
DB2 11 for z/OS

Internationalization Guide

SC19-4057-00

���

DB2 11 for z/OS

Internationalization Guide

SC19-4057-00

���

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” at the
end of this information.

First edition (October 2013)

This edition applies to DB2 11 for z/OS (product number 5615-DB2), DB2 11 for z/OS Value Unit Edition (product
number 5697-P43), and to any subsequent releases until otherwise indicated in new editions. Make sure you are
using the correct edition for the level of the product.

Specific changes are indicated by a vertical bar to the left of a change. A vertical bar to the left of a figure caption
indicates that the figure has changed. Editorial changes that have no technical significance are not noted.

© Copyright IBM Corporation 2003, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this information . v
Who should read this information . v
DB2 Utilities Suite . v
Terminology and citations . vi
Accessibility features for DB2 11 for z/OS . vi
How to send your comments . vii
How to read syntax diagrams . vii

Chapter 1. Introduction to character conversion 1
Character conversion terminology . 1
Code pages and CCSIDs . 5
Encoding schemes . 7

ASCII. 8
EBCDIC . 8
Unicode . 11

Endianness . 15
Situations in which character conversion occurs . 16
Possible consequences of character conversion . 17
Types of character conversion . 17

Expanding conversion . 18
Contracting conversion . 19
Round-trip conversion. 20
Enforced subset conversion . 21

Chapter 2. How DB2 for z/OS uses Unicode . 23
Retrieving data from the DB2 catalog . 24
SYSDUMMYx tables . 25
Specifying that IFCID output should be in Unicode . 26

Chapter 3. Setting up DB2 to ensure that it interprets characters correctly 27
How DB2 performs character conversions . 27

SYSIBM.SYSSTRINGS catalog table . 28
Finding the CCSID values of your data sources . 29
Specifying CCSIDs in DB2 . 32

Specifying subsystem CCSIDs . 32
Specifying object CCSIDs . 37

Setting up z/OS Unicode Services for DB2 for z/OS. 38
Conversion image . 38
Basic character conversions for DB2 in the z/OS conversion image 39
Character conversions for Chinese, Japanese, and Korean character sets in the z/OS conversion image 42

Defining additional character conversions . 44
Checking defined character conversions . 44

Chapter 4. Storing Unicode data . 47
Deciding whether to store data as UTF-8 or UTF-16 . 47
Creating a Unicode table . 48

Tips for handling any extra storage that Unicode data might require 51
Estimating the column size for Unicode data . 52

Inserting data into a Unicode table . 53
Inserting Unicode data into a non-Unicode table . 54
Converting existing DB2 data to Unicode . 54
Effects on access paths when converting data to Unicode . 58

© Copyright IBM Corp. 2003, 2013 iii

||
||

Chapter 5. Application programming with Unicode data and multiple CCSIDs 59
Application encoding scheme . 60
Specifying a CCSID for your application. 61

Details of CCSID options for application programs . 63
Examples of specifying CCSIDs for application data . 66
Specifying CCSIDs for COBOL applications when using the DB2 coprocessor 68
Specifying CCSIDs for PL/I applications when using the DB2 coprocessor 71
Specifying CCSIDs for C/C++ applications when using the DB2 coprocessor 75

Determining the CCSID of DB2 data . 76
Determining the CCSID of a string value in an SQL statement 77
Objects with different CCSIDs in the same SQL statement . 77
Differences between Unicode and EBCDIC sorting sequences 80
Specifying how DB2 calculates the length of a string . 82
Specifying the sorting sequence for a language . 85
Performing culturally correct case conversions. 87

Locale . 89
Generating escaped Unicode data . 91
Normalization of Unicode strings . 94
How DB2 handles Unicode supplementary characters . 95
Processing Unicode data in COBOL applications . 95
Processing Unicode data in PL/I applications . 96
Processing Unicode data in C/C++ applications . 97
Java applications and Unicode data . 98
Green screen applications and Unicode data . 99
Variant characters . 100
DRDA character type parameters in Unicode . 101

Chapter 6. Debugging CCSID and Unicode problems 103
Potential problems when inserting non-Unicode data into a Unicode table 104

Appendix A. DB2 utilities and Unicode support 105

Appendix B. EXPLAIN Unicode support . 107

Appendix C. DB2 ODBC Unicode support . 109

Appendix D. IBM DB2 Tools Unicode support. 111

Appendix E. The International Components for Unicode 113

Appendix F. SYSIBM.SYSSTRINGS table . 115

Information resources for DB2 for z/OS and related products. 119

Notices . 121
Programming interface information . 122
Trademarks . 123
Privacy policy considerations . 123

Glossary . 125

Index . 127

iv Internationalization Guide

About this information

This information describes how to handle international data when working in a
DB2® 11 for z/OS® (DB2 for z/OS) environment.

This information provides basic guidance about storing and manipulating Unicode
data or data from different code pages in a DB2 for z/OS environment. Topics
include detailed information about the following tasks:
1. How to set up your subsystem so that DB2 correctly interprets data in any

encoding scheme
2. How to store and manipulate Unicode data
3. How to store and manipulate data in multiple encoding schemes
4. How to write applications that correctly interpret data according to the

encoding scheme

This information assumes that your DB2 subsystem is running in Version 11
new-function mode. Generally, new functions that are described, including changes
to existing functions, statements, and limits, are available only in new-function
mode, unless explicitly stated otherwise. Exceptions to this general statement
include optimization and virtual storage enhancements, which are also available in
conversion mode unless stated otherwise.

Who should read this information
This information is primarily intended for people who are responsible for using
character conversion in a DB2 for z/OS environment. It assumes that the user is
familiar with the following concepts:
v The basic concepts and facilities of DB2 in the z/OS environment
v The basic concepts of Structured Query Language (SQL)

DB2 Utilities Suite

Important: In this version of DB2 for z/OS, the DB2 Utilities Suite is available as
an optional product. You must separately order and purchase a license to such
utilities, and discussion of those utility functions in this publication is not intended
to otherwise imply that you have a license to them.

The DB2 Utilities Suite can work with DB2 Sort and the DFSORT program, which
you are licensed to use in support of the DB2 utilities even if you do not otherwise
license DFSORT for general use. If your primary sort product is not DFSORT,
consider the following informational APARs mandatory reading:
v II14047/II14213: USE OF DFSORT BY DB2 UTILITIES
v II13495: HOW DFSORT TAKES ADVANTAGE OF 64-BIT REAL

ARCHITECTURE

These informational APARs are periodically updated.
Related information

DB2 utilities packaging (Utility Guide)

© Copyright IBM Corp. 2003, 2013 v

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utlpackaging.htm

Terminology and citations
When referring to a DB2 product other than DB2 for z/OS, this information uses
the product's full name to avoid ambiguity.

The following terms are used as indicated:

DB2 Represents either the DB2 licensed program or a particular DB2 subsystem.

OMEGAMON®

Refers to any of the following products:
v IBM® Tivoli® OMEGAMON XE for DB2 Performance Expert on z/OS
v IBM Tivoli OMEGAMON XE for DB2 Performance Monitor on z/OS
v IBM DB2 Performance Expert for Multiplatforms and Workgroups
v IBM DB2 Buffer Pool Analyzer for z/OS

C, C++, and C language
Represent the C or C++ programming language.

CICS® Represents CICS Transaction Server for z/OS.

IMS™ Represents the IMS Database Manager or IMS Transaction Manager.

MVS™ Represents the MVS element of the z/OS operating system, which is
equivalent to the Base Control Program (BCP) component of the z/OS
operating system.

RACF®

Represents the functions that are provided by the RACF component of the
z/OS Security Server.

Accessibility features for DB2 11 for z/OS
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in z/OS products,
including DB2 11 for z/OS. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers and screen magnifiers.
v Customization of display attributes such as color, contrast, and font size

Tip: The Information Management Software for z/OS Solutions Information
Center (which includes information for DB2 11 for z/OS) and its related
publications are accessibility-enabled for the IBM Home Page Reader. You can
operate all features using the keyboard instead of the mouse.

Keyboard navigation

You can access DB2 11 for z/OS ISPF panel functions by using a keyboard or
keyboard shortcut keys.

For information about navigating the DB2 11 for z/OS ISPF panels using TSO/E or
ISPF, refer to the z/OS TSO/E Primer, the z/OS TSO/E User's Guide, and the z/OS
ISPF User's Guide. These guides describe how to navigate each interface, including
the use of keyboard shortcuts or function keys (PF keys). Each guide includes the
default settings for the PF keys and explains how to modify their functions.

vi Internationalization Guide

Related accessibility information

Online documentation for DB2 11 for z/OS is available in the Information
Management Software for z/OS Solutions Information Center, which is available at
the following website: http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp

IBM and accessibility

See the IBM Accessibility Center at http://www.ibm.com/able for more information
about the commitment that IBM has to accessibility.

How to send your comments
Your feedback helps IBM to provide quality information. Please send any
comments that you have about this book or other DB2 for z/OS documentation.
You can use the following methods to provide comments:
v Send your comments by email to db2zinfo@us.ibm.com and include the name of

the product, the version number of the product, and the number of the book. If
you are commenting on specific text, please list the location of the text (for
example, a chapter and section title or a help topic title).

v You can also send comments by using the Feedback link at the footer of each
page in the Information Management Software for z/OS Solutions Information
Center at http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp.

How to read syntax diagrams
Certain conventions apply to the syntax diagrams that are used in IBM
documentation.

Apply the following rules when reading the syntax diagrams that are used in DB2
for z/OS documentation:
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ��─── symbol indicates the beginning of a statement.
The ───� symbol indicates that the statement syntax is continued on the next
line.
The �─── symbol indicates that a statement is continued from the previous line.
The ───�� symbol indicates the end of a statement.

v Required items appear on the horizontal line (the main path).

�� required_item ��

v Optional items appear below the main path.

�� required_item
optional_item

��

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

��
optional_item

required_item ��

About this information vii

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp
http://www.ibm.com/able
mailto:db2zinfo@us.ibm.com
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/index.jsp

v If you can choose from two or more items, they appear vertically, in a stack.
If you must choose one of the items, one item of the stack appears on the main
path.

�� required_item required_choice1
required_choice2

��

If choosing one of the items is optional, the entire stack appears below the main
path.

�� required_item
optional_choice1
optional_choice2

��

If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

�� required_item
default_choice

optional_choice
optional_choice

��

v An arrow returning to the left, above the main line, indicates an item that can be
repeated.

�� required_item � repeatable_item ��

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

�� required_item �

,

repeatable_item ��

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

v Sometimes a diagram must be split into fragments. The syntax fragment is
shown separately from the main syntax diagram, but the contents of the
fragment should be read as if they are on the main path of the diagram.

�� required_item fragment-name ��

fragment-name:

required_item
optional_name

v With the exception of XPath keywords, keywords appear in uppercase (for
example, FROM). Keywords must be spelled exactly as shown. XPath keywords
are defined as lowercase names, and must be spelled exactly as shown. Variables
appear in all lowercase letters (for example, column-name). They represent
user-supplied names or values.

viii Internationalization Guide

v If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

About this information ix

x Internationalization Guide

Chapter 1. Introduction to character conversion

In computers, all characters are encoded according to the rules of a particular
encoding scheme and code page. If your database and applications handle data
from multiple code pages, that data might be converted at certain times from one
code page to another. This conversion process is called character conversion.

This situation of handling data from multiple code pages is likely if your database
and applications contain international data or data from multiple character sets,
such as Latin-1 and Katakana. In this situation, character conversions are likely to
occur.

The problem with character conversions is that they can degrade performance and
potentially cause data loss. Therefore, you should avoid these conversions if
possible. One way to avoid these conversions is to have all of your data in one
code page. If you use multiple character sets, you might considering using the
Unicode code page. This code page includes all characters. If you use Unicode for
all of your data, conversions can be avoided. However, converting all of your data
to Unicode is not a simple process.

This information discusses basic principles about character conversion and general
recommendations that you can apply to your environment for optimal
performance and storage.

Character conversion terminology
To understand the concept of character conversion, you should know the meaning
of some basic related terms.

The following terms are related to character conversion:

application encoding scheme
The CCSID that your application uses to interpret data in host variables.
For DB2 for z/OS applications, typically the application encoding scheme
is the value of the ENCODING bind option. (By default the value of the
ENCODING bind option is the subsystem default application encoding
scheme, which is the APPENSCH DECP value.) However, you can also set
the CCSID of application data by using the DECLARE VARIABLE
statement with the CCSID option or the CURRENT APPLICATION
ENCODING SCHEME special register.

If you are using the DB2 coprocessor, you can use various language
compiler options to override the DB2 application encoding scheme for an
application.

For more information about application encoding schemes, see “Specifying
a CCSID for your application” on page 61

ASCII Acronym for American Standard Code for Information Interchange, an
encoding scheme that is used to represent characters. In this information,
the term ASCII is used to refer to IBM-PC data or ISO 8-bit data.

For more information about ASCII, see “ASCII” on page 8. For more
information about encoding schemes in general, see “Encoding schemes”
on page 7.

© Copyright IBM Corp. 2003, 2013 1

big endian
A data format in which the most significant byte is stored first, at the
memory location with the lowest address.

For more information about big endian, see “Endianness” on page 15.

character conversion
The process of converting characters from one CCSID to another.

For more information about how DB2 performs character conversions, see
“How DB2 performs character conversions” on page 27.

character data representation architecture (CDRA)
An IBM architecture that aims to achieve consistent representation,
processing, and interchange of graphic character data in data processing
environments. CDRA defines a set of identifiers, services, supporting
resources, and conventions. The identifiers that CDRA defines are CCSIDs.

For more information about CDRA, see “Code pages and CCSIDs” on page
5.

character repertoire
A set of characters.

character set
A defined set of characters, in which a character is the smallest component
of written language that has semantic value.

code page
A specification of code points from a defined encoding scheme for each
character in a set or in a collection of character sets. Within a code page, a
code point can have only one specific meaning. Code pages are defined by
the IBM Globalization Center of Competency.

For more information about code pages, see “Code pages and CCSIDs” on
page 5.

code point
A unique bit pattern that represents a character.

For more information about code points, see “Code pages and CCSIDs” on
page 5.

coded character set
A set of unambiguous rules that establishes a character set and the
one-to-one relationships between the characters of the set and their coded
representations. A coded character set is the assignment of each character
in a character set to a unique numeric code value.

coded character set identifier (CCSID)
A 16-bit number that identifies a specific set of encoding scheme
identifiers, character set identifiers, code page identifiers, and additional
coding-related information. A CCSID is a number that identifies an
implementation of a code page at a particular point in time. A CCSID is an
attribute of strings, just as length is an attribute of strings. All values of the
same string column have the same CCSID.

For more information about CCSIDs, see “Code pages and CCSIDs” on
page 5.

2 Internationalization Guide

coded character set identifier (CCSID) set
The single byte CCSID value (SBCS), mixed CCSID value, and double byte
CCSID value (DBCS) that are associated with a particular encoding
scheme.

For more information about CCSID sets, see “Specifying subsystem
CCSIDs” on page 32.

collation name
A string value that specifies how DB2 is to sort data. The collation name
specifies attributes such as the language of the data, whether case should
be considered, and how punctuation characters should be treated.

For more information about collation names, see “Specifying the sorting
sequence for a language” on page 85.

contracting conversion
A character conversion in which the length of the converted string is
smaller than that of the source string.

For more information about contracting conversions, see “Contracting
conversion” on page 19.

conversion image
A data set that contains the information that z/OS Unicode Services needs
to perform character and case conversions.

For more information about conversion images, see “Conversion image” on
page 38.

EBCDIC
Acronym for Extended Binary-Coded Decimal Interchange Code, a group
of coded character sets that consists of 8-bit coded characters. EBCDIC
coded character sets assign characters to code points. Each code point
consists of 8 bits.

For more information about EBCDIC, see “EBCDIC” on page 8. For more
information about encoding schemes in general, see “Encoding schemes”
on page 7.

encoding scheme
A set of rules that is used to represent character data. All string data that is
stored in a table must use the same encoding scheme. All tables within a
table space must use the same encoding scheme, except for global
temporary tables, declared temporary tables, and work file table spaces. An
encoding scheme only describes the type of encoding; it does not specify
code points or a code page. Examples of encoding schemes include ASCII,
EBCDIC, and Unicode.

For more information about encoding schemes, see “Encoding schemes” on
page 7.

endianness
A data attribute that describes byte order.

For more information about endianness, see “Endianness” on page 15.

enforced subset conversion
A character conversion in which characters that do not have a code point
in the target CCSID are converted to a single substitution character.

For more information about enforced subset conversions, see “Enforced
subset conversion” on page 21.

Chapter 1. Introduction to character conversion 3

escaped data
One or more characters that cannot be represented in the target CCSID and
that have been identified as such by some extra syntax.

For more information about escaped data, see “Generating escaped
Unicode data” on page 91.

expanding conversion
A character conversion in which the length of the converted string is
greater than that of the source string.

For more information about expanding conversions, see “Expanding
conversion” on page 18.

International Components for Unicode (ICU)
A set of C/C++ and Java™ libraries for Unicode support and software
internationalization.

For more information about ICU, see Appendix E, “The International
Components for Unicode,” on page 113.

little endian
A data format in which the least significant byte is stored first, at the
memory location with the lowest address.

For more information about little endian, see “Endianness” on page 15.

locale An attribute that defines the user's cultural environment.

For more information about locales, see “Locale” on page 89.

lossless conversion
A character conversion in which all characters in the source CCSID exist in
the target CCSID, and thus, no character is lost.

For more information about lossless conversions, see “Possible
consequences of character conversion” on page 17.

normalization
A process that produces a unique code point sequence for all sequences
that are equivalent, either canonically or compatibly.

For more information about normalization, see “Normalization of Unicode
strings” on page 94.

round-trip conversion
A character conversion that ensures the integrity of all character data from
the source CCSID to the target CCSID and back to the source. Even if the
target CCSID does not support a given character, the character regains its
original hexadecimal value after the conversion back to the original CCSID.

For more information about round-trip conversions, see “Round-trip
conversion” on page 20.

substitution character
A unique character that is substituted during character conversion for any
characters in the source CCSID that do not have a match in the target
CCSID.

For more information about substitution characters, see “Enforced subset
conversion” on page 21.

supplementary characters
Characters that have a code point between U+10000 and U+10FFFF.

4 Internationalization Guide

For more information about supplementary characters, see “How DB2
handles Unicode supplementary characters” on page 95.

Unicode
An international character code for information processing that is designed
to encode all characters that are used for written communication in a
simple and consistent manner. The Unicode character encoding was
established to provide enough code points for all the scripts and technical
symbols in common usage around the world, plus some ancient scripts.

For more information about Unicode, see “Unicode” on page 11. For more
information about encoding schemes in general, see “Encoding schemes”
on page 7.

Unicode Consortium
A non-profit organization that develops and maintains international
standards, including the Unicode Standard.

For more information about the Unicode Consortium, see Unicode
Consortium.

Unicode transformation formats (UTFs)
Forms of Unicode encoding that were devised by the Unicode Consortium
to ensure that systems can communicate efficiently. UTF-8, UTF-16, and
UTF-32 were each designed for different processing objectives.

For more information about the UTFs, see “UTFs” on page 12.

z/OS Unicode Services
A set of functions that are provided by z/OS. Among the services are case
conversion service and character conversion service.

For more information about the z/OS Unicode Services, see “Setting up
z/OS Unicode Services for DB2 for z/OS” on page 38.

Code pages and CCSIDs
Because computers store only numbers, they store letters and other characters by
assigning a number to them. Which number is mapped to each character depends
on the CCSID and code page that is associated with that character.

A code page is a mapping of hexadecimal numbers to particular characters. For
example, the following table shows code page 37.

Table 1. Code page 37 with CCSID 37
1st →

2nd↓ 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-

-0 (sp) & - ø Ø º µ ^ { } \ 0

-1 (rsp) é / É a j ~ £ A J ÷ 1

-2 â ê Â Ê b k s ¥ B K S 2

-3 ä ë Ä Ë c l t v C L T 3

-4 à è À È d m u © D M U 4

-5 á í Á Í e n v § E N V 5

-6 ã î Ã Î f o w ¶ F O W 6

-7 å ï Å Ï g p x ¼ G P X 7

-8 ç ì Ç Ì h q y ½ H Q Y 8

Chapter 1. Introduction to character conversion 5

http://www.unicode.org
http://www.unicode.org

Table 1. Code page 37 with CCSID 37 (continued)
1st →

2nd↓ 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-

-9 ñ ß Ñ ` i r z ¾ I R Z 9

-A ¢ ! ¦ : ! ª ¡ [–
(SHY)

¹ ² ³

-B . $, # @ º ¿] ô û Ô Û

-C < * % @ ð æ Ð ‾ ö ü Ö Ü

-D () _ ' ý q Ý } ò ú Ò Ù

-E + ; > = þ Æ Þ u ó ú Ó Ú

-F | ¬ ? “ ± ¤ ® × õ ÿ Õ (EO)

Within a code page, each hexadecimal number representation for a character is
called a code point. When looking at a code page, you can find the hexadecimal
code point value for a particular character by concatenating the column header
with the row header. For example, find the character 'A' in the preceding code
page 37. The character 'A' is in column C and row 1. Therefore, the corresponding
code point for the character 'A' is X'C1'. As another example, find the character 'a'
in this same code page. The character 'a' is in column 8 and row 1. Therefore, the
corresponding code point is X'81'.

A coded character set identifier (CCSID) is a number that identifies an
implementation of a code page at a particular point in time. For example, the
preceding code page 37, which is the US-English code page, has a CCSID of 37.

CCSIDs are defined by the IBM character data representation architecture (CDRA).
CDRA is an architecture that aims to achieve consistent representation, processing,
and interchange of graphic character data in data processing environments. To
achieve this consistency, CDRA defines a set of services, supporting resources,
conventions, and identifiers, one of which is a CCSID. IBM maintains a repository
list of all CCSIDs that are defined by CDRA.

DB2 for z/OS uses CCSIDs. However, DB2 for Linux, UNIX, and Windows uses
code pages. The difference between code pages and CCSIDs is the stability. Code
pages might change. However, because CCSIDs capture a code page at a particular
point in time, the code page that it references does not change.

For example, consider code page 37. At some point, this code page was changed so
that code point X'9F' no longer mapped to the international currency symbol (¤).
Instead, this code point was mapped to the euro symbol (€). CCSID 37 refers to the
original code page 37. The altered code page has CCSID 1140. CCSID 1140 and
CCSID 37 differ by only that one character at code point X'9F'. The following table
shows CCSID 1140.

Table 2. Code page 37 with CCSID 1140
1st →

2nd↓ 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-

-0 (sp) & - ø Ø º µ ^ { } \ 0

-1 (rsp) é / É a j ~ £ A J ÷ 1

-2 â ê Â Ê b k s ¥ B K S 2

-3 ä ë Ä Ë c l t v C L T 3

6 Internationalization Guide

Table 2. Code page 37 with CCSID 1140 (continued)
1st →

2nd↓ 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-

-4 à è À È d m u © D M U 4

-5 á í Á Í e n v § E N V 5

-6 ã î Ã Î f o w ¶ F O W 6

-7 å ï Å Ï g p x ¼ G P X 7

-8 ç ì Ç Ì h q y ½ H Q Y 8

-9 ñ ß Ñ ` i r z ¾ I R Z 9

-A ¢ ! ¦ : ! ª ¡ [–
(SHY)

¹ ² ³

-B . $, # @ º ¿] ô û Ô Û

-C < * % @ ð æ Ð ‾ ö ü Ö Ü

-D () _ ' ý q Ý } ò ú Ò Ù

-E + ; > = þ Æ Þ u ó ú Ó Ú

-F | ¬ ? “ ± €
® × õ ÿ Õ (EO)

The exception to this idea of fixed CCSIDs is the CCSID set that DB2 for z/OS
uses for Unicode code pages. For Unicode data, DB2 for z/OS uses CCSIDs that
have the ability to grow as the Unicode standard grows. For more information
about those CCSIDs, see “Unicode CCSIDs” on page 14.

In DB2 for z/OS, all character data is associated with a CCSID. If the data does not
have one, DB2 uses the subsystem defaults. You specify these subsystem default
CCSID values when you install DB2. Character conversion is described in terms of
CCSIDs of the source and target.
Related concepts:

Euro symbol support (DB2 Installation and Migration)
Related tasks:
“Specifying CCSIDs in DB2” on page 32
Related information:

Coded character set identifiers (CCSIDs)

Character Data Representation Architecture Reference

Encoding schemes
An encoding scheme standardizes the encoding of character sets by defining a set of
rules for representing character data. Each encoding scheme consists of a number
of code pages that adhere to its rules. For example, code pages 37, 500, and 1047
are all part of the EBCDIC encoding scheme.

The major encoding schemes are EBCDIC, ASCII, and Unicode. The EBCDIC
encoding scheme is typically used on zSeries® (z/OS) and iSeries® (AS/400®). The
ASCII encoding scheme is used on Intel-based systems, such as Windows, UNIX
based systems, such as AIX®, and the Linux operating system. The Unicode
encoding scheme is supported by many operating systems.

Chapter 1. Introduction to character conversion 7

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_convert2euro.htm#db2z_convert2euro
http://www.ibm.com/software/globalization/ccsid/ccsid_registered.html
http://www.ibm.com/software/globalization/cdra/index.jsp

ASCII
The American Standard Code for Information Interchange (ASCII) is an encoding
scheme. ASCII is typically used on Intel-based systems, such as Windows, and
UNIX-based systems, such as Linux.

ASCII was developed by a committee of the American Standards Association. The
first ASCII standard was published in 1963.

Certain characters are the same on every ASCII code page. Those characters are
called invariant characters. Other characters might vary from one code page to the
next. These characters are called variant characters. For more information about
ASCII invariance in SBCS code pages, see Invariance of the Syntactic Character Set
in Basic SBCS Encoding Structures .

Some example ASCII CCSIDs are 367, 819, and 912.

The following table shows the code page for ASCII CCSID 367.

Table 3. CCSID 367
1st →

2nd↓ 0- 1- 2- 3- 4- 5- 6- 7-

-0 (sp) 0 @ P ` p

-1 ! 1 A Q a q

-2 " 2 B R b r

-3 # 3 C S c s

-4 $ 4 D T d t

-5 % 5 E U e u

-6 & 6 F V f v

-7 ' 7 G W g w

-8 (8 H X h x

-9) 9 I Y i y

-A * : J Z j z

-B + ; K [k {

-C , < L \ l |

-D - = M] m }

-E . > N ^ n ~

-F / ? O _ o

Related concepts:
“Variant characters” on page 100

EBCDIC
Extended Binary Coded Decimal Interchange Code (EBCDIC) is an encoding
scheme that is typically used on zSeries (z/OS) and iSeries (System i®).

EBCDIC was developed by IBM in 1963.

Certain characters are the same on every EBCDIC code page. Those characters are
called invariant characters. Other characters might vary from one code page to the

8 Internationalization Guide

http://www.ibm.com/software/globalization/cdra/appendix_a.html#fig45
http://www.ibm.com/software/globalization/cdra/appendix_a.html#fig45

next. These characters are called variant characters. For more information about
EBCDIC invariance in SBCS code pages, see Invariance of the Syntactic Character
Set in Basic SBCS Encoding Structures .

Some example EBCDIC CCSIDs are 37, 500, and 1047.

The following table shows the code page for EBCDIC CCSID 37.

Table 4. Code page 37 with CCSID 37
1st →

2nd↓ 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-

-0 (sp) & - ø Ø º µ ^ { } \ 0

-1 (rsp) é / É a j ~ £ A J ÷ 1

-2 â ê Â Ê b k s ¥ B K S 2

-3 ä ë Ä Ë c l t v C L T 3

-4 à è À È d m u © D M U 4

-5 á í Á Í e n v § E N V 5

-6 ã î Ã Î f o w ¶ F O W 6

-7 å ï Å Ï g p x ¼ G P X 7

-8 ç ì Ç Ì h q y ½ H Q Y 8

-9 ñ ß Ñ ` i r z ¾ I R Z 9

-A ¢ ! ¦ : ! ª ¡ [–
(SHY)

¹ ² ³

-B . $, # @ º ¿] ô û Ô Û

-C < * % @ ð æ Ð ‾ ö ü Ö Ü

-D () _ ' ý q Ý } ò ú Ò Ù

-E + ; > = þ Æ Þ u ó ú Ó Ú

-F | ¬ ? “ ± ¤ ® × õ ÿ Õ (EO)

Related concepts:
“Variant characters” on page 100

Code point differences between EBCDIC CCSIDs
Although many EBCDIC code pages are similar, code points for certain characters
vary from code page to code page. These characters are called variant characters
and can potentially cause problems.

Characters A-Z, a-z, and 0-9 correspond to the same hexadecimal code points on
most EBCDIC code pages. Other characters, such as the left bracket ([) correspond
to different code points depending on the CCSID. Therefore, to ensure that DB2
interprets your data correctly, you should specify the correct CCSID, especially
when you use characters other than A-Z, a-z, and 0-9.

The following tables show some code point differences between several common
EBCDIC CCSIDs.

The following table shows the difference in code points between EBCDIC CCSID
37 and EBCDIC CCSID 500.

Chapter 1. Introduction to character conversion 9

http://www.ibm.com/software/globalization/cdra/appendix_a.html#fig45
http://www.ibm.com/software/globalization/cdra/appendix_a.html#fig45

Table 5. Code point differences between EBCDIC CCSID 37 and EBCDIC CCSID 500

Code point

Character

CCSID 37 CCSID 500

X'4A' ¢ (cent sign) [(left bracket)

X'4F' | (vertical bar) ! (exclamation point)

X'5A' ! (exclamation point)] (right bracket)

X'5F' ¬(logical not) (circumflex accent)

X'B0' (circumflex accent) ¢ (cent sign)

X'BA' [(left bracket) ¬(logical not)

X'BB'] (right bracket) | (vertical bar)

The following table shows the difference in code points between EBCDIC CCSID
37 and EBCDIC CCSID 1047.

Table 6. Code point differences between EBCDIC CCSID 37 and EBCDIC CCSID 1047

Code point

Character

CCSID 37 CCSID 1047

X'5F' ¬(logical not) (circumflex accent)

X'AD' Ý (uppercase Y with acute
accent)

[(left bracket)

X'B0' (circumflex accent) ¬(logical not)

X'BA' [(left bracket) Ý (uppercase Y with acute
accent)

X'BB'] (right bracket) } (umlaut)

X'BD' } (umlaut)] (right bracket)

The following table shows the difference in code points between EBCDIC CCSID
500 and EBCDIC CCSID 1047.

Table 7. Code point differences between EBCDIC CCSID 500 and EBCDIC CCSID 1047

Code point

Character

CCSID 500 CCSID 1047

X'4A' [(left bracket) ¢(cent sign)

X'4F' ! (exclamation point) | (vertical bar)

X'5A'] (right bracket) ! (exclamation point)

X'AD' Ý (uppercase Y with acute
accent)

[(left bracket)

X'B0' ¢(cent sign) ¬(logical not)

X'BA' ¬(logical not) Ý (uppercase Y with acute
accent)

X'BB' | (vertical bar) } (umlaut)

X'BD' } (umlaut)] (right bracket)

10 Internationalization Guide

Related concepts:
“Variant characters” on page 100

Unicode
Unicode is an encoding scheme that currently provides a unique code point for
over 100,000 characters. This standard enables systems to more easily handle global
data, regardless of the platform, program, or language.

Before Unicode was defined, no single encoding was adequate for all available
letters and symbols. For example, consider the following restrictions for EBCDIC
and ASCII:
v These encoding schemes have one code page per character set. For example,

they have one code page for Japanese characters and another code page for
German characters.

v These encoding schemes often encode data in different positions. For example,
the letter A is encoded as X'C1' in most EBCDIC code pages, but it is encoded as
X'41' in most ASCII code pages.

v Even within encoding schemes, characters might be mapped differently. For
example, the letter ä is encoded as X'C0' in EBCDIC code page 273, but it is
encoded as X'43' in EBCDIC code page 37. (Code page 37 has the left brace
character ({) at position X'C0'.) This same letter ä is encoded as X'E4' in ASCII
code page 819 and as X'7B' in ASCII code page 1011.

Thus, handling data from more than one character set, such as German characters
and Arabic characters, was difficult when ASCII or EBCDIC was used.

Unicode avoids these problems by having a single standard that can provide a
unique code point for over a million characters. Currently, the standard has
defined code points for just over 100,000 characters. You can view the Unicode
code points by looking at the Unicode character code charts on the Unicode
Consortium web site. For example, if you look up Unicode code point U+41, you
can see that it corresponds to the character 'A'.

The following table shows the first 128 Unicode code points from U+00 to U+7E.
These code points are the same as those in ASCII 367.

Table 8. The first 128 code points for Unicode and ASCII CCSID 367
1st →

2nd↓
0- 1- 2- 3- 4- 5- 6- 7-

-0 NUL DLE (sp) 0 @ P ` p

-1 SCH DC1 ! 1 A Q a q

-2 STX DC2 " 2 B R b r

-3 ETX DC3 # 3 C S c s

-4 EQT DC4 $ 4 D T d t

-5 ENQ NAK % 5 E U e u

-6 ACK SYN & 6 F V f v

-7 BEL ETB ' 7 G W g w

-8 BS CAN (8 H X h x

-9 HT EM) 9 I Y i y

-A LF SUB * : J Z j z

B- VT ESC + ; K [k {

Chapter 1. Introduction to character conversion 11

http://www.unicode.org/charts/
http://www.unicode.org/charts/

Table 8. The first 128 code points for Unicode and ASCII CCSID 367 (continued)
1st →

2nd↓
0- 1- 2- 3- 4- 5- 6- 7-

-C FF FS , < L \ l |

-D OR GS - = M] m }

-E SO RS . > N ^ n ~

-F SI US / ? O _ o DEL

Related concepts:
“Code pages and CCSIDs” on page 5
Related reference:

Displaying Unicode Services (z/OS MVS System Commands)
Related information:

Unicode Consortium

Unicode Character Code Charts (on Unicode Consortium website)

UTFs
Each Unicode code point can be expressed in several different formats. These
formats are called Unicode transformation formats (UTFs).

For example, the letter M is the Unicode code point U+004D. In UTF-8, this code
point is represented as X'4D'. In UTF-16, this code point can be represented as
X'004D'. 1

A UTF maps each Unicode code point to a unique code unit sequence. A code unit
is the minimal bit combination that can represent a character. Each UTF uses a
different code unit size. For example, UTF-8 is based on 8-bit code units. Therefore,
each character can be 8 bits (1 byte), 16 bits (2 bytes), 24 bits (3 bytes), or 32 bits (4
bytes). Likewise, UTF-16 is based on 16-bit code units. Therefore, each character
can be 16 bits (2 bytes) or 32 bits (4 bytes).

All UTFs include the full Unicode character repertoire, or set of characters. Each UTF
can represent any Unicode character that you need to represent.

The following UTFs are defined by the Unicode Consortium:

UTF-8 UTF-8 is based on 8-bit code units. Each character is encoded as 1 to 4
bytes.

The first 128 Unicode code points are encoded as 1 byte in UTF-8. These
code points are the same as those in ASCII CCSID 367. Any other character
is encoded with more than 1 byte in UTF-8.

In IBM, UTF-8 is also known as Unicode CCSID 1208.

DB2 uses UTF-8 to encode data in the following ways:
v DB2 uses UTF-8 to encode data in CHAR, VARCHAR, and CLOB

columns in Unicode tables.
v DB2 parses SQL statements and precompiles source code in UTF-8.

1. X'004D' is the UTF-16 big endian representation. The UTF-16 little endian representation is X'4D00'. For more information about
endianness, see “Endianness” on page 15.

12 Internationalization Guide

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2g1c2/4.10.69?ACTION=MATCHES&REQUEST=displaying+unicode+services&TYPE=FUZZY&SHELF=&DT=20120815003139&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT
http://www.unicode.org
http://www.unicode.org/charts/

v The DB2 catalog tables that have the Unicode encoding scheme are
encoded in UTF-8.

UTF-16
UTF-16 is based on 16-bit code units. Each character is encoded as at least
2 bytes. Some characters that are encoded with a 1-byte code unit in UTF-8
are encoded with a 2-byte code unit in UTF-16.

Characters that are surrogate or supplementary characters use 4 bytes and
thus require additional storage. These characters can also be stored in
UTF-8 or UTF-32, but, because they always require 4 bytes of storage,
neither of these formats provide any space savings.

In IBM, UTF-16 is also known as Unicode CCSID 1200.

DB2 uses UTF-16 to encode data in GRAPHIC, VARGRAPHIC, and
DBCLOB columns in Unicode tables.

UTF-32
UTF-32 is based on 32-bit code units. Each character is encoded as at least
4 bytes. DB2 does not store data in UTF-32.

The following table shows example UTF encodings for several characters.

Table 9. Example UTF encodings

Character
Unicode code
point ASCII UTF-8

UTF-16 (Big
Endian
format)1

UTF-32 (Big
Endian
format)

A U+0041 X'41' X'41' X'0041' X'00000041'

a U+0061 X'61' X'61' X'0061' X'00000061'

9 U+0039 X'39' X'39' X'0039' X'00000039'

Å U+00C5 X'C5' X'C385'2 X'00C5' X'000000C5'

U+9860 X'CDDB'
(CCSID 939)

X'E9A1A0' X'9860' X'00009860'

U + 200D0 Does not exist X'F0A08390' X'D840DCD0' X'000200D0'

Notes:

1. z/OS uses Big Endian format only. Little Endian format is used in other operating
systems.

2. X'C5' becomes double-byte in UTF-8.

Notice that for some characters, the UTF encodings are fairly predictable. For
example, the character A, which is Unicode code point U+0041, is encoded as X'41'
in ASCII and UTF-8, and as X'0041' in UTF-16 and as X'00000041' in UTF-32.

However, the UTF encodings for a character like Å or do not follow the
same pattern.

The process of converting a value from its Unicode code point to its UTF
hexadecimal value is called encoding. For example, Unicode code point U+0041 is
encoded in UTF-8 as X'41'. The reverse process, converting a UTF hexadecimal
value to its Unicode code point, is called decoding. For example, suppose that you
see the hexadecimal value X'00C5' in trace output and you know that the data is in

Chapter 1. Introduction to character conversion 13

UTF-16. You can decode the value to find that it corresponds to Unicode code
point U+00C5. You can then look up this Unicode code point on the Unicode
character code charts on the Unicode Consortium web site and find that it
corresponds to the character Å.

You can find the steps for how to manually encode and decode Unicode data on
the Unicode Consortium web site. Alternatively, you can use a converter tool to do
the conversion for you.
Related concepts:
“Endianness” on page 15
Related information:

Unicode Consortium

UTF-8, UTF-16, UTF-32 & BOM (on Unicode Consortium website)

Unicode Character Code Charts (on Unicode Consortium website)

CCSID 367 code page

Unicode CCSIDs
DB2 for z/OS uses CCSIDs 367, 1200, and 1208 for Unicode data.

367 DB2 uses ASCII CCSID 367 for single-byte character data (SBCS) because
the first 128 code points in Unicode UTF-8 are the same as the those in
ASCII CCSID 367.

Therefore, DB2 uses CCSID 367 for CHAR, VARCHAR, and CLOB columns
that are defined with FOR SBCS DATA in Unicode tables.

1208 DB2 uses CCSID 1208 for Unicode UTF-8 data, which DB2 always
considers to be mixed data. This CCSID is the default CCSID value for
Unicode tables.

Therefore, DB2 uses CCSID 1208 for CHAR, VARCHAR, and CLOB
columns that are defined with FOR MIXED DATA in Unicode tables. FOR
MIXED DATA is the default subtype specification.

1200 DB2 uses CCSID 1200 for Unicode UTF-16 data, which is double-byte data
(DBCS). This CCSID applies to GRAPHIC and VARGRAPHIC Unicode
data.

Therefore, DB2 uses CCSID 1200 for GRAPHIC, VARGRAPHIC, and
DBCLOB columns in Unicode tables.

CCSIDs usually refer to a code page at a particular point in time. However, the
Unicode CCSIDs that DB2 for z/OS uses are an exception. They can expand to
include more characters as the Unicode standard grows. For example, CCSID 1200
can include the characters from the Unicode standard code pages 13488 (Unicode
2.0) and 17584 (Unicode 3.0). You can determine the CCSID for each Unicode
standard code page by looking at the list of registered CCSIDs.

Because DB2 uses this architecture for CCSIDs, you can easily migrate to new
versions of the Unicode standard by just updating your conversion image.
However, the disadvantage to this architecture is that the CCSID value does not
clearly tell you which characters are supported. To check which Unicode standard
is currently supported for a particular conversion, issue the system DISPLAY UNI
command.

14 Internationalization Guide

http://www.unicode.org/charts/
http://www.unicode.org/charts/
http://www.unicode.org
http://unicode.org/faq/utf_bom.html
http://www.unicode.org/charts/
http://www.ibm.com/systems/resources/systems_i_software_globalization_pdf_cp00367z.pdf
http://www.ibm.com/software/globalization/ccsid/ccsid_registered.html

Example DISPLAY UNI command: The following example output is from the
command d uni,all:

CUN3000I 09.33.37 UNI DISPLAY 754
ENVIRONMENT: CREATED 01/25/2010 AT 00.20.12

MODIFIED 01/25/2010 AT 00.25.10
IMAGE CREATED --/--/---- AT --.--.--

SERVICE: CHARACTER CASE NORMALIZATION COLLATION
STRINGPREP BIDI CONVERSION INF

STORAGE: ACTIVE 1995 PAGES
FIXED 0 PAGES
LIMIT 524288 PAGES

CASECONV: ENABLED
CASE VER: UNI300 NORMAL SPECIAL LOCALE
NORMALIZE: DISABLED
NORM VER: NONE
COLLATE: DISABLED

COLL RULES: NONE
STRPROFILES: NONE
CONVERSION: 00367-05123-R 00437-00819-R

00273-01208-R 01140-01252-E
01140-01252-R 00437-00850-E
00437-00850-R 01200(17584)-01140-E
01200(17584)-01141-E 01200(17584)-01142-E
01200(17584)-01144-E 00273-01252-E
00273-01252-R 01200(17584)-01148-E
00367-05210-R 00850-01200(13488)-R
01142-00367-E 00836-00367-E
01386-00836-R 01148-01200(17584)-R
01386-00935-RE 00437-01140-E
00437-01140-R 00437-01148-E
00437-01148-R 00437-01208-R

...

The CONVERSION section of this output lists all of the CCSID conversions that
are defined. For example, the line 01200(17584)-01141-E defines the conversion
between CCSID 1200 and CCSID 1141. DB2 uses CCSID 1200 for Unicode UTF-16
data. The number in parentheses after CCSID 1200, 17584, means that in this
conversion, CCSID 1200 uses Unicode standard 3.0. In the line
00850-01200(13488)-R, CCSID 1200 is followed by a different number, 13488. For
this conversion, CCSID 1200 uses Unicode standard 2.0. The letters E and R
represent the type of conversion. E means that the conversion is an enforced subset
conversion. R means that the conversion is a round-trip conversion.

Endianness
Endianness is a data attribute that describes byte order. When applications exchange
data, they need to know the ordering convention for multi-byte data. Otherwise,
data can be misinterpreted.

Data can have the following byte order formats:

Big endian
A format in which the most significant byte is stored first. The other bytes
follow in decreasing order of significance. For example, for a four-byte
word, the byte order is 0, 1, 2, 3. For a two-byte word, it is 0, 1.

Big endian format is used by pSeries, zSeries, iSeries, Sun, and HP.

Little endian
A format in which the least significant byte is stored first. The other bytes
follow in increasing order of significance. For example, for a four-byte
word, the byte order is 3, 2, 1, 0. For a two-byte word, it is 1, 0.

Chapter 1. Introduction to character conversion 15

Little endian format is used by Intel-based machines, including xSeries®.

Endianness affects only multi-byte data. Within a single byte, the bits are always
ordered in the same way. Bit order within a byte is always 7, 6, 5, 4, 3, 2, 1, 0.

UTF-8 data is not affected by endianness, even if the data is stored as more than 1
byte. UTF-16 data and UTF-32 data are affected by endianness. For example, the
character 'A' is encoded for UTF-16 and UTF-32 as shown in the following table:

Table 10. Example encoding for the character 'A'

UTF-16 UTF-321

Big endian X'0041' X'00000041'

Little endian X'4100' X'41000000'

Note:

1. DB2 for z/OS does not store data in UTF-32

Endianness becomes a potential problem when data is exchanged between systems
and applications that use different endian formats and the data is not properly
converted. Be aware of the endian format of the data that your system or
application handles. You might notice endianness problems when looking at
character encoding values in traces. Such a problem might exist if you notice that
numeric byte values have been switched. For example, you expect X'0041' but see
X'4100'.

Example: Suppose that you are loading data in UTF-16 little endian format
(CCSID 1202) from a .NET application. DB2 for z/OS does not support storing
data in CCSID 1202. However, DB2 does support conversions to and from CCSID
1202. Thus, DB2 converts the data and stores it in UTF-16 big endian format
(CCSID 1200). In this case, you should be aware that the data format has changed.
Related reference:
“UTFs” on page 12

Situations in which character conversion occurs
Character conversion is the process of converting data from one CCSID to another
CCSID. This process can occur when data is transferred between a remote and
local system or when data is manipulated within the local system.

Character conversion is more likely to occur when you are accessing data remotely
because this situation often involves different platforms and encoding schemes. For
example, in a client/server environment, a requester might send the values of host
variables in SELECT predicates and INSERT column values to the current server.
The current server might then send the values of result columns back to the
requester. In either transaction, if the string data has a different representation at
the sending and receiving systems, conversion occurs.

Conversion can also occur during string operations on the same system, as in the
following examples:
v A DECLARE VARIABLE statement specifies an overriding CCSID.
v The SQLDA specifies an overriding CCSID for a string column.
v You compare or combine data from multiple CCSIDs in an SQL statement.

16 Internationalization Guide

v You use SPUFI, which processes EBCDIC data, to insert data into a Unicode
table.

v The value of the ENCODING bind option (for static SQL statements) or the
CURRENT APPLICATION ENCODING SCHEME special register (for dynamic
SQL statements) is different than the encoding scheme of the data that is being
inserted or retrieved.

v An ASCII or EBCDIC application provides SQL statement text to DB2 in a
PREPARE statement. DB2 converts the statement text to Unicode for parsing.

Related concepts:
“Objects with different CCSIDs in the same SQL statement” on page 77
Related reference:

DECLARE VARIABLE (DB2 SQL)

SQL descriptor area (SQLDA) (DB2 SQL)

BIND and REBIND options (DB2 Commands)

CURRENT APPLICATION ENCODING SCHEME (DB2 SQL)

PREPARE (DB2 SQL)

Possible consequences of character conversion
You should try to avoid character conversions when possible, because conversions
can potentially slow performance and sometimes cause data loss. The way to avoid
conversions is to use the same CCSID for all of your data.

The best character conversion is no conversion, because conversion always has a
performance cost. The cost depends on the extent of the conversion. For example,
if you have a Unicode table and select every row into an EBCDIC application, the
performance cost is probably noticeable. However if you issue a SELECT MAX(xxxx)
FROM on a Unicode table, and then convert the result to EBCDIC, you might not
notice the performance cost.

The second best conversion is a lossless conversion. A lossless conversion is one in
which all characters in the source CCSID exist in the target CCSID and thus, no
character is lost. For example, a conversion from CCSID 37 to CCSID 500 is
lossless, because they both include the same set of characters. The difference
between these two CCSIDs is the placement of 7 characters. These seven characters
have different code points in each of these CCSIDs. A conversion from CCSID 1208
(UTF-8) to CCSID 1200 (UTF-16) is also lossless, because they both include the
same repertoire of characters.

If the conversion is not a lossless conversion, certain characters might be lost.
("Lost" means that these characters are replaced by substitution characters.) Thus,
the integrity of your data can be compromised.

Types of character conversion
Character conversions can be characterized by their effect on the length of the
string. Conversions can be expanding, contracting or neither. Character conversions
can also be characterized by how they handle characters that do not exist in the
target CCSID. They can be round-trip conversions or enforced subset conversions.

Chapter 1. Introduction to character conversion 17

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_declarevariable.htm#db2z_sql_declarevariable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sqldescriptorareaintro.htm#db2z_sqldescriptorareaintro
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_currentappencodingscheme.htm#db2z_currentapplicationencodingscheme
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_prepare.htm#db2z_sql_prepare

Expanding conversion
An expanding conversion occurs when the length of the converted string is greater
than that of the source string.

For example, an expanding conversion occurs when an ASCII mixed data string
that contains DBCS characters is converted to an EBCDIC mixed data string. The
expansion occurs because of the addition of shift-out and shift-in control
characters. Expanding conversions can also occur when string data is converted to
or from Unicode.

Expanding conversions typically affect European and Asian Pacific languages. For
example, the German name Jürgen expands when it is converted from ASCII or
EBCDIC to Unicode. Also, Japanese, Korean, and Chinese strings expand when
they are converted from ASCII to EBCDIC.

Expanding conversions can have the following effects on DB2:
v Expanding conversions might cause problems with fixed-length variables. For

example, when a fixed-length host variable needs to be converted from ASCII
mixed data to EBCDIC mixed data, an error occurs. The problem occurs because
the conversion is an expanding conversion, but the host variable is fixed-length.
The solution is to use a varying-length string variable with a maximum length
that is sufficient to contain the expansion.

v Expanding conversions can affect fixed-length strings. If you use a fixed-length
string and an expanding conversion occurs, DB2 truncates the string. DB2
examines the characters that are being truncated to ensure that significant data is
not truncated. For example, trailing blanks are insignificant. In this situation,
consider using the VARCHAR data type for these strings.

v Expanding conversions can affect the results of length functions, such as
LENGTH, CHARACTER_LENGTH, SUBSTRING, and SUBSTR on the converted
string. For CHARACTER_LENGTH and SUBSTRING, use the CODEUNITS16
and CODEUNITS32 options to limit the effects of expanding conversions.

v Expanding conversions can affect the length of the object names, such as table
names and column names. You can avoid these problems by not using special
characters in object names.

To determine the worst-case result length of a CCSID conversion, use the following
table.

Table 11. Worst case result length of CCSID conversion, where X represents LENGTH(string in bytes)

From CCSID

To CCSID

EBCDIC ASCII Unicode

SBCS Mixed DBCS SBCS Mixed DBCS SBCS UTF-8 UTF-16

EBCDIC

SBCS X X X*21 X X X*21 X1 X*3 X*2

Mixed X X X*21 X X X*21 X1 X*3 X*2

DBCS X*0.51 X+2 X X*0.51 X X X*0.5 X*1.5 X

ASCII

SBCS X X X*21 X X X*21 X1 X*3 X*2

Mixed X X*1.8 X*21 X X X*21 X1 X*3 X*2

DBCS X*0.51 X+2 X X*0.51 X X X*0.5 X*1.5 X

18 Internationalization Guide

Table 11. Worst case result length of CCSID conversion, where X represents LENGTH(string in bytes) (continued)

From CCSID

To CCSID

EBCDIC ASCII Unicode

SBCS Mixed DBCS SBCS Mixed DBCS SBCS UTF-8 UTF-16

Unicode

SBCS X X X*2 X X X*2 X X X*2

UTF-8 X X*1.25 X X X X X X X*2

UTF-16 X*0.5 X+2 X X*0.5 X X X*0.5 X*1.5 X

Note:

1. Because of the high probability of data loss, IBM does not provide conversion tables for this combination of two
CCSIDs and data subtypes.

Example: In ASCII CCSID 819, the character Å is represented by the code point
X'C5'. In UTF-8 CCSID 1208, this character is represented by X'C385'. Thus, the
conversion of the character Å from CCSID 819 to CCSID 1208 is an expanding
conversion.

Example: The following table shows a string with Kanji characters and Latin
characters in different encoding schemes.

Table 12. Example of a character string in different encoding schemes

Data type and encoding
scheme

Character representation Hexadecimal representation (with
spaces separating each character)

9 bytes in ASCII 8CB3 67 65 6E 8B43 6B 69

13 bytes in EBCDIC 0E 4695 0F 87 85 95 0E 45B9 0F 92
89

11 bytes in Unicode
UTF-8

E58583 67 65 6E E6B097 6B 69

If you convert this string from ASCII to EBCDIC, notice that shift-in and shift-out
characters are added. This conversion is an example of an expanding conversion.
The length increases from 9 bytes to 13 bytes.
Related reference:

CHARACTER_LENGTH (DB2 SQL)

LENGTH (DB2 SQL)

SUBSTR (DB2 SQL)

SUBSTRING (DB2 SQL)

Contracting conversion
A contracting conversion occurs when the length of the converted string is smaller
than that of the source string.

For example, a contracting conversion occurs when an EBCDIC mixed data string
that contains DBCS characters is converted to ASCII mixed. The contraction occurs
because shift characters are removed. Contracting conversions can also occur when
string data is converted to or from Unicode.

Contracting conversions typically affect European and Asian Pacific languages. For
example, the German word straße contracts when it is converted from Unicode to

Chapter 1. Introduction to character conversion 19

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_characterlength.htm#db2z_bif_characterlength
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_length.htm#db2z_bif_length
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_substr.htm#db2z_bif_substr
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_substring.htm#db2z_bif_substring

ASCII or EBCDIC. Also, Japanese, Korean, and Chinese strings might contract
when they are converted from EBCDIC to ASCII.

Contracting conversions can have the following effects on DB2:
v Contracting conversions can affect the results of the length functions, such as

LENGTH, CHARACTER_LENGTH, SUBSTRING, and SUBSTR, on the converted
string. For CHARACTER_LENGTH and SUBSTRING, use the CODEUNITS16
and CODEUNITS32 options to limit the effects of contracting conversions.

v Contracting conversions can affect the length of the object names, such as table
names and column names. You can avoid these problems by not using special
characters in object names.

To determine the worst-case result length of a CCSID conversion, use the table in
“Expanding conversion” on page 18.

Example: In UTF-8 CCSID 1208, the character Å is represented by the code point
X'C385'. In ASCII CCSID 819, this character is represented by X'C5'. Thus, the
conversion of the character Å from CCSID 1208 to CCSID 819 is a contracting
conversion.

Example: The German name Jürgen contracts when it is converted from Unicode
to ASCII or EBCDIC and expands when it is converted from ASCII or EBCDIC to
Unicode.
Related concepts:

String unit specifications (DB2 SQL)
Related reference:

CHARACTER_LENGTH (DB2 SQL)

LENGTH (DB2 SQL)

SUBSTR (DB2 SQL)

SUBSTRING (DB2 SQL)

Round-trip conversion
A round-trip conversion ensures the integrity of all character data from the source
CCSID to the target CCSID and back to the source. Even if the target CCSID does
not support a given character, the character regains its original hexadecimal value
after it is converted back to the source CCSID.

One alternative to a round-trip conversion is an enforced subset conversion, during
which characters that do not exist in the target CCSID are lost. Whether a
particular conversion uses a round-trip conversion or an enforced subset
conversion depends on how your system is set up to do conversions. For example,
in DB2 for z/OS, many conversions are defined by z/OS Unicode Services. Each of
the conversion definitions specifies whether to use a round-trip or enforced subset
conversion.

A round-trip conversion works only in a two-tier homogenous environment where
the data makes the complete round trip. For example, if you pass data from DB2
for Linux, UNIX, and Windows to DB2 for z/OS and then back to DB2 for Linux,
UNIX, and Windows with a round-trip conversion, no data is lost. The data was
converted back to its original format. However, if you have a more complicated
environment, a round-trip conversion does not necessarily preserve data integrity.
For example, if you pass data from DB2 for z/OS to DB2 for Linux, UNIX, and

20 Internationalization Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_stringunitspec.htm#db2z_stringunitspec
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_characterlength.htm#db2z_bif_characterlength
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_length.htm#db2z_bif_length
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_substr.htm#db2z_bif_substr
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_substring.htm#db2z_bif_substring

Windows and then to Linux on a Java client, two conversions have potentially
occurred. Because the data was not converted back to its original format before the
second conversion, data might have been lost even if round-trip conversions are
used.

Example: In ASCII CCSID 1252, the trademark symbol ™ is code point X'99'. In
EBCDIC CCSID 37, this code point does not exist. During character conversion
from ASCII CCSID 1252 to EBCDIC CCSID 37, the trademark symbol is converted
to a control character, X'39'. If you use SPUFI to select the data, the data displays
as the unprintable character that you specified in your emulator, which is generally
a quotation mark (") or a period (.). If you issue a SELECT HEX(column) statement,
the data displays as X'39', which is the DEL control character. When the client uses
a round-trip conversion to convert this character back to ASCII CCSID 1252, the
trademark symbol is preserved as code point X'99'. Notice that this conversion is
not lossless unless it is converted back to the original format.

Enforced subset conversion
An enforced subset conversion occurs when a character in the source CCSID does not
have a code point in the target CCSID. In this case, the character is converted to a
single substitution character.

The default substitution characters (SUB) are:
v X'3F' for SBCS EBCDIC
v X'1A' or X'7F' for SBCS ASCII
v X'1A'for UTF-8
v X'001A' for UTF-16

For DBCS data, the substitution character varies depending on the CCSID.

One alternative to an enforced subset conversion is a round-trip conversion, which
preserves characters if they are converted back to the originally CCSID. Whether a
particular conversion uses a round-trip conversion or an enforced subset
conversion depends on how your system is set up to do conversions. For example,
in DB2 for z/OS, many conversions are defined by z/OS Unicode Services. Each of
the conversion definitions specifies whether to use a round-trip or enforced subset
conversion.

Example: In ASCII CCSID 1252, the trademark symbol ™ is represented by the
code point X'99'. In EBCDIC CCSID 37, this code point does not exist. During an
enforced subset character conversion to EBCDIC CCSID 37, this code point is
converted to the substitution character X'3F'. When the code point is converted
back to ASCII CCSID 1252, the character remains a substitution character and is
represented by the code point X'1A'.

Example: In ASCII CCSID 5348, the euro symbol (€) is represented by the code
point X'80'. In EBCDIC CCSID 37, this code point does not exist. During an
enforced subset character conversion to EBCDIC CCSID 37, this code point is
converted to the substitution character X'3F'. When the code point is converted
back to ASCII CCSID 5348, the character remains a substitution character and is
represented by the code point X'1A'.

z/OS Unicode Services uses enforced subset conversions when converting from
Unicode to ASCII or EBCDIC to handle characters that do not exist in the target
CCSID. In this situation, enforced subset conversions are required because Unicode

Chapter 1. Introduction to character conversion 21

has room to include over 1 million code points, but ASCII and EBCDIC single-byte
character sets can include only 256 code points.

22 Internationalization Guide

Chapter 2. How DB2 for z/OS uses Unicode

Even if you do not use the Unicode encoding scheme for your data, you should be
aware that DB2 uses Unicode in many of its internal processes. This use might
affect your applications, queries, storage, and performance.

DB2 uses Unicode in the following ways:

Application preparation and processing:

v DBRMs that are produced in Version 8 new-function mode or later are stored in
Unicode UTF-8.

v Beginning in Version 8, DB2 parses DBRMs in Unicode UTF-8, even if the DBRM
is from DB2 Version 7 or earlier.

v DB2 converts application source code to Unicode UTF-8 before it is processed by
the precompiler. The precompiler then parses the source code in UTF-8. SQL
statements and literals are considered part of the application source and are also
parsed in UTF-8. SQL statement text is converted to UTF-8 if it is not already in
UTF-8.

DB2 objects and data:

v Most DB2 catalog data is encoded in UTF-8. (The data in string columns that are
not FOR BIT DATA columns in Unicode tables in the catalog is in UTF-8.) When
you query the catalog, be aware that many string columns are VARCHAR(128).
This data type and length enable you to easily port applications that run on
other operating systems.

v The names of plans and packages are stored in Unicode UTF-8.
v The values of some special registers are stored in Unicode UTF-8.
v All EXPLAIN table data is encoded in Unicode UTF-8.
v SYSIBM.SYSDUMMYU is encoded in Unicode UTF-8.

Authorization:

v DB2 authorization processes work on Unicode data. When using certain external
authorization processes, such as RACF, DB2 needs to convert the data to
EBCDIC.

Traces:

v You can specify that DB2 return trace data in Unicode.

SQL statement processing:

v If you join Unicode and non-Unicode tables, DB2 performs some operations in
Unicode. For example, if you compare columns from a Unicode table and an
EBCDIC table, DB2 performs the comparison in Unicode.

Utility control statements:

v Utilities can process control statements that are written in Unicode UTF-8.

DRDA®:

v Remote client systems can send and receive DRDA command and reply
messages with character type data in Unicode (UTF-8).

© Copyright IBM Corp. 2003, 2013 23

Related concepts:
“DRDA character type parameters in Unicode” on page 101
Related tasks:
“Specifying a CCSID for your application” on page 61
Chapter 3, “Setting up DB2 to ensure that it interprets characters correctly,” on
page 27
Related reference:

Descriptions of SQL processing options (DB2 Application programming and
SQL)

Retrieving data from the DB2 catalog
Beginning in Version 8, most of the DB2 catalog data is stored in UTF-8. However,
when you query the catalog data, DB2 converts the data to the application
encoding scheme.

About this task

Having the catalog in Unicode enables your SQL statements to use names and
literals that contain characters that are not included in the subsystem EBCDIC
CCSID.

Although most of the catalog is stored in UTF-8, several catalog tables are
exceptions. SYSIBM.SYSCOPY in DSNDB06.SYSTSCPY is not stored in UTF-8. Also
the non-Unicode SYSIBM.SYSDUMMYx tables are not stored in UTF-8.

You can select data from the catalog regardless of the application encoding scheme.

Procedure

To retrieve data from the DB2 catalog, perform all of the following actions:
v Ensure that you anticipate the sequence of the query result. Because the DB2

catalog is in Unicode UTF-8, queries against the catalog return the data
according to the Unicode sorting sequence. In Unicode, numeric characters are
sorted before alphabetic characters.

v If you are using application host variables to store the results of any catalog
string column values, ensure that these variables are large enough to hold those

values. Many string columns in the DB2 catalog are VARCHAR(128).

24 Internationalization Guide

|
|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_descriptionprocessingoptions.htm#db2z_descriptionprocessingoptions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_descriptionprocessingoptions.htm#db2z_descriptionprocessingoptions

Related tasks:
“Specifying a CCSID for your application” on page 61
Related reference:
“Differences between Unicode and EBCDIC sorting sequences” on page 80

SYSDUMMYx tables
DB2 for z/OS provides tables SYSIBM.SYSDUMMYA, SYSIBM.SYSDUMMYE, and
SYSIBM.SYSDUMMYU, each of which is in a different encoding scheme. You can
use these tables in the same way that you use SYSIBM.SYSDUMMY1.

You can use any of these SYSDUMMYx tables when you need to write a query but
the table reference does not matter. For example, when you want to retrieve the
value of special registers, you can use a query that references a SYSDUMMYx
table.

Each of these tables contains one row. The difference between the tables is that
they each have a different encoding scheme, as shown in the following table:

Table 13. Encoding scheme of SYSDUMMYx tables

Table Encoding scheme

SYSIBM.SYSDUMMY1 EBCDIC

SYSIBM.SYSDUMMYE EBCDIC

SYSIBM.SYSDUMMYU Unicode

SYSIBM.SYSDUMMYA ASCII

For those SQL statements and tools that use SYSDUMMYx, having a SYSDUMMYx
table in each encoding scheme helps avoid conversions.

For example, suppose that your SQL statement references a SYSDUMMYx table
that is in a different encoding scheme than other objects in the statement. DB2
treats this statement as one that references objects with different CCSIDs, and
conversion is likely to occur. To avoid this situation, reference the SYSDUMMYx
table that has the same encoding scheme as the other objects in your query.

You can also use these SYSDUMMYx tables to avoid conversions with LOB
locators. Instead of using a SET or VALUES INTO statement, use a SELECT INTO
statement that references the SYSDUMMYx table with the same encoding scheme

as the LOB.

Chapter 2. How DB2 for z/OS uses Unicode 25

Related concepts:
“Objects with different CCSIDs in the same SQL statement” on page 77
Related tasks:

Avoiding character conversion for LOB locators (DB2 Application
programming and SQL)
Related reference:

SYSIBM.SYSDUMMY1 table (DB2 SQL)

SYSIBM.SYSDUMMYA table (DB2 SQL)

SYSIBM.SYSDUMMYE table (DB2 SQL)

SYSIBM.SYSDUMMYU table (DB2 SQL)

Specifying that IFCID output should be in Unicode
You can start a performance, accounting, statistics, auditing, or monitoring trace by
specifying the appropriate instrumentation facility component identifier (IFCID) in
the START TRACE command. Many of these IFCIDs can write UTF-8 fields in the
trace output.

Procedure

To specify that IFCID output should be in Unicode:

Set the UIFCIDS subsystem parameter to YES. This parameter is called UIFCIDS in
DSN6SYSP. It is also Option 11 (Unicode IFCIDS) on installation panel DSNTIPN.
The default value is NO.

Results

Only a subset of the IFCID character fields are encoded in Unicode UTF-8. Those
fields are identified in the IFCID record definition by a %U in the comment area to
the right of the field declaration in the DSNDQWxx copy files.

If the UIFCIDS subsystem parameter is set to NO, the fields that are identified
with %U are displayed in EBCDIC.
Related reference:

-START TRACE (DB2) (DB2 Commands)

Tracing parameters panel: DSNTIPN (DB2 Installation and Migration)

26 Internationalization Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_avoidcharconversionloblocator.htm#db2z_avoidcharconversionloblocator
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_avoidcharconversionloblocator.htm#db2z_avoidcharconversionloblocator
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsysdummy1table.htm#db2z_sysibmsysdummy1table
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsysdummyatable.htm#db2z_sysibmsysdummyatable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsysdummyetable.htm#db2z_sysibmsysdummyetable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsysdummyutable.htm#db2z_sysibmsysdummyutable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_starttrace.htm#db2z_cmd_starttrace
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_dsntipn.htm#db2z_dsntipn

Chapter 3. Setting up DB2 to ensure that it interprets
characters correctly

You need to make sure that DB2 uses the correct code page (which is identified by
a CCSID) to interpret your data. Otherwise, DB2 might store or use incorrect data.
This situation is most likely to occur when characters are converted or transferred
between systems.

Procedure

To ensure that DB2 interprets characters correctly:
1. Determine the CCSID of your data sources.
2. Based on the CCSIDs of your data sources, specify the correct CCSIDs for your

subsystem, objects, and applications in DB2. If the CCSIDs of all of your data
sources do not match and you need help determining the appropriate CCSIDs
to specify, call IBM Software Support.

Recommendation: If possible, set up your system, applications, and objects to
avoid character conversion on z/OS, because character conversion has an
expensive CPU cost. You can avoid character conversion by using the same
CCSID in all of your data sources. Of course, do not do so at the expense of
data integrity.

3. Set up z/OS Unicode Services.
4. Optional: Define any additional character conversions.

Character conversions are already defined in the following two places:

The DB2 catalog table SYSIBM.SYSSTRINGS
This table contains character conversion definitions from IBM. You
might have also added your own.

The conversion image in z/OS Unicode Services
You configured this image when you set up z/OS Unicode Services.

However, you might need to define additional conversions. If you are not sure
if a particular character conversion is defined to DB2, check your character
conversion definitions.

What to do next

Recommendation: If your DB2 subsystem has users that use different CCSIDs, be
careful when you create and name objects. Choose identifiers, such as table names
and column names, that can be represented on all clients that access the DB2
subsystem.

How DB2 performs character conversions
When character conversions are needed, DB2 for z/OS performs these conversions
automatically based on the CCSIDs of the source and target data. When you set up
DB2, you need to identify valid conversion definitions for source and target
CCSIDs to DB2. Some of these definitions are predefined for you.

To perform a conversion from one CCSID to another CCSID, DB2 uses the
translation tables that are identified by the following resources in the order listed.

© Copyright IBM Corp. 2003, 2013 27

1. The DB2 catalog table SYSIBM.SYSSTRINGS
Each row in this catalog table describes a conversion from one coded character
set to another. IBM supplies some of the rows. You can also add your own
rows. If the same pair of CCSIDs are in two rows, one row that is IBM-supplied
and one row that you added, DB2 uses the row that you provided. Rows that
you add have IBMREQD=N. However, some rows that have IBMREQD=N
might have been loaded from maintenance that IBM ships between releases.
SYSIBM.SYSSTRINGS describes only those conversions to and from ASCII and
EBCDIC CCSIDs. Conversions to and from Unicode CCSIDs are not included in
SYSIBM.SYSSTRINGS.

2. z/OS Unicode Services
z/OS Unicode Services uses the conversion definitions in a conversion image
data set.

Thus, any conversions that are defined in SYSIBM.SYSSTRINGS override the
conversions that are defined in z/OS Unicode Services. If SYSIBM.SYSSTRINGS
does not define a conversion, DB2 uses z/OS Unicode Services.

If a conversion for a certain combination of source and target CCSIDs is not
defined in SYSIBM.SYSSTRINGS or z/OS Unicode Services, z/OS Unicode Services
dynamically adds the conversion. This ability is available in z/OS 1.7 and later.
Related tasks:
“Setting up z/OS Unicode Services for DB2 for z/OS” on page 38
“Defining additional character conversions” on page 44
Related reference:

Manually setting up Unicode Services (z/OS: Unicode Services User’s Guide
and Reference)

Creating user-defined conversion tables (z/OS: Unicode Services User’s Guide
and Reference)

Conversion Tables Supplied with z/OS Unicode (z/OS: Unicode Services
User’s Guide and Reference)

SYSIBM.SYSSTRINGS catalog table
The DB2 catalog table SYSIBM.SYSSTRINGS contains information about valid
character conversion definitions. Each row of SYSSTRINGS contains information
about the conversion of character strings from one CCSID to another CCSID. DB2
uses the conversion tables that are identified by these rows.

DB2 automatically performs any required conversions from the CCSID that is
identified by the INCCSID column to the CCSID that is identified by the
OUTCCSID column.

Restriction: You cannot update or delete rows that are provided by IBM. These
rows are identified by a value of Y in the IBMREQD column. However, you can
add another row with the same pair of CCSIDs. Rows that you add are identified
by a value of N in the IBMREQD column. If two rows exist for the same pair of
CCSIDs (an IBM-supplied row and a row that you added) DB2 uses your row for
the conversion.

28 Internationalization Guide

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2unb0/3.3
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2unb0/3.3
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2unb0/3.4
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2unb0/3.4
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2unb0/APPENDIX1.3
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2unb0/APPENDIX1.3

In some cases, rows with IBMREQD = N are not rows that you added. Sometimes,
these rows have been supplied by IBM Software Support. For an example of
adding such rows, look at job DSNTEJ1T.

Example: Assume that the SYSSTRINGS table includes the following rows:
INCCSID OUTCCSID TRANSTYPE ERRORBYTE SUBBYTE TRANSPROC IBMREQD TRANSTAB

---------+---------+---------+---------+---------+---------+---------+---------+-------------
500 37 SS --------- ------- Y
37 500 SS --------- ------- Y
948 37 PS 3E 3F Y

All of these rows were supplied by IBM because they have the value Y in the
IBMREQD column. These rows have the following meanings:
v The first row describes the conversion from CCSID 500 to CCSID 37.
v The second row describes the conversion from CCSID 37 to CCSID 500.
v The third row describes a conversion from CCSID 948 to CCSID 37 in which

X'3E' is used as an error indicator and X'3F' is used as a substitute code point.

Tip: Use the HEX function to display the values of the ERRORBYTE, SUBBYTE,

and TRANSTAB columns.
Related concepts:

Installation verification phases and programs (DB2 Installation and Migration)
Related reference:

SYSIBM.SYSSTRINGS table (DB2 SQL)

Finding the CCSID values of your data sources
Before you can specify appropriate CCSID values to DB2, you must know the
CCSID values that are in effect for all of your data sources. Determining these
CCSID values is the first step to preserving data integrity.

About this task

You should know the CCSIDs of all the data that DB2 handles, including all input
and output sources, such as the following sources:
v local input and output devices, such as your 3270 terminal emulators and

printers
v tape data
v source and data from your application, which are handled by either the DB2

precompiler or a compiler and the DB2 coprocessor
v data from gateway products, such as WebSphere® MQ, IMS Connect, CICS

Transaction Gateway and any third party products
v FTP data
v Any data from a distributed environment

Procedure

To find the CCSID values of your data sources:

Use the resources in the following table:

Chapter 3. Setting up DB2 to ensure that it interprets characters correctly 29

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ivps.htm#db2z_ivps
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sysibmsysstringstable.htm#db2z_sysibmsysstringstable

Table 14. How to find the CCSID of your data source

Source Where find the CCSID in effect

Application data (in host variables
or parameter markers)

Look at the value of the ENCODING bind option unless that value was
overridden. For more details about how this option could have been
overridden, see “Specifying a CCSID for your application” on page 61.

C/C++ application source code Look at the DB2 precompiler or compiler listing for the CCSID options that
were used. For example, the following listing for the DB2 precompiler shows
that the application uses CCSID 1047:

OPTIONS USED - SPECIFIED OR DEFAULTED
APOST
APOSTSQL
ATTACH(TSO)
CCSID(1047)

CICS Transaction Gateway Look at the value of the system initialization parameter CLINTCP.

See the following resources:

v CLINTCP (CICS Transaction Server for z/OS)

v Character data (CICS Transaction Server for z/OS)

v ECI applications (CICS Transaction Gateway V5 The WebSphere Connector
for CICS)

COBOL application source code Look at the DB2 precompiler or compiler listing for the CCSID options that
were used. For example, the following listing for the DB2 precompiler shows
that the application uses CCSID 37:

OPTIONS USED - SPECIFIED OR DEFAULTED
APOST
APOSTSQL
ATTACH(TSO)
CCSID(37)

FTP See How can I check my CCSIDs for FTP?.

IMS Look at the terminal emulator CCSID. (Follow the instructions for ISPF or
Personal Communications.) IMS uses this CCSID when communicating to DB2
for z/OS.

In IMS Connect, conversion is done by user message exits. Look at those exits
for CCSID information. See User exit (EX) ADD command (IMS Connect
Extensions).

ISPF Look at the value of the ISPF session variable ZTERMCID under ISPF option
7.3 - variable settings.

Personal Communications Look at the Host Code-Page session parameter to find the terminal CCSID. See
Configuring Sessions (Personal Communications)

PL/I application source code Look at the DB2 precompiler or compiler listing for the CCSID options that
were used. For example, the following listing for the DB2 precompiler shows
that the application uses CCSID 37:

OPTIONS USED - SPECIFIED OR DEFAULTED
APOST
APOSTSQL
ATTACH(TSO)
CCSID(37)

30 Internationalization Guide

https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/topic/com.ibm.cics.ts.doc/dfha2/parameters/dfha2_clintcp.html
https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/topic/com.ibm.cics.ts.intercommunication.doc/topics/dfht80j.html
http://www.redbooks.ibm.com/redbooks/SG246133/23-2.htm
http://www.redbooks.ibm.com/redbooks/SG246133/23-2.htm
http://www.ibm.com/support/docview.wss?uid=swg21236643
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.imstools.cex.doc.ug/ref-add-ex.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.imstools.cex.doc.ug/ref-add-ex.htm
http://publib.boulder.ibm.com/infocenter/pcomhelp/v5r9/topic/com.ibm.pcomm.doc/books/html/quick_beginnings08.htm

Table 14. How to find the CCSID of your data source (continued)

Source Where find the CCSID in effect

QMF™ Check your Graphical Data Display Manager (GDDM®) code page setting,
because QMF uses GDDM to do the display. You can check your GDDM code
page setting by looking at the APPCPG parameter, which can be set in one of
the following two places:

v a defaults module that is called ADMADFT

v a file that is referred to as ADMDEFS.

If no value is specified for APPCPG, GDDM uses a default CCSID of 00351.
For more information about APPCPG, see APPCPG in "External defaults: full
descriptions" (GDDM System Customization and Administration Guide).
Recommendation: For QMF, set the APPCPG parameter to match the CCSID
that is used by DB2 and your terminal emulator.

Queue Managers in WebSphere MQ Follow the instructions for viewing and setting the Queue Manager CCSID in
Data Conversion under WebSphere MQ.

You can also check individual MQGET and MQPUT statements. These
statements can override the MQ CCSID setting by specifying a CCSID in the
statement.

TSO Perform one of the following actions:

v Specify the CODEPG keyword when issuing the GTTERM -- Get Terminal
Attributes (TSO/E Programming Services) macro to retrieve the Character
Set and Code Page (CGCSGID) for a TSO session.

v Issue the DISPLAY TSOUSER command (z/OS Communications Server:
SNA Operation). The output from this command includes the CDCSGID
information when it is available.

z/OS DFSMS SMS (the file system) CCSID is an attribute of SMS-managed data sets. For more information about
how that CCSID is set, see Data Conversion for z/OS Distributed FileManager
(z/OS Distributed FileManager Guide and Reference) or Data conversion for
z/OS Network File System (z/OS Network File System Guide and Reference)
or search the CCSID file tagging information in z/OS UNIX System Services
Command Reference.

However, the access methods (VSAM, BSAM/QSAM, BPAM, etc) for these
data sets do not have support to perform conversions. Only DFM supports
conversions between CCSIDs for DASD data sets.

The CCSID value also can be used when reading or writing magnetic tapes
that have ISO/ANSI tape labels. You can code the CCSID keyword on the DD
statement or supply it in the data class. You can also supply the CCSID value
on the JOB or STEP JCL statement. For more information, see Character Data
Conversion (z/OS DFSMS Using Data Sets).

Chapter 3. Setting up DB2 to ensure that it interprets characters correctly 31

http://publibfi.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/adms7a05/A.2
http://publibfi.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/adms7a05/A.2
http://www.ibm.com/support/docview.wss?uid=swg27005729
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ikj4b770/7.4
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ikj4b770/7.4
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/f1a1b770/2.63
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/f1a1b770/2.63
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/dgt2m500/2.7.2
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/dgt2m500/2.7.2
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/cpn1co71/1.7.1.3.1
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/cpn1co71/1.7.1.3.1
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/bpxza5a1/CCONTENTS
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/bpxza5a1/CCONTENTS
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2d4a0/3.1.5.1?ACTION=MATCHES&REQUEST=character+data+conversion&TYPE=FUZZY&SHELF=&DT=20110606092005&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2d4a0/3.1.5.1?ACTION=MATCHES&REQUEST=character+data+conversion&TYPE=FUZZY&SHELF=&DT=20110606092005&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT

Related concepts:

Differences between the DB2 precompiler and the DB2 coprocessor (DB2
Application programming and SQL)
Related reference:

Internationalization: Locales and Character Sets (XL C/C++ Programming
Guide)

Compiler Options (C/C++) (XL C/C++ User's Guide)

Planning to modify compiler option default values (COBOL) (Enterprise
COBOL for z/OS Customization Guide)

Compiler options (COBOL) (Enterprise COBOL for z/OS Programming Guide)

Z variables (ISPF session variables)

Changing the default options (PL/I) (Enterprise PL/I for z/OS Programming
Guide:)

Compile-time option descriptions (PL/I) (Enterprise PL/I for z/OS
Programming Guide:)

WebSphere MQ library

Specifying CCSIDs in DB2
You must communicate to DB2 the correct CCSIDs to use for your data to ensure
that DB2 correctly interprets your data. You can specify default subsystem CCSIDs.
You can also specify CCSIDs for individual applications and DB2 objects.

About this task

Specifying appropriate CCSIDs also ensures that DB2 performs accurate character
conversions when distributed systems access DB2.

Procedure

To specify CCSIDs in DB2:
v When you install DB2, specify default subsystem CCSIDs.
v When you create objects, specify object CCSIDs.
v When you create applications, specify application CCSIDs.
Related concepts:

Euro symbol support (DB2 Installation and Migration)

Specifying subsystem CCSIDs
You specify the default subsystem CCSIDs when you install DB2. DB2 uses these
values for objects and applications if no other CCSID values are specified.

Before you begin

Before you specify subsystem CCSIDs, determine the CCSID of your data sources.
Knowing the CCSID of your data sources helps you determine what the subsystem
CCSIDs should be. Ideally, your subsystem CCSIDs should match the CCSIDs in
the majority of your data sources. If you need help determining the correct values,
contact IBM Software Support.

32 Internationalization Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_differenceprecompilercoprocessor.htm#db2z_differenceprecompilercoprocessor
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_differenceprecompilercoprocessor.htm#db2z_differenceprecompilercoprocessor
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/cbcpg1d0/8.0?ACTION=MATCHES&REQUEST=locales+and+character+sets&TYPE=FUZZY&SHELF=&DT=20120802234732&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/cbcpg1d0/8.0?ACTION=MATCHES&REQUEST=locales+and+character+sets&TYPE=FUZZY&SHELF=&DT=20120802234732&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/cbcug1b0/4.0?DN=SC09-4767-11&DT=20120802022433&SHELF=&CASE=&PATH=/bookmgr/
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/igy3cg50/1.2
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/igy3cg50/1.2
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/igy3pg50/2.4?DT=20090820210412
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ispzdg80/11.1.1
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/i1191451/1.1.3?ACTION=MATCHES&REQUEST=changing+the+default+options&TYPE=FUZZY&SHELF=&DT=20110908014642&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/i1191451/1.1.3?ACTION=MATCHES&REQUEST=changing+the+default+options&TYPE=FUZZY&SHELF=&DT=20110908014642&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/i1191451/1.1.1?ACTION=MATCHES&REQUEST=compile-time+option&TYPE=FUZZY&SHELF=&DT=20110908014642&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/i1191451/1.1.1?ACTION=MATCHES&REQUEST=compile-time+option&TYPE=FUZZY&SHELF=&DT=20110908014642&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT
http://www.ibm.com/software/integration/wmq/library/
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_convert2euro.htm#db2z_convert2euro

About this task

Important: Never change CCSIDs on an existing DB2 subsystem without guidance
from IBM Software Support. If you think you need to change your subsystem
CCSIDs, first consider the effects on all of your tools, applications, and utilities.
Then contact IBM Software Support.

Procedure

To specify subsystem CCSIDs:

When you install DB2, specify the CCSIDs for the subsystem by using installation
panel DSNTIPF or installation job DSNTIJUZ.
v For the subsystem EBCDIC and ASCII CCSIDs, you must specify values

according to the following criteria:
– You must specify valid, non-zero CCSIDs for single-byte character set (SBCS)

data. You should specify the CCSID values that you want to use for EBCDIC
and ASCII data and objects by default. For a list of valid CCSIDs, see EBCDIC
and ASCII support.

– If you use languages with double-byte characters, such as Chinese, Japanese,
or Korean, you must also specify valid, non-zero CCSIDs for multibyte
character set (MBCS) data and double-byte character set (DBCS) data. All
three of these values, the single-byte CCSID value (SBCS), the mixed CCSID
value, and the double-byte CCSID value (DBCS), that are associated with a
particular encoding scheme are collectively called a CCSID set. If you set these
three values by using the installation panel DSNTIPF, you need to explicitly
specify only the MBCS value. DB2 calculates the value of the other two based
on the MBCS value. If you specify these values in job DSNTIJUZ, you need
specify all three values.

v For the subsystem Unicode CCSIDs, the values are provided for you, and you
cannot change them. These CCSIDs are the only ones that DB2 uses for Unicode
objects.

All of these CCSIDs are stored in dsnhdecp and must be valid. dsnhdecp is the
DSNHDECP module or a user-specified application defaults module.
During startup processing, if DB2 detects invalid CCSID values, DB2 issues a
message and terminates.
Related concepts:

Job DSNTIJUZ and the subsystem parameter load module, application defaults
load module, and DSNHMCID (DB2 Installation and Migration)

Euro symbol support (DB2 Installation and Migration)
Related reference:

Application programming defaults panel 1: DSNTIPF (DB2 Installation and
Migration)

EBCDIC and ASCII support (DB2 Installation and Migration)

Subsystem CCSIDs and encoding schemes
Each DB2 subsystem has a set of default CCSID and encoding scheme values. DB2
uses these values for objects and applications that do not otherwise have a CCSID
associated with them.

The subsystem CCSIDs are listed in the following table.

Chapter 3. Setting up DB2 to ensure that it interprets characters correctly 33

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ebcdicasciisupp.htm#db2z_ebcdicasciisupp
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ebcdicasciisupp.htm#db2z_ebcdicasciisupp
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_dsntijuzmodules.htm#db2z_dsntijuzmodules
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_dsntijuzmodules.htm#db2z_dsntijuzmodules
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_convert2euro.htm#db2z_convert2euro
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_dsntipf.htm#db2z_dsntipf
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_dsntipf.htm#db2z_dsntipf
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ebcdicasciisupp.htm#db2z_ebcdicasciisupp

Table 15. Subsystem CCSIDs

Subsystem CCSID

Field on installation panel
DSNTIPF where the value
is set Description

Corresponding dsnhdecp
values1, 3

Subsystem default ASCII
CCSID

ASCII CCSID Specifies the default CCSID
for ASCII-encoded character
data that is stored in your
DB2 subsystem or data
sharing group.

For a MIXED=NO
subsystem, specify the
ASCII SBCS CCSID only. In
this case, the mixed and
graphic CCSIDs are set to
65534 in dsnhdecp.

For a MIXED=YES
subsystem, specify the
ASCII mixed CCSID. Based
on the value that you
entered, DB2 determines
the SBCS CCSID and
graphic CCSID.2

v ASCCSID (for single-byte
data)

v AMCCSID (for mixed
data)

v AGCCSID (for graphic
data)

Subsystem default EBCDIC
CCSID

EBCDIC CCSID Specifies the default CCSID
for EBCDIC-encoded
character data that is stored
in your DB2 subsystem or
data sharing system.

For a MIXED=NO
subsystem, specify the
EBCDIC SBCS CCSID only.
In this case, the mixed and
graphic CCSIDs are set to
65534 in dsnhdecp.

For a MIXED=YES
subsystem, specify the
EBCDIC mixed CCSID.
Based on the value that you
entered, DB2 determines
the SBCS CCSID and
graphic CCSID.2

v SCCSID (for single-byte
data)

v MCCSID (for mixed data)

v GCCSID (for graphic
data)

Subsystem default Unicode
CCSID

UNICODE CCSID Specifies the default CCSID
for Unicode character data
that is stored in your DB2
subsystem or data sharing
system.

This field is pre-filled with
the default value of 1208,
which is the CCSID for
UTF-8. You cannot change
this value.

Because the value of
UNICODE CCSID is always
1208, the dsnhdecp values
are always as follows:

v USCCSID (for single-byte
data): 367

v UMCCSID (for mixed
data): 1208

v UGCCSID (for graphic
data): 1200

34 Internationalization Guide

Table 15. Subsystem CCSIDs (continued)

Subsystem CCSID

Field on installation panel
DSNTIPF where the value
is set Description

Corresponding dsnhdecp
values1, 3

notes:

1. The three CCSID values, one for SBCS, one for mixed, and one for graphic, are called a CCSID set.

2. Whether the subsystem is a MIXED=YES subsystem or MIXED=NO subsystem depends on the value that you
specified for the MIXED field on the same panel when you installed DB2. MIXED=NO is the default setting.
Recommendation: Do not change the MIXED value after you install DB2.

3. dsnhdecp is the DSNHDECP module or a user-specified application defaults module.

The subsystem encoding schemes are listed in the following table.

Table 16. Subsystem encoding schemes

Subsystem encoding
scheme

Field on installation panel
DSNTIPF where the value
is set Description

Corresponding dsnhdecp
values1

Subsystem default encoding
scheme

DEF ENCODING SCHEME Specifies which default
subsystem CCSID (ASCII,
EBCDIC, or Unicode) DB2
is to use for objects.

ENSCHEME

Subsystem default
application encoding
scheme

APPLICATION
ENCODING

Specifies which default
subsystem CCSID (ASCII,
EBCDIC, or Unicode) DB2
is to use for application
data.

APPENSCH

notes:

1. dsnhdecp is the DSNHDECP module or a user-specified application defaults module.

Related tasks:
“Determining current subsystem CCSID and encoding scheme values”
Related reference:

Application programming defaults panel 1: DSNTIPF (DB2 Installation and
Migration)

Determining current subsystem CCSID and encoding scheme
values
For an existing subsystem, you can check the CCSID values, but do not make
changes. If you suspect that the specified CCSIDs are incorrect or you need to
change them, contact IBM Software Support.

Procedure

To determine current subsystem CCSID and encoding scheme values, perform one
of the following actions:

v Use the GETVARIABLE function.

Example GETVARIABLE calls: In all of the following examples, :hv3 is a
varying-length character variable with a maximum length of 20.
– The following example code retrieves the value of the subsystem EBCDIC

CCSID:
SET :hv3 = GETVARIABLE(’SYSIBM.SYSTEM_EBCDIC_CCSID’);

Chapter 3. Setting up DB2 to ensure that it interprets characters correctly 35

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_dsntipf.htm#db2z_dsntipf
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_dsntipf.htm#db2z_dsntipf

The GETVARIABLE function returns three comma-delimited values that
correspond to the SBCS, MIXED, and GRAPHIC CCSIDs for the encoding
scheme.

– The following example code retrieves the value of the subsystem default
encoding scheme:
SET :hv3 = GETVARIABLE(’SYSIBM.ENCODING_SCHEME’);

– The following example code retrieves the value of the subsystem default
application encoding scheme:
SET :hv3 = GETVARIABLE(’SYSIBM.APPLICATION_ENCODING_SCHEME’);

v Run the DSNJU004 utility for the current subsystem or member, and look at the
SYSTEM CCSIDS section in the output.

Restriction: DSNJU004 does not return the subsystem encoding scheme values
(DECP values ENSCHEME and APPENSCH). To get those values, use the
GETVARIABLE function.

Example: The following code shows example JCL to execute DSNJU004 and the
relevant portion of the output.
//PLM EXEC PGM=DSNJU004
//GROUP DD DSN=DBD1.BSDS01,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
MEMBER *
/*
...
SYSTEM CCSIDS
18:12:47 MAY 18, 2005
SYSTEM CCSIDS

ASCII SBCS = 1252
ASCII MIXED = 65534
ASCII DBCS = 65534
EBCDIC SBCS = 37
EBCDIC MBCS = 65534
EBCDIC DBCS = 65534
UNICODE SBCS = 367
UNICODE MBCS = 1208
UNICODE DBCS = 1200
DSNJ200I DSNJU004 PRINT LOG UTILITY PROCESSING COMPLETED SUCCESSFULLY

This output shows that the default ASCII CCSID is 1252 and the default EBCDIC
CCSID is 37. This subsystem does not have CCSIDs defined for ASCII or
EBCDIC data that is mixed or double-byte. The Unicode CCSIDs are the default
CCSIDs that are predefined by DB2. You cannot change these values.

v Run job DSNTEJ6Z which calls the DSNWZP stored procedure to list your
current subsystem parameter settings. To determine the subsystem CCSIDs,
examine the values of the following subsystem parameters:
– MIXED
– AGCCSID
– AMCCSID
– ASCCSID
– GCCSID
– MCCSID
– SCCSID

36 Internationalization Guide

– UGCCSID
– UMCCSID
– USCCSID

Related concepts:

Job DSNTEJ6Z (DB2 Installation and Migration)
Related reference:
“Subsystem CCSIDs and encoding schemes” on page 33

GETVARIABLE (DB2 SQL)

DSNJU004 (print log map) (DB2 Utilities)

Specifying object CCSIDs
The default encoding scheme for all DB2 objects is the value of ENSCHEME in
dsnhdecp. dsnhdecp is the DSNHDECP module or a user-specified application
defaults module. However, you can override this value for a particular object.

About this task

The ENSCHEME value was set during installation on panel DSNTIPF in the DEF
ENCODING SCHEME field. Do not change the ENSCHEME DECP value without
first considering the implications. This value controls the default encoding scheme
of any newly created objects.

Procedure

To specify object CCSIDs:

Use the CCSID clause in the CREATE statement for any of the following objects:
v Database
v Table space
v Table
v Procedure or function

You can specify one of the following values in the CCSID clause:

ASCII
Use the subsystem default ASCII CCSID.

EBCDIC
Use the subsystem default EBCDIC CCSID.

Unicode
Use the subsystem default Unicode CCSID.

If you do not specify the CCSID clause, the object uses the subsystem default
encoding scheme value (ENSCHEME in dsnhdecp).

Chapter 3. Setting up DB2 to ensure that it interprets characters correctly 37

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_dsntej6z.htm#db2z_dsntej6z
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_getvariable.htm#db2z_bif_getvariable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utl_dsnju004.htm#db2z_utl_dsnju004

Related tasks:
“Creating a Unicode table” on page 48
Related reference:
“Subsystem CCSIDs and encoding schemes” on page 33

Application programming defaults panel 1: DSNTIPF (DB2 Installation and
Migration)

Setting up z/OS Unicode Services for DB2 for z/OS
DB2 for z/OS uses z/OS Unicode Services to perform character conversions and
case conversions. You should set up z/OS Unicode Services specifically for DB2 for
z/OS to ensure optimal DB2 performance.

About this task

z/OS Unicode Services uses a conversion image to determine how to handle
various conversions. The conversion image tells z/OS Unicode Services which
conversion tables to load and use for character and case conversions. This task
explains how to set up such a conversion image. Starting in z/OS 1.7, if at any
time DB2 needs a conversion that is not in your image, z/OS Unicode Services
loads it on demand.

Tip: Even though you are not required to create your own conversion image, do
so anyway by performing the steps in this task. DB2 for z/OS requires that certain
conversions be available before it can start. When you define your own conversion
image, as described in this task, those conversions are loaded when z/OS is IPLed
and are available when DB2 starts. Otherwise, DB2 might be suspended by z/OS
multiple times during startup as each of the required conversion tables is loaded
by z/OS on demand.

Procedure

To set up z/OS Unicode Services:

Follow the instructions in these sections in the z/OS Unicode Services information:
v Manually setting up Unicode Services (z/OS: Unicode Services User’s Guide

and Reference)
v Creating user-defined conversion tables (z/OS: Unicode Services User’s Guide

and Reference)

What to do next

If you later need to alter your conversion image in any way, use the SETUNI
command.
Related reference:

Conversion Tables Supplied with z/OS Unicode (z/OS: Unicode Services
User’s Guide and Reference)

Conversion image
A conversion image is a data set that contains the information that z/OS Unicode
Services needs when performing character and case conversions. The conversion
image defines which conversion tables z/OS is to load and use for these
conversions.

38 Internationalization Guide

|
|

|
|

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_dsntipf.htm#db2z_dsntipf
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_dsntipf.htm#db2z_dsntipf
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2unb0/3.3
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2unb0/3.3
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2unb0/3.4
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2unb0/3.4
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2g1c2/4.51?ACTION=MATCHES&REQUEST=setuni&TYPE=FUZZY&SHELF=&DT=20120815003139&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2g1c2/4.51?ACTION=MATCHES&REQUEST=setuni&TYPE=FUZZY&SHELF=&DT=20120815003139&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2unb0/APPENDIX1.3
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2unb0/APPENDIX1.3

You create a conversion image by invoking the z/OS Unicode Services image
generator when you set up z/OS Unicode Services. The image generator creates
the conversion image according to what you specify in the SYSIN DD statement in
the job that invokes the image generator, CUNJIUTL. The generated image is
stored in the data set that is identified in the SYSIMG DD statement. Messages
from this process are listed in the data set that is identified by the SYSPRINT DD
statement.

You can activate a conversion image during IPL or by issuing the z/OS SET UNI
or SETUNI system command.

If you have z/OS 1.7 or later, conversions are loaded on request. However, to
avoid waiting while conversion tables are loaded, you can create your own
conversion image.

You can create more than one conversion image. These images are kept in different
data sets. Use the SET UNI or SETUNI command to merge these images into the
existing z/OS Unicode Services conversion image. Any tables in the new image
that intersect with tables in the existing image are not loaded.

You can add, delete, or replace conversion images by using the SET UNI or
SETUNI command.
Related reference:

SETUNI Command (z/OS MVS System Commands)

Creating a conversion image (z/OS: Unicode Services User’s Guide and
Reference)

Basic character conversions for DB2 in the z/OS conversion
image

When you set up z/OS Unicode Services for DB2, you need to define a set of basic
conversions between various CCSIDs.

To define these basic character conversions, add the basic conversion statements to
high-level-qualifier.SCUNJCL(CUNJIUTL). These conversions are then added to the
z/OS conversion image. Any duplicate statements are ignored.

In these CONVERSION statements, the variables have the following meanings:

your sccsid
The EBCDIC SBCS CCSID that is specified in your dsnhdecp module.

your asccsid
The ASCII SBCS CCSID that is specified in your dsnhdecp module.

your mccsid
The EBCDIC MBCS CCSID that is specified in your dsnhdecp module.

your amccsid
The ASCII MBCS CCSID that is specified in your dsnhdecp module.

your gccsid
The EBCDIC graphic CCSID that is specified in your dsnhdecp module.

your agccsid
The ASCII graphic CCSID that is specified in your dsnhdecp module.

Chapter 3. Setting up DB2 to ensure that it interprets characters correctly 39

|

|

|
|

|
|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2g1c2/4.51?ACTION=MATCHES&REQUEST=setuni&TYPE=FUZZY&SHELF=&DT=20120815003139&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2unb0/3.3.3.1
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2unb0/3.3.3.1

client ccsid
The CCSID from a client that makes remote connections to this DB2
subsystem.

dsnhdecp is the user-specified application defaults module.

Basic CONVERSION statements
v Specify the following conversion definitions between your ASCII and EBCDIC

system CCSIDs and CCSIDs 367, 1208, and 1200:
CONVERSION your sccsid,00367,ER;
CONVERSION your sccsid,01200,ER;
CONVERSION your sccsid,01208,ER;
CONVERSION your sccsid,your asccsid,ER;
CONVERSION 00367,your sccsid,ER;
CONVERSION 00367,01200,ER;
CONVERSION 00367,01208,ER;
CONVERSION 00367,your asccsid,ER;
CONVERSION 01200,your sccsid,ER;
CONVERSION 01200,00367,ER;
CONVERSION 01200,01208,ER;
CONVERSION 01200,your asccsid,ER;
CONVERSION 01208,your sccsid,ER;
CONVERSION 01208,00367,ER;
CONVERSION 01208,01200,ER;
CONVERSION 01208,your asccsid,ER;
CONVERSION your asccsid,your sccsid,ER;
CONVERSION your asccsid,00367,ER;
CONVERSION your asccsid,01200,ER;
CONVERSION your asccsid,01208,ER;

v If you use the samples that are provided with DB2, also define the following
conversions:
CONVERSION 00037, 00367, ER;
CONVERSION 00037, 01200, ER;
CONVERSION 00037, 1208, ER;
CONVERSION 00367, 0037, ER;
CONVERSION 01200, 00037, ER;
CONVERSION 1208, 00037, ER;
CONVERSION 01047, 00367, ER;
CONVERSION 01047, 01200, ER;
CONVERSION 01047, 1208, ER;
CONVERSION 00367, 1047, ER;
CONVERSION 01200, 1047, ER;
CONVERSION 1208, 1047, ER;

v Optional: For completeness, define the following conversions between CCSID 37
and CCSID 1047:
CONVERSION 00037, 01047, ER;
CONVERSION 001047, 0037, ER;

v If your dsnhdecp module specifies an EBCDIC SBCS CCSID other than CCSID 37
or CCSID 1047, define the following conversions:
CONVERSION your sccsid, 00367, ER;
CONVERSION your sccsid, 01200, ER;
CONVERSION your sccsid, 01208, ER;
CONVERSION 00367, your sccsid, ER;
CONVERSION 01200, your sccsid, ER;
CONVERSION 01208, your sccsid, ER;

v Optional: For completeness, define the following conversions between the
EBCDIC SBCS CCSID that is defined in your dsnhdecp module and CCSIDs 37
and 1047.

40 Internationalization Guide

|
|
|

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|

|
|
|
|
|
|

|
|
|

CONVERSION 00037, your sccsid, ER;
CONVERSION your sccsid, 00037, ER;
CONVERSION 01047, your sccsid, ER;
CONVERSION your sccsid, 01047, ER;

v If your DB2 subsystem uses mixed-byte or double-byte CCSIDs for EBCDIC and
ASCII, specify the following conversions:
CONVERSION your sccsid,your mccsid,ER;
CONVERSION your sccsid,your amccsid,ER;
CONVERSION your mccsid,00367,ER;
CONVERSION your mccsid,01200,ER;
CONVERSION your mccsid,01208,ER;
CONVERSION your mccsid,your sccsid,ER;
CONVERSION your mccsid,your asccsid,ER;
CONVERSION your mccsid,your amccsid,ER;
CONVERSION your gccsid,00367,ER;
CONVERSION your gccsid,01200,ER;
CONVERSION your gccsid,01208,ER;
CONVERSION your gccsid,your agccsid,ER;
CONVERSION your asccsid,your mccsid,ER;
CONVERSION your asccsid,your amccsid,ER;
CONVERSION your amccsid,your mccsid,ER;
CONVERSION your amccsid,00367,ER;
CONVERSION your amccsid,01200,ER;
CONVERSION your amccsid,01208,ER;
CONVERSION your amccsid,your asccsid,ER;
CONVERSION your amccsid,your sccsid,ER;
CONVERSION your agccsid,your gccsid,ER;
CONVERSION your agccsid,00367,ER;
CONVERSION your agccsid,01200,ER;
CONVERSION your agccsid,01208,ER;
CONVERSION 00367,your mccsid,ER;
CONVERSION 00367,your gccsid,ER;
CONVERSION 00367,your amccsid,ER;
CONVERSION 00367,your agccsid),ER;
CONVERSION 01200,your mccsid,ER;
CONVERSION 01200,your gccsid),ER;
CONVERSION 01200,your amccsid,ER;
CONVERSION 01200,your agccsid),ER;
CONVERSION 01208,your mccsid,ER;
CONVERSION 01208,your gccsid,ER;
CONVERSION 01208,your amccsid,ER;
CONVERSION 01208,your agccsid,ER;

v If your dsnhdecp module specifies an EBCDIC SBCS CCSID other than CCSID 37,
specify the following conversions:
CONVERSION 00037,00367,ER;
CONVERSION 00037,00500,ER;
CONVERSION 00037,01047,ER;
CONVERSION 00037,01200,ER;
CONVERSION 00037,01208,ER;
CONVERSION 00037,(your asccsid),ER;
CONVERSION 00367,00037,ER;
CONVERSION 01200,00037,ER;
CONVERSION 01208,00037,ER;
CONVERSION your asccsid,00037,ER;

v If your dsnhdecp module specifies an EBCDIC SBCS CCSID other than CCSID
500, specify the following conversions:
CONVERSION 00500,00037,ER;
CONVERSION 00500,00367,ER;
CONVERSION 00500,01047,ER;
CONVERSION 00500,01200,ER;
CONVERSION 00500,01208,ER;
CONVERSION 00500,your asccsid,ER;

Chapter 3. Setting up DB2 to ensure that it interprets characters correctly 41

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

CONVERSION 00367,00500,ER;
CONVERSION 01200,00500,ER;
CONVERSION 01208,00500,ER;
CONVERSION your asccsid,00500,ER;

v If your dsnhdecp module specifies an EBCDIC SBCS CCSID other than CCSID
1047, specify the following conversions:
CONVERSION 01047,00037,ER;
CONVERSION 01047,00367,ER;
CONVERSION 01047,00500,ER;
CONVERSION 01047,01200,ER;
CONVERSION 01047,01208,ER;
CONVERSION 01047,your asccsid,ER;
CONVERSION 00367,01047,ER;
CONVERSION 01200,01047,ER;
CONVERSION 01208,01047,ER;
CONVERSION your asccsid,01047,ER;

v Define the following conversions for each additional CCSID that is presented by
clients that make remote connections to this DB2 subsystem:
CONVERSION client ccsid,00367,ER;
CONVERSION client ccsid,01200,ER;
CONVERSION client ccsid,01208,ER;
CONVERSION 00367,client ccsid,ER;
CONVERSION 01200,client ccsid,ER;
CONVERSION 01208,client ccsid,ER;

Character conversions for Chinese, Japanese, and Korean
character sets in the z/OS conversion image

If you use Chinese, Japanese, or Korean character sets, you need to specify several
conversions for z/OS Unicode Services in addition to the basic conversions.

To define these conversions add the additional conversion statements to
high-level-qualifier.SCUNJCL(CUNJIUTL). These conversions are then added to the
z/OS conversion image. Any duplicate statements are ignored.

In these CONVERSION statements, the variables have the following meanings:

your sccsid
The EBCDIC SBCS CCSID that is specified in your dsnhdecp module.

your mccsid
The EBCDIC MBCS CCSID that is specified in your dsnhdecp module.

your gccsid
The EBCDIC DBCS CCSID that is specified in your dsnhdecp module.

your asccsid
The ASCII SBCS CCSID that is specified in your dsnhdecp module.

your amccsid
The ASCII MBCS CCSID that is specified in your dsnhdecp module.

your agccsid
The ASCII DBCS CCSID that is specified in your dsnhdecp module.

dsnhdecp is the user-specified application defaults module.

Additional CONVERSION statements
v Specify the following conversions between your EBCDIC MBCS CCSID and the

Unicode CCSIDs:

42 Internationalization Guide

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

|

|

|
|

|
|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|

|

|
|

CONVERSION your mccsid, 00367, ER;
CONVERSION your mccsid, 01200, ER;
CONVERSION your mccsid, 01208, ER;
CONVERSION 00367, your mccsid, ER;
CONVERSION 01200, your mccsid, ER;
CONVERSION 01208, your mccsid, ER;

v Specify the following conversions between your EBCDIC DBCS CCSID and the
Unicode CCSIDs:
CONVERSION your gccsid, 00367, ER;
CONVERSION your gccsid, 01200, ER;
CONVERSION your gccsid, 01208, ER;
CONVERSION 00367, your gccsid, ER;
CONVERSION 01200, your gccsid, ER;
CONVERSION 01208, your gccsid, ER;

v Specify the following conversions between your ASCII SBCS CCSID and the
Unicode CCSIDs:
CONVERSION your asccsid, 00367, ER;
CONVERSION your asccsid, 01200, ER;
CONVERSION your asccsid, 01208, ER;
CONVERSION 00367, your asccsid, ER;
CONVERSION 01200, your asccsid, ER;
CONVERSION 01208, your asccsid, ER;

v Optional: For completeness, specify the following conversions between your
ASCII SBCS CCSID and CCSID 37, and between your ASCII SBCS CCSID and
CCSID 1047:
CONVERSION 00037, your asccsid, ER;
CONVERSION your asccsid, 00037, ER;
CONVERSION 01047, your asccsid, ER;
CONVERSION your asccsid, 01047, ER;

v Specify the following conversions between your ASCII MBCS CCSID and the
Unicode CCSIDs:
CONVERSION your amccsid, 00367, ER;
CONVERSION your amccsid, 01200, ER;
CONVERSION your amccsid, 01208, ER;
CONVERSION 00367, your amccsid, ER;
CONVERSION 01200, your amccsid, ER;
CONVERSION 01208, your amccsid, ER;

v Specify the following conversions between your ASCII DBCS CCSID and the
Unicode CCSIDs:
CONVERSION your agccsid, 00367, ER;
CONVERSION your agccsid, 01200, ER;
CONVERSION your agccsid, 01208, ER;
CONVERSION 00367, your agccsid, ER;
CONVERSION 01200, your agccsid, ER;
CONVERSION 01208, your agccsid, ER;

v If your dsnhdecp module specifies an EBCDIC SBCS CCSID other than CCSID 37
or CCSID 1047, specify the following conversions:
CONVERSION your sccsid, your asccsid, ER;
CONVERSION your asccsid, your sccsid, ER;

v Optional: Specify the following conversions between your system EBCDIC
MBCS CCSID and ASCII MBCS CCSID and between your system EBCDIC DBCS
CCSID and your ASCII DBCS CCSID:
CONVERSION your mccsid, your amccsid, ER;
CONVERSION your amccsid, your mccsid, ER;
CONVERSION your gccsid, your agccsid, ER;
CONVERSION your agccsid, your gccsid, ER;

Chapter 3. Setting up DB2 to ensure that it interprets characters correctly 43

|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|

|
|

|
|
|

|
|
|
|

Defining additional character conversions
You must define valid conversion definitions for source and target CCSIDs for DB2
to use when performing character conversions. Many of these definitions already
exist in SYSIBM.SYSSTRINGS and in the conversion image that you set up for
z/OS Unicode Services. However, you might need to add more.

Procedure

To define character conversions:

Add the definition to one of the following places:
v The DB2 catalog table SYSIBM.SYSSTRINGS

Insert a row with the appropriate definition. The definitions in this table take
precedence over the definitions in z/OS Unicode Services with several
exceptions, which are described after this list. Rows that you insert have a value
of 'N' in the IBMREQD column and take precedence over the IBM-supplied
rows.

v z/OS Unicode Services
You can either load a new conversion image that contains the conversion
definitions or add a single conversion definition to the existing image. For
instructions on how to load or alter conversion images, see “Setting up z/OS
Unicode Services for DB2 for z/OS” on page 38.

Related concepts:
“How DB2 performs character conversions” on page 27
“SYSIBM.SYSSTRINGS catalog table” on page 28

Checking defined character conversions
Character conversion definitions identify valid conversions for source and target
CCSIDs for DB2. Many of these definitions are predefined. If you are not sure if a
particular character conversion that you need is defined to DB2, check your
character conversion definitions.

Procedure

To check defined character conversions:
1. Query the DB2 catalog table SYSIBM.SYSSTRINGS. Each row in the catalog

table describes a conversion from one CCSID to another. IBM supplies some of

the rows. You can also add your own rows.

Example: You can use the following query to view the defined conversions for
CCSID 500:
SELECT INCCSID, OUTCCSID, TRANSTYPE, HEX(ERRORBYTE) AS ERRORBYTE,

HEX(SUBBYTE) AS SUBBYTE, TRANSPROC, IBMREQD, HEX(TRANSTAB) AS TRANSTAB
FROM SYSIBM.SYSSTRINGS WHERE CCSID=500

2. Check the conversion image for z/OS Unicode Services by using the DISPLAY
UNI command. This image contains character conversion definitions. If a
definition for a particular source CCSID and target CCSID already exists in
SYSIBM.SYSSTRINGS, DB2 uses that definition instead. The exception is for

44 Internationalization Guide

|

Unicode CCSIDs. If the source or target CCSID is 1200 or 1208, DB2 uses the
definition in the conversion image for z/OS Unicode Services
For an example of the DISPLAY UNI output, see “Unicode CCSIDs” on page 14

Related concepts:
“How DB2 performs character conversions” on page 27
“SYSIBM.SYSSTRINGS catalog table” on page 28
Related reference:

Displaying Unicode Services (z/OS MVS System Commands)

Chapter 3. Setting up DB2 to ensure that it interprets characters correctly 45

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2g1c2/4.10.69?ACTION=MATCHES&REQUEST=displaying+unicode+services&TYPE=FUZZY&SHELF=&DT=20120815003139&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT

46 Internationalization Guide

Chapter 4. Storing Unicode data

DB2 for z/OS supports the full Unicode character repertoire, or set of characters. You
can store DB2 data as UTF-8 or UTF-16.
Related concepts:
“Unicode” on page 11
Related reference:
“UTFs” on page 12

Deciding whether to store data as UTF-8 or UTF-16
If you create a Unicode database in DB2 for z/OS, you need to decide whether to
use UTF-8 or UTF-16. DB2 for z/OS does not support storing data as UTF-32.
UTF-8 and UTF-16 can both represent any Unicode character that you need to
represent, but each format has advantages and disadvantages depending on your
situation.

Procedure

To decide whether to store data as UTF-8 or UTF-16:

Consider the following recommendations and guidelines:
v Performance recommendation: Store your data in DB2 in the same format as

your application. This setup ensures optimal performance, because character
conversion is avoided.
This recommendation is especially important when the application is written in
a language that runs on z/OS (for example COBOL on z/OS), because the CPU
cost of character conversion on z/OS can be very expensive.

Examples:

– COBOL and PL/I on z/OS use UTF-16 for Unicode data. Neither language
supports UTF-8. So if you are using COBOL or PL/I applications on z/OS
that process Unicode data, the optimal situation is to store your data in DB2
in UTF-16. In this case, even though UTF-16 data can potentially take more
storage than UTF-8 data , no conversion occurs. Thus you avoid a significant
performance impact.

– For Java applications that use the type 4 z/OS driver, which sends the data in
UTF-8, store your data in DB2 as UTF-8 data.

If you have both local and remote applications on different operating systems,
choose the format based on the encoding of the local application.

v Storage recommendation: After you consider performance, consider your
storage requirements. Store the data in the format that requires the least space
for your data.
UTF-16 does not always require more storage than UTF-8. The amount of
storage that is required depends on your data. For example, Latin-1 characters
always take 1 byte in UTF-8 and 2 bytes in UTF-16. However, Japanese
characters take 3 to 4 bytes in UTF-8 and 2 to 4 bytes in UTF-16.

Example: DB2 for z/OS uses UTF-8 for the catalog. Because the catalog contains
mostly Latin-1 characters, this format uses considerably less space than UTF-16.

© Copyright IBM Corp. 2003, 2013 47

v Recommendation for MQ, CICS Transaction Gateway, and IMS Connect
messages: When messages are passed from one technology to another,
everything in the message is usually converted to characters. You should
consider the size of these messages when you decide when and where to use
certain UTFs. For example, suppose that you have COBOL applications, which
use UTF-16, but you are concerned about the size of the messages. You might
decide to convert the messages to UTF-8 before you put them on the wire. This
setup compresses the messages.

What to do next

If you choose a Unicode format for performance reasons and are concerned about
the extra storage that the format requires, see “Tips for handling any extra storage
that Unicode data might require” on page 51.
Related reference:
“UTFs” on page 12

Creating a Unicode table
If you plan to store Unicode data, create Unicode tables. If you try to insert
Unicode data into an ASCII or EBCDIC table, data might be lost, unless you use
escaped data.

Recommendation: When you create objects, use standard characters for the object
names and column names. Unique characters, such as ü or é, can complicate your
applications if conversions are needed.

Procedure

To create a Unicode table:
1. In the CREATE DATABASE, CREATE TABLESPACE, or CREATE TABLE

statement, specify the CCSID UNICODE clause.
By default, the encoding scheme of a table is the same as the encoding scheme
of its table space. Also by default, the encoding scheme of the table space is the
same as the encoding scheme of its database. You can override the encoding
scheme with the CCSID clause in the CREATE TABLESPACE or CREATE
TABLE statement. However, all tables within a table space must have the same
CCSID.

2. In the CREATE TABLE statement, for each column definition, specify the
appropriate data type, subtype, and length value.

data type

Use one of the following data types:
v For UTF-8 data, create columns of type CHAR, VARCHAR, or CLOB.
v For UTF-16 data, create columns of type GRAPHIC, VARGRAPHIC,

or DBCLOB.
v For binary data, create columns of type BINARY, VARBINARY, and

BLOB.

Recommendation: In general, use varying-length columns for Unicode
tables because the number of bytes in a Unicode column usually is two
to three times that of an EBCDIC column.

48 Internationalization Guide

The general guideline is to use variable length for columns that are
greater than 18 bytes unless you know that the entire column is to
always be filled. For example, if you store a timestamp in character
form (not as the DB2 TIMESTAMP datatype), you need a column with
some number of characters. In Version 9, that number would be 26
characters. (In ASCII, EBCDIC, or UTF-8, that column is 26 bytes. In
UTF-16, that column is 52 bytes.) Because the timestamp is always the
same size, using a varying-length column does not save storage.
However, suppose that you have a name field that is in ASCII or
EBCDIC and allows for names of 26 characters. (In ASCII SBCS or
EBCDIC SBCS, you use 26 bytes. In UTF-8, you need 78 bytes. In
UTF-16, you need 52 bytes.) In this case, you want to use a
varying-length column, because the name field is likely to have many
blanks and you do not want to store them.

subtype
For character columns, optionally specify one the following subtypes
for the column by adding the FOR subtype DATA clause to the column
definition:

SBCS Specify this subtype if the column is to contain only those
UTF-8 characters that are stored as 1 byte. Those characters are
the first 128 characters in the Unicode code page. Data that is
stored in a SBCS character column in a Unicode table has a
CCSID of 367.

MIXED
Specify this subtype if the column is to contain any UTF-8 data
that is more than 1 byte. MIXED is the default value. Character
data in a Unicode table is stored as mixed data by default, even
if your subsystem is defined with a MIXED DECP value of NO.
Data that is stored in a MIXED character column in a Unicode
table has a CCSID of 1208.

BIT This subtype specifies that the column contains BIT data.
CCSID 66534 is associated with FOR BIT DATA columns.

Recommendation: Although you can also specify the subtype
BIT for CHAR and VARCHAR columns that contain BIT data,
use the BINARY or VARBINARY data types instead.

Do not use FOR BIT DATA columns for the sole purpose of
handling international data. Only use FOR BIT DATA columns
if you have a specific reason, such as encryption. Otherwise,
this data type can cause problems. For example, if you have a
string of length 10 and put it in a FOR BIT DATA column of
length 12, DB2 pads the string with two blanks. The
hexadecimal value that is used for those blanks is system
specific. For example, X'40' is used for EBCDIC and X'20' is
used for Unicode. These different hexadecimal values can
potentially cause problems when you convert this data.

length To determine the appropriate the length value, follow the instructions
in “Estimating the column size for Unicode data” on page 52.

DB2 associates a certain CCSID with the column depending on the data type
that you specify. The following table summarizes the possible column data
types in a Unicode table and the CCSIDs that are associated with the data in
those columns.

Chapter 4. Storing Unicode data 49

Table 17. CCSIDs that are associated with columns in a Unicode table

Column data type Associated CCSID
Format in which the data is
stored

CHAR1 1208 UTF-8

CHAR FOR SBCS DATA 367 7-bit ASCII

CHAR FOR MIXED DATA 1208 UTF-8

CHAR FOR BIT DATA 66534 NA

VARCHAR1 1208 UTF-8

VARCHAR FOR SBCS DATA 367 7-bit ASCII

VARCHAR FOR MIXED
DATA

1208 UTF-8

VARCHAR FOR BIT DATA 66534 NA

CLOB1 1208 UTF-8

CLOB FOR SBCS DATA 367 7-bit ASCII

CLOB FOR MIXED DATA 1208 UTF-8

GRAPHIC 1200 UTF-16

VARGRAPHIC 1200 UTF-16

DBCLOB 1200 UTF-16

Note:

1. If you do not specify a subtype, DB2 assumes FOR MIXED DATA.

Example

The following CREATE TABLE statement creates a Unicode table.
CREATE TABLE UNITAB
(C1 CHAR(4)FOR SBCS DATA,
C2 CHAR(4),
C3 GRAPHIC(4),
C4 VARCHAR(4) FOR SBCS DATA,
C5 VARCHAR(4),
C6 VARGRAPHIC(4))

CCSID Unicode

Columns C1 and C4 can contain only 1-byte UTF-8 data. (This data has CCSID 367
and is stored in 7-bit ASCII format.) Columns C2 and C5 can contain any UTF-8
data. Columns C3 and C6 can contain UTF-16 data.

The CHAR and VARCHAR columns each have a length of 4 bytes. That length
means that each of these columns can contain one of the following characters or
sets of characters:
v one UTF-8 character that is 4 bytes
v two UTF-8 characters that are each 2 bytes
v one 3-byte UTF-8 characters and one one-byte UTF-8 character
v four one-byte UTF-8 characters

The GRAPHIC and VARGRAPHIC columns each have a length of 4 UTF-16 code
units. (A UTF-16 code unit is 16 bits or 2 bytes.) For UTF-16 characters that are 2

50 Internationalization Guide

bytes, this length means 4 characters. However, this length does not always
correlate to 4 characters. Consider supplementary UTF-16 characters, which are
each 2 UTF-16 code units or 4 bytes. If you include any supplementary characters
in the column, the column cannot include 4 characters. Thus, the length of this
column can contain 2, 3, or 4 characters, depending on the size of the character.
For example, each of these GRAPHIC and VARGRAPHIC columns can contain one
of the following characters or sets of characters:
v four 2-byte UTF-16 characters
v two 4-byte UTF-16 characters
v one 4-byte UTF-16 character and two 2-byte UTF-16 characters
Related tasks:
“Generating escaped Unicode data” on page 91
Related reference:
“UTFs” on page 12

CREATE DATABASE (DB2 SQL)

CREATE TABLE (DB2 SQL)

CREATE TABLESPACE (DB2 SQL)

MIXED DATA field (MIXED DECP value) (DB2 Installation and Migration)

Tips for handling any extra storage that Unicode data might
require

Unicode data often requires more storage than EBCDIC or ASCII data, but not
always. The amount of extra storage that is required depends on the type of data
and whether it is stored in UTF-8 or UTF-16 format.

Unicode data almost never requires double the amount of storage as EBCDIC or
ASCII data. That amount of extra storage is the extreme worst-case scenario. To
figure out how much space your Unicode data requires, consider the following two
factors:

The type of data that you plan to store in DB2
How many character fields do you have? Any increased storage
requirement affects mostly character fields. So if you convert an existing
DB2 database to Unicode, look at the character fields that are defined in
your existing database to get an idea of how much the database expands
when you convert it to Unicode.

Is the data Latin-1, Japanese, Chinese, or something else? For example, the
first 128 Latin-1 code points of UTF-8 take up only 1 byte. Those code
points include the characters A-Z, a-z, and 0-9. Thus, these characters do
not take up any more space in UTF-8 than they do in EBCDIC or ASCII.
Also, consider that Chinese characters can take up less space in Unicode
than EBCDIC.

The UTF format
Are you using UTF-8 or UTF-16? UTF-8 characters can take 1, 2, 3, or 4
bytes. UTF-16 characters can take 2 or 4 bytes. Even though UTF-16 often
takes more storage, UTF-16 is sometimes a wiser choice for performance
reasons. Also, in some cases, UTF-16 takes up less space. For example,
Japanese characters are 3 or 4 bytes in UTF-8, but 2 or 4 bytes in UTF-16.

If possible, use the following general recommendations to minimize the storage
impact of Unicode data:

Chapter 4. Storing Unicode data 51

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createdatabase.htm#db2z_sql_createdatabase
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtable.htm#db2z_sql_createtable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createtablespace.htm#db2z_sql_createtablespace
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_ipf_mixed.htm#db2z_dsntipf06

v Use data compression.
v Use non-padded indexes. If you are converting data that has padded indexes to

Unicode, change those indexes to be non-padded. This type of index can save
index storage space.

v If a column length is more than 18 bytes, use variable length data types.
v Use 8-KB pages instead of the default 4-KB pages by increasing the size of the

buffer pools. (The buffer pool in which you define the table space determines
the page size.)

Related tasks:

Compressing your data (DB2 Performance)

Using non-padded indexes (DB2 Performance)
Related reference:
“UTFs” on page 12

Estimating the column size for Unicode data
When you create a table to store Unicode data, allocate columns for storage length,
not for display length.

Procedure

To estimate the column size for Unicode data, perform one of the following
actions:
v For UTF-8 data, allocate three times the column size that you would allocate for

a non-Unicode table.
For example, if you use CHAR(10) for a name column in an EBCDIC table, use
VARCHAR(30) for the same column in a Unicode table. This column can contain
30 bytes or ten 3-byte characters. In this case, use VARCHAR instead of CHAR,
because the length (30) is greater than 18. (18 is traditionally the length when
VARCHAR should be used instead of CHAR.)
This estimate allows for the worst-case expansion of UTF-8 data. The worst case
for SBCS data is that 1 byte in ASCII or EBCDIC expands to 3 bytes in UTF-8.
For mixed data, such as Chinese, Japanese, or Korean characters, the same
worst-case scenario applies. You might have 2-, 3- and 4-byte characters,
depending on the encoding, that expand to a four-byte UTF-8 character in the
worst case. However, because these characters used more than one byte in ASCII
or EBCDIC, the worst-case expansion in UTF-8 is still three times the original
size.

v For UTF-16 data, allocate two times the column size that you would allocate for
a non-Unicode table, and use the GRAPHIC or VARGRAPHIC data types.
For example, if you use CHAR(10) for a name column in an EBCDIC table, use
VARGRAPHIC(10) for the same column in a Unicode table. CHAR(10) is 10
bytes long. VARGRAPHIC(10) is 20 bytes long or the equivalent of 10 two-byte
characters.

Recommendation: If your application is written in COBOL or PL/I, store your
data in UTF-16, and use the GRAPHIC and VARGRAPHIC data types. Thus, the
Unicode format in your application matches the format in your database. This
setup avoids conversion costs.

52 Internationalization Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_compressdataperf.htm#db2z_compressdataperf
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_usenonpaddedindex.htm#db2z_usenonpaddedindex

Related reference:
“UTFs” on page 12

Inserting data into a Unicode table
Unicode tables can store any characters. For characters that you can type on your
keyboard, INSERT statements are straightforward. But suppose that you want to
insert a character that is not on your keyboard, such as the yen sign (¥) on the U.S.
keyboard. That process requires some extra steps.

Procedure

To insert data into a Unicode table, use one of the following methods:
v Load the data from a data set by using the LOAD utility. If the input data set is

already in Unicode, specify the UNICODE option. If the data is not in Unicode,
ensure that you specify the appropriate encoding scheme keyword (ASCII,
EBCDIC, or CCSID) in the LOAD utility statement. The default is EBCDIC. DB2
converts ASCII and EBCDIC data to Unicode when it is loaded into a Unicode
table. Be aware that this conversion might cause the data to expand.

v Load the data from an another table by using the cross-loader function. If the
data is from an EBCDIC or ASCII table, DB2 converts it to Unicode when it is
loaded into the target Unicode table. Be aware that this conversion might cause
the data to expand.

v Insert individual rows by using the INSERT statement. For characters that
cannot be typed on your keyboard, use the Unicode constant UX'xxxx'. This
constant is always in UTF-16, which means that you need to specify the value in
UTF-16 format. To determine the Unicode constant for a particular character
perform the following steps:
1. Look up the Unicode code point. Use the Unicode character code charts on

the Unicode Consortium web site. For example, the yen sign (¥) is U+00A5.
2. Convert the Unicode code point to UTF-16 format by performing one of the

following actions:
– If the Unicode code point U+yyyy is less than U+FFFF, encoding it in

UTF-16 is simple. Just copy the value. For example, the following Unicode
code points can be specified as the following Unicode constants:

Table 18. Unicode code points and their corresponding Unicode constants for Unicode code
points that are less than U+FFFF

Character Unicode code point UTF-16 format Unicode constant

¥ U+00A5 X'00A5' UX'00A5'

ĸ U+0138 X'0138' UX'0138'

U+270E X'270E' UX'270E'

– If the Unicode code point U+yyyy is greater than or equal to U+FFFF,
encode that character as UTF-16 format, and use that encoded value. For
example, Unicode code point U+200D0 can be encoded in UTF-16 as
X'D840DCD0'. Thus, the Unicode constant is UX'D840DCD0'.
You can find the steps for how to manually encode and decode Unicode
data on the Unicode Consortium web site. Alternatively, you can use a
converter tool to do the conversion for you.

Chapter 4. Storing Unicode data 53

http://www.unicode.org/charts/
http://www.unicode.org/charts/

Example: The following INSERT statement inserts a row with Unicode character

U+200D0, which is , in the second column.
INSERT INTO UNITAB VALUES (’7A907’,UX’D840DCD0’,’A’);

Related concepts:
“Expanding conversion” on page 18

Graphic string constants (DB2 SQL)
Related tasks:

Loading data by using the cross-loader function (DB2 Utilities)
Related reference:

LOAD (DB2 Utilities)
“UTFs” on page 12
Related information:

UTF-8, UTF-16, UTF-32 & BOM (on Unicode Consortium website)

Inserting Unicode data into a non-Unicode table
If you insert Unicode data into an EBCDIC or ASCII table, use escaped data for
those characters that cannot be represented in the target encoding scheme. Using
escaped data ensures that those characters are preserved.

Procedure

To insert Unicode data into a non-Unicode table, perform one of the following
actions:
v If the target table is ASCII, use the ASCII_STR function to generate escaped data

for those characters that do not exist in ASCII.
v If the target table is EBCDIC, use the EBCDIC_STR function to generate escaped

data for those characters that do not exist in EBCDIC.
Related concepts:
“Potential problems when inserting non-Unicode data into a Unicode table” on
page 104
Related tasks:
“Generating escaped Unicode data” on page 91
Related reference:

ASCII_STR (DB2 SQL)

EBCDIC_STR (DB2 SQL)

Converting existing DB2 data to Unicode
If your database and applications handle international data, consider converting
your DB2 data to Unicode. Using Unicode might prevent character conversions
and thus improve performance and help ensure data integrity. However, Unicode
data might require more space. Depending on the data, these characters can be two
to three times the size of EBCDIC or ASCII characters.

54 Internationalization Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_graphicstringconstants.htm#db2z_graphicstringconstants
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_loadusecrossloaderfunction.htm#db2z_loadusecrossloaderfunction
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utl_load.htm#db2z_utl_load
http://unicode.org/faq/utf_bom.html
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_asciistr.htm#db2z_bif_asciistr
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_ebcdicstr.htm#db2z_bif_ebcdicstr

Before you begin

Before you convert your existing DB2 data to Unicode, think about the following
items:
v Consider the affects on all associated applications and tools. For example,

consider the affects on any green screen applications.
v Understand where the data originally came from. If the data was already

converted from its original form, it might contain substitution characters. If so,
consider converting the data back to its original form and then converting it to
Unicode.
For example, suppose that you convert data from EBCDIC to Unicode, and the
data was originally in ASCII. You might need to convert the data to its original
ASCII format and then to Unicode. Do this extra conversion if the original ASCII
data underwent a round-trip conversion to EBCDIC and not all of the characters
exist in EBCDIC. For example, suppose that you converted data from ASCII
CCSID 1252 to EBCDIC CCSID 37. CCSID 1252 contains characters that do not
exist in CCSID 37. Thus, the EBCDIC data has control characters in place of any
characters that existed in ASCII but not in EBCDIC. (Consider the example of
the trademark symbol ™ in “Round-trip conversion” on page 20.) Converting the
data to ASCII first recovers the original values before you convert to Unicode.

Procedure

To convert existing DB2 data to Unicode:
1. Create one or more Unicode tables for this data.
2. Use one of the following techniques to load the existing data into your new

Unicode tables. DB2 converts the data to Unicode when it loads it.
v Use the INSERT statement with a subselect.

Example:
INSERT INTO UNICODETABLE

SELECT *
FROM EBCDICTABLE;

For this example, make sure that the columns for both UNICODETABLE and
EBCDICTABLE are compatible. For example, if the first column of
EBCDICTABLE is a character column, the first column of UNICODETABLE
should also be a character column; if the second column of EBCDICTABLE is
a numeric column, the second column of UNICODETABLE should also be a
numeric column.

v Use the UNLOAD utility to unload the data as is into an EBCDIC or ASCII
data set. Then, LOAD the data into your new Unicode table. Specify the
appropriate encoding scheme keyword (ASCII, EBCDIC, or CCSID) in the
LOAD statement.

Recommendation: Use the PUNCHDDN option of the UNLOAD utility to
generate corresponding LOAD utility statements for the data as DB2 unloads
it.

Example: The following example JCL performs the following actions:
– STEP1 creates and populates two tables. T1 is a Unicode table. T2 is an

EBCDIC table.
– STEP2 unloads the data from EBCDIC table T2. The UNLOAD statement

contains the PUNCHDDN option. This option generates (in the

Chapter 4. Storing Unicode data 55

SYSPUNCH data set) corresponding LOAD statements to load the data
back into the original table, T2. To use this SYSPUNCH file to load the
unloaded data to table T1, you must modify the SYSPUNCH or JCL.

– STEP3 then loads the data that was unloaded in STEP2 into Unicode table
T1. Because the catalog defines the table as Unicode, the data is converted
to Unicode when it is loaded.

– STEP4 outputs the current data in both tables.
//STEP1 EXEC TSOBATCH
//SYSTSIN DD *
DSN S(SSTR) R(1) T(1)
RUN PROGRAM DSNTEP2 PLAN(DSNTEP11)
END
//SYSIN DD *

DROP DATABASE DB1;
COMMIT;
CREATE DATABASE DB1 CCSID UNICODE;
CREATE TABLESPACE TS1 IN DB1;
CREATE TABLE T1 (C1 CHAR(7)) IN DB1.TS1;

DROP DATABASE DB2;
COMMIT;
CREATE DATABASE DB2 CCSID EBCDIC;
CREATE TABLESPACE TS2 IN DB1;
CREATE TABLE T2 (C1 CHAR(7)) IN DB1.TS2;
INSERT INTO T2 VALUES (’ABCDEFG’);

INSERT INTO T1 (SELECT * FROM T2);

SELECT * FROM SYSADM.T1;
SELECT * FROM SYSADM.T2;

/*
//***
//STEP2 EXEC DSNUPROC,UID=’SMPLUNLD’,UTPROC=’’,SYSTEM=’SSTR’
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(5,5),RLSE)
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(5,5),RLSE)
//SORTOUT DD UNIT=SYSDA,SPACE=(CYL,(5,5),RLSE)
//SYSIN DD *

TEMPLATE REC DSN TEST123.STEP2.UNLOAD.SYSREC SPACE(15,5)
CYL UNIT(3390) VOLUMES(SCR03)

TEMPLATE CARD DSN TEST123.STEP2.UNLOAD.SYSPUNCH SPACE(15,5)
CYL UNIT(3390) VOLUMES(SCR03)

UNLOAD DATA FROM TABLE SYSADM.T2
(C1 CHAR(7))

UNLDDN REC PUNCHDDN CARD SHRLEVEL CHANGE
/*
/*
//**
//* DSNUPROC UTILITY STEP
//**
//STEP3 EXEC DSNUPROC,UID=’LI848.LOAD1’,TIME=1440,
// UTPROC=’’,
// SYSTEM=’SSTR’,DB2LEV=DB2A
//SYSUT1 DD DSN=TEST123.STEP3.LOAD.SYSUT1,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SORTOUT DD DSN=TEST123.STEP3.LOAD.SORTOUT,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSMAP DD DSN=TEST123.STEP3.LOAD.SYSMAP,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *
TEMPLATE CWPH5APV

DSN(’TEST123.STEP2.UNLOAD.SYSREC’)
DISP(OLD,KEEP,KEEP)

LOAD DATA INDDN CWPH5APV LOG NO RESUME YES
EBCDIC CCSID(00037,00000,00000)

56 Internationalization Guide

INTO TABLE
"SYSADM".
"T1"
WHEN(00001:00002) = X’0006’
NUMRECS 1
("C1"
POSITION(00004:00010) CHAR MIXED(007)

NULLIF(00003)=X’FF’
)
//**
//STEP4 EXEC TSOBATCH,DB2LEV=DB2A
//SYSTSIN DD *
DSN SYSTEM(SSTR)
RUN PROGRAM DSNTEP2 PLAN(DSNTEP11))
//SYSIN DD *
SELECT * FROM SYSADM.T1;
SELECT * FROM SYSADM.T2;
/*

v Use the cross-loader function to load the output of a dynamic SQL SELECT
statement into your new Unicode table. The SELECT statement selects the
entire table.

Example: In the following example, assume that table T1 is in Unicode and
table T2 is in EBCDIC. This example uses a cursor to select all data from T2
and then load it into T1. This process is known as the cross-loader function.
The data is converted to Unicode when it is loaded.
//STEP5 EXEC DSNUPROC,UID=’LOADIT’,TIME=1440,COND=(EVEN),
// UTPROC=’’,
// SYSTEM=’SSTR’,DB2LEV=DB2A
//SYSUT1 DD DSN=TEST123.STEP5.LOAD.SYSUT1,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SORTOUT DD DSN=TEST123.STEP5.LOAD.SORTOUT,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSCOPY DD DSN=TEST123.STEP5.LOAD.COPY,DISP=(MOD,DELETE,CATLG),
// UNIT=SYSDA,SPACE=(4000,(20,20),,,ROUND)
//SYSIN DD *
EXEC SQL

DECLARE C1 CURSOR FOR SELECT C1 FROM SYSADM.T2
ENDEXEC

LOAD DATA REPLACE INCURSOR C1 INTO TABLE SYSADM.T1

//**
//STEP1 EXEC TSOBATCH,DB2LEV=DB2A
//SYSTSIN DD *
DSN SYSTEM(SSTR)
RUN PROGRAM DSNTEP2 PLAN(DSNTEP11)
//SYSIN DD *
SELECT * FROM SYSADM.T1;
SELECT * FROM SYSADM.T2;
/*

3. Modify any SQL in your applications to account for length differences. If you
use any length functions, such as CHARACTER_LENGTH and SUBSTRING,
use the CODEUNITS16 and CODEUNITS32 options to specify how you want
DB2 to calculate the length.

Chapter 4. Storing Unicode data 57

Related concepts:
“Round-trip conversion” on page 20
Related tasks:
“Generating escaped Unicode data” on page 91
“Specifying how DB2 calculates the length of a string” on page 82

Loading data by using the cross-loader function (DB2 Utilities)
Related reference:

INSERT (DB2 SQL)

LOAD (DB2 Utilities)

UNLOAD (DB2 Utilities)

Effects on access paths when converting data to Unicode
If you convert your data to Unicode, the access paths for queries on that data do
not change simply because the data is now in Unicode. However, valid reasons
might exist for a change in the access path for a Unicode table.

For example, the schemas are likely different in Unicode tables than EBCDIC
tables. The index key might be longer. For example, an index might be 5 levels in
Unicode instead of 4 levels in EBCDIC. Also, the number of rows per page might
be fewer.

All of the regular rules for access paths and tuning queries still apply to Unicode
tables.
Related tasks:

Writing efficient SQL queries (DB2 Performance)

58 Internationalization Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_loadusecrossloaderfunction.htm#db2z_loadusecrossloaderfunction
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_insert.htm#db2z_sql_insert
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utl_load.htm#db2z_utl_load
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utl_unload.htm#db2z_utl_unload
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_programsqlperf.htm#db2z_programsqlperf

Chapter 5. Application programming with Unicode data and
multiple CCSIDs

If your application handles Unicode data or data that is in different encoding
schemes, you should be aware of several programming techniques and
recommendations in DB2.

DB2 always returns data to your application in the CCSID that your application
uses for data. This CCSID is called the application encoding scheme.

Recommendations: Use the following general recommendations to guide you in
writing and preparing your application programs:
v If possible, use either Unicode or EBCDIC data, but not both. If you do choose

to use multiple encoding schemes, consider the following possible implications
for data loss and performance:
– Managing multiple CCSIDs in your application can be difficult. To ensure that

data is not lost, you have to control where the data goes, a path that
potentially includes many modules.

– Many environments, such as CICS Transaction Gateway and WebSphere MQ
are message-based. In these cases, the entire message must be in a single
encoding scheme. Because the entire message is in one encoding, flowing
some data through the application in EBCDIC and some in Unicode makes
little sense. You still have to convert all of it to a single encoding, such as
Unicode, right before the putting the message on the wire.

– DB2 tables must be in the same encoding scheme. You cannot make some
columns Unicode and some EBCDIC. If your application processes some
columns in Unicode and others in EBCDIC, character conversion occurs,
which likely increases the performance overhead.

v If you are using Unicode data in COBOL or PL/I applications, use the
coprocessor.

v If your COBOL, PL/I, C/C++ , or Assembler application handles Unicode data,
do not place literals in the source code of the application. Because these
language compilers do not support Unicode source code, they could misinterpret
these literal values. Instead, place these literal values in a file or DB2 table that
can be accessed at the start of the program to load the values. (Files and host
variables are not precompiled and compiled as application source code.)

v If an expanding or contracting conversion occurs on your data, the length of the
data might change. Be aware of these length changes when you use the
LENGTH function, CHARACTER_LENGTH function, SUBSTRING function, and
SUBSTR function on the converted string. For CHARACTER_LENGTH and
SUBSTRING, use the CODEUNITS16 and CODEUNITS32 options to specify how
you want DB2 to calculate the length.

v If you need to represent characters from multiple Latin-based character sets,
such as Latin-1 and Latin-4, consider using Unicode for your application
encoding scheme. An SBCS CCSID does not have enough code points to
represent all of the characters that the combination of the two character sets
require. For example, assume that your application uses an EBCDIC CCSID,
such as 277 or 1069. You might have some data that is represented in the
database in Unicode but that cannot be retrieved by the application without

© Copyright IBM Corp. 2003, 2013 59

substitution. If your application needs to handle only one language at a time,
you can set up your infrastructure in one of the following ways:
– Have one version of your application that uses CCSID 277 and another

version that uses CCSID 1069. Also have two corresponding subsystems, one
that uses CCSID 277 and another that uses CCSID 1069. (You cannot have
multiple EBCDIC CCSIDs in one DB2 subsystem.)

– Store the data in Unicode and have one version of your application that uses
CCSID 277 and another version that uses CCSID 1069. Then bind these
applications with different values for the ENCODING bind option.

– Store the data in Unicode and have one version of your application that uses
an EBCDIC CCSID and another version that uses Unicode.

However, if you require that a single version of the application handle both
Latin-1 and Latin-4 character sets, your application needs to process data in
Unicode.

Related concepts:
“Contracting conversion” on page 19
“Expanding conversion” on page 18

Application encoding schemes and DB2 ODBC (DB2 Programming for ODBC)
Related tasks:
“Specifying how DB2 calculates the length of a string” on page 82

Generating table and view declarations by using DCLGEN (DB2 Application
programming and SQL)
Related reference:

LENGTH (DB2 SQL)

SUBSTR (DB2 SQL)

SUBSTRING (DB2 SQL)

Enterprise PL/I for z/OS
Related information:

Guidelines to design global solutions

Application encoding scheme
The application encoding scheme is the CCSID that your application uses to interpret
data in host variables. For DB2 for z/OS applications, typically the application
encoding scheme is the value of the ENCODING bind option. (By default this
value is the subsystem default application encoding scheme.)

However, you can also set the CCSID of application data by using the DECLARE
VARIABLE statement with the CCSID option or the CURRENT APPLICATION
ENCODING SCHEME special register. If you are using the DB2 coprocessor, you
can use various language compiler options to override the DB2 application
encoding scheme for an application. For detailed instructions on how to set the
application encoding scheme, see “Specifying a CCSID for your application” on
page 61.

DB2 automatically converts any data that you select to the application encoding
scheme. For example, if you use SPUFI to select catalog data (which is in CCSID
1208), DB2 converts the data to the application CCSID of SPUFI. Your version of
SPUFI should be bound with a CCSID that matches the CCSID of your terminal

60 Internationalization Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.odbc/src/tpc/db2z_odbcunic.htm#db2z_odbcunic
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_generatedeclarationsdclgen.htm#db2z_generatedeclarationsdclgen
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_generatedeclarationsdclgen.htm#db2z_generatedeclarationsdclgen
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_length.htm#db2z_bif_length
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_substr.htm#db2z_bif_substr
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_substring.htm#db2z_bif_substring
http://www.ibm.com/software/awdtools/pli/plizos/library/
http://www.ibm.com/software/globalization/guidelines/index.html

emulator. (By default, SPUFI is bound with CCSID 37. However, you can bind
different versions of SPUFI with different CCSIDs.) Assume that you are following
this good practice of having your SPUFI CCSID match your terminal emulator
CCSID. In this case, any character in the selected data that does not exist in the
CCSID of your terminal emulator is not displayed correctly. For example, if SPUFI
and your terminal emulator are set to CCSID 37, the Euro symbol (€) can not be
displayed.

Specifying a CCSID for your application
In DB2 for z/OS applications, one CCSID is associated with the source code and
one or more CCSIDs can be associated with the data that your application
manipulates. The CCSID that DB2 associates with the data is called the application
encoding scheme.

About this task

If the CCSID values do not match the actual CCSID of the data or source, data
corruption might occur.

Recommendation: Having all of your CCSIDs match is ideal but not always
possible. If they do not match, character conversion can occur, and you should
consider the possible consequences of character conversion.

Procedure

To specify a CCSID for your application:
1. Use the options as shown in the following table:

Table 19. Options to set application CCSIDs

Item for which you want to specify
the CCSID Option to use

Application source code (which
includes SQL statements and literal
strings in the SQL statements)

If you are using the DB2 precompiler, use the CCSID SQL processing option
when you precompile the application. Specify the same CCSID when you
compile the application.

If you are using the DB2 coprocessor, use the language compiler to set the
CCSID. For COBOL, PL/I, and C/C++, use the following instructions: 1

v “Specifying CCSIDs for COBOL applications when using the DB2
coprocessor” on page 68

v “Specifying CCSIDs for PL/I applications when using the DB2
coprocessor” on page 71

v “Specifying CCSIDs for C/C++ applications when using the DB2
coprocessor” on page 75

The default CCSID for the application source code is the subsystem EBCDIC
CCSID (DECP value SCCSID or MCCSID). DB2 uses this value if you do not
use one of the preceding mechanisms to specify a CCSID.
Restriction: The compilers for high level host languages do not support
Unicode source code.

Chapter 5. Application programming with Unicode data and multiple CCSIDs 61

Table 19. Options to set application CCSIDs (continued)

Item for which you want to specify
the CCSID Option to use

Application data (values that are
passed through host variables and
parameter markers) within SQL
statements 2

Use one or more of the following DB2 mechanisms to set the CCSID value
of the application data, which is called the application encoding scheme:

v Use the ENCODING bind option.3 This option typically yields the best
performance.

v You can override the CCSID for a particular host variable by using the
DECLARE VARIABLE statement with the CCSID option.

v You can override the CCSID for parameter markers in dynamic SQL by
specifying the CURRENT APPLICATION ENCODING SCHEME special
register. DB2 uses the value of this special register at the time that the
statement is executed.

The default CCSID for the application data is the subsystem default
application encoding scheme. For static SQL (host variables), this value is
the APPENSCH value from the DECP that is loaded when you bind your
application. For dynamic SQL (parameter markers), this value is the
APPENSCH value from the DECP that is loaded at the time that the
application is executed.

Alternatively, if you are using the DB2 coprocessor on a COBOL or PL/I
application, you can override the ENCODING bind option by using the
following language compiler options:

v “Specifying CCSIDs for COBOL applications when using the DB2
coprocessor” on page 68

v “Specifying CCSIDs for PL/I applications when using the DB2
coprocessor” on page 71

Application data that is referenced
outside of SQL statements

Use the rules of the programming language. In some cases, the CCSID of
this data is the same as the CCSID of the source code.

Notes:

1. For older compilers that do not pass a CCSID value to the DB2 coprocessor, use the SQL compiler option with the
CCSID suboption to specify a value.

2. You can specify different CCSIDs for different pieces of data in one application. However, if you specify multiple
CCSIDs, do so with caution.

3. For DRDA applications, the ENCODING bind option does not set the CCSID of the data. In a DRDA
environment, the CCSIDs are communicated as part of the protocol.

2. Optional: If you want to confirm which CCSID value the DB2 precompiler
used, look at the precompiler listing. If you want to confirm which CCSID
value the DB2 coprocessor used, look at the compiler listing. If you need help
finding the CCSID values in these listings, see the example listings in “Finding
the CCSID values of your data sources” on page 29.
You can also use these listings to confirm which DECP module DB2 used.
Knowing which DECP module is useful if you modified a DECP value, such as
APPENSCH, before you compiled or executed your program. You can see
which DECP module and which values DB2 used.

62 Internationalization Guide

Related concepts:
“Objects with different CCSIDs in the same SQL statement” on page 77
Related reference:

Descriptions of SQL processing options (DB2 Application programming and
SQL)
“Subsystem CCSIDs and encoding schemes” on page 33

Details of CCSID options for application programs
You have several options in DB2 to set CCSIDs for your applications.

For the overall context of when to use each option, see “Specifying a CCSID for
your application” on page 61. The following list explains the details of each option.

CCSID SQL processing option
If you are using the DB2 precompiler, use this option to specify the CCSID
in which the source program is written. This value ensures that the DB2
precompiler correctly parses the SQL statements and literal string values in
those statements at precompile time. The default value is the subsystem
EBCDIC CCSID (DECP value SCCSID if MIXED=NO or MCCSID if
MIXED=YES).

DB2 converts the source code from the specified CCSID to Unicode UTF-8
before it is processed by the precompiler. The precompiler then parses the
source code in Unicode UTF-8.

The value that you specify for the precompiler must match the value that
you specify to the compiler when you compile the program.

If you are using the DB2 coprocessor, do not specify this option. Instead,
use the language compiler options. The coprocessor uses the CCSID that is
passed to it from the language compiler to convert the SQL statement text.
If the compiler does not pass a CCSID, the DB2 coprocessor uses the
CCSID suboption of the compiler SQL option. If that suboption is not
specified, the DB2 coprocessor uses the subsystem EBCDIC CCSID (DECP
value SCCSID or MCCSID) as the CCSID for the source.

ENCODING bind option
Use this option when you bind your application to specify the CCSID of
the data in your application. This value applies to both host variables in
static SQL statements and parameter markers in dynamic SQL statements
unless this value is overridden. For example, you can override the CCSID
of host variables by using certain language compiler options or by
specifying a DECLARE VARIABLE statement with the CCSID option. You
can override the CCSID of parameter markers in dynamic SQL statements
by using the CURRENT APPLICATION ENCODING SCHEME special
register.

This value can be EBCDIC, ASCII, Unicode, or a valid CCSID. If the value
is EBCDIC, ASCII, or Unicode, DB2 uses the subsystem default CCSID for
that encoding scheme.

The default value is the subsystem default application encoding scheme
(the DECP value APPENSCH), which, by default, is EBCDIC. The DB2
sample applications are bound with ENCODING EBCDIC.

For example, some possible uses of the ENCODING bind option are as
follows:

Chapter 5. Application programming with Unicode data and multiple CCSIDs 63

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_descriptionprocessingoptions.htm#db2z_descriptionprocessingoptions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_descriptionprocessingoptions.htm#db2z_descriptionprocessingoptions

v You have a C/C++ program that accesses an ASCII library on z/OS. In
this case, bind the program with ENCODING ASCII.

v You use DB2 QMF and have a data center in Germany and 3270
emulators in France. You might want to bind a special version of DB2
QMF for French by specifying ENCODING 1147.

In general, any time the CCSID of your source data does not match the
subsystem default CCSID, use the ENCODING option to tell DB2 the
correct CCSID. The source data can come from a terminal emulator, an MQ
queue, or elsewhere.

If you use the DB2 coprocessor on a COBOL application that contains PIC
X variables and specify the NOSQLCCSID compiler option, do not specify
ENCODING UNICODE. If you specify this option, DB2 interprets these
character variables as UTF-8, but COBOL does not support UTF-8.

In a DRDA environment, the CCSIDs are communicated as part of the
protocol. DB2 does not use the ENCODING bind option to determine the
CCSID of data from a remote application or to encode data to send to a
remote application. However, the ENCODING bind option can influence
internal DB2 processing. DB2 uses the value of this bind option when it
processes SET statements or any statement that contains multiple CCSIDs.
For example, DB2 uses the ENCODING option that was specified when the
package was bound to evaluate the following statement:
SET :hv1 = SUBSTR(:hv_locator, 1, 100);

CURRENT APPLICATION ENCODING SCHEME special register
Use this special register to specify the CCSID for data that is passed
through parameter markers in dynamic SQL statements. This value does
not apply to static SQL statements.

You can set the value of this special register by using the SET CURRENT
APPLICATION ENCODING SCHEME statement in your application
program.

The value can be EBCDIC, ASCII, Unicode, or a valid CCSID. If the value
is EBCDIC, ASCII, or Unicode, DB2 uses the subsystem default CCSID for
that encoding scheme.

The default value is the value of the ENCODING bind option. For native
SQL procedures, the default value is the APPLICATION ENCODING
SCHEME option of the CREATE PROCEDURE or ALTER PROCEDURE
statement. If you do not specify these values, the default value is the
subsystem default application encoding scheme.

DECLARE VARIABLE statement with the CCSID option
Use this statement in your application to define a CCSID for a particular
host variable. This value overrides the CURRENT APPLICATION
ENCODING SCHEME special register value, the ENCODING bind option
and any compiler and precompiler CCSID options.

The value for the CCSID option can be EBCDIC, ASCII, Unicode, or a valid
CCSID. If the value is EBCDIC, ASCII, or Unicode, DB2 uses the subsystem
default CCSID for that encoding scheme.

Use the DECLARE VARIABLE statement with the CCSID option when
your application handles a piece of data that you know has a different
CCSID.

64 Internationalization Guide

In the case of bit data, no CCSID is needed. For this type of data, use a
DECLARE VARIABLE statement so that no CCSID is associated with the
variable, as shown in the following COBOL example:
EXEC SQL DECLARE : hv1 VARIABLE FOR BIT DATA END-EXEC.

If you are using DCLGEN, you can specify DCLBIT(YES) to create
DECLARE VARIABLE statements for columns that are declared with the
FOR BIT DATA clause. For example, the following DCLGEN output shows

such a declaration for a COBOL application:
**
* DCLGEN TABLE(ADMF001.T1) *
* LIBRARY(USER.DBRMLIB.DATA(T1)) *
* LANGUAGE(COBOL) *
* QUOTE *
* DBCSSYMBOL(N) *
* DCLBIT(YES) *
* ... IS THE DCLGEN COMMAND THAT MADE THE FOLLOWING STATEMENTS *
**

EXEC SQL DECLARE ADMF001.T1 TABLE
(NAME VARGRAPHIC(15),

ADDRESS VARGRAPHIC(25),
...
PASSWORD CHAR(8)
) END-EXEC.

**
* DECLARED VARIABLES FOR ’FOR BIT DATA’ COLUMNS *
**

EXEC SQL DECLARE
:PASSWORD
VARIABLE FOR BIT DATA END-EXEC.

**
* COBOL DECLARATION FOR TABLE ADMF001.T1 *
**
01 DCLT1.

10 NAME.
49 NAME-LEN PIC S9(4) USAGE COMP.
49 NAME-TEXT PIC N(15).

10 ADDRESS.
49 ADDRESS-LEN PIC S9(4) USAGE COMP.
49 ADDRESS-TEXT PIC N(25).

10 CITY.
49 CITY-LEN PIC S9(4) USAGE COMP.
49 CITY-TEXT PIC N(20).

10 STATE PIC N(2).
10 ZIP PIC N(5).
10 PASSWORD PIC (8).

**
* THE NUMBER OF COLUMNS DESCRIBED BY THIS DECLARATION IS 6 *
**

In this example, notice the DBCSSYMBOL option for DCLGEN. You can
use this option to specify how you want COBOL graphic variables to be
generated. If you plan to use Unicode variables and the DB2 coprocessor,
you should specify DBCSSYMBOL(N) so that you get PIC N variables.

Chapter 5. Application programming with Unicode data and multiple CCSIDs 65

Related tasks:

Generating table and view declarations by using DCLGEN (DB2 Application
programming and SQL)
Related reference:
“Subsystem CCSIDs and encoding schemes” on page 33

Descriptions of SQL processing options (DB2 Application programming and
SQL)

BIND and REBIND options (DB2 Commands)

SET CURRENT APPLICATION ENCODING SCHEME (DB2 SQL)

DECLARE VARIABLE (DB2 SQL)

DCLGEN (DECLARATIONS GENERATOR) (DSN) (DB2 Commands)

Examples of specifying CCSIDs for application data
If your applications handle international or Unicode data, you probably need to
specify a different application CCSID than the default. Also, if you deploy
applications to international locations, you probably need to bind different versions
of the application with the appropriate CCSIDs.

Example of ENCODING(UNICODE) bind option: Assume that the package
MY_PACK is bound with the option ENCODING(UNICODE). DB2 assumes that
all character input and output host variables are encoded using CCSID 1208. DB2
assumes that all graphic input and output host variables are encoded using CCSID
1200.

Example of setting CCSIDs in a distributed environment: Assume that your DB2
for z/OS subsystem is located in the United States and you have users around the
world that connect to this subsystem. The following figure illustrates this scenario.

66 Internationalization Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_generatedeclarationsdclgen.htm#db2z_generatedeclarationsdclgen
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_generatedeclarationsdclgen.htm#db2z_generatedeclarationsdclgen
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_descriptionprocessingoptions.htm#db2z_descriptionprocessingoptions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_descriptionprocessingoptions.htm#db2z_descriptionprocessingoptions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_setcurrentappencodingscheme.htm#db2z_sql_setcurrentappencodingscheme
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_declarevariable.htm#db2z_sql_declarevariable
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_cmd_dclgen.htm#db2z_cmd_dclgen

The users that use DRDA do not need to use the ENCODING bind option to
handle CCSID conversions because DRDA handles all conversions. However, users
might choose to specify the ENCODING bind option to influence internal DB2
processing.

The users that use 3270 terminal emulators need to set up their emulators to use a
CCSID that corresponds to the country in which they reside. In this example, the
CCSID of one of those terminal emulators is 285. You need to bind the plans or
packages that this client uses with ENCODING(285). Likewise, for the terminal
emulator that has CCSID 284, you need to bind the plans or packages that this
client uses with ENCODING(284). Also, for the terminal emulator that has CCSID
273, you need to bind the plans or packages that this client uses with
ENCODING(273).

Example of ensuring that remote users access the correct version of the SPUFI
application according to their terminal CCSID: Suppose that you want to prevent
users in the U.K. from using the U.S. version of SPUFI. Instead of granting the
EXECUTE privilege for the SPUFI packages to public, restrict access to only those
users in the U.S. Then, bind additional SPUFI packages with the ENCODING bind
option that specifies the appropriate terminal CCSID for the U.K. (For instructions
on how to find the terminal CCSID value in ISPF, TSO, or CICS, see “Finding the
CCSID values of your data sources” on page 29.) Authorize the U.K. users to use
only this version of SPUFI.

DB2

DB2 server
EBCDIC CCSID 37

3270 Client - CCSID 284

DRDA - CCSID 12523270 Client - CCSID 273

DRDA - CCSID 1208

3270 Client - CCSID 373270 Client - CCSID 285

Figure 1. Example of setting CCSIDs in a distributed environment

Chapter 5. Application programming with Unicode data and multiple CCSIDs 67

Related tasks:

Making SPUFI work with different terminal CCSIDs (DB2 Installation and
Migration)
Related reference:

Z variables (ISPF session variables)

Configuring Sessions (Personal Communications)

Specifying CCSIDs for COBOL applications when using the
DB2 coprocessor

If you are using the DB2 coprocessor to prepare a COBOL application with SQL
statements, use the COBOL compiler to specify the CCSID of the application
source code. For optimal performance, use DB2 to specify the CCSID of the
application data in SQL statements.

About this task

The COBOL compiler accepts only one CCSID value that it uses for both the
application source code and data. However, DB2 can accept one CCSID value for
the source code and one or more CCSID values for the data that is manipulated in
SQL statements through host variables and parameter markers.

Procedure

To specify CCSIDs for COBOL applications when using the DB2 coprocessor:
1. To specify the CCSID of the COBOL application source code, use the

CODEPAGE compiler option. 2

Example: Both of the following JCL EXEC statements for COBOL compile jobs
specify a CCSID of 37:
//COB EXEC PGM=IGYCRCTL,PARM=’...,SQL,CODEPAGE(037),...

//COB EXEC PGM=IGYCRCTL,PARM=’...,SQL,CP(37),...

Otherwise, if you do not specify the CODEPAGE compiler option, the default
COBOL compiler CCSID is passed to the DB2 coprocessor and is used as the
CCSID for the source code. The default COBOL compiler CCSID is 1140 unless
you changed it.

Example: The following JCL EXEC statement for a COBOL compile job does
not explicitly specify a CCSID. In this case, the COBOL compiler passes the
default CCSID, 1140, to the DB2 coprocessor.
//COB EXEC PGM=IGYCRCTR,PARM=’...,SQL(),...’

CCSID 1140 is the equivalent to CCSID 37 plus the euro symbol (€). However,
be aware that conversions, and thus conversion cost, still occur between CCSID
1140 and CCSID 37.

Recommendation: If you are using the DB2 coprocessor on a COBOL
application, do not specify the SQL compiler option with the CCSID suboption.
If you specify it anyway, and it conflicts with the CODEPAGE compiler value,

2. If you are using an older compiler that does not otherwise pass a CCSID value to DB2, use the SQL compiler option with the
CCSID suboption to specify the CCSID of the application source. For example, the following EXEC statement for a COBOL
compile job specifies a source CCSID of 1140.

//COB EXEC PGM=IGYCRCTR,PARM=’SQL("CCSID(1140)"’

68 Internationalization Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_makespufiworkwccsids.htm#db2z_makespufiworkwccsids
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_makespufiworkwccsids.htm#db2z_makespufiworkwccsids
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ispzdg80/11.1.1
http://publib.boulder.ibm.com/infocenter/pcomhelp/v5r9/topic/com.ibm.pcomm.doc/books/html/quick_beginnings08.htm

DB2 issues a warning. 3 For example, the following EXEC statement for a
COBOL compile job specifies a CCSID value of 1140; the CCSID value 37 is
ignored:
//COB EXEC PGM=IGYCRCTR,PARM=’CP(1140),SQL("CCSID(37)")’

To verify which CCSID value was used, look at the compiler listing and check
the CCSID option.

2. To specify whether DB2 or the COBOL compiler determines the CCSID of the
data, specify one of the following compiler options:

NOSQLCCSID (Recommended option)
Specifies that the CCSID that is passed from the COBOL compiler is
used only for the COBOL application source and string literals. That
CCSID is not used for the host variables and parameter markers in SQL
statements. For host variables and parameter markers, DB2 uses the
CCSIDs that are specified through DB2 mechanisms, as described in the
next step.

Specifying NOSQLCCSID typically yields better performance, because
you can then use a DB2 mechanism to specify the host variable
CCSIDs.

NOSQLCCSID simulates the behavior of the precompiler. Specify this
option for existing applications that previously used the DB2
precompiler and now use the DB2 coprocessor. By default, the DB2
coprocessor uses the same CCSID value that is passed from the COBOL
CODEPAGE(nnnnn) compiler option for both the source code and data.
This behavior is different than the DB2 precompiler, which does not use
the CCSID from the COBOL compiler. For applications that use the DB2
precompiler, you specify the CCSID for the data through DB2
mechanisms only. When you specify NOSQLCCSID, DB2 does not use
the COBOL CCSID for the application data.

SQLCCSID (default option)
Specifies that the DB2 coprocessor is to use the CCSID from the
COBOL CODEPAGE(nnnnn) compiler option for your application data.
3 The CCSID value is the same one that you specified for your COBOL
source code.

3. Optional: If you specified the NOSQLCCSID compiler option, explicitly specify
a value for the ENCODING bind option.
The ENCODING bind option value is used as the CCSID for the application
data. If you do not explicitly specify a value, the default value for the
ENCODING bind option is used.

4. To override the CCSID for particular host variables or parameter markers, use
the DECLARE VARIABLE statement or CURRENT APPLICATION ENCODING
SCHEME special register. If you need help using either of these techniques,
following the instructions in Specifying a CCSID for your application.
If you specify different CCSIDs for different pieces of data, do so with caution.

5. If you want to specify a Unicode CCSID for a particular variable, declare it as a
PIC N USAGE NATIONAL variable. For COBOL PIC N USAGE NATIONAL
variables, the DB2 coprocessor always uses the CCSID 1200. You do not need to
use a DECLARE VARIABLE statement with the CCSID clause for these
variables.

3. The exception is if you are using an older compiler that does not otherwise pass a CCSID value to the DB2 coprocessor. In this
case, you need to specify the SQL compiler option with the CCSID suboption.

Chapter 5. Application programming with Unicode data and multiple CCSIDs 69

Example

The following table shows examples of the CCSID that DB2 uses for data in
COBOL applications depending on the options that you specify. This table assumes
that you did not specify any DECLARE VARIABLE statements with the CCSID
clause.

Table 20. CCSID resolution for data in COBOL applications that use the DB2 coprocessor

Variable
ENCODING bind

option

COBOL compiler options CCSID that DB2 uses
for the dataCODEPAGE(nnnn)1 (NO)SQLCCSID

PIC X not explicitly specified 1140 SQLCCSID 11402

PIC X not explicitly specified 1140 NOSQLCCSID Subsystem default
application encoding
scheme (DECP value
APPENSCH)3

PIC X 273 1140 SQLCCSID 11402

PIC X 273 1140 NOSQLCCSID 2734

PIC X UNICODE 1140 SQLCCSID 11402

PIC X UNICODE 1140 NOSQLCCSID 1208

This CCSID does not
logically make sense for
COBOL.5

PIC N
USAGE
NATIONAL

1140 1140 NOSQLCCSID 12006

Notes:

1. This value can be the value that you explicitly specify with the CODEPAGE compiler option or the default
COBOL compiler code page.

2. Because you specified SQLCCSID, DB2 uses the code page value from the COBOL compiler.

3. Because you specified NOSQLCCSID, DB2 does not use the COBOL code page value. Additionally, because you
did not explicitly specify a value for the ENCODING bind option, DB2 uses the default application encoding
scheme.

4. Because you specified NOSQLCCSID, DB2 does not use the COBOL code page value. Instead, DB2 uses the value
that you specified for the ENCODING bind option.

5. Because you specified NOSQLCCSID and the ENCODING bind option UNICODE, DB2 uses CCSID 1208, which
is UTF-8. However, COBOL does not support 1208 as a native data type. So, although you can specify this
combination of options, do not do so.

6. Because you specified a PIC N USAGE NATIONAL variable, DB2 uses CCSID 1200.

70 Internationalization Guide

Related concepts:

Defining national data items (COBOL) (Enterprise COBOL for z/OS
Programming Guide)
Related tasks:

Controlling the CCSID for COBOL host variables (DB2 Application
programming and SQL)
Related reference:

Compiler options (COBOL) (Enterprise COBOL for z/OS Programming Guide)

Planning to modify compiler option default values (COBOL) (Enterprise
COBOL for z/OS Customization Guide)

BIND and REBIND options (DB2 Commands)

DECLARE VARIABLE (DB2 SQL)
“Subsystem CCSIDs and encoding schemes” on page 33

Specifying CCSIDs for PL/I applications when using the DB2
coprocessor

If you are using the DB2 coprocessor to prepare a PL/I application with SQL
statements, use the PL/I compiler to specify the CCSID of the application source
code. For optimal performance, use DB2 to specify the CCSID of the application
data in SQL statements.

About this task

The PL/I compiler accepts only one CCSID value that it uses for both the
application source code and data. However, DB2 can accept one CCSID value for
the source code and one or more CCSID values for the data that is manipulated in
SQL statements through host variables and parameter markers.

Procedure

To specify CCSIDs for PL/I applications when using the DB2 coprocessor:
1. To specify the CCSID of the PL/I application source code, use the CODEPAGE

compiler option. 4

Example: Both of the following JCL EXEC statements for PL/I compile jobs
specify a CCSID of 37:
//PLI EXEC PGM=IBMZPLI,PARM=’...,PP(SQL,...),CODEPAGE(37)...’

//PLI EXEC PGM=IBMZPLI,PARM=’...,PP(SQL,...),CP(37)...’

Otherwise, if you do not specify the CODEPAGE compiler option, the default
PL/I compiler CCSID is passed to the DB2 coprocessor and is used as the
CCSID for the source code. The default PL/I compiler CCSID is 1140 unless
you changed it.

4. If you are using an older compiler that does not otherwise pass a CCSID value to DB2, use the PL/I preprocessor option
'PP(SQL...' with the CCSID suboption to specify the CCSID of the application source. For example, if you are using an older
compiler that does not pass a CCSID value to the DB2 coprocessor, the following EXEC statement for a PL/I compile job specifies
a source CCSID of 37.

/PLI EXEC PGM=IBMZPLI,PARM=’...,PP(SQL("CCSID(37)"),...),...’

Chapter 5. Application programming with Unicode data and multiple CCSIDs 71

http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/igy3pg50/1.7.4.1
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/igy3pg50/1.7.4.1
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_controlccsidcobol.htm#db2z_controlccsidcobol
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.apsg/src/tpc/db2z_controlccsidcobol.htm#db2z_controlccsidcobol
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/igy3pg50/2.4?DT=20090820210412
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/igy3cg50/1.2
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/igy3cg50/1.2
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_declarevariable.htm#db2z_sql_declarevariable

Example: The following JCL EXEC statement for a PL/I compile job does not
explicitly specify a CCSID. In this case, the PL/I compiler passes the default
CCSID, 1140, to the DB2 coprocessor.
//PLI EXEC PGM=IBMZPLI,PARM=’PP(SQL())’

CCSID 1140 is equivalent to CCSID 37 plus the euro symbol (€). However, be
aware that conversions, and thus conversion cost, still occur between CCSID
1140 and CCSID 37.

Recommendation: If you are using the DB2 coprocessor to prepare a PL/I
application, do not specify the PL/I preprocessor option SQL with the CCSID
suboption. If you specify it anyway, and it conflicts with the CODEPAGE
compiler value, DB2 issues a warning. 3 For example, the following EXEC
statement for a PL/I compile job specifies the CODEPAGE compiler option
with a CCSID value of 1140; the CCSID value 37 is ignored:
//PLI EXEC PGM=IBMZPLI,PARM=’CP(1140),PP(SQL("CCSID(37)"))’

To verify which CCSID value was used, look at the compiler listing and check
the CCSID option.

2. To specify whether DB2 or the PL/I compiler determines the CCSID of the
application data in SQL statements, specify one of the following PP compiler
options:

CCSID0 (default and recommended option)
Specifies that the CCSID that is passed from the PL/I preprocessor of
the PL/I compiler is used only for PL/I application source and string
literals. That CCSID is not used for the host variables and parameter
markers in SQL statements. For host variables and parameter markers,
DB2 uses the CCSIDs that are specified through DB2 mechanisms, as
described in the next step.

Specifying CCSID0 can yield better performance, because you can then
use a DB2 mechanism, such as the ENCODING bind option, to specify
the host variable CCSIDs.

CCSID0 simulates the behavior of the DB2 precompiler, which does not
use the CCSID from the PL/I compiler for host variable data.

Example: The following examples of the PARM clause specify the PP
PL/I preprocessor option of the PL/I compiler with the SQL suboption
CCSID0
PARM=’S,XREF,PP(SQL(APOSTSQL,CCSID0))’
PARM=’S,XREF,PP(SQL(APOSTSQL))’

NOCCSID0
Specifies that the DB2 coprocessor is to use the CCSID from the PL/I
CODEPAGE(nnnnn) compiler option for your application data. 3 The
CCSID value is the same one that you specified for your PL/I source
code.

Example: The following example of the PARM clause specifies the PP
PL/I preprocessor option of the PL/I compiler with the SQL suboption
NOCCSID0
PARM=’S,XREF,PP(SQL(APOSTSQL,NOCCSID0))’

3. Optional: If you specified the CCSID0 option, explicitly specify a value for the
ENCODING bind option

72 Internationalization Guide

The ENCODING bind option value is used as the CCSID for the application
data. If you do not explicitly specify a value, the default value for the
ENCODING bind option is used.

4. To override the CCSID for particular host variables or parameter markers, use
the DECLARE VARIABLE statement or CURRENT APPLICATION ENCODING
SCHEME special register. If you need help using either of these techniques,
following the instructions in Specifying a CCSID for your application.
If you specify different CCSIDs for different pieces of data, do so with caution.

5. If you want to specify a Unicode CCSID for a particular variable, declare it as a
WIDECHAR variable. For PL/I WIDECHAR variables in applications that are
processed by the DB2 coprocessor, the DB2 coprocessor always uses the CCSID
1200. You do not need to use a DECLARE VARIABLE statement with the
CCSID clause for these variables.

Example

The following table shows examples of the CCSID that DB2 uses for data in PL/I
applications depending on the options that you specify.

Table 21. CCSID resolution for data in PL/I applications that use the DB2 coprocessor

Variable ENCODING bind option

PL/I options

CCSID that DB2
uses for the data

PL/I CODEPAGE
compiler option1

PP(SQL)
suboption

CHAR(n) not explicitly specified 1140 NOCCSID0 11402

CHAR(n) not explicitly specified 1140 CCSID0 Subsystem default
application
encoding scheme
(DECP value
APPENSCH)3

CHAR(n) 500 1140 NOCCSID0 11402

CHAR(n) 500 1140 CCSID0 5004

CHAR(n) UNICODE 1140 NOCCSID0 11402

CHAR(n) UNICODE 1140 CCSID0 1208

This CCSID does
not logically make
sense for PL/I.5

WIDECHAR(n) 1140 1140 CCSID0 12006

Note:

1. This value can be the value that you explicitly specify with the CODEPAGE
compiler option or the default PL/I compiler code page.

2. Because you specified NOCCSID0, DB2 uses the code page value from the PL/I
compiler.

3. Because you specified CCSID0, DB2 does not use the PL/I code page value.
Additionally, because you did not explicitly specify a value for the ENCODING
bind option, DB2 uses the default application encoding scheme.

4. Because you specified CCSID0, DB2 does not use the PL/I code page value.
Instead, DB2 uses the value that you specified for the ENCODING bind option.

Chapter 5. Application programming with Unicode data and multiple CCSIDs 73

5. Because you specified CCSID0 and the ENCODING bind option UNICODE,
DB2 uses CCSID 1208, which is UTF-8. However, PL/I does not support 1208
as a native data type. Although you can specify this combination of options, do
not do so.

6. Because you specified a WIDECHAR variable, DB2 uses CCSID 1200.
Related reference:

Compile-time option descriptions (PL/I) (Enterprise PL/I for z/OS
Programming Guide:)

Changing the default options (PL/I) (Enterprise PL/I for z/OS Programming
Guide:)

SQL preprocessor options (PL/I) (Enterprise PL/I for z/OS Programming
Guide:)

BIND and REBIND options (DB2 Commands)

DECLARE VARIABLE (DB2 SQL)
“Subsystem CCSIDs and encoding schemes” on page 33

PL/I PP compiler option
When you specify the CCSID for a PL/I application, you might need to use the PP
compiler option. This option enables you to specify SQL processing options to the
DB2 coprocessor and the PL/I SQL preprocessor.

The following code shows an example of the PP compiler option:
PP(SQL(’APOSTSQL,FLOAT(IEEE)’))

PL/I has an SQL preprocessor that works with the DB2 coprocessor to process SQL
statements. Some of the SQL suboptions for the PP compiler option are for the
PL/I SQL preprocessor. Other suboptions are for the DB2 coprocessor. For
example, the NOCCSID0 and the CCSID0 suboptions are for the PL/I SQL
preprocessor.

The following code shows an example of specifying SQL suboptions for both the
DB2 coprocessor and PL/I SQL preprocessor:
PP(SQL(’APOSTSQL,FLOAT(IEEE),NOCCSID0’))

Example: Suppose that you specify the following statement with the PP compiler
option and SQL suboption NOCCSID0:
PARM=’S,XREF,PP(SQL("APOSTSQL,NOCCSID0"))’

The following output listing shows the options that are in effect for both the PL/I
SQL preprocessor and the DB2 coprocessor:
SQL Preprocessor Options Used
NOCCSID0
LOB(DB2)
OPTIONS
DB2 for z/OS Coprocessor Options used
APOST
APOSTSQL
ATTACH(TSO)
CCSID(1140)

74 Internationalization Guide

http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/i1191451/1.1.1?ACTION=MATCHES&REQUEST=compile-time+option&TYPE=FUZZY&SHELF=&DT=20110908014642&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/i1191451/1.1.1?ACTION=MATCHES&REQUEST=compile-time+option&TYPE=FUZZY&SHELF=&DT=20110908014642&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/i1191451/1.1.3?ACTION=MATCHES&REQUEST=changing+the+default+options&TYPE=FUZZY&SHELF=&DT=20110908014642&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/i1191451/1.1.3?ACTION=MATCHES&REQUEST=changing+the+default+options&TYPE=FUZZY&SHELF=&DT=20110908014642&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/i1191451/1.2.3.2?ACTION=MATCHES&REQUEST=sql+preprocessor&TYPE=FUZZY&SHELF=&DT=20110908014642&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/i1191451/1.2.3.2?ACTION=MATCHES&REQUEST=sql+preprocessor&TYPE=FUZZY&SHELF=&DT=20110908014642&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_declarevariable.htm#db2z_sql_declarevariable

Specifying CCSIDs for C/C++ applications when using the DB2
coprocessor

If you use the DB2 coprocessor to prepare a C/C++ application with SQL
statements, use the C/C++ compiler to specify the CCSID of the application
source. Use DB2 mechanisms to specify the CCSID of the application data that is
manipulated in SQL statements.

Procedure

To specify CCSIDs for C/C++ applications when using the DB2 coprocessor:
1. Specify the CCSID for the source code by specifying a LOCALE value.

Example: The following JCL EXEC statements for C compile jobs specify a
CCSID of 1047. The first statement specifies a LOCALE for U.S. applications.
The second statement specifies a LOCALE for German applications.
//C EXEC PGM=CCNDRVR,PARM=’SQL(),SO,LIST,LOCALE(En_US.IBM-1047)’

//C EXEC PGM=CCNDRVR,PARM=’SQL(),SO,LIST,LOCALE(De_CH.IBM-1047)’

Alternatively, you can use other more advanced methods to specify the CCSID
of the source code and any data that is outside of SQL statements. For more
information about those methods, see the internationalization information in
the C/C++ Programming Guide.
Otherwise, if you do not specify a CCSID to the C/C++ compiler, the default
C/C++ LOCALE of 1047 is passed to the DB2 coprocessor.

Example: The following JCL EXEC statements for a C compile job does not
specify a LOCALE value. Therefore, the default value of 1047 is passed to the
DB2 coprocessor.
//C EXEC PGM=CCNDRVR,PARM=’SQL()’

Recommendation: If you are using the DB2 coprocessor on a C/C++
application, do not specify the SQL compiler option with the CCSID suboption.
If you specify it anyway, and it conflicts with the LOCALE value, DB2 issues a
warning. For example, the following EXEC statement for a C compile job
specifies a CCSID value of 1047; the CCSID value 37 is ignored:
//C EXEC PGM=CCNDRVR,PARM=’SQL(CCSID(37)),LOCALE(De_CH.IBM-1047)’

2. Specify the CCSID for data within SQL statements by specifying a value for the
ENCODING bind option bind option or accept the subsystem default
application encoding scheme (the DECP value APPENSCH). This value is used
as the CCSID for the application data.

3. To override the CCSID for particular host variables or parameter markers, use
the DECLARE VARIABLE statement or CURRENT APPLICATION ENCODING
SCHEME special register. If you need help using either of these techniques,
following the instructions in Specifying a CCSID for your application.
If you specify different CCSIDs for different pieces of data, do so with caution.

Chapter 5. Application programming with Unicode data and multiple CCSIDs 75

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/cbcpg1d0/8.0?ACTION=MATCHES&REQUEST=locales+and+character+sets&TYPE=FUZZY&SHELF=&DT=20120802234732&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/cbcpg1d0/8.0?ACTION=MATCHES&REQUEST=locales+and+character+sets&TYPE=FUZZY&SHELF=&DT=20120802234732&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT

Related reference:

Compiler Options (C/C++) (XL C/C++ User's Guide)

BIND and REBIND options (DB2 Commands)
“Subsystem CCSIDs and encoding schemes” on page 33

Determining the CCSID of DB2 data
DB2 can store EBCDIC, ASCII, and Unicode data.

Procedure

To determine the CCSID of DB2 data, use one of the following techniques:
v To find the CCSID of data that is stored in DB2 tables, check one of the

following catalog tables:
– SYSIBM.SYSCOLUMNS (the FOREIGNKEY and CCSID columns)

SELECT FOREIGNKEY, CCSID
FROM SYSIBM.SYSCOLUMNS
WHERE NAME = ’column-name’

– SYSIBM.SYSDATABASE (the SBCS_CCSID, MIXED_CCSID, and DBCS_CCSID
columns)
SELECT SBCS_CCSID, MIXED_CCSID, DBCS_CCSID

FROM SYSIBM.SYSDATABASE
WHERE NAME = ’database-name’

– SYSIBM.SYSTABLES (the ENCODING_SCHEME column)
SELECT ENCODING_SCHEME

FROM SYSIBM.SYSTABLES
WHERE NAME = ’table-name’

– SYSIBM.SYSTABLESPACE (the SBCS_CCSID, MIXED_CCSID, and
DBCS_CCSID columns)
SELECT SBCS_CCSID, MIXED_CCSID, DBCS_CCSID

FROM SYSIBM.TABLESPACE
WHERE NAME = ’tablespace-name’

– SYSIBM.SYSKEYTARGETS (the CCSID column)
SELECT CCSID

FROM SYSIBM.SYSKEYTARGETS
WHERE IXNAME = ’keytarget-name’

v To find the CCSID of a distinct type, check the SYSIBM.SYSDATATYPES catalog
table (the ENCODING_SCHEME column).

v To find the CCSID of routine parameters, check one of the following catalog
tables:
– SYSIBM.SYSPARMS (the CCSID column)
– SYSIBM.SYSROUTINES (the PARAMETER_CCSID column)

v To find the CCSID of application data, check one of the following catalog tables:
– SYSIBM.SYSPACKAGE (the ENCODING_CCSID column)
– SYSIBM.SYSPLAN (the ENCODING_CCSID column)
– SYSIBM.SYSENVIRONMENT (the APPLICATION_ ENCODING_CCSID

column)
v To find the subsystem CCSIDs, follow the instructions for “Determining current

subsystem CCSID and encoding scheme values” on page 35.

76 Internationalization Guide

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/cbcug1b0/4.0?DN=SC09-4767-11&DT=20120802022433&SHELF=&CASE=&PATH=/bookmgr/
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.comref/src/tpc/db2z_bindrebindoptions.htm#db2z_bindrebindoptions

Related reference:

DB2 catalog tables (DB2 SQL)

Determining the CCSID of a string value in an SQL statement
Knowing the CCSID of a particular string value in an SQL statement helps you
determine how DB2 evaluates the statement. This knowledge also helps you plan
for character conversions. You can determine whether character conversion is
necessary and what character conversions you need to define.

About this task

The CCSID that is associated with a string value depends on the SQL statement in
which the data is referenced and the type of expression.

Procedure

To determine the CCSID of a string value in DB2, use one or more of the following
techniques:
v Use the rules for determining the CCSID that is associated with string data, as

specified in Determining the encoding scheme and CCSID of a string (DB2 SQL).
v Use the DESCRIBE statement and then check the SQLDA. The SQLDA contains

one SQLVAR entry for each column or host variable that is described. For string
columns and parameters, look in the SQLDATA field of the appropriate SQLVAR
entry to find the CCSID of that column or parameter.

Related concepts:
“Code pages and CCSIDs” on page 5
Related reference:

DESCRIBE (DB2 SQL)

SQL descriptor area (SQLDA) (DB2 SQL)

Objects with different CCSIDs in the same SQL statement
You can reference data with different CCSIDs from the same SQL statement. This
ability is useful if you use table objects such as tables, views, temporary tables,
query tables, and user-defined functions with different CCSIDs. However, you
should understand how DB2 for z/OS processes these queries so that you can code
them correctly.

Although the data that the statement references can have different CCSIDs, the
SQL statement, including string constants, is written in only one CCSID. The
CCSID that the SQL statement is written in is the source CCSID for your
application.

DB2 for z/OS considers any SQL statement that satisfies at least one of the
following criteria to be a statement that references objects with multiple CCSIDs:

v References table objects with different CCSIDs
v Contains any of the following functions:

– ASCII_CHR
– ASCII_STR

Chapter 5. Application programming with Unicode data and multiple CCSIDs 77

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_catalogtablesintro.htm#db2z_catalogtablesintro
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_determineencodingschemeandccsid.htm#db2z_determineencodingschemeandccsid
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_describe.htm#db2z_sql_describe
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sqldescriptorareaintro.htm#db2z_sqldescriptorareaintro

– ASCIISTR
– EBCDIC_CHR
– EBCDIC_STR
– CAST with the CCSID clause
– CHR
– DECRYPT_BIT
– DECRYPT_CHAR
– DECRYPT_DB
– GETVARIABLE
– GX
– NORMALIZE_STRING
– UNICODE_STR
– UNISTR
– UX
– XML2CLOB
– XMLSERIALIZE
– A table user-defined function

v Is one of the following SQL statements:
– CALL
– SET host-variable assignment
– SET special register

– VALUES
– VALUES INTO

If a statement references objects with multiple CCSIDs, DB2 processes the
statement as follows:
1. DB2 first determines the CCSID for each item that the statement references.

DB2 uses the rules in the table that describes the operand types in Conversion
rules for comparisons (DB2 SQL).

2. DB2 then evaluates the predicates according to the rules that are listed in the
"Operand that supplies the CCSID for character conversion" table in
Conversion rules for comparisons (DB2 SQL).

Regardless of the CCSIDs of the referenced data, your application can receive the
data in any CCSID that it wants. For example, suppose that your application
selects rows from SYSIBM.SYSTABLES. The CCSIDs of the retrieved data are all
Unicode CCSIDs. However, when you issue the SELECT statement, the data is
returned to your application in your application encoding CCSID. This behavior is
evident in the SPUFI application, which uses the EBCDIC encoding scheme. When
you run a query against the DB2 catalog in SPUFI, EBCDIC data is returned.

Examples of statements that reference objects with different
CCSIDs

78 Internationalization Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_conversionrules4combinestrings.htm#db2z_conversionrules4combinestrings
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_conversionrules4combinestrings.htm#db2z_conversionrules4combinestrings
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_conversionrules4combinestrings.htm#db2z_conversionrules4combinestrings

Example 1: Assume that EBCDICTABLE is encoded in EBCDIC, and the host
variables are encoded in the application encoding scheme. SYSIBM.SYSTABLES is
encoded in Unicode. Consider the following statement that references these objects
with different CCSIDs:
SELECT A.NAME, A.CREATOR, B.CHARCOL, ’ABC’, :hvchar, X’C1C2C3’
FROM SYSIBM.SYSTABLES A, EBCDICTABLE B
WHERE A.NAME = B.NAME AND

B.NAME > ’B’ AND
A.CREATOR = ’SYSADM’

ORDER BY B.NAME

DB2 uses the following CCSIDs for each item that the statement references:

Part of statement
Corresponding CCSID that DB2 uses
during evaluation of the statement

A.NAME Unicode CCSID

A.CREATOR Unicode CCSID

B.CHARCOL EBCDIC CCSID

'ABC' Application encoding scheme CCSID1

:hvchar, Application encoding scheme CCSID1

X'C1C2C3' Application encoding scheme CCSID1

B.NAME EBCDIC

Notes:

1. Application encoding scheme CCSID is the value of the ENCODING bind option.

DB2 then evaluates the statement as follows:

Part of statement

Corresponding CCSID that
DB2 uses during evaluation
of the statement Reason

A.NAME = B.NAME Unicode CCSID Because both operands are
columns and the CCSIDs are
different, DB2 uses Unicode.

B.NAME > 'B' EBCDIC CCSID Because the first operand is a
column and the second
operand is a string, DB2 uses
the CCSID of the first
operand, which is EBCDIC.

A.CREATOR = 'SYSADM' Unicode CCSID Because the first operand is a
column and the second
operand is a string, DB2 uses
the CCSID of the first
operand, which is Unicode.

The result of this statement contains multiple CCSIDs. However, your application
receives the result of this statement in the application encoding CCSID.

Example 2: Assume that you issue the following statements to create and populate
a Unicode table and EBCDIC table:
CREATE TABLE TCCSIDU (CU1 VARCHAR(12)) CCSID UNICODE;
CREATE TABLE TCCSIDE (CE1 VARCHAR(12)) CCSID EBCDIC;
INSERT INTO TCCSIDU VALUES ('Jürgen’);
INSERT INTO TCCSIDE VALUES (’Jürgen’);

Chapter 5. Application programming with Unicode data and multiple CCSIDs 79

The following query joins those two tables.
SELECT LENGTH(A.CU1) AS L1, HEX(A.CU1) AS H1,
LENGTH(B.CE1) AS L2, HEX(B.CE1) AS H2
FROM TCCSIDU A, TCCSIDE B WHERE A.CU1 = B.CE1;

The WHERE predicate compares two columns with different CCSIDs. Column
A.CU1 is encoded in Unicode. Column B.CE1 is encoded in EBCDIC. For this
comparison, DB2 promotes B.CE1 to Unicode. Therefore DB2 evaluates the
EBCDIC value 'Jürgen' in B.CE1 as equal to the Unicode value 'Jürgen' in A.CU1.
This query returns the following result:

L1 H1 L2 H2

7 4AC3BC7267656E 6 D1DC99878595

Even though B.CE1 was promoted to Unicode for the comparison in the WHERE
clause, the result still shows the EBCDIC hexadecimal value for B.CE1.

Related tasks:
“Specifying a CCSID for your application” on page 61
Related reference:

DESCRIBE (DB2 SQL)

SQL descriptor area (SQLDA) (DB2 SQL)

Differences between Unicode and EBCDIC sorting sequences
In Unicode, numeric characters are sorted before alphabetic characters. In EBCDIC,
alphabetic characters are sorted before numeric characters.

Because the DB2 catalog is stored in Unicode, any queries that you issue against
Unicode tables in the catalog use the Unicode sorting sequence.

Also, consider any SQL statements that include syntax that requires that the data
be sorted. Examples of such syntax include the GROUP BY clause, range predicates
such as BETWEEN, and functions such as MIN and MAX. These statements might
return different results when they are issued on Unicode data than on EBCDIC
data.

The following table shows some example encoding differences to consider when
specifying these clauses, predicates, and functions in your SQL statements.

Table 22. Example encoding differences

EBCDIC Unicode and ASCII

Characters Hexadecimal value Characters Hexadecimal value

space X'40' space X'20'

lowercase characters X'81' - X'89'
X'91' - X'99'
X'A1' - X'A9'

numerals X'30' - X'39'

uppercase characters X'C1' - X'C9'
X'D1' - X'D9'
X'E1' - X'E9'

uppercase characters X'40' - X'4F'
X'50' - X5A'

80 Internationalization Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_describe.htm#db2z_sql_describe
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sqldescriptorareaintro.htm#db2z_sqldescriptorareaintro

Table 22. Example encoding differences (continued)

EBCDIC Unicode and ASCII

Characters Hexadecimal value Characters Hexadecimal value

numerals X'F0' - X'F9' lowercase characters X'61' - X'6F'
X'70' - X7A'

Equal predicates are not affected by the different sorting sequences.

Examples

For the following examples, assume that a table called MYTABLES has a NAME
column that is type VARCHAR(128). This column contains the following values:
TEST1, TEST2, TEST3, TESTA, TESTB, and TESTC.

Example query with ORDER BY: Suppose that you issue the following SQL
query:
SELECT NAME FROM MYTABLES
ORDER BY NAME

If MYTABLES is encoded in Unicode, DB2 returns the following result:
TEST1
TEST2
TEST3
TESTA
TESTB
TESTC

If MYTABLES is encoded in EBCDIC, DB2 returns the following result:
TESTA
TESTB
TESTC
TEST1
TEST2
TEST3

Example of query with ORDER BY and BETWEEN predicate: Assume that you
issue the following SQL query:
SELECT * FROM MYTABLES
WHERE NAME BETWEEN ’TEST2’ AND ’TESTB’
ORDER BY NAME

If MYTABLES is encoded in Unicode, DB2 returns the following result:
TEST3
TESTA

If MYTABLES is encoded in EBCDIC, DB2 returns the following result:
TESTC
TEST1

To simulate the behavior of the ORDER BY clause on EBCDIC data, use the CAST
function and the ORDER BY clause when you query the DB2 catalog or other
Unicode data.

Chapter 5. Application programming with Unicode data and multiple CCSIDs 81

Example of simulating the EBCDIC sorting sequence: Suppose that MYTABLES
is encoded in Unicode. You can modify the preceding query as follows to return
the Unicode data in the same order that you would expect for EBCDIC data:
SELECT CAST(NAME AS VARCHAR(128) CCSID EBCDIC) AS E_NAME
FROM MYTABLES
ORDER BY E_NAME

DB2 returns the following result:
TESTA
TESTB
TESTC
TEST1
TEST2
TEST3

However, be aware that, in this situation, DB2 cannot use an index to support the
ORDER BY clause. DB2 must sort the data.

You can also apply this same technique to a catalog table in UTF-8, as shown in
the following example
SELECT CAST(NAME AS VARCHAR(128) CCSID EBCDIC) AS E_NAME
FROM SYSIBM.SYSTABLES
ORDER BY E_NAME

If the NAMES column of SYSIBM.SYSTABLES contains the values TEST1, TEST2,
TEST3, TESTA, TESTB, and TESTC, DB2 returns the following result:
TESTA
TESTB
TESTC
TEST1
TEST2
TEST3

Specifying how DB2 calculates the length of a string
If you use certain length functions, you can specify whether you want DB2 to
calculate the length by bytes or characters. This distinction is important for
multibyte characters. If you convert DB2 data to Unicode and the data expands,
consider updating some of these function calls to specify the appropriate unit of
measurement.

For example, consider the string Jürgen in UTF-8. This string consists of 6
characters. However, it takes 7 bytes of storage, because the character ü takes 2
bytes in UTF-8. You can specify whether you want DB2 to count the length as 6 or
7.

The key is to specify the size code unit that you want DB2 to use when calculating
the length. A code unit is the minimal bit combination that can represent a
character.

Procedure

To specify how DB2 calculates the length of a string:

82 Internationalization Guide

If you are using any of the following length functions, specify the appropriate unit
of measurement:

Applicable functions:

v CHARACTER_LENGTH
v CLOB
v DBCLOB
v GRAPHIC
v LEFT
v LOCATE
v LOCATE_IN_STRING
v OVERLAY
v POSITION
v RIGHT
v SUBSTRING
v VARCHAR
v VARGRAPHIC

Options to specify unit of measurement:

CODEUNITS16
Specifies that DB2 is to count the length by 16-bit (or 2-byte) code units.
For every character that is 2 bytes or less in the string, DB2 counts a length
of 1.

CODEUNITS32
Specifies that DB2 is to count the length by 32-bit (or 4-byte) code units.
For every character that is 4 bytes or less in the string, DB2 counts a length
of 1. CODEUNITS32 always returns the same value as CODEUNITS16
unless you have supplementary characters.

OCTETS
Specifies that DB2 is to count the length by bytes. For every byte in the
string, DB2 counts a length of 1.

The OCTETS option is not available for all of the listed functions.

Example

Example of CHARACTER_LENGTH: Assume that NAME is a VARCHAR(128)
column that is encoded in Unicode UTF-8 and contains 'Jürgen'. The character ü
requires two bytes in UTF-8.

The following two queries both return the value 6, because DB2 counts the string
Jürgen as 6 characters. In the first query, CODEUNITS32 means that any character
that is 4 bytes or less is counted as 1. In the second query, CODEUNITS16 means
that any character that is 2 bytes or less is counted as 1. In both cases, the result is
the same.
SELECT CHARACTER_LENGTH(NAME,CODEUNITS32)

FROM T1 WHERE NAME = ’Jürgen’;

SELECT CHARACTER_LENGTH(NAME,CODEUNITS16)
FROM T1 WHERE NAME = ’Jürgen’;

Chapter 5. Application programming with Unicode data and multiple CCSIDs 83

However the following two queries return the value 7, because the string contains
7 bytes. In the first query, OCTETS means that length is to be calculated in bytes.
In the second query, the LENGTH function always counts by bytes.
SELECT CHARACTER_LENGTH(NAME,OCTETS)

FROM T1 WHERE NAME = ’Jürgen’;

SELECT LENGTH(NAME)
FROM T1 WHERE NAME = ’Jürgen’;

Example of LOCATE_IN_STRING: The LOCATE_IN_STRING function returns
the position at which an occurrence of an argument starts within a specified string.
This function is similar to POSITION, but adds a parameter to specify which
instance of the search string to find. The following statement sets the value of the
host variable POSITION to 26, because the character ß is the 26th character in the
string. In this case, CODEUNITS32 means that any character that is 4 bytes or less
is counted as 1.
SET :POSITION = LOCATE_IN_STRING(’Jürgen lives on Hegelstraße’,’ß’,-1,CODEUNITS32);
-- search from end

The following statement sets the value of the host variable POSITION to 6. DB2
starts at position 1 and looks for the third occurrence of the character N. In this
case, OCTETS means that DB2 counts the length by bytes.
SET :POSITION = LOCATE_IN_STRING(’WINNING’,’N’,1,3,OCTETS);

Examples of other length functions: The following table shows examples of the
CODEUNITS16, CODEUNITS32, and OCTET options.

Table 23. Examples of length functions

Function Result Hexadecimal result value

LEFT('Jürgen’,2,CODEUNITS32) ’Jü’ X'4AC3BC'

LEFT('Jürgen’,2,CODEUNITS16) ’Jü’ X'4AC3BC'

LEFT('Jürgen’,2,OCTETS) ’J ’ X'4A20' (a truncated string)

LEFT('Jürgen’,2) ’J?’ X'4AC3' (The letter ‘J' and a
partial character)1

RIGHT('Jürgen’,5,CODEUNITS32) ’ürgen’ X'C3BC7267656E'

RIGHT('Jürgen’,5,CODEUNITS16) ’ürgen’ X'C3BC7267656E'

RIGHT('Jürgen’,5,OCTETS) ’rgen’ X'207267656E' (a truncated
string)

RIGHT('Jürgen’,5) ’?rgen’ X'BC7267656E' (a partial
character followed by ‘rgen')1

SUBSTRING('Jürgen’,1,2,CODEUNITS32) ’Jü’ X'4AC3BC'

SUBSTRING('Jürgen’,1,2,CODEUNITS16) ’Jü’ X'4AC3BC'

SUBSTRING('Jürgen’,1,2,OCTETS) ’J ’ X'4A20' (a truncated string)

SUBSTR('Jürgen’,1,2) 'J?’ X'4AC3' (a partial character)

SUBSTRING('Jürgen’,8,CODEUNITS16) ’’ a zero-length string

SUBSTRING('Jürgen’,8,4,OCTETS) ’’ a zero-length string

1. If conversion occurs on a string with a partial character, SQLCODE -330 results.

84 Internationalization Guide

Related concepts:

Difference between CODEUNITS16 and CODEUNITS32 (DB2 SQL)

String unit specifications (DB2 SQL)
Related reference:

CHARACTER_LENGTH (DB2 SQL)

LEFT (DB2 SQL)

LENGTH (DB2 SQL)

LOCATE_IN_STRING (DB2 SQL)

RIGHT (DB2 SQL)

SUBSTR (DB2 SQL)

SUBSTRING (DB2 SQL)

Specifying the sorting sequence for a language
If your application sorts non-English data, you should specify the sorting sequence
to ensure that DB2 sorts the data in a culturally correct manner. For example,
suppose your data contains the following strings: cote, coté, côte, côté. You need to
specify how you want these strings sorted.

Procedure

To specify the sorting sequence for a language, perform one of the following
actions:
v In your SQL statement, use the COLLATION_KEY function with the

collation-name parameter to specify a particular sorting sequence.
A collation name specifies how DB2 is to sort data. It specifies attributes such as
the language of the data, whether case should be considered, and how
punctuation characters should be treated. You must specify a value that is
acceptable for the z/OS CUNBOPR_Collation_Keyword parameter.
The COLLATION_KEY function returns a binary value that can be used to sort
data according to the rules that are specified in the Unicode Collation algorithm.

Example of retrieving data in a specified order: Suppose that you issue
the following query:
SELECT FIRSTNAME, LASTNAME
FROM EMPLOYEE
ORDER BY COLLATION_KEY(LASTNAME, ’UCA400R1_AS_LSV_S2’);

This query orders the employees by their surnames (in the LASTNAME
column) based on the following options that are specified in the collation name
UCA400R1_AS_LSV_S2:

Table 24. Example collation options and corresponding collation keywords

Corresponding collation keyword Option

UCA400R1 Use Unicode Collation Algorithm (UCA)
version 4.0.1

Chapter 5. Application programming with Unicode data and multiple CCSIDs 85

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_diffbetweencodeunit16and32.htm#db2z_diffbetweencodeunit16and32
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_stringunitspec.htm#db2z_stringunitspec
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_characterlength.htm#db2z_bif_characterlength
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_left.htm#db2z_bif_left
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_length.htm#db2z_bif_length
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_locateinstring.htm#db2z_bif_locateinstring
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_right.htm#db2z_bif_right
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_substr.htm#db2z_bif_substr
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_substring.htm#db2z_bif_substring
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2unb0/2.5.11

Table 24. Example collation options and corresponding collation keywords (continued)

Corresponding collation keyword Option

AS Ignore spaces, punctuation and symbols

LSV Use Swedish linguistic conventions

S2 Compare case-insensitively

v Create an index that maintains the sorting sequence by using the
COLLATION_KEY function in the CREATE INDEX statement.
Invoking the COLLATION_KEY function for every row in the table can slow
performance. Creating an index based on the collation key shifts this
performance cost from query time to insert or update time. That performance
shift assumes that DB2 chooses to use the index for the query.

Example of creating an index based on the collation key: Suppose that
you want to use the following basic query:
SELECT C1 FROM T1 ORDER BY C1

However, you want to ensure that the result is ordered according to the rules for
a particular locale. For this example, assume the language of the data is French.
In this case, you can use the COLLATION_KEY function, as shown in the
following statement:
SELECT C1 FROM T1 ORDER BY COLLATION_KEY(C1,’UCA410_LFR_FO’)

The collation name UCA410_LFR_FO has the following meaning:

Table 25. Example collation options and corresponding collation keywords

Corresponding collation keyword Option

UCA410 Specifies that DB2 is to use the collation
service UCA410

LFR Specifies that the locale is French. (L =
language, FR= French)

FO Specifies that the French sorting attribute is
to be used. (F = French attribute, O = On)
Strings are to be sorted by examining the
accents starting from the end of the string.
This attribute is automatically set to on for
the French locales. Therefore, in this case, it
is not required.

You might want to check if you can improve the performance of this query by
creating an index on C1 that is based on the collation key. The following
example statements show how to create such an index and use EXPLAIN
statements to confirm that the index is used for faster access. You can view the
results of the EXPLAIN statements by querying the plan table. The EXPLAIN

output for this example shows only some of the plan table columns. PSPI

EXPLAIN ALL SET QUERYNO = 110 FOR SELECT C1 FROM T1
ORDER BY COLLATION_KEY(C1,’UCA410_LFR_FO’);

CREATE INDEX I1 ON T1 (COLLATION_KEY(C1,’UCA410_LFR_FO’));
EXPLAIN ALL SET QUERYNO = 210 FOR SELECT C1 FROM T1

ORDER BY COLLATION_KEY(C1,’UCA410_LFR_FO’);
SELECT * FROM PLAN_TABLE;

86 Internationalization Guide

PSPI The last statement returns the following output:
+---
| QUERYNO | QBLOCKNO | PROGNAME | PLANNO | METHOD | CREATOR | TNAME | TABNO | ACCESSTYPE |
+---

1_| 110 | 1 | DSNTEP2 | 1 | 0 | ADMF001 | T1 | 1 | R |
2_| 110 | 1 | DSNTEP2 | 2 | 3 | | | 0 | |
3_| 210 | 1 | DSNTEP2 | 1 | 0 | ADMF001 | T1 | 1 | I |
+---

--
| MATCHCOLS | ACCESSNAME | INDEXONLY | SORTN_UNIQ | SORTN_JOIN | SORTN_ORDERBY |
--

1_| 0 | | N | N | N | N |
2_| 0 | | N | N | N | N |
3_| 0 | I1 | N | N | N | N |
--

--
| SORTN_GROUPBY | SORTC_UNIQ | SORTC_JOIN | SORTC_ORDERBY | SORTC_GROUPBY | PREFETCH |
--

1_| N | N | N | N | N | S |
2_| N | N | N | Y | N | |
3_| N | N | N | N | N | |
--

Related reference:

COLLATION_KEY (DB2 SQL)

CREATE INDEX (DB2 SQL)

EXPLAIN (DB2 SQL)
Related information:

Unicode Technical Standard #10: Unicode Collation Algorithm

Performing culturally correct case conversions
Rules for uppercase and lowercase conversion vary according to language and
country. If you plan to use the UPPER or LOWER function, you need to ensure
that DB2 uses the culturally correct casing rules. For example, you need to tell DB2
how to convert characters such as ß and ó to uppercase.

Before you begin

Before you use the UPPER or LOWER function on Unicode or ASCII data, you
need to set up z/OS Unicode Services.

Procedure

To ensure that DB2 uses the correct casing rules for a language and country:

When you use the UPPER function or LOWER function, ensure that DB2 uses the
appropriate locale by performing one of the following actions:
v Specify a value for the locale-name parameter of the UPPER or LOWER function:

– For EBCDIC data, specify an LE locale, such as En_US or Fr_FR.
– For Unicode and ASCII data, specify a locale value that is supported by the

case conversion service of z/OS Unicode Services, such as EN_US. For a list
of locale values that are supported by the case conversion service, see Locales
supported for Case service (z/OS: Unicode Services User’s Guide and
Reference). You can also specify the value UNI, which means that the case
conversion service of z/OS Unicode Services is to use the normal and special
casing rules.

Chapter 5. Application programming with Unicode data and multiple CCSIDs 87

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_collationkey.htm#db2z_bif_collationkey
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_createindex.htm#db2z_sql_createindex
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sql_explain.htm#db2z_sql_explain
http://unicode.org/reports/tr10/
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2unb0/APPENDIX1.5.2
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2unb0/APPENDIX1.5.2
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2unb0/APPENDIX1.5.2

v If you do not specify a value for the locale-name parameter of the UPPER and
LOWER function, ensure that the value of the CURRENT LOCALE LC_CTYPE
special register is correct. You can change the value by using the SET CURRENT
LOCALE LC_CTYPE statement.

As an alternative to using the UPPER function, you can use the TRANSLATE
function with only one parameter. In both cases, the strings are converted to
uppercase.

Example

Example 1: The following statements show how to ensure that the German
character ß is handled correctly when DB2 converts it to upper case. In uppercase,
ß should be 'SS.'

The first set of statements creates a table, inserts one row, and confirms that the
value Hegelstraße was properly inserted.
CREATE TABLE T1 (C1 VARCHAR(15)) VOLATILE CCSID UNICODE;
INSERT INTO T1 VALUES(’Hegelstraße’,1);
SELECT C1 FROM T1 ;

The SELECT statement returns the following result:

C1

Hegelstraße

If you do not specify a locale when you use the UPPER function on this value, the
result is technically incorrect, as shown in the following example. In upper case,
the German ß should be converted to SS.
SELECT UPPER(C1)AS C1 FROM T1 ;

This SELECT statement returns the following result:

C1

HEGELSTRAßE

The following query returns output with the German ß correctly converted to SS.
SELECT UPPER(C1,’De_DE’) AS C1 FROM T1 ;

This SELECT statement returns the following result:

C1

HEGELSTRASSE

This query works correctly, because the locale De_DE is passed as a parameter to
the UPPER function.

Example 2: Suppose that table T1 contains the Unicode data Chrysóstomo in
column C1. Assume that you issue the following query with the UPPER function.
SELECT UPPER(C1)AS C1 FROM T1 ;

88 Internationalization Guide

If you did not add the CASE SPECIAL and CASE LOCALE statements to your
conversion image when setting up z/OS Unicode Services, this query returns the
following result:
CHRYSóSTOMO

However, after setting up the conversion image with the CASE SPECIAL and
CASE LOCALE statements and setting the LOCALE special register, you get the
following correct result:
CHRYSÓSTOMO

Be aware that the UPPER function can result in expansion if the text contains
certain characters, such as ó in this example. Ensure that the result string is large
enough to contain the result of the expression.

Related reference:

LOWER (DB2 SQL)

UPPER (DB2 SQL)

TRANSLATE (DB2 SQL)

CURRENT LOCALE LC_CTYPE (DB2 SQL)

Internationalization: Locales and Character Sets (XL C/C++ Programming
Guide)

Locales support (z/OS Unicode Services) (z/OS: Unicode Services User’s
Guide and Reference)

Locale
A locale defines your cultural environment. Specifying the correct locale ensures
that DB2 handles case conversions and sorts according to the rules for a particular
language.

You can set the locale for your subsystem by using the CURRENT LOCALE
LC_CTYPE special register. Alternatively, you can specify a locale when you
perform specific functions that depend on locale, such as UPPER and LOWER.

Depending on the encoding scheme of the data, use one of the following locale
formats:

LE locales
Specify this locale format for EBCDIC data.

An LE locale consists of two components: the first component represents a
specific language and country, and the second component is a CCSID. For
example, in the locale Fr_CA.IBM-1047, Fr_CA represents the language and
country (French Canadian), and IBM-1047 is the associated CCSID.

When you specify an LE locale to DB2 for z/OS, specify only the first
component, which is the language and country. DB2 appends "IBM-" and
the CCSID.

The following table shows some example LE locales that you can specify to
DB2.

Chapter 5. Application programming with Unicode data and multiple CCSIDs 89

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_lower.htm#db2z_bif_lower
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_upper.htm#db2z_bif_upper
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_translate.htm#db2z_bif_translate
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_currentlocalelcctype.htm#db2z_currentlocalelcctype
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/cbcpg1d0/8.0?ACTION=MATCHES&REQUEST=locales+and+character+sets&TYPE=FUZZY&SHELF=&DT=20120802234732&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/cbcpg1d0/8.0?ACTION=MATCHES&REQUEST=locales+and+character+sets&TYPE=FUZZY&SHELF=&DT=20120802234732&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2unb0/APPENDIX1.5
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2unb0/APPENDIX1.5

Table 26. Examples of LE locales that you can specify

Locale Language Country

En_US English United States

De_CH German Switzerland

De_DE German Germany

Fr_CA French Canada

It_IT Italian Italy

Ja_JP Japanese Japan

For a complete list of supported LE locales, see Compiled locales (LE
locales) (XL C/C++ Programming Guide).

z/OS Unicode Services
Specify one of the following z/OS Unicode Services locale formats for
ASCII and Unicode data.

Locale format for case conversion services
Use this format when you need a locale to affect how data is
converted to uppercase and lowercase, such as in the UPPER and
LOWER functions.

The locale format for case conversion is Lxx_Ryy where:

Lxx Language

Ryy Region

You can use any of the locale values that are supported by z/OS
Unicode Services for CUNBAPRM_Locale (31-bit) or
CUN4BAPR_Locale (64-bit). The following table lists some example
locale values for case conversion services.

Table 27. Example locale values for the case conversion services of z/OS Unicode Services

Locale value Language Region

Cs_CZ Czech Czech Republic

De_DE German Germany

En_US English United States

En_GB English Great Britain

Es_MX Spanish Mexico

Fr_FR French France

Ja_JP Japanese Japan

Sv_SE Swedish Sweden

For a complete list of supported locales for case conversion
services, see Locales supported for Case service (z/OS: Unicode
Services User’s Guide and Reference).

Locale format for collation conversion services
Use this format when you need a locale to affect how the data is
sorted.

The collation locale format is Lxx_Ryy_Vzz where:

Lxx Language

90 Internationalization Guide

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/cbcpg1d0/APPENDIX1.4.1?ACTION=MATCHES&REQUEST=compiled+locales&TYPE=FUZZY&SHELF=&DT=20120802234732&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/cbcpg1d0/APPENDIX1.4.1?ACTION=MATCHES&REQUEST=compiled+locales&TYPE=FUZZY&SHELF=&DT=20120802234732&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2unb0/APPENDIX1.5.2
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2unb0/APPENDIX1.5.2

Ryy Region

Vzz Variant

You can use any of the locale values that are supported by z/OS
Unicode Services for CUNBOPRM_Collation_Keyword/
CUN4BOPR_Collation_Keyword The following table lists some
example locale values for collation

Table 28. Example locale values for collation conversions in z/OS Unicode Services

Locale value Language Region Variant

LCS_RCZ Czech Czech Republic None

LDE_RDE German Germany None

LDE_RDE_PREEURO German Germany Pre Euro support

LEN English None None

LEN_RGB English Great Britain None

LES_RMX Spanish Mexico None

LFR_RFR French France None

LJA Japanese None None

LSV Swedish None None

For a complete list of supported locales for collation conversion
services, see Locales supported for collation (z/OS: Unicode
Services User’s Guide and Reference).

Generating escaped Unicode data
If you pass Unicode characters to an application or object that is not intended to
handle Unicode data, data might be lost unless you escape certain characters. For
example, you might need to pass Unicode data through an application that has
EBCDIC host variables. Or you might want to store Unicode data in a
non-Unicode table.

About this task

You might also want to select Unicode characters from an application that runs on
a 3270 terminal emulator, such as SPUFI. If the CCSID setting of the emulator does
not include those Unicode characters, those characters do not display properly in
the output.

In these situations, those Unicode characters that cannot be represented in the
encoding scheme of the application or object are lost unless you escape them.
Escaped data is one or more characters that cannot be represented in the target
CCSID and is instead represented by the encoding value. This representation
preserves the data. For example, the escaped version of the Unicode character is
\0434. Thus, the following ASCII string contains the escaped character : ’The
escaped character is \0434’

If you insert escaped data into a Unicode table, DB2 does not interpret your data
and modify it to be un-escaped. Escaped data is stored as is in a DB2 table,
regardless of whether the table is an ASCII, EBCDIC, or Unicode table.

Chapter 5. Application programming with Unicode data and multiple CCSIDs 91

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2unb0/APPENDIX1.5.1
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iea2unb0/APPENDIX1.5.1

Procedure

To generate escaped Unicode data:
1. Use the ASCII_STR function or the EBCDIC_STR function.

These functions convert a Unicode string to an ASCII or EBCDIC string.
Characters that do not exist in ASCII or EBCDIC are converted to the form
\xxxx, where xxxx represents a UTF-16 code unit.
For more information about how to convert characters to UTF-16 format, see
step 2 under the instructions for the INSERT statement in “Inserting data into a
Unicode table” on page 53.

2. If you later need to convert the EBCDIC or ASCII string with escaped data
back to Unicode, use the UNICODE_STR function.
The short form of the function name is UNISTR. This function interprets
escaped data in the source string. Values that are preceded by a backslash ('\')
are treated as Unicode UTF-16 characters. For example '\0041' is the Unicode
UTF-16 representation for 'A'.

Example

Example of escaping data: Assume that T1.C1 contains 'Hi, my name is А р е
'. Notice that the characters in А р е are all Cyrillic characters, even though

some of them do resemble Latin characters. Suppose that you issue the following
query in SPUFI:
SELECT C1 FROM T1;

The result of this query is displayed as follows on a 3270 terminal emulator with
the CCSID set to 37:
'Hi, my name is’

Because the characters in А р е do not exist in CCSID 37, this name is
instead displayed as To solve this problem, you can add the EBCDIC_STR
function, as shown in the following example:
SELECT EBCDIC_STR(C1)FROM T1;

DB2 returns the following output with escaped data:
'Hi, my name is \0410\043D\0434\0440\0435\0439’

Notice that 0410 is the UTF-16 value for А , 043D is the UTF-16 value for and so
on.

Example of un-escaping data: Assume that T1.C1 contains 'А р е '. Suppose
that you issue the following query:
SELECT HEX(UNISTR(ASCII_STR(C1))) FROM T1;

DB2 interprets this query as follows:

92 Internationalization Guide

Table 29. How DB2 interprets query with UNISTR

Part of SELECT statements Result Explanation

ASCII_STR(C1) \0410\043D\0434\0440\0435\
0439

DB2 returns the value in C1 (
А р е) as an ASCII
string. Because these
characters cannot be
represented in ASCII, they
are escaped.

UNISTR(ASCII_STR(C1)) А р е DB2 then converts the
escaped ASCII string to a
Unicode UTF-8 string. UTF-8
includes all of the characters,
so they no longer have to be
escaped.

HEX(UNISTR(ASCII_STR(C1))) D090D0BDD0B4D180D0B5D0B9 DB2 then returns the
hexadecimal value of the
UTF-8 string.

Thus, the final result of this query is:
D090D0BDD0B4D180D0B5D0B9

Suppose that you issue the following similar query:
SELECT HEX(UNISTR(ASCII_STR(C1),UTF16)) FROM T1;

DB2 interprets this query as follows:

Table 30. How DB2 interprets query with UNISTR and UTF16 parameter

Part of SELECT statements Result Explanation

ASCII_STR(C1) \0410\043D\0434\0440\0435\
0439

DB2 returns the value in C1 (
А р е) as an ASCII
string. Because these
characters cannot be
represented in ASCII, they
are escaped.

UNISTR(ASCII_STR(C1),UTF16) А р е DB2 then converts the
escaped ASCII string to a
Unicode UTF-16 string.
UTF_16 includes all of the
characters, so they no longer
have to be escaped.

HEX(UNISTR(ASCII_STR(C1))) D090D0BDD0B4D180D0B5D0B9 DB2 then returns the
hexadecimal value of the
UTF-16 string.

Thus, the final result of this query is:
0410043D0434044004350439

Chapter 5. Application programming with Unicode data and multiple CCSIDs 93

Related concepts:
“Situations in which character conversion occurs” on page 16
Related tasks:
“Inserting Unicode data into a non-Unicode table” on page 54
Related reference:

ASCII_STR (DB2 SQL)

EBCDIC_STR (DB2 SQL)

HEX (DB2 SQL)

UNICODE_STR (DB2 SQL)

Normalization of Unicode strings
Your application should treat as equal those characters that are functionally and
visually equivalent but have different code point representations. This behavior is
important when you search, sort, or compare Unicode strings. To accomplish this
goal, you might need to normalize the strings. However, normalization can
degrade performance.

Unicode strings can be canonically equivalent or compatibly equivalent. If they are
canonically equivalent, they are also compatibly equivalent.

Canonically equivalent characters are those characters that are equivalent both
functionally and visually, but might have different code point representations. To
users, these characters are indistinguishable in that they are displayed identically.
For example, the character ü is canonically equivalent to the sequence u and }.

Compatibly equivalent characters are characters with plain text that is equivalent,
regardless of the semantic meaning. These characters might also have different
code point representations. For example, superscript and subscript numerals are
compatibly equivalent to their decimal-digit counterparts.

The process of normalization of Unicode strings produces a unique code point
sequence for all sequences that are equivalent, either canonically or compatibly.
Therefore, all canonically equivalent characters have the same binary
representation. You can normalize a Unicode string into one of the following
normalized forms that are defined by the Unicode Standard:

Normalization Form Canonical Decomposition (NFD)
Characters are decomposed by canonical equivalence.

Normalization Form Canonical Composition (NFC)
Characters are decomposed and then recomposed by canonical
equivalence.

Normalization Form Compatibly Decomposition (NFKD)
Characters are decomposed by compatibly equivalence.

Normalization Form Compatibly Composition (NFKC)
Characters are decomposed by compatibly equivalence and then
recomposed by canonical equivalence.

To normalize Unicode strings, use the NORMALIZE_STRING built-in function.

94 Internationalization Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_asciistr.htm#db2z_bif_asciistr
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_ebcdicstr.htm#db2z_bif_ebcdicstr
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_hex.htm#db2z_bif_hex
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_unicodestr.htm#db2z_bif_unicodestr

Related reference:

NORMALIZE_STRING (DB2 SQL)
Related information:

Canonical Equivalence in Applications (Unicode Consortium)

How DB2 handles Unicode supplementary characters
Unicode supplementary characters are those characters that have a code point
between U+10000 and U+10FFFF. These characters include certain math symbols
and certain characters from Chinese, Japanese, and some historic scripts.

Supplementary characters are also known as surrogate characters. Each one of
these characters takes up 4 bytes in either UTF-8 and UTF-16. In UTF-8, each one
of these characters takes up four 8-bit code units. In UTF-16, each one of these
characters takes up two 16-bit code units.

DB2 detects any supplementary data that is not well formed only if DB2 has to
manipulate the data in some way. For example, if DB2 converts the data or
processes it as part of a built-in function, DB2 can detect if it is not well formed.
Any built-in function that has the CODEUNITS32, CODEUNITS16, and OCTETS
options, such as CHARACTER_LENGTH and LOCATE_IN_STRING, can detect
whether supplementary characters are well formed. Other operations are also
"character aware." For example, LIKE predicates, the truncation of host variables,
and character conversion operations need to know the content of any character
data.

However, suppose that you insert data into a column and DB2 does not need to
manipulate it in any way. In this case, DB2 does not detect problems with data that
is not well formed. For example, if your COBOL application, which uses UTF-16
data, inserts garbage data into a GRAPHIC column, DB2 does not report any
problems. You can use the NORMALIZE_STRING function to process data and
ensure that it is well-formed according to one of the Unicode standard forms.
However, using this function might degrade performance.
Related concepts:

String unit specifications (DB2 SQL)
Related reference:

CHARACTER_LENGTH (DB2 SQL)

LOCATE_IN_STRING (DB2 SQL)

NORMALIZE_STRING (DB2 SQL)
Related information:

Unicode Consortium

Processing Unicode data in COBOL applications
COBOL supports UTF-16 data. COBOL has no support for UTF-8 data.

About this task

DB2 for z/OS, however, supports both UTF-8 and UTF-16 data.

Chapter 5. Application programming with Unicode data and multiple CCSIDs 95

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_normalizestring.htm#db2z_bif_normalizestring
http://unicode.org/notes/tn5/
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_stringunitspec.htm#db2z_stringunitspec
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_characterlength.htm#db2z_bif_characterlength
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_locateinstring.htm#db2z_bif_locateinstring
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_bif_normalizestring.htm#db2z_bif_normalizestring
http://www.unicode.org

Procedure

To process Unicode data in COBOL applications for DB2 for z/OS, perform the
following recommended actions:
v Use one of the national data types for Unicode data. For example, use the

COBOL PIC N(n) USAGE NATIONAL data type for Unicode character data.
These data types are UTF-16 and enable COBOL to support Unicode data.
Although COBOL does not have a native UTF-8 data type, you can still use a
COBOL application to retrieve UTF-8 data from DB2. DB2 converts the output to
the format that is required by the application. For example, if you query the DB2
catalog, DB2 converts the data for the COBOL application from UTF-8 to either
UTF-16 (for PIC N USAGE NATIONAL variables) or EBCDIC (for PIC X
variables). However, you should not store unconverted UTF-8 data in a COBOL
variable. For example, if you have UTF-8 data in a PIC X variable, COBOL
thinks that the data is EBCDIC and the data could get corrupted. Even
something as simple as moving this UTF-8 value from one variable to another
variable could corrupt the data, because COBOL pads the variable with X'40' for
EBCDIC instead of X'20' for UTF-8.

v Store your data in DB2 in UTF-16. This format often requires more space than
UTF-8. However, you gain CPU savings in processing because DB2 and COBOL
are both using UTF-16 data, and no conversions are needed.

v Use the DB2 coprocessor to prepare your application.
v Specify the appropriate CCSID for your COBOL application source and data

according to the instructions in “Specifying a CCSID for your application” on
page 61.

Recommendation: Use the ENCODING bind option to specify the CCSID of the
data. This option typically yields the best performance. However, depending on
the situation, you might consider the other options for “Specifying a CCSID for
your application” on page 61.

v Do not specify ENCODING UNICODE as a bind option if your program uses
PIC X variables and specifies the COBOL compiler option NOSQLCCSID. If you
do specify ENCODING UNICODE in this situation, DB2 interprets these
character variables as UTF-8, but COBOL does not support UTF-8. Thus, DB2
might misinterpret the data.

Related concepts:

Defining national data items (COBOL) (Enterprise COBOL for z/OS
Programming Guide)
Related tasks:
“Specifying CCSIDs for COBOL applications when using the DB2 coprocessor” on
page 68
Related reference:

Enterprise COBOL for z/OS

Customizing Unicode support for COBOL (Enterprise COBOL for z/OS
Customization Guide)

Compiler options (COBOL) (Enterprise COBOL for z/OS Programming Guide)

Processing Unicode data in PL/I applications
PL/I supports UTF-16 data. PL/I has no support for UTF-8 data.

96 Internationalization Guide

http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/igy3pg50/1.7.4.1
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/igy3pg50/1.7.4.1
http://www.ibm.com/software/awdtools/cobol/zos/library/
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/igy3c131/4.0
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/igy3c131/4.0
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/igy3pg50/2.4?DT=20090820210412

About this task

DB2 for z/OS, however, supports both UTF-8 and UTF-16 data.

Procedure

To process Unicode data in PL/I applications for DB2 for z/OS, consider the
following recommended actions.
v Use the WIDECHAR data type. This data type supports UTF-16 data in PL/I.

Although PL/I does not have a native data type for UTF-8 data, you can still
use a PL/I application to retrieve UTF-8 data from DB2. DB2 converts the
output to the format that is required by the application. For example, if you
query the DB2 catalog, DB2 converts the Unicode data for the PL/I application
from UTF-8 to either UTF-16 (for WIDECHAR variables) or EBCDIC (for CHAR
variables). However, do not store unconverted UTF-8 data in a PL/I variable.
For example, if you have UTF-8 data in a CHAR variable, PL/I thinks that the
data is EBCDIC and the data can get corrupted.

v Use UTF-16 for your Unicode data in your PL/I application and store your
application Unicode data in DB2 in UTF-16. This format often requires more
space than UTF-8. However, you might gain CPU savings in processing because
DB2 and PL/I are both using UTF-16, and no conversions are needed. For
additional DB2 CCSID resolution during bind processing and to achieve optimal
performance, refer to Character conversion (DB2 SQL).

v Prepare your application with the DB2 coprocessor.
v Specify the appropriate CCSID for your PL/I application source and data.
v Ensure that your ENCODING bind option matches the data. Depending on the

situation, you might consider the other options that are described in “Specifying
a CCSID for your application” on page 61.

Related tasks:
“Specifying CCSIDs for PL/I applications when using the DB2 coprocessor” on
page 71
Related reference:

Enterprise PL/I for z/OS

Processing Unicode data in C/C++ applications
C/C++ supports UTF-16 data. C/C++ also supports UTF-32 data, but DB2 for
z/OS does not.

About this task

DB2 for z/OS, however, supports UTF-8 and UTF-16 data.

Procedure

To process Unicode data in C/C++ applications for DB2 for z/OS:
v For UTF-16 data, use the data type char16_t and prefix these literal values with

u.
In C, char16_t is defined inside the <uchar.h> header. In C++, char16_t is a
separate built-in type.

Chapter 5. Application programming with Unicode data and multiple CCSIDs 97

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_characterconversion.htm#db2z_characterconversion
http://www.ibm.com/software/awdtools/pli/plizos/library/

v For SBCS UTF-8 data (UTF-8 data that corresponds to only the first 128 code
points in Unicode), specify the ASCII compiler option. When you specify this
option, the compiler converts all data to ISO8859-1 (CCSID 819).

Restriction: You must have an XPLINK application to use the ASCII compiler
option.

v If you are using UTF-16 data, store your data in DB2 in UTF-16. This format
often requires more space than UTF-8. However, you gain CPU savings in
processing, because DB2 and C/C++ are both processing in the UTF-16, and no
conversions are needed.

v Specify the appropriate CCSID for your C/C++ application source and data
according to the instructions in “Specifying a CCSID for your application” on
page 61.

Related reference:

The Unicode standard (C/C++) (XL C/C++ Language Reference)

Compiler Options (C/C++) (XL C/C++ User's Guide)

Java applications and Unicode data
Java is Unicode-based, and all character processing inside a Java application occurs
in Unicode. Character data that is not already in Unicode must be converted before
being passed to a Java application. These conversions are handled by DB2 or by
the JDBC driver and are transparent to the application.

You can also pass binary data to a Java application to convert into character data.
(This statement assumes that you provide the correct Java encoding.)

From a Java programming perspective, you are manipulating objects and do not
need to be concerned with the underlying encoding. However, when your Java
application communicates with another technology, such as DB2 for z/OS,
conversion might occur. This conversion is handled by DB2 or the JDBC driver, but
you should be aware of any conversion costs.

The conversion depends on how you use the driver and how your data is stored in
DB2. With IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2
for z/OS, the driver sends the data in the target server encoding scheme. With IBM
Data Server Driver for JDBC and SQLJ type 4 connectivity, the driver sends the
data in UTF-8.

IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS
uses an SQLDA override to tell DB2 if the encoding scheme is different than the
one that was specified at bind time. IBM Data Server Driver for JDBC and SQLJ
type 4 connectivity uses DRDA data flows to describe the data. Because this
environment is a DRDA environment, DB2 does not use the ENCODING bind
option to determine the CCSID of the data or to encode data.

Java can handle both big endian and little endian data. (This statement assumes
that you provide the correct Java encoding.)

98 Internationalization Guide

http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/cbclr1b0/2.2.3?ACTION=MATCHES&REQUEST=unicode+standard&TYPE=FUZZY&SHELF=&DT=20110613040946&CASE=&searchTopic=TOPIC&searchText=TEXT&searchIndex=INDEX&rank=RANK&ScrollTOP=FIRSTHIT#FIRSTHIT
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/cbcug1b0/4.0?DN=SC09-4767-11&DT=20120802022433&SHELF=&CASE=&PATH=/bookmgr/

Related concepts:
“DRDA character type parameters in Unicode” on page 101
Related reference:

SQL descriptor area (SQLDA) (DB2 SQL)

Green screen applications and Unicode data
Green screen applications are applications that run on 3270 terminal emulators. These
applications do not support Unicode data.

If you migrate your DB2 data to Unicode, consider the following affects on any
green screen applications:

Decreased performance
Green screen applications have an EBCDIC encoding scheme. Thus,
character conversion might occur between the DB2 data in Unicode and
the application. This conversion can increase performance overhead.

Data loss
Unicode data might be lost in the output, unless the content of the data is
somehow controlled to ensure that the data is convertible to the EBCDIC
CCSID that is used by the 3270 application.

To decide how to handle these problems, consider the reason that you are
converting data to Unicode. Is your purpose to accommodate international data or
to allow for expansion and flexibility in the future or something else? Knowing
your purpose for converting to Unicode can help you choose the appropriate
solution for your green screen applications.

If it is acceptable to not have the fields display correctly, you can leave the
application as is. For example, some internal reports include names, but they are
not required, such as a bank report that lists the top 10 customers by deposit. In
this case, the name is a “nice to have” field in the report, but not necessary.

If your application is an output only device, and data is not updated, one possible
solution is to use romanization. Romanization is the process of creating the Latin
representation of a word. To implement this solution, you can have one column for
the original data and one column for the phonetic pronunciation in the Latin-1
alphabet. For example, one column might contain А р е and another column,
the romanization column, can contain Andrei. One practical implementation of this
solution is in a banking situation. It might be acceptable for a period of time for
tellers to have green screen applications that do not display customer names
correctly, but provide the phonetic pronunciation. You might need to add logic to
be prevent the tellers from updating names, addresses and other information if the
teller device is not capable of correctly representing all data.

If you need to display international characters properly, a possible solution is to
add a presentation layer to your environment. Consider migrating to a
client/server environment, such as the following examples:
v Use CICS Transaction Gateway to access CICS to then access DB2 for z/OS.
v Use an IMS or CICS application that uses WebSphere MQ to access DB2 for

z/OS.

Chapter 5. Application programming with Unicode data and multiple CCSIDs 99

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_sqldescriptorareaintro.htm#db2z_sqldescriptorareaintro

Variant characters
Variant characters are characters that correspond to different code points across a
given set of code pages. For example, the character # is variant. It corresponds to
code point X'7B' in CCSIDs 37, 273, 500, and 1047. However, this character
corresponds to code point X'4A' in CCSID 277.

An invariant character is a character that corresponds to the same code point
regardless of CCSID.

Ideally, you should use invariant characters when possible. However, if you do use
variant characters, ensure that DB2 uses the correct CCSID to interpret them.

For example, consider the following national characters: #, @, and $. Although you
can use these characters in object identifiers, you should be aware that they are all
variant characters. The following table shows the corresponding hexadecimal code
point values for these characters in several different code pages.

Table 31. Variant characters that you can use in identifiers

Character

Corresponding hexadecimal value by code page

CCSID 37 CCSID 500 CCSID 1047 CCSID 277 CCSID 273

X'7B' X'7B' X'7B' X'4A' X'7B'

@ X'7C' X'7C' X'7C' X'80' X'B5'

$ X'5B' X'5B' X'5B' X'67' X'5B'

You need to be careful when you use these characters in identifiers, such as
package names, table space names, index space names, and field procedure names.
All of these objects have corresponding data sets, DBRMs, or load modules that are
defined in z/OS with corresponding names. Problems can occur if you use a
different CCSID when the object is created than when it is referenced. In this case,
the corresponding data sets, DBRMs, or load modules might not be found in z/OS
because of the variant characters in the names.

Another example of a variant character that might cause problems is the double
quotation mark ("). In the Turkish code page CCSID 1026 this character
corresponds to code point X'FC'. However, this code point is not the same in other
EBCDIC code pages.

Also avoid using variant characters in SQL statements. For example, suppose that
you want to use an operator to mean "not equal." Coding <> is the best choice,
because these characters are invariant across most EBCDIC CCSIDs. However,
depending on the situation, DB2 might tolerate other operators for "not equal" such
as !=, or ¬=. For details about the conditions that need to be satisfied for DB2 to
tolerate those operators, see Basic predicate (DB2 SQL). Even if these conditions are
satisfied, the exclamation point character (!) and the not character (¬) are variant
and can therefore cause other problems. For example, these characters might not be
displayed correctly on a client. Also, you might have conversion issues if the SQL
statement is copied from the catalog or read by another system.

To prevent such problems with variant characters, use the following
recommendations.

Best practices:

100 Internationalization Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.sqlref/src/tpc/db2z_basicpredicate.htm#db2z_basicpredicate

v Use invariant characters in identifiers and SQL statements.
v When you name DB2 objects, use only those characters that you can type on

your keyboard. Do not use hexadecimal values in object names. Doing so can
unnecessarily complicate your applications and queries.

v Use CONCAT instead of || when you need to concatenate values.
v Use <> to mean "not equal" instead of != or ¬=.
v Do not use variant hexadecimal code points from another code page. Doing so

might cause conversion errors.
Related reference:
“Code point differences between EBCDIC CCSIDs” on page 9
Related information:

Invariance of the Syntactic Character Set in Basic SBCS Encoding Structures

DRDA character type parameters in Unicode
Remote DB2 applications can send and receive DRDA command and reply
message parameters that contain character type data encoded in Unicode CCSID
1208 (UTF-8). Using Unicode instead of EBCDIC for these DRDA parameters can
improve performance and avoid potential character conversion errors.

Prior to Version 10, remote applications passed DRDA command and reply
message parameters that contain character type data in EBCDIC. These
applications might incur additional CPU costs and character conversion errors for
the following reasons:
v DB2 for z/OS stores metadata and catalog data in Unicode (UTF-8). Therefore,

DB2 converts incoming DRDA EBCDIC data to Unicode (UTF-8).
v The IBM Data Server driver or client must convert DRDA character type data to

EBCDIC before sending it to DB2 for z/OS. The driver or client must also
convert the data that is received from DB2 for z/OS, in EBCDIC, before
returning it to the application.

v Other remote applications might need to convert the DRDA parameters to and
from EBCDIC.

Passing these character type parameters in Unicode removes this extra conversion
step.

From an application programming perspective, you do not need to perform any
extra action to send DRDA character type parameters in Unicode. DB2 for z/OS
automatically negotiates use of Unicode data with remote client systems that
support the exchanging of DRDA character type data parameters in Unicode
(UTF-8).

Because of this new ability to pass DRDA character type parameters in Unicode,
potential problems might exist with certain package names and collection IDs that
contain special characters. To prevent these problems, run the premigration queries.
Related tasks:

Run premigration queries (DSNTIJPM) (DB2 Installation and Migration)

Chapter 5. Application programming with Unicode data and multiple CCSIDs 101

http://www.ibm.com/software/globalization/cdra/appendix_a.html#fig45
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_dsntijpm.htm#db2z_dsntijpm

102 Internationalization Guide

Chapter 6. Debugging CCSID and Unicode problems

Some errors are obviously a problem with a CCSID or Unicode object. In other
cases, DB2 returns unexpected data and you need to check if a CCSID is the cause
of the problem. In these cases, you might not be using Unicode data or doing
anything with CCSIDs other than accepting the default values.

Procedure

To debug CCSID and Unicode problems:

Consider the symptoms and possible solutions as shown in the following table:

Table 32. Possible solutions to Unicode and CCSID problems

Symptom Possible solution

A single character is displayed incorrectly. A CCSID is probably set incorrectly
somewhere. Check the following settings:

v Ensure that your subsystem CCSIDs are
correct. See “Finding the CCSID values of
your data sources” on page 29 and
“Specifying subsystem CCSIDs” on page
32. If you suspect that you need to change
one of your subsystem CCSID values, call
IBM Software Support.

v Ensure that the application that you are
using is bound with the correct CCSID.
Use the ENCODING bind option. For
example, if you are using SPUFI, make
sure that the SPUFI package is bound with
the CCSID that matches the one on your
terminal emulator. See “Specifying a
CCSID for your application” on page 61.

Also try displaying the character in
hexadecimal format to see if you can
determine what encoding the character is in.
Knowing the encoding can also help IBM
Software Support, if you need to contact
them.

A conversion that you need is not defined in
z/OS Unicode Services. You might have
received SQLCODE 332 or message
DSNT552I.

Add the missing conversion definition. See
“Setting up z/OS Unicode Services for DB2
for z/OS” on page 38.

Lowercase special characters do not become
uppercase.

Ensure that you are specifying the correct
locale. See “Performing culturally correct case
conversions” on page 87.

An insert operation of EBCDIC or ASCII data
into a Unicode table fails.

Ensure that the column size is large enough
to handle any possible data expansion. See
“Potential problems when inserting
non-Unicode data into a Unicode table” on
page 104.

© Copyright IBM Corp. 2003, 2013 103

Table 32. Possible solutions to Unicode and CCSID problems (continued)

Symptom Possible solution

Object names are unreadable in DB2 utility
listings

Make sure that the values that are set in
DSNHMCID match those values in
DSNHDECP.

CCSID settings in DSNHMCID are used for
certain messages. DSNHMCID settings need
to match those same settings in the
DSNHDECP load module that the DB2
subsystem is using. For more information
about DSNHMCID, see Job DSNTIJUZ and
the subsystem parameter load module,
application defaults load module, and
DSNHMCID (DB2 Installation and
Migration).

Potential problems when inserting non-Unicode data into a Unicode
table

If you insert EBCDIC or ASCII data into a Unicode table, the data is converted to
Unicode. The length of this converted data might increase so much that it causes
the operation to fail.

If the source encoding scheme is EBCDIC or ASCII and the target encoding scheme
is UTF-8, the worst-case expansion is three times the original. To allow for this
worst-case expansion, in the CREATE TABLE statement , declare your UTF-8
columns to be three times the size of your ASCII or EBCDIC columns. You might
also want to make your columns varying length so that DB2 does not need to
perform padding and truncation on the columns when the length changes due to
conversion.

For more information about determining the appropriate column length, see
“Estimating the column size for Unicode data” on page 52.
Related concepts:
“Expanding conversion” on page 18
Related tasks:
“Creating a Unicode table” on page 48

104 Internationalization Guide

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_dsntijuzmodules.htm#db2z_dsntijuzmodules
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_dsntijuzmodules.htm#db2z_dsntijuzmodules
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_dsntijuzmodules.htm#db2z_dsntijuzmodules
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_dsntijuzmodules.htm#db2z_dsntijuzmodules
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.inst/src/tpc/db2z_dsntijuzmodules.htm#db2z_dsntijuzmodules

Appendix A. DB2 utilities and Unicode support

You can run DB2 utilities on Unicode data, request that DB2 utilities return data in
Unicode, and write utility control statements in Unicode.

More specifically, you can perform the following tasks with DB2 utilities and
Unicode data:
v You can load Unicode data into your tables by using the LOAD utility with the

UNICODE option. The target table does not need to be a Unicode table. You can
load Unicode data into an ASCII or EBCDIC table. Likewise, you can load ASCII
or EBCDIC data into a Unicode table. However, in these cases, DB2 converts the
input data to the CCSID of the table space before loading it.

v You can use the cross-loader function to load data from a EBCDIC, ASCII, or
Unicode source table to an EBCDIC, ASCII, or Unicode target table. If the
encoding scheme of the source table is different than the target table, DB2
converts the input data to the encoding scheme of the target table.

v You can unload data in Unicode format by using the UNLOAD utility with the
UNICODE option or the IBM DB2 High Performance Unload tool.

Restriction: With the UNLOAD utility, you cannot:
– Unload ASCII or EBCDIC SBCS data to UTF-16 output fields.
– Unload UTF-16 data to ASCII or EBCDIC SBCS output fields.
– Unload UTF-8 data to UTF-16 output fields.
– Unload UTF-16 data to UTF-8 output fields.

For these situations, use the High Performance Unload tool.
v You can write utility control statements in either EBCDIC or UTF-8.
v You can use the DB2-supplied stored procedure DSNUTILU to invoke a DB2

utility from an application program with a utility control statement that is
written in Unicode. Alternatively, you can use the DSNUTILS stored procedure
with an EBCDIC utility control statement.

Related concepts:

Utility control statements (DB2 Utilities)
Related tasks:

Loading data by using the cross-loader function (DB2 Utilities)
Related reference:

LOAD (DB2 Utilities)

UNLOAD (DB2 Utilities)

DB2 High Performance Unload overview (DB2 High Performance Unload for
z/OS User's Guide)

DSNUTILU stored procedure (DB2 Utilities)

DSNUTILS stored procedure (deprecated) (DB2 Utilities)

© Copyright IBM Corp. 2003, 2013 105

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utilitycontrolstatements.htm#db2z_utilitycontrolstatements
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_loadusecrossloaderfunction.htm#db2z_loadusecrossloaderfunction
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utl_load.htm#db2z_utl_load
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_utl_unload.htm#db2z_utl_unload
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.inz.doc.ug/inz_oview_overview.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.inz.doc.ug/inz_oview_overview.htm
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_sp_dsnutilu.htm#db2z_sp_dsnutilu
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.ugref/src/tpc/db2z_sp_dsnutils.htm#db2z_sp_dsnutils

106 Internationalization Guide

Appendix B. EXPLAIN Unicode support

You can use DB2 EXPLAIN to capture access path information for your queries.
This information is stored in the DB2 EXPLAIN tables, which are encoded in
UTF-8.

PSPI

When you retrieve data from the EXPLAIN tables, be aware that the data is
encoded in UTF-8.

The following EXPLAIN table columns store encoding and CCSID information:

PLAN_TABLE columns:

TABLE_ENCODE
Indicates the encoding scheme of the statement. If the statement
represents a single CCSID set, the column contains 'E' for EBCDIC,
'A' for ASCII, or 'U' for Unicode. If the statement is a multiple
CCSID set statement, the column is set to 'M' for multiple CCSID
sets.

TABLE_SCCSID
Contains the SBCS CCSID value of the table or zero if the
TABLE_ENCODE column is 'M.'

TABLE_MCCSID
Contains the Mixed CCSID value of the table or zero if the
TABLE_ENCODE column is 'M.'

TABLE_DCCSID
Contains the DBCS CCSID value of the table or zero if the
TABLE_ENCODE column is 'M.'

DSN_STATEMNT_TABLE column:

STMT_ENCODE
Indicates the encoding scheme of the statement. If the statement
represents a single CCSID set, the column contains 'E' for EBCDIC,
'A' for ASCII, or 'U' for Unicode. If the statement is a multiple
CCSID set statement, the column is set to 'M' for multiple CCSID
sets.

PSPI

Related concepts:

Investigating SQL performance by using EXPLAIN (DB2 Performance)

© Copyright IBM Corp. 2003, 2013 107

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.perf/src/tpc/db2z_useexplain2capturesqlinfo.htm#db2z_useexplain2capturesqlinfo

108 Internationalization Guide

Appendix C. DB2 ODBC Unicode support

Your DB2 for z/OS ODBC programs can manipulate Unicode data and report the
CCSID settings of the subsystem.

If your application manipulates UTF-8 data, set the initialization keyword
CURRENTAPPENSCH to UNICODE or any Unicode CCSID value. When you set
CURRENTAPPENSCH for Unicode data, you can use the following items for
UTF-8 data:
v The generic APIs, such as SQLColumnPrivileges. When CURRENTAPPENSCH is

set to UNICODE, these APIs accept UTF-8 string arguments and return all
character string data in the result set in UTF-8.

v C data type SQL_C_CHAR. When CURRENTAPPENSCH is set to UNICODE,
the DB2 for z/OS ODBC driver assumes UTF-8 data for SQL_C_CHAR. This
data type is used by the APIs SQLBindCol(), SQLBindParameter(), and
SQLGetData().

If your application manipulates UTF-16 data, use APIs with the suffix W, which are
called wide APIs, on that data. Any generic API that accepts character string
arguments has a wide API counterpart. For example, the corresponding wide API
for the SQLConnect() API is SQLConnectW(). Wide APIs accept UTF-16 string
arguments only. The initialization keyword CURRENTAPPENSCH does not affect
these wide APIs. Regardless of what you specify for CURRENTAPPENSCH, these
wide APIs always expect Unicode UTF-16 data. You can also use the
SQL_C_WCHAR data type for UTF-16 data. Like wide APIs, SQL_C_WCHAR also
assumes UTF-16 data, regardless of what you specify for CURRENTAPPENSCH.

You can use the SQLGetInfo() API with certain attributes, such as
SQL_ASCII_SCCSID, to query the CCSID settings of the DB2 subsystem.
Related concepts:

Application encoding schemes and DB2 ODBC (DB2 Programming for ODBC)
Related reference:

DB2 ODBC initialization keywords (DB2 Programming for ODBC)

C and SQL data types (DB2 Programming for ODBC)

SQLGetInfo() - Get general information (DB2 Programming for ODBC)

© Copyright IBM Corp. 2003, 2013 109

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.odbc/src/tpc/db2z_odbcunic.htm#db2z_odbcunic
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.odbc/src/tpc/db2z_hdckeyw.htm#db2z_hdckeyw
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.odbc/src/tpc/db2z_csql.htm#db2z_csql
http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z11.doc.odbc/src/tpc/db2z_fngetinfo.htm#db2z_fngetinfo

110 Internationalization Guide

Appendix D. IBM DB2 Tools Unicode support

You can use IBM DB2 tools on Unicode data, objects, and applications.

DB2 High Performance Unload
You can use this tool to unload table data in any encoding scheme. You
can also change the encoding scheme for its output.

IBM Optim™ Development Studio
You can use this tool to create and modify applications that handle UTF-8
and UTF-16 data. You can also use this tool to create, manage, and access
Unicode objects, such as databases, table spaces, and tables, in DB2 for
z/OS.

DB2 Query Management Facility™ (QMF)
You can use this tool to query and report on Unicode data in DB2 for
z/OS. Use DB2 QMF for Workstation for complete Unicode support.

DB2 Table Editor
You can use the DB2 Table Editor to create, view, or update Unicode data
in DB2 for z/OS.

Related reference:

DB2 High Performance Unload overview (DB2 High Performance Unload for
z/OS User's Guide)

IBM Data Studio Information Center (IBM Data Studio, IBM Optim Database
Administrator, IBM infoSphere Data Architect, IBM Optim Development Studio)

DB2 QMF Version 9.1 information

DB2 Table Editor information

© Copyright IBM Corp. 2003, 2013 111

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.inz.doc.ug/inz_oview_overview.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.inz.doc.ug/inz_oview_overview.htm
http://pic.dhe.ibm.com/infocenter/dstudio/v4r1/index.jsp
http://pic.dhe.ibm.com/infocenter/dstudio/v4r1/index.jsp
http://publib.boulder.ibm.com/infocenter/imzic/topic/com.ibm.qmf9.doc/qmfhome.htm
http://www.ibm.com/software/data/db2imstools/db2tools/db2te/

112 Internationalization Guide

Appendix E. The International Components for Unicode

The International Components for Unicode (ICU) is a set of C/C++ and Java
libraries for Unicode support and software internationalization. ICU is an open
source project that is sponsored by IBM and provides Unicode services on many
platforms.

For DB2 for z/OS, ICU is provided as part of the Accessories Suite. It is called by
certain features of DB2 for z/OS and the Accessories Suite, such as Spatial
Support, that require these Unicode and internationalization functions.
Related information:

International Components for Unicode (ICU)

© Copyright IBM Corp. 2003, 2013 113

http://www.ibm.com/software/globalization/icu/index.jsp

114 Internationalization Guide

Appendix F. SYSIBM.SYSSTRINGS table

The SYSIBM.SYSSTRINGS table contains information about character conversion.
Each row describes a conversion from one coded character set to another.

Also refer to z/OS C/C++ Programming Guide for information on the additional
conversions that are supported.

Each row in the table must have a unique combination of values for its INCCSID,
OUTCCSID, and IBMREQD columns. Rows for which the value of IBMREQD is N
can be deleted, inserted, and updated subject to this uniqueness constraint and to
the constraints imposed by a VALIDPROC defined on the table. An inserted row
could have values for the INCCSID and OUTCCSID columns that match those of a
row for which the value of IBMREQD is Y. DB2 then uses the information in the
inserted row instead of the information in the IBM-supplied row. Rows for which
the value of IBMREQD is Y cannot be deleted, inserted, or updated. For
information about the use of inserted rows for character conversion, see DB2
Installation Guide.

DB2 has two methods for character conversions and applies them in the following
order:
1. Conversions specified by the various combinations of the INCCSID and

OUTCCSID columns in the SYSIBM.SYSSTRINGS catalog table.
2. Conversions provided by z/OS support for Unicode. For more information, see

z/OS Support for Unicode: Using Conversion Services.

If neither of these methods can be used for a particular character conversion, DB2
returns an error.

Column name Data type Description Use

INCCSID
INTEGER
NOT NULL

The source CCSID for the character conversion
represented by this row. The value of the source CCSID
must be in the range of 1 to 65533 and must not be the
same as the value for the OUTCCSID column.

G

OUTCCSID
INTEGER
NOT NULL

The target CCSID for the character conversion represented
by this row. The value of the target CCSID must be in the
range of 1 to 65533 and must not be the same as the value
for the INCCSID column.

G

TRANSTYPE
CHAR(2)
NOT NULL

Indicates the nature of the conversion. Values can be:
GG GRAPHIC to GRAPHIC
MM EBCDIC MIXED to EBCDIC MIXED
MS EBCDIC MIXED to SBCS
PM ASCII MIXED to EBCDIC MIXED
PS ASCII MIXED to SBCS
SM SBCS to EBCDIC MIXED
SS SBCS to SBCS
MP EBCDIC MIXED to ASCII MIXED
PP ASCII MIXED to ASCII MIXED
SP SBCS to ASCII MIXED

G

© Copyright IBM Corp. 2003, 2013 115

Column name Data type Description Use

ERRORBYTE
CHAR(1)
FOR BIT DATA
(Nulls are allowed)

The byte used in the conversion table as an error byte.
Any non-null value that is specified for the ERRORBYTE
column must not be the same as the value that is
specified for the SUBBYTE column.

Null indicates the absence of an error byte.

S

SUBBYTE
CHAR(1)
FOR BIT DATA
(Nulls are allowed)

The byte used in the conversion table as a substitution
character. Any non-null value that is specified for the
SUBBYTE column must not be the same as the value that
is specified for the ERRORBYTE column.

Null indicates the absence of a substitution character.

S

TRANSPROC
VARCHAR(24)
NOT NULL WITH
DEFAULT

The name of a module or blanks. A nonblank value must
conform to the rules for z/OS program names.

If IBMREQD is 'N', a nonblank value is the name of a
conversion procedure provided by the user. The first five
characters of the name of a user-provided conversion
procedure must not be 'DSNXV'; these characters are used
to distinguish user-provided conversion procedures from
DB2 modules that contain DBCS conversion tables.

If IBMREQD is 'Y', a nonblank value is the name of a DB2
module that contains DBCS conversion tables.

G

116 Internationalization Guide

Column name Data type Description Use

IBMREQD
CHAR(1)
NOT NULL

A value of Y indicates that the row came from the basic
machine-readable material (MRM) tape.

Value Meaning

B Version 1R3 dependency indicator, not from the
machine-readable material (MRM) tape

C Version 2R1 dependency indicator, not from
MRM tape

D Version 2R2 dependency indicator, not from
MRM tape

E Version 2R3 dependency indicator, not from
MRM tape

F Version 3R1 dependency indicator, not from
MRM tape

G Version 4 dependency indicator, not from MRM
tape

H Version 5 dependency indicator, not from MRM
tape

I Version 6 dependency indicator, not from MRM
tape

J Version 6 dependency indicator, not from MRM
tape

K Version 7 dependency indicator, not from MRM
tape

L Version 8 dependency indicator, not from MRM
tape

M Version 9 dependency indicator, not from MRM
tape

O Version 10 dependency indicator, not from MRM
tape

N Not from MRM tape, no dependency

The value in this field is not a reliable indicator of release
dependencies.

G

TRANSTAB
VARCHAR(256)
FOR BIT DATA
NOT NULL WITH
DEFAULT

Either a 256-byte conversion table or an empty (0 length)
string.

S

Appendix F. SYSIBM.SYSSTRINGS table 117

118 Internationalization Guide

Information resources for DB2 for z/OS and related products

Information about DB2 for z/OS and products that you might use in conjunction
with DB2 for z/OS is available in online information centers or on library websites.

Obtaining DB2 for z/OS publications

The current DB2 for z/OS publications are available from the following website:

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc/src/
alltoc/db2z_lib.htm

Links to the information center version and the PDF version of each publication
are provided.

DB2 for z/OS publications are also available for download from the IBM
Publications Center (http://www.ibm.com/shop/publications/order).

In addition, books for DB2 for z/OS are available on a CD-ROM that is included
with your product shipment:
v DB2 11 for z/OS Licensed Library Collection, LK5T-8882, in English. The

CD-ROM contains the collection of books for DB2 11 for z/OS in PDF format.
Periodically, IBM refreshes the books on subsequent editions of this CD-ROM.

Installable information center

You can download or order an installable version of the Information Management
Software for z/OS Solutions Information Center, which includes information about
DB2 for z/OS, QMF, IMS, and many DB2 and IMS Tools products. You can install
this information center on a local system or on an intranet server. For more
information, see http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/
com.ibm.dzic.doc/installabledzic.htm.

© Copyright IBM Corp. 2003, 2013 119

http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc/src/alltoc/db2z_lib.htm
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2z11.doc/src/alltoc/db2z_lib.htm
http://www.ibm.com/shop/publications/order
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.dzic.doc/installabledzic.htm
http://pic.dhe.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.dzic.doc/installabledzic.htm

120 Internationalization Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 2003, 2013 121

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
J46A/G4
555 Bailey Avenue
San Jose, CA 95141-1003
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Programming interface information
This information is intended to help you handle international data when working
in a DB2 11 for z/OS environment. This information also documents General-use
Programming Interface and Associated Guidance Information and
Product-sensitive Programming Interface and Associated Guidance Information
provided by DB2 11 for z/OS.

General-use Programming Interface and Associated Guidance
Information

General-use Programming Interfaces allow the customer to write programs that
obtain the services of DB2 11 for z/OS.

122 Internationalization Guide

General-use Programming Interface and Associated Guidance Information is
identified where it occurs by the following markings:

General-use Programming Interface and Associated Guidance Information...

Product-sensitive Programming Interface and Associated
Guidance Information

Product-sensitive Programming Interfaces allow the customer installation to
perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or
tuning of this IBM software product. Use of such interfaces creates dependencies
on the detailed design or implementation of the IBM software product.
Product-sensitive Programming Interfaces should be used only for these
specialized purposes. Because of their dependencies on detailed design and
implementation, it is to be expected that programs written to such interfaces may
need to be changed in order to run with new product releases or versions, or as a
result of service.

Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs by the following markings:

PSPI Product-sensitive Programming Interface and Associated Guidance

Information... PSPI

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered marks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at http://www.ibm.com/
legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software

Notices 123

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

124 Internationalization Guide

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

Glossary

The glossary is available in the Information Management Software for z/OS
Solutions Information Center.

See the Glossary topic for definitions of DB2 for z/OS terms.

© Copyright IBM Corp. 2003, 2013 125

http://pic.dhe.ibm.com/infocenter/imzic/topic/com.ibm.db2z.doc.gloss/src/gloss/db2z_gloss.htm

126 Internationalization Guide

Index

Numerics
3270 applications

Unicode data 99

A
access paths

for Unicode data 58
accessibility

keyboard vi
shortcut keys vi

AGCCSID 33
AMCCSID 33
APPENSCH

description 33
when DB2 uses 61

application data
determining CCSID 29

application encoding scheme
definition 24, 60

application programming
querying the catalog 24
recommendations 59
Unicode 59

applications
examples of specifying CCSIDs 66
specifying a CCSID 61

ASCCSID 33
ASCII

description 8
ASCII table

inserting Unicode data 54
ASCII_STR function

generating escaped data 91
authorization processes

Unicode data 23

B
best practices

for coding queries 100
big endian

description 15
BIT data

Unicode tables 48
byte order formats

big endian 15
little endian 15

C
C/C++

LOCALE compiler option 75
processing Unicode data 97
specifying CCSID 75
SQL compiler option with CCSID suboption 75

C/C++ source code
determining CCSID 29

canonically equivalent characters
description 94

case conversions
specifying culturally correct rules 87

catalog tables
CCSID information 76
encoding scheme 24
in Unicode 23
querying 24
SYSSTRINGS

contents 115
CCSID 1047

compared to 500 9
compared to CCSID 37 9

CCSID 1140
code points 5
compared to CCSID 37 68

CCSID 1200
description 14
for table column 48

CCSID 1208
description 14
for table column 48

CCSID 367
code points 12
description 14
for table column 48
relationship to Unicode 11

CCSID 37
code points 5
compared to CCSID 1047 9
compared to CCSID 1140 68
compared to CCSID 500 9

CCSID 500
compared to CCSID 1047 9
compared to CCSID 37 9

CCSID set
specifying DB2 defaults 32

CCSID SQL processing option
description 63
setting 61

CCSID UNICODE clause
CREATE statements 48

CCSID0 71
CCSIDs

C/C++ 75
COBOL applications 68
conversions 16
description 5
determining for data source 29
determining for DB2 data 76
determining subsystem values 35
determining value for string 77
examples of specifying in applications 66
for PL/I applications 71
in EXPLAIN tables 107
multiple in SQL statement 77
specifying for an application 61
specifying for objects 37
specifying for subsystem 32
specifying in DB2 32

© Copyright IBM Corp. 2003, 2013 127

CCSIDs (continued)
subsystem defaults 33
Unicode data 14
where to define valid conversions 27

character columns
Unicode tables 48

character conversion
contracting conversion 19
data loss 17
defining 44
definition 1
determining length 18
effects 17
enforced subset 21
ensuring accurate conversions 27
expanding conversion 18
in DB2 27
Java applications 98
occurrences 16
performance 17
round-trip conversion 20
substitution character 21
SYSIBM.SYSSTRINGS catalog table 115
terminology 1
types 18
where to define valid conversions 27

character conversion definitions
adding 44
checking 44
Chinese 42
finding 44
Japanese 42
Korean 42
SYSIBM.SYSSTRINGS 28
z/OS Unicode Services 39, 42

character data representation architecture (CDRA)
description 5

character repertoire
definition 12

Chinese character sets
conversion definitions 42

CICS Transaction Gateway
determining CCSID 29

COBOL
CODEPAGE compiler option 68
NOSQLCCSID 68
processing Unicode data 95
specifying CCSIDs 68
SQL compiler option with CCSID suboption 68
SQLCCSID 68

COBOL source code
determining CCSID 29

code pages
description 5

code points
description 5
differences in EBCDIC CCSIDs 9

code units
size for UTFs 12

CODEPAGE compiler option
COBOL 68
PL/I 71

CODEUNITS16
description 82

CODEUNITS32
description 82

collation names 85

COLLATION_KEY function
creating index with 85
specifying sorting sequence 85

columns
estimating length for Unicode data 52

compatibly equivalent characters
description 94

compilers
specifying CCSID 61

contracting conversion
description 19

conversion image
creating 38
description 39

conversion tables
definition 38

converting data
to Unicode 55

cross-loader function
Unicode tables 105

CURRENT APPLICATION ENCODING SCHEME special
register

description 63
setting 61

CURRENT LOCALE LC_CTYPE special register
setting default locale 89
specifying casing rules 87

CURRENTAPPENSCH initialization keyword
specifying ODBC application encoding scheme 109

D
data sources

determining CCSID 29
databases

specifying CCSID 37
DB2 coprocessor

setting the application CCSID 61
DB2 data

determining CCSID 76
DB2 objects

encoding scheme 37
specifying CCSIDs 37

DB2 precompiler
setting the application CCSID 61
Unicode parsing 23

DB2 processes
in Unicode 23

DB2 Table Editor
Unicode support 111

DBRM
in Unicode 23

debugging problems
with CCSIDs 103
with Unicode data 103

DECLARE VARIABLE statement
description 63
setting host variable CCSID 61

decoding
definition 12

DESCRIBE statement
checking CCSID of string 77

disability vi
DISPLAY UNI command

checking character conversion definitions 44
checking supported Unicode characters 14

128 Internationalization Guide

DRDA
effect of ENCODING bind option 61
setting CCSID 61

DRDA Unicode parameters 101
DSNHDECP

CCSID information 32
subsystem CCSIDs 33

DSNJU004
determining subsystem CCSID values 35

DSNTIJUZ job
specifying CCSIDs 32

DSNTIPF installation panel
specifying CCSIDs 32

DSNUTILU
invoking utilities 105

E
EBCDIC

CCSID code point differences 9
description 8

EBCDIC sorting sequence
differences from Unicode 80

EBCDIC table
inserting Unicode data 54

EBCDIC_STR function
generating escaped data 91

encoding
definition 12

ENCODING bind option
C/C++ 75
COBOL 68
description 63
DRDA 61
PL/I 71
setting 61

encoding schemes
ASCII 8
description 7
EBCDIC 8
subsystem defaults 33
Unicode 11

endianness
description 15

enforced subset conversion
description 21

ENSCHEME 33
ERRORBYTE column of SYSSTRINGS catalog table 115
escaped data

description 91
generating 91

expanding conversion
description 18
effects 18
when loading Unicode tables 104

EXPLAIN
Unicode support 107

EXPLAIN tables
CCSID information 107
in UTF-8 107

F
fixed-length strings

expanding conversions 18

fixed-length variables
expanding conversions 18

FTP data
determining CCSID 29

functions
calculating length 82
specifying CCSID 37

G
GCCSID 33
general-use programming information, described 122
GETVARIABLE

determining subsystem CCSID values 35
graphic columns

Unicode tables 48
green screen applications

Unicode data 99
GUPI symbols 123

H
High Performance Unload

Unicode support 111

I
IBM Optim Development Studio

Unicode support 111
IBMREQD

SYSIBM.SYSSTRINGS column 28
IBMREQD column

SYSSTRINGS catalog table 115
ICU 113
IFCID

Unicode output 26
image generator

description 39
IMS

determining CCSID 29
INCCSID column of SYSSTRINGS catalog table 115
installation job DSNTIJUZ

specifying CCSIDs 32
installation panel DSNTIPF

specifying CCSIDs 32
International Components for Unicode 113
invariant characters 100
ISPF

determining CCSID 29

J
Japanese character sets

conversion definitions 42
Java

character conversion 98

K
Korean character sets

conversion definitions 42

Index 129

L
language casing rules

specifying 87
language-specific sorting sequences 85
LE locales 89
length

estimating for Unicode columns 52
expansion when inserting Unicode data 104
specifying how DB2 calculates 82

length functions
effect of contracting conversions 19
effect of expanding conversions 18

little endian
description 15

LOAD utility
Unicode data 105

local system
character conversions 16

LOCALE
C/C++ compiler option 75

locales
DB2 functions 87
description 89
LE locales 89
z/OS Unicode Services 89

LOWER function
ensuring culturally correct results 87

M
MCCSID 33
mixed data

Unicode tables 48
multiple CCSIDs

referenced in the same SQL statement 77

N
NOCCSID0 71
Normalization Form Canonical Composition (NFC) 94
Normalization Form Canonical Decomposition (NFD) 94
Normalization Form Compatibly Composition (NFKC) 94
Normalization Form Compatibly Decomposition (NFKD) 94
NORMALIZE_STRING function

ensuring well-formed data 95
normalizing Unicode strings 94

normalizing
Unicode strings 94

NOSQLCCSID 68

O
object names

contracting conversions 19
expanding conversions 18

objects
determining CCSID 76

OCTETS
description 82

ODBC
Unicode support 109

ORDER BY clause
differences by encoding scheme 80

OUTCCSID column of SYSSTRINGS catalog table 115

P
package names

Unicode 23
Personal Communications

determining CCSID 29
PL/I

CCSID0 71
CODEPAGE compiler option 71
NOCCSID0 71
PP compiler option 74
processing Unicode data 97
specifying CCSIDs 71
SQL Preprocessor 74

PL/I source code
determining CCSID 29

PP compiler option 74
predefined conversion definitions

checking 44
preparing DB2

for character conversion 27
procedures

specifying CCSID 37
product-sensitive programming information, described 123
programming interface information, described 122, 123
PSPI symbols 123

Q
QMF

determining CCSID 29
queries

best practices for coding 100
for which table reference does not matter 25

Query Management Facility (QMF)
Unicode support 111

Queue Managers in WebSphere MQ
determining CCSID 29

R
remote applications

passing DRDA parameters in Unicode 101
remote system

character conversions 16
round-trip conversion

description 20

S
SBCS data

Unicode tables 48
SCCSID 33
setting up DB2

for character conversion 27
SETUNI command

activating conversion image 39
shortcut keys

keyboard vi
sorting data

with language specific rules 85
sorting sequence

EBCDIC 80
language-specific 85
specifying 85
Unicode 80

130 Internationalization Guide

special characters
typing 53

special registers
Unicode 23

SQL compiler option with CCSID suboption
C/C++ 75
COBOL 68

SQL preprocessor for PL/I 74
SQL statements

different CCSIDs 77
SQL_C_WCHAR data type

ODBC applications 109
SQLCCSID 68
SQLDA

checking CCSID information 77
SQLGetInfo API

retrieving subsystem CCSID information in ODBC
applications 109

storage
Unicode, tips 51

string length
determining 82

strings
determining CCSID 77

SUBBYTE column of SYSSTRINGS catalog table 115
substitution character

in character conversions 21
subsystem

CCSIDs 33
determining CCSID values 35
encoding schemes 33
specifying CCSIDs 32

subsystem CCSIDs
retrieving in ODBC applications 109

subsystem default application encoding scheme 33
subsystem default ASCII CCSID 33
subsystem default EBCDIC CCSID 33
subsystem default encoding scheme 33
subsystem default Unicode CCSID 33
supplementary characters

description 95
how DB2 handles 95

syntax diagram
how to read vii

SYSDUMMY1 25
SYSDUMMYA 25
SYSDUMMYE 25
SYSDUMMYU 25
SYSIBM.SYSSTRINGS

adding character conversion definitions 44
description 28
how DB2 uses for character conversion 27
querying 44

system default application encoding scheme
when DB2 uses 61

T
table spaces

specifying CCSID 37
tables

creating in Unicode 48
estimating column size for Unicode data 52
inserting Unicode data 53
specifying CCSID 37

terminology
for character conversion 1

tools
Unicode support 111

trace
Unicode output 26

traces
Unicode 23

TRANSLATE function
ensuring culturally correct results 87

TRANSPROC column of SYSSTRINGS catalog table 115
TRANSTAB column of SYSSTRINGS catalog table 115
TRANSTYPE column of SYSSTRINGS catalog table 115

U
UGCCSID 33
UMCCSID 33
Unicode

application programming 59
CCSIDs 14
converting DB2 data to 55
debugging 103
description 11
differences from EBCDIC 80
EXPLAIN support 107
generating escaped data 91
in DB2 23
normalizing strings 94
ODBC support 109
preserving data 91
problems inserting data 104
sorting sequence 80
storage tips 51
supplementary characters 95
utilities 105

Unicode data
access paths 58
C/C++ applications 97
COBOL applications 95
green screen applications 99
inserting into non-Unicode table 54
PL/I applications 97
storing 47

Unicode on Demand 38
Unicode support

DB2 Query Management Facility (QMF) 111
DB2 Table Editor 111
High Performance Unload 111
IBM Optim Development Studio 111
IBM tools 111

Unicode tables
creating 48
determining column type 48
estimating column size 52
inserting data 53

Unicode Transformation Formats (UTFs)
DB2 support 12

UNICODE_STR function
interpreting escaped data 91

UNLOAD utility
Unicode data 105

UPPER function
ensuring culturally correct results 87

USCCSID 33
UTF-16

compared to UTF-8 47
DB2 support 47
description 12

Index 131

UTF-16 (continued)
endianness 15

UTF-32
description 12
endianness 15

UTF-8
compared to UTF-16 47
DB2 support 47
description 12
endianness 15

UTFdetermining which to use 47
utilities

control statements in Unicode 23
Unicode support 105

V
variant characters 100

W
wide APIs

ODBC UTF-16 data 109

Z
z/OS

determining CCSID 29
z/OS Unicode Services

adding character conversion definitions 44
basic character conversions 39
Chinese, Japanese, and Korean character conversions 42
conversion image 39
how DB2 uses for character conversion 27
locales 89
setting up 38

132 Internationalization Guide

����

Product Number: 5615-DB2
5697-P43

Printed in USA

SC19-4057-00

Sp
in
e
in
fo
rm
at
io
n:

DB
2

11
fo

rz
/O

S
In

te
rn

at
io

na
liz

at
io

n
Gu

id
e

�
�

�

	Contents
	About this information
	Who should read this information
	DB2 Utilities Suite
	Terminology and citations
	Accessibility features for DB2 11 for z/OS
	How to send your comments
	How to read syntax diagrams

	Chapter 1. Introduction to character conversion
	Character conversion terminology
	Code pages and CCSIDs
	Encoding schemes
	ASCII
	EBCDIC
	Code point differences between EBCDIC CCSIDs

	Unicode
	UTFs
	Unicode CCSIDs

	Endianness
	Situations in which character conversion occurs
	Possible consequences of character conversion
	Types of character conversion
	Expanding conversion
	Contracting conversion
	Round-trip conversion
	Enforced subset conversion

	Chapter 2. How DB2 for z/OS uses Unicode
	Retrieving data from the DB2 catalog
	SYSDUMMYx tables
	Specifying that IFCID output should be in Unicode

	Chapter 3. Setting up DB2 to ensure that it interprets characters correctly
	How DB2 performs character conversions
	SYSIBM.SYSSTRINGS catalog table

	Finding the CCSID values of your data sources
	Specifying CCSIDs in DB2
	Specifying subsystem CCSIDs
	Subsystem CCSIDs and encoding schemes
	Determining current subsystem CCSID and encoding scheme values

	Specifying object CCSIDs

	Setting up z/OS Unicode Services for DB2 for z/OS
	Conversion image
	Basic character conversions for DB2 in the z/OS conversion image
	Character conversions for Chinese, Japanese, and Korean character sets in the z/OS conversion image

	Defining additional character conversions
	Checking defined character conversions

	Chapter 4. Storing Unicode data
	Deciding whether to store data as UTF-8 or UTF-16
	Creating a Unicode table
	Tips for handling any extra storage that Unicode data might require
	Estimating the column size for Unicode data

	Inserting data into a Unicode table
	Inserting Unicode data into a non-Unicode table
	Converting existing DB2 data to Unicode
	Effects on access paths when converting data to Unicode

	Chapter 5. Application programming with Unicode data and multiple CCSIDs
	Application encoding scheme
	Specifying a CCSID for your application
	Details of CCSID options for application programs
	Examples of specifying CCSIDs for application data
	Specifying CCSIDs for COBOL applications when using the DB2 coprocessor
	Specifying CCSIDs for PL/I applications when using the DB2 coprocessor
	PL/I PP compiler option

	Specifying CCSIDs for C/C++ applications when using the DB2 coprocessor

	Determining the CCSID of DB2 data
	Determining the CCSID of a string value in an SQL statement
	Objects with different CCSIDs in the same SQL statement
	Differences between Unicode and EBCDIC sorting sequences
	Specifying how DB2 calculates the length of a string
	Specifying the sorting sequence for a language
	Performing culturally correct case conversions
	Locale

	Generating escaped Unicode data
	Normalization of Unicode strings
	How DB2 handles Unicode supplementary characters
	Processing Unicode data in COBOL applications
	Processing Unicode data in PL/I applications
	Processing Unicode data in C/C++ applications
	Java applications and Unicode data
	Green screen applications and Unicode data
	Variant characters
	DRDA character type parameters in Unicode

	Chapter 6. Debugging CCSID and Unicode problems
	Potential problems when inserting non-Unicode data into a Unicode table

	Appendix A. DB2 utilities and Unicode support
	Appendix B. EXPLAIN Unicode support
	Appendix C. DB2 ODBC Unicode support
	Appendix D. IBM DB2 Tools Unicode support
	Appendix E. The International Components for Unicode
	Appendix F. SYSIBM.SYSSTRINGS table
	Information resources for DB2 for z/OS and related products
	Notices
	Programming interface information
	Trademarks
	Privacy policy considerations

	Glossary
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

