DB2 for z/OS 1051

Be careful to choose a character for the SQL terminator that is not used
within the statement.

You can also set or change the SQL terminator within a SPUFI input data
set by using the --#SET TERMINATOR statement.

2 ISOLATION LEVEL
Specify the isolation level for your SQL statements.

3 MAX SELECT LINES
The maximum number of rows that a SELECT statement can return. To
limit the number of rows retrieved, enter another maximum number
greater than 1.

4 ALLOW SQL WARNINGS
Enter YES or NO to indicate whether SPUFI will continue to process an
SQL statement after receiving SQL warnings:

YES If a warning occurs when SPUFI executes an OPEN or FETCH for
a SELECT statement, SPUFI continues to process the SELECT
statement.

NO If a warning occurs when SPUFI executes an OPEN or FETCH for
a SELECT statement, SPUFI stops processing the SELECT
statement. If SQLCODE +802 occurs when SPUFI executes a
FETCH for a SELECT statement, SPUFI continues to process the
SELECT statement.

You can also specify how SPUFI pre-processes the SQL input by using the
--#SET TOLWARN statement.

5 CHANGE PLAN NAMES
If you enter YES in this field, you can change plan names on a subsequent
SPUFI defaults panel, DSNESP07. Enter YES in this field only if you are
certain that you want to change the plan names that are used by SPUFI.
Consult with your DB2 system administrator if you are uncertain whether
you want to change the plan names. Using an invalid or incorrect plan
name might cause SPUFI to experience operational errors or it might cause
data contamination.

6 SQL FORMAT
Specify how SPUFI pre-processes the SQL input before passing it to DB2.
Select one of the following options:

SQL This is the preferred mode for SQL statements other than SQL
procedural language. When you use this option, which is the
default, SPUFI collapses each line of an SQL statement into a single
line before passing the statement to DB2. SPUFI also discards all
SQL comments.

SQLCOMNT
This mode is suitable for all SQL, but it is intended primarily for
SQL procedural language processing. When this option is in effect,
behavior is similar to SQL mode, except that SPUFI does not
discard SQL comments. Instead, it automatically terminates each
SQL comment with a line feed character (hex 25), unless the
comment is already terminated by one or more line formatting
characters. Use this option to process SQL procedural language
with minimal modification by SPUFI.

SQLPL
This mode is suitable for all SQL, but it is intended primarily for

1052 Application Programming and SQL Guide

SQL procedural language processing. When this option is in effect,
SPUFI retains SQL comments and terminates each line of an SQL
statement with a line feed character (hex 25) before passing the
statement to DB2. Lines that end with a split token are not
terminated with a line feed character. Use this mode to obtain
improved diagnostics and debugging of SQL procedural language.

You can also specify how SPUFI pre-processes the SQL input by using the
--#SET SQLFORMAT statement.

7 SPACE UNIT
Specify how space for the SPUFI output data set is to be allocated.

TRK Track

CYL Cylinder

8 PRIMARY SPACE
Specify how many tracks or cylinders of primary space are to be allocated.

9 SECONDARY SPACE
Specify how many tracks or cylinders of secondary space are to be
allocated.

10 RECORD LENGTH
The record length must be at least 80 bytes. The maximum record length
depends on the device type you use. The default value allows a 32756-byte
record.

Each record can hold a single line of output. If a line is longer than a
record, the output is truncated, and SPUFI discards fields that extend
beyond the record length.

11 BLOCKSIZE
Follow the normal rules for selecting the block size. For record format F,
the block size is equal to the record length. For FB and FBA, choose a
block size that is an even multiple of LRECL. For VB and VBA only, the
block size must be 4 bytes larger than the block size for FB or FBA.

12 RECORD FORMAT
Specify F, FB, FBA, V, VB, or VBA. FBA and VBA formats insert a printer
control character after the number of lines specified in the LINES/PAGE
OF LISTING field on the DB2I Defaults panel. The record format default is
VB (variable-length blocked).

13 DEVICE TYPE
Specify a standard z/OS name for direct-access storage device types. The
default is SYSDA. SYSDA specifies that z/OS is to select an appropriate
direct access storage device.

14 MAX NUMERIC FIELD
The maximum width of a numeric value column in your output. Choose a
value greater than 0. The default is 33.

15 MAX CHAR FIELD
The maximum width of a character value column in your output.
DATETIME and GRAPHIC data strings are externally represented as
characters, and SPUFI includes their defaults with the default values for
character fields. Choose a value greater than 0. The IBM-supplied default is
250.

16 COLUMN HEADING
You can specify NAMES, LABELS, ANY, or BOTH for column headings.

Chapter 19. Testing and debugging an application program on DB2 for z/OS 1053

v NAMES uses column names only.
v LABELS (default) uses column labels. Leave the title blank if no label

exists.
v ANY uses existing column labels or column names.
v BOTH creates two title lines, one with names and one with labels.

Column names are the column identifiers that you can use in SQL
statements. If an SQL statement has an AS clause for a column, SPUFI
displays the contents of the AS clause in the heading, rather than the
column name. You define column labels with LABEL statements.

Related concepts:
“Output from SPUFI” on page 1056
Related tasks:
“Changing SPUFI defaults” on page 1049
“Executing SQL by using SPUFI” on page 1043

CURRENT SPUFI DEFAULTS - PANEL 2 panel
Use the CURRENT SPUFI DEFAULTS - PANEL 2 panel to specify default plan
name information.

This panel opens if you specify YES in the CHANGE PLAN NAMES field of the
CURRENT SPUFI DEFAULTS panel.

Figure 80 shows the initial default values.

The following descriptions explain the information on the CURRENT SPUFI
DEFAULTS - PANEL 2 panel.

1 CS ISOLATION PLAN
Specify the name of the plan that SPUFI uses when you specify an
isolation level of cursor stability (CS). By default, this name is DSNESPCS.

2 RR ISOLATION PLAN
Specify the name of the plan that SPUFI uses when you specify an
isolation level of repeatable read (RR). By default, this name is DSNESPRR.

DSNESP07 CURRENT SPUFI DEFAULTS - PANEL 2 SSID: DSN
===>
Enter the following to control your SPUFI session:
1 CS ISOLATION PLAN ===> DSNESPCS (Name of plan for CS isolation level)
2 RR ISOLATION PLAN ===> DSNESPRR (Name of plan for RR isolation level)
3 UR ISOLATION PLAN ===> DSNESPUR (Name of plan for UR isolation level)

Indicate warning message status:
4 BLANK CCSID WARNING ===> YES (Show warning if terminal CCSID is blank)

PRESS: ENTER to process END to exit HELP for more information

Figure 80. CURRENT SPUFI DEFAULTS - PANEL 2

1054 Application Programming and SQL Guide

3 UR ISOLATION PLAN
Specify the name of the plan that SPUFI uses when you specify an
isolation level of uncommitted read (UR). By default, this name is
DSNESPUR.

4 BLANK CCSID ALERT
Indicate whether to receive message DSNE345I when the terminal CCSID
setting is blank. A blank terminal CCSID setting occurs when the terminal
code page and character set cannot be queried or if they are not supported
by ISPF.

Recommendation: To avoid possible data contamination use the default
setting of YES, unless you are specifically directed by your DB2 system
administrator to use NO.

Setting the SQL terminator character in a SPUFI input data set
In the SPUFI input data set, you can override the SQL terminator character that is
specified on the CURRENT SPUFI DEFAULTS panel. The default SQL terminator is
a semicolon (;).

About this task

Overriding the default SQL termination character is useful if you need to use a
different SQL terminator character for one particular SQL statement.

To set the SQL terminator character in a SPUFI input data set, specify the text
--#SET TERMINATOR character before that SQL statement to which you want this
character to apply. This text specifies that SPUFI is to interpret character as a
statement terminator. You can specify any single-byte character except the
characters that are listed in Table 162. Choose a character for the SQL terminator
that is not used within the statement. The terminator that you specify overrides a
terminator that you specified in option 1 of the CURRENT SPUFI DEFAULTS
panel or in a previous --#SET TERMINATOR statement.

Table 162. Invalid special characters for the SQL terminator

Name Character
Hexadecimal

representation

blank X'40'

comma , X'5E'

double quote " X'7F'

left parenthesis (X'4D'

right parenthesis) X'5D'

single quote ' X'7D'

underscore _ X'6D'

Use a character other than a semicolon if you plan to execute a statement that
contains embedded semicolons. For example, suppose that you choose the
character # as the statement terminator. In this case, a CREATE TRIGGER
statement with embedded semicolons looks like this:

Chapter 19. Testing and debugging an application program on DB2 for z/OS 1055

CREATE TRIGGER NEW_HIRE
AFTER INSERT ON EMP
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;
END#

Controlling toleration of warnings in SPUFI
When you use SPUFI, you can specify the action that SPUFI is to take when a
warning occurs.

About this task

To control the toleration of warnings, specify one of the following TOLWARN
control statements:

--#SET TOLWARN NO
If a warning occurs when SPUFI executes an OPEN or FETCH for SELECT
statement, SPUFI stops processing the SELECT statement. If SQLCODE
+802 occurs when SPUFI executes a FETCH for a SELECT statement,
SPUFI continues to process the SELECT statement.

--#SET TOLWARN YES
If a warning occurs when SPUFI executes an OPEN or FETCH for SELECT
statement, SPUFI continues to process the SELECT statement.

Example

The following example activates and then deactivates toleration of SQL warnings:
SELECT * FROM MY.T1;
--#SET TOLWARN YES
SELECT * FROM YOUR.T1;
--#SET TOLWARN NO

Output from SPUFI
SPUFI formats and displays the output data set using the ISPF Browse program.

Figure 81 on page 1057 shows the output from the sample program. An output
data set contains the following items for each SQL statement that DB2 executes:
v The executed SQL statement, copied from the input data set
v The results of executing the SQL statement
v The formatted SQLCA, if an error occurs during statement execution

At the end of the data set are summary statistics that describe the processing of the
input data set as a whole.

For SELECT statements that are executed with SPUFI, the message “SQLCODE IS
100” indicates an error-free result. If the message SQLCODE IS 100 is the only
result, DB2 is unable to find any rows that satisfy the condition that is specified in
the statement.

For all other types of SQL statements that are executed with SPUFI, the message
“SQLCODE IS 0” indicates an error-free result.

1056 Application Programming and SQL Guide

Formatting rules for SELECT statement results in SPUFI:

The results of SELECT statements follow these rules:
v If numeric or character data of a column cannot be displayed completely:

– Character values and binary values that are too wide truncate on the right.
– Numeric values that are too wide display as asterisks (*).
– For columns other than LOB and XML columns, if truncation occurs, the

output data set contains a warning message. Because LOB and XML columns
are generally longer than the value you choose for field MAX CHAR FIELD
on panel CURRENT SPUFI DEFAULTS, SPUFI displays no warning message
when it truncates LOB or XML column output.

You can change the amount of data that is displayed for numeric and character
columns by changing values on the CURRENT SPUFI DEFAULTS panel, as
described in “Changing SPUFI defaults” on page 1049.

v A null value is displayed as a series of hyphens (-).
v A ROWID, BLOB, BINARY, or VARBINARY column value is displayed in

hexadecimal.
v A CLOB column value is displayed in the same way as a VARCHAR column

value.
v A DBCLOB column value is displayed in the same way as a VARGRAPHIC

column value.
v An XML column is displayed in the same way as a LOB column.
v A heading identifies each selected column, and is repeated at the top of each

output page. The contents of the heading depend on the value that you specified
in the COLUMN HEADING field of the CURRENT SPUFI DEFAULTS panel.

Content of the messages from SPUFI:

BROWSE-- userid.RESULT COLUMNS 001 072
COMMAND INPUT ===> SCROLL ===> PAGE
--------+---------+---------+---------+---------+---------+---------+---------+
SELECT LASTNAME, FIRSTNME, PHONENO 00010000
FROM DSN8B10.EMP 00020000
WHERE WORKDEPT = ’D11’ 00030000
ORDER BY LASTNAME; 00040000

---------+---------+---------+---------+---------+---------+---------+---------+
LASTNAME FIRSTNME PHONENO
ADAMSON BRUCE 4510
BROWN DAVID 4501
JOHN REBA 0672
JONES WILLIAM 0942
LUTZ JENNIFER 0672
PIANKA ELIZABETH 3782
SCOUTTEN MARILYN 1682
STERN IRVING 6423
WALKER JAMES 2986
YAMAMOTO KIYOSHI 2890
YOSHIMURA MASATOSHI 2890
DSNE610I NUMBER OF ROWS DISPLAYED IS 11
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100
---------+---------+---------+---------+---------+---------+----
---------+---------+---------+---------+---------+---------+----
DSNE617I COMMIT PERFORMED, SQLCODE IS 0
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 0
---------+---------+---------+---------+---------+---------+----
DSNE601I SQL STATEMENTS ASSUMED TO BE BETWEEN COLUMNS 1 AND 72
DSNE620I NUMBER OF SQL STATEMENTS PROCESSED IS 1
DSNE621I NUMBER OF INPUT RECORDS READ IS 4
DSNE622I NUMBER OF OUTPUT RECORDS WRITTEN IS 30

Figure 81. Result data set from the sample problem

Chapter 19. Testing and debugging an application program on DB2 for z/OS 1057

Each SPUFI message contains the following:
v The SQLCODE, if the statement executes successfully.
v The formatted SQLCA, if the statement executes unsuccessfully.
v What character positions of the input data set that SPUFI scanned to find SQL

statements. This information helps you check the assumptions that SPUFI made
about the location of line numbers (if any) in your input data set.

v Some overall statistics:
– Number of SQL statements that are processed
– Number of input records that are read (from the input data set)
– Number of output records that are written (to the output data set).

Other messages that you could receive from the processing of SQL statements
include:
v The number of rows that DB2 processed, that either:

– Your select operation retrieved
– Your update operation modified
– Your insert operation added to a table
– Your delete operation deleted from a table

v Which columns display truncated data because the data was too wide

Testing an external user-defined function
Some commonly used debugging tools, such as TSO TEST, are not available in the
environment where user-defined functions run. You need to use alternative testing
strategies.

Testing a user-defined function by using the Debug Tool for
z/OS

You can use the Debug Tool for z/OS to test DB2 for z/OS user-defined functions
that are written in any of the supported languages. The Debug Tool for z/OS
works with Language Environment.

About this task

You can use the Debug Tool either interactively or in batch mode. To test your
user-defined function using the Debug Tool, you must have the Debug Tool
installed on the z/OS system where the user-defined function runs.

Procedure

To test a user-defined function by using the Debug Tool for z/OS, choose one of
the following approaches:
v To use the Debug Tool interactively:

1. Compile the user-defined function with the TEST option. This places
information in the program that the Debug Tool uses.

2. Invoke the Debug Tool. One way to do that is to specify the Language
Environment run time TEST option. The TEST option controls when and how
the Debug Tool is invoked. The most convenient place to specify run time
options is with the RUN OPTIONS clause of CREATE FUNCTION or ALTER
FUNCTION. For example, suppose that you code this option:
TEST(ALL,*,PROMPT,JBJONES%SESSNA:)

The parameter values cause the following things to happen:

1058 Application Programming and SQL Guide

ALL
The Debug Tool gains control when an attention interrupt, abend, or
program or Language Environment condition of Severity 1 and above
occurs.

* Debug commands will be entered from the terminal.

PROMPT
The Debug Tool is invoked immediately after Language Environment
initialization.

JBJONES%SESSNA:
The Debug Tool initiates a session on a workstation identified to APPC
as JBJONES with a session ID of SESSNA.

3. If you want to save the output from your debugging session, issue a
command that names a log file. For example, the following command starts
logging to a file on the workstation called dbgtool.log.
SET LOG ON FILE dbgtool.log;

This should be the first command that you enter from the terminal or
include in your commands file.

v To use the Debug Tool in batch mode:
1. If you plan to use the Language Environment run time TEST option to

invoke the Debug Tool, compile the user-defined function with the TEST
option. This places information in the program that the Debug Tool uses
during a debugging session.

2. Allocate a log data set to receive the output from the Debug Tool. Put a DD
statement for the log data set in the startup procedure for the stored
procedures address space.

3. Enter commands in a data set that you want the Debug Tool to execute. Put
a DD statement for that data set in the startup procedure for the stored
procedures address space. To define the data set that contains the commands
to the Debug Tool, specify its data set name or DD name in the TEST run
time option. For example, this option tells the Debug Tool to look for the
commands in the data set that is associated with DD name TESTDD:
TEST(ALL,TESTDD,PROMPT,*)

The first command in the commands data set should be:
SET LOG ON FILE ddname;

This command directs output from your debugging session to the log data
set you defined in step 2. For example, if you defined a log data set with DD
name INSPLOG in the start-up procedure for the stored procedures address
space, the first command should be:
SET LOG ON FILE INSPLOG;

4. Invoke the Debug Tool. The following are two possible methods for invoking
the Debug Tool:
– Specify the Language Environment run time TEST option. The most

convenient place to do that is in the RUN OPTIONS parameter of
CREATE FUNCTION or ALTER FUNCTION.

– Put CEETEST calls in the user-defined function source code. If you use
this approach for an existing user-defined function, you must compile,
link-edit, and bind the user-defined function again. Then you must issue
the STOP FUNCTION SPECIFIC and START FUNCTION SPECIFIC
commands to reload the user-defined function.

Chapter 19. Testing and debugging an application program on DB2 for z/OS 1059

You can combine the Language Environment run time TEST option with
CEETEST calls. For example, you might want to use TEST to name the
commands data set but use CEETEST calls to control when the Debug
Tool takes control.

You can combine the Language Environment run time TEST option with
CEETEST calls. For example, you might want to use TEST to name the
commands data set but use CEETEST calls to control when the Debug Tool
takes control.

Related reference:
“Components of a user-defined function definition” on page 508

Debug Tool for z/OS

Testing a user-defined function by routing the debugging
messages to SYSPRINT

You can include simple print statements in your user-defined function code that
you route to SYSPRINT. Then use System Display and Search Facility (SDSF) to
examine the SYSPRINT contents while the WLM-established stored procedure
address space is running.

About this task

You can serialize I/O by running the WLM-established stored procedure address
space with NUMTCB=1.

Testing a user-defined function by using driver applications
You can write a small driver application that calls a user-defined function as a
subprogram and passes the parameter list for the user-defined function. You can
then test and debug the user-defined function as a normal DB2 application under
TSO.

About this task

You can then use TSO TEST and other commonly used debugging tools.

Testing a user-defined function by using SQL INSERT
statements

You can use SQL to insert debugging information into a DB2 table. This allows
other machines in the network (such as workstations) to easily access the data in
the table by using DRDA access.

About this task

DB2 discards the debugging information if the application executes the
ROLLBACK statement. To prevent the loss of the debugging data, code the calling
application so that it retrieves the diagnostic data before executing the ROLLBACK
statement.

1060 Application Programming and SQL Guide

http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/index.jsp

Debugging stored procedures
When debugging stored procedures, you might need to use different techniques
than you would use for regular application programs. For example, some
commonly used debugging tools, such as TSO TEST, are not available in the
environment where stored procedures run.

Procedure

To debug a stored procedure, perform one or more of the following actions:
v Take one or more of the following general actions, which are appropriate in

many situations with stored procedures:
– Ensure that all stored procedures are written to handle any SQL errors.
– Debug stored procedures as stand-alone programs on a workstation.

If you have debugging tools on a workstation, consider doing most of your
development and testing on a workstation before installing a stored
procedure on z/OS. This technique results in very little debugging activity on
z/OS.

– Record stored procedure debugging messages to a disk file or JES spool file.
– Store debugging information in a table. This technique is especially useful for

remote stored procedures.
– Use the DISPLAY command to view information about particular stored

procedures, including statistics and thread information.
– In the stored procedure that you are debugging, issue DISPLAY commands.

You can view the DISPLAY results in the SDSF output. The DISPLAY results
can help you find information about the started task that is associated with
the address space for the WLM application environment.

– If necessary, use the STOP PROCEDURE command to stop calls to one or
more problematic stored procedures. You can restart them later.

v If your stored procedures address space has the CEEDUMP data set allocated,
look at the diagnostic information in the CEEDUMP output.

v For COBOL, C, and C++ stored procedures, use the Debug Tool for z/OS.
v For COBOL stored procedures, compile the stored procedure with the option

TEST(SYM) if you want a formatted local variable dump to be included in the
CEEDUMP output.

v For native SQL procedures, external SQL procedures, and Java stored
procedures, use the Unified Debugger.

v For external stored procedures, consider taking one or both of the following
actions:
– Use a driver application.
– Create or alter the stored procedure definition to include the PARAMETER

STYLE SQL option. This option enables the stored procedure to share any
error information with the calling application. Ensure that your procedure
follows linkage conventions for stored procedures.

v If you changed a stored procedure or a startup JCL procedure for a WLM
application environment, determine whether you need to refresh the WLM
environment. You must refresh the WLM environment before certain stored
procedure changes take effect.

Chapter 19. Testing and debugging an application program on DB2 for z/OS 1061

Related tasks:
“Handling SQL conditions in an SQL procedure” on page 567

Displaying information about stored procedures with DB2 commands (DB2
Administration Guide)

Refreshing WLM application environments for stored procedures (DB2
Administration Guide)

Implementing DB2 stored procedures (DB2 Administration Guide)
Related reference:
“Linkage conventions for external stored procedures” on page 610

-START PROCEDURE (DB2) (DB2 Commands)

-STOP PROCEDURE (DB2) (DB2 Commands)

Debugging COBOL, PL/I, and C/C++ procedures on z/OS (DB2 9 for z/OS
Stored Procedures: Through the CALL and Beyond)

Debugging SQL procedures on z/OS, Linux, UNIX, and Windows (DB2 9 for
z/OS Stored Procedures: Through the CALL and Beyond)

Debugging stored procedures with the Debug Tool and IBM
VisualAge COBOL

If you have VisualAge® COBOL installed on your workstation and the Debug Tool
installed on your z/OS system, you can use the VisualAge COBOL
Edit/Compile/Debug component with the Debug Tool to debug COBOL stored
procedures that run in a WLM-established stored procedures address space.

About this task

Before you begin debugging, write your COBOL stored procedure and set up the
WLM environment.

Procedure

To debug with the Debug Tool and IBM VisualAge COBOL:
1. When you compile the stored procedure, specify the TEST and SOURCE

options. Ensure that the source listing is stored in a permanent data set.
VisualAge COBOL displays the source listing during the debug session.

2. When you define the stored procedure, include run time option TEST with the
suboption VADTCPIP&ipaddr in your RUN OPTIONS argument.
VADTCPIP& tells the Debug Tool that it is interfacing with a workstation that
runs VisualAge COBOL and is configured for TCP/IP communication with
your z/OS system. ipaddr is the IP address of the workstation on which you
display your debug information. For example, the RUN OPTIONS value in the
following stored procedure definition indicates that debug information should
go to the workstation with IP address 9.63.51.17:
CREATE PROCEDURE WLMCOB
(IN INTEGER, INOUT VARCHAR(3000), INOUT INTEGER)
MODIFIES SQL DATA
LANGUAGE COBOL EXTERNAL
PROGRAM TYPE MAIN
WLM ENVIRONMENT WLMENV1
RUN OPTIONS ’POSIX(ON),TEST(,,,VADTCPIP&9.63.51.17:*)’

1062 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_displaystoredprocinfo.htm#db2z_displaystoredprocinfo
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_displaystoredprocinfo.htm#db2z_displaystoredprocinfo
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_refreshwlmenvironment.htm#db2z_refreshwlmenvironment
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_refreshwlmenvironment.htm#db2z_refreshwlmenvironment
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.admin/src/tpc/db2z_storedprocedureimplementation.htm#db2z_storedprocedureimplementation
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_startprocedure.htm#db2z_cmd_startprocedure
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_stopprocedure.htm#db2z_cmd_stopprocedure
http://www.redbooks.ibm.com/redbooks/SG247604/28-4a.htm
http://www.redbooks.ibm.com/redbooks/SG247604/28-4a.htm
http://www.redbooks.ibm.com/redbooks/SG247604/28-3a.htm
http://www.redbooks.ibm.com/redbooks/SG247604/28-3a.htm

3. In the JCL startup procedure for WLM-established stored procedures address
space, add the data set name of the Debug Tool load library to the STEPLIB
concatenation. For example, suppose that ENV1PROC is the JCL procedure for
application environment WLMENV1. The modified JCL for ENV1PROC might
look like this:
//DSNWLM PROC RGN=0K,APPLENV=WLMENV1,DB2SSN=DSN,NUMTCB=8
//IEFPROC EXEC PGM=DSNX9WLM,REGION=&RGN,TIME=NOLIMIT,
// PARM=’&DB2SSN,&NUMTCB,&APPLENV’
//STEPLIB DD DISP=SHR,DSN=DSNB10.RUNLIB.LOAD
// DD DISP=SHR,DSN=CEE.SCEERUN
// DD DISP=SHR,DSN=DSNB10.SDSNLOAD
// DD DISP=SHR,DSN=EQAW.SEQAMOD <== DEBUG TOOL

4. On the workstation, start the VisualAge Remote Debugger daemon. This
daemon waits for incoming requests from TCP/IP.

5. Call the stored procedure. When the stored procedure starts, a window that
contains the debug session is displayed on the workstation. You can then
execute Debug Tool commands to debug the stored procedure.

Related reference:

Debug Tool for z/OS

Debugging a C language stored procedure with the Debug
Tool and C/C++ Productivity Tools for z/OS

You can debug a C or C++ stored procedure that runs in a WLM-established stored
procedures address space. You must have the C/C++ Productivity Tools for z/OS
installed on your workstation and the Debug Tool installed on your z/OS system.

About this task

The code against which you run the debug tools is the C source program that is
produced by the program preparation process for the stored procedure.

Before you begin debugging, write your C++ stored procedure and set up the
WLM environment.

Procedure

To test the stored procedure with the Distributed Debugger feature of the C/C++
Productivity Tools for z/OS and the Debug Tool:
1. When you define the stored procedure, include run time option TEST with the

suboption VADTCPIP&ipaddr in your RUN OPTIONS argument.
VADTCPIP& tells the Debug Tool that it is interfacing with a workstation that
runs VisualAge C++ and is configured for TCP/IP communication with your
z/OS system. ipaddr is the IP address of the workstation on which you display
your debug information. For example, this RUN OPTIONS value in a stored
procedure definition indicates that debug information should go to the
workstation with IP address 9.63.51.17:
RUN OPTIONS ’POSIX(ON),TEST(,,,VADTCPIP&9.63.51.17:*)’

2. Precompile the stored procedure. Ensure that the modified source program that
is the output from the precompile step is in a permanent, catalogued data set.

3. Compile the output from the precompile step. Specify the TEST, SOURCE, and
OPT(0) compiler options.

4. In the JCL startup procedure for the stored procedures address space, add the
data set name of the Debug Tool load library to the STEPLIB concatenation. For

Chapter 19. Testing and debugging an application program on DB2 for z/OS 1063

http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/index.jsp

example, suppose that ENV1PROC is the JCL procedure for application
environment WLMENV1. The modified JCL for ENV1PROC might look like
this:
//DSNWLM PROC RGN=0K,APPLENV=WLMENV1,DB2SSN=DSN,NUMTCB=8
//IEFPROC EXEC PGM=DSNX9WLM,REGION=&RGN,TIME=NOLIMIT,
// PARM=’&DB2SSN,&NUMTCB,&APPLENV’
//STEPLIB DD DISP=SHR,DSN=DSNB10.RUNLIB.LOAD
// DD DISP=SHR,DSN=CEE.SCEERUN
// DD DISP=SHR,DSN=DSNB10.SDSNLOAD
// DD DISP=SHR,DSN=EQAW.SEQAMOD <== DEBUG TOOL

5. On the workstation, start the Distributed Debugger daemon. This daemon waits
for incoming requests from TCP/IP.

6. Call the stored procedure. When the stored procedure starts, a window that
contains the debug session is displayed on the workstation. You can then
execute Debug Tool commands to debug the stored procedure.

Related reference:

Debug Tool for z/OS

Debugging stored procedures by using the Unified Debugger
You can use the Unified Debugger to remotely debug native SQL procedures,
external SQL procedures, and Java stored procedures that execute on DB2 for z/OS
servers. The Unified Debugger also supports debugging nested stored procedure
calls.

About this task

With the Unified Debugger, you can observe the execution of the procedure code,
set breakpoints for lines, and view or modify variable values.

Procedure

To debug stored procedures by using the Unified Debugger:
1. Set up the Unified Debugger by performing the following steps:

a. Ensure that job DSNTIJRT successfully created the stored procedures that
provide server support for the Unified Debugger. This job is run during the
installation and migration process. The stored procedures that this job
creates must run in WLM environments.

Recommendation: Initially, define and use the DB2 core WLM environment
DSNWLM_GENERAL to run the SYSPROC.DBG_RUNSESSIONMANAGER
stored procedure and core WLM environment DSNWLM_DEBUGGER to
run the other stored procedures for Unified debugger.

b. Define the debug mode characteristics for the stored procedure that you
want to debug by completing one of the following actions:
v For a native SQL procedure, define the procedure with the ALLOW

DEBUG MODE option and the WLM ENVIRONMENT FOR DEBUG
MODE option. If the procedure already exists, you can use the ALTER
PROCEDURE statement to specify these options.

v For an external SQL procedure, use DSNTPSMP or IBM Optim
Development Studio to build the SQL procedure with the BUILD_DEBUG
option.

1064 Application Programming and SQL Guide

http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/index.jsp

v For a Java stored procedure, define the procedure with the ALLOW
DEBUG MODE option, select an appropriate WLM environment for Java
debugging, and compile the Java code with the -G option.

c. Grant the DEBUGSESSION privilege to the user who runs the debug client.
2. Include breakpoints in your routines or executable files.
3. Follow the instructions for debugging stored procedures in the information for

IBM Optim Development Studio.
Related concepts:

Java stored procedures and user-defined functions (DB2 Application
Programming for Java)
Related tasks:
“Creating an external SQL procedure by using DSNTPSMP” on page 591

Developing database routines (IBM Data Studio, IBM Optim Database
Administrator, IBM infoSphere Data Architect, IBM Optim Development Studio)
Related reference:
“Sample programs to help you prepare and run external SQL procedures” on page
605

ALTER PROCEDURE (SQL - native) (DB2 SQL)

CREATE PROCEDURE (SQL - native) (DB2 SQL)

The Unified Debugger (DB2 9 for z/OS Stored Procedures: Through the CALL
and Beyond)

Debugging stored procedures with the Debug Tool for z/OS
You can use the Debug Tool to test z/OS stored procedures that are written in any
of the compiled languages that the Debug Tool supports. You can test these stored
procedures either interactively or in batch mode.

About this task

Using Debug Tool interactively: To test a stored procedure interactively using the
Debug Tool, you must have the Debug Tool installed on the z/OS system where
the stored procedure runs.

Procedure

To debug your stored procedure using the Debug Tool:
1. Compile the stored procedure with option TEST. This places information in the

program that the Debug Tool uses during a debugging session.
2. Invoke the Debug Tool. One way to do that is to specify the Language

Environment run time option TEST. The TEST option controls when and how
the Debug Tool is invoked. The most convenient place to specify run time
options is in the RUN OPTIONS parameter of the CREATE PROCEDURE or
ALTER PROCEDURE statement for the stored procedure.
For example, you can code the TEST option using the following parameters:
TEST(ALL,*,PROMPT,JBJONES%SESSNA:)

The following table lists the effects that each parameter has on the Debug Tool:

Chapter 19. Testing and debugging an application program on DB2 for z/OS 1065

http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.java/src/tpc/imjcc_javaroutines.htm#imjcc_javaroutines
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.java/src/tpc/imjcc_javaroutines.htm#imjcc_javaroutines
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.routines.doc/topics/croutines.html
http://publib.boulder.ibm.com/infocenter/dstudio/v3r1/topic/com.ibm.datatools.routines.doc/topics/croutines.html
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_alterproceduresqlnative.htm#db2z_sql_alterproceduresqlnative
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createproceduresqlnative.htm#db2z_sql_createproceduresqlnative
http://www.redbooks.ibm.com/redbooks/SG247604/28-2.htm
http://www.redbooks.ibm.com/redbooks/SG247604/28-2.htm

Table 163. Effects of the TEST option parameters on the Debug Tool

Parameter value Effect on the Debug Tool

ALL The Debug Tool gains control when an
attention interrupt, ABEND, or program or
Language Environment condition of Severity
1 and above occurs.

Debug commands will be entered from the
terminal.

PROMPT The Debug Tool is invoked immediately after
Language Environment initialization.

JBJONES%SESSNA: The Debug Tool initiates a session on a
workstation identified to APPC/MVS as
JBJONES with a session ID of SESSNA.

3. If you want to save the output from your debugging session, issue the
following command:
SET LOG ON FILE dbgtool.log;

This command saves a log of your debugging session to a file on the
workstation called dbgtool.log. This should be the first command that you
enter from the terminal or include in your commands file.

Results

Using Debug Tool in batch mode: To test your stored procedure in batch mode, you
must have the Debug Tool installed on the z/OS system where the stored
procedure runs. To debug your stored procedure in batch mode using the Debug
Tool, complete the following steps:
v Compile the stored procedure with option TEST, if you plan to use the Language

Environment run time option TEST to invoke the Debug Tool. This places
information in the program that the Debug Tool uses during a debugging
session.

v Allocate a log data set to receive the output from the Debug Tool. Put a DD
statement for the log data set in the start-up procedure for the stored procedures
address space.

v Enter commands in a data set that you want the Debug Tool to execute. Put a
DD statement for that data set in the start-up procedure for the stored
procedures address space. To define the commands data set to the Debug Tool,
specify the commands data set name or DD name in the TEST run time option.
For example, to specify that the Debug Tool use the commands that are in the
data set that is associated with the DD name TESTDD, include the following
parameter in the TEST option:
TEST(ALL,TESTDD,PROMPT,*)

The first command in the commands data set should be:
SET LOG ON FILE ddname;

This command directs output from your debugging session to the log data set
that you defined in the previous step. For example, if you defined a log data set
with DD name INSPLOG in the stored procedures address space start-up
procedure, the first command should be the following command:
SET LOG ON FILE INSPLOG;

v Invoke the Debug Tool. The following are two possible methods for invoking the
Debug Tool:

1066 Application Programming and SQL Guide

– Specify the run time option TEST. The most convenient place to do that is in
the RUN OPTIONS parameter of the CREATE PROCEDURE or ALTER
PROCEDURE statement for the stored procedure.

– Put CEETEST calls in the stored procedure source code. If you use this
approach for an existing stored procedure, you must recompile, re-link, and
bind it, and issue the STOP PROCEDURE and START PROCEDURE
commands to reload the stored procedure.
You can combine the run time option TEST with CEETEST calls. For example,
you might want to use TEST to name the commands data set but use
CEETEST calls to control when the Debug Tool takes control.

Related reference:

Debug Tool for z/OS

Recording stored procedure debugging messages in a file
You can debug external stored procedures and external SQL procedures by
recording debugging messages in a disk file or in a JES spool file. You cannot use
this debugging technique for native SQL procedures or Java stored procedures.

Procedure

To record stored procedure debugging messages in a file:
1. Specify the Language Environment (LE) MSGFILE run time option for the

stored procedure. This option identifies where LE is to write the debugging
messages. To specify this option, include the RUN OPTIONS clause in either
the CREATE PROCEDURE statement or an ALTER PROCEDURE statement.
Specify the following MSGFILE parameters:
v Use the first MSGFILE parameter to specify the JCL DD statement that

identifies the data set for the debugging messages. You can direct debugging
messages to a disk file or JES spool file. To prevent multiple procedures from
sharing a data set, ensure that you specify a unique DD statement.

v Use the ENQ option to serialize I/O to the message file. This action is
necessary, because multiple TCBs can be active in the stored procedure
address space. Alternatively, if you debug your applications infrequently or
on a DB2 test system, you can serialize I/O by temporarily running the
stored procedures address space with NUMTCB=1 in the stored procedures
address space start-up procedure.

2. For each instance of MSGFILE that you specify, add a DD statement to the JCL
procedure that is used to start the stored procedures address space.

Chapter 19. Testing and debugging an application program on DB2 for z/OS 1067

http://publib.boulder.ibm.com/infocenter/pdthelp/v1r1/index.jsp

Related reference:

ALTER PROCEDURE (external) (DB2 SQL)

ALTER PROCEDURE (SQL - external) (DB2 SQL)

CREATE PROCEDURE (external) (DB2 SQL)

CREATE PROCEDURE (SQL - external) (DB2 SQL)

GRANT (system privileges) (DB2 SQL)

Using Language Environment MSGFILE (z/OS Language Environment
Programming Guide)

Driver applications for debugging procedures
You can write a small driver application that calls the stored procedure as a
subprogram and passes the parameter list that the stored procedure supports. You
can then test and debug the stored procedure as a normal DB2 application under
TSO.

Using this method, you can use TSO TEST and other commonly used debugging
tools.

Restriction: You cannot use this technique for SQL procedures

DB2 tables that contain debugging information
You can use SQL statements to insert debugging information into a DB2 table.
Inserting this information into a table enables other machines in the network (such
as a workstation) to easily access the data in the table by using DRDA access.

DB2 discards the debugging information if the application executes the
ROLLBACK statement. To prevent the loss of the debugging data, code the calling
application so that it retrieves the diagnostic data before executing the ROLLBACK
statement.

Debugging an application program
Many sites have guidelines regarding what to do if a program abnormally
terminates.

About this task

For information about the compiler or assembler test facilities, see the publications
for the compiler or CODE/370. The compiler publications include information
about the appropriate debugger for the language you are using.

You can also use ISPF Dialog Test to debug your program. You can run all or
portions of your application, examine the results, make changes, and rerun it.
Related reference:

ISPF User's Guide Vol II (z/OS V1R7.0 ISPF User's Guide Vol II)

Locating the problem in an application
If your program does not run correctly, you need to isolate the problem. You
should check several items.

1068 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_alterprocedureexternal.htm#db2z_sql_alterprocedureexternal
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_alterproceduresqlexternal.htm#db2z_sql_alterproceduresqlexternal
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createprocedureexternal.htm#db2z_sql_createprocedureexternal
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createproceduresqlexternal.htm#db2z_sql_createproceduresqlexternal
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_grantsystemprivileges.htm#db2z_sql_grantsystemprivileges
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea21c0/3.8.6.1?ACTION=MATCHES&REQUEST=using+language+environment&TYPE=FUZZY&SHELF=&DT=20110618162445&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ceea21c0/3.8.6.1?ACTION=MATCHES&REQUEST=using+language+environment&TYPE=FUZZY&SHELF=&DT=20110618162445&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ispzu290/9.1?ACTION=MATCHES&REQUEST=dialog+test&TYPE=FUZZY&SHELF=&DT=20110601022517&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT

About this task

Those items are:
v Output from the precompiler, which consists of errors and warnings. Ensure that

you have resolved all errors and warnings.
v Output from the compiler or assembler. Ensure that you have resolved all error

messages.
v Output from the linkage editor.

– Have you resolved all external references?
– Have you included all necessary modules in the correct order?
– Did you include the correct language interface module? The correct language

interface module is:
- DSNELI or DSNULI for TSO
- DFSLI000 for IMS
- DSNCLI or DSNULI for CICS
- DSNALI or DSNULI for the call attachment facility
- DSNRLI or DSNULI for the Resource Recovery Services attachment facility

– Did you specify the correct entry point to your program?
v Output from the bind process.

– Have you resolved all error messages?
– Did you specify a plan name? If not, the bind process assumes that you want

to process the DBRM for diagnostic purposes, but that you do not want to
produce an application plan.

– Have you specified all the packages that are associated with the programs
that make up the application and their partitioned data set (PDS) names in a
single application plan?

v Your JCL.
IMS

– If you are using IMS, have you included the DL/I option statement in the
correct format?

– Have you included the region size parameter in the EXEC statement? Does it
specify a region size that is large enough for the required storage for the DB2
interface, the TSO, IMS, or CICS system, and your program?

– Have you included the names of all data sets (DB2 and non-DB2) that the
program requires?

v Your program.
You can also use dumps to help localize problems in your program. For
example, one of the more common error situations occurs when your program is
running and you receive a message that it abended. In this situation, your test
procedure might be to capture a TSO dump. To do so, you must allocate a
SYSUDUMP or SYSABEND dump data set before calling DB2. When you press
the ENTER key (after the error message and READY message), the system
requests a dump. You then need to use the FREE command to deallocate the
dump data set.

Error and warning messages from the precompiler
In some circumstances, the statements that the DB2 precompiler generates might
produce compiler or assembly error messages. You need to know why the
messages occur when you compile DB2-produced source statements.

Chapter 19. Testing and debugging an application program on DB2 for z/OS 1069

SYSTERM output from the precompiler
The SYSTERM output provides a brief summary of the results from the
precompiler, all error messages that the precompiler generated, and the statement
that is in error, when possible.

The DB2 precompiler provides SYSTERM output when you allocate the DD name
SYSTERM. If you use the program preparation panels to prepare and run your
program, DB2I allocates SYSTERM according to the TERM option that you specify.

You can use the line number that is provided in each error message in the
SYSTERM output to locate the failing source statement.

Figure 82 shows the format of SYSTERM output.

Notes:

1. Error message.
2. Source SQL statement.
3. Summary statements of source statistics.
4. Summary statement of the number of errors that were detected.
5. Summary statement that indicates the number of errors that were detected but

not printed. This situation might occur if you specify a FLAG option other than
I.

6. Storage requirement statement that indicates how many bytes of working
storage that the DB2 precompiler actually used to process your source
statements. That value helps you determine the storage allocation requirements
for your program.

7. Return code: 0 = success, 4 = warning, 8 = error, 12 = severe error, and 16 =
unrecoverable error.

SYSPRINT output from the precompiler
SYSPRINT output from the DB2 precompiler shows the results of the precompile
operation. This output can also include a list of the options that were used, a
source code listing, and a host variable cross-reference listing.

When you use the program preparation panels to prepare and run your program,
DB2 allocates SYSPRINT according to TERM option that you specify (on line 12 of
the PROGRAM PREPARATION: COMPILE, PRELINK, LINK, AND RUN panel).
As an alternative, when you use the DSNH command procedure (CLIST), you can
specify PRINT(TERM) to obtain SYSPRINT output at your terminal, or you can
specify PRINT(qualifier) to place the SYSPRINT output into a data set named

DB2 SQL PRECOMPILER MESSAGES

DSNH104I E DSNHPARS LINE 32 COL 26 ILLEGAL SYMBOL "X" VALID SYMBOLS ARE:, FROM1

SELECT VALUE INTO HIPPO X;2

DB2 SQL PRECOMPILER STATISTICS
SOURCE STATISTICS3

SOURCE LINES READ: 36
NUMBER OF SYMBOLS: 15
SYMBOL TABLE BYTES EXCLUDING ATTRIBUTES: 1848

THERE WERE 1 MESSAGES FOR THIS PROGRAM.4

THERE WERE 0 MESSAGES SUPPRESSED BY THE FLAG OPTION.5

111664 BYTES OF STORAGE WERE USED BY THE PRECOMPILER.6

RETURN CODE IS 87

Figure 82. DB2 precompiler SYSTERM output

1070 Application Programming and SQL Guide

authorizationID.qualifier.PCLIST. Assuming that you do not specify PRINT as
LEAVE, NONE, or TERM, DB2 issues a message when the precompiler finishes,
telling you where to find your precompiler listings. This helps you locate your
diagnostics quickly and easily.

The SYSPRINT output can provide information about your precompiled source
module if you specify the options SOURCE and XREF when you start the DB2
precompiler.

The format of SYSPRINT output is as follows:
v A list of the DB2 precompiler options that are in effect during the

precompilation (if you did not specify NOOPTIONS).
v A list of your source statements (only if you specified the SOURCE option). An

example is shown in Figure 83 on page 1072.
v A list of the symbolic names used in SQL statements (this listing appears only if

you specify the XREF option). An example is show in Figure 84 on page 1072.
v A summary of the errors that are detected by the DB2 precompiler and a list of

the error messages that are generated by the precompiler. An example is shown
in

The following code shows an example list of DB2 precompiler options as it is
displayed in the SYSPRINT output.
DB2 SQL PRECOMPILER VERSION 11 REL. 1.0

OPTIONS SPECIFIED: HOST(PLI),SOURCE,XREF,STDSQL(NO),TWOPASS
DSNHDECP LOADED FROM - (USER99.RELM.TESTLIB(DSNHDECP))
OPTIONS USED - SPECIFIED OR DEFAULTED
APOST
APOSTSQL
ATTACH(TSO)
CCSID(37)
CONNECT(2)
DEC(15)
FLAG(I)
FLOAT(S390)
HOST(PLI)
LINECOUNT(60)
MARGINS(2,72)
NEWFUN(V11)
OPTIONS
PERIOD
SOURCE
SQL(DB2)
STDSQL(NO)
TWOPASS
XREF

Notes:

1. This section lists the options that are specified at precompilation time. This list
does not appear if one of the precompiler option is NOOPTIONS.

2. This section lists the options that are in effect, including defaults, forced values,
and options that you specified. The DB2 precompiler overrides or ignores any
options that you specify that are inappropriate for the host language.

The following figure shows an example list of source statements as it is displayed
in the SYSPRINT output.

Chapter 19. Testing and debugging an application program on DB2 for z/OS 1071

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Notes:

v The left column of sequence numbers, which the DB2 precompiler generates, is
for use with the symbol cross-reference listing, the precompiler error messages,
and the BIND error messages.

v The right column shows sequence numbers that come from the sequence
numbers that are supplied with your source statements.

The following figure shows an example list of symbolic names as it is displayed in
the SYSPRINT output.

Notes:

DATA NAMES
Identifies the symbolic names that are used in source statements. Names

DB2 SQL PRECOMPILER TMN5P40:PROCEDURE OPTIONS (MAIN): PAGE 2

1 TMN5P40:PROCEDURE OPTIONS(MAIN) ; 00000100
2 /***00000200
3 * program description and prologue 00000300

...
1324 /***/ 00132400
1325 /* GET INFORMATION ABOUT THE PROJECT FROM THE */ 00132500
1326 /* PROJECT TABLE. */ 00132600
1327 /***/ 00132700
1328 EXEC SQL SELECT ACTNO, PREQPROJ, PREQACT 00132800
1329 INTO PROJ_DATA 00132900
1330 FROM TPREREQ 00133000
1331 WHERE PROJNO = :PROJ_NO; 00133100
1332 00133200
1333 /***/ 00133300
1334 /* PROJECT IS FINISHED. DELETE IT. */ 00133400
1335 /***/ 00133500
1336 00133600
1337 EXEC SQL DELETE FROM PROJ 00133700
1338 WHERE PROJNO = :PROJ_NO; 00133800

...
1523 END; 00152300

Figure 83. DB2 precompiler SYSPRINT output: Source statements section

DB2 SQL PRECOMPILER SYMBOL CROSS-REFERENCE LISTING PAGE 29

DATA NAMES DEFN REFERENCE

"ACTNO" **** FIELD
1328

"PREQACT" **** FIELD
1328

"PREQPROJ" **** FIELD
1328

"PROJNO" **** FIELD
1331 1338

...

PROJ_DATA 495 CHARACTER(35)
1329

PROJ_NO 496 CHARACTER(3)
1331 1338

"TPREREQ" **** TABLE
1330 1337

Figure 84. DB2 precompiler SYSPRINT output: Symbol cross-reference section

1072 Application Programming and SQL Guide

enclosed in double quotation marks (") or apostrophes (') are names of SQL
entities such as tables, columns, and authorization IDs. Other names are host
variables.

DEFN
Is the number of the line that the precompiler generates to define the name.
**** means that the object was not defined, or the precompiler did not
recognize the declarations.

REFERENCE
Contains two kinds of information: the symbolic name, which the source
program defines, and which lines refer to the symbolic name. If the symbolic
name refers to a valid host variable, the list also identifies the data type or the
word STRUCTURE.

The following code shows an example summary report of errors as it is displayed
in the SYSPRINT output.
DB2 SQL PRECOMPILER STATISTICS

SOURCE STATISTICS
SOURCE LINES READ: 15231

NUMBER OF SYMBOLS: 1282

SYMBOL TABLE BYTES EXCLUDING ATTRIBUTES: 64323

THERE WERE 1 MESSAGES FOR THIS PROGRAM.4

THERE WERE 0 MESSAGES SUPPRESSED.5

65536 BYTES OF STORAGE WERE USED BY THE PRECOMPILER.6

RETURN CODE IS 8.7

DSNH104I E LINE 590 COL 64 ILLEGAL SYMBOL: ’X’; VALID SYMBOLS ARE:,FROM8

Notes:

1. Summary statement that indicates the number of source lines.
2. Summary statement that indicates the number of symbolic names in the symbol

table (SQL names and host names).
3. Storage requirement statement that indicates the number of bytes for the

symbol table.
4. Summary statement that indicates the number of messages that are printed.
5. Summary statement that indicates the number of errors that are detected but

not printed. You might get this statement if you specify the option FLAG.
6. Storage requirement statement that indicates the number of bytes of working

storage that are actually used by the DB2 precompiler to process your source
statements.

7. Return code 0 = success, 4 = warning, 8 = error, 12 = severe error, and 16 =
unrecoverable error.

8. Error messages (this example detects only one error).

Techniques for debugging programs in TSO
Documenting the errors that are identified during testing of a TSO application
helps you investigate and correct problems in the program.

The following information can be useful:
v The application plan name of the program
v The input data that is being processed
v The failing SQL statement and its function

Chapter 19. Testing and debugging an application program on DB2 for z/OS 1073

v The contents of the SQLCA (SQL communication area) and, if your program
accepts dynamic SQL statements, the SQLDA (SQL descriptor area)

v The date and time of day
v The abend code and any error messages

When your program encounters an error that does not result in an abend, it can
pass all the required error information to a standard error routine. Online
programs might also send an error message to the terminal.

The TSO TEST command

The TSO TEST command is especially useful for debugging assembler programs.

The following example is a command procedure (CLIST) that runs a DB2
application named MYPROG under TSO TEST, and sets an address stop at the
entry to the program. The DB2 subsystem name in this example is DB4.
PROC 0
TEST ’prefix.SDSNLOAD(DSN)’ CP
DSN SYSTEM(DB4)
AT MYPROG.MYPROG.+0 DEFER
GO
RUN PROGRAM(MYPROG) LIBRARY(’L186331.RUNLIB.LOAD(MYPROG)’)

Related reference:

TEST command (TSO/E Command Reference)

Techniques for debugging programs in IMS
Documenting the errors that are identified during testing of an IMS application
helps you investigate and correct problems in the program.

The following information can be useful:
v The application plan name for the program
v The input message that is being processed
v The name of the originating logical terminal
v The failing statement and its function
v The contents of the SQLCA (SQL communication area) and, if your program

accepts dynamic SQL statements, the SQLDA (SQL descriptor area)
v The date and time of day
v The PSB name for the program
v The transaction code that the program was processing
v The call function (that is, the name of a DL/I function)
v The contents of the PCB that the program call refers to
v If a DL/I database call was running, the SSAs, if any, that the call used
v The abend completion code, abend reason code, and any dump error messages

When your program encounters an error, it can pass all the required error
information to a standard error routine. Online programs can also send an error
message to the originating logical terminal.

An interactive program also can send a message to the master terminal operator
giving information about the termination of the program. To do that, the program
places the logical terminal name of the master terminal in an express PCB and
issues one or more ISRT calls.

1074 Application Programming and SQL Guide

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/ikj4c5a0/1.48

Some organizations run a BMP at the end of the day to list all the errors that
occurred during the day. If your organization does this, you can send a message by
using an express PCB that has its destination set for that BMP.

Batch Terminal Simulator: The Batch Terminal Simulator (BTS) enables you to test
IMS application programs. BTS traces application program DL/I calls and SQL
statements, and it simulates data communication functions. It can make a TSO
terminal appear as an IMS terminal to the terminal operator, which enables the
user to interact with the application as though it were an online application. The
user can use any application program that is under the user's control to access any
database (whether DL/I or DB2) that is under the user's control. Access to DB2
databases requires BTS to operate in batch BMP or TSO BMP mode.

Techniques for debugging programs in CICS
Documenting the errors that are identified during testing of a CICS application
helps you investigate and correct problems in the program.

The following information can be useful:
v The application plan name of the program
v The input data that is being processed
v The ID of the originating logical terminal
v The failing SQL statement and its function
v The contents of the SQLCA (SQL communication area) and, if your program

accepts dynamic SQL statements, the SQLDA (SQL descriptor area)
v The date and time of day
v Data that is peculiar to CICS that you should record
v Abend code and dump error messages
v Transaction dump, if produced

Using CICS facilities, you can have a printed error record; you can also print the
SQLCA and SQLDA contents.

Debugging aids for CICS

CICS provides the following aids to the testing, monitoring, and debugging of
application programs:
v Execution (Command Level) Diagnostic Facility (EDF). EDF shows CICS

commands for all releases of CICS.
v Abend recovery. You can use the HANDLE ABEND command to deal with

abend conditions. You can use the ABEND command to cause a task to abend.
v Trace facility. A trace table can contain entries showing the execution of various

CICS commands, SQL statements, and entries that are generated by application
programs; you can have these entries written to main storage and, optionally, to
an auxiliary storage device.

v Dump facility. You can specify areas of main storage to dump onto a sequential
data set, either tape or disk, for subsequent offline formatting and printing with
a CICS utility program.

v Journals. For statistical or monitoring purposes, facilities can create entries in
special data sets called journals. The system log is a journal.

v Recovery. When an abend occurs, CICS restores certain resources to their
original state so that the operator can easily resubmit a transaction for restart.

Chapter 19. Testing and debugging an application program on DB2 for z/OS 1075

You can use the SYNCPOINT command to subdivide a program so that you
only need to resubmit the uncompleted part of a transaction.

CICS execution diagnostic facility

The CICS execution diagnostic facility (EDF) traces SQL statements in an
interactive debugging mode, enabling application programmers to test and debug
programs online without changing the program or the program preparation
procedure.

EDF intercepts the running application program at various points and displays
helpful information about the statement type, input and output variables, and any
error conditions after the statement executes. It also displays any screens that the
application program sends, so that you can converse with the application program
during testing just as a user would on a production system.

EDF displays essential information before and after an SQL statement runs, while
the task is in EDF mode. This can be a significant aid in debugging CICS
transaction programs that contains SQL statements. The SQL information that EDF
displays is helpful for debugging programs and for error analysis after an SQL
error or warning. Using this facility reduces the amount of work that you need to
do to write special error handlers.

EDF before execution

The following figure shows an example of an EDF screen before it executes an SQL
statement. The names of the key information fields on this panel are in boldface.

The DB2 SQL information in this screen is as follows:
v EXEC SQL statement type

This is the type of SQL statement to execute. The SQL statement can be any
valid SQL statement.

v DBRM=dbrm name

TRANSACTION: XC05 PROGRAM: TESTC05 TASK NUMBER: 0000668 DISPLAY: 00
STATUS: ABOUT TO EXECUTE COMMAND
CALL TO RESOURCE MANAGER DSNCSQL
EXEC SQL INSERT
DBRM=TESTC05, STMT=00368, SECT=00004
IVAR 001: TYPE=CHAR, LEN=00007, IND=000 AT X’03C92810’

DATA=X’F0F0F9F4F3F4F2’
IVAR 002: TYPE=CHAR, LEN=00007, IND=000 AT X’03C92817’

DATA=X’F0F1F3F3F7F5F1’
IVAR 003: TYPE=CHAR, LEN=00004, IND=000 AT X’03C9281E’

DATA=X’E7C3F0F5’
IVAR 004: TYPE=CHAR, LEN=00040, IND=000 AT X’03C92822’

DATA=X’E3C5E2E3C3F0F540E2C9D4D7D3C540C4C2F240C9D5E2C5D9E3404040’...
IVAR 005: TYPE=SMALLINT, LEN=00002, IND=000 AT X’03C9284A’

DATA=X’0001’

OFFSET:X’001ECE’ LINE:UNKNOWN EIBFN=X’1002’

ENTER: CONTINUE
PF1 : UNDEFINED PF2 : UNDEFINED PF3 : UNDEFINED
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: UNDEFINED PF12: ABEND USER TASK

Figure 85. EDF screen before a DB2 SQL statement

1076 Application Programming and SQL Guide

The name of the database request module (DBRM) that is currently processing.
The DBRM, created by the DB2 precompiler, contains information about an SQL
statement.

v STMT=statement number

This is the DB2 precompiler-generated statement number. The source and error
message listings from the precompiler use this statement number, and you can
use the statement number to determine which statement is processing. This
number is a source line counter that includes host language statements. A
statement number that is greater than 32 767 displays as 0.

v SECT=section number

The section number of the plan that the SQL statement uses.

SQL statements that contain input host variables

The IVAR (input host variables) section and its attendant fields appear only when
the executing statement contains input host variables.

The host variables section includes the variables from predicates, the values used
for inserting or updating, and the text of dynamic SQL statements that are being
prepared. The address of the input variable is AT X'nnnnnnnn'.

Additional host variable information:
v TYPE=data type

Specifies the data type for this host variable. The basic data types include
character string, graphic string, binary integer, floating-point, decimal, date,
time, and timestamp.

v LEN=length

Specifies the length of the host variable.
v IND=indicator variable status number

Specifies the indicator variable that is associated with this particular host
variable. A value of zero indicates that no indicator variable exists. If the value
for the selected column is null, DB2 puts a negative value in the indicator
variable for this host variable.

v DATA=host variable data

Specifies the data, displayed in hexadecimal format, that is associated with this
host variable. If the data exceeds what can display on a single line, three periods
(...) appear at the far right to indicate that more data is present.

EDF after execution

The following figure shows an example of the first EDF screen that is displayed
after the executing an SQL statement. The names of the key information fields on
this panel are in boldface.

Chapter 19. Testing and debugging an application program on DB2 for z/OS 1077

The DB2 SQL information in this screen is as follows:
v P.AUTH=primary authorization ID

The primary DB2 authorization ID.
v S.AUTH=secondary authorization ID

The secondary authorization ID. If the RACF list of group options is not active,
DB2 uses the connected group name that the CICS attachment facility supplies
as the secondary authorization ID. If the RACF list of group options is active,
DB2 ignores the connected group name that the CICS attachment facility
supplies, but the value is displayed in the DB2 list of secondary authorization
IDs.

v PLAN=plan name

The name of the plan that is currently running. The PLAN represents the control
structure that is produced during the bind process and that is used by DB2 to
process SQL statements that are encountered while the application is running.

v SQL Communication Area (SQLCA)
Information in the SQLCA. The SQLCA contains information about errors, if any
occur. DB2 uses the SQLCA to give an application program information about
the executing SQL statements.

Plus signs (+) on the left of the screen indicate that you can see additional EDF
output by using PF keys to scroll the screen forward or back.

The OVAR (output host variables) section and its attendant fields are displayed
only when the executing statement returns output host variables.

The following figure contains the rest of the EDF output for this example.

TRANSACTION: XC05 PROGRAM: TESTC05 TASK NUMBER: 0000698 DISPLAY: 00
STATUS: COMMAND EXECUTION COMPLETE
CALL TO RESOURCE MANAGER DSNCSQL
EXEC SQL FETCH P.AUTH=SYSADM , S.AUTH=
PLAN=TESTC05, DBRM=TESTC05, STMT=00346, SECT=00001
SQL COMMUNICATION AREA:
SQLCABC = 136 AT X’03C92789’
SQLCODE = 000 AT X’03C9278D’
SQLERRML = 000 AT X’03C92791’
SQLERRMC = ’’ AT X’03C92793’
SQLERRP = ’DSN’ AT X’03C927D9’
SQLERRD(1-6) = 000, 000, 00000, -1, 00000, 000 AT X’03C927E1’
SQLWARN(0-A) = ’_ _ _ _ _ _ _ _ _ _ _’ AT X’03C927F9’
SQLSTATE = 00000 AT X’03C92804’

+ OVAR 001: TYPE=INTEGER, LEN=00004, IND=000 AT X’03C920A0’
DATA=X’00000001’

OFFSET:X’001D14’ LINE:UNKNOWN EIBFN=X’1802’

ENTER: CONTINUE
PF1 : UNDEFINED PF2 : UNDEFINED PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: UNDEFINED PF12: ABEND USER TASK

Figure 86. EDF screen after a DB2 SQL statement

1078 Application Programming and SQL Guide

The attachment facility automatically displays SQL information while in the EDF
mode. (You can start EDF as outlined in the appropriate CICS application
programmer's reference manual.) If this information is not displayed, contact the
person that is responsible for installing and migrating DB2.
Related concepts:
“Data types” on page 438
“Indicator variables, arrays, and structures” on page 140
Related information:

CICS debugging aids (CICS Transaction Server for z/OS)

Finding a violated referential or check constraint
When you receive an SQL error because of a constraint violation, look at the
SQLCA for specific information.

About this task

Question: When a referential or check constraint has been violated, how do I
determine which one it is?

Answer: When you receive an SQL error because of a constraint violation, print out
the SQLCA. You can use the DSNTIAR routine to format the SQLCA for you.
Check the SQL error message insertion text (SQLERRM) for the name of the
constraint. For information about possible violations, see SQLCODEs -530 through
-548.
Related concepts:

SQL error codes (DB2 Codes)
Related tasks:
“Displaying SQLCA fields by calling DSNTIAR” on page 206

TRANSACTION: XC05 PROGRAM: TESTC05 TASK NUMBER: 0000698 DISPLAY: 00
STATUS: COMMAND EXECUTION COMPLETE
CALL TO RESOURCE MANAGER DSNCSQL

+ OVAR 002: TYPE=CHAR, LEN=00008, IND=000 AT X’03C920B0’
DATA=X’C8F3E3E3C1C2D3C5’

OVAR 003: TYPE=CHAR, LEN=00040, IND=000 AT X’03C920B8’
DATA=X’C9D5C9E3C9C1D340D3D6C1C440404040404040404040404040404040’...

OFFSET:X’001D14’ LINE:UNKNOWN EIBFN=X’1802’

ENTER: CONTINUE
PF1 : UNDEFINED PF2 : UNDEFINED PF3 : END EDF SESSION
PF4 : SUPPRESS DISPLAYS PF5 : WORKING STORAGE PF6 : USER DISPLAY
PF7 : SCROLL BACK PF8 : SCROLL FORWARD PF9 : STOP CONDITIONS
PF10: PREVIOUS DISPLAY PF11: UNDEFINED PF12: ABEND USER TASK

Figure 87. EDF screen after a DB2 SQL statement, continued

Chapter 19. Testing and debugging an application program on DB2 for z/OS 1079

http://pic.dhe.ibm.com/infocenter/cicsts/v4r1/topic/com.ibm.cics.ts.applicationprogramming.doc/topics/dfhp3_run.html
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.codes/src/tpc/db2z_n.htm#db2z_errorsqlcodes

1080 Application Programming and SQL Guide

Chapter 20. DB2 sample applications and data

DB2 provides sample data and applications that you can use to learn about DB2
capabilities. DB2 also provides models for your own situations.
Related reference:

DB2 sample tables (Introduction to DB2 for z/OS)

DB2 sample tables
Much of the DB2 information refers to or relies on the DB2 sample tables. As a
group, the tables include information that describes employees, departments,
projects, and activities, and they make up a sample application that exemplifies
many of the features of DB2.

The sample storage group, databases, table spaces, tables, and views are created
when you run the installation sample jobs DSNTEJ1 and DSNTEJ7. DB2 sample
objects that include LOBs are created in job DSNTEJ7. All other sample objects are
created in job DSNTEJ1. The CREATE INDEX statements for the sample tables are
not shown here; they, too, are created by the DSNTEJ1 and DSNTEJ7 sample jobs.

Authorization on all sample objects is given to PUBLIC in order to make the
sample programs easier to run. You can review the contents of any table by
executing an SQL statement, for example SELECT * FROM DSN8B10.PROJ. For
convenience in interpreting the examples, the department and employee tables are
listed in full.

Activity table (DSN8B10.ACT)
The activity table describes the activities that can be performed during a project.

The activity table resides in database DSN8D11A and is created with the following
statement:
CREATE TABLE DSN8B10.ACT

(ACTNO SMALLINT NOT NULL,
ACTKWD CHAR(6) NOT NULL,
ACTDESC VARCHAR(20) NOT NULL,
PRIMARY KEY (ACTNO))

IN DSN8D11A.DSN8S11P
CCSID EBCDIC;

© Copyright IBM Corp. 1983, 2013 1081

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.intro/src/tpc/db2z_sampletablesdescription.htm#db2z_sampletablesdescription

Content of the activity table

The following table shows the content of the columns in the activity table.

Table 164. Columns of the activity table

Column Column name Description

1 ACTNO Activity ID (the primary key)

2 ACTKWD Activity keyword (up to six characters)

3 ACTDESC Activity description

The activity table has the following indexes.

Table 165. Indexes of the activity table

Name On column Type of index

DSN8B10.XACT1 ACTNO Primary, ascending

DSN8B10.XACT2 ACTKWD Unique, ascending

Relationship to other tables

The activity table is a parent table of the project activity table, through a foreign
key on column ACTNO.

Department table (DSN8B10.DEPT)
The department table describes each department in the enterprise and identifies its
manager and the department to which it reports.

The department table resides in table space DSN8D11A.DSN8S11D and is created
with the following statement:
CREATE TABLE DSN8B10.DEPT

(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
MGRNO CHAR(6) ,
ADMRDEPT CHAR(3) NOT NULL,
LOCATION CHAR(16) ,
PRIMARY KEY (DEPTNO))

IN DSN8D11A.DSN8S11D
CCSID EBCDIC;

Because the department table is self-referencing, and also is part of a cycle of
dependencies, its foreign keys must be added later with the following statements:
ALTER TABLE DSN8B10.DEPT

FOREIGN KEY RDD (ADMRDEPT) REFERENCES DSN8B10.DEPT
ON DELETE CASCADE;

ALTER TABLE DSN8B10.DEPT
FOREIGN KEY RDE (MGRNO) REFERENCES DSN8B10.EMP

ON DELETE SET NULL;

1082 Application Programming and SQL Guide

Content of the department table

The following table shows the content of the columns in the department table.

Table 166. Columns of the department table

Column Column name Description

1 DEPTNO Department ID, the primary key.

2 DEPTNAME A name that describes the general activities of the
department.

3 MGRNO Employee number (EMPNO) of the department
manager.

4 ADMRDEPT ID of the department to which this department
reports; the department at the highest level reports
to itself.

5 LOCATION The remote location name.

The following table shows the indexes of the department table.

Table 167. Indexes of the department table

Name On column Type of index

DSN8B10.XDEPT1 DEPTNO Primary, ascending

DSN8B10.XDEPT2 MGRNO Ascending

DSN8B10.XDEPT3 ADMRDEPT Ascending

The following table shows the content of the department table.

Table 168. DSN8B10.DEPT: department table

DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION

A00 SPIFFY COMPUTER SERVICE
DIV.

000010 A00 ----------------

B01 PLANNING 000020 A00 ----------------
C01 INFORMATION CENTER 000030 A00 ----------------
D01 DEVELOPMENT CENTER ------ A00 ----------------
E01 SUPPORT SERVICES 000050 A00 ----------------
D11 MANUFACTURING SYSTEMS 000060 D01 ----------------
D21 ADMINISTRATION SYSTEMS 000070 D01 ----------------
E11 OPERATIONS 000090 E01 ----------------
E21 SOFTWARE SUPPORT 000100 E01 ----------------
F22 BRANCH OFFICE F2 ------ E01 ----------------
G22 BRANCH OFFICE G2 ------ E01 ----------------
H22 BRANCH OFFICE H2 ------ E01 ----------------
I22 BRANCH OFFICE I2 ------ E01 ----------------
J22 BRANCH OFFICE J2 ------ E01 ----------------

The LOCATION column contains null values until sample job DSNTEJ6 updates
this column with the location name.

Chapter 20. DB2 sample applications and data 1083

Relationship to other tables

The department table is self-referencing: the value of the administering department
must be a valid department ID.

The department table is a parent table of the following :
v The employee table, through a foreign key on column WORKDEPT
v The project table, through a foreign key on column DEPTNO

The department table is a dependent of the employee table, through its foreign key
on column MGRNO.

Employee table (DSN8B10.EMP)
The sample employee table identifies all employees by an employee number and
lists basic personnel information.

The employee table resides in the partitioned table space
DSN8D11A.DSN8S11E. Because this table has a foreign key that references DEPT,
that table and the index on its primary key must be created first. Then EMP is
created with the following statement:
CREATE TABLE DSN8B10.EMP

(EMPNO CHAR(6) NOT NULL,
FIRSTNME VARCHAR(12) NOT NULL,
MIDINIT CHAR(1) NOT NULL,
LASTNAME VARCHAR(15) NOT NULL,
WORKDEPT CHAR(3) ,
PHONENO CHAR(4) CONSTRAINT NUMBER CHECK

(PHONENO >= ’0000’ AND
PHONENO <= ’9999’) ,

HIREDATE DATE ,
JOB CHAR(8) ,
EDLEVEL SMALLINT ,
SEX CHAR(1) ,
BIRTHDATE DATE ,
SALARY DECIMAL(9,2) ,
BONUS DECIMAL(9,2) ,
COMM DECIMAL(9,2) ,
PRIMARY KEY (EMPNO) ,
FOREIGN KEY RED (WORKDEPT) REFERENCES DSN8B10.DEPT

ON DELETE SET NULL)
EDITPROC DSN8EAE1
IN DSN8D11A.DSN8S11E
CCSID EBCDIC;

Content of the employee table

The following table shows the type of content of each of the columns in the
employee table. The table has a check constraint, NUMBER, which checks that the
four-digit phone number is in the numeric range 0000 to 9999.

Table 169. Columns of the employee table

Column Column name Description

1 EMPNO Employee number (the primary key)

2 FIRSTNME First name of employee

3 MIDINIT Middle initial of employee

1084 Application Programming and SQL Guide

Table 169. Columns of the employee table (continued)

Column Column name Description

4 LASTNAME Last name of employee

5 WORKDEPT ID of department in which the employee works

6 PHONENO Employee telephone number

7 HIREDATE Date of hire

8 JOB Job held by the employee

9 EDLEVEL Number of years of formal education

10 SEX Sex of the employee (M or F)

11 BIRTHDATE Date of birth

12 SALARY Yearly salary in dollars

13 BONUS Yearly bonus in dollars

14 COMM Yearly commission in dollars

The following table shows the indexes of the employee table.

Table 170. Indexes of the employee table

Name On column Type of index

DSN8B10.XEMP1 EMPNO Primary, partitioned, ascending

DSN8B10.XEMP2 WORKDEPT Ascending

The following table shows the first half (left side) of the content of the employee
table. (Table 172 on page 1086 shows the remaining content (right side) of the
employee table.)

Table 171. Left half of DSN8B10.EMP: employee table. Note that a blank in the MIDINIT column is an actual value of
" " rather than null.

EMPNO FIRSTNME MIDINIT LASTNAME WORKDEPT PHONENO HIREDATE

000010 CHRISTINE I HAAS A00 3978 1965-01-01
000020 MICHAEL L THOMPSON B01 3476 1973-10-10
000030 SALLY A KWAN C01 4738 1975-04-05
000050 JOHN B GEYER E01 6789 1949-08-17
000060 IRVING F STERN D11 6423 1973-09-14
000070 EVA D PULASKI D21 7831 1980-09-30
000090 EILEEN W HENDERSON E11 5498 1970-08-15
000100 THEODORE Q SPENSER E21 0972 1980-06-19
000110 VINCENZO G LUCCHESSI A00 3490 1958-05-16
000120 SEAN O'CONNELL A00 2167 1963-12-05
000130 DOLORES M QUINTANA C01 4578 1971-07-28
000140 HEATHER A NICHOLLS C01 1793 1976-12-15
000150 BRUCE ADAMSON D11 4510 1972-02-12
000160 ELIZABETH R PIANKA D11 3782 1977-10-11
000170 MASATOSHI J YOSHIMURA D11 2890 1978-09-15
000180 MARILYN S SCOUTTEN D11 1682 1973-07-07
000190 JAMES H WALKER D11 2986 1974-07-26
000200 DAVID BROWN D11 4501 1966-03-03
000210 WILLIAM T JONES D11 0942 1979-04-11
000220 JENNIFER K LUTZ D11 0672 1968-08-29

Chapter 20. DB2 sample applications and data 1085

Table 171. Left half of DSN8B10.EMP: employee table (continued). Note that a blank in the MIDINIT column is an
actual value of " " rather than null.

EMPNO FIRSTNME MIDINIT LASTNAME WORKDEPT PHONENO HIREDATE

000230 JAMES J JEFFERSON D21 2094 1966-11-21
000240 SALVATORE M MARINO D21 3780 1979-12-05
000250 DANIEL S SMITH D21 0961 1969-10-30
000260 SYBIL P JOHNSON D21 8953 1975-09-11
000270 MARIA L PEREZ D21 9001 1980-09-30
000280 ETHEL R SCHNEIDER E11 8997 1967-03-24
000290 JOHN R PARKER E11 4502 1980-05-30
000300 PHILIP X SMITH E11 2095 1972-06-19
000310 MAUDE F SETRIGHT E11 3332 1964-09-12
000320 RAMLAL V MEHTA E21 9990 1965-07-07
000330 WING LEE E21 2103 1976-02-23
000340 JASON R GOUNOT E21 5698 1947-05-05
200010 DIAN J HEMMINGER A00 3978 1965-01-01
200120 GREG ORLANDO A00 2167 1972-05-05
200140 KIM N NATZ C01 1793 1976-12-15
200170 KIYOSHI YAMAMOTO D11 2890 1978-09-15
200220 REBA K JOHN D11 0672 1968-08-29
200240 ROBERT M MONTEVERDE D21 3780 1979-12-05
200280 EILEEN R SCHWARTZ E11 8997 1967-03-24
200310 MICHELLE F SPRINGER E11 3332 1964-09-12
200330 HELENA WONG E21 2103 1976-02-23
200340 ROY R ALONZO E21 5698 1947-05-05

(Table 171 on page 1085 shows the first half (right side) of the content of employee
table.)

Table 172. Right half of DSN8B10.EMP: employee table

(EMPNO) JOB EDLEVEL SEX BIRTHDATE SALARY BONUS COMM

(000010) PRES 18 F 1933-08-14 52750.00 1000.00 4220.00
(000020) MANAGER 18 M 1948-02-02 41250.00 800.00 3300.00
(000030) MANAGER 20 F 1941-05-11 38250.00 800.00 3060.00
(000050) MANAGER 16 M 1925-09-15 40175.00 800.00 3214.00
(000060) MANAGER 16 M 1945-07-07 32250.00 600.00 2580.00
(000070) MANAGER 16 F 1953-05-26 36170.00 700.00 2893.00
(000090) MANAGER 16 F 1941-05-15 29750.00 600.00 2380.00
(000100) MANAGER 14 M 1956-12-18 26150.00 500.00 2092.00
(000110) SALESREP 19 M 1929-11-05 46500.00 900.00 3720.00
(000120) CLERK 14 M 1942-10-18 29250.00 600.00 2340.00
(000130) ANALYST 16 F 1925-09-15 23800.00 500.00 1904.00
(000140) ANALYST 18 F 1946-01-19 28420.00 600.00 2274.00
(000150) DESIGNER 16 M 1947-05-17 25280.00 500.00 2022.00
(000160) DESIGNER 17 F 1955-04-12 22250.00 400.00 1780.00
(000170) DESIGNER 16 M 1951-01-05 24680.00 500.00 1974.00
(000180) DESIGNER 17 F 1949-02-21 21340.00 500.00 1707.00
(000190) DESIGNER 16 M 1952-06-25 20450.00 400.00 1636.00
(000200) DESIGNER 16 M 1941-05-29 27740.00 600.00 2217.00
(000210) DESIGNER 17 M 1953-02-23 18270.00 400.00 1462.00
(000220) DESIGNER 18 F 1948-03-19 29840.00 600.00 2387.00
(000230) CLERK 14 M 1935-05-30 22180.00 400.00 1774.00
(000240) CLERK 17 M 1954-03-31 28760.00 600.00 2301.00

1086 Application Programming and SQL Guide

Table 172. Right half of DSN8B10.EMP: employee table (continued)

(EMPNO) JOB EDLEVEL SEX BIRTHDATE SALARY BONUS COMM

(000250) CLERK 15 M 1939-11-12 19180.00 400.00 1534.00
(000260) CLERK 16 F 1936-10-05 17250.00 300.00 1380.00
(000270) CLERK 15 F 1953-05-26 27380.00 500.00 2190.00
(000280) OPERATOR 17 F 1936-03-28 26250.00 500.00 2100.00
(000290) OPERATOR 12 M 1946-07-09 15340.00 300.00 1227.00
(000300) OPERATOR 14 M 1936-10-27 17750.00 400.00 1420.00
(000310) OPERATOR 12 F 1931-04-21 15900.00 300.00 1272.00
(000320) FIELDREP 16 M 1932-08-11 19950.00 400.00 1596.00
(000330) FIELDREP 14 M 1941-07-18 25370.00 500.00 2030.00
(000340) FIELDREP 16 M 1926-05-17 23840.00 500.00 1907.00
(200010) SALESREP 18 F 1933-08-14 46500.00 1000.00 4220.00
(200120) CLERK 14 M 1942-10-18 29250.00 600.00 2340.00
(200140) ANALYST 18 F 1946-01-19 28420.00 600.00 2274.00
(200170) DESIGNER 16 M 1951-01-05 24680.00 500.00 1974.00
(200220) DESIGNER 18 F 1948-03-19 29840.00 600.00 2387.00
(200240) CLERK 17 M 1954-03-31 28760.00 600.00 2301.00
(200280) OPERATOR 17 F 1936-03-28 26250.00 500.00 2100.00
(200310) OPERATOR 12 F 1931-04-21 15900.00 300.00 1272.00
(200330) FIELDREP 14 F 1941-07-18 25370.00 500.00 2030.00
(200340) FIELDREP 16 M 1926-05-17 23840.00 500.00 1907.00

Relationship to other tables

The employee table is a parent table of:
v The department table, through a foreign key on column MGRNO
v The project table, through a foreign key on column RESPEMP

The employee table is a dependent of the department table, through its foreign key
on column WORKDEPT.

Employee photo and resume table
(DSN8B10.EMP_PHOTO_RESUME)

The sample employee photo and resume table complements the employee table.

Each row of the photo and resume table contains a photo of the employee,
in two formats, and the employee's resume. The photo and resume table resides in
table space DSN8D11A.DSN8S11E. The following statement creates the table:
CREATE TABLE DSN8B10.EMP_PHOTO_RESUME

(EMPNO CHAR(06) NOT NULL,
EMP_ROWID ROWID NOT NULL GENERATED ALWAYS,
PSEG_PHOTO BLOB(500K),
BMP_PHOTO BLOB(100K),
RESUME CLOB(5K))
PRIMARY KEY (EMPNO)

IN DSN8D11L.DSN8S11B
CCSID EBCDIC;

DB2 requires an auxiliary table for each LOB column in a table. The following
statements define the auxiliary tables for the three LOB columns in
DSN8B10.EMP_PHOTO_RESUME:

Chapter 20. DB2 sample applications and data 1087

CREATE AUX TABLE DSN8B10.AUX_BMP_PHOTO
IN DSN8D11L.DSN8S11M
STORES DSN8B10.EMP_PHOTO_RESUME
COLUMN BMP_PHOTO;

CREATE AUX TABLE DSN8B10.AUX_PSEG_PHOTO
IN DSN8D11L.DSN8S11L
STORES DSN8B10.EMP_PHOTO_RESUME
COLUMN PSEG_PHOTO;

CREATE AUX TABLE DSN8B10.AUX_EMP_RESUME
IN DSN8D11L.DSN8S11N
STORES DSN8B10.EMP_PHOTO_RESUME
COLUMN RESUME;

Content of the employee photo and resume table

The following table shows the content of the columns in the employee photo and
resume table.

Table 173. Columns of the employee photo and resume table

Column Column name Description

1 EMPNO Employee ID (the primary key).

2 EMP_ROWID Row ID to uniquely identify each row of the table.
DB2 supplies the values of this column.

3 PSEG_PHOTO Employee photo, in PSEG format.

4 BMP_PHOTO Employee photo, in BMP format.

5 RESUME Employee resume.

The following table shows the indexes for the employee photo and resume table.

Table 174. Indexes of the employee photo and resume table

Name On column Type of index

DSN8B10.XEMP_PHOTO_RESUME EMPNO Primary, ascending

The following table shows the indexes for the auxiliary tables that support the
employee photo and resume table.

Table 175. Indexes of the auxiliary tables for the employee photo and resume table

Name On table Type of index

DSN8B10.XAUX_BMP_PHOTO DSN8B10.AUX_BMP_PHOTO Unique

DSN8B10.XAUX_PSEG_PHOTO DSN8B10.AUX_PSEG_PHOTO Unique

DSN8B10.XAUX_EMP_RESUME DSN8B10.AUX_EMP_RESUME Unique

Relationship to other tables

The employee photo and resume table is a parent table of the project table,
through a foreign key on column RESPEMP.

1088 Application Programming and SQL Guide

Project table (DSN8B10.PROJ)
The sample project table describes each project that the business is currently
undertaking. Data that is contained in each row of the table includes the project
number, name, person responsible, and schedule dates.

The project table resides in database DSN8D11A. Because this table has foreign
keys that reference DEPT and EMP, those tables and the indexes on their primary
keys must be created first. Then PROJ is created with the following statement:

CREATE TABLE DSN8B10.PROJ
(PROJNO CHAR(6) PRIMARY KEY NOT NULL,
PROJNAME VARCHAR(24) NOT NULL WITH DEFAULT

’PROJECT NAME UNDEFINED’,
DEPTNO CHAR(3) NOT NULL REFERENCES

DSN8B10.DEPT ON DELETE RESTRICT,
RESPEMP CHAR(6) NOT NULL REFERENCES

DSN8B10.EMP ON DELETE RESTRICT,
PRSTAFF DECIMAL(5, 2) ,
PRSTDATE DATE ,
PRENDATE DATE ,
MAJPROJ CHAR(6))

IN DSN8D11A.DSN8S11P
CCSID EBCDIC;

Because the project table is self-referencing, the foreign key for that constraint must
be added later with the following statement:
ALTER TABLE DSN8B10.PROJ

FOREIGN KEY RPP (MAJPROJ) REFERENCES DSN8B10.PROJ
ON DELETE CASCADE;

Content of the project table

The following table shows the content of the columns of the project table.

Table 176. Columns of the project table

Column Column name Description

1 PROJNO Project ID (the primary key)

2 PROJNAME Project name

3 DEPTNO ID of department responsible for the project

4 RESPEMP ID of employee responsible for the project

5 PRSTAFF Estimated mean number of persons that are
needed between PRSTDATE and PRENDATE to
complete the whole project, including any
subprojects

6 PRSTDATE Estimated project start date

7 PRENDATE Estimated project end date

8 MAJPROJ ID of any project of which this project is a part

The following table shows the indexes for the project table:

Chapter 20. DB2 sample applications and data 1089

Table 177. Indexes of the project table

Name On column Type of index

DSN8B10.XPROJ1 PROJNO Primary, ascending

DSN8B10.XPROJ2 RESPEMP Ascending

Relationship to other tables

The table is self-referencing: a non-null value of MAJPROJ must be a valid project
number. The table is a parent table of the project activity table, through a foreign
key on column PROJNO. It is a dependent of the following tables:
v The department table, through its foreign key on DEPTNO
v The employee table, through its foreign key on RESPEMP

Project activity table (DSN8B10.PROJACT)
The sample project activity table lists the activities that are performed for each
project.

The project activity table resides in database DSN8D11A. Because this table has
foreign keys that reference PROJ and ACT, those tables and the indexes on their
primary keys must be created first. Then PROJACT is created with the following
statement:

CREATE TABLE DSN8B10.PROJACT
(PROJNO CHAR(6) NOT NULL,
ACTNO SMALLINT NOT NULL,
ACSTAFF DECIMAL(5,2) ,
ACSTDATE DATE NOT NULL,
ACENDATE DATE ,
PRIMARY KEY (PROJNO, ACTNO, ACSTDATE),
FOREIGN KEY RPAP (PROJNO) REFERENCES DSN8B10.PROJ

ON DELETE RESTRICT,
FOREIGN KEY RPAA (ACTNO) REFERENCES DSN8B10.ACT

ON DELETE RESTRICT)
IN DSN8D11A.DSN8S11P
CCSID EBCDIC;

Content of the project activity table

The following table shows the content of the columns of the project activity table.

Table 178. Columns of the project activity table

Column Column name Description

1 PROJNO Project ID

2 ACTNO Activity ID

3 ACSTAFF Estimated mean number of employees that are
needed to staff the activity

4 ACSTDATE Estimated activity start date

5 ACENDATE Estimated activity completion date

1090 Application Programming and SQL Guide

The following table shows the index of the project activity table:

Table 179. Index of the project activity table

Name On columns Type of index

DSN8B10.XPROJAC1 PROJNO, ACTNO,
ACSTDATE

primary, ascending

Relationship to other tables

The project activity table is a parent table of the employee to project activity table,
through a foreign key on columns PROJNO, ACTNO, and EMSTDATE. It is a
dependent of the following tables:
v The activity table, through its foreign key on column ACTNO
v The project table, through its foreign key on column PROJNO
Related reference:
“Activity table (DSN8B10.ACT)” on page 1081
“Project table (DSN8B10.PROJ)” on page 1089

Employee-to-project activity table (DSN8B10.EMPPROJACT)
The sample employee-to-project activity table identifies the employee who
performs an activity for a project, tells the proportion of the employee's time that is
required, and gives a schedule for the activity.

The employee-to-project activity table resides in database DSN8D11A. Because this
table has foreign keys that reference EMP and PROJACT, those tables and the
indexes on their primary keys must be created first. Then EMPPROJACT is created
with the following statement:
CREATE TABLE DSN8B10.EMPPROJACT

(EMPNO CHAR(6) NOT NULL,
PROJNO CHAR(6) NOT NULL,
ACTNO SMALLINT NOT NULL,
EMPTIME DECIMAL(5,2) ,
EMSTDATE DATE ,
EMENDATE DATE ,
FOREIGN KEY REPAPA (PROJNO, ACTNO, EMSTDATE)

REFERENCES DSN8B10.PROJACT
ON DELETE RESTRICT,

FOREIGN KEY REPAE (EMPNO) REFERENCES DSN8B10.EMP
ON DELETE RESTRICT)

IN DSN8D11A.DSN8S11P
CCSID EBCDIC;

Content of the employee-to-project activity table

The following table shows the content of the columns in the employee-to-project
activity table.

Table 180. Columns of the employee-to-project activity table

Column Column name Description

1 EMPNO Employee ID number

Chapter 20. DB2 sample applications and data 1091

Table 180. Columns of the employee-to-project activity table (continued)

Column Column name Description

2 PROJNO Project ID of the project

3 ACTNO ID of the activity within the project

4 EMPTIME A proportion of the employee's full time (between
0.00 and 1.00) that is to be spent on the activity

5 EMSTDATE Date the activity starts

6 EMENDATE Date the activity ends

The following table shows the indexes for the employee-to-project activity table:

Table 181. Indexes of the employee-to-project activity table

Name On columns Type of index

DSN8B10.XEMPPROJACT1 PROJNO, ACTNO,
EMSTDATE, EMPNO

Unique, ascending

DSN8B10.XEMPPROJACT2 EMPNO Ascending

Relationship to other tables

The employee-to-project activity table is a dependent of the following tables:
v The employee table, through its foreign key on column EMPNO
v The project activity table, through its foreign key on columns PROJNO, ACTNO,

and EMSTDATE.
Related reference:
“Employee table (DSN8B10.EMP)” on page 1084
“Project activity table (DSN8B10.PROJACT)” on page 1090

Unicode sample table (DSN8B10.DEMO_UNICODE)
The Unicode sample table is used to verify that data conversions to and from
EBCDIC and Unicode are working as expected.

The table resides in database DSN8D11A, and is defined with the following
statement:
CREATE TABLE DSN8B10.DEMO_UNICODE

(LOWER_A_TO_Z CHAR(26) ,
UPPER_A_TO_Z CHAR(26) ,
ZERO_TO_NINE CHAR(10) ,
X00_TO_XFF VARCHAR(256) FOR BIT DATA)

IN DSN8D81E.DSN8S81U
CCSID UNICODE;

1092 Application Programming and SQL Guide

Content of the Unicode sample table

The following table shows the content of the columns in the Unicode sample table:

Table 182. Columns of the Unicode sample table

Column Column Name Description

1 LOWER_A_TO_Z Array of characters, 'a' to 'z'

2 UPPER_A_TO_Z Array of characters, 'A' to 'Z'

3 ZERO_TO_NINE Array of characters, '0' to '9'

4 X00_TO_XFF Array of characters, x'00' to x'FF'

This table has no indexes.

Relationship to other tables

This table has no relationship to other tables.

Relationships among the sample tables
Relationships among the sample tables are established by foreign keys in
dependent tables that reference primary keys in parent tables.

The following figure shows relationships among the sample tables. You can find
descriptions of the columns with the descriptions of the tables.

CASCADE

CASCADE
RESTRICT

RESTRICT

RESTRICT

RESTRICT

RESTRICT

RESTRICT

RESTRICT

RESTRICT

SET
NULL

SET
NULL

DEPT

EMP

PROJ

ACT

PROJACT

EMPPROJACT

EMP_PHOTO_RESUME

Figure 88. Relationships among tables in the sample application

Chapter 20. DB2 sample applications and data 1093

Related reference:
“Activity table (DSN8B10.ACT)” on page 1081
“Department table (DSN8B10.DEPT)” on page 1082
“Employee photo and resume table (DSN8B10.EMP_PHOTO_RESUME)” on page
1087
“Employee table (DSN8B10.EMP)” on page 1084
“Employee-to-project activity table (DSN8B10.EMPPROJACT)” on page 1091
“Project activity table (DSN8B10.PROJACT)” on page 1090
“Project table (DSN8B10.PROJ)” on page 1089
“Unicode sample table (DSN8B10.DEMO_UNICODE)” on page 1092

Views on the sample tables
DB2 creates a number of views on the sample tables for use in the sample
applications.

The following table indicates the tables on which each view is defined and the
sample applications that use the view. All view names have the qualifier DSN8B10.

Table 183. Views on sample tables

View name On tables or views Used in application

VDEPT DEPT
Organization
Project

VHDEPT DEPT Distributed organization

VEMP EMP
Distributed organization
Organization
Project

VPROJ PROJ Project

VACT ACT Project

VPROJACT PROJACT Project

VEMPPROJACT EMPPROJACT Project

VDEPMG1
DEPT
EMP

Organization

VEMPDPT1
DEPT
EMP

Organization

VASTRDE1 DEPT

VASTRDE2
VDEPMG1
EMP

Organization

VPROJRE1
PROJ
EMP

Project

VPSTRDE1
VPROJRE1
VPROJRE2

Project

VPSTRDE2 VPROJRE1 Project

1094 Application Programming and SQL Guide

Table 183. Views on sample tables (continued)

View name On tables or views Used in application

VFORPLA
VPROJRE1
EMPPROJACT

Project

VSTAFAC1
PROJACT
ACT

Project

VSTAFAC2
EMPPROJACT
ACT
EMP

Project

VPHONE
EMP
DEPT

Phone

VEMPLP EMP Phone

The following SQL statement creates the view named VDEPT.
CREATE VIEW DSN8B10.VDEPT

AS SELECT ALL DEPTNO ,
DEPTNAME,
MGRNO ,
ADMRDEPT

FROM DSN8B10.DEPT;

The following SQL statement creates the view named VHDEPT.
CREATE VIEW DSN8B10.VHDEPT

AS SELECT ALL DEPTNO ,
DEPTNAME,
MGRNO ,
ADMRDEPT,
LOCATION

FROM DSN8B10.DEPT;

The following SQL statement creates the view named VEMP.
CREATE VIEW DSN8B10.VEMP

AS SELECT ALL EMPNO ,
FIRSTNME,
MIDINIT ,
LASTNAME,
WORKDEPT

FROM DSN8B10.EMP;

The following SQL statement creates the view named VPROJ.
CREATE VIEW DSN8B10.VPROJ

AS SELECT ALL
PROJNO, PROJNAME, DEPTNO, RESPEMP, PRSTAFF,
PRSTDATE, PRENDATE, MAJPROJ

FROM DSN8B10.PROJ ;

The following SQL statement creates the view named VACT.

Chapter 20. DB2 sample applications and data 1095

CREATE VIEW DSN8B10.VACT
AS SELECT ALL ACTNO ,

ACTKWD ,
ACTDESC

FROM DSN8B10.ACT ;

The following SQL statement creates the view named VPROJACT.
CREATE VIEW DSN8B10.VPROJACT

AS SELECT ALL
PROJNO,ACTNO, ACSTAFF, ACSTDATE, ACENDATE
FROM DSN8B10.PROJACT ;

The following SQL statement creates the view named VEMPPROJACT.
CREATE VIEW DSN8B10.VEMPPROJACT

AS SELECT ALL
EMPNO, PROJNO, ACTNO, EMPTIME, EMSTDATE, EMENDATE
FROM DSN8B10.EMPPROJACT ;

The following SQL statement creates the view named VDEPMG1.
CREATE VIEW DSN8B10.VDEPMG1

(DEPTNO, DEPTNAME, MGRNO, FIRSTNME, MIDINIT,
LASTNAME, ADMRDEPT)

AS SELECT ALL
DEPTNO, DEPTNAME, EMPNO, FIRSTNME, MIDINIT,
LASTNAME, ADMRDEPT
FROM DSN8B10.DEPT LEFT OUTER JOIN DSN8B10.EMP
ON MGRNO = EMPNO ;

The following SQL statement creates the view named VEMPDPT1.
CREATE VIEW DSN8B10.VEMPDPT1

(DEPTNO, DEPTNAME, EMPNO, FRSTINIT, MIDINIT,
LASTNAME, WORKDEPT)

AS SELECT ALL
DEPTNO, DEPTNAME, EMPNO, SUBSTR(FIRSTNME, 1, 1), MIDINIT,
LASTNAME, WORKDEPT
FROM DSN8B10.DEPT RIGHT OUTER JOIN DSN8B10.EMP
ON WORKDEPT = DEPTNO ;

The following SQL statement creates the view named VASTRDE1.
CREATE VIEW DSN8B10.VASTRDE1

(DEPT1NO,DEPT1NAM,EMP1NO,EMP1FN,EMP1MI,EMP1LN,TYPE2,
DEPT2NO,DEPT2NAM,EMP2NO,EMP2FN,EMP2MI,EMP2LN)
AS SELECT ALL

D1.DEPTNO,D1.DEPTNAME,D1.MGRNO,D1.FIRSTNME,D1.MIDINIT,
D1.LASTNAME, ’1’,
D2.DEPTNO,D2.DEPTNAME,D2.MGRNO,D2.FIRSTNME,D2.MIDINIT,
D2.LASTNAME
FROM DSN8B10.VDEPMG1 D1, DSN8B10.VDEPMG1 D2
WHERE D1.DEPTNO = D2.ADMRDEPT ;

The following SQL statement creates the view named VASTRDE2.
CREATE VIEW DSN8B10.VASTRDE2

(DEPT1NO,DEPT1NAM,EMP1NO,EMP1FN,EMP1MI,EMP1LN,TYPE2,
DEPT2NO,DEPT2NAM,EMP2NO,EMP2FN,EMP2MI,EMP2LN)
AS SELECT ALL

D1.DEPTNO,D1.DEPTNAME,D1.MGRNO,D1.FIRSTNME,D1.MIDINIT,
D1.LASTNAME,’2’,
D1.DEPTNO,D1.DEPTNAME,E2.EMPNO,E2.FIRSTNME,E2.MIDINIT,
E2.LASTNAME
FROM DSN8B10.VDEPMG1 D1, DSN8B10.EMP E2
WHERE D1.DEPTNO = E2.WORKDEPT;

1096 Application Programming and SQL Guide

The following figure shows the SQL statement that creates the view named
VPROJRE1.

The following SQL statement creates the view named VPSTRDE1.
CREATE VIEW DSN8B10.VPSTRDE1

(PROJ1NO,PROJ1NAME,RESP1NO,RESP1FN,RESP1MI,RESP1LN,
PROJ2NO,PROJ2NAME,RESP2NO,RESP2FN,RESP2MI,RESP2LN)
AS SELECT ALL

P1.PROJNO,P1.PROJNAME,P1.RESPEMP,P1.FIRSTNME,P1.MIDINIT,
P1.LASTNAME,
P2.PROJNO,P2.PROJNAME,P2.RESPEMP,P2.FIRSTNME,P2.MIDINIT,
P2.LASTNAME

FROM DSN8B10.VPROJRE1 P1,
DSN8B10.VPROJRE1 P2

WHERE P1.PROJNO = P2.MAJPROJ ;

The following SQL statement creates the view named VPSTRDE2.
CREATE VIEW DSN8B10.VPSTRDE2

(PROJ1NO,PROJ1NAME,RESP1NO,RESP1FN,RESP1MI,RESP1LN,
PROJ2NO,PROJ2NAME,RESP2NO,RESP2FN,RESP2MI,RESP2LN)
AS SELECT ALL

P1.PROJNO,P1.PROJNAME,P1.RESPEMP,P1.FIRSTNME,P1.MIDINIT,
P1.LASTNAME,
P1.PROJNO,P1.PROJNAME,P1.RESPEMP,P1.FIRSTNME,P1.MIDINIT,
P1.LASTNAME

FROM DSN8B10.VPROJRE1 P1
WHERE NOT EXISTS

(SELECT * FROM DSN8B10.VPROJRE1 P2
WHERE P1.PROJNO = P2.MAJPROJ) ;

The following SQL statement creates the view named VFORPLA.
CREATE VIEW DSN8B10.VFORPLA

(PROJNO,PROJNAME,RESPEMP,PROJDEP,FRSTINIT,MIDINIT,LASTNAME)
AS SELECT ALL

F1.PROJNO,PROJNAME,RESPEMP,PROJDEP, SUBSTR(FIRSTNME, 1, 1),
MIDINIT, LASTNAME
FROM DSN8B10.VPROJRE1 F1 LEFT OUTER JOIN DSN8B10.EMPPROJACT F2
ON F1.PROJNO = F2.PROJNO;

The following SQL statement creates the view named VSTAFAC1.
CREATE VIEW DSN8B10.VSTAFAC1

(PROJNO, ACTNO, ACTDESC, EMPNO, FIRSTNME, MIDINIT, LASTNAME,
EMPTIME,STDATE,ENDATE, TYPE)
AS SELECT ALL

PA.PROJNO, PA.ACTNO, AC.ACTDESC,’ ’, ’ ’, ’ ’, ’ ’,
PA.ACSTAFF, PA.ACSTDATE,
PA.ACENDATE,’1’

FROM DSN8B10.PROJACT PA, DSN8B10.ACT AC
WHERE PA.ACTNO = AC.ACTNO ;

The following SQL statement creates the view named VSTAFAC2.

CREATE VIEW DSN8B10.VPROJRE1
(PROJNO,PROJNAME,PROJDEP,RESPEMP,FIRSTNME,MIDINIT,
LASTNAME,MAJPROJ)
AS SELECT ALL

PROJNO,PROJNAME,DEPTNO,EMPNO,FIRSTNME,MIDINIT,
LASTNAME,MAJPROJ
FROM DSN8B10.PROJ, DSN8B10.EMP
WHERE RESPEMP = EMPNO ;

Figure 89. VPROJRE1

Chapter 20. DB2 sample applications and data 1097

CREATE VIEW DSN8B10.VSTAFAC2
(PROJNO, ACTNO, ACTDESC, EMPNO, FIRSTNME, MIDINIT, LASTNAME,
EMPTIME,STDATE, ENDATE, TYPE)
AS SELECT ALL

EP.PROJNO, EP.ACTNO, AC.ACTDESC, EP.EMPNO,EM.FIRSTNME,
EM.MIDINIT, EM.LASTNAME, EP.EMPTIME, EP.EMSTDATE,
EP.EMENDATE,’2’

FROM DSN8B10.EMPPROJACT EP, DSN8B10.ACT AC, DSN8B10.EMP EM
WHERE EP.ACTNO = AC.ACTNO AND EP.EMPNO = EM.EMPNO ;

The following SQL statement creates the view named VPHONE.
CREATE VIEW DSN8B10.VPHONE

(LASTNAME,
FIRSTNAME,
MIDDLEINITIAL,
PHONENUMBER,
EMPLOYEENUMBER,
DEPTNUMBER,
DEPTNAME)

AS SELECT ALL LASTNAME,
FIRSTNME,
MIDINIT ,
VALUE(PHONENO,’ ’),
EMPNO,
DEPTNO,
DEPTNAME

FROM DSN8B10.EMP, DSN8B10.DEPT
WHERE WORKDEPT = DEPTNO;

The following SQL statement creates the view named VEMPLP.
CREATE VIEW DSN8B10.VEMPLP

(EMPLOYEENUMBER,
PHONENUMBER)

AS SELECT ALL EMPNO ,
PHONENO

FROM DSN8B10.EMP ;

Storage of sample application tables
Normally, related data is stored in the same database.

The following figure shows how the sample tables are related to databases and
storage groups. Two databases are used to illustrate the possibility.

1098 Application Programming and SQL Guide

In addition to the storage group and databases that are shown in the preceding
figure, the storage group DSN8G11U and database DSN8D11U are created when
you run DSNTEJ2A.

Storage group for sample application data
Sample application data is stored in storage group DSN8G110. The default storage
group, SYSDEFLT, which is created when DB2 is installed, is not used to store
sample application data.

The storage group that is used to store sample application data is defined by the
following statement:
CREATE STOGROUP DSN8G110

VOLUMES (DSNV01)
VCAT DSNC110;

Databases for sample application data
Sample application data is stored in several different databases. The default
database that is created when DB2 is installed is not used to store the sample
application data.

DSN8D11P is the database that is used for tables that are related to
programs. The other databases are used for tables that are related to applications.
The databases are defined by the following statements:
CREATE DATABASE DSN8D11A

STOGROUP DSN8G110
BUFFERPOOL BP0
CCSID EBCDIC;

CREATE DATABASE DSN8D11P
STOGROUP DSN8G110
BUFFERPOOL BP0
CCSID EBCDIC;

Storage group:

Databases:

Table
spaces:

DSN8G 0vr

DSN8D A
application

data

vr DSN8D P
common for

programming
tables

vr

DSN8S D
department

table

vr DSN8S E
employee

table

vr

Separate
spaces for

other
application

tables

DSN8S P
common for

programming
tables

vr

vr is a 2-digit version identifer.

LOB spaces
for employee

photo and
resume table

DSN8D L
LOB application

data

vr

Figure 90. Relationship among sample databases and table spaces

Chapter 20. DB2 sample applications and data 1099

CREATE DATABASE DSN8D11L
STOGROUP DSN8G110
BUFFERPOOL BP0
CCSID EBCDIC;

CREATE DATABASE DSN8D11E
STOGROUP DSN8G110
BUFFERPOOL BP0
CCSID UNICODE;

CREATE DATABASE DSN8D11U
STOGROUP DSN8G11U
CCSID EBCDIC;

Table spaces for sample application data
The table spaces that are not explicitly defined are created implicitly in the
DSN8D11A database, using the default space attributes.

The following SQL statements explicitly define a series of table spaces.
CREATE TABLESPACE DSN8S11D

IN DSN8D11A
USING STOGROUP DSN8G110

PRIQTY 20
SECQTY 20
ERASE NO

LOCKSIZE PAGE LOCKMAX SYSTEM
BUFFERPOOL BP0
CLOSE NO
CCSID EBCDIC;

CREATE TABLESPACE DSN8S11E
IN DSN8D11A
USING STOGROUP DSN8G110

PRIQTY 20
SECQTY 20
ERASE NO

NUMPARTS 4
(PART 1 USING STOGROUP DSN8G110

PRIQTY 12
SECQTY 12,

PART 3 USING STOGROUP DSN8G110
PRIQTY 12
SECQTY 12)

LOCKSIZE PAGE LOCKMAX SYSTEM
BUFFERPOOL BP0
CLOSE NO
COMPRESS YES
CCSID EBCDIC;

CREATE TABLESPACE DSN8S11B
IN DSN8D11L
USING STOGROUP DSN8G110

PRIQTY 20
SECQTY 20
ERASE NO

LOCKSIZE PAGE
LOCKMAX SYSTEM
BUFFERPOOL BP0
CLOSE NO
CCSID EBCDIC;

1100 Application Programming and SQL Guide

CREATE LOB TABLESPACE DSN8S11M
IN DSN8D11L
LOG NO;

CREATE LOB TABLESPACE DSN8S11L
IN DSN8D11L
LOG NO;

CREATE LOB TABLESPACE DSN8S11N
IN DSN8D11L
LOG NO;

CREATE TABLESPACE DSN8S11C
IN DSN8D11P
USING STOGROUP DSN8G110

PRIQTY 160
SECQTY 80

SEGSIZE 4
LOCKSIZE TABLE
BUFFERPOOL BP0
CLOSE NO
CCSID EBCDIC;

CREATE TABLESPACE DSN8S11P
IN DSN8D11A
USING STOGROUP DSN8G110

PRIQTY 160
SECQTY 80

SEGSIZE 4
LOCKSIZE ROW
BUFFERPOOL BP0
CLOSE NO
CCSID EBCDIC;

CREATE TABLESPACE DSN8S11R
IN DSN8D11A
USING STOGROUP DSN8G110

PRIQTY 20
SECQTY 20
ERASE NO

LOCKSIZE PAGE LOCKMAX SYSTEM
BUFFERPOOL BP0
CLOSE NO
CCSID EBCDIC;

CREATE TABLESPACE DSN8S11S
IN DSN8D11A
USING STOGROUP DSN8G110

PRIQTY 20
SECQTY 20
ERASE NO

LOCKSIZE PAGE LOCKMAX SYSTEM
BUFFERPOOL BP0
CLOSE NO
CCSID EBCDIC;

CREATE TABLESPACE DSN8S81Q
IN DSN8D81P
USING STOGROUP DSN8G810

PRIQTY 160
SECQTY 80

SEGSIZE 4
LOCKSIZE PAGE
BUFFERPOOL BP0
CLOSE NO
CCSID EBCDIC;

CREATE TABLESPACE DSN8S81U
IN DSN8D81E
USING STOGROUP DSN8G810

Chapter 20. DB2 sample applications and data 1101

PRIQTY 5
SECQTY 5
ERASE NO

LOCKSIZE PAGE LOCKMAX SYSTEM
BUFFERPOOL BP0
CLOSE NO
CCSID UNICODE;

DB2 sample applications
DB2 provides sample applications to help you with DB2 programming techniques
and coding practices within each of the four environments: batch, TSO, IMS, and
CICS. The sample applications contain various applications that might apply to
managing a company.

This topic describes the DB2 sample applications and the environments under
which each application runs. It also provides information on how to use the
applications, and how to print the application listings.

You can examine the source code for the sample application programs in the online
sample library included with the DB2 product. The name of this sample library is
prefix.SDSNSAMP.

Using the sample applications

You can use the applications interactively by accessing data in the sample tables on
screen displays (panels). You can also access the sample tables in batch when using
the phone applications. All sample objects have PUBLIC authorization, which
makes the samples easier to run.

Productivity-aid sample programs:

DB2 provides four sample programs that many users find helpful as productivity
aids. These programs are shipped as source code, so you can modify them to meet
your needs. The programs are:

DSNTIAUL
The sample unload program. This program, which is written in assembler
language, is a simple alternative to the UNLOAD utility. It unloads some
or all rows from up to 100 DB2 tables. With DSNTIAUL, you can unload
data of any DB2 built-in data type or distinct type. DSNTIAUL unloads the
rows in a form that is compatible with the LOAD utility and generates
utility control statements for LOAD. DSNTIAUL also lets you execute any
SQL non-SELECT statement that can be executed dynamically.

DSNTIAD
A sample dynamic SQL program that is written in assembler language.
With this program, you can execute any SQL statement that can be
executed dynamically, except a SELECT statement.

DSNTEP2
A sample dynamic SQL program that is written in the PL/I language. With
this program, you can execute any SQL statement that can be executed
dynamically. You can use the source version of DSNTEP2 and modify it to
meet your needs, or, if you do not have a PL/I compiler at your
installation, you can use the object code version of DSNTEP2.

1102 Application Programming and SQL Guide

DSNTEP4
A sample dynamic SQL program that is written in the PL/I language. This
program is identical to DSNTEP2 except DSNTEP4 uses multi-row fetch for
increased performance. You can use the source version of DSNTEP4 and
modify it to meet your needs, or, if you do not have a PL/I compiler at
your installation, you can use the object code version of DSNTEP4.

Because these four programs also accept the static SQL statements CONNECT, SET
CONNECTION, and RELEASE, you can use the programs to access DB2 tables at
remote locations.

Retrieval of UTF-16 Unicode data:

You can use DSNTEP2, DSNTEP4, and DSNTIAUL to retrieve Unicode UTF-16
graphic data. However, these programs might not be able to display some
characters, if those characters have no mapping in the target SBCS EBCDIC CCSID.

DSNTIAUL and DSNTIAD are shipped only as source code, so you must
precompile, assemble, link, and bind them before you can use them. If you want to
use the source code version of DSNTEP2 or DSNTEP4, you must precompile,
compile, link, and bind it. You need to bind the object code version of DSNTEP2 or
DSNTEP4 before you can use it. Usually a system administrator prepares the
programs as part of the installation process. The following table indicates which
installation job prepares each sample program. All installation jobs are in data set
DSNB10.SDSNSAMP.

Table 184. Jobs that prepare DSNTIAUL, DSNTIAD, DSNTEP2, and DSNTEP4

Program name Program preparation job

DSNTIAUL DSNTEJ2A

DSNTIAD DSNTIJTM

DSNTEP2 (source) DSNTEJ1P

DSNTEP2 (object) DSNTEJ1L

DSNTEP4 (source) DSNTEJ1P

DSNTEP4 (object) DSNTEJ1L

To run the sample programs, use the DSN RUN command.

The following table lists the load module name and plan name that you must
specify, and the parameters that you can specify when you run each program. See
the following topics for the meaning of each parameter.

Table 185. DSN RUN option values for DSNTIAUL, DSNTIAD, DSNTEP2, and DSNTEP4

Program name Load module Plan Parameters

DSNTIAUL DSNTIAUL DSNTIB11 SQL
number of rows per fetch
TOLWARN(NO|YES)

DSNTIAD DSNTIAD DSNTIA11 RC0
SQLTERM(termchar)

Chapter 20. DB2 sample applications and data 1103

Table 185. DSN RUN option values for DSNTIAUL, DSNTIAD, DSNTEP2, and
DSNTEP4 (continued)

Program name Load module Plan Parameters

DSNTEP2 DSNTEP2 DSNTEP11 ALIGN(MID)
or ALIGN(LHS)

NOMIXED or MIXED
SQLTERM(termchar)
TOLWARN(NO|YES)
PREPWARN

DSNTEP4 DSNTEP4 DSNTP411 ALIGN(MID)
or ALIGN(LHS)

NOMIXED or MIXED
SQLTERM(termchar)
TOLWARN(NO|YES)
PREPWARN

The remainder of this section contains the following information about running
each program:
v Descriptions of the input parameters
v Data sets that you must allocate before you run the program
v Return codes from the program
v Examples of invocation
Related reference:

RUN (DSN) (DB2 Commands)

DB2 for z/OS Exchange

Types of sample applications
DB2 provides a number of sample applications that manage sample company
information. These applications also demonstrate how to use stored procedures,
user-defined functions, and LOBs.

Organization application:

The organization application manages the following company information:
v Department administrative structure
v Individual departments
v Individual employees.

Management of information about department administrative structures involves
how departments relate to other departments. You can view or change the
organizational structure of an individual department, and the information about
individual employees in any department. The organization application runs
interactively in the ISPF/TSO, IMS, and CICS environments and is available in
PL/I and COBOL.

Project application:

The project application manages information about a company's project activities,
including the following:
v Project structures
v Project activity listings
v Individual project processing
v Individual project activity estimate processing

1104 Application Programming and SQL Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_run.htm#db2z_cmd_run
http://www.ibm.com/developerworks/software/exchange/db2zos

v Individual project staffing processing.

Each department works on projects that contain sets of related activities.
Information available about these activities includes staffing assignments,
completion-time estimates for the project as a whole, and individual activities
within a project. The project application runs interactively in IMS and CICS and is
available in PL/I only.

Phone application:

The phone application lets you view or update individual employee phone
numbers. There are different versions of the application for ISPF/TSO, CICS, IMS,
and batch:
v ISPF/TSO applications use COBOL and PL/I.
v CICS and IMS applications use PL/I.
v Batch applications use C, C++, COBOL, FORTRAN, and PL/I.

Stored procedure applications:

There are three sets of stored procedure applications:

IFI applications
These applications let you pass DB2 commands from a client program to a
stored procedure, which runs the commands at a DB2 server using the
instrumentation facility interface (IFI). There are two sets of client
programs and stored procedures. One set has a PL/I client and stored
procedure; the other set has a C client and stored procedure.

ODBA application
This application demonstrates how you can use the IMS ODBA interface to
access IMS databases from stored procedures. The stored procedure
accesses the IMS sample DL/I database. The client program and the stored
procedure are written in COBOL.

Utilities stored procedure application
This application demonstrates how to call the utilities stored procedure.

SQL procedure applications

Sample applications are available for both external SQL procedures and
native SQL procedures:
v The applications for external SQL procedures demonstrate how to write,

prepare, and invoke such procedures. One set of applications
demonstrates how to prepare SQL procedures using JCL. The other set
of applications shows how to prepare SQL procedures using the SQL
procedure processor. The client programs are written in C.

v The sample job for a native SQL procedure shows how to prepare a
native SQL procedure, how to manage versions of native SQL
procedures, and optionally, how to deploy a native SQL procedure to a
remote server. The sample also prepares and executes a sample caller in
the C language

WLM refresh application
This application is a client program that calls the DB2–supplied stored
procedure WLM_REFRESH to refresh a WLM environment. This program
is written in C.

Chapter 20. DB2 sample applications and data 1105

System parameter reporting application
This application is a client program that calls the DB2–supplied stored
procedure DSNWZP to display the current settings of system parameters.
This program is written in C.

All stored procedure applications run in the TSO batch environment.

User-defined function applications:

The user-defined function applications consist of a client program that invokes the
sample user-defined functions and a set of user-defined functions that perform the
following functions:
v Convert the current date to a user-specified format
v Convert a date from one format to another
v Convert the current time to a user-specified format
v Convert a date from one format to another
v Return the day of the week for a user-specified date
v Return the month for a user-specified date
v Format a floating point number as a currency value
v Return the table name for a table, view, or alias
v Return the qualifier for a table, view or alias
v Return the location for a table, view or alias
v Return a table of weather information

All programs are written in C or C++ and run in the TSO batch environment.

LOB application:

The LOB application demonstrates how to perform the following tasks:
v Define DB2 objects to hold LOB data
v Populate DB2 tables with LOB data using the LOAD utility, or using INSERT

and UPDATE statements when the data is too large for use with the LOAD
utility

v Manipulate the LOB data using LOB locators

The programs that create and populate the LOB objects use DSNTIAD and run in
the TSO batch environment. The program that manipulates the LOB data is written
in C and runs under ISPF/TSO.

Application languages and environments for the sample
applications

The sample applications demonstrate how to run DB2 applications in the TSO,
IMS, or CICS environments.

The following table shows the environments under which each application runs,
and the languages the applications use for each environment.

Table 186. Application languages and environments

Programs ISPF/TSO IMS CICS Batch SPUFI

Dynamic SQL
programs

Assembler
PL/I

1106 Application Programming and SQL Guide

Table 186. Application languages and environments (continued)

Programs ISPF/TSO IMS CICS Batch SPUFI

Exit routines Assembler Assembler Assembler Assembler Assembler

Organization COBOL COBOL
PL/I

COBOL
PL/I

Phone COBOL
PL/I
Assembler1

PL/I PL/I COBOL
FORTRAN
PL/I
C
C++

Project PL/I PL/I

SQLCA
formatting
routines

Assembler Assembler Assembler Assembler

Stored
procedures

COBOL PL/I
C
SQL

User-defined
functions

C
C++

LOBs C

Notes:

1. Assembler subroutine DSN8CA.

Sample applications in TSO
A set of DB2 sample applications run in the TSO environment.

Table 187. Sample DB2 applications for TSO

Application Program name

Preparation
JCL member
name

Attachment
facility Description

Phone DSN8BC3 DSNTEJ2C DSNELI This COBOL batch program lists employee
telephone numbers and updates them if
requested.

Phone DSN8BD3 DSNTEJ2D DSNELI This C batch program lists employee telephone
numbers and updates them if requested.

Phone DSN8BE3 DSNTEJ2E DSNELI This C++ batch program lists employee
telephone numbers and updates them if
requested.

Phone DSN8BP3 DSNTEJ2P DSNELI This PL/I batch program lists employee
telephone numbers and updates them if
requested.

Phone DSN8BF3 DSNTEJ2F DSNELI This FORTRAN program lists employee
telephone numbers and updates them if
requested.

Organization DSN8HC3 DSNTEJ3C or
DSNTEJ6

DSNALI This COBOL ISPF program displays and
updates information about a local department. It
can also display and update information about
an employee at a local or remote location.

Phone DSN8SC3 DSNTEJ3C DSNALI This COBOL ISPF program lists employee
telephone numbers and updates them if
requested.

Chapter 20. DB2 sample applications and data 1107

Table 187. Sample DB2 applications for TSO (continued)

Application Program name

Preparation
JCL member
name

Attachment
facility Description

Phone DSN8SP3 DSNTEJ3P DSNALI This PL/I ISPF program lists employee
telephone numbers and updates them if
requested.

UNLOAD DSNTIAUL DSNTEJ2A DSNELI This assembler language program unloads the
data from a table or view and to produce LOAD
utility control statements for the data.

Dynamic SQL DSNTIAD DSNTIJTM DSNELI This assembler language program dynamically
executes non-SELECT statements read in from
SYSIN; that is, it uses dynamic SQL to execute
non-SELECT SQL statements.

Dynamic SQL DSNTEP2 DSNTEJ1P or
DSNTEJ1L

DSNELI This PL/I program dynamically executes SQL
statements read in from SYSIN. Unlike
DSNTIAD, this application can also execute
SELECT statements.

Stored
procedures1

DSN8EP1 DSNTEJ6P DSNELI The jobs DSNTEJ6P and DSNTEJ6S prepare a
PL/I version of the application. This sample
executes DB2 commands using the
instrumentation facility interface (IFI).

Stored
procedure1

DSN8EP2 DSNTEJ6S DSNRLI

Stored
procedures1

DSN8EPU DSNTEJ6U DSNELI The sample that is prepared by job DSNTEJ6U
invokes the utilities stored procedure.

Stored
procedures1

DSN8ED1 DSNTEJ6D DSNELI The jobs DSNTEJ6D and DSNTEJ6T prepare a C
version of the application. The C stored
procedure uses result sets to return commands
to the client. This sample executes DB2
commands using the instrumentation facility
interface (IFI).

Stored
procedures1

DSN8ED2 DSNTEJ6T DSNRLI

Stored
procedures1

DSN8EC1 DSNTEJ61 DSNRLI The sample that is prepared by jobs DSNTEJ61
and DSNTEJ62 demonstrates a stored procedure
that accesses IMS databases through the ODBA
interface.

Stored
procedures1

DSN8EC2 DSNTEJ62 DSNELI

Stored
procedures1

DSN8ES1 DSNTEJ63 DSNRLI The sample that is prepared by jobs DSNTEJ63
and DSNTEJ64 demonstrates how to prepare an
SQL procedure using JCL.Stored

procedures1
DSN8ED3 DSNTEJ64 DSNELI

Stored
procedures1

DSN8ES2 DSNTEJ65 DSNRLI The sample that is prepared by job DSNTEJ65
demonstrates how to prepare an SQL procedure
using the SQL procedure processor.

Stored
procedures1

DSN8ED6 DSNTEJ6W DSNELI The sample that is prepared by job DSNTEJ6W
demonstrates how to prepare and run a client
program that calls a DB2–supplied stored
procedure to refresh a WLM environment.

Stored
procedures1

DSN8ED7 DSNTEJ6Z DSNELI The sample that is prepared by job DSNTEJ6Z
demonstrates how to prepare and run a client
program that calls a DB2–supplied stored
procedure to display the current settings of
system parameters.

1108 Application Programming and SQL Guide

Table 187. Sample DB2 applications for TSO (continued)

Application Program name

Preparation
JCL member
name

Attachment
facility Description

Stored
procedures1

DSN8ED9 DSNTEJ66 DSNELI The sample that is prepared by job DSNTEJ66
demonstrates how to prepare and run a client
program that calls a native SQL procedure,
manages versions of that procedure, and
optionally, deploys that procedure to a remote
server. DSN8ES3 is the sample native SQL
procedure and DSN8ED9 is the sample C
language caller of DSN8ES3.

Stored
procedures1

DSN8ES3 DSNTEJ66 not applicable

User-defined
functions

DSN8DUAD DSNTEJ2U DSNRLI These C applications consist of a set of
user-defined scalar functions that can be
invoked through SPUFI or DSNTEP2.User-defined

functions
DSN8DUAT DSNTEJ2U DSNRLI

User-defined
functions

DSN8DUCD DSNTEJ2U DSNRLI

User-defined
functions

DSN8DUCT DSNTEJ2U DSNRLI

User-defined
functions

DSN8DUCY DSNTEJ2U DSNRLI

User-defined
functions

DSN8DUTI DSNTEJ2U DSNRLI

User-defined
functions

DSN8DUWC DSNTEJ2U DSNRLI The user-defined table function DSN8DUWF
can be invoked by the C client program
DSN8DUWC.User-defined

functions
DSN8DUWF DSNTEJ2U DSNRLI

User-defined
functions

DSN8EUDN DSNTEJ2U DSNRLI These C++ applications consist of a set of
user-defined scalar functions that can be
invoked through SPUFI or DSNTEP2.User-defined

functions
DSN8EUMN DSNTEJ2U DSNRLI

LOBs DSN8DLPL DSNTEJ71 DSNELI These applications demonstrate how to populate
a LOB column that is greater than 32 KB,
manipulate the data using the POSSTR and
SUBSTR built-in functions, and display the data
in ISPF using GDDM®.

LOBs DSN8DLCT DSNTEJ71 DSNELI

LOBs DSN8DLRV DSNTEJ73 DSNELI

LOBs DSN8DLPV DSNTEJ75 DSNELI

Note:

1. All of the stored procedure applications consist of a calling program, a stored
procedure program, or both.

Chapter 20. DB2 sample applications and data 1109

Related reference:
“Data sets that the precompiler uses” on page 919

Sample applications in IMS
A set of DB2 sample applications run in the IMS environment.

Table 188. Sample DB2 applications for IMS

Application Program name JCL member name Description

Organization DSN8IC0
DSN8IC1
DSN8IC2

DSNTEJ4C IMS COBOL
Organization
Application

Organization DSN8IP0
DSN8IP1
DSN8IP2

DSNTEJ4P IMS PL/I
Organization
Application

Project DSN8IP6
DSN8IP7
DSN8IP8

DSNTEJ4P IMS PL/I Project
Application

Phone DSN8IP3 DSNTEJ4P IMS PL/I Phone
Application. This
program lists
employee telephone
numbers and updates
them if requested.

Related reference:
“Data sets that the precompiler uses” on page 919

Sample applications in CICS
A set of DB2 sample applications run in the CICS environment.

Table 189. Sample DB2 applications for CICS

Application Program name JCL member name Description

Organization DSN8CC0
DSN8CC1
DSN8CC2

DSNTEJ5C CICS COBOL
Organization
Application

Organization DSN8CP0
DSN8CP1
DSN8CP2

DSNTEJ5P CICS PL/I
Organization
Application

Project DSN8CP6
DSN8CP7
DSN8CP8

DSNTEJ5P CICS PL/I Project
Application

Phone DSN8CP3 DSNTEJ5P CICS PL/I Phone
Application. This
program lists
employee telephone
numbers and updates
them if requested.

1110 Application Programming and SQL Guide

Related reference:
“Data sets that the precompiler uses” on page 919

DSNTIAUL
Use the DSNTIAUL program to unload data from DB2 tables into sequential data
sets.

When multi-row fetch is used, parallelism might be disabled in the last parallel
group in the top-level query block for a query. For very simple queries, parallelism
might be disabled for the entire query when multi-row fetch is used. To obtain full
parallelism when running DSNTIAUL, switch DSNTIAUL to single-row fetch
mode by specifying 1 for the number of rows per fetch parameter.

DSNTIAUL uses SQL to access DB2. Operations on a row-level or column-level
access control enforced table are subject to the rules specified for the access control.
If the table is row-level access control enforced, DSNTIAUL receives and returns
only the rows of the table that satisfy the row permissions for the user. If the table
is column-level access control enforced, DSNTIAUL receives and returns the values
in the column values as modified by the column masks for the user.

DSNTIAUL parameters:

SQL
Specify SQL to indicate that your input data set contains one or more complete
SQL statements, each of which ends with a semicolon. You can include any
SQL statement that can be executed dynamically in your input data set. In
addition, you can include the static SQL statements CONNECT, SET
CONNECTION, or RELEASE. Static SQL statements must be uppercase.

DSNTIAUL uses the SELECT statements to determine which tables to unload
and dynamically executes all other statements except CONNECT, SET
CONNECTION, and RELEASE. DSNTIAUL executes CONNECT, SET
CONNECTION, and RELEASE statically to connect to remote locations.

number of rows per fetch
Specify a number from 1 to 32767 to specify the number of rows per fetch that
DSNTIAUL retrieves. If you do not specify this number, DSNTIAUL retrieves
100 rows per fetch. This parameter can be specified with the SQL parameter.

TOLWARN
Specify NO (the default) or YES to indicate whether DSNTIAUL continues to
retrieve rows after receiving an SQL warning:

(NO) If a warning occurs when DSNTIAUL executes an OPEN or FETCH to
retrieve rows, DSNTIAUL stops retrieving rows. If the SQLWARN1,
SQLWARN2, SQLWARN6, or SQLWARN7 flag is set when DSNTIAUL
executes a FETCH to retrieve rows, DSNTIAUL continues to retrieve
rows.

(YES) If a warning occurs when DSNTIAUL executes an OPEN or FETCH to
retrieve rows, DSNTIAUL continues to retrieve rows.

LOBFILE(prefix)
Specify LOBFILE to indicate that you want DSNTIAUL to dynamically allocate
data sets, each to receive the full content of a LOB cell. (A LOB cell is the
intersection of a row and a LOB column.) If you do not specify the LOBFILE
option, you can unload up to only 32 KB of data from a LOB column.

Chapter 20. DB2 sample applications and data 1111

prefix
Specify a high-level qualifier for these dynamically allocated data sets. You
can specify up to 17 characters. The qualifier must conform with the rules
for TSO data set names.

DSNTIAUL uses a naming convention for these dynamically allocated data sets
of prefix.Qiiiiiii.Cjjjjjjj.Rkkkkkkk, where these qualifiers have the following
values:

prefix
The high-level qualifier that you specify in the LOBFILE option.

Qiiiiiii
The sequence number (starting from 0) of a query that returns one or more
LOB columns

Cjjjjjjj
The sequence number (starting from 0) of a column in a query that returns
one or more LOB columns

Rkkkkkkk
The sequence number (starting from 0) of a row of a result set that has one
or more LOB columns.

The generated LOAD statement contains LOB file reference variables that can
be used to load data from these dynamically allocated data sets.

If you do not specify the SQL parameter, your input data set must contain one or
more single-line statements (without a semicolon) that use the following syntax:
table or view name [WHERE conditions] [ORDER BY columns]

Each input statement must be a valid SQL SELECT statement with the clause
SELECT * FROM omitted and with no ending semicolon. DSNTIAUL generates a
SELECT statement for each input statement by appending your input line to
SELECT * FROM, then uses the result to determine which tables to unload. For this
input format, the text for each table specification can be a maximum of 72 bytes
and must not span multiple lines.

You can use the input statements to specify SELECT statements that join two or
more tables or select specific columns from a table. If you specify columns, you
need to modify the LOAD statement that DSNTIAUL generates.

DSNTIAUL data sets:

Data set
Description

SYSIN
Input data set.

You cannot enter comments in DSNTIAUL input.

The record length for the input data set must be at least 72 bytes.
DSNTIAUL reads only the first 72 bytes of each record.

SYSPRINT
Output data set. DSNTIAUL writes informational and error messages in
this data set.

The record length for the SYSPRINT data set is 121 bytes.

1112 Application Programming and SQL Guide

SYSPUNCH
Output data set. DSNTIAUL writes the LOAD utility control statements in
this data set.

SYSRECnn
Output data sets. The value nn ranges from 00 to 99. You can have a
maximum of 100 output data sets for a single execution of DSNTIAUL.
Each data set contains the data that is unloaded when DSNTIAUL
processes a SELECT statement from the input data set. Therefore, the
number of output data sets must match the number of SELECT statements
(if you specify parameter SQL) or table specifications in your input data
set.

Define all data sets as sequential data sets. You can specify the record length and
block size of the SYSPUNCH and SYSRECnn data sets. The maximum record
length for the SYSPUNCH and SYSRECnn data sets is 32760 bytes.

DSNTIAUL return codes:

Table 190. DSNTIAUL return codes

Return code Meaning

0 Successful completion.

4 An SQL statement received a warning code.

v If TOLWARN(YES) is specified, and the warning occurred on a FETCH
or OPEN during the processing of a SELECT statement, DB2 performs
the unload operation.

v Otherwise if the SQL statement was a SELECT statement, DB2 did not
perform the associated unload operation.

If DB2 returns a +394, which indicates that it is using optimization hints,
or a +395, which indicates one or more invalid optimization hints, DB2
performs the unload operation.

8 An SQL statement received an error code. If the SQL statement was a
SELECT statement, DB2 did not perform the associated unload operation
or did not complete it.

12 DSNTIAUL could not open a data set, an SQL statement returned a
severe error code (-144, -302, -804, -805, -818, -902, -906, -911, -913, -922,
-923, -924, or -927), or an error occurred in the SQL message formatting
routine.

Example of using DSNTIAUL to unload a subset of rows in a
table:

Suppose that you want to unload the rows for department D01 from the project
table. Because you can fit the table specification on one line, and you do not want
to execute any non-SELECT statements, you do not need the SQL parameter. Your
invocation looks like the one that is shown in the following figure:
//UNLOAD EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(DSN)
RUN PROGRAM(DSNTIAUL) PLAN(DSNTIB11) -

LIB(’DSNB10.RUNLIB.LOAD’)
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSREC00 DD DSN=DSN8UNLD.SYSREC00,
// UNIT=SYSDA,SPACE=(32760,(1000,500)),DISP=(,CATLG),

Chapter 20. DB2 sample applications and data 1113

// VOL=SER=SCR03
//SYSPUNCH DD DSN=DSN8UNLD.SYSPUNCH,
// UNIT=SYSDA,SPACE=(800,(15,15)),DISP=(,CATLG),
// VOL=SER=SCR03,RECFM=FB,LRECL=120,BLKSIZE=1200
//SYSIN DD *DSN8B10
.PROJ WHERE DEPTNO=’D01’

Example of using DSNTIAUL to unload rows in more than one
table:

Suppose that you also want to use DSNTIAUL to perform the following actions:
v Unload all rows from the project table
v Unload only rows from the employee table for employees in departments with

department numbers that begin with D, and order the unloaded rows by
employee number

v Lock both tables in share mode before you unload them
v Retrieve 250 rows per fetch

For these activities, you must specify the SQL parameter and specify the number of
rows per fetch when you run DSNTIAUL. Your DSNTIAUL invocation is shown in
the following figure:
//UNLOAD EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(DSN)
RUN PROGRAM(DSNTIAUL) PLAN(DSNTIB11) PARMS(’SQL,250’) -

LIB(’DSNB10.RUNLIB.LOAD’)
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSREC00 DD DSN=DSN8UNLD.SYSREC00,
// UNIT=SYSDA,SPACE=(32760,(1000,500)),DISP=(,CATLG),
// VOL=SER=SCR03
//SYSREC01 DD DSN=DSN8UNLD.SYSREC01,
// UNIT=SYSDA,SPACE=(32760,(1000,500)),DISP=(,CATLG),
// VOL=SER=SCR03
//SYSPUNCH DD DSN=DSN8UNLD.SYSPUNCH,
// UNIT=SYSDA,SPACE=(800,(15,15)),DISP=(,CATLG),
// VOL=SER=SCR03,RECFM=FB,LRECL=120,BLKSIZE=1200
//SYSIN DD *
LOCK TABLE DSN8B10.EMP IN SHARE MODE;
LOCK TABLE DSN8B10.PROJ IN SHARE MODE;
SELECT * FROM DSN8B10.PROJ;
SELECT * FROM DSN8B10.EMP

WHERE WORKDEPT LIKE ’D%’
ORDER BY EMPNO;

Example of using DSNTIAUL to obtain LOAD utility control
statements:

If you want to obtain the LOAD utility control statements for loading rows into a
table, but you do not want to unload the rows, you can set the data set names for
the SYSRECnn data sets to DUMMY. For example, to obtain the utility control
statements for loading rows into the department table, you invoke DSNTIAUL as
shown in the following figure:
//UNLOAD EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(DSN)
RUN PROGRAM(DSNTIAUL) PLAN(DSNTIB11) -

LIB(’DSNB10.RUNLIB.LOAD’)

1114 Application Programming and SQL Guide

//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSREC00 DD DUMMY
//SYSPUNCH DD DSN=DSN8UNLD.SYSPUNCH,
// UNIT=SYSDA,SPACE=(800,(15,15)),DISP=(,CATLG),
// VOL=SER=SCR03,RECFM=FB,LRECL=120,BLKSIZE=1200
//SYSIN DD *DSN8B10
.DEPT

Example of using DSNTIAUL to unload LOB data:

This example uses the sample LOB table with the following structure:
CREATE TABLE DSN8910.EMP_PHOTO_RESUME
(EMPNO CHAR(06) NOT NULL,
EMP_ROWID ROWID NOT NULL GENERATED ALWAYS,
PSEG_PHOTO BLOB(500K),
BMP_PHOTO BLOB(100K),
RESUME CLOB(5K),
PRIMARY KEY (EMPNO))
IN DSN8D91L.DSN8S91B
CCSID EBCDIC;

The following call to DSNTIAUL unloads the sample LOB table. The parameters
for DSNTIAUL indicate the following options:
v The input data set (SYSIN) contains SQL.
v DSNTIAUL is to retrieve 2 rows per fetch.
v DSNTIAUL places the LOB data in data sets with a high-level qualifier of

DSN8UNLD.
//UNLOAD EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *

DSN SYSTEM(DSN)
RUN PROGRAM(DSNTIAUL) PLAN(DSNTIB91) -
PARMS(’SQL,2,LOBFILE(DSN8UNLD)’) -
LIB(’DSN910.RUNLIB.LOAD’)

//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSREC00 DD DSN=DSN8UNLD.SYSREC00,
// UNIT=SYSDA,SPACE=(800,(15,15)),DISP=(,CATLG),
// VOL=SER=SCR03,RECFM=FB
//SYSPUNCH DD DSN=DSN8UNLD.SYSPUNCH,
// UNIT=SYSDA,SPACE=(800,(15,15)),DISP=(,CATLG),
// VOL=SER=SCR03,RECFM=FB
//SYSIN DD *

SELECT * FROM DSN8910.EMP_PHOTO_RESUME;

Given that the sample LOB table has 4 rows of data, DSNTIAUL produces the
following output:
v Data for columns EMPNO and EMP_ROWID are placed in the data set that is

allocated according to the SYSREC00 DD statement. The data set name is
DSN8UNLD.SYSREC00

v A generated LOAD statement is placed in the data set that is allocated according
to the SYSPUNCH DD statement. The data set name is DSN8UNLD.SYSPUNCH

v The following data sets are dynamically created to store LOB data:
– DSN8UNLD.Q0000000.C0000002.R0000000
– DSN8UNLD.Q0000000.C0000002.R0000001
– DSN8UNLD.Q0000000.C0000002.R0000002
– DSN8UNLD.Q0000000.C0000002.R0000003

Chapter 20. DB2 sample applications and data 1115

– DSN8UNLD.Q0000000.C0000003.R0000000
– DSN8UNLD.Q0000000.C0000003.R0000001
– DSN8UNLD.Q0000000.C0000003.R0000002
– DSN8UNLD.Q0000000.C0000003.R0000003
– DSN8UNLD.Q0000000.C0000004.R0000000
– DSN8UNLD.Q0000000.C0000004.R0000001
– DSN8UNLD.Q0000000.C0000004.R0000002
– DSN8UNLD.Q0000000.C0000004.R0000003

For example, DSN8UNLD.Q0000000.C0000004.R0000001 means that the data set
contains data that is unloaded from the second row (R0000001) and the fifth
column (C0000004) of the result set for the first query (Q0000000).

DSNTIAD
Use the DSNTIAD program to execute SQL statements other than SELECT
statements dynamically.

DSNTIAD parameters:

RC0
If you specify this parameter, DSNTIAD ends with return code 0, even if the
program encounters SQL errors. If you do not specify RC0, DSNTIAD ends
with a return code that reflects the severity of the errors that occur. Without
RC0, DSNTIAD terminates if more than 10 SQL errors occur during a single
execution.

SQLTERM(termchar)
Specify this parameter to indicate the character that you use to end each SQL
statement. You can use any special character except one of those listed in the
following table. SQLTERM(;) is the default.

Table 191. Invalid special characters for the SQL terminator

Name Character Hexadecimal representation

blank X'40'

comma , X'6B'

double quotation mark " X'7F'

left parenthesis (X'4D'

right parenthesis) X'5D'

single quotation mark ' X'7D'

underscore _ X'6D'

Use a character other than a semicolon if you plan to execute a statement that
contains embedded semicolons.

example:

Suppose that you specify the parameter SQLTERM(#) to indicate that the
character # is the statement terminator. Then a CREATE TRIGGER statement
with embedded semicolons looks like this:

1116 Application Programming and SQL Guide

CREATE TRIGGER NEW_HIRE
AFTER INSERT ON EMP
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;
END#

A CREATE PROCEDURE statement with embedded semicolons looks like the
following statement:
CREATE PROCEDURE PROC1 (IN PARM1 INT, OUT SCODE INT)

LANGUAGE SQL
BEGIN

DECLARE SQLCODE INT;
DECLARE EXIT HANDLER FOR SQLEXCEPTION

SET SCODE = SQLCODE;
UPDATE TBL1 SET COL1 = PARM1;

END #

Be careful to choose a character for the statement terminator that is not used
within the statement.

DSNTIAD data sets:

Data set
Description

SYSIN
Input data set. In this data set, you can enter any number of non-SELECT
SQL statements, each terminated with a semicolon. A statement can span
multiple lines, but DSNTIAD reads only the first 72 bytes of each line.

You cannot enter comments in DSNTIAD input.

SYSPRINT
Output data set. DSNTIAD writes informational and error messages in this
data set. DSNTIAD sets the record length of this data set to 121 bytes and
the block size to 1210 bytes.

Define all data sets as sequential data sets.

DSNTIAD return codes:

Table 192. DSNTIAD return codes

Return code Meaning

0 Successful completion, or the user-specified parameter RC0.

4 An SQL statement received a warning code.

8 An SQL statement received an error code.

12 DSNTIAD could not open a data set, the length of an SQL statement was
more than 2 MB, an SQL statement returned a severe error code (-8nn or
-9nn), or an error occurred in the SQL message formatting routine.

Example of DSNTIAD invocation:

Suppose that you want to execute 20 UPDATE statements, and you do not want
DSNTIAD to terminate if more than 10 errors occur. Your invocation looks like the
one that is shown in the following figure:

Chapter 20. DB2 sample applications and data 1117

//RUNTIAD EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(DSN)
RUN PROGRAM(DSNTIAD) PLAN(DSNTIA11) PARMS(’RC0’) -

LIB(’DSNB10.RUNLIB.LOAD’)
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSIN DD *
UPDATE DSN8B10.PROJ SET DEPTNO=’J01’ WHERE DEPTNO=’A01’;
UPDATE DSN8B10.PROJ SET DEPTNO=’J02’ WHERE DEPTNO=’A02’;...
UPDATE DSN8B10.PROJ SET DEPTNO=’J20’ WHERE DEPTNO=’A20’;

DSNTEP2 and DSNTEP4
Use the DSNTEP2 or DSNTEP4 programs to execute SQL statements dynamically.

DSNTEP4 is identical to DSNTEP2 except that it uses multi-row fetch for increased
performance. When multi-row fetch is used, parallelism might be disabled in the
last parallel group in the top-level query block for a query. For very simple
queries, parallelism might be disabled for the entire query when multi-row fetch is
used. To obtain full parallelism, either use DSNTEP2 or specify the control option
SET MULT_FETCH 1 for DSNTEP4.

DSNTEP2 and DSNTEP4 write their results to the data set that is defined by the
SYSPRINT DD statement. SYSPRINT data must have a logical record length of 133
bytes (LRECL=133). Otherwise, the program issues return code 12 with abend
U4038 and reason code 1. This abend occurs due to the PL/I file exception error
IBM0201S ONCODE=81. The following error message is issued:
The UNDEFINEDFILE condition was raised because of conflicting DECLARE
and OPEN attributes (FILE= SYSPRINT).

Important: When you allocate a new data set with the SYSPRINT DD statement,
either specify a DCB with RECFM=FBA and LRECL=133, or do not specify the
DCB parameter.

DSNTEP2 and DSNTEP4 parameters:

ALIGN(MID) or ALIGN(LHS)
Specifies the alignment.

ALIGN(MID)
Specifies that DSNTEP2 or DSNTEP4 output should be centered.
ALIGN(MID) is the default.

ALIGN(LHS)
Specifies that the DSNTEP2 or DSNTEP4 output should be left-justified.

NOMIXED or MIXED
Specifies whether DSNTEP2 or DSNTEP4 contains any DBCS characters.

NOMIXED
Specifies that the DSNTEP2 or DSNTEP4 input contains no DBCS
characters. NOMIXED is the default.

MIXED
Specifies that the DSNTEP2 or DSNTEP4 input contains some DBCS
characters.

1118 Application Programming and SQL Guide

PREPWARN
Specifies that DSNTEP2 or DSNTEP4 is to display details about any SQL
warnings that are encountered at PREPARE time.

Regardless of whether you specify PREPWARN, when an SQL warning is
encountered at PREPARE time, the program displays the message SQLWARNING
ON PREPARE and sets the return code to 4. When you specify PREPWARN, the
program also displays the details about any SQL warnings.

SQLFORMAT
Specifies how DSNTEP2 or DSNTEP4 pre-processes SQL statements before
passing them to DB2. Select one of the following options:

SQL This is the preferred mode for SQL statements other than SQL
procedural language. When you use this option, which is the default,
DSNTEP2 or DSNTEP4 collapses each line of an SQL statement into a
single line before passing the statement to DB2. DSNTEP2 or DSNTEP4
also discards all SQL comments.

SQLCOMNT
This mode is suitable for all SQL, but it is intended primarily for SQL
procedural language processing. When this option is in effect, behavior
is similar to SQL mode, except that DSNTEP2 or DSNTEP4 does not
discard SQL comments. Instead, it automatically terminates each SQL
comment with a line feed character (hex 25), unless the comment is
already terminated by one or more line formatting characters. Use this
option to process SQL procedural language with minimal modification
by DSNTEP2 or DSNTEP4.

SQLPL
This mode is suitable for all SQL, but it is intended primarily for SQL
procedural language processing. When this option is in effect,
DSNTEP2 or DSNTEP4 retains SQL comments and terminates each line
of an SQL statement with a line feed character (hex 25) before passing
the statement to DB2. Lines that end with a split token are not
terminated with a line feed character. Use this mode to obtain
improved diagnostics and debugging of SQL procedural language.

SQLTERM(termchar)
Specifies the character that you use to end each SQL statement. You can use
any character except one of those that are listed in Table 191 on page 1116.
SQLTERM(;) is the default.

Use a character other than a semicolon if you plan to execute a statement that
contains embedded semicolons.

Example: Suppose that you specify the parameter SQLTERM(#) to indicate that
the character # is the statement terminator. Then a CREATE TRIGGER
statement with embedded semicolons looks like this:
CREATE TRIGGER NEW_HIRE

AFTER INSERT ON EMP
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;
END#

A CREATE PROCEDURE statement with embedded semicolons looks like the
following statement:
CREATE PROCEDURE PROC1 (IN PARM1 INT, OUT SCODE INT)

LANGUAGE SQL
BEGIN

Chapter 20. DB2 sample applications and data 1119

DECLARE SQLCODE INT;
DECLARE EXIT HANDLER FOR SQLEXCEPTION

SET SCODE = SQLCODE;
UPDATE TBL1 SET COL1 = PARM1;

END #

Be careful to choose a character for the statement terminator that is not used
within the statement.

If you want to change the SQL terminator within a series of SQL statements,
you can use the --#SET TERMINATOR control statement.

Example: Suppose that you have an existing set of SQL statements to which
you want to add a CREATE TRIGGER statement that has embedded
semicolons. You can use the default SQLTERM value, which is a semicolon, for
all of the existing SQL statements. Before you execute the CREATE TRIGGER
statement, include the --#SET TERMINATOR # control statement to change the
SQL terminator to the character #:
SELECT * FROM DEPT;
SELECT * FROM ACT;
SELECT * FROM EMPPROJACT;
SELECT * FROM PROJ;
SELECT * FROM PROJACT;
--#SET TERMINATOR #
CREATE TRIGGER NEW_HIRE

AFTER INSERT ON EMP
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;
END#

See the following discussion of the SYSIN data set for more information about
the --#SET control statement.

TOLWARN
Indicates whether DSNTEP2 or DSNTEP4 continues to process SQL SELECT
statements after receiving an SQL warning. You can specify one of the
following values:

NO Indicates that the program stops processing the SELECT statement if a
warning occurs when the program executes an OPEN or FETCH for a
SELECT statement. NO is the default value for TOLWARN.

The following exceptions exist:
v If SQLCODE +445 or SQLCODE +595 occurs when DSNTEP2 or

DSNTEP4 executes a FETCH for a SELECT statement, the program
continues to process the SELECT statement.

v If SQLCODE +802 occurs when DSNTEP2 or DSNTEP4 executes a
FETCH for a SELECT statement, the program continues to process the
SELECT statement if the TOLARTHWRN control statement is set to YES.

YES
Indicates that the program continues to process the SELECT statement if a
warning occurs when the program executes an OPEN or FETCH for a
SELECT statement.

DSNTEP2 and DSNTEP4 data sets:

The following data sets are used by DSNTEP2 and DSNTEP4:

1120 Application Programming and SQL Guide

SYSIN
Input data set. In this data set, you can enter any number of SQL
statements, each terminated with a semicolon. A statement can span
multiple lines, but DSNTEP2 or DSNTEP4 reads only the first 72 bytes of
each line. You must explicitly commit any SQL statements except the last
one.

You can enter comments in DSNTEP2 or DSNTEP4 input with an asterisk
(*) in column 1 or two hyphens (--) anywhere on a line. Text that follows
the asterisk is considered to be comment text. Text that follows two
hyphens can be comment text or a control statement.Comments are not
considered in dynamic statement caching. Comments and control
statements cannot span lines.

You can enter control statements of the following form in the DSNTEP2
and DSNTEP4 input data set:
--#SET control-option value

You can specify the following control options. If you specify a value of NO
for any of the options in this list, the program behaves as if you did not
specify the parameter.

TERMINATOR
The SQL statement terminator. value is any single-byte character other
than one of those that are listed in Table 191 on page 1116. The default
is the value of the SQLTERM parameter.

ROWS_FETCH
The number of rows that are to be fetched from the result table. value
is a numeric literal between -1 and the number of rows in the result
table. -1 means that all rows are to be fetched. The default is -1.

ROWS_OUT
The number of fetched rows that are to be sent to the output data set.
value is a numeric literal between -1 and the number of fetched rows.
-1 means that all fetched rows are to be sent to the output data set. The
default is -1.

MULT_FETCH
This option is valid only for DSNTEP4. Use MULT_FETCH to specify
the number of rows that are to be fetched at one time from the result
table. The default fetch amount for DSNTEP4 is 100 rows, but you can
specify from 1 to 32676 rows.

TOLWARN
Indicates whether DSNTEP2 or DSNTEP4 continues to process SQL
SELECT statements after receiving an SQL warning. You can specify
one of the following values:

NO Indicates that the program stops processing the SELECT statement
if a warning occurs when the program executes an OPEN or
FETCH for a SELECT statement. NO is the default value for
TOLWARN.

The following exceptions exist:
v If SQLCODE +445 or SQLCODE +595 occurs when DSNTEP2 or

DSNTEP4 executes a FETCH for a SELECT statement, the
program continues to process the SELECT statement.

Chapter 20. DB2 sample applications and data 1121

v If SQLCODE +802 occurs when DSNTEP2 or DSNTEP4 executes
a FETCH for a SELECT statement, the program continues to
process the SELECT statement if the TOLARTHWRN control
statement is set to YES.

YES
Indicates that the program continues to process the SELECT
statement if a warning occurs when the program executes an
OPEN or FETCH for a SELECT statement.

TOLARTHWRN
Indicates whether DSNTEP2 and DSNTEP4 continue to process an SQL
SELECT statement after an arithmetic SQL warning (SQLCODE +802)
is returned. value is either NO (the default) or YES.

PREPWARN
Specifies that DSNTEP2 or DSNTEP4 is to display details about any
SQL warnings that are encountered at PREPARE time.

Regardless of whether you specify PREPWARN, when an SQL warning
is encountered at PREPARE time, the program displays the message
SQLWARNING ON PREPARE and sets the return code to 4. When you
specify PREPWARN, the program also displays the details about any
SQL warnings.

SQLFORMAT
Specifies how DSNTEP2 or DSNTEP4 pre-processes SQL statements
before passing them to DB2. Select one of the following options:

SQL This is the preferred mode for SQL statements other than SQL
procedural language. When you use this option, which is the
default, DSNTEP2 or DSNTEP4 collapses each line of an SQL
statement into a single line before passing the statement to
DB2. DSNTEP2 or DSNTEP4 also discards all SQL comments.

SQLCOMNT
This mode is suitable for all SQL, but it is intended primarily
for SQL procedural language processing. When this option is in
effect, behavior is similar to SQL mode, except that DSNTEP2
or DSNTEP4 does not discard SQL comments. Instead, it
automatically terminates each SQL comment with a line feed
character (hex 25), unless the comment is already terminated
by one or more line formatting characters. Use this option to
process SQL procedural language with minimal modification
by DSNTEP2 or DSNTEP4.

SQLPL
This mode is suitable for all SQL, but it is intended primarily
for SQL procedural language processing. When this option is in
effect, DSNTEP2 or DSNTEP4 retains SQL comments and
terminates each line of an SQL statement with a line feed
character (hex 25) before passing the statement to DB2. Lines
that end with a split token are not terminated with a line feed
character. Use this mode to obtain improved diagnostics and
debugging of SQL procedural language.

MAXERRORS
Specifies that number of errors that DSNTEP2 and DSNTEP4 handle
before processing stops. The default is 10.

1122 Application Programming and SQL Guide

SYSPRINT
Output data set. DSNTEP2 and DSNTEP4 write informational and error
messages in this data set. DSNTEP2 and DSNTEP4 write output records of
no more than 133 bytes.

Define all data sets as sequential data sets.

DSNTEP2 and DSNTEP4 return codes

Table 193. DSNTEP2 and DSNTEP4 return codes

Return code Meaning

0 Successful completion.

4 An SQL statement received a warning code.

8 An SQL statement received an error code.

12 The length of an SQL statement was more than 32760 bytes, an SQL
statement returned a severe error code (-8nn or -9nn), or an error
occurred in the SQL message formatting routine.

Example of DSNTEP2 invocation

Suppose that you want to use DSNTEP2 to execute SQL SELECT statements that
might contain DBCS characters. You also want left-aligned output. Your invocation
looks like the one in the following figure.
//RUNTEP2 EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(DSN)
RUN PROGRAM(DSNTEP2) PLAN(DSNTEP11) PARMS(’/ALIGN(LHS) MIXED TOLWARN(YES)’) -

LIB(’DSNB10.RUNLIB.LOAD’)
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSIN DD *
SELECT * FROM DSN8B10.PROJ;

Example of DSNTEP4 invocation

Suppose that you want to use DSNTEP4 to execute SQL SELECT statements that
might contain DBCS characters, and you want center-aligned output. You also
want DSNTEP4 to fetch 250 rows at a time. Your invocation looks like the one in
the following figure:
//RUNTEP2 EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(DSN)
RUN PROGRAM(DSNTEP4) PLAN(DSNTEP11) PARMS(’/ALIGN(MID) MIXED’) -

LIB(’DSNB10.RUNLIB.LOAD’)
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSIN DD *
--#SET MULT_FETCH 250
SELECT * FROM DSN8B10.EMP;

Chapter 20. DB2 sample applications and data 1123

1124 Application Programming and SQL Guide

Information resources for DB2 for z/OS and related products

Information about DB2 for z/OS and products that you might use in conjunction
with DB2 for z/OS is available in online information centers or on library websites.

Obtaining DB2 for z/OS publications

The current DB2 for z/OS publications are available from the following website:

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc/src/
alltoc/db2z_lib.htm

Links to the information center version and the PDF version of each publication
are provided.

DB2 for z/OS publications are also available for download from the IBM
Publications Center (http://www.ibm.com/shop/publications/order).

In addition, books for DB2 for z/OS are available on a CD-ROM that is included
with your product shipment:
v DB2 11 for z/OS Licensed Library Collection, LK5T-8882, in English. The

CD-ROM contains the collection of books for DB2 11 for z/OS in PDF format.
Periodically, IBM refreshes the books on subsequent editions of this CD-ROM.

Installable information center

You can download or order an installable version of the Information Management
Software for z/OS Solutions Information Center, which includes information about
DB2 for z/OS, QMF, IMS, and many DB2 and IMS Tools products. You can install
this information center on a local system or on an intranet server. For more
information, see http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/
com.ibm.dzic.doc/installabledzic.htm.

© Copyright IBM Corp. 1983, 2013 1125

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc/src/alltoc/db2z_lib.htm
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc/src/alltoc/db2z_lib.htm
http://www.ibm.com/shop/publications/order
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.dzic.doc/installabledzic.htm
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.dzic.doc/installabledzic.htm

1126 Application Programming and SQL Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 1983, 2013 1127

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Programming interface information
This information is intended to help you to write programs that contain SQL
statements. This information primarily documents General-use Programming
Interface and Associated Guidance Information provided by DB2 11 for z/OS.
However, this information also documents Product-sensitive Programming
Interface and Associated Guidance Information provided by DB2 11 for z/OS.

1128 Application Programming and SQL Guide

General-use Programming Interface and Associated Guidance
Information

General-use Programming Interfaces allow the customer to write programs that
obtain the services of DB2 11 for z/OS.

Product-sensitive Programming Interface and Associated
Guidance Information

Product-sensitive Programming Interfaces allow the customer installation to
perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or
tuning of this IBM software product. Use of such interfaces creates dependencies
on the detailed design or implementation of the IBM software product.
Product-sensitive Programming Interfaces should be used only for these
specialized purposes. Because of their dependencies on detailed design and
implementation, it is to be expected that programs written to such interfaces may
need to be changed in order to run with new product releases or versions, or as a
result of service.

Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs by the following markings:

PSPI Product-sensitive Programming Interface and Associated Guidance

Information... PSPI

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered marks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at http://www.ibm.com/
legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

Notices 1129

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

1130 Application Programming and SQL Guide

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

Glossary

The glossary is available in the Information Management Software for z/OS
Solutions Information Center.

See the Glossary topic for definitions of DB2 for z/OS terms.

© Copyright IBM Corp. 1983, 2013 1131

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z.doc.gloss/src/gloss/db2z_gloss.htm

1132 Application Programming and SQL Guide

Index

Special characters
_ (underscore)

assembler host variable 246
' (apostrophe)

string delimiter precompiler option 931

Numerics
31-bit addressing 1009

A
abend

effect on cursor position 718
for synchronization calls 767
IMS

U0102 1032
system

X"04E" 767
abend recovery routine

in CAF 42
access path

direct row access 748
accessibility

keyboard xiv
shortcut keys xiv

accessing data
from an application program 669

activity sample table 1081
adding

data 647
ALL quantified predicate 705
ALTER PROCEDURE statement

external stored procedure 645
AMODE link-edit option 940, 1009
ANY quantified predicate 705
APOST precompiler option 931
application

rebinding 961
application 961

application plan
binding 947
creating 941
dynamic plan selection for CICS applications 960
listing packages 947
rebinding 963

application program
bill of materials 468
checking success of SQL statements 137
coding SQL statements 123

coding conventions 229
data entry 647
dynamic SQL 159, 163
selecting rows using a cursor 715

design considerations
checkpoint 767
IMS calls 767
programming for DL/I batch 767
SQL statements 767
structure 1027

application program (continued)
design considerations (continued)

synchronization call abends 767
using ISPF (interactive system productivity

facility) 913
XRST call 767

duplicate CALL statements 800
external stored procedures 557
including queries 123
object extensions 492
preparation

assembling 940
binding 941
compiling 940
DB2 precompiler option defaults 938
defining to CICS 940
DRDA access 952
example 986
link-editing 940
precompiler option defaults 916
preparing for running 913
program preparation panel 913
using DB2I (DB2 Interactive) 913

preparation overview 976
running

CICS 1036
IMS 1036
program synchronization in DL/I batch 767
TSO 1023
TSO CLIST 1036

table and view declarations 125
test environment 1023
testing 1023

application program design
planning for changes 14

application programming
DCLGEN example 134
DCLGEN variable declarations 131

application programs
compatibility 972, 973
compatible data types 144
host structures 140
host variable arrays 139
host variables 139
performance 766

application release incompatibilities 1
applications

designing 1
migrating 1
planning 1

arithmetic expressions in UPDATE statement 663
array pointer host variable

declaring 278
referencing in SQL statements 277

arrays 497
example

using arrays in a native SQL procedure 499
native SQL procedure example 499

AS clause
naming columns for view 675
naming columns in union 675

© Copyright IBM Corp. 1983, 2013 1133

AS clause (continued)
naming derived columns 675
naming result columns 675
ORDER BY name 673

ASCII data, retrieving 167
assembler application program

assembling 940
data type compatibility 240
declaring tables 246
declaring views 246
defining the SQLDA 137, 233
host variable

naming convention 246
host variable, declaring 233
INCLUDE statement 246
including SQLCA 231
indicator variable declaration 239
reentrant 246
SQLCODE host variable 231
SQLSTATE host variable 231
variable declaration 234

assignment, compatibility rules 438
ASUTIME

and dynamic SQL statements 1
ATTACH precompiler option 931
attachment facility

options in z/OS environment 35
AUTH SIGNON (connection function of RRSAF)

language examples 91
syntax 91

authority
authorization ID 1035
creating test tables 1041
SYSIBM.SYSTABAUTH table 669

authorization cache
determining size 543

AUTOCOMMIT field of SPUFI panel 1047
automatic query rewrite 451
automatic rebind

conditions for 970
invalid package 970
SQLCA not available 970

automatic rebinds
old plans and packages 2

autonomous
native SQL procedures

autonomous 556
procedures 556

autonomous 556

B
batch processing

access to DB2 and DL/I together
binding a plan 954
checkpoint calls 767
commits 767
precompiling 918

batch DB2 application
running 1035
starting with a CLIST 1036

bill of materials applications 468
binary host variable

assembler 234
C/C++ 253
COBOL 304
PL/I 387

binary host variable array
C/C++ 265
PL/I 393

binary large object (BLOB) 443
BIND

command line processor command 945
BIND COPY

for native SQL procedures 580
BIND COPY REPLACE

for native SQL procedures 582
bind options

planning for 16
BIND PACKAGE subcommand of DSN

options
CURRENTDATA 953
ENCODING 954
KEEPDYNAMIC 200
location-name 953
OPTIONS 953
RELEASE 200
SQLERROR 953

options associated with DRDA access 952, 954
remote 942

BIND PLAN subcommand of DSN
options

CACHESIZE 960
CURRENTDATA 953
DISCONNECT 952
ENCODING 953
KEEPDYNAMIC 200
RELEASE 200
SQLRULES 952, 975

options associated with DRDA access 952
remote 942

binding
application plans 941
changes that require 14
checking BIND PACKAGE options 954
DBRMs precompiled elsewhere 918
options associated with DRDA access 952
packages

remote 942
plans 947
remote package requirements 942
specify SQL rules 975

block fetch
preventing 715
with cursor stability 715

BMP (batch message processing) program
checkpoints 25

bounded character pointer host variable
declaring 278
description 278
referencing in SQL statements 277

BTS (batch terminal simulator) 1075

C
C application program

declaring tables 285
sample application 1104

C/C++
creating stored procedure 606

C/C++ application program
data type compatibility 280
DCLGEN support 131
declaring views 285

1134 Application Programming and SQL Guide

C/C++ application program (continued)
defining the SQLDA 137, 252
host structure 273
INCLUDE statement 285
including SQLCA 251
indicator variable array declaration 275
indicator variable declaration 275
naming convention 285
precompiler option defaults 938
SQLCODE host variable 251
SQLSTATE host variable 251
variable array declaration 265
variable declaration 253
with classes, preparing 918

C/C++ application programs
pointer host variables 278

cache (dynamic SQL)
statements 193

CACHERAC
determining value 543

CACHESIZE
option of BIND PLAN subcommand 960
REBIND subcommand 960

CAF (call attachment facility)
description 40

CAF functions
summary of behavior 48

calculated values
groups with conditions 686
summarizing group values 685

call attachment facility (CAF)
application program

examples 63
preparation 44

attention exit routines 42
authorization IDs 40
behavior summary 48
connection functions 49
connection name 40
connection properties 40
connection type 40
DB2 abends 40
description 40
error messages 61
implicit connections to 45
invoking 36
parameters for CALL DSNALI 46
program requirements 44
recovery routines 42
register changes 45
return codes

example of checking 63
return codes and reason codes 61
sample scenarios 62
scope 40
terminated task 40
trace 61

call attachment language interface
loading 43
making available 43

CALL DSNALI
parameter list 46
required parameters 46

CALL DSNRLI
parameter list 78
required parameters 78

CALL statement
command line processor 1034
examples 787
multiple 800
syntax for invoking DSNTPSMP 595

CAST 11
catalog table

SYSIBM.LOCATIONS 871
SYSIBM.SYSCOLUMNS 669
SYSIBM.SYSTABAUTH 669

CCSID (coded character set identifier)
controlling in COBOL programs 330
precompiler option 931
setting for host variables 142
SQLDA 167

CEEDUMP
using to debug stored procedures 1061

character host variable
assembler 234
C/C++ 253
COBOL 304
Fortran 375
PL/I 387

character host variable array
C/C++ 265
COBOL 314
PL/I 393

character input data
REXX program 422

character large object (CLOB) 443
character string

literals 229
mixed data 438
width of column in results 1051, 1057

check constraint
check integrity 449
considerations 447
CURRENT RULES special register effect 448
defining 447
description 447
determining violations 1079
enforcement 447
programming considerations 1079

CHECK-pending status 449
checkpoint

calls 23, 25
specifying frequency 25

CHKP call, IMS 23
CICS

DSNTIAC subroutine
assembler 246
C 285
COBOL 336
PL/I 405

environment planning 1036
facilities

command language translator 927
control areas 1023
EDF (execution diagnostic facility) 1075

language interface module (DSNCLI)
use in link-editing an application 940

operating
running a program 1023

preparing with JCL procedures 982
programming

DFHEIENT macro 246
sample applications 1106, 1110

Index 1135

CICS (continued)
programming (continued)

SYNCPOINT command 19
storage handling

assembler 246
C 285
COBOL 336
PL/I 405

sync point 19
unit of work 19

CICS applications
thread reuse 121

CICS attachment facility
controlling from applications 120
detecting whether it is operational 120
starting 120
stopping 120

client 31
client program

preparing for calling a remote stored procedure 797
CLOSE

statement
description 724
recommendation 730
WHENEVER NOT FOUND clause 165, 167

CLOSE (connection function of CAF)
description 49
language examples 56
program example 63
syntax 56

COALESCE function 696
COBOL

creating stored procedure 606
COBOL application program

compiling 940
controlling CCSID 330
data type compatibility 331
DB2 precompiler option defaults 938
DCLGEN support 131
declaring tables 336
declaring views 336
defining the SQLDA 137, 303
dynamic SQL 163
host structure 324
host variable

use of hyphens 336
host variable array, declaring 303
host variable, declaring 303
INCLUDE statement 336
including SQLCA 301
indicator variable array declaration 328
indicator variable declaration 328
naming convention 336
object-oriented extensions 342
options 336
preparation 940
resetting SQL-INIT-FLAG 336
sample program 343
SQLCODE host variable 301
SQLSTATE host variable 301
variable array declaration 314
variable declaration 304
WHENEVER statement 336
with classes, preparing 918

coding SQL statements
dynamic 159

collection, package
identifying 949
SET CURRENT PACKAGESET statement 949

colon
preceding a host variable 148
preceding a host variable array 156

column
data types 438
default value

system-defined 437
user-defined 438

displaying, list of 669
heading created by SPUFI 1057
labels, usage 167
name, with UPDATE statement 663
retrieving, with SELECT 670
specified in CREATE TABLE 437
width of results 1051, 1057

COMMA precompiler option 931
command line processor

binding 944
CALL statement 1034
stored procedures 1034

commit point
description 19
IMS unit of work 23

COMMIT statement
description 1047
in a stored procedure 560
when to issue 19
with RRSAF 71

common table expressions
description 467
examples 468
in a CREATE VIEW statement 466
in a SELECT statement 466
in an INSERT statement 466
infinite loops 700
recursion 468

comparison
compatibility rules 438
HAVING clause

subquery 705
operator, subquery 705
WHERE clause

subquery 705
compatibility

data types 438
rules 438

composite key 454
compound statement

example
dynamic SQL 556
nested IF and WHILE statements 554

EXIT handler 568
labels 553

compound statements
nested 564
within the declaration of a condition handler 568

condition handlers
empty 576

conditions
ignoring 576

CONNECT
statement

SPUFI 1047

1136 Application Programming and SQL Guide

CONNECT (connection function of CAF)
description 49
language examples 50
program example 63
syntax 50

CONNECT LOCATION field of SPUFI panel 1047
CONNECT precompiler option 931
CONNECT processing option

enforcing restricted system rules 32
CONNECT statement, with DRDA access 870
connecting

DB2 35
connection

DB2
connecting from tasks 1027

function of CAF
CLOSE 56
CONNECT 50
DISCONNECT 58
OPEN 54
TRANSLATE 59

function of RRSAF
AUTH SIGNON 91
CONTEXT SIGNON 95
CREATE THREAD 105
FIND_DB2_SYSTEMS 111
IDENTIFY 81
SET_CLIENT_ID 101
SET_ID 100
SET_REPLICATION 104
SIGNON 87
SWITCH TO 85
TERMINATE IDENTIFY 108
TERMINATE THREAD 107
TRANSLATE 110

connection properties
call attachment facility (CAF) 40
Resource Recovery Services attachment facility

(RRSAF) 73
connection to DB2

environment requirements 35
constants, syntax

C/C++ 253
Fortran 375

CONTEXT SIGNON (connection function of RRSAF)
language examples 95
syntax 95

CONTINUE clause of WHENEVER statement 210
CONTINUE handler (SQL procedure)

description 568
example 568

coordinating updates
distributed data 32

correlated reference
correlation name 709
SQL rules 688
usage 688
using in subquery 709

correlation name 709
create

external SQL procedure by using DSNTPSMP 591
external SQL procedure by using JCL 602
external stored procedure 606

CREATE GLOBAL TEMPORARY TABLE statement 458
CREATE PROCEDURE statement

external stored procedure 606
for external SQL procedures 602

CREATE TABLE statement
DEFAULT clause 437
NOT NULL clause 437
PRIMARY KEY clause 452
relationship names 454
UNIQUE clause 437, 452
usage 437

CREATE THREAD (connection function of RRSAF)
language examples 105
program example 115
syntax 105

CREATE TRIGGER
activation order 485
description 472
example 472
timestamp 485
trigger naming 472

CREATE TYPE statement
example 493

CREATE VIEW statement 464
created temporary table

instances 459
use of NOT NULL 458
working with 459

creating objects
in an application program 437

creating stored procedures
external SQL procedures 590

CURRENT PACKAGESET special register
dynamic plan switching 960
identify package collection 949

CURRENT RULES special register
effect on check constraints 448
usage 975

current server 31
CURRENT SERVER special register

description 949
saving value in application program 872

CURRENT SQLID special register
use in test 1039
value in INSERT statement 438

cursor
attributes

using GET DIAGNOSTICS 740
using SQLCA 739

closing 724
CLOSE statement 730

deleting a current row 726
description 715
dynamic scrollable 715
effect of abend on position 718
example

retrieving backward with scrollable cursor 744
updating specific row with rowset-positioned

cursor 746
updating with non-scrollable cursor 744
updating with rowset-positioned cursor 746

insensitive scrollable 715
maintaining position 718
non-scrollable 715
open state 718
OPEN statement 722
result table 715
row-positioned

declaring 720
deleting a current row 722
description 715

Index 1137

cursor (continued)
row-positioned (continued)

end-of-data condition 722
retrieving a row of data 722
steps in using 719
updating a current row 722

rowset-positioned
declaring 725
description 715
end-of-data condition 726
number of rows 726
number of rows in rowset 730
opening 725
retrieving a rowset of data 726
steps in using 725
updating a current rowset 726

scrollable
description 715
dynamic 715
fetch orientation 730
INSENSITIVE 715
retrieving rows 730
SENSITIVE DYNAMIC 715
SENSITIVE STATIC 715
sensitivity 715
static 715
updatable 715

static scrollable 715
types 715
WITH HOLD

description 718
cursors

declaring in SQL procedures 566

D
data

accessing from an application program 669
adding 647
adding to the end of a table 662
associated with WHERE clause 670
currency 715
distributed 31
modifying 647
not in a table 766
retrieval using SELECT * 703
retrieving a rowset 726
retrieving a set of rows 722
retrieving large volumes 764
scrolling backward through 740
security and integrity 18
updating during retrieval 701
updating previously retrieved data 742

data encryption 456
data integrity

tables 447
data type

built-in 438
comparisons 148
compatibility

assembler application program 240
C application program 280
COBOL and SQL 331
Fortran and SQL 379
PL/I application program 401
REXX and SQL 416

data types
compatibility 144
used by DCLGEN 131

DATE precompiler option 931
datetime data type 438
DB2

connection from a program 35
DB2 abend

DL/I batch 767
DB2 coprocessor 925

processing SQL statements 916
DB2 MQ tables

descriptions 880
DB2 private protocol access

coding an application 867
DB2_RETURN_STATUS

using to get procedure status 803
DB2-supplied stored procedures 809
DB2I

default panels 915
invoking DCLGEN 126

DB2I (DB2 Interactive)
background processing

run time libraries 990
EDITJCL processing

run time libraries 990
interrupting 1043
menu 1043
panels

BIND PACKAGE 996
BIND PLAN 999
Compile, Link, and Run 1009
Current SPUFI Defaults 1049
DB2I Primary Option Menu 984, 1043
Defaults for BIND PACKAGE 1002
Defaults for BIND PLAN 1005
Defaults for REBIND PACKAGE 1002
Defaults for REBIND PLAN 1005
Precompile 994
Program Preparation 986
System Connection Types 1007

preparing programs 913
program preparation example 986
selecting

SPUFI 1043
SPUFI 1043

DB2I defaults
setting 915

DBCS (double-byte character set)
translation in CICS 927

DBINFO
passing to external stored procedure 606
user-defined function 522

DBRM (database request module) 947
binding to a package 942
description 923

DBRMs in HFS files
binding 944

DCLGEN
COBOL example 134
data types 131
declaring indicator variable arrays 126
generating table and view declarations 125
generating table and view declarations from DB2I 126
INCLUDE statement 133
including declarations in a program 133
invoking 125

1138 Application Programming and SQL Guide

DCLGEN (continued)
using from DB2I 126
variable declarations 131

DCLGEN (declarations generator)
description 125

DDITV02 input data set 978
DDOTV02 output data set 978
Debug Tool

user-defined function 1058
debugging

recording messages for stored procedures 1067
stored procedures 1061

debugging application programs 1068
DEC15

precompiler option 931
rules 702

DEC31
avoiding overflow 702
precompiler option 931
rules 702

decimal
15 digit precision 702
31 digit precision 702
arithmetic 702

DECIMAL data type
C/C++ 253

declarations generator (DCLGEN)
description 125

DECLARE CURSOR statement
description, row-positioned 720
description, rowset-positioned 725
FOR UPDATE clause 720
multilevel security 720
prepared statement 165, 167
scrollable cursor 715
WITH HOLD clause 718
WITH RETURN option 633
WITH ROWSET POSITIONING clause 725

DECLARE GLOBAL TEMPORARY TABLE statement 460
DECLARE TABLE statement

assembler 246
C 285
COBOL 336
Fortran 381
in application programs 124
PL/I 405

declared temporary table
including column defaults 460
including identity columns 460
instances 460
ON COMMIT clause 461
qualifier for 460
remote access using a three-part name 867
requirements 460
working with 459

declaring tables and views
advantages 124

DELETE statement
correlated subquery 709
description 653, 665
positioned

FOR ROW n OF ROWSET clause 726
restrictions 722
WHERE CURRENT clause 722, 726

deleting
current rows 722
data 665

deleting (continued)
every row from a table 665

with TRUNCATE 665
rows from a table 665

delimiter, SQL 147
DENSE_RANK specification 678

example 678
department sample table 1082

creating 456
DEPLOY bind option

for native SQL procedures 585
DESCRIBE INPUT statement 192
DESCRIBE statement

column labels 167
INTO clauses 167

designing
applications 1

designing applications
distributed data 30

DFHEIENT macro 246
DFSLI000 (IMS language interface module) 940
diagnostics area

RESIGNAL affect on 580
SIGNAL affect on 580

direct row access 748
disability xiv
DISCONNECT (connection function of CAF)

description 49
language examples 58
program example 63
syntax 58

displaying
table columns 669
table privileges 669

DISTINCT
clause of SELECT statement 675
unique values 675

distinct type
assigning values 651
comparing types 712
description 493
example

argument of user-defined function (UDF) 494
arguments of infix operator 783
casting constants 783
casting function arguments 783
casting host variables 783
LOB data type 494

function arguments 782
strong typing 493
UNION with INTERSECT 711
with EXCEPT 711
with UNION 711

distinct types
creating 493

distributed data 31
coordinating updates 32
copying a remote table 867
DBPROTOCOL bind option 867, 951
designing applications for 30
encoding scheme of retrieved data 873
example

accessing remote temporary table 869
calling stored procedure at remote location 951
connecting to remote server 870, 951
specifying location in table name 951
using alias for multiple sites 871

Index 1139

distributed data (continued)
example (continued)

using RELEASE statement 871
using three-part table names 867

executing long SQL statements 873
identifying server at run time 872
maintaining data currency 715
planning

DB2 private protocol access 951
DRDA access 951

program preparation 954
programming

coding with DB2 private protocol access 867
coding with DRDA access 867

retrieving from ASCII or Unicode tables 873
three-part table names 867
transmitting mixed data 872
two-phase commit 32
using alias for location 871

DL/I batch
application programming 767
checkpoint ID 1033
DB2 requirements 767
DDITV02 input data set 978
DSNMTV01 module 1030
features 767
SSM= parameter 1030
submitting an application 1030

double-byte character large object (DBCLOB) 443
DRDA access

accessing remote temporary table 869
bind options 952
coding an application 867
connecting to remote server 870
planning 951
precompiler options 940
preparing programs 952
programming hints 872
releasing connections 871
sample program 354
SQL limitations at different servers 872

DRDA access with CONNECT statements
sample program 354

DRDA with three-part names
sample program 361

DROP TABLE statement 463
DSN applications, running with CAF 36
DSN command of TSO

return code processing 1023
RUN subcommands 1023

DSN_FUNCTION_TABLE table 777
DSN_STATEMENT_CACHE_TABLE 198

populating 198
DSN_WLM_APPLENV procedure 818
DSN8BC3 sample program 336
DSN8BD3 sample program 285
DSN8BE3 sample program 285
DSN8BF3 sample program 381
DSN8BP3 sample program 405
DSNACCOR stored procedure

description 838
option descriptions 839
output 854
syntax diagram 839

DSNACICS stored procedure 821
DSNACICX exit routine 826
DSNAIMS stored procedure 829

DSNAIMS2 stored procedure 833
DSNALI

loading 43
making available 43

DSNALI (CAF language interface module)
example of deleting 63
example of loading 63

DSNCLI (CICS language interface module) 940
DSNEBP10 1002
DSNEBP11 1002
DSNH command of TSO 1070
DSNHASM procedure 981
DSNHC procedure 981
DSNHCOB procedure 981
DSNHCOB2 procedure 981
DSNHCPP procedure 981
DSNHCPP2 procedure 981
DSNHFOR procedure 981
DSNHICB2 procedure 981
DSNHICOB procedure 981
DSNHLI entry point to DSNALI

program example 63
DSNHLI2 entry point to DSNALI

program example 63
DSNHPLI procedure 981
DSNMTV01 module 1030
DSNRLI

loading 75
making available 75

DSNTEDIT CLIST 964
DSNTEP2 and DSNTEP4 sample program

specifying SQL terminator 1111, 1118
DSNTEP2 sample program

how to run 1102
parameters 1102
program preparation 1102

DSNTEP4 sample program
how to run 1102
parameters 1102
program preparation 1102

DSNTIAC subroutine
assembler 246
C 285
COBOL 336
PL/I 405

DSNTIAD sample program
how to run 1102
parameters 1102
program preparation 1102
specifying SQL terminator 1116

DSNTIAR subroutine
assembler 217
C 285
COBOL 336
description 206
Fortran 381
PL/I 405
return codes 208
using 207

DSNTIAUL sample program
how to run 1102
parameters 1102
program preparation 1102

DSNTIJSD sample program
using to set up the Unified Debugger 1064

DSNTIR subroutine 381

1140 Application Programming and SQL Guide

DSNTPSMP
creating external SQL procedures 591
required authorizations 591
syntax for invoking 595

DSNTRACE data set 61
DSNULI 119
DSNXDBRM 923
DSNXNBRM 923
DYNAM option of COBOL 336
dynamic buffer allocation

FETCH WITH CONTINUE 737
dynamic plan selection

restrictions with CURRENT PACKAGESET special
register 960

using packages with 960
dynamic SQL

advantages and disadvantages 160
assembler program 167
C program 167
caching prepared statements 193
COBOL application program 336
COBOL program 163
description 159
effect of bind option REOPT(ALWAYS) 167
effect of WITH HOLD cursor 187
EXECUTE IMMEDIATE statement 185
fixed-list SELECT statements 165
Fortran program 381
host languages 163
including in your program 159
non-SELECT statements 164, 187
PL/I 167
PREPARE and EXECUTE 187
programming 159
requirements 160
restrictions 160
sample C program 289
statement caching 193
varying-list SELECT statements 167

dynamic SQL statements
change to ASUTIME determination 1

DYNAMICRULES bind option 957

E
ECB (event control block)

CONNECT function of CAF 50
IDENTIFY function of RRSAF 81
SET_REPLICATION function of RRSAF 104

EDIT panel, SPUFI
SQL statements 1043

embedded semicolon
embedded 1116

embedded SQL applications
host variables, XML data 219
XML data 219

employee photo and resume sample table 1087
employee sample table 1084
employee-to-project activity sample table 1091
ENCRYPT_TDES function 456
END-EXEC delimiter 147
end-of-data condition 722, 726
error

arithmetic expression 217
division by zero 217
handling 210
messages generated by precompiler 1070

error (continued)
overflow 217
return codes 205
run 1069

errors when retrieving data into a host variable
determining cause 143

EXCEPT
eliminating duplicate rows 682
keeping duplicate rows with ALL 683

EXCEPT clause
columns of result table 680

exception condition handling 210
EXEC SQL delimiter 147
EXECUTE IMMEDIATE statement 185
EXECUTE statement

dynamic execution 187
parameter types 167
USING DESCRIPTOR clause 167

EXISTS predicate, subquery 705
EXIT handler (SQL procedure) 568
exit routine

abend recovery with CAF 42
attention processing with CAF 42

exit routines
DSNACICX 826

EXPLAIN
automatic rebind 970

EXPLAIN tables 198
DSN_FUNCTION_TABLE 778

external SQL procedure
creating 590

external SQL procedures 552
creating by using DSNTPSMP 591
creating by using JCL 602
debugging with the Unified Debugger 1064
migrating to native SQL procedures 586

external stored procedure
creating 606
modifying the definition 645
package 629
package authorizations 629
plan 629
preparing 606
reentrant 635
running as authorized program 606

F
FETCH CURRENT CONTINUE 736
FETCH statement

description, multiple rows 726
description, single row 722
fetch orientation 730
host variables 165
multiple-row

assembler 246
description 726
FOR n ROWS clause 730
number of rows in rowset 730
using with descriptor 726
using with host variable arrays 726

row and rowset positioning 743
scrolling through data 740
USING DESCRIPTOR clause 167
using row-positioned cursor 722

FETCH WITH CONTINUE 736
file reference variable 761

Index 1141

file reference variable (continued)
DB2-generated construct 762

FIND_DB2_SYSTEMS (connection function of RRSAF)
language examples 111
syntax 111

fixed buffer allocation
FETCH WITH CONTINUE 738

FLAG precompiler option 931
FLOAT precompiler option 931
FOLD

value for C and CPP 931
value of precompiler option HOST 931

FOR UPDATE clause 720
FOREIGN KEY clause

description 454
usage 454

format
SELECT statement results 1056
SQL in input data set 1043

formatting
result tables 674

Fortran application program
@PROCESS statement 381
byte data type 381
constant syntax 375
data type compatibility 379
declaring tables 381
declaring views 381
defining the SQLDA 137, 374
host variable, declaring 375
INCLUDE statement 381
including SQLCA 373
indicator variable declaration 378
naming convention 381
parallel option 381
precompiler option defaults 938
SQLCODE host variable 373
SQLSTATE host variable 373
statement labels 381
variable declaration 375
WHENEVER statement 381

FROM clause
joining tables 688
SELECT statement 670

FRR (functional recovery routine)
in CAF 42

FULL OUTER JOIN clause 695
function resolution 774
functional recovery routine (FRR)

in CAF 42

G
GENERAL linkage convention 610, 613
GENERAL WITH NULLS linkage convention 610, 616
general-use programming information, described 1129
generating table and view declarations

by using DCLGEN 125
with DCLGEN from DB2I 126

generating XML documents for MQ message queue 879
GET DIAGNOSTICS

using to get procedure status 803
GET DIAGNOSTICS statement

condition items 211
connection items 211
data types for items 211, 214
description 211

GET DIAGNOSTICS statement (continued)
multiple-row INSERT 211
RETURN_STATUS item 577
ROW_COUNT item 726
statement items 211
using in handler 576

GO TO clause of WHENEVER statement 210
governor (resource limit facility) 202
GRANT statement 1041
graphic host variable

assembler 234
C/C++ 253
COBOL 304
PL/I 387

graphic host variable array
C/C++ 265
COBOL 314
PL/I 393

GRAPHIC precompiler option 931
GROUP BY clause

use with aggregate functions 685

H
handler, using in SQL procedure 567
HAVING clause

selecting groups subject to conditions 686
HOST

FOLD value for C and CPP 931
precompiler option 931

host language
dynamic SQL 163

host language data types
compatibility with SQL data types 144

host structure
C/C++ 273
COBOL 324
description 140
indicator structure 140
PL/I 398
retrieving row of data 158
using SELECT INTO 158

host variable
assembler 233, 234
C/C++ 253
COBOL 303, 304
description 139
FETCH statement 165
Fortran 375
indicator variable 140
inserting values into tables 155
LOB

assembler 752
C 753
COBOL 754
Fortran 755
PL/I 755

PL/I 387
PREPARE statement 165
retrieving a single row 148
setting the CCSID 142
static SQL flexibility 160
updating values in tables 154
using 148

host variable array
C/C++ 265
COBOL 303, 314

1142 Application Programming and SQL Guide

host variable array (continued)
description 139, 156
indicator variable array 140
inserting multiple rows 157
PL/I 387, 393
retrieving multiple rows 157

host variable processing
errors 143

host variables 138
compatible data types 144
XML in assembler 220
XML in C language 221
XML in COBOL 222
XML in embedded SQL applications 219
XML in PL/I 223

I
IBM Data Studio Developer

creating external SQL procedures 590
creating native SQL procedures 561

IDENTIFY (connection function of RRSAF)
language examples 81
program example 115
syntax 81

identity column
defining 444, 651
IDENTITY_VAL_LOCAL function 444
inserting in table 462
inserting values into 651
trigger 472
using as parent key 444

IKJEFT01 terminal monitor program in TSO 1035
implicit CAF connection 45
implicit RRSAF connections 78
IMS

checkpoint calls 23
checkpoints 25
CHKP call 23
commit point 23
environment planning 1036
language interface module (DFSLI000) 940
link-editing 940
recovery 20
ROLB call 20, 23
ROLL call 20, 23
SYNC call 23
unit of work 23

IMS programs
recovery 27

IN predicate, subquery 705
incompatibilities of releases

applications and SQL 1
index

types
foreign key 454
primary 462
unique 462
unique on primary key 453

indicator structure
description 140

indicator variable
description 140
inserting null values 155

indicator variable array
description 140
inserting null values 155

indicator variable arrays
declaring with DCLGEN 126

indicator variable arraysC/C++ syntax 275
indicator variable arraysCOBOL syntax 328
indicator variable arraysPL/I syntax 400
indicator variables

using to pass large output parameters 792
indicator variablesassembler syntax 239
indicator variablesC/C++ syntax 275
indicator variablesCOBOL syntax 328
indicator variablesFortran syntax 378
indicator variablesPL/I syntax 400
infinite loop 700
informational referential constraint

automatic query rewrite 451
description 451

INNER JOIN clause 692
input data set DDITV02 978
input parameters

stored procedures 547
INSERT statement

description 647
multiple rows 649
single row 647
VALUES clause 647
with identity column 651
with ROWID column 650

inserting
values from host variable arrays 157

inserting data
by using host variables 155

Interactive System Productivity Facility (ISPF) 1043
internal resource lock manager (IRLM) 1030
INTERSECT

eliminating duplicate rows 682
keeping duplicate rows with ALL 683

INTERSECT clause
columns of result table 680

invalid SQL terminator characters 1116
invoking

call attachment facility (CAF) 36
Resource Recovery Services attachment facility

(RRSAF) 69
invoking stored procedures

syntax for command line processor 1034
isolation level

REXX 424
ISPF (Interactive System Productivity Facility)

browse 1047, 1056
DB2 uses dialog management 1043
DB2I Primary Option Menu 984
Program Preparation panel 986
programming 1027
scroll command 1057

ISPLINK SELECT services 1027

J
Java stored procedures

debugging with the Unified Debugger 1064
JCL (job control language)

batch backout example 1032
DDNAME list format 923
page number format 923
precompilation procedures 981
precompiler option list format 922
preparing a CICS program 982

Index 1143

JCL (job control language) (continued)
preparing a object-oriented program 918
starting a TSO batch application 1035

join operation
FULL OUTER JOIN 695
INNER JOIN 692
joining a table to itself 692
joining tables 688
LEFT OUTER JOIN 696
more than one join 690
more than one join type 691
operand

nested table expression 688
user-defined table function 688

RIGHT OUTER JOIN 697
SQL rules 698

K
KEEPDYNAMIC option

BIND PACKAGE subcommand 200
BIND PLAN subcommand 200

key
composite 454
foreign 454
parent 453
primary

choosing 453
defining 452
recommendations for defining 452
using timestamp 453

unique 462

L
label, column 167
language interface modules

DSNCLI 940
large object (LOB)

character conversion 759
declaring host variables 752

for precompiler 752
declaring LOB file reference variables 752
declaring LOB locators 752
defining and moving data into DB2 441
description 443
expression 760
file reference variable 761
indicator variable 758
locator 757
materialization 757
sample applications 751

LEFT OUTER JOIN clause 696
LEVEL precompiler option 931
libraries

for table declarations and host-variable structures 134
LINECOUNT precompiler option 931
link-edit 119
link-editing 940

AMODE option 1009
RMODE option 1009

linkage conventions
GENERAL 610, 613
GENERAL WITH NULLS 610, 616
SQL 610, 620
stored procedures 610

LOAD z/OS macro used by CAF 44
LOAD z/OS macro used by RRSAF 77
LOB column, definition 441
LOB file reference variable

assembler 234
C/C++ 253, 265
COBOL 304, 314
PL/I 387, 393

LOB host variable array
C/C++ 265
COBOL 314
PL/I 393

LOB locator
assembler 234
C/C++ 253, 265
COBOL 314
Fortran 375
PL/I 387, 393

LOB values
fetching 736

LOB variable
assembler 234
C/C++ 253
COBOL 304
Fortran 375
PL/I 387

location name 31
lock

escalation
when retrieving large numbers of rows 764

M
mapping macro

assembler applications 250
DSNXDBRM 923
DSNXNBRM 923

MARGINS precompiler option 931
materialization

LOBs 757
merging

data 653
message

analyzing 1070
obtaining text

assembler 217
C 285
COBOL 336
Fortran 381
PL/I 405

message data
WebSphere MQ 875

message handling
WebSphere MQ 875

Message Queue Interface (MQI)
DB2 MQ tables 880
policies 877
services 876
WebSphere MQ 876

messages
WebSphere MQ 875

migrating
applications 1

mixed data
converting 872
description 438
transmitting to remote location 872

1144 Application Programming and SQL Guide

MLS (multilevel security)
referential constraints 450
triggers 487

modified source statements 923
modify

external stored procedure definition 645
modifying

data 647
MPP program

checkpoints 25
MQ message queue

sending table data 879
shredding XML documents 880

MQ XML composition stored procedures
alternative method 879

MQ XML decomposition stored procedures
alternative method 880

MQSeries
DB2 functions

connecting applications 891
MQREAD 877
MQREADALL 877
MQREADALLCLOB 877
MQREADCLOB 877
MQRECEIVE 877
MQRECEIVEALL 877
MQRECEIVEALLCLOB 877
MQRECEIVECLOB 877
MQSEND 877
programming considerations 877
retrieving messages 890
sending messages 889

DB2 scalar functions 877
DB2 table functions 877

MSGFILE run time option
using to debug stored procedures 1067

multilevel security (MLS) check
referential constraints 450
triggers 487

multiple-row FETCH statement
checking DB2_LAST_ROW 214
SQLCODE +100 205

multiple-row INSERT statement
dynamic execution 189
NOT ATOMIC CONTINUE ON SQLEXCEPTION 211
using GET DIAGNOSTICS 211

N
naming convention

assembler 246
C 285
COBOL 336
Fortran 381
PL/I 405
REXX 417
tables you create 456

native SQL procedures 552
BIND COPY 580
BIND COPY REPLACE 582
creating 561
debugging with the Unified Debugger 1064
deploying to another server 585
deploying to production 585
migrating from external SQL procedures 586
packages for 580
replacing packages for 582

nested compound statements
cursor declarations 566
definition 564
for controlling scope of conditions 569
scope of variables 562
statement labels 564

nested table expression
correlated reference 688
correlation name 688
join operation 688

NEWFUN
precompiler option 931

NODYNAM option of COBOL 336
NOFOR precompiler option 931
NOGRAPHIC precompiler option 931
non-DB2 resources

accessing from stored procedure 630
nontabular data storage 662
NOOPTIONS precompiler option 931
NOPADNTSTR precompiler option 931
NOSOURCE precompiler option 931
NOT FOUND clause of WHENEVER statement 210
not logged

table spaces
recovering 29

NOXREF precompiler option 931
NUL character in C 285
null

determining value of output host variable 151
NULL

pointer in C 285
null value

column value of UPDATE statement 663
determining column value 153
inserting into columns 155

Null, in REXX 417
numeric

data
width of column in results 1057

numeric data
description 438
width of column in results 1051

numeric host variable
assembler 234
C/C++ 253
COBOL 304
Fortran 375
PL/I 387

numeric host variable array
C/C++ 265
COBOL 314
PL/I 393

NUMTCB parameter 802

O
object-oriented program, preparation 918
objects

creating in a application program 437
ON clause, joining tables 688
ONEPASS precompiler option 931
OPEN

statement
opening a cursor 722
opening a rowset cursor 725
prepared SELECT 165
USING DESCRIPTOR clause 167

Index 1145

OPEN (continued)
statement (continued)

without parameter markers 167
OPEN (connection function of CAF)

description 49
language examples 54
program example 63
syntax 54
syntax usage 54

OPTIONS precompiler option 931
ORDER BY clause

SELECT statement 677
with ORDER OF clause 661

ORDER OF clause 661
organization application

examples 1104
outer join

FULL OUTER JOIN 695
LEFT OUTER JOIN 696
RIGHT OUTER JOIN 697

output host variable
determining if null 151
determining if truncated 151

output host variable processing
errors 143

output parameters
stored procedures 547, 792

P
package

binding
DBRM to a package 941
remote 942
to plans 947

identifying at run time 949
invalid 14
invalidated 970
listing 947
location 949
rebinding examples 962
rebinding with pattern-matching characters 962
selecting 949
trigger 484
version, identifying 943

package authorization
for external stored procedures 629

packages
automatic rebinds 2
collection ID for stored procedure packages 634
for external procedures 629
for native SQL procedures 580
for nested routines 634

PADNTSTR precompiler option 931
panel

Current SPUFI Defaults 1049, 1054
DB2I Primary Option Menu 1043
DSNEPRI 1043
DSNESP01 1043
DSNESP02 1049
DSNESP07 1054
EDIT (for SPUFI input data set) 1043
SPUFI 1043

panels
DB2I (DB2 Interactive) 134
DB2I DEFAULTS 134
DCLGEN 134

panels (continued)
DSNEDP01 134
DSNEOP01 134
DSNEOP02 134
REBIND PACKAGE 1013
REBIND TRIGGER PACKAGE 1015

parameter list
stored procedures 547

parameter marker
casting in function invocation 784
dynamic SQL 187
more than one 187
values provided by OPEN 165
with arbitrary statements 167

parameter marker information
obtaining by using an SQLDA 192

PARAMETER STYLE SQL option
using to debug stored procedures 1061

parent key 453
PARMS option 1026
performance

affected by
application structure 1027

application programs 766
programming applications 16

PERIOD precompiler option 931
phone application, description 1104
PL/I

creating stored procedure 606
PL/I application program

coding considerations 405
data type compatibility 401
DBCS constants 405
DCLGEN support 131
declaring tables 405
declaring views 405
defining the SQLDA 137, 386
host structure 398
host variable array, declaring 387
host variable, declaring 387
INCLUDE statement 405
including SQLCA 385
indicator variable array declaration 400
indicator variable declaration 400
naming convention 405
SQLCODE host variable 385
SQLSTATE host variable 385
statement labels 405
variable array declaration 393
variable declaration 387
WHENEVER statement 405

planning
applications 1
bind options 16

planning application programs
SQL processing options 14

planning applications
recovery 18

plans
automatic rebinds 2

pointer host variables
declaring 278
referencing in SQL statements 277

policies
Message Queue Interface (MQI) 877
WebSphere MQ 875

1146 Application Programming and SQL Guide

precompiler
binding on another system 918
data sets used by 920
description 916
diagnostics 923
functions 918
input 921
maximum size of input 921
modified source statements 923
option descriptions 930
options

CONNECT 940
defaults 938
DRDA access 940
SQL 940

output 923
precompiling programs 916
running 918
starting

dynamically 922
JCL for procedures 981

submitting jobs
ISPF panels 986

submitting jobs with ISPF panels 913
predicate

general rules 670
predictive governing

in a distributed environment 203
with DEFER(PREPARE) 203
writing an application for 203

PRELINK utility 986
PREPARE statement

dynamic execution 187
host variable 165
INTO clause 167

prepared SQL statement
caching 200

preparing programs
overview 976

PRIMARY KEY clause
ALTER TABLE statement 462
CREATE TABLE statement 452

problem determination, guidelines 1069
procedure status

retrieving 803
setting 803

procedures
creating versions 583
DSN_WLM_APPLENV 818
inheriting special registers 533
WLM_SET_CLIENT_INFO 816

product-sensitive programming information, described 1129
production environment

deploying native SQL procedures 585
program preparation 913
program problems checklist

documenting error situations 1068
error messages 1073, 1074

programming applications
performance 16

programming interface information, described 1129
project activity sample table 1090
project application, description 1104
project sample table 1089
PSPI symbols 1129

Q
queries

in application programs 123
tuning in application programs 766

QUOTE precompiler option 931
QUOTESQL precompiler option 931

R
RANK specification 678

example 678
real-time statistics

stored procedure 838
reason code

CAF 61
RRSAF 112
X"00D44057" 767

REBIND PACKAGE subcommand of DSN
generating list of 964
rebinding with wildcard characters 962
remote 942

REBIND PLAN subcommand of DSN
generating list of 964
options

NOPKLIST 963
PKLIST 963

remote 942
REBIND TRIGGER PACKAGE subcommand of DSN 484
rebinding

automatically
conditions for 970

changes that require 14
list of plans and packages 964
lists of plans or packages 964
packages with pattern-matching characters 962
planning for 970
plans 963

rebinds
automatic 2

recovering
table spaces that are not logged 29

recovery
IMS programs 20, 27
planning for in your application 18

recursive SQL
controlling depth 468
description 700
examples 468
infinite loops 700
rules 700
single level explosion 468
summarized explosion 468

reentrant code
in stored procedures 635

referential constraint
defining 449
description 449
determining violations 1079
informational 451
name 454
on tables with data encryption 456
on tables with multilevel security 450

referential integrity
effect on subqueries 710
programming considerations 1079

Index 1147

register conventions
RRSAF 77

registering XML schema
XSR_REGISTER 858

registers
changed by CAF (call attachment facility) 45

release incompatibilities
applications and SQL 1

RELEASE option
BIND PACKAGE subcommand 200
BIND PLAN subcommand 200

RELEASE SAVEPOINT statement 28
RELEASE statement, with DRDA access 871
remote stored procedure

preparing client program 797
REPLACE statement (COBOL) 336
requester 31
resetting control blocks

CAF 58
RESIGNAL statement

raising a condition 577
setting SQLSTATE value 579

resource limit facility (governor)
description 202
writing an application for predictive governing 203

Resource Recovery Services attachment facility (RRSAF)
application program

preparation 77
authorization IDs 73
behavior summary 79
connection functions 81
connection name 73
connection properties 73
connection type 73
DB2 abends 73
description 71
implicit connections 78
invoking 69
loading 75
making available 75
parameters for CALL DSNRLI 78
program examples 115
program requirements 77
register conventions 77
return codes and reason codes 112
sample JCL 115
sample scenarios 113
scope 73
terminated task 73

restart, DL/I batch programs using JCL 1032
restricted system

definition 32
forcing rules 32
update rules 32

restricted systems 30
result column

join operation 695
naming with AS clause 675

result set locator
assembler 234
C/C++ 253
COBOL 304
Fortran 375
PL/I 387

result sets
receiving from a stored procedure 804

result table
description 674
example 674
numbering rows 678
of SELECT statement 674
read-only 720

result tables
formatting 674

retrieving
data in ASCII from DB2 for z/OS 167
data in Unicode from DB2 for z/OS 167
data using SELECT * 703
data, changing the CCSID 167
large volumes of data 764
multiple rows into host variable arrays 157

retrieving a single row
into host variables 148

return code
CAF 61
DSN command 1023
RRSAF 112

RETURN statement
returning SQL procedure status 803

REXX
creating stored procedure 606

REXX application program
including SQLCA 415
SQLCODE host variable 415
SQLSTATE host variable 415

REXX program
application programming interface

CONNECT 420
DISCONNECT 420
EXECSQL 420

character input data 422
data type conversion 416
DSNREXX 420
error handling 417
input data type 416
isolation level 424
naming convention 417
naming cursors 425
naming prepared statements 425
running 1026
SQLDA 137, 415
statement label 417

RIB (release information block)
CONNECT function of CAF 50
IDENTIFY function of RRSAF 81
SET_REPLICATION function of RRSAF 104

RID
for direct row access 748

RID function 748
RIGHT OUTER JOIN clause 697
RMODE link-edit option 1009
ROLB call, IMS 20, 23
ROLL call, IMS 20, 23
rollback

changes within a unit of work 28
ROLLBACK option

CICS SYNCPOINT command 19
ROLLBACK statement

description 1047
error in IMS 767
in a stored procedure 560
TO SAVEPOINT clause 28
when to issue 19

1148 Application Programming and SQL Guide

ROLLBACK statement (continued)
with RRSAF 71

routines
inheriting special registers 533

row
selecting with WHERE clause 670
updating 663
updating current 722
updating large volumes 665

ROW CHANGE TIMESTAMP 687
ROW_NUMBER 678
row-level security 450
ROWID

data type 438
inserting in table 462

ROWID column
defining 650, 750
defining LOBs 441
inserting values into 650
using for direct row access 748

ROWID host variable array
C/C++ 265
COBOL 314
PL/I 393

ROWID variable
assembler 234
C/C++ 253
COBOL 304
Fortran 375
PL/I 387

rowset
deleting current 726
updating current 726

rowset cursor
closing 730
DB2 for z/OS down-level requester 874
declaring 725
end-of-data condition 726
example 746
multiple-row FETCH 726
opening 725
using 725

RRSAF functions
summary of behavior 79

RUN subcommand of DSN
return code processing 1023
running a program in TSO foreground 1023

run time libraries, DB2I
background processing 990
EDITJCL processing 990

running application program
CICS 1036
errors 1069
IMS 1036

S
sample application

DRDA access 354
DRDA access with CONNECT statements 354
DRDA with three-part names 361
dynamic SQL 289
environments 1106
languages 1106
LOB 1104
organization 1104
phone 1104

sample application (continued)
programs 1102
project 1104
static SQL 289
stored procedure 1104
use 1102
user-defined function 1104

sample applications 1081
databases 1099
storage 1098
storage groups 1099
structure 1098

Sample applications
TSO 1107

sample data 1081
Sample data

joins 699
sample program

DSN8BC3 336
DSN8BD3 285
DSN8BE3 285
DSN8BF3 381
DSN8BP3 405

sample tables 1081
DSN8B10.ACT (activity) 1081
DSN8B10.DEMO_UNICODE (Unicode sample) 1092
DSN8B10.DEPT (department) 1082
DSN8B10.EMP (employee) 1084
DSN8B10.EMP_PHOTO_RESUME (employee photo and

resume) 1087
DSN8B10.EMPPROJACT (employee-to-project

activity) 1091
DSN8B10.PROJ (project) 1089
PROJACT (project activity) 1090
relationships 1093
storage 1098
views 1094

samples
provided by DB2 1081

SAVEPOINT statement 28
savepoints 28
scalar pointer host variable

declaring 278
referencing in SQL statements 277

scrollable cursor
comparison of types 731
DB2 for z/OS down-level requester 874
dynamic

dynamic model 715
fetching current row 735

fetch orientation 730
retrieving rows 730
sensitive dynamic 715
sensitive static 715
sensitivity 732
static

creating delete hole 734
creating update hole 734
holes in result table 735
number of rows 733
removing holes 733
static model 715

updatable 715
scrolling

backward through data 740
backward using identity columns 740
backward using ROWIDs 740

Index 1149

scrolling (continued)
in any direction 732
ISPF (Interactive System Productivity Facility) 1057

search condition
comparison operators 670
NOT keyword 670
SELECT statement 703
WHERE clause 670

SELECT FROM DELETE statement
description 667
retrieving

multiple rows 667
with INCLUDE clause 667

SELECT FROM INSERT statement
BEFORE trigger values 655
default values 655
description 655
inserting into view 655
multiple rows

cursor sensitivity 655
effect of changes 655
effect of SAVEPOINT and ROLLBACK 655
effect of WITH HOLD 655
processing errors 655
result table of cursor 655
using cursor 655
using FETCH FIRST 655
using INPUT SEQUENCE 655

result table 655
retrieving

BEFORE trigger values 655
default values 655
generated values 655
multiple rows 655
special registers 655

using SELECT INTO 655
SELECT FROM MERGE statement

description 654
with INCLUDE clause 654

SELECT FROM UPDATE statement
description 664
retrieving

multiple rows 664
with INCLUDE clause 655, 664

SELECT INTO
using with host variables 148

SELECT statement
AS clause

with ORDER BY clause 677
changing result format 1057
clauses

DISTINCT 675
EXCEPT 680
FROM 670
GROUP BY 685
HAVING 686
INTERSECT 680
ORDER BY 677
UNION 680
WHERE 670

derived column with AS clause 673
filtering by time changed 687
fixed-list 165
named columns 670
ORDER BY clause

derived columns 677
with AS clause 677

SELECT statement (continued)
parameter markers 167
search condition 703
selecting a set of rows 715
subqueries 703
unnamed columns 673
using with

* (to select all columns) 670
column-name list 670
DECLARE CURSOR statement 720, 725

varying-list 167
selecting

all columns 670
named columns 670
rows 670
some columns 670
unnamed columns 673

semicolon
default SPUFI statement terminator 1049
embedded 1116

sequence numbers
COBOL application program 336
Fortran 381
PL/I 405

sequence object
creating 490
referencing 764
using across multiple tables 490

server 31
services

Message Queue Interface (MQI) 876
WebSphere MQ 875

SET clause of UPDATE statement 663
SET CURRENT PACKAGESET statement 949
SET ENCRYPTION PASSWORD statement 456
SET_CLIENT_ID (connection function of RRSAF)

language examples 101
syntax 101

SET_ID (connection function of RRSAF)
language examples 100
syntax 100

SET_REPLICATION (connection function of RRSAF)
language examples 104
syntax 104

setting SQL terminator
DSNTIAD 1116
SPUFI 1055

shortcut keys
keyboard xiv

shredding XML documents from MQ messages 880
SIGNAL statement

raising a condition 577
setting condition message text 578

SIGNON (connection function of RRSAF)
language examples 87
program example 115
syntax 87

SOME quantified predicate 705
sort key

ORDER BY clause 677
ordering 677

SOURCE precompiler option 931
special register

behavior in stored procedures 561
behavior in user-defined functions and stored

procedures 533
CURRENT PACKAGE PATH 948

1150 Application Programming and SQL Guide

special register (continued)
CURRENT PACKAGESET 948
CURRENT RULES 975

SPUFI
browsing output 1056
changed column widths 1057
CONNECT LOCATION field 1047
created column heading 1057
DB2 governor 1043
default values 1049
entering comments 1047
panels

allocates RESULT data set 1047
filling in 1043
format and display output 1056
previous values displayed on panel 1043
selecting on DB2I menu 1043

processing SQL statements 1043
retrieving Unicode data 1047
setting SQL terminator 1055
specifying SQL statement terminator 1049
SQLCODE returned 1056

SPUFI DEFAULTS panel 1051
SQL (Structured Query Language)

checking execution 204
coding

dynamic 163
Fortran program 147
object extensions 492

cursors 715
dynamic

coding 159
sample C program 289

return codes
checking 205
handling 206

statement terminator 1116
string delimiter 992
syntax checking 872
varying-list 167

SQL communication area (SQLCA)
description 205
using DSNTIAR to format 206

SQL data types
compatibility with host language data types 144

SQL linkage convention 610, 620
SQL path

SYSIBMADM 10
SQL precompiler option 931
SQL procedure

allowable statements 553
body 553
changing 588
conditions, handling 567
ignoring conditions 576
parameters 553
preparation using DSNTPSMP procedure 593
SQL variable 553

SQL procedure processor (DSNTPSMP)
result set 602

SQL procedure statement
CONTINUE handler 568
EXIT handler 568
handler 567
handling errors 567

SQL procedures 552
creating versions 583

SQL procedures (continued)
declaring cursors 566
nested compound statements 564

SQL processing optionsplanning for 14
SQL release incompatibilities 1
SQL statement nesting

restrictions 713
stored procedures 713
user-defined functions 713

SQL statement terminator
modifying in DSNTEP2 and DSNTEP4 1111, 1118
modifying in DSNTIAD 1116
modifying in SPUFI 1049
specifying in SPUFI 1049

SQL statements
ALTER FUNCTION 502
checking for successful execution 137
CLOSE 165, 724, 730
COBOL program sections 336
coding REXX 147
comments

assembler 246
C 285
COBOL 336
Fortran 381
PL/I 405
REXX 417

CONNECT, with DRDA access 870
continuation

assembler 246
C 285
COBOL 336
Fortran 381
PL/I 405
REXX 417

CREATE FUNCTION 502
DECLARE CURSOR

description 720, 725
example 165, 167

DELETE
description 722
example 665

DESCRIBE 167
embedded 921
error return codes 206
EXECUTE 187
EXECUTE IMMEDIATE 185
FETCH

description 722, 726
example 165

Fortran program sections 381
in application programs 123
INSERT 647
labels

assembler 246
C 285
COBOL 336
Fortran 381
PL/I 405
REXX 417

margins
assembler 246
C 285
COBOL 336
Fortran 381
PL/I 405
REXX 417

Index 1151

SQL statements (continued)
MERGE

example 653
OPEN

description 722, 725
example 165

PL/I program sections 405
PREPARE 187
RELEASE, with DRDA access 871
REXX program sections 417
SELECT

description 670
joining a table to itself 692
joining tables 688

SELECT FROM DELETE 667
SELECT FROM INSERT 655
SELECT FROM MERGE 654
SELECT FROM UPDATE 664
set symbols 246
UPDATE

description 722, 726
example 663

WHENEVER 210
SQL table functions 507
SQL terminator, specifying in DSNTEP2 and DSNTEP4 1111,

1118
SQL terminator, specifying in DSNTIAD 1116
SQL variable 553
SQL-INIT-FLAG, resetting 336
SQLCA (SQL communication area)

checking SQLCODE 209
checking SQLERRD(3) 205
checking SQLSTATE 209
checking SQLWARN0 205
description 205
DSNTIAC subroutine

assembler 246
C 285
COBOL 336
PL/I 405

DSNTIAR subroutine
assembler 217
C 285
COBOL 336
Fortran 381
PL/I 405

sample C program 289
SQLCA (SQL communications area)

assembler 231
C/C++ 251
COBOL 301
deciding whether to include 137
Fortran 373
PL/I 385
REXX 415

SQLCODE
-923 978
-925 767
-926 767
+100 210
+802 217
values 209

SQLCODE host variable
deciding whether to declare 137

SQLDA
setting an XML host variable 167
XML column 167

SQLDA (SQL descriptor area)
allocating storage 167, 726
assembler 137, 233
assembler program 167
C 167
C/C++ 137, 252
COBOL 137, 303
declaring 726
dynamic SELECT example 167
for LOBs and distinct types 167
Fortran 137, 374
multiple-row FETCH statement 726
no occurrences of SQLVAR 167
OPEN statement 165
parameter markers 167
PL/I 137, 167, 386
requires storage addresses 167
REXX 137, 415
setting output fields 726
storing parameter marker information 192
varying-list SELECT statement 167

SQLERROR clause of WHENEVER statement 210
SQLN field of SQLDA 167
SQLRULES, option of BIND PLAN subcommand 975
SQLSTATE

"01519" 217
"2D521" 767
"57015" 978
values 209

SQLSTATE host variable
deciding whether to declare 137

SQLSTATEs
web service consumer 910

SQLVAR field of SQLDA 167
SQLWARNING clause of WHENEVER statement 210
SSID (subsystem identifier), specifying 991
static SQL

C/C++ application program
examples 289

description 159
host variables 160
sample C program 289

statistics
real-time

stored procedure 838
STDSQL precompiler option 931
storage

acquiring
retrieved row 167
SQLDA 167

addresses in SQLDA 167
storage groups

for sample applications 1099
storage shortages

when calling stored procedures 800
stored procedure

abend 787
accessing CICS 630
accessing IMS 630
accessing non-DB2 resources 630
accessing transition tables 536
authorization to run 787
CALL statement 787
calling from a REXX procedure 793
calling from an application 787
COMMIT statement 560
compatible data types 793

1152 Application Programming and SQL Guide

stored procedure (continued)
creating 544
creating external stored procedure 606
cursors 560
Data types 638
defining parameter lists 610
DSNACCOR 838
example 548
invoking from a trigger 480
languages supported 557
linkage conventions 610
preparation 544
real-time statistics 838
reentrant 635
returning non-relational data 633
returning result set 633
ROLLBACK statement 560
running multiple instances 800
types 544
use of special registers 561
using host variables with 548
using temporary tables in 633
WLM_REFRESH 814
writing 557
writing in REXX 642

stored procedure result sets
receiving in a program 804

stored procedures
>DSNACCOX 809
ADMIN_COMMAND_DB2 809
ADMIN_COMMAND_DSN 809
ADMIN_COMMAND_UNIX 809
ADMIN_DS_BROWSE 809
ADMIN_DS_DELETE 809
ADMIN_DS_LIST 809
ADMIN_DS_RENAME 809
ADMIN_DS_SEARCH 809
ADMIN_DS_WRITE 809
ADMIN_INFO_HOST 809
ADMIN_INFO_SSID 809
ADMIN_JOB_CANCEL 809
ADMIN_JOB_FETCH 809
ADMIN_JOB_QUERY 809
ADMIN_JOB_SUBMIT 809
ADMIN_TASK_ADD 809
ADMIN_TASK_REMOVE 809
ADMIN_UTL_SCHEDULE 809
ADMIN_UTL_SORT 809
calling other programs 634
creating native SQL procedures 561
DB2-supplied 809
debugging 1061
debugging with the Unified Debugger 1064
description 545
DSNACCOR 809
DSNACICS 809, 821
DSNAEXP 809
DSNAHVPM 809
DSNAIMS 809, 829
DSNAIMS2 809, 833
DSNLEUSR 809
DSNTBIND 809
DSNTPSMP 809
DSNUTILS 809
DSNUTILU 809
DSNWSPM 809
DSNWZP 809

stored procedures (continued)
from command line processor 1034
GET_CONFIG 809
GET_MESSAGE 809
GET_SYSTEM_INFO 809
inheriting special registers 533
migrating external SQL to native SQL 586
package collection ID 634
packages for nested routines 634
parameter list 547
passing large output parameters 792
recording debugging messages 1067
running concurrently 802
SQLJ.ALTER_JAVA_PATH 809
SQLJ.DB2_INSTALL_JAR 809
SQLJ.DB2_REMOVE_JAR 809
SQLJ.DB2_REPLACE_JAR 809
SQLJ.DB2_UPDATEJARINFO 809
SQLJ.INSTALL_JAR 809
SQLJ.REMOVE_JAR 809
SQLJ.REPLACE_JAR 809
syntax for invoking from command line processor 1034
WLM_REFRESH 809
XDBDECOMPXML 809
XSR_ADDSCHEMADOC 809
XSR_COMPLETE 809
XSR_REGISTER 809
XSR_REMOVE 809

storm drain effect 120
string

data type 438
structure array host variable

declaring 278
referencing in SQL statements 277

subquery
basic predicate 705
conceptual overview 703
correlated

DELETE statement 709
description 707
example 707
UPDATE statement 709

DELETE statement 709
description 703
EXISTS predicate 705
IN predicate 705
quantified predicate 705
referential constraints 710
restrictions with DELETE 710
UPDATE statement 709

subsystem
identifier (SSID), specifying 991

subsystem parameters 802
summarizing group values 685
SWITCH TO (connection function of RRSAF)

language examples 85
syntax 85

SYNC call, IMS 23
synchronization call abends 767
SYNCPOINT command of CICS 19
syntax diagram

how to read xv
SYSIBM.MQPOLICY_TABLE

column descriptions 880
SYSIBM.MQSERVICE_TABLE

column descriptions 880
SYSIBMADM schema 10

Index 1153

SYSLIB data sets 981
SYSPRINT precompiler output

options section 1070
source statements section, example 1070
summary section, example 1070
symbol cross-reference section 1070
used to analyze errors 1070

SYSTERM output to analyze errors 1070

T
table

altering
changing definitions 456
using CREATE and ALTER 218

copying from remote locations 867
declaring in a program 124
deleting rows 665
dependent, cycle restrictions 450
displaying, list of 669
DROP statement 463
filling with test data 1042
incomplete definition of 462
inserting multiple rows 649
inserting single row 647
loading, in referential structure 449
merging rows 653
populating 1042
referential structure 449
retrieving 715
selecting values as you delete rows 667
selecting values as you insert rows 655
selecting values as you merge rows 654
selecting values as you update rows 664
temporary 459
updating rows 663
using three-part table names 867

table and view declarations
including in an application program 133

table and view declarationsgenerating with DCLGEN 125
table declarations

adding to libraries 134
table locator

assembler 234
C/C++ 253
COBOL 304
PL/I 387

table space
not logged

recovering 29
table spaces

for sample applications 1100
tables

creating for data integrity 447
supplied by DB2

DSN_FUNCTION_TABLE 778
TCB (task control block)

capabilities with CAF 40
capabilities with RRSAF 71

temporary table
advantages of 460
working with 459

terminal monitor program (TMP) 1023
TERMINATE IDENTIFY (connection function of RRSAF)

language examples 108
program example 115
syntax 108

TERMINATE THREAD (connection function of RRSAF)
language examples 107
program example 115
syntax 107

TEST command of TSO 1073
test environment, designing 1023
test tables 1039
test views of existing tables 1039
TIME precompiler option 931
time that row was changed

determining 765
TMP (terminal monitor program)

DSN command processor 1023
running under TSO 1035

transition table, trigger 472
transition variable, trigger 472
TRANSLATE (connection function of CAF)

description 49
language example 59
program example 63
syntax 59

TRANSLATE (connection function of RRSAF)
language examples 110
syntax 110

translating requests into SQL 218
trigger

activation order 485
activation time 472
cascading 484
coding 472
data integrity 488
delete 472
description 472
FOR EACH ROW 472
FOR EACH STATEMENT 472
granularity 472
insert 472
interaction with constraints 486
interaction with security label columns 487
invoking stored procedure 480
invoking user-defined function 480
naming 472
parts example 472
parts of 472
passing transition tables 480
subject table 472
transition table 472
transition variable 472
triggering event 472
update 472
using identity columns 472
with row-level security 487

troubleshooting
errors for output host variables 143

TRUNCATE 665
example 665

truncated
determining value of output host variable 151

TSO
CLISTs

calling application programs 1036
running in foreground 1036

TEST command 1073
TWOPASS precompiler option 931

1154 Application Programming and SQL Guide

U
Unicode

data, retrieving from DB2 for z/OS 167
sample table 1092

Unified Debugger
debugging stored procedures 1064
setting up 1064

UNION
eliminating duplicate rows 682
keeping duplicate rows with ALL 683

UNION clause
columns of result table 680
combining SELECT statements 680

UNIQUE clause 452
unit of work

CICS 19
completion

open cursors 718
description 18
IMS 23
TSO 19
undoing changes within 28

Universal language interface 117
updatable cursor 720
UPDATE statement

correlated subqueries 709
description 663
positioned

FOR ROW n OF ROWSET 726
restrictions 722
WHERE CURRENT clause 722, 726

SET clause 663
updating

during retrieval 701
large volumes 665

updating data
by using host variables 154

USER special register
value in INSERT statement 438
value in UPDATE statement 663

user-defined function
Debug Tool 1058

user-defined function (UDF)
abnormal termination 540
accessing transition tables 536
ALTER FUNCTION statement 502
authorization ID 773
call type 520
casting arguments 784
characteristics 508
coding guidelines 510
CREATE FUNCTION statement 502
data type promotion 774
DBINFO structure 522
definer 505
defining 508
description 505
diagnostic message 519
DSN_FUNCTION_TABLE 777
example

external scalar 502, 542
external table 502
function resolution 774
overloading operator 502
sourced 502
SQL 502

function resolution 774

user-defined function (UDF) (continued)
host data types

assembler 513
C 513
COBOL 513
PL/I 513

implementer 505
implementing 506
indicators

input 519
result 519

inheriting special registers 533
invoker 505
invoking 771
invoking from a trigger 480
invoking from predicate 771
main program 510
multiple programs 532
naming 519
nesting SQL statements 713
parallelism considerations 510
parameter conventions 513

assembler 525
C 526
COBOL 529
PL/I 531

preparing 540
reentrant 532
restrictions 510
samples 543
scratchpad 520, 541
scrollable cursor 771
setting result values 518
simplifying function resolution 773
specific name 519
steps in creating and using 505
subprogram 510
table locators

assembler 537
C 538
COBOL 539
PL/I 539

testing 1058
types 505

user-defined functions
SOAPHTTPNC 909
SOAPHTTPNV 909

USING DESCRIPTOR clause
EXECUTE statement 167
FETCH statement 167
OPEN statement 167

V
VALUES clause, INSERT statement 647
varbinary host variable

assembler 234
C/C++ 253
COBOL 304
PL/I 387

varbinary host variable array
C/C++ 265
PL/I 393

variable
assembler 234
C/C++ 253
COBOL 304

Index 1155

variable (continued)
declaring in SQL procedure 553
Fortran 375
PL/I 387

variable array
C/C++ 265
COBOL 314
PL/I 393

version
changing for SQL procedure 588

version of a package 943
VERSION precompiler option 931, 943
versions

procedures 583
view

contents 465
declaring in a program 124
description 464
dropping 466
identity columns 464
join of two or more tables 465
referencing special registers 464
retrieving 715
summary data 465
union of two or more tables 465
using

deleting rows 665
inserting rows 647
updating rows 663

W
web service consumer

SQLSTATEs 910
WebSphere MQ

APIs 874
description 874
interaction with DB2 874
message handling 875
Message Queue Interface (MQI) 876
messages 875

WHENEVER statement
assembler 246
C 285
COBOL 336
CONTINUE clause 210
Fortran 381
GO TO clause 210
NOT FOUND clause 210, 722
PL/I 405
specifying 210
SQL error codes 210
SQLERROR clause 210
SQLWARNING clause 210

WHERE clause
SELECT statement

description 670
joining a table to itself 692
joining tables 688

WITH clause
common table expressions 467

WITH HOLD clause
and CICS 718
and IMS 718
DECLARE CURSOR statement 718
restrictions 718

WITH HOLD cursor
effect on dynamic SQL 187

WLM_REFRESH stored procedure
description 814
option descriptions 814
sample JCL 815
syntax diagram 814

WLM_SET_CLIENT_INFO procedure 816
write-down privilege 487

X
XML data

embedded SQL applications 219
retrieving from tables, embedded SQL applications 226
selecting 673
updating, embedded SQL applications 224

XML file reference variable
assembler 234
C/C++ 253, 265
COBOL 304, 314
PL/I 387, 393

XML host variable
SQLDA 167

XML host variable array
C/C++ 265
COBOL 314
PL/I 393

XML schema registration
XSR_ADDSCHEMADOC stored procedure 860
XSR_COMPLETE stored procedure 862
XSR_REMOVE stored procedure 864

XML values
fetching 736

XML variable
assembler 234
C/C++ 253
COBOL 304
PL/I 387

XMLEXISTS 765
description 765
example 765

XMLQUERY 673
description 673
example 673

XPath 673
XPath contexts 673

XPath contexts
XMLEXISTS 765

XPath expressions 673
XREF precompiler option 931
XSR_COMPLETE stored procedure 862
XSR_REGISTER

register XML schema 858

1156 Application Programming and SQL Guide

����

Product Number: 5615-DB2
5697-P43

Printed in USA

SC19-4051-00

Sp
in
e
in
fo
rm
at
io
n:

DB
2

11
fo

rz
/O

S
Ap

pl
ic

at
io

n
Pr

og
ra

m
m

in
g

an
d

SQ
L

Gu
id

e
�
�

�

	Contents
	About this information
	Who should read this information
	DB2 Utilities Suite
	Terminology and citations
	Accessibility features for DB2 11 for z/OS
	How to send your comments
	How to read syntax diagrams

	Chapter 1. Planning for and designing DB2 applications
	Application and SQL release incompatibilities
	Change to determination of ASUTIME for dynamic statements
	Automatic rebind of plans and packages created before DB2 Version 9
	Invalidated plans and packages
	Default for ODBC limited block fetch
	Views, materialized query tables, and SQL table functions with period specifications
	Dropping columns named CLONE, ORGANIZATION, or VERSIONING
	Allow XPath processing to continue even if error on filtered results
	XML document node implicitly added on insert and update
	Client information special registers length
	Client information results from ADMIN_COMMAND_DB2
	Altering limit keys blocks immediate definition changes
	Removing the SYSPUBLIC schema from the SQL PATH routine option
	SYSIBMADM schema added to the SQL path
	Change in result for CAST(string AS TIMESTAMP)
	New maximum lengths for values that are returned for some built-in functions
	Timestamp string representations
	SQL reserved words
	Qualify user-defined function names
	SQLCODE changes

	Determining the value of any SQL processing options that affect the design of your program
	Changes that invalidate packages
	Determining the value of any bind options that affect the design of your program
	Programming applications for performance
	Designing your application for recovery
	Unit of work in TSO
	Unit of work in CICS
	Planning for program recovery in IMS programs
	Unit of work in IMS online programs
	Specifying checkpoint frequency in IMS programs
	Recovering data in IMS programs

	Undoing selected changes within a unit of work by using savepoints
	Planning for recovery of table spaces that are not logged

	Designing your application to access distributed data
	Remote servers and distributed data
	Preparing for coordinated updates to two or more data sources
	Forcing restricted system rules in your program

	Chapter 2. Connecting to DB2 from your application program
	Invoking the call attachment facility
	Call attachment facility
	Properties of CAF connections
	Attention exit routines for CAF
	Recovery routines for CAF

	Making the CAF language interface (DSNALI) available
	Requirements for programs that use CAF
	How CAF modifies the content of registers
	Implicit connections to CAF
	CALL DSNALI statement parameter list
	Summary of CAF behavior
	CAF connection functions
	CONNECT function for CAF
	OPEN function for CAF
	CLOSE function for CAF
	DISCONNECT function for CAF
	TRANSLATE function for CAF

	Turning on a CAF trace
	CAF return codes and reason codes
	Sample CAF scenarios
	Examples of invoking CAF

	Invoking the Resource Recovery Services attachment facility
	Resource Recovery Services attachment facility
	Properties of RRSAF connections

	Making the RRSAF language interface (DSNRLI) available
	Requirements for programs that use RRSAF
	How RRSAF modifies the content of registers
	Implicit connections to RRSAF
	CALL DSNRLI statement parameter list
	Summary of RRSAF behavior
	RRSAF connection functions
	IDENTIFY function for RRSAF
	SWITCH TO function for RRSAF
	SIGNON function for RRSAF
	AUTH SIGNON function for RRSAF
	CONTEXT SIGNON function for RRSAF
	SET_ID function for RRSAF
	SET_CLIENT_ID function for RRSAF
	SET_REPLICATION function for RRSAF
	CREATE THREAD function for RRSAF
	TERMINATE THREAD function for RRSAF
	TERMINATE IDENTIFY function for RRSAF
	TRANSLATE function for RRSAF
	FIND_DB2_SYSTEMS function for RRSAF

	RRSAF return codes and reason codes
	Sample RRSAF scenarios
	Program examples for RRSAF

	Universal language interface
	Link-editing an application with DSNULI

	Controlling the CICS attachment facility from an application
	Detecting whether the CICS attachment facility is operational
	Improving thread reuse in CICS applications

	Chapter 3. Coding SQL statements in application programs: General information
	Declaring table and view definitions
	DCLGEN (declarations generator)
	Generating table and view declarations by using DCLGEN
	Generating table and view declarations by using DCLGEN from DB2I
	Data types that DCLGEN uses for variable declarations

	Including declarations from DCLGEN in your program
	Example: Adding DCLGEN declarations to a library

	Defining the items that your program can use to check whether an SQL statement executed successfully
	Defining SQL descriptor areas
	Declaring host variables and indicator variables
	Host variables
	Host variable arrays
	Host structures
	Indicator variables, arrays, and structures
	Setting the CCSID for host variables
	Determining what caused an error when retrieving data into a host variable

	Accessing an application defaults module
	Compatibility of SQL and language data types
	Embedding SQL statements in your application
	Delimiting an SQL statement
	Rules for host variables in an SQL statement
	Retrieving a single row of data into host variables
	Determining whether a retrieved value in a host variable is null or truncated
	Determining whether a column value is null
	Updating data by using host variables
	Inserting a single row by using a host variable
	Inserting null values into columns by using indicator variables or arrays
	Host variable arrays in an SQL statement
	Retrieving multiple rows of data into host variable arrays
	Inserting multiple rows of data from host variable arrays
	Retrieving a single row of data into a host structure
	Including dynamic SQL in your program
	Dynamic SQL
	Possible host languages for dynamic SQL applications
	Including dynamic SQL for non-SELECT statements in your program
	Including dynamic SQL for fixed-list SELECT statements in your program
	Including dynamic SQL for varying-list SELECT statements in your program
	Dynamically executing an SQL statement by using EXECUTE IMMEDIATE
	Dynamically executing an SQL statement by using PREPARE and EXECUTE
	Dynamically executing a data change statement
	Dynamically executing a statement with parameter markers by using the SQLDA
	Improving dynamic SQL performance by enabling the dynamic statement cache

	Methods for keeping prepared statements after commit points
	Limiting CPU time for dynamic SQL statements by using the resource limit facility
	Reactive governing
	Predictive governing

	Checking the execution of SQL statements
	Checking the execution of SQL statements by using the SQLCA
	Displaying SQLCA fields by calling DSNTIAR

	Checking the execution of SQL statements by using SQLCODE and SQLSTATE
	Checking the execution of SQL statements by using the WHENEVER statement
	Checking the execution of SQL statements by using the GET DIAGNOSTICS statement
	Data types for GET DIAGNOSTICS items

	Handling SQL error codes
	Arithmetic and conversion errors

	Writing applications that enable users to create and modify tables
	Saving SQL statements that are translated from user requests
	XML data in embedded SQL applications
	Host variable data types for XML data in embedded SQL applications
	XML column updates in embedded SQL applications
	XML data retrieval in embedded SQL applications

	Programming examples
	Examples of programs that call stored procedures

	Chapter 4. Coding SQL statements in assembler application programs
	Defining the SQL communications area, SQLSTATE, and SQLCODE in assembler
	Defining SQL descriptor areas in assembler
	Declaring host variables and indicator variables in assembler
	Host variables in assembler
	Indicator variables in assembler

	Equivalent SQL and assembler data types
	SQL statements in assembler programs
	Delimiters in SQL statements in assembler programs
	Macros for assembler applications
	Programming examples in assembler

	Chapter 5. Coding SQL statements in C application programs
	Defining the SQL communications area, SQLSTATE, and SQLCODE in C
	Defining SQL descriptor areas in C
	Declaring host variables and indicator variables in C
	Host variables in C
	Host variable arrays in C
	Host structures in C
	Indicator variables, indicator arrays, and host structure indicator arrays in C
	Referencing pointer host variables in C programs
	Declaring pointer host variables in C programs

	Equivalent SQL and C data types
	SQL statements in C programs
	Delimiters in SQL statements in C programs
	Programming examples in C
	Sample dynamic and static SQL in a C program
	Example C program that calls a stored procedure
	Example C stored procedure with a GENERAL linkage convention
	Example C stored procedure with a GENERAL WITH NULLS linkage convention

	Chapter 6. Coding SQL statements in COBOL application programs
	Defining the SQL communications area, SQLSTATE, and SQLCODE in COBOL
	Defining SQL descriptor areas in COBOL
	Declaring host variables and indicator variables in COBOL
	Host variables in COBOL
	Host variable arrays in COBOL
	Host structures in COBOL
	Indicator variables, indicator arrays, and host structure indicator arrays in COBOL
	Controlling the CCSID for COBOL host variables

	Equivalent SQL and COBOL data types
	SQL statements in COBOL programs
	Delimiters in SQL statements in COBOL programs
	Object-oriented extensions in COBOL
	Programming examples in COBOL
	Sample COBOL dynamic SQL program
	Sample COBOL program with CONNECT statements
	Sample COBOL program using aliases for three-part names
	Example COBOL stored procedure with a GENERAL WITH NULLS linkage convention
	Example COBOL stored procedure with a GENERAL linkage convention
	Example COBOL program that calls a stored procedure

	Chapter 7. Coding SQL statements in Fortran application programs
	Defining the SQL communications area, SQLSTATE, and SQLCODE in Fortran
	Defining SQL descriptor areas in Fortran
	Declaring host variables and indicator variables in Fortran
	Host variables in Fortran
	Indicator variables in Fortran

	Equivalent SQL and Fortran data types
	SQL statements in Fortran programs
	Delimiters in SQL statements in Fortran programs

	Chapter 8. Coding SQL statements in PL/I application programs
	Defining the SQL communications area, SQLSTATE, and SQLCODE in PL/I
	Defining SQL descriptor areas in PL/I
	Declaring host variables and indicator variables in PL/I
	Host variables in PL/I
	Host variable arrays in PL/I
	Host structures in PL/I
	Indicator variables in PL/I

	Equivalent SQL and PL/I data types
	SQL statements in PL/I programs
	Delimiters in SQL statements in PL/I programs
	Programming examples in PL/I
	Example PL/I program that calls a stored procedure
	Example PL/I stored procedure with a GENERAL linkage convention
	Example PL/I stored procedure with a GENERAL WITH NULLS linkage convention

	Chapter 9. Coding SQL statements in REXX application programs
	Defining the SQL communications area, SQLSTATE, and SQLCODE in REXX
	Defining SQL descriptor areas in REXX
	Equivalent SQL and REXX data types
	SQL statements in REXX programs
	Delimiters in SQL statements in REXX programs
	Accessing the DB2 REXX language support application programming interfaces
	Ensuring that DB2 correctly interprets character input data in REXX programs
	Passing the data type of an input data type to DB2 for REXX programs
	Setting the isolation level of SQL statements in a REXX program
	Retrieving data from DB2 tables in REXX programs
	Cursors and statement names in REXX
	Programming examples in REXX
	Sample DB2 REXX application
	Example of how an indicator variable is used in a REXX program

	Chapter 10. Creating and modifying DB2 objects
	Creating tables
	Data types
	Storing LOB data in a table
	Large objects (LOBs)
	Implicitly hidden ROWID columns

	Identity columns
	Creating tables for data integrity
	Ways to maintain data integrity
	Defining a parent key and unique index
	Defining a foreign key
	Maintaining referential integrity when using data encryption

	Creating work tables for the EMP and DEPT sample tables
	Creating created temporary tables
	Temporary tables

	Creating declared temporary tables

	Providing a unique key for a table
	Fixing tables with incomplete definitions
	Dropping tables
	Defining a view
	Views

	Dropping a view
	Creating a common table expression
	Common table expressions
	Examples of recursive common table expressions

	Creating triggers
	Invoking a stored procedure or user-defined function from a trigger
	Inserting, updating, and deleting data in views by using INSTEAD OF triggers
	Trigger packages
	Trigger cascading
	Order of multiple triggers
	Interactions between triggers and referential constraints
	Interactions between triggers and tables that have multilevel security with row-level granularity
	Triggers that return inconsistent results

	Sequence objects
	DB2 object relational extensions
	Creating a distinct type
	Distinct types
	Example of distinct types, user-defined functions, and LOBs
	Arrays in SQL statements
	Example of using arrays in an SQL procedure

	Defining a user-defined function
	User-defined functions
	External user-defined functions
	SQL scalar functions
	SQL table functions
	Sourced functions

	Components of a user-defined function definition
	Writing an external user-defined function
	Parameters for external user-defined functions

	Making a user-defined function reentrant
	Special registers in a user-defined function or a stored procedure
	Accessing transition tables in a user-defined function or stored procedure
	Preparing an external user-defined function for execution
	Abnormal termination of an external user-defined function
	Saving information between invocations of a user-defined function by using a scratchpad
	Example of creating and using a user-defined scalar function
	User-defined function samples that ship with DB2
	Determining the authorization cache size for stored procedures and user-defined functions

	Creating a stored procedure
	Stored procedures
	Stored procedure parameters
	Example of a simple stored procedure
	SQL procedures
	Autonomous procedures
	External stored procedures
	Differences between SQL procedures and external procedures
	COMMIT and ROLLBACK statements in a stored procedure
	Special registers in a stored procedure

	Creating a native SQL procedure
	Controlling the scope of variables in an SQL procedure
	Declaring cursors in an SQL procedure with nested compound statements
	Handling SQL conditions in an SQL procedure
	Raising a condition within an SQL procedure by using the SIGNAL or RESIGNAL statements
	Making copies of a package for a native SQL procedure
	Creating a new version of a native SQL procedure
	Deploying a native SQL procedure to another DB2 for z/OS server

	Migrating an external SQL procedure to a native SQL procedure
	Using the DB2 precompiler to assist you in converting an external SQL procedure to a native SQL procedure

	Changing an existing version of a native SQL procedure
	Regenerating an existing version of a native SQL procedure
	Removing an existing version of a native SQL procedure
	Creating an external SQL procedure
	Creating an external SQL procedure by using DSNTPSMP
	Creating an external SQL procedure by using JCL
	Sample programs to help you prepare and run external SQL procedures

	Creating an external stored procedure
	Defining the linkage convention for an external stored procedure
	DBINFO structure
	Packages and plans for external stored procedures
	Accessing other sites in an external procedure
	Accessing non-DB2 resources in your stored procedure
	Writing an external procedure to access IMS databases
	Writing an external procedure to return result sets to a distributed client
	Restrictions when calling other programs from an external stored procedure
	Creating an external stored procedure as reentrant
	External stored procedures as main programs and subprograms
	Data types in stored procedures
	REXX stored procedures
	Modifying an external stored procedure definition

	Creating multiple versions of external procedures and external SQL procedures

	Chapter 11. Adding and modifying data
	Inserting data into tables
	Inserting rows by using the INSERT statement
	Inserting rows into a table from another table
	Rules for inserting data into a ROWID column
	Rules for inserting data into an identity column
	Restrictions when assigning values to columns with distinct types

	Inserting data and updating data in a single operation
	Selecting values while merging data

	Selecting values while inserting data
	Preserving the order of a derived table

	Adding data to the end of a table
	Storing data that does not have a tabular format
	Updating table data
	Selecting values while updating data
	Updating thousands of rows

	Deleting data from tables
	Selecting values while deleting data

	Chapter 12. Accessing data
	Determining which tables you have access to
	Displaying information about the columns for a given table
	Retrieving data by using the SELECT statement
	Selecting derived columns
	Selecting XML data
	Formatting the result table
	Result tables
	Eliminating redundant duplicate rows in the result table
	Naming result columns
	Ordering the result table rows
	Numbering the rows in a result table
	Ranking the rows

	Combining result tables from multiple SELECT statements
	Summarizing group values
	Filtering groups

	Finding rows that were changed within a specified period of time
	Joining data from more than one table
	Joining more than two tables
	Inner joins
	Outer joins
	Full outer join
	Left outer join
	Right outer join
	SQL rules for statements that contain join operations
	Sample data for joins

	Optimizing retrieval for a small set of rows
	Creating recursive SQL by using common table expressions
	Updating data as it is retrieved from the database
	Avoiding decimal arithmetic errors
	Precision for operations with decimal numbers
	Controlling how DB2 rounds decimal floating point numbers

	Implications of using SELECT *
	Subqueries
	Places where you can include a subquery
	Correlated subqueries
	Correlation names in references

	Restrictions when using distinct types with UNION, EXCEPT, and INTERSECT
	Comparison of distinct types
	Nested SQL statements

	Retrieving a set of rows by using a cursor
	Cursors
	Types of cursors
	Held and non-held cursors

	Accessing data by using a row-positioned cursor
	Declaring a row cursor
	Opening a row cursor
	Specifying the action that the row cursor is to take when it reaches the end of the data
	Executing SQL statements by using a row cursor
	Closing a row cursor

	Accessing data by using a rowset-positioned cursor
	Declaring a rowset cursor
	Opening a rowset cursor
	Specifying the action that the rowset cursor is to take when it reaches the end of the data
	Executing SQL statements by using a rowset cursor
	Closing a rowset cursor

	Retrieving rows by using a scrollable cursor
	Comparison of scrollable cursors
	Scrolling through a table in any direction
	Determining the number of rows in the result table for a static scrollable cursor
	Removing a delete hole or update hole

	Accessing XML or LOB data quickly by using FETCH WITH CONTINUE
	Dynamically allocating buffers when fetching XML and LOB data
	Moving data through fixed-size buffers when fetching XML and LOB data

	Determining the attributes of a cursor by using the SQLCA
	Determining the attributes of a cursor by using the GET DIAGNOSTICS statement
	Scrolling through previously retrieved data
	Updating previously retrieved data
	FETCH statement interaction between row and rowset positioning
	Examples of fetching rows by using cursors

	Specifying direct row access by using row IDs
	ROWID columns

	Ways to manipulate LOB data
	LOB host variable, LOB locator, and LOB file reference variable declarations
	LOB and XML materialization
	Saving storage when manipulating LOBs by using LOB locators
	Indicator variables and LOB locators
	Valid assignments for LOB locators
	Avoiding character conversion for LOB locators

	Deferring evaluation of a LOB expression to improve performance
	LOB file reference variables
	DB2-generated LOB file reference variable constructs
	Examples of declaring file reference variables

	Referencing a sequence object
	Retrieving thousands of rows
	Determining when a row was changed
	Checking whether an XML column contains a certain value
	Accessing DB2 data that is not in a table
	Ensuring that queries perform sufficiently
	Items to include in a batch DL/I program

	Chapter 13. Invoking a user-defined function
	Determining the authorization ID for invoking user-defined functions
	Ensuring that DB2 executes the intended user-defined function
	How DB2 resolves functions
	Checking how DB2 resolves functions by using DSN_FUNCTION_TABLE
	DSN_FUNCTION_TABLE

	Restrictions when passing arguments with distinct types to functions
	Cases when DB2 casts arguments for a user-defined function

	Chapter 14. Calling a stored procedure from your application
	Passing large output parameters to stored procedures by using indicator variables
	Data types for calling stored procedures
	Calling a stored procedure from a REXX procedure
	Preparing a client program that calls a remote stored procedure
	How DB2 determines which stored procedure to run
	Calling different versions of a stored procedure from a single application
	Invoking multiple instances of a stored procedure
	Designating the active version of a native SQL procedure
	Temporarily overriding the active version of a native SQL procedure
	Specifying the number of stored procedures that can run concurrently
	Retrieving the procedure status
	Writing a program to receive the result sets from a stored procedure
	DB2-supplied stored procedures
	WLM_REFRESH stored procedure
	WLM_SET_CLIENT_INFO stored procedure
	DSN_WLM_APPLENV stored procedure
	DSNACICS stored procedure
	The DSNACICX user exit routine

	DSNAIMS stored procedure
	DSNAIMS2 stored procedure
	DSNACCOR stored procedure (deprecated)
	XSR_REGISTER stored procedure
	XSR_ADDSCHEMADOC stored procedure
	XSR_COMPLETE stored procedure
	XSR_REMOVE stored procedure

	Chapter 15. Coding methods for distributed data
	Accessing distributed data by using three-part table names
	Accessing remote declared temporary tables by using three-part table names

	Accessing distributed data by using explicit CONNECT statements
	Specifying a location alias name for multiple sites
	Releasing connections

	Transmitting mixed data
	Identifying the server at run time
	SQL limitations at dissimilar servers
	Support for executing long SQL statements in a distributed environment
	Distributed queries against ASCII or Unicode tables
	Restrictions when using scrollable cursors to access distributed data
	Restrictions when using rowset-positioned cursors to access distributed data
	WebSphere MQ with DB2
	WebSphere MQ messages
	WebSphere MQ message handling

	DB2 MQ functions and DB2 MQ XML stored procedures
	Generating XML documents from existing tables and sending them to an MQ message queue
	Shredding XML documents from an MQ message queue
	DB2 MQ tables
	Basic messaging with WebSphere MQ
	Sending messages with WebSphere MQ
	Retrieving messages with WebSphere MQ
	Application to application connectivity with WebSphere MQ
	Asynchronous messaging in DB2 for z/OS
	MQListener in DB2 for z/OS

	Chapter 16. DB2 as a web services consumer and provider
	Deprecated: The SOAPHTTPV and SOAPHTTPC user-defined functions
	The SOAPHTTPNV and SOAPHTTPNC user-defined functions
	SQLSTATEs for DB2 as a web services consumer

	Chapter 17. Preparing an application to run on DB2 for z/OS
	Setting the DB2I defaults
	Processing SQL statements
	Processing SQL statements by using the DB2 precompiler
	Data sets that the precompiler uses
	Input to the DB2 precompiler
	Starting the precompiler dynamically when using JCL procedures
	Output from the DB2 precompiler

	Processing SQL statements by using the DB2 coprocessor
	Support for compiling a COBOL program that includes SQL from an assembler program

	Translating command-level statements in a CICS program
	Differences between the DB2 precompiler and the DB2 coprocessor
	Options for SQL statement processing
	Descriptions of SQL processing options
	Defaults for SQL processing options
	SQL options for DRDA access

	Compiling and link-editing an application
	Binding an application
	Binding a DBRM to a package
	Binding packages at a remote location
	Creating a package version
	Binding a DBRM that is in an HFS file to a package or collection

	Binding an application plan
	How DB2 identifies packages at run time
	Specifying the location of the package that DB2 is to use
	Specifying the package collection that DB2 is to use
	Overriding the values that DB2 uses to resolve package lists

	Bind process for remote access
	Bind options for remote access
	Checking which BIND PACKAGE options a particular server supports

	Binding a batch program
	Conversion of DBRMs that are bound to a plan to DBRMs that are bound to a package
	Converting an existing plan into packages to run remotely
	Setting the program level
	DYNAMICRULES bind option
	Determining the authorization cache size for plans
	Authorization cache

	Determining the authorization cache size for packages
	Dynamic plan selection

	Rebinding an application
	Rebinding a package
	Rebinding a plan
	Rebinding lists of plans and packages
	Generating lists of REBIND commands
	Sample program to create REBIND subcommands for lists of plans and packages
	Sample SELECT statements for generating REBIND commands
	Sample JCL for running lists of REBIND commands

	Automatic rebinding

	Application compatibility of packages
	V10R1 application compatibility

	Specifying the rules that apply to SQL behavior at run time
	DB2 program preparation overview
	Input and output data sets for DL/I batch jobs
	DB2-supplied JCL procedures for preparing an application
	JCL to include the appropriate interface code when using the DB2-supplied JCL procedures
	Tailoring DB2-supplied JCL procedures for preparing CICS programs

	DB2I primary option menu
	DB2I panels that are used for program preparation
	DB2 Program Preparation panel
	DB2I Defaults Panel 1
	DB2I Defaults Panel 2
	Precompile panel
	Bind Package panel
	Bind Plan panel
	Defaults for Bind Package and Defaults for Rebind Package panels
	Defaults for Bind Plan and Defaults for Rebind Plan panels
	System Connection Types panel
	Panels for entering lists of values
	Program Preparation: Compile, Link, and Run panel

	DB2I panels that are used to rebind and free plans and packages
	Bind/Rebind/Free Selection panel
	Rebind Package panel
	Rebind Trigger Package panel
	Rebind Plan panel
	Free Package panel
	Free Plan panel

	Chapter 18. Running an application on DB2 for z/OS
	DSN command processor
	DB2I Run panel
	Running a program in TSO foreground
	Running a DB2 REXX application
	Invoking programs through the Interactive System Productivity Facility
	ISPF
	Invoking a single SQL program through ISPF and DSN
	Invoking multiple SQL programs through ISPF and DSN

	Loading and running a batch program
	Authorization for running a batch DL/I program
	Restarting a batch program
	Finding the DL/I batch checkpoint ID

	Running stored procedures from the command line processor
	Command line processor CALL statement

	Example of running a batch DB2 application in TSO
	Example of calling applications in a command procedure

	Chapter 19. Testing and debugging an application program on DB2 for z/OS
	Designing a test data structure
	Analyzing application data needs
	Authorization for test tables and applications
	Example SQL statements to create a comprehensive test structure

	Populating the test tables with data
	Methods for testing SQL statements
	Executing SQL by using SPUFI
	SPUFI
	Content of a SPUFI input data set
	The SPUFI panel
	Changing SPUFI defaults
	CURRENT SPUFI DEFAULTS panel
	CURRENT SPUFI DEFAULTS - PANEL 2 panel

	Setting the SQL terminator character in a SPUFI input data set
	Controlling toleration of warnings in SPUFI
	Output from SPUFI

	Testing an external user-defined function
	Testing a user-defined function by using the Debug Tool for z/OS
	Testing a user-defined function by routing the debugging messages to SYSPRINT
	Testing a user-defined function by using driver applications
	Testing a user-defined function by using SQL INSERT statements

	Debugging stored procedures
	Debugging stored procedures with the Debug Tool and IBM VisualAge COBOL
	Debugging a C language stored procedure with the Debug Tool and C/C++ Productivity Tools for z/OS
	Debugging stored procedures by using the Unified Debugger
	Debugging stored procedures with the Debug Tool for z/OS
	Recording stored procedure debugging messages in a file
	Driver applications for debugging procedures
	DB2 tables that contain debugging information

	Debugging an application program
	Locating the problem in an application
	Error and warning messages from the precompiler
	SYSTERM output from the precompiler
	SYSPRINT output from the precompiler

	Techniques for debugging programs in TSO
	Techniques for debugging programs in IMS
	Techniques for debugging programs in CICS

	Finding a violated referential or check constraint

	Chapter 20. DB2 sample applications and data
	DB2 sample tables
	Activity table (DSN8B10.ACT)
	Department table (DSN8B10.DEPT)
	Employee table (DSN8B10.EMP)
	Employee photo and resume table (DSN8B10.EMP_PHOTO_RESUME)
	Project table (DSN8B10.PROJ)
	Project activity table (DSN8B10.PROJACT)
	Employee-to-project activity table (DSN8B10.EMPPROJACT)
	Unicode sample table (DSN8B10.DEMO_UNICODE)
	Relationships among the sample tables
	Views on the sample tables
	Storage of sample application tables
	Storage group for sample application data
	Databases for sample application data
	Table spaces for sample application data

	DB2 sample applications
	Types of sample applications
	Application languages and environments for the sample applications
	Sample applications in TSO
	Sample applications in IMS
	Sample applications in CICS
	DSNTIAUL
	DSNTIAD
	DSNTEP2 and DSNTEP4

	Information resources for DB2 for z/OS and related products
	Notices
	Programming interface information
	Trademarks
	Privacy policy considerations

	Glossary
	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

